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Abstract

Mechanistic mathematical modelling can be used to understand the fundamental

drivers of the immune system and how the system is affected by medical inter-

ventions. Key to this understanding in children is the interplay between age

and treatment-related effects. This thesis focusses on immune reconstitution fol-

lowing paediatric haematopoietic stem cell transplantation (HSCT) and following

the start of antiretroviral therapy (ART) in children infected with human immun-

odeficiency virus (HIV). Since quantitative reconstitution is only one aspect of

immune function, in the final chapter I develop a model to explore the dynamics

of T cell receptor diversity.

Following HSCT, reconstitution of neutrophils and platelets was modelled

using a previous mechanistic model. For CD4 T cell reconstitution, a novel

mechanistic model was constructed that included age-related changes in T cell

dynamics, the delay to thymic output after HSCT and competition for resources.

In HIV-infected children starting ART, a simplified previous model for CD4 T

cell and HIV dynamics was adapted to include mechanistic elements for multi-

phasic viral load decline, age-related changes in T cell dynamics and competition

for resources. Using nonlinear mixed-effects modelling with these deterministic

models allowed parameters to be estimated with the uneven and often sparse

data available. The models were then used to find factors that affect reconstitu-

tion. The model for CD4 reconstitution following HSCT was then used to make

verifiable predictions of reconstitution in a new cohort of paediatric patients.

T cell receptor diversity dynamics were investigated with a stochastic model

in which all T cells compete equally for a global resource. The model was simple

enough that numerical simulations could be performed with large numbers of cells

and clonotypes, and the model could be characterised analytically. Equations

were obtained for long-term mean T cell numbers, clonotype numbers, clonotype

size distributions and the Gini coefficient as a measure of dispersion. The model

was then extended to model host-donor CD8 memory T cell dynamics in bone

marrow transplanted mice, showing that biologically simple assumptions could

explain the observed dynamics.
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Chapter 1

Introduction

1.1 The haematopoietic system

The haematopoietic system comprises all cells produced by haematopoietic stem

cells. Haematopoietic stem cells (HSCs) are the progenitors for all blood cells in

the body. They largely reside in the bone marrow, particularly in the femur, pelvis

and sternum, but they are also found in the peripheral blood and in umbilical cord

blood. They are self renewing and multipotent and have the common myeloid

progenitor and common lymphoid progenitor as offspring (see Figure 1.1).

The common myeloid progenitor produces red blood cells (erythrocytes) and

megakaryocytes, which in turn produce platelets (thrombocytes). Red blood

cells are involved in oxygen transport around the body and platelets contribute

to blood clotting. The rest of the offspring of the common myeloid progenotor

are white blood cells (leukocytes), all of which are involved in the innate immune

system. Macrophages and neutrophils are phagocytes that engulf particles or

pathogens; basophils and eosinophils are closely related to the neutrophil; and

mast cells are associated with wound healing and pathogen defence in mucous

membranes and connective tissue.

The common lymphoid progenitor produces the rest of the white blood cells:

17



Chapter 1. Introduction

Figure 1.1: The maturation pathway of blood cells in the body from haematopoietic
stem cells. Macrophages, eosinophils, neutrophils, basophils, mast cells and NK cells
are parts of the innate immune system. T and B cells are part of the adaptive immune
system. Erythocytes are red blood cells and megakaryocytes produce platelets for
clotting. Source: Wikimedia Commons.

natural killer (NK) cells and the lymphocytes, T and B cells. NK cells are a key

component of the innate immune system, killing compromised host cells such as

virus infected or tumour cells; B and T cells form the foundation of the adaptive

immune system.

Dendritic cells are highly heterogeneous antigen presenting cells. They are

produced from both the common myeloid and the common lymphoid progen-

itor [1].

1.2 The immune system

The innate immune system has evolved in animals and plants for immediate

protection against infection from other organisms. This first line of defence is a

set of non-specific cells and mechanisms, which recognise and respond to many

18



Chapter 1. Introduction

pathogens in the host in a fast and generic manner. It is largely made up of

the complement system and phagocytic white blood cells, such as neutrophils

and macrophages. These phagocytes take up a variety of microorganisms into

intracellular vesicles where they destroy them with degradative enzymes and other

antimicrobial substances.

The adaptive immune system has evolved in addition to the innate immune

system in vertebrates, including humans. It is able to respond in a pathogen-

specific way. Once the adaptive immune system has encountered and responded

to a pathogen in the host, it is able to acquire immunological memory of this

pathogen, enabling it to enhance its response to the same pathogen in the future.

The adaptive immune system works by recognising specific antigen proteins —

parts of bacteria, viruses and microorganisms — with receptors on the cell surface,

the T cell receptor (TCR) and B cell receptor (BCR). T cells require the antigen

to be processed inside another cell and presented on the major histocompatability

complex (MHC), a cell surface protein. TCRs then recognise this peptide–MHC

combination. MHC comes in two types, class I and class II. Class I are found

on the surface of most nucleated cells and when infected present peptides from

pathogens such as viruses to cytotoxic CD8 T cells, which then kill the infected

cell. Class II are mostly found only on antigen presenting cells (APCs) and present

peptides to helper CD4 T cells. On recognition of the peptide–MHC combination,

the CD4 T cell will provide helper signals to activate the presenting cell [2].

They will also proliferate, differentiate into effector cells and release cytokines to

activate other immune cells. Hence CD4 T cells are vital for the adaptive immune

system to function fully. The most common APC is the dendritic cell, which are

specialist APCs, although macrophages, eosinophils, mast cells, CD8 T cells and

B cells can also act as APCs.

In contrast, B cells can recognise antigen in its cognate form with their BCR.

On further activation by the CD4 T cells, they will then differentiate into either
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Chapter 1. Introduction

memory B cells or into plasma B cells. Memory B cells are long lived cells that

have immune memory for the presented antigen peptide. Plasma B cells are large

B cells that produce and secrete antibodies in large quantities, which then bind

to microbes including bacteria, fungi and viruses, assisting phagocytosis and the

activation of the complement system.

T cells, B cells and APCs circulate through the blood and the lymphatic sys-

tem, made up of the lymph nodes and spleen. Dendritic cells pick up antigen at

the site of infection and then migrate to the lymph nodes where T cells are found

in very high concentrations. T cells thus sample thousands of peptide-MHC com-

plexes on the APCs every day, on top of which B cells sample cognate antigen

directly, ensuring that the immune system has a high probability of encounter-

ing pathogen-derived antigen wherever the infection might be in the body. On

recognising antigen, T and B cells receive signals to proliferate and differentiate

into effector cells and then leave the lymph nodes and spleen in large numbers in

order to attack the recognised pathogen. It is the vast diversity of the BCR and

TCR repertoires that allows the immune system to respond in a pathogen-specific

manner.

In this thesis, I look at three cell types from the haematopoietic system:

platelets, which are necessary for haemostasis, neutrophils, vital to the innate

immune system and T cells, crucial to the adaptive immune system.

1.3 Platelets

Platelets, or thrombocytes, are fragments of thrombokaryocyte cytoplasm with no

nucleus. They are unique to mammals, and their function is to assist coagulation

factors in haemostasis, the stopping of a flow of blood at interrupted endothelia.

Platelets gather at the site of interruption and perform primary haemostasis to

create a white clot through three processes: adhesion, making bonds outside the
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interrupted endothelium; activation, secreting cytokines and activating receptors;

and aggregation, attaching to each other through receptor bridges [3]. Primary

haemostasis results in the activation of secondary haemostasis and the coagulation

cascade. In this process, platelets express thrombin receptors that bind thrombin

molecules, which in turn produce polymerised fibrin from soluble fibrinogen in

the serum. The fibrin then form a red clot as long strands of insoluble protein,

and bind to platelets forming a mixed clot.

Platelets are derived from megakaryocytes in the bone marrow, from where

they enter the peripheral blood. A single megakaryocyte can produce thousands

of platelets, and in a healthy adult 2 × 1011 platelets are produced per day [4].

Normal platelet concentrations in healthy adults are roughly 200 ×103 /µL, with

an average lifespan of 8 to 9 days [4].

1.4 Neutrophils

Neutrophils are a key part of the innate immune response. They are the most

abundant of the white blood cells in the body, with 3000 to 5500 cells/µL in the

peripheral blood [2]. They are highly motile, and are one of the first-responders in

the acute phase of inflammation, particularly in response to bacterial infections,

environmental exposure and some cancers. They are attracted to the site of

infection through chemotaxis, following cytokines expressed by other activated

white blood cells. At the site of the infected tissue, neutrophils are recruited

through the induction of adhesion molecules on the endothelial cells of blood

vessels and changes to the adhesion molecules expressed on neutrophils. The

neutrophils then migrate from the blood vessels into the infected tissue through

extravasation, where they survive for 1-2 days [5,6]. Dead neutrophils are the

predominant cells in pus, causing its yellow-white appearance.

At the site of infection, neutrophils not only release cytokines, attracting other
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white blood cell types and thus amplifying the inflammatory response, but also

directly attack pathogens either through phagocytosis, or the release of soluble

antimicrobials, or through the generation of neutrophil extracellular traps [7].

Neutrophils are produced in the bone marrow from common myeloid progen-

itor stem cells through granulopoiesis. This process takes roughly 6.5 days [5], and

involves a series of steps, including the formation of granules, eventually leading to

the exit of mature neutrophils from the bone marrow. Neutrophils are produced

in large numbers, with roughly 1011 cells/day leaving the bone marrow [8], and

they do not proliferate in the peripheral blood. When circulating in the blood

stream, they are short lived, with an average lifespan of 10 – 17 hours [9,10],

although this lifespan is increased by steroids, such as glucocorticoid [11].

Neutropoiena, the severe reduction in the concentration of neutrophils, leaves

patients highly susceptible to infection with a large range of pathogens, demon-

strating the importance of neutrophils in immune defence [2]. Neutrophil pre-

cursor production in the bone marrow is dependant on the hormone granulocyte-

colony stimulating factor (GCSF), which regulates the production of neutrophil

precursors depending on the circulating concentration of neutrophils in the blood-

stream. Recombinant human GCSF (rhGCSF) is used as a treatment for neut-

ropoienia.

1.5 T cells

T cells are so called because they develop in the thymus, a small organ near the

heart and a part of the lymphatic system.

Pre-T cells leave the bone marrow and travel through the blood stream ar-

riving at the thymus expressing neither CD4 nor CD8. In the thymus they first

undergo gene-rearrangement to produce the TCRs. TCRs are formed from one

α– and one β–chain or from one γ– and one δ–chain. The β (or δ) chain is formed
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first and paired with a pseudo-α (or γ) chain to establish functional rearrangement

before pairing with a full α (or γ) chain. The amino acids that make up these

chains are formed from variable (V), joining (J) and constant (C) regions, with β–

and δ–chains having an additional diversity (D) region. The C region is the same

or very similar for all TCRs, and codes for the trans-membrane polypeptides.

The DNA encoding the V, J and D regions are composed of many gene segments

and the DNA encoding the TCR is then a small number of these segments chosen

at random through DNA recombination. This rearrangement results in ∼5×106

pairs of combinations of V(D)J regions for α– and β–chains [2]. Further diversity

results from junctional diversity, whereby a number of nucleotides can be added

or deleted between the gene segments of the V and J regions for α–chains and

between the V, D and J regions of the β–chains. This leads to a further diversity

of ∼2×1011, resulting in a total of ∼1018 possible TCRs [2]. The DNA in the un-

used gene segments is excised from the genome and remains in the nucleus as the

T cell receptor excision circle (TREC). This piece of DNA is neither replicated

in division nor degraded.

Expression of the TCR proteins on the cell surface triggers the expression

of both CD4 and CD8, changing them from double negative to double positive

thymocytes. These thymocytes then undergo the processes of positive and negat-

ive selection. First, cells are positively selected that have a strong enough affinity

for self-peptide MHC (sp-MHC) of either class I or II. If they have an affinity

for class I, they will drop their CD4 marker and become CD8 cells, and if they

have an affinity for class II, they will drop their CD8 marker and become CD4

cells. Those that do not have a strong enough affinity will die. This ensures the

released cells will be effective. Then the successful cells are negatively selected

for those with too strong an affinity to sp-MHC, with the strongly responding

cells forced towards apoptosis. This is to prevent auto-immunity. Thus the cells

that survive are in the ‘Goldilocks region’, with strong enough but not too strong
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affinity for sp-MHC [12].

These T cells then leave the thymus and enter the peripheral blood stream and

lymphatic systems. At any one time, around 98% of T cells are in the lymphatic

system, and only 2% are in the blood stream [13]. The T cells that leave the

thymus are näıve T cells, characterised by expression of the cell-surface protein

CD45RA. On encountering a foreign antigen that elicits an immune response, the

T cells proliferate and differentiate to become effector T cells. After the immune

response, some of the T cells are maintained, and become long-lived memory T

cells, typically expressing the CD45RO cell-surface protein.

T cell numbers in the body are maintained through homeostatic mechanisms

that determine proliferation and death. For T cells to survive and proliferate they

require interactions with resources such as cytokines [14,15] and, for näıve cells,

sp-MHC [16]. It is thought that there are different thresholds for survival and

proliferation whereby a certain threshold number of interactions with resources

are required for survival, and a second higher threshold number for proliferation.

Insufficient interactions will result in cell apoptosis [17,18]. Hence homeostasis is

maintained through competition for these resources [19]; when there are many T

cells, there will be few resources per cell, lowering proliferation and raising loss

rates, and when there are very few cells, there will be many resources per cell,

resulting in low apoptosis and high proliferation. This results in lymphopoenia-

induced proliferation [20]. There is evidence to suggest that there is a spread

of thresholds within the T cell population, leading to kinetic heterogeneity in

proliferation and death rates [21,22].

Both CD4 and CD8 T cells compete for IL-7 cytokines [23–25], while CD8 also

compete for IL-15 cytokines [26]. For these cytokines, T cells compete globally.

Different clonotypes of TCR will respond to different sp-MHC, although there will

be some crossover [27,28]. Näıve T cells thus have intra-clonotype competition for

sp-MHC, as well as inter-clonotype competition for sp-MHC with other clonotypes
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Figure 1.2: The mean expected CD4 concentration with age for a healthy child [31].

that might recognise the same sp-MHC and both näıve and memory T cells have

global competition for the cytokines [16,29,30].

Through childhood, the immune system develops rapidly. The thymus reaches

full size at 1 year, but the thymic epithelial space involutes by 70% over the first

20 years of life [32]. Because T cells mature in the thymic epithelial space, the

number of T cells output by the thymus decreases as the child grows up [33,34].

The concentration of T cells in the blood decreases by a factor of three between

0 and 10 years of age, as can be seen in Figure 1.2 [31]. Also, the proportion of

T cells proliferating and dying decreases from early childhood [35,36].

1.6 Immune reconstitution

Medical interventions that cause temporary immunodeficiency or remove a pre-

existing condition that causes immunodeficiency are followed by a period in which

the immune system recovers (immune reconstitution). The primary theme of

this thesis is immune reconstitution following paediatric haematopoietic stem cell

transplantation (HSCT). One of the models has been further extended to study

immune reconstitution following initiation of antiretroviral therapy in children

infected with human immunodeficiency virus (HIV).
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1.6.1 Haematopoietic stem cell transplantion

HSCT is used for a range of conditions, which can broadly be split into two

categories: red blood cell issues, and immune system disorders. Red blood

cell issues include anaemia, Glanzmann’s thrombasthenia, and other problems

with platelets. Immune system disorders include immunodeficiencies (such as

Wiskott–Aldrich syndrome, severe combined innuondeficiency (SCID) or chronic

granulomatous disease), leukaemias (myeloid and lymphoblastic), hemophago-

cytic lymphohistiocytosis, autoimmunities and lymphomas. HSCT is also used

as treatment for other diverse conditions, such as inflammatory bowel disease and

metabolic defects like Hurler’s Syndrome.

Pre-transplant conditioning

Before HSCT, the patient is given a conditioning regimen to eradicate disease

and to reduce or ablate the host immune system. This conditioning can be

radiotherapy, chemotherapy, anti-lymphocyte antibodies or a combination of the

three. This is for three major reasons: (1) to reduce the chance of graft rejection,

whereby the remnants of the host immune system attack the donor cells; (2) to

lower the rates of graft-versus-host disease (GvHD), whereby the donor immune

system attacks the host immune system and the host body; (3) in the case of

cancers, to remove cancerous cells and to lower the chances of relapse.

The drugs used in pre-HSCT conditioning and their modes of action are given

in Table 1.1. While the anti-lymphocyte antibodies bind to and attack the lymph-

ocytes directly, the mode of action of the chemotherapy drugs and total body

irradiation is to prevent the production of new cells. The anti-lymphocyte an-

tibodies will therefore ablate the T cells and B cells, the long lived cells of the

haematopoietic system, and the chemotherapy and radiotherapy will ablate the

short-lived cells such as neutrophils and platelets as well as the haematopoietic

stem cells (HSCs).
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Table 1.1: Conditioning regimens and prophylactic drugs, the drug types and their
modes of action, adapted from the version written for publication in Barker et al [37].

Drug Drug type Mode of action
C

on
di

tio
ni

ng
re

gi
m

en

Alemtuzumab Monoclonal
antibody

Binds to CD54, expressed on the surface of mature lymphocytes but
not on haematopoietic stem cells.

Anti-CD45 Monoclonal
antibody

Binds to CD45, expressed on the surface of mature T cells.

Antithymocyte
globulin

Polyclonal
antibody

Antibodies harvested from rabbits injected with human lymphatic
cells that attack human T cells.

Busulphan Alkylating anti-
neoplastic agent

Attacks dividing and resting cells. Cell apoptosis by alkylation creat-
ing adenine-guanine cross-links.

Cyclo-
phosphamide

Nitrogen mustard
alkylating agent

Attacks dividing and resting cells. Cell apoptosis by attaching alkyl
group to guanine bases in DNA.

Fludarabine Purine analog Prevents DNA synthesis by interfering with ribonucleotide reductase
and DNA polymerase.

Melphalan Nitrogen mustard
alkylating agent

Attacks dividing and resting cells. Cell apoptosis by attaching alkyl
group to guanine bases in DNA.

Treosulphan Alkylating anti-
neoplastic agent

Attacks dividing and resting cells. Cell apoptosis by alkylation creat-
ing adenine-guanine cross-links. Lower toxicity version of busulphan.

Pr
op

hy
la

xi
s Cyclosporine Immuno-

suppressant
Lowers T cell immune activity. Prevents IL-2 transcription by binding
to lymphocyte cyclophilin, this complex then inhibits calcineurium.

Methotrexate Antimetabolite Mainly suppresses fast proliferating cells. Purine base synthesis in-
hibited through reduced metabolism of folic acid.

Mycophenolate Immuno-
suppressant

Inhibits monophosphate dehydrogenase which controls guanine mono-
phosphate synthesis rate in purine base synthesis for B and T cell
proliferation.

Mechanism of transplantation

HSCT is the transfer of haematopoietic stem cells from a donor to a host. The

HSCs can be extracted from the donor using three methods: (1) bone marrow

transplants (BMTs) use stem cells extracted directly from the donor bone mar-

row, usually from the hip bone with a needle; (2) peripheral blood stem cell

transplants (PBSCTs) use circulating stem cells from the peripheral blood of

the donor following the administration of granulocyte-colony stimulating factor

(GCSF) to stimulate stem cells from the bone marrow into the peripheral blood;

(3) cord blood transplants (CBTs) use stem cells in blood taken from the umbil-

ical cord of newborn babies. Sometimes more than one umbilical cord is used to

increase the number of stem cells in the graft.

Donor haematopoietic stem cells are transferred into the blood stream of the

host. From there, they make their way to the bone marrow where they start

to proliferate and re-populate the haematopoietic system. The reconstitution of

cells such as neutrophils and platelets is fast, taking a matter of weeks, but is

slow for T and B cells, taking months to years for reconstitution.
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Allogeneic donors are donors with different genes to the patient and are classed

as related, unrelated, family, sibling or haploidentical (sharing half the genes with

the host). Donors can also be syngenic, as in identical twins. HSCT can also be

done autologously, whereby HSCs are taken from the patient, stored while the

patient undergoes treatment, and re-administered after treatment.

Complications following HSCT

Apart from disease relapse and graft rejection, after HSCT another other major

complication is graft-versus-host disease (GvHD). GvHD occurs when the donor

cells recognise the body of the host as ‘non-self’ through the sp-MHC interactions

and mount an immune response to the host cells. GvHD is classed as acute if it

manifests in the first 100 days after HSCT, and chronic after 100 days. In order

to prevent or decrease the likelihood of GvHD, donors are sought whose cells are

more likely to recognise the body as self. This is achieved by selecting donors

that have similar MHC proteins through the process of human leukocyte antigen

(HLA) matching. The HLA system is the loci of the genes which encode the MHC

proteins. HLA class I matching is considered more important, as this encodes the

sp-MHC combination recognised by cytotoxic CD8 cells, but donors are preferable

that also match with HLA class II. Selected donors almost always match on HLA

class I, and are then classed as ‘matched’ or ‘mis-matched’ depending on the

quality of the HLA class II matching.

In order to further moderate the effects of GvHD, after the transplant and

during the reconstitution the patient can be further treated with prophylactic

drugs. The major drugs used in post-HSCT prophylaxis and their modes of action

are also given in Table 1.1. The drugs either lower the activity of the present

immune cells or reduce the rate of production of new immune cells. These however

leave the patient immunocompromised for longer.

While a patient is immunocompromised, they are susceptible to opportunistic
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infections such as fungal infections, acute viral infections (e.g. influenza) and the

re-emergence of latent infections such as adenovirus, cytomegalovirus (CMV) and

Epstein Barr virus (EBV), which can also be introduced by the donor. These in-

fections are a major cause of death in patients undergoing HSCT. If the patient’s

immune system does not stage a full recovery, they may need further interven-

tions, such as treatment with GCSF or repeat HSCT. Understanding the rate

and extent of immune reconstitution is thus of vital importance.

Prognosis following HSCT

According to the Worldwide Network for Blood and Marrow Transplantation,

2006, there were 50,417 patients undergoing their first HSCT worldwide in 1327

centres in 71 participating countries [38], of which 21,516 were allogeneic trans-

plants (43%) and 28,901 were autologous (57%). In the UK in 2013, there were

3840 HSCTs according to the British Society for Blood and Marrow Transplant-

ation [39]. Of these, 370 were in children, 287 with allogeneic grafts and 83 with

autologous grafts.

A survey by the paediatric diseases working party of the European Group for

Blood and Marrow Transplantation of 31,713 children between 1970 and 2002

found a cumulative incidence of transplant related mortality at day 100 and at

2 years for children given allo-HSCT was 13% and 21%, respectively [40]. This

does not include disease related mortality.

1.6.2 HIV-infected children undergoing ART

Human immunodeficiency virus (HIV) attacks cells that express the CD4 pro-

tein on their surface, mainly infecting CD4 T cells. Over a long period of time,

HIV causes a decline in CD4 T cell concentration, leaving patients immunocom-

promised and hence vulnerable to opportunistic infections. If left untreated, this

leads to acquired immunodeficiency syndrome (AIDS) and eventually death, usu-
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ally from infection. Antiretroviral therapy (ART) is the standard treatment for

adults and children infected with HIV. ART uses many mechanisms to suppresses

HIV replication, reducing viral load often to undetectable levels. This allows CD4

T cells to reconstitute, but the reconstitution is slow, taking between one and two

years.

HIV is however never fully eradicated, with HIV surviving in niches of the

body, and so patients have to remain on ART for the rest of their lives. This

is problematic, particularly in HIV-infected children that may be receiving ART

for many years. Not only can long-term toxicities hinder the child’s development,

but also ART and the resultant monitoring is expensive. It is therefore of interest

to understand the effects of planned treatment interruptions and of less intensive

monitoring of the children.

1.7 Why use mathematical modelling?

Modelling is particularly useful in longitudinal datasets, such as the ones largely

used in this work. By fitting curves to longitudinal data, modelling makes it

possible to find rates and long-term averages of immune reconstitution for patients

that have variable data. Furthermore, models can pick up general trends in the

data that may not be obvious otherwise, and thus allow a more robust analysis

of the factors that affect these trends. The majority of the data used in this work

are routine clinical patient data from hospitals. These data are highly variable,

and are often sparse and uneven, making analysis difficult. In children, because

of the developing immune system, there are rarely sufficient children of any one

age to do like for like comparisons. On top of that, treatment regimens are rarely

identical, making analysis of the factors that affect recovery yet more complicated.

Empirical modelling, where a curve is selected that matches the trajectory

seen in the data and then fitted to the data, is the most frequently used form of
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modelling for longitudinal data. This method has limitations, with parameters

that are often difficult to interpret, and does not make use of all the available

information. In contrast, the work presented here centres around mechanistic

modelling, whereby models are intended as a direct mathematical abstraction of

the system’s biology. The intention is to cut through to the relevant underlying

biology of the system, then to abstract this biology into a mathematical frame-

work to construct a model. Using this approach allows the direct interpretation

of parameters that reflect components of the biological system and hence, when

these models are fitted to data, it allows sensible inferences to be taken from

parameter values. Furthermore, mechanistic modelling allows the use of known

information about the fundamentals of the system that is being modelled. The

immune system is a complex interplay between many components, often relying

on cascades for cell production, with competition for resources amongst cells, and

a large inter-cell regulation network. The situation in children is yet more com-

plex, with concentrations of different cells changing dramatically and non-linearly

with age as the immune system develops.

A further advantage of models is that they allow for extrapolation and pre-

diction. Early data can be used to form a predicted curve, which can then be

used to make a prediction for the long-term future of that patient. Mechanistic

models allow more confidence in these extrapolations because the biological basis

of the model helps to keep the predicted curves within a biological range. Hence,

immune reconstitution is particularly well suited to mechanistic modelling.

In this work, two different types of mechanistic modelling are used which

have different bases. A stochastic agent-based model is used where each cell

is modelled individually, and an event is the division into two cells or death of

that cell. These events happen randomly, with certain probabilities per unit

time, in a manner very much like they would in the actual body. Hence it is a

direct, albeit simplified, representation of the system. Overall dynamics of the
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system are then modelled through the outcome of the many events for many cells.

However, these models are computationally expensive and so are not well suited

to large numbers of cells. As such a useful approximation is to use deterministic

models. For these, it is assumed that because there are many cells, so many

events are happening at any one time that they can be treated as continuous

and deterministic. Accordingly these systems can be modelled using ordinary

differential equations.

1.8 Aims of the project

The aim of this project was to investigate with mechanistic modelling immune

reconstitution following paediatric HSCT and in HIV-infected children starting

ART.

The bulk of this work centres around deterministic modelling of cell concen-

tration data. For paediatric HSCT, the reconstitution of three cell subsets were

modelled, platelets, neutrophils and CD4 T cells. For HIV-infected children, CD4

T cells were modelled in conjunction with HIV viral load. The general workflow

for each cell subset was to:

1. Compile the relevant data

2. Construct and develop the mechanistic model

3. Apply the model to the data using non-linear mixed-effects modelling

4. Perform covariate analysis to find the factors that affect reconstitution.

Further, predictions of reconstitution were tested for CD4 T cell reconstitution

following HSCT.

The rest of this work is set out as follows: Chapter 2 describes the pharmaco-

dynamic modelling of short-term reconstitution of neutrophils and platelets. In

this chapter, the main statistical methods that are also used in Chapter 3 and

32



Chapter 1. Introduction

Chapter 4 are presented. Chapter 3 looks at long-term reconstitution of CD4

T cells, and presents a novel mechanistic model and its applications. Chapter 4

analyses HIV-infected children commencing ART by combining a model for viral

load dynamics with mechanistic elements from the model presented in Chapter 3.

Chapter 5 presents a stochastic global-competition model for T cell homeostasis,

and the effects of inter-clonotype competition for resources.
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Short-term neutrophil and

platelet reconstitution following

HSCT

2.1 Introduction

Neutrophils are vital for immune defence and neutropaenia (the lack of neutro-

phils) leaves a patient highly susceptible to infection from a large range of patho-

gens. A study found that before neutrophil engraftment following HSCT (defined

as a neutrophil concentration of greater than 500 cells/µL for three consecutive

days, usually in the first 30 days post HSCT), the incidence rate of bloodstream

infection was 22% with a 12.5% mortality in infected patients, while in the months

after engraftment, the infection rate was 19.5% with a mortality of just 1.7% [41].

Another study found that over 64% presented fever within 30 days of HSCT, of

which 26% had a clinically proven infection and 12% resulted in death [42]. As

a result, while a patient is neutropaenic, they have to remain in isolation rooms

in hospitals in order to reduce the chances of an infection that they cannot fight.

Furthermore, they are given antibiotics to help fight infections. Understanding
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the rate of reconstitution of neutrophils and what affects it is therefore of major

importance.

Platelets are a key component of haemostasis and patients with delayed plate-

let recovery following HSCT can require transfusions of blood products to alle-

viate the loss of platelets [43]. This requires significant medical resources and

carries risk for the patient. Recently, recombinant human thrombopoietin has

been found to be an effective therapy for delayed platelet engraftment [44]. A

study from 1996 found that delayed platelet recovery is associated with decreased

overall survival [43], with mortality from transplant-related complications at 30%

for patients who had platelet reconstitution of greater than 20,000 /µL by day 60

and 56% for patients who did not following allogeneic transplants. Another more

recent study also found that delayed platelet recovery was associated with one

year survival rates, with survival found to be 77% for patients who had platelet re-

constitution above 50,000 /µL and 59% for those who had platelet reconstitution

below 50,000 /µL [45]. This study also found that transplant related mortality

was higher in patients who had poor reconstitution of platelets at 30% versus

11% [45]. Hence understanding the factors that are associated with slow platelet

reconstitution following HSCT is of importance.

Neutrophils and platelets have short mean lifetimes in the peripheral blood

(10 – 17 hours [9,10] and 8 to 9 days [4] respectively). This means to main-

tain equilibrium, neutrophil and platelet production rates are also high, and so

reconstitution is fast, taking a few weeks for full reconstitution. Because this

time-period is short, intra-individual differences due to age for each measurement

can be ignored. This allows mathematical models that were developed in adults

to be applied, with any effects from differences in age between children accounted

for by inter-individual differences in their random effects.

Neutrophil and platelet concentrations decline on the use of pre-HSCT condi-

tioning as the chemotherapy and radiotherapy prevent the synthesis of new cells,

35



Chapter 2. Short-term neutrophil and platelet reconstitution following HSCT

causing neutropaenia and thrombocytopaenia (the lack of platelets). There is

a time delay from drug administration to the measured decline in neutrophils

and platelets because measurements are taken of circulating cells and there will

be cells that have already been produced in the bone marrow that have not yet

reached the circulation (see Figure 2.3). This same delay from production to

appearance in the circulation means that concentrations continue to decline for

a few days after HSCT. The concentrations then reach a nadir, after which the

they increase with reconstitution. Pharmacodynamic models then try to find the

relationship between the drugs used and these concentration profiles.

2.2 Modelling short-term reconstitution

In the section below, I discuss the mechanistic mathematical models for neutro-

paenia and thrombocytopaenia that have previously been proposed.

2.2.1 Neutrophils

Neutropaenia and the subsequent reconstitution has been widely studied as the

most common adverse dose-limiting toxicity of chemotherapy drugs [46]. Early

quantitive analysis identified a minimum desirable neutrophil concentration of 1×

109 cells/µL, below which the number of days of infection increases sharply [47].

Because neutrophil concentration measurements in oncology clinical trials are of-

ten not frequent enough to pick up the actual nadir, other analyses used summary

variables to describe the extent of neutropaenia that also include information on

its duration. These include time to nadir [48], the number of days spent below

a certain neutrophil concentration, or the area between the curve of neutrophil

concentration and a certain fixed concentration [49].

Summary variables, however, inevitably waste information contained in the

data, whereas whole time-course modelling makes use of more of the available
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Figure 2.1: The basis of the model used for neutrophil reconstitution, from
Friberg et al [52]. Cells are produced in the proliferationg compartment X1 and then
transfer through the transit compartments X2→4 to the circulating compartment X5
where they are measured. Because of the feedback loop, the proliferation rate in the
proliferating compartment is affected by the circulating concentration of neutrophils,
with feedback strength given by γ. In this model, the elimination rate kE , synthesis
rate kS and transfer rate kT are all equal to 4

MTT where MTT is the mean transfer
time of the neutrophils. The drug acts with strength EDrug to reduce the production
rate in the proliferating compartment.

data. Empirical models break up the time-course; one used three sections, a

horizontal line for baseline concentration, a line with negative gradient for the

decrease in concentration up until the nadir and a logistic curve for reconstitu-

tion [50]; another used a cubic spline function with three break points [51].

Mechanistic models are advantageous because of their more interpretable

parameter values and their greater predictive usefulness. To make it possible to

fit these models to data however they need to be simple enough with few enough

parameters such that the parameters can be estimated. Mechanistic models of

neutropaenia all have common features, with cells produced in one compart-

ment, representing the bone marrow, and then some sort of maturation of these

cells as they move to the circulating compartment, where cell concentrations are

measured. This maturation causes a time delay from drug administration to the

changes in observed concentration, which was explained in the mechanistic mod-

els using either a time-lag [53] or transit compartments [54–56]. These models

culminated in the model of Friberg et al [52], a schematic of which is shown in

Figure 2.1.
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The Friberg model

The model of Friberg et al [52] differed from the previous models by having both

self-renewal of cells in the bone marrow compartment (rather than a zero-order

input of cells), and a feedback loop whereby the concentration of circulating

cells affects the rate of cell self-renewal in the bone marrow in order to model

the effects of granulocyte-colony stimulating factor (GCSF). This model has five

compartments: a proliferating compartment X1(t), representing stem cells in the

bone marrow, three transit compartments X2→4(t), representing stages of neut-

rophil development before they appear in the peripheral blood, and a circulating

compartment X5(t), representing the concentration of circulating neutrophils in

the peripheral blood. The model has four parameters to be fitted: X0, the initial

and long-term steady-state concentration of neutrophils in the absence of drugs;

MTT = 4
kS

= 4
kT

= 4
kE

, the mean transfer time for neutrophils through the

transit compartments; γ, the strength of the feedback effects from GCSF; and

EDrug, the effect of the myeloablative drugs. The equations for the dynamics with

time t are given by,

d
dtX1(t) = kSX1(t)

(
X0

X5(t)

)γ
(1− EDrug)− kTX1(t) X1(0) = X0

d
dtX2(t) = kTX1(t)− kTX2(t) X2(0) = X0

d
dtX3(t) = kTX2(t)− kTX3(t) X3(0) = X0

d
dtX4(t) = kTX3(t)− kTX4(t) X4(0) = X0

d
dtX5(t) = kTX4(t)− kEX5(t) X5(0) = X0. (2.1)

With this model, the system starts at steady state concentration, X0, and then

for the days where EDrug is non-zero, the concentration falls. With kS = kT = kE,

the concentrations are the same in all five compartments at steady state, but on

perturbation by the drug effect, there is a delay to the dynamics of the measured
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circulating compartment.

After the publication of the model of Friberg et al, two further models for

neutropaenia were proposed, which were largely based on the previous models.

The model of Panetta et al [57] is very similar to that of Friberg but differed

by having two transit compartments and an altered form for the feedback loop.

While more recently, the model of Bulitta et al [58] uses time-delay differential

equations. These two models were compared by Soto et al [59] to the models of

Friberg et al [52], Minami et al [53] and Zamboni et al [56]. Soto et al found that

none of the models showed superior performance in comparison to the original

Friberg model.

This chapter describes the use of the Friberg model for neutrophil dynam-

ics. This model has three major advantages over other models. Firstly, other

models do not contain the feedback loop, modelling the rebound in neutrophil

concentration. Secondly, delay-differential equation models are difficult to code

into software and are unstable when fitting to data. Thirdly, more complicated

models involve more parameters to estimate but have not shown significantly im-

proved performance. I allow the long-term neutrophil concentration X∞ to differ

from the initial neutrophil concentration X0 in order to allow for the differences

resulting from the donor haematopoietic system following HSCT. Furthermore,

I test the effects of allowing the elimination rate kE to differ from the synthesis

and transfer rates KS and kT . Differences between these rates were not visible

in the sparser data on which this model was originally developed, but might be

with the richer data used for this analysis.

Modelling the effects of steroids

The administration of corticosteroids causes a transient increase in the concentra-

tion of circulating neutrophils, lasting for a few hours after the dose and returning

to a normal level after about one day [60–62]. This effect has also been observed
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in children, and levels remained high for as long as corticosteroids were being ad-

ministered [63]. The reason for this increase is not fully understood, but the cells

are known to be almost entirely mature neutrophils [61], which implies that neut-

rophils are moving out of the vasculature, mediated by endothelial cell adhesion

molecule interactions [64].

This effect has been modelled with an extension to the Friberg model. The

method used an additional input compartment that starts with a certain num-

ber of cells and releases cells into the circulating compartment at a first-order

rate [64]. This method has also been applied successfully to other datasets for

neutrophil reconstitution [65,66].

2.2.2 Platelets

Thrombocytopaenia and subsequent platelet reconstitution has not been widely

studied through mathematical modelling. The majority of studies into platelet

reconstitution have tended to use the Friberg model [67–71]. When fitting this

model, these studies made no adaptions to the model to account for the differences

between platelet and neutrophil dynamics, but they manage a good fit to the data.

When using the Friberg model, the transit compartments become the production

of megakaryocytes and the subsequent production of platelets.

More recently, Hayes et al [72] developed a simpler model for platelet dynamics

shown in Figure 2.2. This has a zero-order input of cells into the bone marrow,

and has removed the feedback loop. This model has been successfully applied to

other datasets for platelets [73–76].

The Hayes model

The model for platelets as developed by Hayes et al [72] has four compartments:

a production compartment X1(t), representing stem cells in the bone marrow,

two transit compartments X2→3(t), representing stages of development between
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Figure 2.2: The basis of the model used for platelet reconstitution, from Hayes et al [72].
Platelets are produced into the bone marrow (BM) compartment X1 at rate kS . They
then transfer through the transit compartments X2→3 at rate kT to the circulating
compartment X4 where they are measured. They are then eliminated at rate kE .
The drugs act with strength EDrug to reduce the production of platelets into the bone
marrow compartment.

bone marrow and platelet including megakaryocyte production, and a circulating

compartment X4(t), representing the concentration of circulating platelets in the

peripheral blood. The model has five parameters: X0, the initial and long-term

steady-state concentration of platelets; kS, the zero-order input of megakaryo-

cyte precursors into the bone marrow compartment; kT the transfer rate of cells

between the compartments; kE the death rate of circulating platelets; and EDrug,

the effect of the myeloablative drugs preventing cell synthesis. The equations for

the dynamics are given by,

d
dtX1(t) = kS(1− EDrug)− kTX1(t) X1(0) = kE

kT
X0

d
dtX2(t) = kTX1(t)− kTX2(t) X2(0) = kE

kT
X0

d
dtX3(t) = kTX2(t)− kTX3(t) X3(0) = kE

kT
X0

d
dtX4(t) = kTX3(t)− kEX4(t) X4(0) = X0. (2.2)

Similarly to the model above, the system starts at steady state concentration with

X4 = X0, and then for the days where EDrug is non-zero, the concentrations in

the compartments fall, with a delay to the dynamics of the measured circulating

compartment. Similarly to neutrophils, I allow the long-term platelet concentra-

tion X∞ to differ from the initial platelet concentration X0 in order to allow for
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the differences resulting from the donor haematopoietic system following HSCT.

