CO₂–C₄H₁₀ Mixtures Simulated in Silica Slit Pores: Relation between Structure and Dynamics

Thu Le and Alberto Striolo*
Department of Chemical Engineering, University College London, London WC1E 6BT
United Kingdom

David R. Cole
School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210
United States

ABSTRACT

Equilibrium molecular dynamics simulations were conducted for pure n-butane and for mixtures containing n-butane and carbon dioxide confined in 2 nm wide slit-shaped pores carved out of cristobalite silica. A range of thermodynamic conditions was explored, including temperatures ranging from sub-critical to super-critical, and various densities. Preferential adsorption of carbon dioxide near the –OH groups on the surface was observed, where the adsorbed CO₂ molecules tend to interact simultaneously with more than one –OH group. Analysis of the simulation results suggests that the preferential CO₂ adsorption to the pore walls weakens the adsorption of n-butane, lowers the activation energy for n-butane diffusivity, and consequently enhances n-butane mobility. The diffusion results obtained for pure CO₂ are consistent with strong adsorption on the pore walls, as the CO₂ self-diffusion coefficient is low at low densities, increases with loading, and exhibits a maximum as the density is increased further because of hindrance effects. As the temperature increases, the maximum in self-diffusion coefficient is narrower, steeper and shifted to lower loading. The simulation results are also quantified in terms of molecular density profiles for both butane and CO₂ and in terms of residence time of the various molecules near the solid substrate. Our results could be useful for designing separation devices and also for better understanding the behavior of fluids in sub-surface environments.

* Author to whom correspondence should be addressed: a.striolo@ucl.ac.uk

Keywords: Competitive Adsorption; Diffusion
INTRODUCTION

International attention on curbing anthropogenic CO$_2$ emissions has recently increased dramatically.$^{1-3}$ Among other technologies, CO$_2$ capture and storage (CCS) is considered one of the most attractive alternatives.$^4$ Some pilot CCS projects have been initiated. In Sleipner (west Norway) 1 million metric tons of CO$_2$ have been injected annually, since 1996, into sedimentary basins.$^5$ Recently, CO$_2$ has also been injected into basaltic formations, because their high content of Ca, Mg, and Fe suggests the possibility of achieving CO$_2$ mineralization.$^6-8$ CO$_2$ sequestration combined with enhanced coal bed methane recovery has also been extensively studied,$^9-10,11,12$ and CO$_2$ injection is often used in tertiary enhanced oil recovery in depleted petroleum reservoirs.$^{13}$ Lately, CO$_2$ has also been used in fracturing fluids for shale gas stimulation.$^{14-15}$ Not only CO$_2$ can be captured and stored within the shale formation, recent results suggest that in some cases CO$_2$ can create better fractured networks compared to water.$^{16}$ Should CO$_2$ exhibit higher affinity to the rock formations than hydrocarbons, it could help increase production. Understanding the relation between competitive adsorption and transport of CO$_2$ and hydrocarbons in rock formations is considered crucial to optimize both CO$_2$ storage capacity$^{17}$ and natural gas production.

Much is known about structure and dynamics of carbon dioxide and methane confined in activated carbons,$^{18}$ carbon nanotubes (CNTs),$^{19}$ and zeolites.$^{20-22}$ The transport of CO$_2$ through silica has been studied using experiments$^{23-24}$ and simulations.$^{23, 25-26}$ Experimental and simulation results confirm the preferential adsorption of CO$_2$ from binary CO$_2$/CH$_4$ mixtures. High CO$_2$ adsorption selectivity was observed in CNTs.$^{19}$ An extensive review on CO$_2$ and methane storage in hybrid porous solids, crystallized porous materials including MOFs, and porous coordination polymers was compiled by Ferey et al.$^{27}$ who summarized structural, spectroscopic, thermodynamics experiments as well as molecular simulation results. Because of the intrinsic limitations of experiments, thermodynamic models, and simulations, holistic approaches inclusive of all such contributions are needed to completely understand complex phenomena such as those just discussed. As opposed to the extensive literature on pure CO$_2$ and CH$_4$ and on their binary mixtures, few results are available for mixtures of CO$_2$ and higher molecular weight hydrocarbons such as butane and octane in microporous confinement.

