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Abstract

Purpose  Recovering tissue deformation during robotic-assisted minimally inva-
sive surgery (MIS) procedures is important for providing intra-operative guidance,
enabling in vivo imaging modalities and enhanced robotic control. The tissue mo-
tion can also be used to apply motion stabilization and to prescribe dynamic
constraints for avoiding critical anatomical structures.

Methods  Image-based methods based independently on salient features or on
image intensity have limitations when dealing with homogeneous soft-tissues or
complex reflectance. In this paper, we use a triangular geometric mesh model in
order to combine the advantages of both feature and intensity information and
track the tissue surface reliably and robustly.
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Results Synthetic and in vivo experiments are performed to provide quantitative
analysis of the tracking accuracy of our method, we also show exemplar results for
registering multispectral images where there is only a weak image signal.
Conclusions Compared to traditional methods, our hybrid tracking method is
more robust and has improved convergence in the presence of larger displacements,
tissue dynamics and illumination changes.

Keywords Non-rigid surface tracking - Multispectral imaging - Minimally
invasive surgery - [llumination compensation

1 Introduction

Medical image computing and surgical vision can play an important role towards
improving the surgeon’s operating capabilities in highly dynamic anatomical re-
gions where tissue motion can complicate surgical dexterity and impede image-
guidance or intra-operative imaging [24, 28]. In MIS, recovering in vivo tissue
deformation in real-time by using endoscopic images has been explored predom-
inantly for deploying robotic motion stabilization [26]. While both 2D and 3D
tracking methodologies have been reported the problem of robustly tracking tis-
sues with poor texture characteristics remains a challenging task due to the il-
lumination complexity and variation, specular highlights and occlusions from the
surgical instruments [16].

Early work on tracking tissue motion in endoscopic video focused on the use
of feature-based methods in order to achieve real-time performance [17, 27]. More
recently robust feature driven techniques have been developed and reported to
achieve robust and long-term tracking invariant to difficult transformations [9, 20,
29]. The limitation of these approaches is that a dense region of the tissue is not
recovered and rather single points of interest are detected and tracked which these
can be isolated in specific regions. On the other hand, dense intensity-based meth-
ods have been reported where the tissue surface is modelled as a geometric mesh,
for example, using a Thin-plate spline (TPS) or Free-form deformation (FFD)
technique. Tracking is performed over the entire space covered by this model.
Richa et al. [21] employed a TPS model to estimate the heart surface deforma-
tion using multiple visual techniques to increase robustness and spatial resolution.
Braux-Zin et al. [4] introduced a new model of non-rigid surface registration to
merge feature and intensity-based costs in a pyramidal variational approach, how-
ever, the model fails in the presence of illumination variations. Besides, additional
specialized hardware can also be used for soft-tissue reconstruction [13].

In this study, we combine the advantages of both feature and intensity infor-
mation to track the tissue surface robustly and in difficult conditions with poor
illumination. Our method uses a triangular mesh model with geometric regular-
ization to represent the region of interest for tracking. The energy cost function
we optimize incorporates terms for feature correspondence energy and also for
intensity energy. We report encouraging results and compare our algorithm with
earlier works to show that performance is enhanced and the method can cope with
large motions due to the feature components while also handling regions of poor
textural information through the use of illumination compensated appearance. We
also show preliminary results applying our method to multispectral images, where
the signal can be low and difficult for tracking algorithms.
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2 Methods

We model the tracked tissue surface as a geometric mesh which can describe the
deformable tissue motion. During tracking, the locations of the mesh vertices are
updated to minimize energy functions with regard to the feature correspondence
alignment, dense image residuals and also illumination variations.

