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Metallurgical crucible remains have been found in many archaeological contexts and in varying degrees of pres-
ervation. The reconstruction of metallurgical activity through the study of these remains, by means of microscopy
and chemical analysis, is undertaken with the aims of understanding technological choices of ancient craftspeo-
ple, their use of different raw materials and, by extension, the organisation of production and trade. When large
assemblages are available for study, an intra-site comparison of technology and material use within different con-
texts and throughout time offers interesting perspectives.

Keywords: X e . .

Crucible Complete crucible examples are rarely found and it is often difficult to reconstruct full crucible profiles based on
Metallurgy the fragmented remains. This in turn means that process variability within a single crucible can be hard to assess.
Methodology Crucible slag is often highly heterogeneous, even within single fragments, enticing analysts to lose themselves in

Egypt details. Furthermore, the abundance of remains is highly variable, depending on the scale of activity as well as
Turkey archaeological recovery and preservation, while technological variation within an assemblage can only be de-
tected through study of multiple samples.
Drawing on the analysis of two crucible assemblages, some difficulties and opportunities for technological recon-
structions are discussed. Issues related to crucible heterogeneity and inherent process variability are illustrated
and a number of interpretative problems arising therefrom are examined. Following a deconstruction of these in-
terpretative issues, some suggestions are made for how, despite methodological difficulties, archaeologically rel-

evant results are obtained where one tries to see the forest for the trees.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper highlights some issues regarding the study of crucibles
used for high-temperature metallurgical operations (Rehren, 2003), il-
lustrated by results from two assemblages studied as part of the first
author's PhD research (published in full elsewhere). Here, particular
focus is given to open, internally heated crucibles which interact
(strongly) with the crucible charge and represent the predominant
pre-Roman crucible technology. Crucible slag is defined here as the
combination of vitrified ceramic and various contributions from the cru-
cible charge, such as fuel ash and metal oxides, developed at the inter-
face of the crucible and its charge.

This contrasts with - typically later — externally heated examples,
often made of more refractory ceramic (Bayley and Rehren, 2007),
such as Roman brass-making (Bayley, 1984), medieval European fire
assay (Martinon-Torres et al., 2006, 2008) and early Islamic Central
Asian steel-making crucibles (Rehren and Papachristou, 2003). In such
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crucibles, a glaze may form on the exterior and dross is sometimes pre-
served on the interior, but interior crucible slag is rarely developed.
Though this paper focuses in particular on internally heated crucibles,
much of the following discussion has bearing on all crucible types.

Crucible studies can be largely subdivided into two categories: in-
vestigations of ceramic technology and of metallurgical processes. The
former tend to focus on the ceramic fabric, analysing the raw clay and
use of temper as well as the crucible design to assess thermal and me-
chanical properties of the vessels. Thin-section petrography is often
used here (e.g. Evely et al., 2012). The latter are aimed at understanding
the metallurgical crucible process, and technological choices made
therein, as well as uncovering variability in the use of raw materials.
Here, a stronger focus is given to the analysis of crucible slag, using
mounted sections for reflected light microscopy and SEM-EDS analysis
(e.g Rehren and Kraus, 1999). This metallurgical perspective is adopted
here.

Less studied issues are how crucible heterogeneity affects the sam-
pling strategy for a single crucible or an entire crucible assemblage,
how it affects the analytical methodology applied to the study of those
samples, and what the interpretative issues arising from this heteroge-
neity and sampling strategies are.

2352-409X/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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While such problems are particularly in need of investigation for
crucible studies, similar considerations must be made for the examina-
tion of metallurgical slag more broadly (e.g. Bourgarit, 2007 and
Humphris et al., 2009). This paper aims to complement these studies
and stimulate further research on heterogeneity, sampling bias and rep-
resentativeness in archaeometallurgy.

2. Materials and methods
2.1. Materials

We present material from two case studies to illustrate the vari-
ability that can occur both within single crucibles and throughout
entire crucible assemblages. The first assemblage is from Qantir-Pi-
Ramesse (Egypt, 13th century BC), where crucibles were used for
the casting of bronze objects (Pusch, 1990; Rehren et al., 1998;
Rademakers et al., 2015). The second crucible assemblage is from
Gordion (Turkey, 6th-4th century BC), where bronze and leaded
bronzes were alloyed. The archaeological background for these as-
semblages is omitted here, as the focus of this paper is strictly meth-
odological. Contextual information for the Pi-Ramesse assemblage is
presented by Pusch (1990), while Rademakers et al. (in preparation)
will discuss the specific context of the Gordion crucibles (see
Kealhofer, 2005 for a broader overview of the Gordion excavations),
and their technological interpretation.

