Investigating photoreceptor densities, potential visual acuity, and cone mosaics of shallow water, temperate fish species

D. E. Hunt*1
N. J. F. Rawlinson1
G. A. Thomas2
J. M. Cobcroft3,4

1 Northern Hub, Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston, TAS 7250, Australia
2 University College London, Torrington Place, London, WC1E 7JE
3 Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
4 University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558, Australia

*Corresponding author: Tel.: +61431 834 287; email address: darcieh@amc.edu.au

1 Contact: (03) 6324 3801; email: darcieh@amc.edu.au
The eye is an important sense organ for teleost species but can vary greatly depending on the adaptation to the habitat, environment during ontogeny and developmental stage of the fish. The eye and retinal morphology of eight commonly caught trawl bycatch species were described: *Lepidotrigla mulhalli*; *Lophonectes gallus*; *Platycephalus bassensis*; *Sillago flindersi*; *Neoplatycephalus richardsoni*; *Thamnaconus degeni*; *Parequula melbournensis*; and *Trachurus declivis*. The cone densities ranged from 38 cones per 0.01 mm2 for *S. flindersi* to 235 cones per 0.01 mm2 for *P. melbournensis*. The rod densities ranged from 22 800 cells per 0.01 mm2 for *L. mulhalli* to 76 634 cells per 0.01 mm2 for *T. declivis* and potential visual acuity (based on anatomical measures) ranged from 0.08 in *L. gallus* to 0.31 in *P. melbournensis*. Higher rod densities were correlated with maximum habitat depths. Six species had the regular pattern of four double cones arranged around a single cone in the photoreceptor mosaic, while *T. declivis* had only two rows of double cones. *P. melbournensis* had the greatest potential ability for detecting fine detail based on eye anatomy. The potential visual acuity estimates and rod densities can be applied to suggest the relative detection ability of different species in a commercial fishing context, since vision is a critical sense in an illuminated environment for perceiving an oncoming trawl.

Keywords: potential visual acuity; rod density; cone density; cone mosaic; minimum separable angle.

1. INTRODUCTION

The eye is an essential tool for fish and is utilised for capture of prey, detection of predators, schooling, and the courtship involved in reproduction (Gurthrie & Muntz, 1993). The structure of the eye can vary depending on the adaptation to the habitat, environmental conditions during ontogeny (e.g. temperature, nutrition, light intensity), and developmental stage (Powers & Raymond, 1990). Although the teleost eye is very similar to that of terrestrial vertebrates, common variations between species occur within the retina, particularly in the abundance of the different photoreceptor
cells and potential visual acuity (VA) (Wagner, 1990). There are also various morphological specialisations of the teleost eye in different species, such as having more than one lens, oblong eyeballs, degeneration (no cornea or lens), and even the use of adipose eyelids (Gailliet, et al., 1996). These adaptions of the teleost eye are suited to optimise visual ability underwater.

Most fish that inhabit shallow waters can detect colours and patterns with well-developed eyes (Gurthrie & Muntz, 1993). Pigments (rhodopsin and porphyropsin) in the photoreceptors absorb different light wavelengths and are stimulated at different light intensities (Fernald, 1988). This means that fish can have both photopic vision (well-lit, colour) that is mediated by cones, and scotopic vision (low-light) that is mediated by rods (Fernald, 1988). The arrangement of single, double and sometimes triple cones in the retina is known as the mosaic, and is adapted to the habitats and behaviour of a species (Evans & Browman, 2004, Lyall, 1957, Raymond, et al., 1995). Likewise, the amount of rod and cone photoreceptor cell types in the retina is related to the habitat and of the particular species. It has been well documented, for example, that those species living in shallow waters often have a greater selection of cones than deep-water species that are predominantly in the dark (Mas-Riera, 1991, Pankhurst, 1987).

