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Abstract

This thesis investigates the blast response of simple structural com-
ponents - fully clamped beams and plates - underwater and in air.
Experimental work by others have shown that, with increasing load-
ing intensity, these components deform in one of either three modes:
mode I (large inelastic deformation), mode II (tensile tearing) or mode
IIT (transverse shear failure). The aim of this thesis is to develop theo-
retical and numerical models that can accurately predict these damage
modes, taking into account the effects of fluid-structure interactions,

for both impulsive and non-impulsive blast loadings.

A fully-clamped ductile beam model is proposed that is capable of cap-
turing large elasto-plastic deformation, progressive damage and failure
through detachment from its supports. Predictions by the model were
validated against experimental data in the literature and with finite
element models developed in this thesis. Parametric studies were also
performed to elucidate the effects of loading duration on the mode of
deformation and the conditions governing their transition. Numeri-
cal evidence on elimination of pulse-shape effects using an effective

rectangular pulse loading (Youngdahl’s approach) has been provided.

The effects of fluid-structure interaction (FSI) are investigated for
fully-clamped, elasto-plastic beams in deep underwater explosions and
intense air blast loadings. The main objective is to understand how
the introduction of fully-clamped clamped supports alter existing well-
known results grounded on rigid, free-standing counterpart; and, to
quantify how different modes of deformation affects the impulse and

energy transmitted to the structure by the blast wave. Sensitivity



analyses were carried out to elucidate the dependence of the results

on the beam’s aspect ratio and inertial mass.

The deformation and failure of fully clamped rectangular plates sub-
jected to blast loading are modelled numerically using finite element
method. The numerical results are validated against experimental
data. Deformation maps delineating the different deformation régimes
for different combinations of blast impulse and aspect ratio are con-
structed for plates of equal mass. The effects of imposing a finite
period, as opposed to a zero-period, pressure pulse upon the deforma-

tion mode and maximum deflection are discussed.
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Chapter 1

Introduction and literature

survey

1.1 Introduction

An explosion generates an over-pressure which propagates into quiescent am-
bient air as a blast, or shock, wave. The blast loading is transient in nature,
lasting for a few milli-seconds to a few seconds. If the blast wave is sufficiently
intense, a target structure is likely to develop large plastic deformation, resulting
in partial or complete detachment from its supports. In order to improve struc-
tural safety and/or to assess the consequences of the blast hazard, a thorough
understanding of the mechanisms of loading, damage and failure of structures to

blast loadings is of fundamental importance.

Although the intensity and duration of a blast wave are not normally known
in advance, they can broadly be classified into two types, viz. impulsive or non-
impulsive. A considerable body of literature exists on characterising the response
of structures to impulsive loading where the duration of the blast pulse is insignif-
icant compared to the natural response time of the structure. Analytical and
finite element models were successfully developed that are capable of predicting
the critical impulsive velocities needed to initiate damage and failure, and they
have been shown to be in excellent agreement with experiments. However, the

majority of blast loadings in real-life are, in fact, non-impulsive; especially if the



source of an explosion occurs at a considerable standoff distance from the tar-
get structure. Compared to the abundant literature on the impulsive response
of structures, there is limited published literature to date, and relatively little is

known, of how structures respond to non-impulsive blast loads.

The interactions between a structure and the blast wave is known as fluid-
structure interaction or, for brevity, FSI. The basic concept of FSI is that the
receding motion of the structure alleviates the pressure acting on it, and thus
reduces the impulse transmitted by the blast wave. Our current state of knowl-
edge on FSI, in both compressible or incompressible medium, is still very much
grounded on works based on rigid free-standing structures (Taylor, 1941; Kam-
bouchev et al., 2006, 2007; Hutchinson, 2009), or elastic structures (Schiffer et
al., 2012; Schiffer and Tagarielli, 2014, Subramaniam et al., 2009, Teich and
Gebbeken, 2011). Moreover, FSI effects are often neglected in many of the cur-
rent design guidelines. For instance, TM5-1300 (1990) recommends that the
reflected blast pulse from a fixed, rigid surface at the relevant standoff distance
can be used as the design loading for the structure. This recommendation could
potentially lead to large inaccuracies in the predicted structural response. There
is a need for more thorough investigations into the role of FSI on the structural
response and failure of actual deformable structures - taking into account large
elasto-plastic deformation and the influence of supports - to blast loadings; and
its implications on momentum and energy transfer from the blast wave. To this
end, a comprehensive understanding of the physics of FSI and the ability to ac-
curately model the interactions between a general blast pulse and deformable

structural components are needed.

The present thesis outlines a systematic study, by a combination of analyt-
ical and numerical modelling, to assess the performance of deformable struc-
tures subjected to impulsive and non-impulsive loadings. The topics covered will
range from large elasto-plastic deformation, to progressive damage and failure
at the supports, through to energy and momentum transfer resulting from fluid-

structure interaction in both air blasts and underwater explosions.



1.2 Literature survey

There exists a significant body of research on the blast response of simple
structural components - beams, plates, shells, etc. - in topics ranging from fluid-
structural interactions to dynamic structural response (large deformation, damage
and failure). This section provides a brief review of the pertinent central findings

from these works.

1.2.1 Blast loadings on structures

A
Pressure .
p, - Ambient pressure
p, - Maximum positive overpressure
p, : Maximum negative overpressure
t,: Positive time duration
p t; : Negative time duration
’ 1: Positive incident impulse
I Negative incident impulse
I
1
p a v >
- I -
P, i Time
z > L < L >
ta ta + td ta t td & td_

Figure 1.1: Schematic of a typical incident pressure-time history generated by a
blast event (TM5-1300, 1990).

Explosions, from conventional or nuclear explosives (American Society of Civil
Engineering, 1961, 1985), high pressure gases (Baker et al., 1983) or dust mix-
tures (Baker et al., 1983), generate gases that expand violently outwards, forcing
the surrounding atmosphere away from the expanding volume. A blast wave is
generated, as a consequence, by the zone of compressed air that forms, and prop-
agates outwards, in front of the gases. The propagation velocity decreases with
time (and distance) but it is typically greater than the speed of sound in the

medium. If a pressure transducer is placed at a fixed location, relative to the



source of explosion, an incident overpressure (the difference between the static
pressure and the ambient atmospheric pressure) of a type shown schematically in
Fig 1.1 would be recorded (Feng et al., 2007). Notice that compression is regarded
as positive in the figure. At ¢t = t, (arrival time of the blast pulse), the pressure
increases rapidly - with a negligibly small rise time - to a peak value ps; + pg;
thereafter, it decays monotonically to an ambient level p, at time (¢, + t4) - this
is known as the ‘positive phase’ of a blast pulse. It is followed by a period of
under-pressure which creates a partial vacuum - known as the ‘negative suction

phase’- before returning to ambient conditions at time (¢, + t4 + ;).

There exists various empirical formulae for estimating the peak incident over-
pressure p, (Brode, 1955; Dewey, 1964; Henrych, 1979; Smith and Hetherington,
1994). For example, Henrych (1979) expressed ps as a function of scaled distance

Z given by
L4072 | S50 _ 07 | 8005 (.05 < p, /p, < 0.3
pe= G191 08% 4 2182 (3 < g <] (1.1)
P4 250 1< py/pa <10

where Z = r/W?'/? (also known as the scaled distance), r is the distance from
the source of the explosion to the point of measurement and W is the weight
of charge (expressed in TNT-equivalent). Most analytical models neglect the
negative suction-phase of a blast pulse (Kinney, 1962; Baker, 1973). One of
the simplest approximation of the positive phase of a typical blast pulse is an

exponentially decaying pressure profile given by
p(t)=e i, 0<t<oo (1.2)

where the decay constant t; is chosen so that the peak overpressure p, and the

impulse of the positive phase

Ii:/ pseffiz‘dt (1.3)
0

matches that measured by experiments. Equation 1.2 is commonly used in one-



dimensional (1D) studies of a blast wave impinging on rigid plates (Schiffer et
al., 2012; Taylor, 1941) or on sandwich panels (Deshpande and Fleck, 2005; Fleck
and Deshpande, 2004; Liang et al., 2007; McMeeking et al., 2008., Xue and
Hutchinson, 2004).

A
Pressure
p,—
Py — . Reflected overpressure
Incident overpressure
0 _ﬁ >
P, Time

Figure 1.2: Schematic of a reflected pressure-time history from an obstacle (TM5-
1300, 1990).

The incident wave is reflected from any surface that is not parallel to the
direction of propagation (such as a wall or a structure). Neglecting any attenua-
tion, the reflected pressure profile is often assumed to be similar in profile to the
incident but with a higher peak pressure as shown schematically in Fig 1.2. The

peak reflected overpressure can be expressed in the form of (Anderson, 2001)

br = CRps (14)

where the reflection coefficient C'y is given by the well-known Rankine-Hugoniot

relationship as follows:
_ 8ps + 14p,

C .
f Ds + TDq

(1.5)



It is clear from Eq. 1.5 that the reflection coefficient ranges between 2 < Cr < 8
where the lower limit corresponds to the acoustic range and the upper limit for

very strong shocks.

The loading by the blast wave may be categorised into three different régimes
- static (tq/T > 1), dynamic (t4/T =~ 1) or impulsive (t4/T < 1) - depending on
the time ratio (t4/T ) where t4 is the duration of the positive phase and T is the
natural response time of the structure upon which the blast wave impinges (Smith
and Hetherington, 1994). The limiting case for the impulsive régime is termed
zero-period impulsive loading (Xue and Hutchinson, 2004) where the pressure
profile is insignificant and the structure acquires an instantaneous velocity given
by
V=2 (16)

where [; is given by Eq. 1.3 and m is the mass per unit area of the structure.
It will be highlighted later that strong blast loadings can often be approximated
- rather accurately - as zero-period impulses (Jones, 1971; Jones, 1976; Yu and
Chen, 1992, 2000).

1.2.2 Impulsive response of structures

There exists an extensive literature on the deformation and damage of beams
and plates to impulsive loadings: see, for example, Jones (1975, 1978, 1981, 1985,
1989, 1996, 2013), Jones and Shen (1993) and Yu and Chen (1998, 2000). In this

section, the focus will be on reviewing the key salient findings.

The classical experiment by Menkes and Opat (1973) showed that the mode of
deformation in a fully clamped aluminium (6061-T6) beam subjected to impulsive
loading (t4/T < 1) can be categorised as: mode I - large inelastic deformation;
mode II - tensile-tearing and deformation; mode III - shear-band localisation, as
shown in Fig 1.3. Olson et al. (1993) demonstrated that fully clamped square
mild-steel plates also exhibit similar damage modes. It is worthwhile noting that
the terms ‘deformation modes’ and ‘damage modes’ are often used interchange-
ably. Nurick and Shave (1996) further demonstrated the same for blast-loaded

square plates; in addition, they proposed that the mode II deformation may be



(b)

(c)

Figure 1.3: Schematic of damage modes for impulsively loaded beams by Menkes
and Opat (1973): (a) mode I-large inelastic deformation; (b) mode II-tensile
tearing at the supports; (c) mode IlI-shear-band localisation (Olson et al., 1993).

sub-divided into three distinct régimes of mode IT* (through-thickness tearing
along the supports); mode Ila (complete detachment from supports with maxi-
mum central deflection increasing with impulse); mode IIb (complete detachment
from supports with maximum central deflection decreasing with impulse). Fur-
ther, experiments by Ramajeyathilagam and Vendhan (2004) showed that the
impulsive response of rectangular plates, with aspect ratio v > 1, were broadly
similar to the square plates reported by Olson et al. (1993). Distinction between
mode I and II, IT* and ITa as seen in the experiments by Nurick and Shave (1996)

were also identified.

By comparison to the limited experimental investigations alluded to above, a
large body of analytical studies exist on damage modes for beams and rectangular
plates. The rigid-plastic method of analysis is widely accepted and extensively

used to study the deformation and damage of beams and plates (Jones, 1971,



1976; Shen and Jones, 1992; Yu and Chen, 1992). For example, the analytical
model proposed by Jones (1976) has been shown to predict well the maximum
permanent transverse deflection Wy of a rigid, perfectly-plastic beam. The ana-
lytical expression predicting the non-dimensional maximum transverse deflection

is given by

TR

where A\ = pVZL?/M, is the non-dimensional impulse intensity, p is the beam
density, L is the half length of the beam, My = oy BH?/4 is the fully plastic

bending moment and oy is the static yield strength and H is the beam thickness.

Jones (1971) and Yu and Chen (1992) have also provided analytical solutions
to predict the maximum permanent transverse deflection of impulsively loaded
rectangular plates (fully clamped) with aspect ratio v > 1. Ignoring membrane
effects, Jones (1971) showed that the maximum permanent transverse deflection
of a rectangular plate, with length 2a and width 2b (a > b), subjected to a uniform
impulsive velocity V| is

Wo _ 3=&)[(1+T)2 —1]

H = 20+ (& — D& —2)] 18

where T' = (A/6)(3 - 26)(1/7)[1 & +1/(2—&)] and & = (1/7)[/3 + (1/7)? -

(1/7)] are both functions of the plate aspect ratio v = a/b and the non-dimensional

impulse intensity A\ = pV2a?/My, where My = oy H?/4 is the fully-plastic bend-
ing moment per unit length. If, however, W, approaches or exceeds the plate
thickness H, then membrane force becomes important since it dissipates energy,
stiffens the structure and reduces the transverse deflection of the plate signif-
icantly. Yu and Chen (1992) accounted for the effects of membrane forces by
introducing a kinematically admissible time-dependent velocity field that traces
the transient phase of motion of the plates. The temporal evolution of Wy/H

was given in the form of

L CE S RO FECTE

The ordinary differential equations (ODEs) have to be solved numerically using



the fourth order Runge-Kutta method.

The minimum impulsive velocities needed to initiate tensile tearing and pure
shear failures at the supports are often defined as critical impulsive velocities
corresponding to mode [—II and mode II—III transitions, respectively. Several
analytical models exist which predict the critical impulsive velocities correspond-
ing to the transitions between deformation modes. Jones (1976) used an elemen-
tary failure criterion (critical tensile strain criterion/critical accumulative shear
sliding criterion) to estimate the critical velocities corresponding to mode I—II
and [I—III transitions for the dynamically loaded beam experiments by Menkes
and Opat (1973) which are expressed as

€max = € mode II (1.10)
Ab . = H mode III (1.11)

max

where €., (sum of bending €, and membrane ¢, strains) is the maximum total
in-plane strain within the structure, €. is the critical tensile strain of the material
and A . is the maximum plastic shear displacement. In a rigid-plastic analy-
ses, deformation is localised at the plastic hinges so the strain distribution in a
structure cannot be obtained directly (Jones, 1989). To calculate the maximum
total in-plane strain in Eq. 1.10, an effective length for the plastic hinge [ has to
be defined. Jones (1976) assumed a value of [ = H for the initial stage of defor-
mation which becomes | = L/2 when the fully plastic membrane force N = N
is reached. The critical impulsive velocities corresponding to the mode [—II and

[I—III transitions are, respectively, given by (Jones, 1976)

oy H \/ 8L2 2L
V= JZ (14 et eS8 22 1.12
27\ 3, T ( VAT T (1.12)

_2\/§ oy

Thus for a given material, the critical impulsive velocity corresponding to mode

and

Ves (1.13)

[—1I transition depends on the ratio L/H. By contrast, the critical velocity at the

mode II—III transition depends only on the material properties. Two important



effects, however, were ignored by Jones (1976): first, on the interaction between
shear force and bending moment and, second, on weakening of the sliding sections
with damage progression. Focusing on these two effects, Yu and Chen (2000) re-
examined the critical velocity for mode II—III transition. They, too, found that

the critical impulsive velocity depends only on material properties given by

Vis = Aoy /p (1.14)

where \. - given in Table 1.1 - depends on the yield criterion adopted. Although
Jones (1976)’s prediction of V.3 agrees reasonably well with the experiments of
Menkes and Opat (1973), Yu and Chen (2000) showed that more accurate predic-
tions are achieved with an interactive yield criterion; for example, circular yield

criterion, Hodge’s yield criterion, etc.

Table 1.1: Tabulation of critical impulsive parameter . and energy ratio 3. for
aluminium beams in Eq. 1.15 (Yu and Chen, 2000).

Criterion Critical impulsive Critical energy
parameter A, ratio [,
Square yield criterion 0.943 0.857
Circular yield criterion 0.840 0.444
Hodge’s yield criterion 0.873 0.438

Shen and Jones (1992) developed an energy-based failure criterion to account
for the simultaneous influence of bending, membrane stretch and transverse shear.
It states that damage in mode II or I1I occurs when the specific energy dissipation
(density of plastic work) € at any point in the structure reaches a critical value

given by
QC:/ ogde (1.15)
0

where €, and o4 are the true rupture strain and the true dynamic stress from a
uniaxial tensile test, respectively, which they assumed are equal to the equivalent
strain and stress in the actual structure. They found that the transition from

mode II to IIT occurs when the ratio of the plastic work absorbed through shearing

10



deformation to the total plastic work done by all the stress components () reaches
a critical value of
B. = 0.45 (1.16)

and the failure criteria that delineate the different damage modes, identified pre-

viously by Menkes and Opat (1973), may then be expressed as follows:

mode I: 0#<6., pB<pf. (1.17a)
mode II: 0=460. p<pf (1.17b)
modeIIl: #=6., S>0. (1.17¢)

Calibrating to the experimental data of Menkes and Opat (1973), Shen and Jones
(1992) proposed an empirical relationship between the plastic hinge length and
the dissipated energy ratio given by

a+128=13 (1.18)

where v = [/H. Since 0 < g < 1, it follows that 0.1 < o < 1.3. Shen and
Jones (1992) found that the onset of mode III damage occurs at a critical value
of 8. = 0.45. The efficacy of this value was assessed for aluminium beams by Yu
and Chen (2000) using different forms of interactive yield criteria in Table 1.1.
It was found that f. is close to 0.45 if using an interactive yield criterion, but is
nearly twice that deduced by Shen and Jones (1992) for a square yield condition.
The predictions using an energy density criterion fits the experimental data by
Menkes and Opat (1973) best.

To the best of the author’s knowledge, there are currently no analytical predic-
tions on the modes [—II and IT—III transitional velocities for impulsively-loaded
rectangular plates. However, the open literature did contain a number of detailed
3D finite element (FE) simulations of clamped rectangular plates subjected to im-
pulsive loading where predictions were shown to be in reasonably good agreement
with the corresponding experiments. For example, Olson et al. (1993) developed a
finite element program (NAPSSE) using on a strain-based criterion, akin to Jones
(1976)" critical tensile strain criterion in Eq. 1.10, to simulate mode II damage.

However, mode 111 damage was not included. Gupta et al. (2010) adopted an

11



equivalent strain criterion to model tensile tearing in fully clamped circular mild
steel plates. A progressive degradation scheme - also known as an ‘element-kill
method” in ABAQUS/Explicit (2012) - was employed to model tear initiation,
crack propagation and the subsequent complete detachment from its supports.
Their FE model assumes that the plate material is bilinear with isotropic hard-
ening - see schematic in Fig 1.4 - and incorporates a Mises yield criterion with

associated flow rule. The solid line in the figure - €, and & are, respectively, the

Undamaged response ( o )

o D=0 0<D<1 D=1 N_..-

Softening

0 =P g €

Figure 1.4: Schematic of stress-strain curve with progressive damage degradation.

equivalent plastic strain corresponding to the onset of damage and failure - repre-
sents the damaged stress-strain response whilst the dashed curve is the response
in the absence of damage. The damage variable, D, captures the combined effect
of all active damage mechanisms. Gupta et al. (2010) adopted a shear strain
criterion in ABAQUS to model the onset of damage for a fully clamped circular
mild steel plate due to shear band localisation. Their model assumes that the
equivalent plastic strain at the onset of damage (€%) is a function of the shear
stress ratio and strain rate given by ég(fs, ") where 0, = (¢ + ksp)/Tmax 18 the
shear stress ratio, Tyax is the maximum shear stress and ks (= 0.3 for aluminium)

is a material parameter. The criterion for damage initiation is met when

de
_ e 11
s / &6, &) (1.19)

12



where wg is a state variable that increases monotonically with plastic deformation
and is proportional to the incremental change in equivalent plastic strain. The
predictions agree well with the experimental results of Gupta et al. (2010). Ra-
majeyathilagam and Vendhan (2004) compared the critical tensile strain criterion
by Olson et al. (1993) to the equivalent strain criterion by Gupta et al. (2010)
for fully clamped rectangular plates (with aspect ratio v > 1) using the finite el-
ement software CSA/GENSA [DYNA3D]. Both strain-based models predict well
the experimental results by Ramajeyathilagam and Vendhan (2004). Rudrapatna
et al. (1999) also used the NAPSSE program to simulate damage in rectangular
mild-steel plates. Their plates are supported by spring elements rather than con-
ventional constraint conditions. Two different failure models based on the stress
and strain ratios were incorporated into NAPSSE: a linear interaction criterion
(LIC) where the ratios are added directly and a quadratic interaction criterion
(QIC) where the ratios are squared before being added. Failure is assumed to

occur when the failure function reaches unity, i.e.

LIC: f = fmax y Tave (1.20)
€r Tult
2 2
QIC: f = () (2) = (1.21)
T Tult

where the maximum total in-plane strain €y, is based on Jones (1976)" beam
theory, €, is the rupture strain from a uniaxial tensile test, the shear stress T,yg
is assumed to be uniformly distributed around the clamped boundary and given
by the reaction forces in the springs, and 7, is the ultimate shear stress. They
showed that the QIC is more accurate than the LIC in predicting the experimental
results of Nurick and Shave (1996). Rudrapatna et al. (1999) noted that shear

damage does not occur exclusively in mode IIT but also in mode II.

1.2.3 Non-impulsive response of structures

Single-degree-of-freedom (SDOF) representation of a structure has been widely
employed to study the dynamic response of structures subjected to non-impulsive
loads and in the preliminary blast assessment of structures; see Fallah and Louca
(2007), Fischer and Haring (2009), Krauthammer and Altenberg (2000), Li and

13
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Figure 1.5: Schematic of the transformation of a fully clamped beam system to
a SDOF equivalent (Biggs, 1964).

Meng (2002), Rigby et al. (2012, 2014), Subramaniam et al. (2009), Teich and
Gebbeken (2010) and Yim and Krauthammer (2009). The parameters of the
SDOF model are derived based on energy equivalence with the actual structure.
The equation of motion for the SDOF system, shown in Fig 1.5, is given by
(Biggs, 1964)

mel + kew = pe(t) (1.22)

where m., k. and p. are the equivalent mass, stiffness and loading, respectively.
Biggs (1964) derived transformation factors (loading factor K and mass factor

Kyy) for the equivalent mass, stiffness and loading as follows:
me = Kymy, ke = Kpky, pe(t) = Krp(t) (1.23)

where my, and k; are the actual mass and stiffness of the beam. The derivation of
the transformation factors are based on an assumed shape function ¢(z) for the

deformed structure, i.e.

K :/gb(x)dx and Ky :/¢2(x)dx. (1.24)
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Although Biggs’ SDOF method is often employed because of its simplicity and
ease of use, with relatively few input requirements, it assumes purely flexural

resistance and ignores any membrane action that is induced by large displacement.

M; M,

14
M() i j MO
-

Figure 1.6: Schematic of a structural beam model by Schleyer and Hsu (2000).
Finite rotations and elongations are allowed at the supports through the intro-
ductions of axial and rotational springs. Resistance-elongation function of axial
springs and moment-rotation function at the hinges are as shown.

