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Abstract
We investigate intermediate logics between the bunched logics Boolean BI and Classical BI,
obtained by combining classical propositional logic with various flavours of Hyland and De Paiva’s
full intuitionistic linear logic. Thus, in addition to the usual multiplicative conjunction (with its
adjoint implication and unit), our logics also feature a multiplicative disjunction (with its adjoint
co-implication and unit). The multiplicatives behave “sub-classically”, in that disjunction and
conjunction are related by a weak distribution principle, rather than by De Morgan equivalence.

We formulate a Kripke semantics, covering all our sub-classical bunched logics, in which the
multiplicatives are naturally read in terms of resource operations. Our main theoretical result is
that validity according to this semantics coincides with provability in a corresponding Hilbert-
style proof system.

Our logical investigation sheds considerable new light on how one can understand the mul-
tiplicative disjunction, better known as linear logic’s “par”, in terms of resource operations. In
particular, and in contrast to the earlier Classical BI, the models of our logics include the heap-
like memory models of separation logic, in which disjunction can be interpreted as a property of
intersection operations over heaps.

1998 ACM Subject Classification F.3.1 Logics and Meanings of Programs, F.4.1 Mathematical
Logic and Formal Languages
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1 Introduction

Bunched logics, which are free combinations of a standard propositional logic with some
variety of multiplicative linear logic [1, 2], have applications in computer science as a means of
expressing and manipulating properties of resource [3, 4]. Most notably, separation logic [5],
which has been successfully employed in large-scale program verification [6, 7, 8] is based
upon the bunched logic Boolean BI (BBI) obtained by combining ordinary classical logic
with multiplicative intuitionistic linear logic (MILL) [9].

BBI has a simple Kripke semantics under which a formula of BBI is read as a set of
elements (“resources”) in an underlying model, essentially a generalised commutative monoid.
The classical connectives have their usual meanings, and the MILL connectives (called
multiplicative) are given “resource composition” readings: A multiplicative conjunction of
formulas A ∗ B denotes those elements which divide, via the monoid operation, into two
elements satisfying A and B respectively; the unit >∗ of ∗ denotes the set of units of the
monoid; and an implication (or “magic wand”) A −−∗ B denotes those elements that, when
extended with an element satisfying A, always yield an element satisfying B.

In this paper, we set out to answer the following question: What is the right way of
adding a multiplicative disjunction — a.k.a. linear logic’s notoriously tricky “par” — to BBI?
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A first answer to this question came previously in the study of Classical BI (CBI) [10], given
by extending classical logic with classical multiplicative linear logic, i.e., MLL rather than
MILL. Similar to MLL, the multiplicative disjunction ∗∨ in CBI is the De Morgan dual of ∗
with respect to the multiplicative negation ∼: we have (A ∗∨ B ≡ ∼(∼A ∗ ∼B)). However,
this is not very semantically informative. Furthermore, the heap-like models of BBI employed
in separation logic (see e.g. [11]) turn out not to be models of CBI. This naturally raises
the question of whether there might be bunched logics between BBI and CBI permitting the
interpretation of multiplicative disjunction in such models.

Here, we shed new light on multiplicative disjunction by investigating “sub-classical”
versions of bunched logic, under the common name BiBBI, obtained by combining classical
logic with Hyland and De Paiva’s full intuitionistic linear logic (FILL) [12]. In FILL, the
conjunction ∗ and disjunction ∗∨ are related not by De Morgan equivalence, but rather by
weak distribution, i.e.

A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C,

which follows from De Morgan equivalence, but is not equivalent to it. The disjunction ∗∨
can also be endowed with a unit ⊥∗ and an adjoint co-implication, ∗\ (“magic slash”).

We define provability in BiBBI simply by combining suitable Hilbert systems for classical
logic and for FILL; the resulting Hilbert system can equivalently be reformulated as a display
calculus proof system with the cut-elimination property, cf. [13, 1]. Our main technical
contribution in this paper is a suitable Kripke frame semantics for BiBBI in which validity
of BiBBI-formulas exactly coincides with provability. We obtain completeness of provability
for validity in our semantics by embedding BiBBI into a suitable modal logic and deploying
Sahlqvist’s well-known completeness theorem (see e.g. [14]).

We consider a number of variants of BiBBI, based on whether or not various natural
logical principles of FILL are included. For each such principle, we can write down an
equivalent first-order condition on the Kripke models of BiBBI, with the frame condition
corresponding to the above weak distribution law being particularly interesting. This fact
enables us to present soundness and completeness results that are modular with respect to
any choice of BiBBI-variant from our considered class.

We also undertake an investigation into the models of BiBBI, and present some general
constructions for building them. From the program logic perspective, perhaps the most
interesting aspect of BiBBI is that the standard heap-like models of separation logic can be
extended into BiBBI-models obeying the weak distribution law, by interpreting disjunction
using a notion of intersection between heaps (and there are at least two natural such
intersection operations). We show that the typical unit law for ∗∨, given by A ∗∨ ⊥∗ ≡ A,
must fail in such models. However, we also show how to build more complicated models in
which both weak distribution and the unit law do hold.

The remainder of this paper is structured as follows. In Section 2 we recall the model-
theoretic and proof-theoretic characterisations of BBI and CBI. We then introduce our
sub-classical bunched logic BiBBI, via both a Kripke frame semantics and a Hilbert-style
axiomatic proof system, in Section 3. In Section 4 we investigate the models of BiBBI in more
detail, and present some general model constructions and conservativity results. Section 5
presents the details of our completeness proof, and Section 7 concludes.

Due to space limitations, the proofs of the results in this paper have been abbreviated.
Most of the full proofs can be found in an associated technical report [15].
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2 Boolean and Classical BI

In this section, we recall the basic characterisations of provability and validity (based on
Kripke semantics) in the bunched logics BBI [16, 17] and CBI [10]. We assume a countably
infinite set V of propositional variables, and write P(X) for the powerset of a set X.

2.1 Boolean BI
I Definition 2.1. BBI-formulas are built from propositional variables P ∈ V using the
standard connectives >,⊥,¬,∧,∨,→ of propositional classical logic, and the so-called “mul-
tiplicative” connectives: the constant >∗ and binary operators ∗ and −−∗. By convention, ¬
has the highest precedence, followed by ∗, ∧ and ∨, with → and −−∗ having lowest precedence.
I Definition 2.2. Provability in BBI is given by extending a complete Hilbert system for
classical logic with the following axioms and inference rules for ∗, −−∗ and >∗. The “sequent”
notation A ` B is syntactic sugar for the formula A→ B.

