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Abstract

Purpose Intraoperative MRI (iMRI) is a powerful

modality for acquiring images of the brain to facilitate

precise image guided neurosurgery. Diffusion-weighted

MRI (DW-MRI) provides critical information about lo-

cation, orientation and structure of nerve fibre tracts,

but suffers from the “susceptibility artefact” stem-

ming from magnetic field perturbations due to the step

change in magnetic susceptibility at air-tissue bound-

aries in the head. An existing approach to correct the

artefact is to acquire a field map by means of an ad-
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ditional MRI scan. However, to recover true field maps

from the acquired field maps near air-tissue boundaries

is challenging and acquired field maps are unavailable in

historical MRI datasets. This paper reports a detailed

account of our method to simulate field maps from

structural MRI scans that was first presented at IPCAI

2014 and provides a thorough experimental and analy-

sis section to quantitatively validate our technique.

Methods We perform automatic air-tissue segmentation

of intraoperative MRI scans, feed the segmentation into

a field map simulation step and apply the acquired and

the simulated field maps to correct DW-MRI datasets.

Results We report results for 12 patient datasets ac-

quired during anterior temporal lobe resection surgery

for the surgical management of focal epilepsy. We find

a close agreement between acquired and simulated field

maps and observe a statistically significant reduction

of the susceptibility artefact in DW-MRI datasets cor-

rected using simulated field maps in the vicinity of the

resection. The artefact reduction obtained using ac-

quired field maps remains better than that using the

simulated field maps in all evaluated regions of the

brain.

Conclusions The proposed simulated field maps facili-

tate susceptibility artefact reduction near the resection.

Accurate air-tissue segmentation is key to achieving ac-

curate simulation. The proposed simulation approach is

adaptable to different iMRI and neurosurgical applica-

tions.

Keywords Image guided neurosurgery · Interven-

tional MRI · Magnetic field inhomogeneity · Tissue

segmentation · Field map simulation
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1 Introduction

Anterior temporal lobe resection (ATLR) is an es-

tablished treatment for refractory temporal lobe

epilepsy [22]. The optic radiation is a fibre tract that

conveys visual information from the lateral geniculate

nucleus in the thalamus to the primary visual cor-

tex. The fibres representing the superior visual field

(Meyer’s loop) are vulnerable to damage during ALTR,

which can lead to postoperative contralateral superior

visual field deficit precluding the seizure-free patient

from returning to regular activity, such as through loss

of eligibility for driving [5].

Image-guided neurosurgery is an established surgi-

cal specialization that involves the display of surgical

plans overlaid onto the intraoperative model of brain

anatomy to facilitate a potential improvement to the

precision of pathological tissue resection and a poten-

tial reduction of damage to the surrounding areas such

as the optic radiation. The accurate mapping of the

preoperative image space to the intraoperative anatom-

ical space is complicated by intraoperative brain shifts

that can reach up to 11 mm [5]. Interventional MRI

(iMRI) can provide accurate volumetric information

about the intraoperative anatomical space. Diffusion-

weighted MRI (DW-MRI) provides information about

the location, orientation and structure of nerve fibre

tracts and can reveal the anterior extent of the optic

radiation that varies between subjects [18].

However, DW-MRI is acquired using the echo pla-

nar imaging (EPI) pulse sequence, which suffers from

severe geometric distortion due to field inhomogeneities

i.e. local differences of the B0 magnetic field from the

nominal field strength. MRI encodes each imaging di-

mension by superimposing a linear gradient field onto

the main field. This linearity is assumed during image

reconstruction and thus field inhomogeneities virtually

displace the signal origin. EPI has a limited signal band-

width in the phase-encode (PE) imaging dimension and

local inhomogeneities even on the order of ppm result in

a geometric distortion along the PE dimension. B0 in-

homogeneities due to design constraints on the magnet

can be reduced (shimmed) to several ppm by means of

superconducting shim coils [6]. Another source of B0 in-

homogeneities is the perturbation of the magnetic field

by non-uniform geometric distribution of magnetic sus-

ceptibility in the imaged volume, which is largest near

air-tissue boundaries such as the resection cavity, the

paranasal sinuses and the petrous part of the tempo-

ral bone [14]. This perturbation is shimmed using a

set of room-temperature shim coils. However, the resid-

ual inhomogeneities due to higher-order perturbations

give rise to the susceptiblity artefact, which is char-

acterized by severe non-linear geometric warping and

intensity distortion, and signal dropout that reduces

the signal-to-noise ratio (SNR). These effects compli-

cate DW-MRI processing such as tensor fitting [15].

One approach to correcting the susceptibility distor-

tion artefact is to acquire a residual B0 inhomogeneity

map (“field map”), requiring approximately 1 minute

additional acquisition time and to correct the EPI im-

age by considering the field map as defining linear

displacement along the PE dimension. This approach

was recently used in a clinical iMRI study and facil-

itated a reduction of the intraoperative susceptibility

artefact [7]. The acquisition process uses the gradient-

recalled echo pulse sequence [14], which measures the

spin phase evolution between a pair of echoes. The re-

sulting phase-difference map (“acquired field map”) is

modulo-2π wrapped due to the unknown number of

elapsed revolutions. Techniques for the necessary phase-

unwrapping to recover the true continuous field map

are presented e.g. in [12] and [7]. However, an accu-

rate estimation of the true field map becomes difficult

near the resection air-tissue boundary. Firstly, acquired

field maps also suffer from low SNR that drops further

near the resection due to signal dropout. Secondly, the

spatial gradient in the true field map is highest near

air-tissue boundaries, which leads to abrupt changes

in the observed field map. This presents a challenge to

the phase-unwrapping methods that necessarily include

a field smoothness regularization constraint and poten-

tially fail to fit the true field map.