In addition to the detection of certain wavelengths and light intensities, fish also need to be able to resolve an image. The photoreceptor cells are also involved in potential visual acuity whereby the resolving power of the eye is a function of photoreceptor cell spacing (in particular the cones) and the lens size (Tamura, 1957). Lens size is important because the lens is not covered by the iris in fish and the aperture is the lens diameter (Fernald and Wright, 1985). Potential visual acuity is used to describe the fish’s ability to detect fine detail and is important for shape discrimination (Douglas & Hawryshyn, 1990). Some species require greater potential visual acuity to be able to discriminate between a range of visual stimuli. This includes objects in the surrounding habitat and places to hide or the shapes of other species that are considered predators (Lythgoe, 1968). Potential visual acuity is a useful measure to compare the visual capabilities of fish, especially in response to human
activities such as aquaculture and fisheries. The behaviour of fish in response to light is used for sampling and ecological observations (Catalan, et al., 2014). Likewise, it has been hypothesised that fish with higher potential visual acuity and/or sensitivity to light could be attracted to, or stimulated to avoid, illuminated trawl fishing gear. However, it is critical to describe the visual function of species that may interact with fishing gear, in order to interpret or predict their behavioural response. Other studies have compared theoretical and behavioural visual acuity in fish (e.g. Douglas & Hawryshyn, 1990; Temple et al., 2013). Theoretical visual acuity is generally an overestimate of behavioural visual acuity, and the disparity is thought to be caused by neural processing and muscle function (Douglas & Hawryshyn, 1990). However, in the absence of behavioural measures an assessment of theoretical acuity is valuable in comparative studies as an indicator of visually mediated responses.

A selection of shallow water teleost species in North-eastern Tasmanian coastal waters were chosen to investigate eye and retinal morphology. These species are commonly taken as unwanted bycatch in commercial fisheries (Knuckey, 2006). Lights on trawl gear offer the potential to reduce bycatch since light increases the visual stimulus in front of the trawl allowing fish to perceive the gear. However, additional characteristics of fish are likely to impact on escape response, for example other sensory input (Bond 1996; Pankhurst, 1989), retinal convergence, and higher order neural processing (Douglas & Hawryshyn, 1990). For all but one of the selected bycatch species, *Trachurus declivis*, there is no literature that quantifies the photoreceptor cells and potential visual acuity; provides the cone mosaic patterns; nor makes comparisons of the lens diameter, cone diameter and total fish length. The eight teleost species were chosen because of their varying morphologies. The aim of the study was to quantify the photoreceptor cell densities and potential visual acuity as well as describe the cone mosaic and general eye dimensions. This information will further enhance the interpretation of the response of fish to bycatch reduction devices, specifically those using lights.
2. MATERIALS AND METHODS

2.1 EYE SAMPLE COLLECTION

Fish samples were collected with a demersal fish trawl in North-East Tasmania. The trawl net measured 16 m in headline length and was designed to sweep an 11 – 13 m wide strip of the seabed, was towed at 3 knots by a 35 m research vessel, the FTV Bluefin. The headline was 2.3 m above the seabed. Trawling was conducted during the night at 30 m depth starting at the following coordinates: 40°18”828’S and 148°32”646’E.

The left eyes of five fish were collected from each of eight species: roundsnout gurnard Lepidotrigla mulhalli; crested flounder Lophonectes gallus; sand flathead Platycephalus bassensis; eastern school whiting Sillago flindersi; tiger flathead Neoplatycephalus richardsoni; Degen’s leatherjacket Thamnaconus degeni; silver biddy Parequula melbournensis; and jack mackerel Trachurus declivis. Work was carried out in accordance with the EU Directive of 2010/63/EU and the University of Tasmania Animal Ethics Committee approved the experimental procedures.

The fish length, eye and lens diameters were measured with callipers to the nearest 1 mm. Eyes were dissected and after inspection of eye quality (i.e. absence of corneal/lenticular opacity, pupil atrophy, and inflammation), a small incision was made to maximise infiltration of the fixative and to retain orientation. Samples were fixed for 24 h in 5% glutaraldehyde in a sucrose-phosphate buffer, then stored in 70% ethanol. The eye diameter was measured again post fixation, and the eyes were dissected to remove the retina prior to processing for histology.

