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Abstract

Mechanistic mathematical modelling can be used to understand the fundamental
drivers of the immune system and how the system is affected by medical inter-
ventions. Key to this understanding in children is the interplay between age
and treatment-related effects. This thesis focusses on immune reconstitution fol-
lowing paediatric haematopoietic stem cell transplantation (HSCT) and following
the start of antiretroviral therapy (ART) in children infected with human immun-
odeficiency virus (HIV). Since quantitative reconstitution is only one aspect of
immune function, in the final chapter I develop a model to explore the dynamics
of T cell receptor diversity.

Following HSCT, reconstitution of neutrophils and platelets was modelled
using a previous mechanistic model. For CD4 T cell reconstitution, a novel
mechanistic model was constructed that included age-related changes in T cell
dynamics, the delay to thymic output after HSCT and competition for resources.
In HIV-infected children starting ART, a simplified previous model for CD4 T
cell and HIV dynamics was adapted to include mechanistic elements for multi-
phasic viral load decline, age-related changes in T cell dynamics and competition
for resources. Using nonlinear mixed-effects modelling with these deterministic
models allowed parameters to be estimated with the uneven and often sparse
data available. The models were then used to find factors that affect reconstitu-
tion. The model for CD4 reconstitution following HSCT was then used to make
verifiable predictions of reconstitution in a new cohort of paediatric patients.

T cell receptor diversity dynamics were investigated with a stochastic model
in which all T cells compete equally for a global resource. The model was simple
enough that numerical simulations could be performed with large numbers of cells
and clonotypes, and the model could be characterised analytically. Equations
were obtained for long-term mean T cell numbers, clonotype numbers, clonotype
size distributions and the Gini coefficient as a measure of dispersion. The model
was then extended to model host-donor CD8 memory T cell dynamics in bone
marrow transplanted mice, showing that biologically simple assumptions could

explain the observed dynamics.
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Chapter 1

Introduction

1.1 The haematopoietic system

The haematopoietic system comprises all cells produced by haematopoietic stem
cells. Haematopoietic stem cells (HSCs) are the progenitors for all blood cells in
the body. They largely reside in the bone marrow, particularly in the femur, pelvis
and sternum, but they are also found in the peripheral blood and in umbilical cord
blood. They are self renewing and multipotent and have the common myeloid
progenitor and common lymphoid progenitor as offspring (see Figure 1.1).

The common myeloid progenitor produces red blood cells (erythrocytes) and
megakaryocytes, which in turn produce platelets (thrombocytes). Red blood
cells are involved in oxygen transport around the body and platelets contribute
to blood clotting. The rest of the offspring of the common myeloid progenotor
are white blood cells (leukocytes), all of which are involved in the innate immune
system. Macrophages and neutrophils are phagocytes that engulf particles or
pathogens; basophils and eosinophils are closely related to the neutrophil; and
mast cells are associated with wound healing and pathogen defence in mucous
membranes and connective tissue.

The common lymphoid progenitor produces the rest of the white blood cells:

17
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Figure 1.1: The maturation pathway of blood cells in the body from haematopoietic
stem cells. Macrophages, eosinophils, neutrophils, basophils, mast cells and NK cells
are parts of the innate immune system. T and B cells are part of the adaptive immune
system. Erythocytes are red blood cells and megakaryocytes produce platelets for
clotting. Source: Wikimedia Commons.

natural killer (NK) cells and the lymphocytes, T and B cells. NK cells are a key
component of the innate immune system, killing compromised host cells such as
virus infected or tumour cells; B and T cells form the foundation of the adaptive
immune system.

Dendritic cells are highly heterogeneous antigen presenting cells. They are

produced from both the common myeloid and the common lymphoid progen-

itor [1].

1.2 The immune system

The innate immune system has evolved in animals and plants for immediate
protection against infection from other organisms. This first line of defence is a

set of non-specific cells and mechanisms, which recognise and respond to many

18
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pathogens in the host in a fast and generic manner. It is largely made up of
the complement system and phagocytic white blood cells, such as neutrophils
and macrophages. These phagocytes take up a variety of microorganisms into
intracellular vesicles where they destroy them with degradative enzymes and other
antimicrobial substances.

The adaptive immune system has evolved in addition to the innate immune
system in vertebrates, including humans. It is able to respond in a pathogen-
specific way. Once the adaptive immune system has encountered and responded
to a pathogen in the host, it is able to acquire immunological memory of this
pathogen, enabling it to enhance its response to the same pathogen in the future.

The adaptive immune system works by recognising specific antigen proteins —
parts of bacteria, viruses and microorganisms — with receptors on the cell surface,
the T cell receptor (TCR) and B cell receptor (BCR). T cells require the antigen
to be processed inside another cell and presented on the major histocompatability
complex (MHC), a cell surface protein. TCRs then recognise this peptide-MHC
combination. MHC comes in two types, class I and class II. Class I are found
on the surface of most nucleated cells and when infected present peptides from
pathogens such as viruses to cytotoxic CD8 T cells, which then kill the infected
cell. Class IT are mostly found only on antigen presenting cells (APCs) and present
peptides to helper CD4 T cells. On recognition of the peptide-MHC combination,
the CD4 T cell will provide helper signals to activate the presenting cell [2].
They will also proliferate, differentiate into effector cells and release cytokines to
activate other immune cells. Hence CD4 T cells are vital for the adaptive immune
system to function fully. The most common APC is the dendritic cell, which are
specialist APCs, although macrophages, eosinophils, mast cells, CD8 T cells and
B cells can also act as APCs.

In contrast, B cells can recognise antigen in its cognate form with their BCR.

On further activation by the CD4 T cells, they will then differentiate into either

19
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memory B cells or into plasma B cells. Memory B cells are long lived cells that
have immune memory for the presented antigen peptide. Plasma B cells are large
B cells that produce and secrete antibodies in large quantities, which then bind
to microbes including bacteria, fungi and viruses, assisting phagocytosis and the
activation of the complement system.

T cells, B cells and APCs circulate through the blood and the lymphatic sys-
tem, made up of the lymph nodes and spleen. Dendritic cells pick up antigen at
the site of infection and then migrate to the lymph nodes where T cells are found
in very high concentrations. T cells thus sample thousands of peptide-MHC com-
plexes on the APCs every day, on top of which B cells sample cognate antigen
directly, ensuring that the immune system has a high probability of encounter-
ing pathogen-derived antigen wherever the infection might be in the body. On
recognising antigen, T and B cells receive signals to proliferate and differentiate
into effector cells and then leave the lymph nodes and spleen in large numbers in
order to attack the recognised pathogen. It is the vast diversity of the BCR and
TCR repertoires that allows the immune system to respond in a pathogen-specific
manner.

In this thesis, I look at three cell types from the haematopoietic system:
platelets, which are necessary for haemostasis, neutrophils, vital to the innate

immune system and T cells, crucial to the adaptive immune system.

1.3 Platelets

Platelets, or thrombocytes, are fragments of thrombokaryocyte cytoplasm with no
nucleus. They are unique to mammals, and their function is to assist coagulation
factors in haemostasis, the stopping of a flow of blood at interrupted endothelia.

Platelets gather at the site of interruption and perform primary haemostasis to

create a white clot through three processes: adhesion, making bonds outside the
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interrupted endothelium; activation, secreting cytokines and activating receptors;
and aggregation, attaching to each other through receptor bridges [3]. Primary
haemostasis results in the activation of secondary haemostasis and the coagulation
cascade. In this process, platelets express thrombin receptors that bind thrombin
molecules, which in turn produce polymerised fibrin from soluble fibrinogen in
the serum. The fibrin then form a red clot as long strands of insoluble protein,
and bind to platelets forming a mixed clot.

Platelets are derived from megakaryocytes in the bone marrow, from where
they enter the peripheral blood. A single megakaryocyte can produce thousands
of platelets, and in a healthy adult 2 x 10" platelets are produced per day [4].
Normal platelet concentrations in healthy adults are roughly 200 x 10® /uL, with

an average lifespan of 8 to 9 days [4].

1.4 Neutrophils

Neutrophils are a key part of the innate immune response. They are the most
abundant of the white blood cells in the body, with 3000 to 5500 cells/uL in the
peripheral blood [2]. They are highly motile, and are one of the first-responders in
the acute phase of inflammation, particularly in response to bacterial infections,
environmental exposure and some cancers. They are attracted to the site of
infection through chemotaxis, following cytokines expressed by other activated
white blood cells. At the site of the infected tissue, neutrophils are recruited
through the induction of adhesion molecules on the endothelial cells of blood
vessels and changes to the adhesion molecules expressed on neutrophils. The
neutrophils then migrate from the blood vessels into the infected tissue through
extravasation, where they survive for 1-2 days [5,6]. Dead neutrophils are the
predominant cells in pus, causing its yellow-white appearance.

At the site of infection, neutrophils not only release cytokines, attracting other

21



Chapter 1. Introduction

white blood cell types and thus amplifying the inflammatory response, but also
directly attack pathogens either through phagocytosis, or the release of soluble
antimicrobials, or through the generation of neutrophil extracellular traps [7].
Neutrophils are produced in the bone marrow from common myeloid progen-
itor stem cells through granulopoiesis. This process takes roughly 6.5 days [5], and
involves a series of steps, including the formation of granules, eventually leading to
the exit of mature neutrophils from the bone marrow. Neutrophils are produced
in large numbers, with roughly 10! cells/day leaving the bone marrow [8], and
they do not proliferate in the peripheral blood. When circulating in the blood
stream, they are short lived, with an average lifespan of 10 — 17 hours [9,10],
although this lifespan is increased by steroids, such as glucocorticoid [11].
Neutropoiena, the severe reduction in the concentration of neutrophils, leaves
patients highly susceptible to infection with a large range of pathogens, demon-
strating the importance of neutrophils in immune defence [2]. Neutrophil pre-
cursor production in the bone marrow is dependant on the hormone granulocyte-
colony stimulating factor (GCSF), which regulates the production of neutrophil
precursors depending on the circulating concentration of neutrophils in the blood-
stream. Recombinant human GCSF (rhGCSF) is used as a treatment for neut-

ropoienia.

1.5 T cells

T cells are so called because they develop in the thymus, a small organ near the
heart and a part of the lymphatic system.

Pre-T cells leave the bone marrow and travel through the blood stream ar-
riving at the thymus expressing neither CD4 nor CD8. In the thymus they first
undergo gene-rearrangement to produce the TCRs. TCRs are formed from one

a— and one f—chain or from one y— and one d—chain. The [ (or §) chain is formed
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first and paired with a pseudo-a (or 7) chain to establish functional rearrangement
before pairing with a full o (or 7) chain. The amino acids that make up these
chains are formed from variable (V), joining (J) and constant (C) regions, with -
and 0—chains having an additional diversity (D) region. The C region is the same
or very similar for all TCRs, and codes for the trans-membrane polypeptides.
The DNA encoding the V, J and D regions are composed of many gene segments
and the DNA encoding the TCR is then a small number of these segments chosen
at random through DNA recombination. This rearrangement results in ~5x 10°
pairs of combinations of V(D)J regions for a— and fS—chains [2]. Further diversity
results from junctional diversity, whereby a number of nucleotides can be added
or deleted between the gene segments of the V and J regions for a—chains and
between the V, D and J regions of the f—chains. This leads to a further diversity
of ~2x10'" resulting in a total of ~10'® possible TCRs [2]. The DNA in the un-
used gene segments is excised from the genome and remains in the nucleus as the
T cell receptor excision circle (TREC). This piece of DNA is neither replicated
in division nor degraded.

Expression of the TCR proteins on the cell surface triggers the expression
of both CD4 and CD8, changing them from double negative to double positive
thymocytes. These thymocytes then undergo the processes of positive and negat-
ive selection. First, cells are positively selected that have a strong enough affinity
for self-peptide MHC (sp-MHC) of either class I or II. If they have an affinity
for class I, they will drop their CD4 marker and become CDS cells, and if they
have an affinity for class II, they will drop their CD8 marker and become CD4
cells. Those that do not have a strong enough affinity will die. This ensures the
released cells will be effective. Then the successful cells are negatively selected
for those with too strong an affinity to sp-MHC, with the strongly responding
cells forced towards apoptosis. This is to prevent auto-immunity. Thus the cells

that survive are in the ‘Goldilocks region’, with strong enough but not too strong
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affinity for sp-MHC [12].

These T cells then leave the thymus and enter the peripheral blood stream and
lymphatic systems. At any one time, around 98% of T cells are in the lymphatic
system, and only 2% are in the blood stream [13]. The T cells that leave the
thymus are naive T cells, characterised by expression of the cell-surface protein
CD45RA. On encountering a foreign antigen that elicits an immune response, the
T cells proliferate and differentiate to become effector T cells. After the immune
response, some of the T cells are maintained, and become long-lived memory T
cells, typically expressing the CD45RO cell-surface protein.

T cell numbers in the body are maintained through homeostatic mechanisms
that determine proliferation and death. For T cells to survive and proliferate they
require interactions with resources such as cytokines [14,15] and, for naive cells,
sp-MHC [16]. It is thought that there are different thresholds for survival and
proliferation whereby a certain threshold number of interactions with resources
are required for survival, and a second higher threshold number for proliferation.
Insufficient interactions will result in cell apoptosis [17,18]. Hence homeostasis is
maintained through competition for these resources [19]; when there are many T
cells, there will be few resources per cell, lowering proliferation and raising loss
rates, and when there are very few cells, there will be many resources per cell,
resulting in low apoptosis and high proliferation. This results in lymphopoenia-
induced proliferation [20]. There is evidence to suggest that there is a spread
of thresholds within the T cell population, leading to kinetic heterogeneity in
proliferation and death rates [21,22].

Both CD4 and CD8 T cells compete for IL-7 cytokines [23-25], while CD8 also
compete for IL-15 cytokines [26]. For these cytokines, T cells compete globally.
Different clonotypes of TCR will respond to different sp-MHC, although there will
be some crossover [27,28]. Naive T cells thus have intra-clonotype competition for

sp-MHC, as well as inter-clonotype competition for sp-MHC with other clonotypes
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Figure 1.2: The mean expected CD4 concentration with age for a healthy child [31].
that might recognise the same sp-MHC and both naive and memory T cells have
global competition for the cytokines [16,29,30].

Through childhood, the immune system develops rapidly. The thymus reaches
full size at 1 year, but the thymic epithelial space involutes by 70% over the first
20 years of life [32]. Because T cells mature in the thymic epithelial space, the
number of T cells output by the thymus decreases as the child grows up [33,34].
The concentration of T cells in the blood decreases by a factor of three between
0 and 10 years of age, as can be seen in Figure 1.2 [31]. Also, the proportion of

T cells proliferating and dying decreases from early childhood [35,36].

1.6 Immune reconstitution

Medical interventions that cause temporary immunodeficiency or remove a pre-
existing condition that causes immunodeficiency are followed by a period in which
the immune system recovers (immune reconstitution). The primary theme of
this thesis is immune reconstitution following paediatric haematopoietic stem cell
transplantation (HSCT). One of the models has been further extended to study
immune reconstitution following initiation of antiretroviral therapy in children

infected with human immunodeficiency virus (HIV).
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1.6.1 Haematopoietic stem cell transplantion

HSCT is used for a range of conditions, which can broadly be split into two
categories: red blood cell issues, and immune system disorders. Red blood
cell issues include anaemia, Glanzmann’s thrombasthenia, and other problems
with platelets. Immune system disorders include immunodeficiencies (such as
Wiskott—Aldrich syndrome, severe combined innuondeficiency (SCID) or chronic
granulomatous disease), leukaemias (myeloid and lymphoblastic), hemophago-
cytic lymphohistiocytosis, autoimmunities and lymphomas. HSCT is also used
as treatment for other diverse conditions, such as inflammatory bowel disease and

metabolic defects like Hurler’s Syndrome.

Pre-transplant conditioning

Before HSCT, the patient is given a conditioning regimen to eradicate disease
and to reduce or ablate the host immune system. This conditioning can be
radiotherapy, chemotherapy, anti-lymphocyte antibodies or a combination of the
three. This is for three major reasons: (1) to reduce the chance of graft rejection,
whereby the remnants of the host immune system attack the donor cells; (2) to
lower the rates of graft-versus-host disease (GvHD), whereby the donor immune
system attacks the host immune system and the host body; (3) in the case of
cancers, to remove cancerous cells and to lower the chances of relapse.

The drugs used in pre-HSCT conditioning and their modes of action are given
in Table 1.1. While the anti-lymphocyte antibodies bind to and attack the lymph-
ocytes directly, the mode of action of the chemotherapy drugs and total body
irradiation is to prevent the production of new cells. The anti-lymphocyte an-
tibodies will therefore ablate the T cells and B cells, the long lived cells of the
haematopoietic system, and the chemotherapy and radiotherapy will ablate the
short-lived cells such as neutrophils and platelets as well as the haematopoietic

stem cells (HSCs).

26



Chapter 1. Introduction

Table 1.1: Conditioning regimens and prophylactic drugs, the drug types and their
modes of action, adapted from the version written for publication in Barker et al [37].

Drug Drug type Mode of action
Alemtuzumab Monoclonal Binds to CD54, expressed on the surface of mature lymphocytes but
antibody not on haematopoietic stem cells.
Anti-CD45 Monoclonal Binds to CD45, expressed on the surface of mature T cells.
g antibody
& | Antithymocyte Polyclonal Antibodies harvested from rabbits injected with human lymphatic
'% globulin antibody cells that attack human T cells.
= Busulphan Alkylating anti- Attacks dividing and resting cells. Cell apoptosis by alkylation creat-
Eﬁ neoplastic agent ing adenine-guanine cross-links.
R=) Cyclo- Nitrogen mustard  Attacks dividing and resting cells. Cell apoptosis by attaching alkyl
.8 phosphamide alkylating agent group to guanine bases in DNA.
= Fludarabine Purine analog Prevents DNA synthesis by interfering with ribonucleotide reductase
g and DNA polymerase.
O | Melphalan Nitrogen mustard  Attacks dividing and resting cells. Cell apoptosis by attaching alkyl
alkylating agent group to guanine bases in DNA.
Treosulphan Alkylating anti-  Attacks dividing and resting cells. Cell apoptosis by alkylation creat-
neoplastic agent ing adenine-guanine cross-links. Lower toxicity version of busulphan.
" Cyclosporine  Immuno- Lowers T cell immune activity. Prevents IL-2 transcription by binding
o suppressant to lymphocyte cyclophilin, this complex then inhibits calcineurium.
% | Methotrexate Antimetabolite Mainly suppresses fast proliferating cells. Purine base synthesis in-
= hibited through reduced metabolism of folic acid.
8* Mycophenolate Immuno- Inhibits monophosphate dehydrogenase which controls guanine mono-
E suppressant phosphate synthesis rate in purine base synthesis for B and T cell
proliferation.

Mechanism of transplantation

HSCT is the transfer of haematopoietic stem cells from a donor to a host. The
HSCs can be extracted from the donor using three methods: (1) bone marrow
transplants (BMTs) use stem cells extracted directly from the donor bone mar-
row, usually from the hip bone with a needle; (2) peripheral blood stem cell
transplants (PBSCTs) use circulating stem cells from the peripheral blood of
the donor following the administration of granulocyte-colony stimulating factor
(GCSF) to stimulate stem cells from the bone marrow into the peripheral blood;
(3) cord blood transplants (CBTs) use stem cells in blood taken from the umbil-
ical cord of newborn babies. Sometimes more than one umbilical cord is used to
increase the number of stem cells in the graft.

Donor haematopoietic stem cells are transferred into the blood stream of the
host. From there, they make their way to the bone marrow where they start
to proliferate and re-populate the haematopoietic system. The reconstitution of
cells such as neutrophils and platelets is fast, taking a matter of weeks, but is

slow for T and B cells, taking months to years for reconstitution.
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Allogeneic donors are donors with different genes to the patient and are classed
as related, unrelated, family, sibling or haploidentical (sharing half the genes with
the host). Donors can also be syngenic, as in identical twins. HSCT can also be
done autologously, whereby HSCs are taken from the patient, stored while the

patient undergoes treatment, and re-administered after treatment.

Complications following HSCT

Apart from disease relapse and graft rejection, after HSCT another other major
complication is graft-versus-host disease (GvHD). GvHD occurs when the donor
cells recognise the body of the host as ‘non-self’” through the sp-MHC interactions
and mount an immune response to the host cells. GvHD is classed as acute if it
manifests in the first 100 days after HSCT, and chronic after 100 days. In order
to prevent or decrease the likelihood of GvHD, donors are sought whose cells are
more likely to recognise the body as self. This is achieved by selecting donors
that have similar MHC proteins through the process of human leukocyte antigen
(HLA) matching. The HLA system is the loci of the genes which encode the MHC
proteins. HLA class I matching is considered more important, as this encodes the
sp-MHC combination recognised by cytotoxic CDS8 cells, but donors are preferable
that also match with HLA class II. Selected donors almost always match on HLA
class I, and are then classed as ‘matched’ or ‘mis-matched’” depending on the
quality of the HLA class II matching.

In order to further moderate the effects of GvHD, after the transplant and
during the reconstitution the patient can be further treated with prophylactic
drugs. The major drugs used in post-HSCT prophylaxis and their modes of action
are also given in Table 1.1. The drugs either lower the activity of the present
immune cells or reduce the rate of production of new immune cells. These however
leave the patient immunocompromised for longer.

While a patient is immunocompromised, they are susceptible to opportunistic
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infections such as fungal infections, acute viral infections (e.g. influenza) and the
re-emergence of latent infections such as adenovirus, cytomegalovirus (CMV) and
Epstein Barr virus (EBV), which can also be introduced by the donor. These in-
fections are a major cause of death in patients undergoing HSCT. If the patient’s
immune system does not stage a full recovery, they may need further interven-
tions, such as treatment with GCSF or repeat HSCT. Understanding the rate

and extent of immune reconstitution is thus of vital importance.

Prognosis following HSCT

According to the Worldwide Network for Blood and Marrow Transplantation,
2006, there were 50,417 patients undergoing their first HSCT worldwide in 1327
centres in 71 participating countries [38], of which 21,516 were allogeneic trans-
plants (43%) and 28,901 were autologous (57%). In the UK in 2013, there were
3840 HSCTs according to the British Society for Blood and Marrow Transplant-
ation [39]. Of these, 370 were in children, 287 with allogeneic grafts and 83 with
autologous grafts.

A survey by the paediatric diseases working party of the European Group for
Blood and Marrow Transplantation of 31,713 children between 1970 and 2002
found a cumulative incidence of transplant related mortality at day 100 and at
2 years for children given allo-HSCT was 13% and 21%, respectively [40]. This

does not include disease related mortality.

1.6.2 HIV-infected children undergoing ART

Human immunodeficiency virus (HIV) attacks cells that express the CD4 pro-
tein on their surface, mainly infecting CD4 T cells. Over a long period of time,
HIV causes a decline in CD4 T cell concentration, leaving patients immunocom-
promised and hence vulnerable to opportunistic infections. If left untreated, this

leads to acquired immunodeficiency syndrome (AIDS) and eventually death, usu-

29



Chapter 1. Introduction

ally from infection. Antiretroviral therapy (ART) is the standard treatment for
adults and children infected with HIV. ART uses many mechanisms to suppresses
HIV replication, reducing viral load often to undetectable levels. This allows CD4
T cells to reconstitute, but the reconstitution is slow, taking between one and two
years.

HIV is however never fully eradicated, with HIV surviving in niches of the
body, and so patients have to remain on ART for the rest of their lives. This
is problematic, particularly in HIV-infected children that may be receiving ART
for many years. Not only can long-term toxicities hinder the child’s development,
but also ART and the resultant monitoring is expensive. It is therefore of interest
to understand the effects of planned treatment interruptions and of less intensive

monitoring of the children.

1.7 Why use mathematical modelling?

Modelling is particularly useful in longitudinal datasets, such as the ones largely
used in this work. By fitting curves to longitudinal data, modelling makes it
possible to find rates and long-term averages of immune reconstitution for patients
that have variable data. Furthermore, models can pick up general trends in the
data that may not be obvious otherwise, and thus allow a more robust analysis
of the factors that affect these trends. The majority of the data used in this work
are routine clinical patient data from hospitals. These data are highly variable,
and are often sparse and uneven, making analysis difficult. In children, because
of the developing immune system, there are rarely sufficient children of any one
age to do like for like comparisons. On top of that, treatment regimens are rarely
identical, making analysis of the factors that affect recovery yet more complicated.

Empirical modelling, where a curve is selected that matches the trajectory

seen in the data and then fitted to the data, is the most frequently used form of
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modelling for longitudinal data. This method has limitations, with parameters
that are often difficult to interpret, and does not make use of all the available
information. In contrast, the work presented here centres around mechanistic
modelling, whereby models are intended as a direct mathematical abstraction of
the system’s biology. The intention is to cut through to the relevant underlying
biology of the system, then to abstract this biology into a mathematical frame-
work to construct a model. Using this approach allows the direct interpretation
of parameters that reflect components of the biological system and hence, when
these models are fitted to data, it allows sensible inferences to be taken from
parameter values. Furthermore, mechanistic modelling allows the use of known
information about the fundamentals of the system that is being modelled. The
immune system is a complex interplay between many components, often relying
on cascades for cell production, with competition for resources amongst cells, and
a large inter-cell regulation network. The situation in children is yet more com-
plex, with concentrations of different cells changing dramatically and non-linearly
with age as the immune system develops.

A further advantage of models is that they allow for extrapolation and pre-
diction. Early data can be used to form a predicted curve, which can then be
used to make a prediction for the long-term future of that patient. Mechanistic
models allow more confidence in these extrapolations because the biological basis
of the model helps to keep the predicted curves within a biological range. Hence,
immune reconstitution is particularly well suited to mechanistic modelling.

In this work, two different types of mechanistic modelling are used which
have different bases. A stochastic agent-based model is used where each cell
is modelled individually, and an event is the division into two cells or death of
that cell. These events happen randomly, with certain probabilities per unit
time, in a manner very much like they would in the actual body. Hence it is a

direct, albeit simplified, representation of the system. Overall dynamics of the
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system are then modelled through the outcome of the many events for many cells.
However, these models are computationally expensive and so are not well suited
to large numbers of cells. As such a useful approximation is to use deterministic
models. For these, it is assumed that because there are many cells, so many
events are happening at any one time that they can be treated as continuous
and deterministic. Accordingly these systems can be modelled using ordinary

differential equations.

1.8 Aims of the project

The aim of this project was to investigate with mechanistic modelling immune
reconstitution following paediatric HSCT and in HIV-infected children starting
ART.

The bulk of this work centres around deterministic modelling of cell concen-
tration data. For paediatric HSCT, the reconstitution of three cell subsets were
modelled, platelets, neutrophils and CD4 T cells. For HIV-infected children, CD4
T cells were modelled in conjunction with HIV viral load. The general workflow

for each cell subset was to:

1. Compile the relevant data

2. Construct and develop the mechanistic model

3. Apply the model to the data using non-linear mixed-effects modelling

4. Perform covariate analysis to find the factors that affect reconstitution.
Further, predictions of reconstitution were tested for CD4 T cell reconstitution
following HSCT.

The rest of this work is set out as follows: Chapter 2 describes the pharmaco-

dynamic modelling of short-term reconstitution of neutrophils and platelets. In

this chapter, the main statistical methods that are also used in Chapter 3 and
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Chapter 4 are presented. Chapter 3 looks at long-term reconstitution of CD4
T cells, and presents a novel mechanistic model and its applications. Chapter 4
analyses HIV-infected children commencing ART by combining a model for viral
load dynamics with mechanistic elements from the model presented in Chapter 3.
Chapter 5 presents a stochastic global-competition model for T cell homeostasis,

and the effects of inter-clonotype competition for resources.
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Short-term neutrophil and

platelet reconstitution following

HSCT

2.1 Introduction

Neutrophils are vital for immune defence and neutropaenia (the lack of neutro-
phils) leaves a patient highly susceptible to infection from a large range of patho-
gens. A study found that before neutrophil engraftment following HSCT (defined
as a neutrophil concentration of greater than 500 cells/uL for three consecutive
days, usually in the first 30 days post HSCT), the incidence rate of bloodstream
infection was 22% with a 12.5% mortality in infected patients, while in the months
after engraftment, the infection rate was 19.5% with a mortality of just 1.7% [41].
Another study found that over 64% presented fever within 30 days of HSCT, of
which 26% had a clinically proven infection and 12% resulted in death [42]. As
a result, while a patient is neutropaenic, they have to remain in isolation rooms
in hospitals in order to reduce the chances of an infection that they cannot fight.

Furthermore, they are given antibiotics to help fight infections. Understanding
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the rate of reconstitution of neutrophils and what affects it is therefore of major
importance.

Platelets are a key component of haemostasis and patients with delayed plate-
let recovery following HSCT can require transfusions of blood products to alle-
viate the loss of platelets [43]. This requires significant medical resources and
carries risk for the patient. Recently, recombinant human thrombopoietin has
been found to be an effective therapy for delayed platelet engraftment [44]. A
study from 1996 found that delayed platelet recovery is associated with decreased
overall survival [43], with mortality from transplant-related complications at 30%
for patients who had platelet reconstitution of greater than 20,000 /uL by day 60
and 56% for patients who did not following allogeneic transplants. Another more
recent study also found that delayed platelet recovery was associated with one
year survival rates, with survival found to be 77% for patients who had platelet re-
constitution above 50,000 /uL and 59% for those who had platelet reconstitution
below 50,000 /uL [45]. This study also found that transplant related mortality
was higher in patients who had poor reconstitution of platelets at 30% versus
11% [45]. Hence understanding the factors that are associated with slow platelet
reconstitution following HSCT is of importance.

Neutrophils and platelets have short mean lifetimes in the peripheral blood
(10 — 17 hours [9,10] and 8 to 9 days [4] respectively). This means to main-
tain equilibrium, neutrophil and platelet production rates are also high, and so
reconstitution is fast, taking a few weeks for full reconstitution. Because this
time-period is short, intra-individual differences due to age for each measurement
can be ignored. This allows mathematical models that were developed in adults
to be applied, with any effects from differences in age between children accounted
for by inter-individual differences in their random effects.

Neutrophil and platelet concentrations decline on the use of pre-HSCT condi-

tioning as the chemotherapy and radiotherapy prevent the synthesis of new cells,
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causing neutropaenia and thrombocytopaenia (the lack of platelets). There is
a time delay from drug administration to the measured decline in neutrophils
and platelets because measurements are taken of circulating cells and there will
be cells that have already been produced in the bone marrow that have not yet
reached the circulation (see Figure 2.3). This same delay from production to
appearance in the circulation means that concentrations continue to decline for
a few days after HSCT. The concentrations then reach a nadir, after which the
they increase with reconstitution. Pharmacodynamic models then try to find the

relationship between the drugs used and these concentration profiles.

2.2 Modelling short-term reconstitution

In the section below, I discuss the mechanistic mathematical models for neutro-

paenia and thrombocytopaenia that have previously been proposed.

2.2.1 Neutrophils

Neutropaenia and the subsequent reconstitution has been widely studied as the
most common adverse dose-limiting toxicity of chemotherapy drugs [46]. Early
quantitive analysis identified a minimum desirable neutrophil concentration of 1 x
10 cells/uL, below which the number of days of infection increases sharply [47].
Because neutrophil concentration measurements in oncology clinical trials are of-
ten not frequent enough to pick up the actual nadir, other analyses used summary
variables to describe the extent of neutropaenia that also include information on
its duration. These include time to nadir [48], the number of days spent below
a certain neutrophil concentration, or the area between the curve of neutrophil
concentration and a certain fixed concentration [49].

Summary variables, however, inevitably waste information contained in the

data, whereas whole time-course modelling makes use of more of the available
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Figure 2.1: The basis of the model used for neutrophil reconstitution, from
Friberg et al [52]. Cells are produced in the proliferationg compartment X; and then
transfer through the transit compartments X5 .4 to the circulating compartment X5
where they are measured. Because of the feedback loop, the proliferation rate in the
proliferating compartment is affected by the circulating concentration of neutrophils,
with feedback strength given by ~. In this model, the elimination rate kg, synthesis
rate kg and transfer rate kp are all equal to ﬁ where MTT is the mean transfer
time of the neutrophils. The drug acts with strength Ep,,s to reduce the production
rate in the proliferating compartment.
data. Empirical models break up the time-course; one used three sections, a
horizontal line for baseline concentration, a line with negative gradient for the
decrease in concentration up until the nadir and a logistic curve for reconstitu-
tion [50]; another used a cubic spline function with three break points [51].
Mechanistic models are advantageous because of their more interpretable
parameter values and their greater predictive usefulness. To make it possible to
fit these models to data however they need to be simple enough with few enough
parameters such that the parameters can be estimated. Mechanistic models of
neutropaenia all have common features, with cells produced in one compart-
ment, representing the bone marrow, and then some sort of maturation of these
cells as they move to the circulating compartment, where cell concentrations are
measured. This maturation causes a time delay from drug administration to the
changes in observed concentration, which was explained in the mechanistic mod-
els using either a time-lag [53] or transit compartments [54-56]. These models

culminated in the model of Friberg et al [52], a schematic of which is shown in

Figure 2.1.
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The Friberg model

The model of Friberg et al [52] differed from the previous models by having both
self-renewal of cells in the bone marrow compartment (rather than a zero-order
input of cells), and a feedback loop whereby the concentration of circulating
cells affects the rate of cell self-renewal in the bone marrow in order to model
the effects of granulocyte-colony stimulating factor (GCSF). This model has five
compartments: a proliferating compartment X (), representing stem cells in the
bone marrow, three transit compartments X5 ,4(t), representing stages of neut-
rophil development before they appear in the peripheral blood, and a circulating
compartment X5(t), representing the concentration of circulating neutrophils in
the peripheral blood. The model has four parameters to be fitted: X, the initial
and long-term steady-state concentration of neutrophils in the absence of drugs;

MTT = k4 = ki = ki, the mean transfer time for neutrophils through the
S T E

transit compartments; v, the strength of the feedback effects from GCSF; and

Eprg, the effect of the myeloablative drugs. The equations for the dynamics with

time t are given by,

30 = k1) (ng’t))h B () X0(0) = X
thg(t) — kX (1) — BpXo(t) X,(0) = Xo
C‘litxg(t) = kp Xo(t) — kpXs(t) X3(0) = Xo
(iX4(t) = kpXs(t) — kr X4 (t) X4(0) = Xo
(i)@(t) = krXu(t) — kpXs(t) X5(0) = Xo.  (2.1)

With this model, the system starts at steady state concentration, X, and then
for the days where E'p,,g is non-zero, the concentration falls. With kg = k7 = kg,
the concentrations are the same in all five compartments at steady state, but on

perturbation by the drug effect, there is a delay to the dynamics of the measured
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circulating compartment.

After the publication of the model of Friberg et al, two further models for
neutropaenia were proposed, which were largely based on the previous models.
The model of Panetta et al [57] is very similar to that of Friberg but differed
by having two transit compartments and an altered form for the feedback loop.
While more recently, the model of Bulitta et al [58] uses time-delay differential
equations. These two models were compared by Soto et al [59] to the models of
Friberg et al [52], Minami et al [53] and Zamboni et al [56]. Soto et al found that
none of the models showed superior performance in comparison to the original
Friberg model.

This chapter describes the use of the Friberg model for neutrophil dynam-
ics. This model has three major advantages over other models. Firstly, other
models do not contain the feedback loop, modelling the rebound in neutrophil
concentration. Secondly, delay-differential equation models are difficult to code
into software and are unstable when fitting to data. Thirdly, more complicated
models involve more parameters to estimate but have not shown significantly im-
proved performance. I allow the long-term neutrophil concentration X, to differ
from the initial neutrophil concentration X in order to allow for the differences
resulting from the donor haematopoietic system following HSCT. Furthermore,
I test the effects of allowing the elimination rate kg to differ from the synthesis
and transfer rates K¢ and kr. Differences between these rates were not visible
in the sparser data on which this model was originally developed, but might be

with the richer data used for this analysis.

Modelling the effects of steroids

The administration of corticosteroids causes a transient increase in the concentra-
tion of circulating neutrophils, lasting for a few hours after the dose and returning

to a normal level after about one day [60-62]. This effect has also been observed
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in children, and levels remained high for as long as corticosteroids were being ad-
ministered [63]. The reason for this increase is not fully understood, but the cells
are known to be almost entirely mature neutrophils [61], which implies that neut-
rophils are moving out of the vasculature, mediated by endothelial cell adhesion
molecule interactions [64].

This effect has been modelled with an extension to the Friberg model. The
method used an additional input compartment that starts with a certain num-
ber of cells and releases cells into the circulating compartment at a first-order
rate [64]. This method has also been applied successfully to other datasets for

neutrophil reconstitution [65,66].

2.2.2 Platelets

Thrombocytopaenia and subsequent platelet reconstitution has not been widely
studied through mathematical modelling. The majority of studies into platelet
reconstitution have tended to use the Friberg model [67-71]. When fitting this
model, these studies made no adaptions to the model to account for the differences
between platelet and neutrophil dynamics, but they manage a good fit to the data.
When using the Friberg model, the transit compartments become the production
of megakaryocytes and the subsequent production of platelets.

More recently, Hayes et al [72] developed a simpler model for platelet dynamics
shown in Figure 2.2. This has a zero-order input of cells into the bone marrow,
and has removed the feedback loop. This model has been successfully applied to

other datasets for platelets [73-76].

The Hayes model

The model for platelets as developed by Hayes et al [72] has four compartments:
a production compartment X;(¢), representing stem cells in the bone marrow,

two transit compartments X, ,3(t), representing stages of development between
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Figure 2.2: The basis of the model used for platelet reconstitution, from Hayes et al [72].
Platelets are produced into the bone marrow (BM) compartment X; at rate kg. They
then transfer through the transit compartments Xs_ .3 at rate kr to the circulating
compartment X, where they are measured. They are then eliminated at rate kg.
The drugs act with strength Ep,,, to reduce the production of platelets into the bone
marrow compartment.

bone marrow and platelet including megakaryocyte production, and a circulating
compartment X, (), representing the concentration of circulating platelets in the
peripheral blood. The model has five parameters: X, the initial and long-term
steady-state concentration of platelets; kg, the zero-order input of megakaryo-
cyte precursors into the bone marrow compartment; kr the transfer rate of cells
between the compartments; kr the death rate of circulating platelets; and Epyyg,
the effect of the myeloablative drugs preventing cell synthesis. The equations for

the dynamics are given by,

thl (t) = ks(1 — Epryg) — kr X1 (2) X1(0) = ];iXO

d b

a2t = kX (t) — kr Xa() Xo(0) = Ko

d b

&X?,(t) = krXo(t) — krX5(t) X;3(0) = EXO

i&(t) = krX5(t) — kpXa(t) X4(0) = Xo. (2.2)

Similarly to the model above, the system starts at steady state concentration with
X4 = Xo, and then for the days where Fp,,s is non-zero, the concentrations in
the compartments fall, with a delay to the dynamics of the measured circulating
compartment. Similarly to neutrophils, I allow the long-term platelet concentra-

tion X, to differ from the initial platelet concentration X, in order to allow for
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the differences resulting from the donor haematopoietic system following HSCT.
Because of the inter-dependence of the parameters, one parameter can be defined
in terms of the others, with kg = kg Xy, leaving five parameters to be estimated.