A ∗ (B ∗ C) ` (A ∗B) ∗ C A ∗B ` B ∗A A ` A ∗ >∗ A ∗ >∗ ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C

I Definition 2.3. A BBI-frame is a a tuple 〈W, ◦, E〉, where W is a set (of “worlds”),
◦ : W ×W → P(W ) and E ⊆ W . We extend ◦ pointwise to P(W ) × P(W ) → P(W ) by
W1 ◦W2 =

⋃
w1∈W1,w2∈W2

w1 ◦ w2.
A BBI-frame 〈W, ◦, E〉 is a BBI-model if ◦ is commutative and associative, and w◦E = {w}

for all w ∈W . (By definition, the latter means that
⋃
e∈E w ◦ e = {w} for all w ∈W .) We

call E the set of units of the model 〈W, ◦, E〉.
If in a BBI-model M = 〈W, ◦, E〉 we have |w1 ◦ w2| ≤ 1 for all w1, w2 ∈W , then we say

that M is partial functional and understand ◦ as a partial function of type W ×W ⇀W .
I Example 2.4. The standard heap model 〈Heaps, ◦, {e}〉 of separation logic [5] is defined
as follows. First, Heaps = Loc ⇀fin Val is the set of partial functions mapping finitely many
locations in Loc to values in Val (typically Loc,Val are both infinite sets, with Loc ⊂ Val). We
write dom(h) for the set of locations on which h is defined. We define h1 ◦ h2 to be the union
of heaps h1 and h2 if dom(h1) and dom(h2) are disjoint (and undefined otherwise), and we
let e be the empty heap with dom(e) = ∅. It is straightforward to verify that 〈Heaps, ◦, {e}〉
is a partial functional BBI-model.
I Definition 2.5. Let M = 〈W, ◦, E〉 be a BBI-model. A valuation for M is a function
ρ : V → P(W ) assigning to each proposition P a set ρ(P ) ⊆W . Given a valuation ρ for M ,
a w ∈W and a BBI-formula A, we define the forcing relation w |=ρ A by induction on A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ > ⇔ always
w |=ρ ⊥ ⇔ never
w |=ρ ¬A ⇔ w 2ρ A

w |=ρ A1 ∧A2 ⇔ w |=ρ A1 and w |=ρ A2
w |=ρ A1 ∨A2 ⇔ w |=ρ A1 or w |=ρ A2
w |=ρ A1 → A2 ⇔ w |=ρ A1 implies w |=ρ A2

w |=ρ >∗ ⇔ w ∈ E
w |=ρ A1 ∗A2 ⇔ ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and w1 |=ρ A1 and w2 |=ρ A2
w |=ρ A1 −−∗ A2 ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A1 then w′′ |=ρ A2
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A is said to be valid in M if w |=ρ A for all valuations ρ and for all w ∈W , and BBI-valid if
it is valid in all BBI-models.

I Theorem 2.6 ([17]). A BBI-formula is BBI-valid if and only if it is BBI-provable.

2.2 Classical BI
I Definition 2.7. CBI-formulas are defined as BBI-formulas (Defn. 2.1), except that they
may also contain the “multiplicative falsum” constant ⊥∗. We write ∼A as an abbreviation
for A −−∗ ⊥∗, and A ∗∨ B as an abbreviation for ∼(∼A ∗ ∼B).

I Definition 2.8. Provability in CBI is defined as provability in the Hilbert system for BBI
(Defn. 2.2) extended with the “double negation elimination” axiom, ∼∼A ` A.

I Definition 2.9. A CBI-model is given by a tuple 〈W, ◦, E, U〉, where 〈W, ◦, E〉 is a BBI-
model (see Defn. 2.3), U ⊆W , and for each w ∈W , there is a unique −w ∈W (the “dual”
of w) satisfying (w ◦ −w) ∩ U 6= ∅.

Given a CBI-model 〈W, ◦, E, U〉, the condition in Defn. 2.9 induces a function − : W →W

sending w to −w, and necessarily −−w = w for any w ∈W (see [10]). Moreover, extending
− pointwise to sets, it is easy to show that −E = U . Therefore, intuitively, − should be
understood as a sort of “inverse” function on worlds [10]. E.g., every Abelian group is trivially
a CBI-model, with −w the group inverse of w.

I Definition 2.10. A valuation for a CBI-model and satisfaction w |=ρ A of a CBI-formula
A by the world w and valuation ρ are defined as for BBI (Defn. 2.5), except that we add the
following clause for satisfaction of the multiplicative falsum: w |=ρ ⊥∗ ⇔ w /∈ U .

It is then straightforward to derive the following satisfaction clauses for ∼ and ∗∨:

w |=ρ ∼A ⇔ −w 2ρ A
w |=ρ A

∗∨ B ⇔ ∀w1, w2 ∈W. if w ∈ −(−w1 ◦ −w2) then w1 |=ρ A or w2 |=ρ B

I Theorem 2.11 ([10, 1]). A CBI-formula is CBI-valid if and only if it is CBI-provable.

Unfortunately, CBI cannot be used to reason about heap-like memory models:

I Proposition 2.12. Given the heap model 〈Heaps, ◦, {e}〉 of BBI defined in Example 2.4,
there is no set U ⊆ Heaps such that 〈Heaps, ◦, {e}, U〉 is a CBI-model.

Proof. Suppose for contradiction that such a U exists. By the remark following Defn. 2.9,
we have U = −{e} = {−e}. Note that −e ∈ Heaps and thus dom(−e) is finite. Let h be a
heap with dom(h) ⊃ dom(−e) (there are infinitely many such h). Then there exists a heap
−h such that h ◦ −h = −e by the CBI-axiom, but it is clear that there is no such heap. J

I Theorem 2.13 ([10]). CBI is not conservative over BBI, i.e., there are BBI-formulas that
are CBI-valid but not BBI-valid.

3 BiBBI: Sub-classical Boolean bunched logic

In this section we introduce our sub-classical Boolean bunched logic, BiBBI, which extends
BBI with multiplicative disjunction ∗∨, together with its adjoint co-implication ∗\ (“magic
slash”) and the multiplicative falsum ⊥∗. We adopt the “Bi” prefix in BiBBI to remind
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ourselves that, like in FILL [12], we have two families of multiplicative connectives, (∗,−−∗,>∗)
and ( ∗∨, ∗\ ,⊥∗), that are not however connected by De Morgan equivalences.

First, we present a basic characterisation of Kripke validity for BiBBI-formulas and an
associated notion of basic provability. Then, we consider a range of variants of the basic
logic obtained by adding various logical laws from FILL (see Figure 1), which we regard
as a sort of “logical buffet” from which we can pick and choose the principles we wish to
include. (Commutativity of ∗∨ is considered a basic principle for technical convenience: a
non-commutative ∗∨ naturally leads to both ∗\ and ⊥∗ splitting into two connectives.)

Our choice of models and interpretation achieves several complementary objectives:
1. BiBBI extends BBI and, furthermore, when a suitable “classicality” axiom is added to

BiBBI, it collapses into CBI (see Prop. 3.9). Thus, the variants of BiBBI can be seen as
intermediate logics between BBI and CBI.

2. We interpret multiplicative disjunction ∗∨ in BiBBI as a natural dual of multiplicative
conjunction ∗, in that ∗∨ can be read as a binary box modality in modal logic [14], while ∗
can be read as a binary diamond modality.

3. For each natural logical principle of FILL governing ∗∨, ∗\ and ⊥∗, one can write down an
equivalent first-order condition on BiBBI-models (see Figure 1).

4. Finally, for any variant of BiBBI obtained by taking some combination of logical axioms
from Figure 1, we achieve soundness and completeness for that variant with respect to
the associated class of models.

I Definition 3.1. A BiBBI-formula is defined as a BBI-formula (Defn. 2.1), except that it
may also contain the multiplicative constant ⊥∗, and the binary multiplicative connectives ∗\
and ∗∨. As in CBI, we write ∼A as an abbreviation for A −−∗ ⊥∗.

I Definition 3.2. A basic BiBBI-model is a tuple of the form 〈W, ◦, E,O, U〉, where 〈W, ◦, E〉
is a BBI-model, U ⊆W and O: W ×W → P(W ) is commutative. We extend O pointwise
to sets in a similar manner to ◦: W1 OW2 =

⋃
w1∈W1,w2∈W2

w1 O w2.
A valuation for a basic BiBBI-model M = 〈W, ◦, E,O, U〉 is defined as in Defn. 2.5.