2.2. Sampling

Following macroscopic investigation, samples were cut from these
crucibles to obtain flat profile sections, mounted in epoxy resin blocks
and left to harden. The mounted sections were then ground using in-
creasingly finer abrasives and polished down to 0.25 um using diamond
paste.

2.3. Analysis

The mounted samples were analysed using reflected light micros-
copy (Leica DM4500 P LED polarisation microscope) and, after carbon
coating to ensure surface conductivity, by SEM (JEOL 8600 Superprobe)
for structural and textural characterisation of both crucible ceramic and
slag. SEM-EDS analysis (Oxford Instruments EDS attachment and INCA
software) was performed to obtain quantitative chemical compositions
of particular phases (point-microanalysis) and larger areas. Bulk chem-
ical composition was determined by averaging the analysis of five
frames (magnification: 100 x) for crucible ceramic and crucible slag re-
spectively (similar to Freestone and Tite, 1986). This procedure was per-
formed for 95 samples (49 from Pi-Ramesse, 46 from Gordion)
discussed here.

For the presentation of bulk chemistry, ternary diagrams of SiO,—
Al,03-FeO and SiO,-Al,03-Ca0 for crucible ceramic and slag composi-
tion were constructed (in each case ignoring all other elements). Full
compositional data for both assemblages (Rademakers, 2015) will be
published elsewhere.

Handheld portable XRF (pXRF) has been used to qualitatively
analyse the cleaned surfaces of Pi-Ramesse crucible fragments on
site in Egypt (Innov-X Systems, DP 4000). Three 15 second analyses
were performed for each fragment using a 40 kV beam, and the data
averaged. The raw intensity spectra (in counts/s) have been used to
assess the presence of particular elements by hand (checking for
characteristic Kai- and KRq-intensities), without converting to
concentrations (Dungworth, 2000a). pXRF analysis could not be
performed for the full Gordion assemblage, due to accessibility
constraints.

3. Results
3.1. Within-crucible variability

The first type of variability that can be identified within crucible as-
semblages is the variation that occurs within crucibles themselves. The
analysis of a single crucible sample does not necessarily capture this
variability, and some of the differences seen between samples from dif-
ferent crucibles can often be attributed to variability of the same pro-
cess. This section sets out the main factors influencing this within-
crucible variability and its characteristics.

Several process parameters can vary strongly during metallurgical
crucible processes. The most important are redox conditions, tempera-
ture and the distribution of charge constituents. The first two are
strongly related to changing oxygen supply within the crucible, which
in turn is controlled by tuyére placement, continuity in bellowing action
and charcoal cover. This oxygen supply is a dynamic factor, producing
hotter and cooler regions within a crucible, and more oxidising or re-
ducing conditions in different areas. These zones change through time
as crucibles often go through several stages in their use, such as pre-
firing, charging, melting/smelting, casting, cooling and reuse.

The possible reuse of crucibles is not treated in depth in this paper,
but obviously introduces important interpretative issues. The likelihood
of reuse must be assessed for each crucible assemblage through careful
examination of all fragments, and its possible effects on the final inter-
pretation must be discussed.

Most of the metallurgical process information is contained in the
crucible slag forming through the melting of the inner surface of the
crucible. The degree of this melting is a function of operating temper-
ature and the composition and refractoriness of the ceramic. The ce-
ramic properties are highly homogeneous for the assemblages
discussed here (Rademakers et al., 2015, in preparation). More het-
erogeneous ceramic fabrics, common for early crucibles, may induce
more heterogeneous melting behaviour. However, most crucibles
are highly heterogeneous with regard to vitrification and slag forma-
tion despite compositional homogeneity of their fabric. This chang-
ing rate of ceramic disintegration stems mainly from variability in
process parameters throughout the crucible. The degree to which
the ceramic vitrifies and melts in turn influences the amounts of
charge constituents that can be encapsulated by the vitrified ce-
ramic, such as charcoal/fuel ash, ore fragments, metal prills and
metal oxides, transforming it into crucible slag. None of these con-
stituents are necessarily present in every particular area of the cruci-
ble, even if they occur in one area.