A second distortion correction approach is to non-

linearly register the conventional non-EPI T2-weighted

(T2w) structural scan with the “b0” image (b0-DW-

MRI), which is a T2w EPI image acquired without

the diffusion gradients, and to correct the diffusion-

weighted EPI images by applying the resulting defor-

mation. Such correction has been shown to reduce ten-

sor fitting errors in DW-MRI datasets [15] and has been

used as part of a joint correction scheme in [7]. How-

ever, an accurate estimation of the distortion near the

resection margin is challenging due to the low spatial

resolution of EPI, the heavy compression of voxels and

the severe signal dropout that fades and blurs the re-

section margin and its neighbourhood in the b0-DW-

MRI image. A related approach is to acquire a pair of

b0-DW-MRI images using opposite PE directions and

thus exhibiting opposite distortions, and to estimate

the distortion by recovering the mid-point image [1].

However, this presents an additional challenge of com-

pensating between a heavy compression in one image

and a heavy expansion in the pair image.

In this paper, we propose to simulate a field map

from air-tissue segmentations generated using non-EPI
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T1-weighted (T1w) and T2w iMRI images acquired

as part of a clinical iMRI scanning protocol to pro-

vide an anatomically accurate, physically realistic and

smooth prior for the above methods. Previously, Jenk-

inson et al. [13] developed a perturbation method to cal-

culate a B0 inhomogeneity field from air-tissue segmen-

tation derived from computed tomography (CT) im-

ages. Poynton et al. [20] demonstrated that non-surgical

T1w images can be segmented into air and tissue classes

using a probabilistic CT atlas and reported that a sub-

sequent application of the method [13] results in a close

overall agreement between the acquired and simulated

field maps. However, we observe that a probabilistic at-

las is not suited to the segmentation of intraoperative

iMRI images that contain air-filled craniotomy and re-

section areas with a shape specific to the surgery and

the subject. Instead, we inform the air-tissue segmen-

tation using priors derived from a synthetic CT image,

which we compute from the preoperative T1w image

based on a database of MRI/CT pair templates. We

subsequently feed the air-tissue segmentation into the

method [13].

The field map simulation is evaluated by compari-

son with field maps acquired during iMRI guided ATLR

neurosurgery for 12 cases. Our previous study presented

at IPCAI 2014 has shown that the proposed method

generates field maps in close agreement with the ac-

quired field maps [16]. In this paper, we interpret the

differences between the acquired and simulated field

maps based on a quantitative evaluation of the effects

of susceptibility correction using manually annotated

anatomical landmarks and tensor fit error maps.

2 Methods

In Section 2.1 we introduce the method we used to cor-

rect EPI images in our study based on field maps and in

Section 2.4.1 we outline the preprocessing step used for

raw acquired field maps in order to enable the compari-

son of acquired and simulated field maps. In Section 2.2

we describe an air-tissue segmentation scheme used to

bootstrap a field map simulation outlined in Section 2.3.

An overview of the processing pipeline, needed to cor-

rect a DW-MRI image based on either an acquired or

a simulated field map, is shown in Figure 1.

2.1 Field map in terms of voxel displacement

Let the magnetic field at point x be B0 + ∆B0(x) [T]

where B0 is the homogeneous field and ∆B0(x) is the

inhomogeneity field map, which can be equivalently ex-

pressed as γ∆B0(x) [rad/s] or γ∆B0(x)
2π [Hz]. For the

purposes of image correction, one is interested in the

millimeter displacement along the phase encode direc-

tion that the inhomogeneity causes to an EPI image.

The displacement can be calculated based on theory

in [14,11]. Consider the acquisition of a single EPI slice

with matrix size N×N and voxel dimensions rFE in the

frequency encode (FE) direction and rPE in the phase

encode (PE) direction, respectively. The EPI slice is

reconstructed by the inverse Fourier transform of the

MR signal. In the PE direction, the MR signal sampling

rate is N
TRO

[Hz], where TRO is the readout time. The

image bandwidth in the PE direction is N
NTRO

= 1
TRO

[Hz/pixel] or TRO [pixel/Hz]. Since the PE gradient is

used to encode position along the PE direction, the

above offset corresponds to a distortion along the PE

direction of size

dPE(x) =
γ∆B0(x)

2π
TROrPE (1)

in millimeters. The magnetic field ∆B0(x) is either

found by simulation or, in case of the acquired field

map, can be derived from the phase evolution ∆φ(x)

[rad] of phase during the echo time difference TED:

∆B0(x) =
∆φ(x)

γTED
(2)

A scalar displacement map was calculated using Equa-

tion 1 and was converted into a dense displacement field

along the PE direction [7]. Identical displacement was

applied to all the EPI images in each DW-MRI dataset

by resampling the images with cubic spline interpo-

lation using the resampling utility from the NiftyReg

package [17].

2.2 Air-tissue segmentation

The magnetic susceptibility values for soft-tissue (≈
−9.1 × 10−6) and bone (≈ −11.4 × 10−6) are simi-

lar, but both are significantly different from that of air

(≈ 0.4×10−6) [20]. Therefore, we needed a binary label-

ing of the head into tissue (which combines soft tissue

and bone) and air.