Because of the inter-dependence of the parameters, one parameter can be defined

in terms of the others, with kS = kEX0, leaving five parameters to be estimated.

In this chapter, I will compare the results of fitting both the Friberg and the

Hayes models to the platelet data.

2.2.3 Conditioning drug protocols & pharmacodynamics

Patients received a large range of protocols for their pre-transplant conditioning.

Not only did they receive a range of drugs as well as radiation, they were also

given these drugs on different days and in different combinations. Because exact

information is not available for every patient in the dataset, a summary table was

created from the available protocols for the general method of use of each drug,

shown in Table 2.1.

For each patient the information as to which combination of drugs they re-

ceived was available. This information combined with the protocol summary table

was then used to define for each patient the days on which they were expected to

receive neutropaenia- and thrombocytopaenia-inducing conditioning treatment.

Table 2.1: Conditioning drugs for HSCT protocols summary. The conditioning regi-
men is formed from a combination of the therapies listed below. All the therapies
except for alemtuzumab and antithymocyte globulin (ATG) are neutropaenia- and
thrombocytopaenia-inducing. This table is a summary of the available protocols that
were used, with each dot giving the days on which these drugs were normally given.

Days from HSCT
Drug N / T -9 -8 -7 -6 -5 -4 -3 -2 -1
Alemtuzumab No • • • • •
Anti-thymocyte globulin No • • •
Busulfan Yes • • • •
Cyclophosphamide Yes • • • •
Fludarabine Yes • • • • •
Melphalan Yes • • •
Treosulphan Yes • • •
Total body irradiation Yes • • • •

N/T: Neutropoenia/thrombocytopoenia inducing conditioning.
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Furthermore, methylprednisolone, a steroid, is always given in conjunction with

alemtuzumab and ATG. So the patients that were given these drugs were assumed

to receive methylpredisone on the days as described in Table 2.1.

Pharmacodynamic models represent how the body is affected by the drug

concentration. They are based on receptor theory [77], whereby a drug (D)

binds with a receptor (R) to form a drug-receptor complex (DR) that initiates a

sequence of events leading to a drug effect, EDrug. The drug, receptor, and drug-

receptor complex form a dynamic equilibrium with the concentrations related

by,

[DR]koff = [D][R]kon (2.3)

where [D], [R] and [DR] are the concentration of the drug, receptor and drug-

receptor complex respectively, kon is the binding rate of the drug and receptor

and koff is the unbinding rate of the receptor-drug complex. If we assume that

there are a finite number of receptors, then the total concentration of receptors,

[Rtot] = [R] + [DR]. As a result, the dependence of [DR] on [R] can be removed

leaving,

[DR] = [D][Rtot]
[D] + koff

kon

. (2.4)

With EDrug proportional to drug-receptor concentration [DR], and Emax the drug

effect when all receptors are bound such that [DR] = [Rtot], then with drug

concentration redefined as C, (2.4) can be re-written as,

EDrug = Emax
C

C + EC50
, (2.5)

where EC50 = koff
kon

is the concentration at which the effect size is half. This gives

a sigmoidal drug effect with concentration whereby either the receptors are in

such excess that changes in concentration produce no measurable effect or the

drug concentration is in excess and all receptors are used, resulting in no increase
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in drug effect.

In the case where the concentration C � EC50, (2.5) can be approximated as

a linear model,

EDrug ≈
C

EC50
Emax = Slope C. (2.6)

The drug effect EDrug can vary between 0 (fully ineffective) and 1 (fully effective)

for both the linear and sigmoidal models.

In this chapter, because I have no information about drug concentrations in

the blood, I assume a pharmacokinetic model for drug concentration that fol-

lows an exponential decay with time after drug dose, referred to as a K-PD

(kinetic-pharmacodynamic) approach [77,78]. I then test the effects of both

the sigmoidal and linear K-PD models. The half lives of the neutropaenia- and

thrombocytopaenia-inducing conditioning drugs are short: busulfan 2.3 hrs [79];

cyclophosphamide 5 – 9 hrs [80]; fludarabine 8 – 10 hrs [81]; melphalan 1.3 hrs [82];

and treosulphan 1.7 – 2.2 hrs [83]. With the sigmoidal K-PD model I therefore

assume that the drug falls well below the EC50 within one day and, according to

(2.5), the corresponding drug effect therefore falls to zero one day after a dose.

For the linear model, I assume that the drug effect decreases in some propor-

tion to the drug concentration and so follows an exponential decay in the days

following the last drug administration so that,

EDrug = Emaxe
−t−tD
TDrug , (2.7)

where tD is the time at which the patient received their last dose of conditioning

and TDrug gives the time for which the drug effect persists following this last dose.
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2.3 Methods

2.3.1 The data

The data was collected as part of routine clinical practice between 2005 and

2011 from children undergoing HSCT at the Blood and Marrow Transplant Unit

at Great Ormond Street Hospital for Children NHS Trust. The parents of the

patients whose data is in the database have provided written informed consent

for the use of the data. It comprises blood concentrations of many cell types

taken at regular intervals for up to seven years after the transplant, including

neutrophil and platelet concentrations, analysed in this chapter. Conditioning

regimens usually start nine days before HSCT and these cells types reconstitute

quickly, so the data was cut to 14 days before HSCT up until 100 days after

HSCT for the work in this chapter. The dataset has 299 patients, who have had

337 transplants between them. The demographics of the data are summarised in

Table 2.2. As can be seen, there is huge heterogeneity in the diagnoses, patient

characteristics and forms of treatment.

For studies of this kind, the data are unusually rich. For the neutrophil

dataset, there are 19,118 measurements in the period from 14 days before to

100 days after the transplant, while in the platelet dataset, there are 22,149

measurements in the same time-frame. Plots of the concentration profiles with

time from HSCT are shown in Figure 2.3. As can be seen, there is a brief

increase in neutrophil concentrations just before HSCT caused by the steroids

given to some patients with their conditioning. Concentrations then decrease in

response to conditioning and subsequently increase rapidly, returning to a similar

concentration to previously. In contrast, for platelets, while the decrease is rapid,

the recovery is slower and levels do not on average return to those before HSCT.

The local regression can however be misleading as the reconstitution may be fast

but with varying delays from HSCT, leading to a gradual increases in the average
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Table 2.2: Breakdown of the demographics and the drugs used for the patients in the
short-term reconstitution dataset.

No % No %
Age at HSCT (years) Donor type

0→ 1 75 22 Matched 215 63
1→ 2 62 18 Sibling 93 27
2→ 5 72 21 Family 18 5.3
5→ 10 79 23 Unrelated 104 30
10→ 52 15 Mis-matched 107 31

Sex Sibling 2 0.6
Male 216 63 Family 6 1.8
Female 126 37 Unrelated 99 29

HSCT Haploidentical 15 4.4
1st 291 85 Autologous 5 1.5
2nd 47 14 Viruses
3rd 4 1.2 Cytomegalovirus

Diagnosis Positive 111 32
Immunodeficiencies 145 42 Negative 227 66

SCID 89 26 Unknown 4 1.2
Wiskott-Aldrich 12 3.5 Epstein Barr virus
CGD 12 3.5 Positive 88 26

Leukaemia 105 31 Negative 128 37
ALL 50 15 Unknown 126 37
AML 40 12 Adenovirus

HLH 37 11 Positive 106 31
Anaemia 22 6.4 Negative 236 69
Autoimmune 9 2.6 Conditioning
Lymphomas 5 1.5 Alemtuzumab 165 48

GvHD Anti-CD45 13 3.8
Reported 102 30 Anti-thymocyte globulin 13 3.8

I 39 11 Busulphan 80 23
II 38 11 Cyclophosphamide 153 45
III 18 5.2 Fludarabine 166 49
IV 7 2.0 Melphalan 101 30

Stem cells Treosulphan 70 20
Bone marrow 158 46 Total body irradiation 51 15
Peripheral blood 129 38 None 44 13
Cord blood 53 15 Prophylaxis
Combinations 2 0.6 Ciclosporin 298 87

Methotrexate 72 21
Mycophenolate 164 48

Abbreviations: SCID: severe combined immunodeficiency sydrome; CGD: chronic granulomat-
ous disease; ALL: acute lymphoblastic leukaemia; AML: acute myeloid leukaemia; HLH: hemo-
phagocytic lymphohistiocytosis; GvHD: graft versus host disease.
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Figure 2.3: Time courses of reconstitution following HSCT for (A) neutrophil concen-
tration and (B) platelet concentration plotted with a log concentration scale. Each
coloured line represents an individual patient’s data. The black lines give local regres-
sion curves for the data.

of neutrophil and platelet concentrations across the population (see Figure 2.4).

An advantage of nonlinear mixed-effects modelling (NLME) is its ability to find

parameter estimates that can account for this.
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Figure 2.4: Differences between individual dynamics and the local regression for (A)
neutrophil and (B) platelet concentrations. For each dataset, the first six patients in
the dataset have been plotted to demonstrate that while the local regression might re-
constitute slowly, some of the individual patients reconstitute quickly but with different
time delays.

2.3.2 Model fitting

Nonlinear mixed effects modelling

Nonlinear mixed-effects modelling was used to fit the models to the data. This

approach involves estimating population typical values, along with multiple levels

of variability. In the simplest case, this variability comprises inter-individual

variability at the level of the model parameters and residual variability at the

level of observations. As a result, this approach is useful because it takes into

account the correlation between the measurements of an individual, which is

necessary for the uneven data available for this type of analysis.

NLME can be thought of as a hierarchical model [84]. At the highest level,

taking a general differentiable function f(φ, t) dependent on the parameter vector

φ and time t, the fixed effects, which give the population average, are modelled

as,

yj = f(φ, tj) + εj εj ∼ N (0, σ2) (2.8)

where yj is the jth observation of the dependant variable y at time tj, and εj is
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residual error for each observation, which is assumed to be normally distributed

and independent.

At the next level, inter-individual variability can be included in the form

of random effects. Random effects allow the parameter values to vary for each

individual. They are assumed to be normally distributed around the mean 0

with variance Ω. Thus the vector of parameters for the ith individual φi can be

decomposed as

φi = β + bi bi ∼ N (0,Ψ) (2.9)

where β is the vector of fixed effects, bi is the random effect vector for individual

i, and bi is normally distributed according to the variance–covariace matrix Ψ.

If the parameters in the model are bounded, then the random effects can be log

or logit transformed.

Hence the full mixed-effects model for observation yij at time tij is given by

yij = f(φi, tij) + εij, εij ∼ N (0, σ2) (2.10)

where the residual error, εij now accounts for measurement error, model mis-

specification and noise. The residual error εij is assumed to be normally dis-

tributed with variance σ and to be independent. The elements of the parameter

vector are referred to as θs, the variances of the random effects as Ωs and the

variance on the residual error as σ.

Fitting NLME models

Parameter estimation was carried out using NONMEM 7.3 [85] This has the

capability to use various algorithms to maximise the likelihood by minimising

the negative log of the total marginal density. The marginal density of l is given

by

p( l |β, σ2,Ψ) =
∫
p( l |b,β,σ2) p( b |Ψ) db, (2.11)
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where p( l | b,β,σ2) is the conditional density of l given the random effects b,

and p( b | Ψ) is the marginal distribution of b. The most simple and widely

used algorithm, first order conditional estimation (FOCE), uses a gradient-based

method based on a first order Taylor expansion of the model function. This

method can however struggle with more complex models, being computationally

expensive and getting stuck in local minima.

Other algorithms use expectation-maximisation (EM) methods, whereby a

two-step process is used to find the optimum parameters. These methods are

more stable for complex models such as those with many parameters and ran-

dom effects, unstable model output or local minima because they are sampling-

based rather than gradient-based methods. The algorithm alternates between an

expectation (E) step, whereby a function is created for the expectation of the

log-likelihood using the current parameter estimates, and a maximisation (M)

step, whereby parameter values are calculated that maximise the expected log-

likelihood found in the E step. In the case of NONMEM, in the E step, the

parameters (θs), random effect variances (Ωs) and residual error variance (σ) are

fixed, while for each individual expected values and variances of the random ef-

fects (ηs) are evaluated. Then in the M step, the θs, the Ωs and σ are updated

using these expected values of the ηs. EM methods have the advantage that

fitting for all off-diagonal elements in the variance-covariance matrix of random

effects takes no longer than just fitting for the diagonal elements.

The simplest of these methods is iterative two stage (ITS), where the the E

step is the same as FOCE, and the conditional mode and the first order approx-

imation of the ηs are found by maximising the posterior density.

The E step in importance sampling (IMP) evaluates the conditional mean

and variance of ηs through Monte Carlo sampling. It uses the posterior dens-

ity, which incorporates the likelihood of parameters relative to θs and ηs with

the individual’s observed data. For each iteration, the normal density near the
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mean of the posterior (from the previous iteration) is used as a proposal density.

From this, Monte Carlo samples are generated, and conditional means and vari-

ances evaluated. In the M step, population parameters are then updated from

subjects’ conditional mean parameters and variances by single iteration maxim-

isation steps.

Finally, in stochastic approximation expectation maximisation (SAEM), sim-

ilar to IMP, for the E step, random samples of the ηs are generated from normal

distributions, but instead of being centred at the mean of the posterior density

(like IMP), the sample is centred on the previous sample position. New samples

are accepted with a certain probability. This method uses two phases: a burn-in

phase, where SAEM evaluates a highly stochastic approximation of individual

parameters, and in the M step population parameters are updated from sub-

jects’ conditional mean parameters and variances by single iteration maximisation

steps. Then an accumulation phase, where individual parameter samples from

previous iterations are averaged together, converging towards the true conditional

parameter means and variances.

FOCE and Importance sampling can also be carried out in an ‘Expectation

Only’ form, whereby multiple iterations of the expectation step are carried out.

This is useful for finding an objective function following SAEM, or for fitting to

a new individual, whilst keeping population parameters fixed.

The objective function value (OFV) produced by all methods in NONMEM

apart from SAEM is −2 ln(likelihood) and is thus log multivariate normal. Thus

the difference between the OFVs of two separate models is the division of two

multivariate normals. If the difference between two models involved the addition

of k parameters, and these parameters are nested, the difference is approximately

χ2
k distributed. This means for the addition of one parameter, an improvement

in OFV of 3.84 points is equivalent to p < 0.05. Following model fitting with

SAEM, an expectation only process needs to be carried out, whereby population-
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level parameter means and their variance-covariance matrix are held fixed while

individual-level parameters are calculated and an OFV is produced. This is usu-

ally done with FOCE or importance sampling.

2.3.3 Covariate model-building

In order to find what affects the reconstitution, factors contained in the data-

set can be tested as covariates. These factors can be continuous, such as age,

or categorical, such as diagnosis, drugs, donor type or stem cell source. Cat-

egorical covariates are assumed to be independent of time for each individual.

These covariates are then tested to ascertain whether they significantly affect

reconstitution.

Nesting

Covariates are added into the model by including an extra parameter, the cov-

ariate coefficient. These covariate coefficients alter the fixed effects parameters

for the different individuals in the population according to the values of the co-

variates. For continuous covariates, there is only ever one coefficient for each

covariate. For categorical covariates, if there are more than two possible states

for the covariate, one extra coefficient is added for each of the extra states beyond

the most common state. The coefficients are included in nested models whereby if

the coefficient equals zero, it makes no change to the parameter to which it is ap-

plied. The null hypothesis is therefore that the coefficient equals zero. With the

coefficients in nested models, the likelihood ratio of the model with and without

the covariate will be asymptotically χ2
n distributed with n degrees of freedom,

where n is the number of new coefficients included in the model. Hence, the

significance of the covariate can be calculated.
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Stepwise covariate model building

Covariates are included into the models using stepwise covariate model-building

(SCM) [86]. In SCM, firstly a forward selection is carried out, whereby covariates

are added into the model one by one for each parameter and the covariate that

causes the largest improvement in the fit of the model is kept in, as long as it

meets the minimum criterion of a p-value p < p1 where p1 is often in the region

of 0.05. Then all the remaining covariates are tested again for each parameter,

and similarly that which causes the largest improvement is kept in so long as it

meets the criterion and so on until all covariates have been tested and no more

offer a large enough improvement. Then SCM carries out a backwards selection

whereby covariates that have been included in the forward selection are removed

one by one, and those that do not cause a loss in model fit that meets the stricter

criterion of p < p2, where p2 < p1, are then removed. These criteria can be

adjusted to make selection more or less likely.

2.3.4 Data below the limit of quantification

Tests for the quantities of biomarkers such as neutrophil, platelet and CD4 con-

centrations and viral loads have a limit of quantification (LOQ) below which the

measurements become unreliable. These data are referred to as below the limit of

quantification (BLQ) data, and are usually reported as the LOQ for that assay.

There are three major methods for handling data of this form. BLQ data can

be omitted from the dataset, the BLQ data can be substituted with LOQ/2 for

the purposes of modelling, or a method assessing the likelihood of data classed

at BLQ as being BLQ can be used. Beal [87] introduced a series of methods

to handle BLQ data, which were compared to each other by Ahn et al [88] and

to data omission and substitution by Bergstrand and Karlsson [89]. They found

using the so-called M3 method produced the least biased fit. In this method, data

are assessed for their likelihood to be below the LOQ given the parameter values.
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Run-times for this method, however, are slow and one improvement is to treat

data reported as above the LOQ as observations, and only to assess data reported

as BLQ for its likelihood to be BLQ [90]. Furthermore, it is only necessary to use

this method when a significant proportion of the data is BLQ, otherwise, LOQ/2

can be used as a useful approximation.

In this chapter, because only a small proportion of these data are BLQ, I

substitute BLQ data with LOQ/2.

2.3.5 Diagnostic plots

Alongside changes in OFV, quality of fit for the models to the observed data is

assessed with diagnostic plots [91]. Diagnostic plots can give information related

to model biases and model mis-specification.

Residuals plots

The residual is the difference between the observed data and the individual model

trajectory for each data point. These differences are usually normalised by divid-

ing by the standard deviation of that individual’s data to produce weighted re-

siduals. During fitting, models are linearised and this linearisation is conditioned

around the post-hoc individual empirical Bayes estimates of the inter-individual

random effects. As a result, the standard deviation used in the normalisation

needs to use the FOCE approximation, producing conditional weighted residuals

(CWRES) [92]. These are given by,

CWRES = yi − EFOCE[yi]√
CovFOCE(yi)

(2.12)

where yi is the observed data for individual i, EFOCE(yi) is the individual model

prediction for patient i and CovFOCE(yi) is the variance of the inter-individual

random effects.
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Residuals plots can be used to assess model mis-specification. Firstly, the

CWRES should be normally distributed with mean 0, variance 1 and 95% of

the CWRES between ±2, demonstrating that normality assumptions are valid.

Secondly, CWRES are assumed to be independent and so by plotting them against

time, population model predictions or other factors such as age it is possible to

assess inherent biases in the model with any of these variables.

Individual and population predictions

Plots of the model predictions at the time points at which there are observed

data against the observed data themselves are also used to assess model mis-

specification. These can be done with both population-level and individual-level

predictions. Individual predictions (IPRED) demonstrate whether there are mis-

specifications in the model at either high or low observed data and non-normality.

Visual predictive checks

Whilst the previous diagnostics asses whether the model fits the observed data,

visual predictive checks (VPCs) are used to assess whether data simulated from

the model matches the observed data, both in the overall trends and in their

variability [93,94]. Using the population level parameter means and the variance

covariance matrix of the random effects, a large number (usually between 300

and 1000) of data points are simulated from the model for each data point in

the observed data, with the simulated data having the same characteristics (such

as covariates and ages and times at data observations) as the observed data.

The data are binned by, and plotted against, an independent variable such as

time and the median and percentiles of the observed data in these bins are then

compared to the corresponding prediction interval of the median and percentiles

of the simulated data. Significant differences between medians of the bins can

demonstrate issues with the fixed effects, while the differences in the extent of the
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Figure 2.5: Comparison of the local regression curves of neutrophil concentrations for
patients who receive steroids and patients who do not. As can be seen, patients that
received steroids during conditioning had a spike in neutrophil count in the days before
HSCT.

inter-percentile range can diagnose issues with the sizes of the random effects.

Predictions within a single bin, however, can differ from each other because of

differences in other independent variables such as age or other covariates, making

interpretation of a VPC difficult and lowering the ability to diagnose model mis-

specification and poor random effects [94]. Bergstrand et al [95] have proposed a

prediction corrected VPC (pcVPC) as a solution to this problem. The dependant

variable in a bin is prediction corrected, which corrects for differences in a bin

from independent variables.
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2.4 Results

2.4.1 Neutrophils

Excluding patients with steroids

As mentioned in Section 2.2.1, steroids cause a transient increase in neutrophil

concentration, which can last for up to a day after the dose [60–63]. Patients

who are conditioned with alemtuzumab or ATG are given steroids before each

dose of these conditioning drugs in order to mitigate some of their toxicity. Local

regression curves of the raw data for those who received steroids and those who did

not are compared in Figure 2.5, making the effect of the steroids clear. Although

there is still a small rise in neutrophil concentrations in the days before transplant

in patients who do not receive steroids, the patients who do receive steroids have

a much more substantial increase. In order to make fitting models to these data

simpler, at first in this section patients who received either of these conditioning

drugs, and hence received steroids, were removed from the dataset. There were

161 patients left in this subset of the main dataset with 9324 measurements of

neutrophil concentration in the time between 14 days before and 100 days after

HSCT.

I compared four variants of the model: linear and sigmoidal K-PD with the

original Friberg model, and then linear and sigmoidal K-PD with a variant of the

Friberg model allowing elimination rate kE to differ from synthesis and transfer

rates kS and kT . The results of this comparison are summarised in Table 2.3.

Base model with sigmoidal K-PD

With the sigmoidal K-PD model, it is assumed that the drug is effective on days

that it is given (according to the protocols in Table 2.1), and has no effect other-

wise. This assumes that the EC50 is sufficiently high that the drug concentration

has fallen to below its effective concentration within a day.
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The parameter estimates were mostly sensible (see Table 2.3), although EDrug

was at its upper bound, with a large random effect, demonstrating the difficulty

that this variant of the model had with sufficient cell loss to create the size of the

decline in neutrophil concentration in the observed data.

Base model with linear K-PD

The K-PD model was tested as linear, assuming that the drug concentration

follows an exponential decay and that the drug effect follows in proportion such

that,

EDrug = Emaxe−
(t−tD)
TDrug (2.13)

where tD is the protocol-dependent time of last drug dose and TDrug is a new

parameter to be estimated, related to the lifetime of the drugs’ effects on the

Table 2.3: Comparison of parameter values, random effect variances and objective
function values for the different versions of the model for neutrophil reconstitution
excluding patients who had steroids

Base model Differing kE
K-PD model Sigmoidal Linear Sigmoidal Linear

Pa
ra

m
et

er
s

X0 (cells/µL) 1100 1150 1180 1180
X∞ (cells/µL) 2800 2550 2550 2460
MTT (days) 6.37 6.39 4.72 5.24
γ 0.107 0.163 0.920 0.163
Emax 1.00 0.746 0.975 0.813
TDrug (days) - 9.06 - 9.12
k - - 2.32 0.569

R
an

do
m

eff
ec

ts

X0 1.91 1.93 2.01 1.97
X∞ 1.33 0.859 1.03 0.889
MTT 0.486 0.666 0.683 0.898
γ 0.967 0.845 0.982 0.773
Emax 66.5 2.22 4.04 1.90
TDrug - 0.786 - 0.706
k - - 0.593 7.62
σ 0.591 0.495 0.547 0.481
OFV 6442 5086 5888 4913

σ is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Emax, which
was modelled as a logistic transformation of a normal distribution because Emax is
bounded at both 0 and 1.
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body.

This alteration produced a much improved quality of fit with OFV falling by

1355 points, a decrease in Bayesian Information Criterion (BIC) of 1346 points

where BIC = −2 ln(likelihood)+k ln(n), where k is the number of new parameters

and n is the number of datapoints. It is notable that the random effect variance

for Emax is much more sensible value with the model in this form and that Emax

is no longer equal to 1.00. The drug concentration half life is TDrug ln(2) = 6.28

days. The other parameters are broadly similar.

Differing elimination rate from synthesis and transfer rates, sigmoidal K-PD

The base model assumes that production, transfer and elimination rates are the

same. This means that there are also the same number of cells in each com-

partment at steady state. Keeping the synthesis rate equal to the transfer rate

kS = kT while allowing the elimination rate kE = kS
k

to differ keeps the concen-

tration in the proliferation and transfer compartments the same, while allowing

the concentration to be different in the circulating compartment. This affects the

shapes of the downward and upward trajectories of neutrophils.

Allowing for this in the model improved the OFV by 554 points, an improve-

ment in BIC of 546 points, not as much as the linear K-PD model, but still a

significant improvement.

Differing elimination rate from synthesis and transfer rates, linear K-PD

The combination of kE 6= kS,T and linear K-PD produced the best fit in terms

of OFV and BIC and in terms of parameter estimates. The OFV is 1529 points

lower than that for the original base model, with a drop in BIC of 1510 points.

The parameter estimate for Emax is also sensible at 81.3%, as is the estimate

for the drug lifetime with a half-life of 6.32 days. Following HSCT, the final

neutrophil concentration is expected to be more than double that before HSCT at

2460 cells/µL as opposed to 1180 cells/µL. The parameter giving the differences
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Figure 2.6: The basis of the model used for neutrophil reconstitution including the
effects of steroids on neutrophil concentration, from Ozawa et al [64]. The dynamics are
the same as in the model of Friberg et al [52], with the addition of another compartment,
the Input compartment from which cells enter the circulating compartment at rate kIn
for the days on which the patients were given steroids.

between the elimination and synthesis rates, k = kS
kE

, differs between the two

K-PD models, with a much smaller random effect with the linear K-PD model.

In the model with linear K-PD, k = 0.569, finding that the rate of elimination is

higher than that of synthesis or transfer.

In this variant of the model with linear K-PD and differing elimination rate

from synthesis and transfer rates, the random effects are much more sensible sizes

for most parameters. Furthermore the value of the residual error σ falls between

this variant of the model and all other variants, implying that this variant explains

more of the variability in the data than the others. I therefore use this variant of

the model for the analysis of neutrophil dynamics.

Re-introducing patients with steroids

In order to model the full dataset for neutrophil reconstitution, it is necessary to

account for the transient effects of steroids on the neutrophil concentration. One

method is to model the patients that receive steroids during their conditioning

regimen using an input compartment, as demonstrated in Figure 2.6, where kIn

is zero, except for the days following the administration of steroids. The input

compartment X6(t) starts with a fixed concentration of neutrophils, and on the
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administration of steroids, a proportion per day of the neutrophils will leave into

the circulating compartment, boosting the measured neutrophil concentration.

Because this effect is transient with drug application, it does not affect long term

concentrations. As such, the equations for the dynamics of the circulating and

input compartments are,

d
dtX5(t) = kTX4(t)− kEX5(t) +KInX6(t) X5(0) = X0

d
dtX6(t) = −kInX6(t) X6(0) = IP0, (2.14)

where IP0 is the concentration of neutrophils in the input compartment. The

dynamics for the rest of the compartments are unchanged.

A comparison of the results of fitting this six-compartment model and the

original five-compartment Friberg model to the full dataset for neutrophil con-

centration reconstitution is given in Table 2.4. As can be seen, the addition of

the sixth input compartment reduces the OFV by 350 points, a highly significant

decrease, implying the six-compartment version produces a much better fit to

these data.

Final structural model

The final model for reconstitution of neutrophil concentration is then a com-

bination of the six-compartment model including the effects of steroids with the

adaption of the Friberg model to allow a different elimination rate from the trans-

fer and synthesis rates and using a linear K-PD model. The inclusion of these

adaptions further decreased the OFV by 3244 points (see Table 2.4). The dy-

61



Chapter 2. Short-term neutrophil and platelet reconstitution following HSCT

namics of the final model are therefore given by the following equations,

d
dtX1(t) = kSX1(t)

(
X0

X5(t)

)γ
(1− EDrug)− kTX1(t) X1(0) = X0

k

d
dtX2(t) = kTX1(t)− kTX2(t) X2(0) = X0

k
d
dtX3(t) = kTX2(t)− kTX3(t) X3(0) = X0

k
d
dtX4(t) = kTX3(t)− kTX4(t) X4(0) = X0

k
d
dtX5(t) = kTX4(t)− kEX5(t) +KInX6(t) X5(0) = X0

d
dtX6(t) = −kInX6(t) X6(0) = IP0, (2.15)

Table 2.4: Comparison of parameter estimates for different models for neutrophil re-
constitution, including patients with steroids.

Base model Input compartment Input compartment
& differing kE

K-PD model Sigmoidal Sigmoidal Linear

Pa
ra

m
et

er
s

X0 (cells/µL) 1590 1240 1560
X∞ (cells/µL) 2830 2710 2740
MTT (days) 5.41 5.69 4.86
γ 0.101 0.108 0.159
EDrug 1.00 0.990 0.814
KIn (/day) - 0.527 0.673
IP0 (cells/µL) - 2900 866
TDrug (days) - - 6.94
k - - 0.681

R
an

do
m

eff
ec

ts

X0 1.91 2.16 2.00
X∞ 0.862 0.891 0.561
MTT 0.312 0.321 0.859
γ 0.762 0.839 0.716
EDrug 40.6 12.8 2.88
KIn - 5.79 0.167
IP0 - 5.02 2.89
TDrug - - 0.801
k - - 3.16
σ 0.556 0.541 0.447
OFV 12144 11794 8550

σ is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Emax, which
was modelled as a logistic transformation of a normal distribution because Emax is
bounded at both 0 and 1.
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Figure 2.7: Diagnostic plots for the final model of neutrophil reconstitution including
patients that received steroids, allowing different elimination and transfer rates and
using a linear K-PD model. A gives a visual predictive check. The dots give the
observed data and the filled and dashed lines give the median and 2.5th and 97.5th
percentile of the observed data. The pink shaded regions give the 95% confidence
intervals of the simulated median and 2.5th and 97.5th percentiles. B and C give the
CWRES against time and population prediction respectively, with the blue dots giving
the residuals, the red lines local regression curves and the black dashed lines giving ±2.

where

EDrug = Emaxe−
(t−tD)
TDrug (2.16)

and

kS = kT = 4
MTT

= k × kE. (2.17)

Parameter estimates for the final model are given in Table 2.4. The model finds

63
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that long-term neutrophil concentration is almost double the concentration before

HSCT (2740 cells/µL after compared to 1560 cells/µL before). With the linear

K-PD model the drug effect decreases because the drug action is spread over a

longer time period. The drug median half life was found to be 4.81 days. The

input compartment was estimated to have a concentration of 866 cells/µL, with

68% of the concentration leaving the compartment each day that the patient was

given steroids. The rate of elimination of circulating neutrophils was found to be

higher than the rates of transfer and synthesis of neutrophils.

Diagnostic plots are shown in Figure 2.7. The visual predictive check from the

model in Figure 2.7A demonstrates that the model simulated output reflects the

observed data well, capturing the median and the variability of the data for the

majority of the neutrophil concentration trajectory. The plots of conditionally

weighted residuals (CWRES) demonstrate that the residuals are approximately

normally distributed as they should be. With the local regression line falling

along the x-axis, they also demonstrate that there is no bias either with time or

with population prediction and that the residuals are independent.

Covariate analysis

Once the structural model was fixed, a covariates analysis was performed in order

to ascertain which factors significantly affected the reconstitution trajectories.

The objective function value from the model was unstable while carrying out

stepwise covariate model building, and so a univariate analysis was performed.

The covariates that were tested are listed in Table 2.2. All covariates were tested

on X0, X∞, MTT and k, just the drug-related covariates were tested on EDrug

and TDrug, while the steroid-related conditioning drugs, alemtuzumab and ATG,

were tested as covariates on KIn and IP0. The results of the covariate analysis

are given in Table 2.5 and shown in Figure 2.8. The patients that received cord

blood stem cells on average had a decreased initial concentration of neutrophils
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Figure 2.8: The effects of covariates on neutrophil dynamics following HSCT. The
typical individual is the model output for a patient that does not have each or any of
the covariates listed here, so a transplant of either peripheral blood or bone marrow
stem cells from a matched donor and another diagnosis apart from leukaemia.

X0, as did patients that had leukaemia as opposed to another diagnosis. The

type of donor that was used for the HSCT was also found by the model to

affect the recovery of neutrophils in patients. Reconstitution following matched

and mismatched donors were similar to each other but reconstitution following

haploidentical and autologous transplants had a longer mean transfer time MTT

resulting in delayed reconstitution.

2.4.2 Platelets

The two models that have been used previously for platelet dynamics, the models

of Hayes et al and Friberg et al, were fitted to the data of platelet concentrations

around HSCT. The dynamics are simpler than for neutrophils in that there are

no effects from steroids. As such, a sixth input compartment is not necessary and

the models can be fitted straight to the full data.

The Hayes model and the base Friberg model were both fitted to the data
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Table 2.5: Covariates included in the model for neutrophil dynamics

Parameter Covariate Effect size p-value
X0 Cord blood stem cells -0.397 � 0.001
X0 Leukaemia -0.277 � 0.001

MTT Donor type < 0.001
Matched 0†
Mis-Matched 0.0274
Haploidentical 0.481
Autologous 0.240

The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero. † Typical individual.

using a sigmoidal and a linear K-PD model, and the variant of the Friberg model

with elimination different from synthesis and transfer was also fitted using a linear

K-PD model.

The parameter estimates from fitting these models are given in Table 2.6. The

Hayes model, particularly with the sigmoidal K-PD model did not achieve a good

fit to the data, with a high OFV and a high residual error in comparison to the

Friberg model. With the linear K-PD model it achieved a much higher quality of

fit, but still did not manage to attain an OFV of a similar standard to that of the

Friberg model. Of the variants of the Friberg model, those with the linear K-PD

model have a better fit. There is not a large difference however between the two,

and the addition of a differing rate of elimination does not improve fit enough

that it is worth the extra parameter (∆BIC = 11) in the model. Furthermore,

the variant of the model where kE = kS = kT has the lowest residual error of all

the variants.

An explanation for the large difference in OFV between the Hayes and Friberg

models is demonstrated in Figure 2.9 which compares individualised output for

a subset of patients for the Hayes and Friberg models (with kE = kS = kT ), both

with linear K-PD models. These patients have been chosen to demonstrate that

the platelet reconstitution appears to form oscillations in some patients during
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reconstitution. The Hayes model cannot recreate these whereas the Friberg model

can because of the feedback term. This model therefore seems to be the better

representation of platelet reconstitution. And so for the rest of this section I use

the Friberg model with linear K-PD and with elimination, transfer and synthesis

rates the same (kE = kS = kT ).

The parameters for long-term and initial platelet concentration are very sim-

ilar, with the long-term platelet concentration slightly higher atX∞ = 166,000 /µL

than the initial platelet concentration of X0 = 163,000 /µL. The mean transfer

time MTT is 5.73 days, while the drug effect Emax is low at just 28.6%. The

Table 2.6: Comparison of parameter estimates for different models for platelet recon-
stitution.

Model Hayes Friberg
Differing kE

K-PD model Sigmoidal Linear Sigmoidal Linear Linear

Pa
ra

m
et

er
s

X0 (/µL) 124,000 163,000 161,000 163,000 164,000
X∞ (/µL) 125,000 206,000 179,000 166,000 165,000
kE (/day) 0.252 0.359 – – –
kT & kS (/day) 0.238 0.445 – – –
MTT (days) – – 6.69 5.73 6.33
γ – – 0.0835 0.109 0.127
Emax 0.988 0.988 0.490 0.286 0.330
TDrug (days) – 15.5 – 5.24 5.20
k – – – – 0.475

R
an

do
m

eff
ec

ts

X0 0.922 0.840 0.814 0.832 0.825
X∞ 0.949 1.34 0.899 0.833 0.840
kE 0.761 0.579 – – –
kT & kS 0.951 0.718 – – –
MTT – – 0.413 0.419 0.540
γ – – 1.51 1.10 1.20
Emax 0.439 4.07 2.70 1.05 1.26
TDrug – 5.04 – 3.78 3.23
k – – – – 0.241
σ 0.395 0.305 0.285 0.278 0.280
OFV 4400 -577 -1897 -2248 -2269

σ is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Emax, which
was modelled as a logistic transformation of a normal distribution because Emax is
bounded at both 0 and 1.
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●

Friberg model
Hayes model
Observed data

Figure 2.9: Comparison of the two models for platelet reconstitution for a subset of
patients, demonstrating the differences between individual predictions. The black dots
give the observed data, and it can be seen that while the Friberg model can recreate
the observed oscillations because of the feedback loop, the Hayes model cannot and
draws a straight line through the data.

drug half-life was estimated at 3.63 days.

Diagnostic plots for the Friberg model are shown in Figure 2.10. The visual

predictive check in Figure 2.10A demonstrates that the model simulated output

does capture the median of the observed data well and most of the variability,

although it over-predicts the reconstitution at later time points and for the 95th

percentile. The plots of the conditionally weighted residuals in Figures 2.10B and

C demonstrate that the residuals are roughly normally distributed with mean zero

and standard deviation one, and that there are no obvious biases with time or

population prediction and so the residuals are independent.

Covariate analysis

Once the structural model was fixed at the Friberg model with linear K-PD,

covariates analysis was performed using the SCM procedure to find the factors

68



Chapter 2. Short-term neutrophil and platelet reconstitution following HSCT
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Figure 2.10: Diagnostic plots for the final model of platelet reconstitution, using a
linear K-PD model. A gives a visual predictive check. The dots give the observed
data and the filled and dashed lines give the median and 2.5th and 97.5th percentile
of the observed data. The pink shaded regions give the 95% confidence intervals of the
simulated median and 2.5th and 97.5th percentiles. B and C give the CWRES against
time and population prediction respectively, with the blue dots giving the residuals,
the red lines local regression curves and the black dashed lines giving ±2.

that significantly affect the reconstitution of platelets. The covariates that were

tested are listed in Table 2.2. All covariates were tested on X0, X∞ and MTT and

just the drug-related covariates were tested on EDrug and TDrug. The results of

the covariate analysis are given in Table 2.7 and shown in Figure 2.11. As can be

seen, the significant covariates all affected either the initial platelet concentration

X0 or the long-term platelet concentration X∞. Patients that received busulfan
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Figure 2.11: The effects of covariates on platelet dynamics following HSCT. The typical
individual is the model output for a patient that does not have each or any of the
covariates listed here, so received bone marrow stem cells, did not receive either busulfan
or total body irradiation as conditioning, and had another diagnosis apart from an
immunodeficiency.

were found through the model to have on average a higher platelet concentration

pre-HSCT, while those who received cyclophosphamide were found to have a

lower pre-HSCT platelet concentration. Patients that received peripheral blood

stem cells or were diagnosed with immunodeficiency were found by the model

to have on average a raised long-term platelet concentration while patients that

received cord blood stem cells as opposed to bone marrow or peripheral blood

stem cells were found by the model to have on average a decreased long-term

platelet concentration.

