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Abstract

An accurate characterization of tissue features at microscopic level is essential for

understanding the brain structure or staging a large variety of diseases, such as

Alzheimer’s, multiple sclerosis or cancer. The aim of microstructure imaging is to

provide information related to cellular structure from non-invasive imaging modali-

ties, such as Magnetic Resonance Imaging (MRI). This can be achieved by developing

accurate tissue models and relating them to imaging data. Diffusion weighted MRI

(DW-MRI) measures the displacement of the water molecules inside the tissue which

is sensitive to the configuration of cellular membranes, therefore it provides relevant

information for characterizing tissue microstructure.

This PhD thesis presents my work on developing novel DW-MRI sequences and

tissue models which provide improved sensitivity to cellular features such as pore size

and shape. To model the DW-MRI signal, the tissue is regarded as a porous medium

with cells described as fluid-filled pores separated by impermeable membranes. The

first part of this thesis is concentrated on improving the estimation of intrinsic diffu-

sivity and pore size. Specifically, it analyses a promising class of diffusion sequences,

namely oscillating gradients, which measure diffusion on a short time scale and give

access to small structures, such as cell nuclei. Additionally, it emphasises the benefits

of low-frequency oscillating waveforms over the standard acquisition for estimating

axon diameter.

The second part of my project focuses on estimating complex tissue features such

as pore elongation and size distribution, and it demonstrates that these features are in-

trinsically linked and need to be explicitly modelled for accurate results. Moreover, it

shows that pulse sequences with varying gradient orientation, such as double diffusion

encoding, are able to separate these effects more effectively than standard sequences.

The most recent study combines the benefits of both sequences in an innovative acqui-

sition with double oscillating gradients. This supports estimates of cell size distribution

and eccentricity for a wider range of substrates.
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Joseph Jacobs, Mark Graham, Maira Tariq and Lebina Kakkar for proofreading chap-

ters of this thesis.

My experience at UCL wouldn’t have been so delightful without my friends from



Acknowledgements 5

the ’MIG foodies’ group: Lebina Kakkar, Maira Tariq and Jiaying Zhang. We had many

lunch and coffee breaks together that would lift my mood on a rainy day. Moreover,

I would like to thank the entire MIG group for being really nice and supportive with

every occasion - the best colleagues I could have hoped for!

Many thanks to my friends in London, that definitely improved the entire experi-

ence of being a PhD student.

Very special thanks to my husband Vytautas Savickas. Thank you for understand-

ing what it means to undertake a PhD, for being next to me at every step along the

way, for making delicious coffee and breakfast in the morning, and most importantly

for loving me.

I am very grateful to my parents, Mariana and Gelu Ianuş, as well as my grand-
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• Drobnjak, I., Zhang, H., Ianuş, A., Kaden, E., Alexander, D.C. PGSE, OGSE, and

sensitivity to axon diameter in diffusion MRI: Insight from a simulation study.

Magnetic Resonance in Medicine, Early View
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Chapter 1

Introduction

Studying tissue anatomy at the microscopic scale is essential for understanding brain

structure or for diagnosing and monitoring diseases, such as Alzheimer’s, multiple scle-

rosis or various tumours. Standard histology, which relies on different types of staining,

is performed on tissue samples and is an invasive probe of microstructure. For in-

stance, the histological analysis of brain structure is usually performed in post mortem

specimens, which do not retain all characteristics of live tissue. In case of various

pathologies, such as tumours, tissue biopsies are analysed under microscope to pro-

vide histological information. This procedure is invasive, provides only local details,

and poses risks of infections and other complications. Microstructure imaging aims

to use non-invasive imaging modalities to provide information similar to histological

techniques which reveal the cellular structure.

Non-invasive imaging techniques, such as computed tomography (CT), positron

emission tomography (PET) or magnetic resonance imaging (MRI) aim to probe tis-

sue structure and function, in vivo. MRI is one of the most commonly used imaging

modalities due to the large variety of contrast mechanisms, which can be tuned for var-

ious applications. Depending on the data acquisition, MRI can provide high resolution

images of macroscopic tissue structure (T1 or T2 weighted images), measure blood

flow and blood vessel anatomy (perfusion MRI, venography MRI), provide functional

information about tissue activation (functional MRI) or estimate the drug uptake in the

tissue (dynamic contrast enhanced MRI). By sensitising the MR signal to the diffusion

of water molecules, the obtained contrast can also reflect tissue microstructure.

Diffusion weighted MRI (DW-MRI) probes molecular displacement, typically of

water molecules which are abundant in biological tissue, and provides structural infor-



20 Chapter 1. Introduction

mation at the microscopic level. In a homogeneous environment, particles can freely

diffuse in all directions. In the tissue, cellular membranes restrict the molecular diffu-

sion and affect the measured signal, therefore it is possible to extract microstructural

information (e.g. cell size, shape, volume fraction, etc) from DW-MRI data. This

can be achieved by developing realistic models of tissue architecture and relating them

to the acquired signal. The paradigm of this framework is illustrated in Figure 1.1.

Imaging tissue microstructure is an active research topic in DW-MRI with potential ap-

plications to cancer imaging to discern differences in tumour microstructure [2, 3, 4],

white matter imaging to map axon diameter [5, 6, 7, 8, 9, 10] in the presence of ori-

entation dispersion [11, 12] and undulation [13], grey matter imaging to discriminate

cytoarchitectures [14], and muscle imaging to assess the degree of injury [15].

Figure 1.1: Schematic representation of the microstructure imaging paradigm using DW-MRI.
Axon diameter index map adapted from [9]

The standard way of acquiring diffusion MRI data is single diffusion encoding

(SDE), achieved by applying a pair of magnetic field gradients during the image acqui-

sition process [16]. Most of current microstructure imaging techniques use a collection

of SDE sequences. However, such an acquisition is sensitive only to a limited range of

pore sizes and cannot characterize more complex tissue configurations which feature

anisotropy at the sub-voxel scale, as in grey matter or various tumours.

Moreover, current microstructure imaging techniques use tissue models that are

not specific enough to represent these complex substrates. For instance, white matter

models assume diffusion inside infinite cylinders, while cancer models assume spheri-

cal restriction. Therefore, these techniques do not allow a simultaneous estimation of

pore size and eccentricity which is important for accurate tissue characterization at the

interface between white and grey matter or in cancer tumours.
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1.1 Problem statement
The research question that motivates this work is identifying the capabilities of ad-

vanced diffusion MR sequences to inform on cellular architecture. The overall goal of

this thesis is to develop microstructure imaging techniques that use advanced sequences

and more complex tissue models in order to improve the estimation of pore size and

shape.

Replacing the standard DW-MRI acquisition with more advanced sequences in-

creases sensitivity to microstructural features. Oscillating diffusion encoding (ODE)

probes diffusion on a shorter time scale and improves access to smaller structures, while

double diffusion encoding (DDE), which varies the gradient orientation in one measure-

ment, improves sensitivity to pore anisotropy at the microscopic scale. We adapt these

sequences for microstructure imaging techniques which can provide biomarkers related

to intrinsic tissue properties such as cellular size distribution, shape and volume frac-

tion. This requires an accurate mathematical representation of the tissue architecture

that captures its geometric complexity. Moreover the signal model linking the diffusion

data and tissue model should evaluate quickly enough to allow model fitting in every

voxel of an image volume to obtain parameter maps.

1.2 Project aims
The specific aims of this thesis are the following:

• adapt ODE sequences for microstructure imaging techniques and investigate their

sensitivity to axon diameter.

• develop a tissue model and acquisition protocol which can be used to estimate

pore size and shape.

• combine the benefits of diffusion gradients with oscillating waveform and vary-

ing orientation in one acquisition.

1.3 Contributions
A detailed description of the contributions I made towards solving these research ques-

tions is presented below:
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• An analytical signal model of restricted diffusion for ODE with square and trape-

zoidal oscillating gradient waveforms, as well as sinusoidal gradients with arbi-

trary phase and frequency, using the Gaussian Phase Distribution (GPD) approx-

imation (Ianus et al, JMR 2013).

• Analysis and optimal design of sinusoidal, square and trapezoidal waveforms for

temporal diffusion spectroscopy which uses oscillating waveforms to measure

the restricted diffusion spectrum (Ianus et al, JMR 2013).

• A sensitivity analysis of ODE sequences with respect to pore diameter for differ-

ent configurations of cylindrical pores (Drobnjak et al, MRM 2015).

• An extension of the GPD approximation for DDE and DODE sequences for re-

stricted diffusion (Ianus et al, IPMI 2015).

• A model-based framework for estimating pore size and eccentricity in complex

substrates which feature a distribution of pore sizes and both microscopic and

macroscopic anisotropy (Ianus et al, IPMI 2015, NMRBiomed under review).

• An analysis of the ability of current sequences (SDE and DDE) to recover mi-

crstructural features such as pore size distribution and eccentricity (Ianus et al,

IPMI 2015, NMRBiomed under review).

• A new class of diffusion encoding sequences, which combines the benefits of

oscillating gradients and varying gradient orientation, namely double oscillating

diffusion gradients (DODE) (Shemesh et al, ISMRM 2015).

• A comparison between two model-free metrics of microscopic anisotropy (Ianus

et al, ICMRM 2015).

• As a tool to answer these research questions, I have developed MISST (Mi-

crostructure Imaging Sequence Simulation Toolbox) - a diffusion MRI simulator

for non-standard acquisition sequences and a large variety of tissue models.

1.4 Report structure
The thesis is organized as follows. Chapter 2 presents the background information nec-

essary to understand this work. It begins with a description of cellular architecture in

brain and cancer tissue, which is of interest for microstructure imaging. Then it intro-
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duces the NMR phenomenon, as well as signal generation, detection and localization

which are the basis for MRI. Further, it presents the theoretical framework of diffu-

sion MRI and details various modelling approaches used in the literature. Chapter 3

describes my theoretical work on oscillating diffusion gradients. Chapter 4 presents

two collaboration studies which analyse the sensitivity of sequences with respect to

pore size and experimentally validate oscillating gradients, respectively. Chapter 5 dis-

cusses my work on a model-based approach for estimating pore size and eccentricity in

complex substrates, and Chapter 6 is focused on the novel double oscillating diffusion

sequences we have proposed. Chapter 7 presents MISST a research software to simu-

late diffusion signal in restricted environments. Chapter 8 provides a summary of the

work presented in this thesis and future research.
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Background

This chapter provides the necessary information to understand the principles of diffu-

sion MRI and discusses previous studies and state-of-the-art microstructure imaging

techniques.

The first section discusses the histological properties of brain and cancer tissue

which we aim to characterize and provides an overview of currently available imag-

ing techniques. The second section presents the basic theory of MRI, including the

nuclear magnetic resonance phenomenon, signal generation, detection and spatial lo-

calization. The following section discusses in detail diffusion weighted MRI, which is

the modality of interest for this research. First, we introduce the basis of diffusion con-

trast, the standard way of acquiring such data, as well as the signal model in the case

of free diffusion. Then we consider diffusion in restricted environments and present

various signal models. As this work is focused on developing advanced diffusion ac-

quisition, we provide an overview of the non-standard diffusion sequences developed

so far and their applications. The last part of this chapter presents current applications

of microstructure imaging technique for brain and cancer imaging.

2.1 Imaging tissue microstructure
Microstructure imaging uses non-invasive imaging techniques in order to extract in-

formation about the tissue structure and function at the micron level. This is possible

because features of interest (e.g. cell size, shape, volume fraction, permeability, perfu-

sion, etc) affect the measured data from various imaging modalities such as computed

tomography (CT) [17, 18], positron emission tomography (PET) [19, 20] or magnetic

resonance imaging (MRI) [21, 22, 23]. By using mathematical models which describe
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the effect of various tissue properties on the acquired signal and fitting them to the data,

it is possible to infer microscopic features from images that have a much lower resolu-

tion (usually at the millimetre scale). In order to obtain meaningful results, the math-

ematical modelling of the acquired signal should provide an accurate representation

of the underling tissue. For example, in DW-MRI methods that account for restricted

diffusion in the tissue, the geometric model should resemble the cellular architecture

[23], or in PET techniques that consider multiple signal compartments, they should re-

flect the kinetics of the tracer in the tissue [24] in order to estimate parameters such as

permeability. Thus, a good understanding of the structure and function of the tissue is

required in order to develop accurate imaging methods.

In the rest of this section we discuss structural and functional features of brain and

cancer tissue, two applications of interest for the microstructure imaging techniques

we are developing. Further we present an overview of current imaging techniques,

both invasive and non-invasive, that are commonly used for brain and cancer imaging.

2.1.1 Brain tissue

Cells in the brain can be classified according to their structure and function in two ma-

jor types: neurons and glia. Neurons are the main functional units of the brain that

enable information transfer and complex computational functions, while glial cell pro-

vide the necessary support for the nervous system [25]. Between the brain and the skull

there are three layers of membranes, called meninges, which have the role to protect

the brain from external damage and are filled with cerebro-spinal fluid (CSF). Investi-

gating brain slices shows that neural tissue is not uniform, but has some darker areas

(grey matter) and some paler areas (white matter) [25]. Grey matter is mainly formed

by neuron cell bodies which are the information processing centres of the brain, and

are grouped according to structure and function in larger areas called nuclei. White

matter mostly consists of axons, an extension of neurons that facilitates communica-

tion between different regions of the brain. Axons that connect the same regions tend

to bundle together and form tracts. Figure 2.1 illustrates the main features of brain

anatomy [26, 27], while Figure 2.2 presents a schematic diagram of a neuron [28].
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Figure 2.1: Illustration of brain anatomy in the coronal plane [27] showing white matter, grey
matter and CSF. The structure of white and grey matter is illustrated using scanning
electron microscope images [26].

Figure 2.2: Schematic diagram of a neuron. The cell body features short, branched extensions
(dendrites) which allow communication with nearby neurons and a long projection
(axon) which facilitates communication over longer distances. Axons are usually
covered in myelin sheaths which improve the conduction speed of electric impulses
[28].

Grey matter

Grey matter contains mostly neuronal cell bodies, unmyelinated axons, glial cells and

blood capillaries and serves to process information in the brain. As illustrated in Figure

2.1, the majority of grey matter is located at the surface of the brain where it forms the
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cerebral cortex, a sheet-like structure with thickness varying between 2 and 5 mm [29].

Islands of grey matter can also be found inside the brain in regions such as the thalamus

or basal ganglia.

The cerebral cortex consists of many different types of neurons, which from the

standpoint of cytology can be grouped in two main classes: pyramidal cells (neurons

with long axons) and stellate cells (neurons with short axons). Staining cross-sections

of tissue allows a direct visualisation of cell bodies which were thoroughly studied in

the early 20th century and revealed the laminar structure of the cortex. The different

layers are interconnected and form vertical columns that extend from the surface of

the brain (plial surface) to white matter [29]. Vertical columns with similar cytoarchi-

tecture are grouped together, making cortical parcellation possible. One of the most

famous parcellations consists of the Broadmann areas, defined and numbered by the

anatomist Korbinian Brodmann in the early 20th century [30]. The Broadman areas

represent regions of the cerebral cortex which have a similar histological structure and

organization of cells. Later studies have shown an overlap between functional proper-

ties of different areas and their cytoarchitecture [29]. The neuronal cell bodies vary in

shape and size between different layers and cortical areas. For example pyramidal cells

can be classified according to their diameter as small (1-12µm), medium (20-25 µm),

large (45-50 µm) and giant (70-100 µm, characteristic for the motor cortex).

The structure and thickness of the cortex are of interest for studying normal brain

development as well as a wide range of neurodegenerative diseases and psychiatric dis-

orders, such as Alzheimer’s and other dementias, Huntington’s disease, schizophrenia,

etc [31].

White matter

White matter is primarily composed of axons and supporting glial cells. As illustrated

in Figures 2.1 and 2.2, axons are long and thin projections of neuron cell bodies that

facilitate information transfer between cortical and subcortical regions. The tip of the

axons consists of growth cones which sense chemical signals and determine the devel-

opment in the desired direction [32]. They are organized in bundles which are com-

monly referred to as tracts. Glial cells are adjacent to axons and have an important

role in determining the structure and function of white matter. For example, astro-
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cytes maintain a balanced chemical environment of neurotransmiters and regulate the

uptake of nutrients from the blood, while oligodendrocites produce the myelin sheath

surrounding the axons which acts as electric insulation and increases the speed of signal

conduction [33].

The key role of axons is to transfer chemical and electrical impulses between neu-

rons, allowing long-distance communication. The length of axons in the body varies be-

tween millimetres to meters and their inner diameters are orders of magnitude smaller,

ranging between 0.1 to 20 microns [34]. Light microscopy measurements of axon inner

diameter in the human corpus callosum show size distributions with a mode between

0.5 to 1 µm and a range of values up to 9 µm [35]. Nevertheless, there is significant

shrinkage during the fixation process ( 65% [35]) which needs to be accounted for when

comparing histological images with in-vivo measurements. The conduction speed of

electrical impulses increases with axon diameter, however, due to the complexity of

neural network and limited volume, the axons in the brain cannot have a large diam-

eter. This problem was solved by the myelin sheaths, a lipid-rich substance that is

wrapped around the axons and insulates them. Myelination allows a dramatic increase

in conduction velocity compared to unmyelinated axons, which has facilitated the evo-

lution of human cerebral function [33]. The thickness of the myelin sheath increases

with axon diameter, yielding a g-ratio (ratio between inner and outer axon diameters)

between 0.6 and 0.8 [36, 37]. The myelin sheath is interrupted every 1-2 millimetres by

unmyelinated segments called nodes of Ranvier. When axons have this structure, the

signal propagates from node to node, which results in a higher conduction velocity. The

white matter structure is closely related to its function, with the thickest axons origi-

nating in primary motor and somatosensory areas and the thinnest ones in prefrontal

and temporal areas [38]. This suggests that fast conduction is required for movement

and sensory processing which are important for survival, while higher cognitive tasks

do not require the same conduction speed [38].

The structure and function of white matter can be affected by different patholo-

gies that affect the myelin sheaths, axons or glial cells. For example dysmyelination

is characterized by a defective chemical structure of the myelin and is a characteristic

of leukodystrophies, a group of diseases that affect children and young adults. On the

other hand, demyelination describes the loss of previously healthy myelin and can hap-
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pen though different mechanisms in diseases such as multiple sclerosis or schizophrenia

[39]. Axon and neural degeneration can also occur as a result of traumatic injuries. All

these conditions result in an impaired function of white matter, however they all have

different cellular mechanisms. In order to differentiate and track the progression of

different lesions, first we need to localize and characterize them.

2.1.2 Brain imaging

In the late 19th, early 20th century, the development of staining procedures revealed the

structure of individual neurons in dissected brain tissue as well as the laminar structure

of the cortex [40]. Careful dissection and staining of brain tissue allowed a detailed

parcellation of the cortical areas based on differences in cytoarchitecture (e.g. Brod-

mann areas [30]) as well as the visualization of white matter tracts from tracer studies

[41]. The resolution of these images obtained by light microscopy is in the order of

microns. More recent developments in electron microscopy (EM) provide resolution

at the nanoscale, detailing the fine structure of axons and myelin [42]. This allows the

quantification of axons size distribution [35], volume fraction as well as myelin content

in different white matter tracts [42]. These imaging modalities offer great resolution,

however, they pose some drawbacks. The tissue needs to be carefully handled and fixed

within a short period of time after dissection in order to prevent neuronal degeneration

[43]. Moreover, the tissue is subject to distortions and shrinkage caused by slicing and

fixation [44]. Histological samples are also important for clinical use to distinguish

between different types of pathology described above, however this is an invasive pro-

cedure which poses risks for the patient and cannot be easily performed in case of brain

diseases.

Over the past decades, non-invasive imaging techniques such as computer tomog-

raphy (CT), positron emission tomography (PET) and magnetic resonance imaging

(MRI) have revolutionized in-vivo brain imaging. CT provides structural informa-

tion based on different absorption rates of x-rays [45] and PET offers functional and

metabolic information from the uptake of different radioactive tracers [46].

For brain imaging, MRI is the modality of choice as it offers very good structural

contrast in soft tissue and can provide different contrast mechanisms depending on the

application. For example, in T1-weighted images, which are often used to analyse brain
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macrostructure, compartments with greater water content appear darker, whereas com-

partments with increased lipid content (e.g. white matter) appear bright. T2-weighted

images offer complementary contrast and are useful to visualize pathology such as

white matter lesions and oedema which appear bright. Other types of data acquisition

can provide additional structure information such as proton density [42]. MRI tech-

niques can also be used to image blood flow. Arterial spin labelling (ASL) [47] has

been applied to measure perfusion in the cortex [48], while the blood oxygen level-

dependent (BOLD) contrast is the basis of functional MRI [49]. Tissue microstructure

can by probed with diffusion weighted MRI. For instance, diffusion tensor imaging

(DTI) [50] reveals the main fibre orientation and has been used in tractography to study

white matter connectivity in-vivo, while more recent work shows the possibility of re-

covering microstructural parameters which reflect the axon diameter distribution and

volume fraction [5, 9, 10] which are potential biomarkers for white matter diseases.

Nilsson et al presents a comprehensive review of DW-MRI acquisition and modelling

strategies for white matter [51]. The most commonly used techniques are discussed in

detail in later sections.

2.1.3 Cancer tissue

The term cancer refers to a malignant growth, which is characterized by a continuous,

uncontrolled and damaging proliferation of cells which are structurally and functionally

different compared to the normal cells from which they develop [52]. Cancer tumours

are classified in two ways, depending on the type of tissue where it originates (histo-

logical type) and on the location in the body where it first appeared. The most recent

classification is presented in the International Classification of Diseases for Oncology

[53].

From a histological standpoint, the most common type of cancer, accounting for

80 to 90 percent, is carcinoma which originates in the epithelial tissue. The majority

of carcinomas affect organs or glands capable of secretion, such as breast, prostate,

lung, pancreas, etc. [53]. The appearance and structure of tissue changes as the cancer

becomes more aggressive, thus the disease is graded based on histological data which

dictates the choice of treatment. In order to provide similar information to histology,

non-invasive imaging techniques should be sensitive to these tissue changes and recover
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cellular features such as size, shape, volume fraction, etc.

Tumour detection, classification and grading highly depends on the affected organ,

and here I exemplify this process for prostate cancer, which is an application of interest

for my future work.

Figure 2.3: Modified Gleason grading scheme [1]. The aggressiveness of cancer increases with
Gleason grade.

Prostate cancer

The structure of healthy prostate tissue is quite regular and consists of glands, which are

made of a duct (lumen) surrounded by epithelial cells and are connected by muscular

tissue (stroma). With cancer, the glandular structure is affected, the epithelial cells

proliferate, the glands become fused with each other and the amount of healthy stroma

decreases. These hystological changes can be visualized from tissue samples stained
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Figure 2.4: Tissue features of different prostate cancer grades [1]

with hematoxylin and eosin (H&E), which colours nuclei with dark blue, cytoplasm

with purple and the stroma with pink. In H&E images, the lumen space remains white.

These aspects of tissue degeneration are captioned by the Gleason grading system

[54, 1], which is visually depicted in Fig. 2.3, and classifies the aggressiveness of

cancer into 5 grades based solely on the architectural properties of the tissue. The

pathologist decides which is the most predominant and the second most predominant

pattern of the cancerous tissue from the biopsy sample and assigns to each one a grade

from 1 to 5. The final grade is the sum of the two, i.e. a score from 2 to 10, and is an

important part of the pathological report which determines the most suitable treatment

for the patient. A brief description of the tissue architecture for different cancer grades
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according to the most recent classification is presented in Fig. 2.4.

The Gleason grading system is specific for prostate cancer, however, there are

similar histological grading schemes for cancer tumours affecting various organs. For

example the Nottingham histological score classifies breast cancer based on tubule for-

mation, nuclear pleomorphism and mitotic count [55]. In most other cancers the his-

tological grade distinguishes between three different tissue types: well differentiated

(cancer cells resemble normal cells), moderately differentiated (cancer cells look more

abnormal) and poorly differentiated (cancer cells do not resemble normal cellular struc-

ture).

2.1.4 Cancer imaging

Diagnosing cancer takes into account histological data (grading) as well as information

about the tumour size and its spread to surrounding tissue, lymph nodes or other organs

(staging) [56].

The gold standard for cancer grading is tissue biopsy. The tissue sample is taken to

a laboratory, where it is routinely stained with H&E, which reveals the tissue structure,

and analysed under microscope [56]. Then, it is assigned a histological grade which

reflects the malignancy of the cells. If necessary, other special stains, which can high-

light different features such collagen fibres, iron content, melanin, fungi, etc, are used

[57].

Cancer staging requires information at the macroscopic scale and relies on various

non-invasive imaging techniques for localization and quantification of tumour spread.

For example, X-rays and more recently CT are widely used for the thoracic region and

especially for the lungs, as there is a big contrast between normal tissue filled with air

and tumours. PET and other nuclear medicine techniques use small quantities of ra-

dioactive tracers to measure the metabolic rate which is higher in malignant tumours

due to the increased vascularity and cell proliferation. Thus, cancerous areas appear

very bright in PET images, which facilitates the detection of cancer spread and metas-

tases. Once the tumour is localized and the treatment is planned, regular check-ups are

necessary to assess the progression of the disease and/or the efficacy of treatment.

The drawback of the previously mentioned modalities is the limited repeatability

due to ionizing radiation (X-ray, CT) or uptake of radioactive tracers (PET). MRI offers
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a great imaging flexibility and overcomes these issue as it uses non-ionizing radiation.

Body MRI is a challenging task due to the artefacts caused by cardiac and respiratory

motion. With the development of better data acquisition and analysis tools (e.g. cardiac

gating [58], motion correction algorithms [59]), MRI has become an important tool for

cancer imaging. Tumours have a different chemical composition compared to the nor-

mal tissue which affects the magnetic properties and consequently they have a different

intensity on standard T1 and T2-weighted MRI images. Dynamic contrast enhanced

(DCE) MRI measures the blood inflow after injecting a paramagnetic tracer, such as

chelated gadolinium. In general, tumours show early enhancement due to the increased

vascularity. Recent work showed the ability of MRI to provide functional information

similar to PET by imaging sugar metabolism through glucose chemical exchange satu-

ration transfer [60]. Diffusion MRI signal depends on the microstructural properties of

the cancer lesion, such as cell size and density. Thus, low signal in DW-MRI indicates

an area of highly packed cells which are usually characteristic for tumours. Various

studies aim to correlate imaging biomarkers, derived from DW-MRI and DCE-MRI,

with histological data [61, 62], while more recent microstructure imaging techniques

based on DW-MRI, such as VERDICT, were able to produce maps of tissue parameters

such as cellularity [63].

2.1.5 Summary

This section presents the main characteristics of brain and cancer tissue and illustrates

the importance of imaging techniques for understanding normal and pathological tis-

sue. Non-invasive imaging techniques, such as CT, PET and MRI, generate whole-

organ maps illustrating various aspects of tissue structure and function and are being

used for an increasing number of applications in brain and body imaging. Compared

to the other modalities, MRI uses non-ionizing radiation, making it safer in terms of

multiple repetitions and follow-up studies.

2.2 Magnetic Resonance Imaging

This section presents a semi-classical picture of nuclear magnetic resonance (NMR),

the physical phenomenon explored in MRI, as well as the most common contrast mech-

anisms and data acquisition which are the building blocks of modern imaging tech-
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niques.

2.2.1 Nuclear magnetic resonance (NMR)

Nuclei with a non-zero magnetic moment (including hydrogen) can absorb and emit

electromagnetic radiation of a certain frequency when placed in an external magnetic

field. This phenomenon is known as nuclear magnetic resonance (NMR) and was

demonstrated for the first time in 1946 in separate experiments designed by Edward

Purcell and Felix Bloch [64, 65]. Protons and neutrons which build up the nucleus have

an intrinsic angular momentum called spin, which gives rise to the magnetic moment.

The state of each individual nucleus is described by quantum mechanics, however,

the ensemble behaviour can be accurately described by classical models [66]. Most

biomedical imaging applications exploit the NMR of hydrogen nuclei (protons), thus

all constants are given for protons which are 1
2
-spin particles.

In a quantum mechanical description, the measured component of an individual

spin along any direction (conventionally chosen as z-direction) has only discrete states.

A 1
2
-spin particle has two eigenstates, spin-up | ↑〉 and spin-down | ↓〉 with eigenvalues

m = ±1
2
. When no measurement is performed, the full spin-state is a superposition of

the two eigenstates. The weights of the two states are complex numbers that express the

direction of spins as precisely as nature allows in accordance with quantum mechanics

[66].

The magnetic moment µ can be written in terms of the spin operator:

µ = γ · ~ · S (2.1)

γ = 2.675 · 108 s−1T−1 gyromagnetic ratio for 1H

~ = h
2π

= 1.054 · 10−34 Js reduced Planck constant

S particle spin

The interaction between this magnetic moment µ and an external magnetic field

B is described by the following Hamiltonian:

−µ ·B = −γ · ~ ·B0 · Sz (2.2)

where B0 is the component of the magnetic field along the z-axis, which is convention-
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ally chosen along the direction of the external magnetic field.

The eigenvalues of this Hamiltonian are E = −γ~B0m =∓1
2
γ~B0 corresponding

to m = ±1
2
. The energy difference between the two eigenstates is ∆E = γ~B0 and the

occupation of the two states follows the Boltzmann distribution:

N+

N−
= e

∆E
kT = e

γ~B0
kT (2.3)

N+ occupation number of the parallel state

N− occupation number of the anti-parallel state

k = 1.38 · 10−23 J/K Boltzmann constant

In a probe withN water protons per unit volumes, the difference in the occupation

of the two energy states creates an equilibrium magnetization M0, which is parallel to

the external magnetic field:

M0 =
Nγ2~2B0

4kT
(2.4)

An NMR / MRI experiment measures the net magnetization of the spin ensemble,

and not of individual spins. In this case, it can be shown that the mean of the expected

outcomes of magnetization measurements derived from quantum mechanics follows

the classical equation of motion [66].

2.2.2 Signal generation and detection

The total magnetic moment per unit volume gives rise to a macroscopic magnetization

M = (Mx,My,Mz), which can be described by classical mechanics. In order to mea-

sure the magnetization and probe different magnetic properties of the sample, the net

magnetization M is perturbed from equilibrium using radio-frequency (RF) pulses and

the response of the system is recorded using receiver coils. This section presents the

basics of generating and detecting the MR signal.

In analogy to classical mechanics, the evolution of magnetization M =

(Mx,My,Mz) in the presence of an external magnetic field B(t) is described according

to:
dM(t)

dt
= γ ·M(t)×B(t) (2.5)

If we consider the case of a constant magnetic field B0 along z-axis, then the compo-
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nents of the magnetization are described by the following equations:

dMx

dt
= γ ·B0 ·My;

dMy

dt
= −γ ·B0 ·Mx;

dMz

dt
= 0 (2.6)

Therefore, the component parallel to the magnetic field M‖ is constant and the

perpendicular component, which can be written as M⊥ = Mx + iMy with i =
√
−1,

precesses around z-axis. The angular frequency of precession ω0 = γB0 is known as

the Larmor frequency. Thus, the spin system can by manipulated by superimposing

time varying magnetic fields.

Excitation and radio frequency (RF) pulses

By applying an alternative current with frequency ω1 through the transmit coil, an os-

cillating magnetic field perpendicular to z-direction is produced:

B1(t) =


B1 cosω1t

B1 sinω1t

0

 (2.7)

When this oscillating magnetic field, commonly referred to as a radio-frequency (RF)

pulse, is superimposed to the initial constant field B0, equation (2.5) can be rewritten

as:

dM(t)

dt
= γ ·M(t)×


B1 cosω1t

B1 sinω1t

B0

 (2.8)

This equation describes the manipulation of the magnetization M by transversal

RF fields which is schematically represented in Fig. 2.5.
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Figure 2.5: A transversal RF pulse causes the net magnetization to precess around z-axis. Fig-
ure adapted from [67]

Depending on the frequency ω1 and on the duration of the pulse, different effects

can be obtained. For ω1 = ω0 and a constant amplitude B1, the magnetization M is

deviated from the equilibrium by an angle α depending on the duration of the pulse.

This is called the flip angle. The commonly used values in acquiring the MR images

are α = 180o -corresponding to magnetization inversion and α = 90o -corresponding

to transversal magnetization.

Bloch equations, T1 and T2 relaxation

The time-dependent behaviour of the net magnetization M in the presence of an applied

magnetic field B(t) is described quantitatively by the Bloch equations, which include

relaxation effects. If the net magnetization is disturbed from equilibrium then it has

the tendency to realign with the external field. The evolution of the magnetization in

parallel direction is characterized by the relaxation time T1:

dM‖
dt

=
M0 −M‖

T1
+ γ · ( ~M × ~B)z =

M0 −M‖
T1

+ γ · (MxBy −MyBx) (2.9)

The relaxation time T1 describes the interaction between the spins and the chem-

ical bindings of the surrounding lattice (’spin-lattice interaction’) and depends on the

material as well as on the applied magnetic field. After the application of a 180◦ RF

pulse which completely inverts the magnetisation, the solution of equation 2.9 with
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initial conditions M‖ = −M0 and M⊥ = 0, is:

M‖(t) = M0(1− 2 · e−
t
T1 ), (2.10)

and assuming infinite repetition time between measurements (TR→∞). This experi-

ment is known as Inversion Recovery (IR) and probes T1 relaxation [67].

The evolution of the transverse magnetization is subject to relaxation with decay

constant T2, which is a measure of spin-spin interactions, describing the effect of lo-

cal field inhomogeneities and/or direct interactions between the spins without energy

transfer to the lattice [68]:

dM⊥
dt

= −M⊥
T2
− iγ · (M⊥Bz −MzB⊥) (2.11)

After a 90o RF pulse which brings the magnetization to the transverse plane, the

solution of equation 2.11, with initial conditions M⊥ = M0 and M‖ = 0, is:

M⊥ = M0 · e−
t
T2
−iγB0t (2.12)

Thus, the transverse magnetization is precessing around the main magnetic field and its

magnitude is subject to an exponential decay with time constant T2. This experiment is

known as Free Induction Decay (FID) and is a measure of the relaxation time T2 [67].

Signal detection and spin echo

In order to perform an MR measurement, the magnetization needs to have a transverse

component that precesses around the z-axis and according to Faraday’s law will induce

an oscillating voltage in the receiver coils that can be recorded [69].

In practice the signal in a FID experiment decays much faster than expected as a

result of T2 decay alone, due to magnetic field inhomogeneities. Spins that experience

different magnetic fields precess at different rates which results in a phase dispersion

that reduces the overall signal magnitude. The apparent relaxation time is T2∗ and

is much shorter than T2 [67]. If we denote the relaxation time due to field inhomo-

geneities as T2′ , then we have the following relation between the relaxation times:

1

T2∗
=

1

T2
+

1

T2′
. (2.13)
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It is possible to correct for T2′ and reverse the dephasing caused by field inhomo-

geneities by applying an additional 1800 RF pulse after the initial 90o pulse. The 1800

RF pulse inverts the precession direction of the spins and creates an echo of the original

FID signal at a moment called echo time (TE). The amplitude of the signal at echo time

decays according to T2 relaxation [67]. This acquisition method is called a spin-echo

sequence and is illustrated in Figure 2.6.

Figure 2.6: Schematic representation of the spin-echo sequence. (Figure adapted from [70])

2.2.3 Spatial localization

Acquiring the signal from the NMR experiment described above provides an average

value for the entire sample. Thus the central task of MRI is to localize the MR signal

and extract information about its spatial distribution.

As the Larmor frequency depends on the magnetic field, spatial localization can

be achieved using magnetic field gradients G = (Gx, Gy, Gz). For a 3D volume, this

is usually performed in three steps: slice encoding (usually in z direction), frequency

encoding (x direction) and phase encoding (y direction) [69].

The slice selection is realized by applying a field gradient along the z-direction at

the same time with the excitation RF pulse which has a narrow distribution of frequen-

cies, referred to as bandwidth. The Larmor frequency varies linearly along the z-axis,

thus the RF pulse will affect only the magnetization from a slice which has the resonant

frequency within its bandwidth. Different slices can be selected by changing the fre-

quency of the RF pulse. The spatial resolution in z-direction depends on the bandwidth

of the RF pulse as well as the gradient strength.
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Frequency encoding is used to provide information about the position along the x-

axis. This works by superimposing a magnetic field gradient Gx during readout which

makes the oscillation frequency linearly dependent on position [69]:

ω(x) = γ(B0 +Gxx) = ω0 + γGxx (2.14)

The signal generated locally from spins in an infinitesimal interval dx at point x is:

S(x, t) = ρ(x)dxe−i(ω0+γGxx)t, (2.15)

where ρ(x) is a general notation for the spatial distribution of MR signal, accounting

for spin density, T1 and T2 relaxation, flip angle, etc. In case of a spin-echo sequence,

the frequency encoding gradient is applied after the echo time.

After demodulation (removal of the carrier signal e−iω0t), the signal received from

the entire object is:

S(t) =

∫ ∞
−∞

S(x, t)dx =

∫ ∞
−∞

ρ(x)e−iγGxxtdx (2.16)

Frequency encoding localizes the signal along x-direction, however it does not

provide any information about the spatial distribution in y direction. Thus an additional

encoding mechanism is necessary.

Phase encoding is realized by applying a magnetic field gradient Gy for a short

time interval (preparatory time TPE) between the excitation and readout. When the

gradient is on, the frequency depends on the y-position, thus the accumulated phase

is space dependent. The FID signal generated locally from spins in an infinitesimal

interval dy at point y is:

S(y, t) = ρ(y)dye−i(ω0t+φ(y)), with φ(y) = γGyyTPE (2.17)

After demodulation the phase encoded signal is:

S(t) =

∫ ∞
−∞

S(y, t)dy =

∫ ∞
−∞

ρ(y)e−iγGyyTPEdy (2.18)
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Frequency and phase encoding can be used to localize the signal in the 2D plane.