Modal approximation techniques proposed by Martin and Symonds (1966)
were also widely employed to assess the blast response of structures. It assumes
that the impulsive response of a rigid-plastic structure results in deformation
that continually evolves towards a modal solution, i.e. the velocity field W may
be written as the product of separate functions of space and time W(x, t). The
modal solution is a velocity field W(m, t) with separated functions for spatial and

temporal variables given by

W(z,t) = w(t)(z) (1.25)

where w(t) is the generalised velocity and ¢(z) is the mode function or mode

shape. The modal solution satisfies the laws of motion, compatibility (kinematic
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admissibility) and constitutive relations. The corresponding modal displacement

(W) and acceleration (W) fields can also be written in terms of the same partial

functions given by
Wz, t) =wt)p(z) and W(x,t) =i(t)o(x). (1.26)

The mode approximation methods have been extended to include finite deflec-
tions (Symonds, 1980), uncoupled elastic and plastic phases of motion (Symonds
and Mosquera, 1985), elastic recovery (Schleyer and Mihsein, 1992) and variable
support restraints (Schleyer and Hsu, 2000).

Schleyer and Hsu (2000) used mode approximation technique to investigate
the response of beams subjected to non-impulsive loadings. The beam is sup-
ported by axial (with stiffness K, ) and rotational springs (with stiffness i) at
each end as shown in Fig 1.6. The former models purely plastic membrane be-
haviour whilst the latter models elastic, perfectly plastic characteristics of the
supports and plastic hinges. A third rotational spring models a central plastic
hinge. In their model the deformation of the structure is divided into three phases
in accordance to sequence of plastic hinge formation. The velocity field associ-
ated with each phase is linked to the velocity field of the preceding phase using
the transitional conditions proposed by Symonds et al. (1984). Their analytical
predictions gave excellent agreement with the experimental results by Menkes
and Opat (1973). However, their model predictions were limited to the mid-span
deflection in mode I and the model neglects the weakening effects of damage and

failure.

1.2.4 Effects of fluid-structure interaction

A considerable body of literature exists that deals with the effects of fluid-
structure interaction (FSI) in deep underwater explosions and air blasts. The
beneficial effects of FSI in reducing the impulse transmitted to a structure have
been recognised for deep underwater explosions since Taylor (1941). He modelled
the response of a rigid freestanding plate loaded by an exponentially decaying,

planar shock wave and showed that the transmitted impulse - in the case of
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negligible compressibility of the fluid medium - can be expressed as

]F
- — 2/81;(5711/510*1) (1.27)

where It is the maximum transmitted impulse per unit area of the free-standing

structure, which is governed by a non-dimensional parameter (better known as

the FSI index) , given by
o pwcwti
== h

where p,, is the density of water and ¢, is the wave speed in water. The FSI index

B

(1.28)

B is independent of the blast intensity: a direct consequence of the linearity as-
sumption since the reflected pressure profile scales linearly with its corresponding
incident values. This ‘peculiar’ property has been extensively exploited in the
design of sandwich panels that can sustain significantly higher impulsive loads
than monolithic plates of equivalent weight, leading to greater resistance against
underwater blasts: see Fleck and Deshpande (2004), Xue and Hutchinson (2004),
Deshpande and Fleck (2005), Tilbrook et al. (2009), McShane et al. (2007), Mc-
Shane et al. (2010) and Mori et al. (2007), to name a few.

Understanding how cavitation fronts (breaking and closing fronts) develop and
evolve is important since the impulse imparted by the blast waves to submerged
structures are directly affected by it. Kennard (1943) described theoretically
the one-dimensional evolution of cavitation zones in a liquid by treating water
as an elastic medium. He found that, when the pressure at any point drops
below the cavitation limit of the fluid, two ‘breaking fronts’ emerge from this and
propagate in opposite directions, creating an expanding pool of cavitated liquid.
Subsequently, these breaking fronts can arrest, invert their direction of travel and

become ‘closing fronts’ that forces contraction of the cavitated zones.

Schiffer et al. (2012) examined the effects of initial hydrostatic pressure on
the underwater blast response of a rigid plate supported by a linear spring. Their
model captures propagation of both breaking and closing fronts (Kennard, 1943)
as well as their interactions with the structure in a blast event; predictions were
shown to be in good agreement with measurements from shock-tube experiments

presented by Schiffer and Tagarielli (2013). They found that increasing hydro-
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static pressure reduces the transmitted impulse since it moves the point of incip-
ient cavitation away from the structure, and reducing plate mass does not always
lead to a reduction in transmitted impulse whilst increasing the supporting stiff-

ness always will.

Analytical and FE models were developed by Schiffer and Tagarielli (2014) to
investigate the dynamic response of clamped circular fibre-reinforced composite
plate to deep underwater blasts. In their analytical model, the laminated plate
is treated as a deformable 2D structure that takes into account the effects of
transverse shear, membrane stretch from large deflections, and orthotropic mate-
rial properties. They found that if an underwater blast loading can be assumed
to be impulsive only if the response time of the structure is at least one order
of magnitude higher than the decay time of the blast wave. Their predictions
were compared to the experiments by Schiffer and Tagarielli (2015) where there
is excellent agreement. In addition, Schiffer and Tagarielli (2015) also reported
a ‘double-cavitation’” phenomenon in their experiments. They found that early
deformation of the plate, due to the propagation of flexural waves, gives rise
to a localised cavitation zone at the fluid-structure interface. This zone quickly
collapses upon coalescence of the flexural wave in the centre. Subsequent plate
deformation induces an additional cavitation zone at a finite distance from the
plate as previously described. It is worth noting that the aforementioned stud-
ies were all extensions of Taylor’s original theory for an incompressible medium.
However, the same approach cannot be employed to study FSI effects in an air
blast which involves non-linear, finite amplitude disturbances propagating in a

compressible medium (Tan et al., 2005).

Kambouchev et al. (2006, 2007) have extended Taylor’s original FSI theory
for an incompressible (water) to a compressible (air) medium. They explored
analytically the limiting cases of extremely heavy and extremely light plates for
arbitrary blast intensities and studied the intermediate asymptotic régimes nu-
merically through a Lagrangian formulation of the Euler equations of compressible
flow and conventional shock-capturing techniques. A modified non-dimensional

parameter that governs fluid-structure interaction in air - analogous to (,, in Eq.
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1.28 - was proposed as follows:

o psUsti

Bs

Note that pg is the gas density behind the shock given by

2%+ (o + 1)k
2%+ (Ya — 1)2

Pa

Ps = Pa

and Uy is the shock speed given by

a 1 S
@:%¢g¢gg+1

2YaPa

(1.29)

(1.30)

(1.31)

where the subscript a denotes ambient conditions, 7, is the specific heat ratio,

pa 18 air density, p, is pressure and c, is speed of sound in air. The approximate

formula for the transmitted impulse can be expressed as a function of this non-

dimensional parameter 3 and loading intensity ps given by

F
o )\1525(1+/Bs)555/(1755)

I;

where the non-dimensional parameter \g is

the non-dimensional parameter vg is

(1 + p./Tpa
7328—42pan( +p/p)7
Ds

the reflected coefficient C'y is given in Eq 1.5 and fg is

(64—03)5—2-}-7

Jr= (6&%—7

NG (e oomg +7) (o )

(1.32)

(1.33)

(1.34)

(1.35)

They found that the transmitted impulse of the free-standing plate reduces with

19



increasing s and nonlinear compressibility further enhances the reduction of
transmitted impulse provided by FSI effects in the linear range. The beneficial
influence of FSI in potentially mitigating the effect of blast has recently been
explored as a basis for the design of sandwich structures with increased blast
resistance: see Dharmasena et al. (2010, 2011), Ebrahimi and Vaziri (2013), Feng
et al. (2007), Main and Gazonas (2008), Vaziri and Hutchinson (2007), Vaziri
et al. (2007), Wadley et al. (2010, 2013) and Zhu et al. (2010).

Hutchinson (2009) recently carried out a detailed numerical study to elucidate
the effects of non-linear compressibility on the energy and momentum transfer to
rigid, free-standing plates subjected to air blasts. In his work, a shock is generated
by the sudden release of a highly compressed air layer. The transmitted impulse
of the free-standing plate is normalised by the total impulse of the compressed

air container Iy as a function of a non-dimensional parameter 5* given by

gl I (1.36)
2 AFEypH
where AF)j is the total energy of the compressed air container. Note that Eq.
1.36 has been defined using invariants of the incident wave compared with S, in
Eq. 1.29, which must be determined at the instant when the wave strikes a plate.
It was found that the impulse transmitted to a plate reduces with increasing
B*. Using this newly-defined non-dimensional variable, it was shown that the
maximum impulse transmitted to a plate is around twice the initial total impulse
Iy and this ratio of the maximum transmitted impulse to the initial total impulse

Iy is independent of the loading intensity.

The findings by Kambouchev et al. (2006, 2007) and Hutchinson (2009) apply
only to rigid, free-standing plates. Little is known, however, of how the inclu-
sion of supports affect FSI, the momentum and energy transfer, and subsequent
failure of a structural component. There are a few recent studies attempting to
investigate the effects of FSI for a fully clamped structures. For example, Teich
and Gebbeken (2013) investigated the influence of FSI and aerodynamic damp-
ing on elastic response of a structure subjected to an air blast. They extended
Taylor’s model to include aerodynamic damping, stiffness effects and structural

damping and developed closed-form solutions to the problem by assuming a linear
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FSI effect, i.e. no change in the fluid density and linear superposition of waves.
They found that the general assumption of rigid reflection (ignoring FSI effect)
leads to a significant overestimation of displacements and thus the internal forces
and stresses in flexible systems subjected to blast loadings. Subramaniam et al.
(2009) studied interactions between a blast pressure wave and an elastic structure
numerically using an Arbitrary Lagrange Euler (ALE) framework. They found
that the structural displacement predicted by ignoring F'SI is larger than the cor-
responding displacement considering FSI - this is consistent with the findings of
Teich and Gebbeken (2013). The error in the predicted maximum displacement
by ignoring FSI effect was found to be directly proportional to the ratio of the

velocity of the structure to the velocity of the shock wave.

1.3 Motivations and objectives

Existing models (based on either rigid-plastic methods, single-degree-of-freedom
model, or modal approximation techniques) are not applicable when estimating
the dynamic response (deformation, damage and failure) of elasto-plastic struc-
tures subjected to intense non-impulsive loadings. It is also unclear how pulse
shape, and its corresponding duration, influence the mode of damage, and how
limits to deformation due to necking localisation and/or ductile fracture at the
supports affect the final performance of the structure, with or without fluid-
structure interactions. There lacks a general methodology, through an analytical
approach or otherwise, to capture large elasto-plastic deformation, and the loss

of integrity at the supports for general (impulsive and non-impulsive) loadings.

The current state of knowledge on fluid-structure interactions involving mono-
lithic structures, in both compressible or incompressible medium, is still very
much grounded on works based on a rigid free-standing structure (Taylor, 1941;
Kambouchev et al., 2006, 2007; Hutchinson, 2009), or an elastic structure (Schif-
fer et al., 2012; Schiffer and Tagarielli, 2014, Subramaniam et al., 2009, Teich
and Gebbeken, 2011). The magnitude of loading from a blast is often sufficiently
intense to cause significant plastic deformation in a structure, leading to large de-

formation and, in extreme cases, to a loss of integrity at the supports. It is as yet
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unclear how the introduction of supports to a ‘free-standing structure’;, and/or
the methodology needed to introduce them, affects previously known results.

Likewise, on the relaxation of an idealised rigid structure to an elasto-plastic one.

The main objectives of this PhD work are to develop models, both numerical
and analytical, to elucidate the following for elasto-plastic structures subjected

to general (impulsive and non-impulsive) loadings:

1. To understand how pulse shape and duration affect structural deformation

and the critical impulse at mode transitions;

2. The interplay between bending, shear and membrane effects on structural

deformation and failure;

3. To quantify how FSI affects energy and momentum transfer during large

structural deformation and its subsequent failure; and,

4. On the roles of the fixing condition offered by the supports during FSI.

1.4 Outline of the thesis

This thesis is organised as follows. Chapter 2 develops a model for an elasto-
plastic structural beam system that is sufficiently general to capture large elasto-
plastic deformation with bending, shear and catenary action, and the loss of
integrity at the supports. In Chapter 3, three-dimensional (3D) finite element
(FE) models for elasto-plastic beams are developed to simulate its response to
blast loadings. Both the FE (Chapter 3) and analytical (from Chapter 2) models
- validated against the experimental data of Menkes and Opat (1973) - are used
to investigate the effects of pulse duration on the deformation and failure of fully
clamped deformable beams. Chapter 4 investigates the effects of FSI in deep
underwater explosions for the elasto-plastic structural beam system developed in
Chapter 2. Predictions from the previously validated 3D FE models will be used
to validate the analytical predictions where they will be shown to be in excellent
agreement. The analytical model is then used to carry out parametric studies to

investigate the sensitivity of energy and impulse transfer to deformable beams of
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different mass and aspect ratio. How support conditions affect previously known
results based on rigid, free-standing structures are investigated here. Chapter 5
presents results on FSI between an intense air blast (considering the non-linear
compressibility of air) and the elasto-plastic structural beam system from Chap-
ter 2. The effects of structural and blast pressure wave parameters on FSI are
investigated. The sensitivity of blast response of a deformable beam to its aspect
ratio and mass will be quantified. Similar to Chapter 4, the influence of support
conditions is also investigated. Chapter 6 deals with the blast response of fully
clamped rectangular plates. 3D FE models are developed which are validated
against experimental data for square mild-steel and aluminium plates from the
literature. Deformation contour maps delineating régimes of deformation modes
for combinations of aspect ratio and non-dimensional impulse are produced. Fi-

nally, in Chapter 7, conclusions and suggestions for further research are given.

1.5 Contributions to existing literature

The bulk of the research work reported in this thesis have appeared in archival
journals, submitted for review or currently under preparation. They are as fol-

lows:

1. “Deformation and failure of rectangular plates subjected to impulsive load-
ings” (Yuan, Y., and Tan, P. J.), International Journal of Impact Engineer-
ing 59 (2013), 46-59.

2. “Energy and momentum transfer to a ‘fully clamped’ elastic plate in an
air-blast” (Yuan, Y., and Tan, P. J.), Applied Mechanics and Materials 566
(2014), 262-267.

3. “Large deformation, damage evolution and failure of ductile structures to
pulse-pressure loading” (Yuan, Y., Tan, P. J., Shojaei, A., and Wrobel, P.),
submitted to International Journal of Solids and Structures, (2015).

4. “The influence of deformation limits on fluid-structure interactions in deep
underwater blasts” (Yuan, Y., Tan, P. J., Shojaei, A., and Wrobel, P.),
submitted to International Journal of Impact Engineering, (2015).
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5. “Elastic-plastic response spectra with fluid-structure interaction effect” (Yuan,
Y., Tan, P. J., Shojaei, A., and Wrobel, P.), submitted to Archive of Applied

Mechanics, (2015).

6. “Preliminary assessment of the design guidelines for ships against blast
loadings” (Liu, L., Tan, P. J., Yuan, Y., and Wrobel, P.), in preparation for

Ocean Engineering, (2015).
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Chapter 2

Formulation of an elasto-plastic

structural beam system

As reviewed in Section. 1.2.2; Menkes and Opat (1973) identified three dis-
tinct damage modes that are characteristics of clamped ductile beams subjected
to short-duration, high-intensity transverse pressures (referred to, hereinafter, as
impulsive loadings): viz. mode I - large inelastic deformation; mode II - tensile
tearing over the supports; mode III - transverse shear failure at the supports. Of
noteworthy is that damage in mode II and III always initiates in the region of the
beam abutting the supports although, in practice, a sharp distinction between
the two modes is not found. There are several analytical models - Jones (1976),
Yu and Chen (2000), Shen and Jones (1992), Wen (1996) and Alves and Jones
(2002a,b) to name a few - on the prediction of critical impulse at mode transitions.
However, nearly all were formulated within the constitutive framework of limit
analysis and assumed impulsive loading conditions. The model by Jones (1976)
proposed that the critical impulsive velocity at mode I—II transition occurs when
the maximum in-plane strain - arising from catenary (membrane) and bending
actions - over the supports reaches the critical tensile strain of the material from
which the beam was made; and when the maximum transverse shear sliding at
the supports reaches the beam thickness for the corresponding mode IIT damage.
In reality, however, membrane force must play a significant role during failure in

mode III and, likewise, with transverse shear force in mode II. To address this,
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Shen and Jones (1992) developed an energy-based failure criterion - applicable
to a broad class of dynamic structural problems - to account for the simultane-
ous influence of bending, membrane stretch and transverse shear. It states that
damage (mode II or IIT) occurs when the specific dissipation (density of plastic
work) 6 at a point in the structure reaches a critical value of 6. = foer oy,de where
¢, and o4 are the true rupture strain and the true dynamic stress of a uniaxial
tensile test, respectively, which they assumed are equal to the equivalent strain
and stress in the actual structure. They found that a transition occurs from mode
IT to III at the critical value of 5. = 0.45, where 3 is the ratio of the plastic work
absorbed through shearing deformation to the total plastic work done by all the
stress components. Yu and Chen (2000) studied transverse plastic shear failure at
the supports (mode IIT) where the efficacy of §. = 0.45, previously proposed by
Shen and Jones (1992), was assessed against different forms of interaction yield
criteria; furthermore, the weakening effects of the sliding sections - a transverse-
displacement discontinuity - during the failing process is also included in their
model. Whilst the aforementioned models are able to predict critical impulses
that are broadly in agreement with the experimental data of Menkes and Opat
(1973), they are limited to impulsive loadings and neglects elastic deformation in

the beam.

In order to model the effects of boundary conditions (or supports) upon the
momentum and energy transfer to a deformable structure through fluid structure
interaction (F'SI) - this is to be presented in Chapters 4 and 5 - certain restrictions
and assumptions in existing analytical models will need to be relaxed /removed.
This chapter presents the formulation of a more general elasto-plastic structural
beam system aimed specifically at addressing the aforementioned. The proposed
structural model is sufficiently general to (1) describe large elasto-plastic defor-
mation with catenary actions; (2) incorporate the interactions between bending,
membrane stretch and transverse shear in the yield and plastic limit functions;
(3) model the loss of integrity at the supports through progressive damage and
its subsequent detachment; and, (4) account for general (impulsive and non-
impulsive) loading conditions. For the sake of definiteness, damage shall refer
to the onset and subsequent degradation of the generalised stresses in the beam

member and at its supports; as opposed to failure which refers to a complete
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loss of load carrying capacity of the beam member, exemplified by the complete
detachment of the beam from its supports. Predictions by the present model will
be compared to existing experimental data from the literature, and to results
from detailed three-dimensional finite-element simulations in Chapter 3, where

they will be shown to be in good agreement.

2.1 Features of the structural beam system

Figure 2.1 shows a schematic representation of a structural beam system which
consists of a beam member supported at each end by three springs (one rota-
tional and two axials). The beam member - made of a rate-independent, elastic
perfectly-plastic material in the present study - is of total length 2L and a uniform
rectangular cross-section of thickness H and width B where L/H > 1 (i.e. the
beam is slender). Following Schleyer and Hsu (2000), a pressure loading p(z, t) is
assumed to always impinge normally over the entire span of the beam regardless of
its subsequent transverse deflection. For uniformly distributed pressure loading,
p(z,t) = p(t). The pressure pulse may take on any general form: exponentially
decaying (EXP), linearly decaying (LIN), rectangular (REC) etc.
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Figure 2.1: Schematic of a structural beam system. A plane of symmetry exists

along r = 0, —B/2 <y < B/2, —H/2 < z < H/2 so that only the right-half
needs to be modelled.

The rotational spring has elasto-plastic characteristics to model the beam
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rotation at each end and the subsequent plastic hinge formation. Both the axial
and vertical springs have rigid-plastic characteristics to model the ‘plastic stretch’
and ‘plastic shear sliding’ actions at the supports, respectively. Collectively, the
trio of springs may be regarded as a representation of an imperfectly clamped
boundary which allows interactions between bending, stretch and shear to be
considered and where damage mechanics will be applied to model the progressive
loss of support integrity. Experiments and theoretical studies (Menkes and Opat,
1973; Shen and Jones, 1992; Wen, 1996) have all shown that damage (mode II
and III) in impulsively loaded beams occurs in the region abutting the supports.
In the case of non-impulsive loading, the present model, too, assumes that failure
occurs in the same region of the beam member. Detailed three-dimensional finite-
element simulations, to be presented in Chapter 3, will show that this is a valid
assumption and is, indeed, the case. A plane of geometric and loading symmetry
exists at the mid-span of the beam (x = 0) which allows one-half of the beam to

be analysed.

2.2 Yield, damage and failure criteria

The components of stress ¢ on any cross-section of the beam member, includ-
ing at its supports, give the following stress resultants for axial force N, shear

force @, axial torque 7" and bending moment M (Stronge and Yu, 1993):

N = / odA, Q= / 0..dA, T = /(yam — 204)dA, M =— / 20,,dA
A A A A

(2.1)
where A is the cross-sectional area of the beam; y and z are transverse coordinates
measured from the axis through the centroid of every section. Since the beam is
loaded by equal but opposing couples that act in directions perpendicular to the
plane of symmetry, the beam must bend in the plane of symmetry and does not
twist, i.e. T'= 0. For slender beam members where L/H > 1, stress resultants
arising from the actions of membrane N, shear () and bending M are analogous

to stress components in a continuum and are referred, hereinafter, as generalised
stresses (Stronge and Yu, 1993; Jones, 1990; Shen and Jones, 1992). Yield,
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damage and failure criteria will be presented as functions of these generalised

stresses in the following sub-sections.

2.2.1 Yield and fully plastic stress state

The state of stress on any cross-section of an elastic perfectly-plastic beam
member, including at its supports, is established through functions of yield (¢)
and fully plastic (¢?) stress conditions as follows: (Stronge and Yu, 1993)

Elastic state : % <0 (2.2a)
Elasto-plastic state : ¢ >0, ¥? <0 (2.2b)
Fully plastic state : ¢ >0, ¢? =0. (2.2¢)

Since every cross-section carries shear force, in addition to axial force and bending

moment, the yield function ¥ is given by (Stronge and Yu, 1993)

M@ N9 (2.3)

wel o
My Q¥ Ny Qy

where My = oy BH?/6, Ny = oy BH and Qy = 20y BH/3+/3 are the bending
moment, membrane force and transverse shear force at the elastic limit, respec-
tively. The yield condition 1 = 0 provides an upper bound on the generalised
stresses correponding to elastic (reversible) strains at every point in the cross-

section.

When part of the cross-section is strained beyond its elastic limit (i.e. ¥ > 0),
proportional increases in the stress resultants will lead to an increase in ¥* with
deformation. The increases in stress asymptotically approach a limiting, or fully
plastic, stress condition ¥ = 0 as the curvature and deformation becomes indefi-
nitely large. For solid cross-sections, the distribution of each stress components in
the plastically deforming region of the cross-section can conceivably change with
deformation. Following Stronge and Yu (1993), these changes are also ignored

here. The fully plastic limit function ¢? for generalised stresses in a rectangular
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cross-section is given by (Stronge and Yu, 1993)

M [ @ N g
e D S IS | 2.4
¥ M 5 N§ Qo (24)

where My = ¢,, My, Ny = Ny and Qo = ¢,,Qy are the fully plastic bending
moment, membrane force and transverse shear force, respectively. ¢,, is the
shape factor defined as the ratio of fully plastic bending moment (or fully plastic
transverse shear force) to its corresponding elastic limit and is equal to 1.5 for
a beam of rectangular cross-section. It is convenient to express the fully plastic

limit function in non-dimensional form as follows:

PP = [M|\/1—-Q2+ N* +Q* -1 (2.5)

where M = M/M,, N = N/Ny and Q = Q/Qq are the non-dimensional fully
plastic generalised stresses. The fully plastic stress condition P = 0 is an upper
bound for stress states that satisfy yield in any part of the cross-section. This
bound for the fully plastic state is based on an assumption that the distribution
of normal stress in the fully plastic stress state with, or without, shear is identical
(Stronge and Yu, 1993). Plastic hinge forms at the cross section where the fully

plastic stress condition ¥? = 0 is reached.