In oxidising areas of the crucible, some of the metal in the charge
can oxidise. In the case of copper, contaminants such as iron, cobalt,
nickel and arsenic or alloying elements such as tin, lead and zinc are
burnt off before the copper itself oxidises (Ellingham, 1944; see
Dungworth, 2000a and Kearns et al., 2010). If this happens in an
area with a sufficiently developed liquid slag layer, the metal oxides
can be incorporated into that slag layer and provide highly distorted
information on the nature of the original metal melted in a crucible.
Under more reducing conditions, metal prills can be trapped nearly
unaltered in the slag, reflecting the original metal composition
more closely. The relative proportions of molten ceramic, fuel ash,
metal oxides and metal inclusions in the crucible slag can vary highly
from one part of the crucible to the next. When no slag is formed,
some of these metal oxides typically gather on top of the molten
charge as a dross layer.

As a first example, a crucible fragment from Pi-Ramesse is shown in
Fig. 1. This fragment is slagged along its entire profile, and differences
can already be noted by visual inspection. Closer to the rim (top) the
slag layer is fairly regular and thin and its reddish surface is quite flat.
Lower down, however, the slag thickness increases and is more variable,
and the dark grey slag exhibits a more irregular surface with visibly cor-
roded copper-based prills.
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Fig. 1. Pi-Ramesse crucible fragment, showing macroscopic differentiation between rim (top) and lower body (bottom). A BSE-SEM image of these two areas is shown on the top right and

bottom right, respectively.

Microscopic inspection reveals the slag at the rim area to be mainly
composed of vitrified ceramic, fluxed by fuel ash and with only minor
copper content (Fig. 1, top right). The slag forming at the lower body,
in contrast, is strongly enriched in copper and tin, as well as iron and co-
balt. This iron and cobalt occur as spinel ((Fe,Co)(Fe,Al);04, with 4 6 wt.
% Co) in the crucible slag, and probably originate from the partial oxida-
tion of contaminated copper (Fig. 1, bottom right). Differences in redox-
conditions and material presence produced this different slag enrich-
ment in the two zones (Table 1) and resulted in their different
macroscopic appearance. An important observation here is that the Pi-
Ramesse assemblage contains many fragments that consist only of ei-
ther the upper rim area or the lower body area, and therefore do not
allow the comparison of both zones within one sherd. Considered in iso-
lation, analysis of the rim in Fig. 1 only reveals fuel ash contributions and
the limited presence of copper (not bronze), and does not allow inter-
pretation beyond ‘copper-related metallurgy’. The lower body tells a dif-
ferent story: it points to ‘bronze-related metallurgy’, with the use of
copper contaminated by iron and cobalt.

A second example from Pi-Ramesse is shown in Fig. 2, where two
samples have been taken from a small rim fragment. They show a sim-
ilar type of crucible slag as seen in the previous example near the rim:
vitrified ceramic with tiny embedded metal prills. For the top sample,
all prills were composed of almost pure copper, with up to 1 wt.%
iron. In the bottom sample, all prills had a radically different com-
position, averaging around 30 wt.% copper, 40 wt.% nickel, 15 wt.% co-
balt and 15 wt.% iron. Despite being taken only 2 cm apart, these
samples present very different evidence of what must have been the
same process and, viewed in isolation, would again lead to divergent
interpretations.

Fig. 3 shows a crucible fragment from Gordion, for which three sam-
ples (A-B-C) along the profile were taken for analysis. The rim sample
(A) exhibits limited slagging, and most of the interior is simply vitrified
ceramic. A few tiny prills occur further away from the rim (towards the
lower body), which are iron- and arsenic-rich bronze, but the bulk slag
metal content is low (Table 2). In the intermediate sample (B), the slag
is more developed (though not everywhere) and more metal prills are

present. These are mainly pure copper prills with minor iron content,
while the slag contains large amounts of tin oxide, malayaite (CaSnO
(Si04)) and copper (chloride) oxides. Finally, the lower body sample
(C) presents the thick crucible slag at the bottom of the fragment.
Here, two layers exist: the deeper slag layer is similar to sample B
(with iron-rich bronze prills), while a dross layer is deposited on its sur-
face, which is dominated by various metal oxides (including lead
oxide). The bulk slag metal content in sample B is higher than that
of sample A, but lower than that measured in sample C (Table 2),
which is reflective of the high metal oxide content in the dross,
rather than the elevated presence of metallic prills. Though these
dross layers can be helpful in identifying alloy types melted in a cru-
cible, metallic prills rather than metal oxides are required to better
assess the actual alloy composition. Fuel ash contributions and iron
contamination of the crucible slag are lower for samples A and B
than for sample C.