The total signal acquired at a a given time TFE is:

S =

∫ ∫
I(x, y)e−iγGxxTFEe−iγGyyTPEdxdy, (2.19)

kx =
1

2π
γGxTFE

ky =
1

2π
γGyTPE (2.20)

By substituting these spatial frequencies into equation 2.19, we obtain:

S(kx, ky) =

∫ ∫
I(x, y)e−2πikxe−2πikydxdy (2.21)

This demonstrates there is a Fourier relation between the image function I(x, y) and the

signal S(kx, ky). Thus by measuring the signal at many values of kx and ky, also known

as k-space, we can recover in the image function, which is the quantity of interest

[69]. The k-space can be traversed by manipulating the magnetic gradients Gx(t) and

Gy(t). Equations 2.14 to 2.19 show the concept of frequency and phase encoding for

the simple case of constant gradients. The Fourier relationship between the signal and

the image function holds for time dependent gradients as well, however the k-space

sampling trajectory is no longer a straight line.

The are many different k-space sampling schemes including linear, radial or spiral

[69], and the data can be acquired in multiple excitations (multi-shot) or in a single

excitation (single-shot). Multi-shot acquisitions provide good image resolution, image

contrast and signal-to-noise ratio (SNR), however they are not well suited for diffusion

MRI due to the fact that diffusion gradients induce a spatially varying phase and shot-

wise random over the sample that would interfere with the phase encoding [71]. Thus,

the acquisition of choice for diffusion imaging is single-shot echo planar imaging (SS-

EPI) which images the entire k-space in one excitation pulse. This is achieved with

rapidly switching phase and frequency encoding gradients, as illustrated in Figure 2.7.
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Figure 2.7: [Single-shot echo planar imaging readout]Schematic representation of a spin echo
SS-EPI sequence and the resulting coverage of k-space.

Image reconstruction

The last step of MR imaging is to reconstruct the image function I(x, y) from the raw

k-space data S(kx, ky). According to equation 2.21, this can be achieved using a two-

dimensional inverse Fourier transform, which is applied for each slice. The resulting

image function is complex valued and can be used to create both magnitude and phase

images [69].
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2.3 Diffusion MRI - Theory
This section provides the theoretical principles of diffusion MRI. It briefly introduces

the mathematical description of diffusion and how to encode it using MRI techniques.

Then it describes diffusion MRI signal models for free and restricted diffusion and

presents a variety of non-standard acquisition protocols which are sensitive to different

microstructural features such as pore anisotropy or permeability and exchange between

different water pools.

2.3.1 Diffusion theory

Diffusion describes the random motion of particles from a region of high concentration

to a region of low concentration and is mathematically described by Fick’s law [72]:

J(r, t) = −D∇c(r, t), (2.22)

where J(r, t) is the particle flux, D is the diffusion coefficient, c(r, t) is the particle

concentration and the minus sign indicates that the direction of flow is from larger to

smaller concentration [73]. Combining equation 2.22 with the conservation of mass

law
∂c(r, t)

∂t
= −∇ · J(r, t), (2.23)

we arrive at Fick’s second law of diffusion

∂c(r, t)

∂t
= D∇2c(r, t) (2.24)

which is also commonly referred to as the diffusion equation.

In the absence of a net concentration gradient, random molecular motion still ex-

ists, a process known as Brownian motion, which was discovered by R. Brown and

mathematically described by A. Einstein [74]. In this case molecules undergo a pro-

cess of "self-diffusion" [72] and we are concerned with the probability P (r1, t1|r0, t0)

of a particle staring from r0 and moving to r1 in time t1 − t0. Thus, we can re-write

equation 2.24:
∂P (r1, t1|r0, t0)

∂t1
= D∇2P (r1, t1|r0, t0). (2.25)

P (r0, t0, r1, t1) is commonly termed the Green’s function of the diffusion propaga-
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tor. For diffusion in a homogeneous and isotropic medium with initial condition

P (r1, 0|r0, 0) = δ(r1 − r0) and boundary condition R→ 0 for r→∞ the solution of

equation 2.25 is: [73]

P (r1, t1|r0, t0) = (4πD(t1 − t0))−3/2 exp

(
− (r1 − r0)2

4D(t1 − t0)

)
(2.26)

For free diffusion, the mean square displacement can be calculated from equation 2.26

as:

〈
(r1 − r0)2

〉
=

∫ ∞
−∞

(r1 − r0)2P (r1, t1|r0, t0)dr0dr1

= nD(t1 − t0), with n = 2, 4, or 6 for one, two or three dimensions.

(2.27)

For example, for diffusion along a line n = 2, for diffusion in a plane n = 4 and for

diffusion in a volume n = 3.

2.3.2 Diffusion contrast

This section presents how we can estimate molecular displacements using MR mea-

surements. When the external magnetic field B0 is homogeneous, the Larmor fre-

quency and consequently the cumulative phase of individual spins are independent of

the location φ(t) = ω0 · t = γB0t. When in addition to the constant field B0 there is

a spatially dependent field with gradient G(t), then the Larmor frequency is spatially

dependent, and so is the phase:

φ(t) =

∫ t

0

(ω0 + γG(t′)r(t′))dt′ = ω0t+ γ

∫ t

0

G(t′)r(t′))dt′. (2.28)

This approach is used to spatially encode the signal, as explained in section 2.2.3 and

also offers the ground for quantifying molecular displacement due to diffusion.

The standard sequence used to measure diffusion was developed by Stejskal and

Tanner in 1965 and modifies the spin-echo sequence by adding two equal gradient

pulses of duration δ placed before and after the refocusing RF pulse, separated by

the time interval ∆ [16]. The Stejskal-Tanner sequence, which is also known in the
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literature as "single pulsed gradient", "pulsed gradient spin-echo" or "single diffusion

encoding" is illustrated in Fig. 2.8. In this work we use the name "single diffusion

encoding" (SDE), which was recently agreed upon in the diffusion MRI community

[75].

Figure 2.8: Schematic representation of the SDE sequence with gradient amplitude G pulse
duration δ and diffusion time ∆. (Figure adapted from [70])

2.3.3 Free diffusion and Bloch-Torrey equation

The effect of self-diffusion in NMR was first described by Torrey (1956) by modifying

the Bloch equation to account for the "transport of magnetization" [76]. Thus, in ab-

sence of RF pulses, the equation for the transverse magnetization (M⊥) in the rotating

frame (i.e. without the last term in equation 2.11) is:

∂M⊥
∂t

= −iγM⊥G · r−
M⊥
T2

+D∇2M⊥. (2.29)

In this case M⊥ is a function of both time and position. For free diffusion, equation

2.29 can be solved by making the substitution [72]:

M⊥ = E(t)

(
exp(−iγr ·

∫ t

0

G(t′)dt′) exp(−t/T2)

)
(2.30)

At the echo time of a spin-echo sequence, the integral of the effective gradient is 0

(accounting for the effect of the 180o RF pulse). Thus, substituting M(t) into equa-
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tion 2.29, integrating the result and normalizing for T2 decay, we get the following

expression for E(t) [72]:

E(t) = exp

−Dγ2

∫ t

0

∣∣∣∣∣
∫ t′

0

G∗(t′′)dt′′

∣∣∣∣∣
2

dt′

 , (2.31)

which can be expressed as

E(t) = exp(−bD), where b = γ2

∫ t

0

∣∣∣∣∣
∫ t′

0

G∗(t′′)dt′′

∣∣∣∣∣
2

dt′ (2.32)

is commonly referred to as the b-value and G∗ is the effective gradient waveform ac-

counting for the effect of the 180o RF pulse.

For the standard SDE sequence illustrated in Fig. 2.8 with gradient amplitude

G, duration δ and interval between gradients ∆, the b-value, calculated by integrating

equation 2.32 from 0 to echo time TE and assuming infinite slew rates, evaluates to:

b = γ2G2δ2(∆− δ/3). (2.33)

The b-value describes the amount of diffusion weighting in applications which assume

Gaussian diffusion such as mapping the apparent diffusion coefficient (ADC) or diffu-

sion tensor imaging (DTI).

2.3.4 Restricted diffusion

The free diffusion model is used in many DW-MRI studies, however it does not ac-

curately represent tissue properties, especially the signal component coming from the

intracellular water molecules which are restricted by the cell walls. Therefore it is im-

portant to construct a model for computing the diffusion signal inside bounded media

in order to be able to infer the compartment size or shape from diffusion data, which is

important for microstructure imaging techniques.

The effect of the boundaries on the positions of the spins can be described through

the diffusion propagator P (r0, t0|r1, t1) which represents the probability that a particle

moves from position r0 at time t0 to position r1 at time t1 [77]. As seen in equation

2.25, the diffusion propagator satisfies Fick’s second law. In case of restricted diffusion
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inside a pore with fully reflecting walls, the boundary condition which shows no particle

flux through the membrane is

Dn̂ · ∇r1P (r1, t1|r0, t0) = 0 (2.34)

and the initial condition is

P (r1, 0|r0, 0) = δ(r1 − r0), (2.35)

where D is the diffusion coefficient, n̂ is the outward surface normal at the boundary,

∇r1P (r1, t1|r0, t0) is the probability gradient in the direction of r1, and δ(r) is the

Dirac delta function. The solution to equation 2.25 can be written as [78]

P (r1, t1|r0, t0) =
∞∑
n=0

e−Dλ|t2−t1|un(r0)u∗n(r1) (2.36)

where the un(r) are the eigenfunctions of the diffusion equation parametrized by the

eigenvalues λn.

In the literature there are several approaches which can be used to calculate the

diffusion signal in bounded media [79, 80, 81, 82, 83]

Short pulse gradient (SPG) approximation
The SPG approximation assumes a sufficiently short gradient pulse δ � ∆ so that

there is no displacement during the application of the gradients. The effect of the first

gradient is to induce a phase which depends on location γδG ·r0 which is subsequently

inverted by the 180◦ RF pulse. Thus, after the second gradient there is a net phase shift

∆φ(r1 − r0) = γδG · (r1 − r0).

After normalizing for T2 decay, the echo signal is given by the ensemble average

of the phase term 〈exp(i∆φ)〉 = 〈exp(iγδG · (r1 − r0))〉. The ensemble average can

be computed knowing the initial distribution of particles ρ(r0) and the probability that

a particle moves from position r0 to r1 in the time interval ∆ [84]:

E(G,∆) =

∫∫
ρ(r0)P (r1|r0,∆) exp(iγδG · (r1 − r0))dr0dr1 (2.37)

Making the substitution r1 = r0 + R and defining the average propagator as
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P̄ (R, t) =
∫
ρ(r0)P (r0 + R|r0)dR, equation 2.37 can be rewritten as:

E(G,∆) =

∫
P̄ (R,∆) exp(iγδG ·R)dR. (2.38)

Thus, there is a Fourier relationship between E(G,∆) and the average propagator

P̄ (R,∆) and we can define a reciprocal space q = (2π)−1γδG so that

E(G,∆) =

∫
P̄ (R,∆) exp(i2πq ·R)dR. (2.39)

Using the SPG approximation, acquiring the signal in q-space allows the estimation of

P̄ (R, t) [85, 77] in a similar way as acquisition in k-space allows the measurement of

the image function, as discussed in section 2.2.3.

Gaussian phase distribution approximation

The SPG approximation provides a convenient theoretical framework to image the av-

erage propagator, however the condition of short pulse is rarely met in practice.

An analytical expression of the restricted DW signal can be constructed assuming

the displacement of the spins R(t), and therefore their phases φ(t), have a Gaussian

distribution with the variance depending on the time t [80, 73, 86]. In this case the

signal is

E = exp

(
−γ

2

2

∫ TE

0

dt1

∫ TE

0

dt2G
T∗(t1)〈r(t1)r(t2)〉G∗(t2)

)
(2.40)

where G∗(t) and r(t) are the effective gradient and the position of a molecule at time t

and 〈·〉 is the particle-particle correlation function, describing the correlation between

particle positions. Under this formulation, the signal has the following form [78]:

E = exp

(
−γ

2

2

∫ TE

0

dt1

∫ TE

0

dt2

∫
V

dr1

∫
V

dr2ρ(r1, t1)P (r1, t1|r2, t2) (r1 ·G∗(t1)) (r2 ·G∗(t2))

)
= exp

(
−γ

2

2

∞∑
n=0

Bn

∫ TE

0

dt1

∫ TE

0

dt2e
−Dλn|t2−t1|G∗(t2)G∗(t1)

)
(2.41)

where G∗(t) = G∗(t)ĝ is the effective gradient vector with magnitudeG∗(t) and direc-

tion ĝ, V denotes the diffusion domain and Bn and λn are geometry dependent factors.
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If the initial density of spins is constant, then Bn is defined as

Bn =
1

ρ

∫
V

dr1

∫
V

dr2 (ĝ · r1) (ĝ · r2)un(r1)un(r2). (2.42)

where un(r) are the eigenfunctions of the diffusion equation in the restricted domain.

The factors Bn and λn have analytical expressions for simple geometries such as par-

allel planes, cylinders, spheres [80, 78, 81] and spherical shells [87]. The explicit

formulae are given in the appendix A.1.

The GPD approximation is accurate for a wide range of gradient strengths used

in practice [83, 86], however it cannot recover more complex signal features such as

diffraction patterns. This formulation is useful for diffusion gradient waveforms which

can be easily parametrized, and has been derived for SDE sequences [80], stimulated

echos [88], dual spin echos [89], oscillating diffusion gradients [87, 90] and double

diffusion encoding sequences [91].

Matrix method (MM)

In 1997 Callaghan developed a mathematical framework which allows the computation

of the diffusion signal E in a closed form for an arbitrary pulse sequence [92]. The

pulse sequence is divided into narrow intervals τ , as illustrated in Fig. 2.9 and the

gradient amplitude G0(nτ) is quantified into steps of size gstep. Thus, at time nτ the

amplitude of the diffusion vector is mnq where q = (2π)−1τgstep, and mn is given by

mn = b(g0(nτ)/gstep)c (2.43)

The signal E is calculated as a product of matrix operators which describe the

phase evolution inside the boundaries:

E = S(q)R[A(q)]m2R...R[A(q)]mN−1RST (−q) (2.44)
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Figure 2.9: Schematic representation of a generalized waveforms with fixed gradient orienta-
tion. Adapted from [93]

where the elements of the matrices S, A and R have the following definitions

Sn(q) = V −1/2

∫
un(r) exp(i2πq · r)dr

Rnn = exp(−λnDτ)

Ann′(q) =

∫
un ∗ (r)un′(r) exp(i2πq · r)dr, (2.45)

V is the pore volume and q = qĝ where ĝ is the unit gradient vector.

This approach is commonly known as the matrix method (MM), and has been im-

plemented in recent pulse sequence optimization studies [93, 94] for restricted diffusion

inside cylinders. Similar to the GPD approximation, MM can accommodate restricted

diffusion inside geometries that have an analytical expression for the eigenfunctions

un(r) [95].

The above method has recently been extended for gradients with time varying

orientation [96]. In the case of fixed orientation, the vector q is the same at every time

point nτ which allows the precalculation of matrices A(q) and S(q). However, when

the gradient orientation is time-dependant, the vector q is different at different time

points and the matrices also depend on time. Thus equation 2.44 becomes:

E = S(qĝ1)R[A(qĝ2)]m2R...R[A(qĝN−1)]mN−1RST (−qĝN) (2.46)

where ĝn denotes the gradient orientation at time nτ .

Calculating the matrices A(qĝN) element-by-element at each time point is too
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computationally expensive. Drobnjak et al [96] shows an efficient implementation for

cylindrical and spherical restriction, which we use for various experiments presented in

this thesis, as well as in the implementation of MISST, detailed in chapter 7.

Multiple correlation function (MCF)

Multiple correlation function is another approach for computing restricted diffusion

signal which has been introduced by Grebenkov [97]. Similarly to the method devel-

oped by Callaghan, it uses a matrix formalism to compute the signal for piece-wise con-

stant gradients, however it is derived from a different theoretical starting point. MCF

approach starts from the Bloch-Torrey equation:

∂M⊥(r, t)

∂t
= D∇2M⊥(r, t)− iγB(r, t)M⊥(r, t), (2.47)

where M⊥ is the perpendicular magnetization, B(r, t) = B0 + G(t)ĝ · r is a space-

varying magnetic field (superposition of the main magnetic field and diffusion gradi-

ents) and the signal is normalized for T2 decay. This form of the Bloch-Torrey equation

can also be considered as a diffusion equation, to which the effect of magnetic field en-

coding has been added [82]. The aim is to solve for the magnetisation M⊥ which

provides the MR signal:

E =

∫
r

M⊥(r, t)ρ(r)dr (2.48)

where ρ(r) accounts for the effects of the initial distribution of the magnetization, the

sampling sensitivity of the coils, etc [82].

The key to the solution is to represent the magnetisation M⊥ in the basis of eigen-

functions of the Laplace operator within the restricted domain:

M⊥(r, t) =
∑
m

cm(t)um(r) (2.49)

where um(r) are the eigenfunctions of the Laplace operator and cm are time dependent

coefficients. Substituting the eigenfunction expansion in equation 2.47 to calculate the

time-dependent coefficients and computing the integral in equation 2.49, the signal for
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a piece-wise constant gradient is given by the matrix product [82]:

E = U
N∏
n=0

exp
(
−
(τn
T
pΛ + iqnB

))
U∗ (2.50)

where the product is computed over N intervals with constant gradient strength Gn and

duration τn (T =
∑

n τn). Vectors U and U∗ encode the initial spin distribution ρ(r),

p = DT
L2 with L the length scale of the pore, qn = γGnδn and matrices Λ and B reflect

the pore geometry and have the following expressions:

Λm,m =λmL
2

Bm,m′ =
1

L

∫
r

dru∗m(r)(ĝ · r)um′(r) (2.51)

where λm are the eigenvalues of um and ∗ denotes the complex conjugate.

Monte Carlo simulation

Numerical simulations have been used in many studies to validate theoretical ap-

proaches of computing the diffusion signal or to understand the effects of various

parameters are cannot be accurately described by analytic models (e.g. [83, 92, 95,

87, 98, 99, 100]). The majority of algorithms used to simulate the diffusion motion

and compute the signal attenuation are part of the broad class of Monte Carlo (MC)

Markov Chain algorithms. The numerical simulations are very flexible and are used

to generate realistic synthetic diffusion data for arbitrary pulse sequences and restrict-

ing geometries. For example, Hall et al [101] study the convergence of the diffusion

signal inside complex geometries depending on the simulation parameters and Pana-

giotaki et al [102] show the potential of the methods using realistic 3D meshes. The

main drawback of MC simulation is the computational complexity. It usually requires

a computer cluster for a reasonable running time, and therefore it is not suitable for

voxel-based parameter fitting applications, though this can be mitigated by using a syn-

thesized database approach [99, 103].

2.3.5 Diffusion spectrum

In the early 80s, Stepisnik [104] has studied the NMR signal when a train of 180o

RF pulses (Carr-Purcell-Meiboom-Gill CPMG sequence) was applied in addition to
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a constant magnetic field gradient, which resulted in an effective oscillating gradient

waveform. The theoretical results showed that diffusion measurements can determine

the spectrum of the particle velocity autocorrelation function 〈v(t)v(0)〉, where 〈·〉

denotes the molecular ensemble average. This approach has been considered in a later

study by Callaghan and Stepisnik [105] to investigate the diffusion spectrum of various

oscillating gradients such as sinusoidal or square waveforms. This technique is known

in the literature as "temporal diffusion spectroscopy".

The diffusion spectrum D(ω), which is a generalisation of the diffusion coefficient

in equation 2.31, is defined as the Fourier transform of the velocity autocorrelation

function [105, 104]:

D(ω) =
1

2

∫ ∞
0

〈v(t′)v(0)〉eiωt′dt′ (2.52)

where 〈v(t)v(t + dt)〉 describes how dependent is v(t + dt) on v(t) and D(ω) de-

scribes diffusion on the time scale of 2π/ω. For Brownian motion, the particle position

and velocity are independent on the previous state, also known as the Markov property.

This is true when dt is larger than a certain value called velocity auto-correlation time

τc which depends on the molecular interactions and for the systems we are studying is

on the order of ≈ 10−10 s [106]. Thus, for free diffusion the velocity autocorrelation

function decays fast to 0 after the correlation time τc [106] and resembles a delta func-

tion. The resulting diffusion spectrum is constant. For restricted diffusion, the Markov

property does not hold anymore, and there is a negative velocity autocorrelation caused

by the reflection on the boundaries. In this case the diffusion spectrum is frequency

dependent and exhibits a deficit at low frequencies. These two situations are illustrated

in Fig. 2.10.

The normalized signal attenuation measured at the echo time can be calculated

according to

S(2τ) = exp(−β(2τ))

with β(2τ) =
γ2

π

∫ ∞
0

F′T (ω)D(ω)F′(−ω)dω (2.53)

In equation 2.53, the gradient modulation spectrum F(ω) is the Fourier transform
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Figure 2.10: Velocity autocorrelation function and diffusion spectrum for free and restricted
diffusion. (Figure from [106])

of the diffusion gradient integral F(t) =
∫ t

0
G(t′)dt′.

F′(ω) =

∫ 2τ

0

eiωtF(t)dt (2.54)

The spectral formulation is especially important for studying the effect of more

complex gradient waveforms such as oscillating gradients, as it illustrates which diffu-

sion times contribute to the ADC value.

2.3.6 Beyond standard sequences: oscillating gradients and double

diffusion encoding

The standard diffusion encoding is the SDE sequence illustrated in Fig. 2.8. However,

the sensitivity of the diffusion signal to various tissue characteristics such as cellular

size, shape or volume fraction can be improved by using more advanced sequences.

Here we introduce oscillating gradients and double pulsed field gradients, which are

directly related to this work. If there is prior knowledge of the tissue architecture, the

sensitivity of the diffusion measurements can be further increased by optimising the

sequence parameters.
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Oscillating diffusion gradients

Oscillating diffusion encoding (ODE) sequences [107] replace the pulsed gradient in

the standard SDE sequence with oscillating gradient waveforms, such as sine, cosine,

square or trapezoidal waveforms as illustrated in Fig. 2.11. This has the effect of

reducing the diffusion time of the experiment from the interval ∆ between the two

rectangular pulses in the SDE measurement to half period of the oscillation (1/2ν).

Thus by tuning the oscillation frequency, ODE sequences are more sensitive to intrinsic

diffusivity for a wider range of pore sizes.

Figure 2.11: Schematic representation of single and oscillating diffusion encoding (ODE) se-
quences with sine, apodised cosine and square gradient waveforms.

The most common application of ODE sequences is to measure the diffusion spec-

trum D(ω), which is referred in the literature as ’temporal diffusion spectroscopy’

[105, 106, 108]. As seen in equation 2.53, the gradient modulation spectrum F(ω)

indicates which components of D(ω) are measured in the experiment. For cosine-like
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oscillating gradients, F(ω) has only one peak at the oscillation frequency and the mea-

sured ADC corresponds to D(ω). Thus studying the dependence of ADC on gradient

frequency for cosine-like waveforms provides a measure of the diffusion spectrum.

More recent studies use ODE sequences to estimate microstructural features, either by

modelling the ADC dependence as a function of pore size [109] or by fitting a tissue

model directly into the signal [87]. Previous work on modelling the diffusion signal

acquired with ODE sequences is detailed in section 2.4.3

Double and multiple diffusion encoding

Figure 2.12: Schematic representation of a double diffusion encoding (DDE) sequence

The double diffusion encoding (DDE) sequence [110] in Fig. 2.12 concatenates

two gradient pulses separated by a mixing time. This can be extended to multiple

diffusion encoding (MDE) [111] which has an arbitrary number of concatenations of

the SDE sequence separated by additional mixing times.

The motivation for the DDE sequence, and in general MDE, is that it probes the

correlation of the water mobility at different time scales and in different directions,

which can provide sensitivity to features invisible, or significantly less visible, to SDE,

such as pore shape or exchange rate.

DDE - Theoretical aspects

The diffusion signal for an SDE sequence with narrow gradient pulses is given

by equation 2.37, and can be easily extended for multiple gradient pulses [111, 112].

For DDE sequences with short gradient pulses and the same gradient separation ∆, the
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diffusion signal written in terms of q = (2π)−1γδG has the following form:

E(q1,q2,∆, τm) =

∫
dr0ρ(r0)ei2πq1r0 ×

∫
dr1P (r0|r1,∆)e−i2πq1r1

×
∫
dr2P (r1|r2, τm)e−i2πq2r2 ×

∫
dr3P (r2|r3,∆)ei2πq2r3

(2.55)

where ri indicate the position during the application of the gradient pulses and

P (r|r′, T ) is the diffusion propagator which indicates the probability of a particle to

move from position r to r′ during time interval T .

In practice, protocols of DDE measurements cover different subsets of the full

measurement space depending on what dispersion behaviour and/or microscopic sam-

ple features they intend to investigate. For example, the DD-COSY (Diffusion-

Diffusion Correlation Spectroscopy) experiment [113] aims to reveal microscopic

anisotropy in macroscopically isotropic samples by correlating diffusion measurements

in different directions. The simplest version of the experiment is performed at short

mixing times and it fixes the pulse durations and diffusion times. Then multiple mea-

surements with varying gradient amplitudes are acquired with either aligned or perpen-

dicular orientations [113, 114]. The data can be analysed assuming a diffusion signal

model of microscopic anisotropy, or performing a 2D inverse Laplace transform. On

the other hand, the DEXSY (Diffusion-Diffusion Exchange Spectroscopy) experiment

[113, 114] aims to reveal exchange processes in compartmental systems. This experi-

ment fixes the pulse durations and diffusion time and it varies the gradient amplitudes

along a given direction. During the measurements the mixing time is long to allow for

exchange between different water pools.

Another well known experiment for measuring diffusion correlation is angular

DDE [111, 115, 116, 117, 118] which varies just one parameter, namely the angle

between the two gradient orientations. In this case, the gradient amplitude, duration and

diffusion time are the same for the two pulses. At short mixing time τm the difference

between parallel and anti-parallel gradient orientation increases with pore size and at

long τm the difference between parallel and perpendicular gradient orientation increases

with pore eccentricity. To better understand this fact we can further analyse equation

2.55 for long diffusion and mixing times.
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In the long time limit P (r|r′|,∞) = ρ(r′) and defining the reciprocal pore space

as ρ̃(q) =
∫
drρ(r) exp(i2πqr) equation 2.55 becomes:

E(q1,q2) = |ρ̃(q1)|2|ρ̃(q1)|2 (2.56)

which gives the DDE signal for one pore. When we consider an ensemble of pores, the

total signal is given by summing the individual contributions:

Etot(q1,q2) =
∑
n

|ρ̃n(q1)|2|ρ̃n(q1)|2 (2.57)

In the case of randomly oriented pores, the signal will not depend on the absolute orien-

tation of qi, but may depend on the angle between q1 and q2 [111]. For spherical pores

ρ̃n(q) depends only on the magnitude of q, thus Etot(q1,q2) does not depend on the

angle between the gradients. In contrast, for ellipsoids, ρ̃n(q) depends on the relative

orientation of q to the main axis. After averaging over all possible pore orientation, the

signal Etot(q1,q2) still depends on the relative angle between q1 and q2, as the prod-

uct |ρ̃n(q1)|2|ρ̃n(q1)|2 is taken before the summation. The effect appears in the fourth

order expansion to the signal in q and is described in detail for various geometries in

[117]. The signal difference between DDE with parallel and perpendicular gradients

in the long mixing time limit is a signature of elongated pores. When the substrate

is macroscopically anisotropic, as in brain tissue for example, a generalisation of the

experiment also varies the orientation of G1 [119, 120, 121]. Various approaches used

for modelling microscopic anisotropy are discussed in section 2.4.4.
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2.4 Diffusion MRI - Modelling
DW-MRI is one of the most computationally rich MRI modalities, as there are many

different ways to acquire the data and to model the diffusion signal in order to extract

meaningful information. Depending on the complexity of measurements and the way

data is analysed, different tissue characteristics can be estimated. This section presents

the most common models used to analyse the DW-MRI data, which can be separated

into two main groups [122]:

• "signal models" expand the free diffusion model and introduce new parameters

that enable increased agreement with the measured data;

• "biophysical models" generate a geometrical model of the underlying tissue and

calculate the corresponding MR signal.

In the later part of the section we focus on the modelling approaches that are

directly relevant to this work. Thus we describe previous studies which use ODE

sequences to infer microstructural features and we present available modelling ap-

proaches to recover anisotropy at the subvoxel scale as well a distribution of pore sizes.

2.4.1 Signal models

Modelling diffusion MRI data works by developing analytic expressions of the signal

and fitting them to the measurements. In case of signal models, the estimated parame-

ters reflect the diffusion signal, however they are not necessarily related to histological

tissue features. Here we present some of the commonly used approaches, starting with

the simplest model of a mono-exponential function.

Apparent diffusion coefficient (ADC)

The simplest way to model the diffusion MRI signal is to assume free diffusion in

an isotropic, homogeneous environment. In this case, equation 2.31 shows that the

signal follows a mono-exponential decay and the metric that can be derived from such

a measurement is the apparent diffusion coefficient (ADC):

ADC = − log(S/S0)

b
(2.58)

where S is the diffusion weighted signal, S0 is the signal acquired without the diffu-

sion encoding gradients and b is a measure of diffusion weighting which depends on
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sequence parameters, as shown in equation 2.31.

ADC is being used mainly for cancer imaging, as tumours are generally macro-

scopically isotropic [123, 124]. However, if the underlying tissue is anisotropic, such

as white matter or muscle fibres, ADC depends on the direction of the gradient, thus

the one-dimensional (1D) Gaussian model is not appropriate to describe the orientation

dependence of molecular displacement [125].

Diffusion Tensor Imaging (DTI)

A more general description of free diffusion in anisotropic environments uses a three-

dimensional (3D) Gaussian model of molecular displacement [125]. Thus, the scalar

diffusivity D in equations 2.22 to 2.25 is replaced by a 3x3 symmetric tensor D̃ with

elements Dαβ , where α and β take each of the Cartesian coordinates [73]

D̃ =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.59)

In this case the diffusion signal depends on the gradient direction:

S = S0 exp(−bĝT D̃ĝ), (2.60)

where S0 is the signal without diffusion encoding gradient, b is the diffusion weighting

factor and ĝ denotes the gradient direction. Equation 2.60 has 7 independent parame-

ters, thus at least 7 measurements are necessary to estimate the diffusion tensor D̃: one

measurement with b = 0 and 6 measurements with non-zero diffusion weighting and

non-collinear gradient orientations (gi × gj 6= 0, fori 6= j). In practice, for robust pa-

rameter estimates and to reduce the influence of noise and the orientational variance, at

least 20-30 isotropically distributed gradient directions are necessary [126]. Most dif-

fusion tensor imaging (DTI) studies use b-values in the range 600-1200 s/mm2, which

yields on average an approximate signal attenuation of 0.5 [127].

After the diffusion tensor is estimated from the data, we can perform an eigen

decomposition of D̃ in order to calculate the eigenvectors d̂1, d̂2 and d̂3 and the cor-

responding eigenvalues λ1 ≥ λ2 ≥ λ3. This representation provides the principal
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directions of diffusion and the corresponding diffusivities. In practice, different func-

tions of the eigenvalues are used to characterize the size and shape of the diffusion

tensor. The simplest metric is mean diffusivity:

MD =
1

3
Trace(D) =

Dxx +Dyy +Dzz

3
=
λ1 + λ2 + λ3

3
. (2.61)

Another commonly used metric which is rotationally invariant is fractional anisotropy,

which describes the departure of D from isotropic diffusion [128]:

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√

λ2
1 + λ2

2 + λ2
3

. (2.62)

DTI is widely used for brain imaging, however there are a number of clear lim-

itations of this technique [125]. First, the DTI model provides only a voxel-averaged

diffusion tensor which cannot accurately describe more complex tissue configurations

such as crossing fibres in the brain. Second, as the b-value is increased there is a depar-

ture from mono-exponential decay due to diffusion in the intracellular space, and the

Gaussian displacement model is no longer appropriate.

Next, we present some basic approaches to recover complex fibre configurations

as well as signal models which aim to explain the deviation from Gaussianity of the

signal, then we focus on the biophysical models which are more relevant to this work.

Reconstructing multiple fibres

With the introduction of High Angular Resolution Diffusion Imaging (HARDI) acqui-

sition, which uses a larger number of gradient orientation, it is possible to image the

intra-voxel heterogeneity of white matter fibres [129]. Various data analysis methods

have been developed in order to estimate the configuration of fibres. One of the first

proposed methods is a mixture of diffusion tensors [129], with the first eigenvector of

each tensor providing the main direction of the fibre populations. Non-parametric tech-

niques such as diffusion spectrum imaging (DSI) [130, 131] and QBall [132, 133] aim

to recover the diffusion orientation distribution function (dODF) directly from q-space

imaging, using an inverse Fourier Transform or a spherical Funk-Radon transform,

respectively. On the other hand, spherical deconvolution methods [134, 135] aim to

recover directly the fibre orientation distribution function (fODF).
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Accounting for non-Gaussian diffusion

In free diffusion the probability distribution of the spin displacement follows a Gaussian

distribution (equation 2.26), giving rise to a mono-exponential decay of the diffusion

MRI signal as a function of b-value. However, in biological tissue, diffusion is re-

stricted by cellular membranes and the spin displacements are no longer described by

the same Gaussian probability distribution, therefore this regime is commonly referred

in the literature [136] as non-Gaussian diffusion. In this case the diffusion MRI sig-

nal departs from a mono-exponential decay, and there are many different approaches

proposed in the literature to model this effect.

Diffusion kurtosis imaging (DKI) is an extension of DTI that aims to quantify

the departure from mono-exponential signal decay [137]. In addition to the apparent

diffusion coefficient, the method provides an estimate of the excess kurtosis of the

diffusion displacement probability distribution.

lnS = ln(S0)− bDapp +
1

6
b2D2

appK
2
app +O(b3) (2.63)

If the full kurtosis tensor is estimated, then the model has 22 parameters and requires

measurements with at least two different non-zero b-values. Obtaining robust DKI esti-

mates is more challenging than the simpler DTI metrics and there are various strategies

discussed in the literature [138, 139]. Moreover, some kurtosis metrics can be corre-

lated with microstructural features [140].

A bi-exponential model explains the departure from Gaussian diffusion by assum-

ing two non-exchanging water pools with slow and fast diffusion [141]:

S = fslow exp(−bĝT ˜Dslowĝ) + ffast exp(−bĝT ˜Dfastĝ) (2.64)

where ˜Dslow and ˜Dfast represent the slow and fast diffusion tensors and fslow and ffast

are their respective volume fractions. The slow compartment is usually associated with

diffusion in the intracellular space and the fast one with diffusion in the extracellu-

lar space. A bi-exponential model is also used to describe the intra-voxel incoherent

motion (IVIM) [142] which arises due to blood flow through capillaries and can be

measured with diffusion MRI at low b-values (b <200 s/mm2).
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Another approach to explain the deviation from mono-exponential decay is to as-

sume a distribution of diffusivities, which is usually referred to as a statistical model

[143]:

S = S0

∫ ∞
0

P (D) exp(−bD)dD. (2.65)

The model in [143] assumes a normal distribution of diffusivities with meanADC

and standard deviation σ and maps these parameters in the brain. Starting from a similar

theoretical standpoint, other studies [144, 145] characterize the signal arising from a

distribution of diffusivities using a stretched exponential model:

S = S0 exp−(bD)α. (2.66)

where α is the stretching parameter, which characterizes the deviation of the signal

attenuation from mono-exponential behaviour.

All these models explain well the diffusion signal and aim to find biomarkers

that can differentiate regions of interest or correlate with the progression of pathology.

However the estimated parameters do not necessarily correspond to microstructural

tissue features.

2.4.2 Biophysical models

Biophysical models provide a geometrical representation of the underlying tissue.

Then, they are used to calculate the corresponding MR signal and solve the inverse

problem to estimate tissue features given the measured data. Depending on the ap-

plication different tissue properties are modelled. Historically, biophysical models of

diffusion MRI data were first developed to represent the signal in white matter. Here

we present the most relevant models of white matter in a roughly chronological order,

then we discuss biophysical models of non-brain tissue and cancer and we conclude

this section with models of microscopic anisotropy and pore size distribution which are

directly relevant to this thesis.

Stanisz’ model of optic nerve

One of the first biophysical models that describe diffusion signal in white matter was

proposed by Stanisz et al[23]. The study investigates bovine optic nerves and repre-

sents the tissue using three compartments: prolate ellipsoids (axons), spheres (glial
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cells) and hindered diffusion (extracellular space) with exchange between the com-

partments [146]. To calculate the restricted diffusion signal the model uses the SPG

approximation discussed in 2.3.4. As there is no analytical solution for ellipsoids, the

work approximates it as restricted diffusion in between parallel planes with an orienta-

tion dependent separation. The model estimates tissue related features such as average

axon diameter and length (short and long axis of ellipsoids), the size of glial cells

(sphere radius), diffusivities in the intra- and extra-cellular space as well as membrane

permeabilities. Fitting this model requires high quality data with many different mea-

surements. In this study, the nerve sample was carefully aligned parallel and perpendic-

ular to the magnetic field and high quality NMR data with SNR > 1000 was acquired

with multiple gradient strengths and diffusion times. Translating this model to in-vivo

MRI with limited acquisition time and an SNR up to 50 is virtually impossible. Thus

simpler models that describe the key features of tissue are necessary.

Ball and Stick model

The ball and stick model introduced by Behrens et al [147] is a simple two-

compartment white matter model that is feasible for clinical MRI. In the intra-axonal

space diffusion occurs only in the parallel direction (stick) with diffusivity d, while in

the extra-axonal space diffusion is isotropic (ball), with the same diffusivity. Thus the

signal can be written as the weighted sum of the two compartments:

S = S0 (f exp(−bd(n̂ · ĝ) + (1− f) exp(−bd)) (2.67)

where f is the volume fraction of the anisotropic compartment, n̂ is the fibre direction

and ĝ is the direction of the diffusion gradient. Ball an stick can be easily extended

to model multiple fibre populations by adding additional "stick" compartments [148].