Satisfaction w |=ρ A of a BiBBI-formula A by the valuation ρ and world w is given by
extending the forcing relation in Defn. 2.5 as follows:

w |=ρ ⊥∗ ⇔ w /∈ U
w |=ρ A

∗∨ B ⇔ ∀w1, w2 ∈W. if w ∈ w1 O w2 then w1 |=ρ A or w2 |=ρ B

w |=ρ A
∗\ B ⇔ ∃w′, w′′ ∈W. w′′ ∈ w′ O w and w′′ |=ρ A and w′ 2ρ B

Similarly to BBI and CBI (see Section 2), a BiBBI-formula A is valid in M if w |=ρ A for all
w ∈W and valuations ρ, and BiBBI-valid if it is valid in all BiBBI-models.

Intuitively, the binary operation O and set U in a BiBBI-model 〈W, ◦, E,O, U〉 are used
to interpret the connectives ∗∨, ∗\ and ⊥∗ in a way analogous to the use of ◦ and E to interpret
∗, −−∗ and >∗. However, the analogy is not necessarily exact since, depending on the variant
of BiBBI we consider, O and U may exhibit quite different properties to ◦ and E. (For
example, O might fail to be associative.)

We note that the connective ∗\ was not present in the original formulation of FILL,
although Clouston et al. [18] recently showed that its addition to FILL is conservative. Here,
observe that ∗\ is interpreted as the natural adjoint of ∗∨ in basic BiBBI-models.
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Principle Axiom A Frame condition F(A)

Associativity A ∗∨ (B ∗∨ C) ` (A ∗∨ B) ∗∨ C w1 O (w2 O w3) = (w1 O w2) O w3

Unit weakening A ` A ∗∨ ⊥∗ w O U ⊆ {w}

Unit contraction A ∗∨ ⊥∗ ` A w ∈ w O U

Contraction A ∗∨ A ` A w ∈ w O w

Weak distribution A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C if (x1 ◦ x2) ∩ (y1 O y2) 6= ∅ then
∃w. y1 ∈ x1 ◦ w and x2 ∈ w O y2

Classicality ∼∼A ` A ∃!−w. (w ◦ −w) ∩ U 6= ∅

Figure 1 Optional axioms of BiBBI and the corresponding first-order frame conditions (we
suppress outermost universal quantifiers over the model domain).

I Definition 3.3. Provability for basic BiBBI is given by extending the proof system for
BBI (see Defn. 2.2) with the following axioms and inference rules:

Monotonicity: Residuation: Commutativity:
A1 ` B1 A2 ` B2

A1
∗∨ A2 ` B1

∗∨ B2

A ` B ∗∨ C

A ∗\ B ` C
A ∗\ B ` C

A ` B ∗∨ C
A ∗∨ B ` B ∗∨ A

I Theorem 3.4. If a formula A is provable for basic BiBBI (Defn. 3.3) then it is valid in
all basic BiBBI-models.

Proof (sketch). By soundness for standard BBI (Theorem 2.6) it suffices to show that the
axioms and rules in Defn. 3.3 preserve validity in any basic BiBBI-model. J

I Definition 3.5. A variant of BiBBI is obtained by adding, for any combination of “prin-
ciples” from Figure 1, (a) the logical axiom A for that principle to the basic BiBBI proof
system in Defn. 3.3, and (b) the frame condition F(A) for that principle as an additional
condition on the basic BiBBI-models in Defn. 3.2.

We investigate the variants of BiBBI and their models more closely in Section 4. For
now, we just show that the correspondences laid out in Figure 1 are exact.

I Theorem 3.6. For each principle in Figure 1, the axiom A is valid in a basic BiBBI-model
M if and only if M satisfies the corresponding frame condition F(A).

Proof (sketch). Let M = 〈W, ◦, E,O, U〉 be a basic BiBBI-model. We distinguish a case for
each principle from Figure 1. Here we just show the most interesting cases: weak distribution
and classicality.

Weak distribution: (⇐) Assuming that the weak distribution frame condition holds in M , we
have to show that A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C is valid in M . So, given w |=ρ A ∗ (B ∗∨ C),
we must show w |=ρ (A ∗B) ∗∨ C. This means showing, assuming w ∈ w1 O w2, that
w1 |=ρ A ∗B or w2 |=ρ C. Since we have w |=ρ A ∗ (B ∗∨ C), we have w ∈ x1 ◦ x2 where
x1 |=ρ A and x2 |=ρ B

∗∨ C. Thus we have (x1 ◦ x2) ∩ (w1 O w2) 6= ∅, so by the weak
distribution property there exists y ∈ W such that w1 ∈ x1 ◦ y and x2 ∈ y O w2. Now,
since x2 ∈ y O w2 and x2 |=ρ B

∗∨ C we have y |=ρ B or w2 |=ρ C. If w2 |=ρ C, we are
done. If not, we have w1 ∈ x1 ◦ y and x1 |=ρ A and y |=ρ B, i.e., w1 |=ρ A ∗B as required.
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(⇒) Assuming that A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C is valid in M , we have to show that the
weak distribution frame condition holds inM . That is, supposing z ∈ (x1 ◦x2)∩(y1 O y2),
we need a w ∈W such that y1 ∈ x1 ◦ w and x2 ∈ w O y2. Let A,B,C be propositional
variables and define a valuation ρ for M by

ρ(A) = {x1} , ρ(B) = {w ∈W | x2 ∈ w O y2} , and ρ(C) = W \ {y2} .

We claim that x2 |=ρ B
∗∨ C. To see this, let x2 ∈ w1 O w2. By construction of ρ, if

w2 2ρ C then w2 = y2 and hence w1 |=ρ B. Thus either w1 |=ρ B or w2 |=ρ C as required.
Now, since z ∈ x1 ◦ x2, with x1 |=ρ A and x2 |=ρ B

∗∨ C by the above, we obtain
z |=ρ A ∗ (B ∗∨ C). Since the weak distribution axiom is valid inM , we get z |=ρ (A ∗B) ∗∨ C.
Then, as z |=ρ (A ∗B) ∗∨ C and z ∈ y1 O y2 but y2 2ρ C, we must have y1 |=ρ A ∗B.
This means that there exist u,w ∈ W with y1 ∈ u ◦ w and u |=ρ A and w |=ρ B. By
definition of ρ, this means that y1 ∈ x1 ◦ w and x2 ∈ w O y2, as required.

Classicality: (⇐) Assuming the classicality condition, i.e. the CBI-model axiom, holds in M ,
we have to show that ∼∼A ` A is valid. Assume that w |=ρ ∼∼A. Using the clause for
satisfaction of ∼ given in Section 2, we have −−w |=ρ A, and thus immediately w |=ρ A

as required, using the fact (also from Section 2) that −−w = w.

