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Abstract 

 

A novel “slurry method” was described for the preparation of proliposome powders using 

soya phosphatidylcholine (SPC) with cholesterol (1:1) and for incorporation of 

beclometasone dipropionate (BDP) at 2 mole% of the total lipid phase. Proliposomes made 

with a range of lipid to sucrose carrier ratios were studied in terms of surface morphology 

using scanning electron microscopy (SEM) and thermal properties using differential scanning 

calorimetry (DSC). Following hydration of proliposomes, the resultant vesicles were 

compared to liposomes made using the traditional proliposome method, in terms of vesicle 

size and drug entrapment efficiency. SEM showed that sucrose was uniformly coated with 

lipid regardless of lipid to carrier ratio. Liposomes generated using the slurry proliposome 

method tended to have smaller median size than those generated with the conventional 

proliposome method, being in the range of 4.72 - 5.20 µm and 5.89 - 7.72 µm respectively. 

Following centrifugation of liposomes using deuterium oxide (D2O) as dispersion medium, 

vesicles entrapping BDP were separated as a floating creamy layer, whilst the free drug was 

sedimented as crystals. Drug entrapment was dependent on formulation composition and 

preparation method. When 1:15 w/w lipid to carrier was used, liposomes generated using the 

slurry method had an entrapment efficiency of 47.05% compared to 18.67% for those 

generated using the conventional proliposome method. By contrast, liposomes made by the 

thin-film hydration method had an entrapment efficiency of 25.66%. DSC studies using 50 

mole% BDP demonstrated that the drug was amorphous in the proliposome formulation and 

tended to crystallize on hydration, resulting in low drug entrapment. In conclusion, a novel 

approach to the preparation of proliposomes using a slurry method has been introduced, 

offering higher entrapment for BDP than liposomes made using the conventional 

proliposome method and those prepared by thin-film hydration technique.    

Keywords: Characterization, Drug development, Proliposome, Liposome, Manufacture  
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1.  Introduction 

 

Novel inhalation therapies have been introduced to treat pulmonary disorders, particularly 

asthma and chronic obstructive pulmonary disease (COPD) (Momin et al. 2011). Inhalation 

of glucocorticoids aims for maximum deposition in the pulmonary system, leading to 

localised therapeutic effect in the lung and minimised systemic adverse effects (Hochhaus 

2004). Liposomes have been extensively used in drug delivery for sustained-release 

applications (Gregoriadis 1980; Safinya and Ewert 2012). Hydrophobic drugs are typically 

incorporated into the lipid bilayers, whilst hydrophilic drugs are encapsulated into the 

aqueous spaces of liposomes (Tripathi et al. 2013).  

 

Entrapment of hydrophobic drugs, such as steroids, in liposomes is highly dependent on 

chemical structure of the drug (Radhakrishnan 1990; Radhakrishnan 1991). Beclometasone 

dipropionate (BDP) is an inhaled steroid with well-established clinical indications. The 

entrapment of BDP in liposomes is highly dependent on type of phospholipid used (Batavia 

et al. 2001; Darwis and Kellaway 2001; Elhissi et al. 2006), type of excipients included in the 

formulation, preparation procedure of liposomes (Elhissi et al. 2006; Elhissi et al. 2011a) and 

additional processing of the formulation, such as size reduction (Darwis and Kellaway 2001; 

Gala et al. 2015).  

 

Liposomes exhibit chemical instability due to oxidation and hydrolysis of the liposomal 

phospholipids (Hunt and Tsang 1981), resulting in leakage of the entrapped drug, and 

aggregation or fusion of the vesicles (Wong and Thompson 1982). These instabilities may 

markedly shorten the shelf-life of liposome formulations. In order to overcome such stability 

problems and capitalise on the potential of liposomes, proliposome technologies have been 

developed (Payne et al. 1986a; Payne et al. 1986b; Perrett et al. 1991). Proliposomes are 
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either particulate-based (Payne et al. 1986a) or ethanol solution-based (Perrett et al. 1991) 

formulations of phospholipid that generate liposomes upon addition of aqueous phase under 

appropriate conditions (e.g. above the phase transition temperature of the phospholipid 

chosen). Particulate-based proliposomes are powder formulations comprising carbohydrate 

particles coated or loaded with phospholipid to generate liposomes prior to administration 