2.2 HISTOLOGY AND RETINAL MORPHOLOGY

Retinal samples were manually dehydrated to 100% ethanol and embedded using a JB4 resin histology kit (JB4, Agar Scientific Ltd, UK). Retinas were halved to form dorsal and ventral areas. Ten random transverse sections (3 µm thickness) per retinal sample per area were cut with a Microm microtome (Heidelberg HM340) and placed in water drops on a glass slide, allowed to dry.
and sections were stained with Lee’s Methylene Blue-Basic Fuchsine and mounted in TBS®

SHUR/mtolueene-based mounting media with a coverslip. Three 100 µm transects from five
sections were randomly chosen and images taken under a light microscope at 400x magnification.
The number of photoreceptor (PR) nuclei and cone ellipsoids were counted in each transect. For the
purpose of this study, both double and single cones were counted as one (Hajar, et al., 2008). Cells
that overlapped the transect were only counted on the left side. The following formula was used to
find the number of rods:

\[\text{Rods} = \text{PR nuclei} - \text{cone ellipsoids} \]

Cell counts were expressed as density: cells per 0.01 mm² (squared counts from 100 µm transects).
The only differences between dorsal and ventral cell densities occurred in *L. mulhalli* (rods were 1.8
times higher in dorsal than ventral, t-test, df = 8, t = 2.86, \(P = 0.02 \); and cones were 1.6 times
greater in the dorsal than ventral, t-test, df = 8, t = 3.84, \(P = 0.004 \)) and *P. bassensis* (cones were 2
times higher in dorsal than in ventral, t-test, df = 8, t-value = 4.39, \(P = 0.002 \)). Consequently, the
cell counts were pooled by region for each of the eight species to enable further comparison based
on the average values for the whole eye.

Tangential sections (3 µm) per species were cut and stained in a similar fashion. From them, the
cone mosaic (the pattern of single and double cones) was observed. The tangential sections were
also used to measure the diameter of the single and double cones (treated as one unit) ‘en face’ at
the widest cross section using *Image J* (Version 1.46r, National Institute of Health, USA). To
calculate the minimum separable angle (MSA) (\(\alpha \)), the lens diameter and highest density of cones
(per 0.01 mm²) were used in the following equation:

\[\tan \left(\frac{\alpha}{2} \right) = \frac{q(1+s)}{2F} \]

Where, \(q \) is the mean distance between two cones in mm (\(q = 0.1/\sqrt{p} \)); where \(p \) is density of cones
per unit area 0.01 mm²), \(s \) is the shrinkage factor and \(F \) is focal length (\(F = m \times r \); where \(m \) is
Matthiessen’s ratio (2.55) and \(r \) is lens radius in mm). Since no shrinkage was measured in the majority of individuals (75%, \(n=40 \)) across all the species, the shrinkage factor was considered to be zero and was omitted from the calculation of \(\alpha \). MSA (\(\alpha \)) was used to find the potential visual acuity (VA) according to (Tamura, 1957):

\[
VA = \left(\alpha \times \frac{180}{\pi} \times 60 \right)^{-1}
\]

Retinal magnification (\(\beta \)) was calculated using the following:

\[
\tan \beta = \frac{1 \, \text{mm} \, (1 + s)}{F}
\]

Whereby \(\beta \) is the angle subtended by a 1 mm projection on the retina.

2.3 DATA ANALYSIS

Pearson’s correlation was used to measure the linear correlation between: eye diameter and total fish length; and lens diameter and total fish length. A Student’s t-test was used to compare cone and rod densities in dorsal and ventral retinal areas within each species. An Analysis of Variance (ANOVA) was used to detect statistical difference between species for the following: cone density, rod density, minimum separable angle and potential visual acuity. Tukeys’ post-hoc test was used to find where the difference occurred. Data were accepted as significantly different when \(P < 0.05 \).

3. RESULTS

3.1 EYE AND RETINAL MORPHOLOGY

With the exception of the oval nature of the eyes of \(P. bassensis \) and \(N. richardsoni \), all species had round eyes. The species with laterally compressed body shape (including \(T. degeni, T. declivis, L. mulhali, P. melbournensis \) and \(S. flindersi \)) had eyes that are located on either side of the head allowing for greater peripheral and binocular vision. In dorso-ventrally compressed fish, such as the Platycephalus spp., eyes are orientated dorsally.
The fish eye sizes ranged from 6.2 ± 1.3 mm (mean ± SD, here and throughout) in the smallest species (L. gallus) to 18.4 ± 1.5 mm in the largest (P. bassensis) and the mean lens diameter ranged between 2.1 mm ± 0.2 (L. gallus) and 7.7 mm ± 0.4 (P. bassensis) (Table I).