For each subject, a segmentation was performed on

the sum (T1w+T2w) of the intraoperative T1-weighted

(T1w) and T2-weighted (T2w) MRI images, which were

already co-registered, as the head was fixed during ac-

quisitions. In T1w images, soft tissue with low free wa-

ter content (e.g. the brain, muscles, fat) appears bright,

while in T2w images, the voxels with high free wa-

ter content (such as CSF and the eyes) appear bright.

Therefore, an accurate delineation of the soft-tissues

can be obtained by summing the T1w and T2w MRI

images. However, since bone and air have similar low
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Fig. 1: The processing pipeline for correcting the susceptibility artefact in a DW-MRI image. The dashed lines

represent the step into which either a phase-unwrapped acquired field map or a simulated field map can be fed.

The entry points of the simulation are non-distorted preoperative T1w and intraoperative T1w and T2w images.

(a) (b) (c) (d)

Fig. 2: Air-tissue segmentation. (a) Intraoperative T1w+T2w sum image. The section runs through a plane close

to the anatomical coronal plane with the head at an angle due to intraoperative orientation. (b) An accompanying

pseudo-CT (range -1000–1000 HU). (c) The result of the proposed segmentation within the intraoperative FOV

(red for air, green for soft-tissue, blue for bone). (d) The final air-tissue segmentation (black for air, white for tissue).

The appended inferior volume outside of the intraoperative FOV is an approximate air-tissue segmentation based

on preoperative T1w MRI.

intensities in both T1w and T2w images, they are indis-

tinguishable based on intensity alone. In order to dis-

tinguish between air and bone, we used a spatial prior

probability map (spatial prior) associated with each

class, which enables the segmentation of the T1w+T2w

image into three partial volume classes (air, soft-tissue

and bone).

Air and bone have distinct attenuation properties,

which makes CT images a good candidate for the spa-

tial priors, as their intensities expressed in Hounsfield

units (HU), are a linear transformation of the linear

attenuation coefficients. However, CT images were not

part of the preoperative planning imaging protocol. The

attenuation information was derived from a pseudo-CT,
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synthesized from a preoperative T1w image, as shown

in Fig. 2(b).

2.2.1 CT synthesis

The CT synthesis method, developed by Bur-

gos et al. [2,3] relies on a pre-acquired set of aligned

T1w MRI/CT image pairs from multiple subjects

forming an MRI-CT database. Two gender-specific

databases were used, both comprising 35 subjects part

of an epilepsy study. To generate the CT from the pre-

operative T1w MRI image, each MRI image from the

database was non-rigidly registered to the preoperative

T1w MRI image. The CT images were then mapped us-

ing the same transformation to the preoperative T1w

MRI image. A local image similarity measure between

the preoperative T1w MRI and the set of registered

MRIs from the database was used as a surrogate of the

underlying morphological similarity, under the assump-

tion that if two MRIs are similar at a certain spatial lo-

cation, the two CTs will also be similar at this location.

Finally, the set of registered CTs was fused using a spa-

tially varying weighted averaging, with weights derived

from the similarity measure, generating a pseudo-CT.

2.2.2 Constrained spatial priors

To constrain the spatial priors to the probability range

0–1, we used the sigmoid intensity transformation

sig(I(x)) = 1/(1 + exp(φ0 +φ1I(x))), where I(x) is the

image intensity at voxel x and the constants φ0 and

φ1 are chosen so as to transform a particular intensity

range to the transitional interval 0.001–0.999. We es-

tablished the soft-tissue prior by intensity-transforming

the T1w+T2w image intensity range 50–90 (mild gray).

The pseudo-CT, synthesised from the preoperative

T1w MRI, was rigidly propagated to the intraopera-

tive space. The advantage of using CT images is that

the Hounsfield scale is quantitative, whereby air corre-

sponds to -1000 HU, soft-tissue ranges from 0 to 100 HU

and bone from 700 to 3000 HU. Using the sigmoid func-

tion, we let the air prior to vary from 0.999 to 0.001 for

-1000–0 HU and we let the bone prior to vary from

0.001 to 0.999 for 100–700 HU.

The spatial priors had no biological basis in the ar-

eas altered by the surgery. We linearly reduced the air

prior into a range 0.1–0.9 to enforce the resection cavity

to be segmented as air. We smoothed the spatial priors

with a Gaussian kernel (σ = 2mm) to enforce the skull

to be segmented as bone and the skull segment removed

during the craniotomy to be segmented as air.
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Fig. 3: Histogram (cropped for clarity of the figure) of

the T1w+T2w image in Fig. 2(a) and the fit of the

GMM model for the segmentation in Fig. 2(a). The

data come from intraoperative scans for subject #3.

2.2.3 Segmentation scheme

The segmentation was obtained using the seg EM

tool from the NiftySeg package [4], which provides

an intensity-based segmentation scheme based on the

Gaussian Mixture Model (GMM) implemented using

the Expectation-Maximization (EM) algorithm and a

Markov Random Field (MRF) spatial regularization

to provide a Maximum a Posteriori solution, as per

Fig. 2(c). Fig. 3 shows the corresponding fitted GMM.

We increased the MRF prior strenth (β = 1.0) to fur-

ther enable a correct air segmentation in the craniotomy

area.

iMRI and pseudo-CT fields of view (FOV) are

largely limited to the cranial part of the head. The sub-

sequent field map estimation step (Section 2.3) assumes

that the voxels outside of the segmentation FOV are air-

filled, which we observed to result in unrealistic field

maps due to the virtual tissue cut-off below the cra-

nium. We utilized the wide FOV of the rigidly registered

preoperative T1w and and appended a 100 mm-deep

volume inferiorly to the intraoperative FOV contain-

ing an approximate air-tissue segmentation obtained by

thresholding the preoperative T1w (Fig. 2(d)).