(Payne et al. 1986a). The production of such proliposomes has been achieved through a 

number of methods, including spray drying (Alves and Santana 2004) and fluidized bed 

coating (Chen and Alli 1987; Kumar et al. 2001; Gala et al. 2015). However, the manufacture 

of proliposomes on a small scale is traditionally achieved via the feed-line method, utilising a 

modified rotary evaporator with a feed-line tube for the step-wise addition of an organic 

phospholipid solution, to coat carbohydrate carrier particles placed in a round-bottomed flask, 

followed by organic solvent evaporation (Payne et al. 1986a). This technique is time-

consuming and may cause marked lipid losses in the feeding tube; thus, finding a simple 

proliposome manufacturing method that minimises wastage of drug and excipients would be 

highly advantageous. 

 

In this study, a facile approach to manufacturing BDP proliposomes has been developed 

using a novel "slurry-based proliposome method" whereby carbohydrate carrier was 

dispersed in an alcoholic solution of phospholipid followed by solvent evaporation under 

negative pressure, to yield lipid-coated carbohydrate granules, referred to as “proliposomes”. 

Moreover, the influence of formulation on the entrapment of BDP in liposomes following 

hydration of the proliposomes has been determined and critically evaluated using deionised 

water (DW) or deuterium oxide (D2O) as dispersion media.  

 

2.  Materials and methods 



5 
 

 

     2.1. Materials 

 

Sucrose, deuterium oxide (D2O; density = 1.105 g/ml), beclometasone dipropionate (BDP) 

and cholesterol were purchased from Sigma-Aldrich, UK. Soya Phosphatidylcholine (SPC) 

(Lipoid S-100) was a gift from Lipoid, Switzerland. Ferric chloride and ammonium 

thiocyanate were purchased from VWR, UK. Absolute ethanol, chloroform, HPLC-grade 

water and HPLC-grade methanol were all supplied by Fischer Scientific Ltd., UK.  

 

2.2. Proliposome formulation using the slurry-based proliposome method 

 

Sucrose (particle size 300 - 500 µm) was transferred to a 100 ml round-bottomed flask. The 

lipid phase constituting a total amount of 250 mg (SPC and cholesterol in a 1:1 mole ratio; 

i.e. 166.66 mg and 83.33 mg respectively) were dissolved in absolute ethanol (175 mg/525 

µl) to make a total volume of 4.51 ml. Three proliposome formulations were prepared with a 

range of lipid to carrier ratios (1:5, 1:10 and 1:15 w/w; i.e. 250 mg of lipid to 1250, 2500 and 

3750 mg respectively). BDP was incorporated into the lipid solution at a concentration of 2 

mole% (4.48 mg) of the total lipid phase, and the mixture was added to the flask. 

Subsequently, the flask was attached to a rotary evaporator (Buchi Rotavapor R-114, Buchi, 

Switzerland) and partially immersed in a water bath (45°C) (Buchi WaterbatheB-480, Buchi, 

Switzerland). A vacuum pump (Buchi Vac V-501) was used to facilitate the evaporation of 

the ethanol at a maximum rotation speed of 280 rpm for 2 h to achieve uniform coating of 

lipid onto the sucrose particles (i.e. formation of proliposomes). After 2 h, the negative 

pressure was released, the flask was detached from the rotary evaporator and the resultant 

proliposome granules were harvested and stored at -18°C for subsequent studies. The 
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relatively long time of solvent evaporation was conducted in order to ensure removal of 

ethanol from the formulations. Ethanol, if present above certain concentrations in liposome 

preparations, may cause interdigitation of the liposome bilayers (Simon and McIntosh 1984; 

Almeida et al. 1986), and possibly minimise entrapment of steroids such as BDP (Elhissi et 

al. 2006). 