2.5 Discussion

In this chapter, I have successfully applied previous models for neutrophil and

platelet reconstitution to the context of paediatric HSCT. The mechanistic models

were similar in that they had a proliferation compartment, on which the drugs
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Table 2.7: Covariates included in the model for platelet dynamics

Parameter Covariate Effect size p-value
X0 Busulfan 0.730 � 0.001
X0 Cyclophosphamide -0.434 � 0.001
X∞ Stem cell source < 0.001

Bone marrow 0†
Peripheral blood 0.425
Cord blood -0.260

X∞ Immunodeficiency 0.421 < 0.001
The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero. † Typical individual.

acted, multiple transit compartments and finally a circulating compartment where

the cell concentrations were measured. A comparison of models found that the

linear kinetic-pharmacodynamic (K-PD) model was the better K-PD model for

all model variants. For neutrophils, the model variant of the Friberg model with

elimination rate differing from synthesis and transfer rates provided the best fit

to the data. For platelets, the Friberg model provided a much better fit than the

Hayes model because of the presence of a feedback loop, and the model variant

in which the elimination rate was the same as the synthesis and transfer rates

was selected as that which was the best balance between objective function value

and number of parameters.

After discovering that the Friberg model gave such a large improvement in fit

over the Hayes model for the platelet data, closer analysis of individual trajectories

demonstrated that platelet concentrations in some individuals oscillated during

reconstitution. The feedback term was therefore necessary to explain the data

from these patients. These oscillations had been unexpected; none of the other

studies that have used this model have reported oscillations, although the data

that they were using may not have had the resolution to see these effects [67–

71]. Oscillatory dynamics for platelets have been reported in patients with cyclic

thrombocytopenia, and healthy volunteers were found to have fluctuations with
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a time period in the order of 25 – 30 days [96], similar to this analysis. They have

not however been reported as part of reconstitution. One option for the cause of

this feedback is transforming growth factor beta (TGF-beta) levels producing a

negative feedback loop on megakaryocyte production [97].

The model parameters for initial and final concentration were different for

neutrophils, with the final concentration almost double the initial concentration

(X∞ = 2740 cells/µL compared with X0 = 1560 cells/µL). This implies that on

average the population has a much more healthy innate immune system following

HSCT than before the transplant, which is not surprising given that some patients

were given HSCT for neutropaenic immunodeficiencies. For platelets, graphically

the local regression curves of Figure 2.3 appears to show that platelets do not

recover to the same level at which they started. The model however implied that

on average platelets can be expected to recover to the level at which they started

within three months (X∞ =166,000 /µL cf. X0 =163,000 /µL). This difference

is because the local regression curves cannot account for the fact that patients

recover quickly, but at different delays from the HSCT (see Figure 2.4). For both

neutrophils and platelets these values of X0 and X∞ are well within the ranges

for normal children [98,99].

The value of the mean transfer time for neutrophils MTT = 4.86 days agrees

well with other analyses that have used this model on adults, with values in the

range of 3.8 to 5.6 days [52,59]. The mean transfer time for platelets was longer

with MTT = 5.73 days. Platelets have a longer lifetime in the periphery, and

so this was to be expected [4,9,10]. Previous uses of this model have found an

MTT in the range of 4.3 to 9.2 days, which agrees with the results presented

here [67–69].

With the linear K-PD model, the maximum drug effect was larger for neutro-

phils with Emax = 81.4% than for platelets with Emax = 28.6%. This means the

drugs were roughly 2.8 times as effective in neutrophils, which is in line with the
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observed data where the neutrophil concentrations undergo a 10-fold decline and

platelet concentrations undergo just a 3-fold decline. This parameter is usually

reported as the ‘Slope’ parameter in other uses of this model, where Slope ' Emax
EC50

(see Section 2.2.3). However, given that we have no drug concentration data, we

use a slightly different form of the parameterisation. One study that uses this

model to estimate parameters for both neutrophil and platelet concentration pro-

files with the same drug finds that the drug is 2.8 times as effective for neutrophils

as platelets [67], which agrees with the results of this analysis.

Half lives of the drugs used in conditioning are short: busulfan 2.3 hrs [79];

cyclophosphamide 5–9 hrs [80]; fludarabine 8–10 hrs [81]; melphalan 1.3 hrs [82];

and treosulphan 1.7-2.2 hrs [83]. As such, it is interesting that the drug effect

was found to have a half life of 4.8 days for neutrophils and 3.6 days for platelets

after the end of conditioning treatment. This implies that the model may not be

fully capturing the effects of these drugs. One explanation could be the structure

of the proliferating compartment. At the moment it is assumed that these prolif-

erating stem cells form a resident population that produce neutrophil precursors.

These proliferating stem cells however are in dynamic equilibrium with their own

precursors and these precursors will also have been prevented from proliferating

by the conditioning drugs. This would result in an extra delay following the drugs

before neutrophil precursor production increases and hence an apparently longer

drug effect. Future work with higher resolution pharmacokinetic drug data could

tease out this relationship.

These models are however very much semi-mechanistic. They take a complex

system — the production of new platelets and neutrophils from stem cells —

and simplify them to a number of linear compartments. While the key features

are mechanistic, with new cells only produced in the bone marrow compartment,

cell concentrations measured in the circulating compartment and the existence

of a feedback mechanism, the exact meaning of the compartments themselves is
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difficult to interpret. Furthermore, it is difficult to extract information (such as

neutrophil or platelet peripheral lifetimes) from this model.

Once the structural models were fixed, it was possible to analyse the factors

that affected the reconstitution of both neutrophils and platelets. For neutro-

phils, it was not possible to perform multivariate analysis because the objective

function value proved too unstable to perform SCM reliably. SCM is usually per-

formed on datasets much smaller than these here, and with so many data, small

fluctuations in model parameters can lead to very large fluctuations in objective

function value which may explain the difficulty found here. It was however pos-

sible to perform a univariate analysis. The patients that received cord blood stem

cells were found by the model to have a lower pre-HSCT neutrophil concentration

than those that received either peripheral blood or bone marrow stem cells from

the donor. In the observed data, patients that had a cord blood transplant had a

median neutrophil concentration before the start of conditioning 22% lower than

the other patients, which can explain a part of the difference. Patients that had

leukaemia were also found by the model to have a reduced pre-HSCT neutrophil

concentration. Again, this is backed by the observed data, with leukaemia pa-

tients having median pre-conditioning neutrophil concentrations reduced by 59%

from the rest of the patients. Covariate analysis also identified donor type as

a factor that affects reconstitution, with patients that had either haploidentical

donor or autologous transplants having a later and slower recovery than those

that had either mis-matched or matched donors. The patients that had hap-

loidentical donors were more likely to have had no conditioning (50% — 6 out of

12 — in comparison to 12% in the rest of the patients), and as a result the profile

will be quite different, which could explain some of the difference.

It was possible to perform multivariate analysis to find the factors that affect

platelet reconstitution, finding that the conditioning drugs busulfan and cyclo-

phosphamide affected the initial platelet concentration X0 and that donor stem
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cell source and immunodeficiency affected long-term platelet concentration X∞.

The differences in the initial concentration are apparent in the observed data,

with the median initial concentration in patients that had busulfan 19% higher

than those that did not and the median initial concentration in patients that had

cyclophosphamide 33% lower than those that did not. Whilst this explains some

of the difference found through the model, it does not explain all of it, and it is

likely that some of the differences found by the model are due to mis-specification

in the protocol for the days on which conditioning drugs were given (Table 2.1).

The high long-term platelet concentration for patients diagnosed with immun-

odeficiency as opposed to other diagnoses is an interesting effect that is visible in

the observed data, with median platelet concentration between days 60 and 100

post HSCT almost double in patients that had immunodeficiencies. Finally, the

differences between the stem cell sources are also visible in the data, an explan-

ation for these differences could be the make-up of the donor cell grafts, where

cord blood grafts are likely to be smaller with lower concentrations of platelet-

producing megakaryoctes, whereas peripheral blood is likely to be more diverse,

potentially providing more platelets early on. The significance of this covariate on

long-term concentration therefore potentially implies that the increase in platelets

following HSCT might be more to do with platelets produced by megakaryoctes

found in the donor cell graft, rather than stem-cell derived megakaryoctes.

In this chapter, known mechanistic models for the short term reconstitution

of neutrophils and platelets have been fitted to data from paediatric HSCT using

nonlinear mixed effects modelling. To our knowledge, this is the first time this

analysis has been done in this way. The models were complex enough that they

were able to recreate these systems, but simple enough that it was possible to

estimate parameters. The models have been used to perform a covariate analysis

to find the factors that affect the reconstitution of these vital cell subsets from

the haematopoietic system.
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Chapter 3

Long-term CD4 T cell

reconstitution following HSCT

3.1 Introduction

Full CD4 T cell reconstitution takes between one and three years following HSCT.

Over this time period a child’s immune system will have matured appreciably

and the expected CD4 concentration will have changed, with CD4 concentration

expected to fall by 2
3 between 0 and 10 years old (see Figure 1.2). Because these

changes occur within an individual, any modelling attempts need to account for

age-related effects before the underlying trends can be ascertained.

In this chapter, I develop a model for long-term CD4 T cell reconstitution.

In the model development, different methods were used to attempt to account

for age, which finally led to the use of mechanistic modelling. The mechanistic

models had the advantage of being able to take into account other areas of relevant

biology as well, such as competition for resources. The final model was then used

to make predictions of long-term reconstitution on an individual basis, using the

patient’s covariates and early data. Predictions of long-term reconstitution could

greatly assist clinicians by giving early warnings of potential long-term problems
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following the HSCT and indicating the need for further interventions, such as

prophylactic antimicrobials, donor lymphocyte infusion or repeat HSCT.

3.1.1 Quantifying immune reconstitution

Two methods have been used in previous studies to assess reconstitution: lymph-

ocyte subset concentrations at pre-determined time points after HSCT, and the

time after HSCT that lymphocyte subsets reach pre-determined concentrations.

Variations in the extent of reconstitution at particular times are assessed

through the pre-determined time-points method. Differences in reconstitution

following transplantation with the three different stem cell sources have been

widely reported. Increased B cell reconstitution has been found to occur earlier

after cord blood transplantation (CBT) compared with bone marrow transplant-

ation (BMT) [100] and greater B cell and NK cell reconstitution but reduced T

cell reconstitution at 3 months following unrelated CBT compared with matched

sibling BMT and unrelated BMT [101]. Studies looking at the effects of the

donor types on reconstitution, have found increased reconstitution with matched

sibling donors rather than mismatched family or unrelated donors [102] and re-

duced T cell reconstitution at 6 months in patients having autologous peripheral

blood stem cell transplantation (PBSCT) compared with allogeneic BMT or PB-

SCT [103]. Age effects have been identified, with younger patients reconstitut-

ing fewer CD8 T cells at one month following allogeneic HSCT [104]. Further,

Epstein-Barr virus DNAemia was found to have a negative impact on the re-

constitution of T cells at one year [104]. A study into the effects of reduced

intensity conditioning showed that the lower concentrations of the conditioning

drugs compared to full myeloablative conditioning resulted in increased T and

NK cell reconstitution at four months, concluding that immune reconstitution is

accelerated by reduced conditioning [105].

The pre-determined time-points method is also used to find the leukocyte
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concentration thresholds at certain times that indicate improved survival prob-

ability. Studies into CD4 concentrations have used 115 cells/µL at 20 days after

HSCT [106] and 86 cells/µL at 35 days [102], while a study into absolute lymph-

ocyte count used 150 cells/µL at 30 days [107]. One study used a more sophistic-

ated method, classifying people into high- and low-mortality risk groups by form-

ing an ellipsoid reference domain for the normal concentrations of three lympho-

cyte subsets [108]. Most simply, patients with higher CD4 T cell concentrations

at predetermined time points had improved survival probability [101].

Changes in the rate of reconstitution are assessed through the time to reach

pre-determined concentrations method. Studies into stem cell sources have found

faster B and slower CD8 T cell reconstitution following unrelated CBT as opposed

to unrelated BMT [109] and faster reconstitution following PBSCT compared

with BMT [110], while another found faster reconstitution following CBT with

high concentrations of CD45 cells [111]. One study that looked at the effects

of conditioning drugs found that anti-thymocyte globulin (ATG) almost doubles

the time to reach normal CD4 T cell concentrations, but that CD8 T cells were

unaffected [112]. High doses of ATG were also associated with increased incidence

of life-threatening infections [112]. Finally T cell reconstitution was found to slow

with age across childhood [109].

The pre-determined concentrations method has also been used to find cut-

off times to reach concentrations that result in improved survival probability.

Significant improvements in survival probability were found for patients who re-

constituted above the 5th percentile of normal CD4 T cell concentration within

one year [110]. Survival probability was also conditioned by the CD8 T cell re-

constitution rate and the time to reach the 10th percentile of normal CD4 T cell

concentration [113].

For assessments of concentrations at pre-determined time points, the data

must be rigorously collected on the day specified. Meanwhile for time to event
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analysis of pre-determined concentrations, the event must be monitored fre-

quently or the time is missed. In contrast, mathematical modelling is advant-

ageous because it allows data collection at any time, offering greater flexibility.

Furthermore, mathematical modelling can analyse both the rate and extent of

the reconstitution, whereas both the approaches described above only evaluate

specific factors that affect either the rate or the extent of the reconstitution, not

both.

In this chapter, I construct a mechanistic mathematical model for CD4 T cell

concentration in order to model the long-term reconstitution following HSCT and

determine the factors that affect this reconstitution.

3.2 Methods

3.2.1 The data

The CD4 T cell concentration data used in this chapter were collected as routine

clinical practice by the Blood and Marrow Transplant Unit at Great Ormond

Street Hospital for Children NHS Trust. Two separate datasets were used; a

model-building dataset and a validation dataset. The model-building dataset uses

CD4 T cell concentrations from the patients studied in Chapter 2. This dataset,

shown in Figure 3.1, was used for developing the model and covariate analysis.

The validation dataset was a separate cohort of patients who had transplants

between 2010 and 2014. This dataset was used to validate the predictive ability

of the model.

The modelling dataset has 288 patients who had 319 transplants between

them. The median age at transplant was 37 months, with a range of 16 days to

16 years. In this dataset, 24% of the patients died within the 1–6 year follow-up

period; of these patients, 36% died from infection, 35% from disease relapse, and

15% from acute GvHD.
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Figure 3.1: Data for CD4 T cell reconstitution following HSCT used for model-building.
Each coloured line gives the data for a single individual, while the black line gives the
local regression curve for the data. A is plotted with a linear y-scale, while B is the
same data, plotted on a log y-scale.

The validation dataset is a subset of 75 patients from 132 patients who had

144 transplants between them. The patients chosen for the validation dataset

were those for which there were at least three data points before six months post

HSCT and at least three data points after six months post HSCT. A breakdown
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Table 3.1: Breakdown of the demographics and the drugs used for the patients in the
long-term, CD4 reconstitution datasets.

M V M V
Age at HSCT (years) Donor type

0→ 1 51 14 Matched 201 39
1→ 2 67 12 Sibling 86 14
2→ 5 74 16 Family 16 5
5→ 10 76 23 Unrelated 99 20
10→ 51 10 Mis-matched 102 28

Sex Sibling 3 0
Male 202 51 Family 6 1
Female 117 24 Unrelated 93 27

HSCT Haploidentical 13 2
1st 272 66 Autologous 3 6
2nd 40 8 Viruses
3rd 3 1 Cytomegalovirus

Diagnosis Positive 102 12
Immunodeficiencies 138 30 Negative 213 61

SCID 82 18 Unknown 4 2
Wiskott-Aldrich 12 5 Epstein Barr virus
CGD 12 6 Positive 82 12

Leukaemia 95 17 Negative 120 48
ALL 45 8 Unknown 117 2
AML 35 8 Adenovirus

HLH 35 5 Positive 106 —
Anaemia 21 0 Negative 213 —
Autoimmune 8 0 Conditioning
Lymphomas 5 0 Alemtuzumab 158 30

GvHD Anti-CD45 12 2
Reported 102 45 Anti-thymocyte globulin 10 12

I 39 25 Busulphan 75 31
II 38 15 Cyclophosphamide 140 12
III 18 4 Fludarabine 67 55
IV 7 1 Melphalan 97 17

Stem cells Treosulphan 67 18
Bone marrow 149 27 Total body irradiation 44 6
Peripheral blood 120 28 None 41 4
Cord blood 48 20 Prophylaxis
Combinations 2 0 Ciclosporin 280 66

Methotrexate 66 12
Mycophenolate 158 51

M: Model-building dataset, used for model building and covariate analysis; V: Validation data-
set, used for assessing the predictive ability of the model. Abbreviations: SCID: severe combined
immunodeficiency sydrome; CGD: chronic granulomatous disease; ALL: acute lymphoblastic
leukaemia; AML: acute myeloid leukaemia; HLH: hemophagocytic lymphohistiocytosis; GvHD:
graft versus host disease.
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of the demographics of both datasets, and the drugs used for conditioning and

prophylaxis, is given in Table 3.1.

3.2.2 Model building

In contrast to the short-term reconstitution seen for platelets and neutrophils, the

time scale for CD4 T cell reconstitution is similar to the expected changes in CD4

T cell concentration as children get older. As such, individuals can be expected

to have intra-individual age-related changes in their data and age cannot just be

accounted for in the inter-individual random effects. Furthermore, CD4 T cells

proliferate in the periphery which neither neutrophils nor platelets do. As such

the models used in Chapter 2 cannot apply here and so a new model for long-term

reconstitution following HSCT is constructed.

Empirical modelling

Early modelling attempts used an empirical model for CD4 T cell reconstitution,

with three parameters: long-term CD4 T cell concentration asy, initial CD4 T

cell concentration int, and the rate of reconstitution c,

y = asy − (asy − int) e−c t . (3.1)

In order to fit this model to the data, two different approaches were tried to

account for the effects of development, pre-adjusting the data and adjusting the

model. Pre-adjusting the data involved attempting to remove the effects of age

from the data before fitting the model by standardising to some sort of expected

concentration for age. The first option for this was to use z-scores, where the

observed concentration is compared to a distribution of CD4 concentration for

the same age [114]. A score is then assigned, with the median concentration

giving a score of 0, and a score of ±1 corresponding to ±1 standard deviation
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λ

Figure 3.2: Schematic of the long-term CD4 T cell reconstitution model. CD4 T cells
in the compartment have concentration X(t). They enter the compartment from the
thymus at zero order rate λ. Cells then die at rate d and proliferate at rate p.

from the median. Outside of a relatively confined range around the median, such

as with the concentrations immediately after HSCT, these scores are however of

limited validity. Instead, another option is to use the ratio of the observed CD4

concentration to the expected CD4 concentration for that age [31], with one of

three transformations, log, 2nd root or 4th root of this ratio.

Adjusting the model involved accounting for the changing CD4 concentration

within the model itself, while fitting to the raw data. This was achieved by having

age-dependance on asy in one of four forms, linear, bi-linear, exponential decay

and a ratio of the expected concentration for age.

On comparison, the results from these forms of the data and model, however,

were very inconsistent and it was not possible to distinguish which version was the

least biased analysis of the data. It was thus decided that the use of a mechanistic

modelling approach could provide a better explanation for the effects of normal

age-related changes in a child’s immune system.

Mechanistic modelling

The structural model as applied in this chapter is a one compartment turnover

model as given in Figure 3.2. In this model the central compartment represents

the CD4 T cell concentration X(t) with time t. New cells from the thymus enter

this compartment at zero-order rate λ. Cells can proliferate into two cells or die at

first order rates p or d respectively. This gives the following ordinary differential
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Figure 3.3: Expected thymic output of CD4 T cells with age using the formula from
Bains et al [33] given in Eq (3.3). Thymic output peaks at around 1 year of age and
then deceases as the thymus involutes.

equation for the dynamics,

d
dtX = λ− dX + pX. (3.2)

The model is then made more mechanistic by using mathematical functions in

place of some of the parameters to better represent the underlying biology.

Accounting for the effects of age

Because the concentration of CD4 T cells decreases across childhood by 2/3

between 0 and 10 years old (see Figure 1.2), it is important the effects of im-

mune development are taken into account.

Thymus development

Thymic output first increases with age as the thymus grows, peaking at about

one year of age, and then decreasing with age as the thymus involutes [33]. These

changes with age were recently characterised mathematically by Bains et al [33].

Their work makes use of the fact that TRECs are neither degraded nor replicated

in division to calculate the number of cells produced by the thymus with age.

They then remove the dilution in TREC numbers caused by cell division, using
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Figure 3.4: Proportion of CD4 T cells expressing Ki67 with age using the formula in
(3.4) [33]. Ki67 is used as a marker for proliferation and so this decline can be used for
the rate of decline in turnover rates of CD4 T cells with age through childhood.

levels of Ki67 with age as a marker for cell division. This leaves the following

functional form for thymic output with time t and age τ (see Figure 3.3),

λ(t, τ) = λ0 ×
y(τ)V (τ) γ
η(c− γ) , (3.3)

where V (τ) is the expected CD4 T cell concentration with age; η = 0.52 is the

duration of Ki67 expression; c = 0.25 and γ = 0.08 are constants related to the

TREC content of CD4 cells as they leave the thymus; and y(τ) is the proportion

of CD4 cells expressing Ki67 with age,

y(τ)=0.02 e(−0.00027 τ) (3.4)

shown in Figure 3.4. The parameter λ0 is included such that the proportion of

the expected thymic output for age is estimated but the shape of the changes

with age are maintained.

Changes in loss and proliferation with age

It is thought that the cell proliferation and loss rates decrease with increasing

age through childhood [33,35,36]. Ki67 expression can be used as a marker for

CD4 T cell proliferation, and so the change in Ki67 expression with age, which
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has recently been characterised, can be used to inform on the time-scales of the

decrease in proliferation and loss throughout childhood [36]. Ki67 expression with

age is given by y(τ) shown Figure 3.4 and equation (3.4).

Homeostatic mechanisms and competition for resources

T cells are thought to compete for resources such as cytokines and sp-MHC (see

Section 1.5). This means when there are very few T cells, there is much more

resource for each T cell so that proliferation increases and loss decreases. This

has been observed in a cohort of thymectomised children that had reduced T cell

concentrations in whom Ki67 expression levels, a marker for proliferation, was

found to be raised [115].

A mechanistic mathematical model for the homeostatic mechanisms and com-

petition for resources has previously been proposed [116]. In this two-compartment

homeostatic model, T cells produced by the thymus enter the resting compart-

ment X. From this, cells are activated at rate a into the dividing compartment

Y from which two cells return at rate r to the resting compartment. Cells have

different loss rates in the resting and dividing compartments, dX and dY respect-

ively. Homeostatic mechanisms from competition for resources result in density

dependant activation and death rates. The full model is given by:

d
dtX = λ−X

(
dX − a

)
+ 2rY (3.5)

d
dtY = aX − dY Y − rY, (3.6)

where

a = a0e−ca(X+Y ) (3.7)

dX = d0ecd(X+Y ) (3.8)

dY = µY, (3.9)
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λ is thymic output, and t is time after HSCT. a0 and d0 could be considered as

the activation and loss rates at zero CD4 T cell concentration; ca and cd as the

strength of the competition effects.

Simplifying the homeostatic model

This model was simplified in order to reduce it from two compartments to one (see

Figure 3.2), thus making the model parameters more identifiable, and simpler to

fit to the data. To achieve this, the following two assumptions were used.

Quasi steady state approximation: With r >> a, it can be assumed that the

dynamics of the dividing compartment, Y are fast relative to the dynamics of

the resting compartment, X. Thus the resting compartment is in quasi-steady

state and, as a result, the dynamics are driven by the concentration in the resting

compartment, X, such that from the ordinary differential equation, (3.6),

dY
dt

∣∣∣∣∣
x

= aX − rY − dY Y = 0 (3.10)

which gives,

µY 2 + rY − aX = 0, (3.11)

which can be rearranged to get Y in terms of X,

Y = 1
2µ

−r ± r
√

1 + 4µa
r2 X

 . (3.12)

Low death rate in dividing compartment: With the parameters values ob-

tained on fitting the full model to data for CD4 concentrations [116], the death

rate in the dividing compartment, µ, was very small, and in particular, the pro-

portion of cells dying was much lower than those returning to the resting com-

partment, namely µ << r. Thus the term 4µa
r2 X << 1, and the Binomial theorem

can be used to say, √
1 + 4µa

r2 X ≈
(

1 + 2µa
r2 X

)
, (3.13)
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allowing the approximation of (3.12) to become:

Y = 1
2µ

(
−r ± r

(
1 + 2µa

r2 X
))

(3.14)

giving

Y = a

r
X, (3.15)

where the negative root has been discarded as both X and Y are positive. Sub-

stituting (3.15) into (3.5) thus gives,

d
dtX = λ−X (dX − a) , (3.16)

removing the dependance on the 2nd compartment completely. Activation from

the original model is now better described as proliferation, so the nomenclature

is changed such that,
d
dtX = λ−X (d− p) , (3.17)

where,

p = p0e−cpX (3.18)

d = d0ecdX . (3.19)

Effects of changing cell concentrations on competition for resources

Because cell concentrations are changing through childhood and in order to make

the parameter values more interpretable, these functions were altered such that

they scale with CD4 T cell concentration,

p = p0ecp(1−X(t)
V (τ)) (3.20)

d = d0ecd(
X(t)
V (τ)−1), (3.21)
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Figure 3.5: Competition effects with proportion of expected CD4 T cell concentration
using formulas (3.18) and (3.19). The effect is to multiply the proliferation and loss
rates for age by the blue and green lines respectively. The effect is dependent on the
ratio of the CD4 concentration to that expected of a child of the same age. When the
concentration equals that expected of a healthy child, the effect is 1.

where V (τ) is the expected CD4 concentration for age. This means the paramet-

ers, p0 and d0 can be interpreted as the proliferation and loss rates respectively

when the CD4 concentration is equal to that expected of a healthy child, while

cp and cd are the strength of the effects of competition for resources on loss and

proliferation respectively. These functions are shown in Figure 3.5.

Effects of the HSCT on thymic output

Following HSCT thymic output of T cells does not recover for between 6 and 12

months, as demonstrated by evidence from both TREC analysis [117–119] and

studies of recent thymic emigrants using CD31 expression [100]. This lack of

production leads to a delay in the reconstitution of CD4 T cells. A sigmoidal

function with time after transplant was chosen to model this effect, such that

thymic output would increase from 0 cells/day on the day of transplant, to that

expected of a healthy child after some time delay. Several functions were tested

to achieve this, including a simple logistic, generalised logistic, and Hill function

as well as adaptions thereof. They were compared by BIC and their properties
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Figure 3.6: The proportion of the expected thymic output with time following HSCT,
modelling the effects of impaired thymic output using formula (3.22). Immediately
after the transplant thymic output is impaired. With time after HSCT, thymic output
recovers, with λhalf giving the time at which this increase is at its maximum rate and
λrate the rate of this increase.

and the the final selected function is given by (Figure 3.6),

∆thymus =
1− exp

[
− 2t/λhalf

]
1 + exp

[
− λrate (1− t/λhalf)

] (3.22)

where λhalf and λrate are two new parameters to be estimated. λhalf gives the

time after HSCT that the thymic output increases at its maximum rate, and λrate

gives the rate of this increase.

The complete structural model

The structural model is then given by:

d
dtX(t, τ) = λ(t, τ)− d(t, τ)X(t, τ) + p(t, τ)X(t, τ) ,

where

λ(t, τ) = λ0
y(τ)V (τ) γ
η(c− γ) ∆thymus(t) (3.23)

p(t, τ) = y(τ)p0ecp(1−X(t)
V (τ)) (3.24)

d(t, τ) = y(τ)d0ecd(
X(t)
V (τ)−1) , (3.25)
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leaving eight parameters to be estimated: X0 the initial concentration of T cells;

λ0 proportion of the expected thymic output with age; p0 and d0 the proliferation

and loss rates respectively when the concentration is that of a healthy child; cp

and cd the strength of the effects of competition for resources on proliferation and

loss respectively; λrate the rate of change of thymus recovery; and λhalf the time

at which thymic recovery is half.

3.2.3 Sensitivity and identifiability analysis

Before fitting the model to data, the model was assessed for its parameter sensitiv-

ity and its theoretical identifiability using the FME package [120] in R 3.1.3 [121].

With this package, it is possible to get a plot of the model’s sensitivity to per-

turbations in the model parameters. In Figure 3.7A, the effects of increasing

each of the parameters by 10% have been plotted against time, and it can be

seen that while the CD4 T cell concentration is sensitive to all parameters, some

parameters cause changes which are either very similar or exact opposites of each

other.

The package was also used to carry out collinearity analysis. In this pro-

cess, a collinearity index is calculated based on the extent to which similar

model output can be produced from several different parameter combinations,

based on Omlin et al [122]. The collinearity index can be interpreted as the

amount of the change in model output through altering one of the parameters

that can be compensated through changes in other parameters. The index is

given by collinearity = 1 − 1/k where k is the fraction of the changes that can

be compensated. This means that with a collinearity index of 20, changes in one

parameter can be compensated by 95% by changes in other parameters, while a

model with a collinearity of 1 would have perfectly orthogonal parameters. In

Figure 3.7B the collinearity index is given for the eight parameter combinations

for which all three of the key parameters (λ0, d0, p0) are represented and the col-
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Figure 3.7: Assessing the structural properties with the model with the FME pack-
age [120]. A gives the sensitivity of the model with time after HSCT to perturbations
in each of the parameters. Each line represents the effect of increasing that parameter
by 10%, demonstrating the co-dependence of parameters in the model. B gives the
collinearity of different combinations of the model parameters. Each model tests a dif-
ferent combination of parameters given by the black bars and finds a collinearity index
for the co-dependance of the parameters tested. In this plot, just the 8 models that
included all of λ0, d0 and p0 and had a collinearity less than 40 are shown.

linearity is under 40. As can be seen, not a single model in which the parameters

for the strength of competition for resources cp and cd are estimated are repres-

ented. As such, these parameters are highly collinear, with any combination of

parameters that includes one of cp or cp having a collinearity score greater than

40. They are therefore difficult to estimate alongside the other parameters, and

their effects can be compensated for by the other parameters. In the rest of the
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analysis in this chapter they are therefore fixed to 1.

This package has tested theoretical identifiability. Practical identifiability,

the limitations of what can be fitted to a given dataset, also needs to be taken

into account for model fitting, which may further reduce the parameters that it

is possible to fit. In the case of this analysis however, with the inter-individual

changes in parameters with age and the use of mixed effects modelling (neither of

which are taken into account by the package), it is likely that it will be possible

to fit further parameters than might be expected.

3.2.4 Model fitting and covariate model building

Nonlinear mixed-effects (NLME) modelling, as outlined in Section 2.3.2 on Page 48,

was used to fit the model to the data. The model-fitting was carried out using

NONMEM 7.3 [85], using the importance sampling expectation-maximisation al-

gorithm and the ADVAN13 (general nonlinear kinetics) subroutine [123]. Further-

more, covariate analysis was carried out using stepwise covariate model building,

outlined in Section 2.3.3 on page 52 using PsN 3.5.3 [124]. Similarly to Chapter 2,

only a small proportion (1.2%) of the data are below the limit of quantification

and so, as set out in Section 2.3.4, these data were substituted with half the limit

of quantification, LOQ/2.

3.2.5 Making predictions

The intention was to make predictions for the long-term CD4 T cell reconstitution

of children on an individual patient basis, using just their early data, their age

and their other relevant covariates.

Once the covariate model had been finalised through SCM, population mean

parameter estimates and the variance-covariance (var-covar) matrix of the ran-

dom effects were estimated by fitting the model to the model-building dataset.

Using this as the basis, the model could then be fitted to an individual’s data, us-
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ing an “expectation-only” process, whereby the population-level parameter means

and var-covar matrix were held fixed and the individual-level parameters and

the individual var-covar matrix were estimated. In this process, Monte Carlo

sampling is used to evaluate the individual-level conditional (posterior) mean

and the var-covar matrix. The likelihood of these are then maximised given the

individual’s observed data and the population means and var-covar matrix [123].

Trajectories were then produced by simulating a large number (∼500) of para-

meter sets from these individual-level estimates, from which were found the me-

dian and confidence intervals for that individual’s CD4 reconstitution trajectory,

forming a graphical output.

In order to validate the predictive ability of the model, a validation dataset

was used, described in Section 3.2.1. For each of the 75 patients in this dataset,

only data from the first six months post HSCT as well as their relevant covariates

were used to make the predicted trajectory. This trajectory was then compared

to the rest of their observed data for up to three years after HSCT.

3.3 Results

3.3.1 Model fit

Following fitting the model to the model-building dataset, the typical traject-

ories of patients of different ages at time of HSCT are given in Figure 3.8. As

can be seen, there is an initial delay to reconstitution as thymic output is im-

paired [100,117–119] and then the typical patient reconstitutes to 90% of the

expected CD4 T cell concentration of a healthy child of that age, and then tracks

that concentration throughout childhood. It can also be seen that the rate of

recovery is age-dependent, with younger children recovering more quickly in com-

parison to older children. The median-aged child (37 months old) took 22 months

to reconstitute to 90% CD4 for age, while a 1 year old was predicted to take 17
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Figure 3.8: Model predicted CD4 reconstitution following HSCT for children of different
ages (coloured lines) compared to the expected CD4 concentration of a healthy child
(black line).

months and a 10 year old 33 months.

The parameter estimates in Table 3.2 are from fitting the model to the model-

building dataset. It was found to take 5 months before thymic output recovered

to 50% of the long-term thymic output for age, with recovery in thymic output

happening quickly, recovering from 10% to 90% output between 3 and 7 months

post HSCT. Following this recovery in thymic output, the mean thymic output

for age was estimated as 23% of the previously predicted output [36].

Table 3.2: Estimated parameter means with standard deviations, and random effect
variances with standard deviations.

Parameter Estimate s.d. Ω s.d.
λ0 Proportion theoretical thymic out-

put [33] (cells/day)
0.227 0.0714 1.59 0.59

d0 Proportion expected loss (/day) 0.454 0.0912 1.67 0.382
p0 Proportion expected proliferation (/day) 0.204 0.0234 0.294 0.113
X0 Initial concentration of T cells (cells/µL) 165 21.9 1.28 0.202
λhalf Time to recovery for thymic output (days) 136 21.9 1.24 0.270
λrate Rate of recovery for thymic output 9.00 1.28 1.27 0.427
σ Variance of the residual error 0.219 0.0164 — —

Parameter estimates and the random effect variances (Ωs) are found through fitting the
model to the model-building dataset with NLME modelling. The standard deviations
(s.d.) has been found through bootstrap using PsN 3.5.3 [124].
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Both diagnostic plots and changes in the Bayesian information criterion (BIC)

were used to assess the impact of removing the mechanistic elements from the

model. A substantial increase in BIC of 255 points resulted from the removal

of the post-HSCT delay to thymic output; an increase of 115 points was found

from the removal of the effects of competition for resources on proliferation and

loss; and an increase in BIC of 12.0 points resulted from the effects of age on

proliferation and loss. These increases, as well as changes in diagnostic plots,

demonstrate the necessity of these mechanistic components, and that they signi-

ficantly improve the ability of the model to describe the data.

3.3.2 Covariate analysis

In order to find what factors affected reconstitution, covariate analysis was car-

ried out using the stepwise covariate model-building (SCM) procedure. In the

forward search, for testing which covariates to include in the model a p-value

of p1 < 0.01 was used, while in the backwards search for testing which of these

included covariates to retain, a p-value of p2<0.005 was used (see Section 2.3.3

in Chapter 2). The covariates tested are listed in Table 3.1 and these covariates

were tested on each of the parameters that were estimated in the model. The

included parameters and the size of their effects are given in Table 3.3, while the

the effect that these covariates have on the mean trajectory of a child of median

Table 3.3: Covariates included in the model for long-term CD4 reconstitution

Parameter Covariate Effect size s.d. p-value
X0 Alemtuzumab -0.840 0.025 � 0.001
X0 Antithymocyte globulin -0.933 0.107 � 0.001
X0 Acute GvHD 0.328 0.201 < 0.001
λ0 Leukaemia 1.26 0.442 < 0.001
p0 No conditioning -0.907 0.022 � 0.001

The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero.
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Figure 3.9: The effects of the significant covariates on CD4 reconstitution of a patient
of median age at the time of HSCT (37 months). A Effects of the conditioning drugs
alemtuzumab and ATG and acute GvHD on initial number of cells. B Effects of
leukaemia and having no conditioning on long-term reconstitution. The covariates
have been included through the SCM procedure. A typical individual is one who is not
in each of the covariate group listed.

age (37 months) are demonstrated in Figure 3.9.
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Effects of conditioning

Two conditioning drugs alemtuzumab and antithymocyte globulin (ATG) were

found to significantly decrease the concentration of CD4 cells at the time of trans-

plant. Patients who received neither of these drugs (n= 151) had an estimated

mean initial CD4 concentration of 178 cells/µL, while patients receiving alemtu-

zumab (n=158) had an estimated mean of 30.6 cells/µL, a decrease of 83%, and

patients receiving ATG had an estimated mean of 8.4 cells/µL, a decreased of

95%. This decrease in initial concentration also resulted in reconstitution to any

fixed concentration being delayed by a few months (see Figure 3.9A).

Patients who received no pre-transplant conditioning were affected in a differ-

ent manner. As demonstrated in Figure 3.9B, while the initial CD4 concentration

was unaffected, having no conditioning was found to alter the reconstitution tra-

jectory by decreasing the expected long-term CD4 concentration. The model thus

predicts that these patients will have a sub-optimal long-term CD4 concentration.

Effects of leukaemia

The covariate analysis found that patients who had leukaemia (n = 95) had a

different reconstitution to those that had other diagnoses as shown in Figure 3.9B,

with long-term CD4 concentration found to be higher than that expected of a

healthy child. This difference was observed in both myeloid leukaemia patients

(n = 50) and lymphoblastic leukaemia patients (n = 45), with no significant

difference between these patients (p=0.23).

Effects of acute GvHD

Patients who had acute GvHD (n= 102) were estimated to have a higher CD4

concentration at the time of the transplant with a 33% increase compared with

those with no reported GvHD. This meant that those patients were predicted by

the model to have a marginally earlier reconstitution than other patients.
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Figure 3.10: Diagnostic plots for the model of long-term CD4 reconstitution. A and B
give the CWRES against time and population prediction respectively, C and D give the
observed data against the individual-level and population-level predictions respectively.
Black lines give local regression curves.

3.3.3 Diagnostic plots

Diagnostic plots were used throughout the model building process to assess model

misspecification. The diagnostic plots for the structural and covariate model

are shown in Figure 3.10. As the plots of the conditionally weighted residuals

(CWRES) demonstrate, the residuals are roughly normally distributed with mean

0: they are evenly spread around 0 and more than 95% of them are within

±2. Furthermore, there is no apparent bias either with time after transplant

(Figure 3.10A) or with population prediction (Figure 3.10B), as demonstrated

by the local regression line, and so the residuals are independent. The plots of

the individual predictions and population level predictions against the observed

data in Figures 3.10C and 3.10D respectively also demonstrate that there is no

inherent bias or model mis-specification, with the individual prediction against

the observed data falling along the line of unity.

The prediction corrected visual predictive check (pcVPC) in Figure 3.11 was
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Figure 3.11: Prediction corrected visual predictive check for CD4 concentration recon-
stitution model. The grey dots give the observed data, with the corresponding median,
2.5th and 97.5th percentiles given by the filled and dashed black lines respectively. The
95% confidence intervals around the model-simulated median and percentiles are given
by the grey shaded regions.

performed in PsN version 3.5.3 [124]. 400 new datasets were simulated from the

observed data with the parameter estimates obtained from fitting the model to

the observed data. As demonstrated, the model captures both the central trend

in the observed data and the extent of the variability in the data. The VPC was

prediction corrected in order to account for differences caused by the covariates.

