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Survival following very preterm birth is associated with cognitive and behavioral sequelae, which may
have identifiable neural correlates. Many survivors of modern neonatal care in the 1990s are now young
adults and the evolution of MRI findings into adult life has rarely been evaluated. We have investigated a
cohort of 19-year-old adolescents without severe impairments born between 22 and 26 weeks of gestation
in 1995 (extremely preterm: EP). Using T2 data derived from magnetic resonance imaging we investigate
differences between the brains of 46 EP participants (n = 46) and the brains of a group of term-born
controls (n = 20). Despite EP adolescents having significantly reduced gray and white matter volumes, the
composition of these tissues, assessed by both single and multi-component relaxometry, appears to be
unrelated to either preterm status or gender. This may represent either insensitivity of the imaging

technique or reflect that there are only subtle differences between EP subjects and their term-born peers.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Globally the major causes of neonatal death comprise complica-
tions related to preterm birth [8]. In the developed world survival
has now improved at all gestational ages and particularly for those
born at extremely low gestations (22-26 weeks; extremely preterm;
EP). However EP births are at greatly increased risk of long-term
morbidities, such as learning difficulties or cerebral palsy, and
prevalence of these conditions has not significantly altered. Moore et
al. [12] reported that, despite a rise in the number of neonatal
admissions of 44%, survival of EP births rose by 15% between 1995
and 2006, but that the proportion with significant neurocognitive
morbidity was unchanged. Thus there is a need for research into the
causes and predictors of adverse outcome in this group, if for no
other reason than shortening study times and avoiding the need to
wait for many years of follow-up. Although differences on brain
imaging findings associated with impairment are important it is also
important to understand the eventual outcomes after remodeling
over childhood and adolescence. Such data could inform the
identification of key areas for investigation at younger ages.

The brain develops rapidly during the period coinciding with
ex-uterine development after EP birth. In particular myelination may
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be disturbed during this period, potentially because of injuries to
immature oligodendroglia as a result of inflammation or hypoxia
[17] and provides one potential biomarker of interest [13,14]. Myelin
surrounds the neuronal axons and increases the efficiency and speed
of conduction of signals, and thus disturbances in its development
may be linked to brain function. Myelination commences at around
28 weeks of gestation and continues into infancy [1,4,11] coinciding
with the period of maximal physiological instability in the early
weeks after birth at EP gestations.

Magnetic resonance (MR) T2 relaxometry is a non-invasive
imaging technique that may be used to measure the myelin water
fraction within the brain [9]. The decay of the signal in a T2 weighted
sequence follows an exponential relationship related to the spin
density and the native T2 of the tissue. By acquiring images at
different echo times this equation can be fitted for a given voxel and
the time constant T2 can be found. The measured T2 of a tissue is
dependent upon how it binds water and therefore T2 values vary
with tissue type. Importantly, the water trapped within myelin
sheaths is very tightly bound and therefore has a very short T2
compared to other tissues. Therefore, the T2 of a voxel can be used to
infer tissue composition, and in particular to determine the fraction
of myelin water across the brain. We have reported differences in the
white matter T2 values between the brains of preterm babies and
those of full term babies [5]. These values were independent of
visually identified changes, termed diffuse and excessive high signal
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intensity, thought previously to be a biomarker [3] Importantly T2
values were correlated with developmental scores at 2 years of age
[5]. However these averaged data may not reflect structures because
most brain tissue consists of multiple tissue types with distinct T2
values. Therefore it is better represented by a multi-compartment
model of multi-exponential decays, which has been explored by
number of authors [9,10,15] to extract a specific estimate of the
myelin water fraction and a long-T2 component associated with
free-water spaces such as cerebrospinal fluid (CSF).

Previous work has established some correlation between
estimated myelin water fraction and myelin: Laule et al. [6,7]
validated the myelin water (MW) fraction as a surrogate measure
for myelin density. MacKay et al. [9] also support the strong
correlation between MW fraction and myelin. We focus on three
tissue types: MW being part of white matter (WM), intra- and
extra-cellular water being part of both white and gray matter (GM),
and CSF. Hence, multi-echo T2 relaxometry may be used to
investigate both myelination and the quantity and location of
different tissue types in the brain [16]. If we can determine the
spatial distribution of myelin density from T2 relaxometry, this will
allow an in vivo comparison of myelin distribution and density
between subjects.

