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ABSTRACT 

M-Phase Phosphoprotein 1 (MPP1), a microtubule plus end directed kinesin, is required 

for the completion of cytokinesis. Previous studies have shown that MPP1 is upregulated 

in various types of bladder cancer. This article describes inhibitor-screening leading to 

the identification of a new class of natural product inhibitors of MPP1. Two compounds 

with structural similarity, norlobaridone (1) and physodic acid (2) were found to inhibit 

MPP1. Physodic acid is not competitive with ATP, indicating the presence of an 

allosteric inhibitor-binding pocket. Initial drug-like property screening indicates that 

physodic acid is more soluble than norlobaridone and has more favorable lipophilicity. 

However both suffer from high clearance in human microsomal stability assays mediated 

by the liability of the lactone ring as well as hydroxylation of the alkyl chains as shown 

by metabolite identification studies. In cell-based assays physodic acid is a weak inhibitor 

with GI50 values of about 30 µM in a range of tumor cell lines. The two depsidones 

identified and characterized here could be used for future improvement of their activity 

against MPP1 and will be useful chemical probes for studying this unique molecular 

motor in more depth.  
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Molecular motors of the kinesin superfamily move along microtubule (MT) tracks to 

perform a diverse set of functions from intracellular transport to cell division.1 Among 

the 45 different kinesins expressed in humans, the majority is involved in intracellular 

trafficking processes, whereas about 16 kinesins are implicated in mitosis and 

cytokinesis.2,3 The kinesin-6 family consists of three members, named Mitotic Kinesin-

Like Protein 1 (MKLP-1, also known as Kif23), Mitotic Kinesin-Like Protein 2 (MKLP-

2, also known as Kif20A, Rabk6, Rabkinesin-6 or Rab6-KIFL) and M-Phase 

Phosphoprotein 1 (MPP1, also known as Kif20B, KRMP1 or MPHOSPH1), which are 

predominantly involved in cytokinesis, although report suggest they play non-redundant 

roles.3-5 Members of the kinesin-6 family are unique amongst the kinesin superfamily, 

because they contain an exceptionally long insertion (8 - 10 kDa) of unknown function in 

the loop L6 region of the motor domain.6,7  

In contrast to MKLP-1 and MKLP-2 that have been studied intensively, at least in 

tumor cell lines, there is only very limited information available for the third member of 

the kinesin-6 family, MPP1. Through genome sequencing projects, MPP1 has been 

identified in at least 13 eukaryotic species including human, rat, mouse and Xenopus. 

Human MPP1 is a slow MTs plus-end-directed molecular motor necessary for the 

completion of cytokinesis.3 Particular structural features include the long loop L6 in the 

motor domain and a particularly long neck-linker region.3 This protein has been shown to 

be regulated in vivo by posttranslational modification through phosphorylation in the 

carboxyl-terminal tail domain at Thr1604 by cdc2 kinase.8 MPP1 has been reported to 

interact with the mitotic peptidyl-prolyl isomerase (Pin1) in vivo and that this interaction 

is mediated through the tail domain of MPP1 and the amino-terminal WW domain of 

Pin1.  Another interacting partner is protein regulator of cytokinesis 1 (PRC1).9 MPP1’s 

ATPase activity is stimulated by MTs and MPP1 shows MT-bundling activity. In 

HCT116 colon carcinoma cells, depletion of MPP1 by RNAi leads to defects during 

cytokinesis, which can result in apoptotic cell death.3 Interestingly, cell death seems to 

occur through two different mechanisms: in the first mechanism, the midbody of RNAi 

treated cells “persists” without abscission and the two physically connected daughter cells 

undergo apoptosis. In the second mechanism, the midbody regresses leading to the 

appearance of binucleated cells with subsequent apoptosis. In contrast, in another study, 
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in which MPP1 was depleted in HeLa cells, the authors did not detect any significant 

defects in cytokinesis.10 The mRNA of MPP1 has been shown to be significantly 

upregulated in bladder cancer (and in a variety of bladder cancer tumor cell lines) as well 

as large B cell lymphoma.9,11 In total, MPP1’s interaction with PRC1 and its subsequent 

implication in bladder carcinogenesis makes MPP1 a potential target for bladder cancer 

drug development.12  

2-Phenylquinoxalines13 have been reported as small molecule inhibitors of MPP1  

but the patent has subsequently been withdrawn. In this project small molecule libraries 

from the NCI were screened for the inhibition of the ATPase activity of human MPP1. 

The aim of this study was to identify novel MPP1-specific inhibitors that can be used as 

chemical probes for studying MPP1 biology and as potential lead compounds for drug 

development. In this paper the recombinant expression, purification and biochemical 

characterization of two human MPP1 motor domain constructs are described. It also 

reports the discovery and characterization of an MPP1-specific inhibitor, originally 

isolated from lichens, known as depsidones that was identified using an in vitro inhibitor 

screening assay. MPP1-inhibitor interaction and investigation of the effect on different 

tumor cell lines including bladder, colon, pancreatic and leukemia cell lines were 

subsequently characterized. In addition, some basic drug-like properties of the MPP1-

specific inhibitor were also characterized. In conclusion this paper describes the 

identification and characterization of an MPP1-specific inhibitor (Figure 1A and 1B) that 

can be used to study the biochemical and structural features of human MPP1. However, 

further development is necessary to improve its physico-chemical properties and potency.  
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RESULTS AND DISCUSSION 