2.2.2 Damage initiation and evolution

The term damage describes the onset and subsequent degradation of the gen-
eralised stresses in the beam member and at its supports. Figure 2.2 shows a
schematic of generalised stresses (M or N or Q) versus effective strain e.q where
point ¢ corresponds to the generalised stress state at which a cross-section meets
the damage initiation criterion (w; = 1). Upon damage initiation, the generalised
stresses degrade in accordance to an evolution law, denoted by the line c—d. This
section presents the damage initiation criterion and an evolution law that governs

the softening of these generalised stresses.

In general, the effective strain €.q on any cross-section may be expressed as
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Figure 2.2: Schematic showing non-dimensional generalised stresses as a function
of effective strain pre- (wq < 1) and post- (wg = 1) damage initiation.

(Wen, 1996; Alves and Jones, 2002a)

9 3
Ceff — \/§ [(Exx - Eyy)2 + (Eyy - Ezz)z + (Emc - Ezz)2 + 5(7§z + 7221/ + ’Y%y) ’ (26)

For slender members, out-of-plane warping of cross-sections is negligible since the
depth is small compared to its length; consequently, plane sections remain plane
(Stronge and Yu, 1993). Therefore, it is reasonable to assume that v,, = v,. =0
(Wen, 1996; Alves and Jones, 2002a). If the material in a dynamic uniaxial
test with €, > 0 obeys the incompressibility relation €, + €,, + €., = 0, then
€yy = €22 = —€45/2 (Jones, 1989). Hence, Eq. 2.6 reduces to

/ 1
Ceff = 692096 + gfy:%z (27)

The maximum total strain €., experienced at any cross-section x comprises of
two parts given by (Wen, 1996; Jones, 1989)

€xx = Em + € (2.8)

where the membrane strain ¢,, and bending strain ¢, may be expressed, respec-

tively, as functions of the transverse mid-span displacement of the beam Wg as

w242 () oo

follows:
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and
WgH

12
Note that a linear variation of the membrane strain ¢,, has been assumed across
the beam length (Jones, 1989).

Following Wen (1996), Alves and Jones (2002a), Yu and Chen (2000) and

Jones (1976), it is further assumed that the transverse shear strain -, is negligible

€y = (2.10)

within the beam member but is dependent upon the plastic shear sliding distance

over the shear band at the supports. Hence, on any cross-section

i <
s = 0 f0<z<L (2.11)
Ws/(1/2) ifz=1L

where Wy is the plastic shear sliding displacement and [ is the width of the shear
band. Slip-line field analysis of a rigid-plastic beam with rectangular cross-section
and thickness H by Nonaka (1967) have shown that the shear band width ranges
between H < [ < 2H for maximum transverse beam deflection of 0 to H. The
latter corresponds to the onset of membrane response in the beam. Since large
beam deflection invariably leads to membrane stretching, a value of [ = 2H is
chosen following Jones (1976) and Nurick and Shave (1996). Substituting Eqgs.
2.8 - 2.11 into Eq. 2.7, gives an approximate expression for the effective strain

on any cross-section x of the beam system as follows:
2 2 "
2(%2) (5) + (%) wo<a<1L
Cell = ws )2 W a\1?  1(ws\? .
() () (O () e

It is noted that the effective strain is greatest at the supports where x = L since

(2.12)

its two constituent components (total axial in-plane and transverse shear strains)
are both highest there. This is in agreement with Wen (1996) and Alves and
Jones (2002a). Expressions for Wy and W are to be derived in Section 1.3.

The criterion for damage initiation is met when (ABAQUS/Explicit, 2012)

wg = (2.13)

€d
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where wy is a state variable that increases monotonically with effective strain
eof and €y is the effective strain at the onset of damage. Upon the initiation of
damage, i.e. wy = 1, progressive softening of the non-dimensional generalised

stresses follows
M| =|M'|(1-D), N=N/(1-D) and Q=Q'(1-D) (2.14)

where D is the damage variable; M/, N/ and @/ are the non-dimensional bending
moment, membrane force and transverse shear force at the onset of damage,
respectively. For the sake of simplicity, a linear evolution of the damage variable
D with effective strain e.q is adopted here as follows: (ABAQUS/Explicit, 2012)

€eff — €d
€ — €4

D=

(2.15)

where €, is the rupture strain in a uniaxial tensile test. This definition ensures

that when D = 1, generalised stresses decreases to zero.

2.2.3 Failure criteria

Failure refers to a complete loss of load carrying capacity by the beam member
through detachment from its supports. Experiments by Menkes and Opat (1973)
have shown that an impulsively loaded beam always fails at its supports for modes
IT and III; this is also in agreement with predictions by the analytical models of
Wen (1996) and Alves and Jones (2002a). Here, Eq. 2.12 too shows that e is
greatest at the supports (z = L) where damage is expected to initiate and evolve.

Therefore, failure criteria need only be established for the supports in Fig 2.1.

The criteria delineating the different modes of failure, described by Menkes
and Opat (1973), are as follows:

ModeI: D<1, wy,<1 (2.16a)
ModeIl: D=1, w,<1 (2.16b)
Mode III: D=1, ws;>1 (2.16¢)
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The state variable wy is expressed as
ws = — =1, (2.17)

where [ is the ratio of the plastic work absorbed through shearing deformation
to the total plastic work done by all the stress components given by (Shen and
Jones, 1992)

L

P =Bt Bt By

(2.18)

where E% is the shear strain energy obtained via the vertical axial spring; E? is the
bending strain energy of the rotational spring; E¢' is the membrane strain energy
obtained via the horizontal axial spring; and, . is the critical § value marking
the transition from mode II to III. For aluminium beams, Yu and Chen (2000)
showed that the . obtained using a square yield criterion is larger than 0.45 ob-
tained by Shen and Jones (1992) with an interactive yield criterion. Furthermore,
they found that . is a material-dependent parameter which is independent of ge-
ometry. Since an interactive fully plastic limit function is used here and material
properties corresponding to Aluminium 6061-T6 - the same as Shen and Jones
(1992) and Yu and Chen (2000) - is used in the simulations to be presented in
Chapters 3 to 5, it is reasonable to assume that 5. = 0.45.

2.3 Equations of motion

The overall transverse displacement at any point = (z > 0) of the structural
beam system may be approximated as a sum of n generalised displacements and

mode functions given by (Williams, 1996)

n

W(z,t) = Z i(w)w;(t) (2.19)

i=1

where the partial functions ¢;(x) are admissible mode functions that satisfy the
geometric boundary conditions and the temporal functions w;(t) are generalised

transverse displacements to be determined by the Lagrange equations of the 2nd
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kind. Since the transverse displacement will be represented here by the sum
of polynomials, instead of the normal modes of transverse vibration in a beam
system, the partial functions ¢;(x) need not be orthogonal (Williams, 1996).
According to Eq. 2.19, the displacement at the mid-span and supports are given,
respectively, by

Wg(t)=W(z=0,t) and Ws(t) = W(x = L,t). (2.20)

The corresponding velocity (W) and acceleration (W) fields also use the same

partial functions given by
= quz(a:)wl(t) and W (z,1) Zgbz w; ( (2.21)
i=1

Defining the generalised mass of the beam member as

Mo — mfo ¢i(2)p;(x)dx if i # j

i = 2.22
! { mfogbfxdx ifi=7 ( )

where m is the mass per unit length, the total kinetic energy of the beam system

at any given time ¢ can be expressed as

= —m/ W2 (x,t)d ZZMZJwa? (2.23)

The total potential (strain) energy of the beam system is

V=E,+E;+E}+ES+ER (2.24)
su;;:ort b;z:m

where EY% and E% are the bending and membrane strain energies of the beam
member, respectively; E%, E% and ET are the shear, bending and membrane
strain energies associated with the vertical, rotational and axial springs, respec-
tively, at the supports. Note that subscripts S and B are used to denote support

and beam member, respectively; whilst, superscripts s, b and m denote shear,
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bending and membrane, respectively. The generalised force is given by

L
Q; = / p(z,t)pi(x)dz, i=1,2,..,n. (2.25)
0
Since the Lagrangian of the structural beam system is
L=Erg+V, (2.26)

the differential equations governing w; are obtained by substituting Eqs. 2.26
and 2.25 into the well-known Lagrange equation of the 2nd kind

d s0L 0L .
E(E)wz> + 8wi - Qi7 1= 1,2, ey (2‘27)
to give
N ovft »
Z M;ji; + — = p(x, t)i(x)dr, i=1,2,....,n. (2.28)
j=1 811}2 0

The key to obtaining the governing equations of motion in Eq. 2.28 is to derive

the various strain energy components (E%, E§, ET, E% and E%) in Eq. 2.24.

Following Schleyer and Hsu (2000) and Biggs (1964), the dynamic response
of the beam system is divided into three phases of motion in accordance to the
sequence of plastic hinge formation as follows: (1) Phase 1 (0 < ¢ < ¢;) - when
the fully plastic stress condition is not met anywhere in the beam, i.e. ¥? < 0;
(2) Phase II (t; <t < t3) - when a stationary plastic hinge forms at the support;
(3) Phase III (ty < t < t3) - when a travelling plastic hinge A develops, moves
towards, and coalesce with, the existing stationary hinge at the mid-span of the
beam, ending up in a final two-hinge collapse configuration. The strain energy

components corresponding to each are derived in the following subsections.

Note that each phase of motion has its own unique set of initial condition
and associated displacement (and velocity) field. In the present study, the tran-
sitional conditions between phases follow the proposal by Symonds et al. (1984),
which is based on the well-known ‘minimum A, technique’. This technique is
commonly employed to determine the starting amplitude of the ‘new’ velocity

field by minimising the difference in kinetic energies between the velocity fields
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at the end of the terminating phase and at the start of the new phase (Schleyer
and Hsu, 2000; Langdon and Schleyer, 2005; Stronge and Yu, 1993).

2.3.1 Phasel: 0<t<t

MBCV

B

Figure 2.3: Schematic of the transverse displacement for the right-half of the
structural beam system in Phase 1.

In Phase I, it is reasonable to neglect catenary actions and transverse shear
since the transverse deflection is small compared to the beam thickness, i.e.
Wp < H (Izzuddin, 2005; Schleyer and Hsu, 2000). To simplify the transition
from an elasto-plastic to a fully plastic stress state, the true moment-curvature
relationship on any cross-section - with its non-linear increase in yield moment
My to the fully plastic bending moment M, shown schematically in Fig 2.4 - is
replaced by a bilinear approximation to simplify the calculations of the bending
moment (Jones, 1989; Schleyer and Hsu, 2000; Izzuddin, 2005). Since bending
moment is always greatest at either the supports (z = L) or the mid-span (x = 0)
for a transversely-loaded beam, one should expect a plastic hinge to form first
at either of these two locations (Biggs, 1964; Schleyer and Hsu, 2000; Izzuddin,
2005, Langdon and Schleyer, 2005). Consequently, fully plastic limit function
given by Eq. 2.5 need only be defined at the supports and mid-span of the beam,
respectively, as follows:

uh = |1 — 1 (2.29)

and

P = |Mp| - 1. (2.30)
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Phase I motion ends when either ¢% = 0 or ¥}, = 0: whichever is reached first.
Notwithstanding, Schleyer and Hsu (2000) and Fallah et al. (2013) have shown

M
A Bilinear approximation

M, R RDREEET e -
M y[— /[ Elastic, perfectly plastic
material
0
K

Figure 2.4: Bilinear approximation of the moment-curvature characteristics for
an elastic-perfectly plastic beam system with a rectangular cross-section.

that the sequence of hinge formation depends critically upon the non-dimensional
parameter a(= K4,L/ETI), where E is Young’s modulus and [ = BH?/12 is the
beam’s second moment of area. Fallah et al. (2013) found that when a > 6,
a plastic hinge always forms at the supports first. To ensure that the angle
between the horizontal and vertical axial springs must always be perpendicular,
a relatively large rotational stiffness Ky is used in the present model. Therefore,
it is reasonable to assume that a plastic hinge always forms first at the supports

since o > 6.

Following Schleyer and Hsu (2000), an admissible transverse displacement

field for the right-half of the structural beam system in Phase I, shown in Fig 2.3,

is given by
t

W(z,t) = wlT()<1 + cos W—Lx) + wy(t) cos % (2.31)

The bending strain energies in the beam member and rotational spring are, re-
spectively,

EI [*[0*W (z,t)72
By =5 | |55 d 2.32
b0 =5 | [ (232)
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and

BA(t) = Z2o(t)? (2.33)

where ¢(t) = fOL[QQW(a:,t)/ﬁxQ]dx (Langdon and Schleyer, 2005; Schleyer and
Hsu, 2000). Since Wy < H, it is reasonable to assume that the strain energies

due to shear and membrane are negligibly small (Izzuddin, 2005); hence,
Ei(t) = Eg'(t) = EZ(t) ~ 0. (2.34)

Substituting Eqs. 2.32, 2.33 and 2.34 into Eq. 2.28, and using the initial condi-
tions wy; = wy = 0 and wy; = we = 0 gives the two equations of motion of this

phase. When the fully plastic stress condition at the supports is reached, i.e.
v = |Kep(t)|/ Mo — 1 =0, (2.35)

it marks the end of Phase I deformation with the corresponding time of ¢ = ¢;.

2.3.2 Phasell: t; <t <t

In Phase II, the beam member may be assumed to deform in a manner similar
to a simply supported beam, see Biggs (1964). Following Izzuddin (2005), Fallah
and Louca (2007) and Fallah et al. (2013), small transverse deflection is also
assumed for Phase II; hence, the influence of transverse shear and catenary actions
can be ignored. Therefore, the fully plastic stress condition at the supports - since
Y% =0 - reduces to

M| =1 (2.36)

whilst the same at the mid-span simplifies to
b= |Mg| — 1. (2.37)

Phase IT motion ends when 9% = 0.

An admissible transverse displacement field for Phase IT motion, shown schemat-
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MBC‘

B

Figure 2.5: Schematic of transverse displacement profile for the right-hand half
of the structural beam system in Phase II.

ically in Fig 2.5, is (Schleyer and Hsu, 2000)

Wz, t) = [wy(t)) + ws(t) cos% (2.38)

where w;(t1) is the terminating amplitude of the generalised displacement from
Phase I at ¢;. Expressions for strain energy components are identical to those
previously derived in Phase I (Eq. 2.32 for E%; Eq. 2.34 for B, E% and E)
with the notable exception of the bending strain energy of the rotational spring

at the supports which is as follows:

E%(t) = |Ms|[o(t) — ¢1] = Mo[o(t) — ¢1] (2.39)

where ¢1 = M,/K,. Substituting Eqs. 2.32, 2.34 and 2.39 into Eq. 2.28 gives the
equation of motion for Phase II. Transitional condition between phases proposed
by Symonds et al. (1984) is adopted here to calculate the starting amplitude
of the velocity in the current phase based on the terminating velocities in the
previous phase. The starting amplitude of the generalised velocity in this phase
is given by

Wy = %wl(tl) + 1y (1) (2.40)

where w;(t1) and ws(t;) refer to the terminating amplitude of the generalised
velocity from Phase I at time ¢;. Once the mid-span of the beam meets the fully

plastic stress condition, i.e.

p=EIk(t)/My—1=0 (2.41)
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where r(t) = 0*W (x,t)/0x%| .o is the curvature at the mid-span, it marks the

end of Phase II deformation at the corresponding time of ¢ = ts.

2.3.3 Phase III: t, <t < {3

Following Shen and Jones (1992) and Schleyer and Hsu (2000), it is assumed
that the membrane force N is identically distributed throughout the span of
the beam whilst the transverse shear force is negligible at the mid-span. The

fully plastic stress conditions at the supports and mid-span of the beam are,

respectively,
|Ms|(1-Q%) + N>+ Q¢ =1, if [Mg]>0 (2.42a)
N*+Q%i=1, if |Ms|=0 (2.42b)
and
Mp+ N* = 1. (2.43)

If motion of the beam member ceases when the damage variable D < 1 (Mode I
deformation), this will be followed by residual deformation in the form of elastic
vibration. By contrast, if this happens when D = 1 then the beam will fail in

either mode II or mode III.

Phase III motion begins with two existing stationary plastic hinges (one each
at the support S and mid-span B) from Phase II. A travelling plastic hinge
A then develops that moves towards the stationary hinge at the mid-span (Fig
2.6a) before ending up in a final two-hinge collapse configuration (Fig 2.6b). The
admissible transverse displacement field at the beginning of Phase III motion
shown in Fig 2.6a, is (Shen and Jones, 1992)

Wiz, t) = wi (ty) +waty) +ws(t) f0<a<L—¢
(z,t) = wy(t) + [w1(t1) + wo(ta) + ws(t) — w4(t)] ng fL_¢<z<l
(2.44)

where wi (t;) and ws(t2) are terminating amplitudes of the generalised displace-

ments from Phases I (at time ¢;) and II (at time ¢5), respectively. When the
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(b) Static hinge with £ = L

Figure 2.6: Schematic of transverse displacement profile for the right-half of the
structural beam system in Phase IIT (a) before and (b) after the travelling hinge
reaches its mid-span.

travelling plastic hinge reaches the mid-span, i.e. & = L, the admissible trans-

verse displacement field for Fig 2.6b becomes

L—=z
7

Wz, t) = wa(t) + [wl(tl) - wy(ts) + ws(t) — w4(t)] (2.45)

The bending strain energies of the beam member and rotational spring are,

respectively, " @
W3 — Wy

E%(t) = Mp : : (2.46)

and

B = 35 200,

The membrane strain energies of the beam member and the horizontal axial spring

(2.47)
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may be expressed, respectively, as
EX(t) = NAg(t) (2.48)

and
Eg(t) = NAg(t) (2.49)

where Ap(t) = A(t)/(14+1/4/1 — Q%/Q3) is the in-plane membrane displacement
at the mid-span, A(t) = [ws(t) — w4(t)]?/€ is the total membrane displacement
and Ag(t) = A(t) — Ap(t) is the membrane displacement at the supports. Here,
it is assumed that in-plane membrane displacement is significant where a plastic
hinge has developed (Schleyer and Hsu, 2000; Langdon and Schleyer, 2005). The

shear strain energy of the vertical axial spring is

E§(t) = Qswa(t). (2.50)

Note that the parameters Mg, Qs, N, Mp, & and § in Egs. 2.46-2.50 are un-
knowns. Recasting them in a non-dimensional form, viz. Mg, Qg, N, Mp,
§=¢/L and € = f /L, they will have to be computed as described below.

The non-dimensional velocity of the travelling hinge A can be expressed in
the form of (Shen and Jones, 1992)

where w3 = w3(t)/H, w3 = ws3(t)/H, wy = w4(t)/H; p. = 4My/L? is the fully
plastic collapse force per unit length, i.e. the largest force per unit length that
can be supported by the structural beam system when subjected to a pure bend-
ing moment before the bending moment at each plastic hinge equals the fully
plastic bending moment M, (Jones, 1989). Note that when the travelling hinge
A reaches the existing stationary hinge at the mid-span B, they coalesce into a

single stationary hinge so that in subsequent motion

£=0 and £=1. (2.52)
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The calculations of Mg, Qg, N, Mp would depend on whether damage had
initiated. If the state variable wy; < 1, then Mg, Qg and N are governed by
normality requirements so that plastic flow must occur at a non-negative energy
dissipation rate since they have met the fully plastic stress condition (Eq. 2.42).
Therefore, according to Shen and Jones (1992),

_ 1 3 B
~ 2 | M| AE(L/H )iy
Qs — — — | = L (2.53b)
[\/1—62?9 \/1—Q§:| \/g(wg—uq)
if |Ms| > 0, and
[ 210y W3 — Wy (3 — w4) (w3 — wy)
N — + = = = (2.54)
[\/ﬁQs f(L/H)} ¢(L/H)
if |J\7[S| = 0. If the state variable wy; = 1, then the non-dimensional bending

moment Mg, membrane force N and shear force Qg are governed by the damage
equations of Eq. 2.14. Note that non-dimensional bending moment Mp remains
governed by fully plastic stress condition established for the mid-span (/% = 0)
in Eq. 2.43.

To calculate Mg, Qg, N and Mg, they have to be expressed as functions of ws,
Wy, Ws, W, &, g”and t through Eqs. 2.42, 2.43, 2.51, 2.53 and 2.54 if wy < 1; and
through Eqs. 2.14, 2.15, 2.43 and 2.51 if wy = 1. The temporal evolution of these
parameters are obtained by solving the aforementioned equations using the well-
known 4th order Runge-Kutta method with the initial conditions of w3 = wy = 0
and wy; = 0. Following Symonds et al. (1984), the starting amplitude of the

generalised velocity ws for Phase III is given by

. 12

where 1wy (ts) refers to the terminating amplitude of the generalised velocity from
Phase II at time t5. Phase III deformation ends at time t3 if motion of the beam
member ceases i.e.

ws(ts) = 0. (2.56)
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If the damage variable D < 1 when this occurs, then the beam fails in mode 1.

Otherwise, a mode II or mode III failure would ensue if D = 1.

If the structural system fails before all the initial kinetic energy is expended,
then the beam member would have a residual kinetic energy at the point of
severance. Parts of this are absorbed through further plastic deformation as the
beam member continues to deform until it reaches a rigid permanent set whilst the
remaining as translational kinetic energy. In the current model, the energy that is
absorbed post failure is not considered. The residual energy and momentum for
one-half of the structural beam system at failure are given by (Shen and Jones,

1992)

1 o 1 Lo, : . L — z12
Ey = im(L — OWil(ts) + 3m [Ws(ta) + [Wi(ts) — Ws(ts)] ¢ ] dz
L—¢
(2.57)
and
. L . . . L —x
Bur = (L= OWa(ts) +m [ [Ws(ts) + [nlts) = Wa(to) ] do (259)
L—-¢
or, in non-dimensional form, as
=~ Ektr
Byt = 2.
e = (2.59)
and I
Lr = 7 (2.60)
]ext

where I = L fotd p(t)dt is the external momentum, E. = pBHLV}/2 is the

external energy and Vy = lo/pH BL is the equivalent impulsive velocity.
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Chapter 3

Blast response of elasto-plastic

beams

3.1 Introduction

As previously highlighted, majority of the analytical models on blast load-
ing of beams and plates in the literature - Jones (1976), Wen (1996), Shen and
Jones (1992), Yu and Chen (2000), etc. - were formulated within the constitutive
framework of limit analysis which disregards the influence of material elasticity.
Whether these rigid-plastic methods of analysis provide an acceptable approxi-
mation of the dynamic response of actual elasto-plastic structures is an important
issue. Symonds (1985) showed that a rigid-plastic analysis may be acceptable if
the energy ratio R > 1, where R is the ratio of the total energy imparted by the
loading Ej, to the maximum elastic strain energy capacity U."** of the structure

given by
Ein

- max
Ue

R

(3.1)

This problem was re-investigated by Symonds and Frye (1988) through a single-
degree-of-freedom (SDOF) mass spring model - using either an elastic perfectly-
plastic or rigid perfectly-plastic spring - where it was found that a large energy
ratio (R > 1) is a necessary, but not a sufficient, condition for a rigid-plastic

approximation. If the duration of the load pulse is not brief in comparison to the
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fundamental period of elastic vibration of the structure, a rigid-plastic idealisa-
tion would lead to an unacceptably high error, by as much as 60%. In some cases
this error may even be negative, i.e. the rigid-plastic solution grossly underesti-
mates the final deformation of the structure (Stronge and Yu, 1993). Subsequent
study by Yu (1993) investigated the influence of elasticity on the dynamic plastic
response of cantilever beams and showed that the pulse shape and its rise time,

too, have a significant influence on the final beam deformation.