 

2.3.Proliposome formulation using feed-line (conventional) proliposome method 

 

Sucrose (particle size 300 - 500 µm) was transferred to a 100 ml round-bottomed flask which 

was attached to a rotary evaporator. SPC and cholesterol were utilised as the lipid phase 

dissolved in ethanol (175 mg/525 µl), followed by addition of BDP (2 mole% of the lipid 

phase). The resultant ethanolic solution was then added in portions of 0.5 - 1 ml via the feed-

line, and ethanol was removed under vacuum for 2 h at 45°C. Initially via this method, a dry 

proliposome formulation, at a 1:5 w/w lipid to carrier ratio was produced; subsequently, 1:10 

and 1:15 w/w ratio formulations were also produced (by maintaining the lipid and BDP 

concentration, and increasing the carrier concentration). The proliposomes were collected and 

stored at -18°C for subsequent studies.   

 

2.4. Thin lipid film formation 

 

In the thin-film method, the same concentration of lipid phase was utilised with 2 mole% of 

BDP. A concentration of 175 mg/525 µl of lipid was produced using ethanol and transferred 

to a round-bottomed flask, which was subsequently attached to the rotary evaporator at 45°C 

and under vacuum conditions. Ethanol was allowed to evaporate completely over 2 h, 

resulting in formation of a thin lipid film for immediate hydration with aqueous phase. 
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2.5. Study of proliposome morphology using Scanning Electron Microscopy 

 

Scanning electron microscopy (SEM) was employed to study the surface morphology of 

proliposomes. Proliposome samples or sucrose particles were sprinkled evenly onto 

aluminium microscopy stubs, and the surface was gold-coated with a sputter coater (JF1200 

Fine Coater JEOL, Japan). Subsequently, surface morphology of the samples was examined 

using a scanning electron microscope (Quanta-200, FEI, Holland) and samples were 

photographed using the instrument’s software.  

 

2.6. Hydration of proliposomes and thin lipid films 

 

Proliposomes prepared by the slurry-based or feed-line methods, were hydrated in a given 

amount of DW or D2O at room temperature. In order to produce a liposome suspension, 50 µl 

of the aqueous phase was added to 30 mg proliposome powder, followed by vortex-mixing 

(Fisons WhirliMixer, Fisons Scientific Equipment, UK) for 2 min. The liposomes were 

diluted with an aqueous phase volume of 950 µl, followed by vortex-mixing for 1 min to 

ensure complete dissolution of the carrier particles and hydration/dispersion of the lipid. 

Liposomes were left for 2 h in order to anneal at room temperature. For thin-film hydration 

liposomes, the hydration was conducted in the same way in order to yield the same lipid 

concentration as that of the hydrated proliposomes. Annealing of hydrated liposomes is 

performed by leaving the liposomes without shaking or disruption at a temperature above the 

phase transition of the lipid mixture used. Annealing may help overcome possible structural 

defects of the liposome bilayers following lipid phase hydration (Lawaczeck et al. 1976).   
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2.7. Separation of liposomes via centrifugation, and visualisation via light microscopy 

 

Following hydration in the respective media, the resultant liposomal suspensions were 

centrifuged using a bench centrifuge (Spectrafuge 24D, Jencons, UK). This process was 

carried out to aid the separation of the BDP-loaded liposomes from the unentrapped drug. 

Separation was optimized at 15,500 g, and light microscopy (Novex, Holland) was used to 

investigate whether BDP crystals were present in the samples collected from the supernatant 

and pellet. 

 

2.8. Liposome size analysis by laser diffraction 

 

The volume median diameter (VMD; 50% undersize) and span (i.e. size distribution) were 

measured by laser diffraction using the Malvern Mastersizer 2000 (Malvern Instruments, 

UK). Span was used to express the size distribution (i.e. polydispersity) of liposomes, and 

was calculated mathematically by the software of the instrument according to equation 1:  

 

Span = (90% undersize – 10% undersize) / VMD    Eq.1 

 

2.9. Separation and determination of BDP incorporation into liposomes using high 

performance liquid chromatography (HPLC) 

 

Following hydration in the respective medium (D2O or DW), the resultant liposomal 

suspensions were centrifuged at 15,500 g (i.e. 13,000 rpm), using a bench centrifuge aiming 

to separate drug-loaded liposomes from the unentrapped BDP (either dissolved or as free 

crystals). Following centrifugation in D2O, the BDP-loaded liposomes were isolated from the 
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unentrapped drug crystals and subsequently analysed by HPLC (Agilent 1200 HPLC 

instrument, UK). Methanol was used to disrupt the liposomes and liberate the encapsulated 

BDP. The drug was then assayed via HPLC by employing a mixture of methanol and DW 

(3:1 w/w) as the mobile phase, at a flow rate of 1.7 ml/min, and UV detection wavelength of 

239 nm. An Agilent column (15 cm X 4.6 mm C-18; Agilent technology, USA) was used, 

and the temperature was set at 40°C with an injection volume of 20 µl. The HPLC method 

was adapted from those described in previous reports (Zeng et al. 2000; Batavia et al. 2001; 

Nasr et al. 2014). 