Characterization of MPP1 Motor Domain Constructs. Human MPP1 is a prot- 

ein of 1853 residues (Figure 2A). It contains a short N-terminal sequence of unknown 

function preceding the motor domain (aa 1 to 56), followed by the motor domain (aa 56 

to 491) which includes a large loop L6 insertion (aa 186 to 262) (Figure 2B), a 

particularly long discontinuous coiled coil region (aa 568 to 1600) and a C-terminal tail 

domain (aa 1602 to 1853) (Figure 2A). Two MPP1 constructs, coding for residues 2 to 

477, which also include the small N-terminal domain (residues 2 to 56) preceding the 

motor domain and residues 57 to 491 (subsequently named MPP12-477 throughout the 

manuscript) and a protein covering the entire MPP1 motor domain (named MPP157-491) 

but lacking the first 56 residues, were cloned into an E. coli expression vector and were 

expressed and purified to homogeneity. Mass spectrometry finger print analyses with 

sequence coverage of 56% and 77% respectively confirmed that the two purified proteins 

were indeed human MPP1. Gel filtration analysis revealed that MPP12-477 (51 kDa) and 

MPP157-491 (43 kDa) are both monomeric in solution (data not shown).  

To optimize and miniaturize the experimental conditions for inhibitor screening  

and subsequent biochemical assays, the basic kinetic parameters of MPP12-477 and 

MPP157-491 were first investigated (Table 1 and Figure 3). We used two different 

constructs, one including the small 56 residues long N-terminal domain adjacent to the 

motor domain and the second construct lacking this domain (Figure 2A). Our aim was to 

identify whether the N-terminal small domain would have an effect on the overall kinetic 

properties of the MPP1 motor domain and whether this N-terminal domain would be 

involved in inhibitor binding or not. 

Determination of the salt-dependence of the basal ATPase activity was performed by 

measuring the kcat in the presence of increasing NaCl concentrations. The activity 

decreases with increasing salt concentration indicating that the basal MPP1 ATPase 

activity is best measured in the absence of salt for both motor domain constructs (Figure 

3A). The basal ATPase activity in the presence of increasing ATP concentrations, in the 

absence of salt led to a maximum kcat of 0.016 ± 0.001 s-1 with a KM,ATP of 68.5 ± 16 µM 

for MPP12-477 and the kcat for MPP157-491 is 0.010 ± 0.001 s-1 with a KM,ATP of 128 ± 2.1 

(Figure 3B). Subsequently, MT-stimulated kcat as well as the KM,ATP and K0.5,MT in the 
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presence of MTs were measured. The kcat values of the MT-stimulated ATPase activities 

are 3.1 ± 0.2 s-1 and 4.1 ± 0.1 s-1 for MPP12-477 and MPP157-491, respectively, 
corresponding to 193-fold and 410-fold stimulations compared to the basal ATPase 

activities. The KM,ATP values are 44 ± 4 µM and 82 ± 2 µM (Figure 3C) and the K0.5,MT 

values are 102 ± 3 nM and 112 ± 1 nM for MPP12-477 and MPP157-491, respectively 

(Figure 3D). We conclude from the above data that the absence or presence of the small 

N-terminal head domain preceeding the motor domain does not significantly affect the 

kinetic properties of MPP1. Therefore, we decided to use MPP157-491, which could be 

expressed in larger amounts than MPP12-477 for further inhibitor screening.  

 

Inhibitor Screening and Hit Identification. Based on these results, initial  

screening of MPP157-491 for inhibitors was conducted by observing the inhibition of the 

basal ATPase activity in the absence of salt and in the presence of 1 mM Mg2+ATP, using 

several small molecule libraries from the NCI including the mechanistic, the structural 

diversity and the natural product sets. One initial hit was the depsidone norlobaridone (1), 

a natural product originally isolated from Xanthoparmelia conspersa and X. scabrosa  

(Figure 1).14 To verify the initial hit obtained in the library the powder was obtained from 

the NCI/NIH and its activity MPP157-491 was quantified. Norlobaridone (1) inhibits the 

basal MPP1 ATPase activity with an IC50 of 18.7 ± 2.6 µM and the MT-stimulated 

ATPase activity with an IC50 of 24.4 ± 3.5 µM indicating that it is a weak inhibitor of 

MPP1. An analogue, physodic acid (2), tested thereafter was more active than 1 

inhibiting the basal and MT-stimulated ATPase activities with IC50 values of 9.9 ± 1.1 

µM and 5.8 ± 0.9 µM, respectively (Figure 4). To exclude the possibility of aggregation 

based inhibition15, the inhibition of the basal ATPase activity of both 1 and 2 were 

measured in the presence of 0.1% Tween-20 to reduce compound aggregation. The IC50 

values obtained for both the inhibitors were similar to those obtained without detergent 

(data not shown). Interestingly, MPP12-477, which contains the small N-terminal domain 

preceding the motor domain, is inhibited by both depsidones to a larger extend than the 

shorter MPP1 construct (Table 2). The depsidone variolaric acid (3), which contains an 

additional five-membered ring system but lacks the alkyl chains, is inactive. 1 and 2 
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contain two alkyl substituents, which might contribute towards their activity against 

MPP1 ATPase activity. 

