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“The flame was more beautiful and varied than any
television programme - it told countless stories, it could
flare up at any moment, it didn’t follow the set patterns of

the television show.”

-Umberto Eco

“The eye is aflame, forms and colors are aflame, visual
awareness is aflame, visual contact is aflame, and whatever
sensation arises depending on the contact of the eye with
its projections - whether preceived as pleasant, unpleasant,

or neutral - that too is aflame.”

-Buddha



Abstract

Moving natural scenes pose a challenge to the human visual system, containing
diverse objects, clutter, and backgrounds. Well-known models of object recognition do
not fully explain natural scene perception, ignoring segmentation or the recognition of
dynamic objects. In this thesis, we use a familiar natural stimulus, moving flames, to
evaluate the human visual system's ability to match and search for complex examples
of dynamic form.

What can analysis in the image domain tell us about dynamic flame? Using im-
age statistics, Fourier analysis and motion evaluation algorithms, we analysed a high-
resolution dataset typical of moving flame. We characterise it as a motion-rich stimulus
with an exponential power spectrum and few long-range spatial or temporal correla-
tions.

Are observers able to effectively encode and recognise dynamic flame stimuli? What
visual features play an important role in matching? To investigate, we set observers
matching tasks using clips from the same dataset. Colour changes do not affect
matching on short clips, but inversion and reversal do. We show that dynamic edges
are a key component of flame representations.

Can observers search well for flame stimuli? Can they detect targets (short flame
clips) in equally-sized longer clips? Using temporal search tasks, we show that ob-
servers' accuracy drops quickly as the search space grows; there is no pop-out. Accu-
racy is not so strongly affected by a blank ISI, however, showing that search difficulties,
rather than representational decay, are to blame.

In conclusion, we find that the human visual system is capable of matching the
complex motion patterns of dynamic flame, but finds search much harder. We find
no evidence of category orientation specialisation. Combining several experimental
results, we suggest that the representation of dynamic flame is neither snapshot-based
nor dedicated and high-level, but relies on the encoding of sparse, local spatiotemporal

features.
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Chapter 1

Literature review

The human visual system is capable of effectively perceiving and comparing an enor-
mous variety of stimuli. From coloured squares to landscape panoramas, from static
form to dynamically moving faces, we are able to represent the natural world as pat-
terns of neural activity and use these encodings to perform useful tasks.

The study of object recognition, a central visual skill, began with behavioural
experiments on static images. As a result, most early theories of object recognition
did not consider time. In recent years, research on dynamic faces has spurred efforts
to modify or replace these models in order to explain how we encode and search for
changing stimuli.

We begin this review with a survey of static theories of object recognition, looking
in depth at the cases of face recognition and natural scene perception. We then
introduce the dynamic case, examining work on dynamic faces and biological motion.
We conclude by highlighting the problems that dynamic natural scenes pose for current

theories of object recognition.

1.1 Theories of static object recognition

Recognising objects in the environment is vital for survival; a large amount of visual
cortex is involved in this task[1]. Object recognition poses several specific challenges
for the visual system.

The segmentation problem[2]. Cluttered natural scenes contain a profusion of

objects and background distractors, and attended objects must be separated from the
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SCene.

The invariance problem. Objects should be recognised effectively under a wide
variety of angles, retinal positions, distances, lighting directions, ambient light spectra,
and structural changes. No two views of an object ever produce the same retinal image;
even when matching two objects whose pixels are identical on a computer screen, the
brain will receive slightly different signals. If our task is classification rather than

identification, more variance is tolerated.

The binding problem. Von der Malsburg[3] pointed out that low-level feature
detectors for entities such as corners and edges need to be bound to a particular
high-level object, lest mis-binding generate hallucinations or illusory percepts[4]. He
suggested that neural synchrony supports binding, although other mechanisms, such
as sequential attention, have been proposed[2]. The binding problem is similar to the
segmentation problem, but requires that features are bound to the correct object, not

just separated from the background.

Despite these challenges, the visual system can detect a target in a cluttered visual
scene in about 150 milliseconds[5]. This places a limit on the amount of computation
which can take place - in particular, on the number of synapses which can fire in
sequence before activation must pass to motor cortex so that the observer can respond.
For this reason, most models of object recognition are either single-step or feedforward,

without recurrent connections.

The simplest way to recognise an object is to store a holistic representation which
is similar to its retinal image: a template. Templates are holistic, meaning that they
represent an entire object and cannot be decomposed into smaller parts. Theories
involving them are common(6), [7, 8, @] and provide a convincing explanation for de-
tection, but do not sufficiently address the invariance problem. An object which has
changed slightly in shape, angle, or lighting condition will no longer match its tem-
plate, and will not be recognised. Computers use template models to store images:
a digital image is a holistic list of pixels with no innate substructure. Each pixel is
represented on an equal basis, and external algorithms (such as edge detection or clus-
tering) are needed to impose structure. This is why digital image comparison is so
trivial (requiring simple pixel comparison) and cripplingly vulnerable to the invariance

problem: slight translation of an object between two compared images is enough to
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defeat matching by low-level, local mechanisms like pixelwise comparison.

It is important to note that template matching models do not suggest that the
image is processed holistically from the start: retinal representations, optic nerve rep-
resentations, and V1 representations are highly local. A chain of progressively less
local representations exists as we move through the visual processing stream. Tem-
plate matching models do not deny the existence of these representations, but say that
they are unstructured, inaccessible, and not useful for object recognition. The great
vulnerability of template matching models to invariance motivates theories that have

more than one processing stage.

Most models of object recognition are hierarchical: their components are arranged
in a tree-like as opposed to linear way. Hierarchy, an ubiquitous concept, indicates
that a construct, concept or primitive may contain other constructs, concepts or prim-
itives, and that this relationship may proceed recursively. We can contrast hierarchical
concepts with holistic concepts, which do not possess an intrinsic mechanism allowing
decomposition into parts. One of the first models of object recognition, Selfridge’s
Pandemonium[10], shown in Fig. , posited that each object is recognised by a tree
of “demons.” Each one looks out for specific features and alerts higher demons when
it spots them. The many demons on the bottom layer of the tree look out for simple
features in the world; those in the intermediate layers look out for conjunctions of
features spotted in the bottom layer. The top-layer demons signal the presence of

complete objects.

This basic layout, a tree of feature detectors, becoming less numerous and more
high-level as we proceed up the feature hierarchy, is common to many models of ob-
ject recognition. Pandemonium was proposed in 1956. Riesenhuber and Poggio's
HMAXJ12|], published in 1999, is a fully-implemented computational model working
along very similar lines. Its hierarchical detectors are wired together using two opera-
tions: linear weighted summing, which allows up-layer cells to respond to conjunctions
or disjunctions of down-layer features; and the nonlinear MAX operation, by which a

cell responds to the most active of its afferents.

HMAX deals with the problem of multiple views by having the top layer combine
the output of cells in the highest subordinate layer that respond to a single view of

an object (view-tuned units). View invariance is thus put off until the final processing
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Figure 1.1: Hierarchical models of object recognition. A) Selfridge's

Pandemonium[10], in which successive layers of “demons” recognise features of pro-
gressively higher levels. B) Marr and Nishihara's structural description model[11], in
which small body parts are represented at increasing levels of detail.
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stage. This is not the case for all models: Biederman's geons theory, which we examine
shortly, proposes that 3D sub-shapes are extracted locally and independently in a view-

invariant fashion.

The idea of a hierarchical object detector has had many implementations. One
of the first was Fukushima's neocognitron[13], composed of stacked layers of cells
and initially aimed at recognising handwritten letters. The lowest layer corresponds
directly to the input pattern; successive layers contain reduced numbers of cells, the
final layer consisting of just ten and thus indicating the network’s classification of an
input numeral. The neocognitron is invariant to stimulus position and size because of
its so-called C-cells, which respond to a group of lower-level cells detecting variously
transformed versions of a feature. It can learn either in an unsupervised way (in which
case it self-organises to discriminate patterns based on similarity) or an unsupervised

way (in which case it attaches the correct labels to classified patterns).

Marr and Nishihara[1I] suggested a hierarchical representation, using mammalian
body parts as an example (See Fig. . They proposed that view invariance was de-
livered by a representation describing the relative location of object sub-parts described
as generalised cones. Its hierarchical nature would allow objects to be compared on
several different scales, allowing similar objects to be grouped together (stability) but
very slightly different objects to be differentiated (sensitivity). For example, this model
allows a creature’'s number of legs to be counted, classing it as a biped or quadruped,

without requiring the precise leg morphology.

The design of artificial object recognition systems has always been motivated by
neurophysiological evidence. The difference between simple and complex cells, as
elicited by Hubel and Wiesel[14], is often summed up as a slight increase in the recep-
tive field sizes of complex cells, along with the addition of position invariance. Many
models of object recognition have borrowed this nomenclature, calling plain feature de-
tectors S-cells and position-invariant feature detectors C-cells. A second detail copied
from neuroanatomy is the organisation of cortex into columns and hypercolumns[15].
The neocognitron borrowed the term “hypercolumn,” applying it to a set of cells that

recognise different features from a similar location in the input pattern.

One way to classify models of object recognition is by the types of invariance they

possess. The neocognitron, dealing with 2D input, can only be invariant to size and
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position; for successful detection, stimuli could not be rotated. It is of value for the
human brain to be invariant to these transformations, as well as to changes in lighting,
occlusion and surface texture. It can also benefit from invariance to changes in shape:
it is still possible to recognise an object if it is slightly deformed, and many object labels
(such as “horse”) apply to an enormous set of object instances of slightly different

shapes.

The problem of invariance to rotation motivated Biederman’s recognition-by-
components (RBC) model[I6], a structural description model descended from Marr
and Nishihara's. This system imposes a 3D description on the world from an early
stage, segmenting an object into characteristic sub-shapes called geons. Next, a de-
scription of which geons are present and how they fit together is produced; this is
invariant to 3D rotation. RBC differs from Marr and Nishihara's model in that its li-
brary of shapes is more restricted: geons are described precisely in terms of lower-level
features, and they are a subset of generalised cones[17]. The key difference between
this model and HMAX is the order in which invariances are built up. HMAX builds
local descriptions in 2D and then combines them into view-invariant descriptions: its
view-invariance comes last. The geon model builds local descriptions which are already

invariant to rotation, then combines them into full object descriptions.

The Marr and Nishihara model, as well as RBC, predicted that structural description
would enable full viewpoint invariance, allowing objects to be recognised with equal
speed whatever their viewpoint. Shepherd and Metzler[18], as well as Jolicoeur[19]
proved otherwise, demonstrating recognition delays for unfamiliar views. Tarr and
Pinker explored this effect psychophysically, attempting to differentiate between models
which store multiple views and models which store a single view and then transform
it, with mixed success[20]. They thus proposed that shared mechanisms cooperate in
the object recognition system. Further evidence from fMRI was found by Gauthier et
al[21], who showed dorsal (where) pathway activation during mental rotation paths

and ventral (what) pathway activation during object recognition tasks.

There is mathematical support for leaving view invariance until the last moment:
the structure of a 3D object can be approximated by a small number of 2D projec-
tions, as long as they are orthographic[22]. There is also psychophysical support from

the repeated finding that objects are matched less well when viewed under a different
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orientation than that presented during learning, as tested by Biilthoff et a/[22]. Specif-
ically, they found support for the idea that novel views are interpolated from existing
views, finding more accurate recognition for novel views between learned views (as
opposed to outside learned views).

Poggio and Biilthoff [23] provided supporting evidence in the form of a computa-
tional model using radial basis functions to match novel views to learned views without
mental rotation. Another approach, suggested by Ullman[9] is that of storing a model
of each recognisable object and deforming it to match a newly viewed object. A viewed
object V' is matched with a stored object M and a transformation which brings M into
correspondence with V. This process is necessarily preceded by selection of an object
from the visual scene and its segmentation to produce an outline. A key feature of
this recognition scheme is that it is performed in space: rather than relying on image
statistics or computed features, the components of the model are actually shapes. This
illustrates another judgement we may make about models: what should their primitives
look like? What is the nature and complexity of their internal representations?

How do we evaluate the usefulness and power of competing models? Marr and
Nishihara suggest some solutions[11] - their “criteria for judging the effectiveness of a
shape representation.” By a representation they mean a model of shape recognition:
“a representation for shape is a formal scheme [an algorithm] for describing shape or
some aspects of shape, together with rules [an algorithm] that specify how the scheme
is applied to any particular shape.”

Marr's representation is not simply a static description (a piece of data) but rather
a set of rules (a model) for creating a representation. One could argue that a model
of shape representation is not a model of object recognition, because a model of
recognition outputs a classification (a linguistic tag). However, it is generally accepted
that models of object recognition need not include the full machinery necessary to
generate an object’s name or send the motor commands necessary to write it: they
must simply describe the building of a representation which is more easily classifiable
than the retinal image.

Marr's criteria are:

e Accessibility: can the desired description be computed from an image, and can

it be done reasonably inexpensively?
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Scope: to what class of shapes is the representation applicable?

e Uniqueness: do shapes have canonical descriptions in the representation?

Stability: a representation remains the same when its retinal image changes.

Sensitivity: a representation changes when its retinal image changes.

Marr points to a tradeoff between stability and sensitivity: in order to obtain more
of one, we must have less of the other. He gives the example of representing animal
bodies using skeletons made from identically-sized sticks. If one long stick is used, we
can represent only the animal’s overall size and orientation. Using a larger number of
shorter sticks brings more detail, allowing us to discriminate different species. Using
even shorter sticks allows us to discriminate individuals of the same species.

Additional evidence from neural recordings has emerged since Marr’'s day. Gross and
Bender[24] were the first to locate neurons (in the macaque) which showed selectivity
to shape, size and colour. I'T neurons were more sensitive to complex properties, while
V1/V2 neurons selected for simpler properties. This supported the idea that complex
features are gradually built up from more local descriptions. Rust and DiCarlo[25] deal
with selectivity (equivalent to Marr's sensitivity) and tolerance (equivalent to Marr's
stability). They set out to test the idea that selectivity and tolerance both increase
as signals propagate through the ventral visual stream (from retina to LGN, through
V1, V2 and V4, to IT). Macaques performed an object-detection task and recordings
were made from 140 neurons in IT and 140 neurons in V4. A support vector machine
(SVM) classifier was trained to detect objects from the population recordings. For
stimuli in which the same object was presented at different sizes and in different posi-
tions, classifier performance on V4 dropped but performance on IT did not change; the
IT population thus showed more stability. Selectivity was first measured by comparing
classifier accuracy on each population; it was unchanged. However, IT neurons’ re-
sponses were more linearly separable than those of V4 neurons. The populations were
equally sensitive, but the IT population required an easier computation to decode the
result.

Overall, evidence from single-neuron recordings does not offer much help in discrim-
inating between models of object recognition. For example, mapping the combinations
of features to which neurons in IT are sensitive[20] reassures us that these features are

represented in the brain at the single-neuron level, but the same features are decodable
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from V1 at the population level. Since high-level models of object recognition do not
specify whether their machinery operates at the single-neuron or the population level,
this insight does not have much discriminatory power. Some observations, however,
can be useful. The finding that view-dependent cells respond faster than view-invariant
cells[27] supports models in which views are represented first, followed by objects. Lo-
gothetis et al[28] trained monkeys to recognise shapes (natural and artificial, including
monkey faces) from different angles; the monkeys eventually achieved view invariance.
Considering the population of IT neurons, many (10%) were view-selective, but few
(1%) were view-invariant. Booth and Rolls[29] found the same pattern in monkeys
which had learned and manipulated real objects instead of images, helping to rule
out overtraining and maintain ecological validity. Together, this evidence convincingly

supports view-tuned recognition.

Single-unit recordings can provide only so much information. Real neurons have
thousands of afferents, meaning that they can decipher population codes. Kobatake
et al[30] recorded a total of 131 neurons from two monkeys, finding that training
increased population selectivity. Tanaka et al[31] investigated further, smoothly al-
tering the properties of stimuli shown to anaesthetised monkeys to find geometrical
shapes which activate particular neurons as strongly as possible. These inferotempo-
ral neurons were most strongly activated by quite complex shapes. When combined
into a population code, they have even more expressive power. Variations were smaller
along perpendicular electrode tracks, suggesting the existence of feature-selective mini-
columns. Neurons and columns are anatomical analogies for mid-level detectors in gen-
eral hierarchical recognition models such as HMAX. This view is supported by optical
recordings of macaque cortex performed by Tsunoda et al[32], which are consistent

with the representation of objects by combinations of feature columns.

After conducting an extensive study of visual agnosics, Farah[33] proposed that the
visual system possesses two recognition systems: part-based and holistic. She exploits
numerous patient dissociations to find support for mid-level object representations,
which she calls “psychologically real parts” to differentiate them from parts which
are physically real but not usually represented by the brain[34]. These dissociations
show convincingly that we have not one universal object recognition system but many,

specialised at the very least for faces and words. She posits a part-based recogniser
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(used mainly for words and not at all for faces) and a holistic recogniser (used mainly
for faces and not at all for words). These recognisers are both used for general object

recognition (neither faces nor words).

Evidence from the time course of perceptual processing can rule out particular
model classes. The fact that humans and macaques can deliver object classifications
within 300 milliseconds[5] limits the number of synapses over which a signal from the
retina may pass before reaching motor cortex. This has been interpreted to mean that
object recognition is a largely feedforward process[35] because there is not time for
signals to bounce back and forth between low-level areas and high-level areas. This
rules out models where many alternatives are tried in succession - but not models where
many alternatives are tried in parallel. However, most models of object recognition
are so high-level that they do not specify exactly how their rules may be implemented

on the neural level.

This difference in levels of description illustrates another dimension along which
models can be judged: their level of abstraction. The original Pandemonium, for ex-
ample, is a very high-level model consisting of verbal descriptions of shouting demons
which represent the magnitudes of a template match signal. HMAX is more complex,
possessing an algorithm which is precisely described in an actual Matlab implementa-
tion as well as in a high-level description. This multilevel description is what makes it
useful: models with only low-level descriptions (such as convolutional neural networks,
the state of the art in computational object recognition[36], and other neural networks
like deep Boltzmann machines[37]) can perform recognition, but they do not help us
understand how it is done. Recognition is trained into the network rather than de-
signed in. Once we have trained a convolutional network, it can perform the task, but
it has no high-level description or algorithm. It is described on Marr's physical level,
but not on the algorithmic level. In order to find out more about how the network

operates, we need to study it exactly as we do the brain.

Marr described exactly this difference in levels of description with his well-known
levels of analysis: the computational level (what the system does), the algorithmic
level (how the system does what it does) and the implementational /physical level
(how the system is physically realised). There are many such levels: we can describe

brain function in terms of the movements, of atoms, molecules, neurons and spikes,
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neurons and spike rates, cortical columns, or large brain areas. We can describe the
function of a computer in terms of individual electrons, transistors, gates, chips, and
functions. In both cases, there is a hierarchy of levels of representation.

This hierarchy need not be composed of nameable parts[38]. In faces, we have a
rich vocabulary of features such as eyes, mouth and nose. Face recognition systems,
however, do not start by localising these features; they use internal features without
names, such as Gabor patches[39] or jets[40]. A hierarchy of features does not imply
a corresponding hierarchy of words.

So far, the models we have examined only deal with recognition: the situation in
which an object appears in the visual field and is recognised according to an existing
definition. In reality, object categories are plastic: they are built up gradually during
development[41] or familiarisation[42]. Wallis[43] proposed a simple self-organising
network model of object recognition which learns its representations from data. Taking
256256 images as input, it performs edge detection and then feeds into two sheets
of neurons. These layers are trained sequentially using Hebbian learning ( “cells that
fire together wire together” [44]) with lateral inhibition. This model is very simple,
admitting that it does not accommodate position or view invariance (or even 3D
objects) and it also ignores important results about early vision, replacing simple and
complex cells by a trivial Laplacian-of-Gaussian edge detector.

Most models of object perception are general: they apply to the recognition of all
objects. However there is one specific object class that has received much attention

in the literature: faces.

1.1.1 Face perception

Humans and other primates use a complex arrangement of facial muscles to send signals
to their conspecifics. Because of their skill in face identification and evaluation, there
is a large amount of experimental and theoretical work on the recognition of faces
compared to other objects.

The capabilities of human face recognition highlight those of object recognition
in general. Faces can be easily recognised even in images of low spatial resolution:
humans can identify blurred versions of 7x 10 pixel faces at 50% accuracy[45]. Indeed,

the spatial frequency band which carries the most information about faces is low, about
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ten cycles per face[46].

Face perception is very vulnerable to high-level after-effects, such as adaptation
to age or gender. These are robust to low-level changes such as size[47], retinal
position, and rotation[48], showing that they correspond to the computation of high-
level invariants. Dimensions along which adaptation is strong are often considered to

form a high-level “face space” [49].

A surge in face perception research was initially motivated by the observation that
eyewitness reports of face identity were very fallible[50]. A series of influential models
were created to explain the burgeoning experimental results. Bruce[51] interprets them
according to Marr's three levels[52]. She points out that many purely computational
models are not hierarchical; they operate in a single step, transforming input data (the
analogue of the retinal image) to a high-level description (the analogue of the higher
representations in a hierarchical object recognition model). Conversely, she points out
that once we reach the algorithmic level, we find hierarchical theories such as that due

to Baron[53].

Extensive experimental results on face perception allow us to better understand
the nature of the feature hierarchies featured in models of object recognition. In early
models such as Pandemonium, next-level-up demons only responded to the presence or
absence of conjunctions of features. Human face processing is configural: it responds
not only to the presence of certain features, but to their relative location in space (first-
order configural properties) and to the variation of this layout between different models
(second-order configural properties). The top half of a face is often recognisable on
its own; when combined with the bottom half of another face, accuracy drops as the
foil half is unavoidably included in the configural perception process[54]. This type
of processing means that in any face recognition model consisting of hierarchically
arranged units, higher-level units must have access to detailed information from lower-

level detectors, not just a simple “I have detected this feature!” signal.

The well-known model of face recognition by principal component analysis (PCA)
is “flat” in that it processes an entire image in one step. Turk and Pentland’s initial
application of PCA to face recognition, for example, moves directly from an image to a
high-level principal component space[55]. Face images (around 100,000 numbers) are

projected into a high-dimensional space (as low as 12 numbers) according to a matrix
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found by exploiting correlations in a large face dataset. Support vector machines
(SVMs), another method obtaining among the highest computational face recognition
performance[56] are also non-hierarchical. Deep convolutional neural networks, which
have been successfully applied to face recognition[57], are hierarchical in that they
possess stacked layers of filters. The features within these layers are not defined,
however; they are left to self-organise during training, and so a trained deep network
must be studied to discover the features it detects and passes on to higher layers.
Moreno et al[58] compared a local descriptor based on the scale-invariant feature
transform (SIFT) and a hierarchical object recognition algorithm (Poggio’s HMAX)
on a face detection and localisation task using the Caltech faces database. HMAX
was found to out-perform SIFT, suggesting that faces are better suited to hierarchical

description.

Despite a scarcity of hierarchical models specific to faces, we can use evidence
from neural recordings to evaluate how well general object recognition models apply to
faces. In the macaque, view-tuned neurons seem to precede view-invariant ones[59].
As with general object recognition, view-invariance seems to appear last. What of
selectivity; the property of responding to only one object? In the macaque, temporal
lobe neurons rarely respond to individual faces[60], indicating that face identity is
coded by population in this region. Recent fMRI work[61] has revealed “face patches”
in the macaque with different functional roles: there appear to be two patches of
view-specific neurons, one of neurons invariant to reflection, and one patch of fully
view-invariant neurons. This pattern supports the sequential build up of invariance

found in models of recognition, as well as the precise ordering.

There is wide agreement that faces are processed differently than other stimuli,
but much debate about the question of holistic face processing: whether faces are
represented as sets of individual features, or as global wholes. Piepers[62] points out
a lack of agreement about what these terms actually mean. The concept of holistic
perception can be traced back to that of the gestalt, a unified whole with properties
that are greater than the sum of its parts[63]. Gestalts possess emergent features which
cannot be computed from the parts alone [64]; the classic example is a rectangle, which
is made up of four lines, but whose area we cannot calculate unless we see the lines

as a rectangle.
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Detectors for eyes, noses and other facial parts are presumed to output some
information about these parts: size, colour, and most importantly location. Feature
location gives us access to first-order configural properties (where the parts are), thence
to second-order configural properties (where the parts are in this face compared to in
other faces). Sensitivity to configural properties seems to start at birth[65]. Other
configural models, often from the computer vision literature[66], look at the arrange-
ment of key points or fiducial points rather than features, since it is difficult to define

the centre point of a nose or eyebrow.

Some models equate holistic and configural processing[67] whereas some differenti-
ate between them[68]. Configural processing requires detection of anatomical features
or keypoints so that their configuration may be computed. Holistic processing does
not require anatomical feature detection; it simply suggests that the entire face is

processed at once, as with template-matching models of object recognition.

Jiang et al[69] approached the problem of face detection with a hierarchical,
feature-based model which pools over simple, complex and then view-tuned units in
the same way as HMAX. Surprisingly, it was found to demonstrate configural effects,
despite the absence of any configural information or global templates. It demonstrates
the inversion effect and is sensitive to morphing in a similar way to human observers. By
showing that a large amount of behavioural data can be explained by a non-configural,
feature-based model, Jiang's account undermines experimental support for configural

processing.

A major focus of face perception research is the creation of measures of holistic
processing. The earliest was the disproportionate inversion effect: in faces, inversion
impairs matching accuracy more than in other objects[70]. This effect, however, could
simply indicate training for faces, and can be reduced by training[71]. Another measure
is the composite task effect, in which the bottom half of one face is shown aligned with
the top half of another face[54]. Observers are asked to identify one half. When the
other half is misaligned, their accuracy increases. The interpretation is that alignment
triggers holistic face processing, and the resulting whole-face code is contaminated
by the foil half of the image. The part-whole task is similar: observers are asked to
judge the identity of a particular feature inside a face, and increased accuracy under

inversion or face scrambling is taken as evidence of holistic processing.

27



The term “configural coding” creates some problems. As shown by Jiang, a con-
figural code cannot be differentiated from a feature-based code by behaviour alone;
we must use imaging to examine the representations themselves. As pointed out by
Barenholtz and Tarr[72], configural behaviour does not require low-level representa-
tions which are themselves configural. Globally, configural behaviour can be delivered
by local non-configural features which are not simply pooled over but arranged in a
certain pattern. Much work simply analyses the nature of these features, neglecting
the fact that they are part of a neural hierarchy which can carry information about
their arrangement in other ways than pooling.

Together, these definitions suggest a simple computational interpretation: we can
build a configural code from several independent local feature codes by some significant
computation. We can also produce a non-configural code from several independent
local feature codes by an operation such as binding. A bag of features, for exam-
ple, combines local features in a non-configural way: it does not keep track of their
precise location. Are configural representations built by trivially combining smaller
configural representations, or by combining smaller non-configural representations in a
complex way? Neurophysiological research, such as Rust & DiCarlo's measurement of
the transformations occurring between V1 and IT, is beginning to characterise these

computations.

Neurophysiology

Face recognition tasks increase BOLD response in many areas of cortex[73]. Haxby
et al proposed an influential distributed model of face processing[74] according to
which separate cortical areas process invariant and changeable information. In this
model, early facial features are constructed by the inferior occipital gyrus. Observing
these, the superior temporal sulcus (STS) constructs changeable features (such as
expression change or eye movement) while the lateral fusiform gyrus (otherwise known
as the fusiform face area or FFA) constructs invariant features. This arrangement is
a hierarchical model of face recognition: early features as processed in the occipital
gyrus correspond to low-level demons in the Pandemonium model, while identity or
expression percepts correspond to higher-level features. Unlike most object recognition

models, the hierarchy flows upwards in two separate directions (high-level expression
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features and high-level identity features) above the initial level.

1.1.2 The problems posed by natural scenes

Natural scene perception is a more challenging process than object recognition. The
standard task, which DiCarlo calls “core object recognition,” involves basic-level clas-
sification of a single already-segmented object. Natural scenes, however, pose two
additional and significant challenges: they require segmentation, and they are dynamic
in both space and time.

A typical natural scene contains many different objects of varying salience which
are not segmented from the background. We can therefore examine it with various
degrees of intensity, ranging from a quick glance in which we do not identify the
individual objects (gist extraction) to a full sequential examination of each object.
When searching for a target, the search space is continuous, as shown in Fig. [I.2] We
must segment the scene ourselves instead of relying on the provided segmentations
of a discrete search space. Segmentation is not always as simple as the separation of

nonoverlapping convex shapes; see Fig. [1.3]
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Figure 1.2: The challenges of visual search in a continuous search space. A) shows the
target, which is very difficult to find in B), a continuous search space, because of the
large number of overlapping potential matches (yellow rectangles). In C), the search
space has been split into nine segments, making matching much easier (the target is
at the centre of the top row). This illustrates the need to correctly abstract the search
space, imposing the right high-level groupings, in order to match the target.

Asking observers to categorise natural scenes (for example into grassland, mountain

or desert) is an example of gist extraction. Scene categorisation initially appeared to
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Figure 1.3: An illustration of the implausibility of automatic total segmentation: there
may be multiple shapes here, but their number is not immediately obvious. Any pair
of points, even if close together, cannot be preattentively labelled as “same object”
or “different object” without a time-consuming attentive process of examination.

be resistant to disruption by dual-task interference[75] or inattentional blindness[76].
However, Cohen et al[77] recently found that, with sufficiently hard auxiliary tasks,

both these types of interference reduce natural scene categorisation performance.

Perception can operate on more complex levels than simple classification. When
one is physically present in a scene, or studying an image of a scene in great de-
tail, stable object representations must be formed. It is here that theories of object
recognition[12] (10} [13], 9] fall short: they assume that a single object has already been

detected, localised and segmented, and that all that remains is to identify it.

Another deficiency of current models relates to the dynamic nature of natural
scenes. We often aim to detect not just the presence of an object, but a particular
pattern of movement. Specific body and hand movements carry useful information[78],
as do particular face movements[79]. An “object,” for example a hand, is a spatially
distinct part of a scene. If the scene is static, there is no temporal change; if the scene
is dynamic, recognition models integrate all views of the object together, binding them
under one view-invariant representation. Current models, however, do not explain how
we pick out particular temporal slices of a moving object (such as a distinctive hand-

wave) and represent them as events. We treat this problem in more depth in the next
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section.

There is symmetry here: an object is a spatially distinct part of a scene, and an
event is a temporally distinct part of a sequence, usually associated with an object.
An object’s boundaries are measured by asking an observer to outline it[80]; an event’s
endpoints are measured by asking an observer to press a button when it starts and
ends[81]. In neither case is there a definite solution: observers will disagree about the
outlines of an object[82] and the endpoints of an event[83]. However, in both cases,
observers can indicate a point which is definitely inside the object and an instant which
is certainly part of the event. An object or event can thus be seen as a distribution,
over space or time respectively, of the probability of being part of the object or event.

Core object recognition requires invariance to position, size, rotation, lighting,
configuration, and within-class variation. In addition, dynamic recognition requires
invariance to overall pattern speed and differences in relative pattern speed (a gesture
which is fast at the beginning and slow at the end should be matchable with the
original). Recognition of objects in cluttered natural scenes requires invariance to the

background and the number and type of other objects present in the scene.

1.1.3 The gist

The gist of a scene is a compact representation of its essential properties. Definitions
of the gist are often motivated by the examples of flicking through television channels
or observing rapidly presented image sequences. Oliva defines it as the representation
which allows “the phenomenal experience of understanding everything at once, regard-
less of the visual complexity of the scene” [84]. In reality, not every detail is stored, but
the observer has an impression of understanding of and familiarity with the scene. Gist
is often contrasted with “clutter,” the irrelevant details which can be ignored without
impeding the task.

The gist can contain diverse features: low-level descriptions of colour and texture,
spatial layout of the scene, scene class (such as “city” or “mountain”), salient objects,
and semantic knowledge of acts and affordances relating to the scene[84]. Potter
and Levy[85] were the first to demonstrate that scene-class cueing improved detection
in a rapid sequential visual presentation (RSPV) task. They showed that presenting

subsequent images interferes with the consolidation of the gist in memory|[86].
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The gist underlines another deficiency in current object recognition theories: the
brain may represent a scene in multiple ways at the same time, as when a gist is avail-
able as well as a more detailed image in visual short-term memory. Existing theories
of object recognition focus on feedforward recognition, not the comparison of a target
object in short-term memory to a candidate object being directly perceived. Visual
search tasks often involve evaluating a series of pictures for a match with a known gist.
How is information routed and compared between heterogeneous representations?

To summarise, existing object recognition theories do not deal well with the prob-
lems of natural scene perception. Scene complexity means that objects must be seg-
mented from the background and from other objects; this cannot always done as a
preattentive step by an imagined segmentation module, as shown in Fig. [1.3] It is
not clear how the gist and the spatial envelope could integrate with hierarchical feed-
forward recognition models. Finally, static theories do not extend well to the time
domain. We now discuss the role of time and dynamics in object recognition, using

the examples of motion, dynamic face perception and biological motion.

1.2 Recognising dynamic stimuli

So far, we have considered perception from the static perspective only. We now
introduce time. The world is rich in dynamic, varying stimuli which the visual system
is able to process and encode effectively. Most object recognition theories, however, do
not treat dynamic stimuli at all; they explain only how to represent static images. How
is a 3-second smile expressed in face space? We can think of it as a trajectory, but this
leaves us without a dedicated high-level representation for the dynamic expression.
How can HMAX represent a changing stimulus when it contains no provision for
encoding multiple time points?

There is much debate about the nature of time[87, 188, [89] and its neural
encoding[90, 01, [92]. It is important to distinguish between the concepts of dura-
tion and event time: duration is the amount of time which passes while an event takes
place, and event time is the time at which an instantaneous event takes place. The
event time of a non-instantaneous event must refer to an instantaneous point during

that event, such as its beginning or middle. When looking at dynamic visual search,
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we are concerned mainly with attaching an event time to an encoded spatiotemporal
feature. Models of duration are still worth consideration, since the event time of a
spatiotemporal feature is computable as the duration between the beginning of a clip
and the beginning of the spatiotemporal feature.

One central question is whether time is encoded as a quantity (a scalar value, such
as firing rate or a simple population code) or whether it is not directly represented on
the neural level at all, but is accessible as a high-level representation at the cognitive
level. Karmarkar and Buonomano show in a neural network model that time can be
encoded “in the absence of clocks” [93]. In other words, cortical networks may be able
to tell time without encoding it directly on the low level. They behave as though they
do, but this behaviour can be correlated only with change in their high-dimensional
state, not with a single local element (or a group of synchronised local elements) which

serve as clocks.

1.2.1 Motion

The human visual system is highly adapted to compute and process motion, both
on short and long timescales. Braddick et a/[94] suggested a two-process theory of
apparent motion. In this account, one process combines information over short spatial
and temporal scales and cannot operate dichoptically, whereas the other is capable of
detecting motion over larger spatial scales and without smooth displacement (as in
the phi phenomenon).