Existing models based on rigid-plastic methods cannot be used to study the
dynamic response of elasto-plastic beams subjected to intense non-impulsive load-
ings. In addition, it is unclear as to how pulse shape, and its duration, influence
the mode of deformation and how limits to deformation due to necking localisa-
tion and/or ductile fracture affect the final performance of a beam. These issues
will be investigated here using the analytical model developed in Chapter 2. For
impulsively loaded beams, there exists experimental data by Menkes and Opat
(1973) against which the current analytical predictions (Chapter 2) may be val-
idated. However, no equivalent experimental data for non-impulsive load cases
exist to the best of the author’s knowledge. Hence, a 3D non-linear finite element
(FE) model - validated against the data of Menkes and Opat (1973) - is first
developed and their numerical predictions are compared to the current analytical
model for impulsive load cases. Both the validated FE and analytical models are

then employed to study the effects of non-impulsive loading.

3.2 Finite element implementation

3.2.1 Mesh, loading and boundary conditions

Finite element analyses were performed using ABAQUS/Explicit (2012). All
the beams modelled have length 2L, width B and thickness H. Only one-half is
modelled since reflective symmetry exists on the plane at z = 0, —B/2 <y < B/2
and —H/2 < z < H/2. Figure 3.1 shows the displacement boundary conditions
that were imposed on the plane of symmetry and at the supports. 8-node solid

brick elements (C3D8R) with reduced integration and hour-glass control were
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used. All brick elements have equal dimension of 0.000783 m on all sides; hence, a
typical 0.203 m (2L) x 0.00635 m (H) x 0.0254 m (B) beam tested by Menkes and
Opat (1973) would comprise of 33024 (129 x 8 x 32) elements in its corresponding
FE model. Results of convergence studies - presented later in Fig 3.3 - will show
that this is sufficient to capture necking localisation, progressive damage and

ductile fracture with acceptable fidelity.

Y Pressure loadin Y Pressure loading Partl')%m_

O (I ] P [T b
<E =b.=b.= <E Part—I - T'T'T

@) x“qjy:”qf:”(z):¢x:¢y:¢z:0 ®) ux_¢y_3figy=uz=¢x=¢v=¢z=0 )

Figure 3.1: Schematic of boundary, or support, conditions (BCs) in the FE sim-
ulations: (a) standard fully clamped BC, and (b) modified BC. u and ¢ denote
displacement and rotation degree of freedom, respectively.

The ductile beam is loaded transversely by a uniformly distributed pressure
pulse. Unless otherwise specified, the pressure pulse is assumed to be linearly-
decaying, i.e. p(t) = po(1 —t/ts) where py is the peak pressure (given in load per
unit length) and ¢4 is the pulse duration. A pulse duration of t; = 0.01 ms is used
here - this follows Shen and Jones (1992). However, it needs to be established
that a pulse of finite duration t; = 0.01 ms can be classed as impulsive. Fol-
lowing Xue and Hutchinson (2003), FE simulations were performed to determine
the maximum mid-span deflection Wy for fully-clamped beams subjected to a
linearly-decaying pressure loading of different duration ¢4. All beams modelled
have identical dimensions 0.203 m (2L) x 0.00635 m (H) x 0.0254 m (B) and
material properties listed in Table 3.2 - identical to the beams tested by Menkes
and Opat (1973). The response time 7" of the beam - defined as the time it takes
to attain maximum mid-span deflection under a zero-period impulse (¢, = 0 so
the beam acquires an instantaneous initial velocity) - was found numerically to
be 0.3 ms. Figure 3.2 shows the variation of the maximum non-dimensional mid-

span displacement W,/ H versus pulse duration t4/T for different levels of impulse
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Figure 3.2: Non-dimensional mid-span displacement W,/ H versus impulse dura-

tion t4/T at different levels of I. The aluminium beam has dimensions 0.203 m
(2L) x 0.00635 m (H) x 0.0254 m (B).

per unit area I, expressed as

i é /O . (3.2)

For linearly decaying pulse, I = poty /2B. At ty/T = 0.4, the predicted maximum
deflection is 12% less than its corresponding zero-period limit. This discrepancy
increases to more than 50% at ¢;/T = 3. This trend is representative of solid
beams subjected to blast loadings and is independent of pulse shape. Thus,
a linearly-decaying pressure pulse of finite duration t; = 0.01 ms is, indeed,
impulsive since t4/T = 0.033 < 0.4. To simulate non-impulsive loading t;/7 > 1
should be used. The intensity of loading, for both impulsive and non-impulsive

load cases, is characterised by a non-dimensional impulse I* given by

(3.3)
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Figure 3.1a depicts a standard displacement boundary conditions that would
need to be imposed for a fully-clamped boundary condition (BC). It is shown
later that the local equivalent plastic strain in the beam abutting the supports
does not converge with repeated mesh refinement. In order to accurately model
progressive ductile fracture at the supports, a modified BC given in Fig 3.1b is
adopted. To demonstrate its efficacy, it needs to be shown that both the standard
and modified BCs give similar beam deflection profiles, but only the latter gives
a converged equivalent plastic strain at the boundary/support. For the modified
BC, three additional parts (labelled 2-4) are added to the end of the original solid
beam (part-1) to form an extended boundary shown schematically in Fig 3.1b.
Note that the standard fully-clamped BC of Fig 3.1a is imposed on part 4. All
the additional parts have equal width 7 and identical material properties as the
solid beam, apart from a gradation of their elastic modulus F, by a factor a. The
parameters 7 = H/6 and « = 10 are obtained by calibration to the experimental
data of Menkes and Opat (1973).

Table 3.1: Number of elements in each direction for Part-1 of the beam (0.203 m
(2L) x 0.00635 m (H) x 0.0254 m (B))

Mesh Number of elements Number of elements Number of elements

along z-direction along z- direction along y-directions
1 1 16 4
2 2 32 8
3 3 48 12
4 4 64 16
D 5 80 20
6 6 96 24
7 7 112 28
8 8 128 32
9 9 144 36
10 10 160 40

Figure 3.3 plots the maximum equivalent plastic strain €’ versus mesh density
in part-1 for the two BCs. The number of elements in each direction of the beam
is listed in Table 3.1. For a beam with a standard BC (Fig 3.1a), the maximum

€’ must occur next to the supports where tearing is expected to initiate. It is
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Figure 3.3: Maximum equivalent plastic strain € predicted for part-1 by the
FE model. Results shown are for an aluminium beam of dimensions 0.203 m
(2L) x 0.00635 m (H) x 0.0254 m (B) subjected to a non-dimensional impulse
I* = 0.466 with t; = 0.01 ms. Properties for the aluminium beam is given in
Table 3.2. ‘Present’ refers to predictions using the modified boundary condition
in Fig 3.1b.

evident that €’ does not converge with repeated mesh refinement for the standard
BC. Figure 3.3 shows that mesh size No.8 gives sufficiently accurate results and

will be used here.

Figure 3.4a compares the deflection profiles predicted by the two BCs which
show negligible differences; likewise, for the temporal-history of their mid-span
deflection in Fig 3.4b. Therefore, it is reasonable to conclude that the modified
BC predicts acceptable mid-span deflection provided necking localisation and

ductile fracture had not intervened.

3.2.2 DMaterial properties and damage model

The material description adopted is based on the conventional .J, plasticity
constitutive relation with linear isotropic hardening, which allows progressive

degradation of material stiffness to be implemented in finite elements. This ap-
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Fully clamped BC (Fig. 3.1a)
- - — - Present (Fig. 3.1b)

— Fully clamped (Fig. 3.1a)

° Present (Fig. 3.1b)

0 0.2 0.4 0.6 0.8 1

t (t/T)

(b)
Figure 3.4: (a) Deflection profile along the z-axis and (b) temporal-history for
the mid-span deflection. Results shown are for aluminium beams of dimensions
0.203 m (2L) x 0.00635 m (H) x 0.0254 m (B) subjected to a non-dimensional
impulse of I* = 0.354 with t; = 0.01 ms. Material properties for the beam are
listed in Table 3.2. ‘Present’ refers to predictions using the modified boundary
condition in Fig 3.1b.

proach, coupled with element deletion, is widely used to model progressive dam-

age and fracture in ductile materials (Hancock and Mackenzie, 1976; Johnson and
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Cook, 1983). All the beams modelled are made of Aluminium 6061-T6, which is
often assumed to be strain rate insensitive (Jones et al., 1971). Table 3.2 lists the

material properties of the beams tested by Menkes and Opat (1973).

Table 3.2: Material properties for the Aluminium 6061-T6 beam (Menkes and
Opat, 1973)

Density, = Young’s modulus, Static yield Ultimate yield  Poisson’s
p (kg/m?) E (GPa) stress, oy (MPa) stress, oy (MPa) ratio
2686 69 283 320 1/3

The progressive damage model for ductile materials in ABAQUS/Explicit is

adopted here. The criterion for ductile damage initiation is given by

g = / @ _ (3.4)

é(n, )

where w, is a state variable that increases monotonically with the equivalent
plastic strain. Here, the equivalent plastic strain € at the onset of ductile dam-
age is assumed to be a function of stress triaxiality n and plastic strain rate

€. When Eq. 3.4 is met, the damage variable D would increase according to
(ABAQUS/Explicit, 2012)
L.é?

D=
=D
Uy

(3.5)

where afc is the effective plastic displacement at failure and L, = 7.83 x 107* m
is the characteristic length of the first-order element used in the FE model. Any
element whose stiffness is fully degraded, i.e. D = 1, is deleted from the mesh.
The two parameters needed to implement a ductile damage model are the damage
strain & = 0.8 and the failure displacement @; = 0.011 m; both are found through

calibration to the experimental data of Menkes and Opat (1973).

In line with the definition of failure in Chapter 2, the FE simulation termi-
nates when a beam member completely detaches from its supports. The smallest
impulse needed to induce beam failure either in mode II or III is referred to here
as the critical impulse at mode I—II or II—III transition, respectively (Jones,

1989). To distinguish between failure in mode II and III in the FE simulations, a
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separate damage parameter for shear would need to be introduced since a sharp
distinction between the two modes is not normally found. The two possibilities
are the maximum transverse shear sliding (A7 ,.) criterion by Jones (1976) and
Yu and Chen (2000), or an energy-based criterion by Shen and Jones (1992).
However, neither of these are feasible since A? . is not a monotonic function of
I* and the plastic work per unit volume (energy density) is a mesh-dependent
quantity (Yu and Chen, 2000). Consequently, the critical impulse at mode IT—III
transition is not predicted by FE unlike the analytical model developed in Chap-

ter 2.

3.3 Validation of FE and analytical predictions

All the beam specimens tested by Menkes and Opat (1973) - they have differ-
ent length (L) and thickness (H ) combinations but identical width (B = 25.4 mm)
- are made of Al 6061-T6 with material properties given in Table 3.2. The pressure
pulse, in both the FE and analytical models, was assumed to be linearly-decaying
with a pulse duration t; = 0.01 ms. An algorithm flow-chart on the numerical

implementation of Chapter 2 is given in Fig 3.5.

Figure 3.6 compares the predicted mid-span deflection (Wy/H), at either the
point of cessation of motion or failure (if complete detachment from the supports
had occurred), to its corresponding experimental data. The analytical predic-
tions by Shen and Jones (1992) - these are available only for specimens 3 and
5 - are included for comparison. In mode I, there is good agreement between
experiments, FE and analytical predictions. The current FE and analytical mod-
els correctly predict a reduction in Wy/H with increasing I* in modes II and III;
they are also broadly in agreement with the predictions by Shen and Jones (1992)
for specimens 3 and 5. Apart from specimen 1, the predicted critical impulse at
mode I—II and II—III also agree well with those reported by Menkes and Opat
(1973).

There is a notable lack of experimental data for modes II and III deformation
in Fig 3.6. To address this, relative mid-span deflections AW, (£ Wi(ts) — Ws(ts))
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Initialize =0

Begin new time step ¢=t+At

Update acceleration
and velocity

Solve equation of

Compute generalised
displacements w,’, wy' , wy, w,

Compute generalised
stresses My (Eq. 2.35)

v

Compute generalised
stresses Mp' (Eq. 2.41)

!

Calculate strain energy
components, £ (Eq.

motion, Eq. (2.28) |

2.32), E&’ (Eq.2.33), Eg",
ES, E5" (Eq. 2.34)

Calculate strain energy
components, 5" (Eq.
2.32), E&’ (Eq.2.39),

Eg", Eg', Eg" (Eq. 2.34)

v

Compute generalised stresses
My, Mg, N, Qs and travelling
plastic hinge location & (Egs.

Compute generalised stresses
My, My, N', Os' and travelling
plastic hinge location & (Egs.

2.42,2.43,2.51,2.53,2.54) 2.14,2.15,2.43,2.51)

v

Calculate strain energy
components, E5” (Eq. 2.46), B
E5" (Eq. 2.48), Eg’ (Eq. 2.47),
E¢" (Eq. 2.49), E§’ (Eq. 2.50),

:

_ N o

Stop Stop Stop
(mode 1) (mode II) (mode III)

Figure 3.5: Algorithm flow-chart on the numerical implementation of the analyt-
ical model presented in Chapter 2.

were deduced using existing ‘post-test’ photographs for specimens 3 and 5 pro-
vided by Menkes and Opat (1973). Figure 3.7 compares this relative mid-span
deflection AW,/H to the current analytical predictions and that by Shen and
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Figure 3.6: Variations of the non-dimensional mid-span deflection Wy/H with
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(1973); -.- Analytical predictions by Shen and Jones (1992); — current analytical
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Jones (1992): a reasonably good agreement for modes I and II is noted. How-
ever, the current model over-predicts AW,/H in mode III because it assumes a
constant hinge length of [ = 2H - this follows the approach of Wen (1996), Jones
(1976) and Alves and Jones (2002a) - instead of re-calibrating for a new hinge
length using each data point which was employed by Shen and Jones (1992).

Table 6.4 compares the critical non-dimensional impulse I* at mode transi-
tions. The current analytical model adopts a rupture strain of ¢, = 0.5 (Shen and
Jones, 1992) and an effective strain of ¢; = 0.38 corresponding to the onset of
damage. The latter was obtained by calibrating to the critical I* corresponding
to mode I—II transition for specimen 5. Similarly, for the FE model, & = 0.8
and ﬁfc = 0.011 m are also obtained through calibration to the aforementioned.
Current predictions (FE and analytical) for the critical I* corresponding to mode
[—II transition are in good agreement with the experimental data - as does the

predictions by Shen and Jones (1992) - with the notable exception of specimen 1

Table 3.3: Critical impulse I* for mode transitions.

Specimen  Mode Current Current Analytical'! Experiments?
No Analytical FE
1 [—-1I 0.40 0.43 - 0.63
IT — III 0.90 - - 0.97
2 I[—-1I 0.57 0.51 - 0.63
IT — III 0.92 - - 0.97
3 I[—-1I 0.44 0.43 0.46 0.49
IT — III 0.82 - 0.81 0.87
4 I—-1I 0.55 0.54 - 0.58
IT — III 0.82 - - 0.87
5 I[—-1I 0.54 0.54 0.54 0.54
IT — III 0.76 - 0.76 0.79
6 I—-1I 0.58 0.56 - 0.54
IT — III 0.81 - - 0.79

1(Shen and Jones, 1992) and ?(Menkes and Opat, 1973).
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Figure 3.7: Variation of the relative mid-span displacement AW, /H with non-
dimensional impulse /*. ® experimental data; - - analytical predictions by Shen
and Jones (1992); — current analytical predictions; | critical impulse at mode
transition by current analytical model.

which is considerably lower. In general, the predicted I* at mode II—III transi-

tion agrees well with experimental data.
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3.4 Response to non-impulsive loads

In the previous section, predictions by FE and the current analytical model are
validated against experimental data for impulsive loads. Both models are now
employed to investigate the dynamic response of elasto-plastic beams to non-
impulsive loads. Two of the beams - specimens 3 and 5 - will be modelled here.

Unless otherwise specified, a linearly decaying pressure pulse is always prescribed.

3.4.1 Mid-span deflection and critical impulse at mode

transitions

Figure 3.8 plots the non-dimensional mid-span deflection W,/ H against I* for
pulse durations between 0.01 < t; < 2 ms. Note that t; = 0.01 ms corresponds
to impulsive loading - see Section 3.2.1. There is excellent agreement between the
FE and analytical predictions. Current FE simulations show that beam failure
always occurs at the supports regardless of pulse duration t; which is the reason
why failure criteria was established only for the supports in Section 2.2.3. The
results in Fig 3.8 can be summarised as follows: (1) A broadly similar overall
trend for the mid-span deflection with I* for both impulsive and non-impulsive
loads, i.e. Wy/H increases initially before reducing with 7*; (2) At any given I*,
the mode I deflection reduces with increasing t; whilst the reverse occurs in mode
IT; (3) The mid-span deflection at mode I—II transition is insensitive to ¢4; and,
(4) Mode III deflection for non-impulsive loads are considerably higher than its

corresponding impulsive counterpart at the same I*.

Table 3.4 compares the predicted critical impulse by the analytical model
and FE. The results show that I* for mode I—II transition increases with pulse
duration t4. In a similar vein, this is also observed for the corresponding mode
[T—IITI transition. It is worth noting that for impulsive loads, the non-dimensional
critical impulse I* for mode II—III transition depends only on material properties
(Jones, 1976 and Yu and Chen, 2000); by contrast, it is shown here that the

critical I* increases with the pulse duration for non-impulsive loadings.
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Figure 3.8: Variation of the non-dimensional mid-span deflection W,/ H against
non-dimensional impulse [* for a linearly decaying pressure with different pulse
durations. Black lines (4 = 0.01 ms) correspond to impulsive loads. Current
analytical predictions: - - - mode I; — mode II; -.-.- mode III.
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Table 3.4: Predicted critical impulse /* by the analytical (and FE) model for
different pulse duration ;.

Specimen  Mode ta ta tq ta
No 0.01 ms 0.5 ms 1.0 ms 2.0 ms
3 I —-1I 044 (0.43) 0.51(0.50) 0.66 (0.64) 1.09 (1.03)
-1 082()  099()  127()  156()
5 I —-1II 0.54 (0.54) 0.60 (0.57) 0.74 (0.71) 1.21 (1.18)

II— I 0.76 () 1.06 (-) 1.28 (-) 1.51 (-)

3.4.2 Partitioning of energy

Introducing a non-dimensional strain energy defined as the ratio of the total
potential (strain) energy of the structural beam system to the work done by the
external pressure loading E7 at the point of cessation of beam motion or at failure
given by

P EP(= Eg+Eg1+Eg+Eg+Egl)'
ET< = [ p) [ W (x, t)dx]dt)

Figure 3.9 plots the variation of E versus I* for different pulse duration ¢; where

(3.6)

it shows an excellent agreement between the FE and analytical predictions. No-
tice that ¥ remains at unity throughout mode I which implies that the external
work is dissipated entirely through the various plastic work components by the
structural beam system. Beyond the mode I—II transition, £¥ drops dramati-
cally suggesting that a finite amount of residual energy remains in the beam post
failure. The effect of pulse duration t; upon this residual energy (and momen-
tum) will be further discussed in Section 3.4.3. For a given I*, increasing the
pulse duration t; has the dramatic effect of increasing the non-dimensional strain
energy of a beam failing in modes II or III. This is consistent with the results
shown in Fig 3.8 since more non-dimensional potential (strain) energy is absorbed

through larger mid-span deflection.

The components of plastic work absorbed at the supports through bending,
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Figure 3.9: Non-dimensional strain energy E* for the two specimens shown in
Fig 3.8. Black lines (t; = 0.01 ms) correspond to impulsive loads. - - denotes

mode I; — denotes mode II; -.- denotes mode III.

membrane and shear deformation are non-dimensionalised as follows:

o Eg
B3+ EyY+ B

_ E’g”

m

S T B3+ EY+ EY
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and FEf=p

_ L
- Ei+ EY+ ER
(3.7)
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Figure 3.10: Components of the plastic work absorbed through bending, mem-
brane and shear deformation at the supports for the specimens shown in Fig 3.8.
Black lines (t; = 0.01 ms) correspond to impulsive loads. - - denotes mode I; —
denotes mode II; -.- denotes mode III.
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where E% + E% + E§ = 1. Figure 3.10 plots the 3 components of plastic work
at the supports against I'* at the point of cessation of beam motion or at failure.
The overall trend between the non-dimensional energy components and [* are as
follows: (1) E% reduces monotonically with I*; (2) E increases initially, reaching
a peak value, before reducing with I*; and, (3) E§ increases monotonically with
I*. In general, Figure 3.10 shows that failure at the supports - in mode II and III -
under impulsive and non-impulsive loadings are primarily through a combination
of membrane and shear deformations. It is worth noting the critical 8 value (5. =
0.45) marking the transition from mode II—III is obtained based on impulsive
load cases - see Shen and Jones (1992) and Yu and Chen (2000). A higher 3.
value would require a higher critical I* to induce mode II—III transition with a
corresponding reduction in the mid-span deflection at the mode transition - see
Fig 3.8.

Several studies (Li and Jones, 2000; Shen and Jones, 1992; Yu and Chen, 2000;
Jones, 1976) have found that under impulsive loading, the mode II and III de-
formation is dominated by membrane and transverse shear, respectively. Beyond
the mode [—II transition, Figure 3.10 shows a reduction in the non-dimensional
shear strain energy E% and an increase in the non-dimensional membrane energy
E with t4 for a given I*. The reduction in £ (and increase in £%) becomes less
evident with increasing pulse duration. Notwithstanding, the results above are
consistent with the previous studies for impulsively loaded beams (Li and Jones,
2000; Shen and Jones, 1992; Yu and Chen, 2000): i.e., membrane and transverse
shear play key roles when inducing mode II damage and the effects of bending is

negligible in mode IIT damage.

3.4.3 Residual momentum and energy

The ‘post-failure’ residual momentum I, and residual energy Ej, of the two
beams are plotted in Fig 3.11. Beyond the mode I—=II transition, both I, and
Ej, increase rapidly with I*; this is particularly evident for impulsively-loaded
beams. Shen and Jones (1992) found that the maximum loss of momentum for
impulsively-loaded beams (t; = 0.01 ms) occurs in the vicinity of the mode I—II

transition and a rapid decrease in momentum loss by the beam occurs in mode
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Figure 3.11: Non-dimensional residual momentum I, and energy Ej,, for the two
specimens shown in Fig 3.8. Black lines (¢, = 0.01 ms) correspond to impulsive
loads. — denotes mode II; -.- denotes mode III.

IT - this is consistent with the corresponding rise in residual momentum seen in
Fig 3.11. Although a large impulse is generally needed to induce mode III failure
by an impulsive load, a significant amount of residual kinetic energy and linear
momentum remains in the beam which was also found in Jones (1976). For a
given I*, increasing the pulse duration ¢4 has the dramatic effect of reducing the
residual momentum and energy of the beam failing in mode II and III. This is
consistent with Fig 3.8 where the mid-span beam deflection Wy /H increases with
tq for a given I*; hence, additional energy is absorbed through additional plastic

work leading to a reduction in the residual momentum and energy.
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3.4.4 Pulse shape

\p(t)
peff

eff

mcean

(b)

Figure 3.12: Youngdahl’s equivalence parameters for a general pulse: (a) defini-
tions for I.g and tyean; (b) an equivalent rectangular pulse.

All the previous analytical predictions were based on a linearly-decaying pres-
sure pulse given by p(t) = po(1l — t/ty). Here, we will establish whether the
approach of Youngdahl (1970, 1971) - see schematic in Fig 3.12 - may be used
to eliminate the effects of pulse shape when investigating the dynamic response
of elasto-plastic beams. Following Youngdahl (1970, 1971), an effective impulse
(per unit length) is first obtained as follows:

t3

g = / p(t)dt, (3.8)
ty

where p(t) is the actual pressure pulse, 3 is time at the end of Phase III motion

(see Chapter 2) and ¢, corresponds to the time when the effective pressure (Eq.