The compounds were then tested in proliferation assays using HCT116 (colon),  

Bx-PC-3 (pancreatic), K562 (leukemia) and J82 as well as UM-UC-3 (both bladder 

cancer) cell lines (Table 3). The well-known Eg5 inhibitor STLC (4) was used as a 

control. Interestingly, 1 and 2, displayed a measurable effect in the panel of cell lines 

tested with GI50 values ranging between 31.8 to 48.3 µM. 3 did not show any measurable 

effects in the concentration range tested.  

  

Determination of the Type of Inhibition for MPP1 in the Absence or Prese- 

nce of MTs. The type of inhibition for 2, was then determined for the more potent 

analogue. In the absence of MTs, 2 is an un-competitive inhibitor of MPP1 with respect 

to ATP (Figure 5A), as indicated by decreasing Vmax and Km values. In the presence of 

MTs, 2 is a mixed inhibitor (a special case of non-competitive inhibition) of MPP1 with 

respect to ATP (Figure 5B) as observed by an increase in apparaent Km but a decrease in 

the apparent Vmax when the Km,ATP is measured at increasing concentrations of 2.  On the 

other hand 2 is non-competitive with respect to MTs (Figure 5C) as the apparent Km 

remains the same whereas Vmax decreases with increasing inhibitor concentrations. 

 

Determining the Specificity of Physodic acid (2) within the Kinesin  

Superfamily. The specificity of 2 was measured for MPP1 by investigating the possible 

inhibition of the ATPase activity of human kinesins from different subfamilies (Table 4). 

2 was specific for human MPP1 as it did not significantly inhibit any other mitotic 

kinesins of the kinesin-6 family or other kinesins involved in mitosis or cytokinesis, for 

example Eg5 (kinesin-5)16, Kif1517 (kinesin-12), or MKLP-218/MKLP-1 (kinesin-6). 

Compound 2 also did not inhibit the activity of two kinesins involved in intracellular 

transport, Kif719/Kif27 (kinesin-7) and Kif5a/Kif5b (kinesin-1). Partial inhibition of 

between 40% and 50% at 200 µM for Kif4 and Kif9 were observed, for which no IC50 

value could be calculated. The compound also showed partial inhibition of between 60% 

and 70% for both the basal and MT-stimulated ATPase activity of the kinetochore motor 

CENP-E with IC50 values of 29.6 ± 12.7 µM and 91.4 ± 31.0 µM, respectively.  
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Profiling of Drug-Like Properties. The determination of basic drug-like 

properties provided important insights into ADME characteristics of 1 and 2 (Table 5). 

Both compounds show pH-dependent solubility, which rises with increasing pH. Whereas 

1 shows only partial solubility at pH 7.4, 2 has good solubility probably due to the 

presence of an additional carboxylic acid group. The logD7.4 (the distribution coefficient 

at a pH of 7.4) of 3.0 for 2 is slightly more favorable than for norlobaridone (logD7.4 = 

3.5). In PAMPA assays, which investigate passive diffusion, 1 showed some passive 

permeability whereas 2 did not display any permeability. The bi-directional Caco-2 

permeability assay was used to determine the compound efflux ratio. Whereas 2 did not 

give satisfactory results, the efflux ration for 1 was 0.51 indicating that no drug efflux 

occurs. Subsequent testing of both compounds in human and mouse microsomal stability 

assays showed high clearance in human and mouse microsomal stability assays with half-

life times of only 3.5 and 4.5 min in human microsomes and 3.1 min and 22.5 min in 

mouse microsomes for 1 and 2, respectively. In both human and mouse microsomal 

stability assays, physodic acid showed low values in the control without cofactor, which 

indicates either chemical instability or non-cofactor dependent enzymatic degradation. 

Compound 2 was therefore tested in chemical stability assays and was shown to be stable, 

although it showed some minor unspecific binding to polypropylene. In addition, assays 

performed in the absence of microsomes for both compounds indicated that they were 

chemically stable. This points to a non-NADPH-dependent enzymatic process in the 

microsomes, that also contributes to some clearance, but which was not investigated 

further. To further investigate the high clearance observed for depsidones compound 2 

was incubated with human liver microsomes and the resulting metabolites identified by 

mass spectrometry. Three metabolic pathways were found by LC-MS and the relationship 

of the products to 1 was determined by their collision induced mass spectra (see the 

Supplementary Material Section for details). They were hydrolysis of the lactone ring (-

CO2- to –CO2H HO-) metabolite M1, oxidation of the pentyl side chain (C5H11 to 

C5H10OH) M2 and further cleavage of the phenolic ether M3 (methyl 2,4 dihydroxy -6 

pentanoylbenzoate). 
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Discussion. There is a continuous need to identify and validate novel potential 

drug targets. Certain human mitotic kinesins are considered as potential mitotic spindle 

targets for drug development in cancer chemotherapy. Not surprisingly, several clinical 

candidates, leads or chemical probes targeting a variety of human kinesins have been 

reported including Eg520, CENP-E21, Kif18b22, MKLP-223, MCAK24 and KifC125,26. Drug 

candidates targeting Eg5 and CENP-E are in clinical phase I and II trials27,28,28 and the 

most promising compound, ARRY-520, has proven effective in refractory and relapsed 

multiple myeloma in combination with a proteasome inhibitor. One potential novel 

candidate is MPP1 from the kinesin-6 family. This unusual motor protein has previously 

been shown to move towards the plus-end of MTs and is involved in cytokinesis.3 MPP1 

has also been reported to be phosphorylated during mitosis at its C-terminus, which is 

crucial for its role in cytokinesis.8 Importantly, previous literature also suggests the 

importance of MPP1 overexpression in progressive and invasive forms of bladder 

cancer.9 These initial findings suggest that MPP1 may serve as a potential drug candidate 

for targeting bladder cancer and specific chemical probes against MPP1 may serve to 

further validate this early hypothesis.   

