UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

State-estimation approach to the nonstationary optical tomography problem

Kolehmainen, V; Prince, S; Arridge, SR; Kaipio, JP; (2003) State-estimation approach to the nonstationary optical tomography problem. J OPT SOC AM A , 20 (5) 876 - 889.

Full text not available from this repository.

Abstract

We propose a new numerical approach to the nonstationary optical (diffusion) tomography (OT) problem. The assumption in the method is that the absorption and/or diffusion coefficients are nonstationary in the sense that they may exhibit significant changes during the time that is needed to measure data for one traditional image frame., In the-proposed method, the OT problem is formulated as a state-estimation problem. Within the state-estimation formulation, the absorption and/or diffusion coefficients are considered a stochastic process. The objective-is to estimate a sequence of states for the process when the state evolution model for the process, the observation model for OT experiments, and data on the exterior boundary are given. In the proposed method, the state estimates are computed by using Kalman filtering techniques. The performance of the proposed method is evaluated on the basis of synthetic data. The simulations also illustrate that further improvements to the results in nonstationary applications can be obtained by adjustment of the measurement protocol. (C) 2003 Optical Society of America.

Type:Article
Title:State-estimation approach to the nonstationary optical tomography problem
Keywords:NEAR-INFRARED SPECTROSCOPY, DENSE-SCATTERING MEDIA, IN-PROCESS TOMOGRAPHY, FREQUENCY-DOMAIN, IMAGE-RECONSTRUCTION, PHOTON MIGRATION, ABSORPTION-COEFFICIENTS, IMPEDANCE TOMOGRAPHY, DIFFUSION TOMOGRAPHY, TRANSPORT
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record