In this chapter, I will compare the results of fitting both the Friberg and the

Hayes models to the platelet data.

2.2.3 Conditioning drug protocols & pharmacodynamics

Patients received a large range of protocols for their pre-transplant conditioning.
Not only did they receive a range of drugs as well as radiation, they were also
given these drugs on different days and in different combinations. Because exact
information is not available for every patient in the dataset, a summary table was
created from the available protocols for the general method of use of each drug,
shown in Table 2.1.

For each patient the information as to which combination of drugs they re-
ceived was available. This information combined with the protocol summary table
was then used to define for each patient the days on which they were expected to

receive neutropaenia- and thrombocytopaenia-inducing conditioning treatment.

Table 2.1: Conditioning drugs for HSCT protocols summary. The conditioning regi-
men is formed from a combination of the therapies listed below. All the therapies
except for alemtuzumab and antithymocyte globulin (ATG) are neutropaenia- and
thrombocytopaenia-inducing. This table is a summary of the available protocols that
were used, with each dot giving the days on which these drugs were normally given.

Days from HSCT

Drug N/T 9 8 -7 6 -5 -4 -3 -2 -1
Alemtuzumab No e o o o o
Anti-thymocyte globulin No e o o
Busulfan Yes o o o o
Cyclophosphamide Yes °

Fludarabine Yes e o o °
Melphalan Yes e o o
Treosulphan Yes e o o

Total body irradiation Yes e o o o

N/T: Neutropoenia/thrombocytopoenia inducing conditioning.
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Furthermore, methylprednisolone, a steroid, is always given in conjunction with
alemtuzumab and ATG. So the patients that were given these drugs were assumed
to receive methylpredisone on the days as described in Table 2.1.
Pharmacodynamic models represent how the body is affected by the drug
concentration. They are based on receptor theory [77], whereby a drug (D)
binds with a receptor (R) to form a drug-receptor complex (DR) that initiates a
sequence of events leading to a drug effect, Epye. The drug, receptor, and drug-
receptor complex form a dynamic equilibrium with the concentrations related
by,
[DRkoss = [D][R]kon (2.3)

where [D], [R] and [DR] are the concentration of the drug, receptor and drug-
receptor complex respectively, k,, is the binding rate of the drug and receptor
and koss is the unbinding rate of the receptor-drug complex. If we assume that
there are a finite number of receptors, then the total concentration of receptors,

[Riot] = [R] + [DR]. As a result, the dependence of [DR] on [R] can be removed

leaving,
_ [D][Ruo]
[DR] = 7[D] N %ofj ) (2.4)

With Ep,y, proportional to drug-receptor concentration [DR], and Eyay the drug
effect when all receptors are bound such that [DR| = [Ry], then with drug

concentration redefined as C, (2.4) can be re-written as,

C
E rug — Emax s 2.5
Drug C + ECx (2:5)

where EC5y = i"f L is the concentration at which the effect size is half. This gives
a sigmoidal drug effect with concentration whereby either the receptors are in
such excess that changes in concentration produce no measurable effect or the

drug concentration is in excess and all receptors are used, resulting in no increase
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in drug effect.
In the case where the concentration C' < ECsg, (2.5) can be approximated as
a linear model,

C
Eprug ® == Emax = Slope C. 2.6
s ~ g ope (26)

The drug effect Ep,ug can vary between 0 (fully ineffective) and 1 (fully effective)
for both the linear and sigmoidal models.

In this chapter, because I have no information about drug concentrations in
the blood, I assume a pharmacokinetic model for drug concentration that fol-
lows an exponential decay with time after drug dose, referred to as a K-PD
(kinetic-pharmacodynamic) approach [77,78]. I then test the effects of both
the sigmoidal and linear K-PD models. The half lives of the neutropaenia- and
thrombocytopaenia-inducing conditioning drugs are short: busulfan 2.3 hrs [79];
cyclophosphamide 5 — 9 hrs [80]; fludarabine 8 — 10 hrs [81]; melphalan 1.3 hrs [82];
and treosulphan 1.7 — 2.2 hrs [83]. With the sigmoidal K-PD model I therefore
assume that the drug falls well below the EC5y within one day and, according to
(2.5), the corresponding drug effect therefore falls to zero one day after a dose.
For the linear model, I assume that the drug effect decreases in some propor-
tion to the drug concentration and so follows an exponential decay in the days

following the last drug administration so that,

—t—tp
_ T
EDrug = [max€ "Prus ) (27)

where tp is the time at which the patient received their last dose of conditioning

and Tpyye gives the time for which the drug effect persists following this last dose.

44



Chapter 2. Short-term neutrophil and platelet reconstitution following HSC'T

2.3 Methods

2.3.1 The data

The data was collected as part of routine clinical practice between 2005 and
2011 from children undergoing HSCT at the Blood and Marrow Transplant Unit
at Great Ormond Street Hospital for Children NHS Trust. The parents of the
patients whose data is in the database have provided written informed consent
for the use of the data. It comprises blood concentrations of many cell types
taken at regular intervals for up to seven years after the transplant, including
neutrophil and platelet concentrations, analysed in this chapter. Conditioning
regimens usually start nine days before HSCT and these cells types reconstitute
quickly, so the data was cut to 14 days before HSCT up until 100 days after
HSCT for the work in this chapter. The dataset has 299 patients, who have had
337 transplants between them. The demographics of the data are summarised in
Table 2.2. As can be seen, there is huge heterogeneity in the diagnoses, patient
characteristics and forms of treatment.

For studies of this kind, the data are unusually rich. For the neutrophil
dataset, there are 19,118 measurements in the period from 14 days before to
100 days after the transplant, while in the platelet dataset, there are 22,149
measurements in the same time-frame. Plots of the concentration profiles with
time from HSCT are shown in Figure 2.3. As can be seen, there is a brief
increase in neutrophil concentrations just before HSCT caused by the steroids
given to some patients with their conditioning. Concentrations then decrease in
response to conditioning and subsequently increase rapidly, returning to a similar
concentration to previously. In contrast, for platelets, while the decrease is rapid,
the recovery is slower and levels do not on average return to those before HSCT.
The local regression can however be misleading as the reconstitution may be fast

but with varying delays from HSCT, leading to a gradual increases in the average
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Table 2.2: Breakdown of the demographics and the drugs used for the patients in the
short-term reconstitution dataset.

No % No %
Age at HSCT (years) Donor type
0—1 75 22 Matched 215 63
1—2 62 18 Sibling 93 27
2—5 72 21 Family 18 5.3
5— 10 79 23 Unrelated 104 30
10 — 52 15 Mis-matched 107 31
Sex Sibling 2 0.6
Male 216 63 Family 6 1.8
Female 126 37 Unrelated 99 29
HSCT Haploidentical 15 4.4
15t 291 85 Autologous 5 1.5
el 47 14 Viruses
3rd 4 1.2 Cytomegalovirus
Diagnosis Positive 111 32
Immunodeficiencies 145 42 Negative 227 66
SCID 89 26 Unknown 4 1.2
Wiskott-Aldrich 12 3.5 Epstein Barr virus
CGD 12 3.5 Positive 88 26
Leukaemia 106 31 Negative 128 37
ALL 50 15 Unknown 126 37
AML 40 12 Adenovirus
HLH 37 11 Positive 106 31
Anaemia 22 64 Negative 236 69
Autoimmune 9 26 Conditioning
Lymphomas 5 1.5 Alemtuzumab 165 48
GvHD Anti-CD45 13 3.8
Reported 102 30 Anti-thymocyte globulin 13 3.8
I 39 11 Busulphan 80 23
1I 38 11 Cyclophosphamide 153 45
111 18 5.2 Fludarabine 166 49
v 7 20 Melphalan 101 30
Stem cells Treosulphan 70 20
Bone marrow 158 46 Total body irradiation 51 15
Peripheral blood 129 38 None 44 13
Cord blood 53 15 Prophylaxis
Combinations 2 0.6 Ciclosporin 298 87
Methotrexate 72 21
Mycophenolate 164 48

Abbreviations: SCID: severe combined immunodeficiency sydrome; CGD: chronic granulomat-
ous disease; ALL: acute lymphoblastic leukaemia; AML: acute myeloid leukaemia; HLH: hemo-
phagocytic lymphohistiocytosis; GvHD: graft versus host disease.
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Figure 2.3: Time courses of reconstitution following HSCT for (A) neutrophil concen-
tration and (B) platelet concentration plotted with a log concentration scale. Each
coloured line represents an individual patient’s data. The black lines give local regres-
sion curves for the data.

of neutrophil and platelet concentrations across the population (see Figure 2.4).
An advantage of nonlinear mixed-effects modelling (NLME) is its ability to find

parameter estimates that can account for this.
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Figure 2.4: Differences between individual dynamics and the local regression for (A)
neutrophil and (B) platelet concentrations. For each dataset, the first six patients in
the dataset have been plotted to demonstrate that while the local regression might re-
constitute slowly, some of the individual patients reconstitute quickly but with different
time delays.

2.3.2 Model fitting

Nonlinear mixed effects modelling

Nonlinear mixed-effects modelling was used to fit the models to the data. This
approach involves estimating population typical values, along with multiple levels
of variability. In the simplest case, this variability comprises inter-individual
variability at the level of the model parameters and residual variability at the
level of observations. As a result, this approach is useful because it takes into
account the correlation between the measurements of an individual, which is
necessary for the uneven data available for this type of analysis.

NLME can be thought of as a hierarchical model [84]. At the highest level,
taking a general differentiable function f(¢,t) dependent on the parameter vector
¢ and time t, the fixed effects, which give the population average, are modelled
as,

vi=fo.t)+e ¢ ~N(0,07) (2.8)
where y; is the jth observation of the dependant variable y at time ¢;, and ¢; is
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residual error for each observation, which is assumed to be normally distributed
and independent.

At the next level, inter-individual variability can be included in the form
of random effects. Random effects allow the parameter values to vary for each
individual. They are assumed to be normally distributed around the mean 0
with variance 2. Thus the vector of parameters for the ith individual ¢, can be

decomposed as

¢, =B +b b; ~ N(0,¥) (2.9)

where (3 is the vector of fixed effects, b; is the random effect vector for individual
t, and b; is normally distributed according to the variance—covariace matrix W.
If the parameters in the model are bounded, then the random effects can be log
or logit transformed.

Hence the full mixed-effects model for observation y;; at time ¢;; is given by
Yij = f(@s tij) + €ij, eij ~ N(0,07) (2.10)

where the residual error, €; now accounts for measurement error, model mis-
specification and noise. The residual error ¢;; is assumed to be normally dis-
tributed with variance ¢ and to be independent. The elements of the parameter
vector are referred to as #s, the variances of the random effects as (2s and the

variance on the residual error as o.

Fitting NLME models

Parameter estimation was carried out using NONMEM 7.3 [85] This has the
capability to use various algorithms to maximise the likelihood by minimising
the negative log of the total marginal density. The marginal density of [ is given
by

p(L1B.0%®) = [p(1]b.B.0%) p(b|¥) db, (2.11)
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where p(l| b, 8,0?) is the conditional density of I given the random effects b,
and p(b | ¥) is the marginal distribution of b. The most simple and widely
used algorithm, first order conditional estimation (FOCE), uses a gradient-based
method based on a first order Taylor expansion of the model function. This
method can however struggle with more complex models, being computationally
expensive and getting stuck in local minima.

Other algorithms use expectation-maximisation (EM) methods, whereby a
two-step process is used to find the optimum parameters. These methods are
more stable for complex models such as those with many parameters and ran-
dom effects, unstable model output or local minima because they are sampling-
based rather than gradient-based methods. The algorithm alternates between an
expectation (E) step, whereby a function is created for the expectation of the
log-likelihood using the current parameter estimates, and a maximisation (M)
step, whereby parameter values are calculated that maximise the expected log-
likelihood found in the E step. In the case of NONMEM, in the E step, the
parameters (6s), random effect variances (£2s) and residual error variance (o) are
fixed, while for each individual expected values and variances of the random ef-
fects (ns) are evaluated. Then in the M step, the fs, the {2s and o are updated
using these expected values of the ns. EM methods have the advantage that
fitting for all off-diagonal elements in the variance-covariance matrix of random
effects takes no longer than just fitting for the diagonal elements.

The simplest of these methods is iterative two stage (ITS), where the the E
step is the same as FOCE, and the conditional mode and the first order approx-
imation of the ns are found by maximising the posterior density.

The E step in importance sampling (IMP) evaluates the conditional mean
and variance of ns through Monte Carlo sampling. It uses the posterior dens-
ity, which incorporates the likelihood of parameters relative to fs and ns with

the individual’s observed data. For each iteration, the normal density near the
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mean of the posterior (from the previous iteration) is used as a proposal density.
From this, Monte Carlo samples are generated, and conditional means and vari-
ances evaluated. In the M step, population parameters are then updated from
subjects’ conditional mean parameters and variances by single iteration maxim-
isation steps.

Finally, in stochastic approximation expectation maximisation (SAEM), sim-
ilar to IMP, for the E step, random samples of the ns are generated from normal
distributions, but instead of being centred at the mean of the posterior density
(like IMP), the sample is centred on the previous sample position. New samples
are accepted with a certain probability. This method uses two phases: a burn-in
phase, where SAEM evaluates a highly stochastic approximation of individual
parameters, and in the M step population parameters are updated from sub-
jects’ conditional mean parameters and variances by single iteration maximisation
steps. Then an accumulation phase, where individual parameter samples from
previous iterations are averaged together, converging towards the true conditional
parameter means and variances.

FOCE and Importance sampling can also be carried out in an ‘Expectation
Only’ form, whereby multiple iterations of the expectation step are carried out.
This is useful for finding an objective function following SAEM, or for fitting to
a new individual, whilst keeping population parameters fixed.

The objective function value (OFV) produced by all methods in NONMEM
apart from SAEM is —2In(likelihood) and is thus log multivariate normal. Thus
the difference between the OFVs of two separate models is the division of two
multivariate normals. If the difference between two models involved the addition
of k parameters, and these parameters are nested, the difference is approximately
X3 distributed. This means for the addition of one parameter, an improvement
in OFV of 3.84 points is equivalent to p < 0.05. Following model fitting with

SAEM, an expectation only process needs to be carried out, whereby population-
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level parameter means and their variance-covariance matrix are held fixed while
individual-level parameters are calculated and an OFV is produced. This is usu-

ally done with FOCE or importance sampling.

2.3.3 Covariate model-building

In order to find what affects the reconstitution, factors contained in the data-
set can be tested as covariates. These factors can be continuous, such as age,
or categorical, such as diagnosis, drugs, donor type or stem cell source. Cat-
egorical covariates are assumed to be independent of time for each individual.
These covariates are then tested to ascertain whether they significantly affect

reconstitution.

Nesting

Covariates are added into the model by including an extra parameter, the cov-
ariate coefficient. These covariate coefficients alter the fixed effects parameters
for the different individuals in the population according to the values of the co-
variates. For continuous covariates, there is only ever one coefficient for each
covariate. For categorical covariates, if there are more than two possible states
for the covariate, one extra coefficient is added for each of the extra states beyond
the most common state. The coefficients are included in nested models whereby if
the coefficient equals zero, it makes no change to the parameter to which it is ap-
plied. The null hypothesis is therefore that the coefficient equals zero. With the
coefficients in nested models, the likelihood ratio of the model with and without
the covariate will be asymptotically x? distributed with n degrees of freedom,
where n is the number of new coefficients included in the model. Hence, the

significance of the covariate can be calculated.
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Stepwise covariate model building

Covariates are included into the models using stepwise covariate model-building
(SCM) [86]. In SCM, firstly a forward selection is carried out, whereby covariates
are added into the model one by one for each parameter and the covariate that
causes the largest improvement in the fit of the model is kept in, as long as it
meets the minimum criterion of a p-value p < p; where p; is often in the region
of 0.05. Then all the remaining covariates are tested again for each parameter,
and similarly that which causes the largest improvement is kept in so long as it
meets the criterion and so on until all covariates have been tested and no more
offer a large enough improvement. Then SCM carries out a backwards selection
whereby covariates that have been included in the forward selection are removed
one by one, and those that do not cause a loss in model fit that meets the stricter
criterion of p < py, where ps < p;, are then removed. These criteria can be

adjusted to make selection more or less likely.

2.3.4 Data below the limit of quantification

Tests for the quantities of biomarkers such as neutrophil, platelet and CD4 con-
centrations and viral loads have a limit of quantification (LOQ) below which the
measurements become unreliable. These data are referred to as below the limit of
quantification (BLQ) data, and are usually reported as the LOQ for that assay.
There are three major methods for handling data of this form. BLQ data can
be omitted from the dataset, the BLQ data can be substituted with LOQ/2 for
the purposes of modelling, or a method assessing the likelihood of data classed
at BLQ as being BLQ can be used. Beal [87] introduced a series of methods
to handle BLQ data, which were compared to each other by Ahn et al [88] and
to data omission and substitution by Bergstrand and Karlsson [89]. They found
using the so-called M3 method produced the least biased fit. In this method, data

are assessed for their likelihood to be below the LOQ given the parameter values.
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Run-times for this method, however, are slow and one improvement is to treat
data reported as above the LOQ as observations, and only to assess data reported
as BLQ for its likelihood to be BLQ [90]. Furthermore, it is only necessary to use
this method when a significant proportion of the data is BLQ, otherwise, LOQ/2
can be used as a useful approximation.

In this chapter, because only a small proportion of these data are BLQ, I

substitute BLQ data with LOQ/2.

2.3.5 Diagnostic plots

Alongside changes in OFV, quality of fit for the models to the observed data is
assessed with diagnostic plots [91]. Diagnostic plots can give information related

to model biases and model mis-specification.

Residuals plots

The residual is the difference between the observed data and the individual model
trajectory for each data point. These differences are usually normalised by divid-
ing by the standard deviation of that individual’s data to produce weighted re-
siduals. During fitting, models are linearised and this linearisation is conditioned
around the post-hoc individual empirical Bayes estimates of the inter-individual
random effects. As a result, the standard deviation used in the normalisation
needs to use the FOCE approximation, producing conditional weighted residuals

(CWRES) [92]. These are given by,

_E .
CWRES — Y1 = Erocely (2.12)
COVFOCE(Y@')

where y; is the observed data for individual i, Frocg(y;) is the individual model
prediction for patient ¢ and Covpocr(y;) is the variance of the inter-individual

random effects.
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Residuals plots can be used to assess model mis-specification. Firstly, the
CWRES should be normally distributed with mean 0, variance 1 and 95% of
the CWRES between £2, demonstrating that normality assumptions are valid.
Secondly, CWRES are assumed to be independent and so by plotting them against
time, population model predictions or other factors such as age it is possible to

assess inherent biases in the model with any of these variables.

Individual and population predictions

Plots of the model predictions at the time points at which there are observed
data against the observed data themselves are also used to assess model mis-
specification. These can be done with both population-level and individual-level
predictions. Individual predictions (IPRED) demonstrate whether there are mis-

specifications in the model at either high or low observed data and non-normality.

Visual predictive checks

Whilst the previous diagnostics asses whether the model fits the observed data,
visual predictive checks (VPCs) are used to assess whether data simulated from
the model matches the observed data, both in the overall trends and in their
variability [93,94]. Using the population level parameter means and the variance
covariance matrix of the random effects, a large number (usually between 300
and 1000) of data points are simulated from the model for each data point in
the observed data, with the simulated data having the same characteristics (such
as covariates and ages and times at data observations) as the observed data.
The data are binned by, and plotted against, an independent variable such as
time and the median and percentiles of the observed data in these bins are then
compared to the corresponding prediction interval of the median and percentiles
of the simulated data. Significant differences between medians of the bins can

demonstrate issues with the fixed effects, while the differences in the extent of the
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Figure 2.5: Comparison of the local regression curves of neutrophil concentrations for
patients who receive steroids and patients who do not. As can be seen, patients that
received steroids during conditioning had a spike in neutrophil count in the days before

HSCT.
inter-percentile range can diagnose issues with the sizes of the random effects.
Predictions within a single bin, however, can differ from each other because of
differences in other independent variables such as age or other covariates, making
interpretation of a VPC difficult and lowering the ability to diagnose model mis-
specification and poor random effects [94]. Bergstrand et al [95] have proposed a
prediction corrected VPC (pcVPC) as a solution to this problem. The dependant
variable in a bin is prediction corrected, which corrects for differences in a bin

from independent variables.
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2.4 Results

2.4.1 Neutrophils
Excluding patients with steroids

As mentioned in Section 2.2.1, steroids cause a transient increase in neutrophil
concentration, which can last for up to a day after the dose [60-63]. Patients
who are conditioned with alemtuzumab or ATG are given steroids before each
dose of these conditioning drugs in order to mitigate some of their toxicity. Local
regression curves of the raw data for those who received steroids and those who did
not are compared in Figure 2.5, making the effect of the steroids clear. Although
there is still a small rise in neutrophil concentrations in the days before transplant
in patients who do not receive steroids, the patients who do receive steroids have
a much more substantial increase. In order to make fitting models to these data
simpler, at first in this section patients who received either of these conditioning
drugs, and hence received steroids, were removed from the dataset. There were
161 patients left in this subset of the main dataset with 9324 measurements of
neutrophil concentration in the time between 14 days before and 100 days after
HSCT.

I compared four variants of the model: linear and sigmoidal K-PD with the
original Friberg model, and then linear and sigmoidal K-PD with a variant of the
Friberg model allowing elimination rate kg to differ from synthesis and transfer

rates kg and k7. The results of this comparison are summarised in Table 2.3.

Base model with sigmoidal K-PD

With the sigmoidal K-PD model, it is assumed that the drug is effective on days
that it is given (according to the protocols in Table 2.1), and has no effect other-
wise. This assumes that the EC5q is sufficiently high that the drug concentration

has fallen to below its effective concentration within a day.
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The parameter estimates were mostly sensible (see Table 2.3), although Ep,,
was at its upper bound, with a large random effect, demonstrating the difficulty
that this variant of the model had with sufficient cell loss to create the size of the

decline in neutrophil concentration in the observed data.

Base model with linear K-PD

The K-PD model was tested as linear, assuming that the drug concentration
follows an exponential decay and that the drug effect follows in proportion such
that,

(t=tp)

EDrug - Emaxei Torug (213)

where ¢p is the protocol-dependent time of last drug dose and Tp,,g is a new

parameter to be estimated, related to the lifetime of the drugs’ effects on the
Table 2.3: Comparison of parameter values, random effect variances and objective

function values for the different versions of the model for neutrophil reconstitution
excluding patients who had steroids

Base model Differing kg
K-PD model Sigmoidal Linear Sigmoidal Linear
X, (cells/uL) 1100 1150 1180 1180
n Xoo (cells/uL) 2800 2550 2550 2460
% MTT (days) 6.37 6.39 4.72 5.24
g 5 0.107 0.163 0.920 0.163
£ Fax 1.00 0.746 0.975 0.813
' Torug (days) - 9.06 - 9.12
k : ; 2.32 0.569
X, 1.91 1.93 2.01 1.97
T X 1.33 0.859 1.03 0.889
S MTT 0.486 0.666 0.683 0.898
5 5 0.967 0.845 0.982 0.773
S Emax 66.5 2.22 4.04 1.90
S Tong - 0.786 - 0.706
k - ; 0.593 7.62
o 0.591 0.495 0.547 0.481
OFV 6442 5086 5888 4913

o is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Enax, which
was modelled as a logistic transformation of a normal distribution because FEyax is
bounded at both 0 and 1.
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body.

This alteration produced a much improved quality of fit with OFV falling by
1355 points, a decrease in Bayesian Information Criterion (BIC) of 1346 points
where BIC = —2In(likelihood)+k In(n), where k is the number of new parameters
and n is the number of datapoints. It is notable that the random effect variance
for E,,.x 1s much more sensible value with the model in this form and that .«
is no longer equal to 1.00. The drug concentration half life is T, In(2) = 6.28

days. The other parameters are broadly similar.

Differing elimination rate from synthesis and transfer rates, sigmoidal K-PD
The base model assumes that production, transfer and elimination rates are the
same. This means that there are also the same number of cells in each com-
partment at steady state. Keeping the synthesis rate equal to the transfer rate
ks = kr while allowing the elimination rate kg = %S to differ keeps the concen-
tration in the proliferation and transfer compartments the same, while allowing
the concentration to be different in the circulating compartment. This affects the
shapes of the downward and upward trajectories of neutrophils.

Allowing for this in the model improved the OFV by 554 points, an improve-
ment in BIC of 546 points, not as much as the linear K-PD model, but still a

significant improvement.

Differing elimination rate from synthesis and transfer rates, linear K-PD

The combination of kg # kgr and linear K-PD produced the best fit in terms
of OFV and BIC and in terms of parameter estimates. The OFV is 1529 points
lower than that for the original base model, with a drop in BIC of 1510 points.
The parameter estimate for F, .. is also sensible at 81.3%, as is the estimate
for the drug lifetime with a half-life of 6.32 days. Following HSCT, the final
neutrophil concentration is expected to be more than double that before HSCT at

2460 cells/uL as opposed to 1180 cells/uL. The parameter giving the differences
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EDrug kg

Figure 2.6: The basis of the model used for neutrophil reconstitution including the
effects of steroids on neutrophil concentration, from Ozawa et al [64]. The dynamics are
the same as in the model of Friberg et al [52], with the addition of another compartment,
the Input compartment from which cells enter the circulating compartment at rate kz,
for the days on which the patients were given steroids.

ZT?) differs between the two

K-PD models, with a much smaller random effect with the linear K-PD model.

between the elimination and synthesis rates, k =

In the model with linear K-PD, k£ = 0.569, finding that the rate of elimination is
higher than that of synthesis or transfer.

In this variant of the model with linear K-PD and differing elimination rate
from synthesis and transfer rates, the random effects are much more sensible sizes
for most parameters. Furthermore the value of the residual error o falls between
this variant of the model and all other variants, implying that this variant explains
more of the variability in the data than the others. I therefore use this variant of

the model for the analysis of neutrophil dynamics.

Re-introducing patients with steroids

In order to model the full dataset for neutrophil reconstitution, it is necessary to
account for the transient effects of steroids on the neutrophil concentration. One
method is to model the patients that receive steroids during their conditioning
regimen using an input compartment, as demonstrated in Figure 2.6, where kp,
is zero, except for the days following the administration of steroids. The input

compartment Xg4(t) starts with a fixed concentration of neutrophils, and on the
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administration of steroids, a proportion per day of the neutrophils will leave into
the circulating compartment, boosting the measured neutrophil concentration.
Because this effect is transient with drug application, it does not affect long term
concentrations. As such, the equations for the dynamics of the circulating and

input compartments are,

jtxf,(t) b Xa() — B X () + K Xo(t) X5(0) = X,
thﬁ(t) = —kr, Xo(t) X6(0) = IR, (2.14)

where IF, is the concentration of neutrophils in the input compartment. The
dynamics for the rest of the compartments are unchanged.

A comparison of the results of fitting this six-compartment model and the
original five-compartment Friberg model to the full dataset for neutrophil con-
centration reconstitution is given in Table 2.4. As can be seen, the addition of
the sixth input compartment reduces the OFV by 350 points, a highly significant
decrease, implying the six-compartment version produces a much better fit to

these data.

Final structural model

The final model for reconstitution of neutrophil concentration is then a com-
bination of the six-compartment model including the effects of steroids with the
adaption of the Friberg model to allow a different elimination rate from the trans-
fer and synthesis rates and using a linear K-PD model. The inclusion of these

adaptions further decreased the OFV by 3244 points (see Table 2.4). The dy-
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namics of the final model are therefore given by the following equations,

Y

;Xl(t) ks Xy (1) (Xf&)) (1= Eong) — krXa(t)  X,1(0) )]‘;0
SXlt) = ke X (1) — kX0 X%(0) = 2
 Xalt) = ke Xalt) — kr X3(0) X3(0) =
SX(0) = ke Xg(t) — kX Xi(0) = 2
thg,(t) — kX (t) — kpXs(t) + K Xe(t) X,(0) = Xo
L Xot) = ki Xo(t) Xo(0) = IRy, (2.15)

dt

Table 2.4: Comparison of parameter estimates for different models for neutrophil re-

constitution, including patients with steroids.

Base model

Input compartment

Input compartment

& differing kg

K-PD model Sigmoidal Sigmoidal Linear
X (cells/pL) 1590 1240 1560
» Xao (cells/pL) 2830 2710 2740
g MTT (days) 5.41 5.69 4.86
= 0.101 0.108 0.159
S Eppug 1.00 0.990 0.814
~ Kp, (/day) - 0.527 0.673
I Py (cells/pL) - 2900 866
Tprug (days) - - 6.94
k - - 0.681
X 1.91 2.16 2.00
T Xo 0.862 0.891 0.561
£ MTT 0.312 0.321 0.859
g 7 0.762 0.839 0.716
< Ebrug 40.6 12.8 2.88
s K, - 5.79 0.167
IP, - 5.02 2.89
Thrug - - 0.801
k - - 3.16
o 0.556 0.541 0.447
OFV 12144 11794 8550

o is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Enax, which
was modelled as a logistic transformation of a normal distribution because FEy.x is

bounded at both 0 and 1.
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Figure 2.7: Diagnostic plots for the final model of neutrophil reconstitution including
patients that received steroids, allowing different elimination and transfer rates and
using a linear K-PD model. A gives a visual predictive check. The dots give the
observed data and the filled and dashed lines give the median and 2.5th and 97.5th
percentile of the observed data. The pink shaded regions give the 95% confidence
intervals of the simulated median and 2.5th and 97.5th percentiles. B and C give the
CWRES against time and population prediction respectively, with the blue dots giving
the residuals, the red lines local regression curves and the black dashed lines giving £2.

where
_ (t=tp)
EDrug - Emaxe Drug (216)
and
ke =kp = 4 =k xk (2.17)
ST T MTT £ ‘

Parameter estimates for the final model are given in Table 2.4. The model finds
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that long-term neutrophil concentration is almost double the concentration before
HSCT (2740 cells/uL after compared to 1560 cells/uLs before). With the linear
K-PD model the drug effect decreases because the drug action is spread over a
longer time period. The drug median half life was found to be 4.81 days. The
input compartment was estimated to have a concentration of 866 cells/ul, with
68% of the concentration leaving the compartment each day that the patient was
given steroids. The rate of elimination of circulating neutrophils was found to be
higher than the rates of transfer and synthesis of neutrophils.

Diagnostic plots are shown in Figure 2.7. The visual predictive check from the
model in Figure 2.7A demonstrates that the model simulated output reflects the
observed data well, capturing the median and the variability of the data for the
majority of the neutrophil concentration trajectory. The plots of conditionally
weighted residuals (CWRES) demonstrate that the residuals are approximately
normally distributed as they should be. With the local regression line falling
along the x-axis, they also demonstrate that there is no bias either with time or

with population prediction and that the residuals are independent.

Covariate analysis

Once the structural model was fixed, a covariates analysis was performed in order
to ascertain which factors significantly affected the reconstitution trajectories.
The objective function value from the model was unstable while carrying out
stepwise covariate model building, and so a univariate analysis was performed.
The covariates that were tested are listed in Table 2.2. All covariates were tested
on Xy, Xoo, MTT and k, just the drug-related covariates were tested on Epyg
and Tpyue, while the steroid-related conditioning drugs, alemtuzumab and ATG,
were tested as covariates on K, and [F,. The results of the covariate analysis
are given in Table 2.5 and shown in Figure 2.8. The patients that received cord

blood stem cells on average had a decreased initial concentration of neutrophils
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Figure 2.8: The effects of covariates on neutrophil dynamics following HSCT. The
typical individual is the model output for a patient that does not have each or any of
the covariates listed here, so a transplant of either peripheral blood or bone marrow
stem cells from a matched donor and another diagnosis apart from leukaemia.

Xp, as did patients that had leukaemia as opposed to another diagnosis. The
type of donor that was used for the HSCT was also found by the model to
affect the recovery of neutrophils in patients. Reconstitution following matched
and mismatched donors were similar to each other but reconstitution following

haploidentical and autologous transplants had a longer mean transfer time MTT

resulting in delayed reconstitution.

2.4.2 Platelets

The two models that have been used previously for platelet dynamics, the models
of Hayes et al and Friberg et al, were fitted to the data of platelet concentrations
around HSCT. The dynamics are simpler than for neutrophils in that there are
no effects from steroids. As such, a sixth input compartment is not necessary and
the models can be fitted straight to the full data.

The Hayes model and the base Friberg model were both fitted to the data

65



Chapter 2. Short-term neutrophil and platelet reconstitution following HSC'T

Table 2.5: Covariates included in the model for neutrophil dynamics

Parameter | Covariate Effect size  p-value
Xy | Cord blood stem cells -0.397 < 0.001
Xo | Leukaemia -0.277 < 0.001
MTT | Donor type < 0.001
Matched 0f
Mis-Matched 0.0274
Haploidentical 0.481
Autologous 0.240

The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero. § Typical individual.

using a sigmoidal and a linear K-PD model, and the variant of the Friberg model
with elimination different from synthesis and transfer was also fitted using a linear
K-PD model.

The parameter estimates from fitting these models are given in Table 2.6. The
Hayes model, particularly with the sigmoidal K-PD model did not achieve a good
fit to the data, with a high OFV and a high residual error in comparison to the
Friberg model. With the linear K-PD model it achieved a much higher quality of
fit, but still did not manage to attain an OFV of a similar standard to that of the
Friberg model. Of the variants of the Friberg model, those with the linear K-PD
model have a better fit. There is not a large difference however between the two,
and the addition of a differing rate of elimination does not improve fit enough
that it is worth the extra parameter (ABIC = 11) in the model. Furthermore,
the variant of the model where kg = ks = kt has the lowest residual error of all
the variants.

An explanation for the large difference in OFV between the Hayes and Friberg
models is demonstrated in Figure 2.9 which compares individualised output for
a subset of patients for the Hayes and Friberg models (with kg = kg = kr), both
with linear K-PD models. These patients have been chosen to demonstrate that

the platelet reconstitution appears to form oscillations in some patients during
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reconstitution. The Hayes model cannot recreate these whereas the Friberg model

can because of the feedback term. This model therefore seems to be the better

representation of platelet reconstitution. And so for the rest of this section I use

the Friberg model with linear K-PD and with elimination, transfer and synthesis

rates the same (kg = kg = kr).

The parameters for long-term and initial platelet concentration are very sim-

ilar, with the long-term platelet concentration slightly higher at X, = 166,000 /uL

than the initial platelet concentration of Xy = 163,000 /uL. The mean transfer

time MTT is 5.73 days, while the drug effect F,., is low at just 28.6%. The

Table 2.6: Comparison of parameter estimates for different models for platelet recon-

stitution.

Model Hayes Friberg
Differing kg
K-PD model Sigmoidal Linear Sigmoidal Linear Linear
Xo (/uL) 124,000 163,000 161,000 163,000 164,000
Xoo (/pL) 125,000 206,000 179,000 166,000 165,000
« kg (/day) 0.252 0.359 - - -
S kr&ky (/day) 0.238  0.445 - - -
g MTT (days) - - 6.69 5.73 6.33
g - ~ 0083  0.109 0.127
A Frax 0.988 0.988 0.490 0.286 0.330
Tprag (days) - 15.5 - 5.24 5.20
k - - - - 0.475
Xo 0.922 0.840 0.814 0.832 0.825
L Xeo 0.949 1.34 0.899 0.833 0.840
S kg 0.761 0.579 - - -
S kr & kg 0.951 0.718 - - -
s MTT - - 0.413 0.419 0.540
2 5 - - 1.51 1.10 1.20
fg o 0.439 4.07 2.70 1.05 1.26
Tbrug - 5.04 - 3.78 3.23
k - - - - 0.241
o 0.395 0.305 0.285 0.278 0.280
OFV 4400 =577 -1897 -2248 -2269

o is the variance of the residual error. The random effects were fitted as log-normal
distributions for all parameters because they are all bounded at 0, except Enax, which
was modelled as a logistic transformation of a normal distribution because FEy.x is
bounded at both 0 and 1.
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Figure 2.9: Comparison of the two models for platelet reconstitution for a subset of
patients, demonstrating the differences between individual predictions. The black dots
give the observed data, and it can be seen that while the Friberg model can recreate
the observed oscillations because of the feedback loop, the Hayes model cannot and
draws a straight line through the data.

drug half-life was estimated at 3.63 days.

Diagnostic plots for the Friberg model are shown in Figure 2.10. The visual
predictive check in Figure 2.10A demonstrates that the model simulated output
does capture the median of the observed data well and most of the variability,
although it over-predicts the reconstitution at later time points and for the 95th
percentile. The plots of the conditionally weighted residuals in Figures 2.10B and
C demonstrate that the residuals are roughly normally distributed with mean zero

and standard deviation one, and that there are no obvious biases with time or

population prediction and so the residuals are independent.

Covariate analysis

Once the structural model was fixed at the Friberg model with linear K-PD,

covariates analysis was performed using the SCM procedure to find the factors
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Figure 2.10: Diagnostic plots for the final model of platelet reconstitution, using a
linear K-PD model. A gives a visual predictive check. The dots give the observed
data and the filled and dashed lines give the median and 2.5th and 97.5th percentile
of the observed data. The pink shaded regions give the 95% confidence intervals of the
simulated median and 2.5th and 97.5th percentiles. B and C give the CWRES against
time and population prediction respectively, with the blue dots giving the residuals,
the red lines local regression curves and the black dashed lines giving +2.

that significantly affect the reconstitution of platelets. The covariates that were
tested are listed in Table 2.2. All covariates were tested on Xy, X, and MTT and
just the drug-related covariates were tested on Epy,, and Tp.e. The results of
the covariate analysis are given in Table 2.7 and shown in Figure 2.11. As can be

seen, the significant covariates all affected either the initial platelet concentration

Xy or the long-term platelet concentration X,,. Patients that received busulfan
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Figure 2.11: The effects of covariates on platelet dynamics following HSCT. The typical
individual is the model output for a patient that does not have each or any of the
covariates listed here, so received bone marrow stem cells, did not receive either busulfan
or total body irradiation as conditioning, and had another diagnosis apart from an
immunodeficiency.

were found through the model to have on average a higher platelet concentration
pre-HSCT, while those who received cyclophosphamide were found to have a
lower pre-HSCT platelet concentration. Patients that received peripheral blood
stem cells or were diagnosed with immunodeficiency were found by the model
to have on average a raised long-term platelet concentration while patients that
received cord blood stem cells as opposed to bone marrow or peripheral blood

stem cells were found by the model to have on average a decreased long-term

platelet concentration.