 

A patent13 reported specific MPP1 inhibitors known as 2-phenylquinoxalines (6)  

(Figure 1). There was a marked phenotype of bineculated cells in BSC-1 (African green 

monkey) cells treated with these inhibitors, but unfortunately, the patent was later 

withdrawn.  

In order to identify novel inhibitors of MPP1, two MPP1 motor domains were 

first cloned, expressed and purified with subsequent characterization of their kinetic 

parameters  (Table 1). The analysis confirmed similarities with other motor domain from 

different kinesins like Eg529,30, Kif1517 and Ncd30. Thereafter, in order to identify 

potential inhibitors of MPP1, in vitro screening using previously established procedures 

was performed.31 Reported here is the identification and initial characterization of two 

closely related natural product inhibitors of MPP1, 1 and 2 acid from a class of 

compounds known as depsidones derived from lichens. 

Having demonstrated that 2 is a low micro molar inhibitor of MPP1, the type of  
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inhibition was characterized thereafter. The results show that 2 is a un-competitive 

inhibitor with respect to ATP under basal and a mixed inhibitor when measured in the 

presence of MTs and is a non-competitive inhibitor with respect to MTs. Since 

depsidones do not compete with ATP or MTs, MPP1 must also contain at least one 

allosteric inhibitor-binding pocket, as observed in other kinesins for example Eg5, CENP-

E and KifC1.  

Lichens are symbiotic organisms composed of algae or cyanobacteria and fungi.  

Morethan 1,000 compounds have been isolated from different lichens, which have been 

estimated to comprise almost 20,000 species. Many of the secondary metabolites that 

have been identified so far are unique to lichens. Lichen metabolites have been shown to 

possess a range of interesting biological properties including antioxidant, antimicrobial, 

antiherbivore and insecticidal activities.32 Several natural products from lichens have 

been shown to possess cytotoxic activity33 and for a few isolated lichen metabolites 

growth inhibition and apoptotic cell death has been reported.34,35 One interesting class of 

lichen compounds is represented by depsidones containing the dibenzodioxepinone 

scaffold (Figure 1) and for which a number of structurally related derivatives have been 

isolated and characterized from a variety of lichen species.36 Cytotoxic activity has been 

observed for several chlorinated depsidones35 and botryosphaerones.37 In most cases, the 

biological targets that are inhibited are unknown. Therefore, the identification of the 

target(s) for these compounds will open the way of their use as chemical probes to study 

the function of these proteins, to further validate their potential as therapeutic targets and 

in the best case improve their chemical scaffolds for drug development. Compound 4 has 

recently been shown to inhibit tubulin polymerization38 and MPP1 is a novel cytoskeletal 

protein target to be identified for the class of compounds known as depsidones. A 

structurally related depsidone, Corynesidone A (Figure 1), extracted from the fungus 

Corynespora cassicola L36, is a known aromatase inhibitor.39 

In this study it was also observed that in cell based assays, 2 is effective with GI50  

values of around 30 µM in bladder cancer cell lines. Although cell-based activity is only 

weak, this is in line with previous finding where MPP1 has been found to be 

overexpressed in various bladder cancer cell lines. Though the initial compounds display 

low potency in tumor cell lines, further development, particularly with regard to 



! 10!

improving the metabolic liabilities of the compounds and optimizing their drug-like 

properties, may increase their efficacy. A major problem is the lack of metabolic stability 

of both depsidones with half lifes of only several minutes in human and mouse 

microsomal stability assays (Table 5). The subsequent metabolite identification study for 

compound 2 revealed the Achilles’ heel of this type of compound, which will have to be 

taken into account for further optimization: the major metabolites originated from 

hydrolysis of the lactone ring metabolite M1, or hydroxylation of the alkyl chain (C5H11 

to C5H10OH) metabolite M2, and finally cleavage of the ether bond of metabolite M1 to 

give M3. 

In conclusion, further optimization of potency coupled with efficacy in tumor ce- 

ll lines to study MPP1 function will require the substitution and/or stabilization of the 

labile lactone ring and removal or shortening of the alkyl chains, if these substituents are 

not required for activity against MPP1. Reducing the length of the alkyl chains would 

also have the additional advantage of reducing lipophilicity (clogP) and increase 

solubility of the analogues in aqueous solution.    

In summary, a low micromolar natural product inhibitor, physodic acid (2), has 

been reported here that targets MPP1 identified using an in vitro screening method. The 

inhibitor is specific for MPP1 compared to other kinesins but displays some drug like 

property liabilities such as high metabolic clearance and low cell permeability.  This 

novel MPP1 inhibitor can be used as a chemical probe to study MPP1 either 

biochemically, biophysically or structurally. In particular a crystal structure of the 

depsidone-MPP1-Mg2+ADP ternary complex would be useful to understand the 

interactions in molecular detail. Further improvement of the scaffold will focus on 

studying analogues of available depsidones to identify analogues with improved potency 

and drug-like properties.  