We previously conducted extensive molecular dynamics (MD) simulations to study propane adsorption, structure and diffusion in slit-shaped silica pores at sub-, near-, and super-critical conditions.$^{28}$ The results were qualitatively consistent with the experimental adsorption isotherms reported by Gruszkiewicz et al.$^{29}$ and the SANS data reported by Rother et al.$^{30}$ We recently conducted MD simulations for the structure and dynamics of CO$_2$-octane mixtures confined within slit-shaped silica pores (unpublished results). Building on these efforts, we present here structural (i.e., density profiles, molecular orientation, and preferential adsorption sites) and dynamic properties (i.e., self-diffusion coefficients and residence times at contact with the solid surface) for mixtures containing n-butane and CO$_2$ confined in slit-shaped silica pores. Silica is chosen because quartz can be an abundant sub-surface material. β-cristobalite was used to compare the new results to those our group has obtained for several fluids under confinement. We investigate the effect of mixture density and composition on adsorption and diffusion of the confined fluids. We consider temperatures below, between, and above the critical temperatures of CO$_2$ and n-butane. MD simulations are chosen in the present investigation for their ability to provide extensive insights regarding effective fluid-solids interactions, structural and dynamic properties of all components of interest.
SIMULATION MODELS AND METHODOLOGY

Figure 1. Simulation snapshot representing a simulation box containing 250 CO$_2$ and 250 n-C$_4$H$_{10}$ molecules in the 2 nm silica pore at 343K. The solid silica slabs are continuous along both X and Y directions. No bulk region exists. Purple spheres are CH$_2$ and CH$_3$ groups in n-butane, cyan is C in carbon dioxide, red is O, white is H, and yellow is Si.

Extensive MD simulations for binary mixtures of CO$_2$/n-C$_4$H$_{10}$ confined within slit-shaped silica pores were performed. The silica surfaces used in this work were obtained by cutting the $\beta$-cristobalite SiO$_2$ crystal along the (1 1 1) crystallographic face. A detailed description of the solid morphology was provided previously.$^{28,31}$ Because quartz (made up of SiO$_4$ tetrahedra groups) is an abundant mineral in earth, the cristobalite crystal is considered here as a proxy for hydrophilic rock pore surfaces.$^{32}$ We are conducting simulation results on models for other minerals. The results, when available, will allow us to better quantify the effect of mineral properties on fluid behavior. The pore width is 2 nm and the corresponding simulation box dimensions are $10.48\times10.08\times5.34$ nm$^3$. In pores as narrow as the one chosen for the present study interfacial interactions are expected to dictate the confined fluid behavior. Note that transport of fluid through pore throats of this width, and perhaps narrower, is expected to impact the permeability in shale rocks.$^{33}$ The effective pore volume in our model system was estimated in approximately 214.83 nm$^3$. Because of periodic boundary conditions, the systems considered are composed by silica slabs that are infinitely long along the X and Y directions, and separated along the Z direction by the slit-shaped pore. The solid substrate bears no net charge, and all the non-bridging O atoms in the solid are fully protonated, yielding a high density of surface – OH groups.

The experimental critical temperatures of CO$_2$ and C$_4$H$_{10}$ are 304.13K and 425.125K, respectively.$^{34}$ To investigate the properties of the mixtures as the temperature changes from sub- to super-critical, 3 temperatures were chosen: 290K (below the critical $T$ of both fluids), 343K and 430K (above the critical $T$ of both fluids). Different densities of the confined mixtures (100, 300 and 500 total molecules) and different mixture compositions (CO$_2$:n-C$_4$H$_{10}$=1:9, 5:5 and 9:1) were considered. In Figure 1 we represent the pore with 250 CO$_2$ and 250 n-butane molecules.
The total system energy is obtained as the sum of dispersive (van der Waals), electrostatic, bond stretch, bond angle, and dihedral interactions:

$$E_{\text{total}} = E_{\text{VDW}} + E_{\text{electrostatic}} + E_{\text{bond stretch}} + E_{\text{angle bend}} + E_{\text{dihedral}}$$  \hspace{1cm} (1)

$E_{\text{VDW}}$ and $E_{\text{electrostatic}}$ are expressed by 12-6 Lennard-Jones and Coulombic potentials, respectively. Lennard-Jones parameters for non-like components were obtained using Lorentz-Berthelot mixing rules from the values of the pure compounds. Intramolecular potentials were represented by harmonic functions. The CLAYFF force field was implemented to simulate the silica substrate while carbon dioxide and butane were modeled using the TraPPE-UA force field. Simulations performed implementing the TraPPE force field yield the critical temperatures of 306.2°K and 423.4°K for CO$_2$ and n-butane, respectively. Within our simulations CO$_2$ is rigid with all atoms on a straight line while butane is a flexible molecule described by bond stretching, angle bending, and dihedral constraints. Methyl (CH$_3$) and ethyl (CH$_2$) groups of n-butane are treated within the united-atom formalism. The hydrocarbon does not bear partial charges. All atoms on the solid silica, except for H of the surface –OH groups, remain rigid throughout the whole length of the simulations.

