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Abstract

This thesis investigates the blast response of simple structural com-

ponents - fully clamped beams and plates - underwater and in air.

Experimental work by others have shown that, with increasing load-

ing intensity, these components deform in one of either three modes:

mode I (large inelastic deformation), mode II (tensile tearing) or mode

III (transverse shear failure). The aim of this thesis is to develop theo-

retical and numerical models that can accurately predict these damage

modes, taking into account the effects of fluid-structure interactions,

for both impulsive and non-impulsive blast loadings.

A fully-clamped ductile beam model is proposed that is capable of cap-

turing large elasto-plastic deformation, progressive damage and failure

through detachment from its supports. Predictions by the model were

validated against experimental data in the literature and with finite

element models developed in this thesis. Parametric studies were also

performed to elucidate the effects of loading duration on the mode of

deformation and the conditions governing their transition. Numeri-

cal evidence on elimination of pulse-shape effects using an effective

rectangular pulse loading (Youngdahl’s approach) has been provided.

The effects of fluid-structure interaction (FSI) are investigated for

fully-clamped, elasto-plastic beams in deep underwater explosions and

intense air blast loadings. The main objective is to understand how

the introduction of fully-clamped clamped supports alter existing well-

known results grounded on rigid, free-standing counterpart; and, to

quantify how different modes of deformation affects the impulse and

energy transmitted to the structure by the blast wave. Sensitivity



analyses were carried out to elucidate the dependence of the results

on the beam’s aspect ratio and inertial mass.

The deformation and failure of fully clamped rectangular plates sub-

jected to blast loading are modelled numerically using finite element

method. The numerical results are validated against experimental

data. Deformation maps delineating the different deformation régimes

for different combinations of blast impulse and aspect ratio are con-

structed for plates of equal mass. The effects of imposing a finite

period, as opposed to a zero-period, pressure pulse upon the deforma-

tion mode and maximum deflection are discussed.
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ĒF ) for elasto-plastic beams of identical cross-section, H = B =

0.05 (βw = 21.7), deforming in mode I; and (b) Comparison of

the normalised temporal average interface pressure p̃Int(t)/ps and

temporal mid-span deflection WB(t) for beams 1 and 2 in Fig

4.7a. Beam 1 is 0.3 m (L) × 0.05 m (H) × 0.05m (B); beam 2

is 0.5 m (L) × 0.05 m (H) × 0.05 m (B). . . . . . . . . . . . . . 84

4.8 (a) Analytical prediction of maximum impulse (— corresponds to
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ĒF ) dissipation for elasto-plasitc beams in mode II with same beam

cross-section, H = B = 0.01 m (βw = 108.4) and (b) Compar-

ison of analytical normalised temporal average interface pressure

p̃Int(t)/ps and temporal mid-span deflection WB(t) for beam 1 and

2 in Fig 4.9a. Beam 1 has 0.10 m (L) × 0.01 m (H) × 0.01 m

(B) (βw = 108.4); beam 2 has 0.16 m (L) × 0.01 m (H) × 0.01

m (B) (βw = 108.4). . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 (a) Analytical prediction of non-dimensional maximum impulse (—
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Chapter 1

Introduction and literature

survey

1.1 Introduction

An explosion generates an over-pressure which propagates into quiescent am-

bient air as a blast, or shock, wave. The blast loading is transient in nature,

lasting for a few milli-seconds to a few seconds. If the blast wave is sufficiently

intense, a target structure is likely to develop large plastic deformation, resulting

in partial or complete detachment from its supports. In order to improve struc-

tural safety and/or to assess the consequences of the blast hazard, a thorough

understanding of the mechanisms of loading, damage and failure of structures to

blast loadings is of fundamental importance.

Although the intensity and duration of a blast wave are not normally known

in advance, they can broadly be classified into two types, viz. impulsive or non-

impulsive. A considerable body of literature exists on characterising the response

of structures to impulsive loading where the duration of the blast pulse is insignif-

icant compared to the natural response time of the structure. Analytical and

finite element models were successfully developed that are capable of predicting

the critical impulsive velocities needed to initiate damage and failure, and they

have been shown to be in excellent agreement with experiments. However, the

majority of blast loadings in real-life are, in fact, non-impulsive; especially if the
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source of an explosion occurs at a considerable standoff distance from the tar-

get structure. Compared to the abundant literature on the impulsive response

of structures, there is limited published literature to date, and relatively little is

known, of how structures respond to non-impulsive blast loads.

The interactions between a structure and the blast wave is known as fluid-

structure interaction or, for brevity, FSI. The basic concept of FSI is that the

receding motion of the structure alleviates the pressure acting on it, and thus

reduces the impulse transmitted by the blast wave. Our current state of knowl-

edge on FSI, in both compressible or incompressible medium, is still very much

grounded on works based on rigid free-standing structures (Taylor, 1941; Kam-

bouchev et al., 2006, 2007; Hutchinson, 2009), or elastic structures (Schiffer et

al., 2012; Schiffer and Tagarielli, 2014, Subramaniam et al., 2009, Teich and

Gebbeken, 2011). Moreover, FSI effects are often neglected in many of the cur-

rent design guidelines. For instance, TM5-1300 (1990) recommends that the

reflected blast pulse from a fixed, rigid surface at the relevant standoff distance

can be used as the design loading for the structure. This recommendation could

potentially lead to large inaccuracies in the predicted structural response. There

is a need for more thorough investigations into the role of FSI on the structural

response and failure of actual deformable structures - taking into account large

elasto-plastic deformation and the influence of supports - to blast loadings; and

its implications on momentum and energy transfer from the blast wave. To this

end, a comprehensive understanding of the physics of FSI and the ability to ac-

curately model the interactions between a general blast pulse and deformable

structural components are needed.

The present thesis outlines a systematic study, by a combination of analyt-

ical and numerical modelling, to assess the performance of deformable struc-

tures subjected to impulsive and non-impulsive loadings. The topics covered will

range from large elasto-plastic deformation, to progressive damage and failure

at the supports, through to energy and momentum transfer resulting from fluid-

structure interaction in both air blasts and underwater explosions.
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1.2 Literature survey

There exists a significant body of research on the blast response of simple

structural components - beams, plates, shells, etc. - in topics ranging from fluid-

structural interactions to dynamic structural response (large deformation, damage

and failure). This section provides a brief review of the pertinent central findings

from these works.

1.2.1 Blast loadings on structures

Pressure

Time
ta

ta

td

ta+td ta+td+td
-

td
-

Ii

Ii
-

pa
ps

-

ps

pa : Ambient pressure 
ps : Maximum positive overpressure 
ps

- : Maximum negative overpressure
td : Positive time duration
td

- : Negative time duration
Ii: Positive incident impulse
Ii

-: Negative incident impulse

Figure 1.1: Schematic of a typical incident pressure-time history generated by a
blast event (TM5-1300, 1990).

Explosions, from conventional or nuclear explosives (American Society of Civil

Engineering, 1961, 1985), high pressure gases (Baker et al., 1983) or dust mix-

tures (Baker et al., 1983), generate gases that expand violently outwards, forcing

the surrounding atmosphere away from the expanding volume. A blast wave is

generated, as a consequence, by the zone of compressed air that forms, and prop-

agates outwards, in front of the gases. The propagation velocity decreases with

time (and distance) but it is typically greater than the speed of sound in the

medium. If a pressure transducer is placed at a fixed location, relative to the
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source of explosion, an incident overpressure (the difference between the static

pressure and the ambient atmospheric pressure) of a type shown schematically in

Fig 1.1 would be recorded (Feng et al., 2007). Notice that compression is regarded

as positive in the figure. At t = ta (arrival time of the blast pulse), the pressure

increases rapidly - with a negligibly small rise time - to a peak value ps + pa;

thereafter, it decays monotonically to an ambient level pa at time (ta + td) - this

is known as the ‘positive phase’ of a blast pulse. It is followed by a period of

under-pressure which creates a partial vacuum - known as the ‘negative suction

phase’- before returning to ambient conditions at time (ta + td + t−d ).

There exists various empirical formulae for estimating the peak incident over-

pressure ps (Brode, 1955; Dewey, 1964; Henrych, 1979; Smith and Hetherington,

1994). For example, Henrych (1979) expressed ps as a function of scaled distance

Z given by

ps =


14.072
Z

+ 5.540
Z2 − 0.357

Z3 + 0.00625
Z4 , 0.05 ≤ ps/pa ≤ 0.3

6.194
Z
− 0.326

Z2 + 2.132
Z3 , 0.3 ≤ ps/pa ≤ 1

0.662
Z

+ 4.05
Z2 + 3.288

Z3 , 1 ≤ ps/pa ≤ 10

(1.1)

where Z = r/W 1/3 (also known as the scaled distance), r is the distance from

the source of the explosion to the point of measurement and W is the weight

of charge (expressed in TNT-equivalent). Most analytical models neglect the

negative suction-phase of a blast pulse (Kinney, 1962; Baker, 1973). One of

the simplest approximation of the positive phase of a typical blast pulse is an

exponentially decaying pressure profile given by

ϕ(t) = e
− t

ti , 0 ≤ t ≤ ∞ (1.2)

where the decay constant ti is chosen so that the peak overpressure ps and the

impulse of the positive phase

Ii =

∫ ∞
0

pse
− t

ti dt (1.3)

matches that measured by experiments. Equation 1.2 is commonly used in one-
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dimensional (1D) studies of a blast wave impinging on rigid plates (Schiffer et

al., 2012; Taylor, 1941) or on sandwich panels (Deshpande and Fleck, 2005; Fleck

and Deshpande, 2004; Liang et al., 2007; McMeeking et al., 2008., Xue and

Hutchinson, 2004).

Pressure

Time

td td
-

0
ps

-

ps

pr

Reflected overpressure

Incident overpressure

Figure 1.2: Schematic of a reflected pressure-time history from an obstacle (TM5-
1300, 1990).

The incident wave is reflected from any surface that is not parallel to the

direction of propagation (such as a wall or a structure). Neglecting any attenua-

tion, the reflected pressure profile is often assumed to be similar in profile to the

incident but with a higher peak pressure as shown schematically in Fig 1.2. The

peak reflected overpressure can be expressed in the form of (Anderson, 2001)

pr = CRps (1.4)

where the reflection coefficient CR is given by the well-known Rankine-Hugoniot

relationship as follows:

CR =
8ps + 14pa
ps + 7pa

. (1.5)
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It is clear from Eq. 1.5 that the reflection coefficient ranges between 2 ≤ CR ≤ 8

where the lower limit corresponds to the acoustic range and the upper limit for

very strong shocks.

The loading by the blast wave may be categorised into three different régimes

- static (td/T � 1), dynamic (td/T ≈ 1) or impulsive (td/T � 1) - depending on

the time ratio (td/T ) where td is the duration of the positive phase and T is the

natural response time of the structure upon which the blast wave impinges (Smith

and Hetherington, 1994). The limiting case for the impulsive régime is termed

zero-period impulsive loading (Xue and Hutchinson, 2004) where the pressure

profile is insignificant and the structure acquires an instantaneous velocity given

by

V0 =
Ii
m

(1.6)

where Ii is given by Eq. 1.3 and m is the mass per unit area of the structure.

It will be highlighted later that strong blast loadings can often be approximated

- rather accurately - as zero-period impulses (Jones, 1971; Jones, 1976; Yu and

Chen, 1992, 2000).

1.2.2 Impulsive response of structures

There exists an extensive literature on the deformation and damage of beams

and plates to impulsive loadings: see, for example, Jones (1975, 1978, 1981, 1985,

1989, 1996, 2013), Jones and Shen (1993) and Yu and Chen (1998, 2000). In this

section, the focus will be on reviewing the key salient findings.

The classical experiment by Menkes and Opat (1973) showed that the mode of

deformation in a fully clamped aluminium (6061-T6) beam subjected to impulsive

loading (td/T � 1) can be categorised as: mode I - large inelastic deformation;

mode II - tensile-tearing and deformation; mode III - shear-band localisation, as

shown in Fig 1.3. Olson et al. (1993) demonstrated that fully clamped square

mild-steel plates also exhibit similar damage modes. It is worthwhile noting that

the terms ‘deformation modes’ and ‘damage modes’ are often used interchange-

ably. Nurick and Shave (1996) further demonstrated the same for blast-loaded

square plates; in addition, they proposed that the mode II deformation may be
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Figure 1.3: Schematic of damage modes for impulsively loaded beams by Menkes
and Opat (1973): (a) mode I-large inelastic deformation; (b) mode II-tensile
tearing at the supports; (c) mode III-shear-band localisation (Olson et al., 1993).

sub-divided into three distinct régimes of mode II* (through-thickness tearing

along the supports); mode IIa (complete detachment from supports with maxi-

mum central deflection increasing with impulse); mode IIb (complete detachment

from supports with maximum central deflection decreasing with impulse). Fur-

ther, experiments by Ramajeyathilagam and Vendhan (2004) showed that the

impulsive response of rectangular plates, with aspect ratio γ > 1, were broadly

similar to the square plates reported by Olson et al. (1993). Distinction between

mode I and II, II* and IIa as seen in the experiments by Nurick and Shave (1996)

were also identified.

By comparison to the limited experimental investigations alluded to above, a

large body of analytical studies exist on damage modes for beams and rectangular

plates. The rigid-plastic method of analysis is widely accepted and extensively

used to study the deformation and damage of beams and plates (Jones, 1971,
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1976; Shen and Jones, 1992; Yu and Chen, 1992). For example, the analytical

model proposed by Jones (1976) has been shown to predict well the maximum

permanent transverse deflection W0 of a rigid, perfectly-plastic beam. The ana-

lytical expression predicting the non-dimensional maximum transverse deflection

is given by
W0

H
=

1

4

(√
3λ− 2

)
(1.7)

where λ = ρV 2
0 L

2/M0 is the non-dimensional impulse intensity, ρ is the beam

density, L is the half length of the beam, M0 = σYBH
2/4 is the fully plastic

bending moment and σY is the static yield strength and H is the beam thickness.

Jones (1971) and Yu and Chen (1992) have also provided analytical solutions

to predict the maximum permanent transverse deflection of impulsively loaded

rectangular plates (fully clamped) with aspect ratio γ ≥ 1. Ignoring membrane

effects, Jones (1971) showed that the maximum permanent transverse deflection

of a rectangular plate, with length 2a and width 2b (a > b), subjected to a uniform

impulsive velocity V0 is

W0

H
=

(3− ξ0)[(1 + Γ)
1
2 − 1]

2[1 + (ξ0 − 1)(ξ0 − 2)]
(1.8)

where Γ = (λ/6)(3−2ξ0)(1/γ)2[1−ξ0 +1/(2−ξ0)] and ξ0 = (1/γ)[
√

3 + (1/γ)2−
(1/γ)] are both functions of the plate aspect ratio γ = a/b and the non-dimensional

impulse intensity λ = ρV 2
0 a

2/M0, where M0 = σYH
2/4 is the fully-plastic bend-

ing moment per unit length. If, however, W0 approaches or exceeds the plate

thickness H, then membrane force becomes important since it dissipates energy,

stiffens the structure and reduces the transverse deflection of the plate signif-

icantly. Yu and Chen (1992) accounted for the effects of membrane forces by

introducing a kinematically admissible time-dependent velocity field that traces

the transient phase of motion of the plates. The temporal evolution of W0/H

was given in the form of

W0

H
=
W0

H

[
λ
(

=
ρV 2

0 a
2

M0

)
, γ
(

=
a

b

)]
, γ ≥ 1. (1.9)

The ordinary differential equations (ODEs) have to be solved numerically using

8



the fourth order Runge-Kutta method.

The minimum impulsive velocities needed to initiate tensile tearing and pure

shear failures at the supports are often defined as critical impulsive velocities

corresponding to mode I→II and mode II→III transitions, respectively. Several

analytical models exist which predict the critical impulsive velocities correspond-

ing to the transitions between deformation modes. Jones (1976) used an elemen-

tary failure criterion (critical tensile strain criterion/critical accumulative shear

sliding criterion) to estimate the critical velocities corresponding to mode I→II

and II→III transitions for the dynamically loaded beam experiments by Menkes

and Opat (1973) which are expressed as

εmax = εc mode II (1.10)

∆s
max = H mode III (1.11)

where εmax (sum of bending εb and membrane εm strains) is the maximum total

in-plane strain within the structure, εc is the critical tensile strain of the material

and ∆s
max is the maximum plastic shear displacement. In a rigid-plastic analy-

ses, deformation is localised at the plastic hinges so the strain distribution in a

structure cannot be obtained directly (Jones, 1989). To calculate the maximum

total in-plane strain in Eq. 1.10, an effective length for the plastic hinge l has to

be defined. Jones (1976) assumed a value of l = H for the initial stage of defor-

mation which becomes l = L/2 when the fully plastic membrane force N = N0

is reached. The critical impulsive velocities corresponding to the mode I→II and

II→III transitions are, respectively, given by (Jones, 1976)

Vc2 =

√
σY
3ρ

H

L

(
1 +

√
4 + εc

8L2

H2
− 2L

H

)
(1.12)

and

Vc3 =
2
√

2

3

√
σY
ρ
. (1.13)

Thus for a given material, the critical impulsive velocity corresponding to mode

I→II transition depends on the ratio L/H. By contrast, the critical velocity at the

mode II→III transition depends only on the material properties. Two important
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effects, however, were ignored by Jones (1976): first, on the interaction between

shear force and bending moment and, second, on weakening of the sliding sections

with damage progression. Focusing on these two effects, Yu and Chen (2000) re-

examined the critical velocity for mode II→III transition. They, too, found that

the critical impulsive velocity depends only on material properties given by

Vc3 = λc
√
σY /ρ (1.14)

where λc - given in Table 1.1 - depends on the yield criterion adopted. Although

Jones (1976)’s prediction of Vc3 agrees reasonably well with the experiments of

Menkes and Opat (1973), Yu and Chen (2000) showed that more accurate predic-

tions are achieved with an interactive yield criterion; for example, circular yield

criterion, Hodge’s yield criterion, etc.

Table 1.1: Tabulation of critical impulsive parameter λc and energy ratio βc for
aluminium beams in Eq. 1.15 (Yu and Chen, 2000).

Criterion Critical impulsive Critical energy
parameter λc ratio βc

Square yield criterion 0.943 0.857

Circular yield criterion 0.840 0.444

Hodge’s yield criterion 0.873 0.438

Shen and Jones (1992) developed an energy-based failure criterion to account

for the simultaneous influence of bending, membrane stretch and transverse shear.

It states that damage in mode II or III occurs when the specific energy dissipation

(density of plastic work) θ at any point in the structure reaches a critical value

given by

θc =

∫ εr

0

σddε (1.15)

where εr and σd are the true rupture strain and the true dynamic stress from a

uniaxial tensile test, respectively, which they assumed are equal to the equivalent

strain and stress in the actual structure. They found that the transition from

mode II to III occurs when the ratio of the plastic work absorbed through shearing
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deformation to the total plastic work done by all the stress components (β) reaches

a critical value of

βc = 0.45 (1.16)

and the failure criteria that delineate the different damage modes, identified pre-

viously by Menkes and Opat (1973), may then be expressed as follows:

mode I : θ < θc, β < βc (1.17a)

mode II : θ = θc, β < βc (1.17b)

mode III : θ = θc, β ≥ βc. (1.17c)

Calibrating to the experimental data of Menkes and Opat (1973), Shen and Jones

(1992) proposed an empirical relationship between the plastic hinge length and

the dissipated energy ratio given by

α + 1.2β = 1.3 (1.18)

where α = l/H. Since 0 ≤ β ≤ 1, it follows that 0.1 ≤ α ≤ 1.3. Shen and

Jones (1992) found that the onset of mode III damage occurs at a critical value

of βc = 0.45. The efficacy of this value was assessed for aluminium beams by Yu

and Chen (2000) using different forms of interactive yield criteria in Table 1.1.

It was found that βc is close to 0.45 if using an interactive yield criterion, but is

nearly twice that deduced by Shen and Jones (1992) for a square yield condition.

The predictions using an energy density criterion fits the experimental data by

Menkes and Opat (1973) best.

To the best of the author’s knowledge, there are currently no analytical predic-

tions on the modes I→II and II→III transitional velocities for impulsively-loaded

rectangular plates. However, the open literature did contain a number of detailed

3D finite element (FE) simulations of clamped rectangular plates subjected to im-

pulsive loading where predictions were shown to be in reasonably good agreement

with the corresponding experiments. For example, Olson et al. (1993) developed a

finite element program (NAPSSE) using on a strain-based criterion, akin to Jones

(1976)’ critical tensile strain criterion in Eq. 1.10, to simulate mode II damage.

However, mode III damage was not included. Gupta et al. (2010) adopted an
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equivalent strain criterion to model tensile tearing in fully clamped circular mild

steel plates. A progressive degradation scheme - also known as an ‘element-kill

method’ in ABAQUS/Explicit (2012) - was employed to model tear initiation,

crack propagation and the subsequent complete detachment from its supports.

Their FE model assumes that the plate material is bilinear with isotropic hard-

ening - see schematic in Fig 1.4 - and incorporates a Mises yield criterion with

associated flow rule. The solid line in the figure - ε̄pD and ε̄pf are, respectively, the

σ

0

D=0

εf
p

D=10<D<1

εD
p ε

(σ)

Softening

Undamaged response    

Dσ

Figure 1.4: Schematic of stress-strain curve with progressive damage degradation.

equivalent plastic strain corresponding to the onset of damage and failure - repre-

sents the damaged stress-strain response whilst the dashed curve is the response

in the absence of damage. The damage variable, D, captures the combined effect

of all active damage mechanisms. Gupta et al. (2010) adopted a shear strain

criterion in ABAQUS to model the onset of damage for a fully clamped circular

mild steel plate due to shear band localisation. Their model assumes that the

equivalent plastic strain at the onset of damage (ε̄pS) is a function of the shear

stress ratio and strain rate given by ε̄pS(θs, ˙̄εp) where θs = (q + ksp)/τmax is the

shear stress ratio, τmax is the maximum shear stress and ks (= 0.3 for aluminium)

is a material parameter. The criterion for damage initiation is met when

ωS =

∫
dε̄p

ε̄pS(θs, ˙̄εp)
= 1 (1.19)
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where ωS is a state variable that increases monotonically with plastic deformation

and is proportional to the incremental change in equivalent plastic strain. The

predictions agree well with the experimental results of Gupta et al. (2010). Ra-

majeyathilagam and Vendhan (2004) compared the critical tensile strain criterion

by Olson et al. (1993) to the equivalent strain criterion by Gupta et al. (2010)

for fully clamped rectangular plates (with aspect ratio γ > 1) using the finite el-

ement software CSA/GENSA [DYNA3D]. Both strain-based models predict well

the experimental results by Ramajeyathilagam and Vendhan (2004). Rudrapatna

et al. (1999) also used the NAPSSE program to simulate damage in rectangular

mild-steel plates. Their plates are supported by spring elements rather than con-

ventional constraint conditions. Two different failure models based on the stress

and strain ratios were incorporated into NAPSSE: a linear interaction criterion

(LIC) where the ratios are added directly and a quadratic interaction criterion

(QIC) where the ratios are squared before being added. Failure is assumed to

occur when the failure function reaches unity, i.e.

LIC: f =
εmax

εr
+
τavg

τult

= 1 (1.20)

QIC: f =
(εmax

εr

)2

+
(τavg

τult

)2

= 1 (1.21)

where the maximum total in-plane strain εmax is based on Jones (1976)’ beam

theory, εr is the rupture strain from a uniaxial tensile test, the shear stress τavg

is assumed to be uniformly distributed around the clamped boundary and given

by the reaction forces in the springs, and τult is the ultimate shear stress. They

showed that the QIC is more accurate than the LIC in predicting the experimental

results of Nurick and Shave (1996). Rudrapatna et al. (1999) noted that shear

damage does not occur exclusively in mode III but also in mode II.

1.2.3 Non-impulsive response of structures

Single-degree-of-freedom (SDOF) representation of a structure has been widely

employed to study the dynamic response of structures subjected to non-impulsive

loads and in the preliminary blast assessment of structures; see Fallah and Louca

(2007), Fischer and Haring (2009), Krauthammer and Altenberg (2000), Li and
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Figure 1.5: Schematic of the transformation of a fully clamped beam system to
a SDOF equivalent (Biggs, 1964).

Meng (2002), Rigby et al. (2012, 2014), Subramaniam et al. (2009), Teich and

Gebbeken (2010) and Yim and Krauthammer (2009). The parameters of the

SDOF model are derived based on energy equivalence with the actual structure.

The equation of motion for the SDOF system, shown in Fig 1.5, is given by

(Biggs, 1964)

meẅ + kew = pe(t) (1.22)

where me, ke and pe are the equivalent mass, stiffness and loading, respectively.