 

2.10. Crystallinity studies using differential scanning calorimetery (DSC) 

 

Differential scanning calorimetry (DSC) was used to investigate the solid state properties of 

components in the proliposome formulations. The thermal behaviour of each individual 

ingredient was analysed with respect to the proliposome formulation by DSC (DSC 823e, 

Mettler Toledo, Switzerland). Prior to sample analysis, indium was used to calibrate the unit 

in triplicate. Samples were weighed individually in 40 µl aluminium pans and sealed using 

the provided lids (Mettler Toledo, Switzerland). Thermal data consisted of endothermic peaks 

and melting points (onset temperatures); the onset temperatures of each of the peaks were 

used to identify the specific ingredients in proliposome formulation.  

 

2.11.  Lipid quantification using the Stewart assay 

 

The Stewart assay (Stewart 1980) was performed in order to determine the lipid content in 

the liposome formulations following separation of the liposomes from the continuous phase, 

by adapting the analytical protocol described previously (Elhissi and Taylor 2005; Elhissi et 
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al. 2011b).  Lipid (10 mg) was dissolved in chloroform in a 100 ml round-bottomed flask, 

and the solvent removed using a rotary evaporator. The thin film formed in the flask was 

hydrated with 1 ml DW, followed by addition of 1 ml chloroform. Subsequently, the sample 

was dried overnight in an oven (90°C), after which it was dissolved using 100 ml chloroform 

to construct a calibration curve with a lipid concentration range of 80 - 160 µg/2ml (i.e. 40 - 

80 µg/ml). This experiment was conducted on the liposomes dispersed in DW or D2O 

following centrifugation of the dispersions. 

 

2.12. Statistical analysis 

 

One-way analysis of variance (ANOVA) or Student’s t-tests were performed to allow 

statistical assessment of difference between more than two groups, or two sets of data 

respectively, using SPSS software. A p-value less than 0.05 was an indicator of statistically 

significant differences between the groups compared.  

 

3. Results and discussion  

 

3.1. Proliposomes morphology 

 

SEM images of proliposomes produced using the slurry method, showed sucrose particles to 

be coarse, non-porous and of irregular shape (Figure 1a). The lipid to carrier ratio appeared to 

make the carrier surfaces smoother, especially at high lipid to carrier ratios: 1:5 w/w (Figure 

1b) and 1:10 w/w (Figure 1b). These results are consistent with the observations of 

formulations prepared by Elhissi et al. (2011a) using the traditional feed-line proliposome 

technique. However, with the slurry method it was additionally observed that continuous 
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coating has happened even at low lipid to carrier ratio (1:15), whilst for the traditional feed-

line technique, coating was continuous only at high lipid loading levels (Elhissi et al. 2011a). 

This suggests that the slurry method provided a more uniform coating compared to the 

conventional feed-line proliposome method. The incomplete coating with the traditional 

method might be attributed to partial loss of the lipid in the feed-line during coating or 

uneven distribution of the lipid dripped/sprayed onto the carrier particles via the feeding tube 

(Elhissi et al. 2011a).  

 

3.2.Size analysis of liposomes generated from proliposomes  

   

Liposomes produced following hydration and dispersion of sucrose-based proliposomes 

manufactured via the slurry method ranged in median size from 4.72 to 5.2 µm (Table 1). No 

statistically significant difference (p>0.05) in VMD was found between formulations having 

different lipid to carrier ratios (Table 1). By contrast, the VMDs of liposomes generated from 

proliposomes prepared using the traditional feed-line method were significantly different 