Cavanagh et al support the idea of two separate systems[95]. A low-level system
appears to specialise in detecting motion over short time intervals[96]. Stimuli such
as illusory rotating discs[97], or drift-balanced video clips[98] do not show any motion
in terms of their spacetime Fourier components; they defeat spatiotemporal energy
models. Such drift-balanced stimuli were therefore supposed to be unable to activate
this system, suggesting that the brain uses other methods to construct long-range
motion percepts. However, it has been suggested that this mathematical difference is
not enough evidence to posit separate motion systems[99]. The visual system is not a
mathematically perfect system, and the blurring effects of spatial and temporal filters
could give a drift-balanced stimulus the gradients necessary to activate a unified motion

system. The multichannel gradient model (McGM)[99)] is one such model. Benton et al
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[100] showed that spatiotemporal gradient histograms can contain enough information

to recover the direction of drift-balanced texture-defined motion.

Lu and Sperling[101] used pedestalled displays (in which a moving sine wave is
superimposed on a stationary sine wave of the same frequency) to muster evidence
for three separate motion processing systems: a first-order system computing motion
energy, a second-order system which can perceive the motion of texture-contrast mod-
ulations, and a third-order system which perceives and tracks features. The first two
systems are said to be exclusively monocular, while feature tracking is suggested to
operate interocularly. Feature tracking also requires higher stimulus contrast and has a
lower maximally sensitive temporal frequency (3 Hz as opposed to 12 Hz for the faster
systems). However, these conclusions are controversial; much evidence exists that

simpler systems can handle both motion energy and texture-contrast modulations.

Complex motion percepts can mix opposing low-level and high-level motion sig-
nals. Theta motion, for example, involves a moving area of the image which is itself
constituted of pixels which are moving in the opposite direction[102]. Fruit flies can
perceive the correct direction of both second-order motion[103] and theta motion[104],
showing that basic versions of these computations are tractable even by brains much

smaller than ours.

Intensity changes are central to motion perception; in reverse phi motion, contrast
inversion of one of a pair of alternating images (which would usually induce phi motion
due to displacement of the objects they show) reverses the perceived direction of mo-
tion. When motion is tested psychophysically, stimuli are usually carefully constructed
to yield a particular type of motion. When viewing complex natural scenes, however,
the same processes that generate illusions like reverse phi may use natural, fast varia-
tions in contrast to create complex percepts. Unless we have access to motion ground

truth, we cannot strictly call these “illusions.”

Motion percepts can be low- or high-level, reflecting variation in the amount of
information integration. Johnston[105] proposes terms for four classes of motion per-
cept. Local motion describes a dense field of velocities at each point in an image.
Object motion refers to the tagging of an object with a higher-level motion property
such as “fast” or “moving upwards” which could correspond to a large number of

motion fields. Object-based motion refers to change in the parameters of an object,
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such as the opening of an eye or the intensity of a facial expression. Finally, gestures
are patterns of object-based motion expressed as an ordered sequence. These levels
of motion recognition recall the ubiquitous hierarchies of object recognition models.
As soon as we impose a hierarchy, we create a segmentation problem as well.
Object-based motion relies on an object representation, whose parameters may vary;
gestures must be temporally segmented and picked out as part of a sequence. This
is of especial importance in natural scene perception, where objects are segmented
neither spatially (from the background) or temporally (by being presented along with
cues to their beginning and end, such as the start and finish of a trial). Dynamic
natural scenes are full of motion, and there is considerable work on the advantage that
motion confers on recognition. We now survey results on dynamic face perception,

dynamic object recognition and biological motion.

1.2.2 Dynamic face perception

Much early experimental work on face perception involved only static images. Real
faces, however, are always moving, both rigidly (by rotation and translation) and
internally (through the action of the facial muscles). A video of a moving face contains
much more digital information than one of a static face. How does the brain use this
additional information?

Bassili[106] provided initial evidence that the motion signal alone is useful. He at-
tached white dots to a face, recording the motion of local skin patches, then presented
observers with the dot motion alone. They were able to classify the six fundamental
expressions[107] better than chance. His further work[79] attempted to measure the
information carried by the upper and lower halves of the face in each expression.

One 1997 study[108] indicated a slight recognition advantage when a face was
learned from dynamic video and tested against static images. Similarly, Knight and
Johnston[109] found that motion conferred an advantage when recognising celebrities’
faces, but not when they were inverted. This was confirmed by Lander et al, who found
that motion conferred a recognition benefit when images were degraded[110], 111}, [112].
The role of motion information thus appears to depend both on familiarity and image
quality. Subsequent work, however[113| [114] found no such advantage for newly

learned faces.
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Motion may aid face perception by allowing the brain to construct a better 3D
model of a face: the representation enhancement hypothesis[115]. Conversely, motion
details may provide extra information which is secondary to static recognition: the
supplemental information hypothesis[112]. Haxby's distributed face recognition model
supports the view that motion information can be processed separately, as does a
clinically observed double dissociation[116]. Statistically, separating the two classes
of information seems to make sense: principal component analysis of moving faces
shows that identity and expression can be mostly coded by separate axes in PCA

space[117, [118].

O'Toole et al extended Haxby's model and linked it with the dual streams
model[I15]. They propose that static information is processed along the ventral stream
according to Haxby's model, while motion information is extracted in a general low-
level way by area MT (along the dorsal stream) and then interpreted in a higher-level,
face-relevant way by the STS. This “supplemental motion backup system” has been
supported by double dissociations in prosopagnosics[119] 120, 121] as well as the ob-
servation that natural speaker mannerisms make it easier to match video clips of a

speaking person to the corresponding audio[122].

Compared to static faces, moving faces possess an additional time dimension.
Features which change in time can be hierarchically organised in time just like parts
and subparts of an object are organised in space. For example, a smile is made up
of a mouth-opening movement and a mouth-closing movement; a wave comprises
a sequence of hand movements in opposite directions; and a conversation can be
broken into individual sentences, individual words, and individual phonemes. We use
this framework when splitting a video recording into separate portions (segmentation).
Hill et al attempted segmentation using chin position extrema as section points[123];

this is similar to using extrema of curvature to segment an object in space[11].

Do we have access to high-level representations of dynamic expressions? Curio et
al approached this question by testing for high-level adaptation to dynamic expressions
generated from 3D face scans[124), [125]. In each trial, observers were shown a dynamic
adaptor and then asked to classify a dynamic expression (disgusted or happy). The
adaptors, which were anti-expressions (anti-disgusted or anti-happy) were found to shift

judgement towards the corresponding positive expression. In an attempt to rule out
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low-level adaptation, the authors temporally reversed some of the adaptors, reversing
their low-level motion fields. This had no effect on classification, suggesting high-level
adaptation of representations describing facial features. The authors interpret this as
evidence for high-level dynamic expression spaces.

As soon as we gain the ability to segment a low-level stream of features, such
as a video of facial movement, we impose a higher-level description. This gives us
the ability to say that two different instances of a high-level feature, such as two
slightly different smiles, are the same on the high level (they are both a smile). How
do we describe the low-level ways in which a higher-level feature can vary? We use
various types of invariances. One is temporal constancy: the ability to say that two
expressions are speeded-up or slowed-down versions of one another[I05]. Another is
intensity invariance: the ability to say that an intense smile and a weak smile are the
same kind of expression. Finally, we have temporal invariance: the ability to detect an
expression at different points in time.

Temporal invariance is the equivalent in time of position invariance, a key concept
in object recognition[126], [127]. Temporal constancy (or speed invariance) is, similarly,
the equivalent in time of size invariance. Little attention has been given to dynamic
temporal invariance in object recognition. This issue will be addressed in more detail

later.

1.2.3 Biological motion

The ability to recognise other animals has great survival value, but often has to make do
with very poor information: predators may be occluded, prey may be camouflaged, or
conspecifics may be distant. The visual system has learnt to exploit sparse information
to recognise biological motion, as shown by Johansson's point-light walkers[128], which
enable recognition of walking human figures from a small number of dots at key
anatomical points.

If dots are placed at stable anatomical points (usually the limb joints), a large
amount of information can be expressed by a simple model. Troje[129] used a linear
discriminant analysis model to capture 98% of point-light walker variance using only
four components; an axis in this 4D space which corresponded to gender was found.

If dots were moved around on the body between frames, human performance was still
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above average[130], indicating that human biomotion perception involves more than

just local motion.

This was confirmed by Neri et al[131], who presented stimuli in which dots were
shown not continually but for two frames at a time. This dynamic temporal undersam-
pling ensured that observers did not have access to a continual global motion signal,
forcing them to integrate information across space and time. They were still able to
effectively perform both walker detection and walking direction judgement, despite the
presence of hundreds or thousands of dots (this study used QUEST adaptive thresh-
olding to vary the noise level). Observers' sensitivity also increased with longer walker
presentation. According to probability summation theory[132] [133], the authors in-
terpret this as evidence that biological motion is processed by a network of different

mechanisms with varying efficiency.

s biological motion internally represented as motion or form? Casile and Giese[134]
produced a stimulus intended to contain only motion information. Statistical analysis
of point-light walkers showed common patterns of opponent motion; these were ex-
ploited to produce walkers in which pairs of dots showed the correct opponent motion,
but were not arranged according to the form of real limbs. In naive observers, these
stimuli still produced an impression of a walking human body, suggesting that motion

information alone is sufficient for this percept.

Lange and Lappe challenged this theory using a model in which static, stick-
figure templates alone permitted recognition[135]. They used three types of point-
light walkers: Johansson's original walker[128], a version whose dots change position
between frames[130] and the walker due to Casile and Giese in which all dots move
randomly except those located near the hands and feet, which have a defined vertical
motion component[134]. The model was then made to perform direction discrimination

and direction coherence (between the top and bottom of the walker) tasks.

The model works by searching in parallel across all stored templates and attempt-
ing to match each dot to a limb. Showing the same pattern of results as human
psychophysical observers conducting the same tasks, it suggests that static form in-

formation can be effectively used to process biological motion.

38



1.2.4 Dynamic object recognition

Faces and bodies are not the only moving objects we are able to recognise. Animals,
plants and artificial objects are often able to deform or articulate, producing specific
patterns of shape change. We are able to imagine and recognise the distinctive patterns
of motion shown by moving water, clouds, and flames. Even if an object is not able
to change its shape, an observer can alter its retinal image by moving herself or the

object.

Recognition works on sequences of images produced as an object moves in relation
to the retina. One observation is key: the order of these images in time can help
link the various view-specific representations of an object. The brain does not learn
view-independent representations from a series of randomly ordered views, but exploits
their order in time. Biilthoff et al proposed a computational model of how this might
be done[I36]. Features are detected in an initial view of an object; as it rotates, they
are tracked, and when a sufficient number of features have disappeared (80% in this
study), a new set of features is established and tracked again. The first frame, and
the frames in which features are re-detected, are called keyframes and correspond to
stored views. The process of tracking features between a keyframe and a real view

corresponds to view interpolation.

There is psychophysical support for models of this type: Stone[137] showed that
3D shapes, learned while rotating clockwise, are harder to recognise when shown
rotating anticlockwise. Blanz and Vetter found that if faces are learned while they are
simultaneously rotating and morphing between two identities, the two identities are

more highly confused[138].

Computational models which take the time domain into account exist. Rolls’
VisNet is a hierarchical neural network object recognition model whose input is a spa-
tiotemporal sequence, not a series of static images[139]. The model stores a temporal
trace of recent input, which allows it to perform Hebbian learning[140]. This process
hints at how translation invariance might be performed: since objects often translate
across the retina, representations of an object’s retinal images will be temporally close
and will be learned. Hawkins' Hierarchical Temporal Memory (HTM) takes a similar

approach, using a stack of nodes which perform learning and inference[141].
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1.2.5 Time and neural binding

Binding is a property of neural systems which was proposed by von der Malsburg[4]
as a solution to the “binding problem”: the fact that object part representations must
be connected to object wholes, otherwise features may be confused between objects
and unreal feature arrangements may be hallucinated. The predominant theory is
that binding is implemented by temporal synchrony: high-level holistic object neurons
and low-level local feature neurons oscillate together, behaving as a unified neural
ensemble. The existence of this ensemble signifies the perception of an object.

Many theories of binding only consider the case of static object perception. How-
ever, it is well known that neural ensembles are easily entrained by dynamic or rhythmic
stimuli, as when watching movies[142] or faces which change in identity, generating
steady-state visual evoked potentials (SSVEPs)[143].

If temporal synchrony is to explain binding, it must thus also deal with changing
objects. This adds another layer of complexity to the problem, because high-level
object files must be bound with spatiotemporal features which no longer exist on the
retina or in early visual areas because the stimulus has changed. Perceiving dynamic

stimuli correctly requires representation of features which are no longer present.

1.2.6 Extending object recognition theories to the temporal

domain

Most object recognition theories deal with “core object recognition:” the classification
of uncluttered static images of a single object. Numerous attempts to extend these
theories to dynamic stimuli have been made.

It has been suggested that object appearance learning takes place by associating
a succession of views[I44]. This was tested by Wallis and Biilthoff[138], who asked
observers to learn sequences of heads which rotated in 3D and morphed in identity
at the same time. They then performed a delayed match-to-sample task, judging
whether two static faces were the same. Performance was lower for identity pairs which
had been morphed together, showing that temporal association caused confusion.
The authors’ interpretation is that temporal association links identity representations

together. Two control experiments convincingly eliminate the effects of morphing
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alone (by presenting morphs at the same time) and viewing the morphs in the wrong

order.

It is therefore clear that the temporal domain has a strong effect on object recog-

nition. How can static recognition theories be extended to the temporal domain?

One strategy is to use a local feature model to track identifiable image patches
through time. Biilthoff et a/[136] tested a classifier in which small features are isolated
in the first frame of a rotating face sequence, then tracked as the face rotates. Features
drop out or disappear due to occlusion or shape change; when enough features are lost,
a new “keyframe” is defined and a new set of features are detected. This computational
model provides evidence that local spatiotemporal features can represent a moving

object.

In general, how do we extend a static model to the temporal domain? The simplest
way of encoding a dynamic stimulus is to ignore its dynamism and take a static sample:
a snapshot. This, of course, does not relate to a strict instant in time, since even at
the retinal level neurons perform temporal integration. Even taking a single snapshot
can aid recognition of a dynamic sequence, since the visual system is often able to

construct correlations between a single frame and the rest of the sequence.

A more powerful approach is to use the model to sample temporally from the
input sequence, producing separate representations for each time point, as does the
Biilthoff model. We then face the problem of how to represent the time at which each
snapshot was taken. It may be enough to store snapshots without this information at

all, producing an unordered set of representations.

The next level of sophistication is to store multiple snapshots and also to represent
their order. If this is done by direct representation, as opposed to an emergent process
as described in[93], then there are several ways order may be stored. Firstly, the order
of snapshots may be stored, but not the delays between them. Secondly, the order may
be stored, along with the spacing between the snapshots. Thirdly, we may store the
order along with the offset of each snapshot from a single point in time, usually the
beginning of a stimulus. Wallis and Biilthoff’s rotation study provides psychophysical
evidence that order is taken into account when learning face representations, but does

not address the question of inter-snapshot delays.

Consider motion direction maps, which exist in macaque visual cortex[145]. Neural
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activation in a motion map is a representation of a changing retinal image, not a
static sample. High-level motion representations provide another example; a common
facial expression such as a smile is unlikely to be represented by a series of static
snapshots, which would lead to much redundancy of duplicated information. Such
central motion patterns are better represented by object-based motion (change in the

high-level parameters of an object description).

It is unlikely, then, that all dynamic stimuli are represented by sequences of static
samples. Some models perform temporal integration, which means that they compute

new representations which are more than bags, sets or lists of static representations.

An example from face perception helps to illustrate the point. Consider a 5-second
dynamic facial expression. Equipped with a PCA model which describes static face
images low-dimensionally (along the lines of [117) [146], we have two ways to encode
our dynamic stimulus. Firstly, we may represent each movie frame by its coordinates in
low-dimensional PCA space (“face space”). This gives us independent representations
for each frame. Secondly, we may arrange the low-dimensional coordinates into a
vector which describes a dynamic expression. We may then use other 5-second dynamic
expressions, described in the same way, to build an expression space by applying PCA
again. This gives us a space in which each point corresponds to a dynamic expression;

here, temporal samples (frames) are not represented independently.

Some of these encodings of time are independent of the neural substrate’s position
on the emergence-vs-direct-clocking continuum. However time may be encoded, and
whether it is stored locally and explicitly or not, we can still differentiate between
an ordering and a spaced ordering (which records order and inter-snapshot duration).
The final case, however, specifies the encoding: theorising that snapshot times are
stored as offsets from the beginning of the stimulus specifies that they must be scalar

quantities.

These issues show that the encoding and processing of event times, durations,
and dynamic stimuli are not very well understood. In the rest of this thesis, we use
psychophysics to investigate the visual system's ability to encode and search for video

clips of dynamic natural scenes.
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1.3 Our experimental approach

We have seen that existing theories of dynamic natural scene perception pose signif-
icant challenges for models of object recognition. In order to test the human visual
system'’s ability to encode, match and search for complex patterns of natural motion,
we performed psychophysical experiments using two natural stimuli: dynamic flame
and dynamic faces. Our flame stimuli were recorded from a hearth fire, whereas face
stimuli were captured from human subjects.

Several aspects of dynamic flame make it an appropriate stimulus for psychophysics.
There is high intra-exemplar variation: a single fire changes rapidly in form, providing a
difficult encoding challenge to the visual system. There is also little between-exemplar
variation: commonly-encountered fires are similar in overall colour and behaviour, since
they share a common fuel (usually wood) and are driven by the same chemical reaction
(combustion).

Our experiments are the first to measure the visual system's ability to encode
and match sequences of dynamic flame; previous work on dynamic natural scenes has
focussed on the extraction of descriptions and affordances from video clips, not their
encoding and matching.

Much attention has been paid to natural stimuli, including sunsets[147] and
water[148]. However, most of this work has focussed on judging material
properties[149], such as the viscosity of a liquid[I50] or the glossiness of a surface[151].
Such a property judgement is a mapping from an enormous space of low-level visual
percepts into a small space encoding the property in question, which may be one-
dimensional (in the case of temperature) or multidimensional (as in the case of surface
texture).

On the other hand, limited attention has been paid to our ability to encode the
dynamic form of rapidly-changing natural stimuli: to remember a particular exemplar,
to match it to other exemplars and to determine whether it forms a temporal part
of a longer stimulus. This is a much more taxing task, since it requires a low-level
pixel stream to be matched to another low-level pixel stream. A useful description of
the first stimulus, not just its position in temperature space or viscosity space, must
be encoded, maintained in memory, and matched with the description of the second

stimulus.
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We chose to investigate dynamic flame, the pattern of light produced by burning
gas. This stimulus is appropriate for several reasons. It is highly dynamic, posing an
encoding challenge to the brain’s motion system. It contains both sharp edges and
areas of continuous, smooth texture. It is associated with a strong high-level percept
of upwards motion, and it has an upright orientation, which may have allowed the
development of specialised encodings, as for dynamic faces. It is a stimulus to which
the human visual system has been exposed for a very long time: human control of
wildfires dates from as long ago as 1.8 million years, with frequent and certain use in
cooking and agriculture from 400,000 years ago[152]. Its importance may also have
led to specialised encodings.

Our experiments aimed to answer several questions:

e How well can observers perform temporal visual search on dynamic natural scenes
(specifically, patterns of moving flame)?

e What invariances do observers possess? Which low-level features help observers
perform matching (sensitivity) or do not impair matching when they are disrupted
(invariance)?

e How do observers encode and match dynamic sequences of varying lengths?
What are the effects of varying sample length and target length? Do observers
show target position invariance or search space size invariance?

e Is the adult human visual system specialised for the representation of dynamic
flame?

e How does dynamic flame matching ability compare to dynamic face recognition
ability?

e What directions of motion do observers perceive in dynamic flame, and how

spatiotemporally local are these motion percepts?

We now discuss (Chapter 2) our stimulus acquisition methods and experimental
setup, before conducting an analysis of the image statistics of dynamic flame (Chapter
3), then moving to a psychophysical evaluation of observers’ ability to match and
encode this complex example of dynamic form (Chapters 4, 5 and 6). We return in

Chapter 7 to a discussion of our findings and their implications.

Summary
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The human object recognition system is often described using hierarchical mod-
els.

Well-established models of object recognition concentrate on still, pre-segmented
images free from background or distractors.

Humans are very good at face perception, but models of this process are less

hierarchical.

There is still controversy concerning whether biological motion models are based
on motion features or static templates.

There is a paucity of models which treat the encoding of dynamic stimuli.
Models of static object recognition do not sufficiently explain our ability to

recognise moving objects in cluttered scenes.
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Chapter 2

General methods

As seen in the previous chapter, a wide range of object recognition models do not
satisfactorily explain our ability to recognise, match and search within complex dynamic
natural stimuli. Our experiments on dynamic form used two datasets of recorded
video (facial expressions and hearth fire) and a novel visual search paradigm: delayed
match-to-sample on clips of different lengths. This chapter details stimulus capture,
experimental setup, and the general paradigm. The following chapters describe each

experiment in more detail.

2.1 Recording and processing of stimuli

2.1.1 Fire dataset

A continuous 45-minute recording was acquired from a hearth fire using a Sony HXR-
NXS5E digital camcorder recording at 50 Hz with a shutter speed of 1/150 (the shutter
was open for 6.67 ms). The scene was lit by a mixture of natural and artificial light and
no CCD gain was applied. Video was saved directly to the compressed AVCHD format
at an initial resolution of 1024 x 768. Before presentation, stimuli were cropped to
564 x 641 pixels, removing the background and most of the fireplace. Individual
frames were decompressed and saved as bitmaps (see Fig. . Our experiments used
either a 1,000-frame (20-second) or 10,000-frame (200-second) subset of this corpus;
these datasets were short enough that there was little variation in the background,

preventing matching on easily-perceived static features such as displaced logs.
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Figure 2.1: Fire dataset.

(a) HD image as recorded

(b) Cropped image as displayed to observers (564 x 641)
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2.1.2 Face dataset

The facial movement dataset was recorded from four subjects using the same Sony
HXR-NX5E digital camcorder recording at 50 Hz. We asked subjects to read out
identical passages of text in order to obtain synchronised recordings of facial motion.
Firstly, subjects were asked to speak freely. Secondly, subjects were asked to speak
along with recordings played through their headphones. We used recordings of well-
known nursery rhymes. From each of the four subjects, we recorded one free-speaking

clip and three nursery rhyme clips.

Clip lengths (slightly different across subjects due to approximate trimming) were:

Rhyme Mean length

Free-speaking 2k frames (40 seconds
Hot Cross Buns 1k frames (20 seconds
The Grand Old Duke Of York 1k frames (20 seconds

(

Twinkle Twinkle Little Star 1k frames (20 seconds

)
)
)
)
Examples are shown in Fig. 2.2

2.2 Choice of subjects

We recruited observers from an email list operated by University College London.

Unfortunately, detailed observer demographics are not available due to a failure in
the database used to record observers' details; this database was improperly backed
up.Most subjects were degree or Masters students aged between 20 and 25. There
was an approximately equal balance between male and female observers. Observers

from wide range of ethnicities were present.

During each experiment, subjects were screened for accuracy during a training
phase, which was designed to be an easy task (average accuracy on piloting was found
to be 80% or higher). We followed the policy of rejecting subjects if they could
not perform better then 75% correct during the training phase. However, this rarely

occurred; only two subjects were rejected during the entire course of experiments.
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Figure 2.2: Face dataset. Cropped images as displayed to observers (655 x 686)

(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

2.3 Experimental set-up

Experiments were programmed in Matlab using the Psychtoolbox psychophysics
library[153]. Video was displayed by loading bitmaps into video memory and pro-
grammatically displaying each frame to the screen using Psychtoolbox’s texture man-

agement functions. This allowed precise control of frame rate.

Stimuli were displayed with a frame rate of 50 Hz on a Mitsubishi DiamondPlus
230 SB CRT monitor with a refresh rate of 85 Hz and a resolution of 1280 x 1024.
The active video area subtended a visual angle of 14 degrees; subjects used a chin-rest
at a distance of 57 cm from the screen. They were asked to keep their heads upright
and still. Subjects were not requested to fixate any specific point on the stimuli and

therefore could scan the video if they wished and time allowed. The experiments took

49



place in a darkened room.

We dealt with the mismatch between monitor refresh rate and stimulus frame
rate by scheduling screen redraws at the appropriate time using Psychtoolbox's Flip()
function. As opposed to requesting a screen redraw at the next available opportunity,
this strategy ensured that new frames appeared as close as possible to their ideal arrival
time, and that if a screen redraw was missed the rest of the stimulus presentation was
not delayed.

We logged the number of frames whose presentation missed the required deadline;
this happened on under 0.1% of presented frames, which is acceptable performance
with current video hardware.

All monitors used during these experiments were identically calibrated using a Cam-

bridge Research Systems ColorCal or ColorCal MKII.

2.4 The task: delayed match-to-sample

We used a delayed match-to-sample task, presenting a sample clip first and a test clip
second. Observers were asked to match the sample and test clips; in other words, to
indicate whether the shorter sample clip was present in the longer test clip.

In Yes/No tasks, we presented one sample clip and one test clip. In 2AFC tasks, we
presented two candidate test clips. Where tests were close in length to samples, ob-
servers were performing a matching task; where tests were much longer than samples,
they performed a visual search task.

Visual search is the process of finding a sample stimulus (or target) in a test
stimulus (search space or group of distractors). When targets and search spaces are
dynamic, the search space can vary in duration (ratio of test length to sample length)
as well as size (ratio of test size to sample size). We term “temporal visual search” a
search task in which the target is contained in a sequence of a longer duration than
the target clip, but both videos are the same size.

One form of temporal search is rapid sequential visual presentation (RSVP). Here,
however, the search space is not continuous, the target item is static rather then
time varying and stimuli are separated by gaps. RSVP is a series of comparisons with

separate objects rather than a search operation, in a continuous space, for a dynamic
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sequence. Our search task differs from RSVP in that candidate matches were not
pre-segmented; observers needed to find the sample in the continuous search space
constituted by the test clip.

A huge body of literature describes the behaviour of visual search under changes
in search space size[154]. How search for a dynamic event performs under changes in

search space duration, however, is relatively uninvestigated.

2.4.1 Trial structure

An example Yes/No trial in a visual temporal search experiment is shown in Fig. .
The sample clip is shown first, followed by an ISI and then a longer test clip. The
observer hits the up arrow if they think the target is present, the down arrow if absent.

The sample clip was either contained in the test clip (as a pixel-perfect copy), or
was chosen randomly from some other location in the corpus. This was implemented
by first randomly picking the test, then randomly picking the sample within it (for
true trials) or picking the sample from the whole database (for foil trials). Random
numbers were sampled from a uniform distribution. We also used 2AFC trials in some
experiments (Fig. . The observer hits the left arrow if she thinks the sample was
present in the first test clip, and the right arrow if present in the second test clip.
In this case we pick two test clips, then pick a sample randomly from one of them.
The most important independent variables are sample length, test length, test/sample
ratio, and inter-stimulus interval (ISI).

For some experiments we also produce a modified trial by manipulating or trans-
forming sample or test clips. Example transformations are inversion, filtering and

colour manipulation.

2.4.2 Instructions

Subjects occasionally found this trial structure difficult to grasp initially, so it was
important to ensure a consistent and effective set of instructions. We used the following

verbal instructions, along with the appropriate diagram from Fig. [2.3]

“In each trial, you will see a short clip and then a longer clip. The clips will

be the same physical size on the screen. We ask you to decide whether the
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Figure 2.3: Trial structure in temporal search

Real trial - Yes/no?

Sample Pre-length Sample Post-length

Sample Foil trial

(a) Yes/No: a sample is followed by a longer test, which may contain the sample (blue).
Real trials are those in which the tests contain the sample; in foil trials, the test is from a
different part of the dataset than the sample. Observers respond Yes or No, allowing the
application of signal detection theory. The test, which is longer than the sample, contains
additional distractor material: the pre-length is the duration of the distractor played before
the target, and the post-length is the duration of the distractor played after the target. For
tests which do not contain the target, pre-length and post-length are not defined.

Sample TestA Test B

(b) 2AFC: a sample is followed by two tests, one of which contains the sample (blue).
Observers respond A or B, meaning that naive signal detection theory cannot be applied.

first clip was present in the second clip, or not. If the first clip is present
in the second clip, it could be anywhere: from the beginning to the end.
In other words, the first clip might be a randomly picked section of the

second clip - or it could be a completely unrelated clip.”

2.4.3 Iconic memory

We noticed during piloting that percepts and memories of the first and last frames
of each clip are enhanced. As we wished to study the encoding and perception of
dynamic form rather than iconic memory for snapshot images, we ensured that first
and final frames never co-occurred across sample and test. This would have provided
an easy route to matching using iconic memory. Instead, we ensured that samples
were always picked to begin or end at least one frame away from the endpoints of the

test clip.
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2.4.4 Training

We usually used some training trials (around 20, see individual experiments) before
the main body of the experiment. The example condition we used varied across exper-
iments, but it was always an easy version of the main task. During training, subjects
were shown the mean accuracy of their last ten trials. We required their accuracy to
be above 75% correct in order to continue to the main experiment. This ensured a)
that subjects could perform the task and b) that they were paying attention. However,
in all the experiments described in this thesis, only two observers were rejected due to
low accuracy in the training phase. We did not give feedback after each trial or block

during the main experiment.

2.4.5 Block structure

Blocks were timed to be 10-15 minutes long. Subjects were asked to have a 2-minute
break between blocks, and offered refreshments. There are several aspects of block
structure which are worth noting. Firstly, a factor (for example test length) held steady
within a block allows the observer's visual system and task-set to acclimatise to that
condition. Secondly, we did not give feedback during the main experiment in order to

reduce observers' opportunities to test and rely on high-level strategies.

Summary

We used a dynamic flame dataset, which poses a natural and complex dynamic

form encoding problem to the visual system.

e A delayed-match-to-sample paradigm was used: a sample was encoded and
compared against one (Yes/No) or two (2AFC) tests.

e To prevent iconic memory providing an easy matching cue, we ensured that the
first frame of the sample was never the same as the first frame of the test. The
same was true for the last frame of the sample and test.

e When the test/sample ratio was only slightly higher than 1, we have a matching

task. Higher test/sample ratios correspond to a temporal search task.
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Chapter 3

Image domain analysis

Dynamic flame is a familiar part of the natural world, but its image statistics have
not been studied in detail. The computer vision literature mentions algorithms which
detect fire[155}, [156] (157, 158, [159] [160, [161], but these all focus on detecting flame in
video feeds (often from security cameras), not examining its statistics or representing
it in a biologically plausible way. In this chapter, we use a variety of methods to

investigate dynamic flame in the image domain.

We can characterise the challenge which video stimuli pose to the brain by analysing
the raw pixels that make them up. Even without a human observer, image-based
techniques can reveal identifying statistics which hint at the strategies the visual system
may use to recognise and classify images. This chapter reports our analyses of dynamic

flame in the image domain using averaging, Fourier analysis and motion analysis.

How do we study natural scene videos in the image domain? When we have access
to a set of images from the same category, we can simply align and average them;
this idea goes back to Galton in the 1870s[162]. Provided that each image possesses
features which can be aligned with the others, this technique can show whether the
class possesses a common global structure. Torralba et al [163] used this method to
produce average images for various types of natural scene.

We can also apply mathematical transformations to individual images. The Fourier
transform is particularly useful. The mapping of a 2D image into the frequency do-
main shows us the distribution of spatial frequencies present in that image (its power
spectrum). A series of studies[164} [165], [166] have observed that the power spectrum

of natural images is often of the form 1/f® with a &~ 2. An orientation bias is also
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often present, with vertical and horizontal orientations occurring more frequently than
oblique ones[167]. What kinds of power spectra are present in images of dynamic
flame? We address this question using the 2D and 3D Fourier transform.

Most of the literature on natural scenes describes only static images, which are
much easier to acquire, store and work with. With video sequences, such as our
dynamic flame dataset, we have access to a fundamental percept: motion. We report
conflicting estimates, returned by two modern algorithms, of the low-level motion
present in dynamic flame.

Finally, we discuss efforts to model dynamic flame using three widely-applied tech-
niques: principal component analysis (PCA), PCA with a shape-detecting morph
model, and dynamic texture modelling.

Throughout this chapter, we analyse a 5000-frame (20-second) flame dataset which
was also used in our psychophysical experiments; see Chapter 2 for details of capture

and preprocessing.

3.1 Image statistics

Figure shows four randomly chosen images from the 1000-frame dataset. No
amplification or stabilisation was used. Frame rate is 50Hz, corresponding to one
frame every 0.02 seconds. We chose a high shutter speed (1/150 s), meaning that
each frame integrates information from a period of the stimulus lasting 6.67 ms.

We note immediately that the flames shown in each frame have a well-defined
shape. Their edges are distinct and fairly sharp. Occasionally, flames lack well-defined
edges, fading smoothly into the background.

There is hardly any variation in the appearance of the logs; this 1000-frame dataset
was chosen to keep the log position constant so that observers could not use it as a
cue in matching tasks. We note (see the first and third frame) the occasional bright,
upwards-moving spark.

Figure |3.2 shows four sequential frames. We can see that there is high correlation
between successive frames; the two separate flame peaks in the first frame are shown
merging into a single peak in the last frame. The stimulus has been sampled frequently

enough to capture the similarities between successive frames. Can we still detect

55



Figure 3.1: Four randomly chosen images from our dynamic flame dataset. Frame
rate is 50 Hz.

similarities between frames which are further apart?

3.1.1 Similarity measures

To investigate, we measured three metrics of image similarity: absolute pixel difference,
Euclidean distance, and the structural similarity (SSIM) index. Pixel difference was
calculated as the absolute value of the sum of differences between images I; and I

over the n pixels:

n

D =) "IL(i) - Li). (3.1)

=0

Euclidean distance (the square root of the sum of the squared differences) was
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Figure 3.2: Four sequential images from our dynamic flame dataset.
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calculated between the points in image space corresponding to each frame. We note
that, in the absolute value of the sum of differences, positive and negative differences

will cancel, whereas in the Euclidean distance they will add as squares are taken:

n

D= | (L(i) - (i) (3.2)

=0

The SSIM index is a simple but perceptually-motivated measure of image
similarity|[L68] with less dependence on noise. It uses separate contrast and lumi-
nance comparisons to generate a similarity measure, aiming to separate structural
information from illumination (algorithm flow chart shown in Fig. . Although its
perceptual validity has been debated[169)], it is useful as a comparison metric. The

SSIM between two windows = and y is

(2papty + €1)(204y + c2)
(2 + py + 1) (0% + 05 + ¢2)

SSIM(z,y) = (3.3)

where /i,is the average of z, i, the average of y, o7 the variance of z, o7 the
variance of y, 0., the covariance of z and y, ¢; = (k1L)?, o = (k2L)? two variables to
stabilise the division with weak denominator, L the dynamic range of the pixel-values
(typically 2Pits-per-pixel 1) "and finally k; = 0.01 and ky = 0.03.

Figure [3.3| shows how these similarity measures decrease as we compare images
which are increasingly separated in time. Across all metrics, as separation increases,
similarity decreases very quickly, reaching a minimum at a separation of 10 frames (0.2
s). Similarity then remains constant at this minimum. The similarities detectable by
these indices, then, are very local in time. We see no peak in similarity after a particular
time; these indices do not show any periodicity in the stimulus. These functions do
not fit well with a straight line on either log-log or semi-log plots.