While simplicity is a key when having a limited amount of data, this model cannot

represent microstructural tissue features such as axon diameter.

CHARMED and AxCaliber

Assaf’s work builds on the idea of a multi compartment model and introduces a more

realistic depiction of the intra-axonal space. Unlike ball and stick, composite hindered

and restricted model of diffusion (CHARMED) [149] represents the intra-axonal space
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as a distribution of cylinders. Extracellular space is represented as hindered diffusion

with a cylindrically symmetric diffusion tensor (Zeppelin compartment according to

the taxonomy in [150]). For the intra-axonal space, the model assumes one or two fibre

populations. The distribution of axon diameters and intracellular diffusivity perpendic-

ular to the fibres are fixed to typical values for axons in the spinal cord. Thus the model

recovers the fibre orientation, intracellular diffusivity parallel to the fibres, extracellular

diffusivities and the corresponding volume fractions.

A later technique developed in the same research group, AxCaliber [5], extends the

CHARMED model and estimates the distribution of axon diameters, assuming a known

fibre direction. Based on previous histological work by Aboitiz [35], the axon diameters

are assumed to follow a Gamma distribution. The restricted diffusion signal can be

written as a volume weighted sum over the contributions from axons with different

diameters:

Sr =
∑
i

wi
fi

π(2Ri)2
Sr,i, with, wi(α, β) =

(2Ri)
α−1e−α/β

βαΓ(α)
(2.68)

where Sr is the total restricted signal, Sr,i is the restricted signal from axons with radius

Ri and the weights wi follow a Gamma distribution with shape parameter α and scale

parameter β. Data is acquired perpendicular to the nerve fibres with multiple combina-

tions of gradient strengths and diffusion times. The correspondence between histology

and MR measurements of axon diameter in sciatic and optic nerve tissue specimens is

really good. This technique has been further used in-vivo to estimate the axon diameter

distribution in the rat corpus callosum [6]. This approach requires many measurements

perpendicular to the nerves, assuming prior knowledge of the fibre orientation.

ActiveAx

To overcome these limitations, Alexander [151] developed a computational framework

to optimise a rotationally invariant DW-MRI acquisition, which makes the estimation

of axon diameter feasible in a clinical set-up. In order to increase the robustness of the

parameter estimates, [151] simplified the tissue model and describes the fibre popula-

tion as randomly packed, identical parallel cylinders. The extracellular space features

hindered diffusion, as described in the CHARMED model. In order to account for

partial volume effects from the cerebral spinal fluid (CSF), one more compartment
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compartment featuring isotropic free diffusion is added. (In term of the taxonomy used

in [150], this model is ZeppelinCylinderBall). Thus, ActiveAx estimates the axon di-

ameter index, which correlates well with the mean volume-weighted diameter, fibre

orientation and volume fractions of the different compartments. The intracellular dif-

fusivity and extracellular diffusivity parallel to the axons are equal and fixed, and the

hindered diffusivity perpendicular to the fibres is computed using a simple turtuosity

constraint d⊥ = d‖(1−f) [152], where f is the axonal volume fraction. In a later study

[9] Alexander et al uses the ActiveAx framework to estimate the axon diameter index

in the human corpus callosum in-vivo and in the monkey brain ex-vivo. As previous

models showed [23], an additional fully restricted water compartment is needed for the

ex-vivo data. Although the model reduces the characterization of the axon diameter

distribution to a single volume-weighted diameter index, it still requires high quality

data and large gradient strengths in order to estimates small axon diameters. As the

gradient strength increases, smaller sizes can be detected and measured using diffusion

data [153]. Thus, in-vivo axon diameter estimation can be significantly improved by

using data from the human Connectome scanner, which has higher diffusion gradients

up to 300 mT/m [154] compared to standard clinical gradients of less than 100 mT/m.

Modelling fibre dispersion

Previous models assume one or more fibre populations with parallel axons in each

voxels, however these configuration cannot accurately describes regions of bending or

fanning fibre bundles which are widespread throughout the brain [155].

Jespersen et al [122] developed a model that can capture the distribution of axons

and dendrites both in white matter, which can be highly anisotropic, as well as grey

matter which is more isotropic. They use a two-compartment model with an isotropic

tensor (ball) to describe diffusion in the extracellular space and a distribution of cylin-

drically symmetric anisotropic tensors to describe intra-axonal diffusion. To describe

a general distribution, they chose to expand it in terms of spherical harmonics and to

estimate the corresponding coefficients in addition to the tensor diffusivities and the

volume fraction. The model prediction agrees very well with the experimental data

which was acquired from a monkey brain ex-vivo with many different b-values and

gradient orientations.
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Zhang et al [11] extends the model proposed in ActiveAx and aims to recover the

axon diameter index in the presence of dispersion. To this end, they use a parametric

Watson distribution, which is a cylindrically symmetric directional distribution charac-

terized by a single concentration parameter κ. Due to the reduced number of model

parameters, the technique is suitable for estimating axon diameter index and orienta-

tion dispersion from in-vivo human data acquired with 4 different b-values and multiple

gradient directions (4 HARDI shells).

In later work, Zhang et al [12] developed neurite orientation dispersion and density

imaging (NODDI), a simplified version of the model above aimed for routine clinical

imaging which requires only two different b shells. NODDI models the signal contri-

bution from three compartments: Intra-neurite signal represented by sticks following a

Watson distribution, extra-neurite signal modelled by a cylindrically symmetric tensor

and CSF which exhibits free isotropic diffusion. Due to its simplicity and straightfor-

ward data acquisition, NODDI has been used in many different studies to characterize

healthy and pathological brain tissue [156, 157, 158, 159].

The Watson distribution is symmetric around the main direction and cannot re-

cover more complex fibre configurations featuring anisotropic dispersion such as fan-

ning. Thus, the fibre orientation can be better described using a distribution that allows

for anisotropic dispersion, such as Bingham, which is the analogue of a Gaussian dis-

tribution for directional data [160]. For instance Kaden et al [161] use a finite mixture

of Bingham distributions in a parametric spherical deconvolution approach to separate

crossing fibres which feature dispersion. The same orientation distribution is also used

by Sotiropolous et al [162] to extend the ball-and-stick model and by Tariq et al [163]

to extend the NODDI model.

General white matter compartment models

The models presented above are specific cases of multi-compartment models that cap-

ture various features of the tissue. In general, a multi-compartment model can be

formed by suitable combinations of several compartments that represent the main wa-

ter pools in the tissue such as intra- and extra-axonal space, CSF, glial cells, etc. This

approach was taken by Panagiotaki et al [150] to describe the diffusion MR signal in

the rat corpus callosum, ex-vivo. Ranking the models according to Bayesian Informa-
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tion Criterion (BIC), which accounts for the goodness of fit and number of parameters,

shows that three compartment models with restriction along the fibre direction explain

the data the best. A similar conclusion was drawn by Ferizi et al [164] for in vivo

human data. A limitation of these two studies is that they investigated only models of

coherently oriented fibres. A more recent work in the same group [165] includes fibre

dispersion and shows that these model outperform the best models with coherent fibres.

Many of these white matter models are discussed in a recent review study by Nilsson

et al [51].

Restriction spectrum imaging

The multi-compartment models described above use a non-linear fitting algorithm to

estimate the model parameters. Restriction spectrum imaging (RSI) extends the linear

spherical deconvolution (SD) approach to obtain information at multiple length scales

[166, 3]. This is achieved by replacing the single response function from conventional

linear SD (usually a cylindrically symmetric diffusion tensor [167]) with a range of

diffusion tensors. In later work [3] they also use response functions corresponding to

cylindrical restriction for white matter modelling and spherical restriction for cancer

modelling.

VERDICT and the emergence of cancer models

The majority of the diffusion MRI models described above have been developed for

brain imaging. Vascular, extracellular and restricted diffusion for cytometry in tumours

(VERDICT) [2] aims to extend the use of biophysical models for microstructure imag-

ing in tumours. The VERDICT framework describes diffusion in three compartments:

• signal from intracellular water inside cells - modelled with restricted diffusion

• signal from water adjacent to cells and blood vessels (EES) - modelled with hin-

dered diffusion

• signal from water in blood in the capillary network - modelled using perfusion

First the VERDICT method was demonstrated in xenograft colorectal tumours and the

parameter estimates were in good agreement with histological finding and successfully

differentiated between two tumour lines with different microstructures. The technique
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was translated to clinical imaging of prostate cancer patients [63] and the parameter

estimates clearly differentiated between benign and cancer regions.

Estimating permeability

The biophysical models discussed above account for various tissue features, however,

when modelling restriction they do not account for membrane permeability. The Kärger

model [146] is a well-known approach for including permeability, however it assumes

two well mixed pools of water and does not account for restriction, which yields biased

estimates [99]. Modelling restricted diffusion inside pores with permeable membranes

can be achieved by changing the boundary condition in equation 2.34, however there is

no analytical model for the extracellular space. [168] includes the effects of restriction

by modelling a time-dependent diffusivity in the Kärger model, while more recent work

accounts for an infinite equidistant array of permeable barriers [169], however, it does

not include extra-cellular space. A database approach with Monte Carlo simulations

including restriction and exchange, has been used to test the accuracy of the Kärger

model, showing that the analytical model yields biased estimates of volume fractions

for exchange times < 350 ms. Moreover, the exchange time values are more difficult

to estimate compared to other model parameters [99]. A more recent study which uses

machine learning to estimate axon diameter and membrane permeability from Monte

Carlo simulations has also shown that the two effects cannot be well separated using

standard SDE measurements [103]. Another technique assumes two water pools with

slow and fast diffusion and estimates the apparent exchange rate between them using

DDE sequences with various mixing times [170]. In healthy white matter, Nilsson et al

[171] suggest long exchange time on the order of seconds. Thus, for commonly used

diffusion times which are in the range of tens of milliseconds, considering impermeable

membranes is a valid assumption. The same study showed a lower exchange time for

viable tissue in tumours (≈ 300 ms), thus assuming impermeable membranes in this

case might lead to biased pore size estimates if the measurements have long diffusion

times. When the measurements have shorter diffusion time, such as ODE sequences,

then this effect is negligible [172].
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2.4.3 Models for oscillating gradients

Temporal diffusion spectroscopy

The most common way of performing an ODE experiment is to study the diffusion

spectrum. So far the diffusion spectrum has been studied for sinusoidal and rectangu-

lar modulation [105, 106]. For sine and square oscillations, the gradient spectrum has

maxima at ω = 0 and ω = ω0, where ω0 is the angular frequency of the gradient. If

a π/2 phase is introduced, i.e. cosine waveform, the peak at ω = 0 is cancelled, and

the gradient probes the diffusion spectrum at a single frequency ω = ω0. Thus, the ap-

parent diffusion coefficient (ADC) measured with a cosine-like waveform corresponds

directly to the value from the diffusion spectrum. In order to compute the ADC, the

b-value for oscillating gradients is required. The expressions of the b-values for sinu-

soidal waveforms that have been used so far in temporal diffusion spectroscopy studies

are given in Appendix A.

In the first in-vivo temporal diffusion spectroscopy study, Does et al [106] inves-

tigated the dependence of ADC on diffusion time in the normal and globally ischemic

rat brain. They investigated three different gradient waveforms: sine, double sine and

apodised cosine. As theory predicts, the dependence of ADC on diffusion time was less

pronounced for sine gradients due to the ω = 0 frequency peak in the power spectrum,

as discussed above. Aggarwal et al [173] extends the analysis to a frequency dependent

diffusion tensor and investigates separately the dependence of parallel (λ‖) and perpen-

dicular (λ⊥) diffusivities in normal and demyelinated rat brain tissue. The results show

different frequency dependencies of λ‖(ω) and λ⊥(ω) in various parts of the brain as

well as for different stages of demyelination and remyelination. The data used in this

study was acquired with one b-value ≈ 700 s/mm2. In order to better characterise the

complex tissue structure, Portnoy et al [174] acquired SDE and ODE data over a large

range of diffusion times and b-values. To explain the deviation from monoexponential

decay with increasing b-value, they fitted a kurtosis model to the data, and the results

show decreasing apparent kurtosis with increasing gradient frequency. Moreover, by

explicitly modelling the dependence of ADC(ω), they estimated the restriction size in

various areas of the brain. The above mentioned studies implemented ODE sequences

on pre-clinical scanners with high diffusion gradients ≈ 700 mT/m. More recent stud-
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ies by Van et al [108] and Baron et al [175] implement ODE sequences with trapezoidal

and sinusoidal waveforms on clinical scanners and investigate the dependence ofADC,

λ‖, λ⊥ and FA on frequency. The studies also investigate how to optimise the sequence

parameters δ and ∆ in order to obtain a sharper peak in the power spectrum. This point

is detailed in section 3.3.2, as it constitutes a part of my work accomplished before

these research articles were published.

Pore size estimation using ODE sequences

Most of the previous studies investigated the dependence of ADC and/or other DT

related metrics on diffusion time (or gradient frequency). It is possible to extract further

information about the tissue structure by modelling the diffusion spectrum D(ω) as a

function of pore size [78]. D(ω) can be written in terms of the diffusion coefficients

in the long and short time limit and the geometric factors Bn and λn which describe

restriction [174]:

D(ω) = D0 +
∑
n

Bn
an(D∞ −D0)ω2

a2
n(D∞ −D0)2 + ω2

. (2.69)

The explicit formulae for Bn and λn are given in the Appendix A. Thus, by explicitly

modellingD(ω), Portnoy et al [174] also extracted pore size information from the ODE

data.

Another approach to estimate pore size is to fit a biophysical model to the acquired

ODE data, which requires an analytical signal model for ODE sequences. This can be

achieved using the GPD approximation described in section 2.3.4. Xu et al [87] derived

such expressions for sinusoidal gradient waveforms and validated them against Monte-

Carlo simulations. The work also extended the model of restricted diffusion to spherical

shells, which is a good representation of cells with a nucleus inside. Later simulation

studies have investigated the effect of variations in cell nuclear size [87], intracellular

volume fraction, intranucleus and intracytoplasm diffusion coefficients, membrane per-

meability and T2 relaxations [176]. Such thorough simulation studies may be helpful

to elucidate the biophysical mechanisms underlying measured diffusion changes. The

experimental study of Li et al [109] follows up on previous work and uses cosine ODE

measurements to estimate pore size in phantoms with hollow microcapillaries of vari-

ous diameters. The results showed that ODE sequences can be used to estimate both
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intrinsic diffusivity and pore size, however the gradient used in this experiment was as

high as 1.88 T/m.

2.4.4 Models of microscopic anisotropy

The quantification of microscopic diffusion anisotropy aims to disentangle the effects of

orientation distribution from microstructural features, which has potential for character-

izing white matter integrity [119], grey matter cytoarchitectures [14] or distinguishing

between different tumour types [177].

The techniques discussed so far use a collection of SDE or ODE measurements

which are sensitive to pore-size distribution in known isotropic pores or coherently

oriented anisotropic pores. However, SDE and ODE sequences, which have constant

gradient orientation, fail to discriminate between more complex systems, such as cer-

tain configurations of isotropic pores with a size distribution and randomly oriented

anisotropic pores [117]. This section illustrates the most common techniques used to

estimate microscopic anisotropy and briefly discuss the sequences they use. It presents

both biophysical models of restriction as well as signal models that can provide a mea-

sure of microscopic anisotropy.

Mitra showed theoretically that DDE sequences with varying angle between the

two gradients provide sensitivity to pore size at short mixing times and to pore elonga-

tion at long mixing times [111], a fact that was experimentally verified for the first time

in yeast cells [115]. This development lead to a number of modelling techniques that

aim to recover microscopic anisotropy using DDE sequences.

Özarslan presents a comprehensive analysis of DDE signal in idealized experi-

mental conditions (narrow gradient pulses, long diffusion time and long or vanishing

mixing times) in closed pores [117] for simple geometries of spheres, ellipsoids and

capped cylinders. The study also investigates the DDE signal for arbitrary sequence

parameters when diffusion is restricted inside capped cylinders using the MCF signal

model. Koch and Finsterbush [178] investigate in simulation the DDE signal depen-

dence on sequence parameters and microstructural parameters such as pore size and

eccentricity, and use DDE sequences with short mixing time to estimate pore sizes

[116].

Shemesh et al uses DDE measurements to tell apart spherical pores from randomly
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oriented anisotropic pores using yeast cells and a phantom consisting of water-filled

cylindrical compartments. Pore size is estimated using either a geometric model of

spherical restriction or randomly oriented infinite cylinders [179].

Acquiring angular DDE measurements provide information regarding pore size

and eccentricity only in the plane spanned by the gradient vectors, thus is not a suit-

able analysis for anisotropic substrates such as white matter. Lawrenz et al [119] pro-

vides a general description of the DDE signal behaviour in the presence of macroscopic

anisotropy. They also extend the DDE acquisition to support the estimation of tensor

elements and derive a rotationally invariant metric of microscopic anisotropy (MA),

based on the difference between DDE measurements with parallel and perpendicular

gradients. Jespersen et al [121] further extends the DDE acquisition to a rotationally in-

variant 5-design scheme that can applied to the cumulant expansion of the signal, which

is more accurate than the Taylor expansion assumed in the previous work. Using again

the difference between DDE measurements, they derive a rotationally invariant eccen-

tricity metric (ε) and its normalized counterpart, fractional eccentricity (FE), which

that is the same as FA in the case of coherent pores.

Another technique for estimating microscopic anisotropy has been recently intro-

duced by Lasic et al [180]. This approach combines diffusion sequences that isotrop-

ically weight the signal in one measurement with directional sequences that have the

same q(t) =
∫ t

0
G(t)dt value, where G(t) is the applied gradient waveform. Their

derivation of a microscopic anisotropy metric, termed µFA, is based on the assump-

tion that diffusion in each microdomain is Gaussian. Thus, this technique can disen-

tangle the contribution to the diffusivity variance caused by the orientation dispersion

of anisotropic microdomains and a distribution of diffusivities in each microdomain.

More recent studies relax the assumption of directional and isotropic encoding and ex-

tend the computation of µFA to generalized gradients with varying orientation within

one measurement [181, 182].

A similar idea is developed by Kaden et al [183], who proposed a method to disen-

tangle the effect of orientation distribution and to estimate the microdomain diffusivity

from a standard 2-shell HARDI acquisition. However this method assumes identical

microdomains and cannot account for the variance that arises due to a distribution of

diffusivities. This confirms the necessity of more advanced acquisition protocols in
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order to accurately characterize complex substrates.

2.4.5 Models of pore size distribution

Histological studies [35, 184] of the fibre composition in human corpus callosum have

motivated white matter models such as CHARMED [149] and AxCaliber [5] to de-

scribe intra-axonal diffusion using a Gamma distribution of axon diameters. While this

is a rather novel approach for biomedical imaging, diffusion NMR has been used for a

long time to estimate pore size distributions in various emulsions, such as mixtures of

water and oil [185, 186, 187]. Many studies assume a lognormal distribution which is a

good approximation for homogeneously mixed emulsion systems, with a low-viscosity

continuous phase [188].

A later study [188] presents a frameworks to estimate a non-parametric distribu-

tion of pore sizes in oil-in-water emulsions using standard SDE diffusion sequences.

A more recent work [189] uses a similar framework to estimate size distribution in

glass microcapillary arrays and shows that DDE sequences provide a more accurate es-

timation of the size distribution compared to SDE sequences. This study uses a model

of infinitely long cylinders, a limitation that is addressed by estimating a joint radius-

length distribution in order to account for finite pore eccentricities [190]. Although the

distribution of sizes is estimated, the main orientation of the pores is assumed to be

known, which is a major drawback in practical applications.

2.4.6 Summary

This section presents a wide range of modelling approaches to extract information from

diffusion MRI signal. In a homogeneous medium, the diffusion signal decreases mono-

exponentially with increasing diffusion weighting (b-value), however this is not the

case in more complex substrates such as biological tissues. The signal models pre-

sented in the first part of this section aim to explain this deviation by including higher

order terms in the signal expansion, adding more exponentials, considering a distri-

bution of diffusivities, etc. The estimated parameters are correlated with the cellular

features of interest however they are not a direct measure of microstructure. The bio-

physical models presented in the second part aim to overcome this issue and directly

relate microstructural features to the diffusion data. Thus, depending on the complex-

ity and assumptions of the model, tissue features such as cellular size, volume fraction,
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orientation distribution, elongation, etc. can be estimated.

Pitfalls of modelling diffusion MRI data

As seen in the last two sections, diffusion MRI is a rich modality with many different

possibilities for signal acquisition and data analysis. Most of the models presented

above explain the data well, so an immediate question arises: which is the right model?

The answer is not straightforward and it highly depends on the amount and quality

of measured data as well as on the application of interest. If the acquisition protocol is

very limited with only one b-value and several directions, then only the simplest models

such as ADC and DTI are supported. DTI derived metrics such as ADC and FA have

been used in various clinical applications, such as studying normal brain maturation

and aging, cerebral ischemia, multiple sclerosis, epilepsy, tumours, etc [?]. Increase

or decrease in ADC and/or FA can correlate with various pathologies, however the

measure is not specific enough to understand the processes that cause the change. More

recent work shows that using higher-order models improves significantly white matter

tractography for clinical applications, e.g. [191, 192]. Moreover, when multi-shell data

is available, the DTI model does not generalize well to higher b-values [150, 164].

For cancer imaging, a decrease in ADC is usually correlated with higher cellularity,

however, the presence of vasogenic edema and/or focal necrosis within the tumour can

revert this effect increasing ADC [3]. Thus, having a multi-compartment model can

better differentiate between tumour types/grades[3, 2]. Nevertheless, due to the short

acquisition times and robustness to noise, ADC and DTI are still widely used in clinical

studies, however the estimates are not specific to the tissue microstructure.

When a rich data set with various b-values is available, more complex data analy-

sis is supported. Signal models explain the measured data and the additional parameters

can be correlated with some histological features, however they are not very specific.

Biophysical models account for water diffusing in different compartments which have

a histological correspondence and aim to explain the acquired data by including more

tissue features and/or compartments. In order to prevent overfitting, the simplest model

with the least number of parameters that fits the data is preferred. Moreover, the dif-

ferent compartments as well as the estimated parameters need to be in line with histo-

logical findings. This approach was considered when comparing various white matter



2.5. Conclusions 77

models [150, 193] as well as choosing an appropriate cancer model [2, 63]. If the

model aims to recover more complex tissue features, such as pore elongation or size

distribution, then an improved diffusion acquisition is required in order to support the

additional parameters. One drawback of modelling tissue microstructure is the fact that

the most appropriate model depends on the imaging application as well as the richness

and quality of the data, thus a model comparison needs to be performed in order to

assess the results.

2.5 Conclusions
The first section of this chapter provides a brief description of brain and cancer mi-

crostructure, two applications of interest for the imaging methods we develop. A thor-

ough understanding of tissue histology is essential in developing accurate biophysical

models to analyse the diffusion MRI data.

The second section covers the basics of NMR phenomenon as well as signal gen-

eration, detection and localization, which are the foundation for modern MRI systems.

These aspects are important in order to understand the data acquisition and analysis, as

well as the practical implications for the DW-MRI techniques we develop.

The third section presents the theoretical aspects of diffusion MRI, with a focus

on modelling restricted diffusion. Additionally, it introduces the advanced diffusion

sequences which are of interest for this work, namely ODE and DDE sequences.

The last section provides an overview of the most popular modelling techniques

for analysing DW-MRI data. It covers models developed for both brain and cancer

imaging, presents various approaches for analysing ODE and DDE data, and discusses

possible pitfalls of microstructure imaging.

The next chapters of this thesis present my own contribution on developing more

advanced DW-MRI sequences and complex tissue models in order to improve the esti-

mation of pore size and shape.



Chapter 3

Oscillating diffusion encoding

In chapter 2 we discussed the importance of estimating microstructural biomarkers and

we illustrated that diffusion MRI provides the right tools to extract this information

from non-invasive MR measurements. By developing biophysical models of the tissue

and relating them to the measurement data, features such as pore size, shape and volume

fraction can be estimated. Most microstructure imaging techniques presented in section

2.4.2 use single diffusion encoding (SDE) sequences with a combination of gradient

strengths and diffusion times. Nevertheless, the sensitivity of the measurements to the

tissue parameters can be increased by using more advanced diffusion acquisition as

presented in section 2.3.6.

This chapter derives analytical signal models for oscillating diffusion encoding

(ODE) sequences and improves the sequence design for diffusion spectrum imaging.

This work has been published in [90].

3.1 Motivation
Oscillating diffusion encoding sequences (ODE) illustrated in Figure 2.11, measure dif-

fusion on a shorter time scale which improves the estimation of intrinsic diffusivity and

gives access to smaller structures, such as cell nuclei. The majority of studies involving

ODE sequences, for estimating microstructural features or for measuring the diffusion

spectrum, use sinusoidal gradient waveforms. Recent work [93, 94], which optimises

the diffusion gradient waveform for pore size estimation, suggests that square oscillat-

ing gradients maximise sensitivity to small pore size as they yield the highest diffusion

weighting within one period compared to other periodic waveforms. Moreover, in tem-

poral diffusion spectroscopy experiments, square waves yield a higher amplitude of the
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power modulation spectrum which improves the diffusion contrast. When considering

the finite slew rate of the diffusion gradients, trapeziodal waveforms, which account for

the rise time of the gradient, are the practical implementation of square waves.

In this chapter I present the derivation of analytical signal models for square, trape-

zoidal and sinusoidal (with arbitrary phase) ODE sequences. Then I discuss how to

improve the choice of sequence parameters for diffusion spectrum imaging, when the

gradient slew rate is not negligible.

3.2 GPD approximations for ODE sequences
This study uses the GPD approximation described in section 2.3.4 to derive signal

models of restricted diffusion for ODE sequences. The GPD approximation provides

analytical expression which are fast to compute and enable parameter fitting in every

voxel of an image volume.

3.2.1 Aims and objectives

The specific aims of this work are the following:

1. derive GPD approximations for ODE sequences with square, trapezoidal and si-

nusoidal (with arbitrary phase) waveforms.

2. validate the analytical expressions against MC numerical simulations which are

highly accurate [101]

3. approximate the signal model for trapezoidal waveforms with the much simpler

expressions for square or sinusoidal waveforms.

3.2.2 Theory

This section presents the mathematical description of the new oscillating gradients,

namely square and trapezoidal waveforms, the derivation of the corresponding b-values

for free diffusion and the signal attenuation computed using the GPD approximation

for restricted diffusion.

Oscillating gradients - definition

Figure 3.1 illustrates the standard SDE sequence, as well as the square and trapezoidal

waveforms that will be used in the subsequent derivations of the diffusion signal.
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The diffusion gradient for ODE sequences with constant gradient orientation can

be generally described as:

g(t) =


G · f(2tν − φ

π
) if 0 ≤ t < δ

G · f(2(t−∆)ν − φ
π
) if ∆ ≤ t < ∆ + δ

0 otherwise

(3.1)

where G is the amplitude of the gradient, ν is the oscillation frequency, φ is the phase

and f(x) denotes the waveform.

For square and trapezoidal ODE sequences, the gradient waveform f(x) is:

f(x) = (−1)bxc·


1
2ν

1
tr

(x− bxc) if bxc ≤ x < bxc+ 2ν · tr

1 if bxc+ 2ν · tr ≤ x < bxc+ 1− 2ν · tr
1
2ν

1
tr

(bxc+ 1− x) if bxc+ 1− 2ν · tr ≤ x < bxc+ 1

for a trapezoidal waveform with rise time tr.

f(x) = (−1)bxc, for a square waveform

with bc denoting the integer part. (3.2)

The parameters of these two pulse sequence are: the gradient amplitude G, the

length of the pulse δ, the diffusion time ∆, the frequency of the wave ν, the phase φ and

the rise time tr (in the case of the trapezoidal wave). The general formulae computed

for an ODE sequence with arbitrary phase and frequency are quite lengthy, therefore

we present here the expressions for the special case of integer number of half periods

(i.e. δ = N
2ν
, N = 1, 2, ...) and φ = 0. Appendices A.3 present the general results for

arbitrary frequency and phase, including the extension for sinusoidal waveforms.
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Figure 3.1: Schematic representation of the applied gradient for SDE a), square ODE b) and
trapezoidal ODE with zero phase and integer number of half periods N = 3

Free diffusion

The expressions for b calculated according to equation 2.32, assuming an integer num-

ber of half periods N and φ = 0 are the following:

b =
G2γ2δ

6ν2
+G2γ2(∆− δ)

(
1− (−1)N

4ν

)2

, (3.3)

for square wave and

b = G2γ2(∆− δ)
(

(1− (−1)N)(1− 2ν · tr)
4ν

)2

+

G2γ2δ

30ν2
(5− 15tr · ν − 5t2r · ν2 + 32t3r · ν3), (3.4)

for trapezoidal wave.

If we set the rise time of the trapezoidal wave to be zero tr = 0 in equation 3.4,

then we recover the b value for a square wave in 3.3. Moreover, the b value for the
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square wave in 3.3 has the well-known form b = G2γ2δ2(∆ − δ/3) for SDE if we set

2ν = δ−1 and N = 1.

The b values for square, sine and cosine ODE with arbitrary frequency and phase

are

b =G2γ2

{
(∆− δ)(α− θ)2 +

δ3 + α3 + (1− (−1)N)(θ − α)3 + (−1)Nβ3

3
+

+
N(1− 3νδ + 6ν2θ2)

12ν3
+
N2

4ν3

(
1

2
− N

3
− ν(δ − θ)

)
− δθ(δ − θ)

}
, (3.5)

with θ =
φ

2πν
, N = b2(δ − θ)νc, α = (−1)N

(−1)N − 1− 2N + 4ν(δ − θ)
4ν

,

β =
(−1)N − 1 + 4νθ

4ν

for square wave,

b =
G2γ2

2ω3

[
2(∆− δ)ω (cosφ− cos(δω − φ))2 + 4δω − 4 sin(δω)− sin 2φ+

δω (cos 2φ+ cos(2δω − 2φ))− sin(2δω − 2φ)
]

(3.6)

for sine wave, and

b =
G2γ2

2ω3

[
2(∆− δ)ω (sinφ+ sin(δω − φ))2 + 4δω − 4 sin(δω) + sin 2φ−

δω (cos 2φ+ cos(2δω − 2φ)) + sin(2δω − 2φ)
]

(3.7)

for cosine wave, with ω = 2πν.

The b values for square, sine and cosine ODE with arbitrary frequency and φ = 0

are

b =G2γ2

{
(∆− δ)α2 +

δ3 + α3 − (1− (−1)N)α3 + (−1)Nβ3

3
+
N(1− 3νδ)

12ν3
+

+
N2

4ν3

(
1

2
− N

3
− νδ

)}
, (3.8)

with N = b2δνc, α = (−1)N
(−1)N − 1− 2N + 4νδ

4ν
, β =

(−1)N − 1

4ν
,
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for square wave,

b =
G2γ2

2ω3

[
2(∆− δ)ω (1− cos(δω))2 + 5δω − 4 sin δω + δω cos(2δω)− sin(2δω)

]
(3.9)

for sine wave, and

b =
G2γ2

2ω3

[
2(∆− δ)ω sin2 δω + 3δω − 4 sin δω − δω cos(2δω) + sin(2δω)

]
. (3.10)

for cosine wave.

Restricted diffusion

By substituting the new gradient waveforms, defined above, in equation 2.41, we de-

rived the expressions of Γn for square and trapezoidal wave. The results for waveforms

with integer number of half periods N and φ = 0 are the following:

Γn = G2

{(
e
λnD
2ν − 1

e
λnD
2ν + 1

)2(
1−N(e−λnD/(2ν) + 1)− (−1)Ne−λnDδ−

e−λnD∆
(
1− (−1)N cosh(λnDδ)

))
+ λnDδ +N

(
e−

Dλn
2ν − 1

)}
. (3.11)

for square wave, and

Γn =
G2

2D2λ2
nt

2
r

[
(−1)N

E2
1+

(et̃r − 1)2(et̃r − eλnD/2ν)2e−δ̃−2t̃r
(
e−∆̃

(
− 1 + (−1)Neδ̃

)2−

2
(
1 + (−1)Neδ̃(N − 1 +Ne−λnD/2ν)

))
+N

(
2e−λnD/2ν

(
et̃r − 1)2−

4(e−t̃r − 1 + λnDtr) + λ3
nD

3t2r(1/ν − 8tr/3)
)]
, (3.12)

where N = 2δν, δ̃ = Dλnδ, ∆̃ = Dλn∆, t̃r = Dλntr, E1+ = eDλn/(2ν) + 1

for trapezoidal wave.

If we take limtr→0 Γn, expression 3.12 reduces to the formula for square wave in

equation 3.11.
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3.2.3 Simulations and results

The first simulation validates the formulae presented in the previous section and Ap-

pendix A.3 and assesses the accuracy of the GPD approximation for cylindrically re-

stricted diffusion. The second simulation evaluates the accuracy of approximating the

full trapezoidal wave formulae with the simpler expressions for square and sine waves.

Validation of GPD formulae

These simulations aim to test the accuracy of the GPD approximation. We compare the

analytical expressions of the normalised diffusion signal for square waveforms with the

exact solutions obtained using the Monte Carlo diffusion simulator in Camino [101] and

a semi-analytical solution provided by the matrix method (MM) described in section

2.3.4. We treat the MC simulation as ground truth since it provides arbitrary precision,

depending on the resolution of the simulation, and no bias. The signal for a total diffu-

sion time of 0.12s was computed using NW = 200, 000 walkers and NT = 6, 000 time

steps, yielding a normalized-signal variance on the order of 10−6 [101]. For a given

simulation complexity (i.e.NW ×NT ), the largest accuracy is obtained when NT is on

the order of 103. Moreover, this particular choice of parameters leads to a time step

dt = 0.12 s/ NT = 0.02 ms, which corresponds to a step size dx =
√

2Ddt ≈ 0.3µm

smaller than the cylinder radius.

To validate the GPD approximation for the square waveform, we simulated the

normalised diffusion signal with D = 2 · 10−9 m2/s for a wide range of sequence

parameters and pore sizes suitable for biomedical applications.

In the main simulation we considered all combinations of R ∈ {1, 2, 5, 10}

µm, G ∈ {0.02, 0.04, ...0.1, 0.2, ...1} T/m, ∆ ∈ {25, 35, 45, 55} ms and ν ∈

{25, 30, ...100, 200, ...500} Hz. In practice ODE sequences are designed to have a long

pulse durations limited by the time required for the refocusing pulse. In this simu-

lation we consider a typical duration for the refocusing pulse τrf = 5 ms and we

set δ = ∆ − τrf . This choice of parameters covers the range of gradient strengths

achievable on both clinical scanners, G ≤ 0.1 T/m, as well as much higher gradient

strengths available only on small-bore high-field scanners not in widespread clinical

use, G ≤ 1T/m. We do not vary the diffusivity, D, as the signal depends only on the

ratio D/R2, so varying R is sufficient.
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To visualise the results, Figure 3.2 presents a representative subsample of data,

comparing the GPD approximation with the Monte Carlo simulation as a function of

the different parameters used in the analysis. Figure 3.2a shows the restricted diffusion

signal as a function of frequency for four different values of ∆, fixed gradient strength

G = 0.1 T/m and cylinder radius R = 5 µm. The diffusion signal increases with

decreasing ∆ and increasing frequency with a sharp jump in slope at values that give

integer numbers of half periods. The data points for ∆ = 25 ms illustrate how the

signal behaves when the frequency is increased from the value corresponding to SDE,

ν = 25 Hz to the value corresponding to N = 4 oscillations, ν = 100 Hz. Figure 3.2b

illustrates the signal as a function of frequency for five different gradient strengths with

fixed ∆ = 25 ms and cylinder radius R = 5 µm. The signal decreases with increasing

gradient strength with a similar pattern as the frequency increases to that observed in

Figure 3.2a. Figure 3.2c presents the dependence of the diffusion signal on the gradient

strength for several frequencies with fixed R = 5 µm and ∆ = 45 ms and Figure

3.2d shows the dependence of the diffusion signal on the cylinder radius for the same

frequencies with fixed G = 0.1 T/m and ∆ = 45 ms. The signal is less dependent

on the radius as the oscillation frequency increases. This plot also shows that low-

frequency ODE sequences can better differentiate restriction sizes, however, for the

case illustrated here (G = 0.1 T/m, no sequence shows sensitivity to radii smaller than

2 µm. The resolution limit, i.e. the smallest restriction size that can be detected for a

given gradient strength, is discussed in Chapter 4.

The difference between the GPD approximation of the restricted diffusion signal

for the square ODE sequence, the MC simulation and the matrix method (not shown

in Figure 3.2) is within 3.5% of the normalised signal, in all cases we considered. The

difference between the matrix method and the MC simulation is within 1.1% of the

normalised signal. 95% of differences larger than 1% occur when the diffusion signal

is between 0.01 and 0.5. The largest differences occur forR = 5 µm at low frequencies

(Figure 3.2b) and for R = 10 µm at high frequencies (not shown). For smaller radii,

R = 1 µm and R = 2 µm, the errors are always less than 1%.

A secondary simulation validates the GPD approximation for arbitrary phase and

variable pulse length. For the same gradient strengths and cylinder radii as the main

simulation above, first we simulate the diffusion signal from a square waveform with
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(a) (b)

(c) (d)

Figure 3.2: Restricted diffusion signal as a function of oscillation frequency for a) several val-
ues of ∆, R = 5 µm and G = 0.1 T/m; b) several gradient strengths, R = 5 µm
and ∆ = 25 ms. In a) and b) the filled markers indicate waveforms with integer
number of oscillations. Restricted diffusion as a function of c) gradient strength
for several frequencies, R = 5 µm and ∆ = 45 ms; d) cylinder radius for several
frequencies, G = 0.1 T/m and ∆ = 45 ms. The markers show the MC simulation
and the solid lines are the GPD approximations. The vertical bar separates different
scales on the x-axis.

variable phase φ ∈ {0o, 30o, 45o, 60o, 90o} for fixed ∆ = 40 ms, δ = 35 ms and

frequency ν = 2δ−1. Then, we simulate the signal attenuation as a function of the

pulse duration δ ∈ {4, 8, ..., 36} ms with φ = 0 and ν = 250 Hz; the fixed frequency

was chosen to have integer number of oscillations for all values of δ.