(⇒) Assuming that ∼∼A ` A is valid in M , we have to show that, for any w ∈W , there
is a unique w′ ∈ W such that (w ◦ w′) ∩ U 6= ∅. Let A be a propositional variable and
define a valuation ρ for M by ρ(A) = W \ {w}. By construction, w 2ρ A, so using the
main assumption we have w 2ρ (A −−∗ ⊥∗) −−∗ ⊥∗. Thus, there exist w′, w′′ ∈W such that
w′′ ∈ w ◦ w′ and w′ |=ρ A −−∗ ⊥∗ but w′′ 2ρ ⊥∗, i.e. w′′ ∈ U . That is, there exists an
−w = w′ ∈W such that (w ◦ −w) ∩ U 6= ∅.
It just remains to show that −w is unique. Write Co(w) for the set of all w′ such that
(w ◦ w′) ∩ U 6= ∅, and extend Co pointwise to sets as usual. Note that, by the above,
Co(w) is nonempty. First we show that Co(Co(w)) ⊆ {w}. Define a new valuation ρ′
for M by ρ′(A) = {w}, so that w |=ρ′ A by construction. Since A ` ∼∼A is already
provable in BBI, we have w |=ρ′ (A −−∗ ⊥∗) −−∗ ⊥∗. It is easy to show that this means
that w′ |=ρ′ A for all w′ ∈ Co(Co(w)), i.e., Co(Co(w)) ⊆ {w} as required. Furthermore,
letting −w ∈ Co(w), we have (w ◦ −w) ∩ U 6= ∅ and hence (−w ◦ w) ∩ U 6= ∅, i.e.,
w ∈ Co(Co(w)). Hence Co(Co(w)) = {w}. It is easy to see that Co(w) must then be
a singleton set: if w1, w2 ∈ Co(w) then Co(w1),Co(w2) ⊆ Co(Co(w)) = {w}. Hence
Co(w1) = Co(w2) = {w}, and so Co(Co(w1)) = Co(Co(w2)), i.e. w1 = w2 as required.
This completes the proof. J

I Corollary 3.7 (Soundness). If a formula is provable in some variant of BiBBI then it is
valid in that variant.

Proof. Follows immediately from Theorems 3.4 and 3.6. J

We also have the converse completeness result:

I Theorem 3.8 (Completeness). If a BiBBI-formula is valid in some variant of BiBBI then
it is provable in that variant.

We defer the detailed proof of Theorem 3.8 until Section 5.
Turning to proof theory, we can reformulate the family of Hilbert-style proof systems

above for BiBBI and its variants as a display calculus having the cut-elimination property,
where each variant property in Figure 1 is captured by an optional structural rule in the
calculus. We present our display calculus for BiBBI in Section 6.
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To conclude this section, we show that CBI can be seen as the variant of BiBBI obeying
the “classicality” axiom in Figure 1.

I Proposition 3.9. BiBBI and CBI are related by the following:
1. For any BiBBI-model 〈W, ◦, E,O, U〉 satisfying the classicality axiom, the tuple 〈W, ◦, E, U〉

is a CBI-model.
2. If 〈W, ◦, E, U〉 is a CBI-model and we define w1 O w2 = −(−w1 ◦ −w2), then the tuple
〈W, ◦, E,O, U〉 is a BiBBI-model satisfying all axioms but contraction in Figure 1.

3. When CBI-models are identified with BiBBI-models as above, CBI-validity coincides with
validity in the variant of BiBBI satisfying all properties but contraction in Figure 1.

Proof. Part 1 of the proposition is immediate by construction. For part 2, let 〈W, ◦, E, U〉
be a CBI-model. It is immediate that 〈W, ◦, E,O, U〉 is a basic BiBBI-model. We have to
check that 〈W, ◦, E,O, U〉 satisfies the required frame conditions. Classicality is exactly the
CBI-model axiom, so is trivially satisfied (and consequently we have −−w = w for any
w ∈W and −E = U). For associativity, we check:

w1 O (w2 O w3) = −(−w1 ◦ −−(−w2 ◦ −w3))
= −(−w1 ◦ (−w2 ◦ −w3)) (since −−X = X)
= −((−w1 ◦ −w2) ◦ −w3) (by associativity of ◦)
= −(−−(−w1 ◦ −w2) ◦ −w3) (since −−X = X)
= (w1 O w2) O w3

For the unit axioms, we can similarly check that U O w = {w}. Finally, we must verify
the weak distribution condition. Suppose (x1 ◦ x2) ∩ (y1 O y2) 6= ∅. That is, for some
z ∈ x1 ◦ x2 we have z ∈ −(−y1 ◦ −y2), i.e. −z ∈ −y1 ◦ −y2, which is again equivalent
(see [10]) to y1 ∈ z ◦ −y2. Putting everything together and using associativity of ◦, we
get y1 ∈ x1 ◦ (x2 ◦ −y2). Thus, for some w ∈ x2 ◦ −y2, we have y1 ∈ x1 ◦ w. But, using
the same properties as before, w ∈ x2 ◦ −y2 is equivalent to −x2 ∈ −w ◦ −y2 and then to
x2 ∈ −(−w ◦ −y2), i.e. x2 ∈ w O y2 as required. This completes the verification.

Finally, for part 3, just observe that the clauses for satisfaction of ⊥∗ coincide in the
forcing relations for BiBBI and CBI, and that by inserting the definition of O into BiBBI’s
clause for ∗∨, we obtain exactly the usual CBI clause for ∗∨. J

4 General constructions for BiBBI-models

In this section, we investigate the models of our variants of BiBBI, and present some general
constructions for BiBBI-models, chiefly based on the heap-like models of BBI.

We begin with some simple constructions yielding conservativity results. Let 〈W, ◦, E〉
be a BBI-model. First, define w O= w′ = {w} if w = w′, and w O= w′ = ∅ otherwise. Then
〈W, ◦, E,O=,W 〉 is easily seen to be a BiBBI-model satisfying associativity, unit weakening,
unit contraction and contraction. Second, defining w O0 w

′ def= ∅ for all w,w′ ∈ W , we
have that 〈W, ◦, E,O0, U〉 (for any U ⊆ W ) is a BiBBI-model satisfying associativity, unit
weakening and weak distribution. Consequently, we have:

I Proposition 4.1. The variants of BiBBI given by: (a) associativity, unit weakening, unit
contraction and contraction; and (b) associativity, unit weakening and weak distribution, are
both conservative over BBI. That is, any BBI-formula valid in one of these variants is also
BBI-valid.
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However, neither of the previous model constructions is very satisfying. In the first
type, taking O to be O=, A ∗∨ B simply becomes A ∨ B. Moreover, as weak distribution
does not hold in general, the (∗,−−∗,>∗) and ( ∗∨, ∗\ ,⊥∗) fragments of the logic are essentially
disjoint; we are inclined to regard the variants of BiBBI without weak distribution as being
less interesting. On the other hand, under the second construction with O being O0, weak
distribution does hold (trivially), but A ∗∨ B collapses into >, which is even less interesting!

An immediate question is therefore whether there are BiBBI-models with weak distribution
in which O has a non-trivial interpretation. Our interest here is strictly in sub-classical
models, i.e. those in which classicality does not hold, since classical models fall under the
rubric of CBI, in which w1 O w2 should be read as −(−w1 ◦ −w2), cf. Proposition 3.9. We
explore this question, and related ones, in the next two subsections. A second question is
whether conservativity extends to the other sub-classical variants of BiBBI (e.g. the variant
with all sub-classical properties from Figure 1). Our next result suggests that this is unlikely.

I Definition 4.2. A partial functional BBI-model 〈W, ◦, E〉:
is cancellative if w ◦ w1 = w ◦ w2 6= ∅ implies w1 = w2;
is extensible if for all w ∈W there exists a w′ ∈W \ E such that w ◦ w′ is defined;
has indivisible units if w1 ◦ w2 ∈ E implies w1, w2 ∈ E.

Note that the heap model of Example 2.4 satisfies all three properties above, as does, e.g.,
the total monoid 〈N,+, {0}〉.