The structure of flame, then, is transient and rapidly changing. What structure do

we see if we increase our temporal integration period by averaging over time?

3.1.2 Average images

Ever since Francis Galton’s work with the average faces of criminals and law-abiders

in the 1890s[170], producing the average image of a dataset has been used to show
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Figure 3.3: A,B,C): Image similarity indices decrease with frame separation in time.
Each of these curves is the mean similarity-by-separation function of 625 different
frames. A similarity curve was produced for each of the 625 frames; the mean of these
curves is shown. Axes are inverted for the absolute pixel difference and Euclidean
distance, making values nearer the top of the Y axis reflect similarity instead of dif-
ference/distance. All three indices reach a minimum after approximately 10 frames
(0.2 seconds), showing that image similarities are very local in time. D) Flow chart
showing the operation of the SSIM algorithm.

global structure. Does fire have a global structure? To investigate, we produced the

mean image of the first 100, 1000 and 5000 frames of our flame dataset.

The results are shown in Fig. [3.4] An average of the first 100 frames shows clearly
that the stimulus has two main components: a static background made up of logs,
and a semitransparent dynamic flame component. The background never changes
significantly, as we chose a dataset with no variation in log position. Observers must

therefore use information from moving flames in order to match images.

An average of the first 1000 frames shows the same overall structure as the first
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100, but is more smooth. It reveals two “flame columns” side-by-side. However, this
is a very different average structure from that revealed by Galton's faces. The human
face has a resting shape which is stretched and warped into an individual expression by
muscle movements; this resting shape is revealed in an average image. Each frame of
the flame stimulus, however, is made up of shapes which have little relation to those

present in distant frames. They are not warped or deformed versions of the average.

A) First frame B) First 10 frames C) First 100 frames

D) First 1000 frames E) Random 5 frames F) Random 10 frames

G) Random 50 frames

Figure 3.4: Mean images, showing stimulus structure across time. A) The first frame.
B) Mean of the first 10 frames. C) Mean of the first 100 frames. D) Mean of the first
1000 frames. E) Mean of 5 random frames. F) Mean of 10 random frames; there is
less coherence than in B. G) Mean of 50 random frames.
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3.1.3 Variance

The mean images suggest that frames in the dataset tend not to change around the
border, but are highly variable in the centre. We can confirm this by looking at the
variance of each pixel across the 1000-frame dataset, as shown in Fig. [3.5] Most
of the image has very low variance; the areas corresponding to the two flames have
higher variance. We note two areas of very high variance: the small flame on the left

and the horizontal area under the front log.

Analysis of individual images, image similarity and variance shows that flame stimuli
are locally self-similar in time and show a common structure when averaged, but that
the shape of each individual frame is not a deformation of the average shape. The
decrease in image similarity with frame separation suggests that flame does not have
a periodic, repeating structure. To look at this issue further, we use Fourier analysis.
Our 3-dimensional dataset can be investigated with three types of Fourier transform:
on the 1D average brightness signal of the whole dataset (or of an individual pixel),

on individual 2D images and on the entire 3D image stack.

4500

3000

1500

Figure 3.5: Variance image of the central area of the dataset. Each pixel shows the
variance of the corresponding pixel across the 1000-frame dataset. We note two areas
of very high variance: the small flame on the left and the horizontal area under the
front log.
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3.2 Fourier transforms

3.2.1 1D Fourier transforms

Objects are often blurred (as with a TV screen on which one is not focussing correctly)
or seen in the periphery (as with a traffic light seen from the corner of one's eye). In
these cases, the visual system can downsample a complex percept to a one-dimensional
brightness signal. We can treat our fire dataset as a one-dimensional signal z(t) by

calculating x(t) as the mean luminance of the frame f(¢).

This signal is shown in Fig. [3.6 It exhibits variation on both small and large

temporal scales.

Performing a fast Fourier transform (FFT) on this signal gives the power spectrum
shown in Fig. [3.6] The dataset’s sampling frequency is 50Hz; we show the spectrum
up to the Nyquist limit of 25Hz, above which aliasing may occur[I7I]. We do not
show the linear plot, since the large DC component at 0 Hz swamps the rest of the
spectrum. On a semi-log-Y plot, the power spectrum appears approximately straight,
except for the values very close to the DC component. On a log-log plot, the power

spectrum fits well to a straight line up until about 4 Hz, when it drops below the line.

We note a sharp peak in the spectrum at approximately 16 Hz. Due to its sharpness
and artificiality, this appears to be a compression artefact due to the AVCHD codec
used to encode the stimulus, and is not intrinsic to the stimulus. 16 Hz is likely to
be the frequency at which the codec describes an entirely new frame as opposed to

encoding the difference from the previous frame (a keyframe)[172].

We used base 10 logarithms throughout. A straight line in semi-log-Y space with
equation log,,(y) = mx + ¢ corresponds to an exponential curve in linear space with
equation y = 10™**¢ (see Fig. . Thus, the power spectrum is well approximated

by an exponential curve of the form

power = 1Om*frequency+c (34)

For the 1D spectrum fit, the parameter values are

power = 10—0.106*frequency+4.823 (35)
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A wide variety of phenomena in neuroscience and the natural world have power
spectra that follow a 1/f curve matching the spectrum of pink noise[173] 174, [I75].
This spectrum is thought to indicate the presence of complexity and interactions on
multiple spatial and temporal scales[176, [175]. The spectrum of the 1D average
luminance signal from dynamic flame approximates a 1/f curve (which plots as a
straight line in log-log space) from 0 to 4 Hz, then drops below it. Overall flame
luminance therefore shows less power in the high frequencies (4-25 Hz) than pink
noise.

The presence of an exponential spectrum suggests that dynamic flame is produced
by a system which is not completely correlation-free (as is white noise) but does not
exhibit as much multi-scale complexity as a system exhibiting the classic 1/f power
spectrum.

We lose a great deal of information by creating a time series from the mean
luminance of each frame. To look more closely at the spatial structure present in each

frame, we produced 2D Fourier transforms from individual frames.

3.2.2 2D Fourier transforms

We begin by taking the individual 2D FFTs of a set of representative images. Three
individual spatial spectra are shown in Fig. [3.8} the mean of 5000 spectra is shown in
Fig. [3.9] The vertical line present in each spectrum is due to edge effects; we shortly
describe a re-analysis which uses a Gaussian window to eliminate these. In some of the
individual frames, we note an asymmetry between power in the vertical directions and
the horizontal directions. The mean spectrum displays an “X" pattern, with the legs
of the X tilted closer to the vertical than the horizontal. This indicates that dynamic
flame contains spatial frequencies oriented at an angle close to the vertical: the video

contains periodic patterns closely aligned with the vertical.

3.2.3 2D Fourier transforms with Gaussian window

Our previous Fourier analyses used unaltered images, meaning that edge effects may
appear on the power spectra. In order to differentiate between edge effects and features
of the stimulus, we repeated the 2D FFTs after applying a circular Gaussian window

to each frame.
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Figure 3.6: A) The mean luminance signal from the first 5000 frames (100 seconds).
B) This signal's power spectrum in semi-log-Y space approximates a straight line,
indicating an exponential power distribution. C) This signal's power spectrum in log-
log space. In both cases we note a peak at circa 16 Hz which appears to be due to
video compression.

We analysed a 450x450 pixel region centred on the middle of the video. The
standard deviation (100) was chosen so as to zero the values at the edges of the

image, eliminating edge effects. In this dataset, cropping and windowing also has the
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Figure 3.7: Power spectrum of the 1D brightness signal, plotted in semi-log-y

space with a line fit. The line's equation is loglO(p) = —0.106 * f + 4.823 or
p= 10—0.106*f+4.823_

effect of removing most of the background from the image, allowing the analysis to
focus on the perceptually important elements: the flames at the centre.

Fig. [3.10] shows three individual-frame power spectra and the mean of 5000,
calculated from the same dataset as the previous analysis. The vertical lines are
absent, confirming that they are due to edge effects. The 2D mean power spectrum
has a very different shape, with less power near the edges and a more coherent pattern
near the DC component. There are three prominent streaks emerging from the DC
component, oriented off the vertical; this indicates that there are three directions in

which spatial oscillations are more likely to fall.

3.2.4 Individual pixel Fourier transforms

The FFT also allows us to analyse the global structure of the flame dataset. By
treating each pixel as a 1D signal, we can perform an FFT on the time-course of each
pixel and investigate the frequencies present in different parts of the frame. Fig. [3.12]
shows the spectrum of an individual pixel near the centre of the frame. This particular
pixel's spectrum is well fit by a straight line in semi-log-y space.

How do frequency domain characteristics vary as we look at different parts of the

stimulus? To investigate, we fit a line to each spectrum in log-log space and recorded
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Figure 3.8: Power spectra from three individual frames, produced by 2D FFTs. The
space axes are linear and the power is colour-coded in log space (otherwise, only the
high DC peak is visible). There is a strong vertical line due to edge effects. The first
two frames show power peaks angled slightly off the vertical.

66



282 et L1 GhEa T T T 7 R o LT 2o

—_
(o]

—
N

188 [ AR

Il
—
N

94k

cycles per image height

o

I

-

1

| |l

(0] —
o

log power spectral density

]
()]

)
N

N

1eg BRI L AL

o

:|'. 15 ] i -.:.":|':. FieE
106 0 106 213 320
cycles per image width

ogo LEETR Y ©
320 213
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is visible). There are no obvious peaks in any particular direction. There is a strong
vertical line due to edge effects.

its slope and intercept. Since we have one line fit per pixel, we can plot the slope and
intercept as an image, as shown in Fig. [3.13] Lower slope means relatively more low
frequencies than high frequencies, which we see in the static parts of the image. The
slope increases as we move from the logs to the top of the image, indicating relatively
more high frequencies. Higher intercept means more power in the lowest frequencies,

which we see again in the static parts of the image.

We also note a heavy gridding effect; this is due to the AVCHD compression codec,
which splits the image into small parts for improved coding. Compression effects are
more pronounced in the high frequencies, where miscoding is not as perceptible to the

human eye.

These slope and intercept maps show the relative frequencies present in different
parts of the image, showing a clear pattern of low frequencies just above the logs and
higher frequencies moving upwards. The encoding challenge for the visual system is
clear: a complex mix of static form (the logs in the centre of the frame) and both slow

and fast temporal oscillations.
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Figure 3.10: A,B,C): Power spectra of three individual frames, produced by 2D FFTs.
These frames have been cropped to 450 x 450 px, removing the static background, and
a Gaussian window applied (standard deviation 100 px). The mean spectrum is much
cleaner than that of the uncropped, unwindowed data, showing three definite streaks
and an off-vertical envelope. E,F): Example monochrome images with a Gaussian
window applied in order to eliminate edge and background effects.
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We repeated the line fits on the same data in semi-log-y space, since we observed
better fits than in log-log space. We also restricted the fit to the spectrum below 15
Hz, to avoid any compression effects above the artificial peak at 16 Hz. The results,

which are very similar and show fewer compression artefacts, are shown in Fig. (3.14]

Having access to the power spectra for each pixel, we generated a series of images
showing the power of each pixel at a particular frequency, from the DC component
to the Nyquist frequency of 25 Hz. Each of these images shows the power of each
pixel signal at the key frequency. The entire video is available on the accompanying
CD (PixelFFTFrequencyVideo.avi). A selection of still images are shown in Fig.
3.11] as is the colour legend corresponding to the video. We can see that at low
frequencies, there are peaks in power near the logs and in the gaps between them (the
source of combustion). At higher frequencies, most power is present in the hot gas
rising from the logs. This pattern shows that different frequencies dominate in each
area, a pattern which the visual system could exploit when scanning a stimulus for

encoding. At each frequency, we note a smooth variation of power in the flame area.
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Figure 3.11: A selection of still images showing the power of each pixel at specific
frequencies. These were generated from the individual-pixel FFTs. The DC component
corresponds to the average image. At low frequencies, power is concentrated around
the edges of the logs and in the gaps between them. As we move up to higher
frequencies, power is located more towards the hot gas rising from the logs. Bottom
right: colour legend for the video PixelFFTFrequencyVideo.avi.
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Figure 3.12: A) Power spectrum of the FFT of an individual pixel near the centre of
the frame, in lin-log space. B) The same spectrum in log-log space. The spectrum
is approximately linear up to about 12 Hz, fitting with 1/f noise. Between 12 and
25 Hz we see more power than we would expect for 1/f noise. There is a peak at
about 17 Hz which is likely a characteristic of AVCHD compression. C) A line fit to
the spectrum in log-log space: the fit is not as good as for the lin-log plot between 0
and 10 Hz.
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Figure 3.13: A 1D FFT was performed independently on each pixel of the 5000-frame
(100-second) dataset. A line was fit to the power spectrum (0 - 25 Hz) in log-log
space and its slope and intercept were recorded. A) Slope: lower slope means relatively
more low frequencies than high frequencies, which we see in the static parts of the
image. B) Intercept: higher intercept means more power in the lowest frequencies,
which we see at the base of the flames. There is gridding due to AVCHD compression,
which has more effect in the high frequencies. Thus, a line was fit to the first half of
the power spectrum (0 - 12.5 Hz) in log-log space. C) The slope of this line shows a
similar pattern. D) The intercept of this line shows less effect of compression. The
base of the flame shows more power in the lowest frequencies.
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73



3.2.5 3D Fourier transforms

t-slice (2D spatial spectrum),
| | X-slice (vertical and temporal frequencies)

\5_7

Q:bb'
.

(0

® DC peak /

| t: 5000 frames (100 s)

y: 564 pixels

I y-slice (horizontal and temporal frequencies)

Figure 3.15: Result of a 3D Fourier transform of the image stack. The DC peak is
in the centre of the volume; we can produce either y-slices (which show the temporal
and horizontal frequencies at a particular vertical frequency), z-slices (which show
the temporal and vertical frequencies at a particular horizontal frequency) or t-slices
(which show the horizontal and vertical power at a particular temporal frequency).

Reducing the dataset to a 1D signal allows us to characterise its temporal spectrum
as exponential; expressing individual frames in the Fourier domain shows their spatial
structure. In order to look at both spatial and temporal oscillations, we perform a 3D
Fourier transform of the 5000-frame dataset. Images were first converted to greyscale
using MATLAB's rgb2gray() function. The Fourier transform produces a 3D volume
which we can render to 2D in various ways: t-slices, xz-slices and y-slices, as shown
in Fig. 3.15] A t-slice at a particular time point shows us the spatial frequencies
present at that time; a slice at a particular z-coordinate shows us the frequencies
present in the temporal domain and the vertical domain at that z-coordinate, and
slicing at a particular y-coordinate shows us the temporal and horizontal frequencies
at that y-coordinate. We note that pixels near the centre of the x- and y- slices do not
correspond to information near the centre of the original images, but to information
about low vertical and horizontal frequencies respectively.

The 3D FFT is most useful because it allows us to see how spatial frequencies vary

across different temporal frequencies, rather than looking at individual time points
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and averaging them up. Fig shows a selection of characteristic spatial spectra
(t-slices). The DC component shows us the temporally static spatial frequencies:
we note a strong vertical line due to edge effects. This is only present in the DC
component, however: the two spectra on either side of the DC component (showing
the most slowly oscillating frequencies) do not show this line. They do however show
the asymmetric X pattern previously noted, showing more power in directions slightly
offset from the vertical and horizontal. As we move away from the DC component,
looking at spatial frequencies which oscillate faster temporally (slices 3750 and 1250),
we note a degradation of this pattern; these spectra do not show the X, and have
more power in the horizontal directions. The same pattern is found at the highest

frequencies (slices 1 and 5000, at the Nyquist frequency of 25 Hz).

We produced three videos (see CD in Appendix A) which run through the t-slices,

x-slices and y-slices:

FFT _tSlices.avi The x axis shows horizontal power, the y axis vertical power. We
can see that power is mainly horizontal at high temporal frequencies, but shows a

characteristic x-shape at low temporal frequencies.

FFT _ySlices.avi The x axis shows horizontal power, the y axis temporal power.
There is a horizontal line at the temporal DC component, which is an artefact of the
lack of temporal windowing. We can see that at low vertical frequencies, power is

concentrated near low horizontal frequencies.

FFT xslices.avi The x axis shows vertical power, the y axis temporal power.
There is a horizontal line at the temporal DC component, which is an artefact of the
lack of temporal windowing. We can see that at low horizontal frequencies, power is

concentrated near low vertical frequencies.

This analysis characterises dynamic flames as a spatially and temporally complex
stimulus, with no particular frequencies carrying most of the power. To remove spatial
edge effects, we now repeat this analysis with a circular Gaussian window applied to

each frame.
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Figure 3.16: t-slices of the image stack FFT, showing the spatial frequencies at a
particular temporal frequency. A) At the highest temporal frequency, horizontal power
predominates. B) Halfway between the highest frequency and the DC component.
C) Close to the DC component, at very low temporal frequencies, we rediscover the
tilted cross pattern, showing more horizontal and vertical frequencies. D) The DC
component shows the constant spatial frequencies. The X pattern is maintained,
along with a vertical line which is due to edge effects. E,F,G): the same observations
are repeated.
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Figure 3.17: z-slices of the image stack FFT, showing the spatial and vertical frequen-
cies at a particular horizontal frequency. At low h-frequencies, near the DC component,
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Figure 3.18: y-slices of the image stack FFT, showing the spatial and horizontal
frequencies at a particular vertical frequency. We find a similar pattern to the z-slices
(for low v-frequencies, there is more power in low h-frequencies). Near the DC v-
frequency, there seems to be more power in the low t-frequencies than we find in the
low t-frequencies near the DC h-frequency (see x-slice figure, where the horizontal
marks extend further outwards). This indicates that long vertical oscillations move
faster in time than long horizontal oscillations, which fits with the vertical displacement
of gas.
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3.2.6 3D FFT with Gaussian window

Since the Fourier transform treats input images as if they are tiled on an infinite plane,
unaltered images can cause edge effects: frequencies appear in the spectrum which
correspond to the “false edges” produced by placing two copies of an image next
to each other. To eliminate these effects, we faded out the edges of the images.
We applied a circular Gaussian window to each image in the 3D image stack and
performed a second 3D Fourier transform. Each frame was windowed individually and
there was no windowing in the time dimension. Fig. shows the windowed stimuli
and results of this analysis. We note an absence of vertical lines in the spectrum,
confirming edge effects as their source. We make the same observations as with the
non-windowed stimuli: at high frequencies, more horizontal power is present, but at
low frequencies power is spread in two near-vertical directions (as shown by an X shape
in the spectrum).

As with the previous 3D FFT, three video clips showing the tslices, x-slices and
y-slices are included on the accompanying CD.

The videos confirm the observations made with the unwindowed 3D FFT, confirm-
ing that none of them are due to edge effects.

FFT_Gaussian_tSlices.avi The x axis shows horizontal power, the y axis vertical
power. We can see that power is mainly horizontal at high temporal frequencies, but
shows a characteristic X shape at low temporal frequencies.

FFT_Gaussian_ySlices.avi The x axis shows horizontal power, the y axis temporal
power. There is a horizontal line at the temporal DC component, which is an artefact
of the lack of temporal windowing.

FFT_Gaussian_xslices.avi The x axis shows vertical power, the y axis temporal
power. There is a horizontal line at the temporal DC component, which is an artefact
of the lack of temporal windowing.

Fourier transforms give us information about the power present in different areas
of the spatiotemporal frequency domain; we analysed the a large 5000-frame dataset.
Human observers, on the other hand, perceive restricted areas of the stimulus (up
to several seconds) and extract a limited amount of information which is useful for
matching. In dynamic flame, motion percepts are particularly strong. In the next

section, we look at the results of applying motion algorithms to dynamic flame.
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Figure 3.19: t-slices of the Gaussian-windowed image stack FFT, showing the spatial
frequencies at a particular temporal frequency. A) At the highest temporal frequency.
B) Halfway between the highest frequency and the DC component. C) Close to the DC
component. D) The DC component shows the constant spatial frequencies. E,F,G):
the same observations are repeated, since FFTs on real numbers are symmetrical. We
note the same patterns as for the non-windowed images, but without vertical lines,
which confirms edge effects as their cause.
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3.3 Motion

Motion is one of the core percepts of visual experience. Moving shapes carry very
useful information, whether they are facial features[106] or body parts[128]. There
are several brain areas strongly implicated in motion processing[177], [178]. Information
about motion appears to be a key part of the representation of visual scenes.

Natural scenes, which are likely to contain animals and non-rigid plants, are full
of motion. Interestingly, not much attention has been paid to the motion statistics
or percepts of natural scenes[I79]. This is partially because dynamic natural scene
stimuli are difficult to acquire; most studies are performed using still images.

The same is true for theories of object recognition; most models deal with the clas-
sification of still images and do not deal with moving features or changing objects. The
representation of moving objects poses a challenge for current theories of recognition.

Flame is a stimulus typical of natural scenes: it is chemical in origin and complex
in form. In this section we investigate the motion properties present in dynamic flame,
a complex, fast-moving phenomenon made up of rapidly shifting shapes.

What do we perceive when we mentally picture a flame? Observers often report
upward motion, and this is corroborated by features whose motion is easy to measure:
sparks, which are trivial to track as they move upwards. These details are relatively
rare, however, and a substantial motion percept is also available from the luminance

gradients in the flames and the moving edges formed by their outlines.

3.3.1 Optical flow

When watching a video of flame, observers predominantly report upwards motion.
Does this match with the motion fields produced by optical flow techniques? We
investigated using two models of motion perception: the multichannel gradient model

(McGM) and a method due to Sun, Roth and Black[180].

3.3.2 Multichannel gradient model

The McGM is a bio-inspired spatiotemporal gradient model[181], [182] which has per-
formed well under changes in illumination and interference from static patterns[183].

Here we employed a reduced form of the standard McGM which employs a log Gaussian
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temporal filter and its first and second derivatives. We used a dataset which contained
1000 consecutive flame images 564 pixels high and 641 pixels wide. The McGM was
applied separately to each pair of sequential images, creating 999 full optical flow fields

of the same size as the images.

3.3.3 Sun et al model

This model, described fully in[180], uses the basic optimisation methods of Horn and
Schunk[184] and Black and Anandan[I85]. Given two images, the components u
and v of the optical flow field are chosen to minimise an objective function. Sun
et al use several additional techniques including a coarse-to-fine estimation pyramid,
interpolation and median filtering. This model was at the top of the Middlebury optical
flow technique rankings[186] in 2010.

This model assumes (after Horn and Schunck) brightness constancy and spatial
smoothness. It does not assume oriented smoothness, rigidity constraints or image
segmentation[180]. Regularisation is employed (adjusted for good results on the Mid-

dlebury evaluation) and median filtering is used in post-processing.

3.3.4 Results and model comparison

As with the McGM, we applied the Sun et al model to each consecutive pair of frames
of a 1000-frame dataset, producing 999 optical flow fields of the same size as the
images. Some example fields are shown in Fig. [3.200 We use the same direction-
magnitude colour coding as the Middlebury motion evaluation[187].

The McGM is characterised by a detailed map of small areas moving in different
directions, with nearly as much activity around the edges as in the centre. Sun's
method, on the other hand, detects most motion in the middle, with hardly any
around the edges. It tends to report a larger blob of consistent motion.

The mean flow fields produced by the two methods are shown in Fig. [3.21] The
two methods agree about the main direction of motion, both reporting predominantly
upwards motion.

To investigate further, we binned the motion directions into 40 equally sized direc-
tional bins around the unit circle. We then produced two histograms: one showing the

number of pixels whose motion direction belonged to that bin, and one showing the
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total magnitude of all the motion vectors belonging to that bin. Each histogram was

computed across all 999 optical flow fields, once for the McGM and once for Sun'’s

method.
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Figure 3.20: A,C) Flow fields computed between two pairs of consecutive images by
the McGM. This method is sensitive to noise (near the edges of the frame) but detects
separate motion directions for the flames near the centre of the image. B,D): Flow
fields for the same pairs of images, computed by Sun’s method. There is less sensitivity
to noise in the edges of the frame, but this method tends to show a common direction
of motion for the flame patterns near the centre. E) Colour wheel showing direction
as hue and speed as intensity (after the Middlebury motion evaluation project).
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Figure 3.21: Mean flow fields produced by two motion algorithms from 1000 con-
secutive frames (999 motion fields). A) Colour wheel showing direction as hue and
speed as intensity (after the Middlebury motion evaluation project). B) Mean flow
field produced by Sun's method. There are plenty of areas which agree in their motion
estimation, indicating that this result may depend on the static structure of the image.
B) Mean flow field produced by the McGM. Local areas of motion in different direc-
tions have cancelled out, giving an overall slight downwards motion. We note some
areas of motion downwards and to the left (green) around the borders of the logs. The
McGM is also influenced by the background: the logs and fireplace are perceptible as
static (white) areas.
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The results are shown in Fig. [3.22l The McGM detects motion in all directions,
with a bias towards the four cardinal points and a very slight bias towards the horizontal
directions over the vertical. This pattern is borne out when the count histogram is

scaled by the magnitude of each vector.

In terms of the number of vectors associated with each direction, Sun’'s model
detects more motion in the downwards direction. However, when we scale by the
magnitude of each vector, there is an overwhelming bias towards upwards motion
and rightwards-upwards motion. The difference between the count histogram and
the magnitude-scaled histogram shows that Sun’s method detects many downwards-

pointing motion vectors with very low magnitude.

Why are these two models inconsistent? Sun's method works by iteratively solving
equations which assume brightness constancy and spatial smoothness, which are not
valid assumptions for flame. The McGM, on the other hand, works in a more biologi-
cally inspired manner: spatial filters produce a Taylor expansion of the local derivatives
of image points, and a number of direction-sensitive detectors operate separately. The
McGM is not set up as an optimisation problem: it is purely feedforward, and uses
little post-processing apart from thresholding. Despite these differences, they produce

similar results on simple visual stimuli such as gratings or stereo pairs.

The inconsistency between two highly-performing methods, the McGM and Sun's
method, show that optical flow methods are not well-suited to describing the com-
plex motion percepts obtained from fire. With artificial optical flow stimuli, we can
obtain the motion ground-truth by recording object displacement or imaging hidden
fluorescent textures[187]. Since fire is not a rigid moving surface, however, there is no

ground-truth available for its motion.
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Figure 3.22: Circular histograms of the directions of motion estimated by the McGM
and Sun's method over a 1000-frame dataset. Pixels were sorted into 40 bins by
direction of motion. A,C) The graph shows bin counts only, showing the distribution
of directions. B,D) The graph shows the total magnitude of all vectors in each bin,
showing the quantity of overall motion in each direction. Overall, the McGM finds
slightly more horizontal motion than in other directions, while Sun's method finds
much more motion upwards and to the right. The two algorithms disagree.
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3.3.5 Four-dimensional McGM model

Both the McGM and Sun's method take only two images as input; they are thus unable
to make use of temporally non-local information, as can the human visual system. To
overcome this problem, we applied a version of the McGM which operates on an image
stack: the sMcGM. This operates in a similar manner to the two-frame McGM, with
more than two images available as input to the temporal filter operations used to

calculate the velocity of each pixel.

We applied the sMcGM to a stack of 500 images, using a temporal filter size of
23 frames (contrast to two frames previously). An example flow field is shown in Fig.
; a video is present on the accompanying CD (sMcGMDynamicFire.m4v). The
top left panel shows blurred input images; the top right shows direction view (speed is
ignored); the bottom left shows a speed view (direction is ignored); the bottom right

shows a combined view with hue indicating direction and saturation indicating speed.

Fig. shows the mean flow field found by the sMcGM. It is fairly coherent in

terms of direction, consisting mainly of a smooth flow field pointing upwards.
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Figure 3.23: An example flow field produced by applying the sMcGM to a stack of
standard flame images. Top left: temporally filtered version of the stimulus. Top right:
a single flow field (from one frame to the next, but taking into account temporally
local frames); direction is shown. Bottom left: speed of the same field. Bottom right:
direction scaled by speed, for the same field.

3.3.6 Applying the four-dimensional McGM to edge-filtered

images

Edge filtering is a key task of the early visual system. We show experimentally in
Chapter 4 that humans are capable of encoding and matching an edge-filtered version
of the flame database; see Fig. for example images. This indicates that the
visual system is encoding dynamic form as well as local, low-level motion signals. We
wondered how well the sMcGM, whose temporal integration window makes it the most

capable model we studied, responds to edge-filtered images.

We repeated the previous analysis, running the sMcGM on a series of 500 edge-
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filtered images. The average flow field is shown in Fig. [3.24} black areas represent
pixels where NaN was returned, while white areas represent pixels with very small

motion vectors.

The edge-filtered data contain enough motion signals to give a central zone with
mainly upwards motion. The edges of this area, however, show motion towards the
right (red band). We did not observe this in any other motion analyses; it does not
appear to be an artefact of the sMcGM, since it was absent from the previous analysis,
and it cannot be introduced by the edge filter since we convolved the original images

with a horizontally symmetric filter (see Chapter 4).

This analysis shows that a low-level motion evaluator is able to recover the correct
overall motion direction from edge-filtered dynamic flame. Edge information alone
can induce a reasonable motion percept, and since our two motion algorithms do not
explicitly treat displaced form, this result does not suggest that the brain must rely on

computing displaced form to obtain a directional motion percept from flame.
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Figure 3.24: Mean flow fields produced by the sMcGM, which operates on a stack of
images. A) Colour wheel showing direction as hue and speed as intensity (after the
Middlebury motion evaluation project). This serves as a key for the two flow fields
shown here. B) Mean flow field produced by the sMcGM from a standard dynamic
flame video; this is the average of each frame's incremental flow field relative to the
previous frame. There is very little motion around the logs, the mean flow field is
smooth, and the main direction of motion is up. C) Mean flow field produced by the
sMcGM from edge-filtered images, one of which is shown in D). Because most of an
edge-filtered image consists of black pixels, the algorithm has not returned any motion
estimations for the edges of the image. Around the logs, the mean flow field consists
of very small vectors (white areas). The algorithm has determined a sensible (upwards)
direction of motion from the dynamic flame area (purple); there is a red crest, which
may indicate rightwards motion of the flames’ top edges. D) An example edge-filtered
image (see Chapter 4 for filter details).
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3.3.7 Is dynamic flame drift-balanced?

Drift-balanced stimuli are usually created to defeat the correct perception of motion by
motion energy models. Precisely, a drift-balanced stimulus is one whose power in the
frequency domain is symmetric with respect to temporal frequency: if every spatially
oriented oscillation is equal in power to its oppositely-oriented counterpart. A microbal-
anced stimulus is one in which every spatiotemporal region, considered separately, is
drift-balanced[98]. The human ability to perceive motion in non-drift-balanced stimuli
has been proposed as evidence for multiple motion processing systems[95], although
some authors disagree[99]. Observers certainly perceive motion in dynamic flame; can
we address the question of whether it is drift-balanced?

The 3D power spectrum produced by a full-stack Fourier transform shows no ob-
vious asymmetry to the eye, but it is irrelevant as it is produced from a 5000-frame
sequence which observers never see in full. Given the large amount of oriented gradi-
ents present in dynamic flame, it is difficult to imagine that it is drift-balanced. Such
stimuli require care to construct and it is extremely unlikely they will come about by
chance in the natural world.

In Chapter 4 we create edge-filtered versions of flame stimuli which contain no
luminance gradients. Although not explicitly drift-balanced, these videos are much
closer to displaced form stimuli and would not be expected to activate traditional
motion energy models very strongly. They nevertheless elicit motion percepts in both
human observers (who report a sense of upwards motion as in unfiltered images) and

a gradient-based motion model, the sMcGM.

3.4 How can we encode fire?

We can learn about a new stimulus by trying to build a computational model which ef-
fectively encodes it. Here we review our efforts to effectively represent clips of dynamic
flame in high-level spaces using PCA, a morph model, and a dynamic texture synthesis
algorithm due to Doretto[188]. Finding an effective way to reduce the dimensional-
ity of a stimulus supports the idea that the brain may do this as well, as is the case
with the popular PCA models of face perception (face spaces). PCA, although a linear

technique, can construct a low-dimensional face space allowing near-photorealistic face
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generation. When computational efforts fail, they can inform us about the challenges
posed by the stimulus.

Any video clip can be effectively encoded as a plain list of pixels. The kinds of
encodings we are really interested in are those which allow us to compress a stimulus,
to reduce its dimensionality; since this is also the job of the visual system, these encod-
ings suggest ways in which a stimulus might be represented neurally. The successful
application of PCA to co-registered face images, for example[55], suggested that face

perception may employ a mean-centred, low-dimensional face space.

3.4.1 Principal component analysis

We began by applying plain PCA to a 1000-frame dynamic flame database. Results
were not encouraging; reconstructed images were blurred and did not look much like
real flame; see examples in Fig. [3.25] We observed similar results even when re-
constructing using a large number of principal components (fifty). This highlights an
important difference between fire and faces: faces have a general structure which is
deformed by the facial musculature to produce an individual expression, whereas the
structure of flame is much less constrained.

When PCA is applied to faces, the first few components often match well with
high-level characteristics of the image: identity[I89], gender[190] or age[191]. It is
not surprising that this is not the case for flame, since its variation is mainly within-
exemplar as opposed to within-category. However, the observation that the first few
flame PCs differ very little is key: the algorithm is not able to effectively extract useful
high-level descriptions at all.

PCA also does not support the automatic generation of video sequences in a
reasoned way; this must be done manually by moving a point through PC space and

generating a series of images from the trajectory.

3.4.2 Morph space PCA

Morph space PCA is a motion-based morph model which decomposes an image into
a texture and a warp field before applying PCA[192, 193, [194]. We applied this
morph model to our hearth fire dataset. This method gave blurred and unrealistic

results, since the morph component was unable to find correspondences between pairs
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Figure 3.25: The results of naive PCA on a dataset of monochrome flame images.
A) The mean image, showing average form. B) Images produced by setting the first
two component loadings to -1 standard deviation, with other loadings at zero. C)
The corresponding image at +1 standard deviation. The principal components are
extremely similar and not very informative.
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of images, which display very different structure as they contain multiple changing
flames. Reconstructed images were similar to those produced by naive PCA. This
confirms that PCA could detect no general structure even with the ability to warp and

deform textures.

3.4.3 Dynamic texture synthesis

A more complex encoding is found in Doretto’s dynamic textures algorithm[188]. This
system begins with the observation that a dynamic texture has high-level percepts
which are stable over time. Moving clouds or flowing water have rapidly changing low-
level features, but their high-level interpretation (clouds or water) does not change;
the nature of the texture is stable, even though its pixels are changing. Doretto models
this by making a texture a stationary stochastic process on the high level. The low
level (synthesised images) are generated from this high-level representation.

Since this model does not depend on storing a common shape and deforming it,
and uses a time series rather than generating a sequence of independent images, we
hypothesised that it might encode and reconstruct flame more effectively. We used
the dynamic texture synthesis model (with default parameters) to produce a series of
flame images; results are shown in Fig. [3.26] The images are more realistic, especially
when viewed as a video clip; the structures they contain deform smoothly over time.
The output still does not look much like real flame, however; it lacks the sharp edges
and well-defined shapes of the real flame dataset.