When comparing the copper, tin and lead content in all analysed rim
and body fragments (where ‘body-rim’ means body fragments taken
near the crucible rim, as opposed to lower body fragments), a trend be-
comes evident: body fragments are generally more highly enriched in
metal (oxides) than rim fragments (shown for Gordion in Fig. 4). How-
ever, this trend is by no means a strict rule, and high variability exists.
The highest lead oxide content, for example, is measured in a rim
fragment.

These observations confirm that rim fragment slag often consists
mostly of vitrified ceramic, fluxed by fuel ash, and is generally less infor-
mative than lower body slag, which was in contact with the crucible
charge. For these body fragments, the variable redox- and temperature
conditions and distribution of charge components modify the type of
evidence available (e.g. metal content, different oxide phases). When
sampling a crucible fragment, the chosen location will therefore
strongly influence the informative nature of analytical results, and com-
plete disclosure of the crucible process is rarely obtained from a single
sample. Post-depositional effects such as differential corrosion and
fracturing can further bias the representativeness of a fragment for
understanding ancient metallurgical processes.

Table 1
Bulk chemical composition for Pi-Ramesse crucible fragment shown in Fig. 1 (in wt.%, normalised to 100%; SEM-EDS data).
Na,O MgO Al,05 SiO, P,05 K;0 Ca0 TiO, FeO Cuo Sno, CoO
Ceramic 2.0 22 13 66 0.6 1.9 32 1.5 83 0.6 0 0
Slag (rim) 14 3.6 13 53 0.7 19 13.8 19 89 0.7 0.5 0
Slag (lower body) 5.0 3.1 9 46 15 19 13.1 19 11.8 2.1 3.7 1.7
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Electionimage 1

Fig. 2. Small Pi-Ramesse rim fragment (left), from which two samples were cut and mounted (middle). Prills in both samples are shown on the right (BSE-SEM images).

3.2. Assemblage-wide variability

Two main types of variability can be expected within crucible as-
semblages. The first is due to the variability inherent to the crucible pro-
cess, as discussed in the previous section. The second type is introduced
by the variable technological choices ancient craftspeople made, which
are sometimes reflected in the crucible slag. This involves the variation
in techniques, as well as variation in raw materials used in the metallur-
gical process. Here archaeologists can address questions such as: did
ancient metallurgists stick to one ‘recipe’ or draw from several techno-
logical options? Were raw materials from several sources used? Is there
any variation in these choices through time or various production con-
texts? Obviously, such questions have higher archaeological significance

than the detailed understanding of process variability, described above,
which probably played a minor role for the ancient metallurgist.

In this section, the example of bronze production is used to illustrate
this concept. The main techniques of choice are:

1. Alloying of two fresh metals (copper and tin)

2. Cementation (copper metal with tin ore)

3. Co-smelting (copper and tin ore)

4. Recycling (possibly involving addition of fresh metal (or tin ore)).

Their differentiation in actual archaeological finds has received
relatively little attention in archaeometallurgical studies (but see
Pigott et al., 2003; Rovira, 2007), but was recently investigated in
detail for Pi-Ramesse (Rademakers et al., 2015). In addition to

Fig. 3. Gordion crucible fragment from which three samples were taken (left), with BSE-SEM images representative of the three areas (right).
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Table 2
Bulk slag metal content for Gordion crucible fragment shown in Fig. 3 (in wt% (following
normalisation to 100%), other oxides omitted; SEM-EDS data).

Cuo SnO, PbO
Sample A 0.8 0.8 0
Sample B 2.1 2.6 0
Sample C 8.5 19.0 44

choices of technique, variability due to the use of different raw
materials can be expected as well. Here, the identification of
materials from different origins (geologically, economically, cultur-
ally) does not necessarily represent a conscious choice by the
metallurgist. Finally, though variability in techniques and materials
can occur across an assemblage, this is obviously not always neces-
sarily the case.