2.5 Discussion

In this chapter, I have successfully applied previous models for neutrophil and
platelet reconstitution to the context of paediatric HSCT. The mechanistic models

were similar in that they had a proliferation compartment, on which the drugs
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Table 2.7: Covariates included in the model for platelet dynamics

Parameter | Covariate Effect size  p-value
Xo | Busulfan 0.730 < 0.001
Xo | Cyclophosphamide -0.434 < 0.001
X | Stem cell source < 0.001
Bone marrow of
Peripheral blood 0.425
Cord blood -0.260
Xoo | Immunodeficiency 0.421 < 0.001

The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero. § Typical individual.

acted, multiple transit compartments and finally a circulating compartment where
the cell concentrations were measured. A comparison of models found that the
linear kinetic-pharmacodynamic (K-PD) model was the better K-PD model for
all model variants. For neutrophils, the model variant of the Friberg model with
elimination rate differing from synthesis and transfer rates provided the best fit
to the data. For platelets, the Friberg model provided a much better fit than the
Hayes model because of the presence of a feedback loop, and the model variant
in which the elimination rate was the same as the synthesis and transfer rates
was selected as that which was the best balance between objective function value
and number of parameters.

After discovering that the Friberg model gave such a large improvement in fit
over the Hayes model for the platelet data, closer analysis of individual trajectories
demonstrated that platelet concentrations in some individuals oscillated during
reconstitution. The feedback term was therefore necessary to explain the data
from these patients. These oscillations had been unexpected; none of the other
studies that have used this model have reported oscillations, although the data
that they were using may not have had the resolution to see these effects [67—
71]. Oscillatory dynamics for platelets have been reported in patients with cyclic

thrombocytopenia, and healthy volunteers were found to have fluctuations with
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a time period in the order of 25 — 30 days [96], similar to this analysis. They have
not however been reported as part of reconstitution. One option for the cause of
this feedback is transforming growth factor beta (TGF-beta) levels producing a
negative feedback loop on megakaryocyte production [97].

The model parameters for initial and final concentration were different for
neutrophils, with the final concentration almost double the initial concentration
(Xoo = 2740 cells/uLi compared with Xy = 1560 cells/uL). This implies that on
average the population has a much more healthy innate immune system following
HSCT than before the transplant, which is not surprising given that some patients
were given HSCT for neutropaenic immunodeficiencies. For platelets, graphically
the local regression curves of Figure 2.3 appears to show that platelets do not
recover to the same level at which they started. The model however implied that
on average platelets can be expected to recover to the level at which they started
within three months (X, =166,000 /uL cf. Xo =163,000 /uL). This difference
is because the local regression curves cannot account for the fact that patients
recover quickly, but at different delays from the HSCT (see Figure 2.4). For both
neutrophils and platelets these values of Xy and X, are well within the ranges
for normal children [98,99].

The value of the mean transfer time for neutrophils MTT" = 4.86 days agrees
well with other analyses that have used this model on adults, with values in the
range of 3.8 to 5.6 days [52,59]. The mean transfer time for platelets was longer
with MTT = 5.73 days. Platelets have a longer lifetime in the periphery, and
so this was to be expected [4,9,10]. Previous uses of this model have found an
MTT in the range of 4.3 to 9.2 days, which agrees with the results presented
here [67-69].

With the linear K-PD model, the maximum drug effect was larger for neutro-
phils with E.x = 81.4% than for platelets with Ep .. = 28.6%. This means the

drugs were roughly 2.8 times as effective in neutrophils, which is in line with the
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observed data where the neutrophil concentrations undergo a 10-fold decline and
platelet concentrations undergo just a 3-fold decline. This parameter is usually
reported as the ‘Slope’ parameter in other uses of this model, where Slope ~ %‘;‘)
(see Section 2.2.3). However, given that we have no drug concentration data, we
use a slightly different form of the parameterisation. One study that uses this
model to estimate parameters for both neutrophil and platelet concentration pro-
files with the same drug finds that the drug is 2.8 times as effective for neutrophils
as platelets [67], which agrees with the results of this analysis.

Half lives of the drugs used in conditioning are short: busulfan 2.3 hrs [79];
cyclophosphamide 5-9 hrs [80]; fludarabine 8-10 hrs [81]; melphalan 1.3 hrs [82];
and treosulphan 1.7-2.2 hrs [83]. As such, it is interesting that the drug effect
was found to have a half life of 4.8 days for neutrophils and 3.6 days for platelets
after the end of conditioning treatment. This implies that the model may not be
fully capturing the effects of these drugs. One explanation could be the structure
of the proliferating compartment. At the moment it is assumed that these prolif-
erating stem cells form a resident population that produce neutrophil precursors.
These proliferating stem cells however are in dynamic equilibrium with their own
precursors and these precursors will also have been prevented from proliferating
by the conditioning drugs. This would result in an extra delay following the drugs
before neutrophil precursor production increases and hence an apparently longer
drug effect. Future work with higher resolution pharmacokinetic drug data could
tease out this relationship.

These models are however very much semi-mechanistic. They take a complex
system — the production of new platelets and neutrophils from stem cells —
and simplify them to a number of linear compartments. While the key features
are mechanistic, with new cells only produced in the bone marrow compartment,
cell concentrations measured in the circulating compartment and the existence

of a feedback mechanism, the exact meaning of the compartments themselves is
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difficult to interpret. Furthermore, it is difficult to extract information (such as
neutrophil or platelet peripheral lifetimes) from this model.

Once the structural models were fixed, it was possible to analyse the factors
that affected the reconstitution of both neutrophils and platelets. For neutro-
phils, it was not possible to perform multivariate analysis because the objective
function value proved too unstable to perform SCM reliably. SCM is usually per-
formed on datasets much smaller than these here, and with so many data, small
fluctuations in model parameters can lead to very large fluctuations in objective
function value which may explain the difficulty found here. It was however pos-
sible to perform a univariate analysis. The patients that received cord blood stem
cells were found by the model to have a lower pre-HSCT neutrophil concentration
than those that received either peripheral blood or bone marrow stem cells from
the donor. In the observed data, patients that had a cord blood transplant had a
median neutrophil concentration before the start of conditioning 22% lower than
the other patients, which can explain a part of the difference. Patients that had
leukaemia were also found by the model to have a reduced pre-HSCT neutrophil
concentration. Again, this is backed by the observed data, with leukaemia pa-
tients having median pre-conditioning neutrophil concentrations reduced by 59%
from the rest of the patients. Covariate analysis also identified donor type as
a factor that affects reconstitution, with patients that had either haploidentical
donor or autologous transplants having a later and slower recovery than those
that had either mis-matched or matched donors. The patients that had hap-
loidentical donors were more likely to have had no conditioning (50% — 6 out of
12 — in comparison to 12% in the rest of the patients), and as a result the profile
will be quite different, which could explain some of the difference.

It was possible to perform multivariate analysis to find the factors that affect
platelet reconstitution, finding that the conditioning drugs busulfan and cyclo-

phosphamide affected the initial platelet concentration X, and that donor stem
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cell source and immunodeficiency affected long-term platelet concentration X.
The differences in the initial concentration are apparent in the observed data,
with the median initial concentration in patients that had busulfan 19% higher
than those that did not and the median initial concentration in patients that had
cyclophosphamide 33% lower than those that did not. Whilst this explains some
of the difference found through the model, it does not explain all of it, and it is
likely that some of the differences found by the model are due to mis-specification
in the protocol for the days on which conditioning drugs were given (Table 2.1).

The high long-term platelet concentration for patients diagnosed with immun-
odeficiency as opposed to other diagnoses is an interesting effect that is visible in
the observed data, with median platelet concentration between days 60 and 100
post HSCT almost double in patients that had immunodeficiencies. Finally, the
differences between the stem cell sources are also visible in the data, an explan-
ation for these differences could be the make-up of the donor cell grafts, where
cord blood grafts are likely to be smaller with lower concentrations of platelet-
producing megakaryoctes, whereas peripheral blood is likely to be more diverse,
potentially providing more platelets early on. The significance of this covariate on
long-term concentration therefore potentially implies that the increase in platelets
following HSCT might be more to do with platelets produced by megakaryoctes
found in the donor cell graft, rather than stem-cell derived megakaryoctes.

In this chapter, known mechanistic models for the short term reconstitution
of neutrophils and platelets have been fitted to data from paediatric HSCT using
nonlinear mixed effects modelling. To our knowledge, this is the first time this
analysis has been done in this way. The models were complex enough that they
were able to recreate these systems, but simple enough that it was possible to
estimate parameters. The models have been used to perform a covariate analysis
to find the factors that affect the reconstitution of these vital cell subsets from

the haematopoietic system.
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Chapter 3

Long-term CD4 T cell

reconstitution following HSCT

3.1 Introduction

Full CD4 T cell reconstitution takes between one and three years following HSCT.
Over this time period a child’s immune system will have matured appreciably
and the expected CD4 concentration will have changed, with CD4 concentration
expected to fall by % between 0 and 10 years old (see Figure 1.2). Because these
changes occur within an individual, any modelling attempts need to account for
age-related effects before the underlying trends can be ascertained.

In this chapter, I develop a model for long-term CD4 T cell reconstitution.
In the model development, different methods were used to attempt to account
for age, which finally led to the use of mechanistic modelling. The mechanistic
models had the advantage of being able to take into account other areas of relevant
biology as well, such as competition for resources. The final model was then used
to make predictions of long-term reconstitution on an individual basis, using the
patient’s covariates and early data. Predictions of long-term reconstitution could

greatly assist clinicians by giving early warnings of potential long-term problems
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following the HSCT and indicating the need for further interventions, such as

prophylactic antimicrobials, donor lymphocyte infusion or repeat HSCT.

3.1.1 Quantifying immune reconstitution

Two methods have been used in previous studies to assess reconstitution: lymph-
ocyte subset concentrations at pre-determined time points after HSCT, and the
time after HSCT that lymphocyte subsets reach pre-determined concentrations.

Variations in the extent of reconstitution at particular times are assessed
through the pre-determined time-points method. Differences in reconstitution
following transplantation with the three different stem cell sources have been
widely reported. Increased B cell reconstitution has been found to occur earlier
after cord blood transplantation (CBT) compared with bone marrow transplant-
ation (BMT) [100] and greater B cell and NK cell reconstitution but reduced T
cell reconstitution at 3 months following unrelated CBT compared with matched
sibling BMT and unrelated BMT [101]. Studies looking at the effects of the
donor types on reconstitution, have found increased reconstitution with matched
sibling donors rather than mismatched family or unrelated donors [102] and re-
duced T cell reconstitution at 6 months in patients having autologous peripheral
blood stem cell transplantation (PBSCT) compared with allogeneic BMT or PB-
SCT [103]. Age effects have been identified, with younger patients reconstitut-
ing fewer CD8 T cells at one month following allogeneic HSCT [104]. Further,
Epstein-Barr virus DNAemia was found to have a negative impact on the re-
constitution of T cells at one year [104]. A study into the effects of reduced
intensity conditioning showed that the lower concentrations of the conditioning
drugs compared to full myeloablative conditioning resulted in increased T and
NK cell reconstitution at four months, concluding that immune reconstitution is
accelerated by reduced conditioning [105].

The pre-determined time-points method is also used to find the leukocyte
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concentration thresholds at certain times that indicate improved survival prob-
ability. Studies into CD4 concentrations have used 115 cells/uL at 20 days after
HSCT [106] and 86 cells/uL at 35 days [102], while a study into absolute lymph-
ocyte count used 150 cells/uL at 30 days [107]. One study used a more sophistic-
ated method, classifying people into high- and low-mortality risk groups by form-
ing an ellipsoid reference domain for the normal concentrations of three lympho-
cyte subsets [108]. Most simply, patients with higher CD4 T cell concentrations
at predetermined time points had improved survival probability [101].

Changes in the rate of reconstitution are assessed through the time to reach
pre-determined concentrations method. Studies into stem cell sources have found
faster B and slower CDS8 T cell reconstitution following unrelated CBT as opposed
to unrelated BMT [109] and faster reconstitution following PBSCT compared
with BMT [110], while another found faster reconstitution following CBT with
high concentrations of CD45 cells [111]. One study that looked at the effects
of conditioning drugs found that anti-thymocyte globulin (ATG) almost doubles
the time to reach normal CD4 T cell concentrations, but that CD8 T cells were
unaffected [112]. High doses of ATG were also associated with increased incidence
of life-threatening infections [112]. Finally T cell reconstitution was found to slow
with age across childhood [109].

The pre-determined concentrations method has also been used to find cut-
off times to reach concentrations that result in improved survival probability.
Significant improvements in survival probability were found for patients who re-
constituted above the 5th percentile of normal CD4 T cell concentration within
one year [110]. Survival probability was also conditioned by the CD8 T cell re-
constitution rate and the time to reach the 10th percentile of normal CD4 T cell
concentration [113].

For assessments of concentrations at pre-determined time points, the data

must be rigorously collected on the day specified. Meanwhile for time to event
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analysis of pre-determined concentrations, the event must be monitored fre-
quently or the time is missed. In contrast, mathematical modelling is advant-
ageous because it allows data collection at any time, offering greater flexibility.
Furthermore, mathematical modelling can analyse both the rate and extent of
the reconstitution, whereas both the approaches described above only evaluate
specific factors that affect either the rate or the extent of the reconstitution, not
both.

In this chapter, I construct a mechanistic mathematical model for CD4 T cell
concentration in order to model the long-term reconstitution following HSCT and

determine the factors that affect this reconstitution.

3.2 Methods

3.2.1 The data

The CD4 T cell concentration data used in this chapter were collected as routine
clinical practice by the Blood and Marrow Transplant Unit at Great Ormond
Street Hospital for Children NHS Trust. Two separate datasets were used; a
model-building dataset and a validation dataset. The model-building dataset uses
CD4 T cell concentrations from the patients studied in Chapter 2. This dataset,
shown in Figure 3.1, was used for developing the model and covariate analysis.
The validation dataset was a separate cohort of patients who had transplants
between 2010 and 2014. This dataset was used to validate the predictive ability
of the model.

The modelling dataset has 288 patients who had 319 transplants between
them. The median age at transplant was 37 months, with a range of 16 days to
16 years. In this dataset, 24% of the patients died within the 1-6 year follow-up
period; of these patients, 36% died from infection, 35% from disease relapse, and

15% from acute GvHD.

79



Chapter 3. Long-term CD4 T cell reconstitution following HSC'T

A

4000 —

3000 —

2000

1000

CD4 Concentration (cells/pL)

3000

1000 —

300

100 —

30

CD4 Concentration (cells/pL)

10

Time after HSCT (years)

Figure 3.1: Data for CD4 T cell reconstitution following HSCT used for model-building.
Each coloured line gives the data for a single individual, while the black line gives the
local regression curve for the data. A is plotted with a linear y-scale, while B is the
same data, plotted on a log y-scale.

The validation dataset is a subset of 75 patients from 132 patients who had
144 transplants between them. The patients chosen for the validation dataset
were those for which there were at least three data points before six months post

HSCT and at least three data points after six months post HSCT. A breakdown
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Table 3.1: Breakdown of the demographics and the drugs used for the patients in the
long-term, CD4 reconstitution datasets.

M V M V
Age at HSCT (years) Donor type
0—1 51 14 Matched 201 39
1—2 67 12 Sibling 86 14
2—>5 74 16 Family 16 5
5— 10 76 23 Unrelated 99 20
10 — 51 10 Mis-matched 102 28
Sex Sibling 3 0
Male 202 51 Family 6 1
Female 117 24 Unrelated 93 27
HSCT Haploidentical 13 2
15t 272 66 Autologous 3 6
P 40 8 Viruses
3rd 3 1 Cytomegalovirus
Diagnosis Positive 102 12
Immunodeficiencies 138 30 Negative 213 61
SCID 82 18 Unknown 4 2
Wiskott-Aldrich 12 5 Epstein Barr virus
CGD 12 6 Positive 82 12
Leukaemia 95 17 Negative 120 48
ALL 45 8 Unknown 117 2
AML 35 8 Adenovirus
HLH 35 5 Positive 106 —
Anaemia 21 0 Negative 213 —
Autoimmune 8 0 Conditioning
Lymphomas 5 0 Alemtuzumab 158 30
GvHD Anti-CD45 12 2
Reported 102 45 Anti-thymocyte globulin 10 12
I 39 25 Busulphan 7 31
1I 38 15 Cyclophosphamide 140 12
111 18 4 Fludarabine 67 55
v 7 1 Melphalan 97 17
Stem cells Treosulphan 67 18
Bone marrow 149 27 Total body irradiation 44 6
Peripheral blood 120 28 None 41 4
Cord blood 48 20 Prophylaxis
Combinations 2 0 Ciclosporin 280 66
Methotrexate 66 12
Mycophenolate 158 51

M: Model-building dataset, used for model building and covariate analysis; V: Validation data-
set, used for assessing the predictive ability of the model. Abbreviations: SCID: severe combined
immunodeficiency sydrome; CGD: chronic granulomatous disease; ALL: acute lymphoblastic
leukaemia; AML: acute myeloid leukaemia; HLH: hemophagocytic lymphohistiocytosis; GvHD:
graft versus host disease.
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of the demographics of both datasets, and the drugs used for conditioning and

prophylaxis, is given in Table 3.1.

3.2.2 Model building

In contrast to the short-term reconstitution seen for platelets and neutrophils, the
time scale for CD4 T cell reconstitution is similar to the expected changes in CD4
T cell concentration as children get older. As such, individuals can be expected
to have intra-individual age-related changes in their data and age cannot just be
accounted for in the inter-individual random effects. Furthermore, CD4 T cells
proliferate in the periphery which neither neutrophils nor platelets do. As such
the models used in Chapter 2 cannot apply here and so a new model for long-term

reconstitution following HSCT is constructed.

Empirical modelling

Early modelling attempts used an empirical model for CD4 T cell reconstitution,
with three parameters: long-term CD4 T cell concentration asy, initial CD4 T

cell concentration int, and the rate of reconstitution c,

y = asy — (asy —int) e " . (3.1)

In order to fit this model to the data, two different approaches were tried to
account for the effects of development, pre-adjusting the data and adjusting the
model. Pre-adjusting the data involved attempting to remove the effects of age
from the data before fitting the model by standardising to some sort of expected
concentration for age. The first option for this was to use z-scores, where the
observed concentration is compared to a distribution of CD4 concentration for
the same age [114]. A score is then assigned, with the median concentration

giving a score of 0, and a score of £1 corresponding to £1 standard deviation
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Figure 3.2: Schematic of the long-term CD4 T cell reconstitution model. CD4 T cells

in the compartment have concentration X (¢). They enter the compartment from the
thymus at zero order rate A. Cells then die at rate d and proliferate at rate p.

from the median. Outside of a relatively confined range around the median, such
as with the concentrations immediately after HSCT, these scores are however of
limited validity. Instead, another option is to use the ratio of the observed CD4
concentration to the expected CD4 concentration for that age [31], with one of
three transformations, log, 2nd root or 4th root of this ratio.

Adjusting the model involved accounting for the changing CD4 concentration
within the model itself, while fitting to the raw data. This was achieved by having
age-dependance on asy in one of four forms, linear, bi-linear, exponential decay
and a ratio of the expected concentration for age.

On comparison, the results from these forms of the data and model, however,
were very inconsistent and it was not possible to distinguish which version was the
least biased analysis of the data. It was thus decided that the use of a mechanistic
modelling approach could provide a better explanation for the effects of normal

age-related changes in a child’s immune system.

Mechanistic modelling

The structural model as applied in this chapter is a one compartment turnover
model as given in Figure 3.2. In this model the central compartment represents
the CD4 T cell concentration X (¢) with time ¢. New cells from the thymus enter
this compartment at zero-order rate A. Cells can proliferate into two cells or die at

first order rates p or d respectively. This gives the following ordinary differential
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Figure 3.3: Expected thymic output of CD4 T cells with age using the formula from
Bains et al [33] given in Eq (3.3). Thymic output peaks at around 1 year of age and
then deceases as the thymus involutes.

equation for the dynamics,

d
T X =2 —dX pX. (3.2)

The model is then made more mechanistic by using mathematical functions in

place of some of the parameters to better represent the underlying biology.

Accounting for the effects of age

Because the concentration of CD4 T cells decreases across childhood by 2/3
between 0 and 10 years old (see Figure 1.2), it is important the effects of im-

mune development are taken into account.

Thymus development

Thymic output first increases with age as the thymus grows, peaking at about
one year of age, and then decreasing with age as the thymus involutes [33]. These
changes with age were recently characterised mathematically by Bains et al [33].
Their work makes use of the fact that TRECs are neither degraded nor replicated
in division to calculate the number of cells produced by the thymus with age.

They then remove the dilution in TREC numbers caused by cell division, using
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Figure 3.4: Proportion of CD4 T cells expressing Ki67 with age using the formula in
(3.4) [33]. Ki67 is used as a marker for proliferation and so this decline can be used for
the rate of decline in turnover rates of CD4 T cells with age through childhood.

levels of Ki67 with age as a marker for cell division. This leaves the following

functional form for thymic output with time ¢ and age 7 (see Figure 3.3),

A(t,T) = Ao X , (3.3)

where V(7) is the expected CD4 T cell concentration with age; n = 0.52 is the
duration of Ki67 expression; ¢ = 0.25 and v = 0.08 are constants related to the
TREC content of CD4 cells as they leave the thymus; and y(7) is the proportion

of CD4 cells expressing Ki67 with age,

y(T) =0.02 6(70.000277) (34)

shown in Figure 3.4. The parameter )\ is included such that the proportion of
the expected thymic output for age is estimated but the shape of the changes

with age are maintained.

Changes in loss and proliferation with age
It is thought that the cell proliferation and loss rates decrease with increasing
age through childhood [33,35,36]. Ki67 expression can be used as a marker for

CD4 T cell proliferation, and so the change in Ki67 expression with age, which
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has recently been characterised, can be used to inform on the time-scales of the
decrease in proliferation and loss throughout childhood [36]. Ki67 expression with

age is given by y(7) shown Figure 3.4 and equation (3.4).

Homeostatic mechanisms and competition for resources

T cells are thought to compete for resources such as cytokines and sp-MHC (see
Section 1.5). This means when there are very few T cells, there is much more
resource for each T cell so that proliferation increases and loss decreases. This
has been observed in a cohort of thymectomised children that had reduced T cell
concentrations in whom Ki67 expression levels, a marker for proliferation, was
found to be raised [115].

A mechanistic mathematical model for the homeostatic mechanisms and com-
petition for resources has previously been proposed [116]. In this two-compartment
homeostatic model, T cells produced by the thymus enter the resting compart-
ment X. From this, cells are activated at rate a into the dividing compartment
Y from which two cells return at rate r to the resting compartment. Cells have
different loss rates in the resting and dividing compartments, dy and dy respect-
ively. Homeostatic mechanisms from competition for resources result in density

dependant activation and death rates. The full model is given by:

d

a?xzx—xpu—a)+my (3.5)
d
LY =aX —dyY =Y, (3.6)

where

a = age X+ (3.7)
dx = doecd™+Y) (3.8)
dy = pY, (3.9)
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A is thymic output, and ¢ is time after HSCT. ay and dy could be considered as
the activation and loss rates at zero CD4 T cell concentration; ¢, and ¢y as the

strength of the competition effects.

Simplifying the homeostatic model

This model was simplified in order to reduce it from two compartments to one (see
Figure 3.2), thus making the model parameters more identifiable, and simpler to
fit to the data. To achieve this, the following two assumptions were used.

Quasi steady state approximation: With r» >> a, it can be assumed that the
dynamics of the dividing compartment, Y are fast relative to the dynamics of
the resting compartment, X. Thus the resting compartment is in quasi-steady
state and, as a result, the dynamics are driven by the concentration in the resting

compartment, X, such that from the ordinary differential equation, (3.6),

dy
| maX Y —dyY =0 (3.10)

which gives,

pWY?4+1rY —aX =0, (3.11)

which can be rearranged to get Y in terms of X,

1 / dpa

Low death rate in dividing compartment: With the parameters values ob-
tained on fitting the full model to data for CD4 concentrations [116], the death
rate in the dividing compartment, p, was very small, and in particular, the pro-
portion of cells dying was much lower than those returning to the resting com-

partment, namely p << r. Thus the term A‘%X << 1, and the Binomial theorem

/ dpa 2ua
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allowing the approximation of (3.12) to become:

1 2ua

giving

y =X, (3.15)
T

where the negative root has been discarded as both X and Y are positive. Sub-

stituting (3.15) into (3.5) thus gives,

d
SX =)A= X (dx —a), (3.16)

removing the dependance on the 2nd compartment completely. Activation from
the original model is now better described as proliferation, so the nomenclature
is changed such that,

d

X =A-X(d-p), (3.17)

where,

p = poe” ¥ (3.18)

d = dye . (3.19)

Effects of changing cell concentrations on competition for resources
Because cell concentrations are changing through childhood and in order to make
the parameter values more interpretable, these functions were altered such that

they scale with CD4 T cell concentration,

(t)
p = poe(1770) (3.20)
(t)
d = doe” (T, (3.21)
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Figure 3.5: Competition effects with proportion of expected CD4 T cell concentration
using formulas (3.18) and (3.19). The effect is to multiply the proliferation and loss
rates for age by the blue and green lines respectively. The effect is dependent on the
ratio of the CD4 concentration to that expected of a child of the same age. When the
concentration equals that expected of a healthy child, the effect is 1.

where V(1) is the expected CD4 concentration for age. This means the paramet-
ers, po and dy can be interpreted as the proliferation and loss rates respectively
when the CD4 concentration is equal to that expected of a healthy child, while

¢p and ¢g4 are the strength of the effects of competition for resources on loss and

proliferation respectively. These functions are shown in Figure 3.5.

Effects of the HSCT on thymic output

Following HSCT thymic output of T cells does not recover for between 6 and 12
months, as demonstrated by evidence from both TREC analysis [117-119] and
studies of recent thymic emigrants using CD31 expression [100]. This lack of
production leads to a delay in the reconstitution of CD4 T cells. A sigmoidal
function with time after transplant was chosen to model this effect, such that
thymic output would increase from 0 cells/day on the day of transplant, to that
expected of a healthy child after some time delay. Several functions were tested
to achieve this, including a simple logistic, generalised logistic, and Hill function

as well as adaptions thereof. They were compared by BIC and their properties
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Figure 3.6: The proportion of the expected thymic output with time following HSCT,
modelling the effects of impaired thymic output using formula (3.22). Immediately
after the transplant thymic output is impaired. With time after HSCT, thymic output
recovers, with Apq s giving the time at which this increase is at its maximum rate and
Arate the rate of this increase.

and the the final selected function is given by (Figure 3.6),

1 —exp [— 2t/Ahalf]

(3.22)
1+ eXp [ - )\rate (1 - t/)\half)]

Athyrnus =

where Apqgp and Aqre are two new parameters to be estimated. Ajqf gives the
time after HSCT that the thymic output increases at its maximum rate, and A4,
gives the rate of this increase.

The complete structural model

The structural model is then given by:

ix@ﬂ:A@ﬂ—d@ﬂX@ﬂ+m@ﬂXﬁﬁ%

where

At 7) = Aoy(&)c‘i(?)vmhymus(t) (3.23)
p(t, ™) = y(r)poe (- 7E) (3.24)
d(t, 7) = y(r)doe" (7 (3.25)
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leaving eight parameters to be estimated: X, the initial concentration of T cells;
Ao proportion of the expected thymic output with age; pg and dy the proliferation
and loss rates respectively when the concentration is that of a healthy child; ¢,
and cq the strength of the effects of competition for resources on proliferation and
loss respectively; Ayqe the rate of change of thymus recovery; and Apq the time

at which thymic recovery is half.

3.2.3 Sensitivity and identifiability analysis

Before fitting the model to data, the model was assessed for its parameter sensitiv-
ity and its theoretical identifiability using the FME package [120] in R 3.1.3 [121].
With this package, it is possible to get a plot of the model’s sensitivity to per-
turbations in the model parameters. In Figure 3.7A, the effects of increasing
each of the parameters by 10% have been plotted against time, and it can be
seen that while the CD4 T cell concentration is sensitive to all parameters, some
parameters cause changes which are either very similar or exact opposites of each
other.

The package was also used to carry out collinearity analysis. In this pro-
cess, a collinearity index is calculated based on the extent to which similar
model output can be produced from several different parameter combinations,
based on Omlin et al [122]. The collinearity index can be interpreted as the
amount of the change in model output through altering one of the parameters
that can be compensated through changes in other parameters. The index is
given by collinearity = 1 — 1/k where k is the fraction of the changes that can
be compensated. This means that with a collinearity index of 20, changes in one
parameter can be compensated by 95% by changes in other parameters, while a
model with a collinearity of 1 would have perfectly orthogonal parameters. In
Figure 3.7B the collinearity index is given for the eight parameter combinations

for which all three of the key parameters (Ao, dy, po) are represented and the col-
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Figure 3.7: Assessing the structural properties with the model with the FME pack-
age [120]. A gives the sensitivity of the model with time after HSCT to perturbations
in each of the parameters. Each line represents the effect of increasing that parameter
by 10%, demonstrating the co-dependence of parameters in the model. B gives the
collinearity of different combinations of the model parameters. Each model tests a dif-
ferent combination of parameters given by the black bars and finds a collinearity index
for the co-dependance of the parameters tested. In this plot, just the 8 models that
included all of Ay, dy and pg and had a collinearity less than 40 are shown.

linearity is under 40. As can be seen, not a single model in which the parameters
for the strength of competition for resources ¢, and ¢; are estimated are repres-
ented. As such, these parameters are highly collinear, with any combination of
parameters that includes one of ¢, or ¢, having a collinearity score greater than

40. They are therefore difficult to estimate alongside the other parameters, and

their effects can be compensated for by the other parameters. In the rest of the
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analysis in this chapter they are therefore fixed to 1.

This package has tested theoretical identifiability. Practical identifiability,
the limitations of what can be fitted to a given dataset, also needs to be taken
into account for model fitting, which may further reduce the parameters that it
is possible to fit. In the case of this analysis however, with the inter-individual
changes in parameters with age and the use of mixed effects modelling (neither of
which are taken into account by the package), it is likely that it will be possible

to fit further parameters than might be expected.

3.2.4 Model fitting and covariate model building

Nonlinear mixed-effects (NLME) modelling, as outlined in Section 2.3.2 on Page 48,
was used to fit the model to the data. The model-fitting was carried out using
NONMEM 7.3 [85], using the importance sampling expectation-maximisation al-
gorithm and the ADVAN13 (general nonlinear kinetics) subroutine [123]. Further-
more, covariate analysis was carried out using stepwise covariate model building,
outlined in Section 2.3.3 on page 52 using PsN 3.5.3 [124]. Similarly to Chapter 2,
only a small proportion (1.2%) of the data are below the limit of quantification
and so, as set out in Section 2.3.4, these data were substituted with half the limit

of quantification, LOQ/2.

3.2.5 Making predictions

The intention was to make predictions for the long-term CD4 T cell reconstitution
of children on an individual patient basis, using just their early data, their age
and their other relevant covariates.

Once the covariate model had been finalised through SCM, population mean
parameter estimates and the variance-covariance (var-covar) matrix of the ran-
dom effects were estimated by fitting the model to the model-building dataset.

Using this as the basis, the model could then be fitted to an individual’s data, us-
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ing an “expectation-only” process, whereby the population-level parameter means
and var-covar matrix were held fixed and the individual-level parameters and
the individual var-covar matrix were estimated. In this process, Monte Carlo
sampling is used to evaluate the individual-level conditional (posterior) mean
and the var-covar matrix. The likelihood of these are then maximised given the
individual’s observed data and the population means and var-covar matrix [123].

Trajectories were then produced by simulating a large number (~500) of para-
meter sets from these individual-level estimates, from which were found the me-
dian and confidence intervals for that individual’s CD4 reconstitution trajectory,
forming a graphical output.

In order to validate the predictive ability of the model, a validation dataset
was used, described in Section 3.2.1. For each of the 75 patients in this dataset,
only data from the first six months post HSCT as well as their relevant covariates
were used to make the predicted trajectory. This trajectory was then compared

to the rest of their observed data for up to three years after HSCT.

3.3 Results

3.3.1 Model fit

Following fitting the model to the model-building dataset, the typical traject-
ories of patients of different ages at time of HSCT are given in Figure 3.8. As
can be seen, there is an initial delay to reconstitution as thymic output is im-
paired [100,117-119] and then the typical patient reconstitutes to 90% of the
expected CD4 T cell concentration of a healthy child of that age, and then tracks
that concentration throughout childhood. It can also be seen that the rate of
recovery is age-dependent, with younger children recovering more quickly in com-
parison to older children. The median-aged child (37 months old) took 22 months

to reconstitute to 90% CD4 for age, while a 1 year old was predicted to take 17
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Figure 3.8: Model predicted CD4 reconstitution following HSCT for children of different
ages (coloured lines) compared to the expected CD4 concentration of a healthy child
(black line).

months and a 10 year old 33 months.

The parameter estimates in Table 3.2 are from fitting the model to the model-
building dataset. It was found to take 5 months before thymic output recovered
to 50% of the long-term thymic output for age, with recovery in thymic output
happening quickly, recovering from 10% to 90% output between 3 and 7 months

post HSCT. Following this recovery in thymic output, the mean thymic output

for age was estimated as 23% of the previously predicted output [36].

Table 3.2: Estimated parameter means with standard deviations, and random effect
variances with standard deviations.

Parameter Estimate s.d. Q s.d.
Ao Proportion theoretical thymic out- 0.227 0.0714 1.59 0.59
put [33] (cells/day)
do  Proportion expected loss (/day) 0.454 0.0912 1.67 0.382
po  Proportion expected proliferation (/day) 0.204 0.0234 0.294 0.113
Xo Initial concentration of T cells (cells/uL) 165 219 1.28 0.202
Ahatf Time to recovery for thymic output (days) 136 21.9 1.24 0.270
Arate Rate of recovery for thymic output 9.00 1.28  1.27 0.427
o Variance of the residual error 0.219 0.0164 — —

Parameter estimates and the random effect variances (2s) are found through fitting the
model to the model-building dataset with NLME modelling. The standard deviations
(s.d.) has been found through bootstrap using PsN 3.5.3 [124].
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Both diagnostic plots and changes in the Bayesian information criterion (BIC)
were used to assess the impact of removing the mechanistic elements from the
model. A substantial increase in BIC of 255 points resulted from the removal
of the post-HSCT delay to thymic output; an increase of 115 points was found
from the removal of the effects of competition for resources on proliferation and
loss; and an increase in BIC of 12.0 points resulted from the effects of age on
proliferation and loss. These increases, as well as changes in diagnostic plots,
demonstrate the necessity of these mechanistic components, and that they signi-

ficantly improve the ability of the model to describe the data.

3.3.2 Covariate analysis

In order to find what factors affected reconstitution, covariate analysis was car-
ried out using the stepwise covariate model-building (SCM) procedure. In the
forward search, for testing which covariates to include in the model a p-value
of p; < 0.01 was used, while in the backwards search for testing which of these
included covariates to retain, a p-value of p, <0.005 was used (see Section 2.3.3
in Chapter 2). The covariates tested are listed in Table 3.1 and these covariates
were tested on each of the parameters that were estimated in the model. The
included parameters and the size of their effects are given in Table 3.3, while the

the effect that these covariates have on the mean trajectory of a child of median

Table 3.3: Covariates included in the model for long-term CD4 reconstitution

Parameter | Covariate Effect size s.d.  p-value
Xy | Alemtuzumab -0.840 0.025 <« 0.001
Xo | Antithymocyte globulin -0.933 0.107 < 0.001
Xo | Acute GvHD 0.328 0.201 < 0.001
Ao | Leukaemia 1.26 0.442 < 0.001
po | No conditioning -0.907 0.022 < 0.001

The parameter for patients who had the respective covariate is multiplied by (1 +
Effect size). So an effect below 0 decreases the parameter for that covariate and an
effect greater than 0 increases that parameter for that covariate. The null hypothesis
is then that the effect size is zero.
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Figure 3.9: The effects of the significant covariates on CD4 reconstitution of a patient
of median age at the time of HSCT (37 months). A Effects of the conditioning drugs
alemtuzumab and ATG and acute GvHD on initial number of cells. B Effects of
leukaemia and having no conditioning on long-term reconstitution. The covariates
have been included through the SCM procedure. A typical individual is one who is not
in each of the covariate group listed.

age (37 months) are demonstrated in Figure 3.9.
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Effects of conditioning

Two conditioning drugs alemtuzumab and antithymocyte globulin (ATG) were
found to significantly decrease the concentration of CD4 cells at the time of trans-
plant. Patients who received neither of these drugs (n=151) had an estimated
mean initial CD4 concentration of 178 cells/ul, while patients receiving alemtu-
zumab (n=158) had an estimated mean of 30.6 cells/uL, a decrease of 83%, and
patients receiving ATG had an estimated mean of 8.4 cells/uL, a decreased of
95%. This decrease in initial concentration also resulted in reconstitution to any
fixed concentration being delayed by a few months (see Figure 3.9A).

Patients who received no pre-transplant conditioning were affected in a differ-
ent manner. As demonstrated in Figure 3.9B, while the initial CD4 concentration
was unaffected, having no conditioning was found to alter the reconstitution tra-
jectory by decreasing the expected long-term CD4 concentration. The model thus

predicts that these patients will have a sub-optimal long-term CD4 concentration.

Effects of leukaemia

The covariate analysis found that patients who had leukaemia (n = 95) had a
different reconstitution to those that had other diagnoses as shown in Figure 3.9B,
with long-term CD4 concentration found to be higher than that expected of a
healthy child. This difference was observed in both myeloid leukaemia patients
(n = 50) and lymphoblastic leukaemia patients (n = 45), with no significant

difference between these patients (p=0.23).

Effects of acute GuHD

Patients who had acute GVHD (n =102) were estimated to have a higher CD4
concentration at the time of the transplant with a 33% increase compared with
those with no reported GvHD. This meant that those patients were predicted by

the model to have a marginally earlier reconstitution than other patients.
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Figure 3.10: Diagnostic plots for the model of long-term CD4 reconstitution. A and B
give the CWRES against time and population prediction respectively, C and D give the
observed data against the individual-level and population-level predictions respectively.
Black lines give local regression curves.