Figure 3.3a compares the restricted diffusion signal as a function of the gradient

strength for waveforms with different phases for a cylinder with radius R = 5 µm.
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(a) (b)

Figure 3.3: Restricted diffusion signal as a function of a) gradient strength for several wave-
form phases, R = 5 µm and ν = 2δ−1 T/m; b) pulse duration for several cylinder
radii, G = 0.1 T/m and ν = 250 Hz. The markers show the MC simulation and
the solid lines are the GPD approximations.

For all radii the waveforms with φ = 90o yield the highest signal and the waveforms

with φ = 0 the lowest one, which is consistent with the higher b value of sine-like

oscillations compared to cosine-like oscillations. Figure 3.3b illustrates the diffusion

signal as a function of δ for several radii andG = 0.1 T/m. The signal is approximately

linear in δ with all other parameters fixed. Moreover, sequences with a longer pulse

can separate better different restriction sizes. For all the parameters considered in the

second simulation, the difference between the GPD approximation and MC simulation

is less than 1.2%.

Approximation of trapezoidal waveform

This simulation tests the hypothesis that in most practical circumstances the relatively

simple square wave or sine wave formulae provide a sufficiently close approximation

to the more complex trapezoidal wave expressions. We analyse four different choices

of waveform amplitude for the sine and square curves and we discuss separately the

cases of waveforms with integer number of half periods and with arbitrary frequency.

For a trapezoidal ODE sequence with integer number of oscillations N , we quan-

tify the shape of the waveform using the ratio n = N/Nmax, where Nmax = b δ·SR
2G
c

is the maximum possible number of oscillations for gradient strength G, slew rate SR

and pulse duration δ. In the extreme cases the trapezoidal wave tends towards a square
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wave for n→ 0 and a triangular wave for n→ 1.

We evaluate the absolute difference in signal |∆S| between the different wave-

forms as a function of n in four situations: I. square and sine waves with amplitude

equal to that of the trapezoid curve, II. square and sine waves with amplitude chosen

so that the area under each function for half a period is the same, III. square and sine

waves with amplitudes chosen so that the area under each squared function for a half

period is the same, and IV. square and sine waves with amplitudes chosen so that the b

value per oscillation is the same. The parameters used in this analysis are the follow-

ing: R ∈ {1, 2, 5, 10} µm, G ∈ {0.02, 0.04..., 0.4} T/m, 2ν ∈ {1, 2, ..., Nmax} · δ−1,

∆ = 40 ms, δ = 35ms and SR ∈ {200, 1000} T/m/s.

(a) (b)

Figure 3.4: a) Average normalized signal difference between square and sine approximations
and the full trapezoidal expression considering: I - same amplitude, II - same area
under the curves, III - same area under the squared curves and IV - same b value
per oscillation; b) Scatter plot of the differences between square and sine approx-
imations and the full trapezoidal expressions as a function of n. The differences
are given for all combinations of gradient strengths and oscillation frequencies for
trapezoidal waveforms with SR = 200 T/m/s and cylinder radius R = 5 µm

Figure 3.4a shows the average normalized signal difference over all combinations

of pulse sequence settings in the four cases for a cylinder with radius R = 5µm. Al-

though in the case of free diffusion, approximation IV ensures the same diffusion signal

for waveforms with integer number of periods, in the case of restricted diffusion the

simulation shows that approximation III provides a lower error bound. The results are

consistent for all the radii in the simulation. Thus approximation III is used in all the
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following analysis.

Figure 3.4b illustrates the normalized signal difference between the trapezoidal

waveform and the square and sine waves as a function of n for slew rate SR = 200

T/m/s and radius R = 5 µm. The results of the simulation show that with this approxi-

mation, for larger radii, R = 5 µm and R = 10 µm, the error between the trapezoidal

waveform and the square or sine wave is less than 2% of the normalised signal, for

R = 2 µm the error is on the order of 10−3 and for R = 1 µm the error is on the

order of 10−4. A similar pattern to the one illustrated in Figure 3.4b was obtained for

SR = 1000 T/m/s. Thus, at low gradient strengths and frequencies, i.e. n ≈ 0.1, the

square wave is the better approximation, while as n increases the sine wave approxima-

tion is better. However, for the cases considered here, the errors are small suggesting

that either approximation is probably adequate in practice.

The optimised waveforms presented in [93] do not necessarily have integer num-

ber of oscillations. Thus, to determine how the errors for the square and sine approx-

imations behave in this case, we extend the previous analysis for arbitrary frequency

when δ is no longer a multiple of half periods. To quantify the deviation from the in-

teger case, we define the new frequencies as 2ν ′ = 2ν + α · δ−1, where 0 ≤ α < 1

gives the ratio between the duration of the last oscillation and a full half a period at the

corresponding frequency. Then we repeat the simulation with the same parameters and

α ∈ [0, 0.1, ...0.9].

Figure 3.5a illustrates the average signal difference over all combinations of pulse

sequence parameters between the full trapezoidal GPD approximation and the surrogate

sine or square approximations as a function of α for two cylinder radii, R = 10µm and

R = 2µm. Figure 3.5b plots the restricted diffusion signal from the three waveforms

as a function of frequency ν ′ for R = 5µm and two gradient strengths G = 60 mT/m

and G = 200 mT/m. On average, the sine wave is usually a better approximation for

α < 0.5, and the square is usually better for α > 0.5, which can also be observed for

the specific cases in Figure 3.5b, i.e. the red line is close to the green line for α < 0.5,

and departs from it for α > 0.5. However, the precise value of alpha at the transition is

not exactly at 0.5 and depends on the frequency and gradient strength.
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(a) (b)

Figure 3.5: a) Average signal difference between square and sine approximations and the full
trapezoidal expressions as a function of α for R = 2µm (- -) and 10µm (−);
b) Diffusion signal for R = 5µm for the three waveforms with gradient strength
G = 60mT/m (- -) and 200mT/m (−) as a function of oscillation frequency

3.2.4 Discussion

In this section we provide and validate analytical formulae of the free and restricted

diffusion MR signal for trapezoidal, square and generalised sinusoidal oscillating gra-

dients. These expressions enable the adaptation of many widely used diffusion MRI

techniques for oscillating gradients.

The b-value expressions, given in section 3.2.2 for ODE sequences, support Dif-

fusion Tensor Imaging (DTI) [50] or other mathematical models which describe the

signal in terms of b-value, such as Ball and Stick [147], Diffusion Kurtosis Imaging

[137], NODDI [12], etc., using ODE. The expressions of the restricted diffusion signal,

given in section 3.2.2 for ODE measurements, are relevant for techniques which explic-

itly aim to estimate pore size, such as ActiveAx [9] or VERDICT [2]. The restricted

diffusion signal can be calculated for simple geometries where the factors Bn and λn

are known, i.e. parallel planes, cylinders, spheres [80, 78, 81] and spherical shells [87].

These simple shapes are the building blocks of more complex tissue models which are

increasingly used in biomedicine, as explained in section 2.4.

We test the accuracy of the analytical signal approximations by comparison with

exact values provided by MC simulations and a semi-analytical signal model provided

by the matrix method (MM) formalism. The maximum difference between the GPD
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approximation and the MC or MM signal values is less than 3.5% of the normalised

diffusion signal, for all the parameters considered in the simulation. Most of the errors

larger than 1% occur when the normalised diffusion signal is between 0.01 and 0.5.

Thus, for small radii, R = 1 µm and 2 µm, which yield lower signal attenuation the

errors are less than 0.5%. For R = 5 µm the largest errors occur at low frequencies

and for R = 10 µm at high frequencies when the gradients yield a normalised dif-

fusion signal S ≈ 0.2. From the data points with normalised diffusion signal in the

range 0.01 < S < 0.7, 89% have an error less than 1% and 73% have an error less

than 5%. Differences of up to 1% between the MC and MM signals arise from nu-

merical instabilities in the techniques. The accuracy of GPD for the other waveforms

is similar, as demonstrated indirectly in the subsequent comparison in figures 3.4b. In

general, the voxel-wise signal-to-noise (SNR) ratio in diffusion MRI data is approxi-

mately 20, which leads to a noise related standard deviation of 5% which is larger than

the maximum error of the GPD approximation. Even for larger values of SNR up to

100, which can be obtained if the the acquired data is denoised or the signal is averaged

over a region of interest (ROI), the GPD approximation is accurate for ≈ 90% of the

investigated sequence parameters. This work shows the accuracy of the GPD approxi-

mation by comparison with signal values from MC simulations. The validation of the

analytical expressions in terms of estimating pore size in a microcapillary phantom is

presented in chapter 4.

We showed that in the case of restricted diffusion, sine and square wave approxi-

mations to the trapezoidal waveform work well with the amplitude chosen so that the

squared areas under each half period match. With this approximation, for larger radii,

R = 5 µm and R = 10 µm, the error between the trapezoidal waveform and the square

or sine wave is less than 2%, for R = 2 µm the error is on the order of 10−3 and for

R = 1 µm the error is on the order of 10−4. If δ is a multiple of half periods, the

square wave is a better approximation for small n, i.e. small gradient amplitude, low

frequency, large slew rate, while the sine wave is a better approximation for large n,

when the trapezoid wave becomes more triangular. Approximating the trapezoid wave

model with the square and sine wave models roughly halves computation time.

For an arbitrary frequency, we see in Figure 3.4b that the average error for square

and sine waves depends on α. Broadly, the sine wave is a better approximation when
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α < 0.5 and the square wave is better when α > 0.5, although the cut-off varies

with frequency and gradient strength. However, either approximation is reasonable

particularly in the vicinity of α = 0.5, so the precise choice of transition point is not

crucial. For a typical clinical scanner with SR = 200 T/m/s and G = 0.04 T/m the

maximum number of oscillations is N = 87. For this gradient strength, the optimized

waveforms in [93] have a small number of oscillations N < 5 for R = 5 µm, a larger

number of oscillations N ≈ 20 for R = 2 upµm and very high frequency for R < 1

µm. This suggests that for the waveforms optimized for larger radii the square wave is

a better approximation (n < 0.06), while for the waveforms optimized for smaller radii

the sine wave is better (n ≈ 0.25 for R = 2 µm and n→ 1 for R < 1 µm).

The main advantage of the analytical expressions for the signal from GPD is the

reduced computational complexity and running time. For the entire data set, the MC

simulation took over 10 hours, the matrix method took 480 s, while the analytical val-

ues were computed in less than one tenth of a second, which enables model fitting

applications, e.g. to generate whole brain parameter maps as in [9, 11]. When mod-

elling the diffusion signal we assume that background gradients do not contribute to the

cumulative waveform. A limitation of the GPD approximation is that the expression of

restricted diffusion signal can be calculated analytically only when the gradient G(t)

has a form for which Equation (2.41) has solutions. In case of arbitrary gradient wave-

forms, the double integrals in Equation(2.41) need to be calculated numerically, losing

the advantage of computational speed. In this case, using semi-analytical approaches

such as the matrix method or multiple correlation function presented in section 2.3.4 is

preferred, as they provide more accurate signal values.

3.3 Sequence design for diffusion spectrum imaging
Temporal diffusion spectroscopy uses cosine-like ODE sequences of various frequen-

cies to probe the diffusion spectrum, as detailed in section 2.3.5. The dependence of

diffusivity on frequency, which is inversely proportional to diffusion time, reflects the

restriction lengthscale without assuming an explicit biophysical model. This is advan-

tageous when there is no prior knowledge of the tissue microstructure.

A desirable feature of ODE sequences is to have the main peak in the power modu-

lation spectrum at the same frequency as the oscillating gradient and no zero frequency
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peak [81]. This allows the sampling of the diffusion spectrum D(ω) by varying the

frequency of the ODE sequence. This property is satisfied by cosine ODE, however, a

practical problem with this waveform is that it requires instantaneous rise to maximum

gradient strength at the start of the pulse. Using a sine ODE instead introduces a sig-

nificant peak at the zero frequency (long diffusion time), which corrupts estimates of

short-time ADC. To overcome this problem, Does et al introduced the apodised cosine

waveform in which the first quarter of period is replaced by a sine function of double

frequency [106].

The amplitude of the power modulation spectrum can be further increased if the

apodised cosine waveforms are replaced with trapezoidal waveforms which take ad-

vantage of the maximum gradient slew rate.

3.3.1 Aims and objectives

This study aims to:

1. apodise trapezoidal waveforms in a comparable way to cosine waveforms in or-

der to have the main peak at the oscillation frequency and no zero-frequency

peak.

2. analyse the diffusion signal and ADC estimates as a function of frequency for

different ODE waveforms.

3.3.2 Simulations and results

As detailed in section 2.3.5, when investigating the dependence of the estimated ADC

on oscillation frequency, an important tool is the power modulation spectrum [105]

F′(ω) =

∫ 2τ

0

eiωtF(t)dt, (3.13)

which is the Fourier transform of the gradient integral and indicates the diffusion times

contributing to the ADC value.

The apodised cosine pulse avoids a peak at ω = 0 in the power spectrum, by en-

suring the integral of the first oscillation is equal to half of the integral of the second os-

cillation. We satisfy the same condition for the trapezoidal waveform by extending the

duration of the first and last oscillations by half the rise time, tr/2. Thus, the total dura-

tion of the trapezoidal waveform is δ+ tr. Figure 3.6a shows the three waveforms with
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angular frequency ω = 8π/δ = 718 s−1 and Figure 3.6b plots the corresponding power

spectra. The main peaks for all three waveforms are at the desired frequency. The peak

heights are similar for square and apodised trapezoid and lower for the apodised cosine,

indicating less focus on the desired diffusion time.

(a) (b)

Figure 3.6: a) Example waveforms with ω = 718s−1 b) Corresponding power modulation
spectra

(a) (b)

Figure 3.7: a) Diffusion signal for different waveforms: square with 90o phase, apodised cosine
and apodised trapezoid as a function of oscillation frequency for four different
sizes of the restricted compartment; b) corresponding extracted ADC values. The
diffusion signal and ADC for apodised trapezoid and square wave are very similar
and are plotted on top of each other.

To better understand the effects of different gradient waveforms, we use the GPD
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approximation to simulate the dependence of the ADC on oscillation frequency for a

two-compartment Zeppelin and Cylinder [150] model: S(2τ) = f · Sr + (1− f) · Sh,

where f is the volume fraction of axons, Sr is the signal from the restricted compart-

ment and Sh is the signal from the hindered compartment which exhibits Gaussian

diffusion with parallel diffusivity Dr and perpendicular Dh. The parameter settings

used in the simulation are f = 0.7, Dr = 1.7 × 10−9 m2/s, Dh = 1.2 × 10−9 m2/s,

∆ = 40 ms, δ = 35 ms, G = 0.1 T/m and 2ν ∈ {1, 2, ..., 16}δ−1.

Figure 3.7a illustrates the dependence of the diffusion signal on frequency for

different cylinder radii R ∈ {1, 2, 5, 10}µm and different gradient waveforms, square

wave with 90o phase, apodised cosine and trapezoidal and Figure 3.7b shows the corre-

sponding extracted ADC values. The calculated ADC increases with frequency and the

rate of change depends on the size of the restricted compartment which is consistent

with recent experimental studies [173, 174, 109]. The ADC values are similar for all

waveforms, nevertheless square and trapezoidal waves provide higher diffusion weight-

ing which increases the contrast. At low frequencies the ADC value is higher for the

apodised cosine waveform than for either square or trapezoidal due to the influence of

the extracellular compartment. Because the b-value is lower, slightly more extracellular

signal remains so the weighting of the restricted contribution is lower.

3.3.3 Discussion

The original motivation for square and trapezoidal wave pulses [93] is for model-based

applications to improve sensitivity to intrinsic diffusivity and pore size. We note the

usual caveat about these approaches that modelling does not necessarily reflect the

actual compartmentation of water and should be assigned with care. In this section,

however, we explore wider applicability of these waveforms in non-model based appli-

cations. We showed that trapezoidal oscillating gradients can be apodised in a similar

way to cosine waveforms, which have been used to study the dependence of estimated

ADC on frequency [106, 174, 173]. The benefit of apodised trapezoid over the stan-

dard cosine gradients is the higher diffusion weighting at the same gradient strength.

This feature improves the SNR in substrates with small pore sizes, where higher diffu-

sion weighting is desirable. Figure 3.7b suggests that the advantages of the trapezoid

waves are only minor when estimating ADC, but their use has no cost and may prove
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significant in some applications.

Most of ODE theory has been developed with the quantification of D(ω) in mind.

Nevertheless, optimizing each time point of a generalized diffusion gradient [93, 94] for

estimating intrinsic diffusivity and pore size, resulted in oscillating gradients. The link

between ODE sequences and sensitivity to pore size which aims to better understand

previous results in [93, 94] is analyzed in chapter 4.

3.4 Conclusions
This chapter analyses square, trapezoidal and generalized sinusoidal ODE sequences.

The first section provides analytical expressions of the free and restricted diffusion

signal for the various oscillating gradient waveforms and validates them against numer-

ical MC simulations which provide arbitrarily high precision. The results show that the

GPD approximation is accurate enough when the SNR of the acquired data is lower

than ≈ 100, which is the case in the majority of practical applications. Moreover, the

signal expression for trapezoidal waveforms can be approximated with the simpler ex-

pressions for sine or square waveforms, which roughly halves the computational time.

The second simulation shows that trapezoidal waveforms can be apodised in a

similar way to cosine waveforms. Thus, they are beneficial for temporal diffusion

spectroscopy, as they provide a power modulation spectrum with narrow peaks at the

frequency of interest and higher amplitude compared to the apodised cosine. The higher

diffusion weighting improves the signal contrast, however, the effect on the estimated

ADC is only minor. A similar apodisation strategy is presented in [108], and was

reported after this work was published in JMR. Moreover, the experiments in [108]

show the applicability of trapezoidal waveforms for in-vivo clinical studies.

Overall, this work provides the necessary tools to analyse square and trapezoidal

ODE data in order to estimate pore size using a model-based approach and it presents

the benefits of trapezoidal waveforms for temporal diffusion spectroscopy.

In the next chapter I present collaborative work on ODE sequences. The first

study analyses the sensitivity of DODE sequences to axon diameter, while the second

experiment validates the model-based estimation of pore size using ODE sequences in

glass microcapillaries.
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Oscillating diffusion encoding -

associated work

The previous chapter described a theoretical framework which provides the restricted

signal model for ODE sequences. The results were validated against numerical MC

simulations, showing that the GPD approximation for ODE sequences is accurate

enough for practical situations.

This chapter presents two collaboration studies that extend the analysis of ODE

sequences. The first study investigates in simulation the sensitivity of SDE and ODE

sequences with respect to axon diameter, and is published in [153]. The second study

provides experimental validation for the ActiveAx framework using ODE sequences,

and has been presented at the ISMRM conference [194]. My main role in this work

is providing the theoretical and computational framework for simulating and analysing

data, but I have also been involved in other aspects of the research, as detailed in the

statement of intellectual contribution at the beginning of the thesis.

4.1 Sensitivity to axon diameter

This section provides a broad understanding of signal sensitivity to axon diameter and

determines the most effective ways to maximize sensitivity of SDE and ODE sequences

in idealized and practical conditions. Here I present the experiments that I have been

directly involved in, while an extensive discussion of sensitivity for various SNR levels

can be found in [153].
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4.1.1 Motivation

Many diffusion studies use off-the-shelf sequences, try to achieve the ideal conditions

for short gradient pulsed or, in the case of ODE sequences, try to use the highest pos-

sible frequency. Previous work [151, 8, 93] showed the importance of optimising the

acquisition protocol in order to maximise its potential given the hardware constraints

of a scanner. An automatic optimisation framework gives the final acquisition protocol,

however, it does not provide a clear understanding of the result, especially in the case

of more complex sequences.

In this study we use a standard two-compartment white matter model (non-

permeable cylindrical axons) to investigate the signal sensitivity of SDE and ODE se-

quences to axon diameter, in detail. In white matter, axons are rarely coherent and

models of fibre dispersion (discussed in section 2.4) have been in the literature to de-

scribe a more realistic distribution of axons at the voxel scale. Here, we consider both

the idealised situation of parallel axons with known orientation (central to several white

matter models, e.g. AxCaliber) as well as more realistic cases of unknown orientation

or dispersed fibres.

4.1.2 Aims and objectives

The simulations of this study aim to:

1. analyse the sequence sensitivity to axon diameter in the idealised condition of

parallel fibres and gradient perpendicular to the fibre

2. analyse the effects of T2 decay on the sequence sensitivity.

3. analyse the sequence sensitivity to axon diameter when the fibre orientation is

unknown, i.e. the gradient is not perpendicular to the fibre direction.

4. analyse the sequence sensitivity to axon diameter when in the more realistic sce-

nario of dispersed fibres.

4.1.3 Methods

This section outlines the diffusion MR signal model for white matter, introduces the

pulse sequences, and develops the concept of signal sensitivity to axon diameter we

use here.
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MR signal model

In this study we use two-compartment models of white matter which describe the dif-

fusion signal as a weighted sum of intra-axonal space (restricted diffusion) and extra-

axonal space (hindered diffusion):

S∗ = S0(fSr + (1− f)Sh) (4.1)

where S0 is the MR signal with no diffusion weighting and f ∈ [0, 1] is the proportion

of water molecules inside the axons.

The first model is a simplified version of the CHARMED model [195, 149] where

the intra-axonal compartment is described by parallel, non-abutting cylinders with a

single radius. The second one is more realistic and explicitly accounts for axon disper-

sion which is modelled with a Wason distribution parametrized by a scalar concentra-

tion parameter κ, as proposed in [11].

The intra-axonal signal Sr is the product of parallel Sr,|| and perpendicular Sr,⊥

components and is calculated using the matrix method as described in section 2.3.4.

The hindered compartment is described by a symmetric diffusion tensor model [50],

with diffusion coefficient D|| in the direction of the axons and D⊥ in the perpendicular

plane. The parallel diffusivity, D||, is the same as the intrinsic diffusivity inside the

cylinders in the model for Sr, following [151]. A simple tortuosity model [152] sets

D⊥ = D||(1− f).

Pulse sequences

Figure 4.1 illustrates the SDE and ODE sequences showing the set of variables for each.

Following this parametrization, ODE sequences have one additional variable compared

to SDE sequences, namely the number of lobes N . We include the time constant τ1

as the time between the middle of the RF pulse and the beginning of the first gradient

waveform; τ2 as the time between the end of the second waveform and the readout at

the centre of k-space; P180 is the time required for the 180o RF pulse and accounts for

the surrounding crusher gradients and additional time delays; and P90 is the duration

of the 90o RF pulse.

Here we consider trapezoidal ODE sequences with integer number of oscillations

N , which is typically used in ODE experiments [175, 173]. WhenN=1, the trapezoidal
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Figure 4.1: An illustration of SDE (middle) and ODE (bottom) sequence showing all the vari-
ables. ODE sequences are of trapezoidal shape with minimum achievable rise time
to maximise diffusion weighting. The SDE sequence is a special case of ODE for
N=1. Figure adapted from [153]

oscillating gradient reduces to an SDE sequence, thus we refer to all sequences as ODE.

The b-values for these sequences are given by equation 3.4, which can be rewritten in

terms of the number of lobes N :

b =
2|G|2γ2δ3

15N2
(5− 15trN

2δ
− 5t2rN

2

4δ2
+

4t3rN
3

δ3
) + |G|2γ2(∆− δ)

(
(1− (−1)N)(δ −N · tr)

2N

)2

(4.2)

where tr is the rise time and γ is the gyromagnetic ratio.

Sensitivity

We define the sensitivity of a measurement to axon diameter as a rate of signal change

with axon diameter, i.e. the derivative S∗′(a). From equation 4.1 we have:

S∗′(a) = S0fS
′
r(a). (4.3)

In both models we assume that the signal coming from the extra-axonal space
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does not depend on the diameter, thus it has no contribution to the signal sensitivity in

equation 4.3. S0 in general depends on both repetition time (TR) and echo time (TE).

However, since T1 for white matter, typically around 800ms [196], is much smaller

than the typical TR values (about 10s), hereafter we simplify the equation for S0 by

assuming infinite TR. If we additionally normalise by proton density, S0 will depend

on TE and T2: S0 = exp(−TE(δ,∆)/T2), where TE(δ,∆) = δ + ∆ + τ1 + τ2 and

T2 is the relaxation time of the white matter. Hence, assuming independence of T2 on

axon diameter, we have:

S∗′(a) = exp(−TE(δ,∆)

T2

)fS ′r(a) (4.4)

and use it as a measure of sensitivity of the full signal S∗(a).

Implementation

The simulations in this manuscript were performed using MISST simulation software

described in chapter 7.

4.1.4 Results

This section presents the main results that investigate the sensitivity of ODE sequences

to axon diameter for the two white matter models discussed above. It aims to find the

key features of ODE sequences that drive the sensitivity and it assesses their impact for

both ideal and more practical situations.

Simulations investigate a wide space of sequence parameters Λ, feasible on current

human imaging systems: G ∈ [0, 300]mT/m (G = |G|), δ ∈ [0, 60]ms, ∆ ∈ [δ +

P180, 100]ms, N ∈ [1, 10]. We set typical values for time constants τ1 = 10ms,

τ2 = 20ms, P180 = 10ms, and slew rate SR = 200T/m/s. Experiments use tissue

models described in the Methods section and assume f = 0.7, D|| = 1.7 × 10−9m2/s

[9], axon diameter a ∈ [0, 10]µm and T2 = 70ms [196] to match standard values in the

white matter (at 3T). Note that b-value, q-value and TE are not fixed and the sequence

parameters are allowed to take any values in space Λ.

The first two experiments maximise the sensitivity of restricted signal S ′r(a) for

a white matter model with parallel cylinders assuming known fibre orientation and

gradients perpendicular to the fibre direction. The first simulation assumes infinite T2,
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while the second one includes the effects of T2 decay. Subsequent experiments relax

the assumption of known fibre orientation and investigate sensitivity for a range of

angles ∠(n,G) and as well as a more complex white matter model with fibre dispersion.

Maximising sensitivity of the restricted signal (n ⊥ G)

This section investigates the impact of ODE sequence parameters on the restricted sig-

nal in the ideal conditions of parallel fibres with diffusion gradient perpendicular to

them (n ⊥ G). The effect of T2 relaxation is analysed separately in order to better

understand the link between the diffusion signal and sequence parameters. As ODE se-

quences are defined by four parameters, G, δ, ∆ and N , we aim to find in a systematic

way which combination yields the largest S ′r(a). The choice of the optimal gradient

separation is detailed in [153] and all subsequent experiments use a fixed time interval

between the two gradients given by the duration of the refocusing RF pulse, yielding

an optimal ∆:

∆ = δ + P180. (4.5)

Sensitivity without T2 relaxation This experiment simulates S ′r(a) for the range of

sequence parameters in Λ, and with ∆ constrained according to Equation 4.5 in order

to analyse the impact of gradient strength G, gradient durations δ and the number of

lobes N .

Figure 4.2 plots S ′r(a) for different values of axon diameter a ∈ {2, 4, 6, 8}µm.

The absolute value of S ′(a) is colour coded, the horizontal axis gives the pulse duration

δ, the vertical axis gives the gradient strength G and the different planes represent

different number of oscillation. Maximum intensity points are marked with a black

star. The values of δ which did not satisfy the slew rate constraint (δ > G/2SR × N ,

SR is the slew rate) were excluded.

The results show that in the case of parallel fibres and perpendicular diffusion

gradient the maximum sensitivity occurs for SDE sequences (ODE with N = 1) for

all axon diameters considered in this study. In the case of small axon diameters, the

largest gradient amplitude and longest pulse duration are preferred, emphasizing the

need for stronger diffusion weighting when probing smaller length scales. For larger

diameters, the increased signal attenuation is compensated by a preference for lower
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Figure 4.2: Impact ofG, δ andN on sensitivity. Figure shows S′r(a) for a ∈ {2, 4, 6, 8}µm and
n ⊥ G. The absolute value of S′r is colour coded, with dark red being the highest
value. Maximum intensity points are marked with a black star. Note that the plots
are not perfectly rectangular due to excluded values of δ that did not satisfy the
slew rate constraint. Unit of S′r(a) is 1/µ m. Figure from [153]

gradient strength with the longest pulse duration. The overall sensitivity varies with the

axon size, however they are all of the same order of magnitude. This figure also shows

that the sensitivity of sequences with N > 1 is similar, even though their b-values are

an order of magnitude lower.

Sensitivity with T2 relaxation This experiment takes into account T2 relaxation and

the effect of echo time on the signal sensitivity given by equation 4.4 which assumes

independence of a and T2. Increasing the pulse duration δ and separation ∆ increases

the echo time which reduces the sensitivity of the overall signal. Figure 4.3 shows

S∗′(a) for a ∈ {2, 4, 6, 8} µm when the effect of T2 relaxation is taken into account

and maximum intensity points are marked with a black star.

Accounting for T2 relaxation has two main effects: it decreases the pulse duration

δ and increases the gradient strength G, which hits the upper boundary considered

in this study. Nevertheless, the maximum sensitivity point is still obtained by SDE
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sequences for all diameters.

Figure 4.3: Impact of T2 decay on sensitivity. As Figure 4.2 but with T2 = 70ms. Unit of
S∗′(a) is 1/µ m. Figure from [153]

Gradient not perpendicular to fibre direction (n 6⊥ G)

This section investigates signal sensitivity when diffusion gradients are not perfectly

perpendicular to the fibres: ∠(n,G) = 90o±θ, where θ measures the deviation from the

orthogonality. This is the case in many practical situations such as fibres with unknown

orientation or HARDI acquisitions. The effects of T2 relaxation are also considered.

Figure 4.4 shows S∗′(a) for a ∈ {2, 4, 6}µm and different deviations from orthog-

onality θ ∈ {1o, 6o, 10o} and maximum intensity points are marked with a black star.

The optimal combination of G and δ are relatively similar to the perpendicular case,

however the choice of N is different.

The results show that the optimal N is strongly affected by the deviation from

orthogonality. For the diameters illustrated in Figure 4.4 (i.e. a < 6 µm) the optimal

N increases with increasing θ, however for a > 7 µm the choice of N = 1 is still

preferred.

As seen in the methods, the restricted diffusion signal is the product of parallel
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and perpendicular components. As θ increases, the effect of the parallel signal compo-

nent, which exponentially decays with b-value, increases as well, affecting the overall

signal sensitivity. Consequently, the sensitivity of sequences with N = 1, which have

significantly higher b-values for similar combinations of G and δ, drops as θ increases.

This effect is visible for small pore diameters (a < 7 µm) that require sequences with

high b-value for optimal sensitivity in the perpendicular gradient case. For larger pore

diameters (a > 7 µm), where the initial parameter combination did not yield sequences

with a very high b-value, this effect is not present and the optimal sequence has N = 1.

Figure 4.4: Impact of θ on sensitivity. As Figure 4.3 but for θ = 1o (top), θ = 6o (middle),
θ = 10o (bottom). Unit of S∗′(a) is 1/µ m. Figure from [153]

Fibre dispersion

The experiment analyses S∗′(a) for the model with fibre dispersion described in Meth-

ods section, in the same range of sequence parameters. The tissue model has axon

diameters in the range a ∈ [0, 10]µm and concentration parameter of the Watson dis-

tribution κ ∈ [0, 32]. The principal orientation of the fibres is perpendicular to the gra-

dient vector and the concentration parameter of the Watson distribution describes the

amount of dispersion around the principal direction (anisotropy increases with increas-
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ing κ). Figure 4.5 shows the sensitivity of the full signal S∗′(a) (with T2 relaxation) for

Figure 4.5: Impact of fibre dispersion on sensitivity. Figure shows S∗′(a) for κ = 16 (top
row) and κ = 8 (bottom row). a ∈ {2, 4, 6}µm and T2 = 70ms. As in previous
figures: the absolute value of S∗′(a) is color coded, with dark red being the highest
value; maximum intensity points are marked with black stars; plots are not per-
fectly rectangular due to the slew rate constraint.Unit of S∗′(a) is 1/µ m. Figure
from [153]

a ∈ {2, 4, 6}µm and κ ∈ {8, 16}, with the maximum intensity points marked with a

black star.

The optimal combination of G, δ and N are similar to the case of non-

perpendicular gradients discussed above. Sequences with N > 1 yield the highest

sensitivity for the parameter space considered in this study for small axon diameters

(a < 7 µm), while SDE sequences are optimal for larger axon diameters (a > 7 µm).

This effect is more pronounced for smaller values of κwhich indicate higher dispersion.

4.1.5 Discussion

The aim of this study is to explore optimal combinations of ODE sequence param-

eters for sensitivity to axon diameter in an intuitive way. Thus we use simulations

and simple white matter models of non-permeable cylindrical axons, with either par-

allel or dispersed configurations. The results show that in the case of parallel fi-

bres with known orientation (i.e. n ⊥ G), the optimal parameter combination has

N = 1 (a standard SDE sequence) for the entire range of axon diameters consid-

ered (a ∈ [0, 10]/µm). When the effects of T2 decay are not considered, the optimal

sequences have the longest gradient duration δ = 60ms and the gradient strength is
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decreasing with axon diameter in order to preserve the signal. If T2 decay is included,

then the optimal sequences have the shorter gradient duration and the largest gradient

strength G = 300mT/m.

In practice, fibre orientation varies across the brain, which makes it unlikely for

the gradient to be perpendicular for different regions. Even if we are interested in a

particular area, such as corpus callosum which is very homogeneous, there is still dis-

persion at the voxel level. In the case of non-perpendicular gradients and/or dispersed

fibres, the maximum sensitivity is achieved for N > 1 for small diameters a < 7/µm,

which, for example, represents the majority of axon diameters in the human corpus cal-

losum [35]. ODE sequences with N > 1 are beneficial in these situations because they

yield high sensitivity at a modest b-value. The lower b-value retains signal sensitivity

in the cases of unknown fibre direction and/or dispersion by avoiding excessive signal

attenuation due to freely diffusing water in the parallel direction. This is particularly

advantageous for systems with high performance gradients. For larger pores which

do not require sequences with a high b-value to maximise sensitivity, SDE sequences

(N = 1) provide maximum sensitivity.

The effect of SNR on signal sensitivity is thoroughly discussed in [153]. The

results illustrate that ODE sequences with N > 1 provide more sensitivity to axon

diameter in the case of unknown or dispersed fibre orientation for a wide range of gra-

dient strengths and SNR levels. Moreover, the results show what is the resolution limit

(the smallest diameter that can be distinguished) for different SNR levels and gradient

strengths. In the case of standard clinical gradient strengths < 80 mT/m, the resolu-

tion limit of axon diameter is around 5 µm, while for larger gradient strengths of 300

mT/m which could be achieved on the Connectome scanner [154] the resolution limit

decreases to 2.5 µm. Although the majority of axon diameters are smaller than the

resolution limit, there are also axons which are above the limit, biasing the estimated

indices to larger values, e.g. in ActiveAx[9]. A recent study fits a Poisson size distri-

bution instead of a single axon diameter index [10], and reports mean axon diameter

values bellow 2 µm for a gradient strength less than 100 mT/m. As the Poisson distri-

bution has only one parameter, having measurements that are sensitive to the tail of the

distribution directly influences its mean, which results in smaller estimates of the mean

diameter, even below the resolution limit.
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In this study, we assume a simple tortuosity model for the extracellular space,

which has been previously used for estimating indices of axon diameter in the human

brain [9, 11]. In some situations this model cannot capture the complexity of the ex-

tracellular space, and recent studies have shown a time dependent diffusivity in the

extracellular space, which reflects restricted diffusion [197, 10]. If the signal contribu-

tion from the extracellualr space is modeled independently of the inner axon diameter,

as in [10], or there is only a weak dependence, these results should not be significantly

affected; however, a significant amount of restriction in the extracellular space would

impact on the axon diameter estimation, affecting the results presented here. Including

a more complex model for extracellular space and myelin thickness is the subject of

ongoing research.

All in all, this study shows the importance of optimising the acquisition protocol

for a particular application and choosing the diffusion sequences that are sensitive to

the tissue features of interest.

4.2 Phantom validation
This section presents the experimental validation of the ActiveAx framework [9] using

ODE sequences on a clinical scanner. The data was acquired in glass micro-capillaries

array plates (MAP) and has been analysed using the signal model presented in chapter

3.

4.2.1 Motivation

Phantom validation is a crucial step in developing new acquisition sequences for MRI.

The theoretical signal model can be easily validated using numerical simulations, as

detailed in section 3.2.3, however implementing novel sequences on the scanner and

acquiring experimental data pose additional challenges such as susceptibility artefacts,

Eddy current distortions, limited SNR, etc. This work shows the feasibility of using

ODE sequences on a clinical scanner to estimate microstructural parameters such as

pore size.

4.2.2 Aims and objectives

Specifically, this study aims to:

1. implement ODE sequences on a clinical scanner.
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2. estimate water diffusivity and capillary diameters using the ActiveAx framework.

3. compare the parameter estimates from ODE sequences with various number of

oscillations.

4.2.3 Methods

This section outlines the diffusion MR model, the preparation of the micro-capillaries

array plates, the imaging protocols and data processing pipeline.

Diffusion MR model

The phantom consists of glass micro-capillary arrays filled with water which is confined

inside cylindrical pores. Thus, we simplified the ActiveAx framework and we use

only one compartment of restricted diffusion in parallel, non-abutting cylinders, with

equal radii and impermeable walls. The model has the following parameters: intrinsic

diffusivity (Di), capillary diameter (a) and direction n.

As diffusion in parallel and perpendicular direction are uncorrelated, the restricted

diffusion signal, Sr = Sr||Sr⊥, is the product of components arising from displace-

ments parallel, Sr||, and perpendicular, Sr⊥, to the long axis of the cylinder [195]. The

signal model for Sr⊥ is computed using the GPD approximation and Sr|| describes free

diffusion with Di. The signal model and b-values for the ODE sequences are given in

section 3.2.2. The total signal accounting for both components is:

S = S0Sr = S0Sr||Sr⊥. (4.6)

where S0 is the MR signal without diffusion weighting.