2.1 Geometric mesh model

In this work, we use the mesh model proposed by Pilet et al. [19]. As shown in
Fig. 1, the non-rigid tissue surface M to be tracked is modelled as a 2D triangular
geometric mesh with N vertices. vi = (viz, viy) represents the pixel location of
the i'" triangle vertex of the mesh. Let Vx € R and Vy € RY be the vector of
stacked vertex cooridinates of the x-axis and y-axis respectively. To represent the
shape and motion of M, we define a state vector S = (Vx,Vy)T € RN,

Fig. 1: The left and right images are the template image 7" and the input image I
respectively. F' is the set of feature correspondence obtained using feature matching
algorithm (shown as cyan). The tissue surface M is modelled as a triangular mesh
model (shown as green), so the deformation and motion of the surface M are
controlled by the state vector S consisting of the mesh vertices v.

Any point p within M can be located via the warping function W(p;S) by
using its barycentric coordinate (bs,b;,br) and the vertices of the triangle it lies
within (v, vj, vik), where the triplets (¢, 7, k) represent the triangle vertex indice.
Barycentric vector b € RY only contains non-zero elements at index (2,4, k).

W(p;S) = [‘3 g] V. Vy]" =BS (1)

where b; + b; + by, = 1. Then the task of surface tracking is to estimate the state
vector S of the mesh through the whole image sequence.

2.2 Feature-based tracking

One advantage of our framework is that it can cope with any kind of feature
detection and tracking method as originally presented by [8]. In this study we
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used the Speeded Up Robust Features (SURF) descriptor [2] implemented in the
OpenCV library [3] to obtain feature correspondences.

Given a set of feature correspondences, to estimate the deformation of M with
tissue displacement, we minimize an energy function subject to S in the following
equation:

er(S) = Aer(S) +ec(S) (2)

where er represents the regularization energy, ec is a feature correspondence
measure and A controls the regularization influence [19].

No matter what kind of feature matching algorithm is used, it is usually in-
evitable to avoid erroneous correspondences, which we consider as outliers. The
presence of outliers can severely affect deformation estimation, for instance by
breaking the mesh topology. Therefore, the regularization energy eg is used to
prevent the mesh model from overfitting the data. The mesh model can be con-
sidered as a set of hexagons, one of which is shown in green in Fig. 2.

M
VhE M, vy, — V] =V — Vi
Vu Vi
Vm Vi Vi Vn ¥m
A\ v,

Fig. 2: A hexagonal element h in the undeformed mesh model (shown in green).
The distance between co-linear vertices is equal under certain types of hexagon
motion.

For each hexagon triplets (I, m,n) in the undeformed mesh model, the distances
between all the co-linear vertices are equal respectively. This property can be used
to preserve the regularity of the mesh. We seperate the coordinates of the vertices
along x and y axis, and therefore the regularization energy term is defined as in [7]:

1
6R(S) = 5 Z (Ulz — 2Uma + 'Ungc)2 + (Uly — 2’Umy + Uny)2
(Il,m,n)eEE
1 Vg r 1 1 T Vs (3)
S T ol ] e e
(I,m,n)eE i=z,y | Un;i 1 1 Vni

where E is composed of all the index triplets (I, m,n) for the co-linear vertices.
For convenience, this can be formulated in the matrix form:

1
en(S) = L (V<KVE + VyKVY)
1 [Ko0]. lor
—58 [OK}S_QS RS



Title Suppressed Due to Excessive Length 5

where R € R?V*2N g g sparse and regular matrix which can be determined by
the set of triplets F.

Let ¢t = (u,v)T represent the location of one feature in the frame ¢, and F
be the set of all correspondences we obtained after feature matching. The feature
correspondence energy is defined as:

ec(8) =Y pllles — W(ee—1;8)|,7) (5)

ceF

where p is a robust estimator, and r is the confidence radius. The choice of the
robust estimator is crucial for decreasing the effect of outliers. Various robust func-
tions exist [4, 19, 30], in this work we follow the estimator and optimization method
proposed by Zhu et al. [30]. Based on the modified finite Newton method [12, 14],
Zhu et al. proposed the Progressively Finite Newton (PFN) method [30], in which
the robust estimator p(d,r) uses a coarse-to-fine scheme. The initial value of r is
set to 500 and is progressively reduced at a constant rate. The optimization pro-
cess stops when the confidence radius r reduces to one pixel which is close to the
expected precision. Because the method only needs one Newton step for each r to
achieve convergence, the whole process can be solved in a fixed number of steps.