The failure of these three techniques to produce realistic images suggest tentatively
that more powerful techniques are required to construct a good high-level represen-
tation of dynamic flame. There are several low-level constraints such a system would
have to satisfy: flames have sharp edges, and successive images tend to be very similar.
Linear techniques such as PCA, and fairly unconstrained generative techniques such
as dynamic texture synthesis, cannot fulfil these requirements.

Low-quality reconstruction does not prove conclusively that fire cannot be encoded
simply, but they provide convincing evidence that finding a high-level description of
authentic low-level flame sequences is a difficult problem. In later chapters, we use
psychophysical matching experiments to ask whether the brain has access to such a

representation.
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3.5 General discussion

We have used motion and Fourier analysis to characterise dynamic flame as an unpre-
dictable, rapidly-moving stimulus with little global form and few long-range correla-
tions. Physically, a fire can be decomposed into a static element (logs) and a dynamic
element (flames). The static element is of little interest; although logs do move, they
do so very little, and we chose the dataset used in our psychophysical experiments to
be free of such movement.

Producing the mean of a set of flame images gives us an “average flame” which
becomes smoother and less sharp as we increase the number of images. Dynamic flame
thus has an average structure; but it is not a base structure in the sense that it can
be deformed to accurately reconstruct a single flame. Classes of stimuli such as faces
often form an equivalence class; each one can be transformed to accurately represent
the mean, and the mean can be transformed to reconstruct each instance. This is not
the case for fire; frames which are distant in time are so different that encoding them
as a transform from a mean does not save much information over encoding them as
single images.

What kinds of visual features can we construct from fire? We used Fourier analysis
to express the 1D global brightness signal, individual pixel signals, individual 2D frames,
and the entire 5000-frame 3D image stack in the frequency domain. Natural scenes
often show a 1/f power spectrum, which plots as a straight line in log-log space; the
1D brightness signal appears to be exponential, which shows less power in the high
frequencies (4 to 25 Hz) than a 1/f spectrum.

We usually find 1/f spectra in complex systems with structure at multiple scales.
Exponential spectra have not been reported in natural scenes or any stimuli used
in psychophysical experiments, although they have been described in high-energy
plasma[195] 196]. The high energies present in flame and plasma may explain why
their spectra are more similar to each other than to those produced from lower-energy
complex systems which usually produce 1/f spectra.

An exponential spectrum displays a smooth variation in power across the frequency
range. There is thus no particular spatial or temporal frequency band which contains
more oscillations than other areas (apart from a peak at 17 Hz due to AVCHD video

compression). This poses a challenge for the visual system, which cannot concentrate
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on a particular frequency band, as it can for spatial frequency in face perception[46,

197].

What motion features do we find in dynamic flame? We applied two motion
evaluation algorithms, the multichannel gradient model (McGM) and Sun’s method,
a model descended from that of Horn and Schunk. Like the Fourier transform, these
methods measure dynamic changes in the image stack, but they are much more local
(considering only a pair of frames) and much more perceptually inspired. The two
methods disagree, with the McGM constructing small patches of global motion and
Sun’s method finding larger patches of motion, with little change around the edges of
the image, although they find the same overall motion direction. Circular histograms
of the directions of motion associated with each pixel also disagree, with Sun’s method

returning two main directions of motion.

These methods are optimised for slightly different tasks (see [181], [182] for the
McGM and [180] for Sun's model), so it is not surprising to find slightly different
results. The fact that the results are so different underlines the fact that there is no
motion ground truth present in fire. There are no rigid moving surfaces or deforming
objects, only a 3D gas cloud which is projected, via the recording equipment, on to

the observer’s retina.

We applied three modelling techniques which have shown excellent results at re-
constructing faces (PCA and morph space PCA) and dynamic textures (DTS). PCA
produces reconstructions which do not look much better than the dataset’s average
image. DTS captures flame textures well, but fails to properly reconstruct the form of
the flame's edges or its dynamics. The failure of these techniques shows that flame
is a complex stimulus which is difficult to reduce in dimensionality, and that it has no
common structure. This suggests that the brain cannot represent dynamic flame as a

deviation from a prototype.

Analysis in the image domain allows us to build up a picture of dynamic flame as
a fast-moving, complex stimulus containing fragmented areas of motion in different
directions, a layer of static form, smooth texture variations, and shapes with defined
edges. Such a stimulus poses a difficult encoding challenge for the visual system. In
subsequent chapters, we test observers’ ability to match and evaluate clips of dynamic

fire against long-standing category representations and short-term memories of similar
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clips.

Chapter summary

Flame images have no general structure which can be smoothly deformed to
produce individual frames.

Frames close in time are very self-similar, but become very different after about
0.2 s according to low-level metrics (Euclidean distance, absolute pixel difference
and SSIM).

Dynamic flame sequences show an exponential frequency spectrum.

Individual flame images, and 2D spectra at low temporal frequencies, show a
characteristic spatial spectrum with most power close to the horizontal and
vertical.

Two modern motion algorithms, applied to dynamic flame, disagree in the sizes
of patches of coherent motion which they report. They agree, however, on the
overall direction of motion.

PCA, morph space PCA and dynamic texture synthesis are not able to produce
effective high-level encodings of dynamic flame.

Overall, image-based analysis characterises dynamic flame as free of long-range

spatial or temporal correlations.
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Figure 3.26: Six consecutive frames produced by Doretto’s dynamic texture synthesis
algorithm. Reconstruction is low quality; flames seem to be overlapping transparencies
rather than shapes with definite edges, they have a very similar overall shape (which
is maintained even across nonconsecutive images) and an sense of upwards motion is
not present.
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Chapter 4

The features of dynamic flame

When we look at a natural scene, we are able to extract diverse visual features: the type
of landscape[198], the objects present[199] and the gist[200]. Some, like the gist, are
holistic: they apply to the whole image, and cannot be mapped to a particular position.
Other features, like colour, luminance and edge orientation, are more local, and can
be evaluated for a small, specific area of an image (as small as a pixel for colour, or a
3x 3 pixel patch for edge orientation). Dynamic features, such as motion percepts, are
nonlocal in time. In this chapter, we describe an experimental investigation into the
features of dynamic flame, aiming to measure their relative importance for matching.
We examine colour, orientation, and temporal order, before looking at the importance

of motion in observers’ category representation of dynamic flame.

What is a “feature?” There are two common usages in the literature. The first,
which we term a local feature, refers to a spatially restricted (local) part of an image
(“the red square is a distinctive feature”, and “facial features” such as the eyes and
nose), as used in feature integration theory[201]. Pixels are local features, although
they are not always individually perceptible. The second, which we term a nonlocal
feature, refers to general property which can be computed from an image and is not
restricted to a local part (such as colour or texture). Colour, luminance and motion
are examples; they may be attached to a local feature, such as a red square, but also
refer more generally to aspects of the stimulus as a whole, or specific percepts which
may be computed from local image patches. In this chapter, we are interested in
the importance of colour and motion (nonlocal features) to dynamic flame matching.

We are also interested in whether the matching process is invariant to the spatial
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arrangement of any local features which may be computed, and to their temporal

arrangement.

In this chapter, we are interested in matching, not search; this means that in the
delayed-match-to-sample tasks we set observers, the first clip (the sample) is close in
length to the second clip (the test). The test is always slightly longer so that first
and last frames do not co-occur, allowing an easy route to matching through iconic
memory. In the next chapter, we use much longer test clips, allowing us to characterise

the search process.

How do we rank nonlocal features in order of importance for matching? When
an observer perceives a still image, we call this importance judgement salience[202].
Regions of distinctive colour, for example, are highly salient in natural scenes[203].
Bottom-up salience is computed without reference to task goals or a search target[204].
When an observer performs a matching or search task, however, top-down salience is

informed by the representation of the target.

One way to measure the salience of a feature is to examine the effect of distractors.
Initial work by Neisser[205] and later by Treisman[201] established a two-stage theory
of visual processing: the generation in parallel of a set of basic features, followed by
a higher-level serial process. When the target is surrounded by similar objects, some
features (such as unique colour or orientation) cause it to pop out independently of the
number of distractors[206]. Higher-level features, such as conjunctions of two simpler

features, often require a serial search strategy.

How similar must a stimulus be to the target in order to act as a distractor? This
question was investigated by Julesz, who conjectured[207] that identical second-order
statistics were sufficient to render two textures indistinguishable without close examina-
tion. Although eventually proved false [208], this conjecture motivated Julesz' division
of visual processing into an automatic, preattentive system and a computationally

intensive, spatially local process, focal attention[209].

Natural scenes pose a special challenge here. Since they are not easily decom-
posable into conjunctions of simple features, like an artificial display of coloured dots,
it is harder to characterise the features involved. Complex scenes are also harder to
synthesise convincingly. Accordingly, most experiments on natural scenes use recorded

images rather than synthesising their own stimuli.
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Here we take a hybrid approach: we record authentic video of a natural scene, then
manipulate it to alter or completely remove certain nonlocal features. For example, we
can remove colour information from a clip by rendering it in monochrome. We then ask
an observer to match an original, unaltered clip with an altered clip. We reason that
if the observer can accurately decide whether the two clips are the same, the missing
feature does not provide evidence which helps with the decision. If, however, the
altered clip cannot be accurately compared with the original clip, the missing feature
must carry important information which is useful for matching. In this way, we can
use a matching task, along with a feature manipulation, to evaluate the importance

of that feature for matching.

Which features should we examine? Much of the low-level visual search literature
concentrates on colour and shape. Since our scenes are not synthesised, we cannot
directly alter the shapes they contain. We can, however, alter the colour: after express-
ing clips in hue-saturation-value (HSV) space as opposed to the native red-green-blue
(RGB) space[210], we can rotate the hue value by 180 degrees, creating a clip whose
luminance pattern is perceptually similar to that of the original but whose colour has
been radically altered. This representation also allows us to easily alter luminance,
another basic nonlocal feature. By inverting the value (V) channel, light areas of an
image can be rendered dark (and vice versa) while the hue percept of each pixel is

unchanged.

In Chapter 3 we examined, computationally, the motion signals present in dynamic
flame. Motion is a broad concept applicable to different levels of processing, as dis-
cussed in Chapter 1. Low-level motion can be computed from a very small retinal area
by simple computations (Reichardt detectors) or more complex neural processes (cells
acting as spatiotemporal filters). Instantly displaced form can constitute motion, as in
the phi and beta illusions. Finally, smooth change in the parameters of a morphable
object (such as the intensity of a smile or the colour of a feature) can give rise to
high-level object-based motion. Which of these kinds of motion form a useful part of

observers’ representations of dynamic flame?

Another alteration which can tell us much about object perception is inversion:
playing a clip upside down. This can be done either by a 180 degree rotation or by a

reflection about the horizontal axis. Here we use a 180 degree rotation, for consistency
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with the 90 and 270 degree rotations we also apply to stimuli. The study of inversion
effects has a long history in face perception research. First investigated by Yin[70],
decreased face recognition performance under inversion has been interpreted as a sign

of specialisation (whether innate or acquired) to upright faces.

There are really two separate issues at work here. We see the first in the problem
of viewing an inverted face, remembering it, and matching it to an inverted face. A
performance drop here indicates a lower-quality representation of inverted faces. The
second issue is at work in the problem of viewing an upright face, remembering it, and
matching it to an inverted face. In this case, accurate comparison requires the observer
to be able to compare an upright face to an inverted face: they must have access to
a representation which is stable across inversion, or use a process of transformation

(mental rotation).

A study of the effect of inversion is also applicable to natural scenes. The first case
(both sample and test inverted) is discussed in Chapter 6. In this present chapter we
examine the second case: the sample is inverted and the test is upright. Observers'
performance here can inform us about the object recognition strategies being used. If
we find a small or nonexistent accuracy drop when the sample is inverted, observers
are using a representation which is stable across inversion. At one extreme, this could
mean that the representation is intrinsically insensitive to inversion (the 1-dimensional
mean luminance signal of a video clip, for example, has this property). At the other
extreme, it could mean that the observer can perform a computation which effectively
compares an inverted representation with an upright one. Alternatively, performance
might be compromised by such a process of mental rotation, which would lead to an

accuracy drop.

The three manipulations just described (colour alteration, luminance inversion and
spatial inversion) can be applied equally to static images or dynamic video clips. We
apply these manipulations to clips by independently altering each frame and reassem-
bling the resulting frames into a clip. As such, these manipulations cannot tell us
anything about dynamic object perception: how we represent and compare moving
objects. As we have seen in Chapter 1, theories of object perception principally con-
sider static images, and dynamic stimuli pose problems for these theories. How well

do these theories explain the perception of dynamic flame?

102



To address this question, we perform a fourth manipulation: temporal inversion, or
backwards playback. By asking observers to compare an original clip with its reversed
equivalent, we examine whether their representations are sensitive to the temporal
order in which frames are displayed. A small or null drop in accuracy here would
indicate the involvement of a representation that is not sensitive to temporal order.
As with spatial inversion, this could either be due to the representation being unaffected
by ordering (a static frame produced by averaging over the frames in a clip has this
property, as it is the same whatever the order of the frames) or to the observer’s ability
to effectively compare the representations of a forwards clip and a backwards clip. On
the other hand, a large accuracy drop would indicate either that the representations
are intrinsically sensitive to playback direction, or that the observer cannot perform a
computation that compares the two representations.

To investigate the effect of the four manipulations described above, we performed
a 2AFC delayed match-to-sample experiment. In each trial, the sample clip (presented
first) was altered, while the two test clips (presented after the sample) were untrans-

formed. We used 1 second samples (50 frames) and 1.2 second tests (60 frames).

4.1 Experiment 4.1: Feature manipulation on long

clips

4.1.1 Methods

Observers 10 observers were recruited using a mailing list operated by University
College London. All reported normal or corrected-to-normal vision.

Materials We presented stimuli on a CRT monitor in a darkened room as described
in Chapter 2 (General methods). Observers used a chin-rest. Stimulus clips were taken
from a continuous 1000-frame corpus of flame video.

Design We used a 2AFC delayed match-to-sample task. We manipulated the
sample characteristics (no manipulation, colour change, luminance change, inversion,
or reversal) within subjects.

Procedure In each trial, a sample was presented first, followed by two tests. A

manipulation was applied to the sample; the tests were unchanged. Subjects indicated
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which test contained the sample using the keyboard. The sample length was 50 frames
(1 second). The test length was 60 frames (1.2 seconds). Prior to the experimental
trials, we presented 30 training trials with static samples and tests (displayed for 0.2
and 0.3 seconds respectively) with the four manipulations applied to the sample. Next,
we presented 24 training trials with dynamic, unaltered samples and tests of identical
length. After training, we presented 5 blocks (one corresponding to each manipulation)

in random order. We used 80 trials per block, making for a total of 400 trials.

4.1.2 Results

That data from this experiment are shown in Fig. [A.I] In the natural condition
(untransformed sample), observers' accuracy was 60%. Random responding would

give an expected score of 50%.

Accuracy was significantly above chance under each condition (one-sample ¢-tests
comparing the mean of accuracy distributions across observers to 50%, see Table
for p-values and accuracies) showing that observers could still perform the matching
task under each of the manipulations. However, accuracy was not significantly dif-
ferent across each of the manipulations (repeated measures ANOVA, F'(4,36)=0.444,
p=0.776). See Table [4.2] for ANOVA results.

Manipulation Accuracy (%) p

None 60 0.01
Negative 59 0.01
Chromatic 61 0.01
Reversed 58 0.04
Inverted 59 0.01

Table 4.1: Results from Experiment 4.1, showing manipulation, matching accuracy
and p-value of single-sample t-tests comparing to the chance level (50%). Means of
accuracy distributions across observers were tested against 50%.
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Type Il Sum

Source of Squares df Mean Square F Sig.
menipdietian oo 007 4 002 444 776

st 007 | 2686 002 444 701

Huynh-Feldt .007 3.872 .002 444 770

Lower-bound .007 1.000 007 444 .522
Error(manipulation) Eg::r:géy 133 36 004

o 133 | 23.905 006

Huynh-Feldt 133 34.845 .004

Lower-bound 133 9.000 015

Table 4.2: Experiment 4.1: repeated measures ANOVA table (tests of within-subjects
effects from SPSS)

4.1.3 Discussion

These results show that observers are capable of matching an altered sample to the
standard test. Overall accuracy, however, was quite low, around 60%. It appears that
observers’ ceiling level in this task was quite low, leaving little room for changes in
manipulation to influence accuracy.

In order to attempt to increase the overall recognition rate we repeated Experiment
4.1 with shorter clips (samples of 0.2 seconds and tests of 0.3 seconds), which appeared
in pilot studies to improve performance.

We also noted easily visible artefacts in the luminance-inverted clips (see Figure
. These artefacts are caused by video compression. Compression artefacts are
also physically present in the standard clips, but are not perceptible due to decreased
sensitivity to luminance change at high luminance (following Weber's law). Since
these artefacts could provide easy matching cues, we removed the luminance-inversion

condition from the next experiment.

4.2 Experiment 4.2: Feature manipulation on short
clips

Our second experiment investigated observers’ ability to match shorter clips under
the same manipulations as Experiment 4.1, except for luminance inversion, which was
removed due to the presence of artefacts. In this experiment, samples were 10 frames

(0.2 seconds) and tests were 15 frames (0.3 seconds) long.
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Figure 4.1: Experiment 4.1. A) Trial structure: a 1l-second (50-frame) altered (for
example, inverted) sample was followed by two untouched 1.2-second (60-frame) tests,
one of which contained the sample. B) An original frame and three altered versions.
C) Matching accuracy for each of the alterations. Detection was above chance under
all manipulations, but was too low to discern a contrast between the effects.
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4.2.1 Methods

Observers 8 subjects were recruited using a mailing list operated by University College
London. All reported normal or corrected-to-normal vision.

Materials We presented stimuli on a CRT monitor in a darkened room as described
in Chapter 2 (General methods). Observers used a chin-rest. Stimulus clips were taken
from a continuous 1000-frame corpus of flame video.

Design We used a 2AFC delayed match-to-sample task. We varied the manipula-
tion applied to the sample clips (none, colour-inverted, backwards, or spatially inverted)
within subjects.

Procedure In each trial, a sample was presented first, followed by two tests. A
manipulation was applied to the sample; the tests were unchanged. Subjects indicated
which test they thought contained the sample using the left arrow (first sample) and
right arrow (second sample) keys. The sample length was 10 frames (0.2 seconds).
The test length was 15 frames (0.3 seconds). Prior to the experimental trials, we
presented 30 training trials with static samples and tests (displayed for 0.2 and 0.3
seconds respectively) with the four manipulations applied to the sample. Next, we
presented 30 training trials with dynamic samples and tests and the same clip lengths,
but with samples and tests unaltered. In the body of the experiment, we used 4 block
types (corresponding to each manipulation) with 4 repetitions of each block (16 blocks

total) in random order.

4.2.2 Results

The data from this experiment are shown in Fig. [4.2] There was a significant effect due
to choice of manipulation (repeated-measures ANOVA, F'(3,33)=9.481, p <0.0005,
ANOVA table in Fig. . With shorter clips, observers are no longer at ceiling and
we find a measurable effect of type of manipulation.

In all of the conditions accuracy was greater than chance (p = 0.001, single-
sample t-tests comparing the means of accuracy distributions across observers to 50%),
showing that observers can still perform the matching task under each manipulation.

Overall accuracy in the standard condition was 77%. Other accuracies, and drops in
accuracy from the standard condition, are shown in Table[4.3] The p-values of paired-

sample t-tests between each manipulation and the standard condition (on distributions
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Figure 4.2: Experiment 4.2 used the same procedure as Experiment 4.1, but with
shorter samples. A 0.2-second (10-frame) altered (for example, inverted) sample was
followed by two untouched 0.3-second (15-frame) tests, one of which contained the
sample. Chromatic alteration did not produce a significant drop in accuracy. Inversion
produced the greatest accuracy drop, followed by reversion and colour shifting.

of accuracies across observers) are also shown.

The largest drop was associated with the inversion condition, in which accuracy
dropped to 66%. We also note a significant difference between reversal and inversion

(p=0.022, paired-samples ¢-test).

Manipulation  Accuracy (%) Difference (pp) p

None 77 0 -

Chromatic 74 2.2 0.11
Reversed 73 3.9 0.05
Inverted 66 10 0.01

Table 4.3: Results from Experiment 4.2, showing manipulation, matching accuracy,
accuracy drop in percentage points, and p-value of single-sample t-tests comparing to
the unmanipulated condition.
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Type lIl Sum

Source of Squares df Mean Square F Sig.
manipulation ity 072 3 024 9.481 .000
el 072 | 2133 034 | 9481 001
Huynh-Feldt 072 2.662 027 9.481 .000
Lower-bound .072 1.000 Q72 9.481 .010
Error{manipulation) ig;s;t;&y 083 33 003
S aLae: 083 | 23.467 004
Huynh-Feldt .083 29.279 003
Lower-bound .083 11.000 008

Table 4.4: Experiment 4.2: repeated measures ANOVA table (tests of within-subjects
effects from SPSS)

4.2.3 Discussion

In each condition, the observer must attempt to reconcile information in the altered
sample with information in the unaltered test. Accuracy in the unaltered condition
serves as a benchmark. If an alteration causes a large drop, the observer finds the
comparison problematic; a small or null drop indicates the comparison is still possible.
Here t-tests were performed between across-obsever accuracy distributions from the
unaltered condition and the condition described.

Colour While hue reversal drops the mean accuracy by 2 percentage points, a
paired-samples t-test shows a low probability that the data are due to difference from
the unaltered condition(p=0.176). Observers do not require the correct colour in order
to match fire samples. There is therefore no evidence that colour forms a key part of
the representation of dynamic flame used in this task.

Reversal Backwards playback drops the mean accuracy by 3.9 percentage points,
and is associated with a significant drop in performance compared to unchanged clips
(paired-samples t-test, p=0.050). Reversing a video clip alters many of its simple
motion properties (such as direction of motion). It does not, however, alter the
position of salient motion features: if for example a salient curling flame is tracked in
the upper left of the frame, its position will not have changed in the reversed stimulus.
Provided that it is just as salient when played in reverse (which small flames usually
are, due to their luminance), it will be easily detectable.

Here reversal is associated with a 3.9 percentage point drop in accuracy which is

marginally significant (p=0.050). This shows that observers’ matching processes are
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not invariant to playback direction. If observers are sampling discrete spatiotemporal
events, their order is encoded, but may not be required; if observers are constructing a

gist-style summary, this result suggests that motion forms a part of this representation.

Inversion alters the local processing of motion features found in fire clips. We used
a 180 degree rotation, which transforms upwards motion into downwards motion and
leftwards into rightwards. It does not, however, alter any of the temporal properties of
the clip; features which are not mapped by location (such as the global mean brightness

signal) are not altered.

Inverting a video clip alters the spatial location of all the features contained therein.
The signature of a fire clip may not consist just of a set of unlocalised features; each
feature may linked to its location in space (“a flare in the upper left of the frame").
This information is disrupted by inversion. Here inversion is associated with a 10
percentage point drop in accuracy, much larger than the drop caused by reversal.
This drop is highly significant (paired-samples t-test, p =0.001). For the clip size
and duration used here, then, the spatial location of the represented details is more

important than their temporal location.

The accuracy drop under inversion (10 p.p.) is much larger than that under reversal
(3.9 p.p). There is a significant difference between these two conditions (paired-
samples t-test, p=0.022). For clips of length 0.2 s, then, spatial arrangement of

features is much more informative than temporal arrangement of features.

If observers are encoding spatiotemporally localized features, as opposed to creating
gist-like compressed representations of larger portions of the clip, what do these results
indicate? As inversion impairs matching more than reversal does, subjects are helped
much more by knowing where features are in the image than when they occur in
the sequence. This suggests that spatial location plays a more important part in the

stimulus representation than temporal location.

Colour alteration, because it can be applied independently to each pixel in an
image, can be characterised as a local manipulation. Changing the colour of a clip
alters its representation in early visual structures (the retina, the optic nerve, and
V1). However, the small drop in accuracy induced by changing colour shows that this
alteration does not significantly affect the test clip's representation at a high level - its

correspondence with the sample clip. We can conclude that performance in the task
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is effectively invariant to colour.

The manipulations we have used so far are simple to compute and do not de-
pend on object, texture or edge detection. This means that they cannot influence
mid-level features, such as textures or edges. If we want to remove from an image
all its convex edges, or all occurrences of the letter “H,” we will not be able to do
so with a manipulation which we apply independently to each pixel, or a spatial or
temporal inversion. The visual system constructs mid-level representations by combin-
ing information from groups of pixels. The next experiment examines the effect of a
higher-level transformation: highlighting the edges in the scene.

Edges are a key component of complex visual scenes. We find edge-responsive cells
early on in the visual processing stream[14], and in the case of natural scenes, indepen-
dent component analysis suggests that edge filters represent a scene efficiently[211].
Edges are also key representations for most theories of object recognition, which often
employ an initial layer of oriented edge-detection filters[12], and many object recog-
nition experiments employ black-and-white line drawing images, which consist mostly
of edges.

An edge representation does not capture all the information present in an image,
however; edges cannot convey textures or luminance gradients. In Experiment 4.3 we
asked observers to match an edge-filtered sample with an untransformed test. The
sample, being filtered to show edges only, contained no prior information about texture,

colour or gradient.

4.3 Experiment 4.3: Edge filtering

Luminance gradients are a central part of many natural images. They are key for ex-
tracting age and gender properties from faces[212] as well as perceiving 3D shape[213].
Here we investigated their importance for dynamic flame matching by removing all lu-
minance gradient information from the test using an edge filter, creating an altered
clip built from binary images in which a white pixel represents an edge.

In half the trials, the sample was manipulated using a Sobel edge filter[214]. The
test clips were left unchanged. Vertical derivatives were calculated by convolving with

the 3x3 filter
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0.125  0.25  0.125
F= 0 0 0
—-0.125 -0.25 -0.125

and horizontal derivatives were obtained by the filter

—-0.125 0 0.125
F=1-025 0 025
—0.125 -0 0.125

All pixels whose total (horizontal + vertical) derivative was above a certain thresh-
old absolute value were returned as edges. The implementation used was MATLAB's

edge() function. See Figure [4.3| for an example.

4.3.1 Methods

Observers We recruited 15 subjects using a mailing list operated by University College
London. All reported normal or corrected-to-normal vision.

Materials We presented stimuli on a CRT monitor in a darkened room as described
in Chapter 2 (General methods). Observers used a chin-rest. Stimulus clips were taken
from a continuous 1000-frame corpus of flame video.

Design We used a 2AFC delayed match-to-sample paradigm with altered samples.
In half the trials, the sample was manipulated using a Sobel edge filter. The test clips
were left unchanged.

Procedure In each trial, a sample was presented first, followed by two tests. In half
the trials, a manipulation was applied to the sample; the tests were always unchanged.
Subjects indicated which test they thought corresponded to the sample using the left
arrow (first sample) and right arrow (second sample) keys. The sample length was
10 frames (0.2 seconds). The test length was 15 frames (0.3 seconds). To begin the
experiment, we presented 30 training trials with static samples and tests (displayed for
0.2 and 0.3 seconds respectively), half of which used the edge-filtered sample. Next,
we presented 15 training trials with dynamic samples and tests and the same clip
lengths, but with samples and tests unaltered. In the main part of the experiment,

there were 2 block types (normal sample and edge-filtered sample). We presented
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each block 7 times (in random order), giving a total of 14 blocks. We presented 40

trials per block, making for a total of 560 trials.

4.3.2 Results

Manipulated sample TestA Test B
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Figure 4.3: Experiment 4.3. A) Trial structure: a 1-second (50-frame) edge-filtered
sample was followed by two untouched 1.2-second (60-frame) tests, one of which
contained the sample. B,C) Two edge-filtered images. D) Edge filtering induced a
slight drop in performance which was highly significant.

Results are shown in Fig. [4.3] Edge-filtering the sample induced a 4 percentage

point drop in accuracy compared to the standard condition. Mean accuracies are shown
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in Table [4.5] Under both conditions, matching was significantly better than chance
(one-sample t-tests comparing across-observer distribution means to 50%, p =0.001
in both cases).

This difference was significant (paired-samples ¢-test comparing across-observer
accuracy distributions under the unaltered and edge-filtered conditions, p =0.005)
indicating that there was some loss of performance when the visual stimulus was
limited to edges. However, performance with on samples containing only dynamic
edges induced a drop of only 4 percentage points and was still significantly better than

chance, showing that observers can still perform the task effectively.

Sample Accuracy (%) p
Normal 78.2 0.001
Edge-filtered 74.2 0.001

Table 4.5: Results from Experiment 4.3, showing sample, matching accuracy, and
p-value of single-sample t-tests comparing across-observer means to the chance level

(50%).

4.3.3 Discussion

We made a significant change to the sample clips, replacing most of their structure with
black pixels and leaving only edge information. We expected this alteration to impair
matching but were surprised when accuracy only dropped by 4 percentage points: a
large change in the image induced only a small change in matching performance.

This result limits the importance of two signals. First of all, the global 1D luminance
signal (the mean luminance of each frame) hardly varies at all in edge filtered clips, so
cannot be of great importance. Secondly, edge-filtering completely removes gradient
information (shading, colour, and texture). The small drop shows that matching can
be done without this information, and thus indicates that our representation of dynamic
flame is mostly built from dynamic form information.

Edge filtering preserves the dynamic form of the main segmentable objects in the
scene: flames. Light against a black background, these are easy to segment; they
have a clear outline, and although they move quickly, our use of a high shutter speed
(1/150 s) ensured that edges were captured clearly. To be precise, what is preserved

after edge-filtering is the shape of the flames and the motion of their edges.
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Edge-filtered images and their originals induce different motion percepts. The
original, unaltered stimulus contains a closely-packed field of pixel-level information,
allowing computation of dense motion vectors. We generated some of these algorith-
mically in Chapter 3. The edge-filtered stimulus, however, is much sparser: dense
motion fields cannot be generated, since most of the pixels are black. By applying
spatial and temporal filters, the visual system may still be able to generate low-level
motion percepts from the edge-filtered stimuli (as can the sMcGM motion algorithm),
but it must rely mainly on perceiving the displacement of form. This is a higher-level
process as the visual system must match two instances of a particular form across time
in order to perceive form displacement.

The surprisingly small drop in accuracy induced by edge-filtering shows that ob-
servers can still perform matching effectively using only edge information. Most pixel
information allowing gradient-based motion perception has been removed. This sug-
gests that dynamic form plays an important role in matching individual exemplars of
dynamic flame.

Does dynamic form also play a part in observers' category representations of flame?
We address this question by asking them to detect reversed playback rather than testing
their invariance to it. One of the properties that sets the motion of flame apart is that
there is no ground truth. Videos of natural scenes are not generated by translating
objects in a controlled way; as a result, we cannot say that any patch of flame has a
particular canonical motion direction. Are observers still able to perceive a particular
motion direction and use it to cue their classification of a long flame video as normal

or reversed?

4.4 Experiment 4.4: Can observers detect back-

wards playback?

When matching a sample and test clip, backwards playback of the sample has been
shown to reduce matching accuracy on short clips (Experiment 4.2). The visual system
is thus not invariant to playback direction; it must induce a change in the representation
of the stimulus. Are observers able to access this information by explicitly detecting

playback direction?
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When performing a matching task, an observer must encode the sample and com-
pare it against the test. Internal models and specialised representations, like the ones
we use to encode faces|215] can help with this task, but the key challenge is compar-
ing two presentations. When we ask an observer to indicate whether a single clip’s
playback is forwards or backwards, however, we only present one stimulus per trial.
The observer's challenge is to encode this clip and match it against information that

they already know, comparing it against their internal model of dynamic fire.

To investigate how well untrained observers can perform this task, we displayed
single clips at various frame rates, manipulated playback direction, and asked for a
forwards/backwards judgement. We also manipulated the angle at which clips were

displayed, using four different angles to test for orientation dependence.

4.4.1 Methods

Observers 13 observers were recruited using a mailing list operated by University

College London. All reported normal or corrected-to-normal vision.

Materials We used a 1000-frame corpus of consecutive fire images, displayed using

the equipment described in Chapter 2 (General methods).
Design We employed the method of binary choice.

Procedure In each trial, a 2-second clip was played. The observer then indicated
whether they thought the clip was being played forwards or backwards, using the
keyboard. We manipulated the angle at which the clip was played (0, 90, 180 or 270
degrees) and the frame rate (50, 25,16.7, 12.5, 10, 8.3, 7.1, 6.3 ,5.6 or 5 Hz). These
frame rates correspond to interframe durations which are multiples of 0.02 seconds,
the standard interframe duration. We did not vary clip speed or length, only frame
rate. We varied frame rate within blocks and orientation across blocks, giving 4 block

types. There were two repetitions of each block type, giving 8 blocks in total.

116



Forwards/

) backwards?
L T T s O T I
interframe delay (s)
0.02 004 006 008 0.1 012 014 016 0.18 0.2
100 —m ) . T . . . T . .
B) | ¢
90| .
—~ 801 -
R
> 70| |
[&]
I
S 60 i
Q
[}
© 501 |
40} o ° o o -
30 1 1 1 1 1 1 1 1 1 1
500 250 167 125 100 8.3 74 6.3 5.6 5.0
frame rate (Hz)
Lo ¢ ¢ ¢ ¢ ¢ § ¢ ¢ ( ¢ ¢ ¢ o
0 1 2 3 4 5 6 7 8 9 10 11 12 13
C) Subjects
interframe delay (s)
0.02 0.04 0.06 008 0.1 0.12 0.14 0.16 0.18 0.2
T T T T T /I\ A (I\ T 2
o) = ©
- o o O - o O © B
N @ © 8 . - ©

percent forwards judgements

© © © 0o o o o o ¢

N W U1 O N 0O O O
:

50.0 25.0 16.67 12.5 10.0 8.33 7.14 6.25 5.56 5.0
frame rate (Hz)

8 9 10 11 12 13

o |e-
o
N
w e
»
&
o
~

Subjects

D) 100

90
80
70
60
50
40
30
20
1 O 1 1
forwards backwards

Playback direction

[ EEEEEEERRRREN

2345678910111213
Subjects

Accuracy (%)

]
0

Figure 4.4: Experiment 4.4: backwards detection. A) On each trial a 2-second clip
was played; observers then indicated whether they thought playback was forwards or
backwards. B) Accuracy dropped quickly down to chance at a frame rate of 10 Hz.
C) As frame rate decreased, the amount of “forwards” judgements increased. D)
Observers were much more accurate at judging the clips which were played forwards.
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4.4.2 Results

Type Il Sum
Source of Squares df Mean Square F Sig.
angle S pnerel 008 3 003 100 950
g;?sggr"“se' 008 2.199 004 100 820
Huynh-Feldt 008 2.665 003 100 048
Lower-bound .008 1.000 .008 .100 766
Errr{angls) Eiﬂﬂr 1.018 ag 026
o uss- 1019 | 28563 036
Huynh-Feldt 1.018 34.640 .029
Lower-bound 1.019 13.000 .078
samploiiate ig;‘j;‘;g‘ 5.210 g 579 | 26781 000
g;?:;‘gr“”aa' 5.210 1.785 2919 | 26781 000
Huynh-Feldt 5.210 2.050 2 541 268.781 000
Lower-bound 5.210 1.000 5.210 26.781 .000
Error(sampleRate) ﬁggl?;cgéy 2.500 17 )
R 2520 | 23208 109
Huynh-Feldt 2.529 2B.651 .095
Lower-bound 2.529 13.000 .195
angle * sampieRate EEES;‘]‘;!? 363 27 013 2392 000
b 363 6.503 056 2,292 038
Huynh-Feldt 2363 13.707 026 2.292 007
Lower-bound 363 1.000 363 2.292 154
Error(angle*sampleRate) Eg;:g;c;tg 2.058 351 008
g;?:ggf”“’ 2.058 84 544 024
Huynh-Feldt 2.058 178.187 012
Lower-bound 2.058 13.000 .158

Table 4.6: Experiment 4.4: repeated measures ANOVA table on
within-subjects effects from SPSS). Frame rate is shown here as “sampleRate.”

accuracy (tests of

Type Il Sum

Source of Squares df Mean Sgquare F Sig.
rame_rate 25233123‘ 755 9 o84 | 11810 000

s 755 2.329 324 | 11810 000

Huynh-Feldt 755 2.868 263 11.810 .000

Lower-bound .755 1.000 755 11.910 .004
Error(frame_rate) iﬂf&gy 824 17 007

g;?g:;ouse' 824 | 50274 027

Huynh-Feldt 824 37.281 022

Lower-bound .B24 13.000 083

Table 4.7: Experiment 4.4: repeated measures ANOVA table on observer response
(tests of within-subjects effects from SPSS). Frame rate is shown here as “sampleR-
ate.”