Biggs (1964) derived transformation factors (loading factor KL and mass factor

KM) for the equivalent mass, stiffness and loading as follows:

me = KMmb, ke = KLkb, pe(t) = KLp(t) (1.23)

where mb and kb are the actual mass and stiffness of the beam. The derivation of

the transformation factors are based on an assumed shape function φ(x) for the

deformed structure, i.e.

KL =

∫
φ(x)dx and KM =

∫
φ2(x)dx. (1.24)
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Although Biggs’ SDOF method is often employed because of its simplicity and

ease of use, with relatively few input requirements, it assumes purely flexural

resistance and ignores any membrane action that is induced by large displacement.

Figure 1.6: Schematic of a structural beam model by Schleyer and Hsu (2000).
Finite rotations and elongations are allowed at the supports through the intro-
ductions of axial and rotational springs. Resistance-elongation function of axial
springs and moment-rotation function at the hinges are as shown.

Modal approximation techniques proposed by Martin and Symonds (1966)

were also widely employed to assess the blast response of structures. It assumes

that the impulsive response of a rigid-plastic structure results in deformation

that continually evolves towards a modal solution, i.e. the velocity field Ẇ may

be written as the product of separate functions of space and time Ẇ (x, t). The

modal solution is a velocity field Ẇ (x, t) with separated functions for spatial and

temporal variables given by

Ẇ (x, t) = ẇ(t)φ(x) (1.25)

where ẇ(t) is the generalised velocity and φ(x) is the mode function or mode

shape. The modal solution satisfies the laws of motion, compatibility (kinematic
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admissibility) and constitutive relations. The corresponding modal displacement

(W ) and acceleration (Ẅ ) fields can also be written in terms of the same partial

functions given by

W (x, t) = w(t)φ(x) and Ẅ (x, t) = ẅ(t)φ(x). (1.26)

The mode approximation methods have been extended to include finite deflec-

tions (Symonds, 1980), uncoupled elastic and plastic phases of motion (Symonds

and Mosquera, 1985), elastic recovery (Schleyer and Mihsein, 1992) and variable

support restraints (Schleyer and Hsu, 2000).

Schleyer and Hsu (2000) used mode approximation technique to investigate

the response of beams subjected to non-impulsive loadings. The beam is sup-

ported by axial (with stiffness Kx) and rotational springs (with stiffness Kφ) at

each end as shown in Fig 1.6. The former models purely plastic membrane be-

haviour whilst the latter models elastic, perfectly plastic characteristics of the

supports and plastic hinges. A third rotational spring models a central plastic

hinge. In their model the deformation of the structure is divided into three phases

in accordance to sequence of plastic hinge formation. The velocity field associ-

ated with each phase is linked to the velocity field of the preceding phase using

the transitional conditions proposed by Symonds et al. (1984). Their analytical

predictions gave excellent agreement with the experimental results by Menkes

and Opat (1973). However, their model predictions were limited to the mid-span

deflection in mode I and the model neglects the weakening effects of damage and

failure.

1.2.4 Effects of fluid-structure interaction

A considerable body of literature exists that deals with the effects of fluid-

structure interaction (FSI) in deep underwater explosions and air blasts. The

beneficial effects of FSI in reducing the impulse transmitted to a structure have

been recognised for deep underwater explosions since Taylor (1941). He modelled

the response of a rigid freestanding plate loaded by an exponentially decaying,

planar shock wave and showed that the transmitted impulse - in the case of
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negligible compressibility of the fluid medium - can be expressed as

IF

Ii
= 2β−(βw/βw−1)

w (1.27)

where IF is the maximum transmitted impulse per unit area of the free-standing

structure, which is governed by a non-dimensional parameter (better known as

the FSI index) βw given by

βw =
ρwcwti
ρH

(1.28)

where ρw is the density of water and cw is the wave speed in water. The FSI index

βw is independent of the blast intensity: a direct consequence of the linearity as-

sumption since the reflected pressure profile scales linearly with its corresponding

incident values. This ‘peculiar’ property has been extensively exploited in the

design of sandwich panels that can sustain significantly higher impulsive loads

than monolithic plates of equivalent weight, leading to greater resistance against

underwater blasts: see Fleck and Deshpande (2004), Xue and Hutchinson (2004),

Deshpande and Fleck (2005), Tilbrook et al. (2009), McShane et al. (2007), Mc-

Shane et al. (2010) and Mori et al. (2007), to name a few.

Understanding how cavitation fronts (breaking and closing fronts) develop and

evolve is important since the impulse imparted by the blast waves to submerged

structures are directly affected by it. Kennard (1943) described theoretically

the one-dimensional evolution of cavitation zones in a liquid by treating water

as an elastic medium. He found that, when the pressure at any point drops

below the cavitation limit of the fluid, two ‘breaking fronts’ emerge from this and

propagate in opposite directions, creating an expanding pool of cavitated liquid.

Subsequently, these breaking fronts can arrest, invert their direction of travel and

become ‘closing fronts’ that forces contraction of the cavitated zones.

Schiffer et al. (2012) examined the effects of initial hydrostatic pressure on

the underwater blast response of a rigid plate supported by a linear spring. Their

model captures propagation of both breaking and closing fronts (Kennard, 1943)

as well as their interactions with the structure in a blast event; predictions were

shown to be in good agreement with measurements from shock-tube experiments

presented by Schiffer and Tagarielli (2013). They found that increasing hydro-
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static pressure reduces the transmitted impulse since it moves the point of incip-

ient cavitation away from the structure, and reducing plate mass does not always

lead to a reduction in transmitted impulse whilst increasing the supporting stiff-

ness always will.

Analytical and FE models were developed by Schiffer and Tagarielli (2014) to

investigate the dynamic response of clamped circular fibre-reinforced composite

plate to deep underwater blasts. In their analytical model, the laminated plate

is treated as a deformable 2D structure that takes into account the effects of

transverse shear, membrane stretch from large deflections, and orthotropic mate-

rial properties. They found that if an underwater blast loading can be assumed

to be impulsive only if the response time of the structure is at least one order

of magnitude higher than the decay time of the blast wave. Their predictions

were compared to the experiments by Schiffer and Tagarielli (2015) where there

is excellent agreement. In addition, Schiffer and Tagarielli (2015) also reported

a ‘double-cavitation’ phenomenon in their experiments. They found that early

deformation of the plate, due to the propagation of flexural waves, gives rise

to a localised cavitation zone at the fluid-structure interface. This zone quickly

collapses upon coalescence of the flexural wave in the centre. Subsequent plate

deformation induces an additional cavitation zone at a finite distance from the

plate as previously described. It is worth noting that the aforementioned stud-

ies were all extensions of Taylor’s original theory for an incompressible medium.

However, the same approach cannot be employed to study FSI effects in an air

blast which involves non-linear, finite amplitude disturbances propagating in a

compressible medium (Tan et al., 2005).

Kambouchev et al. (2006, 2007) have extended Taylor’s original FSI theory

for an incompressible (water) to a compressible (air) medium. They explored

analytically the limiting cases of extremely heavy and extremely light plates for

arbitrary blast intensities and studied the intermediate asymptotic régimes nu-

merically through a Lagrangian formulation of the Euler equations of compressible

flow and conventional shock-capturing techniques. A modified non-dimensional

parameter that governs fluid-structure interaction in air - analogous to βw in Eq.
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1.28 - was proposed as follows:

βs =
ρsUsti
ρH

. (1.29)

Note that ρs is the gas density behind the shock given by

ρs = ρa
2γa + (γa + 1) ps

pa

2γa + (γa − 1) ps
pa

, (1.30)

and Us is the shock speed given by

Us = ca

√
(γa + 1)ps

2γapa
+ 1. (1.31)

where the subscript a denotes ambient conditions, γa is the specific heat ratio,

ρa is air density, pa is pressure and ca is speed of sound in air. The approximate

formula for the transmitted impulse can be expressed as a function of this non-

dimensional parameter βs and loading intensity ps given by

IF

Ii
= λ

βs(1+βs)
R ββs/(1−βs)

s (1.32)

where the non-dimensional parameter λR is

λR = γR

(CRfR
γR

)
, (1.33)

the non-dimensional parameter γR is

γR = 8− 42pa
ln(1 + ps/7pa)

ps
, (1.34)

the reflected coefficient CR is given in Eq 1.5 and fR is

fR =
(

6
ps
pa

+ 7
)√√√√ (6 + CR) ps

pa
+ 7(

ps
pa

+ 7
)(

(1 + 6CR) ps
pa

+ 7
)(
CR

ps
pa

+ 7
) . (1.35)

They found that the transmitted impulse of the free-standing plate reduces with
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increasing βs and nonlinear compressibility further enhances the reduction of

transmitted impulse provided by FSI effects in the linear range. The beneficial

influence of FSI in potentially mitigating the effect of blast has recently been

explored as a basis for the design of sandwich structures with increased blast

resistance: see Dharmasena et al. (2010, 2011), Ebrahimi and Vaziri (2013), Feng

et al. (2007), Main and Gazonas (2008), Vaziri and Hutchinson (2007), Vaziri

et al. (2007), Wadley et al. (2010, 2013) and Zhu et al. (2010).

Hutchinson (2009) recently carried out a detailed numerical study to elucidate

the effects of non-linear compressibility on the energy and momentum transfer to

rigid, free-standing plates subjected to air blasts. In his work, a shock is generated

by the sudden release of a highly compressed air layer. The transmitted impulse

of the free-standing plate is normalised by the total impulse of the compressed

air container I0 as a function of a non-dimensional parameter β∗ given by

β∗ =
1

2

I2
0

∆E0ρH
(1.36)

where ∆E0 is the total energy of the compressed air container. Note that Eq.

1.36 has been defined using invariants of the incident wave compared with βs, in

Eq. 1.29, which must be determined at the instant when the wave strikes a plate.

It was found that the impulse transmitted to a plate reduces with increasing

β∗. Using this newly-defined non-dimensional variable, it was shown that the

maximum impulse transmitted to a plate is around twice the initial total impulse

I0 and this ratio of the maximum transmitted impulse to the initial total impulse

I0 is independent of the loading intensity.

The findings by Kambouchev et al. (2006, 2007) and Hutchinson (2009) apply

only to rigid, free-standing plates. Little is known, however, of how the inclu-

sion of supports affect FSI, the momentum and energy transfer, and subsequent

failure of a structural component. There are a few recent studies attempting to

investigate the effects of FSI for a fully clamped structures. For example, Teich

and Gebbeken (2013) investigated the influence of FSI and aerodynamic damp-

ing on elastic response of a structure subjected to an air blast. They extended

Taylor’s model to include aerodynamic damping, stiffness effects and structural

damping and developed closed-form solutions to the problem by assuming a linear
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FSI effect, i.e. no change in the fluid density and linear superposition of waves.

They found that the general assumption of rigid reflection (ignoring FSI effect)

leads to a significant overestimation of displacements and thus the internal forces

and stresses in flexible systems subjected to blast loadings. Subramaniam et al.

(2009) studied interactions between a blast pressure wave and an elastic structure

numerically using an Arbitrary Lagrange Euler (ALE) framework. They found

that the structural displacement predicted by ignoring FSI is larger than the cor-

responding displacement considering FSI - this is consistent with the findings of

Teich and Gebbeken (2013). The error in the predicted maximum displacement

by ignoring FSI effect was found to be directly proportional to the ratio of the

velocity of the structure to the velocity of the shock wave.

1.3 Motivations and objectives

Existing models (based on either rigid-plastic methods, single-degree-of-freedom

model, or modal approximation techniques) are not applicable when estimating

the dynamic response (deformation, damage and failure) of elasto-plastic struc-

tures subjected to intense non-impulsive loadings. It is also unclear how pulse

shape, and its corresponding duration, influence the mode of damage, and how

limits to deformation due to necking localisation and/or ductile fracture at the

supports affect the final performance of the structure, with or without fluid-

structure interactions. There lacks a general methodology, through an analytical

approach or otherwise, to capture large elasto-plastic deformation, and the loss

of integrity at the supports for general (impulsive and non-impulsive) loadings.

The current state of knowledge on fluid-structure interactions involving mono-

lithic structures, in both compressible or incompressible medium, is still very

much grounded on works based on a rigid free-standing structure (Taylor, 1941;

Kambouchev et al., 2006, 2007; Hutchinson, 2009), or an elastic structure (Schif-

fer et al., 2012; Schiffer and Tagarielli, 2014, Subramaniam et al., 2009, Teich

and Gebbeken, 2011). The magnitude of loading from a blast is often sufficiently

intense to cause significant plastic deformation in a structure, leading to large de-

formation and, in extreme cases, to a loss of integrity at the supports. It is as yet
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unclear how the introduction of supports to a ‘free-standing structure’, and/or

the methodology needed to introduce them, affects previously known results.

Likewise, on the relaxation of an idealised rigid structure to an elasto-plastic one.

The main objectives of this PhD work are to develop models, both numerical

and analytical, to elucidate the following for elasto-plastic structures subjected

to general (impulsive and non-impulsive) loadings:

1. To understand how pulse shape and duration affect structural deformation

and the critical impulse at mode transitions;

2. The interplay between bending, shear and membrane effects on structural

deformation and failure;

3. To quantify how FSI affects energy and momentum transfer during large

structural deformation and its subsequent failure; and,

4. On the roles of the fixing condition offered by the supports during FSI.

1.4 Outline of the thesis

This thesis is organised as follows. Chapter 2 develops a model for an elasto-

plastic structural beam system that is sufficiently general to capture large elasto-

plastic deformation with bending, shear and catenary action, and the loss of

integrity at the supports. In Chapter 3, three-dimensional (3D) finite element

(FE) models for elasto-plastic beams are developed to simulate its response to

blast loadings. Both the FE (Chapter 3) and analytical (from Chapter 2) models

- validated against the experimental data of Menkes and Opat (1973) - are used

to investigate the effects of pulse duration on the deformation and failure of fully

clamped deformable beams. Chapter 4 investigates the effects of FSI in deep

underwater explosions for the elasto-plastic structural beam system developed in

Chapter 2. Predictions from the previously validated 3D FE models will be used

to validate the analytical predictions where they will be shown to be in excellent

agreement. The analytical model is then used to carry out parametric studies to

investigate the sensitivity of energy and impulse transfer to deformable beams of
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different mass and aspect ratio. How support conditions affect previously known

results based on rigid, free-standing structures are investigated here. Chapter 5

presents results on FSI between an intense air blast (considering the non-linear

compressibility of air) and the elasto-plastic structural beam system from Chap-

ter 2. The effects of structural and blast pressure wave parameters on FSI are

investigated. The sensitivity of blast response of a deformable beam to its aspect

ratio and mass will be quantified. Similar to Chapter 4, the influence of support

conditions is also investigated. Chapter 6 deals with the blast response of fully

clamped rectangular plates. 3D FE models are developed which are validated

against experimental data for square mild-steel and aluminium plates from the

literature. Deformation contour maps delineating régimes of deformation modes

for combinations of aspect ratio and non-dimensional impulse are produced. Fi-

nally, in Chapter 7, conclusions and suggestions for further research are given.

1.5 Contributions to existing literature

The bulk of the research work reported in this thesis have appeared in archival

journals, submitted for review or currently under preparation. They are as fol-

lows:

1. “Deformation and failure of rectangular plates subjected to impulsive load-

ings” (Yuan, Y., and Tan, P. J.), International Journal of Impact Engineer-

ing 59 (2013), 46-59.

2. “Energy and momentum transfer to a ‘fully clamped’ elastic plate in an

air-blast” (Yuan, Y., and Tan, P. J.), Applied Mechanics and Materials 566

(2014), 262-267.

3. “Large deformation, damage evolution and failure of ductile structures to

pulse-pressure loading” (Yuan, Y., Tan, P. J., Shojaei, A., and Wrobel, P.),

submitted to International Journal of Solids and Structures, (2015).

4. “The influence of deformation limits on fluid-structure interactions in deep

underwater blasts” (Yuan, Y., Tan, P. J., Shojaei, A., and Wrobel, P.),

submitted to International Journal of Impact Engineering, (2015).
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5. “Elastic-plastic response spectra with fluid-structure interaction effect” (Yuan,

Y., Tan, P. J., Shojaei, A., and Wrobel, P.), submitted to Archive of Applied

Mechanics, (2015).

6. “Preliminary assessment of the design guidelines for ships against blast

loadings” (Liu, L., Tan, P. J., Yuan, Y., and Wrobel, P.), in preparation for

Ocean Engineering, (2015).
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Chapter 2

Formulation of an elasto-plastic

structural beam system

As reviewed in Section. 1.2.2, Menkes and Opat (1973) identified three dis-

tinct damage modes that are characteristics of clamped ductile beams subjected

to short-duration, high-intensity transverse pressures (referred to, hereinafter, as

impulsive loadings): viz. mode I - large inelastic deformation; mode II - tensile

tearing over the supports; mode III - transverse shear failure at the supports. Of

noteworthy is that damage in mode II and III always initiates in the region of the

beam abutting the supports although, in practice, a sharp distinction between

the two modes is not found. There are several analytical models - Jones (1976),

Yu and Chen (2000), Shen and Jones (1992), Wen (1996) and Alves and Jones

(2002a,b) to name a few - on the prediction of critical impulse at mode transitions.

However, nearly all were formulated within the constitutive framework of limit

analysis and assumed impulsive loading conditions. The model by Jones (1976)

proposed that the critical impulsive velocity at mode I→II transition occurs when

the maximum in-plane strain - arising from catenary (membrane) and bending

actions - over the supports reaches the critical tensile strain of the material from

which the beam was made; and when the maximum transverse shear sliding at

the supports reaches the beam thickness for the corresponding mode III damage.

In reality, however, membrane force must play a significant role during failure in

mode III and, likewise, with transverse shear force in mode II. To address this,
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Shen and Jones (1992) developed an energy-based failure criterion - applicable

to a broad class of dynamic structural problems - to account for the simultane-

ous influence of bending, membrane stretch and transverse shear. It states that

damage (mode II or III) occurs when the specific dissipation (density of plastic

work) θ at a point in the structure reaches a critical value of θc =
∫ εr

0
σddε where

εr and σd are the true rupture strain and the true dynamic stress of a uniaxial

tensile test, respectively, which they assumed are equal to the equivalent strain

and stress in the actual structure. They found that a transition occurs from mode

II to III at the critical value of βc = 0.45, where β is the ratio of the plastic work

absorbed through shearing deformation to the total plastic work done by all the

stress components. Yu and Chen (2000) studied transverse plastic shear failure at

the supports (mode III) where the efficacy of βc = 0.45, previously proposed by

Shen and Jones (1992), was assessed against different forms of interaction yield

criteria; furthermore, the weakening effects of the sliding sections - a transverse-

displacement discontinuity - during the failing process is also included in their

model. Whilst the aforementioned models are able to predict critical impulses

that are broadly in agreement with the experimental data of Menkes and Opat

(1973), they are limited to impulsive loadings and neglects elastic deformation in

the beam.

In order to model the effects of boundary conditions (or supports) upon the

momentum and energy transfer to a deformable structure through fluid structure

interaction (FSI) - this is to be presented in Chapters 4 and 5 - certain restrictions

and assumptions in existing analytical models will need to be relaxed/removed.

This chapter presents the formulation of a more general elasto-plastic structural

beam system aimed specifically at addressing the aforementioned. The proposed

structural model is sufficiently general to (1) describe large elasto-plastic defor-

mation with catenary actions; (2) incorporate the interactions between bending,

membrane stretch and transverse shear in the yield and plastic limit functions;

(3) model the loss of integrity at the supports through progressive damage and

its subsequent detachment; and, (4) account for general (impulsive and non-

impulsive) loading conditions. For the sake of definiteness, damage shall refer

to the onset and subsequent degradation of the generalised stresses in the beam

member and at its supports; as opposed to failure which refers to a complete
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loss of load carrying capacity of the beam member, exemplified by the complete

detachment of the beam from its supports. Predictions by the present model will

be compared to existing experimental data from the literature, and to results

from detailed three-dimensional finite-element simulations in Chapter 3, where

they will be shown to be in good agreement.

2.1 Features of the structural beam system

Figure 2.1 shows a schematic representation of a structural beam system which

consists of a beam member supported at each end by three springs (one rota-

tional and two axials). The beam member - made of a rate-independent, elastic

perfectly-plastic material in the present study - is of total length 2L and a uniform

rectangular cross-section of thickness H and width B where L/H � 1 (i.e. the

beam is slender). Following Schleyer and Hsu (2000), a pressure loading p(x, t) is

assumed to always impinge normally over the entire span of the beam regardless of

its subsequent transverse deflection. For uniformly distributed pressure loading,

p(x, t) = p(t). The pressure pulse may take on any general form: exponentially

decaying (EXP), linearly decaying (LIN), rectangular (REC) etc.

L

p

t

REC

EXP

LIN

p(t)

L

x

z

0

A

A

Section A-A
z

y 0

B
H

Figure 2.1: Schematic of a structural beam system. A plane of symmetry exists
along x = 0, −B/2 ≤ y ≤ B/2, −H/2 ≤ z ≤ H/2 so that only the right-half
needs to be modelled.

The rotational spring has elasto-plastic characteristics to model the beam
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rotation at each end and the subsequent plastic hinge formation. Both the axial

and vertical springs have rigid-plastic characteristics to model the ‘plastic stretch’

and ‘plastic shear sliding’ actions at the supports, respectively. Collectively, the

trio of springs may be regarded as a representation of an imperfectly clamped

boundary which allows interactions between bending, stretch and shear to be

considered and where damage mechanics will be applied to model the progressive

loss of support integrity. Experiments and theoretical studies (Menkes and Opat,

1973; Shen and Jones, 1992; Wen, 1996) have all shown that damage (mode II

and III) in impulsively loaded beams occurs in the region abutting the supports.

In the case of non-impulsive loading, the present model, too, assumes that failure

occurs in the same region of the beam member. Detailed three-dimensional finite-

element simulations, to be presented in Chapter 3, will show that this is a valid

assumption and is, indeed, the case. A plane of geometric and loading symmetry

exists at the mid-span of the beam (x = 0) which allows one-half of the beam to

be analysed.

2.2 Yield, damage and failure criteria

The components of stress σ on any cross-section of the beam member, includ-

ing at its supports, give the following stress resultants for axial force N , shear

force Q, axial torque T and bending moment M (Stronge and Yu, 1993):

N =

∫
A

σxxdA, Q =

∫
A

σxzdA, T =

∫
A

(yσxz − zσxy)dA, M = −
∫
A

zσxxdA

(2.1)

where A is the cross-sectional area of the beam; y and z are transverse coordinates

measured from the axis through the centroid of every section. Since the beam is

loaded by equal but opposing couples that act in directions perpendicular to the

plane of symmetry, the beam must bend in the plane of symmetry and does not

twist, i.e. T = 0. For slender beam members where L/H � 1, stress resultants

arising from the actions of membrane N , shear Q and bending M are analogous

to stress components in a continuum and are referred, hereinafter, as generalised

stresses (Stronge and Yu, 1993; Jones, 1990; Shen and Jones, 1992). Yield,
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damage and failure criteria will be presented as functions of these generalised

stresses in the following sub-sections.

2.2.1 Yield and fully plastic stress state

The state of stress on any cross-section of an elastic perfectly-plastic beam

member, including at its supports, is established through functions of yield (ψel)

and fully plastic (ψp) stress conditions as follows: (Stronge and Yu, 1993)

Elastic state : ψel < 0 (2.2a)

Elasto-plastic state : ψel > 0, ψp < 0 (2.2b)

Fully plastic state : ψel > 0, ψp = 0. (2.2c)

Since every cross-section carries shear force, in addition to axial force and bending

moment, the yield function ψel is given by (Stronge and Yu, 1993)

ψel =
|M |
MY

√
1− Q2

Q2
Y

+
N

NY

+
Q

QY

− 1 (2.3)

where MY = σYBH
2/6, NY = σYBH and QY = 2σYBH/3

√
3 are the bending

moment, membrane force and transverse shear force at the elastic limit, respec-

tively. The yield condition ψel = 0 provides an upper bound on the generalised

stresses correponding to elastic (reversible) strains at every point in the cross-

section.

