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Abstract 10 

Late Cretaceous deposits in Mongolia, Chinese Inner Mongolia, and, more recently, southern China, 11 

have yielded a rich and diverse lizard assemblage. Here we describe the remains of a new terrestrial 12 

lizard, Asprosaurus bibongria gen. et sp. nov., from the Late Cretaceous of South Korea. It represents 13 

the first record of a Mesozoic lizard from the Korean Peninsula and, although incomplete, is 14 

exceptional in its very large size. Characters of the mandible place support attribution to Anguimorpha, 15 

with the closest similarities being to monstersaurs, the group represented today by the venomous 16 

North American Beaded lizards and Gila Monsters, genus Heloderma. This group is well-represented 17 

in the Late Cretaceous of eastern Asia, and the remains of large monstersaurs have been recovered 18 

from several dinosaur egg localities, suggesting dietary preferences similar to those of the living 19 

genus. The new Korean lizard, recovered from the Boseong Bibong-ri Dinosaur Egg Site, fits the 20 

same pattern.  21 

Key words: Squamata - lizard - Late Cretaceous - Anguimorpha - Monstersauria - Dinosaur eggs 22 

1. Introduction 23 

Cretaceous nonmarine deposits are well exposed along the southern coast of South Korea, and many 24 

fossil sites have been reported from these deposits (e.g., Dong et al., 2001; Lee et al., 2001; Lim et al., 25 

2001; Yun and Yang, 2001; Hwang et al., 2002; Huh et al., 2003; Yun et al., 2004; Kim et al., 2005; 26 

Lee and Lee, 2007; Huh et al., 2011). Boseong Bibong-ri Dinosaur Egg Site, located in Bibong-ri, 27 

Deungnyang-myeon, Boseong-gun, Jeollanam-do, is one of the richest localities for dinosaur eggs in 28 

South Korea (Huh et al., 1999a; 1999b; Huh and Zelenitsky, 2002; Paik et al., 2004; Huh et al., 2006; 29 

Paik et al., 2012; Huh et al., 2013) (Fig. 1). It was first excavated in 1999 and has yielded various 30 
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specimens including dinosaur eggs (more than 200 individuals), a possible testudine egg (Huh and 31 

Zelenitsky, 2002), and body fossils of a small ornithopod dinosaur, Koreanosaurus boseongensis (Huh 32 

et al., 2011) (Fig. 2), Five separate fossiliferous sites have been reported from the area (Huh et al., 33 

2006) (Fig. 1, C), and the dinosaur egg clutches appear in at least four separate layers at all five sites 34 

(Fig. 2). Although egg fossils are abundant, vertebrate body fossils are rare in this area. 35 

In 2000, an associated vertebrate body fossil (Fig. 3) was collected from site 1 (Fig. 2), and was 36 

temporally classified as testudine (Huh et al., 2006). However, preparation and re-examination has 37 

shown this specimen to be a large lizard (Squamata). It is named, described and discussed herein, 38 

and represents the first Mesozoic lizard fossil recorded from the Korean Peninsula. 39 

2. Geological setting and materials 40 

The rock units that form the Boseong Bibong-ri Dinosaur Egg Site are epiclastic, pyroclastic, and 41 

intermediate to acidic volcanic rocks. They can be divided into the Seonso Conglomerate, Seonso 42 

Formation, Pilbong Rhyolite, Mudeungsan Flow, Obongsan Brecciated Tuff, and Docheonri Rhyolite, 43 

in stratigraphic order (Hwang and Cheong, 1968; Huh et al., 1999a; Paik et al,. 2004; Huh et al., 44 

2006). The dinosaur egg-bearing layers, the Seonso Conglomerate and the overlying Seonso 45 

Formation, are primarily clastic, and are composed of conglomerates, sandstones, and mudstones 46 

(Huh et al., 1999a; Paik et al., 2004; Huh et al., 2006) (Fig. 2). Isotope analysis of the overlying 47 

Seonso Ashflow Tuff and the underlying Pilbong Rhyolite, suggests that the fossil-bearing deposits 48 

are Santonian to Campanian in age (e.g., Huh et al., 2006; Kim, 2008; Kim et al., 2008). 49 

Palynological records and the common development of palaeosols within the layers (Fig. 2), 50 

indicates that the paleoenvironment of this area was warm and dry (Choi, 1985; Paik and Kim, 1995; 51 

Paik et al., 1997; Paik and Lee, 1998; Paik et al., 2004). The abundance of channel deposits with 52 

erosive bases suggests that a fluvial system was involved during the formation of this area (Paik et al., 53 