While the algorithms used to calculate the results reported here are described in our previous work, it is worth discussing the methodology implemented to investigate the activation energy for diffusion. The diffusivity of the fluids within the pore is considered as a 2-dimensional translation along the X and Y directions, because the movement along the Z direction is constrained by the confining pore surfaces. To obtain the planar self-diffusion coefficient $D_s$, we calculated the mean square displacement (MSD) following established procedures. The fluid diffusion, which is dominated by steric effects and solid-fluid interactions, can be described as an activated process using the Arrhenius formalism:

$$D(0) = D_f e^{(-E_a/R)}$$  \hspace{1cm} (2)

In this equation $D(0)$ is the self-diffusion coefficient at infinite dilution, $D_f$ is the pre-factor, $E_a$ the activation energy, $R$ the gas constant, and $T$ the absolute temperature. By plotting ln $D(0)$ as a function of $1/T$, we should obtain a straight line whose slope is $-E_a/R$.

To estimate the effect of CO$_2$ on the activation energy of butane diffusion, and in particular the role of electrostatic interactions between CO$_2$ and the solid substrate on $E_a$, we applied Eq. (2) to fit results obtained for n-butane (1) at infinite dilution in CO$_2$ (the system contained 500 CO$_2$ and 2 C$_4$H$_8$ molecules); (2) at infinite dilution in a model fluid obtained by setting all partial charges of CO$_2$ to zero (while not changing the CO$_2$ Lennard-Jones parameters; i.e., pseudo-CO$_2$); and (3) at vanishing density (only 2 butane molecules with no other fluid present).

All simulations were carried out within orthorhombic simulation boxes containing a constant number of molecules at fixed volume and constant $T$. $T$ of silica and fluid were controlled separately by two Nosé-Hoover thermostats with relaxation times of 200 fs each. Corrections for long-range electrostatic interactions were taken into account by the particle-mesh Ewald summation. The cutoff distance for all interactions was set at 14 Å. The simulations were conducted using the Groningen Machine for Chemical Simulations.
The leapfrog algorithm with time steps of 1 fs was implemented. Simulations were conducted for 100 ns of simulation time for all systems investigated. Equilibration was considered achieved after ~50-80 ns, depending on the system loading, when the system temperature, total energy and density profiles fluctuate around constant values (+/- 15%). Data analysis was carried out over the last 10 ns of each simulation. All results were calculated considering the center of mass (COM) of the fluid molecules.

RESULTS AND DISCUSSIONS

Structural Properties

Molecular Density Profiles

Figure 2. Molecular density profiles for carbon dioxide (solid lines) and n-butane (dashed lines) with corresponding simulation snapshot for pure component systems with 50, 300 and 500 molecules at 430K. Z is the direction perpendicular to the pore surface and Z=0 corresponds to the pore center. The color code is the same as that used in Figure 1. Only 2 inner atomic layers of the pore surfaces are shown for clarity. Note that the results presented in this figure are for single-component systems.
Molecular density profiles along the direction perpendicular to the pore surface were calculated for all simulated systems. Representative density profiles for single-component systems of both species at increasing loadings (50, 300 and 500 molecules within the simulated system) at 430K are presented in Figure 2. The results show that CO$_2$ adsorbs more closely to the pore walls even at this relatively high temperature compared to butane, presumably because of preferential interactions with the surface groups, and perhaps because of the flexibility of n-butane (note that the density profiles are obtained for the COM of n-butane), which contributes to maintaining this molecule slightly farther from the surface because of entropic effects. Simulation snapshots for the corresponding systems are provided in Figure 2 for visualization purposes.

**Figure 3.** Molecular density profiles for carbon dioxide (top panels) and n-butane (bottom panels) in mixture containing a total of 100 molecules at 290, 343, and 430K. Z is the direction perpendicular to the pore surface and Z=0 corresponds to the pore center. Different lines represent results at different compositions. Blue, red and green lines represent mixtures with CO$_2$:n-C$_4$H$_{10}$ molecular ratios of 9:1, 5:5 and 1:9, respectively.
Results obtained at different temperatures and mixture compositions are shown in Figure 3, 4 and 5, where CO$_2$ (top panels) and n-C$_4$H$_{10}$ (bottom panels) profiles are computed separately. Figures 3, 4, and 5 are for systems with a total of 100, 300 and 500 fluid molecules, respectively, at different CO$_2$ vs. n-C$_4$H$_{10}$ composition.