When part of the cross-section is strained beyond its elastic limit (i.e. ψel > 0),

proportional increases in the stress resultants will lead to an increase in ψel with

deformation. The increases in stress asymptotically approach a limiting, or fully

plastic, stress condition ψp = 0 as the curvature and deformation becomes indefi-

nitely large. For solid cross-sections, the distribution of each stress components in

the plastically deforming region of the cross-section can conceivably change with

deformation. Following Stronge and Yu (1993), these changes are also ignored

here. The fully plastic limit function ψp for generalised stresses in a rectangular
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cross-section is given by (Stronge and Yu, 1993)

ψp =
|M |
M0

√
1− Q2

Q2
0

+
N2

N2
0

+
Q

Q0

− 1 (2.4)

where M0 = φmMY , N0 = NY and Q0 = φmQY are the fully plastic bending

moment, membrane force and transverse shear force, respectively. φm is the

shape factor defined as the ratio of fully plastic bending moment (or fully plastic

transverse shear force) to its corresponding elastic limit and is equal to 1.5 for

a beam of rectangular cross-section. It is convenient to express the fully plastic

limit function in non-dimensional form as follows:

ψp = |M̄ |
√

1− Q̄2 + N̄2 + Q̄2 − 1 (2.5)

where M̄ = M/M0, N̄ = N/N0 and Q̄ = Q/Q0 are the non-dimensional fully

plastic generalised stresses. The fully plastic stress condition ψp = 0 is an upper

bound for stress states that satisfy yield in any part of the cross-section. This

bound for the fully plastic state is based on an assumption that the distribution

of normal stress in the fully plastic stress state with, or without, shear is identical

(Stronge and Yu, 1993). Plastic hinge forms at the cross section where the fully

plastic stress condition ψp = 0 is reached.

2.2.2 Damage initiation and evolution

The term damage describes the onset and subsequent degradation of the gen-

eralised stresses in the beam member and at its supports. Figure 2.2 shows a

schematic of generalised stresses (M̄ or N̄ or Q̄) versus effective strain εeff where

point c corresponds to the generalised stress state at which a cross-section meets

the damage initiation criterion (ωd = 1). Upon damage initiation, the generalised

stresses degrade in accordance to an evolution law, denoted by the line c−d. This

section presents the damage initiation criterion and an evolution law that governs

the softening of these generalised stresses.

In general, the effective strain εeff on any cross-section may be expressed as
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Figure 2.2: Schematic showing non-dimensional generalised stresses as a function
of effective strain pre- (ωd < 1) and post- (ωd = 1) damage initiation.

(Wen, 1996; Alves and Jones, 2002a)

εeff =

√
2

9

[
(εxx − εyy)2 + (εyy − εzz)2 + (εxx − εzz)2 +

3

2
(γ2
xz + γ2

zy + γ2
xy)
]
. (2.6)

For slender members, out-of-plane warping of cross-sections is negligible since the

depth is small compared to its length; consequently, plane sections remain plane

(Stronge and Yu, 1993). Therefore, it is reasonable to assume that γxy = γyz = 0

(Wen, 1996; Alves and Jones, 2002a). If the material in a dynamic uniaxial

test with εxx > 0 obeys the incompressibility relation εxx + εyy + εzz = 0, then

εyy = εzz = −εxx/2 (Jones, 1989). Hence, Eq. 2.6 reduces to

εeff =

√
ε2xx +

1

3
γ2
xz. (2.7)

The maximum total strain εxx experienced at any cross-section x comprises of

two parts given by (Wen, 1996; Jones, 1989)

εxx = εm + εb (2.8)

where the membrane strain εm and bending strain εb may be expressed, respec-

tively, as functions of the transverse mid-span displacement of the beam WB as

follows:

εm = 2
(WB

L

)2(x
L

)2

(2.9)
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and

εb =
WBH

L2
. (2.10)

Note that a linear variation of the membrane strain εm has been assumed across

the beam length (Jones, 1989).

Following Wen (1996), Alves and Jones (2002a), Yu and Chen (2000) and

Jones (1976), it is further assumed that the transverse shear strain γxz is negligible

within the beam member but is dependent upon the plastic shear sliding distance

over the shear band at the supports. Hence, on any cross-section

γxz =

{
0 if 0 ≤ x < L

WS/(l/2) if x = L
(2.11)

where WS is the plastic shear sliding displacement and l is the width of the shear

band. Slip-line field analysis of a rigid-plastic beam with rectangular cross-section

and thickness H by Nonaka (1967) have shown that the shear band width ranges

between H ≤ l ≤ 2H for maximum transverse beam deflection of 0 to H. The

latter corresponds to the onset of membrane response in the beam. Since large

beam deflection invariably leads to membrane stretching, a value of l = 2H is

chosen following Jones (1976) and Nurick and Shave (1996). Substituting Eqs.

2.8 - 2.11 into Eq. 2.7, gives an approximate expression for the effective strain

on any cross-section x of the beam system as follows:

εeff =


2
(
WB

L

)2(
x
L

)2

+
(
WBH
L2

)
if 0 ≤ x < L√[

2
(
WB

L

)2

+
(
WB

L

)(
H
L

)]2

+ 1
3

(
WS

H

)2

if x = L
(2.12)

It is noted that the effective strain is greatest at the supports where x = L since

its two constituent components (total axial in-plane and transverse shear strains)

are both highest there. This is in agreement with Wen (1996) and Alves and

Jones (2002a). Expressions for WB and WS are to be derived in Section 1.3.

The criterion for damage initiation is met when (ABAQUS/Explicit, 2012)

ωd =
εeff

εd
= 1 (2.13)
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where ωd is a state variable that increases monotonically with effective strain

εeff and εd is the effective strain at the onset of damage. Upon the initiation of

damage, i.e. ωd = 1, progressive softening of the non-dimensional generalised

stresses follows

|M̄ | = |M̄ f |(1−D), N̄ = N̄ f (1−D) and Q̄ = Q̄f (1−D) (2.14)

where D is the damage variable; M̄ f , N̄ f and Q̄f are the non-dimensional bending

moment, membrane force and transverse shear force at the onset of damage,

respectively. For the sake of simplicity, a linear evolution of the damage variable

D with effective strain εeff is adopted here as follows: (ABAQUS/Explicit, 2012)

D =
εeff − εd
εr − εd

(2.15)

where εr is the rupture strain in a uniaxial tensile test. This definition ensures

that when D = 1, generalised stresses decreases to zero.

2.2.3 Failure criteria

Failure refers to a complete loss of load carrying capacity by the beam member

through detachment from its supports. Experiments by Menkes and Opat (1973)

have shown that an impulsively loaded beam always fails at its supports for modes

II and III; this is also in agreement with predictions by the analytical models of

Wen (1996) and Alves and Jones (2002a). Here, Eq. 2.12 too shows that εeff is

greatest at the supports (x = L) where damage is expected to initiate and evolve.

Therefore, failure criteria need only be established for the supports in Fig 2.1.

The criteria delineating the different modes of failure, described by Menkes

and Opat (1973), are as follows:

Mode I : D < 1, ωs < 1 (2.16a)

Mode II : D = 1, ωs < 1 (2.16b)

Mode III : D = 1, ωs ≥ 1 (2.16c)
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The state variable ωs is expressed as

ωs =
β

βc
= 1, (2.17)

where β is the ratio of the plastic work absorbed through shearing deformation

to the total plastic work done by all the stress components given by (Shen and

Jones, 1992)

β =
Es
S

Es
S + Eb

S + Em
S

(2.18)

where Es
S is the shear strain energy obtained via the vertical axial spring; Eb

S is the

bending strain energy of the rotational spring; Em
S is the membrane strain energy

obtained via the horizontal axial spring; and, βc is the critical β value marking

the transition from mode II to III. For aluminium beams, Yu and Chen (2000)

showed that the βc obtained using a square yield criterion is larger than 0.45 ob-

tained by Shen and Jones (1992) with an interactive yield criterion. Furthermore,

they found that βc is a material-dependent parameter which is independent of ge-

ometry. Since an interactive fully plastic limit function is used here and material

properties corresponding to Aluminium 6061-T6 - the same as Shen and Jones

(1992) and Yu and Chen (2000) - is used in the simulations to be presented in

Chapters 3 to 5, it is reasonable to assume that βc = 0.45.

2.3 Equations of motion

The overall transverse displacement at any point x (x > 0) of the structural

beam system may be approximated as a sum of n generalised displacements and

mode functions given by (Williams, 1996)

W (x, t) =
n∑
i=1

φi(x)wi(t) (2.19)

where the partial functions φi(x) are admissible mode functions that satisfy the

geometric boundary conditions and the temporal functions wi(t) are generalised

transverse displacements to be determined by the Lagrange equations of the 2nd
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kind. Since the transverse displacement will be represented here by the sum

of polynomials, instead of the normal modes of transverse vibration in a beam

system, the partial functions φi(x) need not be orthogonal (Williams, 1996).

According to Eq. 2.19, the displacement at the mid-span and supports are given,

respectively, by

WB(t) = W (x = 0, t) and WS(t) = W (x = L, t). (2.20)

The corresponding velocity (Ẇ ) and acceleration (Ẅ ) fields also use the same

partial functions given by

Ẇ (x, t) =
n∑
i=1

φi(x)ẇi(t) and Ẅ (x, t) =
n∑
i=1

φi(x)ẅi(t). (2.21)

Defining the generalised mass of the beam member as

Mij =

{
m
∫ L

0
φi(x)φj(x)dx if i 6= j

m
∫ L

0
φ2
i (x)dx if i = j

(2.22)

where m is the mass per unit length, the total kinetic energy of the beam system

at any given time t can be expressed as

EK =
1

2
m

∫ L

0

Ẇ 2(x, t)dx =
1

2

n∑
i

n∑
j

Mijẇiẇj. (2.23)

The total potential (strain) energy of the beam system is

V = Eb
S + Es

S + Em
S︸ ︷︷ ︸

support

+Eb
B + Em

B︸ ︷︷ ︸
beam

(2.24)

where Eb
B and Em

B are the bending and membrane strain energies of the beam

member, respectively; Es
S, Eb

S and Em
S are the shear, bending and membrane

strain energies associated with the vertical, rotational and axial springs, respec-

tively, at the supports. Note that subscripts S and B are used to denote support

and beam member, respectively; whilst, superscripts s, b and m denote shear,
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bending and membrane, respectively. The generalised force is given by

Qi =

∫ L

0

p(x, t)φi(x)dx, i = 1, 2, ..., n. (2.25)

Since the Lagrangian of the structural beam system is

L = EK + V, (2.26)

the differential equations governing wi are obtained by substituting Eqs. 2.26

and 2.25 into the well-known Lagrange equation of the 2nd kind

d

dt

( ∂L
∂ẇi

)
+
∂L

∂wi
= Qi, i = 1, 2, ..., n (2.27)

to give
n∑
j=1

Mijẅj +
∂V

∂wi
=

∫ L

0

p(x, t)φi(x)dx, i = 1, 2, ..., n. (2.28)

The key to obtaining the governing equations of motion in Eq. 2.28 is to derive

the various strain energy components (Eb
S, Es

S, Em
S , Eb

B and Em
B ) in Eq. 2.24.

Following Schleyer and Hsu (2000) and Biggs (1964), the dynamic response

of the beam system is divided into three phases of motion in accordance to the

sequence of plastic hinge formation as follows: (1) Phase 1 (0 < t ≤ t1) - when

the fully plastic stress condition is not met anywhere in the beam, i.e. ψp < 0;

(2) Phase II (t1 < t ≤ t2) - when a stationary plastic hinge forms at the support;

(3) Phase III (t2 < t ≤ t3) - when a travelling plastic hinge A develops, moves

towards, and coalesce with, the existing stationary hinge at the mid-span of the

beam, ending up in a final two-hinge collapse configuration. The strain energy

components corresponding to each are derived in the following subsections.

Note that each phase of motion has its own unique set of initial condition

and associated displacement (and velocity) field. In the present study, the tran-

sitional conditions between phases follow the proposal by Symonds et al. (1984),

which is based on the well-known ‘minimum ∆0 technique’. This technique is

commonly employed to determine the starting amplitude of the ‘new’ velocity

field by minimising the difference in kinetic energies between the velocity fields
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at the end of the terminating phase and at the start of the new phase (Schleyer

and Hsu, 2000; Langdon and Schleyer, 2005; Stronge and Yu, 1993).

2.3.1 Phase I: 0 < t ≤ t1

B

S

L
MS

MB

x

WB

Figure 2.3: Schematic of the transverse displacement for the right-half of the
structural beam system in Phase I.

In Phase I, it is reasonable to neglect catenary actions and transverse shear

since the transverse deflection is small compared to the beam thickness, i.e.

WB � H (Izzuddin, 2005; Schleyer and Hsu, 2000). To simplify the transition

from an elasto-plastic to a fully plastic stress state, the true moment-curvature

relationship on any cross-section - with its non-linear increase in yield moment

MY to the fully plastic bending moment M0 shown schematically in Fig 2.4 - is

replaced by a bilinear approximation to simplify the calculations of the bending

moment (Jones, 1989; Schleyer and Hsu, 2000; Izzuddin, 2005). Since bending

moment is always greatest at either the supports (x = L) or the mid-span (x = 0)

for a transversely-loaded beam, one should expect a plastic hinge to form first

at either of these two locations (Biggs, 1964; Schleyer and Hsu, 2000; Izzuddin,

2005, Langdon and Schleyer, 2005). Consequently, fully plastic limit function

given by Eq. 2.5 need only be defined at the supports and mid-span of the beam,

respectively, as follows:

ψpS = |M̄S| − 1 (2.29)

and

ψpB = |M̄B| − 1. (2.30)
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Phase I motion ends when either ψpS = 0 or ψpB = 0: whichever is reached first.

Notwithstanding, Schleyer and Hsu (2000) and Fallah et al. (2013) have shown

0 κ

M

M0

MY

Bilinear approximation

Elastic, perfectly plastic
material

Figure 2.4: Bilinear approximation of the moment-curvature characteristics for
an elastic-perfectly plastic beam system with a rectangular cross-section.

that the sequence of hinge formation depends critically upon the non-dimensional

parameter α(= KφL/EI), where E is Young’s modulus and I = BH3/12 is the

beam’s second moment of area. Fallah et al. (2013) found that when α > 6,

a plastic hinge always forms at the supports first. To ensure that the angle

between the horizontal and vertical axial springs must always be perpendicular,

a relatively large rotational stiffness Kφ is used in the present model. Therefore,

it is reasonable to assume that a plastic hinge always forms first at the supports

since α� 6.

Following Schleyer and Hsu (2000), an admissible transverse displacement

field for the right-half of the structural beam system in Phase I, shown in Fig 2.3,

is given by

W (x, t) =
w1(t)

2

(
1 + cos

πx

L

)
+ w2(t) cos

πx

2L
. (2.31)

The bending strain energies in the beam member and rotational spring are, re-

spectively,

Eb
B(t) =

EI

2

∫ L

0

[∂2W (x, t)

∂x2

]2

dx (2.32)
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and

Eb
S(t) =

Kφ

2
φ(t)2 (2.33)

where φ(t) =
∫ L

0
[∂2W (x, t)/∂x2]dx (Langdon and Schleyer, 2005; Schleyer and

Hsu, 2000). Since WB � H, it is reasonable to assume that the strain energies

due to shear and membrane are negligibly small (Izzuddin, 2005); hence,

Es
S(t) = Em

S (t) = Em
B (t) ' 0. (2.34)

Substituting Eqs. 2.32, 2.33 and 2.34 into Eq. 2.28, and using the initial condi-

tions w1 = w2 = 0 and ẇ1 = ẇ2 = 0 gives the two equations of motion of this

phase. When the fully plastic stress condition at the supports is reached, i.e.

ψpS = |Kφφ(t)|/M0 − 1 = 0, (2.35)

it marks the end of Phase I deformation with the corresponding time of t = t1.

2.3.2 Phase II: t1 < t ≤ t2

In Phase II, the beam member may be assumed to deform in a manner similar

to a simply supported beam, see Biggs (1964). Following Izzuddin (2005), Fallah

and Louca (2007) and Fallah et al. (2013), small transverse deflection is also

assumed for Phase II; hence, the influence of transverse shear and catenary actions

can be ignored. Therefore, the fully plastic stress condition at the supports - since

ψpS = 0 - reduces to

|M̄S| = 1 (2.36)

whilst the same at the mid-span simplifies to

ψpB = |M̄B| − 1. (2.37)

Phase II motion ends when ψpB = 0.

An admissible transverse displacement field for Phase II motion, shown schemat-
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Figure 2.5: Schematic of transverse displacement profile for the right-hand half
of the structural beam system in Phase II.

ically in Fig 2.5, is (Schleyer and Hsu, 2000)

W (x, t) =
[
w1(t1) + w2(t)

]
cos

πx

2L
(2.38)

where w1(t1) is the terminating amplitude of the generalised displacement from

Phase I at t1. Expressions for strain energy components are identical to those

previously derived in Phase I (Eq. 2.32 for Eb
B; Eq. 2.34 for Em

B , Es
S and Em

S )

with the notable exception of the bending strain energy of the rotational spring

at the supports which is as follows:

Eb
S(t) = |MS|[φ(t)− φ1] = M0[φ(t)− φ1] (2.39)

where φ1 = M0/Kφ. Substituting Eqs. 2.32, 2.34 and 2.39 into Eq. 2.28 gives the

equation of motion for Phase II. Transitional condition between phases proposed

by Symonds et al. (1984) is adopted here to calculate the starting amplitude

of the velocity in the current phase based on the terminating velocities in the

previous phase. The starting amplitude of the generalised velocity in this phase

is given by

ẇ2 =
8

3π
ẇ1(t1) + ẇ2(t1) (2.40)

where ẇ1(t1) and ẇ2(t1) refer to the terminating amplitude of the generalised

velocity from Phase I at time t1. Once the mid-span of the beam meets the fully

plastic stress condition, i.e.

ψpB = EIκ(t)/M0 − 1 = 0 (2.41)
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where κ(t) = ∂2W (x, t)/∂x2|x=0 is the curvature at the mid-span, it marks the

end of Phase II deformation at the corresponding time of t = t2.

2.3.3 Phase III: t2 < t ≤ t3

Following Shen and Jones (1992) and Schleyer and Hsu (2000), it is assumed

that the membrane force N̄ is identically distributed throughout the span of

the beam whilst the transverse shear force is negligible at the mid-span. The

fully plastic stress conditions at the supports and mid-span of the beam are,

respectively,

|M̄S|(1− Q̄2
S) + N̄2 + Q̄2

S = 1, if |M̄S| > 0 (2.42a)

N̄2 + Q̄2
S = 1, if |M̄S| = 0 (2.42b)

and

M̄B + N̄2 = 1. (2.43)

If motion of the beam member ceases when the damage variable D < 1 (Mode I

deformation), this will be followed by residual deformation in the form of elastic

vibration. By contrast, if this happens when D = 1 then the beam will fail in

either mode II or mode III.

Phase III motion begins with two existing stationary plastic hinges (one each

at the support S and mid-span B) from Phase II. A travelling plastic hinge

A then develops that moves towards the stationary hinge at the mid-span (Fig

2.6a) before ending up in a final two-hinge collapse configuration (Fig 2.6b). The

admissible transverse displacement field at the beginning of Phase III motion

shown in Fig 2.6a, is (Shen and Jones, 1992)

W (x, t) =

{
w1(t1) + w2(t2) + w3(t) if 0 ≤ x ≤ L− ξ

w4(t) +
[
w1(t1) + w2(t2) + w3(t)− w4(t)

]
L−x
ξ

if L− ξ < x < L

(2.44)

where w1(t1) and w2(t2) are terminating amplitudes of the generalised displace-

ments from Phases I (at time t1) and II (at time t2), respectively. When the
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Figure 2.6: Schematic of transverse displacement profile for the right-half of the
structural beam system in Phase III (a) before and (b) after the travelling hinge
reaches its mid-span.

travelling plastic hinge reaches the mid-span, i.e. ξ = L, the admissible trans-

verse displacement field for Fig 2.6b becomes

W (x, t) = w4(t) +
[
w1(t1) + w2(t2) + w3(t)− w4(t)

]L− x
L

. (2.45)

The bending strain energies of the beam member and rotational spring are,

respectively,

Eb
B(t) = MB

w3(t)− w4(t)

ξ
, (2.46)

and

Eb
S(t) = |MS|

w3(t)− w4(t)

ξ
. (2.47)

The membrane strain energies of the beam member and the horizontal axial spring
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may be expressed, respectively, as

Em
B (t) = N∆B(t) (2.48)

and

Em
S (t) = N∆S(t) (2.49)

where ∆B(t) = ∆(t)/(1+1/
√

1−Q2
S/Q

2
0) is the in-plane membrane displacement

at the mid-span, ∆(t) = [w3(t) − w4(t)]2/ξ is the total membrane displacement

and ∆S(t) = ∆(t)−∆B(t) is the membrane displacement at the supports. Here,

it is assumed that in-plane membrane displacement is significant where a plastic

hinge has developed (Schleyer and Hsu, 2000; Langdon and Schleyer, 2005). The

shear strain energy of the vertical axial spring is

Es
S(t) = QSw4(t). (2.50)

Note that the parameters MS, QS, N , MB, ξ and ξ̇ in Eqs. 2.46–2.50 are un-

knowns. Recasting them in a non-dimensional form, viz. M̄S, Q̄S, N̄ , M̄B,

ξ̄ = ξ/L and ˙̄ξ = ξ̇/L, they will have to be computed as described below.

The non-dimensional velocity of the travelling hinge A can be expressed in

the form of (Shen and Jones, 1992)

˙̄ξ =
σY
ρL2

1.5(|M̄S|+ M̄B)− 2Q̄S
˙̄ξ(L/H)/

√
3 + 6N̄(w̄3 − w̄4) + ξ̄[p(t)/pc]

ξ̄( ˙̄w3 − ˙̄w4)
(2.51)

where w̄3 = w3(t)/H, ˙̄w3 = ẇ3(t)/H, ˙̄w4 = ẇ4(t)/H; pc = 4M0/L
2 is the fully

plastic collapse force per unit length, i.e. the largest force per unit length that

can be supported by the structural beam system when subjected to a pure bend-

ing moment before the bending moment at each plastic hinge equals the fully

plastic bending moment M0 (Jones, 1989). Note that when the travelling hinge

A reaches the existing stationary hinge at the mid-span B, they coalesce into a

single stationary hinge so that in subsequent motion

˙̄ξ = 0 and ξ̄ = 1. (2.52)
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The calculations of M̄S, Q̄S, N̄ , M̄B would depend on whether damage had

initiated. If the state variable ωd < 1, then M̄S, Q̄S and N̄ are governed by

normality requirements so that plastic flow must occur at a non-negative energy

dissipation rate since they have met the fully plastic stress condition (Eq. 2.42).

Therefore, according to Shen and Jones (1992),

N̄
(

1 +
1√

1− Q̄2
S

)
= 2(w̄3 − w̄4) (2.53a)

Q̄S

[ 2√
1− Q̄2

S

− |M̄S|√
1− Q̄2

S

]
=

4ξ̄(L/H) ˙̄w4√
3( ˙̄w3 − ˙̄w4)

(2.53b)

if |M̄S| > 0, and

N̄
[ 2 ˙̄w4√

3Q̄S

+
˙̄w3 − ˙̄w4

ξ̄(L/H)

]
= 2

(w̄3 − w̄4)( ˙̄w3 − ˙̄w4)

ξ̄(L/H)
(2.54)

if |M̄S| = 0. If the state variable ωd = 1, then the non-dimensional bending

moment M̄S, membrane force N̄ and shear force Q̄S are governed by the damage

equations of Eq. 2.14. Note that non-dimensional bending moment M̄B remains

governed by fully plastic stress condition established for the mid-span (ψpB = 0)

in Eq. 2.43.

To calculate M̄S, Q̄S, N̄ and M̄B, they have to be expressed as functions of w̄3,

w̄4, ˙̄w3, ˙̄w4, ξ̄, ˙̄ξ and t through Eqs. 2.42, 2.43, 2.51, 2.53 and 2.54 if ωd < 1; and

through Eqs. 2.14, 2.15, 2.43 and 2.51 if ωd = 1. The temporal evolution of these

parameters are obtained by solving the aforementioned equations using the well-

known 4th order Runge-Kutta method with the initial conditions of w3 = w4 = 0

and ẇ4 = 0. Following Symonds et al. (1984), the starting amplitude of the

generalised velocity ẇ3 for Phase III is given by

ẇ3 =
12

π2
ẇ2(t2) (2.55)

where ẇ2(t2) refers to the terminating amplitude of the generalised velocity from

Phase II at time t2. Phase III deformation ends at time t3 if motion of the beam

member ceases i.e.

ẇ3(t3) = 0. (2.56)
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If the damage variable D < 1 when this occurs, then the beam fails in mode I.

Otherwise, a mode II or mode III failure would ensue if D = 1.