3.3.4 Predicting reconstitution in new patients

Having constructed the structural model and the covariate model, the aim was to

assess whether the model could be used to make predictions of the reconstitution

of new children undergoing HSCT. Using an individual patient’s covariates and

early observed data following the transplant (the first six months), the method de-

scribed in Section 3.2.5 was used to form predictions of the individual parameters
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Figure 3.12: Nine examples of predicted reconstitution where the model achieved a
good prediction, listed in age order. The circles are the data points that were used
to make the predictions, and the crosses are the data not used in forming predictions,
for comparison to the predictions. The line is the median prediction, with the green
shaded area giving the 90% confidence intervals. The blue line and shaded area are the
median and 90% confidence intervals of the expected CD4 concentration of a healthy
child of this age.

of each individual in the validation dataset given the population parameter estim-

ates and the variance-covariance (var-covar) matrix for the random effects found

from fitting the model to the model-building dataset. From these individual-level

parameter estimates and var-covar matrix, 400 sample trajectories were simu-

lated, giving a mean trajectory and confidence intervals for that individual. This

trajectory was then compared to the rest of that observed data for that individual

in order to assess the predictive ability of the model.

Good predictions were formed by the model in 61 of the patients (81%), with

the predicted confidence intervals covering over 75% of the observed data and

the trend in the CD4 reconstitution trajectory correctly identified. The model’s

predictions were largely similar in a further 8 patients (11%), with either the trend

in the observed data identified or the majority of the data within the confidence

intervals, but not both. In only 6 patients (8%) was the predicted reconstitution

trajectory substantially different from the observed data.

The nine examples from the validation dataset of good predictions shown
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Figure 3.13: Predicted trajectories of all patients in the validation dataset, listed in age
order. The circles are the data points that were used to make the predictions, and the
crosses are the data not used in forming predictions, for comparison to the predictions.
The line is the median prediction, with the green shaded area giving the 90% confidence
intervals. The blue line and shaded area are the median and 90% confidence intervals
of the expected CD4 concentration of a healthy child of this age.

in Figure 3.12 were chosen as patients with many observed data points and a

spread of ages and covariates. All the reconstitution predictions are shown in
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Figure 3.13. The predicted reconstitution trajectories vary widely between pa-

tients with various initial concentrations, delays to reconstitution and rates of

reconstitution. Whilst most patients are predicted to recover to close to the ex-

pected CD4 concentration for age, for some, such as patients 151, 118 and 17,

their median predicted concentration falls below this level while for others, such

as 102, the median rises above the expected concentration. Furthermore, by us-

ing a small number of early observed data, patients with the same covariates and

similar ages can have substantially different reconstitutions, as demonstrated by

patients 102 and 120. Finally, because the model accounts for the age-related

changes, it is able to predict accurately the slower reconstitution for older chil-

dren such as patient 130, who might have been thought to be at risk using a

non-modelling technique, but whose slow reconstitution to a normal level could

be expected, as is confirmed by the observed data.

3.4 Discussion

In this chapter, I describe the development of a mechanistic mathematical model

for CD4 T cell reconstitution following paediatric HSCT. The structural model

accounts for the changes in thymic output, loss and proliferation with age, homeo-

static mechanisms such as competition for resources and the impairment in thymic

output in the months following transplant. Including the age-related changes has

made it possible to fit the model to the raw data for CD4 concentration, thus

avoiding the need to alter the data to account for age. The model was however

simple enough to allow parameters to be estimated from observed CD4 T cell

concentration data. The model was then used to perform a covariate analysis.

The combination of the structural model and the covariate model has the ability

to form individualised predicted trajectories for long-term CD4 reconstitution,

providing the basis for a clinical decision support tool.
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The results of previous studies that measured CD4 concentrations at fixed

time points post HSCT and other studies that measure time taken from HSCT

to reach fixed CD4 concentrations both agree well with the output from the

model described here for a child of median age (37 months). At three months

and one year post HSCT, a reported median CD4 concentration in the range

of 100–150 cells/µL [100,101,104,125] and 500–1000 cells/µL [100,104,113] re-

spectively match the output from the model described here of 105 cells/µL and

984 cells/µL at three months and one year post HSCT respectively. Further,

a mean time from previous studies of 10.1 months (range 1.1–55.3 months) to

reach 500 cells/µL [109] matches the output from the model described here of

7.5 months for a median-aged child, ranging from 5.3 months to 14.3 months for

children aged 1 to 10 years.

Estimates for T cell lifespan from the model described here vary across age,

increasing from 130 days to 300 days for children aged 1 to 10 years, and to 550

days for a child aged 18 years. These estimates for cell lifespan agree well with the

deuterium and BrdU labelling studies that have been conducted more recently

and attempt to account for kinetic heterogeneity in the T cell population, finding

lifetime estimates between 222 and 611 days (range 167 to 1245) [21,22,126,127].

The absolute values of the function used here for the changes in thymic output

with age are uncertain due to a constant related to the length of the time-period

of Ki67 expression following cell division [33]. Recause recent studies have im-

plied that the actual thymic output could be as low as 10% of that predicted by

Bains et al. [22,128], and so in the model a scaling factor λ0 is used. This allows

the absolute values of thymic output to be determined by the model, whilst re-

taining the theoretical shape of thymic ouput with age. The parameter estimate

found with this model gave a thymic output of 23% of the originally predicted

output [33], in agreement with the later work [22,128].

Studies of TREC analysis [117,119] and CD31 expression as a marker for re-
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cent thymic emigrants [100] have demonstrated that there is a delay of between

5 and 10 months after HSCT before thymic output recovers. This agrees well

with the model estimate of 7 months to recover to 90% of the production for age

expected by this model. This delay in thymic output has severe immune implica-

tions for patients as poor thymic output results both in low T cell concentrations

and poor diversity of T cell receptors, inhibiting the ability to fight infection.

The SCM procedure was used to test the available factors for inclusion in the

model, finding that the conditioning drugs alemtuzumab and ATG, having leuk-

aemia and acute GvHD status affected the reconstitution. Alemtuzumab and

ATG were found to reduce the mean initial CD4 concentration in the model.

This initial CD4 T cell concentration mostly reflects donor cells. These drugs are

given pre-transplant but have long half lives (15–21 days for alemtuzumab [129]

and 30 days for ATG [130]), which means they remain in the body long after

transplant. Because they deplete circulating lymphocytes, the reduction in ini-

tial concentration found through the model quantifies the extent of the depletion

of donor CD4 cells. Though the rate of reconstitution is unaffected, the model

predicts that this depletion results in delayed reconstitution to fixed CD4 con-

centrations, because of the reduced stem-cell independent reconstitution and the

lower starting point. This is in agreement with previous studies in both adults

and children in which alemtuzumab and ATG were associated with slower and

later reconstitution [125,131–133]. This analysis did not find a longer delay to re-

constitution from alemtuzumab as opposed to ATG, which was found in another

study [134]. This might be due to the quantity of patients that received ATG in

the model-building dataset being small.

In contrast to previous work which has found that reduced conditioning results

in increased CD4 concentrations [125,131–133], the model found that receiving

no pre-transplant conditioning resulted in reduced CD4 reconstitution. An ex-

planation could be that without the space created by pre-transplant ablation with
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conditioning, donor T cells and stem cells cannot expand as efficiently. This could

also explain the increased long-term CD4 concentrations found with leukaemia

patients, who are typically given full myeloablative pre-transplant conditioning

to eradicate disease, potentially resulting in more T cell space.

The association found with the model between acute GvHD incidence at raised

initial CD4 concentration agrees with previous studies in which T cell depleted

grafts were associated with decreased acute GvHD incidence [135–138].

In the observed data, patients who received stem cells derived from cord blood

(n=48) as opposed to peripheral blood or bone marrow had faster reconstitution

over the months following HSCT. Cord blood transplantation (CBT), however,

was not a significant covariate in this analysis, agreeing with Fernandes et al [139],

because the differences between these patients and the rest could be explained

through other covariates. Firstly alemtuzumab and ATG were given to a lower

proportion of CBT patients with 40 patients (83%) receiving neither as opposed

to 41% of the rest of the patients. Secondly CBT patients were usually younger

because of the small grafts available for CBT, with a median age of 1.5 years

compared to 3.6 years and 60% under two as opposed to 37% at the time of

transplant. Previous work has also demonstrated that the changes in reconsti-

tution following CBT can be explained either by age [109] or the omission of

ATG [140].

From the model-building dataset two year mortality could not be predicted,

which is unsurprising given that only 20 patients out of the 288 patients in the

dataset died from infection. Furthermore, of those patients some of the infections

would have been due to lack of innate immunity, leaving only a few for whom

low CD4 concentration would have been the cause thus further reducing the

possibility of detecting an effect.

A previously unused validation dataset was used to assess the predictive abil-

ity of the model. Predictions were formed on an individual basis using only the
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patient’s significant covariates and data up to six months following HSCT. Ac-

curate predictions were produced in 81% of cases and for up to three years post

HSCT. Predictions were based on the parameter means, the var-covar matrix of

the random effects and the size of the covariate effects, estimated from fitting

the model to the model-building dataset. The quality and quantitiy of the data

used in the model development and covariate analysis thus affects the accuracy of

the predictions and as more data become available, it is likely that the accuracy

could be further improved.

For each individual, parameter means and a var-covar matrix was formed,

from which trajectories and confidence intervals were simulated. As the number

of observations for that individual increases, the accuracy of the prediction will

increase. With few observations, the confidence intervals are wide but as more

observations are used, the predictions can be updated and the confidence intervals

narrow. With the validating dataset, the confidence intervals narrowed by 11%

by using observed data from the first 6 months rather than 3 months post HSCT,

and narrowed by a further 12% when using data from the first 12 months.

In conclusion, a mechanistic model has been developed for CD4 T cell re-

constitution following paediatric HSCT. Using biological prior knowledge of the

effects of age on model components has allowed factors that affect reconstitution

to be identified, and knowledge of competition for resources has allowed loss and

proliferation to be identified separately. The model’s predictive ability was also

validated on a separate dataset. To our knowledge, this is the first mechanistic

model to be used to form long-term predicted trajectories for the CD4 T cell

reconstitution in children following HSCT. These predictions can give clinicians

more information about the long-term recovery of the patient’s immune system,

and hence the potential need for a change in that patient’s treatment regimen.

Finally, as electronic hospital records become more accessible, it is possible that

a clinical tool could be developed that would automatically provide real-time up-
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dates of the patient’s expected long-term CD4 reconstitution trajectory following

HSCT each time a new observation is made.
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Chapter 4

Long-term CD4 T cell

reconstitution in HIV-infected

children starting antiretroviral

therapy

4.1 Introduction

Human immunodeficiency virus (HIV) infects cells that express the CD4 protein

on their cell surface, which include CD4 T cells, macrophages and dendritic cells.

It is a retrovirus, meaning that its genome is encoded in RNA. HIV uses gp120,

a protein with a high affinity for CD4, to bind to CD4+ cells, followed by gp41

to fuse the viral envelope into the cell membrane. The viral components then

enter the cell where the RNA is reverse-transcribed into double-stranded DNA.

This DNA integrates into the host cell’s DNA and hijacks the transcriptional

machinery of the infected cell to synthesise the necessary protein and RNA com-

ponents of the HIV virus. These components, having self-assembled into the HIV

virus, are released from the infected cell, re-entering the circulation where they
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can infect new cells.

In the first few weeks of disease progression, HIV is controlled by the adapt-

ive immune system through antibodies and cytotoxic killing by CD8 T cells, with

the initial decline in CD4 T cell concentrations reversed and HIV viral load in

the blood contained. Over many years, however, HIV causes a decline in CD4

T cell concentrations. Three major mechanisms for this decline have been pro-

posed. One mechanism is reduced T cell production due to damage either to

the bone marrow [141] or to the thymic epithelial space decreasing thymic out-

put [142–145]. Another is increased T cell loss due to increased T cell activation

and thus activation induced loss [146–148]. Finally, the third mechanism is an

altered T cell distribution between peripheral blood and secondary lymphoid or-

gans, due either to HIV-induced damage to the lymphoid structure [149–151] or

the retention of activated CD4 T cells in the lymph nodes for increased time [152].

A combination of these three mechanisms results in a cycle of CD4 T cell decline.

Damage to the bone marrow, lymphoid organs and thymus causes increased T

cell loss and decreased T cell production. The resulting decreased adaptive im-

mune response leads to increased pathogen burden including higher levels of HIV

and persistent infections, which in turn causes increased inflammation and hence

further damage to the lymphatic system, bone marrow and thymus [153]. If left

untreated the CD4 T cell concentration will eventually decline to the point where

the patient has acquired immune deficiency syndrome (AIDS), defined as a CD4

T cell concentration of lower than 200 cells/µL, and so cannot fight infection,

resulting in death.

Patients are given antiretroviral therapy (ART) in order to reduce viral loads,

thus decreasing the rate of progression towards AIDS by allowing the CD4 T

cell concentration to reconstitute. The most common ART drugs used are re-

verse transcriptase inhibitors, which prevent the process of viral RNA reverse-

transcribing into DNA and incorporating into the infected cell’s DNA. The two
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classes of these are nucleoside-analogue reverse transcriptase inhibitors (NRTIs)

such as zidovudine, lamivudine and abacavir and non-nucleoside reverse tran-

scriptase inhibitors (NNRTIs) such as efavirenz and nevirapine. NRTIs create

defective deoxynucleotides which lack a 3′-hydroxyl group on the deoxyribose

moiety and compete with the natural deoxynucelotides for incorporation into the

growing viral DNA and cause chain termination. NNRTIs interfere with the HIV

transcriptase enzyme required for viral DNA synthesis. The other common drugs

used are protease inhibitors such as ritonavir, lopinavir and nelfinavir, which in-

terfere with the enzymes that assemble new virus particles. There are also drugs

which inhibit various other parts of the HIV replication cycle, including cell entry

(fusion), integration and maturation.

With the suppression of HIV viral load, often to undetectable levels, fewer

CD4 T cells are infected by virus. Homeostatic mechanisms can then allow the

CD4 T cell concentration to recover. Furthermore, some of the mechanisms de-

scribed above that result in CD4 T cell decline might reverse, with evidence

suggesting CD4 T cell proliferation rates return to normal [154], thymic output

improves [142–145] and CD4 T cells return to circulation from the lymphoid or-

gans [155]. CD4 reconstitution is however often incomplete on ART for reasons

that are poorly understood, but are likely to be due to a combination of in-

complete recovery from effects of some of the mechanisms described above, and

continued reaction to the residual low-level HIV viral load.

The HIV virus is never completely eliminated by ART. The remaining HIV

has a very high mutation rate because reverse transcription has a low accuracy,

with the HIV mutation rate ∼ 10−5 mutations/base-pair/cycle, roughly one mil-

lion times more than that of DNA polymerases ∼ 10−9–10−12 mutations/base-

pair/cycle [156]. Resistance to a particular ART drug or class of drugs there-

fore occurs frequently. To reduce the chances of resistance, drugs from different

classes are given in combination because mutations would be required that evade
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Figure 4.1: Percentage of mothers in middle- and low- income countries around the
world receiving ART to prevent mother to child transmission (PMTCT) of HIV. The
countries shaded grey (not applicable) are those for which the WHO have no data. The
countries shaded green are high-income countries in which usage is very high. From
the World Health Organisation [157].

multiple processes simultaneously. This is termed combination-ART (cART) or

highly active ART (HAART).

4.1.1 HIV in children

Whilst in adults HIV infection is usually through sexual contact, in children

it is usually through mother-to-child transmission in utero, at birth or during

breastfeeding. Maternal ART can reduce this rate of transmission from the 15%

to 45% seen without intervention to 1.2% [158,159]. Of this remaining 1.2%

transmission, 65% is thought to occur in utero in the last six weeks of preg-

nancy [160]. Figure 4.1 shows that rates of usage of ART to prevent mother

to child HIV transmission is still low in many low- and middle-income countries.

112



Chapter 4. Long-term CD4 reconstitution in HIV-infected children on ART

While HIV infection does not seem to affect pre-natal development [161], perinat-

ally HIV-infected children who were untreated had a poor prognosis, with about

1/4 developing AIDS by one year [160,161] and a mean age at death of 9.4 years

old [162].

With ART, children now survive well into adulthood. This survival and par-

ticularly the resulting longer times on treatment however brings its own problems.

On the one hand, multiple studies have found that the younger a patient is at the

start of ART, the greater the speed of the recovery and the higher the long-term

CD4 T cell concentration [163–170]. On the other hand, the longer they spend

on treatment, the more exposed they are to side-effects and long-term toxicit-

ies of the drugs, such as lipodystrophy, fatigue, psychiatric symptoms and heart

disease. Furthermore, the CD4 T cell concentration of patients receiving ART

do not fully reconstitute to the level expected of a healthy child [171,172] and

low CD4 T cell concentrations are associated with a higher tumour incidence

rate [173] and cardiovascular disease [174,175]. Thus with children potentially

living longer with reduced CD4 T cell concentrations, understanding what affects

the rate and extent of their immune reconstitution is very important.

Modelling, and in particular mechanistic modelling, has the ability to im-

prove this understanding. Because the CD4 concentration and HIV viral load are

coupled by their interactions, it is important to understand what affects the viral

load as part of understanding what affects the CD4 concentration; mechanistic

models make it possible to include these interactions. Furthermore, mechanistic

models offer the possibility of ascertaining which part of the immune system is af-

fected causing the CD4 concentration not to stage a full recovery on ART. While

an empirical model has been used to assess CD4 reconstitution in children on

ART [171,172] and mechanistic models developed for adults have been applied to

children [176] (see below), to our knowledge a mechanistic model that takes into

account age-related changes in the immune system has not yet been developed for
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HIV-infected children. A model of this form could be used to perform covariate

analysis to find the factors that affect HIV viral decline and CD4 reconstitution.

It could also be used in combination with pharmacokinetic models to inform

the expected effects of drugs on both viral load and CD4 concentration. This

could improve both the development of personalised medicine approaches with

individual dose-adjustments to minimise toxicity whilst maintaining CD4 con-

centrations and keeping the incidence of resistance low, and the development of

novel therapies such as new ART drugs and other therapies such as gene therapy.

4.1.2 Modelling the dynamics of the immune system and

HIV

The simplest modelling used to quantify the dynamics in HIV infected patients

starting ART is empirical modelling. For viral load, Ho et al [177] and Wei et

al [178] approximated viral decline on ART with an exponential decay. They

had to allow however for a time-lag before the decay started in order to fit this

model. For CD4 T cell reconstitution, empirical modelling has successfully been

applied in the paediatric context, although it required the adjustment of the

data to account for age, either using CD4 T cell z-scores [171] or the ratio of

the observed CD4 T cell concentration to that expected for a child of that age

at the time of the measurement [31,172]. The models for CD4 reconstitution

cannot easily incorporate information on HIV viral load and so lose information

that affects outcome such as drug efficacy, which is mainly inferred from viral

suppression. Furthermore, patients that did not fit the empirical model had to

be excluded [172]. Viral load information, where available, might have provided

some explanation as to the differences between these patients and those that did

fit the model.

In contrast to empirical models, mechanistic models can incorporate viral

load, CD4 concentration and their inter-dependence. Many models have been
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proposed, with various mechanistic variations, discussed below. At the most

basic level, CD4 T cells are infected by HIV and in turn produce more HIV.

Many modifications and complications have been proposed and tested in order to

explain both the short- and long-term dynamics of HIV and CD4 reconstitution.

The basic dynamic model

The simplest of the mechanistic models is that of Nowak et al [179] and Bon-

hoeffer et al [180]. In this model, there are three compartments: uninfected CD4

cells which can be infected by free HIV to become infected CD4 cells, and these

infected CD4 cells then produce more free HIV. They used this model to look at

the incidence of resistance to ART.

Splitting infected CD4 T cells

The earlier mechanistic models of McLean et al [181] and Perelson et al [182]

split the infected T cell pool into actively infected and latently infected T cell

populations. This was to represent mechanistically the split between T cells that

produce virus and those that are infected and do not. Funk et al [183] further

split the infected cells into persistently infected and defectively infected CD4

cells. These subsets represent very small percentages of the total infected cells,

and mechanistically represent the CD4 cells that emit small amounts of HIV and

survive for long time-periods, and cells in which the virus is defective respectively.

Splitting free virus

Another model of Perelson et al [184–186] split the free virus into infectious and

non-infectious virus. This was done to model the effect of ritonavir, a protease

inhibitor that renders the free virus produced non-infectious. Hence in the pres-

ence of ritonavir infected CD4 cells only produce non-infectious virus, which dies

at the same rate as the infectious virus, resulting in the decline in viral load.

Splitting the uninfected CD4 T cells
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In the model of de Boer and Perelson [187], the uninfected CD4 T cells were split

into active and quiescent, resting, cells. The model aimed to represent the notion

that only activated cells could be infected by virus, and so these quiescent cells

could not be infected.

Homeostatic modelling

Another branch of mechanistic modeling involved developing models that in-

cluded homeostatic mechanisms for T cell production. Ribeiro et al [188] de-

veloped a model for T cell dynamics with two compartments, a resting and an

activated compartment. Cells can be activated from the resting compartment into

the activated compartment where they can proliferate, die or return to the rest-

ing compartment. Yates et al [189] adapted this model, with cells in the resting

compartment also able to die and cells in the active compartment proliferating as

they return to the resting compartment, and the rates density dependent. They

then extended the model to include firstly an HIV-infected T cell compartment

and finally an immune activated T cell compartment as well. They applied this

model to explain the long-term depletion of CD4 T cells in HIV infection.

Hapuarachchi et al [116] started with the simplest of the models for CD4

dynamics from Yates et al [189], but used different functions for the density

dependence of proliferation and death in the resting compartment to explain

competition for resources during homeostasis, as well as a quadratic function

for cell death in the activated compartment to model FaS-FaS ligand activation

induced fratricide [190].

Fitting mechanistic models to data

Unlike the empirical models, the mechanistic models were often written in order

to study the dynamics of the system, rather than to model data. As such, while

some of them compared the model output to observed data for HIV viral load as

validation, only Perelson et al [184] and Funk et al [183] attempted to estimate
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some parameters from data, using nonlinear regression analysis. This however

only worked where it was possible to find closed-form solutions. The rest of the

studies above, in particular with models where closed-form solutions were not

possible, fixed all parameters to literature values.

Recently studies have used nonlinear mixed effects modelling in order to im-

prove parameter identifiability while fitting these models to data. They have also

applied the models to both CD4 concentration and viral load data in parallel,

again to improve parameter identifiability. Early attempts to fit full-parameter

models of this kind to data used Bayesian approaches [191,192]. These were

however highly computationally expensive. More recently, maximum-likelihood

approaches have been used. Guedj et al [193] performed a full likelihood infer-

ence by adapting a Newton-like algorithm. They tested a simplified version of

the model of de Boer and Perelson [187] with four compartments: viral load, un-

infected active CD4 cells, uninfected quiescent CD4 cells and infected CD4 cells,

and were able to obtain parameter estimates. Prague et al [194,195] also used

the same system to form predictions of CD4 concentrations following changes in

ART.

Drylewicz et al [196] compared two models, fitting both to data using NLME,

the simpler of which has three compartments: viral load, uninfected CD4 cells

and infected CD4 cells. For the other, the infected cells were divided into active

infected and latent infected CD4 cells, where only the active proportion of the

infected CD4 cells can produce more virus. They found a better fit with the

model that splits the infected cells into active and latent CD4 cells.

Laveille et al [197] compared three of the previously proposed models, applying

each to the same dataset for HIV-infected adults and immune reconstitution.

They compared the basic dynamic model of Nowak et al [179] and Bonhoeffer et

al [180] to the model that splits uninfected CD4 cells into quiescent uninfected

and active uninfected CD4 cells of de Boer and Perelson [187] to the model that
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splits infected CD4 cells into active and latent CD4 cells of McLean et al [181] and

Perelson et al [182]. In comparing these variants, for all three the free virus is split

into infectious and non-infectious virus in the manner of Perelson et al [184–186].

Lavielle et al find that the model with the infected cells split into latent and

active provides the best fit to data as judged by Bayesian Information Criterion

(BIC), similarly to results found by Guedj et al [193].

Apart from the model of Haupuarachchi et al [116], none of the mechanistic

models account for the age-related changes in the immune system during immune

system development. Bouzza et al [176] applied the basic dynamic model to

paediatric data with no changes to the model to account for age. They did not

investigate any age-related effects and so it is not possible to tell whether their

results were biased with age.

Why alter the previous models?

Infected CD4 cells only represent a very small fraction of the total CD4 cells,

with the the mean observed in one study at 0.14% and the maximum observed at

1% [198]. With the parameter estimates found in the modelling of paediatric pa-

tients by Bouzza et al [176], the mean initial concentration of infected CD4 cells

is low at 9.3 cells/µL. However, this still represents 3.8% of the initial CD4 T

cells, nearly four times the highest observed infected CD4 T cell proportion [198].

As such, it is questionable whether the infected cells compartments in these mod-

els are representing the mechanisms they intend to. In this chapter I therefore

simplify the models by removing the infected cells compartment.

The models described above assume that viral load follows almost entirely a

mono-phasic exponential decay, whereas current evidence suggests that it follows

a multi-phasic decline in the first few months after the start of ART [199]. Free

virus enters the blood stream when released from an infected cell, and so the first

phase of viral load decline is the result of declining viral production in activated
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infected CD4 cells, the second phase in partially activated CD4 T cells, macro-

phages and dendritic cells, and the third phase in resting memory CD4 T cells.

As such a model that allows for this multi-phasic decline would be preferable.

The models above also display oscillatory behaviour in certain circumstances

[179,180,182], particularly when viral load increases with the development of res-

istance. These oscillations cause a rapid decline in CD4 concentration on the

development of resistance. In the studies where these models have been applied

to data, there is little evidence that either these oscillations or the sharp decline

in CD4 concentration exist in vivo [183,184,193–195]. The data that I have do

not appear to support such oscillatory behaviour in viral load or CD4 concen-

tration. Furthermore, there is not the sharp decline in CD4 concentration that

results from the oscillations. The model is therefore altered to remove the oscil-

lations. Finally, since no previous model has included the effects of age-related

changes to the immune system into the models, I have constructed a new model

by adapting the previous models for HIV virus and CD4 concentration dynamics

and including the effects of age.

4.2 The data

The work in this chapter was conducted using two datasets: the Paediatric

European Network for the Treatment of AIDS (PENTA) 11 and the Antiretro-

viral Research for Watoto (ARROW) clinical trials. HIV-infected children were

studied in both trials.

4.2.1 PENTA 11

PENTA 11 was a randomised Phase II trial which recruited 109 HIV-infected

children from nine countries (France, Germany, Italy, Poland, Spain, Switzerland,

Thailand, USA, and the UK) between 2004 and 2006 [200,201]. The aim of the
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Figure 4.2: PENTA data for children in the PTI arm as they restart ART following
the PTI for (A) CD4 T cell reconstitution and (B) viral load. Each coloured line gives
the data for one individual’s response to ART. The black line gives a local regression
curve.

study was to ascertain whether planned treatment interruption (PTI) in ART

disadvantaged the children in terms of their immunology, virology or clinical

status. Children in the trail were randomised into continuous treatment (CT) or

PTI arms.
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Table 4.1: Breakdown of the demographics and the drugs used for the patients in the
PENTA dataset for HIV-infected children.

No % No %
Sex Age

Male 32 48 4→7 12 18
Female 34 52 7→10 26 39

Ethnicity 10→14 16 24
Asian/Thai 11 17 14→ 12 18
Black African/other 19 29 Number of PTIs
Mixed black/white 2 3 1 36 55
Mulato 5 8 2 30 45
White 29 44 Reason for end of PTI

Country PTI 1
Germany 1 2 Reached end time 60 91
Spain 15 23 CD4 decline 4 6
France 3 5 Carer request 2 3
Italy 16 24 PTI 2
Poland 2 3 Reached end time 26 39
Switzerland 2 3 Viral load failure 2 3
Thailand 11 17 Other 2 3
UK/ROI 16 24

ART Drugs
Before PTI After PTI 1 After PTI 2
No % No % No %

Abacavir 17 26 24 36 14 21
Didanosine 18 27 13 20 6 9
Efavirenz 17 26 26 39 14 21
Fosamprenavir 0 0 7 11 4 6
Lamivudine 45 68 48 73 24 36
Lopinavir 11 17 16 24 8 12
Nelfinavir 12 18 3 5 0 0
Nevirapine 25 38 21 32 8 12
Ritonavir 3 5 3 5 0 0
Stavudine 30 45 15 23 4 6
Tenofovir 0 0 2 3 0 0
Zalcitabine 1 2 0 0 0 0
Zidovudine 19 29 20 30 8 12

In order to enter the trial, children had to be aged 2–15 years old, be chron-

ically infected with HIV, have been on ART for longer than 24 weeks, and have

an undetectable HIV viral load (< 50 copies/ml). Children aged 2–6 years had

to have a CD4 T cell concentration above 30% of the expected CD4 T cell con-

centration of a healthy child of that age, and children aged 7 or over, above
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25% of the expected CD4 T cell concentration as well as a CD4 concentration

≥ 500 cells/µL [200,201].

During the trial, there were procedures in place to protect the children from

excessively low CD4 concentrations. In the children on PTI, ART was restarted

in children 2–6 years old if the CD4 concentration dropped below 20% of the

expected CD4, and in children 7 or over below 20% of the expected CD4 or less

than 350 cells/µL. Furthermore, no PTI exceeded 48 weeks in duration and only

children who had had a PTI duration of > 10 weeks during their first PTI and

had been back on ART for ≥ 24 weeks could undertake a further PTI. Children

were followed for up to five years [200,201].

Of the 109 patients, 53 were randomised into the CT arm and 56 into the PTI

arm. The analysis of this chapter concerns the children in the PTI arm as patients

that restarted ART after a period of no therapy. The median age at restart of

ART was 9 years (range 2–16 years). Patients were followed for up to five years

after resumption of ART, and in the PTI arm, there were 787 measurements of

CD4 T cell concentration and 776 measurements of viral load of which 540 were

below the limit of quantification. There were two limits of quantification for viral

load (40 copies/mL and 80 copies/mL) depending on the assay used. Patient

demographics are shown in Table 4.1, and the data are shown in Figure 4.2.

4.2.2 ARROW

ARROW was an open-label randomised controlled clinical trial which enrolled

1206 HIV-infected children who were receiving ART for the first time at four

centres: three in Uganda and one in Zimbabwe [202]. Children aged between 3

months and 17 years were enrolled over an 18 month period between 2006 and

2008 and followed up for 31/2–5 years. ARROW had two main objectives: the first

was to assess whether ART can be used effectively and safely without monitoring

the effects of ART through regular blood tests; the second was to assess the long-
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Figure 4.3: ARROW data for (A) CD4 T cell reconstitution and (B) viral load for
children commencing ART. The coloured lines give the responses of individual children
to ART. The black line gives a local regression curve.

term impact of starting ART with four drugs from two classes, three NRTIs and

one NNRTIs, followed by maintenance with three drugs as opposed to continuous

treatment with the standard three drug regimen.

Before this trial, for children starting ART, standard practice was to per-

form laboratory tests every three to six months assessing viral load, immune
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Table 4.2: Breakdown of the demographics and the drugs used for the patients in the
ARROW dataset for HIV-infected children.

No % No %
Age Sex

0→2 239 20 Male 596 49
2→4 222 18 Female 610 51
4→7 219 18 Life Status
7→10 277 23 Alive 1150 95
10→ 249 21 Dead 56 4.6

Centre Cause of death
Entebbe, Uganda 188 16 Def/prob HIV related 44 3.6
JCRC, Kampala, Uganda 318 26 Def/prob drug related 2 0.16
Harare, Zimbabwe 400 33 Uncertain HIV/drug related 2 0.16
PIDC, Mulago, Uganda 300 25 Unlikely HIV/drug related 2 0.16

Unknown 6 0.50

Randomisation
Drug Arm

A B C
Laboratory and clinical monitoring 198 201 201
Clinical monitoring 199 203 204

Abbreviations: JCRC, Joint Clinical Research Centre; PIDC, Paediatric Infectious Dis-
eases Centre.

markers and ART side effects. This is an expensive process, and the benefits of

these tests to HIV-infected children had not been examined. The first part of

this study compared two arms of patients, one where patients received clinically

driven monitoring (CDM) and the other where patients received laboratory plus

clinical monitoring (LCM). In both arms, haematology and liver function tests

and measures of CD4 and CD8 T cell concentrations were performed regularly,

but the results were withheld in the CDM arm unless requested by the treat-

ing physician. Meanwhile the results were independently monitored by the Data

Monitoring Committee. The exception to this was haemoglobin results, which

were returned on all children at week 8.

For the second part of the trial, children were independently randomised to

three arms. The control arm A received three drugs, two NRTIs (lamivudine and

abacavir) and one NNRTI (nevirapine or efavirenz). Arms B and C received a
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fourth drug, the NRTI zidovudine for the first 36 weeks, after which they dropped

one of the drugs for the remainder of their first-line ART. Arm B stopped taking

zidovudine, while Arm C stopped taking the NNRTI.

While HIV viral loads were not assayed in real-time, specimens were stored

allowing retrospective testing. Clinical markers such as height, weight, WHO

disease staging and any adverse events were also recorded at clinic visits.

The trial found that there were no significant differences between the groups,

either for initiating treatment with four drugs rather than three or between clinic-

ally driven monitoring and laboratory plus clinical monitoring [202]. The authors

conclude that given the expensive laboratory testing does not improve outcome,

it is unnecessary and so more of the limited resources should be spent on ART

drugs, which would allow longer treatment in more individuals [202].

Because there were no significant differences found, in this analysis I pooled

the data from all the groups into one cohort for modelling. In the dataset there

are 20,989 measurements of CD4 concentration and 4795 measurements of viral

load of which 2760 are below the limit of quantification. A breakdown of the

demographics is given in Table 4.2, and the data is shown in Figure 4.3.

4.3 Methods

4.3.1 Model building

In order to model the responses of HIV-infected children to ART and its effect on

CD4 T cell reconstitution, I start with the basic dynamic model described above

by Nowak et al [179,180] and shown in Figure 4.4, as a simple model for viral

load and CD4 concentration co-dependence that had been applied to paediatric

data [176]. This model was then modified by removing the explicit compartment

for infected T cells in a similar manner to that described by Perelson et al [182],

by including the mechanistic elements for age and competition for resources as
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Figure 4.4: Schematic of the basic dynamic model for CD4 concentration and HIV
dynamics as developed by Nowak et al [179,180] and as applied to a paediatric dataset
by Bouzza et al [176]. Uninfected CD4 cells are produced at zero-order rate λ. These
cells die at rate µ and are infected by virus at rate δ V to become infected cells. Infected
cells die at rate k and produce virus at rate p. Virus then dies at rate c. The effect of
the ART drugs is to reduce the production of new virus p.

in the model for CD4 reconstitution in paediatric HSCT in Chapter 3, and by

allowing for multi-phasic decline in viral load. This process is described in more

detail below.

Basic dynamic model properties

The basic dynamic model as described above and shown in Figure 4.4 has three

compartments representing uninfected T cells X(t), infected T cells I(t) and viral

load V (t). In this model, uninfected T cells are produced at a zero-order rate

λ and then die at a first-order rate µ, where µ gives the difference between cell

death and cell proliferation. Uninfected cells can become infected at a virus

dependent first-order rate δ. These infected cells can then die at first order rate

k. Virus is produced by infected cells at a first-order rate p, dependent on the

concentration of infected cells, and then dies at first-order rate c. The equations
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for the dynamics are given by,

d
dtX = λ− µX − δ V X (4.1)

d
dtI = δ V X − k I (4.2)
d
dtV = p I − c V . (4.3)

When using this model it is assumed that the system is in steady state before

any ART is given. As such, the model parameters are inter-related with,

δ = λ− µX0

X0 V0
(4.4)

k = λ− µX0

I0
(4.5)

p = c V0

I0
, (4.6)

where T0, I0 and V0 are the uninfected CD4, infected CD4 and viral load re-

spectively before the start of ART. This means that the model depends on six

parameters, λ, µ, c,X0, I0, V0.

Dynamics with ART

The effect of the ART drugs is to prevent HIV virus being formed. As such, they

can be modelled on the viral load compartment as,

d
dtV = p I(1− EDrug)− c V . (4.7)

where EDrug is between 0 and 1 and would be 1 for a fully effective drug and

0 for a fully ineffective drug. The pharmacodynamic models of Section 2.2.3

in Chapter 2 are often used to define EDrug based on drug concentration. In

this analysis, because ART is given continuously, it is possible to assume drug

concentration is continuous and as such treat EDrug as a parameter confined to

between 0 and 1.
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In the case of a fully effective drug, the dynamics become very simple. The

viral load no longer depends on the infected CD4 cells and can be solved to give

V = V0e−ct, and correspondingly the dynamics of the uninfected cells no longer

depend on the infected cells. The dynamics of infected cells therefore become

isolated, depending only on the initial concentration, I0.

Simplifying the basic dynamic model

If EDrug is less than one, the system becomes more complicated, with inter-

dependence of all three compartments. However, the proportion of T cells in-

fected at any one time is very small (< 1% [198]). This means that the observed

data for CD4 T cell concentrations will largely be uninfected CD4 cells. Further-

more, because viral dynamics are very fast in comparison to CD4 dynamics, the

changes in viral load are largely driven by changes to the concentration of infected

cells. As a result the quasi-steady state approximation can be used to simplify

the model, removing the infected CD4 cell compartment and leaving a two com-

partment version of the model, using a similar method to that of Perelson et

al [182].

Because the dynamics of viral load are so dependant on the concentration of

infected CD4 cells, we can say that the viral load is in quasi-steady state with

infected CD4 cells. This means that in the time-frame of virus, infected cells are

at any instant effectively constant and the change in viral load with time with

constant infected CD4 cell concentration is 0,

dV
dt

∣∣∣∣∣
I

= 0. (4.8)

As a result, the (unmeasured) infected CD4 concentration can be defined in terms
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of the (measured) viral load,

I(t) = c

p
V (t) = I0

V0
V (t). (4.9)

Substituting (4.9) into (4.2) gives,

I0

V0

dV
dt = δ X V − k I0

V0
V, (4.10)

and by rearranging and using the relations for δ, I0 and p in (4.4) – (4.6), we get,

d
dtV = δ

V0

I0
X V − k V (4.11)

d
dtV = (λ− µX0)

X0 V0

k V0

(λ− µX0)X V − k V (4.12)

d
dtV = X

X0
k V − k V. (4.13)

Including the effects of ART drugs gives us the model for viral dynamics,

d
dtV = k

X

X0
V (1− EDrug)− k V , (4.14)

where the rate of the viral load dynamics is now dependent on k, the loss rate of

infected CD4 T cells.