3.3.3 Diagnostic plots

Diagnostic plots were used throughout the model building process to assess model
misspecification. The diagnostic plots for the structural and covariate model
are shown in Figure 3.10. As the plots of the conditionally weighted residuals
(CWRES) demonstrate, the residuals are roughly normally distributed with mean
0: they are evenly spread around 0 and more than 95% of them are within
+2. Furthermore, there is no apparent bias either with time after transplant
(Figure 3.10A) or with population prediction (Figure 3.10B), as demonstrated
by the local regression line, and so the residuals are independent. The plots of
the individual predictions and population level predictions against the observed
data in Figures 3.10C and 3.10D respectively also demonstrate that there is no
inherent bias or model mis-specification, with the individual prediction against

the observed data falling along the line of unity.

The prediction corrected visual predictive check (pcVPC) in Figure 3.11 was
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Figure 3.11: Prediction corrected visual predictive check for CD4 concentration recon-
stitution model. The grey dots give the observed data, with the corresponding median,
2.5th and 97.5th percentiles given by the filled and dashed black lines respectively. The
95% confidence intervals around the model-simulated median and percentiles are given
by the grey shaded regions.

performed in PsN version 3.5.3 [124]. 400 new datasets were simulated from the
observed data with the parameter estimates obtained from fitting the model to
the observed data. As demonstrated, the model captures both the central trend

in the observed data and the extent of the variability in the data. The VPC was

prediction corrected in order to account for differences caused by the covariates.

3.3.4 Predicting reconstitution in new patients

Having constructed the structural model and the covariate model, the aim was to
assess whether the model could be used to make predictions of the reconstitution
of new children undergoing HSCT. Using an individual patient’s covariates and
early observed data following the transplant (the first six months), the method de-

scribed in Section 3.2.5 was used to form predictions of the individual parameters
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Figure 3.12: Nine examples of predicted reconstitution where the model achieved a
good prediction, listed in age order. The circles are the data points that were used
to make the predictions, and the crosses are the data not used in forming predictions,
for comparison to the predictions. The line is the median prediction, with the green
shaded area giving the 90% confidence intervals. The blue line and shaded area are the
median and 90% confidence intervals of the expected CD4 concentration of a healthy
child of this age.

of each individual in the validation dataset given the population parameter estim-
ates and the variance-covariance (var-covar) matrix for the random effects found
from fitting the model to the model-building dataset. From these individual-level
parameter estimates and var-covar matrix, 400 sample trajectories were simu-
lated, giving a mean trajectory and confidence intervals for that individual. This
trajectory was then compared to the rest of that observed data for that individual
in order to assess the predictive ability of the model.

Good predictions were formed by the model in 61 of the patients (81%), with
the predicted confidence intervals covering over 75% of the observed data and
the trend in the CD4 reconstitution trajectory correctly identified. The model’s
predictions were largely similar in a further 8 patients (11%), with either the trend
in the observed data identified or the majority of the data within the confidence
intervals, but not both. In only 6 patients (8%) was the predicted reconstitution
trajectory substantially different from the observed data.

The nine examples from the validation dataset of good predictions shown
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Figure 3.13: Predicted trajectories of all patients in the validation dataset, listed in age
order. The circles are the data points that were used to make the predictions, and the
crosses are the data not used in forming predictions, for comparison to the predictions.
The line is the median prediction, with the green shaded area giving the 90% confidence
intervals. The blue line and shaded area are the median and 90% confidence intervals
of the expected CD4 concentration of a healthy child of this age.

in Figure 3.12 were chosen as patients with many observed data points and a

spread of ages and covariates. All the reconstitution predictions are shown in
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Figure 3.13. The predicted reconstitution trajectories vary widely between pa-
tients with various initial concentrations, delays to reconstitution and rates of
reconstitution. Whilst most patients are predicted to recover to close to the ex-
pected CD4 concentration for age, for some, such as patients 151, 118 and 17,
their median predicted concentration falls below this level while for others, such
as 102, the median rises above the expected concentration. Furthermore, by us-
ing a small number of early observed data, patients with the same covariates and
similar ages can have substantially different reconstitutions, as demonstrated by
patients 102 and 120. Finally, because the model accounts for the age-related
changes, it is able to predict accurately the slower reconstitution for older chil-
dren such as patient 130, who might have been thought to be at risk using a
non-modelling technique, but whose slow reconstitution to a normal level could

be expected, as is confirmed by the observed data.

3.4 Discussion

In this chapter, I describe the development of a mechanistic mathematical model
for CD4 T cell reconstitution following paediatric HSCT. The structural model
accounts for the changes in thymic output, loss and proliferation with age, homeo-
static mechanisms such as competition for resources and the impairment in thymic
output in the months following transplant. Including the age-related changes has
made it possible to fit the model to the raw data for CD4 concentration, thus
avoiding the need to alter the data to account for age. The model was however
simple enough to allow parameters to be estimated from observed CD4 T cell
concentration data. The model was then used to perform a covariate analysis.
The combination of the structural model and the covariate model has the ability
to form individualised predicted trajectories for long-term CD4 reconstitution,

providing the basis for a clinical decision support tool.
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The results of previous studies that measured CD4 concentrations at fixed
time points post HSCT and other studies that measure time taken from HSCT
to reach fixed CD4 concentrations both agree well with the output from the
model described here for a child of median age (37 months). At three months
and one year post HSCT, a reported median CD4 concentration in the range
of 100-150 cells/uL [100,101,104,125] and 500-1000 cells/ul [100,104,113] re-
spectively match the output from the model described here of 105 cells/uL and
984 cells/uL at three months and one year post HSCT respectively. Further,
a mean time from previous studies of 10.1 months (range 1.1-55.3 months) to
reach 500 cells/uL [109] matches the output from the model described here of
7.5 months for a median-aged child, ranging from 5.3 months to 14.3 months for
children aged 1 to 10 years.

Estimates for T cell lifespan from the model described here vary across age,
increasing from 130 days to 300 days for children aged 1 to 10 years, and to 550
days for a child aged 18 years. These estimates for cell lifespan agree well with the
deuterium and BrdU labelling studies that have been conducted more recently
and attempt to account for kinetic heterogeneity in the T cell population, finding
lifetime estimates between 222 and 611 days (range 167 to 1245) [21,22,126,127].

The absolute values of the function used here for the changes in thymic output
with age are uncertain due to a constant related to the length of the time-period
of Ki67 expression following cell division [33]. Recause recent studies have im-
plied that the actual thymic output could be as low as 10% of that predicted by
Bains et al. [22,128], and so in the model a scaling factor Ay is used. This allows
the absolute values of thymic output to be determined by the model, whilst re-
taining the theoretical shape of thymic ouput with age. The parameter estimate
found with this model gave a thymic output of 23% of the originally predicted
output [33], in agreement with the later work [22,128].

Studies of TREC analysis [117,119] and CD31 expression as a marker for re-
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cent thymic emigrants [100] have demonstrated that there is a delay of between
5 and 10 months after HSCT before thymic output recovers. This agrees well
with the model estimate of 7 months to recover to 90% of the production for age
expected by this model. This delay in thymic output has severe immune implica-
tions for patients as poor thymic output results both in low T cell concentrations
and poor diversity of T cell receptors, inhibiting the ability to fight infection.

The SCM procedure was used to test the available factors for inclusion in the
model, finding that the conditioning drugs alemtuzumab and ATG, having leuk-
aemia and acute GvHD status affected the reconstitution. Alemtuzumab and
ATG were found to reduce the mean initial CD4 concentration in the model.
This initial CD4 T cell concentration mostly reflects donor cells. These drugs are
given pre-transplant but have long half lives (15-21 days for alemtuzumab [129]
and 30 days for ATG [130]), which means they remain in the body long after
transplant. Because they deplete circulating lymphocytes, the reduction in ini-
tial concentration found through the model quantifies the extent of the depletion
of donor CD4 cells. Though the rate of reconstitution is unaffected, the model
predicts that this depletion results in delayed reconstitution to fixed CD4 con-
centrations, because of the reduced stem-cell independent reconstitution and the
lower starting point. This is in agreement with previous studies in both adults
and children in which alemtuzumab and ATG were associated with slower and
later reconstitution [125,131-133]. This analysis did not find a longer delay to re-
constitution from alemtuzumab as opposed to ATG, which was found in another
study [134]. This might be due to the quantity of patients that received ATG in
the model-building dataset being small.

In contrast to previous work which has found that reduced conditioning results
in increased CD4 concentrations [125,131-133], the model found that receiving
no pre-transplant conditioning resulted in reduced CD4 reconstitution. An ex-

planation could be that without the space created by pre-transplant ablation with
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conditioning, donor T cells and stem cells cannot expand as efficiently. This could
also explain the increased long-term CD4 concentrations found with leukaemia
patients, who are typically given full myeloablative pre-transplant conditioning
to eradicate disease, potentially resulting in more T cell space.

The association found with the model between acute GvHD incidence at raised
initial CD4 concentration agrees with previous studies in which T cell depleted
grafts were associated with decreased acute GvHD incidence [135-138].

In the observed data, patients who received stem cells derived from cord blood
(n=48) as opposed to peripheral blood or bone marrow had faster reconstitution
over the months following HSCT. Cord blood transplantation (CBT), however,
was not a significant covariate in this analysis, agreeing with Fernandes et al [139],
because the differences between these patients and the rest could be explained
through other covariates. Firstly alemtuzumab and ATG were given to a lower
proportion of CBT patients with 40 patients (83%) receiving neither as opposed
to 41% of the rest of the patients. Secondly CBT patients were usually younger
because of the small grafts available for CBT, with a median age of 1.5 years
compared to 3.6 years and 60% under two as opposed to 37% at the time of
transplant. Previous work has also demonstrated that the changes in reconsti-
tution following CBT can be explained either by age [109] or the omission of
ATG [140].

From the model-building dataset two year mortality could not be predicted,
which is unsurprising given that only 20 patients out of the 288 patients in the
dataset died from infection. Furthermore, of those patients some of the infections
would have been due to lack of innate immunity, leaving only a few for whom
low CD4 concentration would have been the cause thus further reducing the
possibility of detecting an effect.

A previously unused validation dataset was used to assess the predictive abil-

ity of the model. Predictions were formed on an individual basis using only the
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patient’s significant covariates and data up to six months following HSCT. Ac-
curate predictions were produced in 81% of cases and for up to three years post
HSCT. Predictions were based on the parameter means, the var-covar matrix of
the random effects and the size of the covariate effects, estimated from fitting
the model to the model-building dataset. The quality and quantitiy of the data
used in the model development and covariate analysis thus affects the accuracy of
the predictions and as more data become available, it is likely that the accuracy
could be further improved.

For each individual, parameter means and a var-covar matrix was formed,
from which trajectories and confidence intervals were simulated. As the number
of observations for that individual increases, the accuracy of the prediction will
increase. With few observations, the confidence intervals are wide but as more
observations are used, the predictions can be updated and the confidence intervals
narrow. With the validating dataset, the confidence intervals narrowed by 11%
by using observed data from the first 6 months rather than 3 months post HSCT,
and narrowed by a further 12% when using data from the first 12 months.

In conclusion, a mechanistic model has been developed for CD4 T cell re-
constitution following paediatric HSCT. Using biological prior knowledge of the
effects of age on model components has allowed factors that affect reconstitution
to be identified, and knowledge of competition for resources has allowed loss and
proliferation to be identified separately. The model’s predictive ability was also
validated on a separate dataset. To our knowledge, this is the first mechanistic
model to be used to form long-term predicted trajectories for the CD4 T cell
reconstitution in children following HSCT. These predictions can give clinicians
more information about the long-term recovery of the patient’s immune system,
and hence the potential need for a change in that patient’s treatment regimen.
Finally, as electronic hospital records become more accessible, it is possible that

a clinical tool could be developed that would automatically provide real-time up-
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dates of the patient’s expected long-term CD4 reconstitution trajectory following

HSCT each time a new observation is made.
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Chapter 4

Long-term CD4 T cell
reconstitution in HIV-infected
children starting antiretroviral

therapy

4.1 Introduction

Human immunodeficiency virus (HIV) infects cells that express the CD4 protein
on their cell surface, which include CD4 T cells, macrophages and dendritic cells.
It is a retrovirus, meaning that its genome is encoded in RNA. HIV uses gp120,
a protein with a high affinity for CD4, to bind to CD4+ cells, followed by gp41
to fuse the viral envelope into the cell membrane. The viral components then
enter the cell where the RNA is reverse-transcribed into double-stranded DNA.
This DNA integrates into the host cell’s DNA and hijacks the transcriptional
machinery of the infected cell to synthesise the necessary protein and RNA com-
ponents of the HIV virus. These components, having self-assembled into the HIV

virus, are released from the infected cell, re-entering the circulation where they
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can infect new cells.

In the first few weeks of disease progression, HIV is controlled by the adapt-
ive immune system through antibodies and cytotoxic killing by CD8 T cells, with
the initial decline in CD4 T cell concentrations reversed and HIV viral load in
the blood contained. Over many years, however, HIV causes a decline in CD4
T cell concentrations. Three major mechanisms for this decline have been pro-
posed. One mechanism is reduced T cell production due to damage either to
the bone marrow [141] or to the thymic epithelial space decreasing thymic out-
put [142-145]. Another is increased T cell loss due to increased T cell activation
and thus activation induced loss [146-148]. Finally, the third mechanism is an
altered T cell distribution between peripheral blood and secondary lymphoid or-
gans, due either to HIV-induced damage to the lymphoid structure [149-151] or
the retention of activated CD4 T cells in the lymph nodes for increased time [152].
A combination of these three mechanisms results in a cycle of CD4 T cell decline.
Damage to the bone marrow, lymphoid organs and thymus causes increased T
cell loss and decreased T cell production. The resulting decreased adaptive im-
mune response leads to increased pathogen burden including higher levels of HIV
and persistent infections, which in turn causes increased inflammation and hence
further damage to the lymphatic system, bone marrow and thymus [153]. If left
untreated the CD4 T cell concentration will eventually decline to the point where
the patient has acquired immune deficiency syndrome (AIDS), defined as a CD4
T cell concentration of lower than 200 cells/ul, and so cannot fight infection,
resulting in death.

Patients are given antiretroviral therapy (ART) in order to reduce viral loads,
thus decreasing the rate of progression towards AIDS by allowing the CD4 T
cell concentration to reconstitute. The most common ART drugs used are re-
verse transcriptase inhibitors, which prevent the process of viral RNA reverse-

transcribing into DNA and incorporating into the infected cell’s DNA. The two
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classes of these are nucleoside-analogue reverse transcriptase inhibitors (NRTIs)
such as zidovudine, lamivudine and abacavir and non-nucleoside reverse tran-
scriptase inhibitors (NNRTIs) such as efavirenz and nevirapine. NRTIs create
defective deoxynucleotides which lack a 3’-hydroxyl group on the deoxyribose
moiety and compete with the natural deoxynucelotides for incorporation into the
growing viral DNA and cause chain termination. NNRTIs interfere with the HIV
transcriptase enzyme required for viral DNA synthesis. The other common drugs
used are protease inhibitors such as ritonavir, lopinavir and nelfinavir, which in-
terfere with the enzymes that assemble new virus particles. There are also drugs
which inhibit various other parts of the HIV replication cycle, including cell entry
(fusion), integration and maturation.

With the suppression of HIV viral load, often to undetectable levels, fewer
CD4 T cells are infected by virus. Homeostatic mechanisms can then allow the
CD4 T cell concentration to recover. Furthermore, some of the mechanisms de-
scribed above that result in CD4 T cell decline might reverse, with evidence
suggesting CD4 T cell proliferation rates return to normal [154], thymic output
improves [142-145] and CD4 T cells return to circulation from the lymphoid or-
gans [155]. CD4 reconstitution is however often incomplete on ART for reasons
that are poorly understood, but are likely to be due to a combination of in-
complete recovery from effects of some of the mechanisms described above, and
continued reaction to the residual low-level HIV viral load.

The HIV virus is never completely eliminated by ART. The remaining HIV
has a very high mutation rate because reverse transcription has a low accuracy,
with the HIV mutation rate ~ 10~° mutations/base-pair/cycle, roughly one mil-
lion times more than that of DNA polymerases ~ 1079-107'% mutations/base-
pair/cycle [156]. Resistance to a particular ART drug or class of drugs there-
fore occurs frequently. To reduce the chances of resistance, drugs from different

classes are given in combination because mutations would be required that evade
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Figure 4.1: Percentage of mothers in middle- and low- income countries around the
world receiving ART to prevent mother to child transmission (PMTCT) of HIV. The
countries shaded grey (not applicable) are those for which the WHO have no data. The
countries shaded green are high-income countries in which usage is very high. From
the World Health Organisation [157].

multiple processes simultaneously. This is termed combination-ART (cART) or

highly active ART (HAART).

4.1.1 HIV in children

Whilst in adults HIV infection is usually through sexual contact, in children
it is usually through mother-to-child transmission in wutero, at birth or during
breastfeeding. Maternal ART can reduce this rate of transmission from the 15%
to 45% seen without intervention to 1.2% [158,159]. Of this remaining 1.2%
transmission, 65% is thought to occur in utero in the last six weeks of preg-
nancy [160]. Figure 4.1 shows that rates of usage of ART to prevent mother

to child HIV transmission is still low in many low- and middle-income countries.
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While HIV infection does not seem to affect pre-natal development [161], perinat-
ally HIV-infected children who were untreated had a poor prognosis, with about
1/4 developing AIDS by one year [160,161] and a mean age at death of 9.4 years
old [162].

With ART, children now survive well into adulthood. This survival and par-
ticularly the resulting longer times on treatment however brings its own problems.
On the one hand, multiple studies have found that the younger a patient is at the
start of ART, the greater the speed of the recovery and the higher the long-term
CD4 T cell concentration [163-170]. On the other hand, the longer they spend
on treatment, the more exposed they are to side-effects and long-term toxicit-
ies of the drugs, such as lipodystrophy, fatigue, psychiatric symptoms and heart
disease. Furthermore, the CD4 T cell concentration of patients receiving ART
do not fully reconstitute to the level expected of a healthy child [171,172] and
low CD4 T cell concentrations are associated with a higher tumour incidence
rate [173] and cardiovascular disease [174,175]. Thus with children potentially
living longer with reduced CD4 T cell concentrations, understanding what affects
the rate and extent of their immune reconstitution is very important.

Modelling, and in particular mechanistic modelling, has the ability to im-
prove this understanding. Because the CD4 concentration and HIV viral load are
coupled by their interactions, it is important to understand what affects the viral
load as part of understanding what affects the CD4 concentration; mechanistic
models make it possible to include these interactions. Furthermore, mechanistic
models offer the possibility of ascertaining which part of the immune system is af-
fected causing the CD4 concentration not to stage a full recovery on ART. While
an empirical model has been used to assess CD4 reconstitution in children on
ART [171,172] and mechanistic models developed for adults have been applied to
children [176] (see below), to our knowledge a mechanistic model that takes into

account age-related changes in the immune system has not yet been developed for
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HIV-infected children. A model of this form could be used to perform covariate
analysis to find the factors that affect HIV viral decline and CD4 reconstitution.
It could also be used in combination with pharmacokinetic models to inform
the expected effects of drugs on both viral load and CD4 concentration. This
could improve both the development of personalised medicine approaches with
individual dose-adjustments to minimise toxicity whilst maintaining CD4 con-
centrations and keeping the incidence of resistance low, and the development of

novel therapies such as new ART drugs and other therapies such as gene therapy.

4.1.2 Modelling the dynamics of the immune system and

HIV

The simplest modelling used to quantify the dynamics in HIV infected patients
starting ART is empirical modelling. For viral load, Ho et al [177] and Wei et
al [178] approximated viral decline on ART with an exponential decay. They
had to allow however for a time-lag before the decay started in order to fit this
model. For CD4 T cell reconstitution, empirical modelling has successfully been
applied in the paediatric context, although it required the adjustment of the
data to account for age, either using CD4 T cell z-scores [171] or the ratio of
the observed CD4 T cell concentration to that expected for a child of that age
at the time of the measurement [31,172]. The models for CD4 reconstitution
cannot easily incorporate information on HIV viral load and so lose information
that affects outcome such as drug efficacy, which is mainly inferred from viral
suppression. Furthermore, patients that did not fit the empirical model had to
be excluded [172]. Viral load information, where available, might have provided
some explanation as to the differences between these patients and those that did
fit the model.

In contrast to empirical models, mechanistic models can incorporate viral

load, CD4 concentration and their inter-dependence. Many models have been
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proposed, with various mechanistic variations, discussed below. At the most
basic level, CD4 T cells are infected by HIV and in turn produce more HIV.
Many modifications and complications have been proposed and tested in order to

explain both the short- and long-term dynamics of HIV and CD4 reconstitution.

The basic dynamic model

The simplest of the mechanistic models is that of Nowak et al [179] and Bon-
hoeffer et al [180]. In this model, there are three compartments: uninfected CD4
cells which can be infected by free HIV to become infected CD4 cells, and these
infected CD4 cells then produce more free HIV. They used this model to look at

the incidence of resistance to ART.

Splitting infected CD4 T cells

The earlier mechanistic models of McLean et al [181] and Perelson et al [182]
split the infected T cell pool into actively infected and latently infected T cell
populations. This was to represent mechanistically the split between T cells that
produce virus and those that are infected and do not. Funk et al [183] further
split the infected cells into persistently infected and defectively infected CD4
cells. These subsets represent very small percentages of the total infected cells,
and mechanistically represent the CD4 cells that emit small amounts of HIV and

survive for long time-periods, and cells in which the virus is defective respectively.

Splitting free virus

Another model of Perelson et al [184-186] split the free virus into infectious and
non-infectious virus. This was done to model the effect of ritonavir, a protease
inhibitor that renders the free virus produced non-infectious. Hence in the pres-
ence of ritonavir infected CD4 cells only produce non-infectious virus, which dies

at the same rate as the infectious virus, resulting in the decline in viral load.

Splitting the uninfected CDj T cells
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In the model of de Boer and Perelson [187], the uninfected CD4 T cells were split
into active and quiescent, resting, cells. The model aimed to represent the notion
that only activated cells could be infected by virus, and so these quiescent cells

could not be infected.

Homeostatic modelling
Another branch of mechanistic modeling involved developing models that in-
cluded homeostatic mechanisms for T cell production. Ribeiro et al [188] de-
veloped a model for T cell dynamics with two compartments, a resting and an
activated compartment. Cells can be activated from the resting compartment into
the activated compartment where they can proliferate, die or return to the rest-
ing compartment. Yates et al [189] adapted this model, with cells in the resting
compartment also able to die and cells in the active compartment proliferating as
they return to the resting compartment, and the rates density dependent. They
then extended the model to include firstly an HIV-infected T cell compartment
and finally an immune activated T cell compartment as well. They applied this
model to explain the long-term depletion of CD4 T cells in HIV infection.
Hapuarachchi et al [116] started with the simplest of the models for CD4
dynamics from Yates et al [189], but used different functions for the density
dependence of proliferation and death in the resting compartment to explain
competition for resources during homeostasis, as well as a quadratic function
for cell death in the activated compartment to model FaS-FaS ligand activation

induced fratricide [190].

Fitting mechanistic models to data

Unlike the empirical models, the mechanistic models were often written in order
to study the dynamics of the system, rather than to model data. As such, while
some of them compared the model output to observed data for HIV viral load as

validation, only Perelson et al [184] and Funk et al [183] attempted to estimate
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some parameters from data, using nonlinear regression analysis. This however
only worked where it was possible to find closed-form solutions. The rest of the
studies above, in particular with models where closed-form solutions were not
possible, fixed all parameters to literature values.

Recently studies have used nonlinear mixed effects modelling in order to im-
prove parameter identifiability while fitting these models to data. They have also
applied the models to both CD4 concentration and viral load data in parallel,
again to improve parameter identifiability. Early attempts to fit full-parameter
models of this kind to data used Bayesian approaches [191,192]. These were
however highly computationally expensive. More recently, maximum-likelihood
approaches have been used. Guedj et al [193] performed a full likelihood infer-
ence by adapting a Newton-like algorithm. They tested a simplified version of
the model of de Boer and Perelson [187] with four compartments: viral load, un-
infected active CD4 cells, uninfected quiescent CD4 cells and infected CD4 cells,
and were able to obtain parameter estimates. Prague et al [194,195] also used
the same system to form predictions of CD4 concentrations following changes in
ART.

Drylewicz et al [196] compared two models, fitting both to data using NLME,
the simpler of which has three compartments: viral load, uninfected CD4 cells
and infected CD4 cells. For the other, the infected cells were divided into active
infected and latent infected CD4 cells, where only the active proportion of the
infected CD4 cells can produce more virus. They found a better fit with the
model that splits the infected cells into active and latent CD4 cells.

Laveille et al [197] compared three of the previously proposed models, applying
each to the same dataset for HIV-infected adults and immune reconstitution.
They compared the basic dynamic model of Nowak et al [179] and Bonhoeffer et
al [180] to the model that splits uninfected CD4 cells into quiescent uninfected

and active uninfected CD4 cells of de Boer and Perelson [187] to the model that
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splits infected CD4 cells into active and latent CD4 cells of McLean et al [181] and
Perelson et al [182]. In comparing these variants, for all three the free virus is split
into infectious and non-infectious virus in the manner of Perelson et al [184-186].
Lavielle et al find that the model with the infected cells split into latent and
active provides the best fit to data as judged by Bayesian Information Criterion
(BIC), similarly to results found by Guedj et al [193].

Apart from the model of Haupuarachchi et al [116], none of the mechanistic
models account for the age-related changes in the immune system during immune
system development. Bouzza et al [176] applied the basic dynamic model to
paediatric data with no changes to the model to account for age. They did not
investigate any age-related effects and so it is not possible to tell whether their

results were biased with age.

Why alter the previous models?

Infected CD4 cells only represent a very small fraction of the total CD4 cells,
with the the mean observed in one study at 0.14% and the maximum observed at
1% [198]. With the parameter estimates found in the modelling of paediatric pa-
tients by Bouzza et al [176], the mean initial concentration of infected CD4 cells
is low at 9.3 cells/uL.. However, this still represents 3.8% of the initial CD4 T
cells, nearly four times the highest observed infected CD4 T cell proportion [198].
As such, it is questionable whether the infected cells compartments in these mod-
els are representing the mechanisms they intend to. In this chapter I therefore
simplify the models by removing the infected cells compartment.

The models described above assume that viral load follows almost entirely a
mono-phasic exponential decay, whereas current evidence suggests that it follows
a multi-phasic decline in the first few months after the start of ART [199]. Free
virus enters the blood stream when released from an infected cell, and so the first

phase of viral load decline is the result of declining viral production in activated
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infected CD4 cells, the second phase in partially activated CD4 T cells, macro-
phages and dendritic cells, and the third phase in resting memory CD4 T cells.
As such a model that allows for this multi-phasic decline would be preferable.
The models above also display oscillatory behaviour in certain circumstances
[179,180,182], particularly when viral load increases with the development of res-
istance. These oscillations cause a rapid decline in CD4 concentration on the
development of resistance. In the studies where these models have been applied
to data, there is little evidence that either these oscillations or the sharp decline
in CD4 concentration exist in vivo [183,184,193-195]. The data that I have do
not appear to support such oscillatory behaviour in viral load or CD4 concen-
tration. Furthermore, there is not the sharp decline in CD4 concentration that
results from the oscillations. The model is therefore altered to remove the oscil-
lations. Finally, since no previous model has included the effects of age-related
changes to the immune system into the models, I have constructed a new model
by adapting the previous models for HIV virus and CD4 concentration dynamics

and including the effects of age.

4.2 The data

The work in this chapter was conducted using two datasets: the Paediatric
European Network for the Treatment of AIDS (PENTA) 11 and the Antiretro-
viral Research for Watoto (ARROW) clinical trials. HIV-infected children were

studied in both trials.

4.2.1 PENTA 11

PENTA 11 was a randomised Phase II trial which recruited 109 HIV-infected
children from nine countries (France, Germany, Italy, Poland, Spain, Switzerland,

Thailand, USA, and the UK) between 2004 and 2006 [200,201]. The aim of the
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Figure 4.2: PENTA data for children in the PTI arm as they restart ART following
the PTI for (A) CD4 T cell reconstitution and (B) viral load. Each coloured line gives
the data for one individual’s response to ART. The black line gives a local regression
curve.

study was to ascertain whether planned treatment interruption (PTI) in ART
disadvantaged the children in terms of their immunology, virology or clinical
status. Children in the trail were randomised into continuous treatment (CT) or

PTI arms.
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Table 4.1: Breakdown of the demographics and the drugs used for the patients in the
PENTA dataset for HIV-infected children.

No % No %
Sex Age
Male 32 48 4—7 12 18
Female 34 52 7—10 26 39
Ethnicity 10—14 16 24
Asian/Thai 11 17 14— 12 18
Black African/other 19 29 Number of PTIs
Mixed black/white 2 3 1 36 55
Mulato 5 8 2 30 45
White 29 44 Reason for end of PTI
Country PTI 1
Germany 1 2 Reached end time 60 91
Spain 15 23 CD4 decline 4 6
France 3 5 Carer request 2 3
Ttaly 16 24 PTI 2
Poland 2 3 Reached end time 26 39
Switzerland 2 3 Viral load failure 2 3
Thailand 11 17 Other 2 3
UK/ROI 16 24
ART Drugs
Before PTI After PTI 1 After PTI 2
No % No % No %
Abacavir 17 26 24 36 14 21
Didanosine 18 27 13 20 6 9
Efavirenz 17 26 26 39 14 21
Fosamprenavir 0 0 7 11 4 6
Lamivudine 45 68 48 73 24 36
Lopinavir 11 17 16 24 8 12
Nelfinavir 12 18 3 5 0 0
Nevirapine 25 38 21 32 8 12
Ritonavir 3 ) 3 9 0 0
Stavudine 30 45 15 23 4 6
Tenofovir 0 0 2 3 0 0
Zalcitabine 1 2 0 0 0 0
Zidovudine 19 29 20 30 8 12

In order to enter the trial, children had to be aged 2-15 years old, be chron-
ically infected with HIV, have been on ART for longer than 24 weeks, and have
an undetectable HIV viral load (< 50 copies/ml). Children aged 2-6 years had
to have a CD4 T cell concentration above 30% of the expected CD4 T cell con-

centration of a healthy child of that age, and children aged 7 or over, above
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25% of the expected CD4 T cell concentration as well as a CD4 concentration
> 500 cells/pL [200,201].

During the trial, there were procedures in place to protect the children from
excessively low CD4 concentrations. In the children on PTI, ART was restarted
in children 2-6 years old if the CD4 concentration dropped below 20% of the
expected CD4, and in children 7 or over below 20% of the expected CD4 or less
than 350 cells/uL. Furthermore, no PTI exceeded 48 weeks in duration and only
children who had had a PTI duration of > 10 weeks during their first PTI and
had been back on ART for > 24 weeks could undertake a further PTI. Children
were followed for up to five years [200,201].

Of the 109 patients, 53 were randomised into the CT arm and 56 into the PTI
arm. The analysis of this chapter concerns the children in the PTT arm as patients
that restarted ART after a period of no therapy. The median age at restart of
ART was 9 years (range 2-16 years). Patients were followed for up to five years
after resumption of ART, and in the PTI arm, there were 787 measurements of
CD4 T cell concentration and 776 measurements of viral load of which 540 were
below the limit of quantification. There were two limits of quantification for viral
load (40 copies/mL and 80 copies/mL) depending on the assay used. Patient

demographics are shown in Table 4.1, and the data are shown in Figure 4.2.

4.2.2 ARROW

ARROW was an open-label randomised controlled clinical trial which enrolled
1206 HIV-infected children who were receiving ART for the first time at four
centres: three in Uganda and one in Zimbabwe [202]. Children aged between 3
months and 17 years were enrolled over an 18 month period between 2006 and
2008 and followed up for 31/2-5 years. ARROW had two main objectives: the first
was to assess whether ART can be used effectively and safely without monitoring

the effects of ART through regular blood tests; the second was to assess the long-
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Figure 4.3: ARROW data for (A) CD4 T cell reconstitution and (B) viral load for
children commencing ART. The coloured lines give the responses of individual children
to ART. The black line gives a local regression curve.

term impact of starting ART with four drugs from two classes, three NRTIs and
one NNRTIs, followed by maintenance with three drugs as opposed to continuous
treatment with the standard three drug regimen.

Before this trial, for children starting ART, standard practice was to per-

form laboratory tests every three to six months assessing viral load, immune
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Table 4.2: Breakdown of the demographics and the drugs used for the patients in the
ARROW dataset for HIV-infected children.

No % No %
Age Sex
0—2 239 20 Male 596 49
2—4 222 18 Female 610 51
4—7 219 18 Life Status
7—10 277 23 Alive 1150 95
10— 249 21 Dead 56 4.6
Centre Cause of death
Entebbe, Uganda 188 16 Def/prob HIV related 44 3.6
JCRC, Kampala, Uganda 318 26 Def/prob drug related 2 0.16
Harare, Zimbabwe 400 33 Uncertain HIV /drug related 2 0.16
PIDC, Mulago, Uganda 300 25 Unlikely HIV /drug related 2 0.16
Unknown 6 0.50
Randomisation
Drug Arm
A B C
Laboratory and clinical monitoring | 198 201 201
Clinical monitoring 199 203 204

Abbreviations: JCRC, Joint Clinical Research Centre; PIDC, Paediatric Infectious Dis-
eases Centre.

markers and ART side effects. This is an expensive process, and the benefits of
these tests to HIV-infected children had not been examined. The first part of
this study compared two arms of patients, one where patients received clinically
driven monitoring (CDM) and the other where patients received laboratory plus
clinical monitoring (LCM). In both arms, haematology and liver function tests
and measures of CD4 and CD8 T cell concentrations were performed regularly,
but the results were withheld in the CDM arm unless requested by the treat-
ing physician. Meanwhile the results were independently monitored by the Data
Monitoring Committee. The exception to this was haemoglobin results, which
were returned on all children at week 8.

For the second part of the trial, children were independently randomised to
three arms. The control arm A received three drugs, two NRTIs (lamivudine and

abacavir) and one NNRTI (nevirapine or efavirenz). Arms B and C received a
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fourth drug, the NRTT zidovudine for the first 36 weeks, after which they dropped
one of the drugs for the remainder of their first-line ART. Arm B stopped taking
zidovudine, while Arm C stopped taking the NNRTT.

While HIV viral loads were not assayed in real-time, specimens were stored
allowing retrospective testing. Clinical markers such as height, weight, WHO
disease staging and any adverse events were also recorded at clinic visits.

The trial found that there were no significant differences between the groups,
either for initiating treatment with four drugs rather than three or between clinic-
ally driven monitoring and laboratory plus clinical monitoring [202]. The authors
conclude that given the expensive laboratory testing does not improve outcome,
it is unnecessary and so more of the limited resources should be spent on ART
drugs, which would allow longer treatment in more individuals [202].

Because there were no significant differences found, in this analysis I pooled
the data from all the groups into one cohort for modelling. In the dataset there
are 20,989 measurements of CD4 concentration and 4795 measurements of viral
load of which 2760 are below the limit of quantification. A breakdown of the

demographics is given in Table 4.2, and the data is shown in Figure 4.3.

4.3 Methods

4.3.1 Model building

In order to model the responses of HIV-infected children to ART and its effect on
CD4 T cell reconstitution, I start with the basic dynamic model described above
by Nowak et al [179,180] and shown in Figure 4.4, as a simple model for viral
load and CD4 concentration co-dependence that had been applied to paediatric
data [176]. This model was then modified by removing the explicit compartment
for infected T cells in a similar manner to that described by Perelson et al [182],

by including the mechanistic elements for age and competition for resources as
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Figure 4.4: Schematic of the basic dynamic model for CD4 concentration and HIV
dynamics as developed by Nowak et al [179,180] and as applied to a paediatric dataset
by Bouzza et al [176]. Uninfected CD4 cells are produced at zero-order rate A. These
cells die at rate p and are infected by virus at rate 6 V' to become infected cells. Infected

cells die at rate k£ and produce virus at rate p. Virus then dies at rate c. The effect of
the ART drugs is to reduce the production of new virus p.

in the model for CD4 reconstitution in paediatric HSCT in Chapter 3, and by

allowing for multi-phasic decline in viral load. This process is described in more

detail below.

Basic dynamic model properties

The basic dynamic model as described above and shown in Figure 4.4 has three
compartments representing uninfected T cells X (¢), infected T cells I(¢) and viral
load V/(t). In this model, uninfected T cells are produced at a zero-order rate
A and then die at a first-order rate p, where u gives the difference between cell
death and cell proliferation. Uninfected cells can become infected at a virus
dependent first-order rate §. These infected cells can then die at first order rate
k. Virus is produced by infected cells at a first-order rate p, dependent on the

concentration of infected cells, and then dies at first-order rate c. The equations
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for the dynamics are given by,

d

SX=A—pX —5VX (4.1)
d
—I=0VX—-kI 4.2
d
—V =pl — . 4.
dtv pl—cV (4.3)

When using this model it is assumed that the system is in steady state before

any ART is given. As such, the model parameters are inter-related with,

)\ — /LXO
= ——— 4.4
Xo Vo (4.4)
k= M (4.5)
Iy
p=2 (4.6)
0

where Ty, Iy and Vj are the uninfected CD4, infected CD4 and viral load re-
spectively before the start of ART. This means that the model depends on six

parameters, A, i, ¢, Xo, Iy, Vo.

Dynamics with ART

The effect of the ART drugs is to prevent HIV virus being formed. As such, they
can be modelled on the viral load compartment as,

d
3V =PI(1 = Epug) —cV. (4.7)

where Ep.yg is between 0 and 1 and would be 1 for a fully effective drug and
0 for a fully ineffective drug. The pharmacodynamic models of Section 2.2.3
in Chapter 2 are often used to define Ep,,, based on drug concentration. In
this analysis, because ART is given continuously, it is possible to assume drug
concentration is continuous and as such treat Fp,,, as a parameter confined to

between 0 and 1.
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In the case of a fully effective drug, the dynamics become very simple. The
viral load no longer depends on the infected CD4 cells and can be solved to give
V = Vpe ®, and correspondingly the dynamics of the uninfected cells no longer
depend on the infected cells. The dynamics of infected cells therefore become

isolated, depending only on the initial concentration, .

Simplifying the basic dynamic model

If Eppyg is less than one, the system becomes more complicated, with inter-
dependence of all three compartments. However, the proportion of T cells in-
fected at any one time is very small (< 1% [198]). This means that the observed
data for CD4 T cell concentrations will largely be uninfected CD4 cells. Further-
more, because viral dynamics are very fast in comparison to CD4 dynamics, the
changes in viral load are largely driven by changes to the concentration of infected
cells. As a result the quasi-steady state approximation can be used to simplify
the model, removing the infected CD4 cell compartment and leaving a two com-
partment version of the model, using a similar method to that of Perelson et
al [182].