2004) (Fig. 2). 54 

The associated body fossil (Fig. 3), described in this paper, was collected during the first 55 

excavation period in 2000, from site 1 (Fig. 2), which is located in the most southern part of the 56 

Boseong Bibong-ri Dinosaur Egg Site (Fig. 1, C). The specimen was in situ, preserved in a thick 57 

purple sandy mudstone layer between a lower cross-laminated coarse grained sandstone horizon and 58 

an upper horizon consisting channel lag gravels (Fig. 2). No other fossils were collected from the 59 

same horizon, but dinosaur egg clutches were excavated from above and below the specimen (Fig. 2). 60 



Preliminary preparation work was done during 2000, with minor additional preparation from 2005 to 61 

2010. The final preparation work (2012-2013) was done by the first author. 62 

3. Systematic paleontology 63 

Squamata Oppel, 1811 64 

Anguimorpha Fürbringer, 1900 65 

cf Monstersauria Norell and Gao, 1997 66 

Asprosaurus bibongria gen. et sp. nov. 67 

3.1 Derivation of name 68 

‘aspros’, meaning ‘white’ in Greek (since the specimen is white in color), ‘saurus‘, meaning ‘lizard’ in 69 

Latin, and ‘bibongri’, from the type locality where the holotype was found. 70 

3.2 Holotype 71 

KDRC-BB4 (Korea Dinosaur Research Center - Boseong Bone fossil Catalogue Number), an 72 

associated specimen, originally on a single block (Fig. 3) but with each element now prepared out and 73 

comprising a right jugal, partial squamosal, partial left quadrate, left pterygoid, partial left mandible, 74 

left scapulocoracoid, left humerus, a metacarpal, part of a rib or clavicle, and several unidentified 75 

bone fragments. 76 

3.3 Type Locality 77 

From Site 1, southern coast of Seonso Village, Bibong-ri, Boseong County, Chollanam-do Province, 78 

South Korea (north latitude : 34˚ 40’ ~ 34˚ 50’, east longitude : 127˚ 00’ ~ 127˚ 15’). 79 

3.4 Stratigraphic horizon 80 

From the Upper Cretaceous (?Santonian - Campanian) Seonso Conglomerate.  81 

3.5 Diagnosis 82 

A very large, robust-limbed, terrestrial lizard (skull length ~180-200mm) resembling monstersaurian 83 

and varaniform anguimorphs (sensu Conrad et al., 2011a) in having a deep, almost vertical dentary 84 

alveolar margin with no subdental shelf; a Meckelian fossa that is anteroventrally positioned; a small 85 

adductor fossa; no posterodorsal coronoid process on the dentary; a reduced splenial-dentary contact; 86 

and a splenial that does not extend posterior to the apex of the coronoid process. Differs from 87 

previously described Asian Late Cretaceous anguimorph lizards including Cherminotus, Chianghsia, 88 

Estesia, Gobiderma, Ovöo, Paravaranus, Parviderma, Proplatynotia, Saniwides, and Telmasaurus in 89 

the combination of a strongly angulated jugal in which the postorbital process is wider than the 90 



suborbital process; a complete postorbital bar; a concave medial margin to the pterygoid palatal plate; 91 

a straight dentary-postdentary contact but no intramandibular joint; a posteriorly shallow, rather than 92 

triangular, splenial; no cranial osteoderms; and a convexo-concave ventral jaw margin.  93 

3.6 Description 94 

The specimen was recovered as a close association of disarticulated elements (Fig. 3). Given the 95 

rarity of body fossils in the deposit, we can be confident that the bones belong to a single individual. 96 

Some bones, like the left pterygoid, left scapulocoracoid, left humerus, and a metacarpal are well-97 

preserved. Other bones are more fragmentary and there was further damage during preparation, 98 

before the specimen was identified as a lizard. The individual was clearly adult, as evidenced by: 99 

closed mandibular sutures; humeral epiphyses fused to the shaft; strong humeral rugosities and 100 

muscle attachment sites; and closed scapulocoracoid suture.  101 

3.6.1 Cranial 102 

The skull is represented by a jugal, squamosal, partial quadrate, pterygoid, and mandible, all but the 103 

jugal are apparently from the left side of the individual. 104 

The jugal (Fig. 4) is a laterally flattened, biradiate bone, the two rami of which are set at almost 105 