2.3 Deformable Lucas-Kanade method

Feature-based tracking is fast and can handle large displacements, but it has limi-
tations because of the sparse motion field and the reliance on salient image texture.
In [30], the authors employed a deformable Lucas-Kanade (DLK) method, which
is a deformable variation of the intensity-based Lucas-Kanade (LK) method [1].
The energy function subject to S is defined as:

e1(S) =ner(S) + essp(S) (6)

where e represents the regularization energy and 7 controls the regularization
influence. The intensity energy essp uses the Sum of Squared Differences (SSD)
to form a similarity measure between the template image 7" and the input image I:

essp(S) = % Y [T(W(p; AS)) — I(W(p; S))]” (7)

The SSD metric directly compares the illumination of every pixel p in the tracked
area, which makes it quite sensitive to changes in lighting. Recently, a new sim-
ilarity metric called the Sum of Conditional Variance (SCV) was introduced for
multi-modal medical image registration [18], and Richa et al. [21] used it for visual
tracking. In MIS, compared to SSD, SCV is invariant to non-linear illumination
variations. In this study, we improved the DLK method of Zhu et al. [30] by em-
ploying the SCV metric. Let [0, dr] and [0, df] represent the intensity range of the
template image T' and the input image I respectively, the intensity energy escv
is defined as:

2

csov(8) = 5 3 [T(W(p: AS)) — (W (p;S))] 5)
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with the SCV image
[(W(p;8)) = &(T(p)|I(W(p;S))) (9)

where &(-) is the expectation operator. This can be computed using the joint
intensity distribution between T and [

Py = 5 2 #(T() ~ )0 (I(W(p:S) ~ j) (10)

where Np represents the number of pixels, @(z) = 1 if and only if z = 0, i €
[0,dT], 7 € [0,dr]. The conditional expectation can then be computed as:

STEIWE:S) =Y i~ g (1)

During tracking, the SCV image I(W (p; S)) is computed only once for every input
image I [21]. Then the optimization can be processed like the standard procedure
for the LK method. After performing the first-order Taylor expansion and setting
the derivative equal to zero, solving for AS we have:

As=H (RS + S (VITTH(WEiS) - Tk)) (19
with the Hessian matrix:
H =R + Z(VT%—VSV)T(VT%—YSV) (13)

Because any LK method is based on the assumption that the current estimate of
the parameters is approximately correct. This means that by using essp or escv
alone we cannot deal with significant displacement between frames [1]. We use the
feature-based tracking result as initialization to fulfil this assumption and to lead
the optimization toward correct convergence.

2.4 Template updating

After an extended sequence of tracking, it is possible that the original template
will not accurately represent the tracked surface due to physiological effects such
as bleeding after instrument-tissue interactions. To avoid errors caused by the
appearance changes we use a template updating strategy [15]. First, at every frame
we update the template image to be the tracked region of the input image. In
this way, the updated template could lessen the possible appearance difference
between the original template and input image. At the same time small errors
will accumulate during this process and cause the template to gradually drift
away. Therefore, to correct the drift we keep the original template and align the
updated template with it to estimate the final update. This two-step template
update with drift correction strategy can avoid local minima during optimization
and prevent the drifting problem. Additionally, specular reflections create strong
image gradients which are salient and can bias feature detection and appearance-
based tracking metrics. We use a combination of intensity thresholding and dilation
operations to remove the highlights [10, 25] (see Fig. 3).
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Fig. 3: Specular highlight removal procedure before tracking: (a) Before highlight
removal; (b) Highlight mask; (c) After highlight removal.