Because the dynamics of viral load are so dependant on the concentration of
infected CD4 cells, we can say that the viral load is in quasi-steady state with
infected CD4 cells. This means that in the time-frame of virus, infected cells are
at any instant effectively constant and the change in viral load with time with
constant infected CD4 cell concentration is 0,

dVv
_0 4,
|, = (48)

As a result, the (unmeasured) infected CD4 concentration can be defined in terms
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of the (measured) viral load,

C I()
I(t) =-V() = -V(t 4.9
(B) = V(t) =3 V(D) (4.9)
Substituting (4.9) into (4.2) gives,
Io dVv [O
—— =0XV —k— 4.1
Vo i 4 VOV, (4.10)

and by rearranging and using the relations for 0, Iy and p in (4.4) — (4.6), we get,

d Vo

—V=0—XV—-k 4.11
dtv I V V ( )
d (A=—pXo) kW

Sy XV = kV 112
@ XoVi (A — i Xo) (4.12)
d X

—V=—kV —-FkV. 4.13
dt Xo ( )

Including the effects of ART drugs gives us the model for viral dynamics,

d X
—V=k=V(1-F — 4.14
dtv k:XOV( brug) — kV, ( )

where the rate of the viral load dynamics is now dependent on k, the loss rate of

infected CD4 T cells.

Allowing for multi-phasic viral load decline

The decline in viral load on ART is thought to be multi-phasic, with the loss
rates of viral load decreasing as the infected CD4 cells that contain virus increas-
ingly become the longer-lived cell subsets [199]. This effect was modelled with a

sigmoidal function on the loss term such that viral load loss rates decline

_v_
> V+Vso
with viral load. This also has the effect of allowing viral load decline to stop with
some residual viral load remaining. So that the parameter V{ retains the same

meaning as the steady-state viral load before ART, we reparameterise (4.14) to
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Figure 4.5: Output from the simplified basic dynamic model, including allowing for
multi-phasic viral load loss. The model starts in steady state before the start of ART
on day 0, after which viral load falls rapidly and CD4 concentration reconstitutes slowly.
Xo =500, =5, 1= 0.05,Vp = 9000, k = 0.1, V5o = 100, Epyyg = 0.9.

give,
d EVe X V
—V=—r—-—V({1—Epp) —kV—--r. 4.15
at" =Vt vy X! (T B TV 419)
The equation for T cell concentration is
d A — [I,XO
—X=A—puX-0X h 0= ——F—. 4.16
gF 1 V., where XV (4.16)

The output from this model in Figure 4.5 shows that viral load declines to a
non-zero steady state and CD4 concentration increases at a much slower rate to

a steady state.

Development of resistance

As mentioned in Section 4.1, because the RNA transcription in HIV replication is
inexact, there is a very high mutation rate. As such, HIV often becomes resistant

to ART. Mechanisms for the development of resistance are complicated, but here
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Figure 4.6: Effects of the development of resistance in the simplified basic dynamic
model. The model starts in steady state before the start of ART on day 0, after which
viral load falls rapidly and CD4 concentration reconstitutes slowly. After a certain
amount of time, resistance to ART develops and Ep,,s decreases. Viral load therefore
increases fast and CD4 declines. With the model in this form, CD4 declines rapidly and
oscillations form. Xy = 500, A = 5, = 0.05,Vy = 9000,k = 0.1, V59 = 100, Epryg =
0.9, Tprug = 300, p = 20.
we use a very simple model for the development of resistance with the intention
of demonstrating the effects on the model dynamics.

In this model, the effects of resistance are simply to reduce the drug effect,

Eprg to zero at time tp with a time-dependent step function to produce the

following for Ep,,s the drug effect including resistance,

1— ER
E rug — Emax E i —ts1 4 | > 4.17
Drug ( R+ GXP[%] T 1) ( )

where tg is the time at which resistance to the drug with be %, FE.« is the
maximum drug effect before resistance, Fg is the residual drug effect after the
development of resistance, and p is the rate at which resistance develops.

The development of resistance has some unexpected effects in the model,

as demonstrated in Figure 4.6. The inter-dependence of viral load and CD4
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concentration causes oscillatory behaviour, as high CD4 concentrations cause
large growth in viral load, which in turn causes high death in CD4 concentration,
resulting in a decline in production of viral load and so on. Furthermore, viral load
spikes to quantities far higher than those observed before the commencement of
ART, and CD4 concentrations decline very sharply on the emergence of resistance.
These effects are observed in many of the previously proposed models [179,180,
182].

There is little evidence that either these oscillations or the sharp decline in
CD4 concentration exist in vivo [183,184,193-195] and the data available for this
analysis do not seem to support this model. While viral load can increase very
sharply on the emergence of resistance, it does not seem to rise to loads far higher
than that observed before the start of ART. Meanwhile, CD4 concentration then
tends to decline steadily rather than sharply as modelled here. Furthermore,
oscillatory dynamics do not seem to be observed, although the resolution in the
data may not be high enough to be certain that these do not exist.

I therefore alter the equation for viral load (4.15) to remove dependence on
CD4 concentration. A mechanistic explanation for the independence of virus
production from CD4 concentration is that the proportion of CD4 T cells that are
infected is so low, uninfected cells are in excess and viral production is therefore
not limited by the CD4 T cell concentration. The resulting model’s output is a
more realistic representation of the data. This gives the following equation for

viral load dynamics,

d kVy Vv
—V=——-V(1—Eppy) —kV——1. 4.18
while the equation for CD4 concentration remains,
d A — [I,XO
—X=A—puX-0X h 0= ——— 4.1
pF u V., where XV (4.19)
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Figure 4.7: Effects of the development of resistance following removal of the dependence
of viral load production of CD4 concentration. The model starts in steady state before
the start of ART on day 0, after which viral load falls rapidly and CD4 concentration
reconstitutes slowly. After a certain amount of time, resistance to ART develops and
Ep,ug decreases. Viral load therefore increases fast and CD4 declines. By removing the
dependance of viral load production on T cell concentration, oscillations are removed
and CD4 declines slowly. Xg = 500,A = 5,4 = 0.05,Vp = 9000,k = 0.1, V5 =
100, Epryg = 0.9, Tprye = 300, p = 20.

for which the dynamics are given in Figure 4.7. As can be seen, this produces

more realistic dynamics for the emergence of HIV resistance to ART.

Incorporation of age effects from HSCT model

In order to fit the model to paediatric data spanning multiple years, it is neces-
sary to account for the expected changes in the immune system with age. As
mentioned in Section 4.1, previous methods have involved accounting for age by
adjusting the data either to z-scores [171] or to the ratio of the measured to the ex-
pected [172]. In this chapter, I model the CD4 concentration without adjusting it
by using the mechanistic model developed in Chapter 3 to account for age-related
changes. Furthermore, by including the mechanistic elements for competition for

resources it is possible to identify both proliferation and loss rather than just net
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Figure 4.8: Schematic of the final model for CD4 concentration and HIV dynamics.
CD4 cells are produced at rate A, proliferate at rate p, and die at rate d, in the
absence of virus. In the presence of HIV, CD4 loss rate increased by § V. Meanwhile,
viral load is produced at rate p, and declines at rate k. The ART affects the rate of
production of virus p,.

loss.

The equations for the CD4 T cell concentration dynamics therefore become,

d
X =A A X +p X -0V X, (4.20)

where

WA ki (4.21)
n(c—7)

Pr = y(T)poeCp<li\)/(((3) (422)

dy = y(r)doe (T ) | (4.23)

with as before, y(7) the proportion of CD4 cells expressing Ki67 with age (Fig-
ure 3.4); V(1) the expected CD4 T cell concentration with age (Figure 1.2);
n = 0.52 the duration of Ki67 expression; and ¢ = 0.25 and v = 0.08 constants
related to the TREC content of CD4 cells as they leave the thymus. The para-
meter \g is included such that the proportion of the expected thymic output for
age is estimated but the shape of the changes with age are maintained. dy and
po give the rates of loss and proliferation when the CD4 concentration is that
expected of a healthy child of the same age, while ¢; and ¢, give the strength of

the effects of competition for resources on loss and proliferation respectively.
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The viral dynamics remain unchanged as,

d k Vg %4
V(1 — Epre) — kV .
( D g) V+%O

v:7
dt Vo + Vso

(4.24)

leaving ten parameters to be estimated, six for CD4 concentration: X the initial
concentration of T cells, \y proportion of the expected thymic output with age,
po and dy the proliferation and loss rates respectively when the concentration is
that of a healthy child, ¢, and ¢, the strength of the effects of competition for
resources on proliferation and loss respectively; and four for viral load: V{ the
initial viral load, k£ the rate of decline in viral load giving the loss rate of infected
CD4 T cells, V5o the viral load at which the decline in viral loss is half, and
Epryg the strength of the drug effect. A schematic of the final model is shown in
Figure 4.8.

4.3.2 Model fitting

Nonlinear mixed-effects (NLME) modelling, as outlined in Section 2.3.2 on Page 48,
was used to fit the model to the two datasets. The model-fitting was car-
ried out using NONMEM 7.3 [85], using the importance sampling expectation-
maximisation algorithm and the ADVAN13 (general nonlinear kinetics) sub-
routine [123]. The M3 method described in Section 2.3.4 was used to cope with

viral load data below the limit of quantification.

4.4 Results

4.4.1 Patients with full viral suppression

The first aim was to see whether it was possible to fit a model for CD4 recon-
stitution to data that have not been pre-adjusted for age through building the

effects of age directly into the model as described in Chapter 3. In order to sim-
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Figure 4.9: PENTA data for children restarting ART after PTI, (A) CD4 T cell re-
constitution and (B) viral load excluding patients without complete viral suppression.
Coloured lines give the responses of individual patients to ART. The black line gives a
local regression curve.

plify model-fitting in this initial analysis, viral load trajectories where the viral
load was not fully suppressed were excluded. This was defined as patients with
a measurement of viral load greater than 1000 copies/mL more than 100 days

after the start of ART. These excluded patients were a combination of patients
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Figure 4.10: ARROW data cut to first two years post ART commencement for (A)
CD4 T cell reconstitution and (B) viral load excluding patients without complete viral
suppression. Coloured lines give the responses of individual patients to ART. The black
line gives a local regression curve.

in whom the viral load did not decline, or it declined but only very slowly, or
the viral load rebounded at some later date due either to non-adherence or the
development of resistance to ART.

The resultant PENTA data after the exclusion of viral load trajectories without
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Table 4.3: Parameter estimates from fitting the model for children starting ART to
PENTA and ARROW datasets.

PENTA ARROW
Parameter Estimate Q) Estimate Q
Ao Proportion theoretical thymic out- 0.178 0.267 0.104 2.48
put [33] (cells/day)
dp  Proportion expected loss (/day) 0.545 281 0.462  2.17
po  Proportion expected proliferation (/day) 0.166  5.68 0.176  0.879
Xo  Initial concentration of T cells (cells/uL) 559 0.168 288  1.66
cd Strength of competition loss 1.21  1.09 1.18 0.631
Cp Strength of competition proliferation 2.57  1.05 1.02  0.420
Vo Initial viral load (copies/mL) 22,200 0.937 337,000 2.15
k Rate of loss for viral load (/day) 0.299 0.585 0.259 0.948
Vso  Viral load at decrease of cell loss (cop- 277 141 751 1.39
ies/mL)
Eppyg Effect of drug 0989 1.91 0.976  1.28
Oy Variance of the residual error CD4 con- 0.0420 — 0.153 —
centration
Oy Variance of the residual error viral load 1.48 — 0.661 —

Qs are the variances of random effects for that parameter.

full suppression are shown in Figure 4.9. In this dataset there are 721 measure-
ments of CD4 concentration and 525 measurements of HIV viral load, of which
388 are below the limit of quantification (BLQ).

Because the ARROW data are so rich, it was possible to cut the data to just
the first two years post ART commencement, which is the time period in which
there are the greatest changes in viral load and CD4 concentration. In addition,
there were 11 measurements of CD4 concentration that were out of the biologically
feasible range (> 6000 cells/uL) and as such are likely to be reporting errors;
these were therefore removed. The resultant ARROW data used for model-fitting
are shown in Figure 4.10. In these data there are 10,479 measurements of CD4
concentration and 1904 measurements of HIV viral load, of which 1118 are BLQ.

Parameter estimates from fitting the model to the PENTA and ARROW
datasets are given in Table 4.3. As can be seen, parameter estimates are mostly
consistent across the two datasets. There are however some differences, most

notably between the estimates for initial CD4 concentration and viral load. Initial

138



Chapter 4. Long-term CD/ reconstitution in HIV-infected children on ART

| |
A ——  Expected CD4 healthy child
——  Model CD4 mean
------ Observed CD4 loess 4
731000 ———  Model VL mean - 10
= 4 ez Observed VL loess -
0 _
8 ool ;
L 900 |\ )
= \ -10° &
i) s
® | <
= 800 — ) '%
3 F10° &
c eI —
8 700+ I
< ! >
g , - 10t
600 4’
T T T T T T
1 2 3 4
Time after start of ART (years)
| | | | |
B E Expected CD4 healthy child
Model CD4 mean
Observed CD4 loess
- Model VL mean - 10°
= 1200 — Observed VL loess Py
12} _|
g E
~ 1000 — - 10* 8
c 3
S\ 5
8 0 N S
s 800 —
c _ 3 e}
10 I
3 S
g —
g 600 E
3 T N T L - 102 2
© 400
T T T T T 10*
0.5 1.0 1.5 2.0

Time after start of ART (years)

Figure 4.11: Comparison of model output to the expected CD4 concentration of a
healthy child and to a local regression curve (LOESS) of the observed data for PENTA
(A) and ARROW (B).

CD4 concentrations are estimated to be much lower for the ARROW dataset and
the corresponding viral load is higher. The parameter defining the viral load at
which viral load decline is half also has a higher estimate for the ARROW data
over the PENTA data. The differences in initial viral load and CD4 concentration
are supported by the observed data.

The estimates for the thymic output were Ay of 18% and 10% of the previously
predicted thymic output [33] for PENTA and ARROW respectively. With this
model it was possible to estimate the strength of the competition for resources
unlike in the model in Chapter 3 where the effects of these parameters were inter-

related with the effects of the parameters for the delay to thymic output recovery
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Figure 4.12: Diagnostic plots for the PENTA and ARROW datasets. A and B give the
CWRES against time and population prediction respectively for PENTA, C and D give
the observed data against the individual-level and population-level predictions respect-
ively for PENTA. E and F give the CWRES against time and population prediction
respectively for ARROW, G and H give the observed data against the individual-level
and population-level predictions respectively for ARROW.

following HSCT. The parameter estimates found by the HIV dynamics model
were close to the value at which they were fixed for paediatric HSCT.

Comparisons of the model output for a child of median age at start of ART
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(9.6 years for PENTA and 6.0 years for ARROW) and a local regression curve of
the observed data are shown in Figure 4.11. As can be seen, for viral loads, the
model follows the observed data well at first, but as increasing amounts of the
data are BLQ, the model diverges. For CD4 concentrations, the predicted CD4
concentration is below that of the local regression curve.

This could be caused by biases in the observed data in which there is more data
for younger patients for whom the expected CD4 concentrations would be higher.
The decrease in observed CD4 concentrations at later times in the PENTA data
is likely to be due to a similar effect: only a few patients have data trajectories
that continue that long after the start of ART.

Diagnostic plots for PENTA and ARROW are shown in Figure 4.12. Because
of the high proportion of BLQ data in the viral load data, only the residuals
for CD4 concentration are informative and are shown here. As can be seen
from the plots of the residuals, for both PENTA and ARROW the residuals
are roughly normally distributed with mean 0, and there are no apparent biases
with time or population prediction demonstrating that they are independent.
There are however a few very low residuals for the ARROW data. This could
be due to further mis-recorded observations — mistaken observations of low CD4
concentration are hard to distinguish from genuine observations. The plots of
observed against individual and population predictions also demonstrate that
there are no obvious biases in the data.

The visual predictive checks (VPCs) for the PENTA data in Figures 4.13A
and B demonstrate that data simulated from the model matches the observed
data well. In particular, the model captures the dynamics of the reconstitution
as well as its variability for CD4 reconstitution, and for the viral load it captures
the expected proportions of measurements that are BLQ.

The VPCs for the ARROW data in Figure 4.13C and D also mostly match

the observed data well. The median of the simulated data for CD4 concentration
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Figure 4.13: Visual predictive checks. A PENTA CD4 concentration; B PENTA viral
load. C ARROW CD4 concentration; D ARROW viral load. The blue dots give the
observed data, with the corresponding median, 2.5th and 97.5th percentiles given by the
filled and dashed red dashed lines respectively. The 95% confidence intervals around the
model-simulated median and percentiles are given by the red and blue shaded regions
respectively. In the BLQ plot, the observed proportion of measurements that were BLQ
is given by the red line, while the blue shaded area gives the 95% confidence interval
of the model-simulated BLQ data.

matches the observed data, and while the long-term concentrations match, the

model does not capture the variability in the initial concentrations correctly,

overpredicting both the minimum and the maximum of the initial concentrations.
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Figure 4.14: Histograms of (A) the initial CD4 concentration in the observed data on a
log scale and (B) the model-output random effect of X, the initial CD4 concentration
compared to a normal distribution, demonstrating that a lognormal assumption was
inaccurate.

This could be due to the initial concentrations not being log-nomally distributed,
as is assumed in the model (see Figure 4.14). However, the model-simulated data

for viral load captures the median of the observed data and the variability as well

as the proportion of measurements that were BLQ.

4.4.2 Patients with viral load rebound

Viral loads rebound either when a patient develops resistance to ART or due to
non-adherence to the ART. The patient’s regimen may then be changed or the
patient may adhere again and viral load may fall as a result, although if the CD4
concentration is largely unaffected, then the regimen may not be altered.

Out of the ARROW dataset, 261 patients did not maintain full suppression
and had a measurement of viral load exceeding 1000 copies/mL more than 100
days after the start of ART. Because the aim of this section is to model the

development of resistance, only patients for whom there were more than four
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Figure 4.15: Viral load profiles of patients that do not have full suppression of viral
load, split by visual inspection into categories of viral load suppression.
measurements of viral load in the dataset were considered in order to allow cat-
egorisation. This left 148 patients who were then categorised according to the
shape of their viral load profile (see Figure 4.15). For 57 patients, the viral load
after initially falling rebounded and stayed high; for 48 patients, the viral load
after initially falling rebounded temporarily, with some patients having a second
rebound as well; for 28 patients their viral load decreased only slowly under ART,
in contrast to the fast suppression seen in the majority of patients. The remaining
15 patients had viral load profiles that could not be categorised.

In order to assess the ability of the model to reflect the rebound in viral load
due to the development of resistance to ART, the 57 patients were modelled who
had a viral load profile where the viral load initially fell but then rebounded and
remained high for the rest of the time course. In order to capture the development
of resistance rather than just the initial reconstitution, patients were modelled for
the full time-course of data available, up to five years after the start of ART. In

this subset of data, there were 1011 observations of CD4 concentration, and 413
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measurements for viral load of which 114 were BLQ. The patients had a mean of
18 measurements of CD4 concentration and 7 measurements for viral load in this
time-course. The children in this subset of the data had a median age at start of
ART of three years old.

The model for the development of resistance in Section 4.3.1 was used,

1 — By
Eorue = B | B+ ———8 | 4.25
Drug ( R+exp[tptR]+1> ( )

where FE.. is the drug effect before the development of resistance, Egr is the
residual drug effect after the development of resistance, tz is the time at which
the drug effect is 50% of the way between Ey,.x and Ep,,, and p is the rate at
which resistance develops. In order to fit the model, parameter estimates from
fitting the model to the whole dataset for viral load and CD4 dynamics were used
and fixed. The three parameters related to the development of resistance were
then estimated along with their random effects using the importance sampling
algorithm.

The parameter estimates of these three parameters and their random effect
variances are given in Table 4.4. For those patients who did develop resistance, the
mean time to the development of resistance was 13 months after the start of ART,
and according to the model the development of resistance was on average fast,
taking 1 month for the ART to go from 90% to 10% effective. When resistance

developed, there was very little residual drug effect, with on average just a 4.5%

Table 4.4: Parameter estimates for the development of resistance in a subset of 57
ARROW patients.

ARROW
Parameter Estimate Q
tr  Time after ART start at development of resistance (days) 406  0.798
p Rate of the development of resistance (days) 592  2.54
Er  Residual drug effect after development of resistance 0.0447 0.764

Qs are the variances of random effects for that parameter.
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Figure 4.16: Comparison of observed data and model output for patients who develop
resistance in the ARROW dataset. Red lines give the model output, while blue circles
give the observed data. A gives the plots for viral load, B gives the corresponding plots
for CD4 concentration.

reduction from the pre-ART rate of virus production expected.

Plots in Figure 4.16 give a comparison for each individual of their observed
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data and the model output for both viral load and CD4 concentration. As can
be seen, the model reflects the data well. For viral load, it manages to pick up
the differences in the trajectories from individuals who develop resistance early
to those that develop it late. Because of the relatively low resolution in the
data, with measurements taken at large time gaps, it was not possible for many
patients to determine the exact time at which resistance developed. For the
corresponding CD4 concentrations, the model captures first the reconstitution in
CD4 concentration and then the decrease in CD4 concentration as resistance to

ART develops and viral load increases.

4.4.3 Covariate analysis

In order to find the factors that affect both viral load decline and the CD4 recon-
stitution, covariate analysis was performed using the stepwise covariate model-
building (SCM) procedure. In the forward search for testing which covariates

to include in the model a p-value of p; < 0.01 was used, while in the back-

Table 4.5: Covariates included in the model for PENTA and ARROW datasets.

Parameter | Covariate Effect size  p-value

Xo | ART age -0.805 <« 0.001

~ Xo | Zidovudine 0.195 0.002

H po | Nevirapine 3.00 < 0.001

% ¢p | Lamivudine 0.411 <« 0.001

k | Efavirenz 1.04 <« 0.001

V5o | Zidovudine -0.836 <« 0.001

Xo | ART age -1.10 <« 0.001

Xy | Treatment centre: < 0.001
= Harare, Zimbabwe of
8 JCRC, Kampala, Uganda 0.221
o PIDC, Mulago,Uganda 0.0937
Entebbe, Uganda 0.599

Ao | Died by end of trial -0.983 <« 0.001

For categorical covariates, the parameter for patients who had the respective covariate
is multiplied by (1 + Effect size). So an effect below 0 decreases the parameter and
an effect greater than 0 increases the parameter for that covariate. For continuous
covariates, the parameter is multiplied by (1 + Effect size) x ART age - Median ART age

Maximum ART age
The null hypothesis is then that the effect size is zero.  Typical individual.
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Figure 4.17: Age effects on the initial concentration of CD4 T cells Xy, plotted for the
range of ages for which there were data in each dataset. The differences between the
ARROW and PENTA data are due to differences in the parameter estimates for X
between the datasets.

wards search for testing which of these included covariates to retain, a p-value of
po < 0.005 was used. The covariates tested are listed in Table 4.1 for the PENTA
data and in Table 4.2 for the ARROW data and these covariates were tested on

each of the parameters that were estimated in the model. The covariates that

were included are shown in Table 4.5.

Age effects on X

For both models, the initial concentration of T cells was found to be negatively
correlated with age (see Figure 4.17). This is not surprising, given that CD4
concentrations are expected to fall across childhood. In both the PENTA and

the ARROW data, age did not correlate with any other parameter.

PENTA data

For the PENTA data, the four factors that were associated with changes to the
dynamics were ART drugs (see Figure 4.18 and Table 4.5). Two were ART
drugs given before the beginning of the PTI: zidovudine (ZDV) and nevirapine
(NVP). The others were those given after the PTI, during viral load decline

and CD4 reconstitution: efavirenz (EFZ) and lamivudine (3TC). Zidovidine is
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Figure 4.18: Effects of the factors that affect (A) CD4 concentration and (B) viral
load on restarting ART in the PENTA data. Abbreviations: 3TC: lamivudine; ZDV:
zidovudine; NVP: nevirapine; EFZ: efavirenz.

an NRTI, and was associated with increased CD4 at the end of the PTI and a
small decrease in viral load after the restart of ART. Nevirapine is an NNRTI
and was associated with better CD4 reconstitution following the restart of ART.
Efavirenz is an NNRTI and was asoicatied with faster viral load decline in the
weeks following the start of ART. Lamivudine is an NRTI and was associated

with poorer CD4 reconstitution following the restart of ART.
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Figure 4.19: Effets of the factors that affect CD4 concentration on starting ART in the
ARROW data. (A) The centre at which they were enrolled and (B) whether they were
alive at the end of the trial.

ARROW data

For the ARROW data, the two factors that affected the dynamics were the centre
at which the child was enrolled and whether or not they were alive at the end
of the study (see Figure 4.19 and Table 4.5). The model found an association
between the initial concentration of CD4 T cells and the centre at which they
were enrolled, with patients at the centre in Entebbe, Uganda having a higher
concentration than those at the other three centres. The patients that had died
by the end of the trial (n=56) were found by the model to have on average a much

reduced thymic output, resulting in a very low long-term CD4 concentration, with
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Figure 4.20: Effects of the treatment centre on time at which viral load rebounds in the

ARROW data due to either the development of resistance to ART or non-adherence.

the concentration barely increasing from that when they started ART.

Development of resistance in ARROW data

Looking at the development of resistance in the ARROW data, the centre at
which the child was treated and seen was found to affect the time at which the
viral load rebounded (see Figure 4.20). As can be seen, the viral load declines

and increases at the same rate for each centre, but it increases at a different time

for each centre.

4.5 Discussion

In this chapter, I have developed a new mechanistic model for the dynamics of
CD4 reconstitution and viral load decline in HIV-infected children starting ART.
The model combines a simplified version of a previous model for HIV dynamics
with the age and competition effects from the model in Chapter 3 for long-term
CD4 reconstitution following paediatric HSCT. This allows the model to be fitted
to datasets of paediatric patients without having to adjust the data to account

for age.

The model was fitted to two datasets, from two clinical trials, PENTA and
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ARROW. While most of the parameter estimates obtained from fitting the mod-
els were similar between the datasets, some parameters differed substantially.
In particular, the viral loads were found to be higher and CD4 concentrations
lower at the start of ART in the ARROW dataset. The differences between the
parameter estimates for the datasets are sensible both biologically and due to
the different structures of the two trials. Biologically, patients with higher viral
loads would be expected to have lower CD4 concentrations. Structurally PENTA
is a planned treatment interruption trial with children closely monitored for the
re-start of ART whereas the children in ARROW are receiving treatment for the
first time. Furthermore, the children in ARROW are from less developed coun-
tries and as such potentially have not had access to the same standard of care as
the patients in PENTA.

The inverse of the rate of loss of CD4 concentration can be used to find the
cell lifespan. The parameter estimates implied a CD4 T cell lifetime of 196 days
for a child of the median age at ART for the ARROW dataset (6 years old), with
a range from 120 days for a 1 year old to 620 days for an 18 year old. Similarly to
the model of CD4 reconstitution following HSCT, these estimates agree well with
the experimental evidence from the deuterium and BrdU labelling studies that
have taken into account kinetic heterogeneity in the T cell population, finding
lifetime estimates between 222 and 611 days (range 167 to 1245) [21,22,126,127].

Because the viral load is in quasi-steady state with infected CD4 T cells, the
rate of decline of viral load gives the rate of decline of infected CD4 T cells. The
estimates for the rate of loss of viral load &k therefore implies an average life-
time of infected CD4 T cells of 3.2 days and 3.9 days for PENTA and ARROW
respectively. Previous studies have estimated the lifetime of infected CD4 T cells
at around 3 days [184,185,196,197], in agreement with the parameter estimates
from this model.

The inclusion of a viral-load-dependant sigmoidal function on the rate of loss
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of viral load allows the decline in viral load to be multi-phasic. It also means that
viral load plateaus at a residual low level rather than continuing asymptotically
towards zero. This means that resistance can develop more quickly than would
otherwise be possible from the model. The residual low level is below the limit of
quantification, so it is not possible to determine experimentally where this level
might actually be.

The model found that the CD4 concentration for age does not on average
return to the level of a healthy child, with the long-term concentration on average
75% of that expected. This is in agreement with other analyses of both the
datasets [172,201] and other datasets [171], and could have major implications
for the health of the children’s immune systems.

The model has been applied to 57 patients from the ARROW dataset that
developed resistance to ART. These patients were chosen as having had an initial
decrease in viral load that then increased and remained high. The model was able
to match the data well for the combination of viral load and CD4 concentration,
capturing the time at which resistance developed. The accuracy of this time
estimate however is dependent on the resolution in the data. From the observed
data, resistance appears to develop rapidly with very few observations made where
resistance is partial. Resistance can therefore usually only be estimated to have
developed between two time points and as such the accuracy of the time at which
resistance develops depends on the frequency of the measurements of viral load.
The model for resistance allows for further analysis of the factors that affect the
timing of the development of resistance.

Covariate analysis was performed to find what factors significantly alter either
the viral load or the CD4 reconstitution profiles following the start of ART. For
both datasets, age at the start of ART affected the initial concentration of CD4
T cells. This is to be expected partly because the CD4 concentration is expected

to decline with age in healthy children and partly because older children will have
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been infected with HIV for longer. In this analysis, a linear correlation was tested
between age at ART and CD4 concentration. While an exponential decay could
have better extrapolation properties, it was not tested during covariate analysis
in order to simplify the covariate analysis. Age was not found to be a significant
covariate with any other parameter in the model, which implies that the model
has managed to account for age-related changes of CD4 concentration. Analysis
of this ARROW data [172] and of a different cohort of children [171] using CD4
z-scores to account for age related differences found that age affected not only the
initial CD4 concentration in agreement with this analysis but also the long-term
concentration, an effect we did not observe here.

For the PENTA data, significant differences in CD4 reconstitution and viral
load were found with four of the ART drugs that were given: two NRTIs, zidovud-
ine and lamivudine, and two NNRTTs, nevirapine and efavirenz. Patients that had
received zidovudine before the PTI appeared to fare much better over the PTI,
with a higher CD4 concentration at the re-start of ART. Their viral load also fell
to a lower concentration in the ensuing weeks. Patients that received nevirapine
pre-PTI also fared better after the PTI, with increased CD4 concentrations. In
contrast, those patients that received lamivudine post PTI had decreased CD4
reconstitution in the weeks that followed the start of ART. Efavirenz was asso-
ciated with an increased rate of loss in viral load, which resulted in a faster viral
load decline following the start of ART. There were however only 56 trajectories
for patients following PTI in this analysis, so while this demonstrates that the
model can be used to find what affects reconstitution, these results should be
taken with caution and it would require a larger dataset to have full confidence
in them.

For the ARROW data, significant differences were found between the initial
CD4 concentrations of patients that were enrolled at different centres. There was

no difference found between the viral loads of these patients. In the covariate
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analysis presented here, an association was also found between decreased thymic
output, and a resultant significant decrease in long-term CD4 concentration in
the patients that died before the end of the study. This effect is supported by the
observed data (mean CD4 concentration at 2 yrs post start of ART for patients
that survive to end of trial is 900 cells/uL in comparison to 200 cells/uL for those
that do not), and agrees with the previous analysis of this data, which found that
patients who had a non-asymptotic (i.e. flat) profile following the start of ART
were more likely to have worse disease progression than those who displayed an
asymptotic recovery [172].

Analysis of the 57 patients that had some sort of rebound in their viral load
following an initial increase found that the centre at which the patient was treated
appeared to significantly affect the time at which this rebound happened. The re-
bound could happen for three major reasons: the development of resistance to the
drug combination that the patient is receiving, non-adherence to the drug protocol
that the patient has been set, or a combination of the two with non-adherence
raising the risk of the development of resistance. Given that the patients in the
centres received similar combinations of drugs and that the drug combinations
do not seem to have affected outcome, it seems that the likeliest cause of these
differences is differences in adherence levels of the patients. It would be interest-
ing to look into this further to see whether the centres have different strategies
to promote adherence.

In this chapter, I have successfully simplified and adapted a previous model
for the dynamics of HIV and CD4 concentration by removing the infected CD4
cells compartment, allowing for the multi-phasic nature of viral load decline,
including the effects of age-related immune development, and including the effects
of competition for resources. This model was successfully applied to two different
datasets, finding parameter values that were consistent across the datasets and

with the previous applications of similar models. The model was then further
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extended to model the viral load rebound due to either non-adherence or the
development of resistance. The model was used to perform covariate analysis to
find which factors affect the viral load decline or the CD4 reconstitution in both
datasets or the development of resistance in the ARROW dataset. While more
work is required to ascertain the nature of these covariate effects, it is clear that
the model can be used to interrogate a dataset and find useful information about

what affects the recovery of children following the start of ART.
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Chapter 5

A global competition model for T

cell homeostasis

5.1 Introduction

In this chapter, I present a stochastic global clonal competition model for T cell
homeostasis, on which I have been collaborating with Grant Lythe, University of
Leeds.

T cell receptors (TCRs) are antigen specific, and it is this specificity that
allows T cells to fight pathogens effectively. Each T cell will express one type
of TCR, with about 30,000 TCRs per cell [203]. As discussed in Section 1.5, T
cell receptors have a vast potential diversity of forms. Gene rearrangement in
the thymus has the potential to produce more than 10 different TCRs [204],
although it is reckoned that the human T cell receptor repertoire actually has
fewer than 108 different TCR clones in the body at any one time [205]. Because
of specificity, this high diversity is required to enable T cells to recognise as many
different pathogens as possible. TCRs, however, recognise peptides up to around
14 amino acids long when presented on MHC. As such, given there are 20 amino

acids involved in protein formation, there are more than 10'® such peptides that
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could be presented to T cells by antigen presenting cells (APCs) [204,205]. Thus
in order to be able to recognise all peptides, TCRs must be cross-reactive and
able to recognise multiple peptide-MHC combinations [206,207].

T cells with the same TCR can be grouped together into clonotypes. Whereas
all T cells interactions with cytokines are general and non-specific, interactions
with different sp-MHC combinations are specific to particular TCR clonotypes
according to some interaction matrix. T cells compete with each other for these
interactions with resources to survive and proliferate [29] and the resulting inter-
clonotype competition drives the observed diversity of the T cell repertoire [27,28].
While a more complex model has been developed that considers competition for
resources in the presence of a full sp-MHC interaction matrix [208], in this chapter
we consider competition for non-specific resources such as cytokines.

This “Global” stochastic competition model can be used to study clonotype
dynamics and the diversity and survival of TCR clonotypes. With the model
in this form, all T cells compete equally for the same resources, which has two
advantages. Firstly, it is computationally much less expensive, which means nu-
merical results can be simulated for much greater time spans and with many more
clonotypes, thus modelling a system much closer in scale to a human repertoire
and offering greater insights. Secondly because it is simpler, it is mathematically
tractable, which means analytical results can be found. This in turn allows the
results to be scaled to a full-sized system. Some results from this work were also

applicable to the more complex model [208].

5.2 The model

All T cells compete globally for a central stimulus which represents the total
pool of resources. It is assumed that this pool of resources is of finite size and

that the amount of resource does not change either with time or with the T cell
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Figure 5.1: Schematic of the model for global competition between TCR clonotypes.
The T cell pool with n(t) T cells is split into N clonotypes with clonotype ¢ having n;
T cells. A cell can then die or compete for resource to proliferate so that the number of
cells in a clonotype can increase by one with a probability 7 or decrease by one with
probability un;. New clonotypes with ng cells per clonotype are be produced at rate 6.
If the number of cells in a clonotype reaches zero, that clonoype is extinct. One such
event happens per time step, and time between steps in incremented by At, where At
is exponentially distributed according to the rates of the dynamics.

population. T cells then compete equally for this constant stimulus « in order to
divide. The death rate is equal for each T cell in the population and is given by
(t, the probability per unit time of dying. For the whole population of cells, the

birth rate is then v and the death rate is un(t) where n(t) is the total number of

T cells with time ¢. This can be written as,

Alitlr_rgo At 'Pn(t+ At) —n(t) =1 =+  and, (5.1)
Alilllo At 'Pn(t + At) — n(t) = —1] = pn(t). (5.2)

The T cell pool n(t) is split into N(t) clonotypes, labelled by i, where each
clonotype represents a group of cells with the same TCR (see Figure 5.1 for a
model schematic). The number of T cells in each clonotype n;(t) is an integer
> (0. The system starts with Ny clonotypes with ng cells per clonotype. Each T
cell has equal probability per unit time of dying u and thus the death rate for the
cells in one clonotype p;(t) = pn;(t). T cells compete equally for resource v such

that the birth rate for each cell is % and the birthrate for cells in one clonotype
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)\Z(t> = %t()t)v or,

\i(t) = Alil—r}lo At 'Plni(t + At) — ny(t) = 1] = 77;((;)) and, (5.3)
wi(t) = Alir_rgo At 1P (t + At) — ny(t) = —1] = uny(t). (5.4)

If the number of cells in a clonotype reaches zero that clonotype becomes extinct,
so if n;(t;) = 0 then n;(t > t1) = 0 for all ¢ > ¢;.

Furthermore, the activity of the thymus is modelled through new clonotypes
entering the system with probability per unit time . When new T cells enter the
circulation from the thymus they have usually undergone a few rounds of division
before leaving the thymus. The new clonotypes that enter the system therefore
have ng cells per clonotype, where ny is usually in the range of two to ten cells.

Numerical simulations from the model use the Gillespie algorithm to track the
integer number of T cells in each clonotype as they decrease or increase through
cell death or division, and new clonotypes are produced by the thymus. At each
step of the algorithm, one of three events can happen: a cell in a clonotype
divides, a cell in a clonotype dies or a new clonotype is produced by the thymus.
Time is then increased before the next step by an amount At distributed At ~
exp(1/S) where S is the sum of the rates of the dynamics S = v + pn + 0.
Numerical simulations have also been carried out using a 7-leaping algorithm as
an approximation of the Gillespie algorithm. In the 7-leaping algorithm, time is
incremented by At and the number of events (cell death, cell division, clonotype
birth) is Poisson distributed according to the rates p, v and 6. The 7-leaping
algorithm has the advantage of being less computationally expensive, allowing the
simulation of larger systems in shorter periods of time. Numerical simulations

are then compared to analytical solutions.
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Figure 5.2: Total number of T cells with time from numerical simulation, demonstrating
that the system heads towards an equilibrium from three different starting points.
The equilibrium number of T cells is given by Eq (5.6). p = 1.0, v = 2,000,000,
Ny = 100,000.

5.3 Results

5.3.1 Without thymic output

In the first instance, we look at the results from the model in the simplest situ-
ation, where there is no thymic output of new clonotypes so that § = 0. This can
be thought of as the situation where the thymus is damaged, such as following
HSCT, or where it has been removed. The model then depends on four paramet-
ers, the stimulus v the death rate p, and the two parameters giving the initial
set-up of the system: the initial number of clonotypes Ny and the initial number

of cells per clonotype nyg.