2.3 Field map estimation

The field map estimation was performed using the tool

b0calc from the FSL software package [21,13], which

models the first order perturbations of the main mag-

netic field. The susceptibility χ can be expanded as
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χ = χ0 + δχ1, where χ0 is the magnetic susceptibil-

ity of air, δ is the susceptibility difference between air

and brain tissue and χ1 is a binary variable describ-

ing the tissue type. The first order perturbations of the

z-component of the main magnetic field (B1
z ) can be

written in terms of the main magnetic field (B0
z ):

B1
z =

χ1

3 + χ0
B0
z −

1

1 + χ0

((∂2G

∂z2

)
∗ (χ1B

0
z )

)
(3)

where G is the Green’s function G(x) = (4πr)−1 and

r =
√
x2 + y2 + z2. Note that the expression is sim-

plified considerably due to the fact that we only have

a non-zero component B0
z in the longitudinal axis (z-

direction) of the main magnetic field.

Equation (3) cannot be evaluated analytically for

an arbitrary susceptibility distribution χ1. However, an

analytical solution H(x) exists for a single voxel of size

(a, b, c) centered at origin (with χ1 = 1 inside a voxel

and χ1 = 0 outside of the voxel) for a constant field

along the z-axis and is given by:

H(x) =
(∂2G

∂z2

)
∗ (χ1B

0
z ) =∑

i,j,k∈(−1,1)

(ijk)F

(
x+

ia

2
, y +

jb

2
, z +

kc

2

) (4)

where F (x) = 1
4π arctan(xyzr ).

Due to the linearity of Equation (3), the shifted sin-

gle voxel solutions H(x − x′) can be added together

using a discrete convolution to compute the total field:

B1
z (x) =

∑
x′

χ1(x′)H(x − x′) (5)

where x′ are the voxel locations, χ1(x′) is the voxel-

based susceptibility map and x is the point where the

field is evaluated. The discrete convolution can be im-

plemented using the 3D Fast Fourier Transform (FFT).

Although this approach simulates the field distri-

bution due to the main coil, it does not account for

the decrease in inhomogeneity as effected by the room-

temperature shim coils, which are wound to form fields

that follow first and second order spherical harmonics

S(x) = [x, y, z, z2 − (x2 +y2)/2, xz, yz, x2 −y2, 2xy](x),

where x = 0 at the magnet isocentre [10]. The field

in the scanner becomes B1
z (x) − Sθ, where the coef-

ficients θ = [θ1, θ2, . . . , θ8]T are proportional to the

currents in the shim coils, which are dynamically op-

timized by the scanner during image acquisition based

on the field in the imaged volume [10]. In this sim-

ulation, we approximate the shim currents as a lin-

ear combination that minimizes the inhomogeneity field

across the field of view, as used in [20]. We perform a

least-squares fit of the spherical harmonics to determine

θ̂ = argminθ

((
B1
z (x) − Sθ

)T (
B1
z (x) − Sθ

))
.
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Fig. 4: Scatter plot of the acquired and the simulated

field map in corresponding voxels inside the brain for

subject #3.

2.4 Data acquisition

The proposed algorithm was validated on 12 datasets

that were acquired using interventional MRI during

ATLR procedures. The study was approved by the Na-

tional Hospital for Neurology and Neurosurgery and the

UCL Institute of Neurology Joint Research Ethics Com-

mittee. Written informed consent was obtained from

all participants. The images were acquired using a 1.5T

Espree MRI scanner (Siemens, Erlangen, Germany) de-

signed for interventional procedures. The intraoperative

protocol included a conventional T1-weighted FLASH

image (TR = 5.25 ms, TE = 2.5 ms, flip angle =

15◦, 0.547 × 0.547 × 1.25 mm grid of 512 × 512 × 176

voxels) a conventional T2-weighted turbo spin echo

image (TR = 3200 ms, TE = 510 ms, flip angle =

120◦, 1.0 × 1.0 × 1.0 mm grid of 256 × 256 × 176 vox-

els), and a DW-MRI dataset acquired using a single

shot EPI sequence with GRAPPA-based parallel imag-

ing (acceleration factor of 2, 2.5 × 2.5 × 2.5 mm grid

(rPE = 2.5mm) of 84 × 84 × 49 voxels, signal readout

time TRO = 35.52 ms) and a field map (see further

below). The DW-MRI dataset consisted of set of 64

diffusion-weighted EPI images accompanied by a b0-

DW-MRI image. The GRAPPA imaging resulted in a

halving of EPI echoes acquired in each readout but the

readout time above is given nominally with the reduc-

tion factored in.
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(a)
(b)

(c)

(d)
(e)

(f)

(g)
(h)

(i)

(j)
(k)

(l)

Fig. 5: Field maps expressed as mm of displacement along the phase-encode direction. The view is centered at

anterior temporal lobe resection cavity. The brain surface outlined using a surface extractor is shown for reference

(red outline). (a–c) A phase-wrapped acquired field map for subject #3, showing a step-change in phase value

close to the resection margin. (d–f) The acquired field map after phase-unwrapping; only the volume inside the

brain mask is shown, because the phase-unwrapping was restricted to the brain only. (g–i) The proposed simulated

field map. (j–l) A voxel-wise absolute difference between the simulated and the phase-unwrapped acquired field

maps, only considered within the brain. Left to right: coronal (a,d,g,j), sagittal (b,e,h,k) and axial sections (c,f,i,l),

respectively. Slice orientations are close to the standard anatomical planes. We used a brain surface extractor

included in NiftyView (http://cmic.cs.ucl.ac.uk/home/software).
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(a) (b) (c)

Fig. 6: Several axial slices through absolute difference between the simulated and phase-unwrapped acquired field

maps, expressed as mm of displacement along the phase-encode direction shown for subject #3. (a) Contralateral

temporal lobe level. (b) Eye level. (c) Superior frontal and parietal lobe level.