The main problem for identification of technological variation lies in
the nature of the available evidence. This can be illustrated by the typical
process indicators as preserved in crucible slag that allow identifying
different bronze production techniques. Active alloying, as opposed to
the mere recycling of existing bronze, can lead to the production of
high-tin prills (Crew and Rehren, 2002; Rehren, 2001) with 6-, €- and/
or n-phase bronze (Rademakers et al., 2015). Though these prills
allow exclusion of ‘technique 4’ from the list above (i.e. recycling),
they offer no distinction between the ‘techniques 1-3’. During cementa-
tion and co-smelting (‘techniques 2-3’), however, it is possible for min-
eral grains from the ore to be trapped in the crucible slag and excluded
from further participation in the metallurgical process. As such, residual
mineral grains can allow the distinction between the ‘techniques 1’ and
2-3".

The problem here is that these phases are not the intended end
products of the metallurgical operation: high-tin prills and residual
ore are the result of processes that were not completed. Under ‘ideal
conditions’, these process indicators are not preserved in crucible slag
at the end of the operation, and cannot always be expected to be
found in a crucible sample taken for analysis. Furthermore, many phases
are ambiguous and inconclusive towards identifying technological
choices. Low-tin prills, for example, could indicate the production
of a low-tin bronze, but equally result from the recycling (and
partial burning) of medium-tin bronze. Similarly, acicular, high
temperature tin oxide crystals can be formed in a crucible following
any production technique (Dungworth, 2000b; Rademakers and
Farci, in preparation).

Recognising variability in raw material use is equally difficult. For the
case of copper added to a crucible, a general distinction can be made be-
tween ‘clean’ and ‘contaminated’ copper. ‘Contaminated copper’ is typ-
ically raw copper which has not been (thoroughly) refined after the
primary smelting stage. Depending on the type of ore that was smelted,
this copper can contain elements such as iron, cobalt, nickel, arsenic, tin
or lead that were reduced during smelting and incorporated in the cop-
per. Alternatively, raw copper could be contaminated by remnant pri-
mary smelting slag, when poor separation was achieved during the

smelting process (Hauptmann et al.,, 2002) or when slag was intention-
ally added to copper ingots, in an attempt to cheat when trading the
copper. Most contaminants oxidise preferentially to copper and will
burn off into the crucible slag first. Enrichment of the crucible slag in
these oxides, therefore, can be used as an indicator for the use of differ-
ent raw materials across a crucible assemblage. Furthermore, it offers
the possibility to relate crucibles to final artefact chemistry.

There is, however, again a problem here. While a distinction can
sometimes be made between ‘clean’ and ‘contaminated’ raw materials
used in different crucibles, it is important to remember that contami-
nants are only oxidised into the crucible slag under oxidising conditions.
These environments are not necessarily present in every crucible (area)
and, as aresult, the relevant metal oxides are not always present in each
sample taken from a crucible.

Therefore, the absence of certain process indicators, technical or ma-
terial, is often not sufficient to exclude certain technological choices
from the interpretation of an assemblage. Due to the inherent process
variability witnessed within each crucible, the absence of evidence can
usually not be taken as the evidence for absence. Only when the re-
searcher has investigated sufficiently large sample numbers can more
confidence in an overall interpretation be achieved. Regardless, conser-
vativeness is usually the appropriate interpretation attitude.

When looking at the changes in bulk chemistry between crucible ce-
ramic and slag for the Pi-Ramesse crucibles (Fig. 5, top), some variation
within the assemblage can be noted. A relative increase of the crucible
slag in lime occurs for all crucibles, and correlates to an increase in
other fuel ash constituents, particularly magnesia and phosphate. The
spread from low to high lime enrichments reflects within-crucible var-
iability: all crucibles were presumably placed under a similar charcoal
cover during operation, but some crucible areas received higher fuel
ash contributions than others.

For about 2/3 of the samples, no slag enrichment in iron can be
noted, whereas about 1/3 of the samples exhibit varying degrees of
iron enrichment. This enrichment is most likely due to the use of ‘con-
taminated (raw) copper’, and the spread from low to high enrichment
is a result of within-crucible variability as well as variable raw copper
iron content. Therefore, some of the crucible samples without notable
iron enrichment could similarly have contained ‘contaminated copper’,
for which iron was not oxidised into the crucible slag in the sampled
part of the crucible.