I Proposition 4.3. Let 〈W, ◦, E〉 be a partial functional BBI-model that is cancellative,
extensible and has indivisible units, as in Defn. 4.2. There does not exist a BiBBI-model of
the form 〈W, ◦, E,O, U〉 satisfying weak distribution, unit weakening and unit contraction.

Proof. Suppose for contradiction that 〈W, ◦, E,O, U〉 does exist. By unit contraction, U
must be nonempty, so let u ∈ U . By extensibility, there is a y /∈ E such that y ◦ u is defined.
By unit contraction, there exists u′ ∈ U such that y ◦ u ∈ (y ◦ u) O u′. Thus, by the weak
distribution law, there exists v ∈W such that y ◦ u = y ◦ v and u ∈ v O u′. By cancellativity,
we obtain v = u and thus u ∈ u O u′. By unit weakening and commutativity of O, we obtain
{u} = u O u′ ⊆ {u′}, and thus u = u′.

Now, since y ◦ u ∈ (y ◦ u) O u′, using u = u′ and the commutativity of O, we have
y ◦ u ∈ u O (y ◦ u). Then, by the standard unit law for BBI, there exists e ∈ E such
that (y ◦ u) ◦ e ∈ u O (y ◦ u). Thus, by weak distribution, there exists w ∈ W such that
u = (y ◦ u) ◦ w. As e is a unit for y ◦ u, it is also a unit for u, so we have e ◦ u = (y ◦ w) ◦ u.
Hence, by cancellativity, y ◦ w = e ∈ E and so by the indivisible units property we have
y ∈ E. But we already know y /∈ E, contradiction. J

Proposition 4.3 demonstrates that in the class of BBI-models given by Defn. 4.2, which
includes many standard examples, we are forced to choose between weak distribution and
(at least one direction of) the unit law A ∗∨ ⊥∗ ≡ A when extending to a BiBBI-model. A
BBI-formula whose validity implies membership of this class would yield nonconservativity
of the BiBBI fragment with both weak distribution and unit weakening / contraction.
Unfortunately, we have not yet been able to find such a formula. (We remark that the
combination of weak distribution and unit contraction is particularly interesting, as it yields
a multiplicative analogue of the usual disjunctive syllogism: A ∗ (∼A ∗∨ B) ` B.)

The next two subsections present general constructions extending (certain types of partial
functional) BBI-models to BiBBI-models obeying the weak distribution law.
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4.1 Intersection in BBI-models
Our first approach to constructing BiBBI-models from BBI-models is to interpret O as
an “intersection-like” operator on worlds. This construction yields BiBBI-models with the
contraction and weak distribution properties, but in general no others (Proposition 4.7).

As a motivating example, there are two natural ways one could go about defining inter-
section in the heap model of Example 2.4, depending on how one deals with incompatibility:

I Example 4.4 (Heap intersections). We define two binary intersection operations ∩1 and
∩2 on heaps by:

(h1 ∩1 h2)(`) def=
{
h1(`) if ` ∈ dom(h1) ∩ dom(h2) and h1(`) = h2(`)
undefined otherwise

h1 ∩2 h2
def=

{
h1 ∩1 h2 if h1(`) = h2(`) for all ` ∈ dom(h1) ∩ dom(h2)
undefined otherwise

The first intersection silently discards incompatible parts of heaps, while the second intersec-
tion requires the heaps to be fully compatible. Consequently, ∩1 is associative, while ∩2 is
not. We note that neither ∩1 nor ∩2 has a natural set of units U ⊆ Heaps, in the sense that
h ∩i U = {h} for all heaps h.

I Proposition 4.5. Let 〈Heaps, ◦, {e}〉 be the heap model of Example 2.4, and let ∩1 and ∩2
be the heap intersection operations defined in Example 4.4. Then, for any U ⊆ Heaps, both
〈Heaps, ◦, {e},∩1, U〉 and 〈Heaps, ◦, {e},∩2, U〉 are BiBBI-models satisfying contraction and
weak distribution (and the first also satisfies associativity).

Unit contraction or unit weakening can easily be obtained in the above models by suitable
choices of U , but, according to Prop. 4.3, it is impossible to obtain both simultaneously.

From now on, to simplify notation, and because most models of separation logic in
the literature satisfy this constraint, we treat only partial functional BBI-models. Using
associativity of ◦, we write w1 ] . . . ] wn to mean that w1 ◦ . . .◦wn is defined (i.e., non-empty).
Then, we can extend Proposition 4.5 to arbitrary partial functional BBI-models, using a
generalised version of the heap intersection ∩2.

I Definition 4.6. Let 〈W, ◦, E〉 be a partial functional BBI-model, and define the operation
O∩: W ×W → P(W ) by

w1 O∩ w2 = {x | ∃x1, x2 ∈W. w1 = x ◦ x1 and w2 = x ◦ x2 and x ] x1 ] x2}.

In the heap model, h1 O∩ h2 is exactly h1 ∩2 h2, while in 〈N,+, {0}〉 we have n O∩ m = {k |
n,m ≥ k}. Note that O∩ is neither a partial function nor associative, in general.

I Proposition 4.7. For any partial functional BBI-model M = 〈W, ◦, E〉, and any U ⊆W ,
we have that 〈W, ◦, E,O∩, U〉 is a BiBBI-model satisfying contraction and weak distribution.

Proof. SinceM is a BBI-model and O∩ is commutative by construction, 〈W, ◦, E,O∩, U〉 is a
basic BiBBI-model. To check contraction, let w ∈W ; we must show that w ∈ w O∩ w. This
follows from the fact that, since M is a BBI-model, there is an e ∈ E such that w ◦ e = w,
and thus w ] e ] e.

It remains to verify the weak distribution condition. That is, assuming (x1 ◦ x2)∩ (y1 O∩
y2) 6= ∅, we require to find w ∈W such that y1 = x1 ◦ w and x2 ∈ w O∩ y2. By assumption,
we have x1 ◦x2 ∈ y1 O∩ y2. By definition of O∩ there are z1 and z2 such that y1 = x1 ◦x2 ◦z1
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and y2 = x1 ◦ x2 ◦ z2 and (x1 ◦ x2) ] z1 ] z2. Now, letting w = x2 ◦ z1, we immediately have
y1 = x1 ◦ w. To see that x2 ∈ w O∩ y2, we need x′, x′′ ∈ W such that w = x2 ◦ x′ and
y2 = x2 ◦ x′′ and x2 ] x

′ ] x′′. Choosing x′ = z1 and x′′ = x1 ◦ z2, we immediately have
w = x2 ◦ z1, and y2 = x2 ◦ x1 ◦ z2 by associativity. Finally, we must check x2 ] z1 ] (x1 ◦ z2),
which follows by associativity from (x1 ◦ x2) ] z1 ] z2. J

4.2 Intersection in BBI-models with environments

We now define our second general construction, based upon the one in the previous section,
for constructing BiBBI-models obeying weak distribution, associativity, contraction and both
unit laws. We require that the underlying BBI-model obeys the cross-split and disjointness
properties typically encountered in heap-like models of separation logic [11, 19]:

I Definition 4.8. A partial functional BBI-model M = 〈W, ◦, E〉 has the cross-split property
if for any t, u, v, w ∈W such that t ◦ u = v ◦ w, there exist tv, tw, uv, uw such that

t = tv ◦ tw, u = uv ◦ uw, v = tv ◦ uv, and w = tw ◦ uw.

Diagrammatically, this can be thought of in the following way:

t u =
v

w
⇒ ∃tv, tw, uv, uw.

tv uv

tw uw

M has the disjointness property if w ] w implies w ∈ E.