2.4.1 Field map acquisition

The field maps were acquired using a gradient-recalled

echo pulse sequence [14] (2.91667 × 2.91667 × 2.9 mm

grid of 72 × 72 × 43 voxels, echo time difference of

TED = 4.76 ms). The phase-unwrapping was performed

using a method detailed in [7], which uses a Markov ran-

dom field (MRF) formulation to enforce spatial smooth-

ness in the estimated true field map. Since the recovered

phase difference necessarily had an arbitrary constant

component, we de-meaned map based on the voxels in-

side the brain mask. The resulting map (∆φ(x)) was

converted using Eqs. 1 and 2 into displacement units.

3 Experiments with clinical data and Results

Since there is no direct way of measuring the true field

maps in vivo, we compared the simulated field maps to

the acquired field maps. We expressed the field maps in

terms of mm of displacement along the PE direction (as

per Equation 1). In all except one of the given DW-MRI

datasets, the PE direction coincided with the anatomi-

cal anterior-posterior axis i.e. a positive field map value

corresponded to displacement toward the posterior end

of the image, while in one DW-MRI dataset, the PE

direction was inverted. A scatter plot of the two types

of maps for subject #3 is shown in Fig. 4. We also cal-

culated an absolute difference between the two types of

maps (Fig. 5 and Fig. 6). We calculated statistics for

the difference between the simulated and acquired field

maps within the brain mask volume. The results for

the 12 subjects are reported in Table 1 1. For most of

the brain, there is a close agreement, whereby the maps

1 The results reported in our original IPCAI 2014 paper
showed slightly smaller displacements due to the voxel size
being passed incorrectly.

Subj. Whole brain Disp. > 2.5 mm
Mean ( std ) P95 Mean ( std ) P95

1 1.18 ( 1.53 ) 3.49 4.58 ( 2.86 ) 10.46
2 1.06 ( 1.24 ) 3.17 4.10 ( 2.01 ) 7.91
3 1.05 ( 1.37 ) 3.10 4.46 ( 2.65 ) 9.67
4 1.10 ( 1.53 ) 3.48 4.71 ( 3.04 ) 10.42
5 1.22 ( 1.54 ) 3.28 4.55 ( 3.08 ) 10.54
6 1.02 ( 1.36 ) 3.00 4.57 ( 2.76 ) 10.26
7 1.08 ( 1.47 ) 3.03 4.77 ( 3.24 ) 11.70
8 0.89 ( 1.35 ) 2.99 4.53 ( 2.74 ) 10.05
9 1.28 ( 1.59 ) 3.51 4.44 ( 3.05 ) 10.44
10 1.34 ( 1.72 ) 4.15 4.60 ( 2.73 ) 10.23
11 1.36 ( 1.69 ) 4.32 4.40 ( 2.45 ) 9.13
12 1.19 ( 1.46 ) 3.62 4.35 ( 2.49 ) 9.09

Avg. 1.15 ( 1.49 ) 3.43 4.51 ( 2.76 ) 9.99

Table 1: Absolute difference between the displacement

(in mm) in the phase encode dimension as per the pro-

posed simulated field map and the acquired field map.

The mean (std) and 95th percentile values are reported

for all the voxels in the brain and for those with the
abs. difference above the voxel size (2.5 mm), respec-

tively. The summary line lists the column averages.

differ by 1.15 ± 1.49 mm on average (3.43 mm in the

95th percentile) for all the subjects within the brain vol-

ume. However, in some areas, there are larger disagree-

ments and the differences follow a long-tailed distribu-

tion, whereby the the maps differ by 4.51 ± 2.76 mm on

average for all the subjects (9.99 mm in the 95th per-

centile) in the voxels in which the absolute difference is

above the voxel size (2.5 mm).

Since the acquired field maps are not the true field

maps, we visually assessed the precision of EPI im-

age correction in several areas of interest of the brain.

The DW-MRI dataset for each subject was corrected

as per Section 2.1 using the acquired field map and

the proposed simulated field map, respectively. Exam-

ples for two subjects are shown in Fig. 7. We chose

the b0-DW-MRI image from each DW-MRI dataset as
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the representative EPI image, because it contains vi-

sually identifiable landmarks. Since the conventional

T2-weighted image has a similar tissue contrast profile

as the b0-DW-MRI image, but has a higher resolution

and is not affected by the susceptibility artefact, we

used it as the ground truth image. We manually iden-

tified anatomical landmarks in the ground truth and

susceptibility-distorted b0-DW-MRI images and mea-

sured the landmark misregistration in millimeters. We

then propagated the landmarks from the distorted b0-

DW-MRI images using the acquired and simulated field

maps, respectively, and measured the misregistration

between the ground truth and the propagated land-

marks. We only considered landmarks with reliable cor-

respondences. Although in the T2-weighted images it

was possible to identify features and localize them at

image-resolution accuracy (1 mm3), conversely in the

b0-DW-MRI images in areas of signal dropout or se-

vere susceptibility distortion it was not possible to find

reliable corresponding landmarks. In such cases, we col-

lected nearest reliably identifiable landmarks.