If the structural system fails before all the initial kinetic energy is expended,

then the beam member would have a residual kinetic energy at the point of

severance. Parts of this are absorbed through further plastic deformation as the

beam member continues to deform until it reaches a rigid permanent set whilst the

remaining as translational kinetic energy. In the current model, the energy that is

absorbed post failure is not considered. The residual energy and momentum for

one-half of the structural beam system at failure are given by (Shen and Jones,

1992)

Ektr =
1

2
m(L− ξ)Ẇ 2

B(t3) +
1

2
m

∫ L

L−ξ

[
ẆS(t3) + [ẆB(t3)− ẆS(t3)]

L− x
ξ

]2

dx

(2.57)

and

Iktr = m(L− ξ)ẆB(t3) +m

∫ L

L−ξ

[
ẆS(t3) + [ẆB(t3)− ẆS(t3)]

L− x
ξ

]
dx (2.58)

or, in non-dimensional form, as

Ēktr =
Ektr
Eext

(2.59)

and

Īktr =
Iktr
Iext

(2.60)

where Iext = L
∫ td

0
p(t) dt is the external momentum, Eext = ρBHLV 2

0 /2 is the

external energy and V0 = Iext/ρHBL is the equivalent impulsive velocity.
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Chapter 3

Blast response of elasto-plastic

beams

3.1 Introduction

As previously highlighted, majority of the analytical models on blast load-

ing of beams and plates in the literature - Jones (1976), Wen (1996), Shen and

Jones (1992), Yu and Chen (2000), etc. - were formulated within the constitutive

framework of limit analysis which disregards the influence of material elasticity.

Whether these rigid-plastic methods of analysis provide an acceptable approxi-

mation of the dynamic response of actual elasto-plastic structures is an important

issue. Symonds (1985) showed that a rigid-plastic analysis may be acceptable if

the energy ratio R� 1, where R is the ratio of the total energy imparted by the

loading Ein to the maximum elastic strain energy capacity Umax
e of the structure

given by

R =
Ein

Umax
e

. (3.1)

This problem was re-investigated by Symonds and Frye (1988) through a single-

degree-of-freedom (SDOF) mass spring model - using either an elastic perfectly-

plastic or rigid perfectly-plastic spring - where it was found that a large energy

ratio (R � 1) is a necessary, but not a sufficient, condition for a rigid-plastic

approximation. If the duration of the load pulse is not brief in comparison to the
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fundamental period of elastic vibration of the structure, a rigid-plastic idealisa-

tion would lead to an unacceptably high error, by as much as 60%. In some cases

this error may even be negative, i.e. the rigid-plastic solution grossly underesti-

mates the final deformation of the structure (Stronge and Yu, 1993). Subsequent

study by Yu (1993) investigated the influence of elasticity on the dynamic plastic

response of cantilever beams and showed that the pulse shape and its rise time,

too, have a significant influence on the final beam deformation.

Existing models based on rigid-plastic methods cannot be used to study the

dynamic response of elasto-plastic beams subjected to intense non-impulsive load-

ings. In addition, it is unclear as to how pulse shape, and its duration, influence

the mode of deformation and how limits to deformation due to necking localisa-

tion and/or ductile fracture affect the final performance of a beam. These issues

will be investigated here using the analytical model developed in Chapter 2. For

impulsively loaded beams, there exists experimental data by Menkes and Opat

(1973) against which the current analytical predictions (Chapter 2) may be val-

idated. However, no equivalent experimental data for non-impulsive load cases

exist to the best of the author’s knowledge. Hence, a 3D non-linear finite element

(FE) model - validated against the data of Menkes and Opat (1973) - is first

developed and their numerical predictions are compared to the current analytical

model for impulsive load cases. Both the validated FE and analytical models are

then employed to study the effects of non-impulsive loading.

3.2 Finite element implementation

3.2.1 Mesh, loading and boundary conditions

Finite element analyses were performed using ABAQUS/Explicit (2012). All

the beams modelled have length 2L, width B and thickness H. Only one-half is

modelled since reflective symmetry exists on the plane at x = 0, −B/2 ≤ y ≤ B/2

and −H/2 ≤ z ≤ H/2. Figure 3.1 shows the displacement boundary conditions

that were imposed on the plane of symmetry and at the supports. 8-node solid

brick elements (C3D8R) with reduced integration and hour-glass control were
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used. All brick elements have equal dimension of 0.000783 m on all sides; hence, a

typical 0.203 m (2L)× 0.00635 m (H)× 0.0254 m (B) beam tested by Menkes and

Opat (1973) would comprise of 33024 (129× 8× 32) elements in its corresponding

FE model. Results of convergence studies - presented later in Fig 3.3 - will show

that this is sufficient to capture necking localisation, progressive damage and

ductile fracture with acceptable fidelity.

αE
α2E

α3E
τ τ τ

Pressure loading

(a) (b)

Part-4
Part-3

Part-2
Pressure loading

Part-1

ux=uy=uz=ϕx=ϕy=ϕz=0
ux=ϕy=ϕz=0

y

x

zz

y

x

ux=uy=uz=ϕx=ϕy=ϕz=0

ux=ϕy=ϕz=0

Figure 3.1: Schematic of boundary, or support, conditions (BCs) in the FE sim-
ulations: (a) standard fully clamped BC, and (b) modified BC. u and φ denote
displacement and rotation degree of freedom, respectively.

The ductile beam is loaded transversely by a uniformly distributed pressure

pulse. Unless otherwise specified, the pressure pulse is assumed to be linearly-

decaying, i.e. p(t) = p0(1− t/td) where p0 is the peak pressure (given in load per

unit length) and td is the pulse duration. A pulse duration of td = 0.01 ms is used

here - this follows Shen and Jones (1992). However, it needs to be established

that a pulse of finite duration td = 0.01 ms can be classed as impulsive. Fol-

lowing Xue and Hutchinson (2003), FE simulations were performed to determine

the maximum mid-span deflection W0 for fully-clamped beams subjected to a

linearly-decaying pressure loading of different duration td. All beams modelled

have identical dimensions 0.203 m (2L) × 0.00635 m (H) × 0.0254 m (B) and

material properties listed in Table 3.2 - identical to the beams tested by Menkes

and Opat (1973). The response time T of the beam - defined as the time it takes

to attain maximum mid-span deflection under a zero-period impulse (td = 0 so

the beam acquires an instantaneous initial velocity) - was found numerically to

be 0.3 ms. Figure 3.2 shows the variation of the maximum non-dimensional mid-

span displacement W0/H versus pulse duration td/T for different levels of impulse
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Figure 3.2: Non-dimensional mid-span displacement W0/H versus impulse dura-
tion td/T at different levels of Î. The aluminium beam has dimensions 0.203 m
(2L) × 0.00635 m (H) × 0.0254 m (B).

per unit area Î, expressed as

Î =
1

B

∫ td

0

p(t)dt. (3.2)

For linearly decaying pulse, Î = p0td/2B. At td/T = 0.4, the predicted maximum

deflection is 12% less than its corresponding zero-period limit. This discrepancy

increases to more than 50% at td/T = 3. This trend is representative of solid

beams subjected to blast loadings and is independent of pulse shape. Thus,

a linearly-decaying pressure pulse of finite duration td = 0.01 ms is, indeed,

impulsive since td/T = 0.033� 0.4. To simulate non-impulsive loading td/T � 1

should be used. The intensity of loading, for both impulsive and non-impulsive

load cases, is characterised by a non-dimensional impulse I∗ given by

I∗ =
Î

H
√
σY ρ

. (3.3)
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Figure 3.1a depicts a standard displacement boundary conditions that would

need to be imposed for a fully-clamped boundary condition (BC). It is shown

later that the local equivalent plastic strain in the beam abutting the supports

does not converge with repeated mesh refinement. In order to accurately model

progressive ductile fracture at the supports, a modified BC given in Fig 3.1b is

adopted. To demonstrate its efficacy, it needs to be shown that both the standard

and modified BCs give similar beam deflection profiles, but only the latter gives

a converged equivalent plastic strain at the boundary/support. For the modified

BC, three additional parts (labelled 2-4) are added to the end of the original solid

beam (part-1) to form an extended boundary shown schematically in Fig 3.1b.

Note that the standard fully-clamped BC of Fig 3.1a is imposed on part 4. All

the additional parts have equal width τ and identical material properties as the

solid beam, apart from a gradation of their elastic modulus E, by a factor α. The

parameters τ = H/6 and α = 10 are obtained by calibration to the experimental

data of Menkes and Opat (1973).

Table 3.1: Number of elements in each direction for Part-1 of the beam (0.203 m
(2L) × 0.00635 m (H) × 0.0254 m (B))

Mesh Number of elements Number of elements Number of elements
along z-direction along x- direction along y-directions

1 1 16 4
2 2 32 8
3 3 48 12
4 4 64 16
5 5 80 20
6 6 96 24
7 7 112 28
8 8 128 32
9 9 144 36
10 10 160 40

Figure 3.3 plots the maximum equivalent plastic strain εp versus mesh density

in part-1 for the two BCs. The number of elements in each direction of the beam

is listed in Table 3.1. For a beam with a standard BC (Fig 3.1a), the maximum

ε̄p must occur next to the supports where tearing is expected to initiate. It is
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Figure 3.3: Maximum equivalent plastic strain εp predicted for part-1 by the
FE model. Results shown are for an aluminium beam of dimensions 0.203 m
(2L) × 0.00635 m (H) × 0.0254 m (B) subjected to a non-dimensional impulse
I∗ = 0.466 with td = 0.01 ms. Properties for the aluminium beam is given in
Table 3.2. ‘Present’ refers to predictions using the modified boundary condition
in Fig 3.1b.

evident that ε̄p does not converge with repeated mesh refinement for the standard

BC. Figure 3.3 shows that mesh size No.8 gives sufficiently accurate results and

will be used here.

Figure 3.4a compares the deflection profiles predicted by the two BCs which

show negligible differences; likewise, for the temporal-history of their mid-span

deflection in Fig 3.4b. Therefore, it is reasonable to conclude that the modified

BC predicts acceptable mid-span deflection provided necking localisation and

ductile fracture had not intervened.

3.2.2 Material properties and damage model

The material description adopted is based on the conventional J2 plasticity

constitutive relation with linear isotropic hardening, which allows progressive

degradation of material stiffness to be implemented in finite elements. This ap-
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Figure 3.4: (a) Deflection profile along the x-axis and (b) temporal-history for
the mid-span deflection. Results shown are for aluminium beams of dimensions
0.203 m (2L) × 0.00635 m (H) × 0.0254 m (B) subjected to a non-dimensional
impulse of I∗ = 0.354 with td = 0.01 ms. Material properties for the beam are
listed in Table 3.2. ‘Present’ refers to predictions using the modified boundary
condition in Fig 3.1b.

proach, coupled with element deletion, is widely used to model progressive dam-

age and fracture in ductile materials (Hancock and Mackenzie, 1976; Johnson and
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Cook, 1983). All the beams modelled are made of Aluminium 6061-T6, which is

often assumed to be strain rate insensitive (Jones et al., 1971). Table 3.2 lists the

material properties of the beams tested by Menkes and Opat (1973).

Table 3.2: Material properties for the Aluminium 6061-T6 beam (Menkes and
Opat, 1973)

Density, Young’s modulus, Static yield Ultimate yield Poisson’s
ρ (kg/m3) E (GPa) stress, σY (MPa) stress, σU (MPa) ratio

2686 69 283 320 1/3

The progressive damage model for ductile materials in ABAQUS/Explicit is

adopted here. The criterion for ductile damage initiation is given by

ωd =

∫
dε̄p

ε̄pd(η, ˙̄εp)
= 1 (3.4)

where ωd is a state variable that increases monotonically with the equivalent

plastic strain. Here, the equivalent plastic strain ε̄pd at the onset of ductile dam-

age is assumed to be a function of stress triaxiality η and plastic strain rate

˙̄εp. When Eq. 3.4 is met, the damage variable D would increase according to

(ABAQUS/Explicit, 2012)

Ḋ =
Le ˙̄εp

ūpf
(3.5)

where ūpf is the effective plastic displacement at failure and Le = 7.83 × 10−4 m

is the characteristic length of the first-order element used in the FE model. Any

element whose stiffness is fully degraded, i.e. D = 1, is deleted from the mesh.

The two parameters needed to implement a ductile damage model are the damage

strain ε̄pd = 0.8 and the failure displacement ūpf = 0.011 m; both are found through

calibration to the experimental data of Menkes and Opat (1973).

In line with the definition of failure in Chapter 2, the FE simulation termi-

nates when a beam member completely detaches from its supports. The smallest

impulse needed to induce beam failure either in mode II or III is referred to here

as the critical impulse at mode I→II or II→III transition, respectively (Jones,

1989). To distinguish between failure in mode II and III in the FE simulations, a
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separate damage parameter for shear would need to be introduced since a sharp

distinction between the two modes is not normally found. The two possibilities

are the maximum transverse shear sliding (∆s
max) criterion by Jones (1976) and

Yu and Chen (2000), or an energy-based criterion by Shen and Jones (1992).

However, neither of these are feasible since ∆s
max is not a monotonic function of

I∗ and the plastic work per unit volume (energy density) is a mesh-dependent

quantity (Yu and Chen, 2000). Consequently, the critical impulse at mode II→III

transition is not predicted by FE unlike the analytical model developed in Chap-

ter 2.

3.3 Validation of FE and analytical predictions

All the beam specimens tested by Menkes and Opat (1973) - they have differ-

ent length (L) and thickness (H) combinations but identical width (B = 25.4 mm)

- are made of Al 6061-T6 with material properties given in Table 3.2. The pressure

pulse, in both the FE and analytical models, was assumed to be linearly-decaying

with a pulse duration td = 0.01 ms. An algorithm flow-chart on the numerical

implementation of Chapter 2 is given in Fig 3.5.

Figure 3.6 compares the predicted mid-span deflection (W0/H), at either the

point of cessation of motion or failure (if complete detachment from the supports

had occurred), to its corresponding experimental data. The analytical predic-

tions by Shen and Jones (1992) - these are available only for specimens 3 and

5 - are included for comparison. In mode I, there is good agreement between

experiments, FE and analytical predictions. The current FE and analytical mod-

els correctly predict a reduction in W0/H with increasing I∗ in modes II and III;

they are also broadly in agreement with the predictions by Shen and Jones (1992)

for specimens 3 and 5. Apart from specimen 1, the predicted critical impulse at

mode I→II and II→III also agree well with those reported by Menkes and Opat

(1973).

There is a notable lack of experimental data for modes II and III deformation

in Fig 3.6. To address this, relative mid-span deflections ∆W0 (, WB(t3)−WS(t3))
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Figure 3.5: Algorithm flow-chart on the numerical implementation of the analyt-
ical model presented in Chapter 2.

were deduced using existing ‘post-test’ photographs for specimens 3 and 5 pro-

vided by Menkes and Opat (1973). Figure 3.7 compares this relative mid-span

deflection ∆W0/H to the current analytical predictions and that by Shen and
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Figure 3.6: Variations of the non-dimensional mid-span deflection W0/H with
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modes reported by Menkes and Opat (1973). Experiments by Menkes and Opat
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current FE predictions.
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Jones (1992): a reasonably good agreement for modes I and II is noted. How-

ever, the current model over-predicts ∆W0/H in mode III because it assumes a

constant hinge length of l = 2H - this follows the approach of Wen (1996), Jones

(1976) and Alves and Jones (2002a) - instead of re-calibrating for a new hinge

length using each data point which was employed by Shen and Jones (1992).

Table 6.4 compares the critical non-dimensional impulse I∗ at mode transi-

tions. The current analytical model adopts a rupture strain of εr = 0.5 (Shen and

Jones, 1992) and an effective strain of εd = 0.38 corresponding to the onset of

damage. The latter was obtained by calibrating to the critical I∗ corresponding

to mode I→II transition for specimen 5. Similarly, for the FE model, ε̄pd = 0.8

and ūpf = 0.011 m are also obtained through calibration to the aforementioned.

Current predictions (FE and analytical) for the critical I∗ corresponding to mode

I→II transition are in good agreement with the experimental data - as does the

predictions by Shen and Jones (1992) - with the notable exception of specimen 1

Table 3.3: Critical impulse I∗ for mode transitions.

Specimen Mode Current Current Analytical1 Experiments2

No Analytical FE

1 I → II 0.40 0.43 - 0.63

II → III 0.90 - - 0.97

2 I → II 0.57 0.51 - 0.63

II → III 0.92 - - 0.97

3 I → II 0.44 0.43 0.46 0.49

II → III 0.82 - 0.81 0.87

4 I → II 0.55 0.54 - 0.58

II → III 0.82 - - 0.87

5 I → II 0.54 0.54 0.54 0.54

II → III 0.76 - 0.76 0.79

6 I → II 0.58 0.56 - 0.54

II → III 0.81 - - 0.79

1(Shen and Jones, 1992) and 2(Menkes and Opat, 1973).
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Figure 3.7: Variation of the relative mid-span displacement ∆W0/H with non-
dimensional impulse I∗. experimental data; - - analytical predictions by Shen
and Jones (1992); – current analytical predictions; | critical impulse at mode
transition by current analytical model.

which is considerably lower. In general, the predicted I∗ at mode II→III transi-

tion agrees well with experimental data.
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3.4 Response to non-impulsive loads

In the previous section, predictions by FE and the current analytical model are

validated against experimental data for impulsive loads. Both models are now

employed to investigate the dynamic response of elasto-plastic beams to non-

impulsive loads. Two of the beams - specimens 3 and 5 - will be modelled here.

Unless otherwise specified, a linearly decaying pressure pulse is always prescribed.

3.4.1 Mid-span deflection and critical impulse at mode

transitions

Figure 3.8 plots the non-dimensional mid-span deflection W0/H against I∗ for

pulse durations between 0.01 ≤ td ≤ 2 ms. Note that td = 0.01 ms corresponds

to impulsive loading - see Section 3.2.1. There is excellent agreement between the

FE and analytical predictions. Current FE simulations show that beam failure

always occurs at the supports regardless of pulse duration td which is the reason

why failure criteria was established only for the supports in Section 2.2.3. The

results in Fig 3.8 can be summarised as follows: (1) A broadly similar overall

trend for the mid-span deflection with I∗ for both impulsive and non-impulsive

loads, i.e. W0/H increases initially before reducing with I∗; (2) At any given I∗,

the mode I deflection reduces with increasing td whilst the reverse occurs in mode

II; (3) The mid-span deflection at mode I→II transition is insensitive to td; and,

(4) Mode III deflection for non-impulsive loads are considerably higher than its

corresponding impulsive counterpart at the same I∗.

Table 3.4 compares the predicted critical impulse by the analytical model

and FE. The results show that I∗ for mode I→II transition increases with pulse

duration td. In a similar vein, this is also observed for the corresponding mode

II→III transition. It is worth noting that for impulsive loads, the non-dimensional

critical impulse I∗ for mode II→III transition depends only on material properties

(Jones, 1976 and Yu and Chen, 2000); by contrast, it is shown here that the

critical I∗ increases with the pulse duration for non-impulsive loadings.
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Figure 3.8: Variation of the non-dimensional mid-span deflection W0/H against
non-dimensional impulse I∗ for a linearly decaying pressure with different pulse
durations. Black lines (td = 0.01 ms) correspond to impulsive loads. Current
analytical predictions: - - - mode I; — mode II; -.-.- mode III.
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Table 3.4: Predicted critical impulse I∗ by the analytical (and FE) model for
different pulse duration td.

Specimen Mode td td td td
No 0.01 ms 0.5 ms 1.0 ms 2.0 ms

3 I → II 0.44 (0.43) 0.51 (0.50) 0.66 (0.64) 1.09 (1.03)

II → III 0.82 (-) 0.99 (-) 1.27 (-) 1.56 (-)

5 I → II 0.54 (0.54) 0.60 (0.57) 0.74 (0.71) 1.21 (1.18)

II → III 0.76 (-) 1.06 (-) 1.28 (-) 1.51 (-)

3.4.2 Partitioning of energy

Introducing a non-dimensional strain energy defined as the ratio of the total

potential (strain) energy of the structural beam system to the work done by the

external pressure loading ET at the point of cessation of beam motion or at failure

given by

ĒP =
EP (= Eb

S + Em
S + Es

S + Eb
B + Em

B )

ET
(

=
∫ t3

0
p(t)[

∫ L
0
Ẇ (x, t)dx]dt

) . (3.6)

Figure 3.9 plots the variation of ĒP versus I∗ for different pulse duration td where

it shows an excellent agreement between the FE and analytical predictions. No-

tice that ĒP remains at unity throughout mode I which implies that the external

work is dissipated entirely through the various plastic work components by the

structural beam system. Beyond the mode I→II transition, ĒP drops dramati-

cally suggesting that a finite amount of residual energy remains in the beam post

failure. The effect of pulse duration td upon this residual energy (and momen-

tum) will be further discussed in Section 3.4.3. For a given I∗, increasing the

pulse duration td has the dramatic effect of increasing the non-dimensional strain

energy of a beam failing in modes II or III. This is consistent with the results

shown in Fig 3.8 since more non-dimensional potential (strain) energy is absorbed

through larger mid-span deflection.

The components of plastic work absorbed at the supports through bending,
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Figure 3.9: Non-dimensional strain energy ĒP for the two specimens shown in
Fig 3.8. Black lines (td = 0.01 ms) correspond to impulsive loads. - - denotes
mode I; – denotes mode II; -.- denotes mode III.

membrane and shear deformation are non-dimensionalised as follows:

Ēb
S =

Eb
S

Es
S + Eb

S + Em
S

, Ēm
S =

Em
S

Es
S + Eb

S + Em
S

, and Ēs
S = β =

Es
S

Es
S + Eb

S + Em
S

(3.7)
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Figure 3.10: Components of the plastic work absorbed through bending, mem-
brane and shear deformation at the supports for the specimens shown in Fig 3.8.
Black lines (td = 0.01 ms) correspond to impulsive loads. - - denotes mode I; –
denotes mode II; -.- denotes mode III.
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where Ēb
S + Ēm

S + Ēs
S = 1. Figure 3.10 plots the 3 components of plastic work

at the supports against I∗ at the point of cessation of beam motion or at failure.

The overall trend between the non-dimensional energy components and I∗ are as

follows: (1) Ēb
S reduces monotonically with I∗; (2) Ēm

S increases initially, reaching

a peak value, before reducing with I∗; and, (3) Ēs
S increases monotonically with

I∗. In general, Figure 3.10 shows that failure at the supports - in mode II and III -

under impulsive and non-impulsive loadings are primarily through a combination

of membrane and shear deformations. It is worth noting the critical β value (βc =

0.45) marking the transition from mode II→III is obtained based on impulsive

load cases - see Shen and Jones (1992) and Yu and Chen (2000). A higher βc

value would require a higher critical I∗ to induce mode II→III transition with a

corresponding reduction in the mid-span deflection at the mode transition - see

Fig 3.8.

Several studies (Li and Jones, 2000; Shen and Jones, 1992; Yu and Chen, 2000;

Jones, 1976) have found that under impulsive loading, the mode II and III de-

formation is dominated by membrane and transverse shear, respectively. Beyond

the mode I→II transition, Figure 3.10 shows a reduction in the non-dimensional

shear strain energy Ēs
S and an increase in the non-dimensional membrane energy

Ēm
S with td for a given I∗. The reduction in Ēm

S (and increase in Ēs
S) becomes less

evident with increasing pulse duration. Notwithstanding, the results above are

consistent with the previous studies for impulsively loaded beams (Li and Jones,

2000; Shen and Jones, 1992; Yu and Chen, 2000): i.e., membrane and transverse

shear play key roles when inducing mode II damage and the effects of bending is

negligible in mode III damage.

3.4.3 Residual momentum and energy

The ‘post-failure’ residual momentum Īktr and residual energy Ēktr of the two

beams are plotted in Fig 3.11. Beyond the mode I→II transition, both Īktr and

Ēktr increase rapidly with I∗; this is particularly evident for impulsively-loaded

beams. Shen and Jones (1992) found that the maximum loss of momentum for

impulsively-loaded beams (td = 0.01 ms) occurs in the vicinity of the mode I→II

transition and a rapid decrease in momentum loss by the beam occurs in mode
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Figure 3.11: Non-dimensional residual momentum Īktr and energy Ēktr for the two
specimens shown in Fig 3.8. Black lines (td = 0.01 ms) correspond to impulsive
loads. – denotes mode II; -.- denotes mode III.

II - this is consistent with the corresponding rise in residual momentum seen in

Fig 3.11. Although a large impulse is generally needed to induce mode III failure

by an impulsive load, a significant amount of residual kinetic energy and linear

momentum remains in the beam which was also found in Jones (1976). For a

given I∗, increasing the pulse duration td has the dramatic effect of reducing the

residual momentum and energy of the beam failing in mode II and III. This is

consistent with Fig 3.8 where the mid-span beam deflection W0/H increases with

td for a given I∗; hence, additional energy is absorbed through additional plastic

work leading to a reduction in the residual momentum and energy.