**Figure 4.** Same as Figure 3 for mixture containing a total of 300 molecules.

**Figure 5.** Same as Figure 3 for mixture containing a total of 500 molecules.
The results in each pair of vertical panels in Figure 3, 4 and 5 were obtained at constant temperature and density, but different composition. The molecular ratios CO$_2$:n-C$_4$H$_{10}$ investigated were 9:1, 5:5 and 1:9 (blue, red and green lines, respectively). The molecular density profiles are shown as a function of the distance from the pore center (Z=0). For each curve, there are two distinct peaks (symmetric with respect to the pore center) that are localized near the pore surface. These are due to the adsorption of either CO$_2$ or butane on the pore walls. At high densities (i.e., 500 molecules) multiple peaks are observed in the density profiles obtained for butane, especially when the mixture composition is 90% C$_4$H$_{10}$, at the lowest temperature considered, suggesting the formation of a multi-layered structure. On the contrary, no CO$_2$ multilayer was observed at any condition considered. The results also show that the location of CO$_2$ peaks does not depend on $T$, and that this location is always close to the pore surfaces. The fact that the CO$_2$ density peaks are always closer to the pore walls than the butane density peaks indicates preferential CO$_2$ adsorption on the protonated silica surfaces, presumably because of the polar interactions between CO$_2$ and the surface –OH groups. The CO$_2$ peaks are higher and narrower at lower $T$, because of reduced thermal motion. Note that while at low CO$_2$ concentration no CO$_2$ is found, statistically, near the pore center, butane molecules are always found near the pore center even at the lower butane concentrations considered here, suggesting that CO$_2$-pore attractions are stronger than butane-pore ones. As $T$ and concentration rise, CO$_2$ can also be found near the pore center. The strong association between CO$_2$ and the pore surface revealed by our simulations is qualitatively consistent with recent experimental results reported by Rother et al. for CO$_2$ in porous silica aerogels. The results discussed so far are qualitatively consistent with those we recently obtained for CO$_2$-octane systems confined in a silica pore similar to the one considered here, in which case it was found that adding small amounts of CO$_2$ could displace the location of the octane density peaks further away from the surface compared to the results obtained for the pure hydrocarbon (unpublished results).

**Planar Density Distributions: Localization of Preferential Adsorption Sites**

To document the molecular structure of the adsorbed CO$_2$ layer and to identify the preferential adsorption sites on the silica substrates we calculated in-plane density distributions. The calculations were performed for the oxygen atoms of those CO$_2$ molecules found within the first adsorption layers (see Figure 3-5) parallel to the pore surface and of 5 Å in thickness. Similar calculations were performed for the COM of those n-butane molecules found within the first adsorption layer of thickness 3.8 Å as identified by the density profiles shown in Figure 3-5. These types of calculations provide greater detail on the structure of the first hydration layer and/or of the first solvation layer on various substrates. In Figure 6, panels (b) and (c), respectively, we present the results obtained in this work. Both data sets are obtained for systems in which either CO$_2$ (panel b) or butane (panel c) are the main component within the fluid system. The results show that it is highly probable to find the oxygen atoms of adsorbed CO$_2$ molecules near the surface –OH groups of the solid silica substrate. This is expected, as CO$_2$ molecules can form hydrogen bonds with the –OH groups. According to the IUPAC definition, a hydrogen bond is "an attractive interaction between a hydrogen atom from a molecule or a molecular fragment X–H in which X is more electronegative than H, and an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation". Sato et al. provided evidence for a hydrogen bond between CO$_2$ and water, suggesting that hydrogen bonds between CO$_2$ and surface –OH groups are possible. The results obtained for butane show that these molecules accumulate along the hexagonal edges of the atomic structure of the solid substrate, suggesting that non-specific dispersive interactions
are responsible for the formation of the first adsorbed layer of butane near the flat solid surface reported in the density profiles discussed in Figures 2-5 above. The planar density profiles for butane in Figure 6 are a little smeared because we are considering the COM of the molecule rather than the individual atoms.

Figure 6. (a) OH-terminated silica surfaces. Only the upper 2 atomic layers are shown for clarity. (b) Planar density distribution of O atoms of CO_2 molecules within the first adsorption layer when 500 molecules, 90% CO_2, are simulated at 290K. (c) Planar density distribution of the COM of n-butane within the first adsorption layer for a system composed of 500 molecules (90% butane) at 290K. Densities are expressed in number of atoms/molecules.nm^-3. Note that the densities in panels (b) and (c) are of different orders of magnitude.

**Orientation of Adsorbed CO_2**

In Figure 7, we report the preferential orientation of adsorbed carbon dioxide molecules. The molecules considered are those within the first adsorbed layer, as discussed in the prior section. We quantified the probability distribution of the angle θ formed between the CO_2 backbone and the surface normal. When θ is 0° or 180°, the CO_2 molecule is perpendicular to the surface; when θ is 90°, CO_2 lays parallel to the surface. See Figure 7 panel (a) for an illustration. The results obtained for the system comprised of 150 CO_2 and 150 n-butane molecules at 343K is shown in panel (b). The results show that CO_2 molecules within the first adsorbed layer preferentially orient at an angle θ of ~80°. While the preferential orientation angle of ~80° with the surface normal is observed in all systems considered, the local minimum in the orientation observed at ~90° is less pronounced when the simulation temperature decreases, and when the CO_2 loading decreases. As the substrate –OH and CO_2 molecules can form hydrogen bonds, the most energetically favorable configuration is expected to be the one where –OH and O–C–O lay on a straight line. Because the silanol Si–O–H group has an angle of ~109.5°, θ was thought to be ~70.5°. The fact that θ is ~9.5° larger indicates that each adsorbed CO_2 molecule tends to interact simultaneously with more than one surface –OH at a time. This becomes slightly more pronounced when T and CO_2 loading are lowered. This result is consistent with prior results obtained from the simulation of n-octane – CO_2 mixtures confined in silica pores (unpublished results). In that contribution we investigated systems at increasing CO_2 loadings and we concluded that, on average, when the amount of CO_2 present is sufficient to saturate the pore surface considered, one CO_2 molecule occupies two surface –OH groups.
Dynamical Properties