Phantom Description

Sample Preparation: The micro-capillaries array plates (as shown in Figure 4.6a) are

thin square plates (20mm× 20mm× 1mm) made up of borosilicate glass (Incom, inc).

This experiment uses three pairs of plates with nominal capillary diameters, 5, 10 or 20

µm. (Figure 4.6b, c and d).

Acquisition

Trapezoidal ODE diffusion sequences were implemented on a Phillips Achieva 3.0T

TX MRI system (University College London Hospital, London, UK). The sequence
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Figure 4.6: (a) Photograph of the micro-capillaries array plates with capillary diameters of 5
µm (plate 1). Light microscopy images of (b) 5 µm (plate 1), (c) 10 µm (plate 1)
and (d) 20 µm (plate 1). Images courtesy of Lebina Kakkar

parameters that can be controlled are: echo time (TE), pulse duration (δ), gradient sep-

aration (∆) and number of half period oscillations, referred to as ‘lobes’ (N). Gradient

strength, G, and slew rate were fixed in all experiments at 62mT/m and 68.9mT/m/ms,

respectively, and they comply with the safety values for peripheral nervous stimulation

(PNS). During the experiment the temperature was kept constant at 20o.

The diffusion protocol consisted of 9 HARDI shells of ODE measurements with

b-values ranging from 120 to 20000s/mm2, each with 32 gradient directions and one

b=0s/mm2. For all ODE shells, the pulse duration and gradient separation were fixed

to δ = 39ms and ∆ = 63ms, respectively, and the number of lobes was varied from

N=1 to N=9. Consequently, the b-values varied. An additional SDE diffusion sequence

(N=1, δ=10ms,∆=92ms) with a b-value of 1860s/mm2 was included for comparison.

All diffusion protocols were acquired using SS-EPI readout as explained in section

2.2.3. The slice thickness was 10mm with in-plane resolution of 0.4×1.6mm, which

ensured that at least one row of voxels was free from partial volume effects. Eddy
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currents were automatically corrected for by the scanner hardware.

Data Analysis

Data processing: The image registration was performed using FMRIB Software Li-

brary (FSL) rigid-body registration [198]. The SNR was calculated per voxel from the

b = 0 images (mean SNR > 45) and the region of interest (ROI) was manually chosen

to avoid partial volume effects.

ActiveAx Model Fitting: Data was fitted using a voxel-wise, two-stage fitting pro-

cedure as described in [9], in order to estimate diameter and diffusivity of the plates.

The mean and standard deviation of the parameters were calculated for the voxels in

each ROI.

4.2.4 Results

This section describes the microstructure parameter estimates of plates, which are ob-

tained from these experiments.

Figure 4.7a and b display the parameter maps of diameter and diffusivity estimates

for the different ROIs. The parameter estimates for the plates with diameters of 10 and

20µm plates are accurate and precise, while for the plates with a = 5 µm, the fitted

diameters are underestimated. Figure 4.7c and d show the mean and standard deviation

of the estimated a and Di calculated across the ROI.

Figure 4.8 illustrates the experimental data and model predictions for the fitted and

ground truth parameters for a central voxel of each plate. The ground truth value for

diameter was provided by the manufacturer and the diffusivity was set to 2.0 µm2/ms

corresponding to free water at 20oC. There is a good agreement between the measure-

ments, the fitted curve (dashed lines) and the ground truth curve (full lines) for 10 µm

and 20 µm plates. Larger differences can be seen for 5 µm plates (Figure 4.8a and b).

In this case the signal is noisy (S/S0 >1) close to |n.G|/|G|=0 due to the low diffusion

weighting for small capillaries. The difference between the signal from the predicted

and ground truth parameters is small even if there is a drastic difference in the param-

eter values, which indicates that the measured signal is not very sensitive to capillaries

at or below 5 µm. These parameter estimates were calculated using the entire data set

with 9 different shells.

The next experiment investigates the ability of each measurement shell to estimate
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Figure 4.7: The (a) diameter, a, and (b) diffusivity, Di, maps, respectively, across the ROIs of
the 5 µm (plates 1 & 2), 10 µm (plates 1 & 2) and 20 µm (plates 1 & 2) plates. The
graphs show the mean and standard deviation of the (c) capillary diameters (µm)
and (d) intrinsic diffusivities (µm2/ms), which are calculated over the ROIs. Image
courtesy of Lebina Kakkar

capillary diameter and diffusivity. Figure 4.9 shows the mean and standard deviation of

the estimated diameter and diffusivity obtained by analysing each ODE shell. Here, the

results from the additional SDE sequence (N=1,δ=10ms) are also included for compar-

ison. The diameter estimates for larger pores (10 and 20 µm) are close to the ground

truth values. In this case ODE sequences with low frequency ( i.e. N∈{2,3,4}) perform

very well, while the estimates become less accurate and precise for N > 5, which hap-

pens due to insufficient diffusion weighting as N increases. For the 20 µm diameter

plate the fitting fails for N=1 (δ=39ms) due to the strong diffusion weighting which

drives the signal to the noise floor. For this particular TE and diffusion gradient du-

ration, we find that N>1 gives better results overall. For the plates with a = 5 µm,

the pore diameter is highly underestimated for all shells, nevertheless the intrinsic dif-

fusivity, which can be extracted from the free diffusion along the capillary, is in good

agreement with the ground truth value especially for N > 4. This is the case due to the

limited gradient strength that does not provide sufficient sensitivity to small pores. As

discussed in section 4.1.5, the resolution limit for a gradient strength of≈ 60 mT/m, the
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Figure 4.8: Plots of normalised signal versus absolute dot product between the gradient direc-
tions and the estimated capillary direction from the central voxel of each ROI in
Figure 4.7a; the parallel component of the gradient increases from left to right.
The measurements are represented by markers, while the solid (−) and dashed (–)
lines show the predicted signal from the ground truth and estimated parameters,
respectively. The colours indicate the different number of lobes N of the diffusion
sequences. Image courtesy of Lebina Kakkar
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resolution limit is around 5/µm. Although theoretically the smallest capillary diameter

is on the limit of detectability, in practice it cannot be estimated due to the Rician noise

in the experimental data (many values of the normalized diffusion signal are larger than

1 when the gradient is almost perpendicular to the fibres) which decreases the sensitiv-

ity.

4.2.5 Discussion

This work experimentally verifies the feasibility of ODE ActiveAX approach on a clin-

ical scanner and provides validation for the theoretical work described in section 3.2.2.

Microstructural features such as pore size were estimated for plates with capillary di-

ameters of 5, 10 or 20 µm. This experiment uses a maximum gradient strength of

62T/m, which is sufficient to accurately and precisely estimate diameters of 10 and 20

µm, however the gradient is not strong enough to estimate smaller size, which is shown

by poor agreement with ground truth values for the plates with a = 5 µm. The ex-

periments also show that ODE with lower frequency (N ∈ {2, 3, 4}) provide the most

accurate results, and in the cases considered the shell with N=3 yields estimates close

to the ones obtained when fitting the entire data set. These results further enforce the

importance of optimizing the diffusion acquisition for estimating pore size.

4.3 Conclusions
This chapter presents two collaboration studies that show the benefits of using ODE

sequence for estimating axon diameters as well as the feasibility of implementing such

an acquisition protocol on clinical scanners.

The first study in section 4.1 investigates the sensitivity of SDE and ODE se-

quences to axon diameters in various white matter models and aims to find the key

parameters that drive this sensitivity. The results illustrate that low frequency ODE se-

quences are beneficial for estimating pore size in practical situations (dispersed axons,

not perfectly perpendicular gradients). Thus a combination of high-frequency and low-

frequency ODE sequences are needed for accurate estimation of intrinsic diffusivity

and pore size.

The second study in section 4.2 provides experimental validation for ODE signal

models and shows the benefits of estimating microstructural features such as pore size
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Figure 4.9: Mean diameter (a) and diffusivity (b) estimates calculated for each N from 1 to
9 (with δ = 39ms) and also from the standard SDE sequence (with δ=10ms), for
all plates. The same central row of voxels, as in Figure 4.7, is used to calculate
the mean and the standard deviation. The dashed lines represents the real nominal
diameters in (a), and the calculated diffusivity from [199] in (b). N=3 produces
the best diameter and diffusivity for both pairs of 10 µm and 20 µm plates. Image
courtesy of Lebina Kakkar
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using ODE sequences. The experimental results are in line with the theoretical predic-

tions that low-frequency ODE improve sensitivity to microcapillary diameters. For a

limited clinical gradient strength, the smallest pore size was not accurately estimated,

which agrees with the detailed SNR analysis from [153].

Furthermore, this chapter illustrates the importance of numerical simulations for

a better understanding of diffusion MRI signal in restricted environments in order to

improve measurement sensitivity towards different microstructural features.



Chapter 5

Model-based estimation of microscopic

anisotropy

The previous two chapters focused on understanding the MRI signal measured with

ODE sequences. We derived an analytical signal model of restricted diffusion signal,

analysed the sequence sensitivity to axon diameter and validated the ODE ActiveAx

framework for estimating diameter in microcapillaries.

This chapter introduces a model-based approach for estimating microscopic

anisotropy from DW-MRI data. It explores in simulation complex diffusion substrates

with elongated pores and a distribution of sizes and extends the acquisition to a rota-

tionally invariant framework in order to account for macroscopic anisotropy. Part of

this chapter has been published in [91].

5.1 Motivation
Estimating complex histological features such as pore size distribution and eccentricity

is important for an accurate representation of cancer tumours and brain tissue at the

interface between white and grey matter. However, most of current microstructure

imaging techniques cannot estimate both of these features. For instance, white matter

models [5, 9, 11] discussed in section 2.4.2 assume axons to be infinitely long cylinders,

while cancer models assume spherical cells [2, 3]. Therefore, these models cannot

accurately represent other cellular shapes that are present in the tissue.

In addition, the above mentioned techniques use a collection of SDE sequences

which have limited sensitivity to more complex systems, such as certain configura-

tions of isotropic pores with a size distribution and randomly oriented anisotropic pores
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[117]. More advanced pulse sequences, in particular those that have varying gradient

orientation within one measurement, such as double diffusion encoding (DDE) [110],

can disentangle these effects [111]. The difference between DDE measurements with

parallel and perpendicular gradients has been used to derive model-free metrics of mi-

croscopic anisotropy [119, 121], however such metrics confound the effects of size

and eccentricity and are highly prone to noise. More recent studies that use a model-

based approach with DDE acquisition to estimate pore size and eccentricity did not

consider the effects of size distribution [179] or assumed a known orientation of pores

[189, 190], as discussed in section 2.4.4.

In this chapter we demonstrate in simulation the feasibility of using a model-based

approach to provide quantitative microstructural features in complex substrates featur-

ing elongated pores with a distribution of sizes and orientation dispersion. The key

benefit of directly modelling microstructure is the ability to provide estimates of intrin-

sic tissue parameters independent of the acquisition protocol. First, we investigate the

dependence of two standard indices of microscopic anisotropy on substrate parameters,

then we show that more specific parameters such as pore size and eccentricity can be

estimated by fitting a microstructural model to the diffusion data. We test whether a

simple model with identical pores can provide a good estimate of volume-weighted

mean pore size and eccentricity and we investigate the effects of explicitly modelling

the size distribution.

Moreover, we compare the ability of different protocols with SDE and DDE se-

quences to recover the ground truth parameters and we further extend such a model-

based technique to analyse macroscopically anisotropic substrates as well as substrates

with various parametric and non-parametric size distributions.

5.2 Data synthesis
To synthesize diffusion data we use the MC simulator in Camino [101] using a mesh-

based substrate, with closed pores represented as cuboids. The diffusion meshes have

1000 cuboids with two equal sides (lx = ly) and a gamma distribution of sizes, as illus-

trated in Fig. 5.1b in the case of a macroscopically isotropic substrate. The parameters

of the model are the mean width of the cuboid l̄x, the ratio between the height and width

E = lz/lx (eccentricity), which is the same for all pores regardless of size, the gamma
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distribution shape parameter a and the diffusivity constant D. We choose different ge-

ometric models to synthesize and fit the data in order to emphasize the robustness of

this approach when the geometry is not a perfect match. Moreover, we prefer cuboids

over ellipsoids due to the reduced computational complexity of the mesh.

All MC simulations have 1000 time steps and 200000 walkers located inside the

pores. Thus the synthesized data has intracellular signal only. Noise, with a Rician

distribution and SNR = 50, was added to the data to create 100 different data sets for

each substrate.

SDE

DDE||

DDE⟂

Figure 5.1: a) Effective diffusion gradient waveforms (accounting for the effect of 180o rf
pulses) for SDE, DDE with parallel gradients and with perpendicular gradients.
b) Isotropic mesh based diffusion substrate for MC simulations (l̄x = 6µm, E = 2,
a = 2.5). c) Schematic representation of the IFC model. d) Schematic representa-
tion of the IGFC model

5.3 Signal model and fitting
For fast signal computation, we expand the Gaussian Phase Distribution (GPD) ap-

proximation [80] for DDE sequences and a restriction model of finite cylinders with

various sizes. Previous work [200] derived analytical expressions for DDE sequences
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and a similar restriction model keeping terms up to second order in 2πqR, where q is

the wavenumber andR is the radius. Here we keep second order terms in the expansion

of the signal logarithm (cumulant expansion) which has a wider range of applicability

than the same order of the Taylor series [201]. The GPD approximation provides an-

alytical expressions of the signal S(u, R,E) for a finite cylinder with orientation u,

radius R and length 2RE. We use the same framework presented in [90] for oscillating

gradients.

To calculate the signal for an ensemble of finite cylinders, we numerically inte-

grate the signal over orientation and size distribution weighted by volume, to obtain

the overall signal S =
∫
u

∫∞
0
P(R)F(u)S(u, R,E)duR3dR. P(R) is the probabil-

ity distribution of radii, F(u) is the probability distribution of cylinder orientation

and E is the same for all sizes. The factor R3 arises because the diffusion MRI

signal from each pore depends on the amount of spins it contains and in our model

the length of the cylinder is proportional to the radius. Assuming independence of

parallel and perpendicular displacements [195], the signal for one cylinder is then

S(u, R,E) = S⊥(u, R,E)S‖(u, R,E) with

lnS⊥(u, R,E) =
γ2

2

∑
n

Bcyl,n

∫ TE

0

dt1

∫ TE

0

dt2 exp (−λcyl,nD|t2 − t1|)

G⊥(t1) ·G⊥(t2)

lnS‖(u, R,E) =
γ2

2

∑
n

Bplane,n

∫ TE

0

dt1

∫ TE

0

dt2 exp (−λplane,nD|t2 − t1|)

G‖(t1)G‖(t2) (5.1)

where γ is the gyromagnetic ratioBn and λn are geometry related factors for cylindrical

and planar restriction [78] which depend on R and E, G⊥ and G‖ are the components

of the diffusion gradient perpendicular and parallel, respectively, to the cylinder axis

and TE is the echo time. The full expressions of the signal are provided in Appendix

A.4 .

We fit the models to data in Matlab, using a two-step procedure: a grid search of

predefined values, which gives a rough estimate of parameters, followed by a gradient

descent which minimizes the difference between the data and the model given Rician

noise. During all stages of fittingD is fixed to its true value. For numerical stability, the
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lower limit of the gamma distribution shape parameter a is set to 1 and the upper limit

to 10000. All other parameters are estimated with no constraints. We also ensure that

the parameter values used in the grid search do not overlap with simulation parameters.

For the anisotropic substrates, the main orientation is estimated from the DTI-like data

set, by fitting a linear diffusion tensor model, and fixed afterwards. This reduces the

computational complexity of the gradient descent without compromising on accuracy.

5.4 Simulation 1: Metrics of microscopic anisotropy
This experiment investigates the dependence of two model-free metrics of microscopic

anisotropy on pore elongation for various diffusion substrates. Specifically, we study

ε and the corresponding normalized fractional eccentricity FE, introduced in [121].

Nevertheless, we expect similar behaviour for other metrics of microscopic anisotropy

based on the difference between DDE measurements with parallel and perpendicular

gradients, which were discussed in section 2.4.4. As detailed in [121], ε is an additive

measure of compartment eccentricity and it depends on pore size to the fourth power.

FE aims to remove this dependency and normalizes ε with respect to pore size. Here

we aim to analyse the effect of pore size distribution as well as the influence of noise

on the calculated ε and FE.

5.4.1 Aims and objectives

The specific objectives of this simulation are:

1. study the dependence of ε and FE on pore elongation.

2. investigate the effect of pore size distribution on the estimated metrics.

3. analyse the effect of different noise levels.

5.4.2 Methods

Derivation of ε and FE

We use the expressions derived in [121], simplified for a macroscopically isotropic sub-

strate. In this case only two DDE sequences with parallel and perpendicular gradients

are necessary to derive ε and FE based on the difference between the two measure-
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ments:

log(S‖)− log(S⊥) = q4ε, (5.2)

where S‖ is the signal for the DDE sequence with parallel gradients, S⊥ is the signal

for the DDE sequence with perpendicular gradients, q = γGδ is the wavenumber, γ the

gyromagnetic ratio , G the gradient strength, δ the pulse duration and ε depends on pore

size and eccentricity. For spherical pores ε = 0. Fractional eccentricity normalizes ε

with respect to size:

FE =

√
ε

ε+ 3∆2ADC2/5
(5.3)

which varies between 0 (spherical pores) and 1 (elongated pores), where ∆ is the diffu-

sion time and ADC is the apparent diffusion coefficient which reflects the length scale

of the substrate.

Diffusion substrates

To analyse the dependence of ε and FE on pore eccentricity we construct diffusion

substrates as explained in section 5.2 with the following parameters: l̄x = {4, 8, 12}µm,

a = {2.5, 10,∞} (a→∞ yields identical pores) and E varying between 1 and 3.

Measurement protocol

Further, we choose DDE sequences with parallel and perpendicular gradients with long

diffusion and mixing times (∆D/l̄x
2 � 1, τmD/l̄x

2 � 1 ) and pulse duration of δ = 5

ms. To have a similar diffusion attenuation for all substrates and to be in the same dif-

fusion regime we keep constant γδGl̄x and ∆D/l̄x
2, respectively, as explained in [83].

The gradient duration is the same for all measurements δ = 5ms. The gradient strength

corresponding to the substrates with l̄x = 4µm is G = 300mT/m, and decreases ac-

cordingly for larger pores. This ensures the signal attenuation is above the noise floor

for all substrates, with values between 0.2 and 0.9. The diffusion and mixing times,

which are τm = ∆ = 100ms for the substrates with l̄x = 4µm, are increased for larger

pores, yielding a constant ratio ∆D/l̄x
2

= 12.5. Additionally, we investigate the effect

of noise with three different SNR levels of 50, 100 and∞. As S‖−S ⊥≥ 0 [117], neg-

ative values of ε occur solely due to noise and are set to 0, in order to obtain real-valued

FE.
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5.4.3 Results

Figure 5.2a) plots FE against cuboid eccentricity in the range E ∈ [1, 3] for substrates

of various sizes, with mean l̄x = {4, 8, 12}µm and gamma distribution shape parameter

a = {2.5, 10,∞}. Figure 5.2b) shows a similar dependence for ε normalized with the

pore size l̄x
4. The plots present the median values over 100 noise trials with SNR = 50

(left), 100(middle) and∞ (right). Figure 5.2c) illustrates the FE values pooled from

substrates with different lx and a for different eccentricities E = {1, 1.5, 2, 2.5, 3}.

The simulations show that FE is very noisy, especially for pores with low eccentricity

where the difference between the DDE measurements with parallel and perpendicular

gradients is smaller than the noise floor. ε, which is a direct measure of the signal

difference, is less affected by noise, however it depends strongly on pore size.
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Figure 5.2: Dependence of a) FE and b) ε on pore eccentricity. The plot illustrates the average
values over 100 instances of noise with SNR = {50, 100 and ∞}. The standard
deviations were large (> 1) especially for pores with low eccentricity and are not
shown for clarity. Different colours represent different sizes and different line styles
represent different shapes of the gamma distribution.
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5.4.4 Discussion

This section investigates the dependence of two model-free metrics of microscopic

anisotropy on pore elongation for various diffusion substrates. The first metric, ε, con-

founds the effects of pore size and eccentricity, while FE, which normalizes ε with

respect to pore size, is highly influenced by noise. The effect of noise is especially pro-

nounced for pores with low eccentricity, when the signal difference between the two

DDE measurements is below the noise level. In this case the microscopic anisotropy

is likely to be overestimated. These findings are consistent with the original results

presented in [121] which show noisy estimates in the grey matter of monkey brain.

Moreover, if we keep the diffusion time the same for all substrates (τm = ∆ =

100ms), both FE and ε are underestimated for the larger pores (l̄x = 12µm) (data not

shown), which shows the importance of having the sequence parameters in the correct

diffusion regime. This analysis is focused on FE and ε , but these observations hold

for similar indices presented in [119] which are based on signal differences.

5.5 Simulation 2: Macroscopically isotropic substrates

This simulation explores a model-based approach for estimating pore size and eccen-

tricity in macroscopically isotropic substrates that have a distribution of pore sizes.

Here, we fit a microstructural model directly to the diffusion signal, avoiding the in-

creased noise variance of the signal difference.

5.5.1 Aims and objectives

In this simulation we aim to:

1. test whether a simple model with identical pores can recover accurate estimates of

volume-weighted mean size and eccentricity, in a similar way the axon diameter

index from ActiveAx correlates with the volume-weighted mean axon diameter.

2. investigate the effects of explicitly modelling pore size distribution.

3. compare four diffusion protocols with SDE and DDE sequences and their ability

to recover the ground truth parameters.
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5.5.2 Methods

Diffusion substrates

We use MC simulations to synthesize the diffusion signal in a variety of macro-

scopically isotropic substrates, as explained in section 5.2. Thus, we construct

separate meshes for each combination with the following parameter values: l̄x =

{2, 4, ...12}µm, E = {1, 1.5, 2, 2.5, 3}, a = {2.5, 10,∞} and D = 2 · 10−9 m2/s.

The smaller pores have similar sizes to axons and dendrites in brain tissue [35, 202],

while larger pores are closer to certain cancer cells, e.g. [203]. For intrinsic diffusivity

we chose a value similar to the principal eigenvalue of the diffusion tensor measured at

short diffusion time in the human brain [175].

Signal model

For the model-based estimation of pore size and eccentricity in a macroscopically

isotropic substrate, we construct two signal models. The first one has identical pores

and aims to test whether a simpler model can recover the average volume weighted

size and eccentricity, in a similar way ActiveAx [9] yields an index of axon diameter.

The second model explicitly accounts for pore size distribution. As we are investigating

macroscopically isotropic substrates, the probability distribution of cylinder orientation

is the 0th order spherical harmonic (F(u) = 1/4π). The two models are:

1. Isotropic finite cylinders (IFC) consists of randomly oriented identical finite

cylinders and is illustrated in Fig.5.1c. This model has three parameters: cylin-

der radius R, ratio between cylinder length and diameter E (eccentricity) and

diffusivity constant D. In this case the probability distribution of radii is a delta

function P(R) = δ(R).

2. Isotropic gamma finite cylinders (IGFC) consists of randomly oriented finite

cylinders with a volume weighted gamma distribution of radii, so explicitly ac-

counts for a size distribution, as illustrated in Fig. 5.1d. This model has four

parameters: D, mean radius R̄, the gamma distribution shape parameter a, and

eccentricity E, which is the same across all sizes. In this case the probabil-

ity distribution of radii is P(R) = 1
C
Ra−1(a/R̄)a exp(−Ra/R̄)

γ[a]
, where γ(a) is the

gamma function and C =
∫∞

0
Ra−1(a/R̄)a exp(−Ra/R̄)

γ[a]
R3dR is a normalization con-

stant that accounts for volume weighting. The variance of the distribution is
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var{P(R)} = R̄2/a.

Measurement protocol

For estimating microstructural parameters, we test four different measurement proto-

cols, constructed from basic SDE and DDE sequences shown in Fig. 5.1a. We construct

a rich protocol for each sequence type to ensure sensitivity across as wide a range of

pore sizes as possible. As the substrates are macroscopically isotropic, the diffusion

gradients are only in x direction (parallel) and y direction (perpendicular). To make

the comparison as fair as possible, we choose sequence parameters that yield the same

maximum diffusion weighting (b-value) and number of measurements in each protocol.

The protocols are:

1. SDE protocol. This has the following parameters: pulse duration δ =

{5, 10, , ...25} ms, gradient strength G = {25, 50, 75, 100, 300, 500}
√

2 mT/m

and time interval between the beginning of the first and second gradients ∆ =

δ+ {5, 10, 20, 30, 40} ms with two repetitions for each measurement. The gradi-

ent strength for SDE measurements is higher by a factor of
√

2 in order to have

the same b-value as the other protocols.

2. DDE‖ protocol. This has DDE sequences with parallel gradients of equal

amplitudes. The other parameters are: δ = {5, 10, , ...25} ms, ∆ = δ +

{5, 10, 20, 30, 40} ms, G = {25, 50, 75, 100, 300, 500} mT/m, and mixing time

tm = ∆, with two repetitions for each measurement.

3. DDE⊥ protocol. This has DDE sequences with perpendicular gradients of equal

amplitudes. The rest of the parameters are the same as for DDE‖.

4. DDE‖&⊥ protocol. This has DDE sequences with both parallel and perpendicular

gradients for each combination of parameters in the DDE‖. Including only one

repetition rather than two, as in the SDE, DDE‖ and DDE⊥ protocols, ensures

the same number of measurements in all protocols.

Protocol comparison

For a quantitative protocol comparison, we use an objective function derived from the

Cramer-Rao Lower Bound (CRLB) to rank the four protocols. The CRLB provides a

lower bound on the variance of the parameter estimates given a set of measurements,
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and is often closely correlated to the true variance. Thus, objective functions based

on the CRLBs are a standard optimality criterion and have been previously used in

diffusion MRI experiment design [151, 93]. To ensure similar scale, we use the sum of

the normalized CRLBs to compare the four protocols:

F =
P∑
i

(J−1)ii/p
2
i (5.4)

where pi are the model parameters with i = 1, ...P , J is the Fisher information matrix

and (J−1)ii is the CRLB for pi. For example, in the IFC model we fit two parameters

(R and E) and in the IGFC model we fit three parameters (R, E and a).

5.5.3 Results

This section focuses on the results for macroscopically isotropic substrates. First we

investigate the ability of a signal model with identical pores (IFC) to recover ground

truth microstructural features in the case of substrates with a single pore size or a dis-

tribution of sizes. Then we analyse a signal model which directly accounts for the

size distribution (IGFC). The last part of this section compares the ability of the four

protocols to recover model parameters.

IFC model: Figure 5.3a illustrates the relative error of the parameter estimates

(∆R = (Rest − Rg.t.)/Rg.t.) and ∆E = (Eest − Eg.t.)/Eg.t.) from the IFC model for

different ground truth values used in the MC simulation. When computing the rela-

tive errors, the ground truth parameter values are adapted to account for the difference

in geometry between cuboids (MC simulation) and finite cylinders (signal model) by

matching cylinder radius to give the same pore volume. Thus, for a cuboid with width

lx and E = lz/lx, the corresponding radius of a finite cylinder is lx/
√
π and eccen-

tricity is E
√
π/2. The results are shown for SDE and DDE‖&⊥ protocols. The relative

errors are separated according to the ground truth values of the parameters, with radius

estimates in the middle column and eccentricity estimates in the right column.

The relative errors of the IFC model parameter estimates (R and E) are reported

in Table 5.1a) and 5.1b). As the values are not normally distributed, we report non-

parametric statistics to control for outliers. The median, lower quartile and upper quar-

tile of the relative errors are presented separately for each measurement protocol and
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IFC - relative error of estimated radius R : Md (q1, q3)
a→∞ a = 10 a = 2.5

a)

SDE 3.6 (1.6, 6.3)% −9.6 (−20,−2.9)% −20 (−32,−13)%
DDE‖ 2.1 (0.6, 4.0)% −12 (−22,−5.7)% −22 (−33,−16)%

DDE⊥ 0.4 (−3.1, 3.9)% −18 (−52,−11)% −29 (−68,−20)%
DDE‖&⊥ 1.6 (−0.5, 3.1)% −12 (−20,−5.8)% −20 (−31,−14)%

IFC - relative error of estimated eccentricity E : Md (q1, q3)
a→∞ a = 10 a = 2.5

b)

SDE −0.8 (−5.5, 1.4)% 28 (16, 72)% 103 (58, 192)%
DDE‖ −1.7 (−4.6, 0.1)% 27 (11, 77)% 87 (38, 186)%

DDE⊥ 0.9 (−3.8, 7.5)% 35 (18, 140)% 92 (47, 329)%
DDE‖&⊥ −0.2 (−3.2, 1.4)% 20 (8.5, 58)% 50 (25, 105)%

Table 5.1: Median (Md), lower quartile (q1) and upper quartile (q2) of the relative error of
estimated parameters from the IFC model: a) radius and b) eccentricity. For each
measurement protocol and ground truth shape parameter a, the data is pooled from
substrates with different mean radii and eccentricities.

size distribution. The results show that, if the diffusion substrate consists of identical

pores, then a simple model of microscopic anisotropy, such as IFC, can be used to

measure average size and eccentricity using any of the four protocols. Most outliers

illustrated in Figure 5.3a) occur for the substrates with lx = 2µm which reaches the

lower sensitivity bound for a gradient strength Gmax = 500
√

2mT/m, as described in

[8]. A key observation is that, for these simple substrates, the estimates based on SDE

sequences have similar accuracy to those from DDE sequences, when a suitable model

has been assumed. This happens because, for the subset of identical pores, the apparent

size distribution in any given direction is generated solely by pore elongation.

Figure 5.3b) illustrates the relative errors of the parameter estimates from the IFC

model for a substrate with a gamma distribution of sizes, with shape parameter a = 2.5.

The results are presented for SDE and DDE‖&⊥ sequences. In this case, when comput-

ing the relative errors, the ground truth parameter values are adapted to account both

for the geometric correction explained above, as well as for a volume-weighted size

distribution, as discussed in section 5.3. The figure shows that, in the presence of a dis-

tribution of sizes, the IFC model does not give consistent size and eccentricity estimates

from either protocol, and most outliers occur for pores with small size (lx = 2µm). The
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volume-weighted average radius is underestimated and the pore eccentricity is overes-

timated for all diffusion protocols for both a = 10 and a = 2.5 as detailed in Table

5.1a) and 5.1b). The bias in parameter estimation increases with the variance of the

size distribution. This effect is especially pronounced for pores with low eccentricity,

when the IFC model explains the size variation as coming from elongated pores.

IGFC model: Figure 5.4 presents the relative errors of R̄ and E estimates from

fitting the IGFC model to data synthesized from gamma distributed cuboids with the

largest variance (a = 2.5). The results are presented for all four protocols and are sep-

arated according to the ground truth values of the parameters. The parameter values

are adapted to account for the geometric correction, and the volume-weighting is in-

corporated in IGFC model. In comparison to the IFC model, explicitly accounting for

size distribution improves the parameter estimates in more complex substrates. Fitted

parameters from all protocols are in good agreement with the ground truth values used

in the MC meshes. Outliers occur for either very small pores, close to the lower bound

of sensitivity [8], or for very large pores, when the longest diffusion time is too short to

observe restriction. DDE‖&⊥ sequences yield the smallest errors for both radius and ec-

centricity estimates. However, when an appropriate model is assumed, as it is the case

here, all the protocols, including SDE, show reasonable sensitivity and enable estima-

tion of all the parameters of the system. The effect of fitting a different size distribution

to the one used in the synthetic data is analysed in Simulation 4 (section 5.7).

Although not shown in Figure 5.4, the shape parameter of the gamma distribution

was fitted as well. As the variance of the gamma distribution is inversely proportional

to the shape parameter (var{P(R)} = R̄2/a, see section 5.3), quantifying the error

of the variance is more meaningful than quantifying the error of the shape parameter.

Thus, the relative errors of mean radius, eccentricity and variance are reported in Table

5.2a), 5.2b) and 5.2c) for all substrates and measurement protocols. The SDE protocol

yields the highest relative errors in estimating the size distribution variance which is

also reflected by poorer estimates of R̄ and E. The relative errors of the estimated

variance are slightly higher, as it depends on both mean radius and shape parameter

estimates.

Protocol comparison: For a more quantitative protocol comparison, we use the

objective function F , defined in equation 5.4 as the sum of the normalized CRLBs
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Figure 5.3: Relative errors of estimated parameters of the IFC model for different ground truth
values in MC simulations, for a) a substrate with identical pores and b) a gamma
distribution of sizes. The data is pooled across all substrates with a given size
(middle column) or eccentricity (right column) and 100 noise trials. The box plots
present the median, 25th percentile (lower quartile) and 75th percentile (upper
quartile) as well as data points that extent up to 1.5 × inter-quartile range.

of the model parameters. The lower the objective function, the smaller the expected

variance of the estimated parameters. For the ICF model, Figure 5.5a) illustrates F for

the four protocols as a function of eccentricity for substrates with identical pores (a→

∞) and two different radii R = {2, 4}µm. The plots show that DDE⊥ protocol has the



5.5. Simulation 2: Macroscopically isotropic substrates 131

S
D

E

R
el

at
iv

e 
er

ro
r 

(%
)

R
el

at
iv

e 
er

ro
r 

(%
)

ground truth lx  (μm) 

Pore size distribution in the
MC simulation mesh Relative error of the IGFC model parameter estimates

R
el

at
iv

e 
er

ro
r 

(%
)

R
el

at
iv

e 
er

ro
r 

(%
)

ground truth E

ground truth E

Mean radius R Ratio E

ground truth lx  (μm) 

Gamma distribution of 
sizes (a = 2.5, high variance)

D
D

E
||&

⟂
D

D
E

⟂
D

D
E

||

Gamma distribution of 
sizes (a = 2.5, high variance)

Gamma distribution of 
sizes (a = 2.5, high variance)

Gamma distribution of 
sizes (a = 2.5, high variance)

R
el

at
iv

e 
er

ro
r 

(%
)

R
el

at
iv

e 
er

ro
r 

(%
)

ground truth lx  (μm) 

R
el

at
iv

e 
er

ro
r 

(%
)

R
el

at
iv

e 
er

ro
r 

(%
)

ground truth E

ground truth Eground truth lx  (μm) 

−60

−40

−20

0

20

40

12108642

−60

−40

−20

0

20

40

12108642

−60

−40

−20

0

20

40

12108642

−60

−40

−20

0

20

40

12108642

−60

−40

−20

0

20

40

60

80

100

32.521.51

−60

−40

−20

0

20

40

60

80

100

32.521.51

−60

−40

−20

0

20

40

60

80

100

32.521.51

−60

−40

−20

0

20

40

60

80

100

32.521.51

Figure 5.4: Relative errors of estimated parameters (R̄ and E) of the IGFC model for different
ground truth values in MC simulations, for substrates with a gamma distribution of
sizes (a = 2.5). The data is pooled across all substrates with a given size (middle
column) or eccentricity (right column) and 100 noise trials.

highest F (i.e. lowest sensitivity), while the other protocols have similar performance.

The same trend appears for the other substrates. This result reflects the data presented

in Table 5.1 for a → ∞, where DDE⊥ has the largest interquartile range for both

radius and eccentricity estimates. Figure 5.5b) presents the objective function values

for the IGFC model for substrates with R̄ = {2, 4}µm and a = 2.5. In this case
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IGFC - relative error of estimated mean radius R̄ : Md (q1, q3)
a→∞ a = 10 a = 2.5

a)

SDE 2.8 (0.5, 6.6)% 4.0 (−0.3, 7.5)% 2.8 (−5.9, 12)%
DDE‖ 2.0 (0.5, 4.0)% 3.0 (−0.4, 5.6)% 4.2 (−3.4, 11)%

DDE⊥ 0.4 (−4.6, 4.1)% −2.1 (−6.7, 1.4)% −5.6 (−13, 0.8)%
DDE‖&⊥ 1.4 (−1.3, 2.9)% 1.8 (−1.0, 4.1)% 1.9 (−3.7, 7.4)%

IGFC - relative error of estimated eccentricity E : Md (q1, q3)
a→∞ a = 10 a = 2.5

b)

SDE −4.4 (−14, 0.1)% −6.7 (−20, 0.1)% −9.2 (−31, 0.1)%
DDE‖ −1.8 (−4.9, 0.1)% 4.6 (0.1, 12)% 7.4 (0.1, 23)%

DDE⊥ 0.6 (−4.3, 7.1)% 8.5 (2.3, 17)% 11 (4.2, 23)%
DDE‖&⊥ −0.2 (−3.2, 1.4)% 1.9 (−1.0, 6.7)% 1.5 (−5.6, 7)%

IGFC - relative error of estimated variance Md (q1, q3)
a→∞ a = 10 a = 2.5

c)

SDE 119 (5.8, 373)% 38 (−8, 87)% 38 (10, 61)%
DDE‖ 4.8 (2.1, 10)% −32 (−52,−12)% −19 (−32,−2)%

DDE⊥ 5.0 (−1.9, 39)% −19(−31,−2.6)% −8.5 (−19, 4.4)%
DDE‖&⊥ 4.4 (0.8, 9.5)% −16 (−29,−0.5)% −8.6 (−18, 3.4)%

Table 5.2: Median (Md), lower quartile (q1) and upper quartile (q2) for the relative errors of
the estimated parameters from the IGFC model: a) radius and b) eccentricity and c)
variance. For each measurement protocol and ground truth shape parameter a, the
data is pooled from substrates with different mean radii and eccentricities. For the
substrates with identical pores, the upper limit of a (a = 10000) from the signal
model was used to compute the variance.

the DDE‖&⊥ and DDE⊥ protocols perform better than the protocols with one single

gradient orientation. Table 5.2 supports this finding where, for substrates with a = 2.5,

the last two protocols have smaller interquartile ranges.