3 Experiments and results
3.1 Synthetic data experiments

As ground truth information for soft-tissue motion is not available during surgery,
we used a custom simulation environment in Fig. 4 to mimic the periodic defor-
mation of the tissue surface induced by the cardiac cycle and respiration [23]. The
environment can generate synthetic image sequences by performing small but ar-
bitrary rotations and translations to the pixels of one template image. To test the
computational stability of the method, we also added different levels of Gaussian
noise (noise=5%, 10% and 20%) to the synthetic sequence.

3D Simulation Scene

Fig. 4: Simulation environment experiment setup for generating synthetic image
sequences.

To quantitatively validate the performance of our algorithm, we tracked two
regions of interest (ROI) as seen in Fig. 4. The first ROI located near the right
bottom corner deforms towards the center during tracking, so the displacement
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is large between frames; the second ROI is located in the central area and is
compressed during tracking.

Since we generated the whole synthetic sequence, we have the ground truth of
the mesh vertices in each frame. We computed and compared the mean and stan-
dard deviation (STD) of the tracking error (pixel) compared to the ground truth
with different methods: the feature-based PFN method, the modified intensity-
based DLK using the SCV metric and our proposed hybrid PFNLK method.

The tracking results of the two ROIs with different noise levels through the
sequence are shown in Fig. 5. Since the displacement between frames of this se-
quence is too large, the DLK method quickly loses track, while the PFN and our
PFNLK method track fairly well. The PFNLK method outperforms all the other
methods, but more obviously for ROI 2 than ROIT 1.
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Fig. 5: Synthetic experiment results: (a) Mean error for ROI 1; (b) The standerd
deviation of error for ROI 1; (¢) Mean error for ROI 2; (d) The standerd deviation
of error for ROI 2.

3.2 In vivo data experiments

For evaluating the potential clinical value of the proposed tracking algorithm, ex-
periments on in vivo image sequences recorded at 25 fps using the da VinciTMsurgical
robotic platform (Intuitive Surgical, Inc.) have been conducted. Since the lack of
ground truth is a problem for validating tracking performance with real surgical
sequences, we used the modified forward-backward tracking methodology based on
even-odd frames [22]. For a given sequence, the forward tracking is made on the
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even frames and the backward tracking is made on the odd frames. The assumption
is that if a ROI is perfectly tracked, it should return to the initial location in the
first frame. This is considered to be artificial ground truth for tracking methods.
Compared to the original forward-backward tracking strategy [11], which tracked
the ROI frame by frame as they move forward and backward to the beginning of
the sequence, the backward tracking is decorrelated from the forward tracking by
using different frames. In our experiments, we chose a robotic radical prostatec-
tomy sequence, which is represented by I = (lo, I1, I2, ..., In). Then according to
the above methodology, FB = (Io,I2,14,...,In—2,In,In—1,...,1I3,11,Ip) is the
corresponding modified forward-backward sequence where I; is the frame ¢ of the
original sequence. As seen in Fig. 6, the first frame (frame 0) is the same as the
last frame (frame 50) in the F'B sequence.

We tracked the same ROI with the three methods, and the tracking result can
be seen in Fig. 6. The DLK method loses track, but the PFN and the PFNLK
methods track well. Until the last frame, the PFN method tracked back to near the
original location, while the PFNLK method tracked back to the initial location.
Normalized Cross-Correlation (NCC) can also be used to evaluate the tracking

Fig. 6: Comparison of performance for a F'B sequence with camera motion. The
first frame (frame 0) and the last frame (frame 50) are identical, so if a ROI
is perfectly tracked, it should return to the initial location in the first frame: (a)
Frame 0; (b) The DLK frame 50; (c) The PFN frame 50; (d) The PENLK frame 50.

performance quantitatively. Higher NCC value is a surrogate measure for better
tracking performance as it shows close image alignment. We computed the NCC
between the template ROI and the tracked ROI in Fig. 7a and computed it again
after the SCV illumination mapping step shown on Fig. 7b. The similarity between
Fig. 7a and Fig. 7b means the illumination changes in this sequence are not large.
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As the figure indicates, the PFNLK method outperformed the PFN method which
slowly drifted away during the backward tracking.