**Diffusivity – Pure substances**

Single-component self-diffusion coefficients of (1) CO$_2$ at 290, 343 and 430K and (2) n-butane at 430K are calculated and presented in Figure 8. Results obtained for pure CO$_2$ at different temperatures show a maximum in $D_s$ as loading increases from a near-zero loading. The maximum is narrower, steeper and shifted to lower loadings as $T$ increases. CO$_2$ self-diffusion results match the type IV behavior as classified by Karger and Pfeifer.$^{54}$ CO$_2$ diffusion results are in good qualitative agreement with those reported by Sholl,$^{55}$ who represented an adsorbent using a lattice with heterogeneous adsorption sites and fluid species characterized by different adsorption energies (i.e., very strong attractive sites for specie 1 and no energetic preferences for specie 2). Our results are consistent with those obtained for the fluid specie that is strongly adsorbed on preferential sites available on the lattice: at low loadings, most particles of this fluid are trapped near the correspondent adsorption sites, and diffusion is dominated by slow hopping events between strong adsorption sites. At moderate loadings, those molecules that are not trapped can diffuse rapidly and the overall diffusivity increases. At high loadings, the diffusion coefficient decreases because of steric hindrance. Our results show that at 430K the self-diffusion coefficient of pure CO$_2$ displays a maximum at intermediate loadings while that of pure C$_4$H$_{10}$ monotonically decreases with increasing loading (panel b). The results for butane are also consistent with those presented by Sholl$^{55}$ when the fluid is not strongly attracted to lattice sites, in which case the self-diffusion coefficient monotonically decreases as loading increases. At 430K, $D_s$ of CO$_2$ is higher than that of C$_4$H$_{10}$ except at very low loadings. Visualizations of sequences of simulation snapshots suggest that CO$_2$ diffusion occurs predominantly along the surface, while butane moves across the pore volume, which is in agreement with the density profiles shown above. It is possible that the self-diffusion coefficient of CO$_2$ is faster than that of butane because the former molecule is smaller and slender than the latter. Babarao and Jiang investigated CO$_2$ and CH$_4$ transport across nano-porous materials...
with pore sizes in the range of \(~7 – 9~\text{Å}\); their results show that steric hindrance causes a decrease in self-diffusion coefficient as loading increases for both substances. \(^{42}\)

**Figure 8.** Single-component self-diffusion coefficients as a function of loading for (a) CO\(_2\) at different temperatures and (b) CO\(_2\) and C\(_4\)H\(_{10}\) at 430K. Note that these results are obtained for pure n-butane and CO\(_2\), not their mixtures. Error bars are estimated as one standard deviation from the average. At high loadings, symbols are larger than error bars.

**Diffusivity – Mixtures**

Calculated CO\(_2\) and n-C\(_4\)H\(_{10}\) two-dimensional self-diffusion coefficients at different mixture densities and compositions are presented in **Tables 1 and 2**. In general, the mobility of both fluids increases with increasing \(T\) and decreasing mixture density (lower total number of molecules) because higher \(T\) increases the kinetic energy of the molecules, while lower density reduces molecular collisions and steric hindrance. When binary mixtures are considered, our results show that \(D_s\) for CO\(_2\) increases as its concentration increases, at a given total pore loading, with maximum \(D_s\) observed for 100% CO\(_2\). A similar observation was reported by Wang et al. \(^{56}\) in their experimental study for the diffusion of various alkanes in microporous BPL activated carbon. These results are explained as follows: at low loadings, adsorbate molecules are strongly adsorbed on high-energy adsorption sites, which results in low diffusion coefficients. As the amount adsorbed increases, the high-energy adsorption sites are saturated, and the diffusion statistically increases because adsorbate molecules have more mobility. Note that while CO\(_2\) is preferentially adsorbed on the surface –OH groups in our model adsorbent, alkanes are strongly adsorbed on activated carbons. Observations similar to those reported herein were obtained also for systems comprising of n-octane and CO\(_2\) (unpublished results), but not for systems comprised of only propane, because in the latter case no high-energy adsorption sites are available for propane on the fully protonated silica surfaces. \(^{28}\) The increased mobility of CO\(_2\) upon increasing its concentration at constant pore loading is consistent with results reported by Snurr and Karge \(^{57}\) for methane and tetrafluoromethane mixtures in silicalite. By performing both MD simulations and NMR experiments, at the total loading for 12 molecules per unit cell, the diffusivities of both fluids were found to increase with
increasing amount of CH₄, which is the lighter and more mobile component. At constant loading (number of molecules), our results show that the self-diffusion coefficient for butane decreases as the amount of CO₂ decreases. This could be due to steric hindrance (butane is larger than CO₂), and to changes in the activation energy of butane diffusion due to CO₂ (discussed below). The decrease of the activation energy due to CO₂, is consistent with observations reported by Vidoni. This latter study experimentally measured the competitive diffusion of CH₄ with either He or CO₂ in DD3R crystals using the zero length column method. The results showed reduced activation energy for diffusion of CH₄-CO₂ compared to CH₄-He due to the competitive adsorption of carbon dioxide on the pore surfaces.