We collected landmarks in 4 brain regions of in-

terest (ROIs): (1) near the resection margin (poste-

rior and superior from the resection cavity, 7–8 land-

marks/subject, see Fig. 7(a)); (2) brain stem (due to

clearly distinguishable margin and proximity to the re-

section cavity, 5 landmarks/subject, see Fig. 7(a)); (3)

areas of high distortion in the proximity of the sites of

the head-holder fixation pins (4–5 landmarks/subject,

see Fig. 7(b)); (4) landmarks evenly distributed in the

rest of the brain (6 landmarks/subject). Table 2 sum-

marizes the landmark distances for the four ROIs. The

titanium head fixation pins (ROI 3) are part of the

head-holder (Noras, Hoechberg, Germany) and in their

vicinity DW-MRI exhibits increased distortion, while

T1w and T2w images exhibit signal dropout in the

scalp.

We performed 3 one-tailed paired Student’s t-tests

for each ROI with the following alternative hypotheses:

(a) landmark misregistration is smaller in images cor-

rected using acquired field maps than in uncorrected

images; (b) the same when correcting using simulated

field maps; (c) landmark misregistration is smaller in

images corrected using acquired field maps than in im-

ages corrected using simulated field maps. We set the

significance level for a test regarding one ROI at 1.25%

as per Bonferroni correction (5/4 = 1.25%) in order

to keep the family-wise error rate (FWER) below 5%,

where FWER is the probability of at least one null hy-

pothesis being rejected due to chance alone. The results

are reported in Table 3.

However, landmark based validation is complicated

due to non-repeatability of manual visual landmark lo-

calization, as well as by the low resolution and poor

quality of the b0-DW-MRI image and limited density

of unambiguous landmarks. We corroborated our vali-

dation with an additional approach as in [7]. Since the

DW-MRI datasets are ultimately used to estimate the

presence of white matter areas in the brain, we evalu-

ated the effect of susceptibility artefact correction on

residual tensor fit errors.

The compression of the signals and the noise from

adjacent voxels with unequal diffusion directions that

occurs as a result of the highly non-linear local deforma-

tions arising from the susceptibility artefact contributes

to the uncertainty in tensor fitting. [15] showed that a

non-linear correction of DW-MRI datasets reduced ten-

sor fit errors. Therefore, an accurate correction of sus-

ceptibility artefacts should reduce the tensor fit errors.

We note that the modeling inadequacy of the tensor

model, the limited voxel resolution, and the poor SNR

that is especially severe in signal dropout areas, im-

ply that even a perfect susceptibility correction cannot

bring the tensor fit errors to zero. The normalized sum

of square diffusion tensor fit errors (χ2) is given by

χ2 =

∑N
i=1 (Sm − Sf )

2∑N
i=1 S

2
m

(6)

where N signals are fitted, and Sm and Sf are the mea-

sured and fitted signals respectively [19]. We note that

the rotational component of the deforming field derived

from the field map effectively rotates the diffusion gra-

dient directions locally and thereby rotates the fitted

diffusion tensor principal directions, but residual ten-

sor fit errors are rotation-invariant as they are inde-

pendent of the fitted tensor orientation. The diffusion

tensors were reconstructed using dtifit from the FSL

package [21], which also calculated the normalized ten-

sor fit error maps. For the validation, tensor fitting was

performed on the uncorrected DW-MRI datasets for the

12 subjects, on DW-MRI datasets with every of the 65

diffusion direction images individually corrected using

the acquired field maps, and on DW-MRI datasets like-

wise corrected using the proposed simulated field maps,

as shown in Fig. 8. The maps of normalized sum of

square diffusion tensor fit errors were added up across

the whole brain, as reported in Table 4. One-tailed

paired Student’s t-tests showed a statistically signifi-

cant reduction for DW-MRI datasets corrected using

both the acquired field maps (p = 3.43 × 10−8, confi-

dence interval lower bound at 5% significance level: 0.72

mm) and the simulated field maps (p = 3.56×10−8, CI:

0.41 mm). The said reduction was significantly larger

for DW-MRI datasets corrected using the acquired field

maps than for those corrected using the simulated field

maps (p = 2.32 × 10−6, CI: 0.28 mm).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Landmark based evaluation of susceptibility artefact correction. Manually located anatomical landmarks

are shown color -coded based on distance from ground truth position (large cross: in-slice, small cross: projection

of landmark onto the shown slice). (a,e) Intraoperative T2-weighted image unaffected by the distortion (ground

truth image for landmarks). (b,f) An uncorrected susceptibility-distorted b0-DW-MRI image. (c,g) The b0-DW-

MRI image corrected using the acquired field map. (d,h) The b0-DW-MRI image corrected using the proposed

simulated field map. The top row (a–d) shows the vicinity of the resection cavity (ROI 1 in Table 2) and brain

stem (ROI 2 in Table 2) for subject #3 with resection in the right hemisphere. The bottom row (e–h) shows the

area of strong brain surface distortion (ROI 3 in Table 2) for subject #4.