3.9) equals the fully plastic collapse force per unit length of the beam, i.e. p(t,) =

pe = 4My/L*. From Eq. 3.8, an effective pressure may be defined as

Ieff

thean

Deft = (39)

where tpean 18 the centroid of the effective pressure pulse in Fig 3.12a given by

1 [t
b = 7= / p(#)d. (3.10)

eff ty
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It is worth noting that Youngdahl (1970, 1971) equivalence parameters were
originally defined based on the rigid-perfectly plastic idealisation of dynamically

loaded structures.

Figure 3.13: The predicted mid-span deflection at the cessation of beam motion
(mode I) or at failure (mode II or III) for four different pressure pulses and
their corresponding Youngdahl’s equivalent. — analytical prediction by actual
pressure pulse; — — — analytical predictions by Youngdahl’s equivalent. Black
lines (t; = 0.01 ms) correspond to impulsive loads. O and O are critical impulses
predicted using the actual pulse and Youngdahl’s equivalent.

A parametric study was carried out using different pulse shapes, viz. linearly-
decaying (LIN), triangular (TRI), cosine (COS) and sine (SINE), of identical
impulse per unit area (I = fotd p(t)dt/B) impinging on a 0.203 m (2L) x 0.00635
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m (H) x 0.0254 m (B) elasto-plastic beam. Figure 3.13 compares the predicted
mid-span deflection at the cessation of beam motion (mode I) or at failure (mode
IT or III) of the aforementioned pulses to their corresponding Youngdahl’s equiv-
alent (Egs. 3.9 and 3.10). The results show that Youngdahl’s approach gives
an excellent approximation of the mid-span deflection in all three modes for im-
pulsive loadings (t; = 0.01 ms). However, this is not generally the case if the
loading is non-impulsive. For monotonically decaying pressure pulses (LIN and
COS) that are non-impulsive - see Figs 3.13a and 3.13b - a reasonable agreement
is observed up until ¢; = 1 ms beyond which significant discrepancies arise. For
non-monotonic pulses (TRI and SINE), the discrepancies between the actual pulse
and its Youngdahl’s equivalent increases dramatically with ¢;. The discrepancies
arise because Youngdahl’s equivalence parameters were defined based on a rigid,
perfectly-plastic idealisation of the loaded structures. Hence, the effective impulse
I in Eq. 3.8 does not account for contributions from the elastic response, i.e. it
ignores foty p(t)dt, which leads to an under-prediction of the mid-span deflection

in mode I.

3.5 Conclusions

The response of elasto-plastic beams to impulsive and non-impulsive loadings
were investigated in this chapter. Predictions by the current analytical and FE
models were shown to be in good agreement with the experimental results of
Menkes and Opat (1973). Excellent agreement between the predictions were also

seen for elasto-plastic beams subjected to non-impulsive loads.

Key findings on the effects of pulse duration on the dynamic response of elasto-
plastic beams can be summarised as follows: (i) Mode I deflection reduces with
increasing pulse duration for a given dimensionless impulse I* whilst the reverse
occurs for the deflection in mode II; (ii) At the transition between mode I and
II, the mid-span displacement is insensitive to pulse duration ¢4; (iv) Mode III
deflection under non-impulsive loads are considerably higher than its correspond-

ing impulsive counterpart at the same I*; (iii) An increase in the pulse duration
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tq delays the transitions (I—II and II—III) between deformation modes; (v) In-
creasing the pulse duration t4 leads to a reduction in the non-dimensional shear
energy E% but an increase in the non-dimensional membrane energy ET at the
same [*; (vi) Increasing the pulse duration t; decreases the residual momentum

and energy of the beam in modes II and III.

It was also shown that Youngdahl (1970, 1971) approach is successful elimi-
nating the dependence of the mid-span deflection of elasto-plastic beams to pulse
shape effects for monotonically decaying, impulsive and non-impulsive, loadings.
However, the same would under-predict the mode I mid-span deflection if the
loading is non-impulsive and non-monotonically decaying (such as triangular and

sine pulses).
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Chapter 4

Fluid-structure interaction in

deep underwater blasts

4.1 Introduction

The beneficial effects of FSI in reducing the impulse transmitted to a mono-
lithic structure - although the momentum it acquires depend on its inertia -
have been recognised for deep underwater explosions since Taylor (1941). In the
acoustic range where nonlinear compressibility of the fluid medium is negligible,
the transmitted impulse is proportional to a non-dimensional parameter (better
known as the FSI index) which is independent of the blast intensity: a direct
consequence of the linearity assumption since the reflected pressure profile scales
linearly with its corresponding incident values. This ‘peculiar’ property has been
extensively exploited to design sandwich panels that are better able to resist im-
pulsive loads in comparison to monolithic plates of equivalent weight, leading
to greater blast resistance: see Fleck and Deshpande (2004), Xue and Hutchin-
son (2004), Deshpande and Fleck (2005), Tilbrook et al. (2009), McShane et al.
(2007), McShane et al. (2010) and Mori et al. (2007), to name a few.

Understanding how cavitation fronts (breaking and closing fronts) develop
and evolve is paramount since the impulse imparted by blast waves to submerged
structures are directly affected by it. Schiffer et al. (2012) modelled the 1D

shock response of a rigid plate backed against a linear spring in contact with
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pressurised water on either, or both, side(s); their predictions were shown to be
in good agreement with measurements from shock-tube experiments in Schiffer
and Tagarielli (2013). Their results revealed that increasing hydrostatic pressure
reduces the imparted impulse since it moves the point of incipient cavitation
away from the structure. Furthermore, sensitivity analysis found that reducing
plate mass does not always lead to a reduction in the transmitted impulse whilst

increasing the supporting stiffness always will.

More recently, experiments carried out by Schiffer and Tagarielli (2015) showed
that a local cavitation zone may arise due to flexural wave propagation in the
plate, leading to a double-cavitation event. However, our current state of knowl-
edge on FSI for monolithic structures remains grounded in results based on a
rigid free-standing ‘structure’ (more precisely, a rigid body undergoing an un-
constrained rectilinear motion); this was recently extended to elastic ‘structures’
with the introduction of a linear spring backing against the rigid plate. However,
little is known of how large deformation (beyond linear-elasticity), the fixing
conditions at the supports and structural failure of monolithic structures (ex-
emplified by the complete detachment of a structure from its supports) affect
previously known results; in particular, their implications on the energy and mo-
mentum transfer to an actual deforming structure. In this chapter, the topic of
fluid-structure interaction (FSI) in deep underwater blasts will be re-visited for
an elasto-plastic monolithic beam system, developed in Chapter 2, to elucidate
the aforementioned. The analytical predictions will be shown to be in excellent

agreement with results from 3D finite element simulations.

4.2 Coupling of fluid and structure

Consider a rightward-propagating planar wave that travels at a constant speed
cw(=1498 m/s) in a fluid of density p,,(=1000 kg/m?), and impinging normally
on the structural beam system shown schematically in Fig 4.1. It is convenient
to define a spatial coordinate Z in the un-deformed configuration with Z = 0
corresponding to the location of the fluid and structure interface, i.e. Z = z+H/2.

Assuming that the blast wave is exponentially decaying with a peak pressure p,
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Figure 4.1: Schematic of an exponentially decaying wave propagating to the right
towards a clamped elasto-plastic beam system.

and time constant ¢;, then the incident pressure wave at any arbitrary point (of

coordinate Z and x) at the time ¢ may be expressed as (Taylor, 1941)
pi(Z,t) = pee”tZ/ew)/ts, (4.1)

The pulse duration for the incident pressure wave is assumed to be infinitely large,
i.e. ty = oco. If the target structure is rigid and fixed in space, then the reflected
wave would be

pr1(Z,t) = pee”HA/ )/t (4.2)

corresponding to a perfect reflection of the incident wave in the negative Z direc-
tion. Since the beam is not rigid, the impingement of the incident pressure wave
on this interface sets the beam in motion, i.e. the beam accquires a velocity field
W (z,t). Compatibility dictates that the wetted surface of beam and the fluid
particles at its interface possess the same velocity W(x,t), provided cavitation
is absent (everywhere) at the fluid and structure interface. The beam motion

results in a rarefaction wave (travelling in negative Z-direction) of magnitude

pro(Z,x,t) = —puc,W(x, t + Z/cy). (4.3)

It merits comment that the reflection of planar waves off a curved interface would
render the exact formulation of the fluid pressure field too complicated to quantify.
Following Schiffer and Tagarielli (2014), it is assumed here that the reflected
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waves remain planar and travel in the negative Z-direction, without affecting the
pressure and particle velocity fields perpendicular to the incident angle. Thus,
the net water pressure p(Z, x,t) due to the incident and reflected waves is given

by

P(Z,x,t) = pr + pri + pra = ps [e AN g emHAIC) 1

puCoW (2, t+ Z/cy). (4.4)
The interface pressure (at Z = 0) is, therefore,
pt(,t) = p(Z = 0,2, 1) = 2pe” M — pucoW(x,t). (4.5)

Substituting pr(x,t) into Eq. 2.28 and rearranging gives the governing ordinary

differential equations describing the beam motion as follows:

- i k :
Z My + 0. B Pme(z, 1) ¢i(x)dz, i=1,2,..n. (4.6)
= i 0

4.2.1 Limitations of the present FSI model

The tensile term (pge in Eq. 4.3) may, under certain circumstances, cause
the fluid pressure to drop below zero at some point in time within the fluid
domain, giving rise to a cavitation event. Following cavitation, the pressure field
in the fluid is given by a superposition of two breaking fronts, one travelling
towards the structure (positive Z direction) and the other away (negative); this
generates an expanding pool of cavitated liquid (Kennard, 1943). Schiffer et al.
(2012) identified two cavitation types (or régimes) for underwater blast loading
of rigid-plate supported by a linear spring that depends on the fluid conditions
in the layer between the structure and the expanding cavitation zone. Type [
cavitation occurs if a breaking front (travelling in the positive Z direction), arrests
before reaching the fluid-structure interface, reverses its motion and becomes a
closing front. Type II cavitation occurs if the breaking front (travelling in positive
Z direction) reaches the fluid-structure interface and causes cavitation at the

interface. In the present study, Type II cavitation will occur if the condition
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(Schiffer et al., 2012)
pInt(x7 t) =0 (47)

is met. Since Schiffer et al. (2012) showed that the structure might acquire greater
transmitted impulse in Type I than in Type II, the former would be of greater
concern since the objective of this work is to evaluate the limits of structural

performance for a given underwater blast loading.

In a Type I cavitation, several authors (Schiffer et al., 2012; Schiffer and
Tagarielli, 2014, 2015) found that the pressure wave (rarefaction pro and reflected
pr1) emanating from the fluid-structure interface approaches the closing front and
eventually reflects back towards the fluid-structure interface as a positive pressure
pulse. It was noted by Schiffer et al. (2012) that this positive pressure pulse acts
continuously on their rigid plate which reduces to zero after a finite duration. As a
consequence, it must contribute to the impulse transmitted to the structure and in
cases where the mass and stiffness of the structure are high, the maximum trans-
mitted impulse can even exceed twice the incident impulse I; = pgt;. However,
detailed three-dimensional (3D) finite element simulations (to be presented later
in Section 4.4) will show that for elasto-plastic beams deforming in any modes
of deformation, the contribution of the reflection wave (from the closing front)
during Type I cavitation does not significantly affects the structural performance
in terms of the maximum mid-span deflection, maximum momentum, maximum
transmitted impulse, maximum kinetic energy and maximum transmitted energy.
Therefore, it is reasonable to neglect the influence of the reflection wave from the

closing front in the current analytical model.

4.3 Finite element (FE) model

Three-dimensional (3D) FE calculations were performed using the commer-
cially software ABAQUS/ Explicit®. The FE model, shown schematically in Fig
4.2, consists of a water column L, X L x B above the supported beam. Only
one-half of the beam and water column are modelled since reflective symmetry
exists on the plane bounded by + = 0, —B/2 <y < B/2 and —H/2 — L,, <
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Figure 4.2: Schematic of clamped beam subjected to an exponentially decaying
pressure pulse in FE: (a) front view and (b) side view.

z < H/2. The elasto-plastic beam is supported by a modified boundary con-
dition, as described previously in Section 3.2.1. Horizontal displacement wu, for
the left boundary of the water column (u, = 0 at © = —L, —B/2 <y < B/2,
—H/2— L, < z< —H/2) is constrained as does the vertical displacement u, on
the front (v, =0at —L <2 <0,y=B/2, -H/2—- L, <z < —H/2) and back
(uy=0at - L <x<0,y=-B/2, —H/2— L, < z < —H/2) boundary of the
water column - see Fig 4.2. An exponentially decaying pressure pulse, given by
Eq. 4.1, is applied to the top of the water column. Tie constraints are applied
between the wetted edge of the beam and fluid.

The beam modelled in this chapter has dimension of 0.5 m (L) x 0.1 m (H)
x 0.1 m (B). The length of water column L, is sufficient long to ensure the
reflected wave from the top boundary does not reach the structure over the dura-
tion of the calculation (Schiffer and Tagarielli, 2014, 2015). In the present study,
Ly /cwt; = 3 is used to ensure that the water column is semi-infinite. Both the
beam and water column are discretised using the 8-noded solid elements (C3D8R)
with reduced integration and hour-glass control. In order to capture necking lo-

calisation, progressive damage and ductile fracture with acceptable fidelity, twelve
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elements are used through the beam thickness (H). Results of convergence stud-
ies, presented previously in Fig 3.3, has shown this to be sufficient. All C3D8R
elements - used to discretise the water column and beam - are cubic with a size of
0.00833 m; consequently, the nodes of the water and solid meshes are coincident

at the fluid-structure interface.

Details of the material properties and damage criterion of the elasto-plastic
beam were given previously in Section 3.2.2. The water is modelled as an acoustic
medium with density p, = 1000 kg/m?, wave speed c¢,, = 1498 m/s and bulk
modulus F,, = 2.244 GPa. It is assumed to be linear elastic under compression,
with zero tensile strength and zero shear modulus. A Mie-Gruneisen equation
of state with a linear Hugoniot relation is used to model the linear elastic ratio

between applied pressure p(Z,t) and volumetric strain e, given by

—EwEV = —C?Upwﬁv, ey < 0
p(Z,t) = : (4.8)
O, €y Z 0

Note that when e, > 0, the pressure becomes zero and this leads to an onset of
cavitation (Liang et al., 2007; McShane et al., 2007, 2010).

4.4 Comparison of analytical and FE predictions

To assess the fidelity of the analytical model, predictions for the average inter-
face pressure, mid-span deflection, impulse and energy transfer will be compared
to those from FE. The temporal history of the transmitted impulse per unit area
I™(t), momentum per unit area I™(t), transmitted energy per unit area E7(t)

and kinetic energy per unit area EX(t) of the beam are defined, respectively, as

) = /0 (D)L, IK(t):% /0 W(x, t)dz,

_ L
" BL

pH

BT (1) /0 (e, OW (x,1)de, - B () = 2 /0 W2z, t)dr. (4.9)
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Note that the average interface pressure is given by

1

Pt (t) = Z/o Pt (2, t)d. (4.10)

Time t is measured from the instant when the incident pressure wave arrives at
the fluid and structure interface. The impulse and energy components in Eq. 4.9
are normalised by the incident impulse per unit area I; and incident energy per

unit area F; given by (Taylor, 1941)
I =pst; and  E; = p’ti/ puCe. (4.11)

Unless otherwise specified, a time constant ¢; = 2 ms has been used for all calcu-

lations in this chapter.

Figures 4.3a, 4.3b and 4.3c compare the analytical and FE predictions for
mode I, IT and IIT deformations, respectively. Pressure contour plots predicted
by FE (to be presented later in Fig 4.4) confirm that a Type I cavitation event
(i.e. the breaking front travelling in the positive Z-direction, always arrests be-
fore it reaches the fluid-structure interface and inverts its motion as a closing
front) occurs in all the cases shown in Fig 4.3. Cavitation occurs at t./t; = 0.5,
te/t; = 0.47 and t./t; = 0.45 in Figs 4.3a, 4.3b and 4.3c, respectively. For beams
deforming in mode I, Fig 4.3a shows that its non-dimensional average interface
pressure pry/ps initially decreases before attaining a peak value at time ¢ = t3
(when the beam reaches its maximum mid-span deflection); this is followed by a
monotonic reduction in interface pressure. Beyond ¢ > t3, the FE model predicts
that prg/ps remains positive until ¢/t; = 5.9 - this is in agreement with Schiffer
et al. (2012). The analytical model under-predicts the maximum transmitted
impulse in mode I by up to 13.4% since it neglects the additional loading from
the reflected wave arising from the closing front. Complete detachment occurs
shortly after cavitation in Figs 4.3b and 4.3c¢ which explains why it is acceptable
to neglect the effects of the reflected wave from the closing front in the subse-
quent structural response. In general, the predicted interface pressure, mid-span
deflection, impulse and energy exchange are in good agreement with those from

FE for all three modes of deformation.
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Figure 4.3: Analytical and FE prediction of the non-dimensional interface pres-
sure, mid-span deflection, impulse transfer and energy exchange for 0.5 m (L) x
0.1 m (H) x 0.1 m (B) beam deforming in different modes subjected to three
different exponentially decaying pressure pulses of identical time constant ¢; = 2
ms and a peak pressure of (a) p; = 50 MPa, (b) ps = 100 MPa and (c) ps = 120
MPa. — current analytical predictions; -.- current FE predictions. t. and t3 de-
note the time when cavitation first occurs and when the beam reaches maximum
deflection, respectively.

The impulse and energy transferred to the beam, plotted in Fig 4.3, can be
summarised as follows: (1) In mode I, the average interface pressure beyond
t > t3 does not further contribute to the transmitted energy ET. This is because
the beam now responds in an elastic manner with deflection which decreases

slightly before reaching a plateau; (2) In modes II and III, both the transmitted
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impulse /7 and transmitted energy E7 reach a maximum at t = t3 following
complete detachment from the supports; (3) The maximum momentum I and
kinetic energy E¥ are reached before the onset of cavitation at t = t. for all three
modes, this agrees with analytical predictions by Schiffer et al. (2012); (4) The
maximum transmitted impulse is significantly higher in mode I than in modes
IT and IIT because a considerable amount of impulse is transmitted to the beam
during elastic rebound; and, (5) The maximum transmitted impulse and energy

are higher in mode II than III since t3 for mode III is smaller than mode II.

t/t=0.00 . 1/t=0.50 1/t=0.90 1/t=1.50 /t=5.80

S, Pressure

(Avg: 75%)
+5.000e+07
+4.583e+07
+4.167e+07
+3.750e+07
+3.333e+07
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+4.167e+06
+0.000e+06

(a) Mode I
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(b) Mode II
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Figure 4.4: FE predictions of fluid pressure field at five selected times correspond-
ing to the cases shown in Figs 4.3a, 4.3b and 4.3c, respectively. Black denotes
cavitated water.

To gain an insight into the cavitation process, pressure contour maps predicted

by FE are shown in Fig 4.4 for five selected time frames (corresponding to the
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elasto-plastic beam and loading parameters of Fig 4.3). Cavitation first occurs at
te/t; = 0.50 (mode 1), t./t; = 0.47 (mode II) and ¢./t; = 0.45 (mode III). This is
caused by the tensile wave (Eq. 4.3) which is generated as a consequence of the
rapid motion of the beam and is in line with experimental observations made by
Schiffer and Tagarielli (2015) for circular plates. All the cases shown in Fig 4.4
correspond to Type I cavitation since the breaking front arrests and inverts its

motion as a closing front before reaching the fluid and structure interface.
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Figure 4.5: Variations of the non-dimensional mid-span deflection Wy/H with
non-dimensional impulse 7*. I, II and III indicate the three distinct damage
modes predicted by the current analytical model. — current analytical model; [
current FE predictions.

Predictions by FE and the current analytical model are now compared for a
range of incident impulses, with a focus on the maximum mid-span deflection,
transmitted impulse and energy. The maximum non-dimensional transmitted
impulse I, momentum /%, transmitted energy ET and kinetic energy E¥ of the

elasto-plastic beam are defined as follows:
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I = max [I7(t/t;)/1), I = max [I%(t/t;)/1],

0<t/t;<oco 0<t/t;<oco

ET = Ogrtr/lg)éoo[ET(t/ti) /E;], E¥ = OS%?OO[EK(t/ti) JE;]. (4.12)

Figure 4.5 shows an excellent agreement for the maximum mid-span deflec-
tion Wy/H, at either the point of cessation of motion or failure (if complete
detachment from the supports had occurred), for all three modes. Note that
the non-dimensional impulse [* is given by Eq. 3.3. Both the current FE and
analytical models correctly predict a reduction in Wy/H with increasing I* in
modes II and III - this trend is also observed in Fig 3.7. Figure 4.6 compares the
non-dimensional impulse (I7 and I¥) and energy (E7 and EX) terms with the
corresponding FE predictions. In general, the analytical predictions agree well
with its FE counterpart despite the under-prediction of I - by up to 13.4% - in
mode I. Again, this discrepancy arises because the analytical model neglects the
additional impulse transmitted by the reflection wave from the closing front. Key
features of the results shown in Fig 4.6 are as follows: (1) There is a sharp de-
crease in I following a transition from mode I—II because a significant portion
of impulse is transmitted to the beam during elastic rebound in mode I; (2) Both
the maximum transmitted impulse /7 and energy E”7 reduce monotonically with
I* in modes II and III since the time it takes for complete detachment to occur
reduces with 7*; and (3) The maximum momentum I* and kinetic energy EX of

the beam are relatively insensitive to I*.

4.5 Effects of FSI on ‘elasto-plastic’ and ‘rigid

free-standing’ beams
In this section, the analytical model is employed to investigate the effects
of FSI for a Type I cavitation event. Parametric studies were performed to

evaluate the sensitivity of the maximum impulse (I7) and energy (E7T) transfer
to aspect ratio L/H and B, (£ pwcwti/pH - Taylor’s FSI index). Results from
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Figure 4.6: Variations of the non-dimensional maximum impulse and energy ac-
quired with non-dimensional impulse I*. I, IT and III indicate the three distinct

damage modes predicted by the current analytical model. — current analytical
model; [ and O current FE predictions.

rigid free-standing beams of an equivalent mass per unit area are also included for

comparison where the maximum transmitted impulse and energy - superscript F'
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denotes free-standing - are, respectively, given by (Taylor, 1941)

IF = 26;(%/611;—1) (4.13)
and .

_ 1— e Pu

EF = 2(5;). (4.14)

In the parametric studies to be presented, it is worth noting the following: (1)
the non-dimensional maximum transmitted impulse /¥ and energy E¥ of rigid
free-standing beams are independent of peak incident pressure p, and aspect
ratio L/ H but depends only on (,; (2) both the ‘elasto-plastic’ and ‘rigid, free-
standing’ beams have identical mass per unit area given by f3,,; and, (3) cavitation
always occurs at the fluid and structure interface for free-standing beams at
time ¢, = t;In(B,)/(Bw — 1) whilst it does not for elasto-plastic beams (Type I
cavitation); hence, the fluid-structure interaction time for an elasto-plastic beam
is always considerably longer compared to a free-standing one of the same mass

per unit area.

