UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments

Prince, SJD; Pointon, AD; Cumming, BG; Parker, AJ; (2000) The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J NEUROSCI , 20 (9) 3387 - 3400.

Full text not available from this repository.

Abstract

The performance of single neurons in cortical area V1 of alert macaque monkeys was compared against the animals' psychophysical performance during a binocular disparity discrimination task. Performance was assessed with stimuli that consisted of a patch of dynamic random dots, whose disparity varied from trial to trial, surrounded by an annulus of similar dots at a fixed disparity. On each trial, the animals indicated whether the depth of the central patch was in front of or behind the annulus. For each disparity of the center patch, neural performance was assessed by calculating the probability that the response of the neuron was greater or less than the response when the center disparity was the same as that of the annulus. Initially the animals performed the task simultaneously with the neural recording. However, the range of disparities used, which was appropriate for the neuronal recording, may have affected performance, because the thresholds were substantially lower (2.6x) when the psychophysical measurements were repeated later. Average neuronal thresholds were similar to 4x poorer than these behavioral thresholds, although the best neurons were marginally better than the animals' behavior. Thus, the well known precision of relative depth judgments can be supported with signals from a small number of V1 neurons. Interference with the relative depth information in the stimulus profoundly affected behavioral thresholds, which were similar to 10x poorer when the surround was absent or contained binocularly uncorrelated dots. In this case, single V1 neurons consistently outperform the observer: presumably here, psychophysical thresholds are limited by other factors (such as uncertainty about vergence eye position).

Type:Article
Title:The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments
Keywords:stereoacuity, binocular disparity, neurometric threshold, cortical area V1, awake macaque, electrophysiology, VISUAL-CORTEX, SPATIAL-FREQUENCY, DISCRIMINATION, STEREOACUITY, STEREOPSIS, DISPARITY, MOTION, MONKEY, ORIENTATION, PERCEPTION
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record