 

EXPERIMENTAL SECTION 

Chemicals. The small molecule libraries for inhibitor screening were obtained  

from the NCI/NIH. Norlobaridone (1, NSC31867) and physodic acid (2, NSC5916) were 

obtained from the NCI/NIH (Rockville, USA). Variolaric acid (3) was obtained from 

Produits Naturels, Syntheses et Chimie Medicinal (PNSCM, S. Tomasi). Norlobaridone 
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and variolaric acid have a purity of >95%, whereas the purity of physodic acid is 94%, as 

shown by LC-MS.  

Physodic acid. White amorphous powder; IR (KBr): vmax = 2400-3300, 1692,  

1660, 1616 cm-1; HRESIMS: m/z = 493.1838 [M + Na]+ (calcd. for C26H30O8Na: 

493.1842); 1H-NMR and 13C-NMR identical to published data.40 

Variolaric acid. White powder; IR (KBr): vmax = 3410, 3060, 1748, 1727, 1626, 

1577 cm-1; HRESIMS m/z 314.0430 [M]+. (calcd for C16H10O7 314.0427); 1H NMR (270 

MHz, DMSO-d6) and 13C NMR (67.5 MHz, DMSO-d6) data comparable to published 

values40. 

Initial Drug-Like Property Profiling and Metabolite Identification.  

Turbidimetric solubility, logD7.4, and human as well as mouse microsomal stability were 

determined as previously described.41 PAMPA, Caco-2 and chemical stability assays 

were carried out at Cyprotex according to internal protocols, including all necessary 

controls. 

Cloning, Expression and Purification of Human MPP1 Constructs. The motor 

domain of human MPP12-447 and MPP157-491 were cloned in ppSUMO (with an N!terminal 

SUMO fusion and His6!tag) expression plasmid. The primers (Sigma) for the two 

different constructs are as follows: MPP12-447: Forward Primer: 5'-GCC ATT GCA CAA 

TAA GTT TGT GTC CCA GAC-3'; Reverse Primer:  5'-GTC TGG GAC ACA AAC 

TTA TTG TGC AAT GGC-3'; MPP157-491: Forward Primer: 5'-GAA CAG ATT GGT 

GGA TGC GGA TCC AAA GAT TAT CTC CAG GTT-3'; Reverse Primer:  5'-CTT 

GAG AGG AAT TTA AAG TGT CTT AGA CAC AAA CTT TTT GTG-3'. The cloning 

strategy and the sequences were verified by DNA sequencing. 

For protein expression and purification, plasmids were transformed into Escheric- 

hia coli BL21 CodonPlus (Novagen, Watford, UK). 12 L of bacterial culture were grown 

at 37 °C in TB (Terrific Broth) medium supplemented with 100 mg/l ampicillin to an A600 

of 0.7 and induced overnight with 0.5 mM IPTG (Isopropyl β-D-thiogalactoside; Melford, 

Chelsworth, UK) at 20 °C. Harvested cells were resuspended in buffer A [50 mM PIPES 

pH 6.8, 1 mM MgCl2, 1 mM Na-EGTA, 250 mM NaCl and 10 mM imidazole] 

supplemented with 1 mM PMSF, 1 mM Mg2+ATP and 2.5 mg of lysozyme, and 

subjected to one cycle of freeze–thaw and sonication, before 1 mM DNaseI was added. 
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The lysate was centrifuged for 1 h in a J25 (Beckman, High Wycombe, UK) rotor at 

30000 g at 4 °C.  

Clear lysates were loaded on to a 5 ml HisTrap FF column (GE Healthcare, 

Buckinghamshire, UK) equlibrated in buffer A. The resin was washed with buffer A 

containing 10 mM imidazole and the proteins were eluted on a gradient of buffer B [50 

mM Pipes pH 6.8, 1 mM MgCl2, 1 mM Na-EGTA, 250 mM NaCl and 1 M imidazole]. 

Fractions containing the protein were pooled and the buffer was exchanged for desalting 

buffer C [50 mM PIPES pH 6.8, 250 mM NaCl, 1 mM MgCl2 and 1 mM Na-EGTA]. 

Ulp1 protease purified as previously shown42, 1 mM Mg2+ATP and 1 mM MgCl2 were 

added and reaction mixtures were incubated overnight at 4 °C. Uncleaved proteins and 

protease were removed by running the sample through the His-trap column for a second 

time. The cleaved protein was diluted using buffer D [50 mM PIPES pH 6.8, 1 mM 

MgCl2 and 1 mM Na-EGTA] to obtain a final salt concentration of ~30 mM. The diluted 

sample was then applied to a 5 ml Hitrap FF (GE Healthcare, Buckinghamshire, UK) ion-

exchange column to remove the remaining contaminants. The protein was eluted with a 

gradient of buffer E [50 mM PIPES pH 6.8, 1 mM MgCl2, 1 mM Na-EGTA and 250 mM 

NaCl]. The protein containing fractions were pooled and run through a final step of size-

exclusion chromatography on a Superdex 75 column (GE Healthcare, Buckinghamshire, 

UK) equilibrated in gel-filtration buffer F [50 mM PIPES pH 6.8, 200 mM NaCl, 1 mM 

DTT, 1 mM Na-EGTA and 1 mM MgCl2]. 

The protein obtained was pooled and concentrated on an Amicon ultrafiltration  

device (Millipore, Watford, UK) to a final concentration of approx. 2-3 mg/ml and flash 

frozen in liquid nitrogen and stored at -80 °C after adding 5% glycerol. The proteins have 

been used freshly purified where possible with occasional use of frozen proteins. 