Table I: Fish size (length), eye and lens diameters, and cone photoreceptor diameter for the eight species studied from benthic trawls in North-East Tasmania. SC = single cones, DC = double cones.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total length (mm)</th>
<th>Eye diameter (mm)</th>
<th>Lens diameter (mm)</th>
<th>Cone diameter (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (± SD) min</td>
<td>max</td>
<td>Mean (± SD)</td>
<td>Mean SC (± SD)</td>
</tr>
<tr>
<td>L. gallus</td>
<td>116.0 (14.6) 100</td>
<td>137</td>
<td>6.2 (1.3)</td>
<td>2.1 (0.2)</td>
</tr>
<tr>
<td>L. mulhalli</td>
<td>171.2 (19.0) 140</td>
<td>190</td>
<td>13.2 (2.1)</td>
<td>5.6 (1.0)</td>
</tr>
<tr>
<td>N. richardsoni</td>
<td>326.4 (47.4) 251</td>
<td>371</td>
<td>16.6 (1.9)</td>
<td>7.2 (1.1)</td>
</tr>
<tr>
<td>P. bassensis</td>
<td>375.8 (125.6) 165</td>
<td>470</td>
<td>18.4 (1.5)</td>
<td>7.7 (0.4)</td>
</tr>
<tr>
<td>P. melbournensis</td>
<td>162.0 (20.4) 141</td>
<td>192</td>
<td>13.2 (1.9)</td>
<td>5.6 (1.0)</td>
</tr>
<tr>
<td>S. flindersi</td>
<td>251.0 (18.8) 235</td>
<td>280</td>
<td>14.4 (0.5)</td>
<td>6.3 (0.4)</td>
</tr>
<tr>
<td>T. declivis</td>
<td>211.8 (36.0) 162</td>
<td>262</td>
<td>13.4 (2.3)</td>
<td>5.9 (1.2)</td>
</tr>
<tr>
<td>T. degeni</td>
<td>131.4 (35.2) 139</td>
<td>170</td>
<td>11.6 (1.1)</td>
<td>4.4 (0.5)</td>
</tr>
</tbody>
</table>

The increase in eye diameter coincided with the increase in total fish length and was described with linear trendlines (Figure 1). For five out of eight species there was a significant correlation between the two variables (Table II). *Thamnaconus degeni* and *S. flindersi* had almost no correlation and *L. mulhalli* could not be used as it only had two data points.
Figure 1: Eye diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East Tasmania. *Single column fitting image.*

Table II: t-value, degrees of freedom (df), p-value and r^2 for Pearson’s correlation between eye diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East Tasmania.

<table>
<thead>
<tr>
<th>Species</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. gallus</td>
<td>4.52</td>
<td>3</td>
<td>0.020</td>
<td>0.93</td>
</tr>
<tr>
<td>L. mulhali</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N. richardsoni</td>
<td>3.46</td>
<td>3</td>
<td>0.041</td>
<td>0.89</td>
</tr>
<tr>
<td>S. flindersi</td>
<td>0.57</td>
<td>3</td>
<td>0.606</td>
<td>0.31</td>
</tr>
<tr>
<td>P. bassensis</td>
<td>4.03</td>
<td>4</td>
<td>0.016</td>
<td>0.89</td>
</tr>
<tr>
<td>P. melbournensis</td>
<td>5.63</td>
<td>3</td>
<td>0.011</td>
<td>0.95</td>
</tr>
<tr>
<td>T. declivis</td>
<td>4.43</td>
<td>4</td>
<td>0.011</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Similarly, linear correlations show the trend between lens diameter and total length (Figure 2). Lens diameter had a strong positive increase with increasing length of the fish for six out of eight species (°).
Only half of the species, *P. bassensis*, *P. melbournensis*, *L. mulhalli*, and *S. flindersi*, were found to have a significant correlation.

Figure 2: Lens diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East Tasmania. *Single column fitting image.*
Table III: t-value, degrees of freedom (df), p-value and r^2 for Pearson’s correlation between lens diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East Tasmania.