(p˂0.05), exhibiting a smaller size for the 1:5 w/w ratio formulation (5.89 + 0.39 µm), in 

comparison to the 1:10 and 1:15 (7.72 + 0.24 and 7.10 + 0.25 µm respectively). The 

difference in the measured liposome size between the traditional proliposome and the slurry 

methods might be attributed to the different coating patterns of the carrier as reported in the 

previous section.  Liposomes generated by thin-film hydration had mean VMD of 5.51 + 0.56 

µm. Median liposome size and variability between formulations were found to be smallest 

when the slurry method was used, which might be attributed to the uniform carbohydrate 

coating with the lipid, facilitating efficient hydration upon addition of the aqueous phase 

(Table 1; Figure 1). Consequently, the slurry method seems very useful for manufacturing 

proliposomes that, on hydration, they can generate liposomes having relatively small and 
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consistent size measurements compared to the other two methods. Considering size 

distribution (i.e. span measurements) a negligible difference (p>0.05) was noted between the 

formulations examined, indicating similar heterodispersed size irrespective of the method 

used to prepare the liposomes (Table 1). Noteworthy, other investigators have shown that 

BDP liposomes in the micrometres size range (similar to the size of liposomes used in the 

present investigation) can be effectively delivered by jet-nebulisation to the lungs of healthy 

human volunteers (Saari et al. 1999). Recent in vitro nebulisation studies using aqueous 

suspensions have shown that nebuliser output and “respirable” fractions of the delivered 

aerosol were highly dependent on particle size of the suspension and mechanism of operation 

of the nebulizer (Najlah et al. 2014). In general, larger particles are more resistant to 

nebulisation, especially when ultrasonic nebulisers are used (McCallion et al. 1996; Najlah et 

al. 2014). Further studies should be conducted in the future to investigate whether size 

differences of liposomes made using the slurry method compared to the traditional 

proliposome technique could translate into different performance profiles in vivo, especially 

in the field of pulmonary delivery. 

 

3.3.Separation of BDP-loaded liposomes from free BDP crystals  

 

As shown in Figure 2a, proliposomes are typically hydrated and annealed using deionised 

water (DW). Following centrifugation for separation in DW, liposomes were found to 

sediment at the bottom of the centrifuge tube, allowing for their collection for analysis 

(Figure 2b) (Meisner et al. 1989; Taylor et al. 1990; Ma et al. 1991). When BDP is used in 

liposome formulations, DW as a dispersion medium may cause the unentrapped BDP crystals 

and liposomes (containing the entrapped drug) to sediment simultaneously upon 

centrifugation (Batavia et al. 2001). This may result in erroneous inclusion of the free crystals 
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as part of the drug entrapped, resulting in an over-estimation of BDP entrapment. Previous 

literature postulated that a higher density dispersion medium may aid at separation of 

liposomes from BDP crystals upon centrifugation. Deuterium oxide (D2O), also referred to as 

heavy water (density at 20°C is 1.053 g/ml) has higher density than DW (density at 20°C is 

0.9982 g/ml). Thus, D2O was proposed as a potentially suitable liposome dispersion medium 

that can allow more reliable separation for accurate quantification of the entrapped and 

unentrapped drug proportions (Weast 1988; Batavia et al. 2001). It is important to bear in 

mind that deuterium oxide (D2O) is toxic in high quantities (e.g. in amounts exceeding 20% 

of animal’s body weight) (Kushner et al. 1999), and its use in the present study was confined 

to determination of drug entrapment and within limited volumes of 1.5 ml. If further 

investigations are to be carried out on cell lines or in vivo, established aqueous media such as 

saline or buffer solutions should be used to hydrate the proliposomes.  

 

Analysis of liposomes, separated by centrifugation in D2O, showed clear differences in the 

distribution of the formulation components, with liposomes being separated as a floating 

“creamy” layer (Figure 2c). By contrast, dispersion in DW followed by centrifugation caused 

the liposomes to sediment as a pellet at the bottom of the tube (Figure 2b). BDP was 

preferentially accumulated as a pellet (also referred to as a spot (i.e. BDP crystals) at the 

bottom of the tube when D2O was employed (Figure 2c); this is attributed to the crystals 

having higher density than D2O dispersion medium while liposomes have a lower density. 

This mode of separation (i.e. distinct layers) was observed for liposomes generated using all 

three different methods (Figure 2).  