Steady State ATPase Measurements and Determination of IC50 Values. Stea- 

dy-state basal and MT-stimulated ATPase rates were measured using the pyruvate 

kinase/lactate dehydrogenase-linked assay.43 The amounts of MPP1 constructs were 

optimized to 680 nM for the basal and 50 nM for the MT-stimulated activity assays. For 

Km,ATP, the concentration of ATP was within a range from 0 mM to 2 mM for both basal 

and MT-stimulated ATPase assays, whereas MTs were used in the range of 0 µM to 20 

µM for the determination of the Km,MTs. Kinetics measurements were carried out at 25 °C 
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using a 96-well Sunrise photometer (TECAN, Maennesdorf, Switzerland). The data were 

analyzed using Kaleidagraph 4.0 (Synergy Software, Reading, UK). The kinetic 

parameters kcat , Km, ATP , Km, MTs were initially calculated and optimized based on the rates 

computed from equation 1. 

s-1 =  ΔA/min x 2 / (εNADH x 60 x Cenzyme) ……….. eq. 1 

where, (εNADH corresponds to the molar extinction coefficient of NADH (6220 

ΔA/mol/cm), ΔA/min is the absorbance decrease at 340 nm per min, and Cenzyme is the 

molar concentration of MPP1 used in the assay. The factor 2 is a correcting factor taking 

into account the length of the optical path in the 96-well plate, normalized to a path of 1 

cm. The IC50 values for the inhibition of the basal and MT-stimulated ATPase activities 

of MPP1 were calculated for depsidones analogues at concentrations ranging from 0 µM 

to 200 µM. 

Determination of the Type of Inhibition of Physodic Acid for MPP1 in the  

Absence and Presence of MTs. The type of inhibition for the depsidones in the absence 

and presence of MTs was determined based on the steady state ATPase measurements as 

described above. Compound 2 was the more potent compound and was selected for these 

assays. The Vmax and Km of ATP in the absence and presence of MTs and for MTs (at a 

constant ATP concentration) were measured to decipher the type of inhibition. For the 

determination of the type of inhibition with respect to ATP in the absence of MTs, ATP 

was used at a concentration range from 0 to 2 mM for each individual inhibitor 

concentration at 0, 1, 5, 10 and 20 µM. 

The type of inhibition with respect to ATP in the presence of MTs was determin- 

ed at an MPP1 concentration of 50 nM and a fixed MT concentration of 1 µM. The 

inhibitor concentrations investigated were 0, 1, 5 10 and 20 µM with either increasing 

concentration of ATP from 0 mM to 2 mM. 

The type of inhibition with respect to MTs was determined at an MPP1 concentration of 

50 nM and a fixed ATP concentration of 1 mM using MT concentrations between 0 and 1 

µM. 

For measurement of specificity of 2 against a set of kinesins the protein concentr- 

ations used ranged from 200 nM to 800 nM for basal ATPase activity assays and 5 nM to 

90 nM for MT-stimulated ATPase assays. The inhibitor concentration for each kinesin is 
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measured in the range of 0 to 200 µM. The graph fitting was done with GraphPad Prism 

5.01 for Windows (GraphPad Software, San Diego, USA).  

Measurement of EC50 for Human Cancer Cells Lines for the Depsidones. 

HTC116 (ATCC CCL-247) cells were cultured in DMEM (Invitrogen, Paisley, UK), 

supplemented with 10% fetal bovine serum (PAA, Pasching, Austria). K562 (ATC 

CCCL-243) cells were cultured in RPMI (Invitrogen, Paisley, UK), supplemented with 

10% fetal bovine serum (PAA, Pasching, Austria). J82 (ATCC HTB-1) and UM-UC-3 

(ATCC CRL-1749) cells were cultured in Advanced MEM (Invitrogen, Paisley, UK), 

supplemented with 10% fetal bovine serum (PAA, Pasching, Austria). BxPC-3 (ATCC 

CRL-1687) cells were cultured in RPMI (Invitrogen, Paisley, UK), supplemented with 

1% nonessential amino acids (Invitrogen, Paisley, UK), 1% sodium pyruvate (Invitrogen, 

Paisley, UK), 1% glutamine (Invitrogen, Paisley, UK) and 10% fetal bovine serum (PAA, 

Pasching, Austria). All cells were maintained at 37 ºC, 95% humidity, and 5% carbon 

dioxide in a humidified incubator. They were used for experiments for 6-8 weeks before 

they were replaced with fresh stocks, which are stored in liquid nitrogen. 

Cell Proliferation Assays. All compounds were tested to determine their growth  

inhibition effect (EC50) in the human leukemic cell line K562, the colon cancer cell line 

HCT116 and the two bladder cancer cell lines J82 and UM-UC-3, respectively. 

Experimental procedures were as previously described.44 

Briefly, cells were seeded in triplicate in 96-well assay plates at 1.250 cells  

(HCT116), 2.000 cells (J82, UM-UC-3), or 5.000 cells (K562) per well in 100 µL of the 

respective growth medium. Medium blanks (without any cells) and cell blanks (without 

any inhibitors) for every cell line were also prepared. On the next day, inhibitors were 

added with a starting concentration of 100 µM in a 3-fold serial dilution series. After 72 h 

post inhibitor addition, 10% Alamar Blue (Invitrogen, Paisley, UK) was added and 

depending on the cell line, 2-12 h later the absorbance was measured at 570 and 600 nm. 