Subj. ROI 1 ROI 2 ROI 3 ROI 4
Unc. AFM SFM Unc. AFM SFM Unc. AFM SFM Unc. AFM SFM

1 2.80 0.40 1.80 4.86 3.26 4.26 10.75 4.00 8.75 2.80 1.00 2.20
2 2.33 1.17 1.33 4.20 2.62 4.80 4.00 1.45 3.00 1.67 1.00 2.01
3 3.50 0.88 2.37 3.00 1.52 2.18 6.00 2.40 5.60 4.75 3.86 4.89
4 3.51 1.77 1.90 3.40 1.60 1.80 6.07 2.65 6.07 1.94 0.88 1.21
5 2.04 0.79 0.92 3.05 0.68 1.20 8.00 4.75 7.75 2.17 0.67 2.00
6 2.56 1.51 1.81 2.40 1.45 1.10 8.00 4.25 6.75 2.00 1.00 1.50
7 2.83 0.67 1.50 2.95 1.80 1.55 8.75 5.25 7.50 2.00 0.50 1.50
8 3.43 1.28 2.00 2.78 1.20 1.60 8.75 5.00 5.75 0.83 0.84 1.00
9 6.10 4.02 5.56 1.59 0.64 1.00 3.60 1.50 3.40 9.02 7.99 8.26
10 2.48 1.56 2.27 3.60 1.20 2.00 5.60 2.80 5.00 2.67 0.67 1.83
11 6.88 2.20 4.89 2.20 0.40 0.60 2.21 0.75 2.75 2.33 1.33 2.33
12 3.07 1.21 2.25 4.00 1.74 1.60 6.35 3.81 6.75 1.50 0.84 1.17

Avg. 3.46 1.46 2.38 3.17 1.51 1.97 6.51 3.22 5.76 2.81 1.72 2.49

Table 2: Misregistration (in mm) between the ground truth landmarks and the landmarks in the uncorrected b0-

DW-MRI images (Unc.) and those corrected using acquired field maps (AFM) and simulated field maps (SFM).

The results are reported for 4 ROIs: (1) near resection margin, (2) brain stem, (3) head-holder fixation pins, (4)

rest of the brain. The summary line contains the column averages.



Simulated Field Maps for Susceptibility Artefact Correction in Interventional MRI 11

Misregistration ROI 1 ROI 2 ROI 3 ROI 4

(a) Corr./AFM < Unc.
1.34 × 10−5 8.91 × 10−8 1.37 × 10−6 1.26 × 10−5

(1.25) (1.29) (2.31) (0.68)

(b) Corr./SFM < Unc.
4.34 × 10−6 1.10 × 10−4 1.34 × 10−2 1.02 × 10−2

(0.72) (0.62) (-0.012) (0.13)

(c) Corr./AFM < Corr./SFM
7.16 × 10−4 1.88 × 10−2 1.66 × 10−6 2.58 × 10−5

(0.36) (-0.045) (1.77) (0.46)

Table 3: Results of one-tailed Student’s t-test of landmark misregistration reduction between uncorrected (Unc.)

images and those corrected (Corr.) using acquired (AFM) and simulated (SFM) field maps (p-value and lower

bound of the CI at 1.25% significance level in mm).

(a) (b) (c)

Fig. 8: Map of normalized sum of square diffusion tensor fit errors shown for subject #3 calculated from (a) an

uncorrected example DW-MRI dataset, (b) the DW-MRI dataset corrected using an acquired field map and (c) a

simulated field map.

Subj. Unc. AFM SFM
1 5.16 ( 7.61 ) 4.07 ( 5.61 ) 4.60 ( 6.61 )
2 3.43 ( 5.59 ) 2.79 ( 4.21 ) 3.10 ( 5.02 )
3 3.92 ( 6.79 ) 3.09 ( 5.19 ) 3.29 ( 5.57 )
4 4.96 ( 7.58 ) 4.16 ( 6.17 ) 4.47 ( 6.70 )
5 5.06 ( 6.98 ) 4.01 ( 5.30 ) 4.50 ( 6.15 )
6 3.48 ( 6.57 ) 2.72 ( 4.81 ) 3.02 ( 5.42 )
7 3.86 ( 6.86 ) 3.06 ( 5.43 ) 3.39 ( 6.08 )
8 4.27 ( 6.40 ) 3.60 ( 5.16 ) 3.82 ( 5.55 )
9 5.39 ( 7.18 ) 4.37 ( 5.68 ) 4.72 ( 6.20 )
10 3.33 ( 6.00 ) 2.65 ( 4.67 ) 3.07 ( 5.60 )
11 5.86 ( 7.74 ) 4.60 ( 5.89 ) 5.27 ( 6.85 )
12 3.28 ( 5.55 ) 2.84 ( 4.83 ) 2.99 ( 5.03 )

Avg. 4.33 ( 6.74 ) 3.50 ( 5.25 ) 3.85 ( 5.90 )

Table 4: Mean (std) of normalized sum of square diffu-

sion tensor fit errors summed up across the whole brain

volume. The results are reported for the uncorrected

(Unc.) DW-MRI datasets and those corrected using the

acquired (AFM) and the simulated field maps (SFM).

The summary line contains the column averages.

4 Discussion

We found that the GMM model classified T1w+T2w

voxels representing the CSF and the eyes as soft-tissue,

which is correct for susceptibility modelling. The main

challenge for an accurate air-tissue segmentation was

the ambiguity between the air and bone voxels. The

use of a strong MRF and the smoothing of the air

prior ensured that skull voxels were generally correctly

classified as bone. The strong MRF also forced skull

bone marrow, bright in T1w+T2w, to be included in

the bone class, which is acceptable due to the virtually

identical susceptibility. The distribution for the bone

class in the GMM model received a low weight due to

the sparsity of the bone voxels in the prior (Fig. 3). In

future work, the T1w+T2w image could be replaced by

multimodal segmentation.