Fig. 5, bottom, shows the same ternary diagrams, distinguishing be-
tween rim and body crucible fragments. Some clear differences can be
noted between rim and body fragments, as could be expected from re-
marks made in the previous section. Higher lime slag enrichments typ-
ically occur for body fragments, though some rim fragments show
moderate to high enrichments too. This reflects a fairly equal distribu-
tion of fuel ash throughout the crucibles. Slag enrichment in iron, how-
ever, occurs almost exclusively for body fragments and is low for the rim
fragments where it occurs. This reflects one of the primary factors for
within-crucible variation: the spatial distribution of charge constituents.
Closer to the crucible rim, less or no copper is available to exchange con-
taminants with the crucible slag. An important consequence of this
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(perhaps elementary) observation is that the deduced importance of
‘contaminated’ raw copper use is skewed for the full assemblage, and
should be based only on the analysis of body fragments. For Pi-
Ramesse, this means that in reality about half of the crucibles show
iron enrichments, indicative of the use of ‘contaminated’ copper (out
of which 4 15% are additionally contaminated with cobalt/nickel, indi-
cating a different raw material).

4. Discussion

The two previous sections have identified three main issues, funda-
mental to the study of crucible assemblages. Firstly, strongly variable
slag formation is possible within a single crucible: crucible slag is a pa-
limpsest, reflecting the changing conditions through space and time
inside the crucible. This can result in different slag types in various
zones of the crucible, with typically strong discrepancy between rim
and lower body areas. Secondly, variable use of techniques and raw ma-
terials can exist within the assemblage as a whole, reflective of different
technological choices made by the ancient craftspeople. This variation in
the crucible remains, however, can be hidden by the process-inherent

variation that is superimposed on it. Furthermore, not all techniques
and raw materials provide diagnostic evidence to begin with, and obvi-
ously, such technological variations do not exist for every assemblage.
Thirdly, multiple technological pathways must always be considered
when assessing crucible remains. On the one hand, a single process
can produce a range of crucible slag types due to varying crucible condi-
tions. On the other hand, a range of processes can result in very similar
crucible slag types.

The degree to which these issues affect crucible slag formation
strongly varies, of course. One of the critical factors influencing the de-
gree of slag formation is crucible refractoriness. Poorly refractory cruci-
bles typically form thick slag layers as their fabric disintegrates at high
temperatures. This enables the mechanical trapping of charge frag-
ments (e.g. charcoal, ore and metal fragments) and the incorporation
of contaminants into the slag through chemical interaction. In more re-
fractory crucibles, this melting of the ceramic fabric is less pronounced,
as for example in the Gordion crucibles. Though these are not supremely
refractory crucibles (like those reported in Martinén-Torres et al., 2006,
2008; Rehren and Papachristou, 2003 and Thornton and Rehren, 2009),
slag layers are significantly less developed than for the Pi-Ramesse
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crucibles, despite their similar mode of use. This is illustrated in Fig. 6,
where only a minor (but significant) shift between crucible ceramic
and slag bulk composition can be noted. An important result of limited
slag formation is the absence of an exchange medium for the crucible
charge into which contaminants can be burnt off. When iron-rich cop-
per is used, for example, this iron will oxidise and, in the absence of a
crucible slag phase, collect as a dross layer on top of the crucible charge
together with other metal oxides. Upon casting, such dross layers are ei-
ther manually removed, or are deposited as a thin layer on top of a lim-
ited area of the crucible slag. Such dross layers are often encountered in
the Gordion crucibles, and are typically enriched in iron and other metal
oxides several times more strongly than the crucible slag. It should be
noted that these dross layers, due to the absence of a protecting glassy
slag phase, are typically more susceptible to post-depositional corrosion
or mechanical loss than regular crucible slag. This further illustrates the
impact of crucible refractoriness on the evidence available to the ar-
chaeological scientist.

The best tool to address these issues is an adapted, considerate sam-
pling strategy. This must follow a thorough visual inspection of the entire
assemblage to assess fabric homogeneity and variable slag formation. Ide-
ally, extensive sampling should be undertaken to assess variability within