Allowing for multi-phasic viral load decline

The decline in viral load on ART is thought to be multi-phasic, with the loss

rates of viral load decreasing as the infected CD4 cells that contain virus increas-

ingly become the longer-lived cell subsets [199]. This effect was modelled with a

sigmoidal function on the loss term, V
V+V50

such that viral load loss rates decline

with viral load. This also has the effect of allowing viral load decline to stop with

some residual viral load remaining. So that the parameter V0 retains the same

meaning as the steady-state viral load before ART, we reparameterise (4.14) to
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Figure 4.5: Output from the simplified basic dynamic model, including allowing for
multi-phasic viral load loss. The model starts in steady state before the start of ART
on day 0, after which viral load falls rapidly and CD4 concentration reconstitutes slowly.
X0 = 500, λ = 5, µ = 0.05, V0 = 9000, k = 0.1, V50 = 100, EDrug = 0.9.

give,
d
dtV = k V0

V0 + V50

X

X0
V (1− EDrug)− k V V

V + V50
. (4.15)

The equation for T cell concentration is

d
dtX = λ− µX − δ XV, where δ = λ− µX0

X0 V0
. (4.16)

The output from this model in Figure 4.5 shows that viral load declines to a

non-zero steady state and CD4 concentration increases at a much slower rate to

a steady state.

Development of resistance

As mentioned in Section 4.1, because the RNA transcription in HIV replication is

inexact, there is a very high mutation rate. As such, HIV often becomes resistant

to ART. Mechanisms for the development of resistance are complicated, but here
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Figure 4.6: Effects of the development of resistance in the simplified basic dynamic
model. The model starts in steady state before the start of ART on day 0, after which
viral load falls rapidly and CD4 concentration reconstitutes slowly. After a certain
amount of time, resistance to ART develops and EDrug decreases. Viral load therefore
increases fast and CD4 declines. With the model in this form, CD4 declines rapidly and
oscillations form. X0 = 500, λ = 5, µ = 0.05, V0 = 9000, k = 0.1, V50 = 100, EDrug =
0.9, TDrug = 300, ρ = 20.

we use a very simple model for the development of resistance with the intention

of demonstrating the effects on the model dynamics.

In this model, the effects of resistance are simply to reduce the drug effect,

EDrug to zero at time tR with a time-dependent step function to produce the

following for EDrug the drug effect including resistance,

EDrug = Emax

ER + 1− ER

exp[ t−tR
ρ

] + 1

 , (4.17)

where tR is the time at which resistance to the drug with be 1
2 , Emax is the

maximum drug effect before resistance, ER is the residual drug effect after the

development of resistance, and ρ is the rate at which resistance develops.

The development of resistance has some unexpected effects in the model,

as demonstrated in Figure 4.6. The inter-dependence of viral load and CD4
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concentration causes oscillatory behaviour, as high CD4 concentrations cause

large growth in viral load, which in turn causes high death in CD4 concentration,

resulting in a decline in production of viral load and so on. Furthermore, viral load

spikes to quantities far higher than those observed before the commencement of

ART, and CD4 concentrations decline very sharply on the emergence of resistance.

These effects are observed in many of the previously proposed models [179,180,

182].

There is little evidence that either these oscillations or the sharp decline in

CD4 concentration exist in vivo [183,184,193–195] and the data available for this

analysis do not seem to support this model. While viral load can increase very

sharply on the emergence of resistance, it does not seem to rise to loads far higher

than that observed before the start of ART. Meanwhile, CD4 concentration then

tends to decline steadily rather than sharply as modelled here. Furthermore,

oscillatory dynamics do not seem to be observed, although the resolution in the

data may not be high enough to be certain that these do not exist.

I therefore alter the equation for viral load (4.15) to remove dependence on

CD4 concentration. A mechanistic explanation for the independence of virus

production from CD4 concentration is that the proportion of CD4 T cells that are

infected is so low, uninfected cells are in excess and viral production is therefore

not limited by the CD4 T cell concentration. The resulting model’s output is a

more realistic representation of the data. This gives the following equation for

viral load dynamics,

d
dtV = k V0

V0 + V50
V (1− EDrug)− k V V

V + V50
. (4.18)

while the equation for CD4 concentration remains,

d
dtX = λ− µX − δ XV, where δ = λ− µX0

X0 V0
, (4.19)
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Figure 4.7: Effects of the development of resistance following removal of the dependence
of viral load production of CD4 concentration. The model starts in steady state before
the start of ART on day 0, after which viral load falls rapidly and CD4 concentration
reconstitutes slowly. After a certain amount of time, resistance to ART develops and
EDrug decreases. Viral load therefore increases fast and CD4 declines. By removing the
dependance of viral load production on T cell concentration, oscillations are removed
and CD4 declines slowly. X0 = 500, λ = 5, µ = 0.05, V0 = 9000, k = 0.1, V50 =
100, EDrug = 0.9, TDrug = 300, ρ = 20.

for which the dynamics are given in Figure 4.7. As can be seen, this produces

more realistic dynamics for the emergence of HIV resistance to ART.

Incorporation of age effects from HSCT model

In order to fit the model to paediatric data spanning multiple years, it is neces-

sary to account for the expected changes in the immune system with age. As

mentioned in Section 4.1, previous methods have involved accounting for age by

adjusting the data either to z-scores [171] or to the ratio of the measured to the ex-

pected [172]. In this chapter, I model the CD4 concentration without adjusting it

by using the mechanistic model developed in Chapter 3 to account for age-related

changes. Furthermore, by including the mechanistic elements for competition for

resources it is possible to identify both proliferation and loss rather than just net
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Figure 4.8: Schematic of the final model for CD4 concentration and HIV dynamics.
CD4 cells are produced at rate λ, proliferate at rate px and die at rate dx in the
absence of virus. In the presence of HIV, CD4 loss rate increased by δ V . Meanwhile,
viral load is produced at rate pv and declines at rate k. The ART affects the rate of
production of virus pv.

loss.

The equations for the CD4 T cell concentration dynamics therefore become,

d
dtX = λ− dxX + pxX − δ V X , (4.20)

where

λ = λ0
y(τ)V (τ) γ
η(c− γ) (4.21)

px = y(τ)p0ecp(1−X(t)
V (τ)) (4.22)

dx = y(τ)d0ecd(
X(t)
V (τ)−1) , (4.23)

with as before, y(τ) the proportion of CD4 cells expressing Ki67 with age (Fig-

ure 3.4); V (τ) the expected CD4 T cell concentration with age (Figure 1.2);

η = 0.52 the duration of Ki67 expression; and c = 0.25 and γ = 0.08 constants

related to the TREC content of CD4 cells as they leave the thymus. The para-

meter λ0 is included such that the proportion of the expected thymic output for

age is estimated but the shape of the changes with age are maintained. d0 and

p0 give the rates of loss and proliferation when the CD4 concentration is that

expected of a healthy child of the same age, while cd and cp give the strength of

the effects of competition for resources on loss and proliferation respectively.
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The viral dynamics remain unchanged as,

d
dtV = k V0

V0 + V50
V (1− EDrug)− k V V

V + V50
. (4.24)

leaving ten parameters to be estimated, six for CD4 concentration: X0 the initial

concentration of T cells, λ0 proportion of the expected thymic output with age,

p0 and d0 the proliferation and loss rates respectively when the concentration is

that of a healthy child, cp and cd the strength of the effects of competition for

resources on proliferation and loss respectively; and four for viral load: V0 the

initial viral load, k the rate of decline in viral load giving the loss rate of infected

CD4 T cells, V50 the viral load at which the decline in viral loss is half, and

EDrug the strength of the drug effect. A schematic of the final model is shown in

Figure 4.8.

4.3.2 Model fitting

Nonlinear mixed-effects (NLME) modelling, as outlined in Section 2.3.2 on Page 48,

was used to fit the model to the two datasets. The model-fitting was car-

ried out using NONMEM 7.3 [85], using the importance sampling expectation-

maximisation algorithm and the ADVAN13 (general nonlinear kinetics) sub-

routine [123]. The M3 method described in Section 2.3.4 was used to cope with

viral load data below the limit of quantification.

4.4 Results

4.4.1 Patients with full viral suppression

The first aim was to see whether it was possible to fit a model for CD4 recon-

stitution to data that have not been pre-adjusted for age through building the

effects of age directly into the model as described in Chapter 3. In order to sim-

135



Chapter 4. Long-term CD4 reconstitution in HIV-infected children on ART

Time from start of ART (years)

C
D

4 
co

nc
en

tr
at

io
n 

(c
el

ls
/µ

L)

200

400

600

800

1000

1500

2000

0 1 2 3 4 5

Time from start of ART (years)

V
ira

l l
oa

d 
(c

op
ie

s/
m

L)

102

103

104

105

0 1 2 3 4 5

A

B

Figure 4.9: PENTA data for children restarting ART after PTI, (A) CD4 T cell re-
constitution and (B) viral load excluding patients without complete viral suppression.
Coloured lines give the responses of individual patients to ART. The black line gives a
local regression curve.

plify model-fitting in this initial analysis, viral load trajectories where the viral

load was not fully suppressed were excluded. This was defined as patients with

a measurement of viral load greater than 1000 copies/mL more than 100 days

after the start of ART. These excluded patients were a combination of patients
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Figure 4.10: ARROW data cut to first two years post ART commencement for (A)
CD4 T cell reconstitution and (B) viral load excluding patients without complete viral
suppression. Coloured lines give the responses of individual patients to ART. The black
line gives a local regression curve.

in whom the viral load did not decline, or it declined but only very slowly, or

the viral load rebounded at some later date due either to non-adherence or the

development of resistance to ART.

The resultant PENTA data after the exclusion of viral load trajectories without
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Table 4.3: Parameter estimates from fitting the model for children starting ART to
PENTA and ARROW datasets.

PENTA ARROW
Parameter Estimate Ω Estimate Ω
λ0 Proportion theoretical thymic out-

put [33] (cells/day)
0.178 0.267 0.104 2.48

d0 Proportion expected loss (/day) 0.545 2.81 0.462 2.17
p0 Proportion expected proliferation (/day) 0.166 5.68 0.176 0.879
X0 Initial concentration of T cells (cells/µL) 559 0.168 288 1.66
cd Strength of competition loss 1.21 1.09 1.18 0.631
cp Strength of competition proliferation 2.57 1.05 1.02 0.420
V0 Initial viral load (copies/mL) 22,200 0.937 337,000 2.15
k Rate of loss for viral load (/day) 0.299 0.585 0.259 0.948
V50 Viral load at decrease of cell loss (cop-

ies/mL)
277 1.41 751 1.39

EDrug Effect of drug 0.989 1.91 0.976 1.28
σx Variance of the residual error CD4 con-

centration
0.0420 — 0.153 —

σv Variance of the residual error viral load 1.48 — 0.661 —
Ωs are the variances of random effects for that parameter.

full suppression are shown in Figure 4.9. In this dataset there are 721 measure-

ments of CD4 concentration and 525 measurements of HIV viral load, of which

388 are below the limit of quantification (BLQ).

Because the ARROW data are so rich, it was possible to cut the data to just

the first two years post ART commencement, which is the time period in which

there are the greatest changes in viral load and CD4 concentration. In addition,

there were 11 measurements of CD4 concentration that were out of the biologically

feasible range (> 6000 cells/µL) and as such are likely to be reporting errors;

these were therefore removed. The resultant ARROW data used for model-fitting

are shown in Figure 4.10. In these data there are 10,479 measurements of CD4

concentration and 1904 measurements of HIV viral load, of which 1118 are BLQ.

Parameter estimates from fitting the model to the PENTA and ARROW

datasets are given in Table 4.3. As can be seen, parameter estimates are mostly

consistent across the two datasets. There are however some differences, most

notably between the estimates for initial CD4 concentration and viral load. Initial
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Figure 4.11: Comparison of model output to the expected CD4 concentration of a
healthy child and to a local regression curve (LOESS) of the observed data for PENTA
(A) and ARROW (B).

CD4 concentrations are estimated to be much lower for the ARROW dataset and

the corresponding viral load is higher. The parameter defining the viral load at

which viral load decline is half also has a higher estimate for the ARROW data

over the PENTA data. The differences in initial viral load and CD4 concentration

are supported by the observed data.

The estimates for the thymic output were λ0 of 18% and 10% of the previously

predicted thymic output [33] for PENTA and ARROW respectively. With this

model it was possible to estimate the strength of the competition for resources

unlike in the model in Chapter 3 where the effects of these parameters were inter-

related with the effects of the parameters for the delay to thymic output recovery
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Figure 4.12: Diagnostic plots for the PENTA and ARROW datasets. A and B give the
CWRES against time and population prediction respectively for PENTA, C and D give
the observed data against the individual-level and population-level predictions respect-
ively for PENTA. E and F give the CWRES against time and population prediction
respectively for ARROW, G and H give the observed data against the individual-level
and population-level predictions respectively for ARROW.

following HSCT. The parameter estimates found by the HIV dynamics model

were close to the value at which they were fixed for paediatric HSCT.

Comparisons of the model output for a child of median age at start of ART
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(9.6 years for PENTA and 6.0 years for ARROW) and a local regression curve of

the observed data are shown in Figure 4.11. As can be seen, for viral loads, the

model follows the observed data well at first, but as increasing amounts of the

data are BLQ, the model diverges. For CD4 concentrations, the predicted CD4

concentration is below that of the local regression curve.

This could be caused by biases in the observed data in which there is more data

for younger patients for whom the expected CD4 concentrations would be higher.

The decrease in observed CD4 concentrations at later times in the PENTA data

is likely to be due to a similar effect: only a few patients have data trajectories

that continue that long after the start of ART.

Diagnostic plots for PENTA and ARROW are shown in Figure 4.12. Because

of the high proportion of BLQ data in the viral load data, only the residuals

for CD4 concentration are informative and are shown here. As can be seen

from the plots of the residuals, for both PENTA and ARROW the residuals

are roughly normally distributed with mean 0, and there are no apparent biases

with time or population prediction demonstrating that they are independent.

There are however a few very low residuals for the ARROW data. This could

be due to further mis-recorded observations – mistaken observations of low CD4

concentration are hard to distinguish from genuine observations. The plots of

observed against individual and population predictions also demonstrate that

there are no obvious biases in the data.

The visual predictive checks (VPCs) for the PENTA data in Figures 4.13A

and B demonstrate that data simulated from the model matches the observed

data well. In particular, the model captures the dynamics of the reconstitution

as well as its variability for CD4 reconstitution, and for the viral load it captures

the expected proportions of measurements that are BLQ.

The VPCs for the ARROW data in Figure 4.13C and D also mostly match

the observed data well. The median of the simulated data for CD4 concentration
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Figure 4.13: Visual predictive checks. A PENTA CD4 concentration; B PENTA viral
load. C ARROW CD4 concentration; D ARROW viral load. The blue dots give the
observed data, with the corresponding median, 2.5th and 97.5th percentiles given by the
filled and dashed red dashed lines respectively. The 95% confidence intervals around the
model-simulated median and percentiles are given by the red and blue shaded regions
respectively. In the BLQ plot, the observed proportion of measurements that were BLQ
is given by the red line, while the blue shaded area gives the 95% confidence interval
of the model-simulated BLQ data.

matches the observed data, and while the long-term concentrations match, the

model does not capture the variability in the initial concentrations correctly,

overpredicting both the minimum and the maximum of the initial concentrations.
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Figure 4.14: Histograms of (A) the initial CD4 concentration in the observed data on a
log scale and (B) the model-output random effect of X0, the initial CD4 concentration
compared to a normal distribution, demonstrating that a lognormal assumption was
inaccurate.

This could be due to the initial concentrations not being log-nomally distributed,

as is assumed in the model (see Figure 4.14). However, the model-simulated data

for viral load captures the median of the observed data and the variability as well

as the proportion of measurements that were BLQ.

4.4.2 Patients with viral load rebound

Viral loads rebound either when a patient develops resistance to ART or due to

non-adherence to the ART. The patient’s regimen may then be changed or the

patient may adhere again and viral load may fall as a result, although if the CD4

concentration is largely unaffected, then the regimen may not be altered.

Out of the ARROW dataset, 261 patients did not maintain full suppression

and had a measurement of viral load exceeding 1000 copies/mL more than 100

days after the start of ART. Because the aim of this section is to model the

development of resistance, only patients for whom there were more than four
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Figure 4.15: Viral load profiles of patients that do not have full suppression of viral
load, split by visual inspection into categories of viral load suppression.

measurements of viral load in the dataset were considered in order to allow cat-

egorisation. This left 148 patients who were then categorised according to the

shape of their viral load profile (see Figure 4.15). For 57 patients, the viral load

after initially falling rebounded and stayed high; for 48 patients, the viral load

after initially falling rebounded temporarily, with some patients having a second

rebound as well; for 28 patients their viral load decreased only slowly under ART,

in contrast to the fast suppression seen in the majority of patients. The remaining

15 patients had viral load profiles that could not be categorised.

In order to assess the ability of the model to reflect the rebound in viral load

due to the development of resistance to ART, the 57 patients were modelled who

had a viral load profile where the viral load initially fell but then rebounded and

remained high for the rest of the time course. In order to capture the development

of resistance rather than just the initial reconstitution, patients were modelled for

the full time-course of data available, up to five years after the start of ART. In

this subset of data, there were 1011 observations of CD4 concentration, and 413
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measurements for viral load of which 114 were BLQ. The patients had a mean of

18 measurements of CD4 concentration and 7 measurements for viral load in this

time-course. The children in this subset of the data had a median age at start of

ART of three years old.

The model for the development of resistance in Section 4.3.1 was used,

EDrug = Emax

ER + 1− ER

exp[ t−tR
ρ

] + 1

 , (4.25)

where Emax is the drug effect before the development of resistance, ER is the

residual drug effect after the development of resistance, tR is the time at which

the drug effect is 50% of the way between Emax and EDrug, and ρ is the rate at

which resistance develops. In order to fit the model, parameter estimates from

fitting the model to the whole dataset for viral load and CD4 dynamics were used

and fixed. The three parameters related to the development of resistance were

then estimated along with their random effects using the importance sampling

algorithm.

The parameter estimates of these three parameters and their random effect

variances are given in Table 4.4. For those patients who did develop resistance, the

mean time to the development of resistance was 13 months after the start of ART,

and according to the model the development of resistance was on average fast,

taking 1 month for the ART to go from 90% to 10% effective. When resistance

developed, there was very little residual drug effect, with on average just a 4.5%

Table 4.4: Parameter estimates for the development of resistance in a subset of 57
ARROW patients.

ARROW
Parameter Estimate Ω
tR Time after ART start at development of resistance (days) 406 0.798
ρ Rate of the development of resistance (days) 5.92 2.54
ER Residual drug effect after development of resistance 0.0447 0.764

Ωs are the variances of random effects for that parameter.
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Figure 4.16: Comparison of observed data and model output for patients who develop
resistance in the ARROW dataset. Red lines give the model output, while blue circles
give the observed data. A gives the plots for viral load, B gives the corresponding plots
for CD4 concentration.

reduction from the pre-ART rate of virus production expected.

Plots in Figure 4.16 give a comparison for each individual of their observed
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data and the model output for both viral load and CD4 concentration. As can

be seen, the model reflects the data well. For viral load, it manages to pick up

the differences in the trajectories from individuals who develop resistance early

to those that develop it late. Because of the relatively low resolution in the

data, with measurements taken at large time gaps, it was not possible for many

patients to determine the exact time at which resistance developed. For the

corresponding CD4 concentrations, the model captures first the reconstitution in

CD4 concentration and then the decrease in CD4 concentration as resistance to

ART develops and viral load increases.

4.4.3 Covariate analysis

In order to find the factors that affect both viral load decline and the CD4 recon-

stitution, covariate analysis was performed using the stepwise covariate model-

building (SCM) procedure. In the forward search for testing which covariates

to include in the model a p-value of p1 < 0.01 was used, while in the back-

Table 4.5: Covariates included in the model for PENTA and ARROW datasets.

Parameter Covariate Effect size p-value

PE
N

TA

X0 ART age -0.805 � 0.001
X0 Zidovudine 0.195 0.002
p0 Nevirapine 3.00 � 0.001
cp Lamivudine 0.411 � 0.001
k Efavirenz 1.04 � 0.001

V50 Zidovudine -0.836 � 0.001

A
R

R
O

W

X0 ART age -1.10 � 0.001
X0 Treatment centre: � 0.001

Harare, Zimbabwe 0†
JCRC, Kampala, Uganda 0.221
PIDC, Mulago,Uganda 0.0937
Entebbe, Uganda 0.599

λ0 Died by end of trial -0.983 � 0.001
For categorical covariates, the parameter for patients who had the respective covariate
is multiplied by (1 + Effect size). So an effect below 0 decreases the parameter and
an effect greater than 0 increases the parameter for that covariate. For continuous
covariates, the parameter is multiplied by (1 + Effect size) × ART age - Median ART age

Maximum ART age .
The null hypothesis is then that the effect size is zero. † Typical individual.
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Figure 4.17: Age effects on the initial concentration of CD4 T cells X0, plotted for the
range of ages for which there were data in each dataset. The differences between the
ARROW and PENTA data are due to differences in the parameter estimates for X0
between the datasets.

wards search for testing which of these included covariates to retain, a p-value of

p2 < 0.005 was used. The covariates tested are listed in Table 4.1 for the PENTA

data and in Table 4.2 for the ARROW data and these covariates were tested on

each of the parameters that were estimated in the model. The covariates that

were included are shown in Table 4.5.

Age effects on X0

For both models, the initial concentration of T cells was found to be negatively

correlated with age (see Figure 4.17). This is not surprising, given that CD4

concentrations are expected to fall across childhood. In both the PENTA and

the ARROW data, age did not correlate with any other parameter.

PENTA data

For the PENTA data, the four factors that were associated with changes to the

dynamics were ART drugs (see Figure 4.18 and Table 4.5). Two were ART

drugs given before the beginning of the PTI: zidovudine (ZDV) and nevirapine

(NVP). The others were those given after the PTI, during viral load decline

and CD4 reconstitution: efavirenz (EFZ) and lamivudine (3TC). Zidovidine is
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Figure 4.18: Effects of the factors that affect (A) CD4 concentration and (B) viral
load on restarting ART in the PENTA data. Abbreviations: 3TC: lamivudine; ZDV:
zidovudine; NVP: nevirapine; EFZ: efavirenz.

an NRTI, and was associated with increased CD4 at the end of the PTI and a

small decrease in viral load after the restart of ART. Nevirapine is an NNRTI

and was associated with better CD4 reconstitution following the restart of ART.

Efavirenz is an NNRTI and was asoicatied with faster viral load decline in the

weeks following the start of ART. Lamivudine is an NRTI and was associated

with poorer CD4 reconstitution following the restart of ART.
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Figure 4.19: Effets of the factors that affect CD4 concentration on starting ART in the
ARROW data. (A) The centre at which they were enrolled and (B) whether they were
alive at the end of the trial.

ARROW data

For the ARROW data, the two factors that affected the dynamics were the centre

at which the child was enrolled and whether or not they were alive at the end

of the study (see Figure 4.19 and Table 4.5). The model found an association

between the initial concentration of CD4 T cells and the centre at which they

were enrolled, with patients at the centre in Entebbe, Uganda having a higher

concentration than those at the other three centres. The patients that had died

by the end of the trial (n=56) were found by the model to have on average a much

reduced thymic output, resulting in a very low long-term CD4 concentration, with
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Figure 4.20: Effects of the treatment centre on time at which viral load rebounds in the
ARROW data due to either the development of resistance to ART or non-adherence.

the concentration barely increasing from that when they started ART.

Development of resistance in ARROW data

Looking at the development of resistance in the ARROW data, the centre at

which the child was treated and seen was found to affect the time at which the

viral load rebounded (see Figure 4.20). As can be seen, the viral load declines

and increases at the same rate for each centre, but it increases at a different time

for each centre.

4.5 Discussion

In this chapter, I have developed a new mechanistic model for the dynamics of

CD4 reconstitution and viral load decline in HIV-infected children starting ART.

The model combines a simplified version of a previous model for HIV dynamics

with the age and competition effects from the model in Chapter 3 for long-term

CD4 reconstitution following paediatric HSCT. This allows the model to be fitted

to datasets of paediatric patients without having to adjust the data to account

for age.

The model was fitted to two datasets, from two clinical trials, PENTA and
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ARROW. While most of the parameter estimates obtained from fitting the mod-

els were similar between the datasets, some parameters differed substantially.

In particular, the viral loads were found to be higher and CD4 concentrations

lower at the start of ART in the ARROW dataset. The differences between the

parameter estimates for the datasets are sensible both biologically and due to

the different structures of the two trials. Biologically, patients with higher viral

loads would be expected to have lower CD4 concentrations. Structurally PENTA

is a planned treatment interruption trial with children closely monitored for the

re-start of ART whereas the children in ARROW are receiving treatment for the

first time. Furthermore, the children in ARROW are from less developed coun-

tries and as such potentially have not had access to the same standard of care as

the patients in PENTA.

The inverse of the rate of loss of CD4 concentration can be used to find the

cell lifespan. The parameter estimates implied a CD4 T cell lifetime of 196 days

for a child of the median age at ART for the ARROW dataset (6 years old), with

a range from 120 days for a 1 year old to 620 days for an 18 year old. Similarly to

the model of CD4 reconstitution following HSCT, these estimates agree well with

the experimental evidence from the deuterium and BrdU labelling studies that

have taken into account kinetic heterogeneity in the T cell population, finding

lifetime estimates between 222 and 611 days (range 167 to 1245) [21,22,126,127].

Because the viral load is in quasi-steady state with infected CD4 T cells, the

rate of decline of viral load gives the rate of decline of infected CD4 T cells. The

estimates for the rate of loss of viral load k therefore implies an average life-

time of infected CD4 T cells of 3.2 days and 3.9 days for PENTA and ARROW

respectively. Previous studies have estimated the lifetime of infected CD4 T cells

at around 3 days [184,185,196,197], in agreement with the parameter estimates

from this model.

The inclusion of a viral-load-dependant sigmoidal function on the rate of loss
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of viral load allows the decline in viral load to be multi-phasic. It also means that

viral load plateaus at a residual low level rather than continuing asymptotically

towards zero. This means that resistance can develop more quickly than would

otherwise be possible from the model. The residual low level is below the limit of

quantification, so it is not possible to determine experimentally where this level

might actually be.

The model found that the CD4 concentration for age does not on average

return to the level of a healthy child, with the long-term concentration on average

75% of that expected. This is in agreement with other analyses of both the

datasets [172,201] and other datasets [171], and could have major implications

for the health of the children’s immune systems.

The model has been applied to 57 patients from the ARROW dataset that

developed resistance to ART. These patients were chosen as having had an initial

decrease in viral load that then increased and remained high. The model was able

to match the data well for the combination of viral load and CD4 concentration,

capturing the time at which resistance developed. The accuracy of this time

estimate however is dependent on the resolution in the data. From the observed

data, resistance appears to develop rapidly with very few observations made where

resistance is partial. Resistance can therefore usually only be estimated to have

developed between two time points and as such the accuracy of the time at which

resistance develops depends on the frequency of the measurements of viral load.

The model for resistance allows for further analysis of the factors that affect the

timing of the development of resistance.

Covariate analysis was performed to find what factors significantly alter either

the viral load or the CD4 reconstitution profiles following the start of ART. For

both datasets, age at the start of ART affected the initial concentration of CD4

T cells. This is to be expected partly because the CD4 concentration is expected

to decline with age in healthy children and partly because older children will have
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been infected with HIV for longer. In this analysis, a linear correlation was tested

between age at ART and CD4 concentration. While an exponential decay could

have better extrapolation properties, it was not tested during covariate analysis

in order to simplify the covariate analysis. Age was not found to be a significant

covariate with any other parameter in the model, which implies that the model

has managed to account for age-related changes of CD4 concentration. Analysis

of this ARROW data [172] and of a different cohort of children [171] using CD4

z-scores to account for age related differences found that age affected not only the

initial CD4 concentration in agreement with this analysis but also the long-term

concentration, an effect we did not observe here.

For the PENTA data, significant differences in CD4 reconstitution and viral

load were found with four of the ART drugs that were given: two NRTIs, zidovud-

ine and lamivudine, and two NNRTIs, nevirapine and efavirenz. Patients that had

received zidovudine before the PTI appeared to fare much better over the PTI,

with a higher CD4 concentration at the re-start of ART. Their viral load also fell

to a lower concentration in the ensuing weeks. Patients that received nevirapine

pre-PTI also fared better after the PTI, with increased CD4 concentrations. In

contrast, those patients that received lamivudine post PTI had decreased CD4

reconstitution in the weeks that followed the start of ART. Efavirenz was asso-

ciated with an increased rate of loss in viral load, which resulted in a faster viral

load decline following the start of ART. There were however only 56 trajectories

for patients following PTI in this analysis, so while this demonstrates that the

model can be used to find what affects reconstitution, these results should be

taken with caution and it would require a larger dataset to have full confidence

in them.

For the ARROW data, significant differences were found between the initial

CD4 concentrations of patients that were enrolled at different centres. There was

no difference found between the viral loads of these patients. In the covariate
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analysis presented here, an association was also found between decreased thymic

output, and a resultant significant decrease in long-term CD4 concentration in

the patients that died before the end of the study. This effect is supported by the

observed data (mean CD4 concentration at 2 yrs post start of ART for patients

that survive to end of trial is 900 cells/µL in comparison to 200 cells/µL for those

that do not), and agrees with the previous analysis of this data, which found that

patients who had a non-asymptotic (i.e. flat) profile following the start of ART

were more likely to have worse disease progression than those who displayed an

asymptotic recovery [172].

Analysis of the 57 patients that had some sort of rebound in their viral load

following an initial increase found that the centre at which the patient was treated

appeared to significantly affect the time at which this rebound happened. The re-

bound could happen for three major reasons: the development of resistance to the

drug combination that the patient is receiving, non-adherence to the drug protocol

that the patient has been set, or a combination of the two with non-adherence

raising the risk of the development of resistance. Given that the patients in the

centres received similar combinations of drugs and that the drug combinations

do not seem to have affected outcome, it seems that the likeliest cause of these

differences is differences in adherence levels of the patients. It would be interest-

ing to look into this further to see whether the centres have different strategies

to promote adherence.

In this chapter, I have successfully simplified and adapted a previous model

for the dynamics of HIV and CD4 concentration by removing the infected CD4

cells compartment, allowing for the multi-phasic nature of viral load decline,

including the effects of age-related immune development, and including the effects

of competition for resources. This model was successfully applied to two different

datasets, finding parameter values that were consistent across the datasets and

with the previous applications of similar models. The model was then further
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extended to model the viral load rebound due to either non-adherence or the

development of resistance. The model was used to perform covariate analysis to

find which factors affect the viral load decline or the CD4 reconstitution in both

datasets or the development of resistance in the ARROW dataset. While more

work is required to ascertain the nature of these covariate effects, it is clear that

the model can be used to interrogate a dataset and find useful information about

what affects the recovery of children following the start of ART.
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Chapter 5

A global competition model for T

cell homeostasis

5.1 Introduction

In this chapter, I present a stochastic global clonal competition model for T cell

homeostasis, on which I have been collaborating with Grant Lythe, University of

Leeds.

T cell receptors (TCRs) are antigen specific, and it is this specificity that

allows T cells to fight pathogens effectively. Each T cell will express one type

of TCR, with about 30,000 TCRs per cell [203]. As discussed in Section 1.5, T

cell receptors have a vast potential diversity of forms. Gene rearrangement in

the thymus has the potential to produce more than 1015 different TCRs [204],

although it is reckoned that the human T cell receptor repertoire actually has

fewer than 108 different TCR clones in the body at any one time [205]. Because

of specificity, this high diversity is required to enable T cells to recognise as many

different pathogens as possible. TCRs, however, recognise peptides up to around

14 amino acids long when presented on MHC. As such, given there are 20 amino

acids involved in protein formation, there are more than 1016 such peptides that
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could be presented to T cells by antigen presenting cells (APCs) [204,205]. Thus

in order to be able to recognise all peptides, TCRs must be cross-reactive and

able to recognise multiple peptide-MHC combinations [206,207].

T cells with the same TCR can be grouped together into clonotypes. Whereas

all T cells interactions with cytokines are general and non-specific, interactions

with different sp-MHC combinations are specific to particular TCR clonotypes

according to some interaction matrix. T cells compete with each other for these

interactions with resources to survive and proliferate [29] and the resulting inter-

clonotype competition drives the observed diversity of the T cell repertoire [27,28].

While a more complex model has been developed that considers competition for

resources in the presence of a full sp-MHC interaction matrix [208], in this chapter

we consider competition for non-specific resources such as cytokines.

This “Global” stochastic competition model can be used to study clonotype

dynamics and the diversity and survival of TCR clonotypes. With the model

in this form, all T cells compete equally for the same resources, which has two

advantages. Firstly, it is computationally much less expensive, which means nu-

merical results can be simulated for much greater time spans and with many more

clonotypes, thus modelling a system much closer in scale to a human repertoire

and offering greater insights. Secondly because it is simpler, it is mathematically

tractable, which means analytical results can be found. This in turn allows the

results to be scaled to a full-sized system. Some results from this work were also

applicable to the more complex model [208].

5.2 The model

All T cells compete globally for a central stimulus which represents the total

pool of resources. It is assumed that this pool of resources is of finite size and

that the amount of resource does not change either with time or with the T cell
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T cell Pool

n3(t)n2(t)n1(t) n4(t)

n(t) =
∑

i
ni(t)

∆t ∼ exp(1/S) where

S = γ + µn+ θ

n4(t)n3(t) + 1n2(t)n1(t)

n4(t)n3(t)− 1n2(t)n1(t)

n1(t) n2(t) n3(t) n4(t) n5 = nθ

n1(t) n2(t) n3(t) n4(t) = 0

Clonotype birth, P = θ

Clonotype extinction

T cell division, P = γ
ni(t)
n(t)

T cell death, P = µni(t)

Figure 5.1: Schematic of the model for global competition between TCR clonotypes.
The T cell pool with n(t) T cells is split into N clonotypes with clonotype i having ni
T cells. A cell can then die or compete for resource to proliferate so that the number of
cells in a clonotype can increase by one with a probability γ nin or decrease by one with
probability µni. New clonotypes with nθ cells per clonotype are be produced at rate θ.
If the number of cells in a clonotype reaches zero, that clonoype is extinct. One such
event happens per time step, and time between steps in incremented by ∆t, where ∆t
is exponentially distributed according to the rates of the dynamics.

population. T cells then compete equally for this constant stimulus γ in order to

divide. The death rate is equal for each T cell in the population and is given by

µ, the probability per unit time of dying. For the whole population of cells, the

birth rate is then γ and the death rate is µn(t) where n(t) is the total number of

T cells with time t. This can be written as,

lim
∆t→0

∆t−1P [n(t+ ∆t)− n(t) = 1] = γ and, (5.1)

lim
∆t→0

∆t−1P [n(t+ ∆t)− n(t) = −1] = µn(t). (5.2)

The T cell pool n(t) is split into N(t) clonotypes, labelled by i, where each

clonotype represents a group of cells with the same TCR (see Figure 5.1 for a

model schematic). The number of T cells in each clonotype ni(t) is an integer

≥ 0. The system starts with N0 clonotypes with n0 cells per clonotype. Each T

cell has equal probability per unit time of dying µ and thus the death rate for the

cells in one clonotype µi(t) = µni(t). T cells compete equally for resource γ such

that the birth rate for each cell is γ
n(t) and the birthrate for cells in one clonotype
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λi(t) = γni(t)
n(t) , or,

λi(t) = lim
∆t→0

∆t−1P [ni(t+ ∆t)− ni(t) = 1] = γ
ni(t)
n(t) and, (5.3)

µi(t) = lim
∆t→0

∆t−1P [ni(t+ ∆t)− ni(t) = −1] = µni(t). (5.4)

If the number of cells in a clonotype reaches zero that clonotype becomes extinct,

so if ni(t1) = 0 then ni(t > t1) = 0 for all t > t1.

Furthermore, the activity of the thymus is modelled through new clonotypes

entering the system with probability per unit time θ. When new T cells enter the

circulation from the thymus they have usually undergone a few rounds of division

before leaving the thymus. The new clonotypes that enter the system therefore

have nθ cells per clonotype, where nθ is usually in the range of two to ten cells.

Numerical simulations from the model use the Gillespie algorithm to track the

integer number of T cells in each clonotype as they decrease or increase through

cell death or division, and new clonotypes are produced by the thymus. At each

step of the algorithm, one of three events can happen: a cell in a clonotype

divides, a cell in a clonotype dies or a new clonotype is produced by the thymus.

Time is then increased before the next step by an amount ∆t distributed ∆t ∼

exp(1/S) where S is the sum of the rates of the dynamics S = γ + µn + θ.

Numerical simulations have also been carried out using a τ -leaping algorithm as

an approximation of the Gillespie algorithm. In the τ -leaping algorithm, time is

incremented by ∆t and the number of events (cell death, cell division, clonotype

birth) is Poisson distributed according to the rates µ, γ and θ. The τ -leaping

algorithm has the advantage of being less computationally expensive, allowing the

simulation of larger systems in shorter periods of time. Numerical simulations

are then compared to analytical solutions.
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Figure 5.2: Total number of T cells with time from numerical simulation, demonstrating
that the system heads towards an equilibrium from three different starting points.
The equilibrium number of T cells is given by Eq (5.6). µ = 1.0, γ = 2,000,000,
N0 = 100,000.

5.3 Results

5.3.1 Without thymic output

In the first instance, we look at the results from the model in the simplest situ-

ation, where there is no thymic output of new clonotypes so that θ = 0. This can

be thought of as the situation where the thymus is damaged, such as following

HSCT, or where it has been removed. The model then depends on four paramet-

ers, the stimulus γ the death rate µ, and the two parameters giving the initial

set-up of the system: the initial number of clonotypes N0 and the initial number

of cells per clonotype n0.

Number of T cells

Although the numbers of T cells will fluctuate randomly due to the stochasticity

in the model, the mean total number of T cells will reach a homeostatic steady
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state, with this steady state dependent on the stimulus γ and the death rate µ.

If we define the mean total number of T cells as x = IE(n(t)) then in the absence

of any T cell production from the thymus,

d
dtx = γ − µx, (5.5)

and thus in steady state, as t→∞, the mean total number of T cells is constant

and given by the ratio of stimulus to death rate,

x→ γ

µ
. (5.6)

Figure 5.2 demonstrates that an equilibrium level of T cells is reached from three

different starting positions and that this steady state is indeed independent of

the initial number of T cells.

Number of clonotypes

The number of clonotypes however does not have a steady-state number. Even

when the total number of T cells is in steady state, the number of T cells in each

clonotype will be fluctuating randomly, and as a result, the number of T cells in

a clonotype can reach zero, resulting in the clonotype becoming extinct. Because

of this extinction, the number of clonotypes N(t) can only be a non-increasing

function with time.

In order to find an analytic solution for the number of clonotypes with time,

we look at a single clonotype and we take the situation where the rate of stimulus

is much greater than the death rate, γ � µ. We can therefore make the approx-

imation that the system is close to its steady state, such that n(t) ∼ x(t) = γ
µ
,

and so,

λi(t) = γ
ni(t)
n(t) = µni(t). (5.7)
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Thus for each clonotype we have a birth-death process with no net drift.

Furthermore, with γ � µ, because there will be large numbers of cells, we can

treat changes in the numbers of cells as continuous, which allows the use of the

diffusion approximation. We therefore approximate ni(t) as a diffusion process,

ni(t) ∼ Xt. In order to write down the corresponding stochastic differential

equation (SDE) for the system, we define the mean and mean square for the

change in Xt, with time through comparison to the birth-death process,

IE(ni(t+ ∆t)− ni(t)) = λi(t)∆t− µni(t)∆t = 0, (5.8)

where we have used the fact that λi(t) = µni(t) and that there is therefore no net

drift. The mean for the diffusion process is therefore given by IE(Xt+∆t−Xt) = 0.