Figure shows the data from this experiment. Accuracy drops very rapidly as frame
rate decreases, reaching chance by 10 Hz (when each frame is displayed for 0.1 s).

This effect is confirmed by a two-way ANOVA over orientation and frame rate, which
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shows a highly significant effect of frame rate (£(9,117) = 26.781, p | 0.0005). There
appears to be no effect of orientation (F'(3,39) = .100, p =0.959); the accuracy curves
depending on orientation are shown in Fig. [4.5 Table shows the ANOVA table.

Observers are much more likely to correctly judge the direction of a forwards clip
than a reversed clip (paired-samples t-test between across-observer distributions for
forwards and backwards conditions, p=0.001). However, the slower the frame rate, the
more likely observers were to indicate forwards playback. This is confirmed by a one-
way ANOVA on observers’ responses, with frame rate as a factor (£(9,117)=11.91,
pi0.0005). Table [4.7] shows the ANOVA table.
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Figure 4.5: Experiment 4.4: the effect of stimulus angle on backwards detection. On
each trial a 2-second clip was played; observers then indicated whether they thought
playback was forwards or backwards. B) Accuracy dropped quickly down to chance
at a frame rate of 10 Hz. C) As frame rate decreased, the amount of “backwards”
judgements increased. D) Mean observer d-prime also dropped quickly to a minimum
at 10 Hz. E) Observers were much more accurate at judging the clips which were
played forwards.

4.4.3 Discussion

It is clear that low frame rates greatly impair observers’ ability to compare the stimulus
against their existing category representation of forwards-moving dynamic fire. At
frame rates below 10 Hz (interframe delay 0.1 seconds), observers' judgements are
at chance. This means that, to detect forwards or backwards playback, observers are
dependent on temporally local patterns and correlations. They are not able to detect
or exploit long-range patterns in the stimulus.

This fits well with the results of our correlation analysis in the image domain. As
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shown in Fig. [3.3] three measures of image similarity reach a minimum after a duration
of 0.2 seconds. This shows that these measures cannot detect any similarity between
frames more than 0.2 seconds apart. This experiment shows that the visual system
cannot extract any information which is useful for forwards/backwards judgement from

frames more than 0.1 seconds apart.

This task relates more to the category representation of fire rather than the encod-
ings of individual frames. The task asks “are you observing forwards fire?" which is
very similar to the question “are you observing fire?" It asks the observer to compare
their internal representation of what moving fire should look like with the presented
stimulus. The slower the frame rate, the more likely observers are to make a “forwards”
judgement. This suggests that a high fidelity stimulus is required for a judgement of
backwards-moving fire and any degradation leads to a “default” forwards judgement.
This strongly suggests that the category representation of dynamic flame contains

motion representations.

The key information for this task is local: it is integrated within a 0.1 second
window. Are observers computing low-level motion or high-level displaced form? It is
certainly possible to obtain low-level motion stimuli algorithmically from edge-filtered
flame, as we showed in Chapter 2, although motion fields are sparse due to the pre-
dominance of black pixels. After an 0.1 second period, metrics of image similarity
(Euclidean distance and SSIM) drop nearly to the minimum value that they reach
after 0.2 seconds. It is likely, however, that the human visual system is better at
matching displaced form than the SSIM, so this drop in similarity metrics does not

allow us to argue for an absence of form information.

Low-level motion detection does not require expertise, since it is implemented by
early neural computations which have not been shown to adapt to particular stimulus
classes. Displaced form, however, is a higher-level motion percept, and can be aided
by expertise: matching a flame to a slightly distorted flame occurring 0.2 seconds
later could benefit from a knowledge of the ways in which flames are likely to deform.
Since fire is highly asymmetric, there is much opportunity for direction-specific learning
and we would expect displaced form detection to be more effective on upright flame.
Fig. shows that this is not the case; upright playback confers no advantage on

backwards detection, and rotation through 90 or 270 degrees does not impair the task.
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This suggests that backwards detection is done by an orientation-invariant process,
favouring low-level motion over dynamic form.

What kinds of motion percepts do observers construct from dynamic flame stimuli?
In the next section, we investigate by showing observers small areas of dynamic flame

and asking them to evaluate the main motion direction they perceive.

4.5 Experiment 4.5: Motion direction percepts in

dynamic flame

4.5.1 Methods

Observers We recruited 4 subjects, one of whom was the author. All reported normal
or corrected-to-normal vision.

Materials We presented stimuli on a CRT monitor in a darkened room as described
in Chapter 2 (General methods). Observers used a chin-rest. Stimulus clips were taken
from a continuous 1000-frame corpus of flame video.

Design We used the method of adjustment, asking observers to rotate a moving
grating to match the direction of motion perceived in a small sample of dynamic flame.

Procedure In each trial, a disc-shaped patch of dynamic flame was sampled from
the 1000-frame dataset, rotated by a random amount, and displayed to the observer
on the left side of the screen. On the right side, we simultaneously displayed a moving
grating whose direction of motion could be adjusted using the arrow keys. Observers
were asked to rotate the grating so that its direction of motion matched that which
they perceived in the flame sample.

A circular Gaussian window was applied to the flame sample to prevent the occur-
rence of illusory contours at the circular border. We manipulated the diameter of the
flame disc, which was either 10, 20, 30, 40, 50, 60 or 70 pixels. Flame stimuli were
not scaled. We sampled from a location in the frame which gave no non-motion clues
to the direction of motion, either by the appearance of static features (such as logs)
or asymmetry in the average luminance (sampling from an area too high in the flame
would have resulted in more black space and less flame near the top of the sample).

On each trial, a clip 4 seconds in length was looped; observers were given as much
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time as necessary to make their decision, and instructed to be as quick and accurate

as possible.

4.5.2 Results

The results of this experiment are shown in Fig. [4.6] We calculated the absolute error

e in degrees as

e =[(a —b+180) mod 360] — 180 (4.1)

where a is the angle to which the vertical has been rotated and b is the observer's
response. This calculation ensures that e always reflects the absolute value of the
smaller angle between the rotation angle and the motion direction judgement (not
the larger angle). Since the direction of motion is usually reported as up, a is an
estimate of the “true” direction of motion for this flame disc. When a =0, the clip
was untouched (upwards motion); when a =180, the clip was inverted (downwards
motion). Because e may range from 0 to 180, a mean value of 90 would be expected

if an observer was performing at chance. Mean absolute errors are shown in Table [4.9]

Absolute error decreased strongly as flame size increased. This was shown by a
repeated-measures ANOVA: F(6,18)=67.773, p j 0.0005, as shown in Table [4.8] To

investigate individual observers' response profiles, we show their responses on a scatter

plot (Fig. [4.6).

Type Il Sum

Source of Squares df Mean Square F Sig.
flame_size Sphericity

Assummed 23218.588 6 3869.765 67.773 000

Greenhouse-

Geissar 23218.588 1.884 12325.084 67.773 000

Huynh-Feldt 23218.588 4,959 4681.775 67.773 000

Lower-bound 23218.588 1.000 23218.588 67.773 .004
Error(flame_size) Sphericity

Assumed 1027.782 18 57.099

Greenhouse-

Geisser 1027.782 5.652 181.859

Huynh-Feldt 1027.782 14.878 69.080

Lower-bound 1027.782 3.000 342.564

Table 4.8: Experiment 4.5: repeated measures ANOVA table (tests of within-subjects
effects from SPSS)
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Figure 4.6: A) We presented a circular disc sampled from an area near the centre
of our dynamic flame dataset. During each trial, this clip (duration 4 seconds) was
looped, while observers adjusted the motion direction of a moving grating to match
the direction of motion they perceived in the flame disc. Motion direction is marked
here by a red arrow. All flames shown here are non-rotated. B) The seven flame disc
sizes, from 10 to 70 pixels in width. C) Error decreased slowly, from the chance level
(90°) to a minimum of 5.9°. 123
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Figure 4.7: Experiment 4.5: individual results. Each observer's responses are shown
as points on a scatter plot depicting absolute error ¢ against flame sample size. A
consistent pattern, from high error to very low error, is shown. Medium clips are often
erroneously labelled with the opposite motion direction (180° error); observer 4 also
makes a number of 90° errors.

Flame size (px) e

10 91.4
20 543
30 37.0
40 17.3
50 12.6
60 8.0

70 59

Table 4.9: Experiment 4.5: mean absolute error e by flame size.
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4.5.3 Discussion

All observers show a smooth progression in mean error from 91° to 5.9° with remark-
ably low variance. This suggests that motion mechanisms which vary little between
observers are being employed. On patches 10 pixels wide, performance is at chance.
Looking at the scatter plots, we find a bimodal error distribution for most observers:
errors cluster around 0° and 180°. A small patch of dynamic flame is a visual metamer
for a patch of flame moving in the opposite direction. For the largest patch size, all
errors are close to 0°.

On large clips, error is very small: 5.9 degrees on average. Because all clips
were rotated from the vertical, this result indicates that an upwards motion percept is
indeed generated by normal flame clips, and that observers agree on this. It is notable
that observer 2, the author, did not show any accuracy gains over any of the other
participants- who had never seen these flame stimuli before.

How do these results correspond with our computational motion analyses of dy-
namic flame (Chapter 3)? Analysis of individual frames using the McGM revealed
small patches of upwards motion interleaved with small patches of downwards motion.
Sun’s method, which included a regularisation stage, did not show these small patches,
but larger areas of consistent motion in one direction. Experiment 4.5 shows that small
patches of dynamic flame also elicit motion percepts in multiple directions. Observers
never reported downwards motion from full flame clips, however, or from the largest
patches; how do we explain this contrast? When combined together into a full flame
clip, the overall percept is one of upwards motion; but this could be due to top-down
inhibition of percepts which are not in accordance with the high-level knowledge that
flame is supposed to move upwards. High-level knowledge can affect low-level motion
perception, as in the spinning dancer illusion[216]. It is either the case that downwards
motion percepts are not generated from complete flame clips at all, or that they are
generated by low-level motion detectors and later filtered out, swamped by upwards
motion signals, or integrated into a dynamic texture.

Judging the motion direction of an isolated local patch poses different challenges
than judging its direction when it is integrated into a larger scene. In particular, small
patches suffer from the aperture problem[217]: it is mathematically impossible to

judge the movement direction of a sine grating displacing behind a circular aperture,
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since the angle of the grating cannot be dissociated from its direction of motion. It is
possible that this experiment simply did not provide observers with enough information
to make a motion judgement. In this case, they may be performing close to optimality,
which explains the low inter-observer variance in absolute error.

For isolated local patches, however, these results suggest that the motion per-
cepts present in fire are constructed by low-level mechanisms which are stable across
individuals and do not show much inter-observer variation.

Learning effects can indicate whether a decision process uses high-level or low-
level percepts. In the next section, we evaluate subject performance over time in the

previous four experiments.

4.6 Learning

Representing and matching dynamic fire is a novel task for our observers. It is natural
to ask whether they learn; in other words, whether their representations improve as
they progress through an experiment.

The experiments presented in this chapter lasted between 1.5 and 2 hours. Over the
course of several hundred trials, observers were exposed to a large quantity of dynamic
flame clips. During half of these clips (the samples) they needed to encode and
during the other half (the tests) they needed to match. Because clips were randomly
sampled from large datasets (either 1,000 frames or 10,000 frames), there was little
opportunity to learn the specific characteristics of individual clips or frames. There
was, however, scope for observers to learn general mid-level spatiotemporal features
commonly occurring in fire clips.

As a proxy for learning, we used the change in accuracy as subjects progressed
through an experiment. For each experiment, we arranged the trials in the order in
which they were presented, blocked them into groups of 20 using a sliding window,
and calculated the average accuracy for each block.

To check for an improvement in mean accuracy, we fitted a line to the sequentially
arranged data. Calculated slope values are shown in Table [4.10]

The results of this sliding-window approach are shown in Figure[4.8] Note that the

curves are smooth due to sliding-window averaging; this does not indicate a smooth
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Experiment  Slope (percentage points per trial)

4.1 —1.20 x 1073

4.2 2.02 x 1074

4.3 1.15 x 1073

4.4 —3.40 x 10*

4.5 —1.8 x 1072 (e/trial)

Table 4.10: Learning slopes in Chapter 4.

trend in observers single-trial accuracy, which is binary. None of the experiments show
a consistent improvement, except for Experiment 4.3 (in which samples were edge-
filtered). Observers appear to be learning to match the novel edge-filtered stimulus
with normal video, but do not show any evidence of learning in any of the other
experiments. On the motion direction matching experiment (4.5), a clear decrease in
error is notable in the first 50 trials; there appears to be no trend during the rest of
the experiment. Please note that this graph shows absolute error, not accuracy, so
good performance corresponds with a lower y-coordinate.

Observers did not show evidence of continual learning in our matching experiments.
In the backwards detection and motion direction evaluation experiments, there is only
evidence of learning in the first 50 trials. This lack of improvement suggests that

observers are using low-level mechanisms which are not trainable.

4.7 General discussion

Experiments on 0.2 second clips show that observers are tolerant of variations of colour
between the sample and the test, but less so to variations of temporal arrangement and
even less so to variations of spatial arrangement. High performance on edge-filtered
samples provides convincing evidence that dynamic flames are represented mainly as
moving form.

How do these results sit with established theories of object perception? We recall
the problems dynamic natural scenes pose for object recognition. Natural scenes are
dynamic; they are composed of many parts; and they are not naturally segmented.

Most models of object recognition only consider static images. Applying traditional
object coding theories to dynamic video, then, means thinking about movies as a set

of static snapshots. Each frame could be represented either as a hierarchy of compo-
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Figure 4.8: For each experiment, trials were aligned in order of presentation and a
sliding average applied to show how accuracy changed during the experiment. There
was no overall trend of increasing accuracy except in Experiment 3 (edge filtering).
This indicates that observers may be learning the unfamiliar edge representation.
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nents (as with Biederman’s geons or Selfridge’s demons) or an atomic representation
(a point in a feature space, such as a gist). Could these frame representations be
stored sequentially in order, or as an unordered bag of snapshots? Our results suggest
that backwards playback impairs matching performance. This suggests that, if frame
snapshots are used, they are ordered in time. We also find accuracy impairment due
to spatial inversion; this suggests that, if individual features are represented on a sub-
frame level, they are either individually orientation-sensitive or orientation-invariant

but represented at a specific location in the stimulus.

Perceptual processes can be characterised by the invariances they possess. Flame
matching is differentially invariant to reversal and inversion: we note respective ac-
curacy drops of 3.9 and 10 percentage points, and a paired-samples t-test shows a
significant difference between these means. For 0.2 second samples, then, spatial

configuration is more important than temporal configuration.

What kind of motion percepts are generated by fire? Texture patches which change
smoothly in intensity are common, meaning that first-order motion must play a key
part. Drift-balanced stimuli, usually designed to evoke second-order motion and no
first-order motion, only occur accidentally. On frames which are close together, flame
contours may remain sufficiently self-similar to induce phi motion. It is also possible
that the combination of a wide flame displacement (changing an area from high to low
contrast) and a change in local form may create the correct combination of displaced
form and contrast inversion necessary to evoke reverse phi motion. One kind of motion
percept which we can confidently rule out is long-range displaced form; our image-
based analysis suggests that form is not preserved for more than a few frames, and
our backwards detection experiment shows that no motion direction cues are available

over long temporal intervals.

Observers have a category representation of dynamic flame, which they are able to
use to detect backwards playback without any prior training; indeed, they do not learn
to increase the accuracy of this judgement even after 2 hours’ practice. Although they
often report a reliance on upwards motion, they do not differ in accuracy on rotated
stimuli, suggesting that the mechanisms they use to detect this oriented motion are
orientation-invariant. When they do make correct judgements, a frame rate of at least

10 Hz is required, showing the temporal locality required to judge playback direction.
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From flame patches 70 pixels in width, observers report a motion direction closely
matching the patch’s degree of rotation from the vertical. This shows that, from non-
rotated patches, observers would report an upwards motion direction. For patches 10
pixels in width, observers are clearly at chance. Patches between these sizes generate
either a directional percept close to the original vertical, or a 180° error. This shows
that medium-sized flame patches are visual metamers for patches depicting gas moving
in the opposite direction.

There are two clear conclusions from this series of experiments. Firstly, observers
are severely impaired when trying to match inverted samples of dynamic fire to their
upright counterparts, which shows that space figures importantly in their represen-
tations. If spatiotemporal features are being sampled, their location is recorded and
used for matching. If low-level motion fields are calculated, they may be represented
in a map which is used for matching. If a gist is computed and used for matching,
it integrates spatial information as opposed to throwing it away. Secondly, dynamic
edges (containing no luminance gradient, colour gradient or texture information) allow
effective matching at nearly full accuracy. Since this manipulation alters local motion

signals, it suggests that observers encode dynamic form.

Summary

e Observers can still match tests to samples which are hue-inverted, reversed or
inverted.

e Under both reversal and inversion, performance is significantly impaired, showing
that observers are sensitive to these transformations.

e Inversion impairs performance more than reversal, showing that (for 0.2 sec-
ond samples and 0.3 second tests) the spatial arrangement of features is more
important than their temporal arrangement.

e Observers do not show an increase in accuracy during this experiment, suggesting
that they are not improving their representations.

e Edge filtering of the sample, which removes most of the information and all the
texture and gradient information, induces a 4 percentage point drop in perfor-
mance. This surprisingly small impairment shows that gradients, and motion fea-

tures derived from smooth luminance variations, are not key for representations
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of dynamic flame. Observers also progressively improve in accuracy throughout
the experiment; they appear to be learning edge-based representations.

At frame rates below 10 Hz, judgements of whether a flame clip is being played
forwards or backwards are at chance. Observers' category representations of
forwards-moving flame are thus very local in time; observers are not able to
exploit long-range correlations.

Observers are able to report the correct motion direction from large flame clips
(70 pixels in width) but not small flame clips (10 pixels in width). The error
distribution is bimodal for patches between these sizes; errors close to 0° or 180°
are common. Small flame patches are visual metamers for patches moving in

the opposite direction.
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Chapter 5

Visual search for dynamic flames

Most theories of object recognition focus on the task of “core object recognition” [35],
the classification or identification of a static image containing a single object against
a blank background. In reality, however, natural scenes contain multiple objects and
complex backgrounds[179], meaning that spatial segmentation is not always straight-
forward. Natural scenes are also dynamic; they change constantly in time, and can be
segmented temporally into events. In this chapter, we characterise the visual search
process on dynamic flame stimuli. We use the same delayed match-to-sample protocol
as in the previous chapter, but pose a search challenge to observers by increasing the

test/sample ratio.

The well-established field of visual search[154] deals with the location of targets in
cluttered static images. Typically, a visual search task has two parts: the presentation
of a small target, followed by the presentation of a larger search space including target
and distractors[218]. In most search stimuli, the target and distractors are already
segmented from the background. When distractors are sufficiently similar to the target,
the observer cannot use the bottom-up effect of pop-out to locate the target without
conscious effort[219]; however, even in this case, the targets are spatially discrete, with
obvious borders that make them distinct from each other and from the background.
Treisman[220] pointed out the dependence of search duration on search space size for

conjunctions of features on discrete targets.

What would visual search feel like if the targets were not discrete? An example is
shown in Fig. [.I| where we ask you to search for a small texture patch in a much

larger texture patch. Here the search space is continuous rather than discrete, and
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Figure 5.1: Visual search space is easier when the search space is discrete. A) Target
texture. B) In this search space, the visual system must generate its own segmenta-
tion by dynamically attending to groups of features. A large number of overlapping
candidate matches (yellow boxes) must be evaluated. C) In this pre-segmented search
space, there are only nine candidate matches, and search is much easier - provided
that the target is one of the blocks into which the search space has been segmented.

the task appears harder than in the discrete case (shown alongside). The visual search
literature has neglected continuous search, focussing on tasks in which the search

space consists of a set of individual objects[221].

The same divide between discrete and continuous occurs in the temporal domain.
When a percept is changing rather than static, we may abstract it into a sequence
of events (consider a slowly-played sequence of musical notes). On the other hand,
we may see it as a constant, unbroken stream of information (consider white noise,
or the pattering of rain). The divide is not sharp but gradual. Just as discrete pixels
become a texture when we zoom out far enough, a sequence of individual events can

be perceived as a continuous stream when we speed it up or add more clutter.

Visual search can also take place in the temporal domain. By “temporal visual
search,” we mean a search task where the target and the test clip are both dynamic
video clips of the same size, the duration of the test clip is longer, and the observer's
task is to judge whether the target is present in the test clip. Because the stimulus
has an additional temporal dimension, the observer only has one chance to attend to
the correct area (either in space or in time) and to perform a useful segmentation.
The term “temporal visual search” contains a tacit assumption that the search space

also has a spatial dimension; if it did not, our stimuli would have to be points or areas
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of constant luminance and colour. We also note that the term “visual search” does
not imply that the subject always has to report the space/time location of the target,
merely detect its presence.

Temporal visual search on natural scenes, then, presents several difficulties: the
stimulus has temporal extent as well as spatial extent, and the scene has not been
pre-segmented in either dimension. This makes the task much more challenging than
traditional visual search on simple stimuli, and creates problems for existing theories of
visual search, which do not need to deal with segmentation. How well can the visual
system perform this difficult task? In this chapter we evaluate the visual system'’s

ability to perform temporal search on dynamic clips of flame.

Invariances As we have seen in Chapter 1, theories of object recognition can be
characterised by the invariances they possess. Rotation invariance deals with changes
in an object’s orientation relative to the eye. Position invariance deals with changes in
the object’s position on the retina, and is one of the most extensively modelled problems
in recognition. Training a neural network to recognise an object in a single location is
easy; building a position-invariant recogniser is harder[222], but possible[223]. Is there
a temporal equivalent to position invariance?

When we say that an ability (such as object recognition or face detection) is
position-invariant, we refer to retinal position: the location of the retinal image relative
to the fovea. In tasks with fixation, it refers to the ability of the visual system to detect
an object regardless of its position on the retina. In tasks where fixation is not required,
however, position invariance is not so well-defined, because the fovea can be pointed
towards any observed object. Nevertheless, a certain amount of position invariance is
still required, because two fixations will never bring an object into exactly the same
position on the retina - and it is not possible to bring two slightly different objects
into retinal alignment in any case. We can also measure position invariance in some
context: relative to another object, such as the screen on which objects are shown.

Temporal invariance can also be defined in relation to a temporal context, a high-
level event made up of several low-level events. Within the context of a ten-second
video clip, temporal invariance refers to the ability to detect an event whether it occurs
at the beginning, middle or end of the clip. This is similar to the ability to detect an

object anywhere on the screen. There is, however, no equivalent to requiring fixation
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in the temporal domain. There is no anatomical “centre” of the current perception
of time. The spatial “centre” of visual perception is the fovea; the temporal “centre”
of perception is the instant of “now,” which is constantly moving through time. It
thus does not make sense to discuss temporal invariance in relation to the instant of
“now,” and we restrict ourselves to its meaning in relation to a temporal context: a

longer temporal event, such as a clip, which contains the feature in question.

It is in this context that the well-established effects of primacy and recency in
short-term memory research are described. Events closer to the beginning or end of
a sequence are recalled better[224]; here our temporal context is the sequence, not
the subjective “now,” which does not have a defined position except for the observer
experiencing the experiment. What we mean here by “temporal invariance” is similar
to a lack of primacy and recency effects in a memory task. When remembering a
sequence of objects, our accuracy is higher for objects near the beginning or end of
the sequence[225]. Our reference point here is not the subjective “now” but the

sequence itself.

“Temporal invariance,” then, is the ability to recognise an event whether it takes
place at the beginning, middle or end of a longer event in which it is embedded. In
our experiments, observers watch a short video clip of dynamic flame (the sample)
and then look for it in a longer flame clip (the test). The spatial size of the clips is

the same.

Another type of invariance is the focus of much of visual search literature: the
number of distractors, or the search space size. This type of invariance is demonstrated
when a red bar is easily recognised among a field of blue bars. In this case, we call the
effect pop-out or the result of high bottom-up salience. In other cases, such as the
search for an X among crosses, invariance is weak or absent and we must work harder
to find the target. In some cases, there is no pop-out at all and we must conduct a
sequential, conscious scan of our candidate objects in order to locate the target. We
can discern which case we are presented with by measuring observers’ invariance to

the amount of distractors: their search space size invariance.

This chapter describes experiments investigating position and search space size
invariance on video of dynamic flames. By studying search space size invariance,

we are asking whether observers can detect sequences of dynamic flame in longer
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sequences. By studying temporal invariance, we are asking whether the timing of the

target event within a longer clip affects observers’ ability to find it.

Mechanisms of object recognition in visual search What mechanisms could the
visual system use to perform temporal search? We reviewed various models of object
recognition in Chapter 1, considering how they might be extended to the temporal
domain. In natural scenes, object recognition is very similar to search; it requires
ignoring the background and separating the attended object from its distractors. There
are a number of potential strategies the visual system may use in detecting a temporal
target contained in a temporal sequence, which are considered below.

When presented with a dynamic sample, the simplest strategy is not to encode the
temporal component at all. Observers may represent a single, static snapshot sampled
from the target, then search for this in later stimuli. In this case, we would not expect
better performance for longer targets.

The visual system may instead use multiple static snapshots. In this case, perfor-
mance may increase with target length, but there may also be limits on the capacity
to store snapshots and compare each frame against multiple targets. This strategy
may also be more vulnerable to false matches at the frame by frame level, a problem
which could be mitigated by matching against a temporal sequence.

Template matching has been frequently proposed as an object recognition
mechanism([7], 226], 227]. In this process, a template is “moved” over a viewed object
(the template is compared to visual input at a variety of positions in the visual field).
The template position which causes a peak in similarity is taken as evidence of the
presence of the target at some position in the scene. This method has been used ex-
tensively in the computer vision literature[228], [229] [230] and bears much resemblance
to the operation of cross-correlation on functions or 2D images.

How could template matching apply to temporal search? A dynamic template
generated from the sample (a representation with a temporal component) could be
scanned along the extent of the test clip. Precisely, this means that the entire dynamic
template of length a is progressively matched with a succession of test clip chunks of
length a. These chunks are taken incrementally from the test using a sliding window.
Conceptually, the process is similar to finding the cross-correlation of two functions,

or convolving a filter with a larger image. In this case, as long as the template were
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accurate enough, it would be equally well matched with the target regardless of its
position in the test. We would not expect matching accuracy to depend on the length

of the test.

Template matching may not be serial: a template may be matched in parallel with
different parts of the test stimulus. Reaction time data show this to occur for classic
parallel search for a single feature. In temporal search, templates could be matched in
a temporally parallel way: the visual system could compare a dynamic template to the
beginning and end of a test clip at the same time, but this would require the whole
stimulus sequence to be encoded and accessed at the same time, which is unlikely in

a biological system.

The previous two models assume that the observer has a good representation of
either a static snapshot or a dynamic template. A “snapshot” connotes an accurate
low-level representation rather than a heavily processed and downsampled gist. Often,
however, information appears at too fast a rate for accurate representation. Due to
the attentional bottleneck[231], and the capacity of visual working memory[232], there

are limits on the amount of information which can be perceived and then represented.

One strategy the visual system could adopt is to represent a small number of spatial
features accurately. According to this strategy, each feature is accurately represented,
but most of the information in the stimulus is thrown away. A feature in this context
is a set of attributes (such as colour, a shape descriptor and location relative to the
stimulus frame) which is bound together as an object representation. This is a very

similar entity to the object file proposed by Kahneman[233] 234].

We call this the set-of-features (SoF) strategy. It is characterised by the tendency
to encode small spatiotemporal patches with high fidelity, rather than processing in-
formation from the entire stimulus and compressing/downsampling it to fit into vi-
sual working memory. It takes its name from the similar bag-of-features strategy in
computer vision[235, [236], which involves keeping orderless collections of local image
descriptors[237]. The approaches are similar in nature but not the same: we mean to
convey the accurate representation of a small number of sparsely picked local stimulus
patches, rather than the holistic processing of an entire image. We do not apply this
constraint here: our usage of SoF specifies the accurate encoding (with or without

location) of a small set of local features and the discarding of information from most
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of the stimulus.

The set-of-features model is applicable to static images, and can deal in various
different ways with dynamic stimuli. The first approach is not to encode time at all: a
set of features contains no information about the time of each feature. Alternatively,
the time at which each feature occurs could be coded relative to the start and finish
of the sample clip. An example is “this distinctive yellow flash occurred 1 second from
the start of the clip.” This is the temporal analogue of coding spatial location relative

to the stimulus frame.

Finally, the times at which each feature in the set occur could be coded relative to
each other, but not relative to the stimulus frame. An example is “this yellow shape in
the top right occurred before this red shape in the bottom left.” This is the temporal
equivalent of coding the relative locations of a set of objects in the visual field, but

not their absolute locations.

The SoF model can thus be divided into three sub-models: orderless SoF, absolute
SoF and relative SoF. These refer to three different ways of imposing structure on
separate spatiotemporal features; in other words, binding them into a holistic repre-
sentation. Orderless SoF does not do this at all, which places it at the local end of

the temporal continuum.

Another way to deal with the bottlenecks of representation and storage is to attend
to as much stimulus information as possible and then downsample it to construct a gist.
In this case, rather than accurately representing small areas of the scene, an observer
uses the whole scene to construct a holistic but highly compressed representation. Fast

natural scene perception appears to rely on the construction of gists[167, [238].

What is the difference between constructing a gist and constructing a template?
They are both holistic; they use information from the entire image, as opposed to
accurately sampling a small part. Template models in object recognition usually con-
note a fairly accurate representation of the stimulus[135] [7 226], whereas the gist
is a more lightweight, compact descriptor[200, [239] and can contain useful high-level
information such as its spatial envelope (volume, perspective, openness and level of

clutter)[238].

The snapshot models differ from the feature models in the degree of holistic en-

coding. Snapshot models encode a representation of the entire stimulus (such as the
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global shape of the flame outline). Feature models encode only a local patch, but with
greater accuracy.

We can draw an important distinction between object recognition models: whether
their representations are atomic or not. An atomic code is one which cannot be
deconstructed and which does not allow the visual system to access or match its
components: it can only be compared or introspected as a whole. The gist is an
atomic representation, as is the point in face space which represents a face (it can be
deconstructed into loadings on the axes of the face space, but these do not correspond
to physical parts of the face: there is no isomorphism between an axis in face space
and the retinal image). Snapshot models, both static and dynamic, are also atomic.

Non-atomic representations are those which can be effectively split into pieces
which correspond to spatiotemporal areas of the stimulus. The set-of-features models
fall into this category: whether densely or sparsely sampled, each feature corresponds
to a part of the stimulus.

The distinction between atomic and non-atomic representations is central: an
atomic representation can allow introspection of its features (“| recognise that distinc-
tive flare in the bottom left of the screen”) and allows matching based on individual
features. It also implies less computation, requiring no transform into a high-level
space, only the sampling of low-level features.

Finally, we note the multidimensional stimulus space models. Computational tech-
niques such as PCA and ICA often involve the dimensionality reduction of stimuli and
their expression as points in a low-dimensional space, for example a face space[240] or
an emotion space[241]. When matching dynamic flame, a video clip could be embed-
ded either as a sequence of points in a static stimulus space (each point corresponding
to a sample of the entire stimulus) or as a single point in a dynamic stimulus space.

We summarise the models as follows:

e Static snapshot. The visual system encodes a representation of a single frame
in a holistic manner.

e Orderless snapshots. Several holistic snapshots are encoded, but their tem-
poral order is not stored.

e Ordered snapshots. Several holistic snapshots are encoded, in order.

e Set of timeless features. Several spatiotemporally local features are encoded,
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but the visual system is unable to access information about their relative order.

e Set of relatively ordered features. Several local features are encoded, along
with their relative order (either a simple ordering, or an ordering as well as the
delays between feature appearance).

e Set of absolutely ordered features. Several local features are encoded, along
with their temporal offset from the beginning of the sample clip.

e Static stimulus space. Each clip is represented as a series of samples in
stimulus space, each one corresponding to an instant of the stimulus.

e Dynamic stimulus space. Observers have access to a dynamic stimulus space,

each point of which represents a complete clip.

Our experimental approach These approaches represent points in a space of mod-
els rather than mutually exclusive descriptions of the temporal search process. The
visual system may operate in a regime between models; it may also implement differ-
ent models in different functional areas. We used visual search experiments to profile
the capabilities of the visual search process on dynamic flames and to investigate the
underlying mechanisms. Firstly, are humans capable of encoding and matching the
complex dynamic forms of fire at all? How much information (how long a sample) do
we need to form a matchable representation, and in how big a search space (how long

a test clip) can the sample be found?

While the internal mechanisms that implement object recognition are difficult to
characterise directly, we can use behavioural measures to profile these mechanisms and
examine their capabilities. We began by setting observers a visual search task designed
to measure search space invariance, the ability to detect a target in search spaces of
varying size. This experiment is an analogue of Treisman's classic visual search tasks,
but with several important differences: the stimuli are natural rather than artificial,

they are dynamic, and we adjust the duration of the test clip rather than its size.