14

crucibles and discover variation within the assemblage with confidence.
In reality, of course, sampling is constrained by limitations in time or bud-
get, export regulations and curatorial considerations. For such cases, the
results presented in this paper have shown that lower body fragments
are generally more informative than rim fragments to reconstruct tech-
nology and material use, and thicker, more developed slag is more likely
to capture process indicators. This corresponds to what most analysts
have probably been doing intuitively for decades: go for the ‘juicy’-
looking slag. Our results finally provide a more scientific basis to follow
those instincts. Nonetheless, it is important to stress that no strict regular-
ity exists and ‘juicy’ samples might not be as informative as they look.
Furthermore, a strong ‘nugget effect’ exists for technological process indi-
cators: you may capture a particularly informative inclusion in your sam-
ple, or miss it by a hair. Finally, it is possible that a single fragment does
capture a large amount of the process-inherent variability. Here, thermo-
dynamically incompatible conditions can sometimes be seen occurring in
close proximity, highlighting the absence of equilibrium conditions in
most crucibles (e.g. Miiller et al., 2004), and the importance of kinetics
in slag formation.

The use of alternative analytical techniques can open further per-
spectives towards quickly assessing variability in crucible assemblages.
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Fig. 7. Histogram showing relative change in bulk iron content between ceramic and slag measured by SEM-EDS (left) and ratio of iron to titanium in crucible slag measured by pXRF
(right). (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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The use of pXRF has been tested for the qualitative analysis of the Pi-
Ramesse crucible assemblage. Without discussing the complete results
in detail, two examples are shown here. In Fig. 7, left, the relative change
FeOslag FeOceramic

( A . A1203Sl?=§0 Al2(:.’3ceramic

ceramic and slag is shown, as measured by SEM-EDS analysis of 49 sam-
ples. The largest group of samples (about 2/3, in blue) shows a normal
distribution around zero, indicating no iron contamination. The second
group (about 1/3, in purple) shows increased iron content relative to
alumina, indicative of the use of an iron-contaminated copper source
(same as seen in Fig. 5). Aluminium peak intensities are not easily mea-
sured by pXRF; hence, a similar ratio (using the iron and titanium Ko;-
intensities measured in crucible slag) has been used for in-the-field
analysis, as shown in Fig. 7, right, based on the analysis of the entire
Pi-Ramesse crucible assemblage of 1042 fragments by pXRF. The same
pattern emerges, indicating a large group of ‘clean slag’ and a smaller
group of iron-contaminated slag. Though less clearly defined for the
PXRF data, it is much more easily obtained and provides the same
assemblage-wide pattern. Within-crucible variation can equally be in-
vestigated using pXRF, as shown by example in Fig. 8, where the copper
and tin content for rim and body fragments respectively is compared.
Though increased content in both metals can be noted for both frag-
ment types, the incidence of greater enrichments is significantly higher
for body fragments, in similar proportions as noted by SEM-EDS analy-
sis of mounted samples. These examples show the potential for pXRF in
fast qualitative analysis of entire assemblages to pick up large trends,
though its efficacy should be further tested for other assemblages. As a
final important note, it is pointed out that pXRF analysis of crucible frag-
ments does not always correspond on a one-to-one basis with SEM-EDS

analysis of the same fragment. Here the ‘nugget effect’ as an extreme ex-
ample of the heterogeneity of individual crucible fragments can produce
different results depending on the relatively small area analysed by the
pXRF beam. For this reason, pXRF analysis yields better results as a qual-
itative screening method applied to entire assemblages, while for indi-
vidual samples, SEM-EDS analysis provides more reliable data.

5. Conclusion

This paper has illustrated the slag variability within metallurgical
crucibles, resulting from the combined effects of within-crucible and
assemblage-wide process variability. The common reality of crucible
heterogeneity and its effects on sampling, analysis and interpretation
have hitherto not been systematically addressed in the literature.
Here, suggestions have been made for adapted sampling strategies,
and the need for adjusted interpretation based on limited sampling
was highlighted. The possible effects of missing evidence must be ac-
knowledged and it is advisable to attempt reconciliation of all observa-
tions as reflections of a single process wherever possible. This applies
both to the interpretation of a single sherd, as well as to that of all sam-
ples taken across an assemblage. Only when process-inherent variabil-
ity cannot account for observed variations should differentiation in
techniques and raw materials be considered.

Further controlled experimental work to elucidate ambiguous slag
phases (e.g. Rademakers and Farci, in preparation, on tin oxide crystal
variability), the effects of crucible reuse on slag formation and composi-
tion, and many other issues will open new perspectives in this debate,
initiated by a confounding archaeological reality. Despite the many
problems discussed here, a full appreciation of crucible variability will
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allow archaeologically relevant interpretations to emerge from the de-
tails, like the forest through the trees.
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