In this paper we investigate the differences in MR visible myelin
in 46 19-year-old EP subjects and 20 control individuals born at full
term. We hypothesize that accurate measurement of myelin density
in the brains of preterm born adolescents may help to predict
cognitive impairment, and that this cognitive impairment is related
to a persistently reduced myelin density. Our work provides a
comparison of the white matter myelin density between premature
births and term births at adolescence and whether this can be used
to indicate a long-term outcome of premature birth.

2. Materials and methods
2.1. Data

Data were collected at 19 years of age from 46 EP adolescents
(mean gestation at birth 24 weeks and 6 days (range 227"!-
25"5weeks)) and 20 term-born subjects (recruited as classmates in
childhood at6or 11 years). Individuals were imaged using a Philips3 T
Achieva. We acquired T2 weighted data with ten echo times at TE =
{13, 16, 20, 25, 30, 40, 50, 85, 100, 150}ms (2.5 x 2.5 x 3.0 mm). In
addition we acquired a 3D T1-weighted volume at 1 mm isotropic
resolution (TR/TE = 6.78/3.06 ms) to use for segmentation and region
labels [2]. Three datasets were rejected, two in subjects with enlarged
lateral ventricles and one with severe motion artifact, leaving 43 EP
subjects (16 male (mean gestation 25%w), 27 female (24’w)) and
20 controls (10 male, 10 female).

2.2. T2 relaxometry
In single-component T2 relaxometry, we start by noting that the
signal decays exponentially in most voxels, and therefore begin by
considering models of the form
Spp=Soe (1)
We can estimate a fixed iteration solution by linearizing this

equation and using a linear least squares routine to estimate the two
parameters SO and T2.

InSy; = [1,TE][ 7% )

The results of the linear fitting are used to initialise a non-linear
least squares fit, which maintains the original noise distribution of
the data. We minimize gradients of the original function (Eq. (1)).
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The parameter estimates can then be updated using the following
non-linear update step until convergence is reached; either the
model fit residual does not change significantly (Ar < 1e — 6) or the
maximum number of iterations is reached (500).
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2.3. Multi-component T2 relaxometry

One limitation of the single component model is that it considers
each voxel as a single homogeneous piece of matter, a significant
simplification of the biology [9]. An important advantage of the
multi-compartment model is that it allows us to estimate the
fractions of different kinds of matter in a voxel, which we will need
to do to estimate the amount of myelin in a brain. We know that the
brain actually consists of several different types of matter, each with
its own relaxation time, and so we also consider multi-compartment
models of the form:

S(TE, {T2}) =S, > _vie /"
i )
subject to v;>0Vv; and » v; =174

where we seek the n volume fractions v; which represent an
exponential decay with a given T2;, similar to Raj et al. [16]. The
restrictions that all v; must be greater than or equal to zero and that
the sum of all v; must equal 1 apply. An effective approach to
implement the first of these constraints is to use non-negative least
squares. This minimizes a cost function that includes an L1-norm on
parameters, and so encourages a sparse representation, which
means that we can fit arbitrarily many compartments without
simply reconstructing the data in parameter space. Previous work
[9,15] suggests T2 of 10-50 ms for myelin water, 70-90 ms for white
and gray matter and greater than 2 s for CSF. The longest echo time
in our dataset is 150 ms but in our model CSF can be accounted for by
the longest available decay time. We fit a three-component
model using literature values of expected T2s of [20, 80, 2000] ms
and assign the result of the estimate of v2°™ to the myelin water
fraction.

2.4. Image segmentation and parcellation

T1-weighted data are masked, segmented and labeled using the
unified Geodesic Information Flow strategy of Cardoso et al. [2].
Segmentations are resampled into the space of the T2 weighted
images and used to define regions of interest for total gray and white
matter (see Fig. 1).
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Fig. 1. Example T2 map and corresponding three-class tissue type segmentation.