90° to one another. One ramus is broad and mediolaterally flattened. It bears a deep medial facet at 106 

its distal end (Fig. 4, B), although this was damaged during preparation. The other ramus is narrower 107 

and rounded to triangular in cross-section. It bears a narrow facet along the external (non-orbital) 108 

surface. As originally preserved, it was obviously longer. Photographs of the original block (Fig. 3) 109 

show there was a short distal section separated from the remainder by a small space. By comparison 110 

with other Asian anguimorphs like Gobiderma and Estesia, this bone, in external view, has the 111 

appearance of a left jugal, with a deep suborbital ramus and a long, tapering postorbital one. However, 112 

the positions of the facets are not consistent with that interpretation, particularly the large deep facet 113 

on the internal surface of the broader ramus. The facet for the maxilla and/or for the ectopterygoid 114 

would be ventral not dorsal. We therefore interpret the bone as a right jugal, such that the narrow 115 

ramus is suborbital with a long narrow ventral facet for the maxilla. If this is correct, then the jugal may 116 

have excluded the maxilla from the suborbital margin, but is likely to have been confined to its dorsal 117 

rim. The broader, mediolaterally compressed ramus formed the postorbital margin, with the 118 

dorsomedial facet receiving a flange from the postorbital or postorbitofrontal. There is no additional 119 

posterior facet and it is unlikely that the jugal and squamosal were in contact. The postorbital ramus 120 



bears a dorsolateral concavity, but this does not appear to represent an articulation surface. 121 

Posteroventrally, the bone terminates in a rounded angle. This is relatively smooth laterally, but bears 122 

a posteromedial rugosity that may have been associated with the lateral head of the ectopterygoid or 123 

a thickening of the temporal fascia. 124 

A slender, curved and mediolaterally compressed rod-like element is interpreted as the posterior 125 

part of a squamosal (Fig. 5, A), probably the left. The bone has the classic ‘hockey-stick’ shape found 126 

in many lizards with the downcurved tip meeting the dorsal head of the quadrate.  127 

The quadrate may be represented by the ventral part of a robust shaft and narrower articular 128 

surface (Fig. 5, B, C). The dorsal tympanic crest has been lost, but from traces of the lateral conch, 129 

this appears also to be a left bone. A large concavity is present on the medial side, presumably for 130 

muscle attachment. 131 

The left pterygoid (Fig. 5, D, E) is relatively well-preserved. It has a wide, flat, palatine plate that 132 

appears triangular but is broken anteriorly. The medial border of the palatal plate bears a conspicuous 133 

emargination, adding to the posterior breadth of the interpterygoid vacuity. Laterally, the palatal plate 134 

tapers into a facetted process that articulated with the ectopterygoid. As preserved, the palatal surface 135 

appears smooth, but unfortunately the anterior edge is eroded, so it is impossible to know whether 136 

pterygoid teeth were present. Posteriorly, the plate narrows, meeting the quadrate ramus at a fairly 137 

sharp angle. The articular surface for the basipterygoid process of the basisphenoid lies at the medial 138 

point of the angulation. Dorsal to it, the bone bears a narrow, elongated pit for the epipterygoid (fossa 139 

columellae). The quadrate process itself is straight and narrow, with a triangular cross-section. A 140 

longitudinal ventral groove accommodated part of the pterygoideus muscle. The strong angulation of 141 

the palatal plate in relation to the quadrate process suggests the interpterygoid vacuity may have 142 

been quite wide.  143 

As preserved, the left mandible (Fig. 6) is relatively long and slender. It has a somewhat sigmoid 144 

shape, due to the pronounced posteroventral concavity and an apparent reduction in posterior height. 145 

The individual elements are in articulation but the bones have separated slightly at the sutures, 146 

suggesting these were not fully closed at death. The dentary tapers slightly from posterior to anterior. 147 

The anterior part is lost and it is difficult to judge the original length. The alveolar margin is 148 

represented by a deep, almost vertical surface with no subdental shelf or ridge (Fig. 6, C). However, 149 

no teeth are preserved nor are tooth positions evident. Either this region was originally edentulous or 150 



the tooth sockets were shallow and their edges have been eroded. Laterally, there are no 151 

neurovascular foramina on this portion of the bone. Medially, the posterior part of the Meckelian fossa 152 

is filled by a splenial, which tapers postero-anteriorly and has a small exposure on the anterolateral 153 

surface (Fig. 6, C), indicating that the Meckelian fossa was more ventral than medial in its anterior 154 

part. Towards its anterior end, the dorsal margin of the splenial is emarginated by a long low notch, 155 

interpreted here as the margin of an anterior inferior alveolar foramen lying between the splenial and 156 

dentary. If this is correct, it is likely that there was originally a significant length of dentary anterior to 157 

this point. Ventral, and slightly posterior to this emargination the splenial bears an ovoid depression 158 

which may represent the anterior mylohyoid foramen. There is a relatively wide gap between the 159 

dorsal margin of the splenial and the dentary, suggesting connective tissue attachment in life, 160 