This experiment used the apparatus and stimuli described in Chapter 2. Each trial
involved the presentation of a sample followed by two tests; the observer was asked to
indicate which test contained the sample. We manipulated the duration of the sample

and test clips and measured observers’ matching accuracy.
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5.1 Experiment 5.1: Matching dynamic flame sam-

ples

5.1.1 Methods

o O T

Sample TestA TestB
B 90 - T T
) 85| 0 E
-]
80} &) ]

matching accuracy (percent)
N N
o o
T T
) @ @=9— O ¢
) ce @ @B 0 C
e e D ( e
P

65| B
60 |- B
551 B
50 o o E
45 1 1 1
0.2 0.5 1.0
sample length (s)
T T T T T T T T T T T T
[ ] [ ] 0 [ ] [ ]
1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 1
Subjects
100 T T T T T
C) ,
= 9} o |
c
Q
o
& sof .
>
[$)
©
5 70 i
Q
o
@
2 60| i
E 50| 8 - o 1
40 1 1 1 1 1
1.2 1.4 1.6 1.8 2
test/sample ratio
T T T T T T T T T T T T
0 ([} 0 0 0 ([}
1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11

Subjects

Figure 5.2: Experiment 5.1: visual search in dynamic flame clips. A) Trial structure: a
sample is followed by two tests, one of which contains the sample. Observers indicated
which test they thought matched the sample. B) Accuracy against sample length; no
significant effect was found. C) Accuracy against test/sample ratio: a significant effect
was found.

Observers 12 subjects were recruited using a mailing list operated by University

College London. All reported normal or corrected-to-normal vision.
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Figure 5.3: Experiment 5.1: accuracy depends mainly on test/sample ratio. Error
bars are 1 SEM. The three test/sample ratios correspond to a wide range of different
test lengths. B) Accuracy depends on test/sample ratio rather than test length. C)
Accuracy against test/sample ratio, averaged over the three sample length conditions.
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10-frame sample: 12 14 16 18 20 frames,  0.24, 0.28, 0.32, 0.36, 0.4 seconds
25-frame sample: 30 35 40 45 50 frames, 0.6, 0.7, 0.8, 0.9, 1 seconds
50-frame sample: 60 70 80 90 100 frames, 1.2, 1.4, 1.6, 1.8, 2 seconds

Table 5.1: Experiment 5.1: clip lengths.

Materials We presented stimuli on a CRT monitor in a darkened room as described
in Chapter 2 (General methods). Observers used a chin-rest. Stimulus clips were taken

from a continuous 1000-frame corpus of flame video.

Design We used a 2AFC delayed match-to-sample paradigm.

Procedure In each trial, a sample was presented first, followed by two longer tests.
Using the keyboard, subjects indicated which test they thought contained the sample.
Sample length was 10, 25 or 50 frames, equivalently 0.2, 0.5 or 1 second. We varied
the ratio of test duration/sample duration (comparable to search space size), setting
it to 1.2, 1.4, 1.6, 1.8 or 2. This corresponded to a different set of test clip lengths

for each sample length, according to Table 5.1} Each sample lasted 20 ms.

This design provided 3x5 = 15 conditions. We presented 3 blocks, one corre-
sponding to each target length. We showed 25 training trials first. In this experiment,
we varied test length within blocks and sample length across blocks. This meant that
on each trial, subjects were aware of the current sample length, but did not know the

current test length.
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5.1.2 Results

Type Ill Sum
Source of Squares df Mean Sguare F Sig.
t Sphericity Assumed 025 2 012 810 458
Greenhouse-Geisser .025 1.678 .015 810 440
Huynh-Feldt 025 1.946 013 810 455
Lower-bound 025 1.000 025 810 387
Error(tl) Sphericity Assumed 334 22 015
Greenhouse-Geisser 334 18.460 018
Huynh-Feldt 334 21.403 016
Lower-bound 334 11.000 1030
ratio Sphericity Assumed 144 4 .038 6.492 000
Greenhouse-Geisser 44 3.230 045 6.492 001
Huynh-Feldt 44 4.000 036 6.492 000
Lawer-bound 44 1.000 144 6.492 027
Error(ratia) Sphericity Assumed 244 44 008
Greenhouse-Geisser 244 36.527 007
Huynh-Feldt .244 44.000 .006
Lower-bound .244 11.000 022
tl * ratio Sphericity Assumed .057 8 .007 .768 630
Greenhouse-Geisser .057 4.005 .014 768 551
Huynh-Feldt 057 6.585 008 .769 807
Lower-bound 057 1.000 057 769 399
Error(tl*ratio) Sphericity Assumed 812 88 008
Greenhouse-Geisser 812 44057 .018
Huynh-Feldt 812 72.437 01
Lower-bound 812 11.000 074

Table 5.2: Experiment 5.1: repeated measures ANOVA table (tests of within-subjects
effects from SPSS). Factor tl shows sample length.

Figure 5.2 shows the data from Experiment 5.1. Chance in this experiment is 50%.
We can see from the means that accuracy decreases as the ratio between the test
and the sample increases (as the sample lengthens relative to the test). This effect
is confirmed by a 2-way repeated measures ANOVA, which shows a highly significant
effect of test/sample ratio (F'(4,44)=6.492, p <0.0005) but not of sample length
(F(2,22)=0.810, p =0.458) or of the ratio/sample length interaction (£(8,88)=0.769,
p =0.630). Table [5.2| shows the ANOVA table.

Interestingly, for samples between 0.2 and 1 seconds in length, accuracy does not
appear to depend on sample length. This implies that sample encoding occurs in the
same way for a range of sample lengths.

Figure explores the effect of test/sample ratio in more detail. We see that
the three levels of sample length, together with the five levels of test/sample ratio,
generate a wide range of test lengths, which do not overlap between sample lengths.

Despite this wide range of test lengths, accuracy ranges between similar extremes and
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follows the same general trend. Accuracy depends heavily on test/sample ratio.

5.1.3 Discussion

This experiment tested observers' ability to decide which of a pair of test clips contained
(temporally) the sample clip. Observers can perform this task effectively, showing that
the visual system is capable of representing dynamic flame well enough to perform
matching and visual search.

Interestingly, accuracy did not depend on sample length. This means that limits
on search performance were not due to observers’ not being able to extract enough
information from the sample. The effect of test/sample ratio, however, was highly
significant (p <0.0005, from ANOVA as reported). This means that accuracy depends
on the relationship between the amount of information extracted from the sample, and
that extracted from the test. In this task, test/sample ratio is a proxy for the amount
of distractor video present in the test clip, compared to the length of the sample. On
flame clips, temporal visual search is not invariant to search space size: it is highly
sensitive.

This is also a difficult task: even at maximum accuracy (with a test/sample ratio
of only 1.2) observers only perform at 74%. Observers show high variance in accuracy;
as we can see from the individual subject results in Fig. [5.2, some perform consistently
well and some consistently badly. We did not reject any subjects post hoc; we followed
the procedure described in Chapter 2 (General methods), only rejecting subjects if they

failed a pre-screen matching test.

5.1.4 Evaluation of models

In this experiment, we find no significant effect of sample length. For 0.2 to 1 second
clips, we therefore have no evidence that observers are able to better represent longer
templates. This is consistent with two theories: either observers are representing
information from a single temporal slice of the sample, or they have reached maximum
memory capacity with clips of this length. We investigate this in the next experiment,
which uses shorter clips.

The strong dependence of accuracy on search space size suggests that observers are

not using a process of dynamic template matching. If an accurate template produced
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from the sample was simply being scanned along the length of the test, we would not
expect such low accuracy with a test/sample ratio of 2.

Our results could be consistent with the matching of a low-quality template, which
could cause false positives to occur. In this case, the longer the test, the more potential
false positives; this could reduce accuracy. The template, however, is sufficiently good
to yield 77% accuracy under the (ratio=1.2, sample length= 0.2 s ) condition.

In this experiment, we used samples between 10 and 50 frames (0.2 and 1 second).
Are subjects still capable of matching when faced with shorter clips? To investigate,
we conducted a similar experiment using samples between 1 and 12 frames (0.02 and

0.24 seconds) in length.

5.2 Experiment 5.2: Matching shorter flame sam-

ples

Experiment 5.1 showed us that the visual system can effectively discriminate the com-
plex patterns of motion and form found in fire. To estimate recognition accuracy in
shorter clips, we performed a very similar 2AFC delayed match-to-sample experiment,

but with shorter clips lasting between 0.02 and 0.24 seconds (1 to 12 frames).

5.2.1 Methods

Observers 12 subjects were recruited using a mailing list operated by University Col-
lege London. All reported normal or corrected-to-normal vision.

Materials We used a 1000-frame corpus of consecutive fire images, displayed using
the equipment described in Chapter 2 (General methods).

Design We employed a 2AFC delayed match-to-sample paradigm.

Procedure In each trial, a sample was presented first, followed by two longer tests.
Using the keyboard, subjects indicated which test they thought contained the sample.
Sample length was 1,3,6 or 12 frames, equivalently 0.02, 0.06, 0.12 or 0.24 seconds.
Test length was one of 15, 20 or 40 frames, equivalently 0.3,0.4 or 0.8 seconds. We
varied test length across blocks, and sample length within blocks. This meant that

subjects were aware of the next trial's test length, but not its sample length. We
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Figure 5.4: Experiment 5.2: when subjects perform a matching task with very short
samples (1 to 12 frames), the effect of sample length predominates. A) A short

sample was followed by two longer tests, one of which contained the sample.

B)

Mean accuracy against sample length (averaged over levels of test length), shown in
frames and seconds. Subjects match longer samples with greater accuracy. C) Mean
accuracy against test length (averaged over levels of sample length), shown in frames
and seconds. There is little effect of test length. Error bars are 1 SEM.
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Sample length (s)

Mean accuracy (%)

0.02
0.06
0.12
0.24

60
67
70
73

Table 5.3: Experiment 5.2: sample lengths and accuracies.

presented 24 training trials at the beginning of the experiment. There were 3 x 4

= 12 conditions. We presented 3 blocks, one corresponding to each test length, in

random order. 480 trials (40 per condition) were presented in total.

5.2.2 Results

Figure [5.4| shows the data from Experiment 5.2. Chance in this experiment is 50%.

We can see that mean accuracy increases as the sample lengthens. This effect is

confirmed by a two-way repeated measures ANOVA, which reveals a significant effect

of sample length (p <0.0005) but not of test length (p =0.652), with no interaction
between the two (p =0.395). Table [5.4] shows full ANOVA results.

Table |5.3| shows mean accuracy by sample length. Even when presented with a

sample consisting of a single frame (0.02 s), accuracy was greater than chance (mean

accuracy 60%).
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Type I Sum
Source of Squares di Mezan Square F Sig.
sample_length Sphericity
Ao 334 3 A1 | 2reve .000
S 334 | 2410 138 | 27978 000
Huynh-Feldt 334 3.000 a1 27.978 .000
Lpower; bound 334 1.000 334 27.978 .000
Error(sample_length) Engr:ﬂg' 131 33 004
kb 131 | 26508 005
Huynh-Feldt A3 33.000 004
Lower-bound 131 11.000 012
tast_length ig;‘mﬁ‘ 009 2 005 436 652
Emerioe: 009 [ 1455 007 438 592
Huynh-Feldt 009 1.620 006 436 .B12
Lower-bound 009 1.000 009 436 523
Error(tast_length) ﬁggfr:cgg 290 20 o1
SleHoes 239 | 16.006 015
Huynh-Feldt 239 17.818 013
LOWEf_- bound 239 11.000 022
sample_length * test_length gggfr:rgg 033 6 006 1.060 305
g;?f;;"”“' 033 3.038 008 1.060 387
Huynh-Feldt 033 6.000 006 1.060 395
Lower_—pound 033 1.000 033 1.060 328
Error(sample_length*test_length) iggf:%g 346 66 005
e ot 346 | 43.321 008
Huynh-Feldt 3486 686.000 005
Lower-bound 346 11.000 031

Table 5.4: Experiment 5.2: repeated measures ANOVA table (tests of within-subjects
effects from SPSS).

5.2.3 Discussion

This experiment covers a shorter range of sample lengths than Experiment 5.1: 0.02
to 0.24 s, as opposed to 0.2 to 1 seconds. Here, we are investigating observers' ability
to extract useful information from very short dynamic samples.

Even when presented with a sample consisting of a single frame (0.02 s), accuracy
was greater than chance (mean accuracy 60%). Observers can thus extract useful
information from a single frame. This shows that they do not require a long temporal
integration period to build useful representations, which supports bag-of-features the-
ories rather than dynamic snapshot theories. The more frames available in the sample,
the more useful information observers can extract and the higher the accuracy. This
suggests that observers are not using a static snapshot model, as in this case, we would
not expect an effect of sample length.

The 0.24 s sample, 0.8 s test condition in this experiment is very close to the 0.25

s sample, 0.8 s test condition in Experiment 5.1. Respective mean accuracies across
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subjects are 71% and 69%. The small differences in accuracy across these conditions,
provides a useful confirmation of our data. In terms of protocol, in Experiment 5.1 we
vary sample length across blocks, whereas in Experiment 5.2 we vary it within blocks.
Observers, noticing this constancy, had prior information as to the length of the next
test (except at the beginning of each block). We varied sample length within blocks,
so the length of the next sample was not knows. Not having this information does not
appear to limit observers' ability to perform the task.

In Experiment 5.1 we demonstrated that for 0.2 to 1 second samples, accuracy
depends on test/sample ratio and not on sample length. Here, for shorter clips of 0.02
to 0.24 s, we find the opposite pattern: accuracy depends on sample length and not
test length. This is consistent with a matching strategy which samples continuously
from the sample clip as opposed to encoding a static snapshot, but reaches saturation
for the longer set of clips. In Experiment 5.1 the longer clips appear to have filled
observers’ memory capacity: observers gain no benefit from longer clips. In Experiment
5.2 the clips are shorter, meaning that varying their size allows more information to
be encoded. Here, there is no effect of test length, which indicates that the smaller
search space does not provide a sufficient challenge to drop performance.

This experiment demonstrated observers' ability to recognise very short flame clips,
down to a single frame, presented within longer clips. Because the sample clip was
randomly placed within the test clips, this experiment could not examine the second
type of invariance we highlighted: invariance to target position. In order to investigate
this, we performed another matching experiment in which we explicitly manipulated

the duration of distractors played before and after the target.

5.3 Experiment 5.3: Visual search in more detail

Here we used a similar matching task to that of Experiment 5.1. Sample length was
fixed at one second (50 frames), requiring the visual system to encode a significant
amount of information. We did not directly control test length, but rather manipu-
lated the length of the clip played before the target (the pre-length) and that of the
clip played after the target (the post-length); see Fig. [5.5] Test clips were always

continuous, since on each trial the test clip was picked first and the sample clip was
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selected from within from the test clip. To allow more trials and in order to use signal

detection theory, we used a yes/no instead of a 2AFC design.

5.3.1 Methods

Observers 11 subjects were recruited using a mailing list operated by University Col-

lege London. All reported normal or corrected-to-normal vision.

Materials We used a larger 10,000-frame corpus of consecutive fire images, dis-

played using the equipment described in Chapter 2 (General methods).

Design We used a Yes/No delayed match-to-sample paradigm.

Procedure In each trial, a sample was presented first, followed by a longer test.
Using the keyboard, subjects indicated whether they thought the test contained the
sample, or did not contain the sample. Samples were all one second (50 frames). True
test clips consisted of the sample, temporally surrounded by a pre-clip and a post-clip,
which could both be of length zero. Foil clips consisted of a randomly-chosen clip
equal in length to (1 + prelength + postlength) seconds. The minimum-length test
was therefore also one second in length. The lengths of the pre-clip and the post-
clip (which we term prelength and postlength) were either 0, 25, 50, or 100 frames,
equivalently 0, 0.5, 1, and 2 seconds. Each factor thus had four levels, giving us
16 conditions. We presented 30 training trials whose samples and tests were all 1
second in length. We varied both pre-length and post-length within blocks, and the
experiment was divided into 10 blocks. There were 400 trials in total (25 trials per

condition).

151



A)

Real trial
Sample Pre-length Sample Post-length
B)
)
£
f=2]
3
g
0 0.5 1 2
prelength (s)
distractor length (s)
0 0.5 1 1.5 2 25 3 4
C 100 T T T T T T T T
) ) e
(6}
—~ 80
L
= 70
[&]
(]
5 60
3
© 50
40 °
30 Il Il Il Il Il Il Il Il
0.0 250 50.0 750 100.0 1250 150.0 200.0
distractor length (frames)
[ & e o ¢ ¢ ¢ ., | ¢ ¢ e
0 1 2 3 4 5 6 7 8 9 10
Subjects
a0 T 1 1 1 1 T
D) &5 ®—e true trials (hit rate)
80 e—e foil trials (CR rate)
>
o 75
g
8 70
o
S 65
60
55
50 | | | | |

0.0

0.5

10 15 20 25
total distractor time (s)

3.0

4.0

Yes/no?

Figure 5.5: Experiment 5.3: we manipulated the lengths of the clips played before
and after the target (the pre-length and the post-length). A: trial layout. B: heat
map showing accuracy in function of pre-length and post-length. C) Accuracy drops
as total distractor time rises; this effect is highly significant. D) Hit rate and correct
rejection (CR) rate against total distractor time, for true trials (target present in test)
and foil trials (target absent from test). The hit rate remains constant, whereas the
correct rejection rate drops, showing that observers are better at noticing the sample
than rejecting a foil test. Error bars are 1 SEM.
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observers are mostly biased towards responding Yes.
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5.3.2 Results

Type Il Sum
Source of Squares df Mean Square = Sig.
prel Sphericity Assumed 078 3 026 983 14
Greenhouse-Geisser 078 2.253 .035 983 399
Huynh-Feldt .078 2.941 .027 983 413
Lower-bound 078 1.000 .078 983 345
Errar(prel) Sphericity Assumed 797 30 .027
Greenhouse-Geisser 797 22.533 .035
Huynh-Feldt 797 29.414 .027
Lower-bound J97 10.000 .080
posil Sphericity Assumed .0538 3 .019 1.079 373
Greenhouse-Geisser .058 2.254 .026 1.079 363
Huynh-Feldt 058 2.943 .020 1.079 .ar2
Lower-bound .058 1.000 .058 1.079 .323
Error(postl) Sphericity Assumed 540 30 .018
Greenhouse-Geisser 540 22,543 .024
Huynh-Feldt .540 29.432 .018
Lower-bound 540 10.000 .054
prel * postl Sphericity Assumed 103 9 on 598 796
Greenhouse-Geisser 103 3.934 .026 558 664
Huynh-Feldt 103 6.805 .015 598 751
Lower-bound 103 1.000 .103 598 457
Error(prel*postl) Sphericity Assumed 1.729 90 .019
Greenhouse-Geisser 1.729 39.341 .044
Huynh-Feldt 1.729 68.045 .025
Lower-bound 1.729 10.000 73
Table 5.5: Experiment 5.3: the effects of pre- and post-length on accuracy. Repeated
measures ANOVA table (tests of within-subjects effects from SPSS)
Type Il Sum
Source of Squares df Mean Square F Sig.
tt Sphericity Assumed 74 7 025 3.966 .001
Greenhouse-Geisser 174 2.630 066 3.866 .022
Huynh-Feldt A74 3.655 .048 3.966 .01
Lower-bound 174 1.000 174 3.966 074
Error(tt)  Sphericity Assumed .440 70 .006
Greenhouse-Geisser .440 26.305 017
Huynh-Feldt 440 36.550 012
Lower-bound 440 10.000 044

Table 5.6: Experiment 5.3: the effects of total time on accuracy

ANOVA table (tests of within-subjects effects from SPSS)

. Repeated measures

Figure [5.5] shows the data from Experiment 5.3. We can see that accuracy drops

as total test duration increases; in other words, as the potential for the presence of a

distractor increases. This effect is confirmed by a one-way repeated-measures ANOVA,
which reveals a highly significant effect of total time (p =0.001). Table shows full
ANOVA results.

The effects of pre-length and post-length on accuracy are shown in Fig. [5.5B.

Only the true trials are included in this calculation, since foil trials have no target and
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thus pre-length and post-length are not defined. With pre-length and post-length as
factors, a two-way repeated-measures ANOVA on the true trials shows no significant
effect of prelength (p =0.414) or postlength (p =0.373). Table[5.5 shows full ANOVA
results.

This experiment used a Yes/No paradigm, allowing us to classify each trial as a
hit, miss, correct rejection or false positive. Figure [5.5D shows this data. We see
a strong difference between the hit rate (accuracy on true trials) and the correct
rejection rate (accuracy on foil trials). As total distractor time increases, the hit rate
stays constant, while the correct rejection rate drops. This means that decreasing
accuracy is explained mostly by observers’ mistaking foil tests for true tests (false
alarms), rather than missing true tests. Observers are much better at detecting a real
target than rejecting a false target: they tend to confuse distractors for the target.

Criterion distance(c) and bias () measures were calculated for each observer.
Their mean values in function of total distractor time are shown in Fig. [5.6] Values
of [ are below 1 except for two points, showing a bias towards responding Yes. The
¢ measure estimates the distance between the criterion and the neutral point (the
point at which Yes and No responses are equally likely). All values of ¢ except for
one are negative, confirming that observers are biased towards responding Yes. This
bias appears to increase as distractor time rises. Also shown is the proportion of Yes
responses in function of total distractor time, confirming that observers are more likely

to respond Yes as the distractor load increases.

5.3.3 Discussion

In the 1-second test condition, observers’ matching accuracy is 80%, showing that
they can match a clip with its counterpart with high precision when no distractors are
present. Accuracy drops to 65% for 5-second samples with 4 seconds of distractor
video. This figure is much lower but still above chance (one-sample ¢-test comparing
the mean of the across-observer distribution to 50%, p <0.0005). This experiment
uses a much larger test/sample ratio than the previous two, showing that observers are
still able to perform the task when they must deal with four times as much distractor
video as sample video.

The difference between the hit rate and the correct rejection rate shows that
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observers are very good at detecting present targets; they show a hit rate of nearly
80% even with four seconds of distractor video. The correct rejection rate, on the other
hand, drops quickly to 55% under the same conditions: observers cannot accurately

reject foil clips, and mistake them for clips containing the target.

5.3.4 Evaluation of models

There was no significant effect of pre-length, which gives us no evidence that targets
at the beginning of the sample clip were better recognised. This gives us no support
for models whose temporal coding is start-relative, since such models predict easier

matching and higher accuracy for targets at the beginning of the test.

The asymmetry between hit rate and correct rejection rate is interesting, but has
limited power to discriminate between models. It could be due to a high-level cognitive
strategy, such as “respond Yes if you see the target, and if you do not see the target,
respond Yes anyway.” We can see from Fig. [5.6] that observers have an increasing bias
towards Yes responses as the distractor load increases. If we assume that observers
have access to a level of confidence in their decision, and that their confidence level
decreases as distractors increase, then this pattern is also consistent with the strategy

“respond Yes if you are not sure.”

With no distractors, the hit rate and correct rejection rate are the same; we only
see a difference with increasing distractor length. This indicates that the asymmetry

has something to do with the matching process rather than the representation process.

This experiment manipulated prelength and postlength separately, showing that the
recognition of dynamic flame is highly sensitive to search space size, but not to how
much of the clip was played before and after the target. As in previous experiments,
however, we manipulated the amount of distractor video. In the next experiment, in
order to examine sensitivity to target position and not search space size, we hold the

test length constant and vary the target’'s position.
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Figure 5.7: Experiment 5.4. with sample and test length held constant, the target's
position in the sample (offset) was varied. We used a 1-second sample and a 3-
second test, allowing offsets of up to 2 seconds. These data are taken from the true
trials (those which contain the target) as offset is not defined for foil trials. There is
highly significant effect overall, but accuracy does not drop until an offset of 1 second,
indicating that detection is position invariant for small offsets from the beginning.
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5.4 Experiment 5.4: Position dependence

5.4.1 Methods

Observers 8 subjects were recruited using a mailing list operated by University College

London. All reported normal or corrected-to-normal vision.

Materials We used a 10,000-frame corpus of consecutive fire images, displayed

using the equipment described in Chapter 2 (General methods).
Design We employed a Yes/No delayed match-to-sample paradigm.

Procedure In each trial, a 1-second sample was presented first, followed by a 3-
second test. For true trials, we manipulated the position of the target in the test. For
foil trials, we displayed a test clip which did not contain the sample. Sample offset
(the delay between the start of the test and the start of the sample) was either 0,
10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 frames, equivalently 0.0, 0.2, 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6, 1.8 or 2.0 seconds. Observers indicated whether they thought the
sample was present in the test using the keyboard. We ran the experiment in short

blocks, varying the offset within blocks.

5.4.2 Results

Figure|5.7| shows the data from Experiment 5.4. As with the previous experiment, the
offset is only known for the true trials, which make up half of the experiment. Looking
at the true trials, we find a smooth decrease in accuracy as the target approaches the
end of the test. This effect is confirmed by a one-way repeated-measures ANOVA
on the true trials (p <0.0005). Table [5.7| shows full ANOVA results. Within-subjects

contrasts suggest that the trend is linear (p =0.005).

Offset is only known for the true trials. When analysing these data for effects due
to offset, we cannot count correct rejections or false positives- only hits and misses.

This means that signal detection theory is not applicable here.
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Type lll Sum

Source of Squares df Mean Square F Sig.
PR =phenon 328 10 033 | 4673 000
Greenhouse-
G 328 3.858 .085 4.673 .006
Huynh-Feldt 328 9.189 .036 4.673 .000
Lower-bound 328 1.000 328 4673 067
Error(position) ig;\ﬁ;rlglg 492 20 007
enhoua: 492 | 27.009 018
Huynh-Feldt 492 64.322 .008
Lower-bound 492 7.000 070

Table 5.7: Experiment 5.4: the effects of position on accuracy. Repeated measures
ANOVA table (tests of within-subjects effects from SPSS).

5.4.3 Comparison to Experiment 5.3

Experiment 5.3 manipulated the total distractor time, with the target played at various
positions during the test. We observed a decline in the correct rejection rate and a
steady hit rate.

Experiment 5.4 kept the total distractor time constant, manipulating the position
of the target in the test. We noted a decrease in the hit rate and a steady correct
rejection rate.

In Experiment 5.4, the (constant) length of the test was always known in advance.
Observers therefore had the opportunity to realise they were nearing the end of the

test and alter their response bias.

5.4.4 Discussion

There is a strong effect (p <0.0005 by one-way repeated-measures ANOVA) of target
position on accuracy. This confirms that dynamic flame matching is position-sensitive:
when the target occurs later on in the test, it is more difficult to detect.

Why is a later target more difficult to detect? One reason could be that the
sample's representation decays over time, independently of any new visual information.
In this case, we would expect to find a drop in accuracy if a long pause was introduced
between sample presentation and test presentation. Another possibility is that viewing
the test interferes with the representation of the sample. In this case, we would expect
no drop in accuracy when introducing a pause (during which the observer is not viewing

any stimuli) between sample and test. We test this case in the next experiment.
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5.4.5 Fit to models

This experiment showed a strong effect of position dependence: detection of dynamic
flame sequences is not position-invariant. If we assume that the sample does not
decay during the task, this supports models in which time is encoded relative to the
beginning of the clip. Temporal information coded in this way would not need to be
transformed when matching targets at zero offset, but would need to be transformed
when matching targets later in the clip.

In Fig. [5.7] accuracy appears to remain high until offset reaches 1 second, then
drops. This could be consistent either with a temporal coding scheme which is invari-
ant until it has to transform representations of time by a certain amount, or with a
representation which does not begin to decay until 1 second into the test presentation.
It is difficult to approach this question psychophysically, since we do not have access
to representational quality data on a trial-by-trial basis.

Lowered performance when the target is later in the clip could be due to a decaying
representation of the sample. To test this possibility, we performed a further matching
experiment in which we varied the length of the interstimulus interval (ISI) between

the sample and the test.

5.5 Experiment 5.5: Memory

5.5.1 Methods

Observers 7 subjects were recruited using a mailing list operated by University College
London. All reported normal or corrected-to-normal vision.

Materials We used a 1000-frame corpus of consecutive fire images, displayed using
the equipment described in Chapter 2 (General methods).

Design We employed a yes/no delayed match-to-sample paradigm.

Procedure In each trial, a sample clip was presented first, followed by a variable
interstimulus interval (ISI) and finally a test clip. Observers indicated whether they
thought the sample was present in the test using the keyboard. In half the trials, both
clips were inverted; in the other half, they were both upright. We used samples of

either 10 frames (0.2 s) or 50 frames (1 s). Test length was 1.2 times the sample,
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Figure 5.8: Experiment 5.5: the effects of a variable-length blank-screen ISI on match-
ing accuracy. Error bars are one SEM. A) A sample (0.2 or 1 second) was followed
by a blank-screen ISI (1 to 15 seconds) and then a test clip (0.24 or 1.2 seconds). B)
Mean accuracy decreases rapidly, approaching chance for the 15-second ISI. C) Mean
observer accuracy plotted against stimulus orientation; there is no significant drop due
to inversion. D) Mean observer accuracy plotted against sample length, which caused
no significant effect.
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corresponding to 12 frames (0.24 s) or 60 frames (1.2 s). On true trials, the sample
was randomly placed within the test; on foil trials, the sample did not contain the test.
The ISl was either 1, 5, 10 or 15 seconds. Sample length was varied across blocks,
while the ISI was varied within blocks. We used three repetitions of each type of block

(6 blocks total). There were 36 trials per condition (a total of 288 trials).

5.5.2 Results
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Figure 5.9: Experiment 5.5: the effects of a variable-length blank-screen ISI on observer
sensitivity and bias. Measures from signal detection theory were calculated separately
for each observer; their mean values are shown here. A) d-prime decreases rapidly as
the ISl increases. B) 3, a measure of bias, increases. Here the mean /3 across observers
is shown. C) ¢, an estimator of observers’ decision criteria. Both bias measures indicate
that a “no” response is more likely as the delay increases.
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Tests of within-subjects effects from SPSS:

Type Il Sum
Source of Squares df Mean Square F Sig.
o ey 041 3 014 | 3463 038
g;?g:;‘r"”“' 041 2.716 015 3.483 044
Huynh-Feldt 041 3.000 014 3.463 038
Lower-bound 041 1.000 041 3.483 112
e s s | 071 18 004
ale higpiser 071 | 16295 004
Huynh-Feldt 071 18.000 2004
Lower-bound 071 6.000 012
Tests of within-subjects contrasts from SPSS:
Type Ill Sum
Source IS of Squares df Mean Square F Sig.
ISI Linear .041 1 .041 10.080 .019
Quadratic .000 1 .000 .068 .803
Cubic 5.870E-5 1 5.870E-5 .014 910
Error(ISI)  Linear .024 6 .004
Quadratic .022 6 .004
Cubic .025 6 .004

Table 5.8: Experiment 5.5: the effects of ISI on accuracy. Repeated measures ANOVA
tables.

Tests of within-subjects effects from SPSS:

Type Il Sum
Source of Squares df Mean Square F Sig.
ISI Sphericity
il 1.780 3 593 4,660 014
Greenhouse-
Geisser 1.780 2.409 739 4.660 .023
Huynh-Feldt 1.780 3.000 593 4.660 .014
Lower-bound 1.780 1.000 1.780 4.660 .074
Error(ISl)  Sphericity
sl 2.203 18 127
Greenhouse-
Geisser 2.293 14.453 159
Huynh-Feldt 2.293 18.000 a27
Lower-bound 2.293 6.000 382
Tests of within-subjects contrasts from SPSS:
Type Il Sum
Source ISI of Squares df Mean Square E Sig.
ISI Linear 1.759 1 1.759 11.543 .015
Quadratic .017 1 017 a7 .693
Cubic .004 1 .004 .033 .861
Error(1Sl)  Linear 914 6 152
Quadratic .606 6 A0
Cubic 773 6 129

Table 5.9: Experiment 5.5: the effects of ISI on d-prime. Repeated measures ANOVA
tables.
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tests of within-subjects effects from SPSS:

Type [Il Sum
Saurce of Squares df Mean Square F Sig.
delay ey 099 3 033 4.496 018
il 009 | 1608 061 4.496 048
Huynh-Feldt .099 2108 .047 4.496 .032
Lower-bound .098 1.000 .098 4.496 .078
Emoridaley) EEQ‘E{T']‘;LV 132 18 007
ol 132 0.645 014
Huynh-Felat 132 12.639 .010
Lower-bound 132 6.000 022
L e 002 1 002 200 670
gfise;‘;"“s‘* 002 1.000 002 200 870
Huynh-Feldt .002 1.000 .002 .200 870
Lower-bound .002 1.000 .002 200 670
Error(lsample) ﬁggsmztdy o072 6 012
g;‘?g:;”“s“l 072 6.000 012
Huynh-Felat 072 6.000 .012
Lower-bound Q72 6.000 012
KR RN ﬁg;‘ﬁ#l‘gtdy 063 3 021 1.320 299
g;‘?:;;"“s"l 063 2.037 031 1.320 303
Huynh-Feldt 063 3.000 021 1.320 288
Lower-bound 063 1.000 .063 1.320 294
Error(delay*lsample) Egg::gtdy 286 16 016
g;‘?f:;”“w 288 | 12220 023
Huynh-Feldt .286 18.000 018
Lower-bound 286 6.000 .048
tests of within-subjects contrasts from SPSS:
Type lll Sum
Source delay Isample of Sguares df Mean Square F Sig.
delay Linear .075 1 .075 11.579 014
Quadratic .006 1 .006 2.386 173
Cubic 017 1 .07 1.341 291
Error(delay) Linear .039 8 .006
Quadratic .016 B .003
Cubic 077 6 .013
Isample Linear .002 1 .002 200 .670
Error(lsample) Linear 072 6 012
delay * Isample Linear Linear .000 1 .000 016 904
Quadratic Linear .0e2 1 062 5.302 .061
Cubic Linear 001 1 .001 .039 .850
Error{delay*lsample}) Linear Linear .086 B 014
Quadratic  Linear .070 6 012
Cubic Linear 130 5] .022

Table 5.10: Experiment 5.5: the effects of ISl on accuracy. Repeated measures ANOVA
tables. Factor “delay” represents ISI; factor “Isample” represents sample length.
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Sample length ISI=1s ISI=5s ISI=10s ISI =155
02s 0.72 0.63 0.60 0.66
ls 0.62 0.67 0.60 0.52

Table 5.12: Experiment 5.5: Mean accuracies (%) by ISl and sample length.

Type Il Sum
Source of Squares df Mean Square F Sig.
delay Sphericity 096 3 032 4.146 021
Greenhouse-
Geisser .096 2.576 .037 4146 .029
Huynh-Feldt .096 3.000 .032 4,146 .021
Lower-bound .096 1.000 .096 4.146 .088
Eror(delay) Sphericity 139 18 008
Greenhouse-
Geisser 139 15.457 .009
Huynh-Feldt 139 18.000 .008
Lower-bound 139 6.000 .023
nv iggﬁﬂgg’ 014 1 014 2.030 204
Greenhouse-
Geisser .014 1.000 .014 2.030 .204
Huynh-Feldt .014 1.000 .014 2.030 .204
Lower-bound 014 1.000 .014 2.030 .204
Error(inv) Sphericity 042 6 007
Greenhouse-
Geisser .042 6.000 .007
Huynh-Feldt .042 6.000 .007
Lower-bound .042 6.000 .007
delay * inv Sphericity 002 3 001 092 964
Greenhouse-
Geisser .002 2.167 .001 .092 .925
Huynh-Feldt .002 3.000 .001 .092 .964
Lower-bound .002 1.000 .002 .092 772
Error(delay*inv) iggl?&c:gr 123 18 007
Greenhouse-
Geisser 123 13.000 .009
Huynh-Feldt 123 18.000 .007
Lower-bound 123 6.000 .021

Table 5.11: Experiment 5.5: the effects of ISI and inversion on accuracy. Repeated
measures ANOVA tables.