 

3.4.Confirmation of separation via light microscopy 
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Light microscopy was employed to substantiate the proposal of D2O being a superior 

separation medium than DW. For this reason, analysis of the three defined layers (Figure 2c) 

was conducted, showing a clear separation of liposomes (loaded with BDP) in the floating 

layer, and complete sedimentation of BDP crystals as a spot at the bottom of the tube, post-

centrifugation. Figure 3a clearly shows free sedimented BDP crystals, whilst Figure 3b shows 

liposomes from the upper layer (with the entrapped BDP), indicating that separation was 

successful using D2O as dispersion medium. 

 

The middle layer (Figure 2c) was subjected to the Stewart assay to determine the content of 

phospholipid in the D2O-dispersed samples (Figure 2c), to ensure that the separation 

conditions using D2O were optimal. Three different centrifugation forces were employed in 

this investigation (i.e. 11,100, 13,200 or 15,500 g for 90 min; i.e. 11,000, 12,000 or 13,000 

rpm respectively) to determine which speed would provide the most complete separation 

between liposomes (with the entrapped drug fraction) and BDP crystals and water-dissolved 

drug (representing the unentrapped proportion of BDP). The minimum concentration of lipid 

was established via the Stewart assay in the middle layer, indicating that liposomes were not 

any more present in the bulk of the dispersion. Centrifugation under these parameters 

demonstrated optimum separation of BDP-loaded liposomes from the unentrapped free BDP 

crystals. It is proposed that the middle layer may contain dissolved or free BDP crystals 

which failed to sediment.  

 

As shown in Table 2, the lowest centrifugation speed (equivalent to 11,000 g) may not be 

able to achieve complete separation since the relatively greatest proportion of lipid was still 

in the bulk of the dispersion. The Stewart assay conducted to quantify the lipid concentration 

in the middle aqueous region, following centrifugation in D2O, indicated that 15,500 g for 90 
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min was optimal for separating liposomes from unentrapped (i.e. free) BDP crystals (Table 

2). These conditions showed an insignificant amount of lipid in the unentrapped component 

following centrifugation in D2O.  

 

While taking samples for light microscopy study or HPLC analysis, it is important to aspirate 

the samples slowly and carefully using a Gilson Pipette. Quick or careless aspirations of the 

floating “creamy” layer may result in mixing of the middle aqueous phase with the floating 

liposomes or can cause disruption of the sedimented BDP crystals, which can lead to 

inaccurate findings.     

 

3.5.Determination of BDP crystallinity via DSC 

 

DSC was employed to investigate whether BDP in the proliposome formulations was 

crystalline or amorphous. The sharp endothermic peaks of individual components of the 

proliposome formulation: BDP, cholesterol and sucrose are shown in Figure 4. Peaks 

indicating melting point, were observed at 186.60°C for sucrose and 104.59°C for BDP in 

addition to three polymorph endothermic peaks which were observed for cholesterol, at 

95.96, 122.61 and 147.01°C. The initial endothermic peaks for cholesterol may have 

exhibited loss of water; however the liquid crystalline phase is stable over the temperature 

range of 122.61 to 147.01°C. Whilst the presence of three endothermic peaks were in 

concordance with findings by Loomis et al. (1979), the actual values differed (86, 123 and 

157°C). This might be attributed to differences in the experimental conditions or equipment 

used, considering that the present investigation has been done using a modern instrument 

compared to that used by Loomis and co-workers (1979). Cholesterol was incorporated in 

order to enhance formulation stability, since cholesterol may fill the gaps between the 

assembled phospholipid within the bilayers; this may reduce drug leakage (Kirby et al. 1980). 
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The DSC scan for proliposomes exhibited an endothermic peak for sucrose at 198.69°C, and 

three peaks associated with cholesterol were observed at 134.04, 141.23 and 172.46°C 

(Figure 4). Low BDP concentration, i.e. 2 mole%, in the proliposome formulation did not 

produce a visible endotherm on the DSC trace. Consequently, the concentration of BDP was 

increased to 50 mole% to clarify whether the absence of a BDP endothermic peak was 

concentration dependent. Even at this high drug concentration, the melting point for BDP was 

not detectable, possibly indicating its amorphous structure in the proliposome formulation. 