0.995 0.995
O 099 O 099
0.985 —DLK 0.985} —DLK
PFN PFN
—PFNLK ——PFNLK
098, 10 20 30 40 50 0-98, 10 20 30 40 50
Frame Frame

(a) (b)

Fig. 7: The comparison of NCC and of tracked point with different tracking meth-
ods throughout the F'B sequence: (a) NCC between the original template and
tracked ROIs; (b) NCC computed after SCV illumination mapping step.

We chose another radical prostatectomy sequence’ to evaluate the tracking per-
formance in the presence of instrument occlusions. Occlusions are commonplace
throughout the surgical procedure and present a significant challenge to tracking
algorithms, especially if the instruments deform and manipulate the tissue of in-
terest. This sequence consists of 600 frames and the tracked ROI is occluded by
the surgical tools during certain time periods during the sequence.

We initialized each of the three methods with the same ROI and representative
tracking results over the full sequence are shown in Fig. 8. Since the DLK method
encountered tracking failure quickly, we left it out of the discussion below. It is
possible to observe that on frame 81 (the second column), the tracked ROI is
occluded by the surgical tool, and for the following frames after the occlusion the
PFEFN optimization of the mesh is trapped in a local minima and never recovers
back, as seen on frame 124 (the third column). By using the PFNLK method the
tracked ROI recovered after frame 124 and continued tracking suggesting that the
algorithm is more robust compared to the PFN method.

Following the same validation procedure, we computed the NCC between the
template and the tracked ROIs for this sequence without and with the illumination
mapping step. The results are shown in Fig. 9. A sharp drop-off and recovery
can be observed between frames 172 and 308 without the illumination mapping
in Fig. 9a, however, this is not reflected by visually inspecting the quality of the
tracking results. In the original sequence the tracked areas were shifted to the very
left side of the view during this interval, so the illumination condition changed
greatly due to the camera motion. This inauthentic change reflects that the NCC
metric cannot handle non-linear light changes very well. In Fig. 9b, the input
images are mapped to mimic the illumination condition of the template image
using the SCV metric, and we can see that the inauthentic changes of the NCC
have disappeared, also the NCC went up after frame 123 for the PFNLK method,
which is accordance with the visual interpretation. This means that the NCC can
be trusted as a surrogate measure under similar lighting conditions. We can also

L http://www.surgicalvision.cs.ucl.ac.uk/data
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frame 0 frme 1 fme 124 frame 500

Fig. 8: Comparison of performance for occulusion sequence: (Top row) intensity-
based DLK method; (Middle row) feature-based PFN method; (Bottom row) our
hybrid PFNLK method.

infer from the evaluation that the SCV metric we used is neccessary if there exist
potential illumination variations.

Furthermore, we manually tracked one point within the ROI through the whole
sequence, and use the position of the point in each frame as ground truth (GT). In
Fig. 9c the tracked trajectories of different methods are illustrated with the GT,
also the tracking errors are computed and shown in Fig. 9d, we can see that the
tracking error of the PFNLK is the lowest, which is consistent with the analysis
above.

3.3 Experiments with multispectral data

To illustrate the importance of using the SCV rather than an illumination sen-
sitive metric, we provide exemplar results of registering multispectral images. In
sequential multispectral images where the image stack is acquired one wavelength
at a time, some images can have very low signal strength due to the camera and
light-tissue interaction characteristics such as absorption and scattering as shown
in Fig. 10. If the tissue under interrogation moves during acquisition, this causes
misalignment of the multispectral stack and, for instance, renders spectral analy-
sis to calculate oxygenation levels impossible [5]. We tracked the same ROI using
the DLK method with and without the SCV illumination mapping step and the
tracking result are shown in Fig. 10. The histogram of the SCV images in the
figure is equalized because the template image is too dark.