<table>
<thead>
<tr>
<th>Species</th>
<th>t-value</th>
<th>df</th>
<th>p-value</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. gallus</td>
<td>0.56</td>
<td>3</td>
<td>0.616</td>
<td>0.31</td>
</tr>
<tr>
<td>L. mulhalli</td>
<td>4.40</td>
<td>3</td>
<td>0.022</td>
<td>0.93</td>
</tr>
<tr>
<td>N. richardsoni</td>
<td>2.24</td>
<td>3</td>
<td>0.110</td>
<td>0.79</td>
</tr>
<tr>
<td>P. bassensis</td>
<td>3.38</td>
<td>4</td>
<td>0.027</td>
<td>0.86</td>
</tr>
<tr>
<td>P. melbournensis</td>
<td>8.84</td>
<td>3</td>
<td>0.003</td>
<td>0.98</td>
</tr>
<tr>
<td>S. flindersi</td>
<td>8.19</td>
<td>3</td>
<td>0.004</td>
<td>0.98</td>
</tr>
<tr>
<td>T. declivis</td>
<td>3.30</td>
<td>4</td>
<td>0.298</td>
<td>0.85</td>
</tr>
<tr>
<td>T. degeni</td>
<td>0.45</td>
<td>3</td>
<td>0.681</td>
<td>0.25</td>
</tr>
</tbody>
</table>

3.2 ROD DENSITY

The mean density of rods (cells per 0.01 mm2) was significantly different across the eight different species (ANOVA, $F_{7,72}$= 12.72, P<0.001) (Figure 3 and 4). *Lepidotrigla mulhalli* had the smallest number of rods with 22 800 ± 2 980 per 0.01 mm2. There was a central group, consisting of *P. bassensis*, *L. gallus*, *P. melbournensis* and *S. flindersi*, with rod densities that ranged from 41 670 to 52 220 rods per 0.01 mm2. The highest rod density of 76 630 ± 5 876 cells per 0.01 mm2 was in *T. declivis*.
Figure 3: Mean number of rods (cells per 0.01 mm²) ± SE, in eight different teleost species studied from benthic trawls in North-East Tasmania. Common letters represent values that are not significantly different. *Double column fitting image.*
3.3 CONE DENSITY AND DIAMETER

Figure 4: Transverse section of the retinas, showing the photoreceptors, of eight different fish species studied from benthic trawls in North-East Tasmania. The scale bars are all 40 µm. Double column fitting image.
A logarithmic decay function described the relationship between double cone size, measured as cone diameter, and cone density (Figure 5). 72% of the decrease in double cone size was predicted to be a function of cone density.

![Figure 5: Relationship between mean diameter (µm) of double cones and the cone density in each species studied from benthic trawls in North-East Tasmania, with logarithmic equation.](image)

The mean density of cones (cells per 0.01 mm²) was significantly different between species (ANOVA, $F_{7,72} = 32.564, P < 0.001$). Post-hoc analysis showed that species were in three main groups (Figure 6). *Sillago flindersi, N. richardsoni, P. bassensis, L. mulhalli* and *T. declivis* all had 38-60 cones per 0.01 mm². *Thamnaconus degeni* and *L. gallus* had almost double this density, with ~100 cones per 0.01 mm². *Parequula melbournensis* had over four times the density of the first group with 235 ± 29 cones per 0.01 mm².
Figure 6: Mean density of cones (cells per 0.01 mm2) ± SE, in eight different teleost species studied from benthic trawls in North-East Tasmania. Common letters represent values that are not significantly different. Double column fitting image.

3.4 CONE MOSAICS

Double cones were present in the mosaics of all species. With the exception of *T. declivis*, the double cones were arranged as a set of four around a single cone (Figure 7). This arrangement varied slightly for each species with respect to the size of the cone cells (Table 1). *Trachurus declivis* had only rows of double cones.
Figure 7: Tangential sections revealing the cone mosaic patterns in seven different fish species studied from benthic trawls in North-East Tasmania. The scale bars in insets are all 40 µm. DC = double cone; SC = single cone. Double column fitting image.

3.5 MINIMUM SEPARABLE ANGLE AND POTENTIAL VISUAL ACUITY

Mean MSA and VA were significantly different between the eight species studied (ANOVA, F_{7,32}= 28.93, P<0.001, and F_{7,32}=15.15, P<0.001, respectively) (Figure 8, Table IV). *Lophonectes gallus* had the lowest value of VA, 0.078, while *L. mulhalli*, *S. flindersi*, *T. degeni*, *T. declivis*, *N. richardsoni* and *P. bassensis* had from 0.125 to 0.171. *Parequula melbournensis* had the highest value of 0.310. Retinal magnification (RM) was also significantly different between the eight species (ANOVA, F_{7,32}= 65.37, P<0.001, Table IV).
Figure 8: Mean MSA ± SE (points), in eight different temperate fish species studied from benthic trawls in North-East Tasmania. Common letters represent values that are not significantly different. Double column fitting image.