Accuracy drops severely as the ISI lengthens; this effect is confirmed by a one-way
repeated-measures ANOVA (F'(3,18) = 3.463, p=0.038). Trend analysis using within-
subjects contrasts suggests that the trend is linear (p = 0.019). Mean accuracies by
ISI and sample length are shown in Table [5.12] and ANOVA results in Table [5.8
Figure [5.8] shows the data from Experiment 5.5. There is little effect of sample
length, and a strong effect of ISI; this is confirmed by a two-way repeated-measures
ANOVA, which shows no effect of sample length (F'(1,6) = 0.02, p = 0.670) but
a significant effect of ISI (£(3,18) = 4.496, p = 0.016) and no interaction between
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the two factors (£'(3,18) = 1.32, p = 0.299). Trend analysis using within-subjects
contrasts suggests that the trend is linear (#'(1,6) = 11.58, p = 0.014). Full ANOVA
results are shown in Table [5.10l

A two-way repeated-measures ANOVA on inversion and IS revealed no effect of
inversion, (F'(1,6)=2.030, p=0.204), but confirmed an effect of ISI, (F(3,18)=4.416,
p=0.021). Table shows full ANOVA results.

Fig. shows measures of sensitivity and bias from signal detection theory. We
calculated an individual d-prime value for each observer. We can see that observers’
mean d-prime drops as the ISI increases, showing that their sensitivity depends on
the ISI. This trend is supported by a one-way repeated-measures ANOVA performed
on observers' individual d-prime values. This test reveals a significant effect of ISI
(F(3,18) = 4.66, p = 0.014) which, according to trend analysis with within-subjects
contrasts, appears to be linear (F(1,6) = 11.54, p = 0.015). Table shows full
ANOVA results.

Under the condition with the longest ISl (15 seconds), observers’ mean accuracy
is 57% and their mean d-prime is 0.42. A one-sample, one-tailed t-test (comparing
the mean of the across-observer accuracy distribution with 50%) shows that mean
accuracy is still above chance in this condition (n = 7, p = 0.040).

We calculated criterion distance (¢) and bias (/3) measures for each subject; their
mean values as a function of ISI are also shown in Fig. [5.9] In Experiment 5.3, these
measures indicated that observers were more likely to respond Yes with increasing
distractor load. Here we find the opposite pattern: the longer the ISI, the more likely
observers are to respond No.

A decayed representation biases observers towards a No response; increasing dis-
tractors bias observers towards a Yes response. This indicates that separate mecha-
nisms may be at work. In both cases, observers should have less confidence in their
decision; the cognitive strategy “respond Yes if your confidence is low” does not explain

the pattern found in this experiment.

5.5.3 Discussion

Observers are capable of encoding both 0.2 s and 1 s samples and effectively matching

them with tests of the same length, over delays of between 1 and 15 seconds. With
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a 15-second ISI, accuracy drops to 57%, but is still significantly above chance. This
low accuracy and high p-value (p = 0.040, ¢-test comparing the mean of the across-
observer distribution to 50%) indicates that 15 seconds is close to the maximum ISI
with which observers perform above chance. The observation that the accuracy curve
drops linearly supports this hypothesis; its gradient is not likely to lessen, which would
delay the curve's drop to the 50% level.

This rapid drop in accuracy shows that representations of dynamic fire decay very
quickly, even in the absence of interference from new dynamic stimuli (observers were
presented with a grey screen during the ISI). The information retained by observers'

visual systems, then, is not stable enough to survive for much longer than 15 seconds.

5.5.4 Comparison to Experiment 5.4

In Experiment 5.4, we found that targets positioned later in the test clip were detected
less effectively. What do the results of Experiment 5.5 mean in this context?

In Experiment 5.5, accuracy is at 89% when the target is presented at the beginning
of the test, but drops to 76% when observers have seen 2 seconds of test before the
1-second target is displayed. In Experiment 5.5, there are two conditions: one using
a 1-second target and the other using a 0.2 second target. For the 1-second target,
accuracy is at 62% with a 1-second ISI, 67% for a 2-second ISI and 52% for a 15-second
ISI.

These conditions are not directly comparable, as observers are performing a slightly
different task: search in a test 3 times longer than the test (Experiment 5.4) as
opposed to search in a test 1.2 times longer (Exp. 5.5). In Experiment 5.4, sample
and test lengths are constant; observers have more opportunity to learn that particular
configuration.

However, Experiment 5.5 provides convincing evidence that sample representations
take much longer than 2 seconds to decay substantially. In Experiment 5.4 a 2-second
offset induces a 13 pp accuracy drop compared to an O-second offset. We only find
a 10-pp drop in Experiment 5.5, even with a 15-second ISI. This indicates that the
accuracy drop in Experiment 5.4 is due mostly to the effect of distractors, not simply
the delay between seeing the sample and seeing the test. There appears to be an

interference effect, not simply a decay effect.
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5.5.5 Learning

In the same way as in Chapter 4, we examined whether observers were learning new
representations by asking whether their matching accuracy increased as they progressed
through the experiment. For each experiment, we arranged the trials in the order in
which they were presented, blocked them into sequential groups of 20, and calculated
the average accuracy for each block.

The results of this sliding-window approach are shown in Figure[5.10] To check for
an improvement in mean accuracy, we fitted a line to the sequentially arranged data.

Calculated slope values are shown in Table 5.13]

Experiment  Slope (percentage points per trial)

5.1 —8.20 x 107*
5.2 —6.09 x 10~*
5.3 1.63 x 10~*

5.4 —4.04 x 1073
5.5 —6.14 x 10~*

Table 5.13: Learning slopes in Chapter 5.

These slope values are all too small to suggest a consistent increase in accuracy
across the entire experiment. Most of the experiments show a gradual and consistent
increase in accuracy over approximately the first 30 trials. Observers are not capable
of performing the task at full accuracy immediately.

None of the experiments, however, show a consistent increase in accuracy over the
entire sequence of trials. Observers do not appear to be learning the task after the

first 30 trials.

5.6 General discussion

We explored five aspects of the flame matching process: its dependence on test/sample
length ratio, sample length, search space size, target position (amount of distractors
seen before the target), and time elapsed between test and target.

Experiment 5.1 asked subjects to match samples between 0.2 and 1 seconds with
longer tests. Accuracy was found to depend mostly on the test/sample ratio, not
on sample length or test length. Under these circumstances, the limiting factor is

the relationship between the amount of information in the sample and the amount

168



Mean accuracy (%)

L L L L L L
100 200 300 400 500 600 700
First trial in slidina window

(a) Experiment 5.1

100

90+
80

A A N N

60

Mean accuracy (%)

50
0

. . " " " . "
50 100 150 200 250 300 350 400
First trial in slidina window

(b) Experiment 5.2

ZL’W\' ity 7V

Mean accuracy (%)

T T

. . . . . . .

50 100 150 200 250 300 350 400
First trial in slidina window

(c) Experiment 5.3

< 920
§ 80 3
i A A WA W
= ‘J" ‘J‘\'/‘ \ A \f %”
= 0@
50O 5‘0 160 1 éO 260 2‘50 360 3‘50 400
First trial in slidina window
(d) Experiment 5.4
100
< 90
‘g 801
R A P,
L of nahat ah W T ol UL
| | | o
200

50 -
0 50 100 150
First trial in slidina window

250 300 350

(e) Experiment 5.5

Figure 5.10: For each experiment, trials were aligned in order of presentation and a
sliding average applied to show how accuracy changed during the experiment. There
was no overall trend of increasing accuracy, suggesting that observers did not learn or
improve any useful representations during the course of the experiments. Experiments
6,7 and 8 showed gradual improvement over the first 50 trials, but not after this.
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of information in the test. These results suggest that these clips saturate observers’

encoding capacity, and show that their detection is not invariant to test length.

Experiment 5.2 repeated a near-identical procedure but used shorter samples (0.02
to 0.24 seconds). In this case, accuracy depended more on sample length than on test
length. Observers are still capable of matching 1-frame samples with above-chance
accuracy. However, with very short samples, the limiting factor appears to be the
amount of information which can be extracted from the sample. These results suggest
that clips of this length do not saturate observers’ working memory and that matching

is invariant to search space size for clips this short.

Experiment 5.3 used 1-second samples and explicitly manipulated the length of
the distractor video played before the target and after the target. These factors
had no significant effect individually, but increasing total test time lowered accuracy
significantly. Here a Yes/No paradigm revealed a striking asymmetry between hits and
correct rejections: for longer tests, there were many more hits than correct rejections.

Observers have a tendency to mistake a foil for the target, but not vice versa.

Experiment 5.4 measured the (temporal) position invariance of dynamic flame
matching by varying the position of a 1-second target in a 3-second test. Although
there was no significant effect on accuracy, investigation of the hit rate and correct re-
jection rate revealed position-dependent changes. As target offset increased, observers

made fewer hits and more correct rejections.

Experiment 5.5 measured the stability of sample representations over time. Ob-
servers’ accuracy descended close to chance after 15 seconds, showing that represen-

tations of flame decay quickly.

Sequential trial analysis revealed that, during each of these experiments, observers'
accuracy does not increase during the course of our experiments; they do not appear
to learn more useful representations as the task progresses, except for a short accli-

matisation period in the first 50 trials.

Together, these results allow us to build up a picture of the temporal visual search
process for dynamic flame. It is a difficult task, with high variance in accuracy between
observers. Search is highly vulnerable to distractors, with samples between 0.2 and
1 seconds being found with 66% accuracy when the test is only twice as long as

the sample. Search is also highly position-dependent, with targets which are placed
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earlier on in the test being found with higher accuracy. According to the decay rate of
memory representations, which we measured by proxy in Experiment 5.5, this is likely

to be due more to the effect of distractors than loss of representational quality.

What do these data enable us to say about the models of dynamic visual search

described at the beginning of this chapter?

Static snapshot If the visual system were encoding a single snapshot from each
sample, then scanning the input stream for each snapshot, we would not expect accu-
racy to depend on sample length. According to Experiment 5.2, 0.24 second samples
are matched at much higher accuracy than 0.02 second samples, which argues against

the static snapshot model.

Dynamic snapshot This model involves encoding the entire sample as a dynamic
snapshot, then scanning this over the test as it is presented. In this case, we would not
expect accuracy to depend on test length; according to Experiment 5.1, test/sample
ratio has a key effect on accuracy. Either the dynamic snapshot model is not being

used, or the snapshot decays or is masked during test presentation.

Set of features According to this model, a small number of spatiotemporal fea-
tures are encoded with high precision; information from most of the sample is discarded.
We will consider this model alongside the gist model, which posits that observers com-
pute an atomic representation of a stimulus; the gist is a rapidly constructed high-level

description of a scene.

In Chapter 4 we showed that much of the information which is useful for matching
is contained in dynamic edges. This indicates that local, high-frequency information
is being used; but this could just consist of the first stage of processing, with the gist

later forming a compressed, further processed representation of the sample.

One key difference between the set-of-features model and the gist model is that the
SoF model relies on accurately encoding small spatiotemporal regions of the sample.
We know from the analysis of Chapter 3 that there are few long-range correlations in
dynamic flame, so these features are likely to be local, both in space and time. This
means that, when viewing the test, it is crucial to attend to the right spatial regions
at the right time. Otherwise, the features encoded while viewing the sample will be
missed. The SoF model provides a natural explanation for errors due to misses, but

not errors due to false positives.
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Now consider the gist model. Here, the visual system observes the entire stimulus
(a large amount of local information) and generates a relatively low-dimensional sum-
mary. The gist is generated quickly and only contains enough information to make
coarse, high-level judgements about a scene, such as whether it shows a city or a coun-
tryside landscape[239]. The gist is not well-suited to making fine, local discriminations

between similar images.

The gist model offers a potential explanation for the observation that errors are
mostly due to false positives. On a “no” trial, when faced with a sample clip and a
test clip which are subtly different, the visual system has to compare two very similar
gists. They will never be as different as, say, the gist of a mountain scene and that
of a desert scene. It is therefore likely that observers cannot distinguish between the
true target and a similar sequence, a tendency which would result in an overall bias

towards false positives. This is exactly what we observed in Experiment 5.3.

A gist is an atomic representation; its load on memory is not directly influenced
by the length of the video it is created from. Under this assumption, if observers
represented flame clips by gists, this could not explain the dependence on sample
length noted in Experiment 5.2. The set-of-features model samples local spatiotem-
poral features until its memory capacity is exhausted, allowing it to easily explain this
dependence: longer samples allow more information to be stored, at least until max-
imum capacity is reached, as appears to the case in Experiment 5.1. However, even
though the gist may not contain any more information, it may contain more accurate
information. The gist of a longer clip could be a more precise representation without
causing any additional memory load, in the same way that face space codes can differ

in accuracy even though they consist of the same number of coordinates.

The gist is usually reported to contain useful natural scene features like environment
(mountain or city) or the affordances[84]. It is therefore more useful for differentiating
between very different natural scenes rather than very similar exemplars of the same
scene, as with dynamic fire. The gist is therefore unlikely to carry the precise, detailed

information necessary to match flame clips.

Space codes possess the same problem: they are special-purpose, with axes related
to specific stimulus attributes. Face spaces use configural measures (such as eye

separation) or attributes such as skin colour or gender[240]. Personality factor spaces
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use traits such as emotional intelligence[242]. If dynamic flame were represented by a
space code, this code would have to be either general-purpose or specialised for flame.
It is difficult to imagine a space code with axes suitable for representing arbitrary
stimuli. Observers' lack of learning effects, combined with their ability to perform
flame matching with very small amounts of training, suggest that a special-purpose
code is not being acquired during our experiments. It is also implausible that a special-
purpose code already existed, given that flame matching is not a common task.

Our results therefore favour the set-of-features model. The sequential encoding
of local spatiotemporal features fits well with our sample length effects, as well as
requiring less computation. It encodes low-level visual information directly, as opposed
to transforming it into a compact scene representation; this fits well with our char-
acterisation of flame as a locally correlated stimulus with few long-range spatial or

temporal correlations which gist construction could exploit.

Summary

We used delayed-match-to-sample tasks to examine the effect of varying search

space size on search performance for clips of dynamic flame.

e Experiment 5.1: Search accuracy depends mainly on the ratio between test
length and sample length.

e Experiment 5.2: Longer samples were matched more effectively than shorter
samples, showing that the visual system is not simply matching a static snapshot.

e Experiment 5.3: Matching was not significantly sensitive to the length of distrac-
tor clip played before the target; this suggests that representations of features’
temporal location are not coded as an offset from the beginning of the stimulus.

e Experiment 5.4 replicated this lack of dependence on the amount of distractor
video played before the target. Accuracy declined for targets later in the clip,
however.

e Experiment 5.5 measured the effect of lengthening the ISI on accuracy, in order to

enquire whether the previous result was due to distractors or decay of the sample

representation. Results suggest that interference by distractors is responsible for

the dependence on search space size shown in Experiments 5.3 and 5.1.
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Chapter 6

The decision process in face

matching and flame matching

In Chapter 4, we looked at the importance of colour and edges to the dynamic flame
matching process. In Chapter 5, we looked at the influence of search space size and
target position in flame matching. In this chapter, we compare observers' ability to
match dynamic flame stimuli with their ability to match dynamic face stimuli. We also
pool data from our previous experiments to address two general questions: whether
observers show an inversion effect for dynamic flame, and whether they treat each trial
as a separate decision problem (as opposed to being influenced by stimuli or responses

from previous trials).

The specificity of visual working memory is a long-standing research question.
When studying perception, we can point out visual areas which are relatively un-
specialised (such as the retina or V1) or those which are tuned to particular stimuli
(such as V5/MT). The same is true when studying memory: we may isolate general,
nonspecific memory abilities which do not rely on specialised processing mechanisms
(such as the retinal afterimage or iconic memory) or those which rely on the ability
to perceive a particular stimulus and represent it with a specialised high-level code
(such as short-term memory for faces, which shows an inversion deficit). In previous
chapters, we have characterised observers' ability to match and remember dynamic
flame stimuli. Are they using a specialised memory store? In this chapter, we compare
observers’ ability to encode and recall dynamic flame with their ability to match a

frequently-studied moving stimulus: dynamic faces.
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Neurophysiological studies of monkeys and fMRI results in humans both suggest
that both prefrontal cortex and inferotemporal cortex are involved with working mem-
ory maintenance[243]. Visual and auditory working memory are functionally separate,
and an area of human superior frontal sulcus appears to be specialised for spatial
working memory[244]. Do we find specialisation within vision as well? Is visual work-
ing memory subdivided into stimulus-dependent components rather than one general
store? This problem can be approached by comparing working memory capacity across

stimulus classes, but we lack a general capacity measure.

Luck and Vogel [232] found that unifying feature conjunctions into objects increases
working memory capacity beyond what is measured for individual, unbound features.
This suggests that high-level representations are able to unify low-level encodings and

maintain their activity.

Alvarez and Cavanagh[245] used a change detection task to measure memory ca-
pacity for line drawings, shaded cubes, random polygons, Chinese characters, letters,
and coloured squares. They also used a visual search task to estimate the amount of
visual information present in each stimulus class, using search rate as a proxy for in-
formation. This demonstrates that memory capacity varies across classes. This could
be due, however, to complexity variations between classes, rather than the recruiting

of different working memory systems.

Moving faces and dynamic flames are very different stimuli. Faces have been
extensively characterised as highly evolved communication channels which use sets of
muscles to slowly alter their form[246]. As our image domain analysis shows, dynamic
fire is a rapidly-changing stimulus with no common global form. It is not a complex,
evolved system but an uncontrolled chemical reaction. How, then, does the human

visual system differ in its ability to represent and match stimuli of these two classes?

Consider an experiment in which participants encode and match two stimuli on
each trial: a face clip and a flame clip. If faces and flames were encoded using the
same memory resource, we would expect two effects: a high across-subject correlation
between face matching accuracy and flame matching accuracy, and an effect of capac-
ity limitation. Firstly, if using the same processing resource, observers who are skilled
at matching faces would also be expected to be skilled at matching flame. We would

therefore expect observers who are good on average at matching faces to also be good
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at matching fire. On trials where face matching was accurate, observers must have
encoded a high-fidelity representation of the test face; this would leave less capacity in
the limited resource for a useful flame representation. Within trials, we would therefore
expect face performance and flame performance to be negatively correlated (trials with
a correct face judgement would be less likely to show a correct flame judgement).
Before comparing observers’ matching performance for faces and fire in a dual-
task experiment, we asked them to perform temporal search on faces alone in order

to estimate appropriate stimulus durations.

6.1 Pilot study: Delayed match-to-sample on faces

This experiment aimed to replicate Experiment 4, using face stimuli instead of flame
stimuli. We presented a short dynamic expression clip, then asked observers to match
it to a longer clip. We used larger maximum test/sample ratios than Experiment 4,

hypothesising that face matching accuracy would exceed flame matching accuracy.

6.1.1 Methods

Observers 2 subjects were recruited using a mailing list operated by University College
London. All reported normal or corrected-to-normal vision.

Materials We used the face dataset described in Chapter 2 (General methods).

Design We used a 2AFC delayed match-to-sample paradigm.

Procedure In each trial, a sample was presented first, followed by two longer tests.
Using the keyboard, subjects indicated which test they thought contained the sample.
Sample length was 10, 25 or 50 frames (0.2,0.5 or 1 second). We varied the ratio
of sample to test (an indicator of search space size), setting it to 1.2, 1.6, 2, 2.4, or
2.8. This corresponded to a different set of test clip lengths for each sample length,
according to Table [6.1]

Sample length  Test lengths (s)

0.2 0.24,0.32,0.4,0.48,0.56
0.5 0.6,081,1.21.4
1 1.2,1.6,2,2.4,2.8

Table 6.1: Face matching: sample lengths.
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This design contained 3*5 = 15 conditions.

6.1.2 Results

The data from this experiment are shown in Fig. [6.1 Both observers’ mean accuracies

were consistently high, approaching 100% for a test/sample ratio of 1.2.

6.1.3 Discussion

Although only two participants were tested, this experiment suggests strongly that
observers are capable of matching dynamic face clips with much more accuracy than
for dynamic fire clips. Given the small n, this experiment is of most utility as a pilot
study to show that dynamic face matching is possible with our stimuli.

In order to address the question of specificity, we used a parallel loading task. In
the next experiment, observers were asked to encode both a dynamic face clip and a

dynamic flame clip before matching each one to a test clip of the same category.

6.2 Experiment 6.1: Parallel loading with faces and
fire

In this experiment, observers were asked to encode a face and a flame clip in parallel,
then match them. In order to correctly match both clips, they needed to perform
a dual encoding task and make two sequential matching judgements. We used a
dual encoding task to test for interference between two stimulus classes. Similar dual
encoding tasks have been used to demonstrate the independence of sensory working
memory systems, as by Hitch and Baddeley[247], as well as to investigate working
memory maintenance using EEG measures[248].

We manipulated the order of presentation, keeping the order of matching judge-
ments the same. If both stimulus classes were using the same memory resource, we
would expect a recency effect due to interference between the two stimuli. Because
measured face matching accuracy in the previous pilot study was higher than mea-
sured flame matching accuracy in our dynamic flame matching experiments, we always

presented the flame test first and the face test second. This was done to minimise
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Figure 6.1: Face matching pilot study. A) Observers were shown a sample clip of a
moving face, then two test clips. We asked them to indicate which test corresponded
to the sample. B) Accuracy against test/sample ratio: both subjects’ accuracy was
consistently high. Individual observer results are shown as light dots, colour-coded by
the legend below the X-axis. C) Accuracy against sample length: observers seemed to
match longer samples with higher accuracy.

178



interference at test time, as we are more interested in interference at encoding time.

6.2.1 Methods

Observers 8 subjects were recruited using a mailing list operated by University College

London. All reported normal or corrected-to-normal vision.

Materials We used the faces dataset and the 1000-frame dynamic flame dataset

described in Chapter 2 (General methods).

Design We used a yes-no dual encoding delayed match-to-sample task, asking
observers to encode and match a test fire clip and a test face clip with a sample fire

clip and a sample face clip.

Procedure In each trial, we presented two samples (one fire clip and one face
clip), followed by two tests (one fire clip and one face clip). We manipulated the order
in which the samples were displayed, but the tests were always displayed in the same
order: fire first, then face. After each test, subjects indicated whether they thought
it matched the corresponding test (up arrow) or not (down arrow). We thus derived
two accuracy measures: fire accuracy and face accuracy. Sample lengths were all 100

frames (2 s) and test lengths were all 120 frames (2.4 s).

6.2.2 Results

The data from this experiment are shown in Fig. [6.2]

A pair of one-way ANOVAs showed no significant effect of order on either face
accuracy, F(1,7) = 0.448, p= 0.525; or fire accuracy, F'(1,7)= 0.278, p=0.614. Table
[6.2 shows full ANOVA results.

Fire matching performance and face matching performance were highly correlated,

with a Pearson’s r of 0.78.
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Figure 6.2: Experiment 6.1: comparing performance on fire and face matching. In
each trial, observers were set two matching tasks: comparing a pair of dynamic face
clips, and comparing a pair of dynamic flame clips. There were two sample clips and
two test clips per trial. A) Observers were shown a fire and a face (we manipulated
the order) and then tested on a fire, then a face (always in that order). B) Face
matching accuracy, shown by order. Accuracy is higher when faces followed fire, but
the difference is not significant. C) Fire matching accuracy, shown by order. Accuracy
is higher when fire followed faces, but the difference is not significant. D) We produced
the across-observer distributions for face accuracy and fire accuracy, then correlated
them. Across observers, there is high correlation between face matching accuracy and
fire matching accuracy; Pearson’'s r = 0.78.
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Face accuracy:

Type Il Sum
Source of Squares df Mean Square F Sig.
order Lol 001 1 001 448 525
ol 001 1.000 001 448 525
Huynh-Feldt 001 1.000 001 448 525
Lower-bound .001 1.000 001 448 525
Error{order) Eg;lﬁ#l c;rgy 017 7 002
S eHRGuEe: 017 7.000 002
Huynh-Feldt 017 7.000 .002
Lower-bound 017 7.000 .002
Fire accuracy:
Type 11l Sum
Source of Squares df Mean Square F Sig.
v
i o] 002 1 002 278 614
ki 002 | 1.000 002 278 614
Huynh-Feldt .002 1.000 .002 278 614
Lower-bound .002 1.000 .002 278 614
Error({order) Egggggg 050 7 007
pyeanliotgs: 050 | 7.000 007
Huynh-Feldt .050 7.000 .007
Lower-bound .050 7.000 .007

Table 6.2: Experiment 6.1: the effects of order on face matching accuracy and flame

matching accuracy. Repeated measures ANOVA table (tests of within-subjects effects
from SPSS).

6.2.3 Discussion

Mean accuracies show the trend we would expect if a shared working memory resource
was being used to encode both fire and faces. However, there is no significant difference
in the means, so we cannot say a recency effect is present. For clips of this length and
size, observers do not appear to be performing near their working memory limits. Face
and fire representations are either dealt with by separate systems, or by one system

which is not operating near its capacity limit in this experiment.

Matching performance correlation How do we explain the high correlation be-
tween face matching performance and fire matching performance? There are several
trivial explanations: this pattern could have been due to differences in general visual
skill, or observer motivation, or observer effort. It could also have been due to a latent

variable which varied across observers, such as motivation or fatigue. We now examine
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these explanations more closely.

There is a large amount of work on the relationships between general cognitive
skills|249]. The general factor or ¢ factor, attributed to Spearman[250], a latent
variable related to general intellectual ability, generally accounts for 40 to 50 percent
of the variance found in the results of ability tests. There is, however, little work on
the correlations between psychophysical tasks in vision. Tibber et al[251], for example,
measured observers’ ability to judge size, orientation and numerosity, then analysed
the correlation of these measures to a measure of general mathematical ability; they
did not look at how the ability measures correlated with each other.

Consider a latent variable v which measures “general visual ability” ; the equivalent
of Spearman’s g for visual tasks. It is tempting to say that our observed correlation
is due to different levels of v across observers. However, any strategy for measuring
v will depend on measuring an observer's performance on several visual tasks, then
combining them (using a weighted average if v is defined using factor analysis). Ex-
plaining a correlation in accuracy across tasks, by a variable calculated by integrating
accuracy across tasks, is subject to challenges of circular reasoning. Factor analysis
shows us correlations between performance at different tasks, but does not give us
a biological explanation of these correlations. Spearman’s g and the hypothetical v
explain variance, but not mechanism.

If we discount the effects of “general visual ability,” and any other confounding
variables, what could this correlation mean? Observers who perform well at matching
fire tend to perform well at matching faces, and vice versa. This suggests that observers
are using common processing systems to perform both tasks. Matching performance
may depend on the ability to extract common low-level features which are used by a
specialised face processing system and also to process dynamic flame. A low correlation
would suggest that separate systems are being used. A negative correlation would
suggest that fire processing and face processing shared a common neural substrate in
a zero-sum manner (neural resources used by the face processing system were rendered

unavailable to the fire processing system).

Within-subject correlations In the absence of confounding variables, across-
subject correlations can tell us whether fire and face matching systems share a mutual

processing substrate. We now look at within-subject correlations, placing trials on
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scatterplots for each observer. For each observer, we have a time series of two binary
variables: success or failure on the face and fire matching part of each trial. Since these
are binary variables, we use Pearson’s phi (also known as the mean square contingency
coefficient), the equivalent for binary variables of Pearson’s r.

High values of phi would indicate that success on individual fire trials was associ-
ated with success on individual face trials, suggesting that the level of attention paid
(or effort made) during the trial was responsible for the success of both judgements.
Negative values of phi would indicate that on trials where the fire judgement was suc-
cessful, the face judgement was likely to fail (suggesting a common, limited attentional
resource shared between the two faculties). Values of phi close to zero would indicate
no connection between the two judgements.

All observers' values of phi were very close to zero, as shown in Table [6.3]

Observer  phi
-0.01
0.01
0.09
0.04
0.08
0.12

-0.19
-0.06

O ~NO OB~ WDN R

Table 6.3: Experiment 6.2: correlations across trials.

This again supports the idea that fire and face representations are either managed
by separate systems, or one system which is not near its capacity limit.

We come to the interesting conclusion that fire and face performance are highly
correlated across subjects, but not correlated at all across trials. An observer's face
performance predicts their fire performance - but a trial’s face success does not predict
its fire success. This means that whatever explanation we posit is either a confounding
variable which changes very slowly (such as level of wakefulness on that particular day)
or an innate property of that observer's visual system.

Dynamic flame and dynamic faces are useful test stimuli because they are so differ-
ent: observers are practiced and expert at matching faces, but naive at matching fire.
Faces have a common structure and limited possible deformations; flames have no

common structure and a very large set of possible deformations. One of the strongest
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pieces of evidence for specialisation at face perception is the inversion effect, which
consists of reduced matching accuracy on upside-down faces. We now examine data
from our previous experiments, several of which contained upside-down dynamic flame

stimuli, for evidence of an inversion effect.

6.3 Do observers show an inversion effect for dy-

namic flame?

The face inversion effect, first pointed out by Yin[70], is a strong and well-replicated
effect whose meaning is frequently debated in the context of face recognition. The
effect refers not simply to an impairment associated with inversion, but to a differential
impairment: inverted faces are matched less well than inverted objects[252].

The face inversion effect is heavily task-dependent. As shown by Valentine[253],
the effect is more often found when face stimuli are compared to faces in long-term
memory than to faces in short-term memory. This constitutes the difference between
a “recognition” task and a “matching” task. Although the dividing line is blurred,
recognition tasks usually assume that the recognised pattern will still be in memory
after the task has finished (as in the case of a famous face), whereas matching tasks
assume that the observer will forget the stored pattern before the next trial or block (as
in the Cambridge face test). Whether accuracy is affected when matching an upright
face to an inverted face does not appear to have been investigated.

No effect of inversion was found in matching experiments performed by Bruyer[254],
or Valentine[253]. Shepherd[255] observed a similar pattern in the other-race effect,
finding it to be present in recognition but not in matching. This may indicate a
difference in processing between long-term face memory and short-term face memory.
Shepherd’s theory is that local feature cues, which are resistant to the inversion effect,
can be extracted from short-term memory representations; however, long-term memory
representations efficiently discard low-level information, leaving only a high-level face-
specific encoding which is orientation-tuned.

We note that there are two kinds of inversion effect: a crossed inversion effect
is a matching accuracy drop when the sample is inverted and the test is upright (or

vice versa), whereas a pure inversion effect is an accuracy drop when both the sample

184



and test are inverted. A crossed inversion effect shows that it is difficult to compare a
representation of an inverted stimulus to that of an upright stimulus: it indicates that
particular exemplar representations are orientation-dependent. A pure inversion effect,
however, shows that the stimulus as a whole is more difficult to encode when it is upside
down; this indicates that the mechanisms which construct these representations are,
as a whole, orientation-dependent. An inverted random dot pattern, for example, is
difficult to compare to an upright copy of itself (crossed inversion effect) - but two
inverted random dot patterns are just as easy to compare as two upright random dot

patterns (no pure inversion effect).

It does not make sense to perform a within-category recognition task with dynamic
fires, since particular exemplars of this stimulus are not encoded in daily life, and
would also be easily differentiable based on clues from their background and fuel
shape. Do matching tasks on dynamic flame exhibit an inversion effect? Several of
our experiments included conditions in which some stimuli were inverted. We now

review these results together.

Experiment 4.1 measured the effect of various sample manipulations on matching
to a test clip of very similar length. One of these manipulations was inversion, but there
was no significant difference between their accuracies; this motivated the repetition of
this experiment with shorter, more tractable clips. However, accuracy was significantly
above chance in all conditions including inversion, showing that crossed inversion does

not cripple observers’ ability.

Experiment 4.2 repeated Experiment 1 with shorter clips. Once again, the accu-
racy associated with each manipulation was significantly above chance. Inversion was
associated with a matching accuracy of 66%, a drop of 10% from the mean. This
constitutes a crossed inversion effect, showing that mental rotation is not a trivial
process and flame representations are not orientation-invariant. Accuracy was affected
more than under backward playback. This result indicates that spatial feature corre-
spondence is more important than temporal feature correspondence: observers show

less invariance to inversion than to temporal order.

Experiment 4.4 tested observers’ ability to decide whether a clip was being played
forwards or backwards. This required the evaluation of a stimulus against their category

representation of fire rather than against a previously seen clip. As shown in Fig. [6.4}
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there was no effect of orientation (two-way ANOVA on orientation and frame rate,
F(11,16) = 8.13, p =0.146). This suggests that observers’ category model is not
tuned to upright flame either. Although this task did not include matching, this

suggests the absence of a pure inversion effect.

In Experiment 5.5 we asked observers to perform a matching task and varied the ISI
between sample and test. In half the trials, both clips were inverted; in the other half,
they were both upright. A two-way repeated-measures ANOVA on inversion and ISI
revealed no effect of inversion, (F'(1,6)=2.030, p=0.204), but confirmed an effect of
ISI, (F(3,18)=4.416, p=0.021). Table[5.11] shows full ANOVA results. This supports

the idea that the matching process is not impaired when both clips are inverted.

These three results show that matching an inverted clip with an upright clip is
a challenging task, but judging the playback direction of an inverted clip is just as
easy as in the case of an upright clip. What does this say about observers' flame
representations? Comparing an upright clip to an inverted clip is difficult: this suggests
flame representations are hard to transform in this way, which means they cannot be
orientation-invariant. Judgements of luminance, colour and symmetry are invariant
to rotation; flame representations are not. However, when encoding a single clip and
judging its direction, orientation does not matter. This means that the representations
used for this task are not sensitive to orientation. It appears that inversion only causes
an issue when comparing two flame encodings, not judging the realism of a single one.
This suggests that individual representations for flame are not orientation-tuned (not
better at representing upright flame), simply that they are not orientation-invariant
(not identical for upright and inverted flame). To test this explicitly by looking for a
pure inversion effect, we set observers a matching task in which both sample and test

were inverted.
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Figure 6.3: Experiment 6.2: matching inverted tests to inverted samples. A) A sample
was followed by two slightly longer tests. All stimuli were inverted. B) Mean accuracies
were very close and showed no significant difference, indicating that inversion does not
impair matching at all when observers do not have to compare an upright test and an
inverted sample.

6.4 Experiment 6.2: Looking for a pure inversion

effect in dynamic flame

6.4.1 Methods

Observers 6 subjects were recruited using a mailing list operated by University College

London. All reported normal or corrected-to-normal vision.

Materials We used the face dataset and the 1000-frame dynamic flame dataset

described in Chapter 2 (General methods).
Design We used a 2AFC matching design.

Procedure In each trial, we presented a sample clip followed by two slightly longer
tests. In half the trials, all three clips were upright; in the other half, all three clips
were inverted. Observers were asked to indicate whether they thought the sample

corresponded to the first or second test.
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6.4.2 Results

Data from this experiment are shown in Fig. [6.3] Baseline performance was 78.4%;
under inversion of all three clips, performance descended to 78.0%. A paired-samples
t-test revealed no significant difference between the means (p=0.849). Observers do

not show a pure inversion effect when matching dynamic flame stimuli.