65



3.4.4 Pulse shape
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2tmean0
t
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peff

Figure 3.12: Youngdahl’s equivalence parameters for a general pulse: (a) defini-
tions for Ieff and tmean; (b) an equivalent rectangular pulse.

All the previous analytical predictions were based on a linearly-decaying pres-

sure pulse given by p(t) = p0(1 − t/td). Here, we will establish whether the

approach of Youngdahl (1970, 1971) - see schematic in Fig 3.12 - may be used

to eliminate the effects of pulse shape when investigating the dynamic response

of elasto-plastic beams. Following Youngdahl (1970, 1971), an effective impulse

(per unit length) is first obtained as follows:

Ieff =

∫ t3

ty

p(t)dt, (3.8)

where p(t) is the actual pressure pulse, t3 is time at the end of Phase III motion

(see Chapter 2) and ty corresponds to the time when the effective pressure (Eq.

3.9) equals the fully plastic collapse force per unit length of the beam, i.e. p(ty) =

pc = 4M0/L
2. From Eq. 3.8, an effective pressure may be defined as

peff =
Ieff

2tmean

(3.9)

where tmean is the centroid of the effective pressure pulse in Fig 3.12a given by

tmean =
1

Ieff

∫ t3

ty

p(t)dt. (3.10)
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It is worth noting that Youngdahl (1970, 1971) equivalence parameters were

originally defined based on the rigid-perfectly plastic idealisation of dynamically

loaded structures.
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Figure 3.13: The predicted mid-span deflection at the cessation of beam motion
(mode I) or at failure (mode II or III) for four different pressure pulses and
their corresponding Youngdahl’s equivalent. — analytical prediction by actual
pressure pulse; − − − analytical predictions by Youngdahl’s equivalent. Black
lines (td = 0.01 ms) correspond to impulsive loads. � and are critical impulses
predicted using the actual pulse and Youngdahl’s equivalent.

A parametric study was carried out using different pulse shapes, viz. linearly-

decaying (LIN), triangular (TRI), cosine (COS) and sine (SINE), of identical

impulse per unit area (Î =
∫ td

0
p(t)dt/B) impinging on a 0.203 m (2L) × 0.00635
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m (H) × 0.0254 m (B) elasto-plastic beam. Figure 3.13 compares the predicted

mid-span deflection at the cessation of beam motion (mode I) or at failure (mode

II or III) of the aforementioned pulses to their corresponding Youngdahl’s equiv-

alent (Eqs. 3.9 and 3.10). The results show that Youngdahl’s approach gives

an excellent approximation of the mid-span deflection in all three modes for im-

pulsive loadings (td = 0.01 ms). However, this is not generally the case if the

loading is non-impulsive. For monotonically decaying pressure pulses (LIN and

COS) that are non-impulsive - see Figs 3.13a and 3.13b - a reasonable agreement

is observed up until td = 1 ms beyond which significant discrepancies arise. For

non-monotonic pulses (TRI and SINE), the discrepancies between the actual pulse

and its Youngdahl’s equivalent increases dramatically with td. The discrepancies

arise because Youngdahl’s equivalence parameters were defined based on a rigid,

perfectly-plastic idealisation of the loaded structures. Hence, the effective impulse

Ieff in Eq. 3.8 does not account for contributions from the elastic response, i.e. it

ignores
∫ ty

0
p(t)dt, which leads to an under-prediction of the mid-span deflection

in mode I.

3.5 Conclusions

The response of elasto-plastic beams to impulsive and non-impulsive loadings

were investigated in this chapter. Predictions by the current analytical and FE

models were shown to be in good agreement with the experimental results of

Menkes and Opat (1973). Excellent agreement between the predictions were also

seen for elasto-plastic beams subjected to non-impulsive loads.

Key findings on the effects of pulse duration on the dynamic response of elasto-

plastic beams can be summarised as follows: (i) Mode I deflection reduces with

increasing pulse duration for a given dimensionless impulse I∗ whilst the reverse

occurs for the deflection in mode II; (ii) At the transition between mode I and

II, the mid-span displacement is insensitive to pulse duration td; (iv) Mode III

deflection under non-impulsive loads are considerably higher than its correspond-

ing impulsive counterpart at the same I∗; (iii) An increase in the pulse duration
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td delays the transitions (I→II and II→III) between deformation modes; (v) In-

creasing the pulse duration td leads to a reduction in the non-dimensional shear

energy Ēs
S but an increase in the non-dimensional membrane energy Ēm

S at the

same I∗; (vi) Increasing the pulse duration td decreases the residual momentum

and energy of the beam in modes II and III.

It was also shown that Youngdahl (1970, 1971) approach is successful elimi-

nating the dependence of the mid-span deflection of elasto-plastic beams to pulse

shape effects for monotonically decaying, impulsive and non-impulsive, loadings.

However, the same would under-predict the mode I mid-span deflection if the

loading is non-impulsive and non-monotonically decaying (such as triangular and

sine pulses).
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Chapter 4

Fluid-structure interaction in

deep underwater blasts

4.1 Introduction

The beneficial effects of FSI in reducing the impulse transmitted to a mono-

lithic structure - although the momentum it acquires depend on its inertia -

have been recognised for deep underwater explosions since Taylor (1941). In the

acoustic range where nonlinear compressibility of the fluid medium is negligible,

the transmitted impulse is proportional to a non-dimensional parameter (better

known as the FSI index) which is independent of the blast intensity: a direct

consequence of the linearity assumption since the reflected pressure profile scales

linearly with its corresponding incident values. This ‘peculiar’ property has been

extensively exploited to design sandwich panels that are better able to resist im-

pulsive loads in comparison to monolithic plates of equivalent weight, leading

to greater blast resistance: see Fleck and Deshpande (2004), Xue and Hutchin-

son (2004), Deshpande and Fleck (2005), Tilbrook et al. (2009), McShane et al.

(2007), McShane et al. (2010) and Mori et al. (2007), to name a few.

Understanding how cavitation fronts (breaking and closing fronts) develop

and evolve is paramount since the impulse imparted by blast waves to submerged

structures are directly affected by it. Schiffer et al. (2012) modelled the 1D

shock response of a rigid plate backed against a linear spring in contact with
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pressurised water on either, or both, side(s); their predictions were shown to be

in good agreement with measurements from shock-tube experiments in Schiffer

and Tagarielli (2013). Their results revealed that increasing hydrostatic pressure

reduces the imparted impulse since it moves the point of incipient cavitation

away from the structure. Furthermore, sensitivity analysis found that reducing

plate mass does not always lead to a reduction in the transmitted impulse whilst

increasing the supporting stiffness always will.

More recently, experiments carried out by Schiffer and Tagarielli (2015) showed

that a local cavitation zone may arise due to flexural wave propagation in the

plate, leading to a double-cavitation event. However, our current state of knowl-

edge on FSI for monolithic structures remains grounded in results based on a

rigid free-standing ‘structure’ (more precisely, a rigid body undergoing an un-

constrained rectilinear motion); this was recently extended to elastic ‘structures’

with the introduction of a linear spring backing against the rigid plate. However,

little is known of how large deformation (beyond linear-elasticity), the fixing

conditions at the supports and structural failure of monolithic structures (ex-

emplified by the complete detachment of a structure from its supports) affect

previously known results; in particular, their implications on the energy and mo-

mentum transfer to an actual deforming structure. In this chapter, the topic of

fluid-structure interaction (FSI) in deep underwater blasts will be re-visited for

an elasto-plastic monolithic beam system, developed in Chapter 2, to elucidate

the aforementioned. The analytical predictions will be shown to be in excellent

agreement with results from 3D finite element simulations.

4.2 Coupling of fluid and structure

Consider a rightward-propagating planar wave that travels at a constant speed

cw(=1498 m/s) in a fluid of density ρw(=1000 kg/m3), and impinging normally

on the structural beam system shown schematically in Fig 4.1. It is convenient

to define a spatial coordinate Z in the un-deformed configuration with Z = 0

corresponding to the location of the fluid and structure interface, i.e. Z = z+H/2.

Assuming that the blast wave is exponentially decaying with a peak pressure ps
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Figure 4.1: Schematic of an exponentially decaying wave propagating to the right
towards a clamped elasto-plastic beam system.

and time constant ti, then the incident pressure wave at any arbitrary point (of

coordinate Z and x) at the time t may be expressed as (Taylor, 1941)

pI(Z, t) = pse
−(t−Z/cw)/ti . (4.1)

The pulse duration for the incident pressure wave is assumed to be infinitely large,

i.e. td =∞. If the target structure is rigid and fixed in space, then the reflected

wave would be

pR1(Z, t) = pse
−(t+Z/cw)/ti (4.2)

corresponding to a perfect reflection of the incident wave in the negative Z direc-

tion. Since the beam is not rigid, the impingement of the incident pressure wave

on this interface sets the beam in motion, i.e. the beam accquires a velocity field

Ẇ (x, t). Compatibility dictates that the wetted surface of beam and the fluid

particles at its interface possess the same velocity Ẇ (x, t), provided cavitation

is absent (everywhere) at the fluid and structure interface. The beam motion

results in a rarefaction wave (travelling in negative Z-direction) of magnitude

pR2(Z, x, t) = −ρwcwẆ (x, t+ Z/cw). (4.3)

It merits comment that the reflection of planar waves off a curved interface would

render the exact formulation of the fluid pressure field too complicated to quantify.

Following Schiffer and Tagarielli (2014), it is assumed here that the reflected
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waves remain planar and travel in the negative Z-direction, without affecting the

pressure and particle velocity fields perpendicular to the incident angle. Thus,

the net water pressure p(Z, x, t) due to the incident and reflected waves is given

by

p(Z, x, t) = pI + pR1 + pR2 = ps

[
e−(t−Z/cw)/ti + e−(t+Z/cw)/ti

]
−

ρwcwẆ (x, t+ Z/cw). (4.4)

The interface pressure (at Z = 0) is, therefore,

pInt(x, t) = p(Z = 0, x, t) = 2pse
−t/ti − ρwcwẆ (x, t). (4.5)

Substituting pInt(x, t) into Eq. 2.28 and rearranging gives the governing ordinary

differential equations describing the beam motion as follows:

n∑
j=1

Mijẅj +
∂V

∂wi
= B

∫ L

0

pInt(x, t)φi(x)dx, i = 1, 2, ..., n. (4.6)

4.2.1 Limitations of the present FSI model

The tensile term (pR2 in Eq. 4.3) may, under certain circumstances, cause

the fluid pressure to drop below zero at some point in time within the fluid

domain, giving rise to a cavitation event. Following cavitation, the pressure field

in the fluid is given by a superposition of two breaking fronts, one travelling

towards the structure (positive Z direction) and the other away (negative); this

generates an expanding pool of cavitated liquid (Kennard, 1943). Schiffer et al.

(2012) identified two cavitation types (or régimes) for underwater blast loading

of rigid-plate supported by a linear spring that depends on the fluid conditions

in the layer between the structure and the expanding cavitation zone. Type I

cavitation occurs if a breaking front (travelling in the positive Z direction), arrests

before reaching the fluid-structure interface, reverses its motion and becomes a

closing front. Type II cavitation occurs if the breaking front (travelling in positive

Z direction) reaches the fluid-structure interface and causes cavitation at the

interface. In the present study, Type II cavitation will occur if the condition
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(Schiffer et al., 2012)

pInt(x, t) = 0 (4.7)

is met. Since Schiffer et al. (2012) showed that the structure might acquire greater

transmitted impulse in Type I than in Type II, the former would be of greater

concern since the objective of this work is to evaluate the limits of structural

performance for a given underwater blast loading.

In a Type I cavitation, several authors (Schiffer et al., 2012; Schiffer and

Tagarielli, 2014, 2015) found that the pressure wave (rarefaction pR2 and reflected

pR1) emanating from the fluid-structure interface approaches the closing front and

eventually reflects back towards the fluid-structure interface as a positive pressure

pulse. It was noted by Schiffer et al. (2012) that this positive pressure pulse acts

continuously on their rigid plate which reduces to zero after a finite duration. As a

consequence, it must contribute to the impulse transmitted to the structure and in

cases where the mass and stiffness of the structure are high, the maximum trans-

mitted impulse can even exceed twice the incident impulse Ii = psti. However,

detailed three-dimensional (3D) finite element simulations (to be presented later

in Section 4.4) will show that for elasto-plastic beams deforming in any modes

of deformation, the contribution of the reflection wave (from the closing front)

during Type I cavitation does not significantly affects the structural performance

in terms of the maximum mid-span deflection, maximum momentum, maximum

transmitted impulse, maximum kinetic energy and maximum transmitted energy.

Therefore, it is reasonable to neglect the influence of the reflection wave from the

closing front in the current analytical model.

4.3 Finite element (FE) model

Three-dimensional (3D) FE calculations were performed using the commer-

cially software ABAQUS/ Explicit R©. The FE model, shown schematically in Fig

4.2, consists of a water column Lw × L × B above the supported beam. Only

one-half of the beam and water column are modelled since reflective symmetry

exists on the plane bounded by x = 0, −B/2 ≤ y ≤ B/2 and −H/2 − Lw ≤
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Figure 4.2: Schematic of clamped beam subjected to an exponentially decaying
pressure pulse in FE: (a) front view and (b) side view.

z ≤ H/2. The elasto-plastic beam is supported by a modified boundary con-

dition, as described previously in Section 3.2.1. Horizontal displacement ux for

the left boundary of the water column (ux = 0 at x = −L, −B/2 ≤ y ≤ B/2,

−H/2− Lw ≤ z ≤ −H/2) is constrained as does the vertical displacement uy on

the front (uy = 0 at −L ≤ x ≤ 0, y = B/2, −H/2− Lw ≤ z ≤ −H/2) and back

(uy = 0 at −L ≤ x ≤ 0, y = −B/2, −H/2 − Lw ≤ z ≤ −H/2) boundary of the

water column - see Fig 4.2. An exponentially decaying pressure pulse, given by

Eq. 4.1, is applied to the top of the water column. Tie constraints are applied

between the wetted edge of the beam and fluid.

The beam modelled in this chapter has dimension of 0.5 m (L) × 0.1 m (H)

× 0.1 m (B). The length of water column Lw is sufficient long to ensure the

reflected wave from the top boundary does not reach the structure over the dura-

tion of the calculation (Schiffer and Tagarielli, 2014, 2015). In the present study,

Lw/cwti = 3 is used to ensure that the water column is semi-infinite. Both the

beam and water column are discretised using the 8-noded solid elements (C3D8R)

with reduced integration and hour-glass control. In order to capture necking lo-

calisation, progressive damage and ductile fracture with acceptable fidelity, twelve
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elements are used through the beam thickness (H). Results of convergence stud-

ies, presented previously in Fig 3.3, has shown this to be sufficient. All C3D8R

elements - used to discretise the water column and beam - are cubic with a size of

0.00833 m; consequently, the nodes of the water and solid meshes are coincident

at the fluid-structure interface.

Details of the material properties and damage criterion of the elasto-plastic

beam were given previously in Section 3.2.2. The water is modelled as an acoustic

medium with density ρw = 1000 kg/m3, wave speed cw = 1498 m/s and bulk

modulus Ew = 2.244 GPa. It is assumed to be linear elastic under compression,

with zero tensile strength and zero shear modulus. A Mie-Gruneisen equation

of state with a linear Hugoniot relation is used to model the linear elastic ratio

between applied pressure p(Z, t) and volumetric strain εV given by

p(Z, t) =

−EwεV = −c2
wρwεV , εV < 0

0, εV ≥ 0
. (4.8)

Note that when εV ≥ 0, the pressure becomes zero and this leads to an onset of

cavitation (Liang et al., 2007; McShane et al., 2007, 2010).

4.4 Comparison of analytical and FE predictions

To assess the fidelity of the analytical model, predictions for the average inter-

face pressure, mid-span deflection, impulse and energy transfer will be compared

to those from FE. The temporal history of the transmitted impulse per unit area

IT (t), momentum per unit area IK(t), transmitted energy per unit area ET (t)

and kinetic energy per unit area EK(t) of the beam are defined, respectively, as

IT (t) =

∫ t

0

p̃Int(t)dt, IK(t) =
ρH

L

∫ L

0

Ẇ (x, t)dx,

ET (t) =
1

BL

∫ L

0

pInt(x, t)W (x, t)dx, EK(t) =
ρH

2L2

∫ L

0

Ẇ 2(x, t)dx. (4.9)
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Note that the average interface pressure is given by

p̃Int(t) =
1

L

∫ L

0

pInt(x, t)dx. (4.10)

Time t is measured from the instant when the incident pressure wave arrives at

the fluid and structure interface. The impulse and energy components in Eq. 4.9

are normalised by the incident impulse per unit area Ii and incident energy per

unit area Ei given by (Taylor, 1941)

Ii = psti and Ei = p2
sti/ρwcw. (4.11)

Unless otherwise specified, a time constant ti = 2 ms has been used for all calcu-

lations in this chapter.

Figures 4.3a, 4.3b and 4.3c compare the analytical and FE predictions for

mode I, II and III deformations, respectively. Pressure contour plots predicted

by FE (to be presented later in Fig 4.4) confirm that a Type I cavitation event

(i.e. the breaking front travelling in the positive Z-direction, always arrests be-

fore it reaches the fluid-structure interface and inverts its motion as a closing

front) occurs in all the cases shown in Fig 4.3. Cavitation occurs at tc/ti = 0.5,

tc/ti = 0.47 and tc/ti = 0.45 in Figs 4.3a, 4.3b and 4.3c, respectively. For beams

deforming in mode I, Fig 4.3a shows that its non-dimensional average interface

pressure p̃Int/ps initially decreases before attaining a peak value at time t = t3

(when the beam reaches its maximum mid-span deflection); this is followed by a

monotonic reduction in interface pressure. Beyond t > t3, the FE model predicts

that p̃Int/ps remains positive until t/ti = 5.9 - this is in agreement with Schiffer

et al. (2012). The analytical model under-predicts the maximum transmitted

impulse in mode I by up to 13.4% since it neglects the additional loading from

the reflected wave arising from the closing front. Complete detachment occurs

shortly after cavitation in Figs 4.3b and 4.3c which explains why it is acceptable

to neglect the effects of the reflected wave from the closing front in the subse-

quent structural response. In general, the predicted interface pressure, mid-span

deflection, impulse and energy exchange are in good agreement with those from

FE for all three modes of deformation.
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Figure 4.3: Analytical and FE prediction of the non-dimensional interface pres-
sure, mid-span deflection, impulse transfer and energy exchange for 0.5 m (L) ×
0.1 m (H) × 0.1 m (B) beam deforming in different modes subjected to three
different exponentially decaying pressure pulses of identical time constant ti = 2
ms and a peak pressure of (a) ps = 50 MPa, (b) ps = 100 MPa and (c) ps = 120
MPa. — current analytical predictions; -.- current FE predictions. tc and t3 de-
note the time when cavitation first occurs and when the beam reaches maximum
deflection, respectively.

The impulse and energy transferred to the beam, plotted in Fig 4.3, can be

summarised as follows: (1) In mode I, the average interface pressure beyond

t > t3 does not further contribute to the transmitted energy ET . This is because

the beam now responds in an elastic manner with deflection which decreases

slightly before reaching a plateau; (2) In modes II and III, both the transmitted
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impulse IT and transmitted energy ET reach a maximum at t = t3 following

complete detachment from the supports; (3) The maximum momentum IK and

kinetic energy EK are reached before the onset of cavitation at t = tc for all three

modes, this agrees with analytical predictions by Schiffer et al. (2012); (4) The

maximum transmitted impulse is significantly higher in mode I than in modes

II and III because a considerable amount of impulse is transmitted to the beam

during elastic rebound; and, (5) The maximum transmitted impulse and energy

are higher in mode II than III since t3 for mode III is smaller than mode II.
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Figure 4.4: FE predictions of fluid pressure field at five selected times correspond-
ing to the cases shown in Figs 4.3a, 4.3b and 4.3c, respectively. Black denotes
cavitated water.

To gain an insight into the cavitation process, pressure contour maps predicted

by FE are shown in Fig 4.4 for five selected time frames (corresponding to the
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elasto-plastic beam and loading parameters of Fig 4.3). Cavitation first occurs at

tc/ti = 0.50 (mode I), tc/ti = 0.47 (mode II) and tc/ti = 0.45 (mode III). This is

caused by the tensile wave (Eq. 4.3) which is generated as a consequence of the

rapid motion of the beam and is in line with experimental observations made by

Schiffer and Tagarielli (2015) for circular plates. All the cases shown in Fig 4.4

correspond to Type I cavitation since the breaking front arrests and inverts its

motion as a closing front before reaching the fluid and structure interface.

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

W0
H

I II III

I*

Figure 4.5: Variations of the non-dimensional mid-span deflection W0/H with
non-dimensional impulse I∗. I, II and III indicate the three distinct damage
modes predicted by the current analytical model. — current analytical model; �
current FE predictions.

Predictions by FE and the current analytical model are now compared for a

range of incident impulses, with a focus on the maximum mid-span deflection,

transmitted impulse and energy. The maximum non-dimensional transmitted

impulse ĪT , momentum ĪK , transmitted energy ĒT and kinetic energy ĒK of the

elasto-plastic beam are defined as follows:
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ĪT = max
0≤t/ti<∞

[IT (t/ti)/Ii], ĪK = max
0≤t/ti<∞

[IK(t/ti)/Ii],

ĒT = max
0≤t/ti<∞

[ET (t/ti)/Ei], ĒK = max
0≤t/ti<∞

[EK(t/ti)/Ei]. (4.12)

Figure 4.5 shows an excellent agreement for the maximum mid-span deflec-

tion W0/H, at either the point of cessation of motion or failure (if complete

detachment from the supports had occurred), for all three modes. Note that

the non-dimensional impulse I∗ is given by Eq. 3.3. Both the current FE and

analytical models correctly predict a reduction in W0/H with increasing I∗ in

modes II and III - this trend is also observed in Fig 3.7. Figure 4.6 compares the

non-dimensional impulse (ĪT and ĪK) and energy (ĒT and ĒK) terms with the

corresponding FE predictions. In general, the analytical predictions agree well

with its FE counterpart despite the under-prediction of ĪT - by up to 13.4% - in

mode I. Again, this discrepancy arises because the analytical model neglects the

additional impulse transmitted by the reflection wave from the closing front. Key

features of the results shown in Fig 4.6 are as follows: (1) There is a sharp de-

crease in ĪT following a transition from mode I→II because a significant portion

of impulse is transmitted to the beam during elastic rebound in mode I; (2) Both

the maximum transmitted impulse ĪT and energy ĒT reduce monotonically with

I∗ in modes II and III since the time it takes for complete detachment to occur

reduces with I∗; and (3) The maximum momentum ĪK and kinetic energy ĒK of

the beam are relatively insensitive to I∗.

4.5 Effects of FSI on ‘elasto-plastic’ and ‘rigid

free-standing’ beams

In this section, the analytical model is employed to investigate the effects

of FSI for a Type I cavitation event. Parametric studies were performed to

evaluate the sensitivity of the maximum impulse (ĪT ) and energy (ĒT ) transfer

to aspect ratio L/H and βw (, ρwcwti/ρH - Taylor’s FSI index). Results from
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Figure 4.6: Variations of the non-dimensional maximum impulse and energy ac-
quired with non-dimensional impulse I∗. I, II and III indicate the three distinct
damage modes predicted by the current analytical model. — current analytical
model; � and current FE predictions.

rigid free-standing beams of an equivalent mass per unit area are also included for

comparison where the maximum transmitted impulse and energy - superscript F
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denotes free-standing - are, respectively, given by (Taylor, 1941)

ĪF = 2β−(βw/βw−1)
w (4.13)

and

ĒF = 2
(1− e−βw)2

βw
. (4.14)

In the parametric studies to be presented, it is worth noting the following: (1)

the non-dimensional maximum transmitted impulse ĪF and energy ĒF of rigid

free-standing beams are independent of peak incident pressure ps and aspect

ratio L/H but depends only on βw; (2) both the ‘elasto-plastic’ and ‘rigid, free-

standing’ beams have identical mass per unit area given by βw; and, (3) cavitation

always occurs at the fluid and structure interface for free-standing beams at

time tc = tiln(βw)/(βw − 1) whilst it does not for elasto-plastic beams (Type I

cavitation); hence, the fluid-structure interaction time for an elasto-plastic beam

is always considerably longer compared to a free-standing one of the same mass

per unit area.