Table IV: Visual acuity (VA) and retinal magnification (degrees) in eight different temperate fish species indicating the subsets from post-hoc analyses. Common letters represent values that are not significantly different. Note: species are listed in order of highest to lowest VA and retinal magnification for ease of interpreting subsets.

<table>
<thead>
<tr>
<th>Species</th>
<th>Subset</th>
<th>VA</th>
<th>Species</th>
<th>Subset</th>
<th>Retinal magnification (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. melbournensis</td>
<td>a</td>
<td>0.3104</td>
<td>L. gallus</td>
<td>a</td>
<td>20.61</td>
</tr>
<tr>
<td>P. bassensis</td>
<td>b</td>
<td>0.1713</td>
<td>T. degeni</td>
<td>b</td>
<td>10.40</td>
</tr>
<tr>
<td>N. richardsonii</td>
<td>b</td>
<td>0.1658</td>
<td>L. mulhalli</td>
<td>c</td>
<td>8.49</td>
</tr>
<tr>
<td>T. declivis</td>
<td>b</td>
<td>0.1573</td>
<td>P. melbournensis</td>
<td>c</td>
<td>8.26</td>
</tr>
<tr>
<td>T. degeni</td>
<td>b</td>
<td>0.1576</td>
<td>T. declivis</td>
<td>c</td>
<td>8.15</td>
</tr>
<tr>
<td>S. flindersi</td>
<td>b</td>
<td>0.1359</td>
<td>S. flindersi</td>
<td>cd</td>
<td>7.31</td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Value</td>
<td>Species</td>
<td>Code</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>L. mulhali</td>
<td>bc</td>
<td>0.1248</td>
<td>N. richardsonii</td>
<td>d</td>
<td>6.32</td>
</tr>
<tr>
<td>L. gallus</td>
<td>c</td>
<td>0.0774</td>
<td>P. bassensis</td>
<td>d</td>
<td>5.93</td>
</tr>
</tbody>
</table>

276

277

278
4. DISCUSSION

4.1 DIMENSIONS OF THE EYE

An increase in both eye diameter and lens diameter occurred with an increase in total fish length in five of the species assessed, based on a linear relationship. This increase was in agreement with other studies (Fishelson, et al., 2004, Hajar, et al., 2008, Miyazaki, et al., 2000). For those species that did not show a strong correlation in this study, this was likely due to the limited range of lengths of the specimens collected. In contrast, the correlation does not apply to deeper water species, where it is hypothesized that there is a limit on the space in the retina for accommodating photoreceptor cells, and in this environment larger eyes are observed relative to fish size (Kirschfeld, 1976). This study found that with increasing cone densities there was a decrease in the diameter of each double cone which agrees with the findings of Boehlert (1978). It is also recognised that, relative to fish size, eye size is generally larger in carnivores than herbivores (Pankhurst, 1989). This was not the case in this study as it was found that the two species with the largest eyes, _P. bassensis_ and _N. richardsonii_, had the smallest eye diameter to total length ratios. These two carnivorous flathead species had the smallest ratios, followed by _T. degeni_ which was the only herbivore of the eight species. The largest eye sizes in relation to fish length were _L. muhulli_ and _P. melbournensis_.

4.2 RODS

Trachurus declivis had only 7.6×10^6 rod cells per mm2 of retina, which was similar to the previously reported value of 1×10^7 rods per mm2 in a closely related species, yellowtail horse mackerel (_Trachurus novaezeelandiae_), from shallow waters of North-eastern New Zealand (Pankhurst, 1989). Normally, the slight difference seen between the _Trachurus_ species could be attributed to the species inhabiting different ranges of depths (Edgar, 2008),
however in this case the maximum depth of both species is 500m (Gomon, et al., 2008).