All values were corrected for the absorbance of the medium blank and the corrected cell 

blanks were set to 100%. Calculations for determining the relative proliferation were 

performed using equations described in the manufacturer’s manual. Finally, the EC50 

values were determined using a sigmoidal dose-response fitting (variable slope) with 

GraphPad Prism 5.01 for Windows (GraphPad Software, San Diego, USA). 
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TABLES 
 

Table 1: Biochemical Charaterization of MPP1.a 

 

 

 

 

 

 

 

 

 

 

 
a Initial biochemical characterization of two MPP1 constructs including mass spectrometry finger print analysis, gel filtration, and the 

determination oft he basal as well as MT-stimulated steady state ATPase activities. 

  

enzyme mass spec 
finger print 

[Coverage %] 

gel 
filtration 

[MW 
kDa] 

basal ATPase activity 
 

MT-stimulated ATPase activity 
 

kcat 
[s-1] 

KM,ATP 
[µM] 

kcat 
[s-1]   

KM,ATP 

[µM]  
K0.5,MT 
[nM] 

MPP12-477 56 51 0.016 ± 0.001 68.5 ± 16 3.1 ± 0.2 44 ± 4 102 ± 3.2 

MPP157-491 77 43 0.010 ± 0.001 128 ± 2.1 4.1 ± 0.1 82 ± 2 112 ± 1.0 
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Table 2: Inhibition of MPP1 by Depsidones.a  

 

cmpd No 
(Name) 

inhibition of basal 
ATPase activity  

MPP157-491 

[µM] 
(MIA) 

inhibition of MT-
stimulated 

ATPase activity 
MPP157-491 

[µM] 
(MIA) 

inhibition of 
basal ATPase 

activity  
MPP12-477 

[µM] 
(MIA) 

inhibition of MT-
stimulated 

ATPase activity 
MPP12-477 

[µM] 
(MIA) 

 1 
(norlobaridone) 

 
 

18.7 ± 2.6 
(75) 

24.4 ± 3.5 
(90) 

10.8 ± 1.7 
(80) 

7.6 ± 0.7 
(90) 

2 
(physodic acid) 

 
 

9.9 ± 1.1 
(85) 

5.8 ± 0.9 
(90) 

10.4 ± 1.7 
(90) 

4.6 ± 0.8 
(95) 

3  
(variolaric acid) 

 

n.i. 
 

n.i. 
 

n.i. 
 

n.i. 
 

a Determination of IC50 values for the inhibition of the basal and MT-stimulated ATPase activity of two human MPP1 constructs, MPP157-491 and MPP12-477 by 

the three depsidones norlobaridone, physodic acid and variolaric acid from lichen. MIA: Maximum Inhibition Attained in percentage; n.i.: no inhibition. 
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Table 3: Investigation of the Inhibitory Activity of Depsidones in Tumor Cell Lines.a  

 

 

 

 

 

 

 

 

 

 

 
aTumor cell lines from colon (HCT116), leukemia (K562) bladder (J82 and UM-UC-3) and pancreatic (BxPC3) cancer cell lines were used to test the 

inhibitory activity of the compounds. The Eg5 inhibitor STLC (4) was used as a control. 

 

  

cmpd 
no. 

GI50 [µM] 

HCT116 J82 UM-UC-3 K562 
 

BxPC-3 
 

1 
 

42.9 ± 8.4 48.3 ± 23.8 30.5 ± 3.5 
 

43.7 ± 6.1 33.1 ± 3.8 

2 
 

>50 38.2 ± 10.6 31.8 ± 6.2 32.6 ± 2.3 37.3 ± 6.1 

3  
 

>100 >50 >100 >100 n.d. 

4 
 

0.8 ± 0.1 3.6 ± 0.3 
 

3.7 ± 0.2 1.4 ± 0.1 1.6 ± 0.1 
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Table 4: Specificity of Physodic Acid.a  

 

human kinesin family inhibition of basal ATPase activity IC50 

[µM] 

(MIA) 

inhibition of MT-stimulated ATPase 

activity, IC50 [µM] 

(MIA) 

MPP157-491 kinesin-6 9.9 ± 1.1 
(85) 

5.8 ± 0.9 

(90) 

Kif15 kinesin-12 n.i. n.i. 

Eg5 kinesin-5 n.i. n.i. 

MKLP-1 kinesin-6 n.i. 40% 

MKLP-2 kinesin-6 n.i. n.i. 

Kif7 kinesin-4 n.i. n.i. 

Kif27 kinesin-4 n.i. n.i. 

CENP-E kinesin-7 29.6 ± 12.7  

(70) 

91.4 ± 31.0 

(60) 

Kif5A kinesin-1 n.i. n.i. 

Kif5C kinesin-1 n.i. n.i. 

Kif3B kinesin-2 n.i. 40% 

Kif9 kinesin-9 40% 50% 

Kif4A kinesin-4 40% 40%  

Kif24 kinesin-13 n.i. n.i. 
a2 was tested on the inhibition of the basal and MT-stimulated ATPase activities of a variety of human kinesins functionally involved in either mitosis or 
intracellular transport. Compounds were measured to a concentration of 200 µM. MIA: Maximum Inhibition Attained in percentage, n.i.: no inhibition. 
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Table 5: Profiling of some basic Drug-Like properties.a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
an.d.: not determined. *Possible solubility or binding issues. % Calculated using Chemdraw. 
 