4.5.1 Mode I

The solid blue lines in Figs 4.7a and 4.8a denote the non-dimensional max-
imum transmitted impulse (I7 and I¥) and the broken black lines denote the
non-dimensional maximum transmitted energy (E7 and EF). A peak incident
overpressure of p, = 30 MPa is used throughout so that the elasto-plastic beams
always deform in mode 1. Figure 4.7a plots the variation of the non-dimensional
maximum impulse and energy terms as a function of L/H (for a constant (3, =
21.7). For elasto-plastic beams, I7 reduces monotonically with L/H while ET
does not. The reason is evident by comparing two beams of different L/H, de-
noted by (D and @ in Fig 4.7b. The beam with a higher L/H, i.e. beam (2),
has less average interface pressure pr,/ps but higher mid-span deflection Wjg,
leading to a smaller /7 and non-monotonic decreasing E7. Figure 4.8a plots the
maximum non-dimensional impulse and energy to FSI index ,, with a constant
L/H = 10. It shows that [T increases monotonically with increasing 3, (less

mass per unit area) but E7 does not. Again, the reason is that the average
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Figure 4.7: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to I7 and IF) and energy (—.— corresponds to E7 and E') for elasto-
plastic beams of identical cross-section, H = B = 0.05 (8, = 21.7), deforming
in mode I; and (b) Comparison of the normalised temporal average interface
pressure pry(t)/ps and temporal mid-span deflection Wg(t) for beams (D and (2)
in Fig 4.7a. Beam D is 0.3 m (L) x 0.05 m (H) x 0.05m (B); beam ) is 0.5 m
(L) x 0.05m (H) x 0.05 m (B).
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Figure 4.8: (a) Analytical prediction of maximum impulse (— corresponds to
IT and I") and energy (—.— corresponds to E7 and ET') for elasto-plastic beams
with identical aspect ratio L/H = 10 deforming in mode I; and (b) Comparison of
analytical normalised temporal average interface pressure pr,(t)/ps and temporal
mid-span deflection Wg(t) for beams 2) and @) in Fig 4.8a. Beam () is 0.5 m
(L) x 0.05 m (H) x 0.05 m (B) (8, = 21.7); beam 3 is 0.25 m (L) x 0.025 m
(H)x 0.025 m (B) (B, = 43.4).
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interface pressure pry/ps is higher but the mid-span deflection Wp is lower for
beam with a higher 3, (less mass per unit area) - compare beam (3 to @ in
Fig 4.8b. It is worth noting that in both Figs 4.7a and 4.8a, the elasto-plastic
beams have significantly higher non-dimensional maximum transmitted impulse
and energy compared to free-standing beams because, as alluded to earlier, the

fluid-structure interaction time for elasto-plastic beams are significantly longer.

4.5.2 Mode 11

Variations of the maximum non-dimensional impulse and energy terms against
L/H and f, for a peak incident overpressure of p, = 100 MPa are shown in
Figs 4.9 and 4.10 respectively. Note that all the elasto-plastic beams deform in
mode II. Figure 4.9a plots the maximum non-dimensional impulse and energy
terms, against the aspect ratio L/H with 3, = 108.4. Both I” and E7 do not
reduce monotonically with L/H. This is because as L/H increases - comparing
@ to @ in Fig 4.9b - 2 has a lower average interface pressure pry(t)/ps and,
consequently, takes longer to reach its maximum mid-span deflection and for

complete detachment to occur.

Figure 4.10a shows the effect of mass per unit area, or (,, on the non-
dimensional impulse and energy terms for a fixed aspect ratio L/H = 16. It
shows that both I” and E” reduce monotonically with 3, (or less mass per unit
area). As opposed to Fig 4.9 increasing f3,, - compare (2) and (@) in Fig 4.9 - leads
to a reduction in the average interface pressure pry(t)/ps and a shorter time to
reach maximum mid-span beam deflection and for complete detachment to oc-
cur. Although non-dimensional maximum transmitted impulse and energy for
elasto-plastic beams in mode II are significantly less compared to those in mode
I (see Fig 4.6 for an example), they are still considerably greater than those of
free-standing beams, i.e. I7 > I and ET > E¥ as seen in both Figs 4.9 and
4.10.
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Figure 4.9: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to I and IF') and energy (—.— corresponds to £ and E) dissipation
for elasto-plasitc beams in mode I with same beam cross-section, H = B = 0.01
m (3, = 108.4) and (b) Comparison of analytical normalised temporal average
interface pressure pr(t)/ps and temporal mid-span deflection Wg(t) for beam
@D and @ in Fig 4.9a. Beam (D has 0.10 m (L) x 0.0l m (H) x 0.01 m (B)
(Bw = 108.4); beam @ has 0.16 m (L) x 0.01 m (H) x 0.01 m (B) (B, = 108.4).
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Figure 4.10: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to I and IF) and energy (—.— corresponds to £ and EF) dissipa-
tion for elasto-plastic beams in mode II with the same aspect ratio L/H = 16;
and (b) Comparison of analytical normalised temporal average interface pressure
Pmt(t)/ps and temporal mid-span deflection Wi(t) for beam @) and (@ in Fig
4.9a. Beam 2 is 0.16 m (L) x 0.01 m (H) x 0.01 m (B) (8, = 108.4); and beam
®is 0.32m (L) x 0.02m (H) x 0.02m (B) (8, = 54.2).
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Figure 4.11: Analytical predictions of the non-dimensional maximum impulse (—
corresponds to 7 and I'") and energy (—.— corresponds to ET and ET') dissipation
for two sets of elasto-plastic beams deforming in mode III: (a) of the same cross-
section, H = B = 0.01 m (8, = 108.4) and (b) the same aspect ratio, L/H = 16.
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4.5.3 Mode III

Figure 4.11 plots the non-dimensional maximum impulse and energy for beams
deforming in mode III (p, = 150 MPa). Note that the ratio of the plastic work
absorbed through shearing deformation to the total plastic work done has reached
the critical ratio of 5. = 0.45 in all cases. The results in Fig 4.11 are broadly
similar to Figs 4.9a and 4.10a, despite a slight decrease in I and E7 due to the
fact that the time it takes for complete detachment to occur is less in mode III
than in mode II - compare Figs 4.10a and 4.11b for an example. Notwithstanding,
the effects of L/H and f3,, on maximum impulse and energy transfer in mode 11
are broadly the same as that in Figs 4.9a and 4.10a for mode II. It is evident
from both figures that far greater impulse and energy were transmitted to the
elasto-plastic beams than the free-standing counterparts; this is also the case for
modes I and II shown in Figs 4.7a, 4.8a, 4.9a and 4.10a.

4.6 Conclusions

The dynamic response of elasto-plastic beam subjected to underwater blast
is studied. The analytical model from Chapter 2 is used to predict beam de-
formation, interface pressure history, impulse and energy transfer in a Type [
cavitation event where they were found to be in excellent agreement with 3D FE
simulations. It was found that increasing non-dimensional impulse I* leads to
the following: (1) a decrease in the maximum mid-span deflection for modes II
and III; (2) a sharp reduction in the maximum transmitted impulse following a
transition from mode I—II; and (3) monotonic reduction in both the maximum

transmitted impulse and energy in modes II and III.

The effects of aspect ratio L/ H and FSI index (,, were investigated for elasto-
plastic beams deforming in different modes. Key findings can be summarised as
follows: (1) In mode I, an increase in aspect ratio L/H or decrease in FSI index
B always leads to a reduction in the maximum impulse transmitted; and (2)
In modes II and III, increasing FSI index 3, always leads to less maximum

transmitted impulse.
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The effects of boundary on FSI were also studied for the elasto-plastic where
it was shown, as to be expected, that a significantly higher impulse and energy
are transmitted to the fully clamped deformable beams, deforming in all three

modes, as opposed to the free-standing counterparts.
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Chapter 5

Fluid-structure interaction in air
blasts

5.1 Introduction

Kambouchev et al. (2006, 2007) extended Taylor’s linear theory of fluid-
structure interaction (FSI) in water to intense planar air blasts. Formulae for
the momentum transfer to a freestanding plate were developed and calibrated
by accurate numerical simulations. They found that transmitted impulse can be
substantially reduced due to FSI effect for light free-standing plates. This ben-
eficial influence of FSI in potentially mitigating the effect of blast has recently
been explored as a basis for the design of sandwich structures with increased blast
resistance: see Dharmasena et al. (2010, 2011), Ebrahimi and Vaziri (2013), Feng
et al. (2007), Main and Gazonas (2008), Vaziri and Hutchinson (2007), Vaziri
et al. (2007), Wadley et al. (2010, 2013) and Zhu et al. (2010). However, the ef-
fect of boundary (support) condition is omitted in their analysis, and as a result,
the FSI effect is only significant at large displacement which limits its practical

use.

Several studies attempted to investigate the effects of FSI for a fully clamped
structures. For example, Subramaniam et al. (2009) investigated the blast pres-
sure wave interaction with an elastic structure using a numerical approach, which

considers FSI within an Arbitrary Lagrange Euler (ALE) framework. They found
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that the general assumption of rigid reflection (ignoring FSI effect) leads to a
significant overestimation of displacements. And the error in the maximum dis-
placement predicted by ignoring FSI effect is directly proportional to the ratio
of the structure velocity to the speed of shock wave. However, the findings by

Subramaniam et al. (2009) apply only to elastic structures.

In this chapter, the FSI between intense air blasts and an elasto-plastic mono-
lithic beam system (developed in Chapter 2), will be investigated. The objective
is to elucidate how large deformation, the fixing conditions at the supports and
structural failure affect previously-known results; in particular, their implications

on the energy and momentum transfer from the blast wave.

5.2 Formulation of the numerical approach

. d .

I 0 1

‘Compressed
container’
of Air

Figure 5.1: Schematic of FSI model in air.

Consider an ‘air-column’ of two parts, viz. ‘compressed container’ of adiabatic
air and quiescent ambient air, and an elasto-plastic beam located at its right end
(see Fig 5.1). The problem of interest concerns the dynamic response of the elasto-
plastic beam subjected to the shock wave traveling in this compressible medium.
At time t = 0 the ‘compressed container’ of air in the interval 0 < Z < d; is

prescribed with an initial velocity distribution of
v(Z) = voe~ 4/ %) (5.1)

where Z is the Lagrangian coordinate with Z = 0 denotes fluid-structure inter-
face, dy is the length of the compressed air container and vy is the peak velocity.

It follows immediately that the compressed air has a density distribution p(2)
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and a finite initial energy per unit area AEj, given by Hutchinson (2009)

Ya/(Va—1)
z Z)1e 1 v(Z
D ):[p( )]v I P Pt VEIEAS -
oo S (5.2)
Pado Yo — 1 09, 9\ 7a/(va=1) Yo — 1 Uy o\ 1/(a=1)
st - 8 (1 ) () )
D1 T3 (Ca) L (ca)

where 7,(= 1.4) is the ratio of specific heats, p,(= 104761 Pa) is the pressure,
pa(= 1.225 kg/m?) is the air density, c,(= 346 m/s) is speed of sound in air and

the subscript ‘a’ denotes ambient conditions.

The equations governing the fluid motion (both compressed container of air
and ambient air) are expressed in the Lagrangian framework and consist of the

following;:

1. The kinematic relation for the material velocity v and acceleration a are

BT and a:E

(5.3)

where Eulerian coordinate x., velocity v and acceleration a of a fluid particle

are functions of Lagrangian coordinate Z and time t.

2. The momentum conservation equation is given by

Pol = _a_Z (54)

where py is the initial density of the particle with Lagrangian coordinate Z.

3. Adding a viscous dissipation term O, the equation of state is modified as
(Neumann and Richtmyer, 1950)

p=(Ya— 1)p0% -0 (5.5)

where e is the internal energy, F' = 0z./0Z is the deformation gradient and
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the viscous term O is required to stabilise the numerical scheme

—pa(K1dA)? = pac Ko |d|A,  d <0
o_ )" (' 1dA)? — paca Ko |d| (5.6)
0, d>0

where d = (1/F)0F/dt is the rate of deformation, K; and K, are artificial
viscosity coefficients and A is width of the shock wave which is of the order

of grid spacing for numerical stability.

4. The energy conservation equation is given by

% = |(1—7.)e+ [%] (5.7)

where p. is the current density of the air particle.

The staggered method is used to account for the fluid-structure coupling in
time domain (Blom, 1998; Blom and Leyland, 1997). The interaction between
the shock wave and the elasto-plastic beam is accounted for by enforcing the con-
gruence conditions of velocity and displacement at the fluid-structure interface,
i.e. the interface velocity and displacement are equal for both the fluid and the
structure. Following Subramaniam et al. (2009) and Teich and Gebbeken (2013),
it is assumed here that displacement at the mid-span of the beam represents that
of the structural beam system in the one-dimensional air domain. Starting at
a current time step, when the state of the fluid and structure are known, the
fluid-structure system is integrated in time to obtain the solutions at the next

time step as:

1. The current displacement at the fluid-structure interface is implemented in
the fluid solver (Eqgs. 5.3, 5.4, 5.5 and 5.7) to calculate interface overpressure

pmt for the next time step.

2. The mid-span displacement of the beam at the next time step is updated

by solving the equation of motion of the beam under interface overpressure

95



Pt (t) = p(Z = d + dp,t) — p, obtained from step 1, given as
= Y g .
Z M;w; + 0. Bpii(t) | ¢i(x)dz, i=1,2,.. n. (5.8)
i=1 i 0

Governing equations (Eqs. 5.3, 5.4, 5.5 and 5.7) with initial condition (Egs.
5.1 and 5.2) and artificial viscosity (Eq. 5.6) are solved using the widely used von
Neumann-Richtmyer algorithm which is based on a finite difference discretisation
of the governing equations (Neumann and Richtmyer, 1950). The details of the

finite difference method are summarised in Appendix A.

5.3 Verification of the numerical method

The case of the normal reflection of uniform shocks on a fixed boundary pro-
vides a good basis for verification of the proposed numerical method. One of
the basic implications of gas compressibility is the non-linear dependence of the
pressure reflected from a fixed rigid wall on the magnitude of the incident shock
pressure. The peak reflected overpressure can be expressed in the form of (An-
derson, 2001)

pr = CRrps (5.9)
where the reflected coefficient Cr is given by the well-known Rankine-Hugoniot
relationship

8ps + 14p,
Cr = ops + 19pa (5.10)
Ps + Tpa

which for small ps/p,, Cr ~ 2; while, for ps/p, > 1, Cr — 8.

The incident p;(t) and reflected pr(t) overpressure-time history following wave
interaction with a reflective, clamped, rigid wall at different standoff are compared
in Figs 5.2a and 5.2b for two different blast intensities. It can be seen that the non-
linear compressibility of air causes the peak of the evolving pulse to decrease, with
a corresponding increase in pulse duration, with distance travelled. Figure 5.3
compares the numerical normalised peak reflected overpressure p,/p; (extracted
from Figs 5.2a and 5.2b at different standoff distance d/dy) with the values of the
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Figure 5.2: Incident p;(t) and reflected pgr(t) overpressure-time histories upon
interaction with a reflective, clamped, rigid wall at different standoff: (a) ‘weak’
shock wave with vy/c, = 1.7, dy = 0.5 m ; (b) ‘strong’ shock wave with vy/c, =
5.1, dy = 0.05 m.

reflected coefficients C'r given by Eq. 5.10. As it can be observed in the plot, the

numerical results are in excellent agreement with the Rankine-Hugoniot theory

for a wide range of shock intensities.
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Figure 5.3: Reflected coefficient Ci for normal reflection of uniform shocks on a
fixed boundary for both ‘weak’ and ‘strong’ shock wave in Fig 5.2.

5.4 Dynamic response with FSI

This section studies the dynamic response of elasto-plastic beams subjected
to air shock waves in different modes of deformation. The definition of the time
history of transmitted impulse per unit area I7(¢) and transmitted energy per
unit area E7 () of the beam are given previously in Eq. 4.9. They are normalised
by the incident impulse I; and energy E; respectively, given by (Kambouchev et
al., 2007)

tq
I; :/ psp(t)dt = pst;  and (5.11)
0

E;, = pgti/paca (5.12)

where ¢; is the decay constant of the incident wave and t; is the pulse duration.
Note that time ¢ is defined at the time when the pressure wave is arrived at the

interface Z = 0.

Figure 5.4 shows the dynamic response of an elasto-plastic beam of 0.17 m (L)
x 0.0l m (H) x 0.01 m (B) subjected to an intense shock wave in air. The shock
wave is created with the following parameters so that the beam develop mode I
deformation: dy = 0.05 m, d/dy = 79 and vg/c,=5.1. The dynamic response of
the beam without considering FSI effect was also included for comparison, which

is obtained by prescribing the reflected overpressure history - from a fixed rigid
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Figure 5.4: Dynamic response of elasto-plastic beams of 0.17 m (L) x 0.01 m
(H) x 0.01 m (B) subjected to air shock wave (with dy = 0.05 m, d/dy = 63
and vy/c, = 5.1) during mode I deformation. - - denotes without FSI; — denotes

with FSI.
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Figure 5.5: Dynamic response of elasto-plastic beams of 0.2 m (L) x 0.01 m (H)

x 0.01 m (B) subjected to air shock wave (with dy =

0.05 m, d/dy = 31 and

vo/cq = 5.1) during mode II deformation. - - denotes without FSI; — denotes

with FSI.
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Figure 5.6: Dynamic response of elasto-plastic beams of 0.16 m (L) x 0.01 m
(H) x 0.01 m (B) subjected to air shock wave (with dy = 0.05 m, d/dy = 31 and
vo/ca = 5.1) during mode III deformation. - - denotes without FSI; — denotes
with FSIL.
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surface - to the beam. Figure 5.4a shows that the interface overpressure p (%)
is smaller compared to the reflected overpressure history pg(t) during ¢t < t3 (i.e.
before the beam reaches maximum mid-span deflection); however beyond ¢ > t3,
there is no significant differences between the two pressure history (with and
without considering FSI). The deficiency during t < ¢3 is due to the alleviation of
interface overpressure by the rapid motion of the elasto-plastic beam. As a result
of this FSI effect, the prediction of maximum mid-span deflection, maximum
transmitted impulse and maximum transmitted energy are less compared to those

without considering FSI, as seen in Figs 5.4b, 5.4c¢ and 5.4d.

Figures 5.5 and 5.6 show the dynamic response of elasto-plastic beam during
mode IT and III deformation respectively. In both figures, the interface overpres-
sure pry(t) is lower compared to the reflected overpressure history pgr(t). Again,
the deficiency is a result of the relieving of interface overpressure by the beam
motion prior to failure. This leads to a over-prediction of the temporal mid-span
deflection Wi (t)/H, transmitted impulse I7(t)/I; and energy E7(t)/E; compared
to those with FSI effect; these observations are in line with Fig 5.4. However, it
is surprising to note that the peak value of the aforementioned predictions when
considering FSI effect are similar to those without FSI effect. This is because
when considering FSI effect, the time for complete detachment to occur is higher,

which results in a longer loading duration compared to that ignoring FSI effect.

5.5 Importance of FSI

From the results in the previous section a relevant question which needs to be
addressed is: for an incident blast pressure wave, when does FSI effect become
important and to what extent 7 Results in the last section show that FSI effect is
evident to reduce maximum mid-span deflection, maximum transmitted impulse
and maximum transmitted energy during mode I deformation, but not significant
during mode IT and IIT deformation. Therefore, the numerical model is now
used to study the aforementioned problem only in mode I deformation. The
difference between predictions with and without FSI effect, e.g. maximum mid-

span deflection, is often viewed as an indicator of the error in predicted structural
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Figure 5.7: Variation of displacement ratio W and FSI index £, in mode I.

response on ignoring FSI (Subramaniam et al., 2009). Here, it is defined the
displacement ratio as W = WFS/WNO FSL {5 measure the error (i.e. 1 — W) of
ignoring FSI. The reflected overpressure history pg(t), obtained from a separate

simulation, is prescribed to the elasto-plastic beams to obtain WO 5L

Figures 5.8, 5.9 and 5.7 show the variation of displacement ratio W as a
function of velocity ratio vpax/Us, time ratio t3/t; and FSI index by Kambouchev
et al. (2006), s = psUst;/pH (given previously in Eq. 1.29), respectively. The
shock wave is generated by the following parameters so that all the beams develop
mode I deformation: vg/c, = 5.6, dy = 0.05 m and d/dy = 79. Note that the
extreme cases of vpax/Us = 0 and 5 = 0 refer to the FSI with an elasto-plastic
beam of infinite weight where the error of ignoring FSI is zero (Subramaniam et
al., 2009), while the extreme case of t3/t; = oo refers to impulsive loading where
F'SI effect is negligible.

Figure 5.8 shows that with increasing velocity ratio vpma.x/Us, displacement
ratio W reduces. The implication is that the margin by which the displacement
obtained by ignoring the FSI effect would over predict the actual displacement
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Figure 5.8: Variation of displacement ratio W and velocity ratio vmay /Us in mode
I.

increases as the maximum mid-span velocity increases relative to the velocity of
the shock front. Figure 5.9 shows that as the time when the maximum mid-
span deflection is reached increases relative to the duration of the incident wave
(or becomes more ‘non-impulsive’), the error in predicting structural response
increases when FSI is not considered. Figure 5.7 shows that the error of ignoring
FSI (or 1 — W) increases with increasing FSI index 3, - this is consistent with the
findings based on rigid, free-standing structures where FSI effect on mitigating
the effect of the blast can be achieved by reducing the mass per unit area of the

structure (Kambouchev et al., 2006, 2007).
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5.6 Effects of FSI on ‘elasto-plastic’ and ‘rigid

free-standing’ beams

In this section, the numerical model is employed to investigate the effects of
FSI on the elasto-plastic beam system at different modes of deformation. Para-
metric studies were performed to evaluate the sensitivity of the maximum impulse
(I") and energy (ET) transfer to aspect ratio L/H and 3, (£ p,Ust;/pH - Kam-
bouchev’s FSI index). IT and ET are given in Eq. 4.12. Results from rigid
free-standing beams of an equivalent mass per unit area are also included for
comparison where the maximum transmitted impulse and energy - superscript F'

denotes free-standing - are, respectively, given by (Kambouchev et al, 2007)
IF = A UHPe) gB:/(1=52) (5.13)

and )
(s (L—e )’

EF — )\ Bs
R 23,

(5.14)
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where non-dimensional parameter Ap is given by Eq. 1.33.

5.6.1 Model

The solid red lines in Figs 5.10a and 5.10b denote the non-dimensional max-
imum transmitted impulse (I7 and I¥) and the broken black lines denote the
non-dimensional maximum transmitted energy (E7 and E¥). The following ini-
tial conditions are used throughout so that all the elasto-plastic beams develop
mode I deformation: dy = 0.05 m, d/dy = 79 and vy/c,=5.1. Figures 5.10a
and 5.10b present the variation of the maximum non-dimensional impulse and
energy terms, as a function of L/H (for a constant 55 = 0.084) and as a function
of B, (for a constant L/H = 17), respectively. It can be seen that IT reduces
monotonically with increasing L/H or 5. The reason is that increasing L/H or
Bs leads to higher motion of the elasto-plastic beam, resulting in greater allevi-
ation of interface overpressure. In both Figs 5.10a and 5.10b, more impulse are
transmitted to the elasto-plastic beams, i.e. I7 > I’ because the alleviation of
interface overpressure is greater for free-standing beams due to higher velocity.
However, free-standing beams have significantly higher maximum transmitted en-
ergy, i.e. EY > ET: because the free-standing beams have significantly higher

displacements.

5.6.2 Mode II and III1

Variations of maximum non-dimensional impulse and energy terms against
L/H and f; for beams (with dy = 0.05 m, d/dy = 31 and vy/c,=5.1) are shown in
Figs 5.11a and 5.11b respectively, where the elasto-plastic beams develop mode II,
and even mode I1I deformation. Note that in mode III the ratio of the plastic work
absorbed through shearing deformation to the total plastic work done reaches the
critical ratio of 5. = 0.45. It is evident that mode III tends to occur for elasto-
plastic beams with low L/H and high ;. This is because decreasing L/H or
increasing (3, leads to a smaller mid-span deflection, which, in turn, results in a
smaller proportion of plastic work absorbed through membrane deformation to

the total plastic work done. Therefore the plastic work absorbed through shearing
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Figure 5.10: Numerical prediction of non-dimensional maximum impulse (— cor-
responds to I7 and I') and energy (—.— corresponds to ET and E*) dissipation
for two sets of beams: (a) same beam cross-section, H = B = 0.05 m (55 = 0.084)

and (b) same aspect ratio, L/H = 17.

deformation to the total plastic work done [ is more significant, since plastic work

absorbed through bending is negligible in mode III (see Fig 3.9).
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Figure 5.11: Numerical prediction of non-dimensional maximum impulse (— cor-
responds to I7 and IF) and energy (—.— corresponds to ET and ET') dissipation
for two sets of beams: (a) same beam cross-section, H = B = 0.01 m (55 = 0.189)
and (b) same aspect ratio, L/H = 20.