Similarly, to find the mean square,

IE((ni(t+ ∆t)− ni(t))2) = λi(t)∆t+ µni(t)∆t (5.9)

= 2µni(t)∆t. (5.10)

The mean square for the diffusion process is therefore given by IE((Xt+∆t−Xt)2) =

2µXt∆t. The SDE can thus be written as,

dXt =
√

2µXtdWt. (5.11)

This SDE is relatively well characterised, with known solutions [209,210]. In

particular, if the probability of reaching X = 0 before time t starting with X0 = b

cells is F (t, b), then F (t, b) satisfies the following partial differential equation,

∂

∂t
F (t, b) = 1

2µx0
∂2

∂x2
0
F (t, b), (5.12)

where F (t, 0) = 1. This is found from the Kolmogorov backwards equation [210].
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Figure 5.3: Comparison of number of clonotypes with time N(t) from numerical sim-
ulation and theoretical prediction. The theoretical prediction is given by Eq (5.15).
µ = 1.0, N0 = 100,000, n0 varies according to γ to ensure the system starts with the
steady state number of T cells, with n0 = 10 for the green line, n0 = 20 for the blue
line and n0 = 10 for the red line.

The value of b is the number of cells necessary in each clonotype at time t = 0

such that there are the expected mean number of cells in the system. In the case

of this model, b = γ
µN0

, where N0 is the number of clonotypes at t = 0. The

solution to (5.12) is,

F (t, b) = 1− exp
(
− b

µt

)
, (5.13)

giving,

P [Xt = 0|X0 = b] = 1− exp
(
− b

µt

)
. (5.14)

And so N(t) the expected number of clonotypes with time is given by,

N(t) = N0

(
1− exp

(
− b

µt

))
(5.15)

= N0

(
1− exp

(
− γ

µ2N0t

))
. (5.16)

A comparison between this theoretical prediction and numerical simulations
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of the model are shown in Figure 5.3 for three different values of γ. As can be

seen, the theoretical predictions match the numerical simulations well. It can also

be seen that the number of clonotypes falls fast at first and then the decrease

slows down. Because the number of T cells remains constant (Figure 5.2), the

average size of a clonotype increases as the number of clonotypes falls, and so the

probability of extinction for each clonotype decreases. The number of clonotypes

does however continually fall, with the probability of full extinction as t → ∞

equal to 1. There is therefore no steady-state number of clonotypes or steady-

state distribution of clonotypes sizes.

5.3.2 Including thymic output

Including the release of new clonotoypes into the periphery from the thymus

makes the model a closer representation of the actual system. By including thymic

output in the model, there will be a point at which the rate of production of new

clonotypes equals the extinction rate of clonotypes and an equilibrium number

of clonotypes can be reached. This allows long-term numbers of clonotypes and

distributions of clonotypes sizes to be found from the model.

Number of cells

After including thymic output, similarly to the scenario without thymic output,

the total number of cells will fluctuate randomly. The mean total number of T

cells in the population does however still have a steady state, but this steady state

now depends on the extent of thymic output given by the rate of production of

new clonotypes θ and the number of cells per new clonotpye nθ, as well as the

stimulus γ and the death rate µ. Taking the mean total number of T cells again

as x = IE(n(t)), in the presence of thymic output of new clonotypes then,

d
dtx = γ − µx+ θnθ, (5.17)
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Figure 5.4: Total number of T cells with time from numerical simulation including
thymic output, demonstrating the effects of different levels of thymic output θ on the
homeostatic set point. Theoretical values from Eq (5.18). µ = 1.0, γ = 200,000,
n0 = 20, N0 = 10,000, nθ = 20.

and thus as t→∞, the mean total number of T cells still reaches a steady state

number, given by,

x(t)→ γ + θnθ
µ

. (5.18)

The effect of changing θ on this homeostatic equilibrium value is demonstrated

in Figure 5.4, with the number of T cells reaching a dynamic steady state which

increases with the level of thymic output.

Clonotype lifetime and the number of clonotypes

In order to find the clonotype lifetimes and the number of clonotypes, similarly to

the case with no thymic output, we first need to define the stochastic differential

equation for the system. Again we look at a single clonotype in the case that

γ � µ allowing us to assume that the number of cells in a clonotype is continuous.

By including thymic output, the deathrate is now roughly equal to the total

production of cells from both proliferation and thymic output at steady state or
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µn(t) ' γ + nθθ. The birthrate is therefore given by,

λi(t) = γ
ni
n(t) = γ

µni
γ + nθθ

= µni
1 + β

(5.19)

where

β = nθθ

γ
(5.20)

is the ratio of the thymic output of T cells to the production of T cells through

peripheral division. Thus we now need to consider a birth-death process [211],

where the death rate is slightly higher than the birthrate and there is thus net

drift within a single clonotype. The expected change in the birth-death process

is now,

IE(ni(t+ ∆t)− ni(t)) = (λi(t)− µni(t))∆t (5.21)

= µni(t)
(

1
1 + β

− 1
)

∆t (5.22)

= µni(t)
(
−β

1 + β

)
∆t (5.23)

= −αµni(t)∆t, (5.24)

where α = β
1+β . Similarly, for the mean square,

IE((ni(t+ ∆t)− ni(t))2) = (λi(t) + µni(t))∆t (5.25)

= µni(t)
(

1
1 + β

+ 1
)

∆t (5.26)

= µni(t)
(

2 + β

1 + β

)
∆t (5.27)

= (2− α)µni(t)∆t. (5.28)

The mean and mean square for the diffusion process are therefore given by,

IE(Xt+∆t −Xt) = −αXt∆t IE((Xt+∆t −Xt)2) = (2− α)µXt∆t. (5.29)
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With 0 < α� 1, so in the scenario where most of the T cells are produced through

peripheral devision rather than from the thymus, the SDE for the system can be

approximated as,

dXt = −αµXtdXt +
√

2µXtdWt. (5.30)

Similarly to the case where there was no thymic output, this equation is

relatively well characterised with known solutions [209,211]. The mean clonotype

lifetime is given by the time to extinction for clonotype, or the time it takes

on average for a clonotype to have zero T cells through random fluctuations. If

T (x, α) is the time to extinction of a typical clonotype starting with x cells in the

clonotype, then T (x, α) must a solution to the following general ODE for time to

reach a boundary from a starting point in between [211],

1
2 σ̄

2(x) d2

dx2T (x, α) + µ̄(x) d
dxT (x, α) = −1 for c < x < d . (5.31)

In the situation presented here, the values for σ̄ and µ̄ are given by σ̄(x) =
√

2µx

and µ̄(x) = −αµx. We are also only interested in the time to reach 0 and so set

the boundary conditions as c = 0 and d→∞. Hence we need to find a solution

for T (x, α) for the following ODE,

µx
d2

dx2T (x, α)− αµx d
dxT (x, α) = −1 for 0 < x <∞ , (5.32)

with boundary conditions T (0, α) = 0 and T (∞, α) = 0. Mathematica version

9.0 [212] and the analytical equation solver DSolve was used to find a solution

for T (x, α) giving,

T (x, α) = 1
αµ

(
γE − eαxEi(−αx) + ln(αx)

)
(5.33)

where Ei(x) is the Exponential Integral and γE is the Euler–Mascheroni constant,
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Figure 5.5: Total number of clonotypes with time from numerical simulation including
thymic output, demonstrating the effects of different levels of thymic output θ on the
homeostatic set point. The theoretical values come from Eq (5.36). The system is
started such that there are the homeostatic number of T cells. µ = 1.0, γ = 200,000,
n0 = 20, N0 = 10,000, nθ = 20.

given by

Ei(x) = −
∫ ∞
−x

e−t

t
dt and (5.34)

γE = lim
n→∞

(
n∑
k=1

1
k
− ln(n)

)
' 0.57721 . . . . (5.35)

Therefore, if the initial number if cells in a clonotype in nθ and the mean lifetime

of a clonotype is T (nθ, α), then the mean number of surviving clonotypes, as

t→∞, is

N̄ = θ T (nθ, α) = θ

αµ

(
γE − eαnθEi(−αnθ) + ln(αnθ)

)
. (5.36)

The number of clonotypes therefore reaches steady state (see Figure 5.5). The

steady state number is dependent on α, related to the ratio of cells produced by

thymic output to cells produced by proliferation, and nθ, the number of cells per
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Figure 5.6: Mean long-term number of clonotypes with thymic output for four different
combinations of γ and nθ. The lines give the theoretical number of clonotypes N̄ from
formula (5.36), while the error bars give the results from numerical simulation. µ = 1.0.

new clonotype. Comparisons between the results of numerical simulations of the

model for N̄ with thymic output and formula (5.36) can be seen in Figure 5.6,

demonstrating the relationships between the number of clonotypes and the values

for γ, θ and nθ.

Distribution of clonotype sizes

Because the number of clonotypes reaches a steady state, the sizes of the clono-

types will form a steady state distribution. In order to find this long-term distri-

bution, we first assume each clonotype can be approximated as an independent

realisation of the birth-death process, obeying SDE (5.30). From this can be

calculated G(y, x), the occupation density at y (the number of clonotypes with

y cells) given that the process starts at a source x (each clonotype has x cells in

when it enters the population) and is absorbed at 0 (clonotypes go extinct when
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they have 0 cells). G(y, x) is known to satisfy the following ODE,

µx
d2

dx2G(y, x)− αµx d
dxG(y, x) = −δ(x− y) for 0 < x <∞ (5.37)

with boundary condition G(y, 0) = 0. The solution can be constructed from

combinations of a constant and eαx as,

G(y, x) =


c(eαx − 1) y < x

c(eαy − 1) y ≥ x .

(5.38)

By using the δ–function property that

lim
ε→0

∫ y+ε

y−ε
δ(x− y)dx = 1 , (5.39)

and by integrating (5.37) with respect to x between the limits x = y − ε and

x = y + ε and taking the limit ε → 0, it can be shown that the step change in

G′(y, x) at x = y must be equal to −1/µy. Thus by differentiating the two parts

of (5.38), and taking the difference we find,

cα

e−αy = 1
µy

(5.40)

and thus,

c = 1
αµ

e−αy
y

. (5.41)

In this case, the source x is the number of cells per clonotype output from the

thymus, nθ. Thus with nθ fixed we find the number of clonotypes with y cells in

them to be,

G(y, nθ) =



1
αµ

1− e−αy
y

y < nθ

eαnθ − 1
αµ

e−αy
y

y ≥ nθ .

(5.42)
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Figure 5.7: Histograms of numerical simulations of the number of T cells in each clono-
type (blue bars) is compared with the theoretical distribution of clonotype sizes (red
lines) given by G(y, b)/T (b, α) where G(y, b) is given by formula (5.42). Multiple values
of θ and nθ are shown to demosntrate the differences in their resultant distributions.
γ = 200,000, µ = 1.0, n0 = nθ

Comparisons between numerical simulations and the formula given in (5.42) are

shown in Figure 5.7. As can be seen, this formula appears to fit the simulations

well with these parameter values. Increased levels of thymic output give increased

drift for each individual clonotype towards zero. Thus the distributions become

increasingly pushed towards many clonotypes with small numbers of cells in them.

Gini coefficient

The Gini coefficient is often used as a metric for the dispersion and inequality of

a population, vaying between 0 and 1. A Gini coefficient of 1 means complete in-

equality and a Gini coefficient of 0 means complete equality in that every instance

of the population has the same size, so in this case every clonotype contains an

equal number of cells.

The Lorenz curve is used to define the Gini coefficient. In this case, the Lorenz

curve is the cumulative proportion of the total number of T cells with increasing
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Figure 5.8: A Lorenz curve from global competition model by plotting F (z) given by
(5.43) against H(z) given by (5.44) where z is the number of T cells in a clonotype. The
blue section is for z < nθ, and the green section for z > nθ. B and the Gini coefficient
were calculated using (5.46). γ = 4000, θ = 80, µ = 1.0, nθ = 8.

clonotype size plotted against the cumulative proportion of total clonotypes. The

Gini coefficient is then twice the area between this curve and the line of equality.

The Lorenz curve in this case, as demonstrated in Figure 5.8, is given by a plot

of the cumulative total number of T cells in z clonotypes, F (z) =
∫ z

0 zG(z, b)dz on

the y-axis against the cumulative total number of clonotypes, H(z) =
∫ z

0 G(z, b)dz

as a parametric plot with increasing z. Where,

F (z) =


1
αb

(αz − 1 + e−αz) z < b

1
αb

(
αb+ (1− eαb)e−αz

)
z ≥ b

(5.43)

H(z) =


1
αµ

(γE + log(αz)− Ei(αz)) z < b

1
αµ

(
γE + log(αb)− eαbEi(−αb) + (eαb − 1)Ei(−αb)

)
z ≥ b.

(5.44)
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From these, B the area under the Lorenz curve is given by,

B =
∫ ∞

0
F (z)H ′(z)dz (5.45)

where H ′(z) = G(z, b). Thus,

B =
{

1
α2bµT

(
αb+ e−αb − 1− γE − log

(
αb

2

)
+ 2Ei(−αb)− Ei(−2αb)

)

+ 1− eαb
α2µbT

(
αbEi(−αb) + (1− eαb)Ei(−2αb)

)}
, (5.46)

where b is the number of cells per new clonotype, nθ. The Gini coefficient is then

given by Gini = 1− 2B.

5.3.3 Application to murine CD8 memory data

The experimental setup

The model has been applied to data from an experiment conducted by Thea

Hogan and Benedict Seddon at the Royal Free London NHS Foundation Trust.

In this experiment, a series of mice were given busulfan at 8 weeks of age to ablate

the bone marrow whilst leaving the circulating immune cells intact. New bone

marrow that is genetically identical except for a change to a single marker which

allows it and its daughter cells to be identified is then grafted into the mouse.

The replacement of the original host T cells in the body by the new donor T cells

is then measured over the following months.

The experimenters expected to find that the donor T cells replaced the host T

cells until the proportions in the circulations were equal to the proportion of donor

bone marrow to host bone marrow after the engraftment. With the application of

mathematical modelling in conjunction with Andrew Yates and Graeme Gossel,

however, they discovered that the T cells did not achieve complete replacement

for any T cell subset. This effect was more marked with memory T cells and
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Figure 5.9: Results of the mouse experiment for CD8 memory T cell replacement from
the experiment conducted by Thea Hogan at the Royal Free London NHS Foundation.
Each datapoint is a different mouse. It gives the percentage of the cells that are from
the donor bone marrow out of the CD8 memory cells, normalised to the percentage
of the bone marrow that had been replaced for each mouse. The line gives a local
regression curve for the data. As can be seen, there is large variability in the data, but
no mouse manages more than 55% replacement, with the mean long-term replacement
in the region of 20%.

particularly with CD8 memory compartment where the donor T cells only man-

aged to replace approximately 20% of the compartment, after normalising for the

percentage of the bone marrow that had been replaced (see Figure 5.9).

While näıve T cell populations require a combination of signalling from sp-

MHC and cytokines for survival and proliferation, memory T cells mostly only

require interactions with cytokines such as IL-7 and IL-15 [19] and are largley

sp-MHC independent. As such, these T cells compete only for global resources.

The situation is simpler in CD8 memory, where most subsets are reckoned to

compete only for IL-15 cytokines [19], and as such the cells are competing for a

single global resource. Therefore the model presented in this chapter could be

appropriate to look at the dynamics of the CD8 memory T cell subset.

The cell surface marker CD122 is the β-chain of the IL-2 receptor and is also a
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Figure 5.10: Gating strategy for CD8 memory and CD122 expression levels. The cells
in the spleen were split into NK cells and T cells using the TCR. These were subsetted
into CD8+ CD4- and then further into CD44 positive to give the memory CD8 cells.
The two different markers for CD45 were used to differentiate the donor and host
populations of these cells. Expression levels of CD122 could then be compared to those
of the NK cells to give their relative expression level. With thanks to Thea Hogan.

component of the IL-15 receptor. As such, expression levels of CD122 can be used

as a proxy for IL-15 cytokine receptor levels for a cell. Figure 5.10 gives the gating

strategy for looking at the CD8 memory subset, and at their CD122 expression

levels. As can be seen, the CD122 expression level for donor memory cells is lower

than that for host memory cells in this example. The complete distributions of

median CD122 expresion levels of host and donor cells is shown in Figure 5.11.

Because of flow-cytometry inaccuracies, data collected on different days cannot

be compared directly. NK cell CD122 distributions however are not expected to

change and as such were used to normalise the CD8 memory CD122 expression

levels for both host and donor. It can be seen that CD122 expression levels are

significantly higher for host CD8 memory cells than donor CD8 memory cells.

This implies that IL-15 receptor levels are also correspondingly higher for host

CD8 memory T cells over donor CD8 memory T cells, giving them an advantage
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Figure 5.11: CD122 expression level distributions for host and donor CD8 memory
cells. The CD122 expression is reported as relative to the CD122 expression of the NK
cells from the same mouse to normalise between differences from the flow cytometry
being carried out on different days.

in competing for resources.

Modelling

In order to model the situation represented in these data, the global compet-

ition model was updated such that, while the total level of resource remained

constant, cells from each clonotype have an affinity for resource drawn from a

truncated normal distribution. It is assumed that this would in some way be

related to the number of receptors for cytokines on their cell surface. Cells from

each clonotype then compete for the resource. In this situation, the mechanism

that was described as thymic output becomes clonotype entry into the memory

pool from the näıve pool. As a new clonotype enters, its affinity for resource is

drawn randomly from the same truncated normal distribution.

The system starts with a large number of clonotypes in the memory pool

simulating the effects of birth and the immediate recognition of many pathogens.
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Figure 5.12: The impact of competition for resources as an explanation for the incom-
plete replacement of CD8 memory cell in mice. The system starts with an influx of
memory clonotypes (C) with affinity for resource drawn from the distribution shown
at birth (E). After 8 weeks of competition, by the day of transplant, the distribution
has skewed with the clonotypes with higher affinity out-competing those with lower
affinities (F). The donor clonotypes, which are drawn from the same distribution as
at birth therefore do not compete for resource equally (G and H) and cannot displace
these incumbent cells high-affinity cells and therefore, while the proportion of donor
clonotypes becomes high (D), the proportion of donor T cells remains low (B).
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These clonotypes each have an affinity for resource drawn randomly from the

truncated normal distribution. The cells in the clonotypes then compete for 8

weeks, during which time, new host clonotypes enter the memory pool at a fixed

rate, also with their affinity for resource also drawn randomly from the same

distribution. At 8 weeks, the mouse receives busulfan ablating the host bone

marrow and new donor bone marrow is injected. In the model, after this bone

marrow transplant, the new clonotypes entering the memory pool are now donor

CD8 memory T cells, with their affinity for resource again drawn from the same

distribution as the host clonotypes.

The results from the model are shown in Figure 5.12. In the first 8 weeks,

the number of clonotypes and T cells falls towards a homeostatic level. Because

of competition for resources, the host clonotypes from the original distribution

(Figure 5.12E) with a high affinity for resource are selected and survive and come

to dominate the pool so that the distribution of affinities is heavily weighted

towards high-affinity (Figure 5.12F). When donor clonotypes then attempt to

enter the pool, because their affinity is drawn from the original truncated normal

distribution (the same as that in Figure 5.12E), on average each clonotype will

have a lower affinity than the established host memory cells. As a result, they

struggle to out-compete the host cells, which causes incomplete replacement in

line with the experimental data (Figure 5.12B). The model predicts that there

will be almost complete replacement of the T cell clonotypes (Figure 5.12D),

with only those with high affinity for resource surviving (Figure 5.12H). Over a

long enough period of time, the number of host T cells will decline as clonotypes

randomly die out and are not replaced.
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5.4 Discussion

A stochastic model for global competition between T cell clonotypes has been

developed. Because the fundamentals of the model are not too complex, it is not

too computationally expensive to run the model with large numbers of clonotypes

or for long time scales. This allows greater numerical insight into the properties of

the system. Furthermore, the model is simple enough to characterise analytically,

allowing the development of analytic solutions that are generalisable to all scales,

allowing the results to be applied at the level of mice and humans.

Without a constant input of new clonotypes from the thymus, the stochastic

fluctuations in the number of T cells in each clonotype causes the number of T

cells to reach zero and some clonotypes to become extinct. Hence the number

of distinct clonotpes, and thus diversity, is expected to fall (Figure 5.3). This

has implications in the months after an HSCT when the thymus is not producing

any T cells; whilst T cell numbers might start to recover through homeostatic

mechanisms, until the thymus starts producing new T cells, diversity can be

expected not only to remain low but also to get worse.

The model reaches a steady state number of T cells (Figures 5.2 and 5.4),

with the number of T cells resulting from a balance of cell death rates and cell

production rates from both thymic output and cell division. Without thymic

output, the number of T cells still remains constant. Accordingly, as the number

of clonotypes decreases, the number of T cells in each clonotype must increase.

This means, measuring just the concentrations of T cells following interventions,

such as thymectomies, may be misleading in terms of the damage done.

In the presence of thymic output, the number of clonotypes reaches a steady

state, with the number dependent on the level of thymic output (Eq. (5.36) and

Figures 5.5 and 5.6). A prediction from this model is therefore that as thymic

output falls in a healthy child, the number of distinct T cell clonotypes can be

expected to fall as well.
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The mean lifetime of a clonotype in the perihery is dependent on thymic out-

put (Eq (5.33)). As the thymic output increases, the net drift effect on the number

of T cells in a clonotype increases, driving the clonotypes towards extinction more

rapidly, shortening clonotype lifetime. This implies that in young children where

there is higher thymic output, clonotypes and to an extent immune memory may

have a shorter lifetime than in older children. This might in part explain why

children who are more likely to become atopic, develop an immune response to

dust mites at a later age [213], and may also explain the decreased ability of chil-

dren to form immunity to Plasmodium falciparum in comparison to adults [214].

The number of clonotypes in the T cell pool is also dependent on thymic output,

with increased thymic output resulting in more, smaller, clonotypes.

The model output for the distribution of clonotype sizes is highly dependent

on both thymic output of new clonotypes (θ) and the number of cells in the

clonotypes (nθ) that are produced by the thymus. On the one hand, the higher

the thymic output of new clonotypes, the more heavily the distribution is skewed

towards low numbers of cells per clonotype. On the other hand, the more cells

per new clonotype, the flatter the distribution and the more clonotypes with

more cells per clonotype. Thymic output is usually just measured as cells/day.

Figures 5.7B and D both have the same thymic output in terms of numbers of

cells, as do and Figures 5.7C and E. The stark differences in their distributions

therefore imply that measuring thymic output in this way misses key information

related to the drivers of clonotype diversity.

The model output for the distribution of the number of T cells in each clono-

type could be compared to data from sequencing T cell receptors. Comparing

these distributions would allow validation of the model output and the estima-

tion of some parameter values. Because the analytical solutions for the model are

scalable, it might then be possible to form predictions of distributions in different

circumstances, such as following thymectomy, following HSCT or in old age. Fur-
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thermore, the model’s scalability allows comparisons to be made between humans

and mice.

The model has been able to reproduce the observed effects from replacing the

bone marrow in a mouse and the lack of full replacement. In this solution, the

surviving host cells and invading donor cells are from identical populations but

because of the time advantage that the host cells have had to select clonotypes

with higher affinity, on average they effectively have a competitive advantage over

the invading donor cells. This demonstrates that a biologically simple solution is

a possible explanation for the data, using purely stochastic dynamics and com-

petition for resources. This represents a key advantage of stochastic modelling

over deterministic modelling, with it being possible to create dynamics that in-

corporate the stochastic nature of elements of the system, in this case the affinity

for cytokines. Over a long enough period of time, enough donor clonotypes with

high affinity would enter the pool that eventually the donor cells would be ex-

pected to completely replace the host cells. This period of time is however likely

to be longer than the lifetime of the mouse.

The model does however have limitations. Näıve T cells compete not only

for cytokines but also for sp-MHC, with the affinity of different clonotypes for

different sp-MHC governed by an interaction matrix. As such, the situation is

much more complex for these cell subsets and results from this model can only be

applied as an explanation for one part of their clonotype dynamics. Furthermore,

the results for clonotype size distributions and lifetimes have assumed that all

clonotypes compete equally. Again the situation is more complex, with cells

likely to have affinities for resource drawn from some sort of distribution, in a

similar manner to that used in modelling the mouse CD8 memory data.

In this chapter, we have developed a stochastic model for global competition

of clonotypes in T cell homeostasis. The model was simple enough that it was

possible to use it for large numbers of T cells and clonotypes and for long time-
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periods. It was also simple enough that it was possible to find analytical solutions

that can recreate the numerical simulations, allowing the model results to be

scaled to the size of a human. The model was successfully adapted to be applied to

a system from a murine experiment, demonstrating that a simple solution reliant

on dynamics from competition for global resources could explain the apparent

complications in the data.

Contributions

Grant Lythe proposed the model and did the analysis in the case with no thymus

in Section 5.3.1 and found the solution for long-term clonotype distributions. I

performed the analysis of the case with a thymus in Section 5.3.2 to find the solu-

tions for long-term clonotype lifetimes, long-term clonotype numbers and the Gini

coefficient. I also produced all the numerical solutions throughout the chapter

and carried out all the analysis for the CD8 memory T cells mouse experiment

in Section 5.3.3.
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Conclusions

Understanding the reconstitution of the haematopoietic system following paedi-

atric haematopoietic stem cell transplantation is important because of the high

mortality and morbidity associated with the intervention. Similarly, in HIV-

infected children starting ART, the immune system does recover but its recovery

is incomplete and patients can develop resistance. The aim of this thesis was

to adapt and construct mechanistic mathematical models to better understand

the underlying dynamics that govern these systems. While one part of this work

looked at a stochastic model for global competition, studying its effects on T cell

clonotype dynamics, the majority of this work used deterministic models to look

at populations of cells, applying them to data.

Following paediatric HSCT neutrophils and platelets recover quickly, and so

age-related effects can be ignored in the structural model. It was therefore pos-

sible to apply previous adult models for neutrophil and platelet dynamics. For

neutrophils, the model of Friberg et al [52] was mechanistically altered to ac-

count for the transient release of extra neutrophils on the administration of ster-

oids [60–63] and to allow the elimination rate to differ from the transfer and syn-

thesis rates. For platelets, the model of Friberg et al [52] was found to provide

the better fit than the model of Hayes et al [72], demonstrating that the feedback
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term was necessary to account for the oscillatory reconstitution profile. These

platelet oscillations had not been observed in previous uses of these models be-

cause they did not have either the resolution in the data or the experimental

setup [67–71], although fluctuations on a similar time-scale have been observed

in healthy adults [96], with the negative feedback thought to be due to levels of

TGF-beta [97]. Covariate analysis found that long-term platelet concentration

was lowered in patients that received cord blood stem cells and raised in patients

that received peripheral blood stem cells in comparison to bone marrow stem

cells. This potentially implies that early platelet reconstitution is derived from

precursor cells contained in the graft, rather than bone marrow derived. It was

notable that no inter-individual age differences were observed for either neut-

rophils or platelets, implying that not only are concentrations relatively stable

through childhood, as expected [98,99], but also the dynamics are stable as well.

In contrast, CD4 T cells recover slowly following paediatric HSCT and so age-

related changes will manifest themselves within an individual’s data [31]. In this

work, a novel mechanistic model has been constructed that accounted for these

age-related changes as effects on thymic output, loss and proliferation. Further

mechanistic elements were included to account for the delay to thymic output

in the months following HSCT [100,117–119] and the effects on proliferation and

loss of competition for resources [14–19]. Testing these mechanistic components

demonstrated that they were necessary to achieve a good fit to the data. In

the resulting model, younger patients recovered more quickly than older patients,

in line with the data. Covariate analysis identified that alemtuzumab and anti-

thymocyte globulin (ATG), two anti-lymphocyte antibodies, reduced the initial

concentration of CD4 T cells. Whilst this effect is to be expected, with the model

it was possible to quantify the size of the effect. It was also possible to demon-

strate that, even though reconstitution was delayed because it was starting from

a lower concentration, the rate of reconstitution was unaffected by these drugs.
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Patients that received cord blood stem cells had been noticed to have improved

early reconstitution. These patients were however younger on average and were

less likely to have received either alemtuzumab or ATG and the model was able to

demonstrate that these two effects were enough to explain the differences found

in the observed data. The model was used to form predictions of reconstitution

on an individualised basis using just early data and the relevant covariates. The

model’s predictive ability was found to be high, capturing the trajectory in 81%

of the patients in a new dataset of 75 patients that had not been looked at before.

In HIV-infected children starting ART, viral loads decline sharply but CD4

reconstitution is slow enough that age effects need to be included in the model.

A previous model for HIV viral load and CD4 concentration dynamics [179,180]

was successfully simplified using a quasi-steady state approximation to remove the

infected CD4 T cells compartment because they represent such a small fraction

of the total CD4 T cell population [198]. A further adaption was made in order

to remove the oscillatory dynamics that the original model produced because

the data did not support these dynamics. The mechanistic elements from the

model of CD4 reconstitution following HSCT were then included to account for

age-related changes in the immune system and competition for resources. A

mechanism was also included to account for the multi-phasic nature of viral load

decline [199]. The model was then successfully applied to two datasets for HIV-

infected children starting ART. Covariate analysis showed that in both datasets,

the initial concentration of CD4 T cells was inversely affected by age, as would be

expected as CD4 concentrations are expected to fall through childhood and also

older children have been HIV-infected for longer. In the ARROW dataset, lower

thymic output and thus poor reconstitution was associated with the patients

that died before the end of the trial, in agreement with another analysis of this

data [172]. The model was extended to assess viral load rebound due to either the

development of resistance or non-adherence to the ART. The mean time following
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the start of ART that the virus rebounded was different for the four treatment

centres. It would be interesting to look further into whether the adherence-

promoting programs at the centres could explain these differences.

The effects of competition for resources on T cell clonotype dynamics was

explored using the stochastic global competition model. The model was simple

enough that not only could long run-times and large cell populations be simu-

lated numerically but also the model was analytically tractable. This meant it was

possible to produce equations for mean clonotype lifetimes, the mean long-term

number of clonotypes and for the clonotype size distributions. These equations

are then general and so can be scaled to systems larger than can be simulated

numerically, such as a human. It is notable that the purely random dynamics

can produce distributions of clonotype sizes. The model demonstrated that the

shapes of the distributions are highly dependent on not just the quantity of T cells

produced by the thymus, but also the number of T cells in each clonotype. The

stochastic model was extended to allow clonotypes to have affinities for resource

drawn randomly from a truncated normal distribution. Numerical simulations

were then compared to CD8 memory T cell data from a bone marrow replace-

ment experiment in mice, demonstrating that the model can be used to explain

the observed complex effects whilst relying on only a small number of biological

assumptions that would otherwise require complicated explanations.

In this work, mechanistic models have been applied to paediatric data for re-

constitution following HSCT to our knowledge for the first time. This is also the

first time a paediatric-specific model for HIV and CD4 concentration dynamics

has been applied to data for HIV-infected children. This work has demonstrated

that mechanistic models can be used to assess the fundamental drivers of the sys-

tem. Furthermore, the deterministic mechanistic models have allowed the iden-

tification of factors that potentially would not otherwise have been identifiable

across a whole dataset of diverse children, treatments and conditions.
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6.1 Recommendations for developing mechan-

istic models of immune reconstitution

Mechanistic mathematical models aim to abstract the fundamental biology of the

system in a mathematical context. As such, the first part of developing mechan-

istic models is to ascertain the biology that drives the system. Close collaboration

is therefore required with immunologists and clinicians to understand the relevant

biology. The biology is however complex and the aim is to apply these models

to data. As such, the more the models can be simplified, the more likely it is to

be possible to fit to data. One key to this is time-scales. Events that happen on

similar time-scales need to be considered together, whereas events that happen

on largely different time scales can be considered separately. In this modelling,

this meant that age had to be accounted for in the context of CD4 reconstitution,

but could be ignored for platelets and neutrophils. It also allowed the removal of

the infected CD4 cells compartment from the HIV model.

Mechanistic elements can then be added into the model and tested for their

necessity. Whilst the mechanistic elements that provide the highest quality of

fit are the most appealing, an eye should be kept in the interpretability of the

resulting parameters from the model. This maximises the possibility of further

collaboration with clinicians and immunologists to interpret the results. Further-

more, there is a temptation to over-test the mechanisms in the model as a form

of over-fitting, which may not improve the model’s performance on a different

dataset.

Whilst modelling assumptions can be used, often more specific data would

add more information and allow better models to be developed. Proliferation

and loss rates are both first-order interactions and so are mathematically difficult

to separate. In this analysis, we have used a model for competition for resources

to separate these parameters for CD4 reconstitution, which can work because
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there are large changes in CD4 concentration. A better method however would

be to have the proportion of cells expressing Ki67, a marker for proliferation, to

split proliferation from loss. The model also relies on a sigmoidal function to

model the impairment of thymic output of CD4 cells immediately post HSCT.

Better would be to have data for the TREC content of the CD4 population that

could give a proxy for the actual thymic output for each individual.

Fitting these nonlinear mixed effects models to data is a time consuming pro-

cess, particularly during the process of model-development when many different

iterations and small changes to the model need to be tested. Parameter estim-

ation then becomes a balance between the time required to achieve parameter

estimates that are accurate enough and the accuracy of the estimates that is

required. Once a model has been developed, then more accurate parameter es-

timates can be sought. Parallelisation and the use of clusters can help to speed

runtimes, but there is a cost involved with setting up the run and often with

queueing to use the cluster.

6.2 Future work

The lasso or the least absolute shrinkage and selection separator needs further ex-

ploration for the performance of multivariate analysis. In this work, multivariate

analysis was carried out using stepwise covariate model-building (SCM). SCM

however has the capability to produce covariate models that have selected the

wrong covariates [215], and requires the covariate model to be validated which

can be computationally intensive [216]. Hence care must be taken with the res-

ults of SCM. Another option for multivariate analysis that has been applied in

the nonlinear mixed-effects modelling context is the lasso [217–219]. In lasso, all

covariates are normalised and included in the model at once. They are tested

with a restriction on the total of the coefficients, which forces some coefficients
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towards zero, leaving just significant covariates. This method was however prob-

lematic with these data. The method struggles when some covariates have strong

effects such as were the effects of conditioning by alemtuzumab or ATG or no

conditioning for the model of CD4 reconstitution following HSCT. Furthermore,

the number of covariates that needed to be tested was high and involved the

inclusion and estimation of very many parameters, which proved difficult. The

use of lasso does however offer the chance to validate the covariate model.

Many developments are possible to the models. Potential developments to

the short-term reconstitution following HSCT modelling include testing different

numbers of transit compartments, different kinetic-pharmacodynamic models and

different forms for the feedback loop. Many developments to the model for long-

term reconstitution following HSCT have already been tested, including altered

forms for the competition functions and the function delaying thymic recovery

post HSCT. One further development could be modelling the whole time course

including CD4 decline with conditioning for patients. This was not possible with

the present data because there is not enough CD4 concentration data in the time

period around the HSCT.

In this work, models have been fitted using maximum likelihood methods. For

nonlinear mixed effects modelling these have an advantage in that there are many

algorithms and much software that have been developed to perform parameter

estimation. It would however be interesting to apply Bayesian methods to these

models and data. Bayesian methods would have the advantage of producing dis-

tributions around parameter estimates that would be more realistic outputs from

the model. They also allow the incorporation of priors, which could be particu-

larly useful when applying these models to new data where parameter estimates

and variance-covariance matrices could be used as priors. The requirement for

priors can however lead to error propagation if the original priors were wrong and

the data uninformative.
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Having data on the concentrations of the drugs used in the interventions

could improve the characteristics of the models. The drug effect identified in the

short-term reconstitution following HSCT had a half-life that was substantially

longer than the half lives of the drugs involved, implying that there is some

model mis-specification. The most likely area for this mis-specification is the

proliferating compartment. It is assumed that there is a resident population of

proliferating cells, when in fact biologically, it will be a population in dynamic

equilibrium with its bone marrow precursors. The drugs will also act to stop

proliferation in these compartments, resulting in a delay to production in the

proliferating compartment in the model. As such, an extension to the model

could be to include more compartments before the proliferating compartment on

which the drugs would be expected to act in tandem. To identify parameters

surrounding these extra compartments, it would however be necessary to have

higher resolution data than is currently available for drug concentrations and

the times at which the drugs were given. This would enable the construction of

a full pharmacokinetic-pharmacodynamic model that might be able to explain

these effects and tease out the full relationship between the drug effects and

the extra bone marrow compartments. Similarly, extra information on dosing

and drug concentrations could be used to improve the accuracy and performance

in the long-term reconstitution of CD4 T cells. By including more information

on the mode of therapy, some of the inter-individual differences in the initial

concentration of T cells might be explained.

Extra data could also help with the modelling of viral load rebound in HIV-

infected children. For this work, the data only contained viral loads, while in

future longitudinal data for HIV sequences will also be available. This information

could be used to assess the susceptibility of different HIV strains to drugs, allowing

the explanation and prediction of viral rebound. Furthermore, some clinical trials

now monitor ART adherence with pill counters or more sophisticated methods

191



Chapter 6. Conclusions

such as microchips in bottles or bottle caps that record usage. Adding this

adherence data might also explain some of the viral rebounds.

Whilst predictions for individual patients have only been produced in one con-

text in this work, it demonstrates that this type of mechanistic model can be used

in this manner. With the method that has been developed here to make predic-

tions, predictions become more accurate when larger datasets improve parameter

estimates and make the identification of more factors possible. Furthermore the

method allows for the predictions to be updated when new observations are taken

for the individual patient, with confidence intervals narrowing as more informa-

tion becomes available. With the increased use of electronic hospital records there

is therefore the opportunity to produce predictions of reconstitution that could be

updated immediately following a new observation, providing a graphical output

that could be given to the clinician, thus providing a useful clinical tool. Pre-

dictions of reconstitution have the ability to help clinicians by giving them more

information on what to expect in the months and years following the interven-

tion or start of treatment and as such whether any changes to treatment protocols

should be made. For short-term reconstitution following paediatric HSCT, this

could include administration of GCSF, transfusion with extra platelets or a longer

stay in isolation in hospital. For CD4 reconstitution, this could include prophy-

lactic drugs or repeat HSCT. Predictions also allow the clinicians to receive early

warnings of problems following the development of a new conditioning regimen.

More understanding is needed about changes to T cell receptor diversity fol-

lowing HSCT and in HIV-infected patients starting ART. For full functional

reconstitution of CD4 T cells, not only does the number of T cells have to re-

constitute but also the diversity that allows it to respond to so many pathogens

in a specific manner. In the months following HSCT, there is little or no thymic

output of new CD4 T cells. As a result, no new clonotypes can be produced

after the transplant and the only T cell clonotypes in circulation are those that
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were in the graft or survived the pre-HSCT conditioning regimen. Thus with

no new clonotypes, the stochastic model of Chapter 5 predicts that the diversity

can then be expected to fall over the ensuing months as clonotypes go extinct

by randomness. Diversity could then be expected to increase as thymic output

of new clonotypes increases. It would be very interesting to look at these effects

using data for T cell receptor diversity to see whether the model’s predictions are

valid and if so to find parameter estimates. These estimates could then be used

to predict how clonotype diversity is expected to recover as the concentration

reconstitutes, giving estimates of the time to reach fully-functional diversity.