Alternatively, it could be due to environmental conditions during larval development (Fishelson, et al., 2012, Shand, 1997). *T. declivis* are more commonly found in deeper waters and the juveniles are more likely to be found offshore than *T. novaezealandiae*. As such, it would be expected that *T. declivis* have greater rod density but this is not the case here. Thus, the difference seen could be due to natural interspecies variation. This could be tested by estimating the rod densities of other *Trachurus* species for further comparison. No other studies on photoreceptor cell densities exist for *L. mulhalli, S. flindersi, N. richardsoni, P. melbournensis, P. bassensis, L. gallus and T. degeni* or other closely related species.

A high density of rods is normally attributed to deeper habitat ranges (Eastman, 1988, Mas-Riera, 1991). In this case, *T. declivis* is known to inhabit a maximum range of 500 m (Gomon, et al., 2008), which is much deeper than the seven other species examined in this paper, all with lower rod densities. It is evident that the mean number of rods per mm2 increases with the expected maximum habitat depth of the species, see Figure 9. While *T. declivis* had the greatest number of rods, *N. richardsoni, S. flindersi* and *L. gallus* had the highest rod densities relative to the other estimates. The maximum habitat range of *N. richardsoni, S. flindersi* and *L. gallus* extends to 160-240 m depth (Gomon, et al., 2008).
Figure 9: Maximum habitat depth profile (m) (bars) of eight bycatch species with mean rod density (cells per 0.01mm²) (dots). Depth data from Edgar (2012). Double column fitting image.

On the other end of the scale, *P. melbournensis*, *T. degeni*, and *P. bassensis* all had the lowest rod densities and inhabit waters up to 80-100 m deep. Even in closely related species this was the case, for example, *N. richardsoni* have more rods than *P. bassensis* probably because they are found up to 60 m deeper. This is because rods are adapted for detecting dim light, and therefore are more valuable for fish to perceive visual cues in low light intensity conditions associated with deep water (Fernald, 1988). For *T. declivis*, having the highest density of rods would likely result in this species responding quickly to lights, since rods are sensitive to the shift from dark to light (Bond, 1996). The only species that did not follow this trend was *L. mulhalli*. This species is usually located at depths up to 100 m but had the lowest estimate of rod density. However, of the eight species, this species has the largest eye diameter to total
length ratio, and an intermediate retinal magnification. This could be an adaption that allows for increased light capture and a larger depth range of the species. Alternatively, it could simply be a reflection of the time actually spent at its maximum range.

4.3 CONES

The densities of cones were found to be less variable among species in this study than rod densities. While foveae, specialized regions of high cone density, do occur in some fish species (Wagner, 1990; Douglas & Hawryshyn, 1990), this feature was not assessed in this study and average cone densities in dorsal and ventral regions were used for ease of species comparisons. Foveae may contribute to differences in functional visual ability among species. *Parequala melbournensis* had the greatest density of cones which suggests that they are adapted to shallow habitats, but they are found in depths of greater than 100 m (Fishelson, et al., 2012). This species is apparently diurnal (mostly active during the day), as are most of the other species’ in this study (Edgar, 2008), suggesting they would be less reliant on rods. The high cone density of *P. melbournensis* could be due to the fact that this is a schooling species (Edgar, 2008), requiring visual cues to maintain orientation in a group. However, *T. declivis* also exhibits schooling (Gomon, et al., 2008), and had a much lower cone density. While it has been shown that certain species have vision dependent schooling behaviours (Kowalko, et al., 2013), most fish use the lateral line as the dominant mechanism for schooling (Larsson, 2012).

Conversely, *S. flinderst*, *N. richardsoni*, *P. bassensis*, *L. mulhalli* and *T. declivis*, all had the lowest density of cones. It could be assumed that in the relatively shallow depth that light can penetrate (to ~100 m), the absolute densities of cones are not as important as the types of cones available. It has been demonstrated that single cones and double cones (and perhaps also triple cones, that were not observed in this study) are sensitive to different wavelengths

4.4 CONE MOSAICS

The cone mosaic for six of the eight species had a similar arrangement of four double cones around a center single cone, which is a common arrangement, especially in shallow water species (Boehlert, 1978, Mas-Riera, 1991, Wagner, 1990). *Trachurus declivis* was different, with rows of double cones, which is a known pattern for species in deeper water habitats and shoaling species (Boehlert, 1978). This is contrary to a similar species, *Trachurus mediterraneus ponticus*, which has a regular structural organization of four double cones around a single cone (Podugolnikova, 1985). This difference is unexpected since both species are deeper-water shoaling species. There are no studies in species similar to *L. mulhalli, S. flindersi, P. melbournensis, P. bassensis, L. gallus and T. degeni*. The shallow water species would have increased visual capacity via colour sensitivity compared to the deeper water species, since this is conferred by the complex cone mosaic that can allow for detection of different light spectra (Boehlert, 1978, Losey, et al., 1999).