The average difference found between the acquired

and simulated field maps of 1.15 ± 1.49 mm for all sub-

jects within the brain volume (in terms of displacement

along the PE direction) is less than the voxel size of

the DW-MRI dataset (2.5 mm, typical for DW-MRI

datasets) and has to be considered with respect to the

desired resection accuracy, which is patient and surgeon

specific and difficult to define. We believe that the ob-

served near 1 mm resection accuracy in areas of low

field map difference is clinically useful. However, there

are areas of difference between the two types of field

maps.

In the absence of ground truth field maps, we used

landmark misregistration and sum of diffusion tensor

fit errors as surrogate measures for statistical evalu-

ation of susceptibility distortion correction using ac-

quired and simulated field maps. The diffusion tensor

fit errors based results indicate that both types of field
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maps facilitate DW-MRI dataset correction, although

the acquired field maps facilitate a better correction

compared to the simulated ones (Table 4). The land-

mark based results indicate that the acquired field maps

facilitate landmark correction in all ROIs, while the

simulated field maps facilitate significant correction in

all ROIs except in the regions of high DW-MRI dis-

tortion near the head-holder fixation pins (second row,

ROI 3, in Table 3). Also, in all ROIs except near the

brain stem the results due to acquired field maps are

better than due the simulated field maps (third row,

ROI 2, in Table 3).

We attempt to interpret the differences between the

field maps in specific areas. We observe that the sim-

ulated field maps are more positive in the immediate

vicinity (i.e. up to 1 mm) from the resection margin,

as shown in Fig. 5(j–l), i.e. the simulated field maps

denote a further displacement along the PE direction

than the acquired field maps. This area is challenging to

evaluate using both landmark based and tensor fit error

based approach due to the heavy noise in the DW-MRI

data. The landmark based evaluation in the area up to

approx. 10mm from the resection margin (ROI 1) and

in the nearby brain stem (ROI 2) (Fig. 7, a–d) is more

conclusive and indicates that the acquired field maps

provide superior DW-MRI correction in those regions.

We found that the simulated field maps tend to co-vary

with the acquired field maps in this region (Fig. 5, a–

i). We also observe that under the head-holder fixation

pins (ROI 3), the simulated field maps are more positive

than the acquired field maps. In these regions (Fig. 7,

e–h) we found during landmark-based evaluation that

only the acquired field maps provide significant EPI

correction, and hence the simulated field maps are over-

estimated. This is likely due to the susceptibility of

titanium from which the pins are manufactured. The

problem is compounded by the fact that the resulting

signal dropout is strong enough to appear in the scalp

below the pins in T1w and T2w images, which leads

to the scalp below the pins to be missegmented as air.

We envisage that a separate study of the influence of

the titanium pins, for instance based on simple digital

phantoms inserted into an existing air-tissue segmen-

tation, would reveal useful insight into the influence of

the titanium pins.

We finally observe that near the air-filled petrous

part of the temporal bone in both hemispheres and an-

teriorly in the frontal lobe (superior to the paranasal

sinuses) the simulated field maps tend to form regions

that are up to 10 mm more positive than the acquired

field maps, as shown in Fig. 6, because the proposed seg-

mentation overestimates the size of the air-filled cavities

due to the relaxation of the air prior that we found as

necessary to avoid a missegmentation of the craniotomy

as bone. This limitation could be overcome if a robust

automated approach for the segmentation of the resec-

tion cavity and the craniotomy area was available, such

as based on active contours [23].

We also note that the simple method to estimate the

room-temperature shim coil currents that we employed

(as per Section 2.3) is unlikely to faithfully reproduce

the dynamic optimization implemented by the iMRI

scanner and potentially dependent on specific configu-

ration e.g. shim coil current limits [10]. Such detailed

entries are not part of the DICOM standard but we

envisage to investigate the manufacturer specific sub-

header for this purpose.

The time to apply the field maps to a DW-MRI

dataset is several seconds. The computational time to

phase-unwrap the raw acquired field map is below 1

minute. Conversely, the computational time required

to simulate the field map at the full T1-weighted iMRI

resolution, in the current unaccelerated implementa-

tion, is approx. 1 hour (Intel Core i5 @ 3.30 GHz),

out of which the air-tissue segmentation takes approx.

2 minutes. The time given assumes that the pseudo-

CT is precomputed or a real CT is imaged prior to the

surgery and hence can be discounted from the intraop-

erative time. Although the simulation currently clearly

takes too much time for intra-operative use, most of

it is dominated by FFT (Section 2.3) that lends itself

easily to GPU acceleration.

5 Conclusion

We generated simulated field maps in a 12-subject iMRI

ALTR study that facilitate a statistically significant

correction of susceptibility artefacts in EPI datasets

near the resection cavity. We achieved a close agreement

of the simulated field maps to the acquired field maps.

Although we found that the acquired field maps facil-

itate statistically more accurate susceptibility artefact

correction in all brain regions, the observed close agree-

ment is very encouraging and invites a further study.

We found that the reliability of automated air-tissue

segmentation is key to accurate intraoperative field map

simulations. We suggest a further study into the fea-

sibility of including digital phantoms of the titanium

head fixation pins into the automated simulation.

The voxel-based field calculation approach works

with arbitrary segmentations and in principle allows

field map simulations applied to iMRI guided resective

surgery in other parts of the brain than the tempo-

ral lobe investigated in our study. While in our study

DW-MRI was the only EPI dataset available, functional

MRI (fMRI) imaging, which measures brain activity
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in real time and has been proposed for intraoperative

use [9], is also based on EPI [11] and hence expands the

range of applications that would benefit from accurate

simulated field maps.
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