UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility.

Edwards, CH; Warren, FJ; Campbell, GM; Gaisford, S; Royall, PG; Butterworth, PJ; Ellis, PR; (2015) A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food & Function , 6 (12) pp. 3634-3641. 10.1039/c5fo00754b. Green open access

[thumbnail of FF (2015).pdf]
Preview
Text
FF (2015).pdf

Download (3MB) | Preview

Abstract

The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickpea and durum wheat. Gelatinisation parameters were obtained from the DSC thermograms and concomitant microscopy analyses were performed. The estimated terminal extent of gelatinisation (TEG) was compared with our previously published data for in vitro starch digestibility of the same food materials. We observed clear differences in the gelatinisation behaviour of matched size-fractions of chickpeas and durum wheat. In chickpea materials, the TEG values (34-100%) were inversely related to particle size, whereas in durum wheat, no size-dependent limitations on TEG were observed. The TEG values were completely consistent with the extent of starch amylolysis in all size fractions of both durum wheat and chickpea. Microstructural analysis following hydrothermal processing confirmed the presence of some partially gelatinised birefringent starch within intact chickpea cells. Birefringent starch granules were not present in any of the processed fractions of durum wheat. The differences in gelatinisation behaviour of these plant species seem to reflect the individual cell wall properties of these materials. These findings demonstrate the applicability of DSC to real food materials to provide insight into the mechanisms by which the food matrix (particularly the plant cell walls) influences gelatinisation, and consequently, starch amylolysis.

Type: Article
Title: A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility.
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1039/c5fo00754b
Publisher version: http://dx.doi.org/10.1039/c5fo00754b
Language: English
Additional information: This journal is © The Royal Society of Chemistry 2015. Open Access Article. Published on 02 September 2015. Downloaded on 06/11/2015 09:27:19. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmaceutics
URI: https://discovery.ucl.ac.uk/id/eprint/1472252
Downloads since deposit
244Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item