Posteriorly, the splenial overlaps the angular, surangular, and coronoid, but does not extend to the 161 

level of the coronoid apex and it lacks the strongly triangular shape seen in some monstersaurs (e.g. 162 

Heloderma, Gobiderma) (Fig. 6, C). This could be due to damage, but it is not obviously so. The 163 

dentary-postdentary overlap is not extensive, and the lateral suture between the dentary and 164 

surangular is almost vertical, but slightly imbricated (Fig. 6, A). However, there was not an 165 

intramandibular joint. Where the dentary and surangular have pulled apart slightly, it is clear that a 166 

flange from the surangular passed medial to the dentary, but it is not possible to judge how far this 167 

reached anteriorly. There is no posterodorsal dentary coronoid process. The coronoid itself is 168 

preserved in its antero- and posteroventral parts, although the coronoid process is broken through its 169 

base. The anterior and posterior rami are roughly equal in length. The coronoid lies entirely medial to 170 

the surangular, but its articulation with the dentary is a little more complex. The surangular and 171 

dentary meet lateral to the coronoid but the posterodorsal margin of the dentary turns through an 172 

angle of almost 90 degrees to the long axis of the surangular, forming a distinct 'corner' into which the 173 

anterolateral edge of the coronoid fits (Fig. 6, B). At this point, therefore, the coronoid abuts the 174 

dentary. However, an anterior flange of the coronoid overlaps the medial surface of the dentary just 175 

behind the alveolar margin. Thus the coronoid both abuts and clasps the posterodorsal end of the 176 

dentary. Seen in medial view, however (Fig. 6, C), only the overlap is apparent. The coronoid 177 

posteroventral process extends from the dorsal margin of the surangular to the edge of the small 178 

mandibular fossa. The angular is long and thin, with a relatively narrow exposure on both the medial 179 

and lateral surfaces of the mandible. Medially, it lies below the prearticular, which forms the ventral 180 



margin of the mandibular fossa. The surface of the angular is damaged but seems to be pierced 181 

laterally at the level of the dentary-surangular suture. This may be a posterior mylohyoid foramen. 182 

The original photographs show no evidence of associated osteoderms, but without the skull roof 183 

bones (frontal, parietal) we cannot be certain whether they were originally completely absent. 184 

3.6.2 Postcranial skeleton 185 

The postcranial skeleton is represented by a left scapulocoracoid and humerus, as well as a single 186 

metapodial element and a curved element that may have been a rib or clavicle.  187 

The left scapulocoracoid (Fig. 8, A, B) is broad and relatively flat with a large posterolateral 188 

glenoid fossa. The two components are completely fused, although a trace of the suture is visible 189 

medially (note that there is also a deep crack across the bone ventral to the real suture line). The 190 

coracoid plate is perforated by a large coracoid foramen. Ventromedially, it is moderately expanded 191 

and bears a curved posterior extension (metacoracoid process). This margin is thickened and, in life, 192 

would have supported the epicoracoid cartilage. Further anteriorly, the bone is thinner and partially 193 

damaged (but see below). The scapula component is relatively short with a wide, rugose dorsal 194 

margin that would have been continued in life by the cartilage suprascapula. Overall, as is typical, the 195 

scapulocoracoid is thickest along the posterior margin and thins anteriorly. The anterior margin is 196 

damaged in part, but there is certainly a scapulocoracoid emargination. A thickening at the level of the 197 

scapulocoracoid suture (base of the procoracoid process) separates the scapulocoracoid 198 

emargination from a second emargination at the level of the coracoid foramen (anterior coracoid 199 

emargination). This, in turn, is limited anteroventrally by a second thickening, below which the bone 200 

appears to thin again. However, it is not clear whether there is an accessory coracoid emargination at 201 

this position.   202 

On the original block (Fig. 3), a curved bone lies close to the dorsal border of the scapula. Only 203 

one half of the bone is preserved, but the impression on the matrix appears to become wider. This 204 

could be a rib, but the difference in the width of the two ends suggests it may be a clavicle. 205 