4.5.1 Mode I

The solid blue lines in Figs 4.7a and 4.8a denote the non-dimensional max-

imum transmitted impulse (ĪT and ĪF ) and the broken black lines denote the

non-dimensional maximum transmitted energy (ĒT and ĒF ). A peak incident

overpressure of ps = 30 MPa is used throughout so that the elasto-plastic beams

always deform in mode I. Figure 4.7a plots the variation of the non-dimensional

maximum impulse and energy terms as a function of L/H (for a constant βw =

21.7). For elasto-plastic beams, ĪT reduces monotonically with L/H while ĒT

does not. The reason is evident by comparing two beams of different L/H, de-

noted by 1 and 2 in Fig 4.7b. The beam with a higher L/H, i.e. beam 2 ,

has less average interface pressure p̃Int/ps but higher mid-span deflection WB,

leading to a smaller ĪT and non-monotonic decreasing ĒT . Figure 4.8a plots the

maximum non-dimensional impulse and energy to FSI index βw with a constant

L/H = 10. It shows that ĪT increases monotonically with increasing βw (less

mass per unit area) but ĒT does not. Again, the reason is that the average
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Figure 4.7: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) for elasto-
plastic beams of identical cross-section, H = B = 0.05 (βw = 21.7), deforming
in mode I; and (b) Comparison of the normalised temporal average interface
pressure p̃Int(t)/ps and temporal mid-span deflection WB(t) for beams 1 and 2
in Fig 4.7a. Beam 1 is 0.3 m (L) × 0.05 m (H) × 0.05m (B); beam 2 is 0.5 m
(L) × 0.05 m (H) × 0.05 m (B).
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Figure 4.8: (a) Analytical prediction of maximum impulse (— corresponds to
ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) for elasto-plastic beams
with identical aspect ratio L/H = 10 deforming in mode I; and (b) Comparison of
analytical normalised temporal average interface pressure p̃Int(t)/ps and temporal
mid-span deflection WB(t) for beams 2 and 3 in Fig 4.8a. Beam 2 is 0.5 m
(L) × 0.05 m (H) × 0.05 m (B) (βw = 21.7); beam 3 is 0.25 m (L) × 0.025 m
(H)× 0.025 m (B) (βw = 43.4).
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interface pressure p̃Int/ps is higher but the mid-span deflection WB is lower for

beam with a higher βw (less mass per unit area) - compare beam 3 to 2 in

Fig 4.8b. It is worth noting that in both Figs 4.7a and 4.8a, the elasto-plastic

beams have significantly higher non-dimensional maximum transmitted impulse

and energy compared to free-standing beams because, as alluded to earlier, the

fluid-structure interaction time for elasto-plastic beams are significantly longer.

4.5.2 Mode II

Variations of the maximum non-dimensional impulse and energy terms against

L/H and βw for a peak incident overpressure of ps = 100 MPa are shown in

Figs 4.9 and 4.10 respectively. Note that all the elasto-plastic beams deform in

mode II. Figure 4.9a plots the maximum non-dimensional impulse and energy

terms, against the aspect ratio L/H with βw = 108.4. Both ĪT and ĒT do not

reduce monotonically with L/H. This is because as L/H increases - comparing

2 to 1 in Fig 4.9b - 2 has a lower average interface pressure p̃Int(t)/ps and,

consequently, takes longer to reach its maximum mid-span deflection and for

complete detachment to occur.

Figure 4.10a shows the effect of mass per unit area, or βw, on the non-

dimensional impulse and energy terms for a fixed aspect ratio L/H = 16. It

shows that both ĪT and ĒT reduce monotonically with βw (or less mass per unit

area). As opposed to Fig 4.9 increasing βw - compare 2 and 3 in Fig 4.9 - leads

to a reduction in the average interface pressure p̃Int(t)/ps and a shorter time to

reach maximum mid-span beam deflection and for complete detachment to oc-

cur. Although non-dimensional maximum transmitted impulse and energy for

elasto-plastic beams in mode II are significantly less compared to those in mode

I (see Fig 4.6 for an example), they are still considerably greater than those of

free-standing beams, i.e. ĪT > ĪF and ĒT > ĒF as seen in both Figs 4.9 and

4.10.
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Figure 4.9: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) dissipation
for elasto-plasitc beams in mode II with same beam cross-section, H = B = 0.01
m (βw = 108.4) and (b) Comparison of analytical normalised temporal average
interface pressure p̃Int(t)/ps and temporal mid-span deflection WB(t) for beam
1 and 2 in Fig 4.9a. Beam 1 has 0.10 m (L) × 0.01 m (H) × 0.01 m (B)
(βw = 108.4); beam 2 has 0.16 m (L) × 0.01 m (H) × 0.01 m (B) (βw = 108.4).
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Figure 4.10: (a) Analytical prediction of non-dimensional maximum impulse (—
corresponds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) dissipa-
tion for elasto-plastic beams in mode II with the same aspect ratio L/H = 16;
and (b) Comparison of analytical normalised temporal average interface pressure
p̃Int(t)/ps and temporal mid-span deflection WB(t) for beam 2 and 3 in Fig
4.9a. Beam 2 is 0.16 m (L) × 0.01 m (H) × 0.01 m (B) (βw = 108.4); and beam
3 is 0.32 m (L) × 0.02 m (H) × 0.02 m (B) (βw = 54.2).
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Figure 4.11: Analytical predictions of the non-dimensional maximum impulse (—
corresponds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) dissipation
for two sets of elasto-plastic beams deforming in mode III: (a) of the same cross-
section, H = B = 0.01 m (βw = 108.4) and (b) the same aspect ratio, L/H = 16.
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4.5.3 Mode III

Figure 4.11 plots the non-dimensional maximum impulse and energy for beams

deforming in mode III (ps = 150 MPa). Note that the ratio of the plastic work

absorbed through shearing deformation to the total plastic work done has reached

the critical ratio of βc = 0.45 in all cases. The results in Fig 4.11 are broadly

similar to Figs 4.9a and 4.10a, despite a slight decrease in ĪT and ĒT due to the

fact that the time it takes for complete detachment to occur is less in mode III

than in mode II - compare Figs 4.10a and 4.11b for an example. Notwithstanding,

the effects of L/H and βw on maximum impulse and energy transfer in mode III

are broadly the same as that in Figs 4.9a and 4.10a for mode II. It is evident

from both figures that far greater impulse and energy were transmitted to the

elasto-plastic beams than the free-standing counterparts; this is also the case for

modes I and II shown in Figs 4.7a, 4.8a, 4.9a and 4.10a.

4.6 Conclusions

The dynamic response of elasto-plastic beam subjected to underwater blast

is studied. The analytical model from Chapter 2 is used to predict beam de-

formation, interface pressure history, impulse and energy transfer in a Type I

cavitation event where they were found to be in excellent agreement with 3D FE

simulations. It was found that increasing non-dimensional impulse I∗ leads to

the following: (1) a decrease in the maximum mid-span deflection for modes II

and III; (2) a sharp reduction in the maximum transmitted impulse following a

transition from mode I→II; and (3) monotonic reduction in both the maximum

transmitted impulse and energy in modes II and III.

The effects of aspect ratio L/H and FSI index βw were investigated for elasto-

plastic beams deforming in different modes. Key findings can be summarised as

follows: (1) In mode I, an increase in aspect ratio L/H or decrease in FSI index

βw always leads to a reduction in the maximum impulse transmitted; and (2)

In modes II and III, increasing FSI index βw always leads to less maximum

transmitted impulse.
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The effects of boundary on FSI were also studied for the elasto-plastic where

it was shown, as to be expected, that a significantly higher impulse and energy

are transmitted to the fully clamped deformable beams, deforming in all three

modes, as opposed to the free-standing counterparts.
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Chapter 5

Fluid-structure interaction in air

blasts

5.1 Introduction

Kambouchev et al. (2006, 2007) extended Taylor’s linear theory of fluid-

structure interaction (FSI) in water to intense planar air blasts. Formulae for

the momentum transfer to a freestanding plate were developed and calibrated

by accurate numerical simulations. They found that transmitted impulse can be

substantially reduced due to FSI effect for light free-standing plates. This ben-

eficial influence of FSI in potentially mitigating the effect of blast has recently

been explored as a basis for the design of sandwich structures with increased blast

resistance: see Dharmasena et al. (2010, 2011), Ebrahimi and Vaziri (2013), Feng

et al. (2007), Main and Gazonas (2008), Vaziri and Hutchinson (2007), Vaziri

et al. (2007), Wadley et al. (2010, 2013) and Zhu et al. (2010). However, the ef-

fect of boundary (support) condition is omitted in their analysis, and as a result,

the FSI effect is only significant at large displacement which limits its practical

use.

Several studies attempted to investigate the effects of FSI for a fully clamped

structures. For example, Subramaniam et al. (2009) investigated the blast pres-

sure wave interaction with an elastic structure using a numerical approach, which

considers FSI within an Arbitrary Lagrange Euler (ALE) framework. They found
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that the general assumption of rigid reflection (ignoring FSI effect) leads to a

significant overestimation of displacements. And the error in the maximum dis-

placement predicted by ignoring FSI effect is directly proportional to the ratio

of the structure velocity to the speed of shock wave. However, the findings by

Subramaniam et al. (2009) apply only to elastic structures.

In this chapter, the FSI between intense air blasts and an elasto-plastic mono-

lithic beam system (developed in Chapter 2), will be investigated. The objective

is to elucidate how large deformation, the fixing conditions at the supports and

structural failure affect previously-known results; in particular, their implications

on the energy and momentum transfer from the blast wave.

5.2 Formulation of the numerical approach

d0 d

‘Compressed
container’

of Air
Ambient air

Target

Figure 5.1: Schematic of FSI model in air.

Consider an ‘air-column’ of two parts, viz. ‘compressed container’ of adiabatic

air and quiescent ambient air, and an elasto-plastic beam located at its right end

(see Fig 5.1). The problem of interest concerns the dynamic response of the elasto-

plastic beam subjected to the shock wave traveling in this compressible medium.

At time t = 0 the ‘compressed container’ of air in the interval 0 ≤ Z ≤ d0 is

prescribed with an initial velocity distribution of

v(Z) = v0e
−(Z/d0)2 (5.1)

where Z is the Lagrangian coordinate with Z = 0 denotes fluid-structure inter-

face, d0 is the length of the compressed air container and v0 is the peak velocity.

It follows immediately that the compressed air has a density distribution ρ(Z)
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and a finite initial energy per unit area ∆E0 given by Hutchinson (2009)

p(Z)

pa
=
[ρ(Z)

ρa

]γa
=

[
1 +

γa − 1

2
(
v(Z)

ca
)2

]γa/(γa−1)

and

∆E0 =
pad0

γa − 1

[(
1 +

γa − 1

2
(
v0

ca
)2
)γa/(γa−1)

−
(

1 +
γa − 1

2
(
v0

ca
)2
)1/(γa−1)] (5.2)

where γa(= 1.4) is the ratio of specific heats, pa(= 104761 Pa) is the pressure,

ρa(= 1.225 kg/m3) is the air density, ca(= 346 m/s) is speed of sound in air and

the subscript ‘a’ denotes ambient conditions.

The equations governing the fluid motion (both compressed container of air

and ambient air) are expressed in the Lagrangian framework and consist of the

following:

1. The kinematic relation for the material velocity v and acceleration a are

v =
∂xe
∂t

and a =
∂v

∂t
(5.3)

where Eulerian coordinate xe, velocity v and acceleration a of a fluid particle

are functions of Lagrangian coordinate Z and time t.

2. The momentum conservation equation is given by

ρ0a = − ∂p
∂Z

(5.4)

where ρ0 is the initial density of the particle with Lagrangian coordinate Z.

3. Adding a viscous dissipation term Θ, the equation of state is modified as

(Neumann and Richtmyer, 1950)

p = (γa − 1)ρ0
e

F
−Θ (5.5)

where e is the internal energy, F = ∂xe/∂Z is the deformation gradient and
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the viscous term Θ is required to stabilise the numerical scheme

Θ =

−ρa(K1ḋ∆)2 − ρacaK2|ḋ|∆, ḋ < 0

0, ḋ ≥ 0
(5.6)

where ḋ = (1/F )∂F/∂t is the rate of deformation, K1 and K2 are artificial

viscosity coefficients and ∆ is width of the shock wave which is of the order

of grid spacing for numerical stability.

4. The energy conservation equation is given by

∂e

∂t
=
[
(1− γa)e+

Θ

ρc

]
(5.7)

where ρc is the current density of the air particle.

The staggered method is used to account for the fluid-structure coupling in

time domain (Blom, 1998; Blom and Leyland, 1997). The interaction between

the shock wave and the elasto-plastic beam is accounted for by enforcing the con-

gruence conditions of velocity and displacement at the fluid-structure interface,

i.e. the interface velocity and displacement are equal for both the fluid and the

structure. Following Subramaniam et al. (2009) and Teich and Gebbeken (2013),

it is assumed here that displacement at the mid-span of the beam represents that

of the structural beam system in the one-dimensional air domain. Starting at

a current time step, when the state of the fluid and structure are known, the

fluid-structure system is integrated in time to obtain the solutions at the next

time step as:

1. The current displacement at the fluid-structure interface is implemented in

the fluid solver (Eqs. 5.3, 5.4, 5.5 and 5.7) to calculate interface overpressure

pInt for the next time step.

2. The mid-span displacement of the beam at the next time step is updated

by solving the equation of motion of the beam under interface overpressure
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pInt(t) = p(Z = d+ d0, t)− pa obtained from step 1, given as

n∑
j=1

Mijẅj +
∂V

∂wi
= BpInt(t)

∫ L

0

φi(x)dx, i = 1, 2, ..., n. (5.8)

Governing equations (Eqs. 5.3, 5.4, 5.5 and 5.7) with initial condition (Eqs.

5.1 and 5.2) and artificial viscosity (Eq. 5.6) are solved using the widely used von

Neumann-Richtmyer algorithm which is based on a finite difference discretisation

of the governing equations (Neumann and Richtmyer, 1950). The details of the

finite difference method are summarised in Appendix A.

5.3 Verification of the numerical method

The case of the normal reflection of uniform shocks on a fixed boundary pro-

vides a good basis for verification of the proposed numerical method. One of

the basic implications of gas compressibility is the non-linear dependence of the

pressure reflected from a fixed rigid wall on the magnitude of the incident shock

pressure. The peak reflected overpressure can be expressed in the form of (An-

derson, 2001)

pr = CRps (5.9)

where the reflected coefficient CR is given by the well-known Rankine-Hugoniot

relationship

CR =
8ps + 14pa
ps + 7pa

(5.10)

which for small ps/pa, CR ' 2; while, for ps/pa � 1, CR → 8.

The incident pI(t) and reflected pR(t) overpressure-time history following wave

interaction with a reflective, clamped, rigid wall at different standoff are compared

in Figs 5.2a and 5.2b for two different blast intensities. It can be seen that the non-

linear compressibility of air causes the peak of the evolving pulse to decrease, with

a corresponding increase in pulse duration, with distance travelled. Figure 5.3

compares the numerical normalised peak reflected overpressure pr/ps (extracted

from Figs 5.2a and 5.2b at different standoff distance d/d0) with the values of the
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Figure 5.2: Incident pI(t) and reflected pR(t) overpressure-time histories upon
interaction with a reflective, clamped, rigid wall at different standoff: (a) ‘weak’
shock wave with v0/ca = 1.7, d0 = 0.5 m ; (b) ‘strong’ shock wave with v0/ca =
5.1, d0 = 0.05 m.

reflected coefficients CR given by Eq. 5.10. As it can be observed in the plot, the

numerical results are in excellent agreement with the Rankine-Hugoniot theory

for a wide range of shock intensities.
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Figure 5.3: Reflected coefficient CR for normal reflection of uniform shocks on a
fixed boundary for both ‘weak’ and ‘strong’ shock wave in Fig 5.2.

5.4 Dynamic response with FSI

This section studies the dynamic response of elasto-plastic beams subjected

to air shock waves in different modes of deformation. The definition of the time

history of transmitted impulse per unit area IT (t) and transmitted energy per

unit area ET (t) of the beam are given previously in Eq. 4.9. They are normalised

by the incident impulse Ii and energy Ei respectively, given by (Kambouchev et

al., 2007)

Ii =

∫ td

0

psϕ(t)dt = psti and (5.11)

Ei = p2
sti/ρaca (5.12)

where ti is the decay constant of the incident wave and td is the pulse duration.

Note that time t is defined at the time when the pressure wave is arrived at the

interface Z = 0.

Figure 5.4 shows the dynamic response of an elasto-plastic beam of 0.17 m (L)

× 0.01 m (H) × 0.01 m (B) subjected to an intense shock wave in air. The shock

wave is created with the following parameters so that the beam develop mode I

deformation: d0 = 0.05 m, d/d0 = 79 and v0/ca=5.1. The dynamic response of

the beam without considering FSI effect was also included for comparison, which

is obtained by prescribing the reflected overpressure history - from a fixed rigid
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Figure 5.4: Dynamic response of elasto-plastic beams of 0.17 m (L) × 0.01 m
(H) × 0.01 m (B) subjected to air shock wave (with d0 = 0.05 m, d/d0 = 63
and v0/ca = 5.1) during mode I deformation. - - denotes without FSI; — denotes
with FSI.
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surface - to the beam. Figure 5.4a shows that the interface overpressure pInt(t)

is smaller compared to the reflected overpressure history pR(t) during t ≤ t3 (i.e.

before the beam reaches maximum mid-span deflection); however beyond t > t3,

there is no significant differences between the two pressure history (with and

without considering FSI). The deficiency during t ≤ t3 is due to the alleviation of

interface overpressure by the rapid motion of the elasto-plastic beam. As a result

of this FSI effect, the prediction of maximum mid-span deflection, maximum

transmitted impulse and maximum transmitted energy are less compared to those

without considering FSI, as seen in Figs 5.4b, 5.4c and 5.4d.

Figures 5.5 and 5.6 show the dynamic response of elasto-plastic beam during

mode II and III deformation respectively. In both figures, the interface overpres-

sure pInt(t) is lower compared to the reflected overpressure history pR(t). Again,

the deficiency is a result of the relieving of interface overpressure by the beam

motion prior to failure. This leads to a over-prediction of the temporal mid-span

deflection WB(t)/H, transmitted impulse IT (t)/Ii and energy ET (t)/Ei compared

to those with FSI effect; these observations are in line with Fig 5.4. However, it

is surprising to note that the peak value of the aforementioned predictions when

considering FSI effect are similar to those without FSI effect. This is because

when considering FSI effect, the time for complete detachment to occur is higher,

which results in a longer loading duration compared to that ignoring FSI effect.

5.5 Importance of FSI

From the results in the previous section a relevant question which needs to be

addressed is: for an incident blast pressure wave, when does FSI effect become

important and to what extent ? Results in the last section show that FSI effect is

evident to reduce maximum mid-span deflection, maximum transmitted impulse

and maximum transmitted energy during mode I deformation, but not significant

during mode II and III deformation. Therefore, the numerical model is now

used to study the aforementioned problem only in mode I deformation. The

difference between predictions with and without FSI effect, e.g. maximum mid-

span deflection, is often viewed as an indicator of the error in predicted structural
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Figure 5.7: Variation of displacement ratio W̄ and FSI index βs in mode I.

response on ignoring FSI (Subramaniam et al., 2009). Here, it is defined the

displacement ratio as W̄ = WFSI
0 /WNO FSI

0 to measure the error (i.e. 1 − W̄ ) of

ignoring FSI. The reflected overpressure history pR(t), obtained from a separate

simulation, is prescribed to the elasto-plastic beams to obtain WNO FSI
0 .

Figures 5.8, 5.9 and 5.7 show the variation of displacement ratio W̄ as a

function of velocity ratio vmax/Us, time ratio t3/td and FSI index by Kambouchev

et al. (2006), βs = ρsUsti/ρH (given previously in Eq. 1.29), respectively. The

shock wave is generated by the following parameters so that all the beams develop

mode I deformation: v0/ca = 5.6, d0 = 0.05 m and d/d0 = 79. Note that the

extreme cases of vmax/Us = 0 and βs = 0 refer to the FSI with an elasto-plastic

beam of infinite weight where the error of ignoring FSI is zero (Subramaniam et

al., 2009), while the extreme case of t3/td =∞ refers to impulsive loading where

FSI effect is negligible.

Figure 5.8 shows that with increasing velocity ratio vmax/Us, displacement

ratio W̄ reduces. The implication is that the margin by which the displacement

obtained by ignoring the FSI effect would over predict the actual displacement

103



0.04 0.06 0.08 0.1 0.12
0.7

0.75

0.8

0.85

0.9

0.95

1

vmax/Us

L/H=10
L/H=15
L/H=20

W
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increases as the maximum mid-span velocity increases relative to the velocity of

the shock front. Figure 5.9 shows that as the time when the maximum mid-

span deflection is reached increases relative to the duration of the incident wave

(or becomes more ‘non-impulsive’), the error in predicting structural response

increases when FSI is not considered. Figure 5.7 shows that the error of ignoring

FSI (or 1−W̄ ) increases with increasing FSI index βs - this is consistent with the

findings based on rigid, free-standing structures where FSI effect on mitigating

the effect of the blast can be achieved by reducing the mass per unit area of the

structure (Kambouchev et al., 2006, 2007).
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5.6 Effects of FSI on ‘elasto-plastic’ and ‘rigid

free-standing’ beams

In this section, the numerical model is employed to investigate the effects of

FSI on the elasto-plastic beam system at different modes of deformation. Para-

metric studies were performed to evaluate the sensitivity of the maximum impulse

(ĪT ) and energy (ĒT ) transfer to aspect ratio L/H and βs (, ρsUsti/ρH - Kam-

bouchev’s FSI index). ĪT and ĒT are given in Eq. 4.12. Results from rigid

free-standing beams of an equivalent mass per unit area are also included for

comparison where the maximum transmitted impulse and energy - superscript F

denotes free-standing - are, respectively, given by (Kambouchev et al, 2007)

ĪF = λ
βs(1+βs)
R ββs/(1−βs)

s (5.13)

and

ĒF = λ
2βs(1+βs)
R

(1− e−βs)2

2βs
. (5.14)
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where non-dimensional parameter λR is given by Eq. 1.33.

5.6.1 Mode I

The solid red lines in Figs 5.10a and 5.10b denote the non-dimensional max-

imum transmitted impulse (ĪT and ĪF ) and the broken black lines denote the

non-dimensional maximum transmitted energy (ĒT and ĒF ). The following ini-

tial conditions are used throughout so that all the elasto-plastic beams develop

mode I deformation: d0 = 0.05 m, d/d0 = 79 and v0/ca=5.1. Figures 5.10a

and 5.10b present the variation of the maximum non-dimensional impulse and

energy terms, as a function of L/H (for a constant βs = 0.084) and as a function

of βs (for a constant L/H = 17), respectively. It can be seen that ĪT reduces

monotonically with increasing L/H or βs. The reason is that increasing L/H or

βs leads to higher motion of the elasto-plastic beam, resulting in greater allevi-

ation of interface overpressure. In both Figs 5.10a and 5.10b, more impulse are

transmitted to the elasto-plastic beams, i.e. ĪT > ĪF ; because the alleviation of

interface overpressure is greater for free-standing beams due to higher velocity.

However, free-standing beams have significantly higher maximum transmitted en-

ergy, i.e. ĒF > ĒT ; because the free-standing beams have significantly higher

displacements.

5.6.2 Mode II and III

Variations of maximum non-dimensional impulse and energy terms against

L/H and βs for beams (with d0 = 0.05 m, d/d0 = 31 and v0/ca=5.1) are shown in

Figs 5.11a and 5.11b respectively, where the elasto-plastic beams develop mode II,

and even mode III deformation. Note that in mode III the ratio of the plastic work

absorbed through shearing deformation to the total plastic work done reaches the

critical ratio of βc = 0.45. It is evident that mode III tends to occur for elasto-

plastic beams with low L/H and high βs. This is because decreasing L/H or

increasing βs leads to a smaller mid-span deflection, which, in turn, results in a

smaller proportion of plastic work absorbed through membrane deformation to

the total plastic work done. Therefore the plastic work absorbed through shearing

106



L/H
4 8 12 16 20

1

2

3

4

5

6

0

0.01

0.02

0.03

0.04

0.05

I
Ii

E
Ei

IT

IF

ET

EF

Mode I

(a)

0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

0

0.01

0.02

0.03

0.04

0.05

0.06

I
Ii

E
Ei

βs

IT

IF

ET

EF

Mode I

(b)

Figure 5.10: Numerical prediction of non-dimensional maximum impulse (— cor-
responds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) dissipation
for two sets of beams: (a) same beam cross-section, H = B = 0.05 m (βs = 0.084)
and (b) same aspect ratio, L/H = 17.

deformation to the total plastic work done β is more significant, since plastic work

absorbed through bending is negligible in mode III (see Fig 3.9).
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Figure 5.11: Numerical prediction of non-dimensional maximum impulse (— cor-
responds to ĪT and ĪF ) and energy (–.– corresponds to ĒT and ĒF ) dissipation
for two sets of beams: (a) same beam cross-section, H = B = 0.01 m (βs = 0.189)
and (b) same aspect ratio, L/H = 20.