We remark that, again, the standard heap model of Example 2.4 has both the cross-split
and the disjointness property. The monoid (N,+, {0}) does not satisfy disjointness (because
+ is a total operation), but it does have the cross split property: Given t+ u = v+w, simply
take tv = min(t, v), uw = min(u,w), tw = t− tv and uv = u− uw.

Given a BBI-model with the above properties, we construct a BiBBI-model M̄ =
〈W̄ , ◦̄, Ē, Ō, D〉, where each world in W̄ consists of a “local” world w ∈ W paired with
a larger “environment” x ∈W such that x = w ◦w′ for some w′. On the “local” part of each
world, ◦̄ and Ō behave as ◦ and O∩, respectively. On the “environment” part of each world,
◦̄ and Ō behave as a union operation ∪ (as defined below) and the identity, respectively.

I Definition 4.9. Given a partial functional BBI-model 〈W, ◦, E〉, we define the union
operation, ∪ : W ×W → P(W ), by

w1 ∪ w2 = {y ◦ y1 ◦ y2 | w1 = y ◦ y1 and w2 = y ◦ y2} .

We lift ∪ to P(W )× P(W )→ P(W ) in the usual way: W1 ∪W2 =
⋃
w1∈W1,w2∈W2

w1 ∪ w2.

For our purposes we shall require ∪ to be associative, which is not necessarily the case
for arbitrary partial functional BBI-models.

I Lemma 4.10. If a partial functional BBI-model 〈W, ◦, E〉 has the cross-split property, then
∪ in Definition 4.9 is associative. Moreover, if w = w1 ◦ w2, then w ∈ w ∪ w1.
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I Definition 4.11. Let M = 〈W, ◦, E〉 be a partial functional BBI-model. We define
M̄ = 〈W̄ , ◦̄, Ē, Ō, D〉 as follows:

W̄ = {(w, x) | ∃w′. x = w ◦ w′} Ē = {(e, e) | e ∈ E}
(w, x) ◦̄ (w′, x′) = {(w ◦ w′, x′′) | x′′ ∈ x ∪ x′} D = {(w,w) | w ∈W}

(w, x) Ō (w′, x′) =
{
{(w′′, x) | w′′ ∈ w O∩ w′} if x = x′

∅ otherwise

Instantiating M in the above definition with the heap model of Example 2.4, the set W̄
pairs every heap with a larger heap that extends it, which can be thought of as pairing a
local part of memory “owned” by a program with an “environment” reflecting the wider
machine state.

Our main result about M̄ , stated as Theorem 4.13, is that, if M has the cross-split and
the disjointness properties, then M̄ is a BiBBI-model satisfying all the properties of Figure 1
(except classicality). The following lemma groups together a number of intermediary results
used in the proof of this theorem.

I Lemma 4.12. Suppose that M = 〈W, ◦, E〉 is partial functional and has the cross-split
and disjointness properties, and let M̄ = 〈W̄ , ◦̄, Ē, Ō, D〉 be as in Definition 4.11. All of the
following hold:
1. For all (w1, x), (w2, x) ∈ W̄ , we have w1 O∩ w2 a singleton set (and we typically drop the

set brackets). Consequently, Ō is a partial function on W̄ × W̄ .
2. If (w, x), (w1 ◦ w2, x) ∈ W̄ with w ] w1 and w ] w2, then (w ◦ w1 ◦ w2, x) ∈ W̄ .
3. For all (w, x), (w1 ◦ w2, x) ∈ W̄ , we have w O∩ (w1 ◦ w2) = (w O∩ w1) ◦ (w O∩ w2).

Proof (sketch). Each part of the lemma is proved directly; the proofs rely heavily on the
disjointness and cross-split properties of M . J

I Theorem 4.13. Given a partial functional BBI-model M with the cross-split and disjoint-
ness properties, M̄ is a BiBBI-model with all the properties of Figure 1 except classicality.

Proof (sketch). We check that M̄ satisfies all properties of basic BiBBI-models, and all
relevant properties from Figure 1, of which the most difficult case is, interestingly enough,
the associativity of Ō. The verifications rely heavily on Lemmas 4.10 and 4.12. J

5 Completeness of BiBBI

This section presents our proof of completeness for (variants of) BiBBI, stated earlier as
Theorem 3.8. Our approach follows the basic pattern previously employed in the literature
for BBI [20] and for CBI [10]: we translate a given variant of BiBBI into modal logic, and
appeal to Sahlqvist’s well known completeness result (see e.g. [14]). Here, unsurprisingly, the
weak distribution law of BiBBI presents the greatest technical obstacles to this approach.

We begin by recalling the standard definitions, from [14], of validity and provability in
normal modal logic over a suitably chosen signature (a.k.a. “modal similarity type”).

I Definition 5.1. A modal logic formula is built from propositional variables using the
classical connectives, 0-ary modalities >∗ and U, and binary modalities ∗,(,O and ^.

I Definition 5.2. A modal frame is given by a tuple of the form 〈W, ◦,(,O,^, E, U〉, where
◦, (, O, and ^ all have type W ×W → P(W ), and E,U ⊆W .
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A valuation for a modal frameM = 〈W, . . .〉 is as usual given by a function ρ : V → P(W ).
The forcing relation w |=ρ A is defined by induction on A in the standard way in modal
logic, i.e. as for BBI in the case of propositional variables and classical connectives, with the
following clauses for the modalities:

w |=ρ >∗ ⇔ w ∈ E
w |=ρ U ⇔ w ∈ U

w |=ρ A ∗B ⇔ ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A( B ⇔ ∃w1, w2 ∈W. w ∈ w1 ( w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A O B ⇔ ∃w1, w2 ∈W. w ∈ w1 O w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A ^ B ⇔ ∃w1, w2 ∈W. w ∈ w1 ^ w2 and w1 |=ρ A and w2 |=ρ B

As usual, A is valid in M iff we have w |=ρ A for all w ∈W and valuations ρ.

Each of the binary functions ◦,(,O,^: W × W → P(W ) in a modal frame can
be equivalently seen as a ternary relation over W (as is standard in modal logic). The
corresponding modalities are each interpreted as a standard binary “diamond” modality.

I Definition 5.3. The normal modal logic MLBiBBI for the signature (>∗,U, ∗,(,O,^) is
given by extending a standard Hilbert system for classical logic with the following axioms
and rules, for all ⊗ ∈ {∗,(,O,^}:

⊥⊗A ` ⊥ and A⊗⊥ ` ⊥ A1 ` A2 B1 ` B2

A1 ⊗B1 ` A2 ⊗B2
(A ∨B)⊗ C ` (A⊗ C) ∨ (B ⊗ C)
A⊗ (B ∨ C) ` (A⊗B) ∨ (A⊗ C)

Next, we recall the Sahlqvist completeness result for normal modal logics augmented with
suitably well-behaved axioms, called Sahlqvist formulas. In fact, we only require so-called
“very simple” Sahlqvist formulas for our completeness result.

I Definition 5.4. A very simple Sahlqvist antecedent (over the signature (>∗,U, ∗,(,O,^))
is given by the grammar: S ::= P | > | ⊥ | S ∧ S | >∗ | U | S ∗ S | S ( S | S O S | S ^ S.
A very simple Sahlqvist formula is an implication A ` B, where A is a very simple Sahlqvist
antecedent and B is a positive modal logic formula (i.e., every propositional variable occurs
within the scope of an even number of negations).