The left humerus (Fig. 7) is generally well-preserved, although parts of the distal condylar 206 

surfaces are missing. The epiphyses are fully fused. Overall, the bone is robust with strong muscle 207 

attachment crests and rugosities. The broad proximal and distal ends are set at almost 90° to one 208 

another and are separated by a relatively short, narrow shaft. The shaft is straight and sub-cylindrical 209 

in cranial view, and is slightly curved anteriorly in lateral view. The proximal and distal ends are both 210 



about 40 mm in width. At the proximal end, there is a screw-shaped surface for articulation with the 211 

glenoid cavity. Close to it, and pointing slightly laterally, is a strong area of attachment for the 212 

subcoracoscapularis muscle. On the opposite side, a prominent deltopectoral crest curves slightly 213 

interiorly, forming a deep proximal concavity. At the distal end of the bone, a deep concavity, widest 214 

distally, separates the ectepicondyle and entepicondyle. An ectepicondylar foramen is visible in 215 

superior view (Fig. 7, C).  216 

One metapodial element is preserved. From its size and length, it is probably a metacarpal (Fig. 217 

8, C). The bone is slender, with proximal and distal expansions.  218 

3.7 Remarks 219 

Few of the described Late Cretaceous Asian taxa preserve forelimb elements to compare with the 220 

very robust humerus of Asprosaurus. However, the scapulocoracoid resembles that of Gobiderma 221 

and differs from Heloderma in having both scapulocoracoid and anterior coracoid emarginations, but 222 

differs from Gobiderma in that the scapula component is shorter and of similar width throughout 223 

(dorsally expanded in Gobiderma). Asprosaurus is also substantially larger than any Late Cretaceous 224 

terrestrial lizard described to date, although size should be used with caution in diagnosis, particularly 225 

with monotypic specimens. Based on jaw, pterygoid and jugal proportions, the skull of Asprosaurus is 226 

estimated to have been ~180-200 mm in length. This compares to those of the largest Asian 227 

Cretaceous anguimorphs currently known, Gobiderma (~60mm, Conrad et al., 2011b), Telmasaurus 228 

(~55-70mm, Conrad et al., 2011b), Estesia (~125mm, Conrad et al., 2011b) and Chianghsia (175-229 

180mm, Mo et al., 2012). 230 

4. Phylogenetic position 231 

KDRC-BB4 represents parts of a single, mature reptile skeleton (fused scapulocoracoid components, 232 

humeral epiphyses fused to shaft) that was large and terrestrial (robust humerus with powerful muscle 233 

crests). The morphology of the scapulocoracoid (fused components, emarginated anterior margin) 234 

and the slender curved squamosal identify this as a squamate, not a testudine as originally proposed. 235 

Within squamates, the deep dentary alveolar margin with no subdental shelf is suggestive, even 236 

without the teeth, of the kind of modified pleurodonty (Zaher and Rieppel, 1999) found in anguimorphs 237 

(Conrad, 2008; Conrad et al., 2011a; 2011b; Gauthier et al., 2012). Other features of the mandible, 238 

including the reduced mandibular fossa, anteroventral Meckelian canal, and shortened splenial are 239 

consistent with this attribution.  240 



In order to explore the phylogenetic position of Asprosaurus, we coded it into two recent 241 

morphological data matrices - that of Conrad et al. (2011b) and of Gauthier et al. (2012).  242 

Gauthier et al. (2012) represents the largest morphological character matrix to date (610 243 

characters; 192 taxa). As they ran their analysis using PAUP, we used the same programme, with 244 

their ordering of characters. A heuristic search yielded 179 equally parsimonious trees (L=5196; 245 

CI=0.187; RC=0.148), of which a strict consensus placed Asprosaurus in an unresolved polytomy with 246 

Lanthanotus, Saniwa, Varanus (3 species), Heloderma (2 species), and Aiolosaurus, Estesia and then 247 

Gobiderma were placed as consecutive outgroups to this clade. We then ran a Branch and Bound 248 

analysis with 15 taxa (the 11 listed above + Shinisaurus, Xenosaurus, Elgaria and Anniella, the latter 249 

three as a monophyletic outgroup). This second analysis resulted in six trees (L=520; CI=0.621; 250 

RC=0.38), in which Asprosaurus moved between a helodermatid clade (2 trees) and a varanid clade 251 

(4 trees). Its position in both the strict consensus and an Adam's consensus was therefore unresolved 252 

with respect to these two positions, although a Bootstrap analysis gave weak (56%) support to a 253 

relationship with varanids. 254 

 However, extensive though the Gauthier et al. (2012) matrix is, it included few of the 255 

fragmentary Late Cretaceous anguimorph taxa that cluster around Heloderma and Varanus in other 256 

analyses (e.g., Conrad, 2008). We therefore coded Asprosaurus into the anguimorph matrix of 257 