Number of T cells

Although the numbers of T cells will fluctuate randomly due to the stochasticity

in the model, the mean total number of T cells will reach a homeostatic steady
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state, with this steady state dependent on the stimulus v and the death rate pu.
If we define the mean total number of T cells as # = IE(n(t)) then in the absence

of any T cell production from the thymus,

d

L= (5.5)

and thus in steady state, as t — oo, the mean total number of T cells is constant

and given by the ratio of stimulus to death rate,

v
T — —. 5.6
; (5.6

Figure 5.2 demonstrates that an equilibrium level of T cells is reached from three
different starting positions and that this steady state is indeed independent of

the initial number of T cells.

Number of clonotypes

The number of clonotypes however does not have a steady-state number. Even
when the total number of T cells is in steady state, the number of T cells in each
clonotype will be fluctuating randomly, and as a result, the number of T cells in
a clonotype can reach zero, resulting in the clonotype becoming extinct. Because
of this extinction, the number of clonotypes N(t) can only be a non-increasing
function with time.

In order to find an analytic solution for the number of clonotypes with time,
we look at a single clonotype and we take the situation where the rate of stimulus

is much greater than the death rate, v > p. We can therefore make the approx-

imation that the system is close to its steady state, such that n(t) ~ x(t) = 2,
and so,
ni(t)
Ai(t) = v—75 = pni(t). (5.7)

162



Chapter 5. A global competition model for T cell homeostasis

Thus for each clonotype we have a birth-death process with no net drift.
Furthermore, with v > u, because there will be large numbers of cells, we can
treat changes in the numbers of cells as continuous, which allows the use of the
diffusion approximation. We therefore approximate n;(t) as a diffusion process,
ni(t) ~ X;. In order to write down the corresponding stochastic differential
equation (SDE) for the system, we define the mean and mean square for the

change in Xy, with time through comparison to the birth-death process,

E(n,(t + At) — ny(t)) = M(E)AE — png() AL = 0, (5.8)

where we have used the fact that \;(t) = un;(t) and that there is therefore no net
drift. The mean for the diffusion process is therefore given by IE(X;ya;—X;) = 0.

Similarly, to find the mean square,

E((n;(t + At) — ni(1)?) = Ni(t) At + un;(t) At (5.9)

= 2un;(t)At. (5.10)

The mean square for the diffusion process is therefore given by IE((X;a;—X;)?) =

2uX;At. The SDE can thus be written as,

This SDE is relatively well characterised, with known solutions [209,210]. In
particular, if the probability of reaching X = 0 before time ¢ starting with Xg = b

cells is F'(t,b), then F'(t,b) satisfies the following partial differential equation,

0 1 o

where F'(t,0) = 1. This is found from the Kolmogorov backwards equation [210].
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Figure 5.3: Comparison of number of clonotypes with time N(¢) from numerical sim-
ulation and theoretical prediction. The theoretical prediction is given by Eq (5.15).
u = 1.0, Np = 100,000, ng varies according to v to ensure the system starts with the
steady state number of T cells, with ng = 10 for the green line, ng = 20 for the blue
line and ng = 10 for the red line.

The value of b is the number of cells necessary in each clonotype at time ¢ = 0
such that there are the expected mean number of cells in the system. In the case
of this model, b = ﬁ, where Ny is the number of clonotypes at ¢t = 0. The

solution to (5.12) is,

F(t,b) =1—exp (—;) , (5.13)

giving,

PIX;=0[Xg=0b=1—exp <_/ft) : (5.14)

And so N(t) the expected number of clonotypes with time is given by,

N(E) = N <1 — exp (_@) (5.15)

— N, (1 —exp (WZVJW)) . (5.16)

A comparison between this theoretical prediction and numerical simulations
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of the model are shown in Figure 5.3 for three different values of v. As can be
seen, the theoretical predictions match the numerical simulations well. It can also
be seen that the number of clonotypes falls fast at first and then the decrease
slows down. Because the number of T cells remains constant (Figure 5.2), the
average size of a clonotype increases as the number of clonotypes falls, and so the
probability of extinction for each clonotype decreases. The number of clonotypes
does however continually fall, with the probability of full extinction as t — oo
equal to 1. There is therefore no steady-state number of clonotypes or steady-

state distribution of clonotypes sizes.

5.3.2 Including thymic output

Including the release of new clonotoypes into the periphery from the thymus
makes the model a closer representation of the actual system. By including thymic
output in the model, there will be a point at which the rate of production of new
clonotypes equals the extinction rate of clonotypes and an equilibrium number
of clonotypes can be reached. This allows long-term numbers of clonotypes and

distributions of clonotypes sizes to be found from the model.

Number of cells

After including thymic output, similarly to the scenario without thymic output,
the total number of cells will fluctuate randomly. The mean total number of T
cells in the population does however still have a steady state, but this steady state
now depends on the extent of thymic output given by the rate of production of
new clonotypes 6 and the number of cells per new clonotpye ny, as well as the
stimulus v and the death rate p. Taking the mean total number of T cells again

as x = IE(n(t)), in the presence of thymic output of new clonotypes then,

d
L=V HE One, (5.17)
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Figure 5.4: Total number of T cells with time from numerical simulation including
thymic output, demonstrating the effects of different levels of thymic output 6 on the
homeostatic set point. Theoretical values from Eq (5.18). u = 1.0, v = 200,000,
ng = 20, No = 10,000, ng = 20.

and thus as t — oo, the mean total number of T cells still reaches a steady state

number, given by,
_, Yt One
1

z(t) (5.18)

The effect of changing 6 on this homeostatic equilibrium value is demonstrated
in Figure 5.4, with the number of T cells reaching a dynamic steady state which

increases with the level of thymic output.

Clonotype lifetime and the number of clonotypes

In order to find the clonotype lifetimes and the number of clonotypes, similarly to
the case with no thymic output, we first need to define the stochastic differential
equation for the system. Again we look at a single clonotype in the case that
~v > p allowing us to assume that the number of cells in a clonotype is continuous.
By including thymic output, the deathrate is now roughly equal to the total

production of cells from both proliferation and thymic output at steady state or
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pn(t) ~ v+ ngf. The birthrate is therefore given by,

n; KT U1
Ai(t) = = =
O =7 =758 ~ 153
where
g="e0
8

(5.19)

(5.20)

is the ratio of the thymic output of T cells to the production of T cells through

peripheral division. Thus we now need to consider a birth-death process [211],

where the death rate is slightly higher than the birthrate and there is thus net

drift within a single clonotype. The expected change in the birth-death process

is now,

E(ni(t + At) —ni(t)) = (Ai(t) — pna(t)) At
= un;(t) (@%) At

where a = % Similarly, for the mean square,

E((ni(t + At) —ny(t))*) = (Ai(t) + pna(t)) At

= un;(t) <1 + 1> At

1+

= pni(1) <iig> At

= (2 — a)un;(t)At.

(5.21)

(5.22)
(5.23)

(5.24)

(5.25)

(5.26)
(5.27)

(5.28)

The mean and mean square for the diffusion process are therefore given by,

E(Xt+At — Xt) = —OéXtAt IE<<Xt+At — Xt>2) = (2 — Oé)/.LXtAt
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With 0 < a@ < 1, so in the scenario where most of the T cells are produced through
peripheral devision rather than from the thymus, the SDE for the system can be
approximated as,

dX; = —apXdX, + /2uX,dW,. (5.30)

Similarly to the case where there was no thymic output, this equation is
relatively well characterised with known solutions [209,211]. The mean clonotype
lifetime is given by the time to extinction for clonotype, or the time it takes
on average for a clonotype to have zero T cells through random fluctuations. If
T'(x, ) is the time to extinction of a typical clonotype starting with  cells in the
clonotype, then T'(x, ) must a solution to the following general ODE for time to

reach a boundary from a starting point in between [211],

1 d? d
—5*(2)——T(x,a) + /Z(Q:)d—T(:c, a)=—-1 fore<ax<d. (5.31)
T

In the situation presented here, the values for & and j are given by o (z) = +/2ux
and ji(z) = —apz. We are also only interested in the time to reach 0 and so set
the boundary conditions as ¢ = 0 and d — oo. Hence we need to find a solution

for T'(z, a) for the following ODE,

d? d
/M@T(x, a) — au:cﬁT(:c, a)=—-1 for0 <z < oo, (5.32)

with boundary conditions T'(0,«) = 0 and T'(co, ) = 0. Mathematica version
9.0 [212] and the analytical equation solver DSolve was used to find a solution

for T'(z, ) giving,

T(x,a) = ozl,u <7E — e Ei(—ax) + ln(ozx)) (5.33)

where Ei(x) is the Exponential Integral and g is the Euler—Mascheroni constant,
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Figure 5.5: Total number of clonotypes with time from numerical simulation including
thymic output, demonstrating the effects of different levels of thymic output 6 on the
homeostatic set point. The theoretical values come from Eq (5.36). The system is
started such that there are the homeostatic number of T cells. p = 1.0, v = 200,000,
no = 20, No = 10,000, ng = 20.

given by
oo eft
Ei(z) = — - dt and (5.34)
1
e = lim (Z e ln(n)> ~ (0.57721... . (5.35)
k=1

Therefore, if the initial number if cells in a clonotype in ny and the mean lifetime
of a clonotype is T'(ng, ), then the mean number of surviving clonotypes, as

t — 00, is

N =0 T(ng, ) = b (7E — e Ei(—ang) + ln(omg)> : (5.36)

ap

The number of clonotypes therefore reaches steady state (see Figure 5.5). The
steady state number is dependent on «, related to the ratio of cells produced by

thymic output to cells produced by proliferation, and ng, the number of cells per
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Figure 5.6: Mean long-term number of clonotypes with thymic output for four different
combinations of v and ng. The lines give the theoretical number of clonotypes N from
formula (5.36), while the error bars give the results from numerical simulation. p = 1.0.

new clonotype. Comparisons between the results of numerical simulations of the
model for N with thymic output and formula (5.36) can be seen in Figure 5.6,

demonstrating the relationships between the number of clonotypes and the values

for ~, 6 and nyg.

Distribution of clonotype sizes

Because the number of clonotypes reaches a steady state, the sizes of the clono-
types will form a steady state distribution. In order to find this long-term distri-
bution, we first assume each clonotype can be approximated as an independent
realisation of the birth-death process, obeying SDE (5.30). From this can be
calculated G(y, ), the occupation density at y (the number of clonotypes with
y cells) given that the process starts at a source x (each clonotype has x cells in

when it enters the population) and is absorbed at 0 (clonotypes go extinct when
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they have 0 cells). G(y, ) is known to satisfy the following ODE,

d2

d
,ux@G(y,x) - OélwaG(y,x) =—d(x—y) for 0 <z < o0 (5.37)

with boundary condition G(y,0) = 0. The solution can be constructed from

combinations of a constant and e** as,
Gy, z) = (5.38)

By using the é—function property that

. yte
hm/ Sz —y)dzr=1, (5.39)

=0 Jy—e

and by integrating (5.37) with respect to = between the limits z = y — ¢ and
x = y + € and taking the limit ¢ — 0, it can be shown that the step change in
G'(y,x) at x = y must be equal to —1/uy. Thus by differentiating the two parts
of (5.38), and taking the difference we find,

1
E (5.40)
e~ uy
and thus,
1 e™¥
c=—2 (5.41)
ap y

In this case, the source x is the number of cells per clonotype output from the

thymus, ng. Thus with ng fixed we find the number of clonotypes with y cells in

them to be,
1 1—e
— Yy <ng
ap Yy
G(y,ng) = (5.42)
eO{?’Lg 1 e*Oly
Yy =ng
ap oy
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Figure 5.7: Histograms of numerical simulations of the number of T cells in each clono-
type (blue bars) is compared with the theoretical distribution of clonotype sizes (red
lines) given by G(y,b)/T (b, &) where G(y,b) is given by formula (5.42). Multiple values
of 6 and ng are shown to demosntrate the differences in their resultant distributions.
v = 200,000, u = 1.0, ng = ng

Comparisons between numerical simulations and the formula given in (5.42) are
shown in Figure 5.7. As can be seen, this formula appears to fit the simulations
well with these parameter values. Increased levels of thymic output give increased

drift for each individual clonotype towards zero. Thus the distributions become

increasingly pushed towards many clonotypes with small numbers of cells in them.

Gini coefficient

The Gini coefficient is often used as a metric for the dispersion and inequality of
a population, vaying between 0 and 1. A Gini coefficient of 1 means complete in-
equality and a Gini coefficient of 0 means complete equality in that every instance
of the population has the same size, so in this case every clonotype contains an
equal number of cells.

The Lorenz curve is used to define the Gini coefficient. In this case, the Lorenz

curve is the cumulative proportion of the total number of T cells with increasing
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Figure 5.8: A Lorenz curve from global competition model by plotting F'(z) given by
(5.43) against H(z) given by (5.44) where z is the number of T cells in a clonotype. The
blue section is for z < ng, and the green section for z > ny. B and the Gini coefficient
were calculated using (5.46). v = 4000, 6 = 80, u = 1.0, ng = 8.

clonotype size plotted against the cumulative proportion of total clonotypes. The

Gini coefficient is then twice the area between this curve and the line of equality.

The Lorenz curve in this case, as demonstrated in Figure 5.8, is given by a plot

of the cumulative total number of T cells in z clonotypes, F'(z) = [5 2G(z, b)dz on

the y-axis against the cumulative total number of clonotypes, H(z) = [; G(z,b)dz

as a parametric plot with increasing z. Where,

Lz —1+e ) z<b

ab

L (ab +(1- eo‘b)e*"‘z) z2>b

L (g +log(az) — Ei(az)) 2 <D

ap

ap
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From these, B the area under the Lorenz curve is given by,
B= / F(2)H'(2)dz (5.45)
0
where H'(z) = G(z,b). Thus,

1

1— eab
a?ubT

(abEi(—ab) + (1 — ¢™)Ei(—2ab)) } (5.46)

where b is the number of cells per new clonotype, ny. The Gini coefficient is then

given by Gini =1 — 2B.

5.3.3 Application to murine CD8 memory data
The experimental setup

The model has been applied to data from an experiment conducted by Thea
Hogan and Benedict Seddon at the Royal Free London NHS Foundation Trust.
In this experiment, a series of mice were given busulfan at 8 weeks of age to ablate
the bone marrow whilst leaving the circulating immune cells intact. New bone
marrow that is genetically identical except for a change to a single marker which
allows it and its daughter cells to be identified is then grafted into the mouse.
The replacement of the original host T cells in the body by the new donor T cells
is then measured over the following months.

The experimenters expected to find that the donor T cells replaced the host T
cells until the proportions in the circulations were equal to the proportion of donor
bone marrow to host bone marrow after the engraftment. With the application of
mathematical modelling in conjunction with Andrew Yates and Graeme Gossel,
however, they discovered that the T cells did not achieve complete replacement

for any T cell subset. This effect was more marked with memory T cells and
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Figure 5.9: Results of the mouse experiment for CD8 memory T cell replacement from
the experiment conducted by Thea Hogan at the Royal Free London NHS Foundation.
Each datapoint is a different mouse. It gives the percentage of the cells that are from
the donor bone marrow out of the CD8 memory cells, normalised to the percentage
of the bone marrow that had been replaced for each mouse. The line gives a local
regression curve for the data. As can be seen, there is large variability in the data, but
no mouse manages more than 55% replacement, with the mean long-term replacement
in the region of 20%.

particularly with CD8 memory compartment where the donor T cells only man-
aged to replace approximately 20% of the compartment, after normalising for the
percentage of the bone marrow that had been replaced (see Figure 5.9).

While naive T cell populations require a combination of signalling from sp-
MHC and cytokines for survival and proliferation, memory T cells mostly only
require interactions with cytokines such as IL-7 and IL-15 [19] and are largley
sp-MHC independent. As such, these T cells compete only for global resources.
The situation is simpler in CD8 memory, where most subsets are reckoned to
compete only for IL-15 cytokines [19], and as such the cells are competing for a
single global resource. Therefore the model presented in this chapter could be

appropriate to look at the dynamics of the CD8 memory T cell subset.

The cell surface marker CD122 is the $-chain of the IL-2 receptor and is also a
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Figure 5.10: Gating strategy for CD8 memory and CD122 expression levels. The cells
in the spleen were split into NK cells and T cells using the TCR. These were subsetted
into CD8+ CD4- and then further into CD44 positive to give the memory CD8 cells.
The two different markers for CD45 were used to differentiate the donor and host
populations of these cells. Expression levels of CD122 could then be compared to those
of the NK cells to give their relative expression level. With thanks to Thea Hogan.

component of the IL-15 receptor. As such, expression levels of CD122 can be used
as a proxy for IL-15 cytokine receptor levels for a cell. Figure 5.10 gives the gating
strategy for looking at the CD8 memory subset, and at their CD122 expression
levels. As can be seen, the CD122 expression level for donor memory cells is lower
than that for host memory cells in this example. The complete distributions of
median CD122 expresion levels of host and donor cells is shown in Figure 5.11.
Because of flow-cytometry inaccuracies, data collected on different days cannot
be compared directly. NK cell CD122 distributions however are not expected to
change and as such were used to normalise the CD8 memory CD122 expression
levels for both host and donor. It can be seen that CD122 expression levels are
significantly higher for host CD8 memory cells than donor CD8 memory cells.
This implies that IL-15 receptor levels are also correspondingly higher for host

CD8 memory T cells over donor CD8 memory T cells, giving them an advantage
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Figure 5.11: CD122 expression level distributions for host and donor CD8 memory
cells. The CD122 expression is reported as relative to the CD122 expression of the NK
cells from the same mouse to normalise between differences from the flow cytometry
being carried out on different days.

in competing for resources.

Modelling

In order to model the situation represented in these data, the global compet-
ition model was updated such that, while the total level of resource remained
constant, cells from each clonotype have an affinity for resource drawn from a
truncated normal distribution. It is assumed that this would in some way be
related to the number of receptors for cytokines on their cell surface. Cells from
each clonotype then compete for the resource. In this situation, the mechanism
that was described as thymic output becomes clonotype entry into the memory
pool from the naive pool. As a new clonotype enters, its affinity for resource is
drawn randomly from the same truncated normal distribution.

The system starts with a large number of clonotypes in the memory pool

simulating the effects of birth and the immediate recognition of many pathogens.
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Figure 5.12: The impact of competition for resources as an explanation for the incom-
plete replacement of CD8 memory cell in mice. The system starts with an influx of
memory clonotypes (C) with affinity for resource drawn from the distribution shown
at birth (E). After 8 weeks of competition, by the day of transplant, the distribution
has skewed with the clonotypes with higher affinity out-competing those with lower
affinities (F). The donor clonotypes, which are drawn from the same distribution as
at birth therefore do not compete for resource equally (G and H) and cannot displace
these incumbent cells high-affinity cells and therefore, while the proportion of donor
clonotypes becomes high (D), the proportion of donor T cells remains low (B).
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These clonotypes each have an affinity for resource drawn randomly from the
truncated normal distribution. The cells in the clonotypes then compete for 8
weeks, during which time, new host clonotypes enter the memory pool at a fixed
rate, also with their affinity for resource also drawn randomly from the same
distribution. At 8 weeks, the mouse receives busulfan ablating the host bone
marrow and new donor bone marrow is injected. In the model, after this bone
marrow transplant, the new clonotypes entering the memory pool are now donor
CDS8 memory T cells, with their affinity for resource again drawn from the same
distribution as the host clonotypes.

The results from the model are shown in Figure 5.12. In the first 8 weeks,
the number of clonotypes and T cells falls towards a homeostatic level. Because
of competition for resources, the host clonotypes from the original distribution
(Figure 5.12E) with a high affinity for resource are selected and survive and come
to dominate the pool so that the distribution of affinities is heavily weighted
towards high-affinity (Figure 5.12F). When donor clonotypes then attempt to
enter the pool, because their affinity is drawn from the original truncated normal
distribution (the same as that in Figure 5.12E), on average each clonotype will
have a lower affinity than the established host memory cells. As a result, they
struggle to out-compete the host cells, which causes incomplete replacement in
line with the experimental data (Figure 5.12B). The model predicts that there
will be almost complete replacement of the T cell clonotypes (Figure 5.12D),
with only those with high affinity for resource surviving (Figure 5.12H). Over a
long enough period of time, the number of host T cells will decline as clonotypes

randomly die out and are not replaced.
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5.4 Discussion

A stochastic model for global competition between T cell clonotypes has been
developed. Because the fundamentals of the model are not too complex, it is not
too computationally expensive to run the model with large numbers of clonotypes
or for long time scales. This allows greater numerical insight into the properties of
the system. Furthermore, the model is simple enough to characterise analytically,
allowing the development of analytic solutions that are generalisable to all scales,
allowing the results to be applied at the level of mice and humans.

Without a constant input of new clonotypes from the thymus, the stochastic
fluctuations in the number of T cells in each clonotype causes the number of T
cells to reach zero and some clonotypes to become extinct. Hence the number
of distinct clonotpes, and thus diversity, is expected to fall (Figure 5.3). This
has implications in the months after an HSCT when the thymus is not producing
any T cells; whilst T cell numbers might start to recover through homeostatic
mechanisms, until the thymus starts producing new T cells, diversity can be
expected not only to remain low but also to get worse.

The model reaches a steady state number of T cells (Figures 5.2 and 5.4),
with the number of T cells resulting from a balance of cell death rates and cell
production rates from both thymic output and cell division. Without thymic
output, the number of T cells still remains constant. Accordingly, as the number
of clonotypes decreases, the number of T cells in each clonotype must increase.
This means, measuring just the concentrations of T cells following interventions,
such as thymectomies, may be misleading in terms of the damage done.

In the presence of thymic output, the number of clonotypes reaches a steady
state, with the number dependent on the level of thymic output (Eq. (5.36) and
Figures 5.5 and 5.6). A prediction from this model is therefore that as thymic
output falls in a healthy child, the number of distinct T cell clonotypes can be

expected to fall as well.
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The mean lifetime of a clonotype in the perihery is dependent on thymic out-
put (Eq (5.33)). As the thymic output increases, the net drift effect on the number
of T cells in a clonotype increases, driving the clonotypes towards extinction more
rapidly, shortening clonotype lifetime. This implies that in young children where
there is higher thymic output, clonotypes and to an extent immune memory may
have a shorter lifetime than in older children. This might in part explain why
children who are more likely to become atopic, develop an immune response to
dust mites at a later age [213], and may also explain the decreased ability of chil-
dren to form immunity to Plasmodium falciparum in comparison to adults [214].
The number of clonotypes in the T cell pool is also dependent on thymic output,
with increased thymic output resulting in more, smaller, clonotypes.

The model output for the distribution of clonotype sizes is highly dependent
on both thymic output of new clonotypes (f) and the number of cells in the
clonotypes (ng) that are produced by the thymus. On the one hand, the higher
the thymic output of new clonotypes, the more heavily the distribution is skewed
towards low numbers of cells per clonotype. On the other hand, the more cells
per new clonotype, the flatter the distribution and the more clonotypes with
more cells per clonotype. Thymic output is usually just measured as cells/day.
Figures 5.7B and D both have the same thymic output in terms of numbers of
cells, as do and Figures 5.7C and E. The stark differences in their distributions
therefore imply that measuring thymic output in this way misses key information
related to the drivers of clonotype diversity.

The model output for the distribution of the number of T cells in each clono-
type could be compared to data from sequencing T cell receptors. Comparing
these distributions would allow validation of the model output and the estima-
tion of some parameter values. Because the analytical solutions for the model are
scalable, it might then be possible to form predictions of distributions in different

circumstances, such as following thymectomy, following HSCT or in old age. Fur-
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thermore, the model’s scalability allows comparisons to be made between humans
and mice.

The model has been able to reproduce the observed effects from replacing the
bone marrow in a mouse and the lack of full replacement. In this solution, the
surviving host cells and invading donor cells are from identical populations but
because of the time advantage that the host cells have had to select clonotypes
with higher affinity, on average they effectively have a competitive advantage over
the invading donor cells. This demonstrates that a biologically simple solution is
a possible explanation for the data, using purely stochastic dynamics and com-
petition for resources. This represents a key advantage of stochastic modelling
over deterministic modelling, with it being possible to create dynamics that in-
corporate the stochastic nature of elements of the system, in this case the affinity
for cytokines. Over a long enough period of time, enough donor clonotypes with
high affinity would enter the pool that eventually the donor cells would be ex-
pected to completely replace the host cells. This period of time is however likely
to be longer than the lifetime of the mouse.

The model does however have limitations. Naive T cells compete not only
for cytokines but also for sp-MHC, with the affinity of different clonotypes for
different sp-MHC governed by an interaction matrix. As such, the situation is
much more complex for these cell subsets and results from this model can only be
applied as an explanation for one part of their clonotype dynamics. Furthermore,
the results for clonotype size distributions and lifetimes have assumed that all
clonotypes compete equally. Again the situation is more complex, with cells
likely to have affinities for resource drawn from some sort of distribution, in a
similar manner to that used in modelling the mouse CD8 memory data.

In this chapter, we have developed a stochastic model for global competition
of clonotypes in T cell homeostasis. The model was simple enough that it was

possible to use it for large numbers of T cells and clonotypes and for long time-
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periods. It was also simple enough that it was possible to find analytical solutions
that can recreate the numerical simulations, allowing the model results to be
scaled to the size of a human. The model was successfully adapted to be applied to
a system from a murine experiment, demonstrating that a simple solution reliant
on dynamics from competition for global resources could explain the apparent

complications in the data.

Contributions

Grant Lythe proposed the model and did the analysis in the case with no thymus
in Section 5.3.1 and found the solution for long-term clonotype distributions. I
performed the analysis of the case with a thymus in Section 5.3.2 to find the solu-
tions for long-term clonotype lifetimes, long-term clonotype numbers and the Gini
coefficient. I also produced all the numerical solutions throughout the chapter
and carried out all the analysis for the CD8 memory T cells mouse experiment

in Section 5.3.3.
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Conclusions

Understanding the reconstitution of the haematopoietic system following paedi-
atric haematopoietic stem cell transplantation is important because of the high
mortality and morbidity associated with the intervention. Similarly, in HIV-
infected children starting ART, the immune system does recover but its recovery
is incomplete and patients can develop resistance. The aim of this thesis was
to adapt and construct mechanistic mathematical models to better understand
the underlying dynamics that govern these systems. While one part of this work
looked at a stochastic model for global competition, studying its effects on T cell
clonotype dynamics, the majority of this work used deterministic models to look
at populations of cells, applying them to data.

Following paediatric HSCT neutrophils and platelets recover quickly, and so
age-related effects can be ignored in the structural model. It was therefore pos-
sible to apply previous adult models for neutrophil and platelet dynamics. For
neutrophils, the model of Friberg et al [52] was mechanistically altered to ac-
count for the transient release of extra neutrophils on the administration of ster-
oids [60-63] and to allow the elimination rate to differ from the transfer and syn-
thesis rates. For platelets, the model of Friberg et al [52] was found to provide

the better fit than the model of Hayes et al [72], demonstrating that the feedback
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term was necessary to account for the oscillatory reconstitution profile. These
platelet oscillations had not been observed in previous uses of these models be-
cause they did not have either the resolution in the data or the experimental
setup [67-71], although fluctuations on a similar time-scale have been observed
in healthy adults [96], with the negative feedback thought to be due to levels of
TGF-beta [97]. Covariate analysis found that long-term platelet concentration
was lowered in patients that received cord blood stem cells and raised in patients
that received peripheral blood stem cells in comparison to bone marrow stem
cells. This potentially implies that early platelet reconstitution is derived from
precursor cells contained in the graft, rather than bone marrow derived. It was
notable that no inter-individual age differences were observed for either neut-
rophils or platelets, implying that not only are concentrations relatively stable
through childhood, as expected [98,99], but also the dynamics are stable as well.

In contrast, CD4 T cells recover slowly following paediatric HSCT and so age-
related changes will manifest themselves within an individual’s data [31]. In this
work, a novel mechanistic model has been constructed that accounted for these
age-related changes as effects on thymic output, loss and proliferation. Further
mechanistic elements were included to account for the delay to thymic output
in the months following HSCT [100,117-119] and the effects on proliferation and
loss of competition for resources [14-19]. Testing these mechanistic components
demonstrated that they were necessary to achieve a good fit to the data. In
the resulting model, younger patients recovered more quickly than older patients,
in line with the data. Covariate analysis identified that alemtuzumab and anti-
thymocyte globulin (ATG), two anti-lymphocyte antibodies, reduced the initial
concentration of CD4 T cells. Whilst this effect is to be expected, with the model
it was possible to quantify the size of the effect. It was also possible to demon-
strate that, even though reconstitution was delayed because it was starting from

a lower concentration, the rate of reconstitution was unaffected by these drugs.
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Patients that received cord blood stem cells had been noticed to have improved
early reconstitution. These patients were however younger on average and were
less likely to have received either alemtuzumab or ATG and the model was able to
demonstrate that these two effects were enough to explain the differences found
in the observed data. The model was used to form predictions of reconstitution
on an individualised basis using just early data and the relevant covariates. The
model’s predictive ability was found to be high, capturing the trajectory in 81%
of the patients in a new dataset of 75 patients that had not been looked at before.

In HIV-infected children starting ART, viral loads decline sharply but CD4
reconstitution is slow enough that age effects need to be included in the model.
A previous model for HIV viral load and CD4 concentration dynamics [179,180]
was successfully simplified using a quasi-steady state approximation to remove the
infected CD4 T cells compartment because they represent such a small fraction
of the total CD4 T cell population [198]. A further adaption was made in order
to remove the oscillatory dynamics that the original model produced because
the data did not support these dynamics. The mechanistic elements from the
model of CD4 reconstitution following HSCT were then included to account for
age-related changes in the immune system and competition for resources. A
mechanism was also included to account for the multi-phasic nature of viral load
decline [199]. The model was then successfully applied to two datasets for HIV-
infected children starting ART. Covariate analysis showed that in both datasets,
the initial concentration of CD4 T cells was inversely affected by age, as would be
expected as CD4 concentrations are expected to fall through childhood and also
older children have been HIV-infected for longer. In the ARROW dataset, lower
thymic output and thus poor reconstitution was associated with the patients
that died before the end of the trial, in agreement with another analysis of this
data [172]. The model was extended to assess viral load rebound due to either the

development of resistance or non-adherence to the ART. The mean time following
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the start of ART that the virus rebounded was different for the four treatment
centres. It would be interesting to look further into whether the adherence-
promoting programs at the centres could explain these differences.

The effects of competition for resources on T cell clonotype dynamics was
explored using the stochastic global competition model. The model was simple
enough that not only could long run-times and large cell populations be simu-
lated numerically but also the model was analytically tractable. This meant it was
possible to produce equations for mean clonotype lifetimes, the mean long-term
number of clonotypes and for the clonotype size distributions. These equations
are then general and so can be scaled to systems larger than can be simulated
numerically, such as a human. It is notable that the purely random dynamics
can produce distributions of clonotype sizes. The model demonstrated that the
shapes of the distributions are highly dependent on not just the quantity of T cells
produced by the thymus, but also the number of T cells in each clonotype. The
stochastic model was extended to allow clonotypes to have affinities for resource
drawn randomly from a truncated normal distribution. Numerical simulations
were then compared to CD8 memory T cell data from a bone marrow replace-
ment experiment in mice, demonstrating that the model can be used to explain
the observed complex effects whilst relying on only a small number of biological
assumptions that would otherwise require complicated explanations.

In this work, mechanistic models have been applied to paediatric data for re-
constitution following HSCT to our knowledge for the first time. This is also the
first time a paediatric-specific model for HIV and CD4 concentration dynamics
has been applied to data for HIV-infected children. This work has demonstrated
that mechanistic models can be used to assess the fundamental drivers of the sys-
tem. Furthermore, the deterministic mechanistic models have allowed the iden-
tification of factors that potentially would not otherwise have been identifiable

across a whole dataset of diverse children, treatments and conditions.
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6.1 Recommendations for developing mechan-
istic models of immune reconstitution

Mechanistic mathematical models aim to abstract the fundamental biology of the
system in a mathematical context. As such, the first part of developing mechan-
istic models is to ascertain the biology that drives the system. Close collaboration
is therefore required with immunologists and clinicians to understand the relevant
biology. The biology is however complex and the aim is to apply these models
to data. As such, the more the models can be simplified, the more likely it is to
be possible to fit to data. One key to this is time-scales. Events that happen on
similar time-scales need to be considered together, whereas events that happen
on largely different time scales can be considered separately. In this modelling,
this meant that age had to be accounted for in the context of CD4 reconstitution,
but could be ignored for platelets and neutrophils. It also allowed the removal of
the infected CD4 cells compartment from the HIV model.

Mechanistic elements can then be added into the model and tested for their
necessity. Whilst the mechanistic elements that provide the highest quality of
fit are the most appealing, an eye should be kept in the interpretability of the
resulting parameters from the model. This maximises the possibility of further
collaboration with clinicians and immunologists to interpret the results. Further-
more, there is a temptation to over-test the mechanisms in the model as a form
of over-fitting, which may not improve the model’s performance on a different
dataset.

Whilst modelling assumptions can be used, often more specific data would
add more information and allow better models to be developed. Proliferation
and loss rates are both first-order interactions and so are mathematically difficult
to separate. In this analysis, we have used a model for competition for resources

to separate these parameters for CD4 reconstitution, which can work because
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there are large changes in CD4 concentration. A better method however would
be to have the proportion of cells expressing Ki67, a marker for proliferation, to
split proliferation from loss. The model also relies on a sigmoidal function to
model the impairment of thymic output of CD4 cells immediately post HSCT.
Better would be to have data for the TREC content of the CD4 population that
could give a proxy for the actual thymic output for each individual.

Fitting these nonlinear mixed effects models to data is a time consuming pro-
cess, particularly during the process of model-development when many different
iterations and small changes to the model need to be tested. Parameter estim-
ation then becomes a balance between the time required to achieve parameter
estimates that are accurate enough and the accuracy of the estimates that is
required. Once a model has been developed, then more accurate parameter es-
timates can be sought. Parallelisation and the use of clusters can help to speed
runtimes, but there is a cost involved with setting up the run and often with

queueing to use the cluster.

6.2 Future work

The lasso or the least absolute shrinkage and selection separator needs further ex-
ploration for the performance of multivariate analysis. In this work, multivariate
analysis was carried out using stepwise covariate model-building (SCM). SCM
however has the capability to produce covariate models that have selected the
wrong covariates [215], and requires the covariate model to be validated which
can be computationally intensive [216]. Hence care must be taken with the res-
ults of SCM. Another option for multivariate analysis that has been applied in
the nonlinear mixed-effects modelling context is the lasso [217-219]. In lasso, all
covariates are normalised and included in the model at once. They are tested

with a restriction on the total of the coefficients, which forces some coefficients
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towards zero, leaving just significant covariates. This method was however prob-
lematic with these data. The method struggles when some covariates have strong
effects such as were the effects of conditioning by alemtuzumab or ATG or no
conditioning for the model of CD4 reconstitution following HSCT. Furthermore,
the number of covariates that needed to be tested was high and involved the
inclusion and estimation of very many parameters, which proved difficult. The
use of lasso does however offer the chance to validate the covariate model.

Many developments are possible to the models. Potential developments to
the short-term reconstitution following HSCT modelling include testing different
numbers of transit compartments, different kinetic-pharmacodynamic models and
different forms for the feedback loop. Many developments to the model for long-
term reconstitution following HSCT have already been tested, including altered
forms for the competition functions and the function delaying thymic recovery
post HSCT. One further development could be modelling the whole time course
including CD4 decline with conditioning for patients. This was not possible with
the present data because there is not enough CD4 concentration data in the time
period around the HSCT.

In this work, models have been fitted using maximum likelihood methods. For
nonlinear mixed effects modelling these have an advantage in that there are many
algorithms and much software that have been developed to perform parameter
estimation. It would however be interesting to apply Bayesian methods to these
models and data. Bayesian methods would have the advantage of producing dis-
tributions around parameter estimates that would be more realistic outputs from
the model. They also allow the incorporation of priors, which could be particu-
larly useful when applying these models to new data where parameter estimates
and variance-covariance matrices could be used as priors. The requirement for
priors can however lead to error propagation if the original priors were wrong and

the data uninformative.
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Having data on the concentrations of the drugs used in the interventions
could improve the characteristics of the models. The drug effect identified in the
short-term reconstitution following HSCT had a half-life that was substantially
longer than the half lives of the drugs involved, implying that there is some
model mis-specification. The most likely area for this mis-specification is the
proliferating compartment. It is assumed that there is a resident population of
proliferating cells, when in fact biologically, it will be a population in dynamic
equilibrium with its bone marrow precursors. The drugs will also act to stop
proliferation in these compartments, resulting in a delay to production in the
proliferating compartment in the model. As such, an extension to the model
could be to include more compartments before the proliferating compartment on
which the drugs would be expected to act in tandem. To identify parameters
surrounding these extra compartments, it would however be necessary to have
higher resolution data than is currently available for drug concentrations and
the times at which the drugs were given. This would enable the construction of
a full pharmacokinetic-pharmacodynamic model that might be able to explain
these effects and tease out the full relationship between the drug effects and
the extra bone marrow compartments. Similarly, extra information on dosing
and drug concentrations could be used to improve the accuracy and performance
in the long-term reconstitution of CD4 T cells. By including more information
on the mode of therapy, some of the inter-individual differences in the initial
concentration of T cells might be explained.

Extra data could also help with the modelling of viral load rebound in HIV-
infected children. For this work, the data only contained viral loads, while in
future longitudinal data for HIV sequences will also be available. This information
could be used to assess the susceptibility of different HIV strains to drugs, allowing
the explanation and prediction of viral rebound. Furthermore, some clinical trials

now monitor ART adherence with pill counters or more sophisticated methods
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such as microchips in bottles or bottle caps that record usage. Adding this
adherence data might also explain some of the viral rebounds.

Whilst predictions for individual patients have only been produced in one con-
text in this work, it demonstrates that this type of mechanistic model can be used
in this manner. With the method that has been developed here to make predic-
tions, predictions become more accurate when larger datasets improve parameter
estimates and make the identification of more factors possible. Furthermore the
method allows for the predictions to be updated when new observations are taken
for the individual patient, with confidence intervals narrowing as more informa-
tion becomes available. With the increased use of electronic hospital records there
is therefore the opportunity to produce predictions of reconstitution that could be
updated immediately following a new observation, providing a graphical output
that could be given to the clinician, thus providing a useful clinical tool. Pre-
dictions of reconstitution have the ability to help clinicians by giving them more
information on what to expect in the months and years following the interven-
tion or start of treatment and as such whether any changes to treatment protocols
should be made. For short-term reconstitution following paediatric HSCT, this
could include administration of GCSF, transfusion with extra platelets or a longer
stay in isolation in hospital. For CD4 reconstitution, this could include prophy-
lactic drugs or repeat HSCT. Predictions also allow the clinicians to receive early
warnings of problems following the development of a new conditioning regimen.