6.4.3 Discussion

100
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25.0 16.67 12.5 10.0 8.33 7.14
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Figure 6.4: Experiment 4.4: the effect of stimulus angle on backwards detection. On
each trial a 2-second clip was played; observers then indicated whether they thought
playback was forwards or backwards. B) Accuracy dropped quickly down to chance
at a frame rate of 10 Hz. C) As frame rate decreased, the amount of "backwards”
judgements increased. D) Mean observer d-prime also dropped quickly to a minimum
at 10 Hz. E) Observers were much more accurate at judging the clips which were
played forwards.

There was no discernible difference between matching accuracy on inverted flame
and upright flame. In this case, observers did not have to perform a conversion
between an upright percept and an inverted representation, which induced a 10% drop
in accuracy in Experiment 4.2.

In face perception, the pure inversion effect has often been interpreted as evidence
of a high-level representation (whether specific to faces or not). A template-matching
system cannot show a pure inversion impairment unless it produces templates in a
different way under inversion - that is to say, if it shows orientation tuning. The
lack of impairment for inverted flames is consistent with a low-level matching model
whose basic feature detectors are not sensitive to inversion. It is not consistent with

a high-level model which preferentially encodes upright stimuli.
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This result was surprising, since a strong percept of upwards motion is dominant
when viewing flame. As seen in Chapter 4, observers disagree when judging the motion
direction of small patches of flame. We also know from Experiment 4.4 that frame
rates of 10 Hz or above are required for backwards playback detection. Since all
observers are fully aware that forwards playback corresponds to upwards motion, this
means that a 10 Hz frame rate is required to detect upwards motion as well (if lower
frame rates were sufficient, upwards motion could easily be used as a cue for forwards
playback). This points to the involvement of highly temporally local motion detectors,

agreeing with the evidence from the lack of inversion impairment found here.

In Chapter 4 (Experiment 4.2) we reported a serious accuracy impairment when
observers had to match an upright dynamic flame to an inverted one: a crossed
inversion effect. How does this fit with the lack of overall inversion effect found here?
It is a different effect: the classic inversion effect in the face perception literature
is a property of a category, not an individual trial. It refers to the overall lessening
of accuracy when matching two stimuli in that category which are both inverted.
Experiment 4.2 showed an individual-stimulus inversion effect, in which two stimuli
are less well matched when one of them is inverted. One type of effect does not
imply the other: in the pure inversion effect, no transformation is necessary since both
stimuli are inverted. In the crossed inversion effect, a transformation (effectively a
mental rotation) is required, which makes the task more difficult. For example, it
could be found that observers have no difficult matching a pair of inverted clock faces,
but perform very badly at matching an upright clock face with an inverted one. Our
results, thus, do not constitute a contradiction: they indicate that the transformation
required to match an upright flame to an inverted flame is challenging, but that the
general representational system used to encode fire operates just as well on inverted

flame as on upright flame.

Overall, our results show that inversion only impairs matching when the visual
system has to compare an upright representation and an inverted representation, not
two inverted representations. We have found no evidence that flame is encoded by

specialist orientation-tuned representations.
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Experiment Slope (percentage points per trial)
Face pilot 2.70 e-3

6.1 (face) 1.46 e-4
6.1 (fire) 9.50 e-3
6.2 2.23 e-3

Table 6.4: Learning slopes from Chapter 6.

6.5 Learning

As in previous chapters, we looked for learning effects in the pilot study and the two
experiments performed in this chapter. This was done by arranging the trials in the
order in which they were presented, blocking them into groups of 20 using a sliding
window, and calculating the average accuracy for each block. The results of this sliding
window approach are shown in Fig. [6.5

To check for an improvement in mean accuracy, we fitted a line to the sequentially
arranged data. Calculated slope values are shown in Table [6.4]

These experiments showed slopes which were very small but positive. The largest
slope was associated with the fire accuracy metric from Experiment 6.1. As with our
previous experiments, a discernible improvement was shown during the first 10 trials of
Experiment 6.1 and the first 50 trials of Experiment 6.2. This rapid improvement could
have been due to observers’ learning the apparatus or growing more comfortable with
the experimental setup. None of these learning curves provide convincing evidence

that observers’ representations are improving in quality throughout the experiment.

6.6 Intertrial dependence

Before an observer depresses the key which records their response, they must per-
form a complex decision-making process. This can be interpreted in terms of decid-
ing between two distributions (signal detection theory[256]) building evidence for two
hypotheses[257] or the evaluation of posterior probability by Bayes' rule[258]. In the
previous chapters, we have used the decision process as a tool to study the underlying
representations of dynamic flame. We now consider it separately.

Most of the experiments we have presented set a delayed match-to-sample task:

a sample clip was presented first, followed by a test clip which was longer but the
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Figure 6.5: For each experiment, trials were aligned in order of presentation and a
sliding average applied to show how accuracy changed during the experiment. There
was no sure overall trend of increasing accuracy. A slight increase in fire matching
accuracy may appear in the first 30 trials of Experiment 6.1, but it does not continue.
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same spatial size. It is tempting to consider each trial as a separate unit; however,
low-level mechanisms may not be affected by the conscious knowledge that one trial
has finished and the next has begun. How does the history of previous decisions affect
the next decision? Can the visual system make a fresh judgement on each trial, or is

it clouded by previous responses?

In general psychology, the tendency to rely on the first piece of evidence considered
is known as the anchoring effect[259]. This effect is mainly considered in cognitive and
social psychology, although it has been discussed in the context of psychophysics|260].
It is usually taken to refer to dependence on the initial piece of evidence - not the first

response, or the previous response.

Masking, which occurs when a stimulus impedes processing of the next stimulus (or,
in backwards masking, the previous stimulus) is also a form of intertrial dependence.
We did not expect to find masking in these experiments, since there was a delay
of several seconds between trials during which the next video clip was loaded. The

following analysis of intertrial dependence supports our expectation.

Another effect which creates intertrial dependence is adaptation[261]. For example,
an observer can be adapted to classify androgynous faces as female after exposure to
a series of male faces. To properly describe an adaptation effect, one must say either
that it biases perception towards a certain kind of stimulus(making that percept more
likely) or away from a certain percept (making it less likely). We thus require a stimulus
description space (usually a continuum or low-dimensional space) in which to describe
the effect; for example, we can adapt in a lightness continuum or in a multidimensional

face space.

Adaptation describes percepts, not responses; observers are not adapted towards
certain motor responses or certain judgements. We aim here to investigate the effect
of the previous judgement on the current judgement; are observers more likely to
report a match if they did so on the previous trial? This effect has been called
intertrial dependence[262] and has recently been treated by Frund et al, who modelled
it statistically[263] using a 14-parameter model influenced by the observer's entire

response history.
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6.6.1 Method

We take a simpler approach here, looking at the probability of responding Yes or No
given that the previous response was Yes or No. Let R,, be an observer's response on
trial n. Our delayed-match-to-sample experiments required either a Yes response or a
No response (R, =Y or R, = N). Let T,, be the truth for trial n: whether there was
actually a match (7,, = Y’) or a non-match (7}, = N). Since true trials were selected
randomly, then over all n, P(T,, =Y) = P(T,, = N) = 0.5. From here onwards, we
use P(7,) = x to refer to the probability, across all trials, that the response is x.
Observers have an internal bias; signal detection theory calculates the bias for an
experiment as a whole, not each individual trial. We can measure this “static bias”
by looking at P(R = S) for the entire experiment. Observers may also have intertrial
bias: the tendency to respond either the same way as in the last trial, or the opposite

way. If there is no intertrial bias, we would expect

P(T,=Y |Ty1=Y)=PT,=Y |Ty,.1=N)=P(T,=Y) (6.1)

and

P(T,=N|T,1=Y)=P(T,=N|T, ,=N)=P(T,=N), (6.2)

whereas if we find that

PT,=Y |T,1=Y)<P(T,=Y |T,.1=N), (6.3)

this observer is less likely to respond Yes if they responded Yes on the last trial.

Conversely, if we find that

P(T,=Y |Ty1=Y)>P(T, =Y | T,_1 = N), (6.4)

the observer is more likely to respond Yes if they responded Yes on the last trial.

We define the previous-trial dependence D; of an observer as

Di=P(T,=Y | Ty, =Y)—P(T, =Y | T,_, = N). (6.5)
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If D, is positive, a Yes response is more likely after a Yes response than after a
No response (tendency to respond the same way). If Dy is negative, a Yes response
is more likely after a No response than after a Yes response (tendency to respond in a

different way).

Looking further back in time, we define the kth-previous-trial dependence D, of

an observer as

Dy=PT, =Y |Tyy=Y)=P(T, =Y | Toyy = N). (6.6)

We looked at values of D, for each of our experiments in which observers had to
make a binary choice. For each value of k, we calculated D;, for each observer and,
looking back in time, for values of k£ from 1 to 19. We did not treat Experiment 4.5,

since its responses were continuous direction estimates, not category judgements.

Experiment 4.1 Experiment 4.2
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Figure 6.6: Intertrial dependence for experiments described in Chapter 4. No conclusive
pattern is found except in Experiment 4.4 (backwards playback detection). Positive
values of D indicate that observers are biased to respond in the same way as on
previous trials; the dependence of trial n on trial n — k decreases as k grows.
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Figure 6.7: Intertrial dependence for experiments described in Chapter 5. No conclusive
pattern is found for these visual search experiments.
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Figure 6.8: Intertrial dependence for experiments described in Chapter 6. Exp. 6.1
(dual loading with faces and fire) shows a steadily decreasing value of D for both face
matching accuracy and flame matching accuracy. Exp 6.2 (testing for a pure inversion
effect) shows no clear pattern.
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6.6.2 Results

Results of this analysis are shown in Figs. (Chapter 4), Chapter 5) and

(Chapter 6). To check for effects, we do not perform ¢-tests, since the number of tests
performed would lead to an unreasonably high chance of a Type 1 error. Because D
represents a difference between probabilities, it is not clear whether the assumptions of
analysis of variance are satisfied. We nevertheless note clear decreasing trends for two
experiments: 4.4 (backwards playback detection) and 6.1 (dual loading with dynamic
faces and dynamic flame).

There is a clear distinction here: these two experiments are the only two which in-
volve more than a delayed-match-to-sample task (either Yes/No or 2AFC) on dynamic
flame stimuli. Experiment 4.4 is a playback direction task for which a primary cue is
motion direction. Experiment 6.1 requires observers to match a face clip in addition

to a flame clip.

6.6.3 Discussion

A positive value of D;, means that an observer is more likely to respond the same way
as on the kth previous trial. A negative value of Dy indicates a tendency to respond
the opposite way as on the kth previous trial; this could be evidence of adaptation. In
both the experiments in which we find a trend, D; is positive and Dj, drops towards
zero as k increases.

Why do these trends appear in Experiments 4.4 and 6.1, but not in our standard
delayed match-to-sample experiments? In Exp. 4.4, observers were asked to detect
backwards playback; an easy way to perform this task is by judging the overall direction
of motion. Motion adaptation could easily explain a negative value of D, but not
the observed positive value, which shows that the classifiers observers are using have
“inertia:" they are more likely to make their previous classificatiorﬂ.

We propose the following hypothesis: dedicated, specialised perceptual systems,
such as the motion processing system and the face processing system, are subject to

inertia, but the mechanisms which discriminate dynamic flame are not affected.

IThe term “perceptual inertia” has previously been used to refer to a lack of sensitivity directly
after stimulus onset, but our usage is more in keeping with the definition from physics: maintaining
the same quality.
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In Experiment 6.1 we find large positive values of Dy, reaching 0.5 for fire accu-
racy and 0.3 for face accuracy. D, is positive for face accuracy, which fits with our
hypothesis, since face perception is a highly specialised ability which recruits dedicated
areas of cortex. However, this does not explain the very high value of D, for flame
accuracy. Why does this pattern appear in a delayed match-to-sample task on flame
only when observers are also performing a face matching task? The face decision could
be entraining the fire decision. This is not reflected by the low values of Pearson's
phi we found for trial correctness. We repeated Pearson’s phi on Yes/No responses
instead of correctness values, and found correlations very close to zero, which does
not suggest that the face matching decision entrains the fire matching decision. It
is possible that the face matching task induces observers to use a different decision

strategy than they would employ if asked to match dynamic flame stimuli alone.

6.7 General discussion

We began this chapter by confirming that observers can perform temporal search on
faces with much higher accuracy than they can on flame. Test/sample ratios were

much higher than in our experiment on flame, as were accuracies.

We then asked observers to encode both stimuli in parallel, before presenting two
tests. Presentation order (flame first or faces first) had no effect, showing that for
2-second tests, observers were not relying on transient early visual representations of
flame which would be destroyed by attending to a face clip. There was however a
high correlation (r=0.78) across subjects between face matching accuracy and flame
matching accuracy. This result suggests that similar mechanisms limit the encoding
and matching of both stimuli, and is inconsistent with separate specialised systems for
each phenomenon. We may choose to attribute the correlation to a latent variable
measuring “general visual ability,” but this only characterises the correlation and does
not explain it.

We then reviewed the evidence concerning an inversion effect in dynamic flame.
Across a wide series of experiments, matching accuracy was only disrupted when
observers had to compare an upright test to an inverted sample. Even the category

representation for flame, which we tested with a backwards detection task, was not
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affected by inversion. This suggests that the representations we used to encode flame
are not specialised or orientation-tuned.

Finally, we examined the time series of responses given by each of our experiments
to check for intertrial dependence, either in the form of adaptation (a tendency to
make a different response than the previous one) or perceptual inertia (a tendency to
make the same response as the previous one). We found clear evidence of perceptual
inertial, decreasing steadily over time, in the only two experiments which did not just
set observers a flame matching task. This suggests that motion direction judgement

and face perception are qualitatively different than flame matching.

Summary

e When performing temporal search on faces, observers are much more accurate
and tolerant to much larger search spaces than in the case of dynamic flame.

e Observers can encode a 1-second dynamic face clip and a 1-second dynamic flame
clip in parallel and match them well. Sample presentation order has no effect
on accuracy, showing that clips of this length are either encoded by separate
systems or by a single system operating below its capacity limit.

e Across observers, face matching performance and fire matching performance are
highly correlated. This indicates either that the two stimulus types are encoded
by a single resource, or that the correlation can be attributed to a latent variable
signifying general visual ability.

e Across four experiments with an inversion condition, an inversion deficit was
only found when matching an inverted sample to an upright test. No inversion
deficit was found when matching two inverted stimuli or evaluating the playback
direction of a single inverted clip. There is no evidence of category specialisation
arising from an inversion effect.

e For flame matching, observers show little or no intertrial dependence: responses

on a particular trial do not depend on the responses made to the previous trials.
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Chapter 7

General discussion and conclusions

How can we characterise the human visual system's representations of dynamic flame?
This chapter reviews our experimental and analytical results and discusses their impli-
cations. Finally, we assess our contributions and suggest further work.

One of the most important questions we can ask about a stimulus class is whether
the visual system uses a specialised high-level encoding to express it, as opposed to
using lower-level, more general representations. For complex stimuli, this is the same
as asking whether observers have expertise for those stimuli: expertise is characterised

by specific, high-level representations which are able to deliver high accuracy.

7.1 Summary of results

In Chapter 1 we summarised the history of object recognition models, the challenges
posed to them by natural scenes, and the difficulty of accounting for the representation,
remembering and matching of dynamic stimuli using static object recognition models.
We pointed out two main classes of model: those which represent stimuli as points
in a stimulus space, and those which sample spatiotemporal areas of the stimulus and
encode them as parts of a unified representation. Models can also be differentiated
by the order in which they build up their invariances (integration of entire views into
a rotation-invariant model, or integration of local rotation-invariant descriptions into
a whole-object model). We introduced dynamic flame as a form- and motion-rich
stimulus which is representative of the encoding and matching challenges posed by

dynamic natural scenes.
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In Chapter 2 we described the recording and presentation of dynamic flame and
face stimuli, as well as the trial structure and the details of the tasks observers were
set. We described our general delayed match-to-sample task, consisting in each trial
of a sample clip followed by a longer test clip. Typically, participants were required
to perform a temporal visual search, with tests longer than samples. When tests were
close in length to samples, this constituted a matching task. To prevent an easy route
to matching via iconic memory, we ensured that first and final frames did not co-occur

between samples and tests.

In Chapter 3 we analysed dynamic flame in the image domain. In flame clips,
frames which are close in time are very similar according to image space distance and
structural similarity measures. This similarity drops very quickly, reaching a minimum
after 0.2 seconds. Averaging and the application of a morph model show that flame
does not have a general structure which can be deformed to give individual images
(a high-level prototype). We showed that flame contains a wide spread of spatial and
temporal frequencies. In terms of spatial frequencies, power is concentrated near the
vertical and the horizontal. In terms of temporal frequencies, power spectra of the
overall clip brightness and the individual pixel brightnesses are best approximated by
an exponential function, similar to the 1/f distribution found ubiquitously in natural
images, but with less power in the high frequencies. A 3D Fourier transform found the
same pattern of spatial frequencies at low temporal frequencies (near the DC peak)

but a more random distribution of spatial frequencies at the high temporal frequencies.

Two different algorithms provided very different estimations of the motion present
in flame images, although they agreed in overall motion direction. The McGM com-
puted small patches of motion in varying directions, while Sun’s model found larger
patches of more coherent motion in two particular directions. This is probably due
to the regularisation stage of the Sun model, which promotes spatial uniformity. The
motion perceived in flame is not trivial to compute, and since there is no ground truth

there is no correct answer to this problem.

We attempted to model fire using three algorithms which produce high-level image
encodings: PCA, morph space PCA and Doretto’s dynamic texture synthesis (DTS).
The first two techniques produced blurred images with incorrect low-level structure,

no sharp edges, and no temporal structure. DTS produced videos which changed
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realistically through time and showed more convincing structure, but still lacked the
definite shapes and sharp edges of real flame. This showed that sharp edges are key

to realistic flame.

In Chapter 4 we used a feature manipulation delayed match-to-sample paradigm
(altering some information in the test, then asking observers to match it to an un-
altered sample) to evaluate the importance of colour, spatial arrangement, temporal
arrangement, and edges. Changing the test's colour did not significantly affect per-
formance, showing no evidence that it is useful for matching. Inverting short tests
impaired performance more than reversing them, showing that observers are using the
spatial location of features, not just the 1D luminance signal. Edge filtering, despite
removing most of the pixel-level information in the test, only induced a 4 percentage
point drop in matching accuracy, showing that moving edges are indeed a key feature

for flame matching.

We used a backwards playback detection task to estimate the duration of useful
spatiotemporal features accessible to observers’ category representation of dynamic
flame. Observers could only reliably say when the clip was moving forwards if they
could see frames which were less than 200 ms apart, showing that short features made
up of temporally local information are required. We found no evidence that the task

could be performed using less temporally local features.

We then asked observers to judge the direction of motion of small flame patches.
Judgements were very accurate for patches 70 pixels in width, but at chance for
patches 10 pixels in width. For patches between these sizes, 180° errors were common,
showing that small flame patches with opposing motion directions are visual metamers
for each other. Accuracy was very consistent across observers, suggesting that low-
level motion mechanisms with little interobserver variation were being used. Since it
is mathematically impossible to extract the true motion direction of gratings viewed
through an aperture, there may not have been sufficient pattern available in the small
patches to make a better judgement: we suggest that observers were performing close

to optimality.

In Chapter 5 we used a temporal visual search paradigm to evaluate observers’
ability to store and search for representations of dynamic flame in temporal search

spaces. When the search space ratio is close to 1 (sample and test are nearly the same
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length), performance is quite high (75-80%). For longer tests, however, performance
drops rapidly; it is highly dependent on search space size, and thus there is no temporal
pop-out. Although pop-out is not a sure sign of a high-level representation, its absence
shows that temporal search for dynamic flame is a challenging task. On short clips (0.02
to 0.24 seconds), observers showed an accuracy gain for longer samples, ruling out the
possibility that they are using single static snapshots for matching. For longer clips
(0.2 to 1 seconds), accuracy was no longer dependent on sample length, suggesting
that encoding capacity had been reached. Observers do not appear able to effectively

encode long periods of dynamic flame, which is not the case for dynamic faces.

We then separately manipulated the length of the distractor clip preceding the
target and that following the target. Accuracy was once again heavily dependent on
search space size, but not on pre-clip length or post-clip length. This allowed us to
reject the hypothesis that the temporal position of features is coded as an offset from
the beginning of the clip. Our results are consistent with an encoding of relative timing

or simply relative order.

To eliminate the effect of search space size, we then manipulated the target position
without changing the clip length at all. Later targets caused a drop in accuracy, but
this drop did not begin until 0.8 seconds into the clip, which also argues against
temporal offset coding. To investigate whether this drop was caused by distractors or
a decaying representation, we next varied the IS| between target and test. The slow
decay we found suggested that sample representations did not decay much during the
test, suggesting that distractors were responsible. Such slow decay rules out encoding

by iconic memory or rapidly-decaying forms of visual working memory.

We also found, across several experiments, a significant effect of search space
size. This caused an accuracy drop exceeding the accuracy drop due to an ISI of
the same length as the stimulus; this indicates that the decline in performance was

interference-like, not decay-like.

Manipulating search space size and target position allowed us to evaluate various
models of dynamic object perception. Unlike static models, dynamic recognisers must
keep track of the relative temporal position of any spatiotemporal features they produce
in order to search for matching configurations. Observers were not sensitive to small

offsets of the target from the beginning of the test clip, suggesting that feature timings
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are not coded absolutely (by offset from the beginning of the clip);

In Chapter 6 we compared observers’ performance on the delayed match-to-sample
task with two stimulus classes, dynamic fire and dynamic faces. Face matching ac-
curacy was much higher, with performance better on average and less sensitive to
search space size. Across observers, we found a high correlation between fire matching
accuracy and face matching accuracy (r=0.78); this suggests that observers are using
the same perceptual faculties to represent fire and faces. Within observers, however,
there was very low correlation across trials, giving no evidence that a limited resource
is being used to encode both fire and faces. We also found no evidence of a pure
inversion effect (a drop in accuracy when matching a test and sample which are both
inverted, as opposed to matching an upright sample with an inverted test).

We pooled data from previous experiments to look for effects of intertrial depen-
dence: either adaptation (the tendency to respond differently from on the last trial) or
perceptual inertia (the tendency to respond the same way). We found no convincing
evidence of adaptation, but two of our experiments showed inertia: Experiment 4.4,
in which observers judged playback direction, and Experiment 6.1, in which observers
encoded flames and faces in parallel. This result suggests a qualitative difference
between the processes used in dynamic flame matching, and those used in motion
direction judgement and face matching.

We now integrate these results and sum up our investigations into the dynamic
flame matching process. We address two main questions. Firstly, how is dynamic

flame represented? Secondly, how are pairs of representations matched?

7.2 How is dynamic flame represented?

Representation begins at the retina. Here we find the ultimate low-level code: an array
of photoreceptors and basic filters[264] which code for small areas of the stimulus.
Even the retina, however, does not correspond to a map of the stimulus: as saccades
move the fovea around, detailed information is sampled from a small area. Most codes
described in the literature assume that stimuli are static and possess no time dimension;
exceptions are the specific codes proposed for biological motion and dynamic face

perception.
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We propose that dynamic flame is represented by a series of spatiotemporally
local, low-level samples. Small parts of the stimulus, local both in time and space,
are encoded in visual working memory; the visual system then attempts to detect
these features in the test clip. This approach fits with our image-based analysis, which
suggests that dynamic flame possess few long-range correlations; it is therefore difficult
to unify disparate areas of the scene into one representation.

We found that PCA, morph space PCA and dynamic texture synthesis were unable
to produce realistic high-level encodings of dynamic flame. While this does not prove
such encodings are impossible, it suggests that dynamic flame is much harder to encode
than dynamic faces.

Experiment 4.4 shows that observers require temporally local information in order
to judge motion direction, and cannot do this task using long-range temporal infor-
mation from more widely separated frames. It is difficult to imagine that long-range
information can be used for matching if it is not useful for the much simpler task of
motion direction judgement.

Observers' ability to remember these features is capacity-limited, as shown by the
lack of dependence on sample length with long clips in Experiment 5.1, contrasted
with the marked effect of sample length with shorter clips in Experiment 5.2. This can
be explained if long clips saturate the memory store, but short clips do not.

The alternative to low-level sparse sampling is representation in a high-level space.
This requires processing and the transformation of local detail into a compressed code,
such as a face space or a gist. Our results suggest that this is unlikely; there is no
common prototype in relation to which we can represent a dynamic flame scene, and
the stimulus contains few long-range correlations. We find no evidence for a pure

inversion effect on flame, and thus no evidence of orientation specialisation.

7.3 How is dynamic flame matched?

In computer vision, matching images is usually done by representing two stimuli in the
same way and then comparing their codes. The human brain may not take the same
approach; it may operate differently during sample processing than during test pro-

cessing, without an explicit “comparison” phase. This idea is supported by observers’

205



reports that they often know whether the test clip is a match or not before it has fin-
ished; if they needed to wait until after test presentation to compute a representation,

this would not be possible.

Traditional theories of object recognition assume that, when a recognition trial
begins, the sample is already encoded in long-term memory. When recognising a
car, for example, we already possess a category description which was built from cars
witnessed during our youth (and probably modified by more recently perceived cars).
Models such as Selfridge's Pandemonium and Poggio's HMAX attempt to explain the
recognition of already known objects, not the matching of two new objects. The
problem, however, is essentially the same: in traditional “core object recognition” [35]
the sample is a category, perceived through a series of exemplars; it can then be
matched to any object in that category. In a delayed match-to-sample experiment, the
sample is a single video clip, but it still defines a category: the category of video clips

which are similar enough to the sample to elicit a “Yes" response.

Our results suggest that dynamic flame is encoded as a series of low-level spa-
tiotemporal features. If the test were encoded in the same way as the sample, the
visual system would face an abstraction problem: how could it be sure to encode the
same spatiotemporal features in the test as in the sample? If we were to sample from
the bottom right of the beginning of the sample and the top left of the end of the
test, the locality of flame would mean that these zones would be uncorrelated and
thus unmatchable. It is easy to sample in the same spatial locations, but not the
same temporal locations, since the temporal location of the sample in the test is a
priori unknown. This fits with the results of Experiment 4.2, which showed that both
spatial and temporal inversion affect matching performance. It is also supported by
Experiment 5.4, in which we varied target position but not search space size: matching
was much better at the beginning of the test, where the offsets (from the beginning
of the sample) of any spatiotemporal features would be the same as their offsets from

the beginning of the test.

How does the brain decide which areas of a complex dynamic stimulus to sample?
This process is usually referred to as the computation of salience, and is bottom-
up, involving early visual areas and low-level processing. Having encoded a series of

features, how does the visual system ensure the same features will be encoded again?
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If they are arbitrary features, it would be necessary to prime the early processing
stages with details of these features, ensuring their selection. This would require
extensive feedback connections. Instead, the matching process could simply select the
most salient spatiotemporal features in both the sample and the test. For small search
spaces, it is likely that the same features would be attended to; for larger search spaces,
salient distractors could reduce the possibility of obtaining a match. This approach
does not require giving early processing stages feedback about what to expect, relying
on its existing learned notions of salience.

The flame search process is highly vulnerable to distractors; when tests are not
much longer than samples, accuracy is high, but longer tests have a crippling effect. By
characterising the slow decay of flame representations during a blank ISI, we concluded
that this effect was due to interference as well as decay. Flame representations are
thus subject to temporal crowding. As shown in Experiment 5.3, this was mainly due
to false positives, not misses.

Finally, we note that observers show no accuracy improvement effects during flame
matching, except after the first 50 trials. There is no evidence of consistent perceptual

learning.

7.4 Contribution to knowledge

Moving natural scenes pose a challenge to the human visual system, containing diverse
objects, clutter, and backgrounds. Well-known models of object recognition do not
fully explain natural scene perception, ignoring segmentation or the recognition of
dynamic objects. In this thesis, we used a familiar natural stimulus, moving flames, to
evaluate the human visual system'’s ability to match and search for complex examples
of dynamic form.

We conducted the first psychophysical experiments on the motion properties of
dynamic flame and on observers’ ability to match examples of this stimulus. We also,
to our knowledge, conducted the first temporal visual search experiments on dynamic
natural scenes. Research in this area has focussed on the recognition of static objects
or dynamic objects which did not require segmentation from a background.

We conducted extensive image analysis of a dynamic flame dataset which was
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representative of the stimulus class, characterising the motion fields which can be
computationally recovered from it and the spatial and temporal frequencies present.
Dynamic flame possesses a temporal frequency spectrum which is exponential rather

than of the form 1/f.

We compared flame matching ability to face matching ability and found no inter-
trial correlation in response accuracy, which suggests that faces and flame are matched
by different processes, not by a shared resource. In summary, we found no evidence
of dedicated, trainable, or orientation-tuned processes which may be used to match
flame. Matching appears to be done by existing low-level processes. Combining several
experimental results, we suggest that the representation of dynamic flame is neither
snapshot-based nor dedicated and high-level, but relies on the encoding of sparse, local

spatiotemporal features.

7.5 Aesthetics

Fire is often renowned for its beauty and aesthetic value. Our observers consistently
reported that the stimuli they viewed were very interesting and induced a sense of
calm. How do our results explain the viewing pleasure flame incites? Flame contains
a rich selection of dynamic features; our experiments have shown the importance of
motion and edges in particular. In the frequency domain, flame stimuli also show
power in a wide range of frequencies, similarly to the aesthetically pleasing 1/f noise,

but with slightly more power in the high frequencies.

Why does flame constantly seize the viewer's attention? Our hypothesis that
dynamic flame is represented as a set of spatiotemporally local features, and that it does
not contain any long-range correlations, provides a natural explanation. When viewing
flame, the visual system appears to rapidly encode short spatiotemporal features in
different areas of the stimulus. These features suddenly appear, but do not last long
enough to hold attention for very long. Attention thus rapidly switches from area to
area. This constant stream of rapidly appearing and vanishing features holds attention

on the stimulus and renders it visually interesting.
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7.6 Further work

The perception of dynamic natural scenes brings to mind two main avenues of research:
the nature of the representations employed to encode and compare scenes, and the
challenges involved in comparing dynamic stimuli.

One of our main points is that dynamic flame is represented by sparse sampling
of low-level spatiotemporal features. To further investigate this result, it would be
useful to compare observers’ matching behaviour to that shown by a computational
classifier. A classifier capable of doing pixelwise comparison would find the job trivial;
we would require a biologically plausible classifier with initial stages modelled on the
visual system (as in the banks of oriented filters used by Freeman and Simoncelli[265]).

Dynamic flame has few long-range correlations, so information captured near the
fovea could be of paramount importance. To test this, an eye tracker could be used
during a delayed match-to-sample task to record the areas of the sample clip to which
the observer is attending. The same could be done with the test clip, producing two
smaller “retina’s-view" clips which track the images projected around the fovea. These
could then be submitted to classification, aiming to predict the Yes/No responses of
human observers.

Storing small, spare spatiotemporal features requires attending to the same areas,
at the same time, in both sample and test clips. If observers are sampling from just
one area of the sample, it is easy to attend to the right place in the test. If, however,
a more complex sampling strategy is used, perhaps informed by bottom-up salience
(“lI am encoding the bright flash in the centre of the screen, followed by the distinctive
flame in the top right, followed by a spark in the bottom left"), the same areas must
be attended to in the test to allow good matching. This is easy if the sample and
test start at the same frame; if, however, the observer does not know the location
of the sample in the test, sampling the test correctly is much harder. An effective
strategy would be “look for the first spatiotemporal feature | encoded, then, once it
is found, shift attention to the location of the next one”. Conversely, it could be that
bottom-up salience is relied upon to ensure the same sampling pattern. Discussions
with observers suggested that high-variance areas of the stimulus are preferentially
sampled. A psychophysical experiment could differentiate between these strategies by

introducing salient distractors and measuring their effect on matching performance.
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This task begs a more general question: how do we detect a match when our target
is a sequence? This is necessary in many real-world tasks, from recognising music to
interpreting echocardiograms. The EEG signatures of detecting a static target have
been well studied[266]; what are the EEG signatures of detecting a dynamic target?
Do they appear when the first element in the target sequence is witnessed, or once
the last element has been matched? What do these signatures look like when the
observer sees a partial sequence match, in which the first elements correspond to the
first elements of the target but the rest do not? Recent developments in stimulus

presentation and high-density EEG allow these basic questions to be investigated.

7.7 Conclusions

In summary, we used a range of image analysis, clip matching and visual search ex-
periments to look for any evidence of high-level (spatially or temporally global) repre-
sentations of dynamic flame. We found no such computational encodings, suggesting
that there is little global structure present in the images. Neither did we find any
psychophysical evidence of long-range spatiotemporal features, gradually increasing
expertise, or pop-out. Image-based methods only found similarities which were very
temporally local, and playback detection (using observers' category representation for
flame) required highly local motion information.

This evidence suggests strongly that flame is a dynamic texture: it be can be easily
detected as a category, but individuating particular exemplars requires costly low-level
comparison. This makes temporal search extremely difficult, since low-level represen-
tations in visual working memory are constantly being overwritten. Flame, despite its
antiquity and aesthetic value, is interpreted by the visual system in a similar way to
dynamic pink noise. The visual system appears to match flame by taking local spa-

tiotemporal samples as opposed to computing a compressed, high-level representation.
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Appendix A

Video data on CD

Several videos have been included on the accompanying CD.

Successive t-slices of the 3D spatiotemporal power spectrum of dynamic

flame:

FFT _tSlices.avi The x axis shows horizontal power, the y axis vertical power. We
can see that power is mainly horizontal at high temporal frequencies, but shows a
characteristic x-shape at low temporal frequencies.

FFT_ySlices.avi The x axis shows horizontal power, the y axis temporal power.
There is a horizontal line at the temporal DC component, which is an artefact of the
lack of temporal windowing. We can see that at low vertical frequencies, power is
concentrated near low horizontal frequencies.

FFT _xslices.avi The x axis shows vertical power, the y axis temporal power.
There is a horizontal line at the temporal DC component, which is an artefact of the
lack of temporal windowing. We can see that at low horizontal frequencies, power is

concentrated near low vertical frequencies.

Successive t-slices of the Gaussian-windowed 3D spatiotemporal power spec-

trum of dynamic flame:

FFT _Gaussian_tSlices.avi The x axis shows horizontal power, the y axis vertical
power. We can see that power is mainly horizontal at high temporal frequencies, but
shows a characteristic X shape at low temporal frequencies.

FFT_Gaussian_ySlices.avi The x axis shows horizontal power, the y axis temporal
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power. There is a horizontal line at the temporal DC component, which is an artefact
of the lack of temporal windowing.

FFT _Gaussian xslices.avi The x axis shows vertical power, the y axis temporal
power. There is a horizontal line at the temporal DC component, which is an artefact

of the lack of temporal windowing.

PixelFFTFrequencyVideo.avi: having access to the power spectra for each pixel,
we generated a series of images showing the power of each pixel at a particular fre-
quency, from the DC component to the Nyquist frequency of 25 Hz. This video runs

through these images. A selection of still images are shown in Fig. [3.11}

sMcGMDynamicFire.m4v: we applied the sMcGM to a stack of 500 images,
using a temporal filter size of 23 frames (contrast to two frames previously). This

video shows the results; sample images are shown in Fig. [3.23]
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