Conrad et al. (2011a), adding the genus Chianghsia (Mo et al., 2012) from southern China and using 258 

Gephryosaurus, rather than Sphenodon (which was omitted) as outgroup, but otherwise using their 259 

characters and ordering. This analysis was run with the programme TNT, using the New Technology 260 

search with Ratchet (20 iterations, 1000 random addition sequences), followed by a Traditional search 261 

using the trees from the Ratchet search as starting trees. The Ratchet analysis yielded two trees 262 

(L=1315) which were then used as starting trees for a Traditional Search. This second analysis 263 

produced 72000 trees for which we generated Strict Consensus, Combinable Component Consensus, 264 

and 70% Majority Rule Consensus trees. In the Strict and Combinable component trees, Asprosaurus 265 

was placed in an unresolved position within a clade comprising monstersaurs and varaniforms. In the 266 

70% MRT (Fig. 9), it lay within Monstersauria (sensu Conrad et al., 2011a; 2011b), one node 267 

crownward of Gobiderma. However, a bootstrap analysis did not recover this topology. 268 

5. Discussion 269 

5.1 Phylogenetic position 270 



The phylogenetic analyses described above confirm the squamate affinities of Asprosaurus and its 271 

placement within Anguimorpha (Gauthier et al., 2012 matrix analysis). There is no support for a 272 

relationship with anguids or their fossil relatives (Anguioidea), but the position of Asprosaurus in 273 

relation to the clades centred on Heloderma and Varanus remains ambiguous. This is partly due to 274 

the fragmentary nature of the material, but it also mirrors a wider controversy as to the relationships of 275 

Heloderma within Anguimorpha. 276 

Most recent cladistic analyses of squamates, whether morphology-only (e.g., Conrad, 2008; 277 

Gauthier et al., 2012), molecular (e.g., Townsend et al., 2004; Vidal and Hedges, 2005, 2009; Pyron et 278 

al., 2012), or combined data (e.g., Wiens et al., 2010; Conrad et al. 2011a,b), recognize five main 279 

clades of living Anguimorpha: Anguidae, Xenosaurus, Shinisaurus, Heloderma and Varanidae 280 

(Varanus+Lanthanotus). There is general agreement that Xenosaurus is more closely related to 281 

Anguidae than to Varanidae (e.g., Conrad, 2008; Conrad et al., 2011a; 2011b; Pyron et al., 2012; 282 

Wiens et al., 2010; 2012; Jones et al., 2014), providing a dichotomy between anguioid 283 

(Anguidae+Xenosaurus) and varanid anguimorphs, but there are significant differences in the 284 

hypothesized relationships of both Heloderma and Shinisaurus. The traditional classification, based 285 

on morphological characters (e.g., Estes et al., 1988; Lee, 1997; Caldwell, 1999; Conrad, 2008; 286 

Conrad et al., 2011a; Gauthier et al., 2012) places Heloderma as the sister group of Varanidae 287 

(=Varanoidea, Gauthier et al., 2012). However, molecular analyses (e.g., Townsend et al., 2004; Vidal 288 

and Hedges, 2005; 2009; Wiens et al., 2012; Pyron et al., 2012; Jones et al., 2014) have consistently 289 

found Heloderma to be the sister taxon to Anguioidea, a position also proposed in the pioneering work 290 

of Camp (1923). Combined morphology-molecular analyses have also tended to support this 291 

arrangement (e.g., Wiens et al., 2010), although that of Conrad et al. (2011a) yielded the traditional 292 

topology when based only on extant taxa and the 'molecular' topology when fossils were included. 293 

Shinisaurus is similarly problematic. Estes et al. (1988) grouped Shinisaurus and Xenosaurus in the 294 

Xenosauridae, a position supported by Gauthier et al. (2012). However, molecular analyses (e.g., 295 

Townsend et al., 2004; Vidal and Hedges, 2005; Pyron et al., 2012; Wiens et al., 2012; Jones et al., 296 

2014) have consistently placed Shinisaurus closer to Varanidae, as did the morphology-based 297 

analysis of Conrad (2008), and the morphology-based, molecular, and combined evidence analyses 298 

of Conrad et al. (2011a: but see Conrad et al., 2011b).  299 

These differences impact on the placement of fossil taxa. Anguimorpha is well represented in the 300 



Late Cretaceous, particularly in China and Mongolia (e.g., Borsuk-Bialynicka, 1984; Gao and Norell, 301 