Table 1. In-plane self-diffusion coefficients estimated for CO₂

<table>
<thead>
<tr>
<th>Total number of molecules</th>
<th>Composition (CO₂:C₄H₁₀)</th>
<th>290K</th>
<th>343K</th>
<th>430K</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Pure CO₂</td>
<td>5.7 ± 1.1</td>
<td>10.8 ± 1.6</td>
<td>18.9 ± 3.4</td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>3.5 ± 0.8</td>
<td>8.5 ± 1.3</td>
<td>15.1 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>1.5 ± 0.3</td>
<td>3.7 ± 1.8</td>
<td>12.2 ± 2.8</td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>1.1 ± 0.2</td>
<td>2.5 ± 1.4</td>
<td>6.6 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>Bulk CO₂</td>
<td>42.7 ± 5.6</td>
<td>57.0 ± 6.2</td>
<td>64.8 ± 7.5</td>
</tr>
<tr>
<td></td>
<td>(vapor, 1.68 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(vapor, 2.06 MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(vapor, 2.7 MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Pure CO₂</td>
<td>5.6 ± 2.2</td>
<td>8.3 ± 0.2</td>
<td>13.7 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>3.5 ± 0.3</td>
<td>5.8 ± 0.4</td>
<td>11.6 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>1.3 ± 0.1</td>
<td>2.8 ± 0.4</td>
<td>7.4 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>1.2 ± 0.2</td>
<td>2.7 ± 0.2</td>
<td>4.8 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>Bulk CO₂</td>
<td>16.0 ± 3.7</td>
<td>18.6 ± 4.7</td>
<td>21.8 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>(vapor, 4.04 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(vapor, 5.39 MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s.c., 7.46 MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Pure CO₂</td>
<td>5.5 ± 1.5</td>
<td>7.4 ± 0.3</td>
<td>10.1 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>3.3 ± 0.3</td>
<td>5.0 ± 0.4</td>
<td>8.7 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>1.4 ± 0.1</td>
<td>2.5 ± 0.4</td>
<td>5.5 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>0.7 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>4.1 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>Bulk CO₂</td>
<td>9.1 ± 0.7</td>
<td>9.8 ± 1.6</td>
<td>12.6 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>(vapor, 5.30 MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s.c., 7.88 MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s.c., 11.74 MPa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹super critical
Table 2. In-plane self-diffusion coefficients estimated for C₄H₁₀