It can be seen in Figs 5.11a and 5.11b that ĪT drops with increasing L/H or

βs, because the time for complete detachment to occur is shorter for beams with
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higher L/H or βs. In both Figs 5.11a and 5.11b, all the elasto-plastic beams in

mode II and III have greater maximum transmitted impulse and less maximum

transmitted energy compared to free-standing beams, i.e. ĪT > ĪF and ĒT < ĒF ,

apart from a range of βs in mode III where ĪT < ĪF - this is because complete

detachment for elasto-plastic beams occur even earlier than interface overpressure

for free-standing beams drop to zero.

5.7 Comparison between structural performance

in underwater explosion and in air blast
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Figure 5.12: Predictions of temporal interface pressure and mid-span deflection
of elasto-plastic beam subjected to a shock wave in air and water. The results
for air blast were shown previously in Figs 5.4 and 5.5.

Which medium, air or water, is more effective in mitigating the effects of blast

loading for elasto-plastic structure is an important issue. A comparison of struc-
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tural performance under a blast wave of same intensity (i.e. same peak incident

overpressure ps and decay constant ti) in underwater explosion and air blast is

made to elucidate the aforementioned. Figure 5.12 compares the predictions of

interface pressure and mid-span deflection of an elasto-plastic beam subjected to

an incident shock wave in both air and water. The incident overpressure in Figs

5.12a and 5.12b can be characterised by ps = 1.00 MPa and ti = 1.14 ms, and

ps = 1.55 MPa and ti = 0.74 ms respectively. It can be seen in both figures that:

(1) the peak interface overpressure in air is significantly higher than that in water

which is due to the non-linear compressibility effect of air; and (2) the interface

pressure pInt(t)/pa in water drops more dramatically than that in air, as a result

of greater alleviation of interface pressure due to the significantly higher bulk

modulus of water. Both contribute to the significantly less mid-span deflection

in water compared that in air, i.e the elasto-plastic beam can develop mode I

and even mode II deformation in air, but only elastic deformation in water. This

demonstrates the superiority of water over air to mitigate the effect of blast wave

on elasto-plastic structures when subjected to the same incident wave.

However, it is notable that the effect of standoff distance is omitted from the

analysis above purposely, in an attempt to highlight the difference of two mediums

on the effect of mitigation of blast effect due to FSI. Clearly, increasing standoff

distance leads to attenuation of peak overpressure and longer pulse duration

(see Figs 5.2a and 5.2b for examples) in compressible medium (air), whereas

the shock wave travels without losing either peak overpressure, pulse duration,

or pulse shape in incompressible medium (water) - this is exactly the case when

detonating the same explosion in both mediums. In such case, the incident wave

imparted on the structure will be different (unlike the analysis above) in the two

mediums, i.e. the peak overpressure is significantly higher and pulse duration is

less in underwater explosion than those in air blasts. As a result, the structure

might be more vulnerable in underwater explosion - than in air blast - despite its

superior capacity of mitigating blast effect (as seen in Figs 5.12a and 5.12b); this

has also been noted by Xue and Hutchinson (2004) for sandwich structures.
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5.8 Conclusion

The dynamic response of elasto-plastic beam subjected to intense air blast

has been analysed. Numerical model has been developed to predict mid-span

displacement, interface overpressure history, impulse and energy transfer during

FSI at all modes of deformation. It was found that the over-prediction in the

structural response when ignoring FSI increases as a result of the following: (1) a

higher ratio of the maximum mid-span velocity vmax relative to the shock speed

Us - in line with Subramaniam et al. (2009); (2) a lower ratio of the time when

the maximum mid-span deflection is reached t3 relative to the pulse duration td;

and (3) reducing mass per unit area of the beam.

The effects of aspect ratio L/H and FSI index βs were investigated for elasto-

plastic beams deforming in different modes. Key findings can be summarised as

follows: (1) during mode I deformation, increasing L/H or βs lead to maximum

less transmitted impulse; and (2) during mode II and III deformation, an increase

of L/H or βs results in a reduction in maximum transmitted impulse.

The effects of boundary on FSI were also studied for the elasto-plastic. It

was found that the elasto-plastic beams, in general, have significantly higher

maximum transmitted impulse but lower maximum transmitted energy than the

free-standing counterparts at any mode of deformation, apart from some cases

where the elasto-plastic beams deform in mode III, the maximum transmitted

impulse are less than those of the free-standing beams.

Which medium, compressible (air) or incompressible (water), is more effective

in mitigating the effects of a blast wave for elasto-plastic structure is investigated.

It was found that the structure - when subjected to the same incident wave in

both mediums - is less likely to develop large inelastic deformation and complete

detachment at the support for underwater blast loadings compared to air blasts.

However, if the effects of standoff distance is taken into consideration, the above

finding may reverse, since in air blast the incident shock wave attenuates as it

propagates whilst it does not in underwater explosions.
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Chapter 6

Blast response of rectangular

plates

6.1 Introduction

The mode of deformation in a fully clamped monolithic beam under impulsive

loading depends on the non-dimensional impulse I∗ (:=Î/H
√
σY ρ), where Î =∫ td

0
p(t)/Bdt, and is classed as either mode I (large inelastic deformation) or

mode II (tensile-tearing and deformation) or mode III (shear-band localisation)

- see Menkes and Opat (1973). Olson et al. (1993), too, observed similar modes

in fully clamped, square mild-steel plates. Further experiments by Nurick and

Shave (1996) suggested that the mode II deformation may be sub-divided into

three distinct régimes of mode II* (through-thickness tearing along the supports),

mode IIa (complete detachment from supports with maximum central deflection

increasing with impulse) or mode IIb (complete detachment from supports with

maximum central deflection decreasing with impulse). Similar mode I and II (II*,

IIa, IIb) deformations were also observed in rectangular plates where aspect ratio

γ = 1.2 (Ramajeyathilagam and Vendhan, 2004).

Nearly all the available experimental data in the literature (Nurick and Shave,

1996; Olson et al., 1993; Rudrapatna et al., 1999), with the notable exception

of those by Ramajeyathilagam and Vendhan (2004), were performed with square

plates. However, it remains unclear how the aspect ratio γ (:= a/b - see Fig 6.1a)
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of rectangular plates affect its mode of deformation if γ >1. In a similar vein, little

is known of how the fixing conditions at the supports affect the tearing mechanism

in the plate which, in turn, has an effect upon the plate performance. The

aforementioned issues are addressed in this chapter which will present the results

of a detailed numerical study to elucidate how combinations of blast impulse and

aspect ratio affect the deformation mode and how limits to deformation, caused

by necking localisation and/or ductile fracture at the supports, affect the overall

performance of rectangular plates to impulsive loadings. The numerical results are

validated against experimental data for square mild-steel and aluminium plates

where they will be found to be in good agreement.

6.2 Finite element modelling

6.2.1 Mesh, loading and boundary conditions

Finite element analysis were performed using ABAQUS/Explicit (2012). All

plates modelled have length 2a, width 2b (a > b) and thickness H if their aspect

ratio γ > 1. If γ = 1, the plates have equal length of 2a on all sides. Only

a quarter of the solid plate is modelled since reflective symmetry exists on two

planes, as seen in Fig 6.1. Eight 8-node brick elements (C3D8R) with reduced

integration and hour-glass control were employed through the thickness of each

plate. All brick elements have equal dimension of 0.0002 m on all sides; hence, a

typical 0.089 m × 0.089 m × 0.0016 m plate tested by Menkes and Opat (1973)

would comprise of 255792 (168 × 168 × 8) elements in its corresponding FE

model. Results of convergence studies, to be presented later in Fig 6.2, confirm

that this is sufficient to simulate ductile and shear damage with acceptable fidelity.

Xue and Hutchinson (2003, 2004) have shown that the impulsive blast re-

sponse of a structure is sensitive to the response time T needed to attain max-

imum deflection for a zero-period impulse. This time scale determines whether

it is acceptable to idealise a finite-period loading as a zero-period impulse, i.e.

the plate acquires an instantaneous initial velocity of V0 = Î/m, where Î is the

impulse per unit area and m = ρH is mass per unit area of the plate. The re-
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sponse time of the square plate in the experiments of Nurick and Shave (1996),

with dimensions 0.089 m × 0.089 m × 0.0016 m and material properties given

in Table 6.2, is found numerically to be 120 µs. Since the typical blast du-

ration is td = 15 µs in Nurick and Shave (1996), the loading imparted by the

blast pulse may be idealised as a zero-period, uniform-momentum impulse (since

td/T = 0.125 � 1) so the plate acquires an instantaneous velocity. In a similar

vein, since the response time of the rectangular plates are also of the same order

of magnitude as the square plates in Nurick and Shave (1996), assuming that the

blast duration remains at td ≈ 15 µs, the zero-period idealisation would remain

equally valid.

Figure 6.1a gives the standard fully clamped boundary condition (BC) used

by existing numerical studies for plates (Nurick and Shave, 1996; Ramajeyathi-

lagam and Vendan, 2004; Rudrapatna et al., 1999, 2000). To accurately model

progressive ductile fracture along the boundary of the plate, a modified BC given

in Fig 6.1b is used here - this is similar to that employed in Chapter 3 for beams.

The efficacy of the modified BC is further demonstrated in Section 6.3 by the

excellent agreement between the predicted maximum plate deflection by the FE

model and the experimental results given by Nurick and Shave (1996) and Olson

et al. (1993).

Table 6.1: Number of elements in each direction of the uniform-mesh for Part 1

Mesh Number of elements Number of elements
in z-direction in x- and in y-directions

1 1 21
2 2 42
3 3 63
4 4 84
5 5 105
6 6 126
7 7 147
8 8 168
9 9 189
10 10 210
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Figure 6.1: (a) fully clamped and (b) modified boundary conditions adopted in
the FE model. u and φ refers to displacement and rotational degree of freedoms,
respectively. a > b for rectangular and b = a for square plates.

Three additional parts (parts 2-4 and parts 5-7) are added to each side of the

original solid plate (part-1) to form an extended boundary as shown in Fig 6.1b.

Note that the standard fully clamped BC of Fig 6.1a are imposed on parts 4 and

7. All the additional parts have equal width τ and identical material properties as
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the solid plate, apart from a gradation of their elastic modulus E, by a factor α.

Symmetric BCs are applied, just like to the solid plate. The parameters τ = H/6

and α = 10 are obtained by calibration to the experimental data at Nurick and

Shave (1996).

Mesh

Fully clamped BC 

Present 

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

εp

Figure 6.2: Predicted maximum equivalent plastic strain εp at (x = a, y = 0)
and (x = 0, y = b). Results are for square mild-steel plate of dimensions 0.089
m × 0.089 m × 0.0016 m subjected to a non-dimensional impulse of I∗ = 0.632
(or Î = 1378 Ns/m2). The mild steel properties of Nurick and Shave (1996) is
used, see Table 6.2. ‘Present’ refers to predictions using the modified boundary
condition in Fig 6.1b.

Figure 6.2 plots the predicted maximum equivalent plastic strain εp for dif-

ferent mesh density used in part-1. The number of elements along each direction

of the uniform-mesh is listed in Table 6.1. For a square plate with fully clamped

boundary condition, the maximum values for ε̄p are found at (x = a, y = 0) and

(x = 0, y = b) where tearing is expected to initiate from either, or both, locations.

It is evident that ε̄p does not converge for the standard BCs shown in Fig 6.1a.

Instead, convergence is achieved with the modified BCs. Figure 6.2 shows that

mesh size No.8 gives sufficiently accurate results and is used here.

116



x/a

W

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

y

x
b

a

0

y=0

Fully clamped BC  

Present  

H

(a)

t/T

W
H

0 0.25 0.5 0.75 1.0
0

2

4

6

8

10

12 Fully clamped BC  

Present  

(b)

Figure 6.3: (a) Deflection profile along the x-axis (the same for y-axis due to
symmetry) and (b) time-history of the central deflection of the plate. Results
are for square mild-steel plate of dimensions 0.089 m × 0.089 m × 0.0016 m and
subjected to a non-dimensional impulse of I∗ = 0.632 (or Î = 1378 Ns/m2). The
mild steel properties of Nurick and Shave (1996) is used, see Table 6.2. ‘Present’
refers to predictions using the modified boundary condition in Fig 6.1b.

Figure 6.3a shows that the differences between the predicted deflection pro-

files by the two BCs are negligibly small. Similarly, for the time-history of their
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central deflections as shown in Fig 6.3b. In general, W0/H are unaffected by the

presence of stress singularities at the boundary; therefore, evaluation of perfor-

mances, based on maximum transverse deflection of the plates, lead to identical

conclusions for either BCs provided necking localisation and ductile fracture had

not intervened.

6.2.2 Materials and damage models

Two plate materials are modelled in this study, aluminium (6061-T6) and

mild-steel. Table 6.2 lists the properties of the respective plate material. Notice

that the static yield strength of mild-steel in Olson et al. (1993) is slightly higher

than that by Nurick and Shave (1996).

Table 6.2: Properties of plate material used in the FE model.

ρ (kg/m3) E (GPa) σY (MPa) σU (MPa) ν Dq (s−1) q

Al 6061-T61 2760 69 283 320 1/3 - -

Mild steel2 7830 197 237 312 1/3 40.4 5

Mild steel3 7830 197 292 312 1/3 40.4 5

1(Jones et al., 1970), 2(Nurick and Shave, 1996) and 3(Olson et al., 1993).

The material description adopted is based on the conventional J2 plasticity

constitutive relation with linear isotropic hardening. Material strain rate sen-

sitivity is accounted for through a dynamic flow stress, evaluated at a uniaxial

plastic strain rate ε̇p, by adopting the Cowper-Symonds constitutive relation by

Jones (1989)

σd = σY

(
1 + | ε̇

p

Dq

|1/q
)
. (6.1)

Both Dq and q are material parameters given in Table 6.2. The aluminium plates

are assumed to be rate-insensitive.

Failure of solid plates subjected to impulsive loading can be attributed to two

competing bulk material failure mechanisms, viz. ductile fracture and/or shear

band localisation (Jones et al., 1970; Olson et al., 1993; Nurick and Shave, 1996).

The progressive damage model for ductile materials in ABAQUS/Explicit (2012)
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is used here. The criteria for initiation of ductile (ωd) and shear (ωs) damage in

the FE model are given by

ωd =

∫
dε̄p

ε̄pd(η, ˙̄εp)
= 1 and ωs =

∫
dε̄p

ε̄ps(θs, ˙̄εp)
= 1 (6.2)

where ωd and ωs are state variables that increases monotonically with the incre-

mental change in equivalent plastic strain. Here, the equivalent plastic strains

ε̄pd (at the onset of ductile damage) and ε̄ps (at the onset of shear damage) are

assumed, respectively, to be a function of stress triaxiality η and strain rate ˙̄εp;

and, a function of the shear stress ratio θs and strain rate ˙̄εp. When the cri-

teria in Eq. 6.2 are met, the damage variable D would increase according to

(ABAQUS/Explicit, 2012)

Ḋ =
˙̄up

ūpf
(6.3)

where ūpf is the effective plastic displacement at failure; ˙̄up = Le ˙̄εp and Le =

2 × 10−4 m is the characteristic length of the first-order element used in the

present FE model. Any element where their material stiffness is fully degraded,

i.e. D = 1, is deleted from the mesh. Table 6.3 lists the parameters used in the

damage models. Note that the parameters for both ductile and shear damage are

obtained by calibration to the experimental data of Nurick and Shave (1996).

Table 6.3: Material parameters used by the damage model

Damage ε̄pd or ε̄ps ūpf
model

Ductile 0.2 0.00011

Shear 0.2 0.00008

6.3 Validation

In this section, the FE predictions are validated against experimental data for

square mild-steel (Olson et al., 1993; Nurick and Shave, 1996) and rectangular

aluminium plates (Jones, 1970). Note that the blast loadings may also be idealised
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as zero-period impulses. The aluminium plates used by Jones et al. (1970) have

dimensions 0.1286 m× 0.0763 m × H m, with a range of thickness H. The

square mild-steel plate specimens in the experiments by Olson et al. (1993) and

Nurick and Shave (1996) have dimensions of 0.089 m × 0.089 m × 0.0016 m. The

properties for the two different mild steel and one aluminium plate are listed in

Table 6.2. Only the mode I central deflection are available in Jones et al. (1970)

whilst data on all three modes of deformation are provided by Olson et al. (1993)

and Nurick and Shave (1996).

6.3.1 Maximum transverse plate displacement - mode I

Figure 6.4a shows that the modified BC appears to better predict the central

deflection of the thicker plate specimens (H = 6.2 mm). This is because relaxation

of the in-plane and out-of-plane degrees of freedom at the plate boundary, gives

a somewhat larger W0/H than the standard BC would otherwise allow. Failure

to account for material strain rate sensitivity would lead to over-prediction of

W0/H with I∗ as shown in Fig 6.4b. In general, there is a good agreement

between experiment data and the current FE predictions.

Figure 6.5 plots the deflection profile along y = 0 for a square mild steel

plate subjected to a non-dimensional impulse I∗ = 0.86. Its central deflection

is well predicted by the current FE model. This lends further support to the

contention that replacing the standard BC with the modified one in Fig 6.1b

has hardly any effect upon the central deflection of the plate. Note, however,

that discrepancies in the deflection profiles are observed away from x = 0. As

x → a, the modified BC give a better prediction of the deformed plate profile

compared to the standard one, again, because the former relaxes the in-plane and

out-of-plane degree of freedom along the boundary.

The predicted central deflection is compared to the experimental data in

Nurick and Shave (1996) where there is a good agreement, see Fig 6.6. Further-

more, the FE model successfully predicts a reduction in W0/H with increasing

I∗ for a plate deforming in mode IIb. The observed discrepancy between FE

predictions and experimental data for mode IIb is because the former records the
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Figure 6.4: Comparison of the mode I central deflection for (a) aluminium plate
by Jones et al. (1970) and (b) mild steel plate by Olson et al. (1993) with FE
predictions at different levels of I∗. The aluminium and mild-steel plates has
aspect ratios of γ = 1.685 and γ = 1, respectively.
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Figure 6.5: Deflection profile of a mild steel plate (γ = 1) subjected to an impul-
sive load of Î = 1872 Ns/m2 (or I∗ = 0.86). The mild steel properties of Olson
et al. (1993) is used, see Table 6.2.

central deflection of the plate just before it completely detaches from the supports

unlike in the latter.

Nurick and Shave (1996) reported that, for mode II∗, the plate tears away

from the supports resulting in ‘pulling-in’ of the mid-side of the plate. This

‘pulling-in’ distance increases initially with I∗ but reduces when the maximum

plate deflection is reached. The general trend of the ’pull-in’ distance with I∗ is

well predicted by the current FE model in Fig 6.7. The observed discrepancies

are due to the same reason given previously for Fig 6.6.

6.3.2 Critical impulses corresponding to mode transitions

- mode I→IIa and IIb→III

A non-dimensional parameter Ψ is introduced to quantify the area fraction of

plate that has become detached from the supports as follows
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Figure 6.6: Comparison of the numerical central (maximum) deflection with the
experimental data at different levels of I∗. Each red cross indicates a transition
in deformation mode predicted by the current FE model. All mild steel plates
have aspect ratio of γ = 1. The mild steel properties of Nurick and Shave (1996)
is used, see Table 6.2.

Ψ =
Area of detached plate periphery from supports

Total area of plate periphery attached to supports [= 2Ha or 2Hb)]
.

(6.4)

Since the mesh is uniform, the numerator of Eq. 6.4 is easily calculated by

multiplying the total number of deleted elements to the surface area of the side

of an 8-node brick element which is attached to the supports. For a square plate,

Ψ is identical on all sides due to symmetry. If Ψ = 0, no elements are deleted, i.e.

the plate deforms in mode I. Conversely, if Ψ = 1, all elements along the plate

periphery are deleted.

Figure 6.8 gives the time-history of Ψ at different values of I∗ for a typical

square mild-steel plate by Nurick and Shave (1996). The FE model predicts
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Figure 6.7: Side pull-in distance versus impulse for mild-steel plates (γ = 1). The
mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

that an element is first deleted at I∗ = 0.69 (it would not be possible to verify

this experimentally) and through-thickness tearing occurs at a higher impulse of

I∗ = 0.75. Complete detachment from the supports occurs whenever I∗ ≥ 0.98,

i.e. the critical impulse at mode II*→ IIa transition is I∗ = 0.98. With increasing

I∗, complete detachment occurs at increasingly earlier times of t/T as expected.

Notice that Ψ is always less than unity even for high levels of impulse due to

crack branching away from the boundary into the plate’s interior. This will

become clearer in Section 6.4.1.

A procedure to determine the critical impulse corresponding to mode IIb

→ III transition is now described. Figure 6.9a shows the time history of three

typical stress triaxiality curves ηave(t̄); they are obtained by averaging the stress

triaxiality of all the elements in the shaded region as shown. The width of 0.025b is

chosen so that it covers the region of the plate where the cracks may conceivably

propagate. Note that beyond t̄0, the non-dimensional time corresponding to

ηave = 0, the plate is completely detached from its supports. Conversely, if I∗ is

insufficient to cause complete detachment, then ηave is always greater than zero.
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Figure 6.8: Time history of Ψ for different levels of I∗. © indicates the instant
when plate is completely detached from its supports. Results shown are for a
square mild-steel plate with a response time of T = 120 µs. The mild steel
properties of Nurick and Shave (1996) is used, see Table 6.2.

At each impulse level, the time-averaged value of the function ηave(t̄), defined as

η̄ =

∫ t̄0

0

ηave(t̄) dt̄

t̄0
(6.5)

This is obtained for the two different damage models, viz. ductile and shear,

applied separately to give the curves shown in Fig 6.9b. A unique cross-over

point can be identified which determines the transition from mode IIb → III.

Beyond this cross-over point, only the shear damage model is used; otherwise,

the ductile damage model is applied in a maximum sense. Using this proposed

criterion, Table 6.4 compares the numerical critical impulses (and transitional

velocities) with their experimental counterpart from literature. The predictions

by FE are in good agreement with the experimental data given by Nurick and

Shave (1996) and Olson et al. (1993). The predicted critical impulse is sensitive
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Figure 6.9: (a) Time history of stress triaxiality, ηave, averaged over all elements
in the shaded region, and (b) Comparison of the time-averaged stress triaxiality
η̄ for a plate using the ductile and shear damage model. Results shown are for
a square mild-steel plate with a response time of T = 120 µs. The mild steel
properties of Nurick and Shave (1996) is used, see Table 6.2.
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to the parameters α and τ of the modified BC (Fig 6.1b). Since the FE model is

calibrated to experimental data where the plate remains attached to the supports,

the predicted critical impulse for mode IIa → IIb transition is much lower than

that observed experimentally.

Table 6.4: Critical impulses I∗ (and velocities V0, m/s) corresponding to mode
transitions.

Mode Current FE FE1 Experiments2 Experiments3

I → II* 0.75 (130.0) 0.97 (168.8) 0.62 (108.8) -

II* → IIa 0.98 (172.0) 1.02 (177.5) 0.98 (171.3) 1.11 (193.5)

IIa → IIb 1.05 (184.0) 1.27 (221.0) 1.48 (257.0) 1.45 (251.9)

IIb → III 2.42 (421.0) 2.32 (404.7) 2.39 (416.2) -

1 (Rudrapatna et al., 1999) , 2 (Nurick and Shave, 1996) and 3 (Olson et al., 1993).

6.4 Predicted impulsive response

The fully validated FE model of the previous section is now employed to

compute the zero-period impulsive response of rectangular plates with aspect

ratio ranging between 2 ≤ γ ≤ 5. All rectangular mild-steel plates modelled have

the same total mass as the square ones (mp = 0.0992 kg) used in Nurick and

Shave (1996). Likewise, for their material properties listed in Table 6.2. The

results for square mild-steel plates of Nurick and Shave (1996) are also included

for comparison.

6.4.1 Deformation modes

Figure 6.10 shows that the current FE model successfully captures the different

modes of impulsive response observed in a typical rectangular plate (γ = 1.2).