1998; Conrad et al, 2011a; 2011b). Some of these fossil taxa group consistently with Anguidae (e.g., 302 

glyptosaurs), Xenosaurus (= Carusioidea, sensu Conrad et al., 2011a), Shinisaurus (=Shinisauria, 303 

sensu Conrad, 2008), Heloderma (=Monstersauria sensu Norell and Gao, 1997, emend. Conrad et al., 304 

2011a; 2011b, but see Gauthier et al., 2012) and Varanidae (=Varaniformes, sensu Conrad, 2008; 305 

Conrad et al., 2011a). However, the placement of other taxa (e.g., Proplatynotia, Parviderma, 306 

Paraderma, Palaeosaniwa, Necrosaurus) is less resolved and tends to vary with that of the major 307 

clades (e.g., Conrad et al. 2011a; 2011b; Gauthier et al., 2012). Heloderma and varanids share many 308 

characters (e.g., of tooth morphology and implantation, jaw morphology). Under the traditional 309 

classification, these characters were regarded as synapomorphies of 'Varanoidea' and could support 310 

inclusion of a fossil within that clade. However, if Heloderma and varanids belong to different 311 

branches of Anguimorpha, then these characters have arisen convergently and are less informative. 312 

This is relevant to placement of Asprosaurus. It possesses a suite of characters (no subdental shelf, 313 

dentary with no post-coronoid process, dentary with convex ventral margin, splenial not reaching 314 

posterior to coronoid apex, dentary contributing to dorsal margin of anterior inferior alveolar foramen) 315 

that would support its attribution to Varanoidea (sensu Gauthier et al., 2012), as in the strict 316 

consensus trees described above, but could equally support a relationship to either Monstersauria or 317 

Varaniformes (sensu Conrad, 2008; Conrad et al., 2011a; 2011b).  318 

For Asprosaurus, other characters are contradictory, and the absence of teeth further 319 

complicates discussion. Like varaniforms, Asprosaurus lacks thick pentagonal osteoderms, but it 320 

differs in having a strongly angular jugal, a coronoid lacking a long horizontal anterodorsal ramus and 321 

posterior displacement of the coronoid process, and an anteriorly expanded surangular. With 322 

monstersaurs like Heloderma and Gobiderma, Asprosaurus shares a strongly angulated jugal, 323 

straight posterior dentary margin, and convex-concave ventral profile of the mandible, but it lacks their 324 

short triangular splenial, enclosure of the anterior inferior alveolar foramen within the splenial (Conrad 325 

et al., 2011b), and the characteristic thick osteoderms. In the latter character state, it more closely 326 

resembles Estesia (Norell et al., 1996; Norell and Gao, 1998), another Mongolian genus usually 327 

placed with monstersaurs (but see Yi and Norell, 2010).  328 

On balance, Asprosaurus appears to be morphologically closer to monstersaurs (whatever their 329 

affinity) than to varaniforms, but further material - especially of the dentition, is needed to test this. 330 



5.2 Life history 331 

More than 200 individual dinosaur egg specimens have been collected from the Boseong Bi-bong ri 332 

Dinosaur egg site, including the ootaxa Spheroolithus (possible hadrosauroid eggs) and 333 

Faveoloolithus (possible sauropod eggs) (Huh and Zelenitsky, 2002). Both Heloderma and Varanus 334 

take the eggs of birds and other reptiles. Although there are no direct evidence of nest raiding, other 335 

large Cretaceous anguimorphs, such as Palaeosaniwa (Judith River, Montana), Estesia (Lizard Hill, 336 

Khulsan South Gobi Aimak, Mongolia), and Chianghsia (Nankang, China), have been found in direct 337 

proximity to dinosaur egg sites (Gilmore, 1928; Norell et al., 1992; Mo et al., 2012). As Asprosaurus 338 

was recovered from a similar type of locality (Huh et al., 2006) (Fig. 1), it may also have been a nest 339 

raider. The robust scapulocoracoid (Fig. 8, A, B) and the large proximal crests on the humerus (Fig. 7) 340 

suggest that Asprosaurus had powerful forelimb limb muscles, possibly as an adaptation for digging 341 

into nests. 342 

6. Conclusion 343 

Specimen KDRC-BB4 is reclassified from testudine to anguimorph squamate, and is named as a new 344 

taxon, Asprosaurus bibongria gen. et sp. nov. Asprosaurus is the first lizard fossil recorded from South 345 