<table>
<thead>
<tr>
<th>Total number of molecules</th>
<th>Composition (CO₂:C₄H₁₀)</th>
<th>290K</th>
<th>343K</th>
<th>430K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9:1</td>
<td>12.9 ± 1.5</td>
<td>20.8 ± 4.3</td>
<td>22.3 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>9.4 ± 1.4</td>
<td>15.8 ± 2.1</td>
<td>18.2 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>7.9 ± 0.5</td>
<td>10.4 ± 1.1</td>
<td>13.5 ± 1.1</td>
</tr>
<tr>
<td>Pure butane</td>
<td>6.9 ± 0.6</td>
<td>9.8 ± 0.7</td>
<td>14.3 ± 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk butane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>13.6 ± 0.4 (vapor)</td>
<td>14.8 ± 0.8 (vapor)</td>
<td>26.4 ± 6.0 (vapor, 2.16 MPa)</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>0.8 ± 0.2 (liquid) (VLE, 0.19 MPa)</td>
<td>1.2 ± 0.2 (liquid) (VLE, 0.8 MPa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>3.5 ± 0.3</td>
<td>5.3 ± 0.2</td>
<td>7.3 ± 0.2</td>
</tr>
<tr>
<td>Pure butane</td>
<td>3.5 ± 0.2</td>
<td>5.3 ± 0.2</td>
<td>7.3 ± 0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk butane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>13.6 ± 0.4 (vapor)</td>
<td>14.8 ± 0.8 (vapor)</td>
<td>7.6 ± 0.6 (s.c, 3.84 MPa)</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>0.8 ± 0.2 (liquid) (VLE, 0.19 MPa)</td>
<td>1.2 ± 0.2 (liquid) (VLE, 0.8 MPa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>2.3 ± 0.1</td>
<td>3.5 ± 0.1</td>
<td>4.4 ± 0.1</td>
</tr>
<tr>
<td>Pure butane</td>
<td>2.3 ± 0.1</td>
<td>3.5 ± 0.1</td>
<td>4.4 ± 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bulk butane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:1</td>
<td>13.6 ± 0.4 (vapor)</td>
<td>14.8 ± 0.8 (vapor)</td>
<td>4.9 ± 0.3 (s.c, 4.1 MPa)</td>
</tr>
<tr>
<td></td>
<td>5:5</td>
<td>0.8 ± 0.2 (liquid) (VLE, 0.19 MPa)</td>
<td>1.2 ± 0.2 (liquid) (VLE, 0.8 MPa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:9</td>
<td>2.3 ± 0.1</td>
<td>3.5 ± 0.1</td>
<td>4.4 ± 0.1</td>
</tr>
</tbody>
</table>

¹ vapor-liquid equilibrium
² super critical

For comparison, representative bulk properties of the pure substances are also provided in Table 1 and 2. The properties reported include the self-diffusion coefficient in three dimensions, and the physical state of the fluid at T and ρ conditions considered for the simulations of the confined fluids. The equilibrium states (vapor, liquid, vapor-liquid equilibrium or super-critical) for the bulk fluids and their pressures were extracted from the NIST database.³⁴ The self-diffusion coefficients were computed via bulk NVT simulations for 5 ns. The simulation results show that bulk self-diffusion coefficients for the pure fluids increase as T increases and decrease as ρ increases, as expected. All simulated values are in good agreement with literature data from both simulations and experiments.⁵⁹⁻⁶¹

To assess the activation energy for C₄H₁₀ diffusion in the pores considered here, in Figure 9 we report the natural logarithm of C₄H₁₀ self-diffusion coefficients at infinite dilution, lnD(0), as a
function of the inverse temperature ($T=290, 343, 430, 500$ and $700$ K). By fitting Eq. (2) to the data we extract $E_a$. The results shown in Figure 9 are for three systems: two mixtures, each consisting of 2 butane and either 500 CO$_2$ or 500 pseudo CO$_2$ molecules, and pure butane at very low loading (empty circles). The simulations for butane at infinite dilution in the two mixtures are conducted to quantify the effect of electrostatic pore-CO$_2$ interactions on the butane diffusion. The pseudo CO$_2$ molecules bear no partial charges, although they are described by the Lennard-Jones parameters used to simulate CO$_2$ molecules. No preferential adsorption of pseudo CO$_2$ molecules to the solid substrates will occur, while steric effects will be similar for both mixtures. While the self-diffusion coefficients estimated for pure butane are the highest at high temperatures, we note that the calculated $E_a$ for the pure butane at low loadings is $6.5\pm0.5$ kJ/mol, while the activation energies for butane at infinite dilution in CO$_2$ and in the pseudo CO$_2$ systems are $3.4\pm0.9$ and $5.7\pm0.9$ kJ/mol, respectively. These results confirm that the electrostatic interactions between CO$_2$ and the pore surfaces, which cause preferential adsorption due to hydrogen bonds, is responsible for the enhanced hydrocarbon mobility observed in our simulations. While the pseudo CO$_2$ molecules also lower the activation energy compared to the system of pure butane at low loadings, pore crowding increases steric hindrance. The activation energies we report are consistent, albeit in the low range, with activation energies reported for the diffusion of fluids in other porous materials.$^{42, 58}$ Following literature observations, the fluid diffusion in our system is considered activated in light of the narrow pore size.$^{42, 62}$

![Figure 9](image.png)

**Figure 9.** Arrhenius plot for the self-diffusion coefficient of n-C$_4$H$_{10}$ confined in the silica pore at low concentration (empty circles), at infinite dilution in CO$_2$ molecules (black circles), and at infinite dilution in pseudo CO$_2$ molecules (gray circles). Symbols are calculated from simulations. Lines are the Arrhenius fits to the simulation data.
Residence Time near Pore Surfaces