Models for diversity can be incorporated into the dynamics of CD4 T cell

concentration reconstitution. CD4 T cells compete for both cytokines and sp-

MHC. Cytokine competition is global and all T cells compete equally but sp-

MHC competition is specific with different clonotypes competing for different

sp-MHC. Intuitively, it can be imagined that when there are very few clonotypes,

the cytokines will be in excess and the competition will mostly be intra-clonotype

competition for sp-MHC whereas when there are many clonotypes, the compet-

ition is likely to be for a mixture of cytokines and sp-MHC. In situations where

the diversity is changing it might therefore be possible to identify the different

components of competition for sp-MHC and cytokines. Ciupe et al [28] attempt

this with patients that have had thymus transplants for DiGeorge anomaly, using

assays of T cell receptor vBeta family usage and CDR3 length as a measure of

diversity. An attempt to perform a similar analysis using just vBeta data for

long-term reconstitution following HSCT proved not to be possible because of

the quality and quantity of data available. This is however a very important

area for research and one in which there is much of interest if data for TCR

diversity across time following HSCT were to become available. Furthermore, if

the stochastic global competition model’s results could be validated with data

and parameter estimates found, it could be used to estimate diversity and thus
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to allow the separation of the two forms of competition.

This work aimed to investigate reconstitution following paediatric HSCT and

in HIV-infected children starting ART by using mechanistic mathematical mod-

elling. By adapting previous work and constructing new mathematical models, I

have explored both these problems, improving the understanding of the processes

that govern reconstitution, finding factors that affect reconstitution and finally

predicting reconstitution trajectories. This is the first time that some of these

systems have been studied using these techniques and as such there is great scope

for further investigation, both of the systems presented here and by applying these

techniques to other systems.
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[16] Martin, B., C. Bécourt, B. Bienvenu, and B. Lucas, 2006. Self-recognition is crucial for
maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment. Blood
108:270–277.

[17] Reynolds, J., M. Coles, G. Lythe, and C. Molina-Paris, 2013. Mathematical model of

195



References

naive T cell division and survival IL-7 thresholds. Frontiers in Immunology 4:434.
[18] Pearson, C., A. Silva, M. Saini, and B. Seddon, 2011. IL-7 determines the homeostatic

fitness of T cells by distinct mechanisms at different signalling thresholds in vivo. European
Journal of Immunology 41:3656–3666.

[19] Surh, C. D., and J. Sprent, 2008. Homeostasis of naive and memory T cells. Immunity
29:848–862.

[20] Yates, A., M. Saini, A. Mathiot, and B. Seddon, 2008. Mathematical modeling reveals the
biological program regulating lymphopenia-induced proliferation. Journal of Immunology
180:1414–1422.

[21] De Boer, R. J., A. S. Perelson, and R. M. Ribeiro, 2012. Modelling deuterium labelling
of lymphocytes with temporal and/or kinetic heterogeneity. Journal of the Royal Society
Interface 9:2191–2200.

[22] De Boer, R. J., and A. S. Perelson, 2013. Quantifying T lymphocyte turnover. Journal
of Theoretical Biology 327:45–87.

[23] Palmer, M. J., V. S. Mahajan, J. Chen, D. J. Irvine, and D. A. Lauffenburger, 2011.
Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of näıve
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[83] G lówka, F., M. Karaźniewicz- Lada, G. Grund, T. Wrobel, and J. Wachowiak, 2008.
Pharmacokinetics of high-dose iv treosulfan in children undergoing treosulfan-based pre-
parative regimen for allogeneic haematopoietic sct. Bone Marrow Transplant 42:S67–S70.

[84] Pinheiro, J. C., and D. M. Bates, 2000. Mixed-effects models in S and S-PLUS. Springer
Science & Business Media.

199



References

[85] Sheiner, L. B., and S. L. Beal, 1983. Evaluation of methods for estimating population
pharmacokinetic parameters. III. Monoexponential model: Routine clinical pharmacokin-
etic data. Journal of Pharmacometrics and Biopharmaceutics 11:303–319.

[86] Jonsson, E. N., and M. O. Karlsson, 1998. Automated covariate model building within
NONMEM. Pharmaceutical Research 15:1463–1468.

[87] Beal, S. L., 2001. Ways to fit a PK model with some data below the quantification limit.
Journal of Pharmacokinetics and Pharmacodynamics 28:481–504.

[88] Ahn, J. E., M. O. Karlsson, A. Dunne, and T. M. Ludden, 2008. Likelihood based
approaches to handling data below the quantification limit using NONMEM VI. Journal
of Pharmacokinetics and Pharmacodynamics 35:401–421.

[89] Bergstrand, M., and M. O. Karlsson, 2009. Handling data below the limit of quantification
in mixed effect models. AAPS Journal 11:371–380.

[90] Bergstrand, M., E. Plan, M. Kjellsson, and M. O. Karlsson, 2007. A comparison of
methods for handling of data below the limit of quantification in NONMEM VI. Annual
Meeting of the Population Approach Group in Europe, page 16.

[91] Karlsson, M., and R. Savic, 2007. Diagnosing model diagnostics. Clinical Pharmacology
& Therapeutics 82:17–20.

[92] Hooker, A. C., C. E. Staatz, and M. O. Karlsson, 2007. Conditional weighted residuals
(CWRES): a model diagnostic for the FOCE method. Pharmaceutical Research 24:2187–
2197.

[93] Holford, N., 2005. The visual predictive check—superiority to standard diagnostic
(Rorschach) plots. Abstr, volume 738, page 14.

[94] Karlsson, M. O., and N. Holford, 2008. A tutorial on visual predictive checks. 17th
meeting of the Population Approach Group in Europe, Marseille, France, page Abstr,
volume 1434.

[95] Bergstrand, M., A. C. Hooker, J. E. Wallin, and M. O. Karlsson, 2011. Prediction-
corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS
Journal 13:143–151.

[96] Von Schulthess, G., and U. Gessner, 1986. Oscillating platelet counts in healthy indi-
viduals: experimental investigation and quantitative evaluation of thrombocytopoietic
feedback control. Scandinavian Journal of Haematology 36:473–479.

[97] Hirayama, Y., S. Sakamaki, Y. Tsuji, T. Matsunaga, and Y. Niitsu, 2003. Cyclic platelet
and leukocyte count oscillation in chronic myelocytic leukemia regulated by the negative
feedback of transforming growth factor β. International Journal of Hematology 77:71–74.

[98] Segel, G. B., and J. S. Halterman, 2008. Neutropenia in pediatric practice. Pediatrics in
Review 29:12.

[99] Soldin, S. J., C. Brugnara, and E. C. Wong, 2003. Pediatric reference ranges. Amer.
Assoc. for Clinical Chemistry.

[100] Charrier, E., P. Cordeiro, R.-M. Brito, S. Mezziani, S. Herblot, F. Le Deist, and M. Duval,
2013. Reconstitution of maturating and regulatory lymphocyte subsets after cord blood
and BMT in children. Bone Marrow Transplant 48:376–382.

[101] Bartelink, I. H., S. V. Belitser, C. A. J. Knibbe, M. Danhof, A. J. de Pagter, T. C. G.
Egberts, and J. J. Boelens, 2013. Immune reconstitution kinetics as an early predictor
for mortality using various hematopoietic stem cell sources in children. Biology of Blood
and Marrow Transplantation 19:305–313.

[102] Berger, M., O. Figari, B. Bruno, A. Raiola, A. Dominietto, M. Fiorone, M. Podesta,
E. Tedone, S. Pozzi, F. Fagioli, et al., 2008. Lymphocyte subsets recovery following
allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related
mortality. Bone Marrow Transplant 41:55–62.

[103] Schwinger, W., D. Weber-Mzell, B. Zois, T. Rojacher, M. Benesch, H. Lackner, H. J.
Dornbusch, P. Sovinz, A. Moser, G. Lanzer, et al., 2006. Immune reconstitution after

200



References

purified autologous and allogeneic blood stem cell transplantation compared with un-
manipulated bone marrow transplantation in children. British Journal of Haematology
135:76–84.

[104] Kim, H. O., H. J. Oh, J. W. Lee, P. Jang, N. Chung, B. Cho, and H. Kim, 2013. Immune
reconstitution after allogeneic hematopoietic stem cell transplantation in children: a single
institution study of 59 patients. Korean Journal of Pediatrics 56:26–31.

[105] Chen, X., G. A. Hale, R. Barfield, E. Benaim, W. H. Leung, J. Knowles, E. M. Horwitz,
P. Woodard, K. Kasow, U. Yusuf, et al., 2006. Rapid immune reconstitution after a
reduced-intensity conditioning regimen and a CD3-depleted haploidentical stem cell graft
for paediatric refractory haematological malignancies. British Journal of Haematology
135:524–532.

[106] Fedele, R., M. Martino, C. Garreffa, G. Messina, G. Console, D. Princi, A. Dattola,
T. Moscato, E. Massara, E. Spiniello, et al., 2012. The impact of early CD4+ lymphocyte
recovery on the outcome of patients who undergo allogeneic bone marrow or peripheral
blood stem cell transplantation. Blood Transfusions 10:174–180.

[107] Tedeschi, S. K., M. Jagasia, B. G. Engelhardt, J. Domm, A. A. Kassim, W. Chin-
ratanalab, S. L. Greenhut, S. Goodman, J. P. Greer, F. Schuening, et al., 2011. Early
lymphocyte reconstitution is associated with improved transplant outcome after cord
blood transplantation. Cytotherapy 13:78–82.

[108] Koenig, M., S. Huenecke, E. Salzmann-Manrique, R. Esser, R. Quaritsch, D. Steinhilber,
H. H. Radeke, H. Martin, P. Bader, T. Klingebiel, et al., 2010. Multivariate analyses of
immune reconstitution in children after allo-SCT: risk-estimation based on age-matched
leukocyte sub-populations. Bone Marrow Transplant 45:613–621.

[109] Rénard, C., V. Barlogis, V. Mialou, C. Galambrun, D. Bernoux, M. P. Goutagny, L. Glas-
man, A. D. Loundou, F. Poitevin-Later, F. Dignat-George, et al., 2011. Lymphocyte sub-
set reconstitution after unrelated cord blood or bone marrow transplantation in children.
British Journal of Haematology 152:322–330.

[110] Koehl, U., K. Bochennek, S. Y. Zimmermann, T. Lehrnbecher, J. Sörensen, R. Esser,
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of HIV-infected patients based on mechanistic models. Biometrics 68:902–911.

[195] Prague, M., D. Commenges, and R. Thiébaut, 2013. Dynamical models of biomarkers
and clinical progression for personalized medicine: The HIV context. Advanced Drug
Delivery Reviews 65:954–965.

[196] Drylewicz, J., J. Guedj, D. Commenges, and R. Thiébaut, 2010. Modeling the dynamics of
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does a body maintain? Journal of Theoretical Biology 389:214–224.

[209] Revuz, D., and M. Yor, 1999. Continuous Martingales and Brownian Motion. Springer.
[210] Voss, A., and J. Voss, 2008. A fast numerical algorithm for the estimation of diffusion

model parameters. Journal of Mathematical Psychology 52:1–9.
[211] Karlin, S., and H. M. Taylor, 1981. A Second Course in Stochastic Processes. Gulf

Professional Publishing.
[212] Wolfram Research, Inc., 2012. Mathematica. Version 9.0, Champaign, Illinois.
[213] Prescott, S., C. Macaubas, T. Smallacombe, B. Holt, P. Sly, R. Loh, and P. Holt, 1998.

Reciprocal age-related patterns of allergen-specific T-cell immunity in normal vs. atopic
infants. Clinical and Experimental Allergy 28:39–44.

[214] Baird, J., 1998. Age dependent characteristics of protection v. susceptibility to plas-
modium falciparum. Annals of Tropical Medicine and Parasitology 92:367–390.

[215] Ribbing, J., and E. N. Jonsson, 2004. Power, selection bias and predictive performance
of the population pharmacokinetic covariate model. Journal of Pharmacokinetics and
Pharmacodynamics 31:109–134.

[216] Sauerbrei, W., 1999. The use of resampling methods to simplify regression models in
medical statistics. Journal of the Royal Statistical Society: Series C (Applied Statistics)
48:313–329.

[217] Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pages 267–288.

[218] Ribbing, J., J. Nyberg, O. Caster, and E. N. Jonsson, 2007. The lasso – a novel method
for predictive covariate model building in nonlinear mixed effects models. Journal of
Pharmacokinetics and Pharmacodynamics 34:485–517.

[219] Tessier, A., J. Bertrand, M. Chenel, and E. Comets, 2015. Comparison of nonlinear
mixed effects models and noncompartmental approaches in detecting pharmacogenetic
covariates. AAPS Journal 17:597–608.

207



Appendix A

NONMEM model files

A.1 Short-term reconstitution of neutrophils fol-
lowing paediatric HSCT

$PROBLEM Paediatric HSCT Neutrophil Reconstitution
;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV EVID CMT AMT DRUG STEROIDS DENDT DRUGT AGE BMTAGE

ALEM ATG DONORTYPE LEUK CORD
$DATA nonmemdata_HSCT_neutrophils_log.csv IGNORE=#
$SUBROUTINE ADVAN13 TOL=6
$MODEL COMP(STEM) COMP(TRN1) COMP(TRN2) COMP(TRN3) COMP(CIRC,

DEFOBS) COMP(INPUT)
$PK

;____ Initiate population level parameters for the model ______________
TVBASE = THETA(1)
TVSET = THETA(2)
TVMTT = THETA(3)
TVGAM = THETA(4)
TVEDRUG= THETA(5)
TVKIN = THETA(6)
TVIP0 = THETA(7)
TVK = THETA(8)
TVTDRUG= THETA(9)

;____ Modelling covariate effects on population level parameters ______
IF(DONORTYPE.EQ.2) MTTDONORTYPE = 1
IF(DONORTYPE.EQ.3) MTTDONORTYPE = (1 + THETA(12))
IF(DONORTYPE.EQ.1) MTTDONORTYPE = (1 + THETA(13))
IF(DONORTYPE.EQ.0) MTTDONORTYPE = (1 + THETA(14))
IF(LEUK.EQ.0) BASELEUK = 1
IF(LEUK.EQ.1) BASELEUK = (1 + THETA(11))
IF(CORD.EQ.0) BASECORD = 1
IF(CORD.EQ.1) BASECORD = (1 + THETA(10))
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TVBASE = TVBASE * BASECORD * BASELEUK
TVMTT = TVMTT * MTTDONORTYPE

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVBASE)
MU_2 = LOG(TVSET)
MU_3 = LOG(TVMTT)
MU_4 = LOG(TVGAM)
MU_5 = TVEDRUG
MU_6 = LOG(TVKIN)
MU_7 = LOG(TVIP0)
MU_8 = LOG(TVK)
MU_9 = LOG(TVTDRUG)

;____ Including individual random effects on parameters _______________
BASE = EXP(MU_1+ETA(1))
SET = EXP(MU_2+ETA(2))
MTT = EXP(MU_3+ETA(3))
GAM = EXP(MU_4+ETA(4))
EDRUG= MU_5+ETA(5)
KIN = EXP(MU_6+ETA(6))
IP0 = EXP(MU_7+ETA(7))
K = EXP(MU_8+ETA(8))
TDRUG= EXP(MU_9+ETA(9))

;____ Define initial concentration for each compartment _______________
A_0(1) = BASE/K
A_0(2) = BASE/K
A_0(3) = BASE/K
A_0(4) = BASE/K
A_0(5) = BASE
A_0(6) = IP0

;____ Define rates from MTT ___________________________________________
KELM = 4/(MTT*K)
KSYN = 4/MTT
KTR = 4/MTT

;____ Change in asymptote at time of HSCT _____________________________
$DES
IF (TIME.LT.14) THEN

ASY=BASE
ELSE

ASY=SET
ENDIF
RBD=(ASY/A(5))**GAM

;____ Linear K-PD model _______________________________________________
IF (TIME.LE.DENDT) THEN
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DRUG1 = DRUG/(1+EXP(-EDRUG))
ELSE

DRUG1 = DRUGT/(1+EXP(-EDRUG))*EXP(-(T-DENDT)/TDRUG)
ENDIF

;____ Effects of steroids _____________________________________________
STER=0
IF (ALEM==1) THEN

IF (TIME.GE.5.AND.TIME.LT.9) THEN
STER = 1

ENDIF
ENDIF
IF (ATG==1) THEN

IF (TIME.GE.8.AND.TIME.LT.11) THEN
STER = 1

ENDIF
ENDIF

;____ Define the differential equations for the model _________________
DADT(1) = KSYN*A(1)*RBD*(1 - DRUG1) - KTR*A(1)
DADT(2) = KTR*A(1) - KTR*A(2)
DADT(3) = KTR*A(2) - KTR*A(3)
DADT(4) = KTR*A(3) - KTR*A(4)
DADT(5) = KTR*A(4) - KELM*A(5) + STER*KIN*A(6)
DADT(6) =-KIN*A(6)*STER

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED=A(5)
IPRED=LOG(IPRED)
Y=IPRED+EPS(1)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,1039.250) ; 1. BASE, initial neutrophil concentration
(0,2570) ; 2. SET, long-term neutrophil concentration
(0,5.0) ; 3. MTT, transfer time through transit
(0,0.084) ; 4. GAM, strength of feedback
(-20,2,20) ; 5. EDRUG, maximum drug effect
(0,0.8) ; 6. KIN, neutrophil input rate from steroids
(0,1200) ; 7. IP0, initial neutrophil conc in input comp
(0,1) ; 8. K, difference between KE, KS and KT
(0,5) ; 9. TDRUG, Drug effect lifetime from last dose
(-1,-0.001) ; 10. BASECORD1, effects of CORD on BASE
(-1,-0.001) ; 11. BASELEUK1, effects of LEUK on BASE
(-1,-0.001) ; 12. MTTDONORTYPE3, effects of DT3 on MTT
(-1,-0.001) ; 13. MTTDONORTYPE1, effects of DT1 on MTT
(-1,-0.001) ; 14. MTTDONORTYPE0, effects of DT0 on MTT
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;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(9)
0.1
0.01 0.1
0.01 0.01 0.1
0.01 0.01 0.01 0.1
0.01 0.01 0.01 0.01 0.1
0.01 0.01 0.01 0.01 0.01 0.1
0.01 0.01 0.01 0.01 0.01 0.01 0.1
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1

;____ Initial estimate for the residual error variance _______________
$SIGMA 0.5

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=SAEM INTERACTION NBURN=800 NITER=1000 PRINT=10 CTYPE

=3
$ESTIMATION METHOD=IMP EONLY=1 ISAMPLE=10000 IACCEPT=0.1 NITER=12 PRINT

=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 PRINT=1 RANMETHOD=3S2

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETA5

ETA6 ETA7 ETA8 ETA9 OBJI NOAPPEND ONEHEADER NOPRINT FILE=
sdtab_HSCT_neutro

A.2 Short-term reconstitution of platelets fol-
lowing paediatric HSCT

$PROBLEM Paediatric HSCT Platelet Reconstitution
;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV EVID CMT AMT DRUG STEROIDS DENDT DRUGT AGE BMTAGE

ALEM ATG DONORCELLS BUSU CYCL IMDEF
$DATA nonmemdata_HSCT_platelets_log.csv IGNORE=#
$SUBROUTINE ADVAN13 TOL=6
$MODEL COMP(STEM) COMP(TRN1) COMP(TRN2) COMP(TRN3) COMP(CIRC,

DEFOBS)
$PK

;____ Initiate population level parameters for the model ______________
TVBASE = THETA(1)
TVSET = THETA(2)
TVMTT = THETA(3)
TVGAM = THETA(4)
TVEDRUG= THETA(5)
TVTDRUG= THETA(6)

;____ Modelling covariate effects on population level parameters ______
IF(IMDEF.EQ.0) SETIMDEF = 1
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IF(IMDEF.EQ.1) SETIMDEF = (1 + THETA(11))
IF(DONORCELLS.EQ.0) SETDONORCELLS = 1
IF(DONORCELLS.EQ.2) SETDONORCELLS = (1 + THETA(9))
IF(DONORCELLS.EQ.1) SETDONORCELLS = (1 + THETA(10))
IF(CYCL.EQ.0) BASECYCL = 1
IF(CYCL.EQ.1) BASECYCL = (1 + THETA(8))
IF(BUSU.EQ.0) BASEBUSU = 1
IF(BUSU.EQ.1) BASEBUSU = (1 + THETA(7))

TVBASE = TVBASE * BASEBUSU * BASECYCL
TVSET = TVSET * SETDONORCELLS * SETIMDEF

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVBASE)
MU_2 = LOG(TVSET)
MU_3 = LOG(TVMTT)
MU_4 = LOG(TVGAM)
MU_5 = TVEDRUG
MU_6 = LOG(TVTDRUG)

;____ Including individual random effects on parameters _______________
BASE = EXP(MU_1+ETA(1))
SET = EXP(MU_2+ETA(2))
MTT = EXP(MU_3+ETA(3))
GAM = EXP(MU_4+ETA(4))
EDRUG= MU_5+ETA(5)
TDRUG= EXP(MU_6+ETA(6))

;____ Define initial concentration for each compartment _______________
A_0(1) = BASE
A_0(2) = BASE
A_0(3) = BASE
A_0(4) = BASE
A_0(5) = BASE

;____ Define rates from MTT ___________________________________________
KELM = 4/MTT
KSYN = 4/MTT
KTR = 4/MTT

;____ Change in asymptote at time of HSCT _____________________________
$DES
IF (TIME.LT.14) THEN

ASY=BASE
ELSE

ASY=SET
ENDIF
RBD=(ASY/A(5))**GAM
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;____ Linear K-PD model _______________________________________________
IF (TIME.LE.DENDT) THEN

DRUG1 = DRUG/(1+EXP(-EDRUG))
ELSE

DRUG1 = DRUGT/(1+EXP(-EDRUG))*EXP(-(T-DENDT)/TDRUG)
ENDIF

;____ Define the differential equations for the model _________________
DADT(1)=KSYN*A(1)*RBD*(1 - DRUG1) - KTR*A(1)
DADT(2)=KTR*A(1) - KTR*A(2)
DADT(3)=KTR*A(2) - KTR*A(3)
DADT(4)=KTR*A(3) - KTR*A(4)
DADT(5)=KTR*A(4) - KELM*A(5)

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED=A(5)
IPRED=LOG(IPRED)
Y=IPRED+EPS(1)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,176791) ; 1. BASE, initial platelet concentration
(0,149943) ; 2. SET, long-term platelet concentration
(0,5.16337) ; 3. MTT, transfer time through transit
(0,0.116843) ; 4. GAM, strength of feedback
(-20,-1.00,20) ; 5. EDRUG, maximum drug effect
(0,6.9009) ; 6. TDRUG, drug effect lifetime from last dose
(-1,0.698179) ; 7. BASEBUSU1, effects of BUSU on BASE
(-1,-0.437215) ; 8. BASECYCL1, effects of CYCL on BASE
(-1,0.373364) ; 9. SETIMDEF1, effects of IMDEF of SET
(-1,-0.001) ; 10. SETDONORCELLS2, effects of DC2 on SET
(-1,-0.001) ; 11. SETDONORCELLS1, effects of DC1 on SET

;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(6)
0.77513
0.246018 0.834123
-0.34828 -0.126483 0.577297
-0.230623 -0.480143 0.302266 1.11016
0.186967 -0.0423519 0.576467 0.277966 1.4537
-0.205738 0.847174 -0.73557 0.0774342 -2.02161 5.63053

;____ Initial estimate for the residual error variance _______________
$SIGMA 0.267354

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=SAEM INTERACTION NBURN=1000 NITER=1000 PRINT=10
$ESTIMATION METHOD=IMP EONLY=1 ISAMPLE=10000 IACCEPT=0.1 NITER=12 PRINT

=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 PRINT=1 RANMETHOD=3S2
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;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETA5

ETA6 OBJI NOAPPEND ONEHEADER NOPRINT FILE=sdtab_HSCT_platelets

A.3 Long-term reconstitution of CD4 concen-
tration following paediatric HSCT

$PROBLEM Paediatric HSCT CD4 T cell Reconstitution
;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV EVID AGE GVHYN COND ALEM ATG LEUK
$DATA nonmemdata_HSCT_cd4_log.csv IGNORE=@
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP=(CENTRAL)
$PK

;____ Initiate population level parameters for the model ______________
TVL = THETA(1)
TVD = THETA(2)
TVPR = THETA(3)
TVINT = THETA(4)
TVLH = THETA(5)
TVLR = THETA(6)

;____ Modelling covariate effects on population level parameters ______
IF(ALEM.EQ.0) INTALEM = 1
IF(ALEM.EQ.1) INTALEM = (1 + THETA(7))
IF(ATG.EQ.0) INTATG = 1
IF(ATG.EQ.1) INTATG = (1 + THETA(8))
IF(GVHYN.EQ.0) INTGVHYN = 1
IF(GVHYN.EQ.1) INTGVHYN = (1 + THETA(9))
IF(LEUK.EQ.0) LLEUK = 1
IF(LEUK.EQ.1) LLEUK = (1 + THETA(10))
IF(COND.EQ.0) PRCOND = 1
IF(COND.EQ.1) PRCOND = (1 + THETA(11))

TVINT = TVINT * INTALEM * INTATG * INTGVHYN
TVL = TVL * LLEUK
TVPR = TVPR * PRCOND

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVL)
MU_2 = LOG(TVD)
MU_3 = LOG(TVPR)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVLH)
MU_6 = LOG(TVLR)
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;____ Naive (V) and total (VT) CD4 T cell concentration with age ______
VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)

;____ Including Age effects and individual random effects on params ___
L = EXP(MU_1 + ETA(1)) * V * 0.9 * 0.02*EXP(-0.00027*AGE)
D = EXP(MU_2 + ETA(2)) * 0.02*EXP(-0.00027*AGE)
PR = EXP(MU_3 + ETA(3)) * 0.02*EXP(-0.00027*AGE)
INT = EXP(MU_4 + ETA(4))
LH = EXP(MU_5 + ETA(5))
LR = EXP(MU_6 + ETA(6))
CD = 1
CP = 1
A_0(1) = INT

;____ Define the differential equation for the model __________________
$DES
DADT(1) = L * (1-EXP(-2*T/LH))/(1+EXP(LR*(1-T/LH))) - A(1)*(D*EXP(CD*(A

(1)/VT-1)) - PR * EXP(CP*(-A(1)/VT+1)))

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED = A(1)
IPRED = LOG(IPRED)
Y = IPRED + EPS(1)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,0.222489) ; 1. L0, thymic output
(0,0.454536) ; 2. D0, loss
(0,0.195179) ; 3. P0, proliferation
(0,164.2850) ; 4. X0, Initial concentration of cells
(0,133.1450) ; 5. LH, time to recovery in thymic output
(0,9.757030) ; 6. LR, rate of recovery of thymic output
(-1,-0.83722) ; 7. INTALEM, effects of alemtuzumab on A_0
(-1,-0.93890) ; 8. INTATG, effects of ATG on A_0
(-1,0.331920) ; 9. INTGVHYN, effects of acute GvHD on A_0
(-1,1.289310) ; 10. LLEUK, effects of leukaemia on thymic output
(-1,-0.88522) ; 11. PRCOND, effects of no conditioning on

proliferation

;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(6)
1.553010
0.522870 1.662840
0.161760 0.320213 0.247498
0.405366 0.415663 0.218925 1.286390
0.534060 -0.44269 -0.06167 0.766879 1.214760
0.083104 0.340042 -0.13533 -0.89795 -0.77866 1.259670
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;____ Initial estimate for the residual error variance _______________
$SIGMA 0.218784

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=IMP INTERACTION ISAMPLE=1000 NITER=80 PRINT=10 CTYPE

=1
$ESTIMATION METHOD=IMP INTERACTION EONLY=1 ISAMPLE=10000 IACCEPT=0.1

NITER=8 PRINT=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 RANMETHOD=3S2

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETA5

ETA6 LAMBDA DELTA INT OBJI NOPRINT NOAPPEND ONEHEADER FILE=
sdtab_HSCT_cd4

A.4 CD4 concentration and viral load in HIV-
infected children restarting ART, PENTA
data

$PROBLEM HIV infected children starting ART, PENTA data
;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV EVID FLAG VLBLQ VLLOQ L2 AGE PTINO ARTAGE NVP0

ZDV0 D3TC EFZ CART
$DATA nonmemdata_HIV_penta_log.csv IGNORE=@
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP(CD4)
$MODEL COMP(VL)
$PK

;____ Initiate population level parameters for the model ______________
;; CD4 Parameters
TVL0 = THETA(1)
TVD0 = THETA(2)
TVP0 = THETA(3)
TVINT = THETA(4)
TVCD = THETA(5)
TVCP = THETA(6)
;; Viral Load parameters
TVVL0 = THETA(7)
TVVK = THETA(8)
TVV50 = THETA(9)
TVEDRUG = THETA(10)

;____ Modelling covariate effects on population level parameters ______
IF(EFZ.EQ.0) VKEFZ = 1
IF(EFZ.EQ.1) VKEFZ = (1 + THETA(16))
IF(ZDV0.EQ.0) V50ZDV0 = 1
IF(ZDV0.EQ.1) V50ZDV0 = (1 + THETA(15))
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IF(NVP0.EQ.0) P0NVP0 = 1
IF(NVP0.EQ.1) P0NVP0 = (1 + THETA(14))
IF(ZDV0.EQ.0) INTZDV0 = 1
IF(ZDV0.EQ.1) INTZDV0 = (1 + THETA(13))
IF(D3TC.EQ.1) CPD3TC = 1
IF(D3TC.EQ.0) CPD3TC = (1 + THETA(12))
INTCART = ( 1 + THETA(11)*(CART - 0.53))

TVINT = TVINT * INTCART * INTZDV0
TVVK = TVVK * VKEFZ
TVV50 = TVV50 * V50ZDV0
TVP0 = TVP0 * P0NVP0
TVCP = TVCP * CPD3TC

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVL0)
MU_2 = LOG(TVD0)
MU_3 = LOG(TVP0)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVCD)
MU_6 = LOG(TVCP)
MU_7 = LOG(TVVL0)
MU_8 = LOG(TVVK)
MU_9 = LOG(TVV50)
MU_10 = TVEDRUG

;____ Including individual random effects on parameters _______________
L = EXP(MU_1 + ETA(1))
D = EXP(MU_2 + ETA(2))
PR = EXP(MU_3 + ETA(3))
INT = EXP(MU_4 + ETA(4))
CD = EXP(MU_5 + ETA(5))
CP = EXP(MU_6 + ETA(6))
VL0 = EXP(MU_7 + ETA(7))
VK = EXP(MU_8 + ETA(8))
V50 = EXP(MU_9 + ETA(9))
EDRUG = MU_10 + ETA(10)

;____ Define initial concentration for each compartment _______________
A_0(1) = INT
A_0(2) = VL0

;____ Naive (V) and total (VT) CD4 T cell concentration with age
___________

VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)
VTART = 924 + 2354*EXP(-0.001012*ARTAGE)
VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)
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;____ Including Age effects on parameters _____________________________
LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905
LOSS = D * 0.02*EXP(-0.00027*AGE)
PROL = PR * 0.02*EXP(-0.00027*AGE)
DELTA = (0.02*EXP(-0.00027*ARTAGE)/VL0) *(VART*0.905*L/INT - D*EXP(CD*(

INT/VTART-1)) + PR*EXP(CP*(1-INT/VTART)))
DRUG = 1/(1+EXP(-EDRUG))

;____ Define the differential equations for the model _________________
$DES
DADT(1) = LAMBDA - A(1)*(LOSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A

(1)/VT+1))) - DELTA*A(1)*A(2)
DADT(2) = (1-DRUG)*VK*A(2)*VL0/(VL0+V50) - VK*A(2) *A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED=0
; VIRUS
IF(FLAG==2) IPRED = LOG(A(2))
IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0
IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1
IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
IF(VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF(VLBLQ==1.AND.FLAG==2) MDVRES=1
; CD4
IF(FLAG==1) IPRED = LOG(A(1))
IF(FLAG==1) Y = IPRED + EPS(2)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,0.141795) ; 1. L0, thymic output
(0,0.380595) ; 2. D0, loss
(0,0.0475488) ; 3. P0, proliferation
(0,551.052) ; 4. X0, initial concentration CD4
(0,0.974182) ; 5. CD, strength competition loss
(0,4.75739) ; 6. CP, strength competition proliferation
(0,20654.8) ; 7. VL0, initial viral load
(0,0.208448) ; 8. VK, rate viral load decline
(0,363.183) ; 9. V50, viral load multiphasic
(-20,4.42277,20) ; 10. EDRUG, drug effect
(-2.127,-0.800645) ; 11. INTCART1, ART age effects on X0
(-1,-0.381881) ; 12. CPD3TC1, 3TC effects on CP
(-1,0.192567) ; 13. INTZDV01, ZDV effects on X0
(-1,2.95009) ; 14. P0NVP01, NVP effects on P0
(-1,-0.839658) ; 15. V50ZDV01, ZDV effects on V50
(-1,0.986536) ; 16. VKEFZ1, EFZ effects on VK

218



Appendix A. NONMEM model files

;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(10)
0.27265
0.706376 3.77097
0.975012 5.08962 9.92586
0.0182628 0.190841 0.882143 0.144507
0.432257 2.1399 2.38794 0.00361615 1.33157
-0.193464 -1.53942 -2.46365 -0.170988 -0.779164 0.75726
-0.0121435 -1.31401 -1.50906 -0.0675266 -0.763466 0.653639 1.06044
0.199772 1.00175 1.33651 0.0438143 0.572176 -0.401686 -0.30425

0.280002
0.202649 0.776869 2.30924 0.271685 0.20535 -0.47313 0.104938 0.238378

0.942788
0.0921026 0.990572 3.30598 0.44775 0.16056 -0.773472 -0.144805

0.277563 1.28223 2.04978
;____ Initial estimate for the residual error variances ______________
$SIGMA BLOCK(2)
1.40524
-0.023082 0.0411791

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10

ISAMPLE=1000 CTYPE=1 NOABORT
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1

ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES ETA1 ETA2 ETA3

ETA4 ETA5 ETA6 ETA7 ETA8 ETA9 ETA10 OBJI NOPRINT NOAPPEND ONEHEADER
FILE=sdtab_HIV_penta

A.5 CD4 concentration and viral load in HIV-
infected children starting ART, ARROW
data

$PROBLEM HIV infected children starting ART, ARROW data
;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV FLAG EVID VLBLQ VLLOQ L2 AGE ARTAGE CTR CHART

MART DIED RXINT RXBDOD CART
$DATA nonmemdata_HIV_arrow_log.csv IGNORE=@
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP(CD4) COMP(VL)
$PK

;____ Initiate population level parameters for the model ______________
;; CD4 Parameters
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TVL0 = THETA(1)
TVD0 = THETA(2)
TVP0 = THETA(3)
TVINT = THETA(4)
TVCD = THETA(5)
TVCP = THETA(6)
;; Viral Load parameters
TVVL0 = THETA(7)
TVVK = THETA(8)
TVV50 = THETA(9)
TVEDRUG = THETA(10)

;____ Modelling covariate effects on population level parameters ______
IF(DIED.EQ.0) L0DIED = 1
IF(DIED.EQ.1) L0DIED = (1 + THETA(15))
IF(CTR.EQ.1) INTCTR = 1
IF(CTR.EQ.2) INTCTR = (1 + THETA(14))
IF(CTR.EQ.3) INTCTR = (1 + THETA(13))
IF(CTR.EQ.0) INTCTR = (1 + THETA(12))
INTCART = ( 1 + THETA(11)*(CART - 0.34))

TVL0 = TVL0 * LODIED
TVINT = TVINT * INTCART * INTCTR

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVL0)
MU_2 = LOG(TVD0)
MU_3 = LOG(TVP0)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVCD)
MU_6 = LOG(TVCP)
MU_7 = LOG(TVVL0)
MU_8 = LOG(TVVK)
MU_9 = LOG(TVV50)
MU_10 = TVEDRUG

;____ Including individual random effects on parameters _______________
L = EXP(MU_1 + ETA(1))
D = EXP(MU_2 + ETA(2))
PR = EXP(MU_3 + ETA(3))
INT = EXP(MU_4 + ETA(4))
CD = EXP(MU_5 + ETA(5))
CP = EXP(MU_6 + ETA(6))
VL0 = EXP(MU_7 + ETA(7))
VK = EXP(MU_8 + ETA(8))
V50 = EXP(MU_9 + ETA(9))
EDRUG = MU_10 + ETA(10)

;____ Define initial concentration for each compartment _______________
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A_0(1) = INT
A_0(2) = VL0

;____ Naive (V) and total (VT) CD4 T cell concentration with age ______
VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)
VTART = 924 + 2354*EXP(-0.001012*ARTAGE)
VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)

;____ Including Age effects on parameters _____________________________
LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905
LOSS = D * 0.02*EXP(-0.00027*AGE)
PROL = PR * 0.02*EXP(-0.00027*AGE)
DELTA = (0.02*EXP(-0.00027*ARTAGE)/VL0) *(VART*0.905*L/INT - D*EXP(CD*(

INT/VTART-1)) + PR*EXP(CP*(1-INT/VTART)))
DRUG = 1/(1+EXP(-EDRUG))

;____ Define the differential equations for the model _________________
$DES
DADT(1) = LAMBDA - A(1)*(LOSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A

(1)/VT+1))) - DELTA*A(1)*A(2)
DADT(2) = (1-DRUG)*VK*A(2)*VL0/(VL0+V50) - VK*A(2) *A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED=0
; VIRUS
IF(FLAG==2) IPRED = LOG(A(2))
IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0
IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1
IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
IF(VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF(VLBLQ==1.AND.FLAG==2) MDVRES=1
; CD4
IF(FLAG==1) IPRED = LOG(A(1))
IF(FLAG==1) Y = IPRED + EPS(2)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,0.25) ; 1. L0, thymic output
(0,0.5) ; 2. D0, loss
(0,0.3) ; 3. P0, proliferation
(0,460) ; 4. X0, initial concentration CD4
(0,1) ; 5. CD, strength competition loss
(0,1) ; 6. CP, strength competition proliferation
(0,200000) ; 7. VL0, initial viral load
(0,0.33) ; 8. VK, rate viral load decline
(0,400) ; 9. V50, viral load multiphasic
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(-20,3,20) ; 10. EDRUG, drug effect
(-1.515,-0.001515) ; 11. INTCART1, ART age effects on X0
(-1,-0.001) ; 12. INTCTR2, Centre effects on X0
(-1,-0.001,5) ; 13. INTCTR3, Centre effects on X0
(-1,-0.001,5) ; 14. INTCTR0, Centre effects on X0
(-1,-0.001, 10.00) ; 15. L0DIED1, Effects of DIED on L0

;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(10)
1
0.1 1
0.1 0.1 1
0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

;____ Initial estimate for the residual error variances ______________
$SIGMA BLOCK(2)
1
0.1 1

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10

ISAMPLE=1000 CTYPE=1 NOABORT
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1

ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES ETA1 ETA2 ETA3

ETA4 ETA5 ETA6 ETA7 ETA8 ETA9 ETA10 OBJI NOPRINT NOAPPEND ONEHEADER
FILE=sdtab_HIV_arrow

A.6 CD4 concentration and viral load in HIV-
infected children starting ART, viral load
rebound in ARROW data