5.5.4 Discussion

This section presents a model-based approach for estimating pore size and eccentricity

in macroscopically isotropic substrates which consist of randomly oriented elongated

pores with a distribution of sizes. In the model-based approach, we fit a geometric

model to the diffusion signal itself, avoiding the increased noise variance of the signal

difference. Moreover, we explicitly account for the finite gradient duration and we do

not assume long mixing and diffusion times. Simulation 2 is focused on estimating
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Figure 5.5: Dependence of the objective function F on pore eccentricity for the four protocols
for a) the IFC model and b) the IGFC model.

microstructural parameters in isotropic substrates and we investigated the sensitivity of

four different protocols: SDE, DDE‖, DDE⊥ and DDE‖&⊥. For fair comparison, all

protocols were adjusted to have the same maximum diffusion weighting (b-value) and

number of measurements. First we test whether a simple model with identical pores

(IFC) can provide good estimates of the volume-weighted mean pore size and eccen-

tricity. In the elementary case when the underlying substrates have identical pores, the

IFC model provides accurate parameter estimates. In this situation, DDE sequences

offer no clear advantage over SDE sequences. However, this model underestimates ra-

dius and overestimates eccentricity if the substrates have a distribution of pore sizes for

both types of protocols. Directly accounting for size distribution, i.e. the IGFC model,

overcomes this problem and provides accurate microstructural estimates. The DDE‖&⊥

protocol yields the smallest relative errors for all parameter estimates, with 50% of

data points having a relative error less than 10% for mean radius and eccentricity esti-

mates. From all IGFC model parameters, the shape of the gamma distribution a has the

largest variability which translates to larger interquartile range for the relative error of

the size distribution variance compared to the other parameters, as illustrated in Table

5.2. Nevertheless, explicitly accounting for size distribution improves the accuracy of
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mean radius and eccentricity estimates. During fitting, D was fixed to its ground truth

value. For the protocols considered, additionally fitting for D does not affect results

significantly and provides good estimates of D, but increases the computational time,

as the restricted signal depends on the ratio D/R2.

When probing an ensemble of pores with a size distribution, the SDE protocol

provides sensitivity to mean size and eccentricity, although the DDE‖&⊥ and DDE⊥

protocols improve the accuracy. The DDE protocols yield smaller errors when esti-

mating the variance of the size distribution, which is consistent with previous studies

[189, 190]. The sensitivity of the SDE protocol arises from the fact that choosing

a specific model for parameter fitting resolves ambiguity in the underlying measure-

ments. If the diffusion substrate is unknown, DDE measurements contain information

to distinguish different cases. Moreover, a non model-based approach can be used to

provide prior information in order to select a relevant model. If an appropriate model

is assumed, then SDE measurements can estimate microstructural parameters. This is

important in practice as the SDE sequence is much simpler to implement and generally

returns higher signal by keeping the echo time shorter. Previous work [204] showed

that DDE sequences preserve information from the diffusion-diffraction patterns in the

presence of size distribution and can be used to recover more subtle features of pore

shape, differentiating between various geometries [205, 206]. However, for estimat-

ing pore size and eccentricity in the diffusion regime considered here, the differences

in performance among the protocols are quite small and further work is required to

determine if they reflect genuine sensitivity differences. When comparing SDE and

DDE sequences it is not trivial to define a fair comparison, and here we choose to have

the same maximum diffusion weighting (b-value). Using the same maximum gradi-

ent strength would provide more diffusion weighting for DDE sequences, increasing

sensitivity to small pore sizes. On the other and, the longer pulse duration for DDE

reduces SNR if the effects of T2 decay are considered. A better comparison can be

achieved if the protocols are optimised in order to fully explore the parameter space of

each sequences, given practical constraints for total duration and gradient strength, as

described in [151] or [153].

One limitation of the models described here is that they assume the same eccen-

tricity for all sizes. In some tissues, such as gray matter, cellular structures of different



5.6. Simulation 3: Macroscopically anisotropic substrates 135

sizes have different shapes. For example, cell bodies, which have a diameter on the

order of tens of microns [29], and dendritic spines, which are much smaller (0.5−2µm

[207]), are nearly spherical structures, while dendrites, which are several microns in

diameter [208] are elongated structures. To be more realistic, the models could in-

clude a distribution of eccentricity and/or several populations with different size/shape

characteristics.

The protocols used in this study provide sensitivity over a wide range of pores and

are not designed for practical application. The maximum gradient strength we use in the

simulation is 500
√

2 mT/m for SDE sequences and the maximum echo time required

for the DDE protocols is 250ms. These values can be achieved on preclinical scanners,

however, the range of values is more limited on a clinical scanner. The lower gradient

strengths (80mT/m for a standard scanner or 300mT/m for the Connectome scanner

[154]) decrease the sensitivity to small pore size, while the short diffusion times affect

the estimates for larger pores. The same features which are desired for such a simula-

tion study (large measurement space, high gradient strength, long diffusion and mixing

times) are a drawback for practical applications which require short acquisitions and

limited diffusion time to prevent signal loss from T2 decay. When designing such a

protocol for practical applications all these aspects should be considered. Addition-

ally, to preserve the sensitivity over a wide range of pore sizes for practical situations,

rectangular gradients can be replaced with oscillating ones [153], or if there is prior

knowledge of the system, the diffusion protocol can be substantially shortened using

numerical optimisation [151], including diffusion gradients with varying orientation

[94].

5.6 Simulation 3: Macroscopically anisotropic sub-

strates
This simulation presents an extension of the model-based approach to estimate pore

size and eccentricity in macroscopically anisotropic substrates.

5.6.1 Aims and objectives

Given the results from Simulation 2, the objectives of this study are the following:

1. develop a rotationally invariant protocol of DDE sequences.
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2. incorporate pore orientation in the tissue models in order to account for macro-

scopic anisotropy.

5.6.2 Methods

Diffusion substrates

This simulation tests the hypothesis that a model-based approach can be extended to a

rotationally invariant framework for estimating pore size and eccentricity in the pres-

ence of macroscopic anisotropy. To this end, we construct diffusion substrates consist-

ing of cuboids oriented according to a Watson distribution, as explained in section 5.2.

The substrates have the largest size variance (a = 2.5) and all combinations of l̄x and

E presented in Simulation 2, as well as various concentration parameters of the Watson

distribution κ = {2, 4, 8, 16, 32}.

Signal model

For a macroscopically anisotropic substrate, in order to recover rotationally invariant

indices of pore size and eccentricity, we explicitly model the orientation distribution of

the pores as a Watson distribution, i.e. F(u) = W (1
2
, 3

2
, κ)−1eκ(µ·u)2 , where W is a

confluent hypergeometric function, κ is the concentration parameter and µ is the main

orientation. Thus, the new models are:

1. Watson finite cylinders (WFC) has three additional parameters compared to the

IFC model: concentration parameter of the Watson distribution κ and the angles

θ and φ in spherical coordinates describing the main direction µ.

2. Watson gamma finite cylinders (WGFC) has three additional parameters com-

pared to the IGFC model: concentration parameter of the Watson distribution κ

and the angles θ and φ in spherical coordinates describing the main direction µ.

Measurement protocol

In this experiment we extend the measurement protocol to provide directional informa-

tion. To measure the dominant orientation of pores, we use a DTI-like measurement set

with 32 isotropic directions and a b-value of 2000 mm2/s (G = 100 mT/m, δ = 10 ms

and ∆ = 31 ms). We chose a higher b value compared to the standard b = 1000 mm2/s

DTI measurements as we are probing restricted diffusion only. To measure pore size
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and eccentricity as well as orientation dispersion we use DDE sequences with 6 gra-

dient orientations (xx,xy,xz,yy,yz,zz) for each combination of parameters in protocol

DDE‖. This is the minimum number of gradient directions to ensure that parallel and

perpendicular measurements along the three orthogonal axes are acquired. We name

this combined, rotationally invariant protocol DDERI .

5.6.3 Results

This section presents the results for macroscopically anisotropic substrates. Having a

rotationally invariant acquisition protocol and explicitly incorporating directional infor-

mation in the tissue model allows for estimating size and eccentricity in the presence of

macroscopic anisotropy. Thus we investigate the ability of signal models with a Watson

distribution of pore orientation to recover ground truth microstructural features.

As in the case of isotropically oriented pores, the WFC model with identical pores

underestimates the radius and overestimates the eccentricity, especially in the case of

pores with low eccentricity (data not shown). After accounting for the size distribution

of the pores, the WGFC model accurately recovers the ground truth values for these pa-

rameters. Figure 5.6a) illustrates the relative errors of estimated radius and eccentricity

given by the WGFC model for substrates with two different orientation distributions

(κ = {2, 4}). The shape parameter of the gamma distribution is a = 2.5 for all sub-

strates (largest variance considered in this study). The results show accurate estimates

for mean radius and eccentricity for all κ values. The median relative error of the esti-

mated shape parameter a is 9.4%, with lower and upper quartiles of −3.5% and 22%,

respectively. As for the isotropic substrates, larger errors occur for very small pores,

close to the lower bound of sensitivity of the maximum gradient strength in this study.

Figure 5.6b) illustrates the estimates of the concentration parameter of the Watson

distribution. For pores with low eccentricity (E = 1,1.5) the estimates of kappa are

not accurate, as the choice of κ becomes increasingly redundant as the pores approach

isotropy. For elongated pores the estimated values of κ are closer to the ground truth

values from the MC simulations. As noted in [12], high κ is hard to estimate precisely

as the numerical value has an exponentially decreasing effect as κ→∞.
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Figure 5.6: a) Relative error of the estimated size and eccentricity parameters from fitting the
WGFC model a function of ground truth values in MC simulations, for a substrate
with a gamma distribution of sizes (a = 2.5) and two different concentration pa-
rameters of the orientation distribution (κ = 2 and 8). The data is pooled across
all substrates with a given size (middle column) or eccentricity (right column) and
100 noise trials. b) Estimated concentration parameter κ of the WGFC model as a
function of ground truth values used in MC simulations, for substrates with gamma
distributed sizes (lx = 6 and 8 µm with a = 2.5) and various eccentricities. The
values were computed as the mean estimates over 100 noise trials.

5.6.4 Discussion

This section shows that a model-based approach can be extended to estimate pore size

and eccentricity in macroscopically anisotropic substrates.

In Simulation 3 we used an extended protocol DDERI consisting of a SDE

shell with 32 isotropic directions and DDE sequences with 6 gradient orientations
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(xx,xy,xz,yy,yz,zz). The SDE shell is used to determine the main orientation of the

pores, which is subsequently fixed, while fitting the rest of the model parameters. Fit-

ting the WFC model to substrates with a size distribution, yields biased parameter es-

timates which underestimate mean radius and overestimate eccentricity. Accounting

for size distribution, i.e. the WGFC model, provides accurate estimates of size and

eccentricity, however an accurate value of the concentration parameter κ is recovered

only for pores with high eccentricity. For pores with low eccentricity, the influence of

κ on the overall diffusion signal is small, which is reflected in the poor estimate of this

parameter at E close to 1.

5.7 Simulation 4: Varying size and orientation distri-

bution
In Simulation 2 and 3, both the diffusion substrates and the signal model use a gamma

distribution for pore sizes and a Watson distribution for pore orientation. In this section

we aim to relax these assumptions and test the applicability of a model-based approach

when the simulated data and signal model have different distributions of pore size and

orientation.

5.7.1 Aims and objectives

Specifically, we test whether:

1. the IGFC model can provide accurate parameters estimates when the underlying

substrates have different parametric or non-parametric size distributions.

2. the WGFC model can recover microstructural features when the underling sub-

strates have a different orientation distribution.

5.7.2 Results

Different size distributions

Here we investigate the effects of fitting the IGFC model to substrates consisting of

elongated cuboids that have different size distributions. First we test a different para-

metric distribution, namely the inverse Gaussian distribution, then a realistic histologi-

cal distribution taken from histology of the SW-620 cell line of colorectal cancer [209].

In both cases we simulate the diffusion signal from the DDE||&⊥ protocol.
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In the first simulation we analyse diffusion substrates consisting of randomly ori-

ented cuboids with eccentricity E = 2 and an inverse Gaussian size distribution with

mean value l̄x = 6µm and shape parameter λ = {10, 50, 100}µm. The variance of

the inverse Gaussian is given by l̄x
3
/λ. Fitting the IGFC model to the diffusion data

synthesized from the three meshes provides accurate estimates of mean radius and ec-

centricity, while the relative errors of the variance are larger. The size distribution of

the cuboids as well as the mean relative errors of the parameter estimates over 10 noise

trials with SNR = 50 are shown in Table 5.3a).

f + (1-f)

Diffusion substrates with an inverse Gaussian distribution of pore sizes 
(ground truth parameters: lx = 6μm, E = 2)  

a)

5 10 15 20
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0.25

0.30

5 10 15 20

0.05

0.10

0.15

0.20

5 10 15 20

0.05

0.10

0.15

λ = 10μm λ = 50μm λ = 100μm

Initial distribution of sizes

Relative error of 
parameter 
estimates
(IGFC model)  

ΔR

ΔE

-15 ± 7.1 % 1.9 ± 1.6 % 2.9 ±1.4 %

5.2 ± 2.7 % 0.9 ±3.4 % 3.9 ± 3.3 %

Diffusion substrates with different orientation distributions 
(ground truth parameters: lx = 6μm, E = 3, a = 2.5)  

b)
f = 25% f = 50% f =  75%

Relative error of 
parameter 
estimates 
(WGFC model) 

ΔR

ΔE

-3.3 ± 3.8 % -9.4 ± 2.6 % -12 ± 6.8 %

1.3 ± 1.5 % 1.6 ± 1.0 % 4.9 ± 1.6 %

Volume fraction of coherently oriented pores

ΔVar -5.3 ± 9.1 % -4.3 ± 7.5 % 12 ± 17 %

ΔVar 74 ± 20 % 52 ± 27 % -68 ± 38 %

Table 5.3: a) Average relative error of estimated mean radius and eccentricity provided by the
IGFC model when fitted to pores that have an inverse Gaussian distribution of sizes.
b) Average relative error of estimated mean radius, eccentricity and shape parameter
of the gamma distribution provided by the WGFC model when fitted to substrates
with different volume fractions of coherently oriented pores. The mean value and
standard deviation are computed over 10 noise trails with SNR = 50.

In the second simulation we investigate a more realistic distribution. We construct

a cuboid mesh with the discrete size distribution from histology of SW-620 colorectal

cancer cells [209], which has a mean value l̄x = 10.8µm and we assume a smaller

eccentricity E = 1.5. In this case, the average relative errors of the estimated IGFC

model parameters over 10 noise trials with SNR = 50 are: ∆R̄ = 5.3 ± 2.1% for the
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mean radius, ∆E = 1.1 ± 3.8% for the eccentricity and ∆Var = −22 ± 54% for the

variance.

Overall, the results show that fitting the IGFC model to diffusion substrates with a

different size distribution provides accurate estimates of average size and eccentricity,

for both parametric and non-parametric distributions. The estimated variance has the

largest relative errors, which are higher compared to the values in Simulation 2 and 3

due to the mismatch between the distributions.

Different orientation distributions

In this experiment we relax the assumption that the diffusion substrate and signal model

have the same orientation distribution. Thus, we analyse the effect of fitting the Watson

orientation distribution to diffusion signal originating from substrates with a combina-

tion of coherently oriented cuboids occupying a volume fraction f = {0.25, 0.5, 0.75}

and randomly oriented cuboids with volume fraction 1−f . The cuboids have a gamma

distribution of sizes with shape parameter a = 2.5 and mean value l̄x = 6µm. To

maximize the effect of orientation distribution we choose the largest eccentricity used

in previous simulations E = 3. The diffusion signal is synthesized for the DDERI

protocol and we fit the WGFC model.

The results presented in Table 5.3 show a good agreement between the estimated

parameters of the WGFC model (mean radius, eccentricity and variance of the size

distribution) and the ground truth values from the cuboid meshes. The estimated con-

centration parameter of the Watson distribution κ increases (κ̄ = 1.5, 2.7, 4.9) with

the volume fraction of the coherently oriented pores, reflecting the more anisotropic

orientation distribution. These results illustrate that the WGFC model yields accurate

estimates of pore size and eccentricity, even when the orientation distribution in the

underlying substrate is different.

5.7.3 Discussion

The first simulation in this section shows that a microstructural model which explic-

itly accounts for pore size distribution yields accurate estimates of average pore size

and eccentricity even when the distribution in the underlying substrate is different.

Specifically, here we investigated two distinct cases, a uni-modal parametric distribu-

tion, namely inverse Gaussian, and a histologically plausible distribution of cancer cells
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[209]. One limitation of this approach is the inability to characterize a more complex

distribution, for instance a multi-modal one. In this case a model with non-parametric

size distribution, as the ones proposed in [189, 210], which accounts for the signal con-

tribution from various sizes, would better characterize the underlying microstructure.

In the second simulation we investigated the accuracy of the WGFC model param-

eter estimates when the underlying substrate has a different orientation distribution. For

substrates with a combination of coherently and randomly oriented pores, the WGFC

model yields accurate estimates of average pore size and eccentricity. The Watson

distribution introduces only one additional parameter on top of the dominant orienta-

tion, which stabilizes the fitting procedure. However, this distribution cannot explain

the diffusion signal coming from complex tissue configurations with multiple orienta-

tion peaks, such as crossing fibres in the brain. A more general configuration can be

recovered if the orientation distribution is expanded in terms of spherical harmonics

as explained in [117], however, this approach introduces many additional parameters,

making the fit less stable.

5.8 Simulation 5: Relaxing assumption
This section presents preliminary results that aim to relax some of the assumptions from

Simulations 2-4.

5.8.1 Aims and objectives

The objectives of this simulation are the following:

1. investigate the effects of diffusion in extra-cuboidal space.

2. reduce the number of diffusion measurements, while retaining the accuracy of

parameter estimates.

5.8.2 Results

Effect of extra-cuboidal space

The main challenge for analysing the effect of extra-porous space is creating a diffu-

sion mesh with a realistic intra-cuboidal volume fraction around 0.7 [2], as expected

in biological tissue. With the current algorithm that randomly packs non-intersecting

cuboids, the largest volume fraction we obtained was around 15%. We analysed the
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diffusion signal for a mesh with randomly oriented cuboids (f = 0.153, l̄x = 6µm,

a = 2.5 and E = 1.5) and the DDE||&⊥ protocol. We model the extra-cuboidal space

using an isotropic tensor and the intra-cuboidal space using the IGFC model and we fit

all parameters. The mean relative errors of the parameter estimates over 10 noise trials

with SNR = 50 are: ∆f = 3.8 ± 8.5%, ∆D = 6.3 ± 30%, ∆R̄ = 9.9 ± 23% and

∆E = 11 ± 30%. The estimates of a were unstable with a median value of 6.25. In-

cluding extra-cuboidal space decreases sensitivity, which is mainly reflected by a poor

estimate of the shape parameter of the gamma distribution. Nevertheless, the other pa-

rameters (f , R and E) are close to the ground truth even for a substrate with a very low

volume fraction. Extending the analysis to a broader range of volume fractions is part

of future work.

Reduced number of measurements

This simulation investigates the possibility of reducing the number of diffusion mea-

surements. Thus, for a substrate of randomly oriented cuboids with a gamma distribu-

tion of sizes (l̄x = 6µm, a = 2.5, E = 2), we analyse the data from a subset of the

DDE‖&⊥ protocol with 25 measurements (10 different sequences with parallel and per-

pendicular gradients and 5 b0 measurements). We choose the measurements from the

full protocol following a greedy algorithm to maximize sensitivity to this particular sub-

strate. For the reduced protocol, the average relative errors of the parameter estimates

over 100 noise trials are ∆R̄ = 10± 17%µm, ∆a = 23± 94% and ∆E = 3.3± 7.9%,

while for the full protocol the errors are ∆R̄ = 2.2 ± 3.8%µm, ∆a = 8.8 ± 14% and

∆E = 9.1 ± 2.8%. The values overlap within standard deviation, however reducing

the number of measurements increases the variability of the estimates. The size and

eccentricity are robustly recovered, while the shape of the gamma distribution estimate

is more influenced by noise.

5.8.3 Discussion

A first step towards practical applications, such as cancer imaging, is to account for sig-

nal from the extracellular space. For low volume fractions, a simple extracellular model

with hindered diffusion is accurate enough, while for higher volume fractions models

that account for a time-dependent diffusivity which reflects the restriction length-scale

[15] are preferable. Compartment models, as in [2, 5, 9, 164], can separate extracellular
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and intracellular contributions to the signal.

The first simulation analyses the effect of including diffusion in the extra-porous

space. The results show that estimates of average pore size, eccentricity and volume

fraction are close to the ground truth values, while the estimates of the shape parameter

are unstable. The volume fraction we used was quite small f = 15%, and with the

current packing algorithm it was not possible to achieve a higher, more realistic value.

Studying the ability to recover microstructural features for a wider range of pore sizes

and volume fractions is part of future work.

The second experiment shows that we can recover microstructural parameters with

a reduced acquisition protocol. Specifically, we analysed a DDE‖&⊥ protocol with 25

measurements and 10 unique parameter combination. The parameter estimates from

the short protocol overlap within standard deviation with the values obtained from the

full protocol, however the estimates have higher variability. Thus, the right balance

between acquisition time and measurement precision is necessary depending on the

application. In this simulation the 10 measurements were chosen from the initial set

of measurements, however, more accurate results can be obtained if the protocol is

optimised over the entire parameter space of the sequence, as detailed in [151, 93].

5.9 Conclusions
This work is a proof of concept showing that microstructural parameters such as pore

size and eccentricity can be estimated from diffusion MRI using a geometric model of

restriction even in the presence of macroscopic anisotropy and a distribution of pore

sizes.

In Simulation 1 we investigated two metrics of microscopic anisotropy, FE and

ε, which are calculated from DDE measurements with parallel and perpendicular gra-

dients. The results show that FE is highly affected by noise, especially for pores with

low eccentricity, while ε, which is less prone to noise, strongly depends on pore size

distribution as well as eccentricity, making it difficult to separate the two effects.

Simulation 2 presents a model-based approach for estimating average pore size

and eccentricity in macroscopically isotropic substrates. When the underlying sub-

strates have a distribution of pore sizes, a simple model with identical pores yields

biased estimates and explicitly accounting for size distribution is necessary to improve
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accuracy. Moreover, in substrates with a size distribution, the protocols with DDE se-

quence provide more accurate estimates. Nevertheless, all protocols show sensitivity

when an appropriate tissue model has been selected. Simulation 3 extends the acquisi-

tion protocol and signal model to a rotationally invariant framework in order to estimate

pore size and eccentricity in macroscopically anisotropic substrates.

The last two simulations relax some of the assumptions in the previous experi-

ments. Simulation 4 demonstrates that accurate parameter estimates can be recovered

when the diffusion substrate and signal model have different size and orientation distri-

butions, while Simulation 5 studies the effects of diffusion in the extra-cuboidal space

and reducing the number of measurements.

In the simulations from this chapter, the diffusivity D was fixed to its ground-truth

value during fitting. Nevertheless, we have also tested the effects of fitting all model

parameters. For the protocols considered here, additionally fitting for D does not affect

results significantly and provides good estimates of D but increases the computational

time, as the restricted signal depends on the ratio D/R2.

The protocols thoroughly analysed in this work in Simulation 2 and 3 have a large

number of measurements and long diffusion time in order to provide sensitivity over

a wide range of pore sizes. Such a technique could be adapted for practical applica-

tions by using optimised measurement protocols that maximise the sensitivity to tissue

microstructure [151] or the diffusion weighting [211], while taking into account phys-

ical scanner constraints such as maximum gradient strength, slew rate, maximum echo

time, gradient heating, etc. To allow for longer diffusion times without loosing SNR

due to T2 decay, a stimulated echo preparation could be used instead of the standard

spin-echo preparation.

Future work will focus on more realistic substrates which include extracellular

space with various volume fractions, in order to mimic different tissue configurations,

as well as using improved measurement protocols which could be used in practice.



Chapter 6

Double oscillating diffusion encoding

In the previous chapter we explored a model-based approach for estimating pore size

distribution and eccentricity in a large variety of diffusion substrates. Further, we com-

pared the sensitivity of SDE and DDE sequences and the results showed that DDE

protocols, with a combination of parallel and perpendicular gradients, provide the most

accurate parameter estimates.

In this chapter we introduce a novel class of diffusion sequences, namely double

oscillating diffusion encoding (DODE). These sequences consist of gradients with os-

cillating waveforms and varying orientation in one acquisition. We analyse the DODE

signal dependence on sequence parameters and the sensitivity to microstructural fea-

tures. Moreover we present an application of DODE sequences for comparing model-

free metrics of microscopic anisotropy. Parts of this work have been presented at two

conferences [212, 213].

6.1 Motivation
Accurate estimation of microscopic anisotropy (µA) requires sequences with varying

gradient orientation, such as DDE, while sequences with oscillating gradients improve

the sensitivity to intrinsic diffusivity and pore size.

In this chapter we combine the benefits of both DDE and ODE sequences in a

double oscillating diffusion encoding (DODE) acquisition, which concatenates two os-

cillating waveforms and allows the angle between the two gradients to vary, as illus-

trated in Fig. 6.1. Such an acquisition aims to improve sensitivity to pore size in more

complex substrates featuring microscopic anisotropy.

Here we explore the DODE signal in the case of restricted diffusion and we in-
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vestigate the sensitivity with respect to pore size and length. In the first simulation we

analyse the dependence of the DODE signal on sequence parameters for substrates with

isotropic pores as well as randomly oriented anisotropic pores in order to evaluate the

effect of microscopic anisotropy. In the subsequent experiment we compare the DODE

and DDE sensitivity with respect to pore size and length for a wide range of substrates.

Then, we show the potential to extend the DODE acquisition to a rotationally invariant

framework. In the last section we use the new sequences to compare two existing met-

rics of microscopic anisotropy for substrates featuring restricted or Gaussian diffusion.

Figure 6.1: a) Typical double diffusion encoding sequence with gradient amplitude G1,2, gra-
dient duration δ1,2, diffusion time ∆1,2 and mixing time τm. b) Double oscillating
diffusion encoding sequence (DODE) with oscillation frequency δ1,2/N1,2 where
N is the number of periods.

6.2 Theory
This section presents the derivation of b-values and q-values for DODE sequences.

These quantities are necessary in order to extend the derivation of rotationally invari-

ant metrics of microscopic anisotropy, e.g. fractional eccentricity (FE) [121] for an

acquisition protocol consisting of DODE sequences.

When both encoding gradients have the same amplitude (G1 = G2), duration

(δ1 = δ2) and number of oscillations (N1 = N2), DODE with parallel or anti-parallel

gradient orientations are the same diffusion sequences as ODE. Thus, rewriting the b-

value for an ODE sequence defined in equation 3.3 in terms of the DODE sequence

parameters defined in Figure 6.1b), we get:

b = γ2G2 δ3

6N2
, (6.1)

where N = N1 = N2 is the number of periods, G = G1 = G2 is the gradient strength

and δ = δ1 = δ2 is the gradient duration. When DODE sequences have gradients with
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different orientations, the diffusion weighting has half the contribution in equation 6.1

along each direction of the gradient.

There is no definition of the q-value for oscillating gradients, therefore, in order to

define the q-value of a DODE sequence, we make the following assumption: we write

the b-value of a DDE sequence in terms of its q-value and diffusion time and we assume

that the equation will have the same form for a DODE sequence. The b-value of a DDE

sequence is

b = 2γ2G2δ2(∆− δ

3
) = (2π)2q22τdiff , (6.2)

with q = (2π)−1γGδ and diffusion time τdiff = ∆− δ/3. Following the steps in [106],

the diffusion time of a DODE sequence is τdiff = δ
3N

, thus we define the q-value

q =
1

2π

γGδ

2
√
N
, (6.3)

which ensures equation 6.2 holds for DODE sequences as well.

The formulae of b-value and q-value are presented for DODE sequences withG1 =

G2, δ1 = δ2 and N1 = N2 which are used for all simulations in this chapter. However,

similar expressions can be derived for the general case presented in Figure 6.1b), when

the two diffusion encoding periods will have different b-values and q-values.

6.3 Diffusion substrates and simulation framework
This section explains the diffusion substrates and signal model that have been used to

explore the DODE acquisition.

Substrates with a range of different microscopic anisotropy values, from highly

anisotropic ones (cylinders, Fig. ??c) to isotropic ones (spheres, Fig. 6.1d)) are consid-

ered. We characterize µA through pore dimensions, namely diameter d and length L.

In all simulations we set the intrinsic diffusivity to D = 2 · 10−9m2/s, a value similar to

the principal eigenvalue of the diffusion tensor measured at short diffusion time in the

human brain in vivo [175]. To reduce the parameter space, in the first part we investi-

gate macroscopically isotropic substrates, and limit the acquisition protocols to a single

orientation of the first gradient pulse. In the second part we construct orientationally

invariant DODE protocols in a similar way to orientationally invariant DDE protocols,

as in [121].
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All the simulations in this study are performed using the MISST software which

is described in detail in chapter 7. It uses the matrix method presented in section 2.3.4

to compute the restricted diffusion signal in various substrates using an acquisition

protocol with DODE sequences. In all the experiments we assume that the first and

second gradient waveforms have the same parameters except for gradient orientation

which can vary. As illustrated in Fig. 6.1, the DODE sequences are parametrized by the

gradient strength G, gradient duration δ, number of oscillation periods N , mixing time

τm, as well as the orientation of the two gradient directions, which can be expressed in

terms of the first gradient orientation and the relative angle ψ between the two gradients.

In the case of DODE sequences the mixing time is somewhat loosely defined and we

chose it to be the time interval between the two gradients. Note: For DODE sequences

N represents the number of periods, as opposed to the number of lobes which is used

in chapter 3. In the current representation of DODE sequences, each gradient requires

an integer number of periods in order to satisfy the gradient echo constraint.

6.4 Simulation 1: Qualitative comparison of DODE

and DDE signal
The first simulation compares the dependence of DODE and DDE signal on sequence

parameters in substrates featuring microscopic diffusion anisotropy and tests whether

DODE gives similar trends as DDE when the angle between the two gradients, ψ, is

varied. Specifically, we analyze the amplitude of the signal modulation as a function of

ψ for sequences with different mixing times and oscillation frequencies.

6.4.1 Aims and objectives

Specifically, we aim to:

1. investigate the effect of varying mixing time on the DODE and DDE signal.

2. investigate the effect of varying oscillation frequency on the DODE signal.

6.4.2 Simulations and results

Effect of varying mixing time:

In the first simulation we compare the effect of increasing mixing time τm on the am-

plitude of the signal modulation for DODE and DDE sequences in a substrate featuring
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randomly oriented anisotropic pores with diameter d = 4 µm and length L = 12

µm. To study a similar diffusion regime, we fix the b-values for both sequences to

b = {5000, 10000} s/mm2 and modify the gradient strength accordingly. For DODE

we consider the following parameters: gradient duration δ = 50 ms, mixing time

τm = {0, 10, 20, 30, 50} ms, and number of periods N = {1, 4} with corresponding

gradient amplitude G = {58, 232} mT/m for b = 5000 s/mm2 and G = {82, 327}

mT/m for b = 10000 s/mm2. The DODE sequence with N = 1 is equivalent to a DDE

sequence with δ = ∆ = 25 ms and τm = {25, 35, 45, 55, 75} ms. The DDE sequence

parameters are: gradient amplitude G = {137, 193} mT/m, pulse duration δ = 6.25

ms (which correspond to the duration of each half period for the DODE sequence with

N = 4), diffusion time ∆ = 50 ms and mixing time τm = {0, 10, 20, 30, 50} ms.

Figure 6.2 illustrates the dependence of the DODE and DDE signal on the angle

between the two gradients, ψ, for various mixing times, for a substrate of randomly

oriented finite cylinders with diameter d = 4 µm and length L = 12 µm. The signal

itself as well as the normalized signal with respect to the measurements with parallel

gradients are plotted in Figure 6.2a) for sequences with b = 5000 s/mm2 and in Fig-

ure 6.2b) for sequences with b = 10000 s/mm2. Both the DODE and DDE signals

exhibit an angular dependence on ψ, however, the influence of the mixing time differs

for the two sequences. For zero mixing time (τm = 0ms), DDE sequences exhibit the

well-described [214, 116, 215] bell-shaped signal dependence, with the largest signal

difference between measurements with parallel and anti-parallel gradients, which is an

indication of restricted diffusion [116, 118, 216]. As the mixing time increases, the

signal dependence resembles the expected cos(2ψ) function [214, 117, 217], with the

largest signal difference corresponding to measurements with parallel and perpendicu-

lar gradients. This amplitude modulation is a signature of µA. [116, 118, 216].

For DODE sequences, the angular dependence has a similar trend, however, the

influence of mixing time becomes less pronounced as the frequency is increased, which

is illustrated in Figure 6.2 for DODE with N = {1, 4}. For sequences with N = 4,

the signal difference between measurements with parallel and anti-parallel gradients

becomes close to zero even for short time intervals between the two gradient wave-

forms, which, for the standard DDE sequences, is characteristic of the long mixing

time regime. In case of DODE sequences, the accumulated phase is refocused dur-
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Figure 6.2: Signal and normalized signal as a function of the angle between gradients for
DODE and DDE sequences with various mixing times and a) b = 5000 s/mm2

and b) b = 10000 s/mm2. The diffusion substrate consists of randomly oriented
finite cylinders with diameter d = 4 µm and length L = 12 µm.

ing each period, which reduces the effective diffusion time and increases the effective

mixing time.

Effect of varying oscillation frequency:

In the second simulation we investigate the effect of varying the number of oscillation

periodsN on the amplitude of the DODE signal modulation, in substrates with different
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degrees of diffusion anisotropy. We consider randomly oriented finite cylinders with

diameter d = 4 µm and two different lengths L = {12, 8} µm as well as spherical

pores with d = 4 µm. First, to understand the effect of varying the gradient frequency,

rather than decreasing the amount of diffusion weighting, we analyse sequences that

have the same b = 5000 s/mm2. We evaluate the dependence of the DODE signal on ψ

for various number of oscillation periods N = {1, 2, 4, 8, 12}. The rest of the sequence

parameters used in the simulation are: δ = 50 ms, τm = 20 ms and gradient strength

G = {58, 116, 232, 463, 695} mT/m which is adjusted to yield the same b-value. As

in practice there is a physical constraint on the maximum gradient strength, we also

investigate the case when DODE sequences with different N have the same gradient

strength G = 300 mT/m.

Figure 6.3a) plots the signal itself as well as the normalized signal with respect to

the measurements with parallel gradients for DODE sequences with the same b = 5000

s/mm2. In this case the amplitude modulation initially increases with N , then it de-

creases, a trend that can be explained by analyzing which components of the diffusion

spectrum D are sampled. In case of restricted diffusion, D(ω) increases with fre-

quency, reaching the free diffusivity value for ω → ∞. The DODE sequences used

in this simulation have sine-like waveforms and exhibit two peaks in the power mod-

ulation spectrum, one at zero frequency and one at the oscillation frequency. Thus,

DODE sequences with N = 1 probe the smaller values of the diffusion spectrum at

low frequencies, i.e. long diffusion times, and yield little signal attenuation for the

given b-value. DODE sequences with medium values of N start probing larger values

of D(ω) and provide a higher signal attenuation as well as sensitivity to restriction.

As the number of oscillations is further increased, DODE sequences probe even larger

values of D(ω) which approach free diffusivity as ω → ∞, and loose sensitivity to

restriction. In case of restricted diffusion D(0) = 0 and the zero frequency peak does

not influence the sensitivity to pore size.

Analyzing sequences with the same b-values is important for understanding the

effects of varying oscillation frequency, however, these sequences cannot be readily

achieved in practice, as there is a physical constraint on the maximum gradient strength.

Figure 6.3b) presents the same dependence in a more practical situation, when the

DODE sequences have the same gradient amplitude G = 300 mT/m. In this case,
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Figure 6.3: Signal and normalized signal as a function of the angle between gradients for pores
with different eccentricities and DODE sequences with various number of periods
N and a) the same b = 5000 s/mm2 or b) the same gradient strength G = 300
mT/m

the diffusion weighting (b-value) of different sequences varies over several orders of

magnitude. The DODE sequences with a large number of oscillations yield little signal

attenuation, while the DODE sequence with N = 1 attenuates the signal close to the

noise floor in substrates with elongated pores. As illustrated in Figure 6.3b) DODE se-
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quences with an intermediate frequency yield the highest signal modulation amplitude.

In all cases the amplitude of the signal modulation decreases as the pores become more

isotropic, as expected from previous studies on DDE sequences.

6.4.3 Discussion

In this section we compared the DODE and DDE signal for sequences with various

mixing times and oscillation frequencies. As the angle ψ between the two gradient

waveforms varies, the DODE measurements also exhibit the characteristic amplitude

modulation, which is well-known for DDE sequences. However, as the frequency of

DODE sequences increases, the effect of varying mixing time becomes less pronounced

compared to DDE. The oscillating gradient waveforms refocus the phase during each

period, which leads to a decrease in the effective diffusion time and an increase in the

effective mixing time.

The effect of different oscillation frequencies was investigated for DODE mea-

surements with the same b-value or the same gradient strength. For sequences with the

same b-value, the peak amplitude in the power modulation spectrum is the same for dif-

ferent frequencies, however, as N increases the gradients probe the higher diffusivity

values corresponding to less restricted diffusion and the signal attenuation increases.

For large N , the amplitude of the signal modulation as a function of ψ decreases and

microscopic anisotropy is underestimated. When DODE sequences have the same gra-

dient strength, their diffusion weighting (b-value) varies over several orders of magni-

tude, and a fine balance between signal attenuation and sensitivity to restriction needs

to be achieved.

6.5 Simulation 2: Sensitivity and specificity analysis of

DODE and DDE sequences

The second set of simulations explores the sensitivity of DODE and DDE measure-

ments to pore diameter and length in substrates of randomly oriented anisotropic pores.