We computed residence autocorrelation functions, $C_R(t)$, to quantify how long CO$_2$ and butane molecules remain in contact with the silica surfaces. The algorithm is described elsewhere.\textsuperscript{63} We considered the COM of both CO$_2$ and butane to identify the position of one molecule. Only those molecules within the first adsorbed layers were considered. The faster $C_R$ decays from 1 to 0, the faster the molecules leave the adsorbed layer. In Figure 10 panel (a) we report the results obtained for CO$_2$ at different CO$_2$:C$_4$H$_{10}$ molar ratios when a total of 100 molecules was present within the pore and $T=290$K. The results show that at the higher mole fraction of CO$_2$, the shorter it remains in the adsorbed layer, possibly due to faster exchanges between the adsorbed molecules and those near the pore center. At the lowest temperature and lowest concentration of CO$_2$ investigated (290K, 10 CO$_2$ molecules), $C_R(t)$ plateaus after 300 ps, suggesting that some of the adsorbed CO$_2$ molecules do not desorb within the simulation timeframe. The corresponding results obtained for butane are shown in Figure 10 panel (b). In this case all the curves overlap for all mixture compositions, suggesting that butane molecules exchange between adsorbed and not-adsorbed states with the same frequency, irrespective of the amount of CO$_2$ present. This is probably due to the lack of strong attractions between butane and the pore surface. These results suggest that the decrease in activation energy for the n-butane diffusion is not related to the residence time of butane near the adsorbing surface. To support this observation it is worth pointing out that the density profiles obtained for n-butane in the direction perpendicular to the pore surface (Figures 2-6) always show peaks at the same distances from the surface, irrespectively on the amount of CO$_2$ present within the system.

In Figure 11, we report the residence autocorrelation functions of CO$_2$ molecules as a function of the total loading (top panels) and temperature (bottom panels) for equimolar binary mixtures. Because high temperature favors thermal motion and increased occurrence of fluid collisions that push the adsorbed molecules away from the interface, the residence autocorrelation function decreases faster with increasing temperature and/or density. At 430K, above the critical temperatures for both substances in the mixture, $C_R(t)$ curves overlap for all mixture compositions. The overlapping $C_R(t)$ results at 290K and 343K in panel (a) in Figure 11 and the similarity of CO$_2$ density profiles in panel (a) and (c) of Figure 3 suggest that at relatively low temperature and low fluids density, $T$ and concentration have negligible effects on the adsorption of CO$_2$ on the pore wall, conditions at which pore-fluid interactions play the dominant role.

**Figure 10.** Representative residence autocorrelation functions, $C_R(t)$, for (a) CO$_2$ and (b) n-butane within the first adsorbed layers on the silica pore as a function of CO$_2$:C$_4$H$_{10}$ molar ratio. Results are shown for the simulations conducted at 290K with 100 total molecules.
Figure 11. Residence autocorrelation functions, $C_R(t)$, for CO$_2$ within the first adsorbed layer as a function of the total number of molecules in mixture (top panels) and of temperature (bottom panels). In all cases the CO$_2$:C$_4$H$_{10}$ molar ratio is 1:1.

CONCLUSIONS

Detailed molecular dynamics simulations were performed for systems consisting of pure carbon dioxide, pure n-butane, and their mixtures confined in fully protonated slit-shaped silica nanopores of width 2 nm. A range of temperatures (from sub- to super-critical), mixture densities and component ratios was considered. Our results show that CO$_2$ tends to interact with more than one –OH group on the substrate and that it preferentially adsorbs on the pore surface. CO$_2$ self-diffusion coefficients depend on pore loadings following the type IV behavior in the classification proposed by Karger and Pfeifer. This is a consequence of the existence of high-energy adsorption sites (the surface –OH groups) that can strongly attract the CO$_2$. The self-diffusion coefficient of pure butane decreases as loading increases as a result of steric hindrance (type I behavior in the classification of Karger and Pfeifer). When mixtures are considered, at the same temperature and total molecular loading, carbon dioxide enhances the self-diffusion coefficient of n-butane by decreasing its diffusion activation energy. The results are corroborated by analysis of the average residence time of the various molecules at contact with the pore surfaces, density profiles in the direction perpendicular to the solid substrate, and parallel to the solid surface. Our results can be useful for designing separation devices, and perhaps planning CO$_2$ capture and storage strategies while optimizing natural gas production.
ACKNOWLEDGEMENTS

We acknowledge the financial support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0006901 (Division of Chemical Sciences, Geosciences, and Biosciences). D.R.C. was supported under contract DE-SC0006878 provided by the U.S. Department of Energy, Office of Basic Energy Sciences (Division of Chemical Sciences, Geosciences, and Biosciences). Additional financial support was provided by the Sloan Foundation via the Deep Carbon Observatory. AS acknowledges financial support from the European Union via a Marie Curie Career Integration Grant. Generous allocations of computing time were provided by the Oklahoma Supercomputing Center for Education and Research (OSCER), Norman, OK, and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, Berkeley, CA. NERSC is supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.

References