2.5. Data analysis

Data analysis is carried out using MATLAB 8.1 (Mathworks Inc.,
MA). We group the data by both gender and extreme-preterm status.
We carry out standard Student's t-tests between gender and preterm
groups for both T2 parametric maps and for brain tissue volume and
report significance for a p-value of less than 0.05.

2.6. Markov-chain monte-Carlo myelin density estimation

To analyze the distribution of myelin density values we obtain,
we carry out a Markov-chain Monte-Carlo (MCMC) analysis of the
parameter space of the data. For each subject we find the average
white matter signal intensity and use this as the data for the MCMC
analysis, finding the average preterm white matter signal and
average term-born white matter signal. The parameter distribution
of compartment volume fractions is modeled from a Direchlet
distribution. We use a burn in period of 100,000 iterations and run

for a further 100,000 iterations. After thinning we keep 5000 samples
to form our parameter distributions.

3. Results
3.1. Tissue volume in the preterm adolescent brain

Fig. 1 shows a T2 map and three-class tissue segmentation for a
single subject. The tissue volume results for all subjects analyzed are
shown in Fig. 2; average total intracranial volume, gray matter volume,
white matter volume and CSF volume are all lower in the extremely
preterm group compared to controls (with p-values of 0.0018, 0.0143
and 0.0041 and 0.17 respectively). The bottom row of Fig. 4 shows
significantly lower volume in females (0.35 + 0.04 | for white matter)
relative to males (0.40 + 0.05 | for white matter) for all tissue types
for white, gray, CSF and intracranial volume (p < 0.001).

Fig. 3 shows the distribution of tissue volumes, separated by both
preterm status and gender. Greater overall gray and white matter
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Fig. 2. Tissue volume distributions (liters) for gray matter, white matter, CSF and intra-cranial volume grouped by top row: preterm against term volume and bottom row: male

against female tissue volumes.
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Fig. 3. Tissue volume distributions for gray matter, white matter, CSF and intra-cranial volume grouped by preterm status and gender.

volumes are observed in the male group. Term born males have
significantly larger white matter volume than preterm born males
(p = 0.0125, 0.43 4+ 0.04 1 compared to 0.38 &+ 0.04 I). Preterm
born males have brain volumes comparable to term-born females
(0.37 £ 0.03 1), whom in turn have larger brain volumes than
preterm born females (0.35 4+ 0.041) with p = 0.082. Within
gender, the ratios of the average preterm/term-born brain volumes
are similar at 0.93 for female and 0.90 for males.

3.2. T2 values in the preterm adolescent brain

Fig. 4 shows T2 distributions for groups separated by prematurity
and gender. Significance is only reached between preterm and term

white matter T2 in which the T2 of preterm white matter is slightly
higher than that in term born white matter (p = 0.04, with T2 =
69.2 + 3.6 in preterms compared to 67.3 + 2.6 in term-borns). This
difference is no longer significant when controlling for brain volume.
Fig. 5 shows the distribution of tissue T2 values, separated by
both preterm status and gender. Significant differences in gray
matter T2 are not observed between groups. The distribution of
white matter T2 value in term born males is not significantly
different from that in preterm born males (p = 0.58). The
distribution of T2 values between term born and preterm born
females does just reach significance (p = 0.039), with preterm-born
females having on average a T2 that is 4% higher than their
term-born peers (69.5 + 3.8 ms compared to 66.8 + 2.4 ms).
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Fig. 4. Tissue T2 distributions for gray matter, white matter, and CSF grouped by top row: preterm against term volume and bottom row: male against female T2 values.
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Fig. 5. Tissue volume distributions (ms) for gray matter, white matter,

3.3. Multi-compartment myelin water fraction results

In the absence of significant differences in T2 value between
preterm and term groups, we now investigate the tissue composition
estimated by the three-compartment model. Fig. 6 illustrates, for one
case, the spatial distribution of each volume fraction. The top row
shows the T2 distribution overlaid with each layer of the segmen-
tation. Subsequent rows show the distribution of each volume
fraction with each layer of the segmentation. In white matter, a short
T2 component is clearly identifiable, which extends more weakly
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CSF and intra-cranial volume grouped by preterm status and gender.

into the gray matter. The tissue volume fraction has a strong
component in each layer of the tissue segmentation, suggesting that
there is an influence of partial voluming on the gray matter T2
estimates of the following section. In this section we focus on the
white matter composition.