Here we chose to investigate pore diameter and length (as opposed to pore diameter

and eccentricity in chapter 5) as they affect the diffusion signal independently, which

makes the results easier to interpret.
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6.5.1 Aims and objectives

Extending the concept of sequence sensitivity discussed in chapter 4.1, the objectives

of this simulation are the following:

1. compare the sensitivity of DODE and DDE sequences for a wide range of sub-

strates:

• sensitivity to pore diameter in randomly oriented infinite cylinders.

• sensitivity to pore diameter and length in randomly oriented finite cylinders.

2. analyse the sensitivity over a practical range of sequence parameters and incor-

porate the effects of T2 decay.

3. investigate the difference between DODE and DDE sequences with parallel and

perpendicular gradients and identify which substrates are distinguishable from

isotropic pores for various SNR levels.

6.5.2 Simulations and results

Sensitivity definition

In case of ODE sequences we defined the sensitivity to pore diameter as the absolute

value of the partial signal derivative with respect to the parameter of interest. In the

case of DODE sequences both measurements with parallel and perpendicular gradients

are of interest, and we define the total sensitivity as the sum of sensitivities for these

two measurements:

Sd =
∣∣∂d (S‖(d, L)

)∣∣+ |∂d (S⊥(d, L))| , (6.4)

with respect to pore diameter and

SL =
∣∣∂L (S‖(d, L)

)∣∣+ |∂L (S⊥(d, L))| , (6.5)

with respect to pore length, where d is the pore diameter, L is the pore length, S‖ is the

diffusion signal measured from sequences with parallel gradients and S⊥ is the signal

obtained from measurements with perpendicular gradients.
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Sensitivity for a wide range of substrates:

The first simulation compares the sensitivity of several DODE and DDE sequences in

substrates with a large variety of parameters. We consider randomly oriented infinite

cylinders with diameter d between 1 and 12 µm as well as randomly oriented finite

cylinders with d = {4, 6} µm and a range of lengths L between 4 and 40 µm. We

analyze DODE sequences with various numbers of oscillations, DDE sequences with

finite gradient duration as well as ideal DDE sequences with short gradient duration.

As in practice the gradient strength is a physical constraint, in this simulation, we fix

the gradient strength of the DODE sequences to G = 300 mT/m, corresponding to the

Connectome scanner [218]. The rest of the DODE parameters are: δ = 50 ms, τm = 20

ms and N = {1, 2, 4, 8, 12}. For the DDE sequences, we look at 2 different scenarios,

and in all cases ∆ = τm = 50 ms:

1. DDE sequences have the same gradient amplitude G = 300 mT/m and various

pulse durations equal to half the oscillation period of the DODE sequences: δ =

{25, 12.5, 6.3, 3.1, 2.1} ms.

2. The gradient amplitude of idealized DDE sequences with δ = 1 ms is adjusted

to get matching b-values with the DODE sequences for each N . The resulting

gradient strengths are G = {4.34, 2.17, 1.09, 0.54, 0.36} T/m. Although the gra-

dient strength for matching the b-values becomes unrealistically high, it provides

a useful theoretical comparison.

Figure 6.4 presents the dependence of sensitivity to pore diameter, Sd, for ran-

domly oriented infinite cylinders. The sensitivity is calculated for DODE sequences

with various N and the corresponding DDE sequences with the same gradient strength

and finite duration as well as ideal DDE sequences with short gradient pulses and the

same b-value. To match b-value, the gradient amplitude of the idealized short-pulse

DDE sequence must reach over 4T/m which is not practical even in most preclinical

settings, but we include the results for theoretical comparison. DODE sequences show

higher sensitivity than DDE for a range of pore diameters between 2 and 8 µm, as noted

by the higher values of Sd. On the other hand, DDE sequences, both with finite pulses

as well as with short pulses, have higher sensitivity for larger pore diameters d > 8 µm.

For these pore sizes, a longer diffusion time, which is achieved using DDE sequences,



6.5. Simulation 2: Sensitivity and specificity analysis of DODE and DDE sequences157

DODE: G = 300 mT/m,
 δ = 50 ms, τm = 20 ms  

DDE: Δ = 50 ms, τm = 50 ms,
 same G = 300mT/m  

DDE: δ = 1 ms, Δ = 50 ms, 
 τm = 50 ms, same b-value  

S
en

si
tiv

ity
 w

.r.
t.

po
re

 d
ia

m
et

er

δ = 25 ms
δ = 12.5 ms
δ = 6.3 ms
δ = 3.1 ms
δ = 2.1 ms

G = 4.34 T/m
G = 2.17 T/m
G = 1.09 T/m
G = 0.54 T/m
G = 0.36 T/m

N = 1
N = 2
N = 4
N = 8
N = 12

S
en

si
tiv

ity
 (µ

m
-1

)

diameter (µ m) diameter (µ m)

S
en

si
tiv

ity
 (µ

m
-1

)

S
en

si
tiv

ity
 (µ

m
-1

)

diameter (µ m)
0 2 4 6 8 10 12

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

Figure 6.4: Sensitivity of DODE and DDE sequences with respect to pore diameters Sd for
substrates consisting of randomly oriented infinite cylinders. For each DODE se-
quence with number of periods N , the parameters of the DDE sequences were
chosen as explained in section ??: DDE with finite pulses (2nd column) and DDE
with short gradient pulses and the same b-value (3rd column).

is necessary to better probe the pore boundaries. It is interesting to note that these re-

sults also hint at increased specificity, for example when N = {8, 12}, the signal is

most sensitive to small diameters, and less sensitive to larger sizes. Nevertheless, for

the range of pore diameters analyzed here, these sequences retain some sensitivity to

larger pore diameters as well.

Figure 6.5 illustrates the DODE and DDE sensitivities with respect to pore diame-

ter and length, Sd and SL, in substrates consisting of randomly oriented finite cylinders.

For elongated pores with L > 8 µm, DODE sequences with N = 8 provide the highest

sensitivity to pore diameter, Sd, for both d = {4, 6} µm, which is consistent with the

results in Figure 6.4. For less eccentric pores (L < 8 µm), DODE sequences have no

net advantage. Nevertheless, the maximum sensitivity of DODE and DDE sequences

with finite pulses is higher compared to values obtained from DDE sequences with sort

gradient pulses (3rd column). For all sequences, the sensitivity Sd decreases as the

pores become more elongated. This happens because in a finite cylinder the restricted

diffusion signal is the product of perpendicular and parallel components, which depend

on pore diameter and length, respectively. Thus, the sensitivity to pore diameter is

weighted by the parallel signal. As the pore length increases, there is more attenuation

from the parallel component and the sensitivity Sd decreases.
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Figure 6.5: Sensitivity of DODE and DDE sequences with respect to pore size, Sd , and length,
SL , for randomly oriented finite cylinders with various lengths and two different
diameters a) d = 4 µm and b) d = 6 µm. Different columns illustrate different
sequences as explained in Figure 6.4.

When considering sensitivity to pore length SL, DDE sequences with finite gradi-

ent duration provide the highest sensitivity in all substrates. The simulations show that

ideal DDE sequences with short gradient pulses do not have any advantages in terms

of sensitivity to microstructural features. For the diffusion times and gradient strengths

considered in this study, the sensitivity SL of all sequences decreases almost to 0 for

pores with L > 20 µm.
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These results show that ideal DDE sequences with short gradient duration are not

the best choice for estimating pore length and diameter and stress the importance of

choosing the correct sequence parameters for a given application.

Sensitivity for a wide range of sequence parameters:
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Figure 6.6: Signal sensitivity of DODE and DDE sequences with respect to a) pore diameter
Sd and b) pore length SL for substrates of finite cylinders with diameter d = 4µm
and different lengths L = {4, 8, 16, 32}µm. The eccentricity of the pores increases
from left to right. The sensitivity is colour coded and the maximum value for each
substrate is marked with a black asterisk.

In the second experiment, we investigate the sensitivity of DODE and DDE se-

quences over a wide range of practical sequence parameters in several substrates, which

consist of randomly oriented finite cylinders with diameter d = {4, 6} µm and eccen-

tricities of L/d = {1, 2, 4, 8}. We make the two sequences equally practical by en-

suring the same maximum gradient strength and maximum duration for both DODE

and DDE sequences. The range of parameters for DODE sequences are: G = [0, 400]

mT/m, δDODE = [0, 50] ms and N = {1, 2, ..., 10}. For the DDE sequences the range

of gradient strengths is the same G = [0, 400] mT/m and we consider five different
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Figure 6.7: Signal sensitivity of DODE and DDE sequences with respect to a) pore diameter Sd
and b) pore length SL in the presence of T2 decay with time constant T2 = 70ms.
The substrates consist of finite cylinders with diameter d = 4µm and different
lengths L = {4, 8, 16, 32}µm.

diffusion times ∆ = {25, 30, 35, 40, 45} ms. For each ∆ we have a different range of

gradient durations δ in order to limit the total duration of each gradient pair (δ + ∆) at

50 ms. In order to reduce the dimensionality of the problem, the time interval between

the first and second gradient waveforms is fixed to 20 ms for all sequences. We also

analyze the effect of T2 relaxation with a constant of 70 ms, which is in the range of

values for gray matter at 3T.

Figure 6.6 illustrates the sensitivities Sd and SL for substrates with diameter d = 4

µm and various eccentricities, when the effects of T2 decay are not considered. The

asterisk depicts the most sensitive sequences for each substrate. For the configurations

considered in this study, DODE sequences with N = 9 periods are the most sensitive

to pore diameter in elongated pores (L > 8 µm). In substrates with isotropic pores

of diameter d = 4 µm, DODE sequences with N = 1, which are equivalent to DDE

sequences with ∆ = δ have the highest sensitivity to pore size. When considering the



6.5. Simulation 2: Sensitivity and specificity analysis of DODE and DDE sequences161

sensitivity to pore length, DDE sequences with a low gradient strength and the longest

pulse duration for the corresponding diffusion time are the best choice. The plots also

illustrate that the diffusion time of the most sensitive DDE sequence increases with

pore length, as larger length scales need to be probed.

Figure 6.7 presents the sensitivity of DODE and DDE sequences, when the effects

of T2 relaxation are taken into account with a relaxation constant T2 = 70ms. In this

case, DODE sequences with a lower number of oscillations (N = {2, 3}) and shorter

gradient duration, compared to the results in Figure 6.6a), show the highest sensitivity

to pore diameter in elongated pores. The optimal sensitivity to pore length in elongated

pores (L > 16 µm) is still achieved by DDE sequences with ∆ > δ, while for less

elongated pores DDE sequences with ∆ = δ are preferred. Nevertheless, the opti-

mal parameter values are different. When T2 decay is considered, the preferred DDE

sequences have larger gradient strength and shorter pulse duration and diffusion time

compared to the results in Figure 6.6b).

Overall, the results show that a combination of DODE and DDE sequences pro-

vides complementary sensitivity to different microstructural features such as pore di-

ameter and length.

Specificity to microscopic anisotropy

As the difference between DODE/DDE measurements with parallel and perpendicu-

lar gradients is a signature of microscopic anisotropy, the last simulation investigates

how different sequence parameters influence this contrast in a large variety of sub-

strates. This facilitates the design of experiments which improve the specificity to the

microstructural features of interest. Thus, we analyze the signal difference between

the two sets of measurements for DODE and DDE sequences with different varying

parameters in a wide range of substrates with pore diameters 0.5µm < d < 10µm and

eccentricities 1 < L/d < 10. For DODE sequences we vary independently G, N and

δ, while for DDE we vary G, δ and ∆. For both sequences the time interval between

the two gradients has a constant value of 20 ms. We also analyze the effect of noise and

label the regions where the difference is larger than the standard deviation of the noise

for different levels of SNR = {20, 50, 100, 1000}. This highlights which substrates

can be distinguished from isotropic pores, given the diffusion sequence and SNR level.
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As in the previous simulation, the time interval between the first and second gradient

waveforms is fixed to 20ms for all sequences.

Figure 6.8 presents the signal difference as a function of pore size and eccentricity.

Different rows in panels a) and b) have sequences with different varying parameters.

Sequences with large gradient strength are more sensitive to smaller pore sizes, and

decreasing G shifts sensitivity to larger and more elongated pores for both DODE and

DDE sequences. For DODE with varying N, we see a slightly different pattern which

enhances the sensitivity to pore diameter for elongated pores, i.e. there is a stronger

color gradient in vertical direction for the entire range of eccentricities. Decreasing the

gradient duration has an overall effect of reducing the sensitivity due to a decrease in

diffusion weighting. For DDE sequences, decreasing δ while having a long diffusion

time has a similar effect to increasing N for DODE, nevertheless, the effect is less pro-

nounced. For DDE sequences, increasing diffusion time improves sensitivity to pore

elongation, which can be seen as a sharper gradient in panel b) bottom row. All in all,

this simulation shows that DODE and DDE sequences with different parameters are

required in order to estimate different microstructural properties. Thus, for substrates

with unknown microstructural features or in areas with a superposition of cellular struc-

tures, measurements with a range of different parameters are needed. A careful choice

of sequence parameters can also be used to enhance the signal acquired from a certain

tissue configuration, while suppressing the signal from different ones.

6.5.3 Discussion

This section investigates the sensitivity and specificity of DODE and DDE sequences

with respect to pore diameter and length.

The first experiment compares the sensitivity of DODE and DDE sequences, with

the aim of identifying regimes where each sequence is beneficial. Thus, the analysis

is focused on sequences with several parameter combinations and a large variety of

diffusion substrates. In randomly oriented infinite cylinders, we found that DODE se-

quences improve the sensitivity to pore diameter for a range of values between 2 and

8 µm. This is consistent with the findings from Chapter 4, showing higher sensitivity

for ODE sequences in cylindrical pores with orientation dispersion. The advantage of

DODE arises from less attenuation due to diffusion along the long axis of the pore,
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while preserving sensitivity to restriction. When considering substrates of finite cylin-

ders, DODE sequences improve sensitivity to pore diameter in elongated pores, while

DDE acquisitions have higher sensitivity to pore length. Furthermore, we found that

ideal DDE sequences with short gradient duration and the same b-value do not neces-

sarily have an advantage with respect to sensitivity to microstructural features.

The subsequent simulation examined the sensitivity of sequences over a wide

range of practical sequence parameters in several substrates. This analysis further

demonstrates that DODE sequences show higher sensitivity to pore diameter in elon-

gated pores, while DDE sequences have larger sensitivity to pore length. This trend was

observed both when T2 decay was neglected or considered in the sensitivity measure,

however, the optimal parameters look different in the two cases. When the effects of

T2 are neglected, the maximum sensitivity for DODE sequences occurs at long pulse

durations and higher oscillation frequency (N = 9). For sensitivity to pore length, the

optimal DDE measurements have a low gradient strength and the longest pulse duration

which can be achieved for the preferred diffusion time. When T2 effects are considered,

the optimal DODE sequences have shorter pulse duration and a lower number of oscil-

lations (N = 2, 3), and the optimal DDE sequences have shorter duration and higher

gradient strength compared to the case of infinite T2. DDE sequences with ∆ = δ

have the highest sensitivity to small, isotropic pores, as they maximize the amount of

diffusion weighting for a given duration. Their advantage is perhaps a bit surprising,

as many DDE-based studies to date have opted using DDE sequences resembling as

much as possible to the ideal SGP limits [121, 217], although others used longer gradi-

ent durations due to gradient amplitude constraints [219, 120, 220, 221]. These results

suggest that diffusion protocols which combine DODE and DDE measurements would

be sensitive to a wide range of configurations and pore-sizes. Moreover, when there

is prior knowledge of the substrates, the sequences can be optimized to improve the

sensitivity to a particular configuration.

The last simulation points to a potential specificity of DDE/DODE sequences to-

wards different µA. A given pixel within brain tissues, particularly gray matter, will

reflect a superposition of several very different environments for water diffusion. For

instance, large and approximately spherical cell bodies may co-exist with randomly

oriented neurites [222]. The results presented in Figure ?? show that by changing the
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sequence parameters we can manipulate which substrates the sequence would be most

sensitive to, based on the respective signal differences between parallel and perpendic-

ular gradients. Although the plots in Figure ?? do not show very localized maxima,

further investigations optimizing these signal differences in DDE/DODE towards spe-

cific microstructures could be beneficial. This approach would be especially useful for

estimating model-free metrics based on the signal difference.

In these simulations we mostly focus on practically feasible sequence parameters,

rather than achieving the theoretical conditions of long diffusion and mixing times for

all substrates. A direct consequence of this fact, is the decreased sensitivity to pore

length for L > 20µm in Figure 6.5, as diffusion and mixing times of 50ms are not long

enough to fully probe this length scale. The same fact explains the smaller value of

the sensitivities in Figures 6.6 and 6.7 in the rightmost panels which feature pores with

L = 32µm.

This analysis is concentrated on comparing DODE and DDE type acquisitions in

the context of angular experiments as well as their sensitivity to microstructural param-

eters. Although the search space is limited to several parameters, previous work, which

optimized a generalized diffusion sequence (i.e. g(t)) for axon diameter estimation

[94], showed that oscillating gradients of various frequencies consistently appeared

to be the optimal waveforms. A thorough analysis of other diffusion techniques that

have been recently presented in the literature for estimating microscopic anisotropy

[223, 177, 180, 224]) is outside the scope of this work and will be considered in future

research.

6.6 Simulation 3: Rotationally invariant extension
The previous simulations consider only macroscopically isotropic substrates, however,

in order to have a wider range of applicability we require a rotationally invariant ac-

quisition. This work aims to extend the DODE acquisition in order to estimate a ro-

tationally invariant metric of microscopic anisotropy following the approach described

by Jespersen et al [121].
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6.6.1 Aims and objectives

Specifically, the objectives of this study are:

1. adapt the expression of fractional eccentricity (FE) [121] for DODE sequences

using the b-values and q-values derived in the theory section 6.2

2. analyse the dependence of FE on pore elongation for substrates with various

levels of macroscopic anisotropy.

3. compare the estimated FE provided by DODE and ideal DDE sequences.

6.6.2 FE derivation

Using the expressions for b-value, q-value and diffusion time provided in section 6.2,

fractional eccentricity introduced in [121] can be extended to DODE sequences as fol-

lows:

FE =

√√√√ ε

ε+ 3
5

(
δ

3N

)2
(
Tr(D)

3

)2 , where

ε =
1

q4

(
log

(
1

12

∑
S||

)
− log

(
1

60

∑
S⊥

))
, (6.6)

D is the diffusion tensor computed from the parallel measurements and δ/3N is the

diffusion time.

6.6.3 Simulations and results

The original protocol proposed in [121] has 12 parallel DDE measurements with gra-

dient directions pointing towards the vertices of an icosahedron and 60 perpendicular

DDE measurements with 5 measurements in the normal plane of each parallel direc-

tion. Here we replace the DDE measurements with DODE sequences and we use the

following parameters: G = 300mT/m, δ = 60ms, τm = 20ms and N = 3. We chose

this specific value of N so we can later compare this approach of computing fractional

eccentricity to the method presented by Lasic et al [180] that involves isotropic diffu-

sion encoding. To substrates consisting of randomly oriented finite cylinders we add

coherently oriented pores which occupy a volume fraction f = {0, 0.25, 0.5, 0.75}. We

compute the fractional eccentricity according to equation 6.6 and we use the adapted

b-values and q-values presented in section 6.2. We also compare the DODE derived FE
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with the values obtained from an ideal DDE sequence with δ = 1 ms, ∆ = τm = 50

ms and the same b-value as the DODE measurements.

Figure 6.9: Fractional eccentricity as a function of pore elongation for substrates with various
volume fractions of coherently oriented pores for DODE and DDE sequences. The
DODE protocol consist of sequences with N = 3, G = 300mT/m, δ = 50ms and
τm = 20 ms with 72 directions, while the DDE protocol has δ = 1ms, ∆ = τm =
50ms and the same b-value as the DODE sequences.

Figure 6.9 illustrates the dependence of fractional eccentricity on pore elongation

for substrates with different volume fractions of coherently oriented pores with diam-

eter d = 2µm and d = 4µm. FE is computed according to equation 6.1 and the

acquisition protocol described above. The results for DODE sequences (top row) show

a good agreement with the FE values measured with an ideal DDE protocol (bottom

row), which confirms that the new sequences can easily be extended to a rotationally

invariant framework. Due to the discrete sampling of gradient orientations (12 paral-

lel directions), there are small differences up to 10% in the calculated FE values for
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different volume fractions f .

6.6.4 Discussion

In this section we have adapted the derivation of fraction eccentricity [121] for an ac-

quisition consisting of DODE sequences. Furthermore, we have investigated the de-

pendence of FE on pore elongation for macroscopically anisotropic substrates with

various volume fractions of coherently oriented pores. The results show that the FE

values estimated from DODE measurements are similar to the gold standard FE values

given by an ideal DDE protocol with the same b-value. This finding demonstrates that

reliable FE values can be measured with sequences that are not necessarily close to

the theoretical limit of short gradient pulses.

As seen in the previous section, if there is prior knowledge of the substrate, the se-

quence parameters can be chosen in order to maximize the difference between parallel

and perpendicular measurements, decreasing the impact of noise on the estimation of

FE.

6.7 Simulation 4: Comparison of microscopic anisotropy

metrics
The last simulation presents an application of DODE sequences for comparing two ro-

tationally invariant metrics of microscopic anisotropy, namely fractional eccentricity

(FE) [121] microscopic fractional anisotropy (µFA) [180]. Originally, FE is calcu-

lated from DDE sequences and µFA from sequences with isotropic and directional

encoding. In order to compare the two metrics we require diffusion sequences that

are as similar as possible in terms of gradient waveform, which can be achieved using

oscillating gradients with varying direction.

6.7.1 Aims and objectives

This study aims to:

1. adapt the DODE sequences for each approach in order to have comparable data

acquisition.

2. compare the two metrics in different diffusion substrates: randomly oriented

pores featuring restricted diffusion or randomly oriented microdomains featur-
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ing Gaussian diffusion.

6.7.2 Simulations and results

Measurement protocols

In order to compare the two metrics which require different acquisitions, we adapt the

DODE protocol for each approach ensuring that the sequences have the same gradient

waveform and vary only in direction. Thus we make the two acquisitions as similar as

possible.

To estimate FE we use a rotationally invariant protocol with 72 measurements, as

discussed in section 6.6. The DODE sequences have three periods N = 3, a gradient

duration δDODE = 60ms, mixing time τm = 20ms and gradient strength GDODE that

we modify depending on the substrates we investigate. For estimating µFA we use

16 different gradient strengths between 0 and GDODE , and for each gradient strength

we have 15 isotropically oriented directions to compute the directional average and 15

repeats for the isotropic encoding, to match the acquisition described in [180]. For

the sequences providing isotropic encoding, the gradient duration in each direction is

δDODE/2N = 10 ms. The two acquisition protocols have the same gradient waveform

and maximum b-value and are illustrated in Figure 6.10a.

FE and µFA expressions

We calculate FE according to equation 6.6 that we derived for DODE acquisition in

section 6.6.

To compute µFA, we follow the steps described in [180]. First we perform a non-

linear fit to the 2nd order cumulant expansion of the signal log(S(b)) = −D̄ + µ2

2
b2

in order to obtain the mean diffusion coefficient D̄ and its variance µ2. For better

parameter estimates, we use the output of the linear regression as starting points for the

non-linear fitting procedure. We find this method to be more numerically stable than

fitting a Gamma distribution of diffusivities as explained in [180]. We fit this equation

to the isotropically encoded measurements and to the directionally averaged data with

two different assumptions:

• We enforce the same mean diffusivity when fitting the isotropic encoded and the

directional averaged data, as assumed in [180].
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• We fit the cummulant expansion separately to the two data sets and we obtain

two different values of mean diffusivity and variance.

Once we have the values for mean diffusivity and variance, we compute µFA according

to:

µFA =

√
3

2

(
1 +

2

5∆µ̃2

)−1/2

, where (6.7)

∆µ̃2 =
µda2

D̄da
− µiso2

D̄iso
(6.8)

is the difference of scaled variances for directional averaged data and isotropically en-

coded data.

Diffusion substrates

We investigate two different types of diffusion substrates and adapt the maximum gra-

dient strength accordingly:

• Randomly oriented anisotropic pores, which exhibit restricted diffusion. The

maximum gradient strength for this simulation is GDODE = 300mT/m, which

yields a b-value of 25, 780 s/mm2.

• Randomly oriented anisotropic domains which exhibit Gaussian diffusion with

different parallel and perpendicular diffusivities. The maximum gradient strength

is GDODE = 100mT/m, which yields a b-value of 2,865 s/mm2. This is similar

to the simulations in [180, 177].

Results

Figure 6.10 compares the values of fractional eccentricity based on DODE sequences

and the values of microscopic fractional anisotropy based on directional and isotropic

encoding. With our particular choice of sequence parameters we try to match the two

types of acquisitions as well as possible. Figure 6.10b illustrates the dependence of

FE and µFA on pore elongation for a substrate of anisotropic pores exhibiting re-

stricted diffusion. In this case, the FE and µFA value computed assuming the same

mean diffusivity for isotropic encoding and the directional average overestimates the
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Figure 6.10: a) Schematic representation of diffusion sequences used to compute fractional
eccentricity (left) and microscopic fractional anisotropy (right); b) dependence
of FE and µFA on pore elongation for substrates which consist of randomly
oriented pores featuring restricted diffusion. µFA is calculated in two differ-
ent ways: data from directional and isotropic encoding is fitted using the same
mean diffusivity and different variances, as in [180] (middle) and the data sets
from directional and isotropic encoding are fitted separately (right). Gold stan-
dard FE values computed from an ideal DDE protocol are shown as well (−−).
The maximum gradient strength is 300mT/m corresponding to b = 25, 780 s/mm2

c) dependence of FE and µFA on the ratio between parallel and perpendicular
diffusivities for substrates which consist of randomly oriented domains featuring
Gaussian diffusion. µFA is calculate in two different ways as explained above.
The ground truth micro-domain FA is plotted as well (−−). In this case, the
maximum gradient strength is 100mT/m, corresponding to b = 2865 s/mm2.
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microscopic anisotropy of pores with low eccentricity. Relaxing this assumption im-

proves the values of µFA, nevertheless, it is not monotonically increasing with pore

eccentricity. In case of restricted diffusion, the fractional eccentricity computed from

DODE measurements is closer to the gold standard values. Figure 6.10c illustrates the

dependence of FE and µFA on the ratio between parallel and perpendicular diffusivi-

ties in randomly oriented domains which exhibit Gaussian diffusion. In this case µFA

is closer to the ground truth FA values of the microdomains compared to FE. More-

over, the assumption that the mean diffusivity is the same for the directional average

and isotropic encoding holds. This situation is representative of the simulations from

[180, 177].

6.7.3 Discussion

In this simulation we adapted the DODE acquisition in order to compare two different

metrics of microscopic anisotropy and we investigated their behaviour in various sub-

strates. The results show that FE and µFA metrics do not provide the same values and

behave differently depending on the nature of microscopic anisotropy. In the case of

restricted diffusion FE describes better the anisotropy of the system, while for Gaus-

sian diffusion, µFA is closer to the ground truth values of micro-domain FA. Future

work aims to investigate the effect of noise on the calculated values of FE and µFA.

6.8 Conclusions
This chapter presents a novel class of diffusion sequences, namely double oscillat-

ing diffusion encoding (DODE), that combine the benefits of oscillating gradients and

varying gradient orientation in one measurement.

In the first section we investigated the signal dependence of the DODE signal on

sequence parameters in substrates featuring microscopic anisotropy. The results show

a similar signal pattern to DDE sequences, however the influence of the mixing time is

less pronounced. This happens because the phase is already partially refocused due to

the oscillating gradient waveform, thus the long mixing time condition can be achieved

for shorter time intervals between the two gradients. This is especially beneficial for

reducing the total duration of the pulse sequence in order to mediate the effects of T2



6.8. Conclusions 173

decay.

The second section investigates the sensitivity of DODE and DDE signal with re-

spect to microstructural features such as pore diameter and length. The conclusions of

these simulations is in line with the results for SDE and ODE sequences discussed in

section 4.1. DODE sequences improve the sensitivity to pore diameter with a range

of values between 2 and 8µm in randomly oriented elongated pores, while DDE se-

quences with various diffusion times show higher sensitivity to pore length. Moreover,

by adjusting the sequence parameters, we can increase the difference between DDE and

DODE sequences with parallel and perpendicular measurements, which is important

for mediating the effect of noise when estimating model-free metrics such as fractional

eccentricity.

In the third simulation we show that a DODE acquisition can be extend to a rota-

tionally invariant framework in order to estimate model-free metrics such as FE. The

values of FE measured using DODE sequences are similar to the gold standard values

computed from ideal DDE sequences with the same b-value. These results encourage

the optimisation of the acquisition protocol in order to maximise the signal difference

and improve the robustness to noise.

In the last section we compared two different metrics of microscopic anisotropy

that are based on different acquisition sequences and theoretical grounds. Using DODE

sequences allows a fair comparison between the two approaches as the diffusion se-

quences have the same gradient waveforms. The simulation results suggest that µFA

[180] is very close to the ground truth values if the microdomains exhibit Gaussian dif-

fusion, while FE is a better measure of pore elongation in substrates which feature only

restricted diffusion. However, to fully understand the similarities and differences be-

tween the two methods, more realistic substrates need to be investigated. This will help

the design of future studies when deciding on how to measure microscopic anisotropy

or what parameters to choose.

The work presented in this chapter investigated the sensitivity of DODE sequences

with respect to microstructural features and showed that DODE acquisition can be ex-

tended to estimate fractional eccentricity. In substrates with elongated pores and small

diameters, DODE sequences provide both higher sensitivity to diameter, which is bene-

ficial for a model based approach as described in chapter 5, as well as a larger difference
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between parallel and perpendicular measurements, which is important for estimating

FE. A desirable feature of DODE sequences is the shorter time interval between the

two gradients necessary to reach the long mixing time limit, which is essential in prac-

tice when T2 decay decreases SNR. Moreover, these simulations show the importance

of choosing the right acquisition parameters for a given applications. This is relevant

both for model-based approaches when a tissue model is directly fitted to the signal as

well as for model-free metrics of microscopic anisotropy which are based on the signal

difference between parallel and perpendicular measurements.



Chapter 7

MISST (Microstructure Imaging

Sequence Simulation Toolbox)

This chapter presents MISST (Microstructure Imaging Sequence Simulation Toolbox),

an open source research software package I have developed during my PhD. MISST is

aimed at researchers in the field of diffusion MRI that are interested in developing new

acquisition sequences and understanding their sensitivity to microstructural parameters.

As an open source software, MISST can be easily adapted by the user in order to

investigate their own research questions, which in turns speeds up the development of

new methodologies for diffusion MRI.

7.1 Motivation
Implementing a new acquisition protocol directly on a MRI scanner without having

prior knowledge of the expected results is time consuming and very expensive, there-

fore there is increasing need for fast and reliable simulation tools. A previous diffusion

simulator, Multiple Correlation Function Tool, which uses the MCF approach 2.3.4 to

compute the restricted diffusion signal, allows the user only to change the parameters

of already studied diffusion sequences, while software packages based on Monte Carlo

simulations, such as Camino [101] are demanding in terms of memory and computa-

tional time.

The novelty of MISST is that it simulates diffusion MRI signal with any user-

defined diffusion gradient waveform from a standard SDE to more advanced sequences

such as ODE, DDE, q-mas, STEAM and other recently introduced sequences. The user

can further combine various basic diffusion substrates to create new multi-compartment
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Computational
method

Pulse se-
quence

Restricted diffusion
substrate

Performance

SGP approximation SDE Simple geometries:
parallel planes, cylin-
der, sphere, ellipse,
etc

Very fast to compute;
Accurate only for
short gradient pulses

GPD approximation SDE,
ODE,
DDE

Parallel planes, Cylin-
der, Sphere, Triangles
(eigenvectors of the
diffusion propagator are
needed)

Very fast to compute;
Accurate within lim-
its

Matrix Method
(MM), Multi-
ple Correlation
Function (MCF)

Any Parallel planes, Cylin-
der, Sphere, Triangles
(eigenvectors of the
diffusion propagator are
needed)

Medium fast to com-
pute; Accurate

Monte Carlo (MC) Any Any Slow to compute,
especially for more
complex substrates;
Accurate

Table 7.1: Overview of different computational methods for simulating diffusion MRI signal

tissue models. Its key purpose is to provide a deep understanding of the restricted

diffusion MRI signal for a wide range of realistic, fully flexible scanner acquisition

protocols, in practical computational time.

7.2 Introduction
Microstructure Imaging Sequence Simulation Toolbox (MISST) is a practical diffusion

MRI simulator for development, testing, and optimisation of novel MR pulse sequences

for microstructure imaging.

MISST implements the 3D extension of the matrix method described in section

2.3.4, which allows the computation of restricted diffusion signal for very flexible gra-

dient waveforms. A schematic representation of the MISST toolbox is shown in Figure

7.1.

To put our method in perspective, the Table ?? summarizes different computational

methods used to simulate diffusion MRI signal in restricted environments. The different

methods are described in section 2.3.4.
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Figure 7.1: Schematic representation of MISST.

7.3 Implementation details
In order to generate the diffusion signal, we need to specify the diffusion pulse sequence
and the tissue model.

7.3.1 Diffusion pulse sequence
The information about the pulse sequence is stored in a structure, commonly denoted
as "protocol". There are three mandatory fields needed to generate the diffusion signal:

protocol.pulseseq =’GEN’ the name of the sequence required to generate
diffusion signal from discrete generalised gradients

protocol.G - discrete gradient waveforms which contain the gradient
components (Gx, Gy and Gz) at each point in time from
the beginning of the measurement until the readout

protocol.tau - time interval between two consecutive points of the gra-
dient waveform (sampling interval)

Optional fields:

protocol.smalldel - gradient duration
protocol.delta - time interval between the onset of the first and second

gradients
protocol.mirror =0 - the 2nd gradient is the same as the 1st gradient;

=1 - the 2nd gradient is the mirror of the 1st gradient

Specifying the fields ’smalldel’ and ’delta’ if the diffusion sequence has two gra-
dient intervals reduces computation time.

The gradient waveform (protocol.G) is a M x 3K matrix, where M is the number
of diffusion measurements and K is the number of gradient points in one measurement.

The gradient waveform has the following structure:

meas 1: Gx(1) Gy(1) Gz(1) Gx(2) Gy(2) Gz(2) ... Gx(K) Gy(K) Gz(K)
meas 2: Gx(1) Gy(1) Gz(1) Gx(2) Gy(2) Gz(2) ... Gx(K) Gy(K) Gz(K)
... ... ... ... ... ... ... ... ... ... ...
meas M: Gx(1) Gy(1) Gz(1) Gx(2) Gy(2) Gz(2) ... Gx(K) Gy(K) Gz(K)
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For a diffusion MRI experiment the integral of the gradient at the echo time must be 0.

Note: The gradient waveform (protocol.G) should contain the effective gradient,
i.e. for a SDE sequence the second gradient is the negative of the first one. Where
necessary, imaging gradients should be included for more accuracy.

Example waveforms

We provide a set of examples how to generate the discrete gradient waveforms for sev-
eral diffusion sequences. We use the old naming convention in order to match this
description with the names implemented in the software. The examples we offer in-
clude:

• pulsed gradient spin echo sequences (PGSE); Note: New name used throughout
this thesis is SDE

• sinusoidal oscillating gradients (OGSE); Note: New name used throughout this
thesis is sinusoidal ODE

• square oscillating gradients (SWOGSE); Note: New name used throughout this
thesis is square ODE

• trapezoidal oscillating gradients (TWOGSE); Note: New name used throughout
this thesis is trapezoidal ODE

• square oscillating gradients with multiple orientations (SWOGSE_3D)

• double pulsed field gradients (dPFG); Note: New name used throughout this
thesis is DDE

• stimulated echo sequences (STEAM)

• helical gradients (Helical)

Note: If the sequence you are interested in is not listed here, you have to create
it yourself. We show how to do this in example 2 on our web page our web page:
http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.MISST.

For these examples, the discrete gradients required to generate the diffusion signal
are created as follows: G = wave_form(protocol). In this case the "protocol"
structure contains information about the sequence which is being discretised and has
the following fields:

http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.MISST


7.3. Implementation details 179

PGSE
standard pulsed gradient spin echo sequence

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude T/m
protocol.grad_dirs direction of each gradient unit vector
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.tau sampling interval of the gradient; recommended
value 1E-4 s

s
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OGSE
sinusoidal oscillating gradients

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude T/m
protocol.grad_dirs direction of each gradient unit vector
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.omega = 2πν - gradient angular frequency 1/s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

Optional
protocol.phase phase of the gradient waveform; default value 0 -
protocol.mirror =0 - the 2nd gradient is the same as the 1st gradi-

ent; =1 - the 2nd gradient is the mirror of the 1st
gradient; default value 0

-

protocol.apodisedcos =1 - returns an apodised cosine waveform, in
which the first quarter of a period is replaced
by a sine wave with double frequency. This is
needed for practical implementations of OGSE se-
quences. A detailed explanation can be found in
[106]; This option works only if the angular fre-
quency of the waveform corresponds to a integer
number of lobes. If the phase is specified, it must
be π/2 or −π/2

-



7.3. Implementation details 181

SWOGSE
square wave oscillating gradients

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude T/m
protocol.grad_dirs direction of each gradient unit vector
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.omega = 2πν - gradient angular frequency 1/s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

Optional
protocol.phase phase of the gradient waveform; default value 0 -
protocol.mirror =0 - the 2nd gradient is the same as the 1st gradi-

ent; =1 - the 2nd gradient is the mirror of the 1st
gradient; default value 0

-



182 Chapter 7. MISST (Microstructure Imaging Sequence Simulation Toolbox)

TWOGSE
trapezoidal wave oscillating gradients

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude T/m
protocol.grad_dirs direction of each gradient unit vector
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.omega = 2πν - gradient angular frequency 1/s
protocol.slew_rate the slew rate of the gradient T/m/s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

Optional
protocol.phase phase of the gradient waveform; default value 0 -
protocol.mirror =0 - the 2nd gradient is the same as the 1st gradi-

ent; =1 - the 2nd gradient is the mirror of the 1st
gradient; default value 0

-

protocol.apodisedcos =1 - returns an apodised trapezoidal waveform
with a slightly increased duration δ+rt and ∆+rt
(rt = G/slew_rate is the rise time of the gradi-
ent). This ensures that the area of the first lobe
is half the area of a full lobe in order to have
a similar diffusion spectrum to a cosine wave-
form. A detailed explanation can be found in [90].
This option works only if the angular frequency of
the waveform corresponds to a integer number of
lobes. If the phase is specified, it must be π/2 or
−π/2

-
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SWOGSE_3D
square wave oscillating gradients with different components in different directions

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.Gx gradient amplitude in x direction T/m
protocol.Gy gradient amplitude in y direction T/m
protocol.Gz gradient amplitude in z direction T/m
protocol.omegax angular frequency of the gradient in x direction 1/s
protocol.omegay angular frequency of the gradient in y direction 1/s
protocol.omegaz angular frequency of the gradient in z direction 1/s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

Optional
protocol.phix phase of the gradient waveform in x direction -
protocol.phiy phase of the gradient waveform in y direction -
protocol.phiz phase of the gradient waveform in z direction -
Note: If the gradient is not desired in a certain direction, then the respective gradient
strength, frequency and phase should be set to 0;
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dPFG
double pulsed field gradient

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude (same for both gradient pairs) T/m
protocol.smalldel gradient duration (same for both gradient pairs) s
protocol.delta duration between the onset of the first and second

pulses (same for both gradient pairs)
s

protocol.tm mixing time s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

protocol.theta Angle between the first gradient direction and z
axis.