Comparison is made here to the ‘post-test’ specimens of Ramajeyathilagam and

Vendhan (2004) where a set of clear photographs are available, instead of with

those given by Nurick and Shave (1996) and Olson et al. (1993). The zero-period,

uniform-momentum idealisation is also valid in the work of Ramajeyathilagam
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(a) Mode I (I∗ = 0.57)

(b) Mode II* (I∗ = 0.98)

(c) Mode IIa (I∗ = 1.15)

(d) Mode III (I∗ = 2.01)

Figure 6.10: Comparison of predicted deformation modes (left column) for rect-
angular mild-steel plates (γ = 1.2) to the ’post-test’ specimens (right column) of
Ramajeyathilagam and Vendhan (2004). Note that the former shows a quarter
of the rectangular plate due to symmetry. Properties of the mild-steel plates
by Ramajeyathilagam and Vendhan (2004) are as follows: ρ = 7860 kg/m3,
E = 210 GPa, σY = 300MPa. (Acknowledgement: Photographs - right column -
were reproduced from Ramajeyathilagam and Vendhan (2004)).

and Vendhan (2004). For rectangular plates deforming in modes IIa and IIb, a

crack propagates along each side of the plate boundary. At some point, their
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Figure 6.11: Ductile damage state variable ωd for a rectangular plate with aspect
ratio γ = 2 subjected to an impulse I∗ = 0.55. The plate is deforming in mode I.
The mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

crack paths are deflected inwards, circumventing the corner of the plate. When

the two crack paths meet, complete plate detachment occurs. It is not entirely
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clear why the crack path deviates from the plate boundary as it approaches the

corner although this occurs irrespective of the value of the aspect ratio. This is

the reason why Ψ is always less than unity in Fig 6.8 regardless of the value of

I∗.

Figure 6.11 shows the distribution of the state variable ωd for a typical rect-

angular plate (γ = 2) subjected to a non-dimensional impulse I∗ = 0.55. When

ωd = 1, the material stiffness at that point begins to degrade in accordance to

Eq. 6.3. It is noteworthy that ductile damage, by nucleation, growth and coales-

cence of voids, initiates well before the transition from mode I → II*. Current

simulations showed that the first element to be deleted, i.e. the material point

where its stiffness is fully degraded, always occurs at (x = 0, y = b, z = H/2), on

the surface incident to the blast irrespective of I∗. It is, therefore, surprising to

see in Fig 6.10b (right-side image) that tearing appears to initiate on the shorter

side of the plate by Ramajeyathilagam and Vendhan (2004). This experimental

anomaly must be due to material and/or geometric imperfections since it was,

also, predicted that tearing must initiate at the mid-point of the longer side by the

total and/or effective strain theory of Ramajeyathilagam and Vendhan (2004).

6.4.2 Types of mode II response

The mode II response of a plate was previously categorised as mode II*

(through-thickness tearing at the supports), mode IIa (complete detachment from

supports where central deflection increases with I∗) and mode IIb (complete de-

tachment from supports where central deflection decreases with I∗) by Nurick and

Shave (1996). However, the current FE simulations showed that non-through-

thickness tearing typically precedes mode II*. In light of this, it is advantageous

to re-classify the mode II response into three distinct types according to the mag-

nitude of the non-dimensional impulse I∗, viz. Type 1 (non-through-thickness

tearing), Type 2 (through-thickness tearing) and Type 3 (complete detachment

from supports).

Figure 6.12 shows the equivalent plastic strain contour for a rectangular plate

(γ = 2) subjected to different levels of impulse. At I∗ = 0.78, Figure 6.12a

shows that non-through-thickness tearing occurs along the supports, referred to
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Figure 6.12: Time evolution of the equivalent plastic strain contour in a rectangu-
lar mild steel plate (γ = 2) and the three types of mode II response predicted by
the current FE model. Material properties are listed in Table 6.2. The mild-steel
properties of Nurick and Shave (1996) is used.
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as a Type 1 response hereinafter. By contrast, Type 2 response entails through-

thickness tearing of the plate at the supports as depicted in Fig 6.12b. Figure

6.12c shows a typical Type 3 response where I∗ is sufficiently large for complete

detachment of the plate to occur. Notice the plate remnant at the corner of the

supports caused by the deviation of the crack paths (Fig 6.12c) which is also

evident in the experimental results shown in Fig 6.10c.

6.4.3 Failure maps

To ensure that comparison is made between plates of equal total mass and

thickness, the aspect ratio (defined as the ratio of the longer to shorter side) is

varied by choosing the longer and shorter sides of the plate to have length of a
√
γ

and a/
√
γ, respectively, where a(= 0.0445 m) is the half length of the square

plate by Nurick and Shave (1996). In this manner, the plate thickness (H = 1.6

mm) and plate mass (mp = 0.0992 kg) remain equal between plates of different

aspect ratio γ. Figures 6.13 shows how the non-dimensional central deflection

W0/H varies with I∗ for different aspect ratios ranging from 1 ≤ γ ≤ 5. The

overall trend of the central deflection with I∗ is broadly similar to a square plate.

For a plate deforming in modes I or II (Type 1 and 2), its central deflection

reduces with increasing γ at a given I∗. By contrast, W0/H is insensitive to γ.

The increasing-decreasing trend of W0/H with I∗ is clearly evident in the mode

II (Type 3) response. The FE results predict that the critical impulse at mode

I→ II (Type1) transition increases with aspect ratio γ, as seen in Fig 6.13. By

contrast, the transition at mode II (Type 3)→ III is insensitive to plate geometry

but depends only on material properties.

Figure 6.15 shows a deformation map, constructed from the data in Fig 6.13.

The contours of dotted line join constant value of W0/H within that particular

mode of deformation. This gives a map which is really useful to designers. Any

pair of values of I∗ and γ now locates a point on the map. From the map, one

can determine the deformation mode and read off the mid-point deflection of

the plate (by interpolation using two known values if required). Alternatively,

it allows a designer to determine the critical impulse I∗ delineating different

modes of deformation, and the corresponding central deflection of the plate , at a
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Figure 6.13: Variation of the maximum mid-point deflection with non-
dimensional impulse I∗ for rectangular plates with different aspect ratio. All
the plates shown have the same thickness H = 1.6 mm and a total mass of
mp = 0.0992 kg. The mild steel properties of Nurick and Shave (1996) is used,
see Table 6.2.

given aspect ratio γ. Note that the map assumes zero-period impulsive load (i.e.

td/T = 0). For the corresponding finite-period loading case (i.e. td/T 6= 0), one

would expect a lower central deflection at the same I∗ and the boundaries in the

deformation map of Fig 6.15 will change. This is explored in the next section for

the case of a square plate.

Previously in Fig 6.15, the mass per unit area m̂p(= ρH) of all the plates

were kept constant at m̂p = 12.53 kg/m2. Let this be increased by a factor

k > 1, from H to kH. To keep the same mass of mp = 0.0992 kg between plates,

its longer and shorter sides must be reduced accordingly to a/
√
k and b/

√
k,

respectively. The effects of plate thickness (or mass per unit area m̂p) upon

the deformation mode are explored in this manner. Figure 6.14a shows how the

boundaries, delineating the different modes, shift with the factor k. At a given γ,
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Figure 6.14: Deformation maps showing the changing boundaries according to
different plate thickness H. The mild steel properties of Nurick and Shave (1996)
is used, see Table 6.2.
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Figure 6.15: Deformation map for a rectangular mild-steel plate with a constant
mass per unit area of m̂p = 12.53 kg/m2 and a total mass of mp = 0.0992 kg.
The mild steel properties of Nurick and Shave (1996) is used, see Table 6.2.

the critical impulse I∗ at the transition from mode I → II(Types 1+2) and from

mode II(Types 1+2) → II(Type 3) increases with plate thickness. By contrast,

the boundaries corresponding to mode II(Type 3)→ III transition do not appear

to change significantly which is consistent with the fact that the corresponding

transitional impulse I∗ depends only on material properties. On the other hand,

Figure 6.14b re-plots the deformation map for Î (impulse per unit area) versus γ.

Increasing k (or the plate thickness) leads to a corresponding increase in Î which

is consistent with Fig 6.14b.

6.5 Effects of finite-period impulse upon the dam-

age mode

Xue and Hutchinson (2003, 2004) have previously shown that the ratio of

the blast duration to the overall response time of the structure (td/T ) deter-
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mines whether the blast loading may be approximated as a zero-period, uniform-

momentum impulse. In this section, results from numerical simulations are pre-

sented which examine the influence of td/T upon the deformation mode of square

mild-steel plates.

Figure 6.16a shows the effect of increasing td/T upon the area fraction of plate

(Ψ) that becomes detached from the supports. Note that the plate is loaded by

a zero-period impulse at td/T = 0. The results show that for the same non-

dimensional impulse of I∗ = 0.92, Ψ decreases with increasing blast duration. If

td/T > 0.9, the mode of deformation switches from mode II(Types 1 or 2) to mode

I. Hence, the response of the plate is also dependent upon the non-dimensional

blast duration td/T .

Figure 6.16b shows how the boundaries corresponding to the transition from

mode II(Types 1+2) → II(Type 3) and from mode II(Type 3) → III shifts in

accordance to the blast duration. Increasing the blast duration has an effect of

delaying the transition between deformation modes. For instance, a square plate

which was previously deforming in mode II(Type 3) at I∗ = 1.5, under the action

of a zero-period impulse, now deforms in mode II(Type 1 or 2) if td/T ≥ 2.0.

In a similar vein, the plate deforms in mode II(Type 3) instead of mode III at

I∗ = 2.5 if td/T ≥ 3.0.

6.6 Conclusion

FE model is developed in this chapter to study the dynamic response of plates,

subjected to impulsive loading for which experimental data on the permanent

inelastic deformation and post-damage observations were available. FE model

validations have been performed against a wide range of aspect ratio of plates

and non-dimensional impulse I∗ as given in the blast tests. In particular, the

non-convergence of key local stresses near the plate boundary, due to stress sin-

gularities, has been addressed which, subsequently, allowed ductile fracture along

the plate boundary to be modelled, within the framework of damage mechanics,

using finite elements.
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Figure 6.16: (a) Influence of blast duration td/T upon the area fraction of plate
Ψ that becomes detached from the supports; (b) Effects of the blast duration
upon the boundaries corresponding to the transition from mode II(Types 1+2)
→ II(Type 3) and from mode II(Type 3) → III. Results shown are for square
mild-steel plate subjected to a non-dimensional impulse of I∗ = 0.92. The mild
steel properties of Nurick and Shave (1996) is used, see Table 6.2.
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After validating the proposed FE model, the parametric study reveals a num-

ber of key features regarding the impulsive response of rectangular plates as

follows: (i) the impulsive mode II response has been reclassified into three dis-

tinct types, depending on whether tearing initiates at the supports; (ii) the cen-

tral deflection of a rectangular plate deforming in modes I and II (Types 1+2)

decreases with aspect ratio for the same I∗; (iii) with increasing plate aspect

ratio and thickness, a higher non-dimensional impulse I∗ is needed to cause non-

through-thickness and through-thickness tearing at the supports; (iv) the mode

III response is insensitive to aspect ratio γ and plate thickness. For thin plates,

the critical impulse for transition to mode III transition is a function of material

properties; and (v) an increase in the blast duration delays the transition between

deformation modes for plates of the same dimensions and subjected to the same

non-dimensional impulse I∗.
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Chapter 7

Discussions, conclusions and
further research

7.1 Discussions and conclusions

An understanding of the response of structures to intense blast loadings is

important to the nuclear, offshore and defence industries. Blast loadings can be

broadly classified as impulsive or non-impulsive depending on the ratio of the load-

ing duration to the natural response time of the structure with which it interacts.

A thorough literature review indicates that our current state of knowledge on the

dynamic response (i.e. large deformation, damage and failure) of elasto-plastic

structures under non-impulsive loadings is relatively under-developed; and, it is

also unclear how large elasto-plastic deformation and failure at the supports af-

fect the previously known results on fluid-structure interaction (FSI). This thesis

investigates the response of elasto-plastic structural members, viz. beams and

rectangular plates, to both impulsive and non-impulsive loadings and the effects

of FSI on their performance underwater and in air. Based on the results and anal-

yses presented in Chapters 2-6, this chapter summarises some of the important

conclusions that can be drawn from the studies.

7.1.1 A general elasto-plastic structural beam system

An elasto-plastic structural beam model was developed which is sufficiently

general to capture large elasto-plastic deformation; incorporate the interactions
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between bending, membrane stretch and transverse shear in the yield and plastic

limit functions; model the structural failure through progressive damage and its

subsequent detachment; and, account for general (impulsive and non-impulsive)

loading conditions. The analytical model is validated against existing experiments

for impulsively loading cases and is validated against present FE simulations for

non-impulsively loading cases.

7.1.2 Effects of pulse duration and pulse shape on defor-
mation and failure of elasto-plastic beams

The results presented in Chapter 3 revealed the following: (i) There is a

broadly similar overall trend for the mid-span deflection with non-dimensional

impulse I∗ for both impulsive and non-impulsive load cases, i.e. mid-span de-

flection W0/H increases initially before reducing with I∗; (ii) For a given I∗, the

mode I deflection reduces with increasing td whilst the reverse occurs in mode

II and III; (iii) The mid-span deflection at mode I→II transition is not sensitive

to td; (iv) Increasing pulse duration td leads to greater critical non-dimensional

impulse at mode I→II and mode II→III transitions; (v) Mode III deflection

for non-impulsive loads are considerably higher than its corresponding impulsive

counterpart at the same I∗; (vi) The non-dimensional shear energy Ēs
S reduces

while the non-dimensional membrane energy Ēm
S increases with increasing pulse

duration td at the same I∗; (vii) The residual momentum and energy in mode

II and III reduce dramatically for a given I∗ with longer pulse duration td and

(viii) Youngdahl (1970, 1971)’s approach can successfully eliminate the depen-

dence of the mid-span deflection to pulse shape effects for monotonically decay-

ing, impulsive and non-impulsive, loadings. However, the same approach would

under-predict the mode I mid-span deflection when the loading is non-impulsive

and non-monotonically decaying.

7.1.3 Effects of fluid-structure interaction (FSI) in water
and air

The results (in Chapters 4 and 5) showed that the deflection associated with

various modes of deformation for a clamped elasto-plastic beam, substantially
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influence the beneficial effect of FSI in both incompressible and compressible

mediums. In underwater explosions, increasing non-dimensional impulse I∗ leads

to a substantial decrease in non-dimensional maximum transmitted impulse after

mode I→II transition, because a significant proportion of the impulse is transmit-

ted to the beam during elastic rebound in mode I. Both the maximum transmitted

impulse ĪT and energy ĒT reduces monotonically with non-dimensional impulse

I∗ in modes II and III, since the time it takes for complete detachment to occur

reduces with I∗.

In air blasts, the FSI effect of reducing the load acting on the elasto-plastic

beams is evident during structural response at all modes of deformation; this is

due to the alleviation of interface pressure by the rapid motion of the beam. The

over-predictions of maximum mid-span deflection, maximum transmitted impulse

and energy by ignoring FSI effects are considerable in mode I deformation, but

are negligible in mode II and III deformations. The influence of the structural

and blast pressure wave parameters on the importance of FSI is studied for elasto-

plastic beams during mode I deformation. It is found that the error - in predicting

structural response when FSI is not considered - increases monotonically, (i) when

the maximum mid-span velocity increases relative to the shock speed; (ii) as the

time (when the maximum mid-span deflection is reached) decreases relative to

the pulse duration; or (iii) when the beam has less mass per unit area.

7.1.4 Sensitivity of blast response of elasto-plastic beams
to beam aspect ratio and mass

The variations of maximum impulse and energy transfer to beam mass per

unit area, or FSI index (βw in water and βs in air) and beam aspect ratio L/H is

investigated. The key findings for the incompressible and compressible mediums

are as follows. In underwater explosions, an increase of beam aspect ratio L/H or

decrease of FSI index βw (more mass per unit area) always leads to a reduction of

maximum transmitted impulse in mode I, and an increase of FSI index βw results

in a reduction of maximum transmitted impulse in mode II and III. In air blast,

the elasto-plastic beam acquires less transmitted impulse, with increasing aspect
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ratio L/H or FSI index βs in mode I, and with increasing FSI index βs in mode

II and III.

7.1.5 The effects of supports upon the FSI phenomenon

The analysis of structures loaded by underwater blast or air blast is often done

by adopting the analysis of Taylor (1941) and Kambouchev et al. (2007) (which

will subsequently be referred to as the KNR theory) based on rigid, free-standing

structures and ignoring the effect of boundary condition. Employing the afore-

mentioned solutions for elasto-plastic beams could lead to large inaccuracies on

the maximum impulse transmitted. The key findings for the effects of boundary

on FSI are as follows. In underwater explosions, Taylor’s solution under pre-

dicts the maximum transmitted impulse and energy for elasto-plastic beams for

all modes of deformation. In air blast, KNR’s solution would over-estimate the

maximum transmitted energy but under-estimate the maximum transmitted im-

pulse for elasto-plastic beams deforming in all three modes, despite some notable

cases in mode III where it over-predicts the maximum transmitted impulse.

7.1.6 Deformation and failure of rectangular plates

Deformation and failure of fully-clamped rectangular plates have been inves-

tigated. A 3D FE model is developed which is capable of modelling the blast

response of rectangular mild-steel plates for a wide range of aspect ratios and

non-dimensional impulse. Predictions by the FE model are shown to be in good

agreement with experimental results. Parametric studies are carried out to reveal

the key features of impulsive and non-impulsive response of rectangular plates.

In particular, the impulsive mode II response has been reclassified into three dis-

tinct types, depending on whether tearing initiates at the supports, viz. Type 1

(non-through-thickness tearing), Type 2 (through-thickness tearing) and Type 3

(complete detachment from supports). Increasing plate aspect ratio and thickness

leads to a higher non-dimensional impulse I∗ that is needed to cause nonthrough-

thickness (Type 1) and through-thickness tearing (Type 2) at the supports. An

increase in the blast duration delays the transition between deformation modes
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for plates of the same dimensions and subjected to the same non-dimensional

impulse I∗. Deformation maps are constructed which allow the maximum central

deflection of rectangular plates to be read off for different combinations of blast

impulse and aspect ratio, and vice-versa.

7.2 Further research

The findings presented in this thesis collectively provide some new insights

into blast response of structures. The analysis of dynamic response of elasto-

plastic beams under non-impulsive loading improves the understanding of loading

duration upon structural deformation and subsequent failure. The examination of

fluid-structure interaction for elasto-plastic structures in air and water explosion

underpins the understanding of the outcome of FSI associated with different

modes of deformation. Despite the comprehensive studies of these important

aspects, some parts in this research still require more thorough investigation,

leading to the following suggestions for future research:

1. The current structural beam model is developed and validated for beams

made of aluminium 6061 T6 which can be considered as strain-rate insensi-

tive. Chapter 6 shows that neglecting material strain rate sensitivity would

lead to significantly over-prediction of central deflection for plates made

by materials like mild steel. Future work could incorporate the strain-rate

effect into the present structural beam model.

2. In the present structural beam model, the length of the plastic hinge is

held constant following the analytical procedure by Jones (1976). Shen

and Jones (1992) suggested an empirical relation, where the plastic hinge

length changes inversely with the applied impulse. Figure 3.7 in Chapter

3 shows that predictions by Shen and Jones (1992) agree better against

experimental data compared to the current analytical predictions. Further

work can be carried out in establishing the relationship of hinge length with

loading intensity to improve the accuracy of the present analytical model.
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3. The present analysis of FSI in underwater explosion neglected the influ-

ence of the reflection wave from the closing front in a Type I cavitation

event (i.e. the breaking front travelling in the positive Z-direction, always

arrests before it reaches the fluid-structure interface and inverts its motion

as a closing front). Several authors (Schiffer and Tagarielli, 2014, 2015)

have found that in a Type I cavitation event, breaking shock fronts that

eventually strike the target structure always contribute to the transmitted

impulse. Current analytical model under-predicts by up to 13.4% of the

maximum transmitted impulse compared to present FE predictions. Thus,

it would be worthwhile to include the effect of breaking shock front as an

extension to the current analytical model.

4. The transmitted impulse of the free-standing plate is often normalised by

a function of a single non-dimensional parameter (better known as the FSI

index) which characterises the relative time scale of structure and loading

(Taylor, 1941; Kambouchev et al., 2006; Hutchinson, 2009). It was found

(in Chapters 4 and 5) that the blast response of elasto-plastic structure

is govern by beam aspect ratio and its mass per unit area, quantified by

the FSI index. Future work should investigate the possibility of finding

a re-normalisation for the transmitted impulse of elasto-plastic structure,

including both beam aspect ratio and beam mass per unit area, expressed

in terms of a single non-dimensional parameter.

5. For rectangular plates deforming in modes IIa and IIb, a crack propagates

along each side of the plate boundary. At some point, these crack paths

are deflected inwards, circumventing the corner of the plate. When the

two crack paths meet, complete plate detachment occurs. It lacks an ex-

planation of why the crack path deviates from the plate boundary as it

approaches the corner and this occurs irrespective of the value of the aspect

ratio. Similarly, it remains unclear why failure occurs before all the ele-

ments at the supports are deleted regardless of the value of impulse. Thus,

it would be worthwhile to investigate the crack propagation in rectangular

plates subjected to impulsive loadings to elucidate the aforementioned.
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Appendix A
The finite difference numerical
method

Following closely the algorithmic approach by Drumheller (1998), the domain

of interest is discretised into N equally spaced points. The simulations (in chapter

5) have been carried out with between 2000 and 4000 mesh points, depending on

the problem. The coordinates of these points are given by x0
e(n) = X(n) = (n −

N)∆X, where n = 1, 2, ..., N is the point number and ∆X = (d0 + d)/(N − 1) is

the grid spacing. Time is discretised into variable time steps ∆tk, j = 1, 2, ... and

the discretised solution is obtained at time t0 = 0, t1, ..., tk−1, tk = tk−1 + ∆tk,...

The finite difference approximation for particle velocity leads to

xk+1
e(n) = xke(n) + ∆tk+1v

k+ 1
2

(n) (A-1)

where the velocity v is computed in the middle of the time intervals,

v
k+ 1

2

(n) = v
j− 1

2

(n) +
1

2
(∆tk + ∆tk+1)ak(n) (A-2)

where the time step is averaged over the current and previous time step and the

velocity is defined only in the middle of the time steps. The acceleration for

previous equation is obtained from the momentum conservation equation:

ak(n) = − 1

ρ0
(n)

pk
(n+ 1

2
)
− pk

(n− 1
2

)

∆X
(A-3)
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The rest of the discretised equations are as follows:
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ρ0
c(n+ 1

2
)

=
ρ0
c(n+1) + ρ0

c(n)

2
(A-11)

where the discrete deformation gradient F is given by

F k
(n+ 1

2
)

=
xke(n+1) − xke(n)

∆X
. (A-12)

The solution process consist of applying the following steps to each node n in the

domain (n = 0, ..., N − 1) except the last one n = N which is treated separately

- the details will be given later. The initialisation of the simulation at k = 0 is to

prescribe the following initial velocity field to the compressed air container and

ambient air container,

v
1
2

(n) = v0e
−(x0

e(n)
/d0)2 , x0

e(n) ≤ d0

v
1
2

(n) = 0, x0
e(n) > d0.

(A-13)
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The initial density field follows immediately from Eq. 5.2,

ρ0
(n) =

[
1 +

γ − 1

2
(
v

1
2

(n)

ca
)2
]1/(γ−1)

, x0
e(n) ≤ d0

ρ0
(n) = 0, x0

e(n) > d0.

(A-14)

The first step in each time iteration is to compute the stable time step size:

∆tk = α
[
min

(xk−1
e(n) − x

k−1
e(n−1)

ck−1
(n−1)

)]
(A-15)

where the minimum is taken over all possible values of n and 0 ≤ α ≤ 1 is

an appropriately chosen time factor. Note that the time step at j = 1 is ∆tk =

α∆X/ca. This step is followed by the computation of deformation gradient F k
(n+ 1

2
)

(Eq. A-12), the deformation rate d
k+ 1

2

(n+ 1
2

)
(Eq. A-7) and the Eulerian spacing

∆x
k+ 1

2

(n+ 1
2

)
(Eq. A-8). From these the viscous dissipation Θ

k+ 1
2

(n+ 1
2

)
(Eq. A-5) and

the internal energy ek+1
(n+ 1

2
)

(Eq. A-9) can be computed. At the next step the

pressure pk+1
(n+ 1

2
)

is obtained from Eq. A-4 and substituted into the expression

of acceleration ak(n) (Eq. A-3). The cycle for the time step is completed by

computing the velocity v
k+ 1

2

(n) (Eq. A-2) and particle location xk+1
e(n) (Eq. A-1).

Node N at X = d0 + d is treated independently as three different cases in each

simulation:

1. a free moving air particle, whose equation of motion is represented by Eqs.

A-1, A-2 and A-3;

2. a reflective, clamped, rigid wall with boundary condition of xk+1
e(N) = v

k+ 1
2

(N) =

0 and

3. an elasto-plastic beam whose equation of motion can be obtained by sub-

stituting interface pressure pInt = pk+1
(N+ 1

2
)
− pa into Eq. 2.28.
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