I Theorem 5.5 (Sahlqvist [14]). If a modal logic formula is valid in the set of all modal frames
satisfying a set A of very simple Sahlqvist formulas, then it is provable in MLBiBBI +A.

We now define a set of Sahlqvist formulas that collectively capture all variants of BiBBI.

I Definition 5.6. For a given variant of BiBBI, define the set ABiBBI of very simple Sahlqvist
formulas as follows:

(1) A ∧ (B ∗ C) ` (B ∧ (C ( A)) ∗ > (Assoc.) A O (B O C) ` (A O B) O C

(2) A ∧ (B ( C) ` >( (C ∧ (A ∗B)) (Unit weak.) A O U ` A
(3) A ∧ (B O C) ` > O (C ∧ (A ^ B)) (Unit contr.) A ` A O U
(4) A ∧ (B ^ C) ` (B ∧ (C O A)) ^ > (Contr.) A ` A O A

(5) A ∗B ` B ∗A (Weak distr.) (A ∗B) ∧ (C O D) `
(6) A O B ` B O A (A ∧ ((B ^ D) ( C)) ∗ >
(7) A ∗ (B ∗ C) ` (A ∗B) ∗ C (Classicality) (A( U) ( U ` A and
(8) A ∗ >∗ ` A and A ` A ∗ >∗ A ` (A( U) ( U

where A, B, C, D are considered here to be propositional variables, and the named axioms
are included in ABiBBI iff the BiBBI variant includes the corresponding property in Figure 1.
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I Lemma 5.7. Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying axioms (1)–(4)
of ABiBBI in Definition 5.6. Then we have, for any w,w1, w2 ∈W :

w ∈ w1 ( w2 ⇔ w2 ∈ w ◦ w1 and w ∈ w1 ^ w2 ⇔ w1 ∈ w2 O w .

Given a modal frame M = 〈W, ◦,(,O,^, E, U〉, we write pMq for 〈W, ◦, E,O, U〉.

I Lemma 5.8. Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying the set ABiBBI
of axioms corresponding to a BiBBI variant, as given by Definition 5.6. Then pMq is a
BiBBI-model for that variant.

Proof (sketch). First, pMq is a basic BiBBI-model, since it satisfies axioms (5)–(8) in
Defn. 5.6. We just show that if an optional Sahlqvist axiom from Defn. 5.6 is valid in M ,
then M satisfies the corresponding frame property in Figure 1 (and thus pMq does too).

We just show the case of weak distribution here. Assume the weak distribution axiom of
Definition 5.6 is valid in M and suppose that (x1 ◦ x2) ∩ (y1 O y2) 6= ∅. That is, we have
z ∈ (x1 ◦ x2) ∩ (y1 O y2) for some z ∈W . We require to find a w ∈W such that y1 ∈ x1 ◦w
and x2 ∈ w O y2. Define a valuation ρ for M by ρ(A) = {x1}, ρ(B) = {x2}, ρ(C) = {y1} and
ρ(D) = {y2}. By construction, z |=ρ (A ∗B) ∧ (C O D). Since the weak distribution axiom
is valid in M , we have that z |=ρ (A ∧ ((B ^ D) ( C)) ∗ >. That is, for some z′ we have
z′ |=ρ A ∧ ((B ^ D) ( C). Since z′ |=ρ A, we get z′ = x1 and so x1 |=ρ (B ^ D) ( C. As
M satisfies axioms (1)–(4) by assumption, we can apply Lemma 5.7 to obtain w,w′ such
that w′ ∈ x1 ◦ w and w |=ρ B ^ D and w′ |=ρ C. As w′ |=ρ C, we have y1 ∈ x1 ◦ w. Using
Lemma 5.7 and commutativity of O (forced by the validity of axiom (6) in M), we obtain
from w |=ρ B ^ D that there exist w′, w′′ with w′′ ∈ w O w′ and w′′ |=ρ B and w′ |=ρ D.
This means exactly that x2 ∈ w O y2 as required. This completes the proof. J

I Definition 5.9. We define a translation t(−) from BiBBI-formulas to modal logic formulas,
and a symmetric translation u(−) in the opposite direction, by

t(φ) = φ u(φ) = φ

t(⊥∗) = ¬U u(U) = ¬⊥∗
t(¬A) = ¬t(A) u(¬A) = ¬u(A)

t(A ? B) = t(A) ? t(B) u(A ? B) = u(A) ? u(B)
t(A −−∗ B) = ¬(t(A) ( ¬t(B)) u(A( B) = ¬(u(A) −−∗ ¬u(B))
t(A ∗∨ B) = ¬(¬t(A) O ¬t(B)) u(A O B) = ¬(¬u(A) ∗∨ ¬u(B))
t(A ∗\ B) = t(A) ^ ¬t(B) u(A ^ B) = u(A) ∗\ ¬u(B)

where φ ∈ {P,>,⊥,>∗} and ? ∈ {∧,∨,→, ∗}.

I Lemma 5.10. If A is valid in some variant of BiBBI, then t(A) is valid in the class of
modal frames satisfying the corresponding Sahlqvist axioms ABiBBI given by Definition 5.6.

Proof (sketch). Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying the axioms
ABiBBI. By Lemma 5.8, pMq is a BiBBI-model for the variant of BiBBI determined by
ABiBBI, and thus A is valid in pMq. We require to show that t(A) is valid in M , which
follows by establishing the bi-implication w |=ρ A (in pMq) ⇔ w |=ρ t(A) (in M), for all
w ∈W and valuations ρ. This bi-implication follows by structural induction on A, making
use of Lemma 5.7 for the cases A = B −−∗ C and A = B ∗\ C. J

I Lemma 5.11. If B is provable in MLBiBBI + ABiBBI, then u(B) is provable in the
corresponding variant of BiBBI.
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Proof (sketch). We have to show that all the axioms and rules of normal modal logic
(Defn. 5.3) and all the ABiBBI axioms (Defn. 5.6) are derivable in the appropriate variant of
BiBBI under the translation u(−). For example, in the case of the Sahlqvist axiom for weak
distribution from Defn. 5.6, we need to derive the following in BiBBI with weak distribution:

(u(A) ∗ u(B)) ∧ ¬(¬u(C) ∗∨ ¬u(D)) ` (u(A) ∧ ¬((u(B) ∗\ ¬u(D)) −−∗ ¬u(C)) ∗ >

The required derivations are often tedious and sometimes tricky: see [15] for details. J

I Lemma 5.12. If u(t(A)) is provable in some variant of BiBBI then so is A.

Proof (sketch). By structural induction on A. J

We may now finally prove our completeness result:

Proof of Theorem 3.8. Suppose A is valid in some BiBBI variant. By Lemma 5.10, t(A)
is then valid in the class of modal frames satisfying the Sahlqvist formulas ABiBBI given by
Defn. 5.6. By Theorem 5.5, t(A) is provable in MLBiBBI +ABiBBI. Thus, by Lemma 5.11,
u(t(A)) is provable in the corresponding variant of BiBBI. By Lemma 5.12, A is then provable
in this BiBBI variant as required. J

6 Proof theory

In this section, we construct a cut-eliminating display calculus (cf. [13, 10, 1]) for BiBBI by
combining a display calculus for classical logic with the display calculus for the multiplicative
fragment of FILL given by Clouston et al [18]. Particular variants of BiBBI are handled via
the inclusion or otherwise of optional structural rules.

I Definition 6.1. Structures are given by the following grammar, where F ranges over
BiBBI-formulas: X ::= F | ∅ | ]X | X;X | X,X | X : X. If X and Y are structures then
X ` Y is a consecution.