Korea and the largest Mesozoic terrestrial lizard known to date. Its phylogenetic position in relation to 346 

the extant Heloderma and Varanus remains uncertain, but this partially reflects a wider uncertainty 347 

with respect to the ingroup relationships of Anguimorpha. Asprosaurus provides another example of a 348 

large predatory lizard found in proximity to a dinosaur egg site. 349 
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Appendix 493 

Coding used in phylogenetic analyses 494 

A. Coding for Asprosaurus in Conrad et al. (2011a) 495 

?????????? ?????????? ?????????? ?????????? ????0?0100 01101????? ?????????? 496 

?????????? ?????????? ????0??0?1 ?????????? ?????0??1? ?0???????? ?????????? 497 

?????????? ????????1? ?????0?00? ????00?000 011200000/11 0?0?00000? 0000?????? 498 

???2?????? ?????????? ?????????? ?????????? ?????????0 01??10???? ????0110?? 499 

?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ??????????  500 

?????????? ?????0?00? ?????????? ????????-1 ???- -????? ??01??????0 ?????????? ? 501 

B. Coding for Asprosaurus in Gauthier et al. (2012) 502 

?????????? ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 503 

?????????? ??00?????? ?????????? ?????????? ?????????? ?????????? ?????????? 504 



?0???01020 000121000? ??001????? ?????????? 12???????? ?????????? ?????????? 505 

?????????? ?????????? ?????????? ?????????? ??????1??? ?0?010???0 ?????????? 506 

??????0??0 ?????????? ?????????? ?????????? ?????????? ?????????? ?????????? 507 

??????1100 ? - - 00??100 1010?10100 1013201?00 00101??200 000??????? ?????????? 508 

?????????? ?????????? ?????????? ?????????? ?????????? ???????0?? ???????000 509 

?01?1???00 00???????? ?????????? ??????00?0 ?????????? ?????????? ?????????? 510 

?????????? ?????????? ?????????? ?????????? ??????????  511 



 512 

Fig 1. Location of the Boseong Bibong-ri Dinosaur Egg Site. A, map of the Korean Peninsula; B, 513 

enlarged map of Boseong area; C, enlarged map of Bibong Ri area showing the five main dinosaur 514 

egg sites. Modified from Paik et al., 2004. 515 



 516 

Fig 2. Stratigraphic sections of five sites of Boseong Dinosaur Egg Site, modified from Huh et al., 517 

1999a; 1999b; Paik et al., 2004; Huh et al., 2006; 2011; Paik et al., 2012. 518 



 519 

Fig 3. Photo of associated specimen of Asprosaurus bibongria gen. et sp. nov. (holotype; KDRC-BB4) 520 

in original single block. Abbreviations CO, scapulocoracoid; H, humerus; J, jugal; M F, mandibular 521 

fossa; PT, pterygoid; SA, surangular; SPL, splenial. 522 



 523 

Fig 4. Right jugal of Asprosaurus bibongria gen. et sp. nov. A, lateral; B, medial view. Abbreviations 524 

MX F, maxillary facet; POF F, Postorbitofrontal facet.525 



 526 

Fig 5. Skull material of Asprosaurus bibongria gen. et sp. nov. A, squamosal in lateral view; B, lateral, 527 

and C, medial views of left quadrate; D, dorsal, and E, palatal views of left pterygoid. 528 



 529 

Fig 6. Left mandible of Asprosaurus bibongria gen. et sp. nov. A, lateral; B, dorsal; C, medial views. 530 

Abbreviations AN, angular; COR, coronoid; D, dentary; IA F, inferior alveolar foramen; M F, 531 

mandibular fossa; PRA, prearticular; SA, surangular; SPL, splenial. 532 



 533 

Fig 7. Left humerus of Asprosaurus bibongria gen. et sp. nov. in A, ventral; B, anterior; C, dorsal; and 534 

D, posterior views. Abbreviations DP, deltopectoral crest; ECT, ectepicondyle; ECT F, entepicondylar 535 

foramen; ENT, entepicondyle; SBCSC, subcoracoscapularis. 536 

 537 

Fig 8. Postcranial materials of Asprosaurus bibongria gen. et sp. nov. A, lateral, and B, medial views 538 

of scalpulocoracoid; C, metacarpal; D, E, possible rib or clavicle. 539 



 540 

Fig 9. Phylogenetic position of Asprosaurus bibongria gen. et sp. nov. in relevant part of 70% MRT 541 

with Gauthier et al. (2012) data matrix. Abbreviations UF, Florida State Museum (University of Florida), 542 

United States. 543 