It can be seen in Figs 5.11a and 5.11b that I drops with increasing L/H or

Bs, because the time for complete detachment to occur is shorter for beams with
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higher L/H or Ss. In both Figs 5.11a and 5.11b, all the elasto-plastic beams in
mode IT and IIT have greater maximum transmitted impulse and less maximum
transmitted energy compared to free-standing beams, i.e. I > I and ET < EF,
apart from a range of 3, in mode III where I7 < IF - this is because complete
detachment for elasto-plastic beams occur even earlier than interface overpressure

for free-standing beams drop to zero.

5.7 Comparison between structural performance

in underwater explosion and in air blast
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Figure 5.12: Predictions of temporal interface pressure and mid-span deflection
of elasto-plastic beam subjected to a shock wave in air and water. The results
for air blast were shown previously in Figs 5.4 and 5.5.

Which medium, air or water, is more effective in mitigating the effects of blast

loading for elasto-plastic structure is an important issue. A comparison of struc-
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tural performance under a blast wave of same intensity (i.e. same peak incident
overpressure p, and decay constant ¢;) in underwater explosion and air blast is
made to elucidate the aforementioned. Figure 5.12 compares the predictions of
interface pressure and mid-span deflection of an elasto-plastic beam subjected to
an incident shock wave in both air and water. The incident overpressure in Figs
5.12a and 5.12b can be characterised by ps = 1.00 MPa and ¢; = 1.14 ms, and
ps = 1.55 MPa and ¢; = 0.74 ms respectively. It can be seen in both figures that:
(1) the peak interface overpressure in air is significantly higher than that in water
which is due to the non-linear compressibility effect of air; and (2) the interface
pressure pr(t)/p, in water drops more dramatically than that in air, as a result
of greater alleviation of interface pressure due to the significantly higher bulk
modulus of water. Both contribute to the significantly less mid-span deflection
in water compared that in air, i.e the elasto-plastic beam can develop mode I
and even mode II deformation in air, but only elastic deformation in water. This
demonstrates the superiority of water over air to mitigate the effect of blast wave

on elasto-plastic structures when subjected to the same incident wave.

However, it is notable that the effect of standoff distance is omitted from the
analysis above purposely, in an attempt to highlight the difference of two mediums
on the effect of mitigation of blast effect due to FSI. Clearly, increasing standoff
distance leads to attenuation of peak overpressure and longer pulse duration
(see Figs 5.2a and 5.2b for examples) in compressible medium (air), whereas
the shock wave travels without losing either peak overpressure, pulse duration,
or pulse shape in incompressible medium (water) - this is exactly the case when
detonating the same explosion in both mediums. In such case, the incident wave
imparted on the structure will be different (unlike the analysis above) in the two
mediums, i.e. the peak overpressure is significantly higher and pulse duration is
less in underwater explosion than those in air blasts. As a result, the structure
might be more vulnerable in underwater explosion - than in air blast - despite its
superior capacity of mitigating blast effect (as seen in Figs 5.12a and 5.12b); this

has also been noted by Xue and Hutchinson (2004) for sandwich structures.
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5.8 Conclusion

The dynamic response of elasto-plastic beam subjected to intense air blast
has been analysed. Numerical model has been developed to predict mid-span
displacement, interface overpressure history, impulse and energy transfer during
FSI at all modes of deformation. It was found that the over-prediction in the
structural response when ignoring FSI increases as a result of the following: (1) a
higher ratio of the maximum mid-span velocity vn.x relative to the shock speed
Us - in line with Subramaniam et al. (2009); (2) a lower ratio of the time when
the maximum mid-span deflection is reached t3 relative to the pulse duration tg4;

and (3) reducing mass per unit area of the beam.

The effects of aspect ratio L/H and FSI index f3; were investigated for elasto-
plastic beams deforming in different modes. Key findings can be summarised as
follows: (1) during mode I deformation, increasing L/H or f3; lead to maximum
less transmitted impulse; and (2) during mode IT and III deformation, an increase

of L/H or B results in a reduction in maximum transmitted impulse.

The effects of boundary on FSI were also studied for the elasto-plastic. It
was found that the elasto-plastic beams, in general, have significantly higher
maximum transmitted impulse but lower maximum transmitted energy than the
free-standing counterparts at any mode of deformation, apart from some cases
where the elasto-plastic beams deform in mode III, the maximum transmitted

impulse are less than those of the free-standing beams.

Which medium, compressible (air) or incompressible (water), is more effective
in mitigating the effects of a blast wave for elasto-plastic structure is investigated.
It was found that the structure - when subjected to the same incident wave in
both mediums - is less likely to develop large inelastic deformation and complete
detachment at the support for underwater blast loadings compared to air blasts.
However, if the effects of standoff distance is taken into consideration, the above
finding may reverse, since in air blast the incident shock wave attenuates as it

propagates whilst it does not in underwater explosions.
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Chapter 6

Blast response of rectangular

plates

6.1 Introduction

The mode of deformation in a fully clamped monolithic beam under impulsive

loading depends on the non-dimensional impulse I* (:=I/H./ayp), where I =

tq
0

mode II (tensile-tearing and deformation) or mode III (shear-band localisation)
- see Menkes and Opat (1973). Olson et al. (1993), too, observed similar modes
in fully clamped, square mild-steel plates. Further experiments by Nurick and
Shave (1996) suggested that the mode II deformation may be sub-divided into

three distinct régimes of mode II* (through-thickness tearing along the supports),

p(t)/Bdt, and is classed as either mode I (large inelastic deformation) or

mode ITa (complete detachment from supports with maximum central deflection
increasing with impulse) or mode IIb (complete detachment from supports with
maximum central deflection decreasing with impulse). Similar mode I and IT (IT*,
IIa, IIb) deformations were also observed in rectangular plates where aspect ratio
v = 1.2 (Ramajeyathilagam and Vendhan, 2004).

Nearly all the available experimental data in the literature (Nurick and Shave,
1996; Olson et al., 1993; Rudrapatna et al., 1999), with the notable exception
of those by Ramajeyathilagam and Vendhan (2004), were performed with square

plates. However, it remains unclear how the aspect ratio v (:= a/b - see Fig 6.1a)
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of rectangular plates affect its mode of deformation if v >1. In a similar vein, little
is known of how the fixing conditions at the supports affect the tearing mechanism
in the plate which, in turn, has an effect upon the plate performance. The
aforementioned issues are addressed in this chapter which will present the results
of a detailed numerical study to elucidate how combinations of blast impulse and
aspect ratio affect the deformation mode and how limits to deformation, caused
by necking localisation and/or ductile fracture at the supports, affect the overall
performance of rectangular plates to impulsive loadings. The numerical results are
validated against experimental data for square mild-steel and aluminium plates

where they will be found to be in good agreement.

6.2 Finite element modelling

6.2.1 Mesh, loading and boundary conditions

Finite element analysis were performed using ABAQUS/Explicit (2012). All
plates modelled have length 2a, width 2b (a > b) and thickness H if their aspect
ratio v > 1. If v = 1, the plates have equal length of 2a on all sides. Only
a quarter of the solid plate is modelled since reflective symmetry exists on two
planes, as seen in Fig 6.1. Eight 8-node brick elements (C3D8R) with reduced
integration and hour-glass control were employed through the thickness of each
plate. All brick elements have equal dimension of 0.0002 m on all sides; hence, a
typical 0.089 m x 0.089 m x 0.0016 m plate tested by Menkes and Opat (1973)
would comprise of 255792 (168 x 168 x 8) elements in its corresponding FE
model. Results of convergence studies, to be presented later in Fig 6.2, confirm

that this is sufficient to simulate ductile and shear damage with acceptable fidelity.

Xue and Hutchinson (2003, 2004) have shown that the impulsive blast re-
sponse of a structure is sensitive to the response time 7" needed to attain max-
imum deflection for a zero-period impulse. This time scale determines whether
it is acceptable to idealise a finite-period loading as a zero-period impulse, i.e.
the plate acquires an instantaneous initial velocity of Vy = I /m, where I is the

impulse per unit area and m = pH is mass per unit area of the plate. The re-
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sponse time of the square plate in the experiments of Nurick and Shave (1996),
with dimensions 0.089 m x 0.089 m x 0.0016 m and material properties given
in Table 6.2, is found numerically to be 120 us.  Since the typical blast du-
ration is ty = 15 ps in Nurick and Shave (1996), the loading imparted by the
blast pulse may be idealised as a zero-period, uniform-momentum impulse (since
tq/T = 0.125 < 1) so the plate acquires an instantaneous velocity. In a similar
vein, since the response time of the rectangular plates are also of the same order
of magnitude as the square plates in Nurick and Shave (1996), assuming that the
blast duration remains at t; ~ 15 us, the zero-period idealisation would remain

equally valid.

Figure 6.1a gives the standard fully clamped boundary condition (BC) used
by existing numerical studies for plates (Nurick and Shave, 1996; Ramajeyathi-
lagam and Vendan, 2004; Rudrapatna et al., 1999, 2000). To accurately model
progressive ductile fracture along the boundary of the plate, a modified BC given
in Fig 6.1b is used here - this is similar to that employed in Chapter 3 for beams.
The efficacy of the modified BC is further demonstrated in Section 6.3 by the
excellent agreement between the predicted maximum plate deflection by the FE
model and the experimental results given by Nurick and Shave (1996) and Olson
et al. (1993).

Table 6.1: Number of elements in each direction of the uniform-mesh for Part 1

Mesh Number of elements Number of elements
in z-direction in x- and in y-directions

21
42
63
84
105
126
147
168
189
210
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Figure 6.1: (a) fully clamped and (b) modified boundary conditions adopted in
the FE model. u and ¢ refers to displacement and rotational degree of freedoms,
respectively. a > b for rectangular and b = a for square plates.

Three additional parts (parts 2-4 and parts 5-7) are added to each side of the
original solid plate (part-1) to form an extended boundary as shown in Fig 6.1b.
Note that the standard fully clamped BC of Fig 6.1a are imposed on parts 4 and

7. All the additional parts have equal width 7 and identical material properties as
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the solid plate, apart from a gradation of their elastic modulus E, by a factor a.
Symmetric BCs are applied, just like to the solid plate. The parameters 7 = H/6
and o = 10 are obtained by calibration to the experimental data at Nurick and

Shave (1996).

0671 —=— Fully clamped BC

—<a— Present

Figure 6.2: Predicted maximum equivalent plastic strain é at (r = a,y = 0)
and (z = 0,y = b). Results are for square mild-steel plate of dimensions 0.089
m X 0.089 m x 0.0016 m subjected to a non-dimensional impulse of I* = 0.632
(or I = 1378 Ns/m?). The mild steel properties of Nurick and Shave (1996) is
used, see Table 6.2. ‘Present’ refers to predictions using the modified boundary
condition in Fig 6.1b.

Figure 6.2 plots the predicted maximum equivalent plastic strain € for dif-
ferent mesh density used in part-1. The number of elements along each direction
of the uniform-mesh is listed in Table 6.1. For a square plate with fully clamped
boundary condition, the maximum values for € are found at (z = a,y = 0) and
(x = 0,y = b) where tearing is expected to initiate from either, or both, locations.
It is evident that €’ does not converge for the standard BCs shown in Fig 6.1a.
Instead, convergence is achieved with the modified BCs. Figure 6.2 shows that

mesh size No.8 gives sufficiently accurate results and is used here.
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(b)
Figure 6.3: (a) Deflection profile along the z-axis (the same for y-axis due to
symmetry) and (b) time-history of the central deflection of the plate. Results
are for square mild-steel plate of dimensions 0.089 m x 0.089 m x 0.0016 m and
subjected to a non-dimensional impulse of I* = 0.632 (or I = 1378 Ns/m?). The

mild steel properties of Nurick and Shave (1996) is used, see Table 6.2. ‘Present’
refers to predictions using the modified boundary condition in Fig 6.1b.

Figure 6.3a shows that the differences between the predicted deflection pro-
files by the two BCs are negligibly small. Similarly, for the time-history of their
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central deflections as shown in Fig 6.3b. In general, W,/ H are unaffected by the
presence of stress singularities at the boundary; therefore, evaluation of perfor-
mances, based on maximum transverse deflection of the plates, lead to identical
conclusions for either BCs provided necking localisation and ductile fracture had

not intervened.

6.2.2 Materials and damage models

Two plate materials are modelled in this study, aluminium (6061-T6) and
mild-steel. Table 6.2 lists the properties of the respective plate material. Notice
that the static yield strength of mild-steel in Olson et al. (1993) is slightly higher
than that by Nurick and Shave (1996).

Table 6.2: Properties of plate material used in the FE model.

p (kg/m?) E (GPa) oy (MPa) oy (MPa) v D, (s7!) g¢

A16061-T6* 2760 69 283 320 1/3 - -
Mild steel? 7830 197 237 312 1/3 40.4 bt
Mild steel? 7830 197 292 312 1/3 40.4 5

L(Jones et al., 1970), 2(Nurick and Shave, 1996) and 3(Olson et al., 1993).

The material description adopted is based on the conventional .J, plasticity
constitutive relation with linear isotropic hardening. Material strain rate sen-
sitivity is accounted for through a dynamic flow stress, evaluated at a uniaxial
plastic strain rate é°, by adopting the Cowper-Symonds constitutive relation by
Jones (1989)

ép
o4 = ay(l + |H|l/q). (6.1)

q
Both D, and ¢ are material parameters given in Table 6.2. The aluminium plates
are assumed to be rate-insensitive.

Failure of solid plates subjected to impulsive loading can be attributed to two
competing bulk material failure mechanisms, viz. ductile fracture and/or shear
band localisation (Jones et al., 1970; Olson et al., 1993; Nurick and Shave, 1996).
The progressive damage model for ductile materials in ABAQUS /Explicit (2012)
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is used here. The criteria for initiation of ductile (w,) and shear (w,) damage in

the FE model are given by

deP deP
B N LT S 6.2
o= | a1 / 200,,) (6.2)

where wy and w, are state variables that increases monotonically with the incre-
mental change in equivalent plastic strain. Here, the equivalent plastic strains
é (at the onset of ductile damage) and é (at the onset of shear damage) are
assumed, respectively, to be a function of stress triaxiality n and strain rate €
and, a function of the shear stress ratio f, and strain rate €. When the cri-
teria in Eq. 6.2 are met, the damage variable D would increase according to

(ABAQUS/Explicit, 2012)
D=— (6.3)

where ﬂ? is the effective plastic displacement at failure; @’ = L.é” and L, =
2 x 107* m is the characteristic length of the first-order element used in the
present FE model. Any element where their material stiffness is fully degraded,
i,e. D =1, is deleted from the mesh. Table 6.3 lists the parameters used in the
damage models. Note that the parameters for both ductile and shear damage are

obtained by calibration to the experimental data of Nurick and Shave (1996).

Table 6.3: Material parameters used by the damage model

Damage € or & 'y
model
Ductile 0.2 0.00011

Shear 0.2 0.00008

6.3 Validation

In this section, the FE predictions are validated against experimental data for
square mild-steel (Olson et al., 1993; Nurick and Shave, 1996) and rectangular
aluminium plates (Jones, 1970). Note that the blast loadings may also be idealised
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as zero-period impulses. The aluminium plates used by Jones et al. (1970) have
dimensions 0.1286 mx 0.0763 m x H m, with a range of thickness H. The
square mild-steel plate specimens in the experiments by Olson et al. (1993) and
Nurick and Shave (1996) have dimensions of 0.089 m x 0.089 m x 0.0016 m. The
properties for the two different mild steel and one aluminium plate are listed in
Table 6.2. Only the mode I central deflection are available in Jones et al. (1970)
whilst data on all three modes of deformation are provided by Olson et al. (1993)
and Nurick and Shave (1996).

6.3.1 Maximum transverse plate displacement - mode I

Figure 6.4a shows that the modified BC appears to better predict the central
deflection of the thicker plate specimens (H = 6.2 mm). This is because relaxation
of the in-plane and out-of-plane degrees of freedom at the plate boundary, gives
a somewhat larger Wy/H than the standard BC would otherwise allow. Failure
to account for material strain rate sensitivity would lead to over-prediction of
Wo/H with I'* as shown in Fig 6.4b. In general, there is a good agreement

between experiment data and the current FE predictions.

Figure 6.5 plots the deflection profile along y = 0 for a square mild steel
plate subjected to a non-dimensional impulse /* = 0.86. Its central deflection
is well predicted by the current FE model. This lends further support to the
contention that replacing the standard BC with the modified one in Fig 6.1b
has hardly any effect upon the central deflection of the plate. Note, however,
that discrepancies in the deflection profiles are observed away from xz = 0. As
x — a, the modified BC give a better prediction of the deformed plate profile
compared to the standard one, again, because the former relaxes the in-plane and

out-of-plane degree of freedom along the boundary.

The predicted central deflection is compared to the experimental data in
Nurick and Shave (1996) where there is a good agreement, see Fig 6.6. Further-
more, the FE model successfully predicts a reduction in Wy/H with increasing
I* for a plate deforming in mode IIb. The observed discrepancy between FE

predictions and experimental data for mode IIb is because the former records the
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Figure 6.4: Comparison of the mode I central deflection for (a) aluminium plate
by Jones et al. (1970) and (b) mild steel plate by Olson et al. (1993) with FE
predictions at different levels of I*. The aluminium and mild-steel plates has
aspect ratios of v = 1.685 and ~ = 1, respectively.
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Figure 6.5: Deflection profile of a mild steel plate (v = 1) subjected to an impul-
sive load of I = 1872 Ns/m? (or I* = 0.86). The mild steel properties of Olson
et al. (1993) is used, see Table 6.2.

central deflection of the plate just before it completely detaches from the supports

unlike in the latter.

Nurick and Shave (1996) reported that, for mode II*, the plate tears away
from the supports resulting in ‘pulling-in’ of the mid-side of the plate. This
‘pulling-in’ distance increases initially with I* but reduces when the maximum
plate deflection is reached. The general trend of the 'pull-in’ distance with I* is
well predicted by the current FE model in Fig 6.7. The observed discrepancies

are due to the same reason given previously for Fig 6.6.

6.3.2 Critical impulses corresponding to mode transitions
- mode I—IIa and IIb—I1II

A non-dimensional parameter W is introduced to quantify the area fraction of

plate that has become detached from the supports as follows
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Figure 6.6: Comparison of the numerical central (maximum) deflection with the
experimental data at different levels of I*. Each red cross indicates a transition
in deformation mode predicted by the current FE model. All mild steel plates
have aspect ratio of v = 1. The mild steel properties of Nurick and Shave (1996)
is used, see Table 6.2.

Area of detached plate periphery from supports

U = .
Total area of plate periphery attached to supports |= 2Ha or 2HDb)]
(6.4)

Since the mesh is uniform, the numerator of Eq. 6.4 is easily calculated by
multiplying the total number of deleted elements to the surface area of the side
of an 8-node brick element which is attached to the supports. For a square plate,
V¥ is identical on all sides due to symmetry. If ¥ = 0, no elements are deleted, i.e.
the plate deforms in mode I. Conversely, if ¥ = 1, all elements along the plate

periphery are deleted.

Figure 6.8 gives the time-history of W at different values of I* for a typical
square mild-steel plate by Nurick and Shave (1996). The FE model predicts
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Figure 6.7: Side pull-in distance versus impulse for mild-steel plates (v = 1). The
mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

that an element is first deleted at I* = 0.69 (it would not be possible to verify
this experimentally) and through-thickness tearing occurs at a higher impulse of
I* = 0.75. Complete detachment from the supports occurs whenever I* > 0.98,
i.e. the critical impulse at mode IT*— Ila transition is I* = 0.98. With increasing
I*, complete detachment occurs at increasingly earlier times of ¢/7T" as expected.
Notice that U is always less than unity even for high levels of impulse due to
crack branching away from the boundary into the plate’s interior. This will

become clearer in Section 6.4.1.

A procedure to determine the critical impulse corresponding to mode IIb
— III transition is now described. Figure 6.9a shows the time history of three
typical stress triaxiality curves 7,.¢(f); they are obtained by averaging the stress
triaxiality of all the elements in the shaded region as shown. The width of 0.025b is
chosen so that it covers the region of the plate where the cracks may conceivably
propagate. Note that beyond fy, the non-dimensional time corresponding to
Nawe = 0, the plate is completely detached from its supports. Conversely, if I* is

insufficient to cause complete detachment, then 7,,. is always greater than zero.
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Figure 6.8: Time history of U for different levels of I*. () indicates the instant
when plate is completely detached from its supports. Results shown are for a
square mild-steel plate with a response time of T" = 120 ps. The mild steel
properties of Nurick and Shave (1996) is used, see Table 6.2.

At each impulse level, the time-averaged value of the function 7,,. (%), defined as

to
/ Nave (t—> dt
0

= (6.5)

This is obtained for the two different damage models, viz. ductile and shear,
applied separately to give the curves shown in Fig 6.9b. A unique cross-over
point can be identified which determines the transition from mode IIb — III.
Beyond this cross-over point, only the shear damage model is used; otherwise,
the ductile damage model is applied in a maximum sense. Using this proposed
criterion, Table 6.4 compares the numerical critical impulses (and transitional
velocities) with their experimental counterpart from literature. The predictions
by FE are in good agreement with the experimental data given by Nurick and
Shave (1996) and Olson et al. (1993). The predicted critical impulse is sensitive
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Figure 6.9: (a) Time history of stress triaxiality, 1,,., averaged over all elements
in the shaded region, and (b) Comparison of the time-averaged stress triaxiality
7 for a plate using the ductile and shear damage model. Results shown are for
a square mild-steel plate with a response time of T = 120 pus. The mild steel
properties of Nurick and Shave (1996) is used, see Table 6.2.
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to the parameters a and 7 of the modified BC (Fig 6.1b). Since the FE model is
calibrated to experimental data where the plate remains attached to the supports,
the predicted critical impulse for mode Ila — IIb transition is much lower than

that observed experimentally.

Table 6.4: Critical impulses I* (and velocities Vj, m/s) corresponding to mode
transitions.

Mode Current FE FE! Experiments?  Experiments®
I - II*  0.75 (130.0) 0.97 (168.8) 0.62 (108.8) -
II* — Ila 0.98 (172.0) 1.02 (177.5) 0.98 (171.3) 1.11 (193.5)
[Ta — IIb  1.05 (184.0) 1.27 (221.0) 1.48 (257.0) 1.45 (251.9)
IIb — III 2.42 (421.0) 2.32 (404.7) 2.39 (416.2)

! (Rudrapatna et al., 1999) , 2 (Nurick and Shave, 1996) and 3 (Olson et al., 1993).

6.4 Predicted impulsive response

The fully validated FE model of the previous section is now employed to
compute the zero-period impulsive response of rectangular plates with aspect
ratio ranging between 2 < v < 5. All rectangular mild-steel plates modelled have
the same total mass as the square ones (m, = 0.0992 kg) used in Nurick and
Shave (1996). Likewise, for their material properties listed in Table 6.2. The
results for square mild-steel plates of Nurick and Shave (1996) are also included

for comparison.