Additionally, the shift change in melting points for cholesterol and sucrose might be 

attributed to the presence of other constituents in the formulations. Adherence of BDP to the 

surface of lipid coating the sucrose particles could inhibit the crystallanity of BDP. This 

might be attributed to the solubility of the steroid in the high lipid concentration used (Guan 

et al., 2011). This further confirms that on hydration of proliposomes, BDP has crystallized, 

resulting in sedimentation upon centrifugation. The employment of light microscopy and 

DSC has provided a valuable insight into the behaviour of BDP in hydrated and dry 

formulations respectively.  

 

3.6. Determination of drug entrapment efficiency using D2O or DW 

 

In the traditional approach to quantifying entrapment efficiency in liposomes, the sedimented 

pellet is usually assumed to comprise liposomes and the entrapped fraction of the drug, while 

the unentrapped drug remains in the supernatant. When DW was used as the dispersion 

medium, the unentrapped BDP present in the supernatant constituted less than 5% of the total 

BDP originally included in the sample (Figure 5); this was attributed to concomitant 

sedimentation of BDP crystals with the liposomes upon centrifugation, hence the high 
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apparent entrapment efficiency was a result of inadequate separation of free drug from 

liposome-incorporated BDP. 

 

By contrast, when D2O was used to disperse liposomes, much better separation was achieved, 

as demonstrated using light microscopy and the Stewart assay. The complete separation of 

drug loaded in liposomes from unentrapped BDP crystals (Figure 2b and c), provided a 

means for reliable and accurate determination of drug entrapment following centrifugation. 

The middle layer (representative of a proportion of the unentrapped drug fraction in D2O) 

contained less than 10% of the originally included BDP in all formulations (Table 2). Figure 

6 compares the effect of preparation method on BDP entrapment efficiency. Although the 

thin film hydration method did not use carbohydrate carriers, values generated in terms of 

entrapment efficiency were still directly compared to entrapment efficiencies of formulations 

prepared from the feed-line and slurry proliposome methods. Both feed-line and slurry 

methods utilised carbohydrates and lipid in the manufacture of proliposomes. In this research, 

whilst lipid phase (1:1 ratio of SPC and cholesterol) and BDP concentration (2 mole%) were 

kept constant, carbohydrate carrier concentration was varied, producing formulations with 

lipid to carrier ratios of 1:5, 1:10 and 1:15 w/w.  

 

HPLC analysis for 1:5 lipid to carrier ratio, identified the pellet composition for the feed-line 

method as having the lowest BDP proportion (51.25 + 2.81%), followed successively by the 

thin-film (72.61 + 1.84%) and slurry-based methods (74.16 + 8.66%) (Figure 6). The 

difference in pellet BDP incorporation for the feed-line method was significantly lower 

(p<0.05) than values for the slurry-based proliposomes and thin-film methods. In general, the 

high proportion of unentrapped BDP may be attributed to the poor stearic fit of BDP within  
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the liposome bilayers (Radhakrishnan 1990; Radhakrishnan 1991); and may be affected by 

excipients and method used to manufacture liposomes (Elhissi et al. 2006).  

 

With 1:10 lipid to carrier ratio, higher concentrations of free BDP crystals were found in the 

pellet, with BDP incorporation for the thin film method being significantly higher (p<0.05) 

than that of the feed-line and slurry methods. For the 1:15 w/w ratio, a higher (p<0.05) 

entrapment and lower free BDP crystal concentration was found in liposomes prepared using 

the slurry-based method, when compared to liposomes generated from the thin film and feed-

line method (Figure 6). The layer of unentrapped BDP (i.e. soluble drug in the middle region) 

showed that BDP proportion was less than 5% for all three lipid concentrations used, 

irrespective of liposome manufacturing method. The entrapment efficiency values were 

dependent on lipid to carrier ratio, hence, compared to the other two methods, the slurry 

proliposome method provided superior drug entrapment at the lowest lipid to carrier ratio 

(1:15 w/w) (Figure 6). Thus, the slurry method could provide higher drug entrapment when 

formulation was optimized. By contrast, BDP entrapment by liposomes made by the thin film 

method was least dependent on lipid to carrier ratio (Figure 6).  