4.5 MINIMUM SEPARABLE ANGLE AND POTENTIAL VISUAL ACUITY

The MSA for *T. degeni* (6.6 minutes) was very similar to that of another Monocanthidae species, *Cantherines modestus* which had a value of 6.4 minutes (Tamura, 1957). However, the MSA of *L. mulhalli* (8.5 minutes) was higher than a related species *Chelidonichthys kumu* (6.8 minutes) (Tamura, 1957). This difference was most likely due to the larger size of the specimens examined, for example *C. kumu* grows to around 500 mm (Gomon, et al., 2008) while the mean size of the *L. mulhalli* in this study was 172 mm. *S. flindersi* and *T. declivis*
from this study were not similar to their Japanese counterparts of the same size; the MSA for
S. flindersi (7.7 minutes) was less than that of the *Sillago japonica* (10.0 minutes), while in *T.
declivis* (6.6 minutes) MSA was less than *Trachurus japonicus* (7.7 minutes) (Hajar, et al., 2008). The two *Sillago* species have many similar characteristics such as habitat and
maximum length, however the difference in depth range (up to 170 m for *S. flindersi* and up
to 30 m for *S. japonicus*) may be the key factor to these differences in the values (Matsuura,
1985). Similarly, the maximum habitat depth of *T. declivis* (up to 500 m) is deeper than the
maximum depth for *T. japonicus* (275 m) (Matsuura, 1985). The Japanese species have
higher MSA (lower resolution) even though they occur in shallower water with higher light
intensity.

Potential visual acuity is dependent upon cone cell density in the calculation, and therefore
these results tended to reflect similar patterns among the eight species. For this reason, *P.
melbournensis* had the largest calculated potential visual acuity. However, lens size is also an
important factor to determine potential visual acuity, which contributed to *L. gallus*
possessing the lowest potential visual acuity of the eight species. The other six species (*P.
bassensis*, *N. richardsoni*, *T. declivis*, *T. degeni*, *S. flindersi* and *L. mulhalli*) were not
significantly different. Higher potential visual acuity and low retinal magnification are
beneficial to an individual as they allow better distinguishing of fine detail at a greater
distance. The benefits could range from finding food, to avoiding predation, or avoidance of
commercial fishing gear (Hajar, et al., 2008, Walsh & Hickey, 1993, Zhang & Arimoto,
1993)

5. CONCLUSION

By estimating the potential visual acuity of different bycatch species, calculating rod density,
and reviewing the implications of specific photoreceptor mosaic patterns, the potential
vulnerability of the species to fishing gear could be suggested. Importantly, visual ability alone is not the only contributor to fish behaviour and other sensory input (mechanosensory and chemosensory) may be critical especially for crepuscular or deep water species (Douglas & Hawryshyn, 1990). Retinal convergence and higher order neural processing of visual information will also impact available visual stimuli, and detection of a visual cue alone cannot determine a fishes response to escape, swim towards or not respond to the stimulus. However, for temperate shallow water species, including those in this study, the dominant sensory modality is vision (Pankhurst, 1989; Douglas & Hawryshyn, 1990). In terms of the commercial fishery, in particular trawling, where a mix of fish are caught but only a select few species are kept, this retinal morphology data can inform mitigation techniques such as the use of light to reduce fish bycatch. The use of light could aid in increasing the sensory detection of fishing gear, resulting in a visual cue for fish to detect an oncoming trawl and potentially elicit an escape response.

ACKNOWLEDGEMENTS

Many thanks to the crew of the FTV Bluefin for the collection of samples, Polly Hilder for assistance with resin histology, and the Australian Maritime College for funding this project. DH was supported by an APA Stipend from the University of Tasmania and JC was supported by a University of the Sunshine Coast CRN Research Fellowship. All procedures were carried out with the approval of the University of Tasmania Animal Ethics Committee (approval number A0012574). The manuscript was improved with valuable comments from two anonymous reviewers.
5. REFERENCES