Fig. 7 summarizes the previous group distributions of the myelin
density and tissue fractions. WM myelin density was similar in EP
and term subjects (0.25 £ 0.06 v 0.26 & 0.05, respectively) and
between males and females (0.26 + 0.04 v 0.25 + 0.06). Results of
the MCMC analysis are shown in Fig. 8. The width of the distribution

Free Water Fraction

Fig. 6. Example T2 map and tissue segmentation (top row) and subsequent rows: corresponding three-class tissue type segmentation overlaid on volume fraction maps for the

three-component T2 model.
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Fig. 7. Multi-component tissue volume fractions for white matter myelin density and white matter tissue fraction grouped preterm against term volume and male against female.

of mean possible parameter estimates for the myelin water fraction 4. Discussion

reinforces the results above that there is no detectable difference

between preterm and term white matter myelin density. Assuming Our results show that tissue composition assessed using T2
that these distributions are reasonably normal, preterm white relaxometry appears similar in extremely preterm compared to term
matter density is 0.27 4+ 0.005, compared to 0.28 4 0.005 for the born subjects but that total brain volume is reduced in the
term group calculated for white matter signal averaged across all extremely-preterm cohort relative to their term-born peers. More

white matter voxels within each group. specifically, tissue T2 values and myelin water fraction values are not
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Fig. 8. MCMC analysis of myelin density and tissue volume fraction precision for preterm (top row) and term (bottom row) groups.
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significantly different between the two groups in either gray or
white matter. In contrast though, brain volumes are significantly
lower in the EP group and the size of the difference approximates to
that between males and females. Although we observe a significant
difference in average white matter T2 value between males and
females, this difference is not significant after correction for brain
tissue volume, which suggests that despite extreme prematurity,
these individuals may have a normal appearing tissue composition,
at least on T2 weighted imaging.

Previous work, especially work in neonates [5,13], has shown
that at term equivalent age, tissue properties are different between
preterm born babies and their term-born peers. Specifically in
preterm-born neonates the apparent white matter signal intensity
on T2 weighted MRI appears higher, which is also associated with a
higher single-component T2 value. Our work is the first to show that
these differences might be mitigated in longer term development
and that although tissue volume differences remain, tissue compo-
sition does not vary detectably on MRL

One of the main strengths of this study is that it is one of the first
to describe the appearance of the extremely preterm brain in
adolescence and the study of multi-compartment T2 relaxometry we
believe is currently unique. The acquisition of T2 relaxometry in
large studies is relatively rare, particularly with multiple-echoes and
thus we believe that our work is of wider importance. However, our
study does have a number of limitations. It is worth noting that the
individuals in this study were all able to consent to and tolerate the
MR acquisition described in this work. This may imply that they are
very able individuals and thus, differences in structure and function
would be expected to be quite subtle. Furthermore the number of
individuals is not large; comparing 46 EP adolescents with 20
adolescent controls. A larger cohort might cause some of the
insignificant differences that we see in myelin water fraction to
become significant.

Our future work will investigate the correlations of individual tissue
composition and brain volume with functional outcome. This will
allow us to specialize our image analysis paradigm to better
characterize sub-cohorts of the EP group which is neuropsychologi-
cally diverse. This will be benefitted by the acquisition of a larger cohort
and the associated increase in more specific definitions of function or
disability type. The incorporation of additional MR contrast such as
diffusion weighted imaging may help investigate additional structural
differences in the brain tissue of these at risk adults.

In summary, research into the early adult preterm brain is an
important area of research. The long term impact of extreme
prematurity on quality of life is currently unknown and studies
such as this, and neuroimaging studies in general, represent the best
way to observe the neural substrates of functional deficit. Whether
this specific study reflects evidence of a homogenisation in brain
tissue composition at or before adolescence, or simply that the
cohort is biased towards those subjects who are able to tolerate an
MRI requires further investigation.
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