6.4.1 Deformation modes

Figure 6.10 shows that the current FE model successfully captures the different
modes of impulsive response observed in a typical rectangular plate (y = 1.2).
Comparison is made here to the ‘post-test’ specimens of Ramajeyathilagam and
Vendhan (2004) where a set of clear photographs are available, instead of with
those given by Nurick and Shave (1996) and Olson et al. (1993). The zero-period,

uniform-momentum idealisation is also valid in the work of Ramajeyathilagam
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(a) Mode I (I* =0.57)

(d) Mode III (I* = 2.01)

Figure 6.10: Comparison of predicted deformation modes (left column) for rect-
angular mild-steel plates (7 = 1.2) to the 'post-test’ specimens (right column) of
Ramajeyathilagam and Vendhan (2004). Note that the former shows a quarter
of the rectangular plate due to symmetry. Properties of the mild-steel plates
by Ramajeyathilagam and Vendhan (2004) are as follows: p = 7860 kg/m3,
E =210 GPa, oy = 300MPa. (Acknowledgement: Photographs - right column -
were reproduced from Ramajeyathilagam and Vendhan (2004)).

and Vendhan (2004). For rectangular plates deforming in modes Ila and IIb, a

crack propagates along each side of the plate boundary. At some point, their
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Figure 6.11: Ductile damage state variable wy for a rectangular plate with aspect
ratio v = 2 subjected to an impulse I* = 0.55. The plate is deforming in mode I.
The mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

crack paths are deflected inwards, circumventing the corner of the plate. When

the two crack paths meet, complete plate detachment occurs. It is not entirely
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clear why the crack path deviates from the plate boundary as it approaches the
corner although this occurs irrespective of the value of the aspect ratio. This is
the reason why W is always less than unity in Fig 6.8 regardless of the value of
I*.

Figure 6.11 shows the distribution of the state variable w, for a typical rect-
angular plate (7 = 2) subjected to a non-dimensional impulse I* = 0.55. When
wg = 1, the material stiffness at that point begins to degrade in accordance to
Eq. 6.3. It is noteworthy that ductile damage, by nucleation, growth and coales-
cence of voids, initiates well before the transition from mode I — II*. Current
simulations showed that the first element to be deleted, i.e. the material point
where its stiffness is fully degraded, always occurs at (x =0, y = b, z = H/2), on
the surface incident to the blast irrespective of I*. It is, therefore, surprising to
see in Fig 6.10b (right-side image) that tearing appears to initiate on the shorter
side of the plate by Ramajeyathilagam and Vendhan (2004). This experimental
anomaly must be due to material and/or geometric imperfections since it was,
also, predicted that tearing must initiate at the mid-point of the longer side by the
total and/or effective strain theory of Ramajeyathilagam and Vendhan (2004).

6.4.2 Types of mode II response

The mode II response of a plate was previously categorised as mode IT*
(through-thickness tearing at the supports), mode IIa (complete detachment from
supports where central deflection increases with I*) and mode IIb (complete de-
tachment from supports where central deflection decreases with I*) by Nurick and
Shave (1996). However, the current FE simulations showed that non-through-
thickness tearing typically precedes mode IT*. In light of this, it is advantageous
to re-classify the mode II response into three distinct types according to the mag-
nitude of the non-dimensional impulse I*, viz. Type 1 (non-through-thickness
tearing), Type 2 (through-thickness tearing) and Type 3 (complete detachment

from supports).

Figure 6.12 shows the equivalent plastic strain contour for a rectangular plate
(v = 2) subjected to different levels of impulse. At I* = 0.78, Figure 6.12a

shows that non-through-thickness tearing occurs along the supports, referred to
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Figure 6.12: Time evolution of the equivalent plastic strain contour in a rectangu-
lar mild steel plate (7 = 2) and the three types of mode II response predicted by
the current FE model. Material properties are listed in Table 6.2. The mild-steel

properties of Nurick and Shave (1996) is used.
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as a Type 1 response hereinafter. By contrast, Type 2 response entails through-
thickness tearing of the plate at the supports as depicted in Fig 6.12b. Figure
6.12c shows a typical Type 3 response where I* is sufficiently large for complete
detachment of the plate to occur. Notice the plate remnant at the corner of the
supports caused by the deviation of the crack paths (Fig 6.12¢) which is also

evident in the experimental results shown in Fig 6.10c.

6.4.3 Failure maps

To ensure that comparison is made between plates of equal total mass and
thickness, the aspect ratio (defined as the ratio of the longer to shorter side) is
varied by choosing the longer and shorter sides of the plate to have length of a,/y
and a/,/7, respectively, where a(= 0.0445 m) is the half length of the square
plate by Nurick and Shave (1996). In this manner, the plate thickness (H = 1.6
mm) and plate mass (m, = 0.0992 kg) remain equal between plates of different
aspect ratio v. Figures 6.13 shows how the non-dimensional central deflection
Wy/H varies with I* for different aspect ratios ranging from 1 < v < 5. The
overall trend of the central deflection with I* is broadly similar to a square plate.
For a plate deforming in modes I or II (Type 1 and 2), its central deflection
reduces with increasing v at a given I*. By contrast, Wy/H is insensitive to =.
The increasing-decreasing trend of Wy/H with I* is clearly evident in the mode
IT (Type 3) response. The FE results predict that the critical impulse at mode
[— II (Typel) transition increases with aspect ratio 7, as seen in Fig 6.13. By
contrast, the transition at mode II (Type 3) — III is insensitive to plate geometry

but depends only on material properties.

Figure 6.15 shows a deformation map, constructed from the data in Fig 6.13.
The contours of dotted line join constant value of Wy/H within that particular
mode of deformation. This gives a map which is really useful to designers. Any
pair of values of I* and v now locates a point on the map. From the map, one
can determine the deformation mode and read off the mid-point deflection of
the plate (by interpolation using two known values if required). Alternatively,
it allows a designer to determine the critical impulse I* delineating different

modes of deformation, and the corresponding central deflection of the plate , at a
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Figure 6.13: Variation of the maximum mid-point deflection with non-
dimensional impulse I* for rectangular plates with different aspect ratio. All
the plates shown have the same thickness H = 1.6 mm and a total mass of
m, = 0.0992 kg. The mild steel properties of Nurick and Shave (1996) is used,
see Table 6.2.

given aspect ratio . Note that the map assumes zero-period impulsive load (i.e.
tq/T = 0). For the corresponding finite-period loading case (i.e. t4/T # 0), one
would expect a lower central deflection at the same I* and the boundaries in the
deformation map of Fig 6.15 will change. This is explored in the next section for

the case of a square plate.

Previously in Fig 6.15, the mass per unit area m,(= pH) of all the plates
were kept constant at m, = 12.53 kg/m?. Let this be increased by a factor
k> 1, from H to kH. To keep the same mass of m, = 0.0992 kg between plates,
its longer and shorter sides must be reduced accordingly to a/vk and b/Vk,
respectively. The effects of plate thickness (or mass per unit area m,) upon
the deformation mode are explored in this manner. Figure 6.14a shows how the

boundaries, delineating the different modes, shift with the factor k. At a given ~,
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Figure 6.14: Deformation maps showing the changing boundaries according to
different plate thickness H. The mild steel properties of Nurick and Shave (1996)

is used, see Table 6.2.
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Figure 6.15: Deformation map for a rectangular mild-steel plate with a constant
mass per unit area of m, = 12.53 kg/m? and a total mass of m, = 0.0992 kg.
The mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

the critical impulse I* at the transition from mode I — II(Types 1+2) and from
mode II(Types 142) — II(Type 3) increases with plate thickness. By contrast,
the boundaries corresponding to mode II(Type 3) — III transition do not appear
to change significantly which is consistent with the fact that the corresponding
transitional impulse I* depends only on material properties. On the other hand,
Figure 6.14b re-plots the deformation map for I (impulse per unit area) versus 7.
Increasing k (or the plate thickness) leads to a corresponding increase in I which
is consistent with Fig 6.14b.

6.5 Effects of finite-period impulse upon the dam-

age mode

Xue and Hutchinson (2003, 2004) have previously shown that the ratio of

the blast duration to the overall response time of the structure (t4/7") deter-
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mines whether the blast loading may be approximated as a zero-period, uniform-
momentum impulse. In this section, results from numerical simulations are pre-
sented which examine the influence of t;/7 upon the deformation mode of square

mild-steel plates.

Figure 6.16a shows the effect of increasing t;/7 upon the area fraction of plate
(¥) that becomes detached from the supports. Note that the plate is loaded by
a zero-period impulse at t;/7 = 0. The results show that for the same non-
dimensional impulse of I* = 0.92, ¥ decreases with increasing blast duration. If
ta/T > 0.9, the mode of deformation switches from mode II(Types 1 or 2) to mode
I. Hence, the response of the plate is also dependent upon the non-dimensional
blast duration t4/T.

Figure 6.16b shows how the boundaries corresponding to the transition from
mode II(Types 142) — II(Type 3) and from mode II(Type 3) — III shifts in
accordance to the blast duration. Increasing the blast duration has an effect of
delaying the transition between deformation modes. For instance, a square plate
which was previously deforming in mode II(Type 3) at I* = 1.5, under the action
of a zero-period impulse, now deforms in mode II(Type 1 or 2) if t;/T > 2.0.
In a similar vein, the plate deforms in mode II(Type 3) instead of mode III at
I"=25ifty/T > 3.0.

6.6 Conclusion

FE model is developed in this chapter to study the dynamic response of plates,
subjected to impulsive loading for which experimental data on the permanent
inelastic deformation and post-damage observations were available. FE model
validations have been performed against a wide range of aspect ratio of plates
and non-dimensional impulse /* as given in the blast tests. In particular, the
non-convergence of key local stresses near the plate boundary, due to stress sin-
gularities, has been addressed which, subsequently, allowed ductile fracture along
the plate boundary to be modelled, within the framework of damage mechanics,

using finite elements.
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Figure 6.16: (a) Influence of blast duration ¢4/7" upon the area fraction of plate
U that becomes detached from the supports; (b) Effects of the blast duration
upon the boundaries corresponding to the transition from mode II(Types 142)
— II(Type 3) and from mode II(Type 3) — III. Results shown are for square
mild-steel plate subjected to a non-dimensional impulse of I* = 0.92. The mild
steel properties of Nurick and Shave (1996) is used, see Table 6.2.
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After validating the proposed FE model, the parametric study reveals a num-
ber of key features regarding the impulsive response of rectangular plates as
follows: (i) the impulsive mode II response has been reclassified into three dis-
tinct types, depending on whether tearing initiates at the supports; (ii) the cen-
tral deflection of a rectangular plate deforming in modes I and II (Types 1+2)
decreases with aspect ratio for the same [*; (iii) with increasing plate aspect
ratio and thickness, a higher non-dimensional impulse I* is needed to cause non-
through-thickness and through-thickness tearing at the supports; (iv) the mode
IIT response is insensitive to aspect ratio v and plate thickness. For thin plates,
the critical impulse for transition to mode III transition is a function of material
properties; and (v) an increase in the blast duration delays the transition between
deformation modes for plates of the same dimensions and subjected to the same

non-dimensional impulse I*.
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Chapter 7

Discussions, conclusions and
further research

7.1 Discussions and conclusions

An understanding of the response of structures to intense blast loadings is
important to the nuclear, offshore and defence industries. Blast loadings can be
broadly classified as impulsive or non-impulsive depending on the ratio of the load-
ing duration to the natural response time of the structure with which it interacts.
A thorough literature review indicates that our current state of knowledge on the
dynamic response (i.e. large deformation, damage and failure) of elasto-plastic
structures under non-impulsive loadings is relatively under-developed; and, it is
also unclear how large elasto-plastic deformation and failure at the supports af-
fect the previously known results on fluid-structure interaction (FSI). This thesis
investigates the response of elasto-plastic structural members, viz. beams and
rectangular plates, to both impulsive and non-impulsive loadings and the effects
of FSI on their performance underwater and in air. Based on the results and anal-
yses presented in Chapters 2-6, this chapter summarises some of the important

conclusions that can be drawn from the studies.

7.1.1 A general elasto-plastic structural beam system

An elasto-plastic structural beam model was developed which is sufficiently

general to capture large elasto-plastic deformation; incorporate the interactions
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between bending, membrane stretch and transverse shear in the yield and plastic
limit functions; model the structural failure through progressive damage and its
subsequent detachment; and, account for general (impulsive and non-impulsive)
loading conditions. The analytical model is validated against existing experiments
for impulsively loading cases and is validated against present FE simulations for

non-impulsively loading cases.

7.1.2 Effects of pulse duration and pulse shape on defor-
mation and failure of elasto-plastic beams

The results presented in Chapter 3 revealed the following: (i) There is a
broadly similar overall trend for the mid-span deflection with non-dimensional
impulse I* for both impulsive and non-impulsive load cases, i.e. mid-span de-
flection Wy/H increases initially before reducing with I*; (ii) For a given I*, the
mode I deflection reduces with increasing t; whilst the reverse occurs in mode
IT and III; (iii) The mid-span deflection at mode I—II transition is not sensitive
to tg; (iv) Increasing pulse duration t, leads to greater critical non-dimensional
impulse at mode I—II and mode II—III transitions; (v) Mode III deflection
for non-impulsive loads are considerably higher than its corresponding impulsive
counterpart at the same I*; (vi) The non-dimensional shear energy E§ reduces
while the non-dimensional membrane energy E%' increases with increasing pulse
duration t4 at the same I*; (vii) The residual momentum and energy in mode
IT and III reduce dramatically for a given I* with longer pulse duration t; and
(viii) Youngdahl (1970, 1971)’s approach can successfully eliminate the depen-
dence of the mid-span deflection to pulse shape effects for monotonically decay-
ing, impulsive and non-impulsive, loadings. However, the same approach would
under-predict the mode I mid-span deflection when the loading is non-impulsive

and non-monotonically decaying.

7.1.3 Effects of fluid-structure interaction (FSI) in water
and air

The results (in Chapters 4 and 5) showed that the deflection associated with

various modes of deformation for a clamped elasto-plastic beam, substantially
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influence the beneficial effect of FSI in both incompressible and compressible
mediums. In underwater explosions, increasing non-dimensional impulse I* leads
to a substantial decrease in non-dimensional maximum transmitted impulse after
mode [—II transition, because a significant proportion of the impulse is transmit-
ted to the beam during elastic rebound in mode I. Both the maximum transmitted
impulse I” and energy E7 reduces monotonically with non-dimensional impulse
I* in modes II and III, since the time it takes for complete detachment to occur

reduces with I*.

In air blasts, the FSI effect of reducing the load acting on the elasto-plastic
beams is evident during structural response at all modes of deformation; this is
due to the alleviation of interface pressure by the rapid motion of the beam. The
over-predictions of maximum mid-span deflection, maximum transmitted impulse
and energy by ignoring FSI effects are considerable in mode I deformation, but
are negligible in mode II and III deformations. The influence of the structural
and blast pressure wave parameters on the importance of FSI is studied for elasto-
plastic beams during mode I deformation. It is found that the error - in predicting
structural response when FSI is not considered - increases monotonically, (i) when
the maximum mid-span velocity increases relative to the shock speed; (ii) as the
time (when the maximum mid-span deflection is reached) decreases relative to

the pulse duration; or (iii) when the beam has less mass per unit area.

7.1.4 Sensitivity of blast response of elasto-plastic beams
to beam aspect ratio and mass

The variations of maximum impulse and energy transfer to beam mass per
unit area, or FSI index (8, in water and f3; in air) and beam aspect ratio L/H is
investigated. The key findings for the incompressible and compressible mediums
are as follows. In underwater explosions, an increase of beam aspect ratio L/H or
decrease of FSI index 3,, (more mass per unit area) always leads to a reduction of
maximum transmitted impulse in mode I, and an increase of FSI index f3,, results
in a reduction of maximum transmitted impulse in mode II and III. In air blast,

the elasto-plastic beam acquires less transmitted impulse, with increasing aspect
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ratio L/ H or FSI index [ in mode I, and with increasing FSI index /5 in mode
IT and III.

7.1.5 The effects of supports upon the FSI phenomenon

The analysis of structures loaded by underwater blast or air blast is often done
by adopting the analysis of Taylor (1941) and Kambouchev et al. (2007) (which
will subsequently be referred to as the KNR theory) based on rigid, free-standing
structures and ignoring the effect of boundary condition. Employing the afore-
mentioned solutions for elasto-plastic beams could lead to large inaccuracies on
the maximum impulse transmitted. The key findings for the effects of boundary
on FSI are as follows. In underwater explosions, Taylor’s solution under pre-
dicts the maximum transmitted impulse and energy for elasto-plastic beams for
all modes of deformation. In air blast, KNR’s solution would over-estimate the
maximum transmitted energy but under-estimate the maximum transmitted im-
pulse for elasto-plastic beams deforming in all three modes, despite some notable

cases in mode III where it over-predicts the maximum transmitted impulse.

7.1.6 Deformation and failure of rectangular plates

Deformation and failure of fully-clamped rectangular plates have been inves-
tigated. A 3D FE model is developed which is capable of modelling the blast
response of rectangular mild-steel plates for a wide range of aspect ratios and
non-dimensional impulse. Predictions by the FE model are shown to be in good
agreement with experimental results. Parametric studies are carried out to reveal
the key features of impulsive and non-impulsive response of rectangular plates.
In particular, the impulsive mode II response has been reclassified into three dis-
tinct types, depending on whether tearing initiates at the supports, viz. Type 1
(non-through-thickness tearing), Type 2 (through-thickness tearing) and Type 3
(complete detachment from supports). Increasing plate aspect ratio and thickness
leads to a higher non-dimensional impulse I* that is needed to cause nonthrough-
thickness (Type 1) and through-thickness tearing (Type 2) at the supports. An

increase in the blast duration delays the transition between deformation modes
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for plates of the same dimensions and subjected to the same non-dimensional
impulse I*. Deformation maps are constructed which allow the maximum central
deflection of rectangular plates to be read off for different combinations of blast

impulse and aspect ratio, and vice-versa.

7.2 Further research

The findings presented in this thesis collectively provide some new insights
into blast response of structures. The analysis of dynamic response of elasto-
plastic beams under non-impulsive loading improves the understanding of loading
duration upon structural deformation and subsequent failure. The examination of
fluid-structure interaction for elasto-plastic structures in air and water explosion
underpins the understanding of the outcome of FSI associated with different
modes of deformation. Despite the comprehensive studies of these important
aspects, some parts in this research still require more thorough investigation,

leading to the following suggestions for future research:

1. The current structural beam model is developed and validated for beams
made of aluminium 6061 T6 which can be considered as strain-rate insensi-
tive. Chapter 6 shows that neglecting material strain rate sensitivity would
lead to significantly over-prediction of central deflection for plates made
by materials like mild steel. Future work could incorporate the strain-rate

effect into the present structural beam model.

2. In the present structural beam model, the length of the plastic hinge is
held constant following the analytical procedure by Jones (1976). Shen
and Jones (1992) suggested an empirical relation, where the plastic hinge
length changes inversely with the applied impulse. Figure 3.7 in Chapter
3 shows that predictions by Shen and Jones (1992) agree better against
experimental data compared to the current analytical predictions. Further
work can be carried out in establishing the relationship of hinge length with

loading intensity to improve the accuracy of the present analytical model.
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3. The present analysis of FSI in underwater explosion neglected the influ-
ence of the reflection wave from the closing front in a Type I cavitation
event (i.e. the breaking front travelling in the positive Z-direction, always
arrests before it reaches the fluid-structure interface and inverts its motion
as a closing front). Several authors (Schiffer and Tagarielli, 2014, 2015)
have found that in a Type I cavitation event, breaking shock fronts that
eventually strike the target structure always contribute to the transmitted
impulse. Current analytical model under-predicts by up to 13.4% of the
maximum transmitted impulse compared to present FE predictions. Thus,
it would be worthwhile to include the effect of breaking shock front as an

extension to the current analytical model.

4. The transmitted impulse of the free-standing plate is often normalised by
a function of a single non-dimensional parameter (better known as the FSI
index) which characterises the relative time scale of structure and loading
(Taylor, 1941; Kambouchev et al., 2006; Hutchinson, 2009). It was found
(in Chapters 4 and 5) that the blast response of elasto-plastic structure
is govern by beam aspect ratio and its mass per unit area, quantified by
the FSI index. Future work should investigate the possibility of finding
a re-normalisation for the transmitted impulse of elasto-plastic structure,
including both beam aspect ratio and beam mass per unit area, expressed

in terms of a single non-dimensional parameter.

5. For rectangular plates deforming in modes Ila and IIb, a crack propagates
along each side of the plate boundary. At some point, these crack paths
are deflected inwards, circumventing the corner of the plate. When the
two crack paths meet, complete plate detachment occurs. It lacks an ex-
planation of why the crack path deviates from the plate boundary as it
approaches the corner and this occurs irrespective of the value of the aspect
ratio. Similarly, it remains unclear why failure occurs before all the ele-
ments at the supports are deleted regardless of the value of impulse. Thus,
it would be worthwhile to investigate the crack propagation in rectangular

plates subjected to impulsive loadings to elucidate the aforementioned.
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Appendix A
The finite difference numerical
method

Following closely the algorithmic approach by Drumheller (1998), the domain
of interest is discretised into N equally spaced points. The simulations (in chapter
5) have been carried out with between 2000 and 4000 mesh points, depending on
the problem. The coordinates of these points are given by a:g(n) =Xm = (n—
N)AX, where n =1,2,..., N is the point number and AX = (dy +d)/(N —1) is
the grid spacing. Time is discretised into variable time steps At*, j = 1,2, ... and
the discretised solution is obtained at time t© = 0,¢!, ..., tF=1 tF = tF=1 £ Atk .
The finite difference approximation for particle velocity leads to

k+3
ThES = Ty + At (A-1)

where the velocity v is computed in the middle of the time intervals,
k3 -1 1
Uiy’ = vg ’ + Q(Atk + At“l)a’(“n) (A-2)

where the time step is averaged over the current and previous time step and the
velocity is defined only in the middle of the time steps. The acceleration for

previous equation is obtained from the momentum conservation equation:

k k

1 p(nJrl) _p(n,l)
k 2 2
a = — A—3)
(n) 0 (
Pn) AX
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The rest of the discretised equations are as follows:

ek—i-l
kel (n+3) k+31
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where the discrete deformation gradient F'is given by
ok k
Fro o Zetntd) ~ et

(A-4)

(A-5)

(A-6)

(A-10)

(A-11)

(A-12)

The solution process consist of applying the following steps to each node n in the

domain (n =0,..., N — 1) except the last one n = N which is treated separately

- the details will be given later. The initialisation of the simulation at £ = 0 is to

prescribe the following initial velocity field to the compressed air container and

ambient air container,

1

_ (20 d 2
?J(Zn) = ype (g () /do) , :L‘g(n < dp

SN

v, =0,

e(n
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The initial density field follows immediately from Eq. 5.2,

1
2
o v—1 U(n) 9 1/(v-1)
Py = [+ (57 T = (A-14)

p(()n) =0, ZL‘S(n) > dp.

The first step in each time iteration is to compute the stable time step size:
k—1
(n) ~ Tem-1)
] (A-15)

where the minimum is taken over all possible values of n and 0 < a < 1 is
an appropriately chosen time factor. Note that the time step at j = 1 is Atk =

aAX/c,. This step is followed by the computation of deformation gradient F’ (’; Y
2

1
(Eq. A-12), the deformation rate d?:f;)
2

1 1
Ax?:fl) (Eq. A-8). From these the viscous dissipation @’(:Lfl) (Eq. A-5) and
2 2
the internal energy el(‘“:il ) (Eq. A-9) can be computed. At the next step the
2
pressure p'(“:il) is obtained from Eq. A-4 and substituted into the expression
2

(Eq. A-7) and the Eulerian spacing

of acceleration aé“n) (Eq. A-3). The cycle for the time step is completed by

1
computing the velocity vzj)Q (Eq. A-2) and particle location x’;(ts (Eq. A-1).
Node N at X = dy + d is treated independently as three different cases in each

simulation:

1. a free moving air particle, whose equation of motion is represented by Egs.
A-1, A-2 and A-3;

NI

k+1 _
e(N) = Yy T

2. areflective, clamped, rigid wall with boundary condition of x
0 and

3. an elasto-plastic beam whose equation of motion can be obtained by sub-

stituting interface pressure pr, = p’(“;}r 1y~ Pa into Eq. 2.28.
2
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