-

protocol.phi Azimuthal angle of the first gradient direction;
Gz = G × cos(theta);Gx = G × sin(theta) ×
cos(phi);Gy = G× sin(theta)× sin(phi);

-

protocol.theta1 Angle between the second gradient direction and z
axis.

-

protocol.phi1 Azimuthal angle of the second gradient direction;
Gz = G × cos(theta1);Gx = G × sin(theta1) ×
cos(phi1);Gy = G× sin(theta1)× sin(phi1);

-
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STEAM
pulsed gradient with stimulated echo sequence

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G diffusion gradient amplitude T/m
protocol.grad_dirs direction of diffusion gradients unit vector
protocol.Gc crusher gradient amplitude - fixed direction along

z
T/m

protocol.Gs slice select gradient amplitude - fixed direction
along z

T/m

protocol.smalldel diffusion gradient duration s
protocol.sdelc crusher gradient duration s
protocol.sdels slice select gradient duration s
protocol.tau1 time interval between the first diffusion gradient

and crusher gradient
s

protocol.tau2 time interval between the second crusher gradient
and the second diffusion gradient

s

protocol.tm mixing time s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s

Helical
helical gradient waveforms

Field name Description Units
protocol.pulseseq the name of the sequence -
protocol.G gradient amplitude T/m
protocol.smalldel gradient duration s
protocol.delta duration between the onset of the first and second

pulses
s

protocol.omega gradient angular frequency: Gx = G ×
cos(omega× t), Gy = G× sin(omega× t)

1/s

protocol.slopez slope of Gz: Gz = G× slopez × t 1/s
protocol.tau sampling interval of the gradient; recommended

value 1E-4 s
s
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Limitations
The signal is accurate up to the level of discretization. If the imaging parameters are
on the order of ms, then a sampling interval tau = 0.1 ms should be enough. However
if you want to see the effect on a sorter time scale, then tau should be decreased.

7.3.2 Tissue models
For the diffusion substrates, we follow the naming scheme presented in [150]. The
following substrates are available in MISST:
Basic compartments with Gaussian diffusion:

• Ball (isotropic free diffusion)

• Zeppelin (anisotropic, cylindrically symmetric diffusion tensor )

• Tensor (full diffusion tensor)

• Stick (Unidirectional diffusion)

• AstroSticks (isotropically oriented sticks)

Basic compartments with restricted diffusion:

• Cylinder (diffusion inside a cylinder)

• AstroCylinders (isotropically oriented cylinders)

• Sphere (diffusion inside a sphere)

• Dot (no diffusion at all)

Multi-compartment models:

• ZeppelinCylinder

• TortZeppelinCylinder (same as ZeppelinCylinder, but with tortuosity constraint
on volume fraction)

• TortZeppelinCylinderBall

Other substrates can be easily implemented by combining different compartments.
All the information related to the diffusion substrate is stored in a structure called
"model". For the purpose of signal generation, "model" has only two fields:

model.name - the name of the model
model.params - the values of the model parameters in S.I. (m, s, etc.); the

order of the parameters is the same as in the next table.
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The next table summarizes the parameters of different models:

Model name Parameters Units
Ball d - free diffusivity m/s2

Zeppelin

d‖ - parallel diffusivity m/s2

dh - hindered diffusivity m/s2

θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad

Tensor

d1 - diffusivity along main direction m/s2

d2 - diffusivity along second direction m/s2

d3 - diffusivity along third direction m/s2

θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad
ψ - angle giving the third direction of the tensor rad

Stick
d‖ - parallel diffusivity m/s2

θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad

AstroSticks d‖ - parallel diffusivity along each stick m/s2

Cylinder

d‖ - diffusivity m/s2

R - cylinder radius m
θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad

AstroCylinders
d‖ - diffusivity m/s2

R - cylinder radius m

Sphere
d‖ - diffusivity m/s2

R - sphere radius m
Dot No parameters -

ZeppelinCylinder

f - volume fraction of intracellular compartment -
d‖ - parallel diffusivity m/s2

dh - hindered diffusivity m/s2

R - cylinder radius m
θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad

TortZeppelinCylinder

f - volume fraction of intracellular compartment -
d‖ - parallel diffusivity m/s2

R - cylinder radius m
θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad

TortZeppelinCylinderBall

fi - volume fraction of intracellular compartment
from the anisotropic part (1-fiso)

-

d‖ - parallel diffusivity m/s2

R - cylinder radius m
fiso - volume fraction of isotropic space (eg CSF) -
diso - parallel diffusivity m/s2

θ - angle from z axis rad
ϕ - azimuthal angle from x axis rad
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7.3.3 Running the code
• A step-by-step guide can be found on our web page: http://cmic.cs.ucl.
ac.uk/mig//index.php?n=Tutorial.MISST

• Run the script files corresponding to the examples shown on our web page. They
are located in the folder MISST/example. RunMISST.m includes Example 1
(square waveforms) and Example 2 (random waveforms) and PublishedExam-
ples.m includes the waveforms used in [96].

7.4 Conclusions
This chapter introduces MISST, a software package that simulates the diffusion MRI

signal from a variety of pulses sequences and diffusion substrates. Being open source,

the user can easily tailor the software to explore their own research question, allowing

faster development of this research field.

MISST implements the 3D extension of the matrix method described in section

2.3.4, which allows the computation of restricted diffusion signal for flexible, user

defined, gradient waveforms. We provide details of the implementation, as well as

examples of tissue models and gradient waveforms. Due to its modular construction,

the user can easily combine various diffusion compartments to create models that are

representative of various tissue types, such as grey matter, white matter or tumours.

One limitation of the matrix method is that it can be used to calculate the restricted

diffusion signal only for basic geometries with well known solution of the diffusion

equation such as parallel planes, cylinders, spheres, spherical shells as well as trian-

gles [206]. Another limitation is the fact that diffusion in extracellular needs to be

computed separately, thus the accuracy of the signal depends on the complexity of the

chosen model. Although boundary relaxation effects can be accounted for in the ma-

trix mathod formalism, the exchange between intra and extracellular spaces cannot be

readily incorporated.

Nevertheless, MISST software is a useful tool for analysing restricted diffusion

signal as well as the sensitivity of various sequences to substrate parameters and has

been used to produce the results in chapter 4.1 and 6.

http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.MISST
http://cmic.cs.ucl.ac.uk/mig//index.php?n=Tutorial.MISST


Chapter 8

Conclusions and future work

This chapter discusses the contributions of this thesis from a general perspective and

details possible future extensions based on the current work.

8.1 Summary
This thesis presents my work on developing and analysing novel diffusion MRI se-

quences and modelling frameworks to improve the accuracy of pore size and eccen-

tricity estimation. The motivation of this research is developing biomedical imaging

techniques which can be applied to both brain and cancer imaging.

The first part of this work is focused on applications of microstructure imaging for

white matter, and specifically for estimating axon diameter. Abnormal development

and degeneration of white matter or cortex regions affects the properties of axons in

different tracts. For instance, there are indications that variations in axon diameter are

present in autism spectrum disorders [225, 226], amyotrophic lateral sclerosis [227]

as well as during the aging process [228]. Moreover, the axon thickness affects nerve

function as it determines the conduction velocity [229]. Thus, measuring axon diameter

can provide potential biomarkers for different diseases affecting white matter tracts, as

well as for better understanding the link between brain structure and function.

Most of current techniques for mapping axon diameter, such as AxCaliber [5] or

ActiveAx [9], use a collection of standard single diffusion encoding sequences, which

do not provide the optimal sensitivity to axon diameter. There are claims in the litera-

ture, e.g. [230], that replacing the pulsed gradients in the SDE sequence with oscillating

waveforms which measure diffusion at shorter time scales can improve the estimating

of pore size, however, the ability of the two sequences to estimate axon diameter has
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not been directly compared.

In chapter 4.1 we compared in simulation the sensitivity of SDE and ODE se-

quences with respect to pore size, in a range applicable for axon diameter mapping.

The results show that in the ideal case of parallel fibres and gradient perpendicular to

the fibre direction SDE sequences are the most sensitive, while in the practical situation

of unknown fibre orientation and/or dispersion, low frequency ODE sequences improve

sensitivity.

This work also gave us a clearer perspective on the previous results of numeri-

cally optimizing the diffusion acquisition in [93, 94, 231]. When optimizing a gradi-

ent perpendicular to the fibre direction for estimating both axon diameter and intrinsic

diffusivity [93], there are measurements with high frequency oscillations. These mea-

surements have a short diffusion time and are important for estimating the intrinsic

diffusivity, while the SDE measurements provide the highest sensitivity to pore di-

ameter. When the measurement protocol has gradients with multiple directions (e.g.

[231]), optimal sequences include low frequency oscillations which provide improved

sensitivity to pore diameter. In this case, intrinsic diffusivity can be estimated from

the gradient components parallel to the fibre. This brief analysis is based on a simple

model of white matter which consists of parallel infinite cylinders. In practice the par-

allel diffusivity measured as the largest eigenvalues of the diffusion tensor depends on

diffusion time [175], which can be explained by a variety of factors such as dispersion,

neurite beading, restricted diffusion in glial cells, etc.

Chapter 3 presents my theoretical work on oscillating diffusion encoding se-

quences. I provide expressions of the free and restricted diffusion MRI signal for

square, trapezoidal and sinusoidal oscillating gradients. This enables the adaptation

of various microstructure imaging techniques described in section 2.4 for an acquisi-

tion consisting of ODE sequences. Together with my colleagues we experimentally

validated the ODE ActiveAx framework in a microcapillary array phantom, which is

presented in chapter 4.2. The results show that ODE sequences can be implemented

on a clinical scanner and can be used for estimating pore size. For a gradient strength

of 62 mT/m, pore diameters of 10 and 20 µm were accurately estimated, while smaller

pore diameters of 5 µm could not be measured and were clearly below the resolution

limit discussed in 4.1.5. Moreover, the experimental results are in line with the theo-
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retical predictions of sensitivity, showing that in the given range of measurements, low

frequency ODE sequences provide the most accurate estimates of pore size.

The second part of this thesis is focused on diffusion acquisition and modelling

techniques for estimating pore size and eccentricity, with potential applications for both

cancer and brain imaging. Cellular anisotropy is an important microstructural feature,

that has the potential to differentiate various tumour types [177] as well as cytoarchi-

tectures in the grey matter. A widely used sequence in the literature for estimating

microscopic anisotropy is double diffusion encoding, however, most studies do not re-

cover intrinsic estimates of pore size and eccentricity.

Chapter 5 illustrates a model-based framework for estimating pore size and eccen-

tricity. We investigate complex substrates featuring elongated pores with a distribution

of size in both macroscopically isotropic and anisotropic ensembles. The results show

that it is necessary to explicitly account in the model for the size distribution in order

to recover accurate estimates of mean radius and eccentricity. This is also the case

when the fitted model and the underlying substrate have different pore size distribu-

tions. Moreover, the results indicate that a protocol which consists of DDE sequences

with both parallel and perpendicular measurements provide the most accurate results.

This finding is consistent with previous theories that sequences which have multiple

gradient orientation within one measurement provide additional information on pore

eccentricity compared to SDE sequences [111]. Nevertheless, in the situation analysed

in this work we choose a specific model to fit the data, thus we introduce constrains on

the possible substrate configurations, and protocols which consist of SDE sequences

also show some sensitivity towards the model parameters.

Chapter 6 introduces and analyses DODE sequences, which combine the benefits

of oscillating gradients and varying gradient orientation. We investigate the dependence

of the restricted diffusion MRI signal as a function of sequence parameters, analyse the

sequence sensitivity to microstructural parameters and extend the acquisition to a rota-

tionally invariant framework. The results indicate that DODE sequences yield higher

sensitivity to pore diameter in elongated pores, while DDE sequences are more sensi-

tive to pore length. Moreover, by adapting the sequence parameters to the substrates

of interest, we can improve sensitivity to various microstructural features compared to

the standard way of acquiring DDE measurements (short gradient pulse, long diffusion
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and mixing time). Furthermore, we use DODE sequences to compare two model-free

metrics of microscopic anisotropy. Simulations indicate that µFA better characterizes

microdomains featuring Gaussian diffusion, while FE is more accurate for restricted

diffusion, nevertheless, a more theoretical approach would be necessary for a thorough

comparison.

Chapter 7 presents MISST, the research software I have developed for simulating

restricted diffusion MRI signal in various substrates. MISST is open source and allows

the user to test novel diffusion sequences in order to better understand the mechanisms

of restricted diffusion. MISST has been successfully used to produce the results pre-

sented in chapters 4.1 and 6.

This work provides a thorough understanding of the restricted diffusion MR signal

for various diffusion acquisitions, and is important for developing novel imaging tech-

niques that will make the estimating of tissue microstructure more accurate for both

brain and cancer imaging.

8.2 Discussion
The work presented in this thesis provides a theoretical framework for improving the

accuracy of microstructure imaging technique. ODE acquisition can improve the esti-

mation of pore size in elongated pores which are dispersed and/or have unknown orien-

tation, while DDE and DODE sequences provide necessary information for estimating

more complex features such as size distribution and eccentricity. Such information is

valuable for studies that try to characterize tissue structure both for brain imaging as

well as cancer imaging.

For brain imaging such techniques can be adapted to increase specificity towards

cellular structure, which can be used to distinguish between cortical layers in grey mat-

ter or to follow tracts with similar morphology in white matter. This can provide a

novel insight into the link between tissue structure and function and improve tractogra-

phy results. Moreover, estimates of tissue features, such as axon diameter, intracellular

volume fraction, orientation dispersion, etc, can constitute valuable biomarkers for di-

agnosing and monitoring various pathologies as discussed in section 2.1.1.

For cancer imaging, advanced acquisition sequences and more complex models

can be incorporated into the existing VERDICT framework. This will provide a more
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detailed characterization of tissue features such as cell elongation and size which vary

between different tumour types [177] and grades. For example, in prostate cancer the

connective tissue (stroma) surrounding the glands consists of elongated muscle fibres

which are locally very anisotropic. Moreover, the amount and organization of stroma

varies significantly between different cancer grades. Thus, we believe that sensitiz-

ing the diffusion measurements to microscopic anisotropy will constitute a valuable

biomarker for prostate cancer grading.

Modelling assumptions

Impermeable membranes: The tissue models analysed in this work assume restricted

diffusion inside pores with non-permeable membranes, as modelling both effects is

extremely challenging. In healthy white matter the exchange between intra- and extra-

axonal space is slow and the effects of permeability become important for diffusion

times on the order of seconds[171]. Thus, for commonly used diffusion times which

are in the range of tens of milliseconds, assuming tissue models with impermeable

membranes is reasonable. For cancer cells, the exchange time is shorter, on the order

of hundres of milliseconds, and can depend on the cell line and/or tumour grade [171,

232]. Nevertheless when the diffusion time is at least one order of magnitude smaller

than the exchange time, the effects of permeability become negligible [172]. This is

the case for oscillating gradients as well as for SDE sequences with a diffusion time up

to 20-30ms [172, 232]. For longer diffusion times, assuming impermeable membranes

can lead to biased estimates, i.e. increased pore size and/or decreased volume fraction

to compensate for the effects of permeability. When exchange rate is the parameter of

interest, using DDE sequences, e.g. in a filter exchange (FEXI) experiment [114, 170,

232], can provide additional contrast to SDE measurements.

Hindered diffusion in the extracellular space: The two-compartment models pre-

sented here assume hindered diffusion in the extracellular space. However, recent

work has shown that a time dependant diffusivity can be more appropriate for char-

acterizing extracellular space when measurements are acquired at different diffusion

times[230, 197, 10]. For in-vivo measurements of human white matter acquired with

SDE sequences, a more pronounced time dependence of the extracellular diffusivity

is visible for diffusion times larger than 100ms [10]. For ODE sequences, Burcaw
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et al showed that in ex-vivo brain data D(ω) exhibits a linear dependence at low ω

which is characteristic for disordered diffusion in the extracellular space rather than a

parabolic dependence (ω2) which is characteristic for the intracellular diffusion. There-

fore, accounting for time dependent diffusivity in the extracellular space can improve

the analysis for both ODE and SDE measurements.

Practical implications

:

In this work we analyze various diffusion sequences, such as SDE, ODE, DDE

and DODE sequences. All these sequences can be easily implemented on pre-clinical

scanners, which usually provide high gradient amplitudes and slew-rates. However,

on clinical scanners, the gradient amplitude and slew-rate are much lower, limiting the

frequencies that can be achieved in ODE and DODE sequences. Although the new Con-

nectome scanner provides much higher values compared to standard clinical scanner,

i.e. 300mT/m gradient strength and 200T/m/s slew-rate, peripheral nerve stimulation

(PNS) prevents the application of waveforms combining both high strength and high

slew rate [?]. Nevertheless, as seen in Chapters 4 and 6, the ODE and DODE sequences

which provide the highest sensitivity to pore diameter have low frequency oscillations,

thus they can be achieved without exceeding the PNS threshold.

Another important factor to consider in practice is the total duration of the scan.

The protocols presented in chapter 5 have a large number of measurements which pro-

vide sensitivity over the wide range of substrates analyzed. For practical implementa-

tion, the total scan time can be significantly reduced by choosing measurements which

are the most sensitive to the application of interest. Moreover, a balance between the

timings of the diffusion gradients and T2 decay needs to be considered in order to have

sufficient SNR. For sequences with very long diffusion time, the spin echo preparation

can be replaced with a stimulated echo one in order to mitigate the effects of T2 decay.

As some of these sequences are gradient-intensive, duty cycle constraints can lead to

an increase in repetition time and/or a decrease in the number of slices, compared to

standard acquisitions.
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8.3 Future work
Further to the contributions presented in this thesis, there are improvements and mod-

ifications that will bring this work closer to the goal detailed in chapter 1, namely to

accurately estimate tissue microstructure from diffusion MRI data. This section looks

at some of these directions:

Modelling

White matter model: One limitation of the white matter model used in chapters 3 and

4 is the assumption of hindered diffusion in the extracellular space. Accounting for

time-dependent diffusivity is important when deriving the signal model, investigating

the sensitivity to axon diameter or using the tissue model to fit experimental data. A fu-

ture project, which aims to compare optimized SDE and ODE sequences for estimating

axon diameter in the monkey brain and rat sciatic nerve, will include a time a depen-

dent diffusivity in the extracellular space. This extension of the white matter model is

also supported by preliminary results from my colleague Lebina Kakkar which demon-

strate that accounting for this dependence reduces the fitting error and variability of the

parameter estimates.

Cancer model: One limitation of the model-based approach for estimating micro-

scopic anisotropy in chapter 5 is the fact that the tissue models include only intracellu-

lar space. For applying this framework in practice, diffusion in the extracellular space

needs to be considered. Preliminary results presented in section 5.8 show that mi-

crostructural parameters can be accurately estimated in the presence of extra-cuboidal

diffusion, and additional compartments need to be incorporated in future work. More-

over, for cancer imaging, the model could incorporate an additional compartment ac-

counting for the effect of vasculature [2].

Model fitting

Current implementations of the white matter model in chapters 3 and 4, as well as the

microscopic anisotropy model in chapters 5 and 6 use iterative non-linear fitting for

estimating model parameters. The computational time for fitting a model of parallel

cylinders with one radius is on the order of seconds, while fitting the more complex

IGFC model which has a distribution of pore sizes and orientations takes a couple

of hours. The long computational time arises from the fact that at each iteration the
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signal is summed over different orientations and pore sizes. In case of SDE sequences,

the integration over orientation can be calculated analytically for both isotropic and

Watson distribution, however, this is not the case for sequences with varying gradient

orientation such as DDE or DODE. The long computational time of the current fitting

routine is an obvious limitation for analysing the data using more complex models.

Recent work developed the AMICO (Accelerated Microstructure Imaging via Convex

Optimization) framework for fitting diffusion MRI data, which drastically reduces the

computational time. Future work aims to implement the AMICO framework for all

tissue models presented in this thesis.

Diffusion sequences

Another limitation of the simulations in chapters 5 and 6, which compare the sensitiv-

ity of various sequences, is the choice of sequence parameters itself. The simulations

for ODE acquisition in chapter 4 cover the entire range of sequence parameters within

the physical constraints of gradient strength and acquisition time, however, DDE and

DODE sequences have more degrees of freedom and we cannot vary all of them at the

same time. Thus we had to make a set of assumptions: in section 5.5 we compare

the sensitivity of the four different protocols with SDE and DDE sequences enforc-

ing the same maximum b-value, while in section 6.5 we choose sequence parameters

which enforce the same total duration for DDE and DODE sequences. Future work can

make a better comparison by studying optimised SDE, DDE and DODE protocols that

fully explore the parameter space of each sequence within the physical constraints for

gradient strength and acquisition time.

Validation

An important step in the development of any imaging technique, which was not per-

formed for the studies in chapters 5 and 6, is experimental validation. One option for

validating the estimation of pore size and shape as well as the implementation of DODE

sequences is to use microstructural phantoms, such as biomimetic materials [233, 234],

biological phantoms (yeast cells [115], asparagus [180, ?, ?]), liquid crystals [180] or

glass microcapillaries [179]. Another option for validating this technique is to image

brain or cancer tissue in a pre-clinical set-up and to compare the estimated parameters

with histology. Imaging real tissue will capture the entire microstructural complexity
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which cannot be achieved in phantoms.

Applications

Developing imaging techniques which provide high specificity to microstructural fea-

tures has many potential applications, both in basic science for a better understanding

of brain structure as well as for diagnosing and monitoring various pathologies. Here I

describe some these potential applications.

Brain imaging: One application of ODE sequences for brain imaging is axon di-

ameter mapping, as these sequences improve the sensitivity in the realistic situations

of fibres with unknown direction and/or dispersed orientation. Another possibility is

to use the advanced diffusion acquisition and modelling framework for characterizing

different cortical layers in the brain. Although the resolution might not be enough to

do this on standard clinical scanners, it can be used in pre-clinical set-ups to gain more

information about brain structure and its connectivity in vivo.

Cancer imaging: The proposed methodology could be used for cancer imaging

to distinguish between tumour types and grades. For instance, different types of

brain tumours have distinct histological features: meningiomas, which are usually

benign tumours, exhibit a fascicular pattern of growth with elongated tumour cells,

while glioblastomas, which are highly malignant, are usually hypercellular with mostly

rounded cells of various sizes and scattered necrotic areas [177]. In the case of brain

tumours, both cellularity and microscopic anisotropy are relevant indicators of tumour

grade and treatment outcome.

Another application of this framework is for prostate cancer grading. As illustrated

in section 2.1.3, the tissue structure changes significantly as the cancer becomes more

aggressive, which is captured by the Gleason grading system. As the grade increases,

the tissue becomes less structured, epithelial cells proliferate faster and the amount of

lumen space and connective tissue decreases. Connective tissue consists of elongated

muscle fibres and recent ultra-high resolution prostate images show large anisotropy at

the sub-voxel scale [?]. Therefore, using the methodology proposed in this thesis to

estimate cell size and eccentricity might provide the right tools to achieve the goal of

non-invasive prostate cancer grading.

This section details future work related to biomedical imaging, nevertheless, such
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techniques can be used for a wider range of applications to estimate microstructure in

porous media.



Appendices

199





Appendix A

Diffusion MRI - explicit signal models

This section aims to complement section 2.3 and provides explicit equation of the dif-

fusion signal for various sequences that have been previously analysed in the literature

and are of interest for this work.

A.1 GPD approximations presented in the literature

Geometric factors λn and Bn

The restricted diffusion signal computed from the GPD approximation in equation 2.40

depends on the geometry of the confining domain which is reflected through the geo-

metric factors λn and Bn.

Cylindrical geometry

For diffusion inside a cylinder with radius R and the gradient perpendicular to the

cylinder axis, the geometric factors are [78]

Bn =
2(R/µn)2

µ2
n − 1

and λn =
(µn
R

)2

(A.1)

where µn is the nth root of the equation J ′1 = 0 and J1 is a Bessel function of first kind.

Spherical geometry

For diffusion inside a sphere with radius R [78]

Bn =
2(R/µn)2

µ2
n − 2

and λn =
(µn
R

)2

(A.2)

where µn is the nth root of the equation µJ ′3/2(µ)− 1
2
J3/2(µ) = 0.
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Planar geometry

For diffusion restricted in between parallel planes [78] separated by a distance d

Bn =
8d2

(2n− 1)4π4
and λn =

π2(2n− 1)2

d2
. (A.3)

GPD approximations for common gradient waveforms

This section provides the expressions of Γn for the most common waveforms that have

been published so far in the literature.

Each term of the GPD approximation given in equation 2.41 can be factored into a

purely geometric part, Bn/λ
2
n, and a part that also includes the gradient waveform Γn.

If we denote the exponent in equation 2.41 as β(2τ), the we can rewrite it as:

β(2τ) =
2γ2

D2

∞∑
n=0

Bn

λ2
n

Γn (A.4)

For the SDE sequence [78]

Γn = G2{λnDδ − 1 + e−λnDδ + e−λnD∆(1− cosh(λnDδ))}, (A.5)

for sine ODE with integer number of periods [87]

Γn =
G2ω2/(λnD)2

(1 + ω2/(λnD)2)2

{
λnDδ(λ

2
nD

2 + ω2)

2ω2
+ 1− e−λnDδ−

e−λnD∆(1− cosh(λnDδ))

}
, (A.6)

and for cosine ODE

Γn =
G2

(1 + ω2/(λnD)2)2

{
λ2
nD

2 + ω2

λnD

[
δ

2
+

sin(2ωδ)

4ω

]
− 1 + e−λnDδ+

e−λnD∆(1− cosh(λnDδ))

}
. (A.7)

The expressions for square and trapezoidal waveform are presented separately as

they are part of my contribution.
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A.2 b-values for oscillating gradient waveforms

This section presents the b-values for sinusoidal oscillating gradients that have been

previously used in temporal diffusion spectroscopy studies.

For sine ODE with integer number of periods [106]

b =
3G2γ2δ

(2πν)2
, (A.8)

for cosine ODE with integer number of periods [106]

b =
G2γ2δ

(2πν)2
. (A.9)

and for apodized cosine with integer number of periods [106]

b =
G2γ2δ

(2πν)2

(
1− 1

8νδ

)
. (A.10)

A.3 GPD approximations for oscillating gradient wave-

forms with arbitrary phase and frequency

This appendix provides the explicit formulae of GPD approximations I have derived for

square, sine and cosine waveforms with arbitrary frequency (i.e. non-integer number

of periods) and phase and is an addition to section 3.2.2.

The Γn factors for these waveforms are

Γn =
G2

2

{
2δ̃ − 4 + e−θ̃

(
2− e−∆̃E2

θ

)
− (−1)NE0EθA

(
−1 + 2e∆̃ − eδ̃+Ñ

)
− E0A

2 + 2e−δ̃+Ñ+θ̃ + 2N(e−λnD/2ν − 1)+

E1−

E1+

E0Eθe
δ̃
[
(−1)N

(
−1 + 2e∆̃ − e2Ñ+θ̃

)
+ eÑ

(
1− 2e∆̃ + eθ̃

) ]
+

E1−

E1+

E0(−1)NA
[
eδ̃
(

(−1)N − eÑ
)

+ eθ̃(2e∆̃ − 1)
(

1− (−1)NeÑ
) ]

+

E2
1−

E2
1+

[
(−1)Ne−Ñ(−2 + e2Ñ−∆̃ + e∆̃)− 2e−∆̃ − 2N(e−λnD/2ν + 1) + 2

]}
,

(A.11)
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where θ =
φ

2πν
, N = b2(δ − θ)νc, δ̃ = Dλnδ, ∆̃ = Dλn∆, Ñ = DλnN/(2ν)

θ̃ = Dλnθ, E0 = e−(∆̃+δ̃+θ̃+Ñ), E1+ = eDλn/(2ν) + 1, E1− = eDλn/(2ν) − 1

Eθ = eDλnθ − 1, A = eδ̃ − eÑ+θ̃.

for square wave,

Γn =
G2e−Dλn∆

2(1 + Ω2)2

(
A− − ΩB−

)
·
(
A+ + ΩB+

)
+

G2

4(1 + Ω2)2

(
2(Ω2 − 1)+

(1 + Ω2)
(
2Dλnδ + C1 −

1

Ω
C2

)
− 2e−Dλnδ

(
(Ω2 − 1) cos δω+

(Ω2 + 1) cos(2φ− δω) + 2Ω sin δω
))

(A.12)

where Ω =ω/(Dλn), A− = sinφ+ e−Dλnδ sin(δω − φ), A+ = sinφ+ eDλnδ sin(δω − φ)

B− = cosφ− e−Dλnδ cos(δω − φ), B+ = cosφ− eDλnδ cos(δω − φ)

C1 = cos 2φ+ cos(2δω − 2φ), C2 = sin 2φ− sin(2δω − 2φ)

for sine wave, and

Γn =
G2e−Dλn∆

2(1 + Ω2)2

(
ΩA− +B−

)
·
(
− ΩA+ +B+

)
+

G2

4(1 + Ω2)2

(
2(Ω2 − 1)+

(1 + Ω2)
(
2Dλnδ − C1 +

1

Ω
C2

)
− 2e−Dλnδ

(
(Ω2 − 1) cos δω−

(Ω2 + 1) cos(2φ− δω) + 2Ω sin δω
))

(A.13)

for cosine wave.

The Γn function for square, sine and cosine waveforms with arbitrary frequency

and φ = 0 are
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Γn =
G2

2

{
2δ̃ − 2− E0A

2 + 2e−δ̃+Ñ + 2N(e−λnD/2ν − 1)+

E1−

E1+

E0(−1)NA
[
eδ̃
(

(−1)N − eÑ
)

+ (2e∆̃ − 1)
(

1− (−1)NeÑ
) ]

+

E2
1−

E2
1+

[
(−1)Ne−Ñ(−2 + e2Ñ−∆̃ + e∆̃)− 2e−∆̃ − 2N(e−λnD/2ν + 1) + 2

]}
,

(A.14)

where N = b2δνc, δ̃ = Dλnδ, ∆̃ = Dλn∆, Ñ = DλnN/(2ν), E0 = e−(∆̃+δ̃+Ñ),

E1+ = eDλn/(2ν) + 1, E1− = eDλn/(2ν) − 1, A = eδ̃ − eÑ

for square wave,

Γn =
G2e−Dλn∆

2(1 + Ω2)2

(
− Ω + e−Dλnδ(sin δω + Ω cos δω)

)
·
(

Ω + eDλnδ(sin δω−

Ω cos δω)
)

+
G2

4(1 + Ω2)2

(
2(Ω2 − 1) + (1 + Ω2)

(
2Dλnδ + 1 + cos 2δω+

1

Ω
sin 2δω

)
− 2e−Dλnδ

(
− 2 cos δω + 2Ω sin δω

))
(A.15)

where Ω =ω/(Dλn)

for sine wave, and

Γn =
G2e−Dλn∆

2(1 + Ω2)2

(
1 + e−Dλnδ(Ω sin δω − cos δω)

)
·
(

1− eDλnδ(Ω sin δω+

cos δω)
)

+
G2

4(1 + Ω2)2

(
2(Ω2 − 1) + (1 + Ω2)

(
2Dλnδ − 1− cos 2δω−

1

Ω
sin 2δω

)
− 2e−Dλnδ

(
− 2 cos δω + 2Ω sin δω

))
(A.16)

for cosine wave. If we set N = 1, θ = 0 and 1/(2ν) = δ in equations A.12 and A.14,

we obtain the results for the SDE sequence in equation A.5. If we set δω = 2πN, N =

1, 2, ... in equations A.15 and A.16 and additionally φ = 0 in equations A.12 and A.13

we recover the expression in equation A.6 published in [87].
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A.4 GPD approximations for DDE sequences
The section presents the analytical expressions we derive to calculate the restricted

diffusion signal parallel and perpendicular to the cylinder axis for DDE sequences.

The following expressions assume that both gradient pulses have the same gradient

amplitude (G), duration (δ) and diffusion time (∆). In order to express the signal as

a function of the angle between the two gradient pulses ψ, we write the dot product

between the perpendicular components of the gradient in equation 3 as G1⊥ ·G2⊥ =

G2 cosψ − G1‖G2‖. We consider parallel orientation (ψ = 0) when first gradients of

each pair have the same orientation.

Γcyl,n =(G2
1⊥ +G2

2⊥){λcyl,nDδ − 1 + e−λcyl,nDδ+

e−λcyl,nD∆(1− cosh(λcyl,nDδ))}+

(G2 cosψ −G1‖G2‖){e−λcyl,nDτm(1− cosh(λcyl,nDδ))}· (1− e−λcyl,nD∆)2

(A.17)

Γplane,n =(G2
1‖ +G2

2‖){λplane,nDδ − 1 + e−λplane,nDδ+

e−λplane,nD∆(1− cosh(λplane,nDδ))}+

G1‖G2‖{e−λplane,nDτm(1− cosh(λplane,nDδ))}· (1− e−λplane,nD∆)2

(A.18)

where G1⊥ and G2⊥ are the components of the two gradient pulses perpendicular to the

cylinder axis and G1‖ and G2‖ are the parallel components, respectively.
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analysisâĂŤcompartmental model. Annals of Nuclear Medicine, 20:583–588,

2006.

[25] D. Richards, T. Clark, and C. Clarke. The Human Brain and its disorders. Oxford

University Press, 2007.

[26] Science photo library. http://www.sciencephoto.com, [Accessed on 16.08.2015].

[27] BartsMS Blog. http://multiple-sclerosis-

research.blogspot.com/2015/01/education-whats-mri.html, [Accessed on

16.08.2015].

[28] The brain bank. http://thebrainbank.org.uk/wp-

content/uploads/2012/08/neuron.jpg, [Accessed on 16.08.2015].

[29] E. M. Marcus, S. Jacobson, and T. D. Sabin. Cerebral Cortex: Cytoarchitecture,

Physiology, and Overview of Functional Localization. Oxford University Press,

2014.

[30] K. Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde. Verlag von

Johann Ambrosius Barth, 1909.

[31] B. Fischl and A. M. Dale. Measuring the thickness of the human cerebral cor-

tex from magnetic resonance images. Proceedings of the National Academy of

Sciences, 97:11050–55, 2000.

[32] J. L. Golberg. How does an axon grow? Genes and development, 17:941–958,

2003.

[33] C. Filley. White Matter Structure and Function. Oxford University Press, 2013.

[34] S. G. Waxman, J. D. Kocsis, and P. K. Stys. The axon. Structure, Function and

Pathophysiology. Oxford University Press, New York, 1995.



Bibliography 211

[35] F. Aboitiz, A. B. Scheibel, R. S. Fisher, and E. Zaidel. Fiber composition of the

human corpus callosum. Brain Research, 598:143–153, 1992.

[36] J. Guy, A. E. Ellis, K. Kelley, and M. G. Hope. Spectra of G ratio, myelin sheath

thickness, and axon and fiber diameter in the guinea pig optic nerve. The Journal

of Comparative Neurology, 287:446–454, 1989.

[37] N. Stikov, J. S. W. Campbell, T. Stroh, M. Lavelée, S. Frey, J. Novek,

S. Nuara, M. K. Ho, B. J. Bedell, R. F. Dougherty, I. R. Leppert, M. Boudreau,

S. Narayanan, T. Duval, J. Cohen-Adad, P. A. Picard, A. Gasecka, Côté, and

G. B. Pike. Quantitative analysis of the myelin g-ratio from electron microscopy

images of the macaque corpus callosum. Data Brief, 4:368 – 373, 2015.

[38] S. Tomasi, R. Caminiti, and Innocenti G. M. Areal differences in diameter and

length of corticofugal projections. Cerebral Cortex, 22:1463–72, 2012.

[39] C. Filley. Neurobiology of White Matter Disorders. Oxford University Press,

2013.

[40] S. Ramon y Cajal. Textura del sistema nervioso del hombre y los vertebrados.

1890-1904.

[41] C. Kobberta, R. Appsb, I. Bechmannc, J. L. Lanciegod, J. Meye, and S. Thanosa.

Current concepts in neuroanatomical tracing. Progress in Neurobiology, 62:327–

351, 2000.

[42] K. A. Walhovd, H. Johansen-Berg, and R.T. Karadottir. Unraveling the secrets

of white matter - Bridging the gap between cellular, animal and human imaging

studies. Neuroscience, 276:2–13, 2014.

[43] T. M. Shepherd, J. Flint, P. E. Thelwall, G. J. Stanisz, T. H. Mareci, A. T. Yach-

nis, and S. J. Blackband. Postmortem interval alters the water relaxation and

diffusion properties of rat nervous tissue âĂŞ Implications for MRI studies of
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