 

All formulations exhibited entrapment efficiency values in excess of 95% when DW was 

employed as a separation media (Figure 5). The entrapment efficiency values expressed when 

DW was used has been demonstrated not to be reflective of the actual entrapment efficiency. 

This is due to the presence of unentrapped BDP crystals in the sedimented liposomes at the 

bottom of the tube, following centrifugation. The presence of these crystals may not only be 

attributed to the type of media used, but also to the size similarities exhibited by both BDP 

crystals and liposomes, which are subjected to the same relative centrifugation force (Batavia 

et al. 2001).  
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Overall, the slurry-based proliposomes constitutes a superior approach to generating 

liposomes, exhibiting enhanced BDP entrapment in the resulting vesicles, giving rise to 

higher entrapment values for the slurry-based method, followed by feed-line proliposome and 

thin-film hydration methods. However, the superior entrapment provided by liposomes 

prepared using the slurry proliposome approach was dependent on formulation, particularly 

lipid to carbohydrate carrier ratio. Further investigations in the future are needed to explore 

the potential of slurry-based proliposomes using hydrophilic drugs, amphipathic molecules 

(e.g. peptides) and other hydrophobic therapeutic agents in various drug delivery 

applications. 

 

4. Conclusions 

 

A slurry proliposome method has been described, involving coating soya phosphatidylcholine 

and cholesterol (1:1) onto sucrose carrier particles. The resultant liposomes, following 

hydration and dispersion, were smaller than those generated with the conventional feed-line 

proliposome method, and the proportion of drug entrapped, upon formulation optimization, 

was higher in these vesicles compared to those generated from conventional proliposomes 

and vesicles produced by the thin-film method. Following this study the potential of slurry-

based proliposomes should be explored in various fields of drug delivery such as pulmonary, 

nasal and transdermal. 
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Figure 1: SEM images of sucrose-based proliposomes formulated via the slurry method with 

a range of lipid to carrier ratios; coarse sucrose prior to loading with lipid (a) proliposomes 

made using sucrose carriers formulated in a 1:5 w/w lipid to carrier ratio (b), proliposomes 

made using 1:10 w/w lipid to carrier ratio (c) and proliposomes made using 1:15 w/w lipid to 

carrier ratio (d) 
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Figure 2: Liposome separation using DW or D2O as dispersion media. The dispersion prior to 

centrifugation when liposomes were uniformly distributed in the dispersion medium (a), 

whilst following centrifugation in DW, both liposomes and BDP (entrapped and free) were 

sedimented at the bottom of the tube (b). By contrast, when D2O was used as dispersion 

medium, liposomes floated on the surface (with the entrapped BDP) whilst drug crystals (i.e. 

part of the unentrapped drug) was sedimented, and some drug was associated with the 

clear aqueous phase in the middle region (c). The aqueous phase (in between the floating 
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lipid layer and the drug sediment) may add to the unentrapped fraction of the drug (in the 

soluble form or as crystals that failed to sediment)  

 

 

 

Figure 3: Following centrifugation in D2O at 15,500 g for 90 min, light microscopy images 

showed the presence of BDP crystals in the sedimented pellet (a), while no crystals were 

seen in the floating “creamy” supernatant which was rich with liposome vesicles (b).  
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Figure 4: Superimposed DSC thermographs of BDP, cholesterol and sucrose compared with 

proliposome with 50 mole% BDP, showing the absence of an endothermic peak of the drug 

in the proliposome formulation.  
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Figure 5: Apparent entrapment efficiency of BDP in liposomes post-centrifugation in DW of 

multiple formulations prepared using the thin-film method, and from proliposomes 

prepared by feed-line and slurry methods. The proliposome formulations were made using 

the following lipid to carrier ratios: 1:5, 1:10 and 1:15 w/w. Data are expressed as mean 

values (n=3+ sd)  
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Figure 6: Entrapment efficiency of BDP in liposomes prepared using the thin-film method, 

and from proliposomes prepared by feed-line and slurry methods. Formulations were made 

with the following lipid to carrier ratios: 1:5 w/w (a), 1:10 w/w (b) and 1:15 w/w (c) for the 

proliposome methods (feed-line and slurry-based). Data are mean values (n = 3 + sd) 

 

 

 

 

 

 

 

 

 

 

 

 