 

assay / compounds 1 2 

molecular weight [Da] 398.45 470.19 

turbidimetric solubility 

pH 2.0, 6.0, 7.4 [µM] 

6.5, 3.75, 

37.5 

3.75, 65, >100 

log D7.4 3.5 3.0 ± 0.04 
%clogP 6.9 6.9 

PAMPA [Papp, 10-6 cm/s] 

mean recovery [%] 

32.4 ± 5.3 

95.1 

low passive 

permeability 

77.0 

Caco-2  

efflux ratio [Mean Papp B2A / Mean Papp A2B] 

0.51 n.d. 
*low recovery 

microsomal stability [Clint (µl/min/mg protein] 

t1/2 [min] 

human  

  

mouse  

 

 

393 ± 9.1 

3.5 

452 ± 21.9 

3.1 

 

 

310 ± 9.4 

4.5 

61.6 ± 13.0 

22.5 

chemical stability n.d. stable 



FIGURE LEGENDS 
 

Figure 1: Chemical structures of depsidones and a quinoxaline MPP1 inhibitor. 1 and 

2 are inhibitors of MPP1 ATPase activity, whereas variolaric acid does not inhibit 

MPP1 activity. Corynesidone A (5) is a known aromatase inhibitor whereas lobaric 

acid (4) has been shown to inhibit MT polymerization. The quinoxaline analogue 6 

has been shown to inhibit MPP1, although the patent has been withdrawn. 

 

Figure 2: MPP1 domain organization and interactions. (A) Bar diagram of the human 

kinesin MPP1 and the two protein constructs used in this study. MPP1 has a small N-

terminal domain of unknown function (aa 1-56) preceding the motor domain (aa 57-

491). The motor domain contains an unusually long insertion in the loop L6 region, 

which is unique to kinesin-6 family members (marked with a yellow bar), and 

nucleotide-binding as well as MT interacting regions. The motor domain is followed 

by a stalk domain that is predicted to form a discontinuous coiled coil domain (aa 

568-1600). The C-terminal domain (aa 1600-1853) predicted to be predominantly 

unfolded contains a phosphorylation site (Thr1644)8 and the Pin1 interacting region. 

The two MPP1 constructs used in this study are MPP12-477 that covers the small N-

terminal region and the entire motor domain, whereas MPP157-491 codes for the motor 

and the beginning of the neck-linker region. (B) Sequence and structure alignment of 

the human MPP1 motor domain and the motor domain of human Kif5B (conventional 

kinesin, kinesin-1) for which the crystal structure is available. The alignment shows 

the characteristic long inserting in the motor domain of MPP1 inserted in the loop L6 

region (yellow) of the motor domain and also the N-terminal region (green), both of 

unknown function. The sequence alignment was performed using ClustalW at EMBL-

EBI.45 Secondary structure elements of the Kif5B motor domain were extracted from 

the coordinates of its crystal structure (PDB ID: 1BG246) using ESPript 3.0.47  

 

Figures 3: Characterization of the basal and MT-stimulated ATPase activity of two 

MPP1 constructs. (A) Effect of the NaCl concentration on the basal ATPase activity 

of MPP12-447 (□) and MPP157-491 (!) at saturating ATP concentration of 2 mM. (B) 

The basal ATPase activity for MPP12-447 (□) and MPP157-491 (!) in the presence of 

increasing ATP concentration from 0 to 2 mM, measured in the absence of salt (C) 

Determination of the MT-stimulated ATPase activity of MPP12-447 (□) and MPP157-491 
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(!) in the presence of increasing ATP concentrations in the range of 0 to 2 mM (D) 

MT-stimulated ATPase activity of MPP12-447 (□) and MPP157-491 (!) at increasing 

MT concentrations ranging between 0 and 10 µM . 

 

Figure 4: Inhibition of MPP154-491 ATPase activity by depsidones. (A) Inhibition of 

basal ATPase activity of MPP1 by 2 (!), 1 (♦) and 3 (□). (B) Inhibition of MT-

stimulated ATPase activity of MPP1 by 2 (!), 1 (♦) and 3 (□). In both basal and MT-

stimulated ATPase assays 2 is more potent than 1. Interestingly, the MPP1 ATPase 

activity is not inhibited by 3, which unlike the other two depsidones miss the alkyl 

substituents in its chemical structure.  

 

Figure 5: Determination of the type of inhibition for 2 with respect to ATP and MTs. 

(A) The type of inhibition determined in the absence of MTs at increasing ATP 

concentrations. 2 is uncompetitive inhibitor with respect to ATP as shown by (●) 0 

µM, (■) 1 µM, (♦) 5 µM, (▲) 10 µM and (◊) 20 µM of inhibitor at increasing 

concentrations of ATP. (B) The type of inhibition determined in the presence of 1 µM 

of MTs at increasing ATP concentrations. 2 shows mixed inhibition with respect to 

ATP even under MT-stimulated ATPase assay as shown by (●) 0 µM, (■) 1 µM, (♦) 5 

µM, (▲) 10 µM and (◊) 20 µM inhibitor at increasing concentrations of ATP. (C). 2 is 

a non-competitive inhibitor with respect to MTs: (●) 0 µM, (■) 1 µM, (♦) 5 µM, (▲) 

10 µM and (◊) 20 µM of inhibitor at increasing concentrations of MTs from 0 to 2 µM. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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