I Definition 6.2. For any structure Z we define the BiBBI-formulas ΨZ and ΥZ by mutual
structural induction:

ΨF = F ΥF = F

Ψ∅ = >∗ Υ∅ = ⊥∗
Ψ]X = ¬ΥX Υ]X = ¬ΨX

ΨX;Y = ΨX ∧ΨY ΥX;Y = ΥX ∨ΥY

ΨX,Y = ΨX ∗ΨY ΥX,Y = ΨX −−∗ ΥY

ΨX:Y = ΨX
∗\ ΥY ΥX:Y = ΥX

∗∨ ΥY

Validity of the consecution X ` Y (in a BiBBI variant) is then interpreted as validity of the
formula ΨX ` ΥY .

We give our display calculus DLBiBBI for BiBBI in Figure 2. As usual, we give a set
of display postulates written as a binary relation <>D on consecutions, and let display-
equivalence, ≡D, be the reflexive-transitive closure of <>D. Then, for any substructure
occurrence Z in a consecution C, we can “display” Z as the entire antecedent or consequent
as appropriate: that is, either C ≡D Z ` X or C ≡D X ` Z for some structure X (depending
on whether Z occurs positively or negatively in C). For further details see e.g. [1].

The “variant” structural rules are included in DLBiBBI only when we wish to consider
particular variants of BiBBI. From left to right in Figure 2, the variant structural rules
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Display postulates:

X; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z

X ` Y ; Z <>D X; ]Y ` Z <>D X ` Z; Y

X ` Y <>D ]Y ` ]X <>D ]]X ` Y

X, Y ` Z <>D X ` Y, Z <>D Y, X ` Z

X ` Y : Z <>D X : Y ` Z <>D X ` Z : Y

Identity rules:

(Id)
P ` P

X ` F F ` Y
(Cut)

X ` Y

X ′ ` Y ′

X ` Y ≡D X ′ ` Y ′ (≡D)
X ` Y

Logical rules:

(⊥L)
⊥ ` X

]F ` X
(¬L)

¬F ` X

F ; G ` X
(∧L)

F ∧G ` X

F ` X G ` X
(∨L)

F ∨G ` X

X ` F G ` Y
(→L)

F → G ` ]X; Y

(>R)
X ` >

X ` ]F
(¬R)

X ` ¬F

X ` F X ` G
(∧R)

X ` F ∧G

X ` F ; G
(∨R)

X ` F ∨G

X; F ` G
(→R)

X ` F → G

∅ ` X
(>∗L)

>∗ ` X

F, G ` X
(∗L)

F ∗G ` X

X ` F G ` Y
(−−∗L)

F −−∗ G ` X, Y
(⊥∗L)

⊥∗ ` ∅

F ` X G ` Y
(∗∨L)

F ∗∨ G ` X : Y

(>∗R)
∅ ` >∗

X ` F Y ` G
(∗R)

X, Y ` F ∗G

X, F ` G
(−−∗R)

X ` F −−∗ G

X ` ∅
(⊥∗R)

X ` ⊥∗
X ` F : G

(∗∨R)
X ` F ∗∨ G

F : G ` X
( ∗\L)

F ∗\ G ` X

X ` F G ` Y
( ∗\R)

X : Y ` F ∗\ G

Structural rules:

X ` Z
(Wk)

X; Y ` Z

X; X ` Z
(Ctr)

X ` Z

W, (X, Y ) ` Z
(∗A)

(W, X), Y ` Z

X ` Y
(∅WkL)

∅, X ` Y

∅, X ` Y
(∅CtrL)

X ` Y

Variant structural rules:

W ` (X : Y ) : Z
(∗∨A)

W ` X : (Y : Z)

X ` Y
(∅WkR)

X ` Y : ∅

X ` Y : ∅
(∅CtrR)

X ` Y

X ` Y : Y
(∗∨Ctr)

X ` Y

W, (X : Y ) ` Z
(WDist)

(W, X) : Y ` Z

Figure 2 The proof rules of DLBiBBI. W, X, Y, Z range over structures, F, G range over BiBBI-
formulas and P ranges over V.
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correspond respectively to: associativity; unit weakening; unit contraction; contraction; and
weak distribution.

I Lemma 6.3. For any structure X, both X ` ΨX and ΥX ` X are provable in DLBiBBI.

Proof (sketch). Structural induction on X. J

I Theorem 6.4. X ` Y is provable in a variant of DLBiBBI if and only it is valid in the
corresponding variant of BiBBI.

Proof (sketch). For soundness, one just verifies directly that each rule of Figure 2 preserves
validity, a straightforward exercise. For completeness, assume that X ` Y is valid, i.e. that
ΨX ` ΥY is a valid formula. By Theorem 3.8, ΨX ` ΥY is provable in the Hilbert system for
(the required variant of) BiBBI. It is easy to show that the corresponding variant of DLBiBBI
can derive all principles of the Hilbert system, and thus ΨX ` ΥY is provable in DLBiBBI.
Then, using (Cut) and Lemma 6.3, we can prove X ` Y in DLBiBBI as required. J

I Theorem 6.5. Any DLBiBBI proof of X ` Y can be transformed into a proof of X ` Y
without (Cut).

Proof (sketch). We just verify that the proof rules of DLBiBBI collectively satisfy Belnap’s
well known cut-elimination conditions (C2)–(C8) [13]. The verification is straightforward,
and similar to the one carried out in [1]. J

7 Conclusions

In this paper, we study “sub-classical” bunched logics between BBI and CBI, where a
multiplicative “disjunction family” of connectives, ( ∗∨, ∗\ ,⊥∗), exists alongside the usual
“conjunction family” (∗,−−∗,>∗). The two families are dual to one another in an intuitionistic
sense: ∗ and ∗∨ are related, if at all, not by De Morgan equivalence but by the weak distribution
law, A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C. From the point of view of linear logic, the variants of our
BiBBI can be seen as free combinations of classical logic with various multiplicative fragments
of Hyland and de Paiva’s FILL [12].

We have given a Kripke frame semantics for our logic(s) in which various logical axioms
of FILL have natural semantic correspondents as first-order conditions on BiBBI-models
(cf. Figure 1). We provide a completeness proof for this semantics, based on the Sahlqvist
completeness theorem for modal logic, and moreover we obtain completeness for any variant
of BiBBI given by a choice of logical principles from Figure 1.

Investigating the models of our sub-classical bunched logics in more detail, we find that
heap-like models of BiBBI, as used in separation logic, can be obtained by interpreting ∗∨
using natural notions of heap intersection. (This stands in contrast to the situation for
classical bunched logic CBI, of which heaps are not models.) In such models, the above weak
distribution law holds, but this unavoidably comes at the expense of the unit law A ∗∨ ⊥∗ ≡ A
(see Prop. 4.3). However, this is not true of all interesting models of BiBBI; we show how
to turn sufficiently well-behaved BBI-models (such as the heap model) into more complex
BiBBI-models in which both weak distribution and the unit law hold, based on pairing every
world in the original model with a larger “environment” (Theorem 4.13).

We are cautiously optimistic that the disjunctive machinery of BiBBI might usefully
be applied to program verification based on separation logic. As in linear logic, it seems
more difficult to reason intuitively using multiplicative disjunction than using multiplicative
conjunction. However, the fact that disjunction can be interpreted using natural heap
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intersection operations, which are closely related to the union operation used to reason about
algorithms with complex sharing [21, 22], leads us to hope that such intuitions are within
reach. We hope to explore this direction further in future work.
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