More understanding is needed about changes to T cell receptor diversity fol-
lowing HSCT and in HIV-infected patients starting ART. For full functional
reconstitution of CD4 T cells, not only does the number of T cells have to re-
constitute but also the diversity that allows it to respond to so many pathogens
in a specific manner. In the months following HSCT, there is little or no thymic
output of new CD4 T cells. As a result, no new clonotypes can be produced

after the transplant and the only T cell clonotypes in circulation are those that
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were in the graft or survived the pre-HSCT conditioning regimen. Thus with
no new clonotypes, the stochastic model of Chapter 5 predicts that the diversity
can then be expected to fall over the ensuing months as clonotypes go extinct
by randomness. Diversity could then be expected to increase as thymic output
of new clonotypes increases. It would be very interesting to look at these effects
using data for T cell receptor diversity to see whether the model’s predictions are
valid and if so to find parameter estimates. These estimates could then be used
to predict how clonotype diversity is expected to recover as the concentration
reconstitutes, giving estimates of the time to reach fully-functional diversity.
Models for diversity can be incorporated into the dynamics of CD4 T cell
concentration reconstitution. CD4 T cells compete for both cytokines and sp-
MHC. Cytokine competition is global and all T cells compete equally but sp-
MHC competition is specific with different clonotypes competing for different
sp-MHC. Intuitively, it can be imagined that when there are very few clonotypes,
the cytokines will be in excess and the competition will mostly be intra-clonotype
competition for sp-MHC whereas when there are many clonotypes, the compet-
ition is likely to be for a mixture of cytokines and sp-MHC. In situations where
the diversity is changing it might therefore be possible to identify the different
components of competition for sp-MHC and cytokines. Ciupe et al [28] attempt
this with patients that have had thymus transplants for DiGeorge anomaly, using
assays of T cell receptor vBeta family usage and CDR3 length as a measure of
diversity. An attempt to perform a similar analysis using just vBeta data for
long-term reconstitution following HSCT proved not to be possible because of
the quality and quantity of data available. This is however a very important
area for research and one in which there is much of interest if data for TCR
diversity across time following HSCT were to become available. Furthermore, if
the stochastic global competition model’s results could be validated with data

and parameter estimates found, it could be used to estimate diversity and thus
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to allow the separation of the two forms of competition.

This work aimed to investigate reconstitution following paediatric HSCT and
in HIV-infected children starting ART by using mechanistic mathematical mod-
elling. By adapting previous work and constructing new mathematical models, I
have explored both these problems, improving the understanding of the processes
that govern reconstitution, finding factors that affect reconstitution and finally
predicting reconstitution trajectories. This is the first time that some of these
systems have been studied using these techniques and as such there is great scope
for further investigation, both of the systems presented here and by applying these

techniques to other systems.
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Appendix A
NONMEM model files

A.1 Short-term reconstitution of neutrophils fol-
lowing paediatric HSCT

$PROBLEM  Paediatric HSCT Neutrophil Reconstitution

;____ Data Input and setup of problem _________________ o ____

$INPUT ID TIME DV EVID CMT AMT DRUG STEROIDS DENDT DRUGT AGE BMTAGE

ALEM ATG DONORTYPE LEUK CORD

$DATA nonmemdata_HSCT_neutrophils_log.csv IGNORE=#

$SUBROUTINE ADVAN13 TOL=6

$MODEL COMP (STEM) COMP(TRN1) COMP(TRN2) COMP(TRN3) COMP(CIRC,
DEFOBS) COMP (INPUT)

$PK

;____ Initiate population level parameters for the model
TVBASE = THETA(1)
TVSET = THETA(2)
TVMTT = THETA(3)
TVGAM = THETA(4)
TVEDRUG= THETA(5)

TVKIN = THETA(6)
TVIPO = THETA(7)
TVK = THETA(8)

TVTDRUG= THETA(9)

Modelling covariate effects on population level parameters
1

(1 + THETA(12))

(1 + THETA(13))

(1 + THETA(14))

) e —

IF (DONORTYPE.EQ.2) MTTDONORTYPE
IF(DONORTYPE.EQ.3) MTTDONORTYPE
IF (DONORTYPE.EQ.1) MTTDONORTYPE
IF (DONORTYPE.EQ.0) MTTDONORTYPE
IF(LEUK.EQ.0) BASELEUK
IF(LEUK.EQ.1) BASELEUK
IF(CORD.EQ.0O) BASECORD
IF(CORD.EQ.1) BASECORD

1
(1 + THETA(11))
1

(1 + THETA(10))
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Appendiz A. NONMEM model files

TVBASE = TVBASE * BASECORD * BASELEUK
TVMTT = TVMTIT * MTTDONORTYPE

y——__ Mu modelling to improve model run-times _________________________
MU_1 = LOG(TVBASE)

MU_2 = LOG(TVSET)

MU_3 = LOG(TVMTT)

MU_4 = LOG(TVGAM)

MU_5 = TVEDRUG

MU_6 = LOG(TVKIN)

MU_7 = LOG(TVIPO)

MU_8 = LOG(TVK)

MU_9 LOG (TVTDRUG)

i ——__ Including individual random effects on parameters
BASE = EXP(MU_1+ETA(1))

SET = EXP(MU_2+ETA(2))

MTT = EXP(MU_3+ETA(3))

GAM = EXP(MU_4+ETA(4))

EDRUG= MU_5+ETA(5)

KIN = EXP(MU_6+ETA(6))

IPO = EXP(MU_7+ETA(7))

K = EXP(MU_8+ETA(8))

TDRUG= EXP(MU_9+ETA(9))

;____ Define initial concentration for each compartment
A_o(1) BASE/K

A_0(2) BASE/K

A_0(3) = BASE/K

A_0(4) = BASE/K

A_o(5) BASE

A_o(6) IPO

;____ Define rates from MTT
KELM = 4/ (MTT*K)

KSYN = 4/MTT

KTR = 4/MTT

_ Change in asymptote at time of HSCT

e S A MY e A A M MY e —————

$DES
IF (TIME.LT.14) THEN
ASY=BASE
ELSE
ASY=SET
ENDIF
RBD=(ASY/A(5)) **GAM
;____ Linear K-PD model _______ _ o
IF (TIME.LE.DENDT) THEN
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Appendiz A. NONMEM model files

DRUG1 = DRUG/ (1+EXP(-EDRUG) )

ELSE
DRUG1 = DRUGT/ (1+EXP (-EDRUG) ) *EXP (- (T-DENDT) /TDRUG)
ENDIF
;____ EkEffects of steroids _____
STER=0

IF (ALEM==1) THEN
IF (TIME.GE.5.AND.TIME.LT.9) THEN
STER = 1
ENDIF
ENDIF
IF (ATG==1) THEN
IF (TIME.GE.8.AND.TIME.LT.11) THEN
STER = 1
ENDIF
ENDIF

_ Define the differential equations for the model

e YR ML ML A e M e A A A e

DADT(1) = KSYN*A(1)*RBD*(1 - DRUG1) - KTR*A(1)
DADT(2) = KTR*xA(1) - KTRx*A(2)
DADT(3) = KTR*xA(2) - KTR*A(3)
DADT(4) = KTR*A(3) - KTR*A(4)
DADT(5) = KTR*A(4) - KELM*A(5) + STER*KIN*A(6)

DADT(6) =-KIN*A(6)*STER

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED=A(5)

IPRED=L0OG (IPRED)

Y=IPRED+EPS (1)

;____ Initial estimates for the population level parameters

$THETA
(0,1039.250) ; 1. BASE, initial neutrophil concentration

(0,2570) ; 2. SET, long-term neutrophil concentration
(0,5.0) ; 3. MIT, transfer time through transit
(0,0.084) ; 4. GAM, strength of feedback

(-20,2,20) ; 5. EDRUG, maximum drug effect

(0,0.8) ; 6. KIN, neutrophil input rate from steroids
(0,1200) ; 7. IPO, initial neutrophil conc in input comp
(0,1) ; 8. K, difference between KE, KS and KT

(0,5) ; 9. TDRUG, Drug effect lifetime from last dose

(-1,-0.001) ; 10. BASECORD1, effects of CORD on BASE
(-1,-0.001) ; 11. BASELEUK1, effects of LEUK on BASE
(-1,-0.001) ; 12. MTTDONORTYPE3, effects of DT3 on MTT
(-1,-0.001) ; 13. MTTDONORTYPE1, effects of DT1 on MTT
(-1,-0.001) ; 14. MTTDONORTYPEO, effects of DTO on MTT
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;____ Initial estimates for the random effects var-covar matrix

$OMEGA BLOCK(9)

0.1

0.01 0.1

0.01 0.01 0.1

0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1
;____ Initial estimate for the residual error variance _______________
$SIGMA 0.5

;____ Estimation algorithm to be used (EONLY=1 Expectation Only)

$ESTIMATION METHOD=SAEM INTERACTION NBURN=800 NITER=1000 PRINT=10 CTYPE
=3

$ESTIMATION METHOD=IMP EONLY=1 ISAMPLE=10000 IACCEPT=0.1 NITER=12 PRINT
=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 PRINT=1 RANMETHOD=3S2

;____ Output results of the model-fitting into a table ________________

$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETAS
ETA6 ETA7 ETA8 ETA9 0OBJI NOAPPEND ONEHEADER NOPRINT FILE=
sdtab_HSCT_neutro

A.2 Short-term reconstitution of platelets fol-
lowing paediatric HSCT

$PROBLEM  Paediatric HSCT Platelet Reconstitution
_ Data Input and setup of problem

e Y AR A P M YR e ——————

$INPUT ID TIME DV EVID CMT AMT DRUG STEROIDS DENDT DRUGT AGE BMTAGE
ALEM ATG DONORCELLS BUSU CYCL IMDEF

$DATA nonmemdata_HSCT_platelets_log.csv IGNORE=#

$SUBROUTINE ADVAN13 TOL=6

$MODEL COMP (STEM) COMP(TRN1) COMP(TRN2) COMP(TRN3) COMP(CIRC,
DEFOBS)

$PK

;____ Initiate population level parameters for the model
TVBASE = THETA(1)
TVSET = THETA(2)
TVMTT THETA(3)
TVGAM = THETA(4)
TVEDRUG= THETA(5)
TVTDRUG= THETA(6)

;____ Modelling covariate effects on population level parameters
IF (IMDEF.EQ.0) SETIMDEF =1
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IF(IMDEF.EQ.1)

IF(CYCL.EQR.0)
IF(CYCL.EQ.1)
IF(BUSU.EQ.0)
IF(BUSU.EQ.1)

SETIMDEF
IF (DONORCELLS.EQ.0) SETDONORCELLS
IF (DONORCELLS.EQ.2) SETDONORCELLS
IF (DONORCELLS.EQ.1) SETDONORCELLS

BASECYCL
BASECYCL
BASEBUSU
BASEBUSU

(1 + THETA(11))

1

(1 + THETA(9))
(1 + THETA(10))

1
(1 + THETA(8))
1
(1 + THETA(7))

TVBASE = TVBASE * BASEBUSU * BASECYCL
TVSET = TVSET * SETDONORCELLS * SETIMDEF

) _—

MU_1 = LOG(TVBASE)
MU_2 = LOG(TVSET)
MU_3 = LOG(TVMTT)
MU_4 = LOG(TVGAM)
MU_5 = TVEDRUG

MU_6 = LOG(TVTDRUG)

y____ Including individual random effects on parameters

BASE = EXP(MU_1+ETA(1))

SET
MTT

EXP (MU_2+ETA(2))
EXP (MU_3+ETA(3))

GAM = EXP(MU_4+ETA(4))

EDRUG= MU_5+ETA(5)

TDRUG= EXP(MU_6+ETA(6))

| .

A_0(1) = BASE
A_0(2) = BASE
A_0(3) = BASE
A_0(4) = BASE
A_0(5) = BASE

| Q.

KELM = 4/MTT
KSYN = 4/MTT
KTR = 4/MIT

) e —

$DES

_ Define rates from MTT

IF (TIME.LT.14) THEN

ASY=BASE
ELSE

ASY=SET
ENDIF

RBD=(ASY/A(5)) **GAM

Mu modelling to improve model run-times

_ Define initial concentration for each compartment

_ Change in asymptote at time of HSCT
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;____ Linear K-PD model
IF (TIME.LE.DENDT) THEN
DRUG1 = DRUG/ (1+EXP(-EDRUG))
ELSE
DRUG1 = DRUGT/ (1+EXP (-EDRUG) ) *EXP (- (T-DENDT) /TDRUG)
ENDIF

;____ Define the differential equations for the model
DADT (1)=KSYN*A(1)*RBD*(1 - DRUG1) - KTR*A(1)

DADT (2)=KTR*A(1) - KTR*A(2)

DADT(3)=KTR*A(2) - KTR*A(3)

DADT (4)=KTR*A(3) - KTR*A(4)

DADT(5)=KTR*A(4) - KELMxA(5)

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED=A(5)

IPRED=L0OG (IPRED)

Y=IPRED+EPS (1)

;____ Initial estimates for the population level parameters
$THETA
(0,176791) ; 1. BASE, initial platelet concentration
(0,149943) ; 2. SET, long-term platelet concentration
(0,5.16337) ; 3. MIT, transfer time through transit
(0,0.116843) ; 4. GAM, strength of feedback
(-20,-1.00,20) ; 5. EDRUG, maximum drug effect
(0,6.9009) ; 6. TDRUG, drug effect lifetime from last dose
(-1,0.698179) ; 7. BASEBUSU1, effects of BUSU on BASE
(-1,-0.437215) ; 8. BASECYCL1, effects of CYCL on BASE
(-1,0.373364) ; 9. SETIMDEF1, effects of IMDEF of SET
(-1,-0.001) ; 10. SETDONORCELLS2, effects of DC2 on SET
(-1,-0.001) ; 11. SETDONORCELLS1, effects of DC1 on SET

Initial estimates for the random effects var-covar matrix

e Y AR EE VS PR SRR e e R e A e o

$0MEGA BLOCK(6)

0.77513

0.246018 0.834123

-0.34828 -0.126483 0.577297

-0.230623 -0.480143 0.302266 1.11016

0.186967 -0.0423519 0.576467 0.277966 1.4537

-0.205738 0.847174 -0.73557 0.0774342 -2.02161 5.63053
;____ Initial estimate for the residual error variance
$SIGMA 0.267354

;____ Estimation algorithm to be used (EONLY=1 Expectation Only)

$ESTIMATION METHOD=SAEM INTERACTION NBURN=1000 NITER=1000 PRINT=10

$ESTIMATION METHOD=IMP EONLY=1 ISAMPLE=10000 IACCEPT=0.1 NITER=12 PRINT
=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 PRINT=1 RANMETHOD=3S2
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; —___ Output results of the model-fitting into a table
$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETAS
ETA6 0BJI NOAPPEND ONEHEADER NOPRINT FILE=sdtab_HSCT_platelets

A.3 Long-term reconstitution of CD4 concen-
tration following paediatric HSCT

$PROBLEM Paediatric HSCT CD4 T cell Reconstitution
;____ Data Input and setup of problem

$INPUT ID TIME DV EVID AGE GVHYN COND ALEM ATG LEUK
$DATA nonmemdata_HSCT_cd4_log.csv IGNORE=Q
$SUBROUTINE ADVAN13 TOL=9

$MODEL COMP=(CENTRAL)

$PK

Initiate population level parameters for the model

) -

TVL = THETA(1)
TVD = THETA(2)
TVPR = THETA(3)
TVINT = THETA(4)
TVLH = THETA(5)
TVLR = THETA(6)

_ Modelling covariate effects on population level parameters
IF(ALEM.EQ.0) INTALEM 1

IF(ALEM.EQ.1) INTALEM = (1 + THETA(7))
IF(ATG.EQ.0) INTATG = 1

IF(ATG.EQ.1) INTATG = (1 + THETA(8))
IF(GVHYN.EQ.0) INTGVHYN = 1
IF(GVHYN.EQ.1) INTGVHYN = (1 + THETA(9))
IF(LEUK.EQ.0) LLEUK 1

IF(LEUK.EQ.1) LLEUK (1 + THETA(10))
IF(COND.EQ.0) PRCOND 1

IF(COND.EQ.1) PRCOND (1 + THETA(11))

o Y SSESRD WY VESESRYY aESsUE M PYDEY RV e e P R e Y e —

TVINT = TVINT * INTALEM * INTATG * INTGVHYN
TVL = TVL * LLEUK
TVPR = TVPR * PRCOND

_ Mu modelling to improve model run-times

MU_1 = LOG(TVL)
MU_2 = LOG(TVD)
MU_3 = LOG(TVPR)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVLH)
MU_6 = LOG(TVLR)
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;____ Naive (V) and total (VT) CD4 T cell concentration with age
= 924 + 2354*EXP(-0.001012*AGE)
= 496.5 + 2074*EXP(-0.000869*AGE)

;——__ Including Age effects and individual random effects on params ___

L = EXP(MU_1 + ETA(1)) * V x 0.9 * 0.02+EXP(-0.00027*AGE)
D = EXP(MU_2 + ETA(2)) * 0.02*EXP(-0.00027*AGE)
PR = EXP(MU_3 + ETA(3)) * 0.02*EXP(-0.00027*AGE)

INT = EXP(MU_4 + ETA(4))

LH = EXP(MU_5 + ETA(5))

LR = EXP(MU_6 + ETA(6))

Ch =1

cCp =1

A_0(1) = INT

;____ Define the differential equation for the model __________________
$DES

DADT(1) = L * (1-EXP(-2%T/LH))/(1+EXP(LR*(1-T/LH))) - A(1)*(D*EXP (CD* (A
(1)/VT-1)) - PR * EXP(CP*(-A(1)/VT+1)))

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED ACL)

IPRED = LOG(IPRED)

Y = IPRED + EPS(1)

;_—__ Initial estimates for the population level parameters
$THETA
(0,0.222489) ; 1
(0,0.454536) ; 2. DO, loss
(0,0.195179) ; 3. PO, proliferation
(0,164.2850) ; 4. X0, Initial concentration of cells
5
6.

. LO, thymic output

(0,133.1450) ; 5. LH, time to recovery in thymic output
(0,9.757030) ; LR, rate of recovery of thymic output
(-1,-0.83722) ; 7. INTALEM, effects of alemtuzumab on A_O
(-1,-0.93890) ; 8. INTATG, effects of ATG on A_O
(-1,0.331920) ; 9. INTGVHYN, effects of acute GvHD on A_O
(-1,1.289310) ; 10. LLEUK, effects of leukaemia on thymic output
(-1,-0.88522) ; 11. PRCOND, effects of no conditioning on
proliferation

;____ Initial estimates for the random effects var-covar matrix
$0OMEGA BLOCK(6)

1.553010

.522870 1.662840

.161760 0.320213 0.247498

.405366 0.415663 0.218925 1.286390

.534060 -0.44269 -0.06167 0.766879 1.214760

.083104 0.340042 -0.13533 -0.89795 -0.77866 1.259670

O O O O O
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H Initial estimate for the residual error variance

$SIGMA 0.218784

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______

$ESTIMATION METHOD=IMP INTERACTION ISAMPLE=1000 NITER=80 PRINT=10 CTYPE
=1

$ESTIMATION METHOD=IMP INTERACTION EONLY=1 ISAMPLE=10000 IACCEPT=0.1
NITER=8 PRINT=1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0 RANMETHOD=3S2

;____ Output results of the model-fitting into a table ________________

$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETAS
ETA6 LAMBDA DELTA INT OBJI NOPRINT NOAPPEND ONEHEADER FILE=
sdtab_HSCT_cd4

A.4 CD4 concentration and viral load in HIV-
infected children restarting ART, PENTA
data

$PROBLEM HIV infected children starting ART, PENTA data
_ Data Input and setup of problem

b —_——— v LA A P M YR e ———————

$INPUT ID TIME DV EVID FLAG VLBLQ VLLOQ L2 AGE PTINO ARTAGE NVPO
ZDVO D3TC EFZ CART

$DATA nonmemdata_HIV_penta_log.csv IGNORE=Q

$SUBROUTINE ADVAN13 TOL=9

$MODEL COMP (CD4)

$MODEL COMP (VL)

$PK

;____ Initiate population level parameters for the model
;; CD4 Parameters

TVLO = THETA(1)
TVDO = THETA(2)
TVPO = THETA(3)

TVINT = THETA(4)
TVCD = THETA(5)
TVCP = THETA(6)
;3 Viral Load parameters

TVVLO = THETA(7)
TVVK = THETA(8)
TVV50 = THETA(9)

TVEDRUG = THETA(10)

;____ Modelling covariate effects on population level parameters
IF(EFZ.EQ.0) VKEFZ = 1

IF(EFZ.EQ.1) VKEFZ = (1 + THETA(16))

IF(ZDVO.EQ.0) V50ZDVO 1

IF(ZDVO.EQ.1) V50ZDVO (1 + THETA(15))
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IF(NVPO.EQ.0) PONVPO = 1
IF(NVPO.EQ.1) PONVPO = (1 + THETA(14))
IF(ZDVO.EQ.0) INTZDVO = 1

IF(ZDVO.EQ.1) INTZDVO = (1 + THETA(13))
IF(D3TC.EQ.1) CPD3TC

1

IF(D3TC.EQ.0) CPD3TC = (1 + THETA(12))

INTCART = ( 1 + THETA(11)=*(CART - 0.53))

TVINT = TVINT * INTCART * INTZDVO
TVVK = TVVK * VKEFZ

TVV50 = TVV50 * V50ZDVO

TVPO = TVPO * PONVPO

TVCP = TVCP * CPD3TC

) —

MU_1 LOG(TVLO)
MU_2 = LOG(TVDO)
MU_3 = LOG(TVPO)

MU_4 = LOG(TVINT)

MU_5 = LOG(TVCD)
MU_6 = LOG(TVCP)

MU_7 = LOG(TVVLO)

MU_8 = LOG(TVVK)

MU_9 = LOG(TVV50)

MU_10 = TVEDRUG

individual random effects on parameters

_ Mu modelling to improve model run-times

y——__ Including

L = EXP(MU_1 + ETA(1))
D = EXP(MU_2 + ETA(2))
PR = EXP(MU_3 + ETA(3))
INT = EXP(MU_4 + ETA(4))
CD = EXP(MU_5 + ETA(5))
CP = EXP(MU_6 + ETA(6))
VLO = EXP(MU_7 + ETA(7))
VK = EXP(MU_8 + ETA(8))
V50 = EXP(MU_9 + ETA(9))
EDRUG = MU_10 + ETA(10)

) e —

A_0(1) = INT
A_0(2) = VLO

_ Define initial concentration for each compartment

;____ Naive (V) and total (VT) CD4 T cell concentration with age

VT = 924 + 2354*%EXP(-0.001012*AGE)

v = 496.5 + 2074+EXP(-0.000869*AGE)
VTART = 924 + 2354*%EXP(-0.001012*ARTAGE)
VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)
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i ——__ Including Age effects on parameters

LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905

LOSS =D * 0.02*EXP(-0.00027*AGE)

PROL = PR * 0.02*EXP(-0.00027*AGE)

DELTA = (0.02+EXP(-0.00027*ARTAGE) /VLO) *(VART*0.905%L/INT - D*EXP (CD*(
INT/VTART-1)) + PR*EXP(CP*(1-INT/VTART)))

DRUG = 1/(1+EXP(-EDRUG))

;____ Define the differential equations for the model

$DES

DADT(1) = LAMBDA - A(1)*(LOSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A
(1)/VT+1))) - DELTA*A(1)*A(2)

DADT(2) = (1-DRUG)*VK#*A(2)*VLO/(VLO+V50) - VK*A(2) *A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED=0

; VIRUS

IF(FLAG==2) IPRED = LOG(A(2))

IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0
IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1
IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
IF(VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF(VLBLQ==1.AND.FLAG==2) MDVRES=1

; CD4

IF(FLAG==1) IPRED = LOG(A(1))

IF(FLAG==1) Y = IPRED + EPS(2)

Initial estimates for the population level parameters

e Y b LAARRLDEE AV e YA A e P Y

$THETA
(0,0.141795) ; 1. LO, thymic output
(0,0.380595) ; 2. DO, 1loss
(0,0.0475488) ; 3. PO, proliferation
(0,551.052) ; 4. X0, initial concentration CD4
(0,0.974182) ; 5. CD, strength competition loss
(0,4.75739) ; 6. CP, strength competition proliferation
(0,20654.8) ; 7. VLO, initial viral load
(0,0.208448) ; 8. VK, rate viral load decline
(0,363.183) ; 9. V50, viral load multiphasic

(-20,4.42277,20) ; 10. EDRUG, drug effect
(-2.127,-0.800645) ; 11. INTCART1, ART age effects on X0

(-1,-0.381881) ; 12. CPD3TC1, 3TC effects on CP
(-1,0.192567) ; 13. INTZDVO1, ZDV effects on XO
(-1,2.95009) ; 14. PONVPO1, NVP effects on PO
(-1,-0.839658) ; 15. V50ZDV01, ZDV effects on V50
(-1,0.986536) ; 16. VKEFZ1, EFZ effects on VK
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;____ Initial estimates for the random effects var-covar matrix

$0MEGA BLOCK(10)

0.27265

0.706376 3.77097

0.975012 5.08962 9.92586

0.0182628 0.190841 0.882143 0.144507

0.432257 2.1399 2.38794 0.00361615 1.33157

-0.193464 -1.53942 -2.46365 -0.170988 -0.779164 0.75726

-0.0121435 -1.31401 -1.50906 -0.0675266 -0.763466 0.653639 1.06044

0.199772 1.00175 1.33651 0.0438143 0.572176 -0.401686 -0.30425
0.280002

0.202649 0.776869 2.30924 0.271685 0.20535 -0.47313 0.104938 0.238378
0.942788

0.0921026 0.990572 3.30598 0.44775 0.16056 -0.773472 -0.144805
0.277563 1.28223 2.04978

;____ Initial estimate for the residual error variances

$SIGMA BLOCK(2)

1.40524

-0.023082 0.0411791

;____ Estimation algorithm to be used (EONLY=1 Expectation Only)

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10
ISAMPLE=1000 CTYPE=1 NOABORT

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1
ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STD0OBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

_ Output results of the model-fitting into a table ________________

$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES ETA1 ETA2 ETA3
ETA4 ETA5 ETA6 ETA7 ETA8 ETA9 ETA10 0OBJI NOPRINT NOAPPEND ONEHEADER
FILE=sdtab_HIV_penta

) e ——

A.5 CD4 concentration and viral load in HIV-
infected children starting ART, ARROW
data

$PROBLEM HIV infected children starting ART, ARROW data

;____ Data Input and setup of problem _________________ o ____

$INPUT ID TIME DV FLAG EVID VLBLQ VLLOQ L2 AGE ARTAGE CTR CHART
MART DIED RXINT RXBDOD CART

$DATA nonmemdata_HIV_arrow_log.csv IGNORE=Q

$SUBROUTINE ADVAN13 TOL=9

$MODEL COMP (CD4) COMP (VL)

$PK

;____ Initiate population level parameters for the model
;3 CD4 Parameters
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TVLO = THETA(1)

TVDO = THETA(2)

TVPO = THETA(3)

TVINT = THETA(4)

TVCD = THETA(5)

TVCP = THETA(6)

;3 Viral Load parameters
TVVLO = THETA(7)

TVVK = THETA(8)

TVV50 = THETA(9)

TVEDRUG = THETA(10)

) _—

Modelling covariate effects on population level parameters

IF(DIED.EQ.0) LODIED = 1

IF(DIED.EQ.1) LODIED = (1 + THETA(15))
IF(CTR.EQ.1) INTCTR
IF(CTR.EQ.2) INTCTR
IF(CTR.EQ.3) INTCIR =
IF(CTR.EQ.0) INTCTR
INTCART = ( 1 + THETA(11)=*(CART - 0.34))

1

TVLO = TVLO * LODIED

TVINT = TVINT * INTCART * INTCTR

| Q.

MU_1
MU 2 =
MU 3 =
MU 4 =
MU 5 =
MU 6 =
MU 7 =
MU 8 =
MU 9 =
MU_10 =

R |
L =
D =
PR =
INT =
CD =
Cp =
VLO =
VK =
V60 =
EDRUG =

;____ Define initial concentration for each compartment

LOG(TVLO)
LOG(TVDO)
LOG(TVPO)

LOG(TVINT)

LOG(TVCD)
LOG(TVCP)

LOG(TVVLO)

LOG(TVVK)

LOG(TVV50)

TVEDRUG

ncluding

EXP(MU_1
EXP(MU_2
EXP(MU_3
EXP(MU_4
EXP(MU_5
EXP (MU_6
EXP(MU_7
EXP(MU_8
EXP(MU_9

individual random effects on parameters

+
+

+
+
+
+
+
+

+

_ Mu modelling to improve model run-times

ETA(D))
ETA(2))
ETA(3))
ETA(4))
ETA(5))
ETA(6))
ETA(7))
ETA(8))
ETA(9))

MU_10 + ETA(10)

(1 + THETA(14))
(1 + THETA(13))
(1 + THETA(12))
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A_0(D)
A_0(2)

INT
VLO

;____ Naive (V) and total (VT) CD4 T cell concentration with age
VT = 924 + 2354*EXP(-0.001012*AGE)

' = 496.5 + 2074*EXP(-0.000869*AGE)

VTART = 924 + 2354*EXP(-0.001012*ARTAGE)

VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)

i——__ Including Age effects on parameters _______________ __ ____________
LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905

LOSS =D * 0.02*EXP(-0.00027*AGE)
PROL = PR * 0.02*EXP(-0.00027*AGE)
DELTA = (0.02*EXP(-0.00027*ARTAGE) /VLO) *(VART*0.905%L/INT - D*EXP (CDx*(

INT/VTART-1)) + PR*EXP(CPx*(1-INT/VTART)))
DRUG = 1/(1+EXP(-EDRUG))

;____ Define the differential equations for the model

$DES

DADT(1) = LAMBDA - A(1)*(L0OSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A
(1)/VT+1))) - DELTA*A(1)*A(2)

DADT(2) = (1-DRUG)*VK*A(2)*VLO/(VLO+V50) - VK*A(2) *A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED=0

; VIRUS

IF(FLAG==2) IPRED = LOG(A(2))

IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0
IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1
IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
IF(VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF(VLBLQ==1.AND.FLAG==2) MDVRES=1

; CD4

IF(FLAG==1) IPRED = LOG(A(1))

IF(FLAG==1) Y = IPRED + EPS(2)

Initial estimates for the population level parameters

e Y b LA LDOE AV e Yy A e P Y e —————————

$THETA
(0,0.25) ; 1. LO, thymic output
(0,0.5) ; 2. DO, loss
(0,0.3) ; 3. PO, proliferation
(0,460) ; 4. X0, initial concentration CD4
(0,1) ; 5. CD, strength competition loss
(0,1) ; 6. CP, strength competition proliferation
(0,200000) ; 7. VLO, initial viral load
(0,0.33) ; 8. VK, rate viral load decline
(0,400) ; 9. V50, viral load multiphasic
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(-20,3,20) ; 10. EDRUG, drug effect
(-1.515,-0.001515) ; 11. INTCART1, ART age effects on XO
(-1,-0.001) ; 12. INTCTR2, Centre effects on X0
(-1,-0.001,5) ; 13. INTCTR3, Centre effects on X0
(-1,-0.001,5) ; 14. INTCTRO, Centre effects on X0
(-1,-0.001, 10.00) ; 15. LODIED1, Effects of DIED on LO

;____ Initial estimates for the random effects var-covar matrix _______

$0MEGA BLOCK(10)
1

O O O O O O O o o
R R R R R R R R R
O O O O O O O O+
N I
O O O O O O+
N U NN
O O O O O O+
R e e e
eoeer
eeeer

N
Hh B R R e

1

0.1 1
0.10.11
0.1 0.10.11

or the residual error variances

.1 0.1 0.1 0.

;____ Initial estimate

$SIGMA BLOCK(2)

1

0.1 1

;____ Estimation algorithm to be used (EONLY=1 Expectation Only) ______

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10
ISAMPLE=1000 CTYPE=1 NOABORT

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1
ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STD0OBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

;____ Output results of the model-fitting into a table ________________

$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES ETA1 ETA2 ETA3
ETA4 ETAS5 ETA6 ETA7 ETA8 ETA9 ETA10 0OBJI NOPRINT NOAPPEND ONEHEADER
FILE=sdtab_HIV_arrow

A.6 CD4 concentration and viral load in HIV-
infected children starting ART, viral load
rebound in ARROW data

$PROBLEM HIV infected children starting ART, ARROW data, viral load
rebound

;____ Data Input and setup of problem ___________ o ___

$INPUT ID TIME DV FLAG EVID VLBLQ VLLOQ L2 AGE ARTAGE CTR

$DATA nonmemdata_HIV_arrow_viral_rebound_log.csv IGNORE=Q

$SUBROUTINE ADVAN13 TOL=9

$MODEL COMP(CD4) COMP (VL)
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$PK

;____ Initiate population level parameters for the model
;; CD4 Parameters

TVLO = THETA(1)

TVDO = THETA(2)

TVPO = THETA(3)

TVINT = THETA(4)

TVCD = THETA(5)

TVCP = THETA(6)

;3 Viral Load parameters
TVVLO = THETA(7)

TVVK = THETA(8)

TVV50 = THETA(9)

;3 Drug effect parameters
TVEDRUG = THETA(10)
TVDRUGT = THETA(11)
TVEDRES = THETA(12)
TVDRATE = THETA(13)

;____ Modelling covariate effects on population level parameters
IF(CTR.EQ.3) DRUGTCTR 1 ; Most common
IF(CTR.EQ.2) DRUGTCTR ( 1 + THETA(15))
IF(CTR.EQ.0) DRUGTCTR ( 1 + THETA(16))
IF(CTR.EQ.1) DRUGTCTR ( 1 + THETA(17))

TVDRUGT = TVDRUGT * DRUGTCTR

;——__ Mu modelling to improve model run-times
MU_1 LOG(TVLO)
MU_2 = LOG(TVDO)
MU_3 = LOG(TVPO)
MU_4 = LOG(TVINT)
MU_5 = LOG(TVCD)
MU_6 = LOG(TVCP)
MU_7 = LOG(TVVLO)
MU_8 = LOG(TVVK)
MU_9 = LOG(TVV50)

MU_10 = TVEDRUG
MU_11 = LOG(TVDRUGT)
MU_12 = TVEDRES
MU_13 = LOG(TVDRATE)

Including individual random effects on parameters

e YA RMALMDS MLV AR A e e A P Y e

L = EXP(MU_1 + ETA(1))
D = EXP(MU_2 + ETA(2))
PR = EXP(MU_3 + ETA(3))
INT = EXP(MU_4 + ETA(4))
CD = EXP(MU_5 + ETA(5))
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CP = EXP(MU_6 + ETA(6))
VLO = EXP(MU_7 + ETA(7))
VK = EXP(MU_8 + ETA(8))
V50 = EXP(MU_9 + ETA(9))
EDRUG = MU_10+ ETA(10)
DRUGT = EXP(MU_11+ ETA(11))

EDRES =  MU_12+ ETA(12)
DRATE = EXP(MU_13+ ETA(13))

;____ Define initial concentration for each compartment
A_o(1) = INT
A_0(2) = VLO

;____ Naive (V) and total (VT) CD4 T cell concentration with age
VT = 924 + 2354*EXP(-0.001012*AGE)

) = 496.5 + 2074*EXP(-0.000869*AGE)

VTART = 924 + 2354xEXP(-0.001012*ARTAGE)

VART = 496.5 + 2074*EXP(-0.000869*ARTAGE)

;——__ Including Age effects on parameters _____________________________

LAMBDA = L * 0.02*EXP(-0.00027*AGE) * V * 0.905

LOSS =D * 0.02*EXP(-0.00027*AGE)

PROL PR * 0.02*EXP(-0.00027*AGE)

DELTA (0.02*EXP(-0.00027*ARTAGE) /VLO) *(VART*0.905*L/INT - D+EXP (CD* (
INT/VTART-1)) + PR*EXP(CP*(1-INT/VTART)))

DRUG = 1/(1+EXP(-EDRUG))

DRES = 1/(1+EXP(-EDRES))

y____ Define the drug resistance equation ____________________________
$DES

DRUGRES = DRUG*(DRES + (1-DRES)/(1+EXP((T-DRUGT)/DRATE)))

;____ Define the differential equations for the model

DADT(1) = LAMBDA - A(1)*(L0OSS * EXP(CD*(A(1)/VT-1)) - PROL * EXP(CP*(-A
(1)/VT+1))) - DELTA*A(1)*A(2)

DADT(2) = (1-DRUG*(DRES + (1-DRES)/(1+EXP((T-DRUGT)/DRATE-4))))*VK+*A(2)
*VLO/ (VLO+V50) - VK*A(2) =*A(2)/(A(2) + V50)

;____ Compare the model output (IPRED) to the observed data (Y)
$ERROR

IPRED=0

; VIRUS

IF(FLAG==2) IPRED = LOG(A(2))

IF(VLBLQ==0.AND.FLAG==2) F_FLAG = 0

IF(VLBLQ==0.AND.FLAG==2) Y = IPRED + EPS(1)
IF(VLBLQ==1.AND.FLAG==2) F_FLAG = 1

IF(VLBLQ==1.AND.FLAG==2) SD = SQRT(SIGMA(1,1))
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IF (VLBLQ==1.AND.FLAG==2) Y = PHI((VLLOQ-IPRED)/SD)+1.0E-30
IF (VLBLQ==1.AND.FLAG==2) MDVRES=1

; CD4

IF(FLAG==1) IPRED = LOG(A(1))

IF(FLAG==1) Y = IPRED + EPS(2)

;____ Initial estimates for the population level parameters

$THETA
(0,0.103837) FIX ;
(0,0.461765) FIX ;
(0,0.175663) FIX ;
(0,288.4140) FIX ;
(0,1.178360) FIX ;
(0,1.019090) FIX ;
(0,337370.0) FIX ;

LO, thymic output

DO, loss

PO, proliferation

X0, initial concentration CD4

CD, strength competition loss

CP, strength competition proliferation
VLO, initial viral load

(0,0.258776) FIX ; VK, rate viral load decline
(0,750.5140) FIX ; V50, viral load mulitphasic
(-20,3.693170) FIX ; 10. EDRUG, drug effect

© 00 NO O WN -

(0,363.666) ; 11. DRUGT, time at which resistance develops
(-20,-2.99475,20) ; 12. EDRES, residual drug effect

(0,9.41068) ; 13. DRATE, rate of development of resistance
(-1,0.930066) ; 14. DRUGTCTR2, Centre effects on rebound time
(-1,-0.297463) ; 15. DRUGTCTRO, Centre effects on rebound time
(-1,0.198859) ; 16. DRUGTCTR1, Centre effects on rebound time