$PROBLEM HIV infected children starting ART, ARROW data, viral load
rebound

;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV FLAG EVID VLBLQ VLLOQ L2 AGE ARTAGE CTR
$DATA nonmemdata_HIV_arrow_viral_rebound_log.csv IGNORE=@
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP(CD4) COMP(VL)
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$PK

;____ Initiate population level parameters for the model ______________
;; CD4 Parameters
TVL0 = THETA(1)
TVD0 = THETA(2)
TVP0 = THETA(3)
TVINT = THETA(4)
TVCD = THETA(5)
TVCP = THETA(6)
;; Viral Load parameters
TVVL0 = THETA(7)
TVVK = THETA(8)
TVV50 = THETA(9)
;; Drug effect parameters
TVEDRUG = THETA(10)
TVDRUGT = THETA(11)
TVEDRES = THETA(12)
TVDRATE = THETA(13)

;____ Modelling covariate effects on population level parameters ______
IF(CTR.EQ.3) DRUGTCTR = 1 ; Most common
IF(CTR.EQ.2) DRUGTCTR = ( 1 + THETA(15))
IF(CTR.EQ.0) DRUGTCTR = ( 1 + THETA(16))
IF(CTR.EQ.1) DRUGTCTR = ( 1 + THETA(17))

TVDRUGT = TVDRUGT * DRUGTCTR

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVL0)
MU_2 = LOG(TVD0)
MU_3 = LOG(TVP0)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVCD)
MU_6 = LOG(TVCP)
MU_7 = LOG(TVVL0)
MU_8 = LOG(TVVK)
MU_9 = LOG(TVV50)
MU_10 = TVEDRUG
MU_11 = LOG(TVDRUGT)
MU_12 = TVEDRES
MU_13 = LOG(TVDRATE)

;____ Including individual random effects on parameters _______________
L = EXP(MU_1 + ETA(1))
D = EXP(MU_2 + ETA(2))
PR = EXP(MU_3 + ETA(3))
INT = EXP(MU_4 + ETA(4))
CD = EXP(MU_5 + ETA(5))
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CP = EXP(MU_6 + ETA(6))
VL0 = EXP(MU_7 + ETA(7))
VK = EXP(MU_8 + ETA(8))
V50 = EXP(MU_9 + ETA(9))
EDRUG = MU_10+ ETA(10)
DRUGT = EXP(MU_11+ ETA(11))
EDRES = MU_12+ ETA(12)
DRATE = EXP(MU_13+ ETA(13))

;____ Define initial concentration for each compartment _______________
A_0(1) = INT
A_0(2) = VL0

;____ Naive (V) and total (VT) CD4 T cell concentration with age ______
VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)
VTART = 924 + 2354*EXP(-0.001012*ARTAGE)
VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)

;____ Including Age effects on parameters _____________________________
LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905
LOSS = D * 0.02*EXP(-0.00027*AGE)
PROL = PR * 0.02*EXP(-0.00027*AGE)
DELTA = (0.02*EXP(-0.00027*ARTAGE)/VL0) *(VART*0.905*L/INT - D*EXP(CD*(

INT/VTART-1)) + PR*EXP(CP*(1-INT/VTART)))
DRUG = 1/(1+EXP(-EDRUG))
DRES = 1/(1+EXP(-EDRES))

;____ Define the drug resistance equation ____________________________
$DES
DRUGRES = DRUG*(DRES + (1-DRES)/(1+EXP((T-DRUGT)/DRATE)))

;____ Define the differential equations for the model _________________
DADT(1) = LAMBDA - A(1)*(LOSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A

(1)/VT+1))) - DELTA*A(1)*A(2)
DADT(2) = (1-DRUG*(DRES + (1-DRES)/(1+EXP((T-DRUGT)/DRATE-4))))*VK*A(2)

*VL0/(VL0+V50) - VK*A(2) *A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y) _______
$ERROR
IPRED=0
; VIRUS
IF(FLAG==2) IPRED = LOG(A(2))
IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0
IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1
IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
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IF(VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF(VLBLQ==1.AND.FLAG==2) MDVRES=1
; CD4
IF(FLAG==1) IPRED = LOG(A(1))
IF(FLAG==1) Y = IPRED + EPS(2)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,0.103837) FIX ; 1. L0, thymic output
(0,0.461765) FIX ; 2. D0, loss
(0,0.175663) FIX ; 3. P0, proliferation
(0,288.4140) FIX ; 4. X0, initial concentration CD4
(0,1.178360) FIX ; 5. CD, strength competition loss
(0,1.019090) FIX ; 6. CP, strength competition proliferation
(0,337370.0) FIX ; 7. VL0, initial viral load
(0,0.258776) FIX ; 8. VK, rate viral load decline
(0,750.5140) FIX ; 9. V50, viral load mulitphasic
(-20,3.693170) FIX ; 10. EDRUG, drug effect
(0,363.666) ; 11. DRUGT, time at which resistance develops
(-20,-2.99475,20) ; 12. EDRES, residual drug effect
(0,9.41068) ; 13. DRATE, rate of development of resistance
(-1,0.930066) ; 14. DRUGTCTR2, Centre effects on rebound time
(-1,-0.297463) ; 15. DRUGTCTR0, Centre effects on rebound time
(-1,0.198859) ; 16. DRUGTCTR1, Centre effects on rebound time

;____ Initial estimates for the random effects var-covar matrix _______
BLOCK(10) FIX
2.484630
1.258550 2.173280
0.287249 1.092420 0.878814
0.385209 -1.08255 -0.86133 1.661450
-0.30083 -0.03684 -0.03540 -0.28335 0.630546
0.210169 -0.07209 -0.19530 0.229530 -0.16358 0.420285
-0.11873 -0.00676 0.024708 -0.22191 0.158112 -0.07459 2.146130
-0.04519 0.001880 0.008743 -0.06100 0.005354 -0.01568 0.053634

0.094765
0.260986 -0.46731 -0.26785 0.528847 -0.05784 0.031735 0.901993

0.080490 1.393940
0.324752 -0.07808 -0.16514 0.461696 0.048112 0.079234 0.460435

-0.03956 0.861229 1.281940
$OMEGA 0.67719
$OMEGA 2.46763
$OMEGA 0.01 FIX

;____ Initial estimate for the residual error variances ______________
$SIGMA BLOCK(2)
1.45644
0.00113859 0.0972418
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;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10

ISAMPLE=1000 CTYPE=1 NOABORT
$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1

ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES DRUGRES NOPRINT

NOAPPEND ONEHEADER FILE= sdtab_HIV_arrow_viral_rebound
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R and NONMEM scripts for
predicting long-term CD4
reconstitution following
paediatric HSCT

B.1 R script

library(lattice)
library(FME)
library(latticeExtra)
rm(list=ls())

#######################################################################
##### Input Patient Characteristics ###################################
# Patient Hostpital Number or another numeric identifier
Patient_ID=1004

# The Age (in days) on the day of the HSCT
Age_at_HSCT = 4676

## Input diagnosis:
# 1: Leukaemia (any form)
# 2. Any other diagnosis
Diagnosis = 2

## Conditioning details:
# 1: Alemtuzumab
# 2. ATG
# 3. any other form of conditioning (e.g. TBI, ACD45, other drugs etc)
# 4. No conditioning at all
Conditioning = 1

## Acute GvHD Status
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# 1: Never had acute GvHD
# 2: Had acute GvHD
Acute_GvHD_status = 1

#######################################################################
##### Input CD4 concentration data ####################################
# Formats:
# Times in days following HSCT (with day 0 as the day of HSCT)
# Concentrations in cells/uL (i.e. should be roughly in the range of 10

to 4000)
Times = c(20,176,204,239,281,323)
Concentrations = c(10,120,160,340,680,1010)

#######################################################################
##### Simulation of data characteristics ##############################
# The number of sample parameter values formed:
# - More samples gives a more accurate representation
# - Fewer samples is faster
# - Somewhere between 300 and 1000 is recomended
samples=500

# The size of the confidence interval of the trajectory to plot (%):
Confidence_Interval = 68

#######################################################################
##### Model File Name #################################################
Model = "CD4_individual_prediction"

#######################################################################
##### Set directory for modelling #####################################
Directory = "˜/Documents/R/CD4/Predictions"
# Model file should be saved in this directory in format: runModel.mod

######################################################################
##### Create directory for individual patient for prediction #########
Individual_Directory = paste(Directory,"/Patient_",Patient_ID,sep="")
system(paste("mkdir ",Individual_Directory,sep=""))
setwd(Individual_Directory)

#######################################################################
#######################################################################
##### Carry out parameter estimation and simulation ###################
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#######################################################################

#######################################################################
##### Create data set given information above #########################
nonmem_data <- data.frame(
ID = Patient_ID,
TIME = c(0,Times),
DV = c(0,log(Concentrations)),
EVID = c(2,rep(0,length(Times))),
AGE = c(0,Times) + Age_at_HSCT,
GVHYN = 0,
COND=0,
ALEM=0,
ATG=0,
LEUK=0)
if (Conditioning == 1){nonmem_data$ALEM <- 1}
if (Conditioning == 2){nonmem_data$ATG <- 1}
if (Conditioning == 4){nonmem_data$COND<-1}
if (Diagnosis == 1){nonmem_data$LEUK <- 1}
if (Acute_GvHD_status == 2){nonmem_data$GVHYN <- 1}

names(nonmem_data)[1] <- "#ID"
write.csv(nonmem_data,"nonmemdata_log_predictions.csv",row.names=FALSE,

quote=FALSE)

#######################################################################
##### Carry out model fitting in NONMEM ###############################
system(paste("cp ",Directory,"/run",Model,".mod run",Model,".mod",sep

=""))
system(paste("execute run",Model,".mod -directory=NM_run",Model,sep="")

)
system(paste("rm -r NM_run",Model,sep=""))

#######################################################################
##### Read back in NONMEM results #####################################
phi <- read.table(paste("run",Model,".phi",sep=""),header=T,skip=1)
sigma <- read.table(paste("run",Model,".ext",sep=""),header=T,skip=1)

[1,"SIGMA.1.1."]

#######################################################################
##### Create sample parameter sets from NONMEM results ################
nparam=6 # Number of parameters with random effects
varcovar_list <- list()
for (i in 1:nparam){

for (j in 1:nparam){
if (j>i) {name <- paste("PHC",j,i,"",sep=".")}
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else {name <- paste("PHC",i,j,"",sep=".")}
varcovar_list <- append(varcovar_list,name)}}

varcovar_list <- unlist(varcovar_list)

mean_list <- list()
for (i in 1:nparam){

mean_name <- paste("PHI",i,"",sep=".")
mean_list=append(mean_list,mean_name)}

mean_list <- unlist(mean_list)

parMean <- unlist(phi[,mean_list])
parCovar <- matrix(data=unlist(phi[,varcovar_list]),nrow=nparam)

sample_params <- data.frame(Norm(parMean=parMean,parCovar=parCovar,num=
samples))

names(sample_params) <- c("lambda","d","p","X0","LH","LR")
real_sample_params <- exp(sample_params)

#######################################################################
##### Simulate data from sample parameter sets ########################

sample_param <- real_sample_params[1,]
pars <- list(lambda = sample_param$l,

d = sample_param$d,
p = sample_param$p,
X0 = sample_param$X0,
LH = sample_param$LH,
LR = sample_param$LR)

#Define model to solve, including time range, differential equations,
starting estimates for compartments

solveCD4 <- function(pars, times=seq(0,3000,by=10)){
derivs <- function(t, state, pars) {

with(as.list(c(state,pars)),{
Age = Age_at_HSCT
V = (497+2070*exp(-0.00087*(t+Age)))
V2 <- (924+2354*exp(-0.001012*(t+Age)))
L = lambda*exp(-0.00027*(t+Age))*V*0.02*(1-exp(-2*

t/LH))/(1+exp(LR*(1-t/LH)))*0.02/0.0221
D = d*0.018*exp(-0.00027*(t+Age))*exp(1*(X/V2-1))
P = p*0.02 *exp(-0.00027*(t+Age))*exp(1*(1-X/V2))
dX <- L - X*(D-P)
return(list(c(dX)))

})
}
state <- c(X = pars$X0)
return(ode(y=state,times=times,func=derivs,parms=pars))

}
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# Carry out estimation from model
out <- data.frame(solveCD4(real_sample_params[1,]))

for (i in 2:samples){
out_new <- data.frame(solveCD4(real_sample_params[i,]))
out[,i+1] <- out_new$X
}

#######################################################################
#######################################################################
##### Plot Results ####################################################
#######################################################################

#######################################################################
##### Calculate confidence intervals for plots ########################
CI.lower= (50 - Confidence_Interval*0.5)/100.0
CI.higher=(50 + Confidence_Interval*0.5)/100.0

#xyplot(X˜time,out,pch=".",scales=list(y=list(log=T)))
out$lower <- apply(out[,2:ncol(out)],1,quantile,probs=c(CI.lower))*exp

(-sigma)
out$median <- apply(out[,2:ncol(out)],1,quantile,probs=c(0.5))
out$higher <- apply(out[,2:ncol(out)],1,quantile,probs=c(CI.higher))*

exp(sigma)
out <- as.data.frame(out[,c("time","lower","median","higher")])

write.csv(out,paste("Predicted Trajectories",Patient_ID,".csv",sep=""))
#######################################################################
##### Include CD4 concentration with age ##############################
CD4_expected <- data.frame(
AGE = 1:8000)
CD4_expected$CD4 <- 924+2354*exp(-0.001012*CD4_expected$AGE)
CD4_expected$CI05 <- 0.469*CD4_expected$CD4
CD4_expected$CI95 <- 1.687*CD4_expected$CD4
out$AGE <- Age_at_HSCT + out$time
out <- merge(out,CD4_expected)
out$min <- do.call(pmin,data.frame(out$lower,out$CI05))
out$time <- out$time/30.5

#######################################################################
##### Plot results and CD4 concentration for age and save

##############
pdf(file=paste("Predicted trajectory ",Patient_ID,".pdf",sep=""),width

=8, height=5)
xyplot(CD4˜time, out,type="l", scales=list(x=list(limit=c(0,39), at=c

(6,12,18,24,30,36)), y=list(log=T,limit=c(3,6000), at=c
(10,30,100,300,1000,3000))), xlab=list(label="Time after HSCT (
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months)", cex=1.5), ylab = list(label=expression(paste("CD4
concentration (cells/",mu,"L)")),cex=1.5)) +

as.layer(xyplot(CI95˜time,out,type="l",lty=2, scales=list(y=list
(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’xy’,
col=rgb(0,0,1,0.2))) +

as.layer(xyplot(CI05˜time,out,type="l",lty=2, scales=list(y=list
(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’xy’,
col="white", col.line="white")) +

as.layer(xyplot(higher˜time,out,type="l",lty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col=rgb(0.1,1,0,0.3))) +

as.layer(xyplot(lower˜time,out,type="l",lty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col="white"))+

as.layer(xyplot(lower˜time,out,type="l",lty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col=rgb(0,0,1,0.2))) +

as.layer(xyplot(min˜time,out, scales=list(y=list(log=T)), panel=
panel.xyarea,border=0, origin=0,aspect=’xy’,col="white", col.
line="white"))+

as.layer(xyplot(higher˜time,out,type="l",lty=2, col="black",
scales=list(y=list(log=T)))) +

as.layer(xyplot(lower˜time,out,type="l",lty=2,col="black",
scales=list(y=list(log=T)))) +

as.layer(xyplot(median˜time,out,type="l",lty=1,col="black",
scales=list(y=list(log=T)))) +

as.layer(xyplot(exp(DV)˜TIME/30.5,nonmem_data,cex=0.7, type="p",
col="black", scales=list(y=list(log=T))))

dev.off()

#######################################################################
#######################################################################

B.2 NONMEM script

$PROBLEM Paediatric HSCT CD4 T cell Reconstitution Individual
Predictions

;____ Data Input and setup of problem _________________________________
$INPUT ID TIME DV EVID AGE GVHYN COND ALEM ATG LEUK
$DATA nonmemdata_log_predictions.csv IGNORE=@
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP=(CENTRAL)
$PK

;____ Initiate population level parameters for the model ______________
TVL = THETA(1)
TVD = THETA(2)
TVPR = THETA(3)
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TVINT = THETA(4)
TVLH = THETA(5)
TVLR = THETA(6)

;____ Modelling covariate effects on population level parameters ______
IF(ALEM.EQ.0) INTALEM = 1
IF(ALEM.EQ.1) INTALEM = (1 + THETA(7))
IF(ATG.EQ.0) INTATG = 1
IF(ATG.EQ.1) INTATG = (1 + THETA(8))
IF(GVHYN.EQ.0) INTGVHYN = 1
IF(GVHYN.EQ.1) INTGVHYN = (1 + THETA(9))
IF(LEUK.EQ.0) LLEUK = 1
IF(LEUK.EQ.1) LLEUK = (1 + THETA(10))
IF(COND.EQ.0) PRCOND = 1
IF(COND.EQ.1) PRCOND = (1 + THETA(11))

TVINT = TVINT * INTALEM * INTATG * INTGVHYN
TVL = TVL * LLEUK
TVPR = TVPR * PRCOND

;____ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVL)
MU_2 = LOG(TVD)
MU_3 = LOG(TVPR)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVLH)
MU_6 = LOG(TVLR)

;____ Naive (V) and total (VT) CD4 T cell concentration with age ______
VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)

;____ Including Age effects and individual random effects on params ___
L = EXP(MU_1 + ETA(1)) * V * 0.9 * 0.02*EXP(-0.00027*AGE)
D = EXP(MU_2 + ETA(2)) * 0.02*EXP(-0.00027*AGE)
PR = EXP(MU_3 + ETA(3)) * 0.02*EXP(-0.00027*AGE)
INT = EXP(MU_4 + ETA(4))
LH = EXP(MU_5 + ETA(5))
LR = EXP(MU_6 + ETA(6))
CD = 1
CP = 1
A_0(1) = INT

;____ Define the differential equation for the model __________________
$DES
DADT(1) = L * (1-EXP(-2*T/LH))/(1+EXP(LR*(1-T/LH))) - A(1)*(D*EXP(CD*(A

(1)/VT-1)) - PR * EXP(CP*(-A(1)/VT+1)))

;____ Compare the model output (IPRED) to the observed data (Y) _______
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$ERROR
IPRED = A(1)
IPRED = LOG(IPRED)
Y = IPRED + EPS(1)

;____ Initial estimates for the population level parameters ___________
$THETA
(0,0.222489) ; 1. L, thymic output
(0,0.454536) ; 2. D, loss
(0,0.195179) ; 3. PR, proliferation
(0,164.2850) ; 4. A_0, Initial concentration of cells
(0,133.1450) ; 5. LH, time to recovery in thymic output
(0,9.757030) ; 6. LR, rate of recovery of thymic output
(-1,-0.83722) ; 7. INTALEM, effects of alemtuzumab on A_0
(-1,-0.93890) ; 8. INTATG, effects of ATG on A_0
(-1,0.331920) ; 9. INTGVHYN, effects of acute GvHD on A_0
(-1,1.289310) ; 10. LLEUK, effects of leukaemia on thymic output
(-1,-0.88522) ; 11. PRCOND, effects of no conditioning on

proliferation

;____ Initial estimates for the random effects var-covar matrix _______
$OMEGA BLOCK(6)
1.553010
0.522870 1.662840
0.161760 0.320213 0.247498
0.405366 0.415663 0.218925 1.286390
0.534060 -0.44269 -0.06167 0.766879 1.214760
0.083104 0.340042 -0.13533 -0.89795 -0.77866 1.259670

;____ Initial estimate for the residual error variance _______________
$SIGMA 0.218784

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______
$ESTIMATION METHOD=IMP INTERACTION EONLY=1 ISAMPLE=10000 IACCEPT=0.1

NITER=10 PRINT=1

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETA5

ETA6 OBJI NOPRINT NOAPPEND ONEHEADER FILE=
sdtab_individual_predictions
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Python code

C.1 Global competition model

## Global competition model with thymus
## File output of lifetimes and clonotype distributions
## And with automatic graphs of the distributions

from numpy import random,array,log,exp,sqrt,mean,arange,cumsum,
searchsorted,where,histogram,concatenate,loadtxt,transpose

from pylab import show,savefig,ion,arange,histogram,step,draw,figure,
plot,ylabel,zeros,hist,xlabel,ylim,title,text,bar,subplot,
tight_layout

import datetime,time,sys
from scipy.special import *

#########################################################
# Give folder name for this run
runname = ’Global_thymus’
#########################################################
### Set variables, or read in from command line
#########################################################
if len(sys.argv)==1:

n0 = 8
delta = 80.0
gamma = 4000.0
folder_name = ’Global_thymus’

else:
n0 = int(sys.argv[1])
delta = float(sys.argv[2])
gamma= float(sys.argv[3])
folder_name= str(sys.argv[4])
today_start = str(sys.argv[5])

mu = 1.0
N = int(round(gamma/n0 + delta))
tmax = 2000.0
tint = tmax/50.0
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TcellNumb = [n0]*N
t=0.0
tt=-0.5*tint
birthtime = [0.0]*N
NNow=N

#########################################################
### Find start time/date and open file for output
#########################################################
todayraw = datetime.datetime.today()
today = todayraw.strftime("%b%d%y %Hh%M.%S")
life_t_file = open(folder_name+’/lifetimes_’+runname+’_’+str(gamma)+’_

’+str(n0)+’_’+str(delta)+’.txt’, ’w’)
life_t_file.write( ’N=%d n0=%d delta=%.2f gamma=%.2f tmax=%.2f\n’ %(N,

n0,delta,gamma,tmax))
life_t_file.write( ’ expected mean number of cells=%.2f\n’ % ((gamma+

delta*n0)/mu))
clono_file = open(folder_name+’/clonotype_distributions_’+runname+’_’+

str(gamma)+’_’+str(n0)+’_’+str(delta)+’.txt’, ’w’)
clono_file.write(’t\t’)
for i in range(99):

clono_file.write(’%d\t’%i)
print ’N=’,N,’n0=’,n0,’delta=’,delta,’gamma=’,gamma,’tmax=’,tmax
print ’expected mean number of cells=’ ,(gamma+delta*n0)/mu

#########################################################
### Gillespie Algorithm for the dynamics
#########################################################
def Gillespiestep(gamma,mu,delta):

’’’One step of the Gillespie algorith’’’
TcellSum = sum(TcellNumb)
Lamb = [x*gamma/TcellSum for x in TcellNumb]
deathrate = [x*mu for x in TcellNumb]
rates = deathrate+Lamb+[delta] # concatenates arrays
ratesum = sum(rates)
urv = random.uniform()
i = searchsorted(cumsum(rates)/ratesum,urv)
idead=NNow
if i < NNow:

TcellNumb[i]-=1 # Loss
if TcellNumb[i] == 0:

idead = i
TcellNumb.pop(i) # Clonotype extinction

elif i==2*NNow:
TcellNumb.append(n0) # New clonotype

else:
i = i-NNow
TcellNumb[i] += 1 # Division

return i,idead,ratesum
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#########################################################
### Carry out the actual dynamics
#########################################################
start=time.clock()
print start
while t < tmax:

i,idead,ratesum = Gillespiestep(gamma,mu,delta)
tinc = -log(random.uniform())/ratesum
if idead != NNow:

NNow-=1
life_t_file.write("%.3f\t%.3f\n" %(birthtime[i],t-birthtime[i]))
birthtime.pop(i)

elif i==2*NNow:
birthtime.append(t)
NNow+=1

if tt>tint:
tt=0
celldens = histogram(TcellNumb, bins=(arange(100)+1))
clono_file.write(’\n%.3f\t’%t)
for tcells in celldens[0]:

clono_file.write(’%d\t’%tcells)
life_t_file.flush()
clono_file.flush()
print t,NNow,sum(TcellNumb)
timenow = time.clock()
timetaken=timenow-start
print timetaken
start=timenow

t+=tinc
tt+=tinc

#########################################################
### Output data into files and close files
#########################################################
clono_file.write(’\n%.3f\t’%t)
for tcells in celldens[0]:

clono_file.write(’%d\t’%tcells)
clono_file.close()
life_t_file.close()

#########################################################
### Create histogram of distribution of clonotype lifetimes
#########################################################
alpha = delta*n0/gamma
gamma_E = 0.57721566490
T = 1.0/(alpha*mu)*(gamma_E - exp(alpha*n0)*expi(-alpha*n0) + log(alpha

*n0))
mybins=arange(101)
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lifetime = loadtxt(folder_name+’/lifetimes_’+runname+’_’+str(gamma)+’_
’+str(n0)+’_’+str(delta)+’.txt’, skiprows=2)

lifetime = transpose([lifetime for lifetime in lifetime if lifetime
[0]!=0])

subplot(2,1,1)
ydens=histogram(lifetime[1], bins=mybins, normed=True)[0]
hist(lifetime[1], mybins, normed=True)
x = (arange(1000)+1)*0.1
pred=(n0/x**2)*exp(-n0/x)
l=plot(x,pred, linewidth=2)
xlabel(’Clonotype lifetime’)
title(r’Histogram of clonotype lifetimes’)
text(75,0.02,’$N=%d$ \n $n_0=%d$ \n $\delta =%.0f$ \n $\gamma=%.0f$ \n

$\mu=%.0f$ \n $t_{max}=%.0f$’%(N,n0,delta,gamma,mu,tmax), fontsize
=14)

#########################################################
### Create plot of clonotype sizes
#########################################################
subplot(2,1,2)
clonotypes = loadtxt(folder_name+’/clonotype_distributions_’+runname+’_

’+str(gamma)+’_’+str(n0)+’_’+str(delta)+’.txt’, skiprows=1).T
clonotypes_t = transpose(clonotypes[1:])
mean_clonos = sum(clonotypes_t)/sum(sum(clonotypes_t))
ind=arange(len(mean_clonos))
width=1
p1 = bar(ind,mean_clonos,width,color=’b’)
x1=((arange(n0*10)+1)*0.1)
pred1=(1/(T*alpha))*(1-exp(-alpha*x1))/x1
l1=plot(x1,pred1,linewidth=2,color=’g’)
x2=n0+arange(900)*0.1
pred2=(1/T)*(exp(alpha*n0)-1)*exp(-alpha*x2)/(alpha*x2)
l2=plot(x2,pred2,linewidth=2,color=’g’)
xlabel(’T cells per clonotype’)
title(r’Histogram of clonotype sizes’)
tight_layout(True)

#########################################################
### Save figures
#########################################################
today_date = todayraw.strftime("%b%d%y")
savefig(folder_name+’/’+str(today_date)+’_lifetime_size_%.0f_%.0f_%.0f.

pdf’%(gamma,n0,delta))

clono_n_file_1 = open(folder_name+’/clono_totals_’+str(n0)+’_’+str(
gamma)+’.txt’, ’a’)

clono_totals = sum(clonotypes[1:])
for clono_total in clono_totals:

clono_n_file_1.write(’%d\t’%clono_total)
clono_n_file_1.close()
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C.2 Global competition model, including distri-
butions of resource affinity, as applied to
mouse data for CD8 memory T cells

## Global competition model with thymus
## Set up as for mice experiments for CD8 memory T cells donor & host
## With gamma ditributed

from numpy import random,array,log,exp,sqrt,mean,arange,cumsum,
searchsorted,where,histogram,concatenate,loadtxt,transpose,append

from pylab import show,savefig,ion,arange,histogram,step,draw,figure,
plot,ylabel,zeros,hist,xlabel, xlim,ylim,title,text,bar,subplot,
tight_layout,legend,close,ion,ioff, rcParams

import datetime,time,sys
from scipy.special import *

#########################################################
# Give folder name for this run
runname = ’Mice_global’
#########################################################
### Set variables, or read in from command line
#########################################################
if len(sys.argv)==1:

n0=3
N = 1500
n_th = 3
delta = 120.0
gamma = 4000.0
gamma_donor=800.0
folder_name = ’Mice’

else:
N = int(sys.argv[1])
delta = float(sys.argv[2])
gamma= float(sys.argv[3])
folder_name= str(sys.argv[4])
today_start = str(sys.argv[5])

mu = 0.8
tmax = 49.0
tint = 0.5
ttrans = 8.0
TcellNumb = [n0]*N
t=0.0
tt=-0.5*tint
birthtime = [0.0]*N
Ninit=N
NNow=N
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NHost=N
NDonor=0
Host_or_donor = [1]*N
t_list=[0]
NDonor_list=[0]
NHost_list=[N]
T_donor_list=[0]
T_host_list=[sum(TcellNumb)]
gamma_i = [-1]*N
for i in range(N):

while gamma_i[i]<=0.0 or gamma_i[i]>=100.0:
gamma_i[i] = random.normal(50,30)

mybins=3*arange(34)

#########################################################
### Find start time/date and open file for output
#########################################################
todayraw = datetime.datetime.today()
today = todayraw.strftime("%b%d%y %Hh%M.%S")
print ’N=’,N,’n0=’,n0,’n_th=’,n_th,’delta=’,delta,’gamma=’,gamma,’tmax

=’,tmax
print ’expected mean No cells=’ ,(gamma+delta*n_th)/mu, "Init no cells

=",sum(TcellNumb)

#########################################################
### Gillespie Algorithm for the dynamics
#########################################################
def Gillespiestep(gamma,mu,delta):

’’’One step of the Gillespie algorith’’’
gammaNormaliser = sum([gamma_i[i]*TcellNumb[i] for i in range(NNow)

])
Lamb = [TcellNumb[i]*gamma_i[i]*gamma/(gammaNormaliser) for i in

range(NNow)]
deathrate = [x*mu for x in TcellNumb]
rates = deathrate+Lamb+[delta] # concatenates arrays
ratesum = sum(rates)
urv = random.uniform()
i = searchsorted(cumsum(rates)/ratesum,urv)
idead=NNow
if i < NNow:

TcellNumb[i]-=1 # Loss
if TcellNumb[i] == 0:

idead = i
TcellNumb.pop(i) # Clonotype extinction

elif i==2*NNow:
TcellNumb.append(n_th) # New clonotype

else:
i = i-NNow
TcellNumb[i] += 1 # Division
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return i,idead,ratesum

Tcell_gamma_dens = sum([[gamma_i[i]]*TcellNumb[i] for i in range(N)
],[])

gamma_dens = histogram(Tcell_gamma_dens, bins=mybins)[0]
gamma_dens = append(gamma_dens,[0])
gamma_list = [gamma_dens]

#########################################################
### Carry out the actual dynamics
#########################################################
start=time.clock()
print start
while t < ttrans:

i,idead,ratesum = Gillespiestep(gamma,mu,delta)
tinc = -log(random.uniform())/ratesum
if idead != NNow:

NNow-=1
NHost -= 1
birthtime.pop(i)
Host_or_donor.pop(i)
gamma_i.pop(i)

elif i==2*NNow:
birthtime.append(t)
Host_or_donor.append(1)
new_gamma=-1
while new_gamma<=0 or new_gamma > 100:

new_gamma = random.normal(50,30)
gamma_i.append(new_gamma)
NNow +=1
NHost += 1

if tt>tint:
tt=0
TcellNumb_host=0
TcellNumb_donor=0
TcellNumb_host=sum(TcellNumb)
print TcellNumb_host, TcellNumb_donor
T_donor_list.append(TcellNumb_donor)
T_host_list.append(TcellNumb_host)
t_list.append(t)
NDonor_list.append(NDonor)
NHost_list.append(NHost)
print t,NNow,sum(TcellNumb)
timenow = time.clock()
timetaken = timenow-start
Tcell_gamma_dens = sum([[gamma_i[i]]*TcellNumb[i] for i in range

(NNow)],[])
print len(Tcell_gamma_dens)
gamma_dens = histogram(Tcell_gamma_dens, bins=mybins)[0]
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gamma_dens = append(gamma_dens,[0])
start=timenow

t+=tinc
tt+=tinc

gamma_list.append(gamma_dens)
gamma_dens_donor = [0]*len(mybins)
gamma_list_donor = [gamma_dens_donor]
ttt=0.0

while t < tmax:
i,idead,ratesum = Gillespiestep(gamma,mu,delta)
tinc = -log(random.uniform())/ratesum
if idead != NNow:

NNow-=1
if Host_or_donor[idead] == 0:

NDonor -= 1
if Host_or_donor[idead] == 1:

NHost -= 1
birthtime.pop(i)
Host_or_donor.pop(i)
gamma_i.pop(i)

elif i==2*NNow:
birthtime.append(t)
Host_or_donor.append(0)
new_gamma=-1
while new_gamma<=0 or new_gamma > 100:

# new_gamma = random.uniform(0,100)
new_gamma = random.normal(50,30)

gamma_i.append(new_gamma)
NNow +=1
NDonor += 1

if tt>tint:
tt=0
TcellNumb_host=0
TcellNumb_donor=0
for i in range(len(Host_or_donor)):

if Host_or_donor[i]==1:
TcellNumb_host += TcellNumb[i]

if Host_or_donor[i]==0:
TcellNumb_donor += TcellNumb[i]

print TcellNumb_host, TcellNumb_donor
T_donor_list.append(TcellNumb_donor)
T_host_list.append(TcellNumb_host)
t_list.append(t)
NDonor_list.append(NDonor)
NHost_list.append(NHost)
print t,NNow,sum(TcellNumb)
Tcell_gamma_dens = [[gamma_i[i]]*TcellNumb[i] for i in range(
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NNow)]
#print len(Tcell_gamma_dens)
gamma_dens = histogram(sum([Tcell_gamma_dens[i] for i in range(

NNow) if Host_or_donor[i] ==1],[]),bins=mybins)[0]
gamma_dens = append(gamma_dens,[0])
gamma_dens_donor = histogram(sum([Tcell_gamma_dens[i] for i in

range(NNow) if Host_or_donor[i] ==0],[]),bins=mybins)[0]
gamma_dens_donor = append(gamma_dens_donor,[0])
timenow = time.clock()
timetaken = timenow-start
start=timenow

if ttt>ttrans*2:
ttt=0.0
gamma_list.append(gamma_dens)
gamma_list_donor.append(gamma_dens_donor)

t+=tinc
tt+=tinc
ttt+=tinc

gamma_list.append(gamma_dens)

rcParams[’figure.figsize’] = 10.5, 13.5

subplot(4,2,1)
plot(t_list,T_host_list, label=’Host’)
plot(t_list,T_donor_list, label=’Donor’)
xlabel(’Time from birth (weeks)’)
ylabel(’Number of T cells’)
ylim(0,1.1*max(T_host_list))
legend(labelspacing=0.02)

subplot(4,2,3)
plot(t_list,NHost_list, label=’Host’)
plot(t_list,NDonor_list, label=’Donor’)
xlabel(’Time from birth (weeks)’)
ylabel(’Number of clonotypes’)
ylim(0,1.1*max(NHost_list))
legend(labelspacing=0.02)

proportion_T = [1.0*T_donor_list[i]/(1.0*T_host_list[i]+1.0*
T_donor_list[i]) for i in range(len(T_donor_list))]

subplot(4,2,2)
plot(t_list,proportion_T,c=’black’, label=’Proportion’)
xlabel(’Time from birth (weeks)’)
ylabel(’Proportion donor T cells’)
ylim(0,1.1)

proportion_C = [1.0*NDonor_list[i]/(1.0*NHost_list[i]+1.0*NDonor_list[i
]) for i in range(len(NDonor_list))]

243



Appendix C. Python code

subplot(4,2,4)
plot(t_list,proportion_C,c=’black’, label=’Proportion’)
xlabel(’Time from birth (weeks)’)
ylabel(’Proportion donor clonotypes’)
ylim(0,1.1)

subplot(4,2,5)
title(’Birth (0 Weeks)’)
step(mybins,gamma_list[0]/float(max(gamma_list[0]))*100, label=’Host’)
xlabel(’gamma’)
ylabel(’% of Max’)
legend(loc=2,labelspacing=0.02)

subplot(4,2,6)
title(’Day of transplant (%.0f Weeks)’ % ttrans)
step(mybins,gamma_list[1]/float(max(gamma_list[1]))*100, label=’Host’)
ylabel(’% of Max’)
xlabel(’gamma’)
legend(loc=2,labelspacing=0.02)

subplot(4,2,7)
title(’%.0f Weeks’ % (3*ttrans))
step(mybins,gamma_list[2]/float(max(gamma_list[2]))*100, label=’Host’)
step(mybins,gamma_list_donor[1]/float(max(gamma_list_donor[1]))*100,

label=’Donor’)
xlabel(’gamma’)
ylabel(’% of Max’)
legend(loc=2,labelspacing=0.02)

subplot(4,2,8)
title(’%.0f Weeks’ % (5*ttrans))
step(mybins,gamma_list[3]/float(max(gamma_list[3]))*100, label=’Host’)
step(mybins,gamma_list_donor[2]/float(max(gamma_list_donor[2]))*100,

label=’Donor’)
xlabel(’gamma’)
ylabel(’% of Max’)
legend(loc=2, labelspacing=0.02)

tight_layout()
savefig(’Mice/Gamma distributions with donor nth=’+str(n_th)+’ quick mu

=0.8.pdf’)
show(block=True)

244


	Introduction
	The haematopoietic system
	The immune system
	Platelets
	Neutrophils
	T cells
	Immune reconstitution
	Haematopoietic stem cell transplantion
	HIV-infected children undergoing ART

	Why use mathematical modelling?
	Aims of the project

	Short-term neutrophil and platelet reconstitution following HSCT
	Introduction
	Modelling short-term reconstitution
	Neutrophils
	Platelets
	Conditioning drug protocols & pharmacodynamics

	Methods
	The data
	Model fitting
	Covariate model-building
	Data below the limit of quantification
	Diagnostic plots

	Results
	Neutrophils
	Platelets

	Discussion

	Long-term CD4 T cell reconstitution following HSCT
	Introduction
	Quantifying immune reconstitution

	Methods
	The data
	Model building
	Sensitivity and identifiability analysis
	Model fitting and covariate model building
	Making predictions

	Results
	Model fit
	Covariate analysis
	Diagnostic plots
	Predicting reconstitution in new patients

	Discussion

	Long-term CD4 T cell reconstitution in HIV-infected children starting antiretroviral therapy
	Introduction
	HIV in children
	Modelling the dynamics of the immune system and HIV

	The data
	PENTA 11
	ARROW

	Methods
	Model building
	Model fitting

	Results
	Patients with full viral suppression
	Patients with viral load rebound
	Covariate analysis

	Discussion

	A global competition model for T cell homeostasis
	Introduction
	The model
	Results
	Without thymic output
	Including thymic output
	Application to murine CD8 memory data

	Discussion

	Conclusions
	Recommendations for developing mechanistic models of immune reconstitution
	Future work

	References
	Appendices
	NONMEM model files
	Short-term reconstitution of neutrophils following paediatric HSCT
	Short-term reconstitution of platelets following paediatric HSCT
	Long-term reconstitution of CD4 concentration following paediatric HSCT
	CD4 concentration and viral load in HIV-infected children restarting ART, PENTA data
	CD4 concentration and viral load in HIV-infected children starting ART, ARROW data
	CD4 concentration and viral load in HIV-infected children starting ART, viral load rebound in ARROW data

	R and NONMEM scripts for predicting long-term CD4 reconstitution following paediatric HSCT
	R script
	NONMEM script

	Python code
	Global competition model
	Global competition model, including distributions of resource affinity, as applied to mouse data for CD8 memory T cells