;____ Initial estimates for the random effects var-covar matrix

BLOCK(10) FIX

2.484630

1.258550 2.173280

0.287249 1.092420 0.878814

0.385209 -1.08255 -0.86133 1.661450

-0.30083 -0.03684 -0.03540 -0.28335 0.630546

0.210169 -0.07209 -0.19530 0.229530 -0.16358 0.420285

-0.11873 -0.00676 0.024708 -0.22191 0.158112 -0.07459 2.146130

-0.04519 0.001880 0.008743 -0.06100 0.005354 -0.01568 0.053634
0.094765

0.260986 -0.46731 -0.26785 0.528847 -0.05784 0.031735 0.901993
0.080490 1.393940

0.324752 -0.07808 -0.16514 0.461696 0.048112 0.079234 0.460435
-0.03956 0.861229 1.281940

$0OMEGA 0.67719

$0MEGA 2.46763

$0OMEGA 0.01 FIX

;____ Initial estimate for the residual error variances
$SIGMA BLOCK(2)
1.45644

0.00113859 0.0972418
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;____ Estimation algorithm to be used (EONLY=1 Expectation Only)

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) NITER=80 PRINT=10
ISAMPLE=1000 CTYPE=1 NOABORT

$ESTIMATION METHOD=IMP INTER LAPLACE GRD=SN(1) EONLY=1 NITER=4 PRINT=1
ISAMPLE=10000 IACCEPT=0.1 DF=0 ISAMPEND=10000 STDOBJ=2 MAPITER=0
RANMETHOD=3S2 NOABORT

;____ Output results of the model-fitting into a table ________________
$TABLE ID TIME DV EVID PRED IPRED FLAG VLBLQ CWRES DRUGRES NOPRINT
NOAPPEND ONEHEADER FILE= sdtab_HIV_arrow_viral_rebound
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Appendix B

R and NONMEM scripts for
predicting long-term CD4
reconstitution following

paediatric HSCT

B.1 R script

library(lattice)
library (FME)
library(latticeExtra)
rm(list=1s())

B S T T
##### Input Patient Characteristics #######H#####HHHHHIHBHERHHHHHHHHHHEH
# Patient Hostpital Number or another numeric identifier
Patient_ID=1004

# The Age (in days) on the day of the HSCT
Age_at_HSCT = 4676

## Input diagnosis:

# 1: Leukaemia (any form)
# 2. Any other diagnosis
Diagnosis = 2

## Conditioning details:

# 1: Alemtuzumab

# 2. ATG

# 3. any other form of conditioning (e.g. TBI, ACD45, other drugs etc)
# 4. No conditioning at all

Conditioning = 1

## Acute GvHD Status
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# 1: Never had acute GvHD
# 2: Had acute GvHD
Acute_GvHD_status = 1

B S S S T S S

##### Input CD4 concentration data #######HHHH##H#HHHHHHHHHHERHHHHHHHHEH

# Formats:

# Times in days following HSCT (with day O as the day of HSCT)

# Concentrations in cells/ul (i.e. should be roughly in the range of 10
to 4000)

Times = c(20,176,204,239,281,323)

Concentrations = ¢(10,120,160,340,680,1010)

R R S R
##### Simulation of data characteristics ##########S#H#HAHHHBRFHHHRHHBRHH
# The number of sample parameter values formed:

# - More samples gives a more accurate representation
# - Fewer samples is faster

# - Somewhere between 300 and 1000 is recomended
samples=500

# The size of the confidence interval of the trajectory to plot (%):
Confidence_Interval = 68

HESH
##### Model File Name #H#######H#H#HHSHMSHAHHEHHEHHEHEHHEHHEHHEH RS H 1Y
Model = "CD4_individual_prediction"

HEHHSHBHHAFHAH RS HBHHFHEH R HBHH AR AH RS H RS H R R R
##### Set directory for modelling #HH#H#H###HHHHHHHHHHHHHHHHBHFHHHHHHHURH
Directory = "~ /Documents/R/CD4/Predictions"

# Model file should be saved in this directory in format: runModel.mod

HERHHHRFHH AR R R R R R R R R R
##### Create directory for individual patient for prediction #########
Individual_Directory = paste(Directory,"/Patient_",Patient_ID,sep="")
system(paste("mkdir ",Individual_Directory,sep=""))

setwd (Individual_Directory)

L s s s s T s s s s T s s
AR
##### Carry out parameter estimation and simulation #i#########HHHH#####H
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U

HHBHBHBHBHBHBHBHBHBHBHBHAH AR HRH AR AR HEHEHEHEHEHEHEH GRS RS RS RGBS RGBSR BH
##### Create data set given information above #######H####HHRFHHBRHHERIH
nonmem_data <- data.frame(

ID = Patient_ID,

TIME = c(0,Times),

DV = c(0,log(Concentrations)),

EVID = c(2,rep(0,length(Times))),

AGE = c(0,Times) + Age_at_HSCT,

GVHYN = O,

COND=0,

ALEM=0,

ATG=0,

LEUK=0)

if (Conditioning == 1){nonmem_data$ALEM <- 1}

if (Conditioning == 2){nonmem_data$ATG <- 1}

if (Conditioning == 4){nonmem_data$COND<-1}

if (Diagnosis == 1){nonmem_data$LEUK <- 1}

if (Acute_GvHD_status == 2){nonmem_data$GVHYN <- 1}

names (nonmem_data) [1] <- "#ID"
write.csv(nonmem_data,"nonmemdata_log_predictions.csv",row.names=FALSE,
quote=FALSE)

HESHHHR SR B H R R R R R R R

##### Carry out model fitting in NONMEM ##### ittt

system(paste("cp ",Directory,"/run",Model,".mod run",Model,".mod",sep
=)

system(paste("execute run",Model,".mod -directory=NM_run",Model,sep="")
)

system(paste("rm -r NM_run",Model,sep=""))

HAEHBHHBHHAHHAHBHHBHHBHHAH R HBHHAH B AR RS H B SRR AR R HBHH AR AR H RS H B R AR

##### Read back in NONMEM results ###########4##EHHSHEHHEFHEHHEHASHASHE

phi <- read.table(paste("run",Model,".phi",sep="") ,header=T,skip=1)

sigma <- read.table(paste("run",Model,".ext",sep=""),header=T,skip=1)
[1,"SIGMA.1.1."]

HHHH R R
##### Create sample parameter sets from NONMEM results ###############H
nparam=6 # Number of parameters with random effects
varcovar_list <- list()
for (i in 1:nparam){
for (j in 1:nparam){
if (j>i) {name <- paste("PHC",j,i,"",sep=".")}
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else {name <- paste("PHC",i,j,"",sep=".")}
varcovar_list <- append(varcovar_list,name)}}
varcovar_list <- unlist(varcovar_list)

mean_list <- list()
for (i in 1:nparam){
mean_name <- paste("PHI",i,"",sep=".")
mean_list=append(mean_list,mean_name)}
mean_list <- unlist(mean_list)

parMean <- unlist(phi[,mean_list])
parCovar <- matrix(data=unlist(phil[,varcovar_list]),nrow=nparam)

sample_params <- data.frame(Norm(parMean=parMean,parCovar=parCovar,num=
samples))

names (sample_params) <- c("lambda","d","p","X0","LH","LR")

real_sample_params <- exp(sample_params)

g s
##### Simulate data from sample parameter sets #H#######HHHBHFHFHHHHHURH

sample_param <- real_sample_params[1,]

pars <- list(lambda = sample_param$l,
d = sample_param$d,
p = sample_param$p,
X0 = sample_param$XO,
LH = sample_param$LH,
LR sample_param$LR)

#Define model to solve, including time range, differential equations,
starting estimates for compartments
solveCD4 <- function(pars, times=seq(0,3000,by=10)){
derivs <- function(t, state, pars) {
with(as.list(c(state,pars)),q{
Age = Age_at_HSCT
V = (497+2070*exp(-0.00087* (t+Age)))
V2 <- (924+2354*exp(-0.001012 (t+Age)))
L = lambda*exp(-0.00027* (t+Age))*V*0.02*(1-exp(-2*
t/LH) )/ (1+exp (LR*(1-t/LH)))*0.02/0.0221
D = d*0.018%exp(-0.00027* (t+Age))*exp (1*(X/V2-1))
P = px0.02 *exp(-0.00027*(t+Age))*exp(1x(1-X/V2))
dX <- L - X*(D-P)
return(list(c(dX)))
b
}
state <- c(X = pars$X0)
return(ode(y=state,times=times,func=derivs,parms=pars))
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# Carry out estimation from model
out <- data.frame(solveCD4(real_sample_params[1,]))

for (i in 2:samples){
out_new <- data.frame(solveCD4(real_sample_params[i,]))
out[,i+1] <- out_new$X

}

HESH A
HESHHHAFH R B F R HBAFHF R HRA SRR F AR R R R R
##### Plot Results #H#HdH
HESHHHAFHHBHHH R H B RS HH B HRA SRR F BB R S F AR R R

B R R S S R R R R R R S R R i e S
##### Calculate confidence intervals for plots ##########H#HRHHHARHHERAH
CI.lower= (50 - Confidence_Interval*0.5)/100.0
CI.higher=(50 + Confidence_Intervalx*0.5)/100.0

#xyplot (X~time,out,pch=".",scales=list(y=1list(log=T)))
out$lower <- apply(out[,2:ncol(out)],1,quantile,probs=c(CI.lower))*exp
(-sigma)

out$median <- apply(out[,2:ncol(out)],1,quantile,probs=c(0.5))

out$higher <- apply(out[,2:ncol(out)],1,quantile,probs=c(CI.higher))*
exp(sigma)

out <- as.data.frame(out[,c("time","lower","median","higher")])

write.csv(out,paste("Predicted Trajectories",Patient_ID,".csv",sep=""))
B s S s S s e e e S e e S e e e S S e e e B R 2 B e Ea g 2
##### Include CD4 concentration with age ###########HHHHH#HHHAHHHHHHHEH
CD4_expected <- data.frame(

AGE = 1:8000)

CD4_expected$CD4 <- 924+2354*exp(-0.001012*%CD4_expected$AGE)
CD4_expected$CIO5 <- 0.469%CD4_expected$CD4

CD4_expected$CI95 <- 1.687*CD4_expected$CD4

out$AGE <- Age_at_HSCT + out$time

out <- merge(out,CD4_expected)

out$min <- do.call(pmin,data.frame(out$lower,out$CIios))

out$time <- out$time/30.5

HEHHEHBFHAFHEH RS H R R R R R R R R R

##### Plot results and CD4 concentration for age and save
HEHHSH RS H AR A

pdf (file=paste("Predicted trajectory ",Patient_ID,".pdf",sep=""),width
=8, height=5)

xyplot (CD4"time, out,type="1", scales=list(x=1list(limit=c(0,39), at=c
(6,12,18,24,30,36)), y=list(log=T,limit=c(3,6000), at=c
(10,30,100,300,1000,3000))), xlab=list(label="Time after HSCT (
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months)", cex=1.5), ylab = list(label=expression(paste("CD4
concentration (cells/",mu,"L)")),cex=1.5)) +

as.layer (xyplot (CI95 time,out,type="1",1ty=2, scales=list(y=list
(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’xy’,
col=rgb(0,0,1,0.2))) +

as.layer (xyplot (CIO5 time,out,type="1",1ty=2, scales=list(y=list
(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’xy’,
col="white", col.line="white")) +

as.layer(xyplot (higher~time,out,type="1",1ty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col=rgb(0.1,1,0,0.3))) +

as.layer (xyplot(lower~time,out,type="1",1ty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col="white"))+

as.layer(xyplot (lower~time,out,type="1",1ty=2, scales=list(y=
list(log=T)), panel=panel.xyarea, border=0,origin=0,aspect=’
xy’,col=rgb(0,0,1,0.2))) +

as.layer(xyplot (min~time,out, scales=list(y=1list(log=T)), panel=
panel.xyarea,border=0, origin=0,aspect=’xy’,col="white", col.
line="white"))+

as.layer (xyplot(higher~time,out,type="1",1ty=2, col="black",
scales=1list(y=1list(log=T)))) +

as.layer (xyplot(lower~time,out,type="1",1ty=2,col="black",
scales=list(y=list(log=T)))) +

as.layer (xyplot(median”time,out,type="1",1ty=1,col="black",
scales=list(y=1list(log=T)))) +

as.layer (xyplot (exp(DV) "TIME/30.5,nonmem_data,cex=0.7, type="p",
col="black", scales=list(y=1list(log=T))))

dev.off ()

HESHHHAFHHAHHH R HHAFHH B HRASH R F RS H AR R RS
HESHH R

B.2 NONMEM script

$PROBLEM Paediatric HSCT CD4 T cell Reconstitution Individual

Predictions
;____ Data Input and setup of problem ___________ o ___
$INPUT ID TIME DV EVID AGE GVHYN COND ALEM ATG LEUK
$DATA nonmemdata_log_predictions.csv IGNORE=0
$SUBROUTINE ADVAN13 TOL=9
$MODEL COMP=(CENTRAL)
$PK

Initiate population level parameters for the model

e YRRV YISV A L P e A A M -

TVL = THETA(1)
TVD = THETA(2)
TVPR = THETA(3)

232



Appendix B. Scripts for predicting CDJ reconstitution post HSC'T

TVINT = THETA(4)
TVLH THETA (5)
TVLR THETA (6)

;____ Modelling covariate effects on population level parameters
IF(ALEM.EQ.0) INTALEM 1

IF(ALEM.EQ.1) INTALEM = (1 + THETA(7))
IF(ATG.EQ.0) INTATG = 1

IF(ATG.EQ.1) INTATG = (1 + THETA(8))
IF(GVHYN.EQ.O) INTGVHYN = 1
IF(GVHYN.EQ.1) INTGVHYN = (1 + THETA(9))
IF(LEUK.EQ.O0) LLEUK 1

IF(LEUK.EQ.1) LLEUK = (1 + THETA(10))
IF(COND.EQR.O) PRCOND 1

IF(COND.EQR.1) PRCOND (1 + THETA(11))

TVINT = TVINT * INTALEM * INTATG * INTGVHYN
TVL = TVL * LLEUK
TVPR = TVPR * PRCOND

_ Mu modelling to improve model run-times
LOG(TVL)

MU_2 = LOG(TVD)

MU_3 = LOG(TVPR)

MU_4 = LOG(TVINT)

MU_5 = LOG(TVLH)

LOG(TVLR)

=

IC:

-
I

=
ICI

(@)
]

;____ Naive (V) and total (VT) CD4 T cell concentration with age
VT = 924 + 2354*EXP(-0.001012*AGE)
V = 496.5 + 2074*EXP(-0.000869*AGE)

;——__ Including Age effects and individual random effects on params
L = EXP(MU_1 + ETA(1)) * V * 0.9 * 0.02+EXP(-0.00027*AGE)

D EXP(MU_2 + ETA(2)) * 0.02+EXP(-0.00027*AGE)

PR EXP(MU_3 + ETA(3)) * 0.02*EXP(-0.00027*AGE)

INT = EXP(MU_4 + ETA(4))

LH = EXP(MU_5 + ETA(5))

LR = EXP(MU_6 + ETA(6))

Ch =1

Cp =1

A_o(1) = INT

;____ Define the differential equation for the model __________________
$DES

DADT(1) = L * (1-EXP(-2+T/LH))/(1+EXP(LR*(1-T/LH))) - A(1)*(D*EXP(CD* (A
(1)/VT-1)) - PR * EXP(CP*(-A(1)/VT+1)))

_ Compare the model output (IPRED) to the observed data (Y)

Y VYRS VAL VMY SE MRV SRY O ASE VRS VY AR VMRV R AN Y e
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$ERROR
IPRED = A(1)
IPRED = LOG(IPRED)

Y = IPRED + EPS(1)

;____ Initial estimates for the population level parameters

$THETA
(0,0.222489) ; 1. L, thymic output

(0,0.454536) ; 2. D, loss

(0,0.195179) ; 3. PR, proliferation

(0,164.2850) ; 4. A_O, Initial concentration of cells

(0,133.1450) ; 5. LH, time to recovery in thymic output

(0,9.757030) ; 6. LR, rate of recovery of thymic output

(-1,-0.83722) ; 7. INTALEM, effects of alemtuzumab on A O

(-1,-0.93890) ; 8. INTATG, effects of ATG on A_O

(-1,0.331920) ; 9. INTGVHYN, effects of acute GvHD on A_O

(-1,1.289310) ; 10. LLEUK, effects of leukaemia on thymic output
(-

1,-0.88522) ; 11. PRCOND, effects of no conditioning on
proliferation

;____ Initial estimates for the random effects var-covar matrix

$0OMEGA BLOCK(6)

1.5563010

.522870 1.662840

.161760 0.320213 0.247498

.405366 0.415663 0.218925 1.286390

.534060 -0.44269 -0.06167 0.766879 1.214760

.083104 0.340042 -0.13533 -0.89795 -0.77866 1.259670

O O O O O

Initial estimate for the residual error variance

e YRS AR AV PR A e e N R

$SIGMA 0.218784

) e —

Estimation algorithm to be used (EONLY=1 Expectation Only)

$ESTIMATION METHOD=IMP INTERACTION EONLY=1 ISAMPLE=10000 IACCEPT=0.1

NITER=10 PRINT=1

; —___ Output results of the model-fitting into a table

$TABLE ID TIME DV PRED IPRED CWRES EVID ETA1 ETA2 ETA3 ETA4 ETAS

ETA6 OBJI NOPRINT NOAPPEND ONEHEADER FILE=
sdtab_individual_predictions
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Python code

C.1 Global competition model

## Global competition model with thymus
## File output of lifetimes and clonotype distributions
## And with automatic graphs of the distributions

from numpy import random,array,log,exp,sqrt,mean,arange,cumsum,
searchsorted,where,histogram,concatenate,loadtxt,transpose

from pylab import show,savefig,ion,arange,histogram,step,draw,figure,
plot,ylabel,zeros,hist,xlabel,ylim,title,text,bar,subplot,
tight_layout

import datetime,time,sys

from scipy.special import *

HHHHBHBHBHBHBHBHBH AR HAH AR AR HEH ARG HEH GRS RS R RGBS RS RGBS HY
# Give folder name for this run
runname = ’Global_thymus’
HAEHHHHBHHAHHAH RS HBHHHHH AR B HBHHAH B H RS HBHH AR H B R B R AR
### Set variables, or read in from command line
HAHHHHBHHAHHAH B HBHHAHHAH B HBHHAH B AR RS HBHH AR R RS H B H AR
if len(sys.argv)==1:

n0 = 8

delta = 80.0

gamma = 4000.0

folder_name = ’Global_thymus’
else:

n0 = int(sys.argv[1])

delta = float(sys.argv[2])

gamma= float(sys.argv[3])

folder_name= str(sys.argv[4])

today_start = str(sys.argv([5])
mu = 1.0
N = int(round(gamma/n0 + delta))
tmax = 2000.0
tint = tmax/50.0
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TcellNumb = [nO]*N
t=0.0

tt=-0.5*tint
birthtime = [0.0]*N
NNow=N

BHUFHFHFHHHHHHHHHHHHEHEH R HEHEH R

### Find start time/date and open file for output

BHUFHFHFHFHHHHHHHH AR HAH R HEHEHEH GRS R H SRR H SRS RS R SRS HH

todayraw = datetime.datetime.today()

today = todayraw.strftime("%b%dky %Hh%M.%S")

life_t_file = open(folder_name+’/lifetimes_’+runname+’_’+str(gamma)+’ _
’+str(n0)+’ _’+str(delta)+’.txt’, ’w’)

life_t_file.write( ’N=%d n0=%d delta=),.2f gamma=Y%.2f tmax=%.2f\n’ %(N,
n0,delta,gamma,tmax))

life_t_file.write( ’ expected mean number of cells=}%.2f\n’ ¥ ((gamma+
delta*n0)/mu))

clono_file = open(folder_name+’/clonotype_distributions_’+runname+’_’+
str(gamma)+’_’+str(n0)+’_’+str(delta)+’.txt’, ’w’)

clono_file.write(’t\t’)

for i in range(99):
clono_file.write(’%d\t’%i)

print ’N=’,N,’n0=’,n0,’delta=’,delta,’gamma=’,gamma,’tmax=’,tmax

print ’expected mean number of cells=’ ,(gamma+delta*n0)/mu

HHHHHHHHHHH R H R H R HEHHERH S HFEHFRRF R H R R
### Gillespie Algorithm for the dynamics
B s S s S s e e e e e e e e R S R e R 2 R b
def Gillespiestep(gamma,mu,delta):
’>?’0One step of the Gillespie algorith’’’
TcellSum = sum(TcellNumb)
Lamb = [x*gamma/TcellSum for x in TcellNumb]
deathrate = [x*mu for x in TcellNumb]
rates = deathrate+Lamb+[delta] # concatenates arrays
ratesum = sum(rates)
urv = random.uniform()
i = searchsorted(cumsum(rates)/ratesum,urv)
idead=NNow
if i < NNow:
TcellNumb[i]-=1 # Loss
if TcellNumb[i] ==
idead = i
TcellNumb.pop(i) # Clonotype extinction
elif i==2xNNow:
TcellNumb.append(n0O) # New clonotype
else:
i = i-NNow
TcellNumb[i] += 1 # Division

return i,idead,ratesum
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BHUEFHHHHHHHHHHRHRHHHRHRH AR ARG HEHEHEHEHEH GRS R GRS RS RS RS RS HHS
### Carry out the actual dynamics
BHEFHHBHHHHHHHBHRHRHRHRH B AR B HEHEHEHEHEHGH GRS H GRS H SRS RS 1Y
start=time.clock()
print start
while t < tmax:
i,idead,ratesum = Gillespiestep(gamma,mu,delta)
tinc = -log(random.uniform())/ratesum
if idead != NNow:
NNow-=1
life_t_file.write("%.3f\t%.3f\n" %(birthtime[i],t-birthtime[i]))
birthtime.pop(i)
elif i==2*NNow:
birthtime.append(t)
NNow+=1
if tt>tint:
tt=0
celldens = histogram(TcellNumb, bins=(arange(100)+1))
clono_file.write(’\n%.3f\t’%t)
for tcells in celldens[0]:
clono_file.write(’%d\t’%tcells)
life t_file.flush()
clono_file.flush()
print t,NNow,sum(TcellNumb)
timenow = time.clock()
timetaken=timenow-start
print timetaken
start=timenow
t+=tinc
tt+=tinc

HHSF R R R R

### Output data into files and close files

HHHHHHHH RS R E R R R R HH R

clono_file.write(’\n%.3f\t’%t)

for tcells in celldens[O0]:
clono_file.write(’%d\t’%tcells)

clono _file.close()

life_t_file.close()

B

### Create histogram of distribution of clonotype lifetimes

B

alpha = delta*n0/gamma

gamma_E = 0.57721566490

T = 1.0/ (alpha*mu)*(gamma_E - exp(alpha*n0)*expi(-alpha*n0) + log(alpha
*n0) )

mybins=arange(101)
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lifetime = loadtxt(folder_name+’/lifetimes_’+runname+’_’+str(gamma)+’ _
’+str(n0)+’_’+str(delta)+’.txt’, skiprows=2)

lifetime = transpose([lifetime for lifetime in lifetime if lifetime
[0]1=01)

subplot(2,1,1)

ydens=histogram(lifetime[1], bins=mybins, normed=True) [0]

hist(lifetime[1], mybins, normed=True)

x = (arange(1000)+1)*0.1

pred=(n0/x**2)*xexp(-n0/x)

1=plot(x,pred, linewidth=2)

xlabel(’Clonotype lifetime’)

title(r’Histogram of clonotype lifetimes’)

text (75,0.02,°$N=/d$ \n $n_0=%d$ \n $\delta =%.0f$ \n $\gamma=%.0f$ \n
$\mu=%.0f$ \n $t_{max}=%.0£f$’%(N,n0,delta,gamma,mu,tmax), fontsize
=14)

HHBHBHBHBHBHBHBHBHBHAHAH AR AR H AR ARG HEH GRS HERGHG R RGBS RS HH

### Create plot of clonotype sizes

HEHHEH SRR R R R R R R

subplot(2,1,2)

clonotypes = loadtxt(folder_name+’/clonotype_distributions_’+runname+’_
>+str(gamma)+’_’+str(n0)+’_’+str(delta)+’.txt’, skiprows=1).T

clonotypes_t = transpose(clonotypes[1:])

mean_clonos = sum(clonotypes_t)/sum(sum(clonotypes_t))

ind=arange (len(mean_clonos))

width=1

pl = bar(ind,mean_clonos,width,color=’b’)

x1=((arange (n0*10)+1)*0.1)

predl=(1/(T*alpha))*(1-exp(-alpha*x1))/x1

1l1=plot(x1,predl,linewidth=2,color="g’)

x2=n0+arange (900)*0.1

pred2=(1/T)*(exp(alpha*n0)-1)*exp(-alpha*x2)/(alpha*x2)

12=plot(x2,pred2,linewidth=2,color="g’)

xlabel (°T cells per clonotype’)

title(r’Histogram of clonotype sizes’)

tight_layout (True)

HHHHHHHHHHH R H R H SR HEHHERH G HFEHF SRS RS R R

### Save figures

Bt S S s s s s S e e R e R e B S R e R 2 B S

today_date = todayraw.strftime("%b%d%y")

savefig(folder_name+’/’+str(today_date)+’_lifetime_size_%.0f_%.0f_%.0f.
pdf’ % (gamma,n0,delta))

clono_n_file_1 = open(folder_name+’/clono_totals_’+str(n0)+’_’+str(
gamma)+’.txt’, ’a’)

clono_totals = sum(clonotypes[1:])

for clono_total in clono_totals:
clono_n_file_1.write(’%d\t’%clono_total)

clono n_file 1.close()
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C.2 GGlobal competition model, including distri-
butions of resource affinity, as applied to
mouse data for CD8 memory T cells

## Global competition model with thymus
## Set up as for mice experiments for CD8 memory T cells donor & host
## With gamma ditributed

from numpy import random,array,log,exp,sqrt,mean,arange,cumsum,
searchsorted,where,histogram,concatenate,loadtxt,transpose,append

from pylab import show,savefig,ion,arange,histogram,step,draw,figure,
plot,ylabel,zeros,hist,xlabel, xlim,ylim,title,text,bar,subplot,
tight_layout,legend,close,ion,ioff, rcParams

import datetime,time,sys

from scipy.special import *

B i e e R e e e i e e R R e e S e S e
# Give folder name for this run

runname = ’Mice_global’

HEH S H R R
### Set variables, or read in from command line

HEH SR
if len(sys.argv)==1:

n0=3
N = 1500
n_th =3

delta = 120.0

gamma = 4000.0
gamma_donor=800.0
folder_name = ’Mice’

else:
N = int(sys.argv[1])
delta = float(sys.argv[2])
gamma= float(sys.argv[3])
folder_name= str(sys.argv[4])
today_start = str(sys.argv[5])

mu = 0.8
tmax = 49.0
tint = 0O

.5
ttrans = 8.0
TcellNumb = [nO0]*N
t=0.0
tt=-0.5*tint
birthtime = [0.0]*N
Ninit=N
NNow=N

239



Appendix C. Python code

NHost=N
NDonor=0
Host_or_donor = [1]*N
t_list=[0]
NDonor_list=[0]
NHost_list=[N]
T_donor_list=[0]
T host_list=[sum(TcellNumb)]
gamma_i = [-1]*N
for i in range(N):
while gamma_i[i]<=0.0 or gamma_i[i]>=100.0:
gamma_i[i] = random.normal(50,30)
mybins=3*arange (34)

HAEHBHHBHHAHHAHBHHBHHHHH AR R HBHHAH R AR RS H RS H AR AR R HBHH AR

### Find start time/date and open file for output

HAEHHAHBHHAHHAHBHHBHHHHHAH RS HBHHAH B H RS H RS R AR AR R HBHH AR

todayraw = datetime.datetime.today()

today = todayraw.strftime("%b%d%y %HhYM.%S")

print ’N=’,N,’n0=’,n0,’n_th=’,n_th,’delta=’,delta,’gamma=’,gamma, ’tmax
=’ tmax

print ’expected mean No cells=’ ,(gammatdelta*n_th)/mu, "Init no cells
=" sum(TcellNumb)

HHBHHHBHBHBHBHBHBH AR HAH AR AR HAEHEHEHEHEH GRS HG RS R HS RGBS 1Y
### Gillespie Algorithm for the dynamics
HHBHBHBHBHBHBHBHBH AR HAH AR AR HEH ARG HEH GRS HE RS H GRS RGBS RS HH
def Gillespiestep(gamma,mu,delta):
’?’0One step of the Gillespie algorith’’’
gammaNormaliser = sum([gamma_i[i]*TcellNumb[i] for i in range(NNow)
D
Lamb = [TcellNumb[i]*gamma_i[i]*gamma/(gammaNormaliser) for i in
range (NNow) ]
deathrate = [x*mu for x in TcellNumb]
rates = deathrate+Lamb+[delta] # concatenates arrays
ratesum = sum(rates)
urv = random.uniform()
i = searchsorted(cumsum(rates)/ratesum,urv)
idead=NNow
if i < NNow:
TcellNumb[i]-=1 # Loss
if TcellNumb[i] ==
idead = 1
TcellNumb.pop(i) # Clonotype extinction
elif i==2xNNow:
TcellNumb.append(n_th) # New clonotype
else:
i = i-NNow
TcellNumb[i] += 1 # Division
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return i,idead,ratesum

Tcell_gamma_dens = sum([[gamma_i[i]]*TcellNumb[i] for i in range(N)
1,0

gamma_dens = histogram(Tcell_gamma_dens, bins=mybins) [0]

gamma_dens = append(gamma_dens, [0])

gamma_list [gamma_dens]

it
### Carry out the actual dynamics
HE R
start=time.clock()
print start
while t < ttrans:

i,idead,ratesum = Gillespiestep(gamma,mu,delta)

tinc = -log(random.uniform())/ratesum
if idead !'= NNow:

NNow-=

NHost -= 1

birthtime.pop(i)
Host_or_donor.pop (i)
gamma_i.pop (i)

elif i==2xNNow:
birthtime.append(t)
Host_or_donor.append (1)
new_gamma=-1
while new_gamma<=0 or new_gamma > 100:

new_gamma = random.normal (50,30)

gamma_i.append(new_gamma)
NNow +=1
NHost += 1

if tt>tint:
tt=0
TcellNumb_host=0
TcellNumb_donor=0
TcellNumb_host=sum(TcellNumb)
print TcellNumb_host, TcellNumb_donor
T_donor_list.append(TcellNumb_donor)
T_host_list.append(TcellNumb_host)
t_list.append(t)
NDonor_list.append(NDonor)
NHost_list.append(NHost)
print t,NNow,sum(TcellNumb)
timenow = time.clock()
timetaken = timenow-start
Tcell_gamma_dens = sum([[gamma_i[i]]*TcellNumb[i] for i in range

(NNow) 1, [1)

print len(Tcell_gamma_dens)
gamma_dens = histogram(Tcell_gamma_dens, bins=mybins) [0]
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gamma_dens = append(gamma_dens, [0])
start=timenow

t+=tinc

tt+=tinc

gamma_list.append(gamma_dens)
gamma_dens_donor = [0]*len(mybins)
gamma_list_donor = [gamma_dens_donor]
ttt=0.0

while t < tmax:
i,idead,ratesum = Gillespiestep(gamma,mu,delta)

tinc = -log(random.uniform())/ratesum
if idead != NNow:
NNow-=1
if Host_or_donor[idead] == O:
NDonor -= 1
if Host_or_donor[idead] == 1:
NHost -= 1

birthtime.pop(i)
Host_or_donor.pop (i)
gamma_i.pop (i)
elif i==2xNNow:
birthtime.append(t)
Host_or_donor.append (0)
new_gamma=-1
while new_gamma<=0 or new_gamma > 100:
# new_gamma = random.uniform(0,100)
new_gamma = random.normal(50,30)
gamma_i.append (new_gamma)
NNow +=1
NDonor += 1
if tt>tint:
tt=0
TcellNumb_host=0
TcellNumb_donor=0
for i in range(len(Host_or_donor)):
if Host_or_donor[i]l==1:
TcellNumb_host += TcellNumb[i]
if Host_or_donor[i]==0:
TcellNumb_donor += TcellNumb[i]
print TcellNumb_host, TcellNumb_donor
T_donor_list.append(TcellNumb_donor)
T_host_list.append(TcellNumb_host)
t_list.append(t)
NDonor_list.append(NDonor)
NHost_list.append(NHost)
print t,NNow,sum(TcellNumb)
Tcell_gamma_dens = [[gamma_i[i]]*TcellNumb[i] for i in range(
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NNow) ]
#print len(Tcell_gamma_dens)
gamma_dens = histogram(sum([Tcell_gamma_dens[i] for i in range(
NNow) if Host_or_domor[i] ==1],[]),bins=mybins) [0]
gamma_dens = append(gamma_dens, [0])
gamma_dens_donor = histogram(sum([Tcell_gamma_dens[i] for i in
range (NNow) if Host_or_donor[i] ==0],[]),bins=mybins) [0]
gamma_dens_donor = append(gamma_dens_donor, [0])
timenow = time.clock()
timetaken = timenow-start
start=timenow
if ttt>ttrans*2:
ttt=0.0
gamma_list.append(gamma_dens)
gamma_list_donor.append(gamma_dens_donor)
t+=tinc
tt+=tinc
ttt+=tinc
gamma_list.append(gamma_dens)

rcParams[’figure.figsize’] = 10.5, 13.5

subplot(4,2,1)

plot(t_list,T_host_list, label=’Host’)
plot(t_list,T_donor_list, label=’Donor’)
xlabel (’Time from birth (weeks)’)

ylabel (’Number of T cells’)
ylim(0,1.1*max(T_host_list))
legend(labelspacing=0.02)

subplot(4,2,3)

plot(t_list,NHost_list, label=’Host’)
plot(t_list,NDonor_list, label=’Donor’)
xlabel (*Time from birth (weeks)’)
ylabel (’Number of clonotypes’)
y1lim(0,1.1*max (NHost_list))
legend(labelspacing=0.02)

proportion_T = [1.0%T_donor_list[i]/(1.0%T_host_list[i]+1.0%
T_donor_list[i]) for i in range(len(T_donor_list))]

subplot(4,2,2)

plot(t_list,proportion_T,c=’black’, label=’Proportion’)
xlabel(’Time from birth (weeks)’)

ylabel (’Proportion donor T cells’)

ylim(0,1.1)

proportion_C = [1.0#NDonor_list[i]/(1.0*NHost_list[i]+1.0*NDonor_list[i
1) for i in range(len(NDonor_list))]
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subplot(4,2,4)

plot(t_list,proportion_C,c=’black’, label=’Proportion’)
xlabel(°Time from birth (weeks)’)

ylabel (’Proportion donor clonotypes’)

ylim(0,1.1)

subplot(4,2,5)

title(’Birth (O Weeks)’)

step(mybins,gamma_list[0]/float (max(gamma_list[0]))*100, label=’Host’)
xlabel(’gamma’)

ylabel(’% of Max’)

legend(loc=2,labelspacing=0.02)

subplot (4,2,6)

title(’Day of transplant (%.0f Weeks)’ % ttrans)
step(mybins,gamma_list[1]/float(max(gamma_list[1]))*100, label=’Host’)
ylabel(’% of Max’)

xlabel(’gamma’)

legend(loc=2,labelspacing=0.02)

subplot(4,2,7)

title(’%.0f Weeks’ % (3xttrans))

step(mybins,gamma_list[2]/float(max(gamma_list[2]))*100, label=’Host’)

step(mybins,gamma_list_donor[1]/float (max(gamma_list_donor[1]))*100,
label=’Donor’)

xlabel (’gamma’)

ylabel(’% of Max’)

legend(loc=2,labelspacing=0.02)

subplot(4,2,8)

title(’%.0f Weeks’ % (bxttrans))

step(mybins,gamma_list[3]/float(max(gamma_list[3]))*100, label=’Host’)

step(mybins,gamma_list_donor[2]/float (max(gamma_list_donor [2]))*100,
label=’Donor’)

xlabel (’gamma’)

ylabel(’% of Max’)

legend(loc=2, labelspacing=0.02)

tight_layout ()

savefig(’Mice/Gamma distributions with donor nth=’+str(n_th)+’ quick mu
=0.8.pdf’)

show (block=True)

244



	Introduction
	The haematopoietic system
	The immune system
	Platelets
	Neutrophils
	T cells
	Immune reconstitution
	Haematopoietic stem cell transplantion
	HIV-infected children undergoing ART

	Why use mathematical modelling?
	Aims of the project

	Short-term neutrophil and platelet reconstitution following HSCT
	Introduction
	Modelling short-term reconstitution
	Neutrophils
	Platelets
	Conditioning drug protocols & pharmacodynamics

	Methods
	The data
	Model fitting
	Covariate model-building
	Data below the limit of quantification
	Diagnostic plots

	Results
	Neutrophils
	Platelets

	Discussion

	Long-term CD4 T cell reconstitution following HSCT
	Introduction
	Quantifying immune reconstitution

	Methods
	The data
	Model building
	Sensitivity and identifiability analysis
	Model fitting and covariate model building
	Making predictions

	Results
	Model fit
	Covariate analysis
	Diagnostic plots
	Predicting reconstitution in new patients

	Discussion

	Long-term CD4 T cell reconstitution in HIV-infected children starting antiretroviral therapy
	Introduction
	HIV in children
	Modelling the dynamics of the immune system and HIV

	The data
	PENTA 11
	ARROW

	Methods
	Model building
	Model fitting

	Results
	Patients with full viral suppression
	Patients with viral load rebound
	Covariate analysis

	Discussion

	A global competition model for T cell homeostasis
	Introduction
	The model
	Results
	Without thymic output
	Including thymic output
	Application to murine CD8 memory data

	Discussion

	Conclusions
	Recommendations for developing mechanistic models of immune reconstitution
	Future work

	References
	Appendices
	NONMEM model files
	Short-term reconstitution of neutrophils following paediatric HSCT
	Short-term reconstitution of platelets following paediatric HSCT
	Long-term reconstitution of CD4 concentration following paediatric HSCT
	CD4 concentration and viral load in HIV-infected children restarting ART, PENTA data
	CD4 concentration and viral load in HIV-infected children starting ART, ARROW data
	CD4 concentration and viral load in HIV-infected children starting ART, viral load rebound in ARROW data

	R and NONMEM scripts for predicting long-term CD4 reconstitution following paediatric HSCT
	R script
	NONMEM script

	Python code
	Global competition model
	Global competition model, including distributions of resource affinity, as applied to mouse data for CD8 memory T cells