As Fig. 10 indicates, the original DLK method in [30] loses track eventually
(see top row); while our modified DLK method maps the input image I to the
template image 7' in order to obtain the SCV image I, after the SCV mapping
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Fig. 9: The comparison of the NCC and of tracked point with different tracking
methods throughout the occlusion sequence: (a) The NCC between the original
template and tracked ROIs; (b) The NCC computed after SCV illumination map-
ping step; (c¢) Trajectory of the tracked point; (d) Tracking error of the tracked
point.

step the images of different wavelengths are under similar illumination conditions
(see middle row). The tracking result of our modified DLK method is more robust
than the original DLK method (see bottom row). Since the tissue motion is quite
small in the sequence, to show our tracking effect more clearly we picked images
of wavelength from 550 ~ 570 nm with observable motion from the sequence and
computed the absolute difference between the template and tracked ROI without
and with misalignment correction. Due to the darkness, the result image is en-
hanced and transformed to pseudo-color image as illustrated in Fig. 11. It shows
that the misalignment decreases with our method, and the spectral data can be
reconstructed after the motion compensation. We also tested on other multispec-
tral images, and showed the difference image result in Fig. 12 and Fig. 13. The
misalignment of vessels on 13 is corrected using the SCV metric.

During the computation of the probability distribution functions in Equa-
tion. 10, noise will be added to the SCV images due to the impact of histogram
binning [6]. If the chosen number of histogram bins is too low, the resulting SCV
images will lose a lot of high frequency details; on the other hand, if the full
dynamic range of the image is chosen this results in noise in the SCV images.
The impact may be alleviated by using adapted histogram bins. In our experi-
ments, dr = d;f = 256.
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A =480 nm A = 540 nm A =630 nm A =680 nm

SSD-DLK]

SCV images

SCV-DLK

Fig. 10: The alignment of multispectral images (wavelength A = 480 ~ 680 nm)
without and with illumination compensation: (Top row) original DLK method
using SSD metric; (Middle row) SCV images; (Bottom row) our modified DLK
method using SCV metric.

=480 nm A = 550nm = 560nm = 570nm

- ‘ --

without
compensation 200

with
compensation

Fig. 11: The original multispectral images and the difference images without and
with using SCV metric: (Top row) the template frame ( A = 480nm) with the
tracked ROI and several frames with observable motion; (Middle row) the differ-
ence ROI images without compensation; (Bottom row) the difference ROI images
with compensation

4 Conclusions

In this study, we presented a hybrid tracking method for estimating the defor-
mation of soft-tissue surfaces by using a constrained geometric model combining
sparse feature tracking with a modified DLK method [30]. Our algorithm uses the
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Fig. 12: The original frames and the difference images of another multispectral
image sequence.

A = 560nm A = 580nm A =470nm A =480nm A =511nm

without
compensation

with
compensation

Fig. 13: Vessel misalignment correction.

SCV as the similarity metric to handle illumination variations, for example as seen
in multispectral imaging, and facilitate tracking in very low light conditions where
traditional approaches fail. The performance of our method on synthetic and in
vivo datasets suggests that the hybrid approach improves the capability of cor-
rect convergence when tissue dynamics undergo large intra-frame displacements
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or significant illumination change occurs. The feature tracking component of the
proposed algorithm is very fast when using simple features and the mesh optimiza-
tion using only the feature energy is computationally efficient allowing real-time
application. We are currently investigating the GPU implementation of the im-
proved intensity-based DLK component using SCV which we believe can also be
developed to work at image-acquisition frame rates. Extending the presented al-
gorithm to stereo images is also ongoing work, however, the regularization that
we currently employ requires modification to appropriately handle deformations
in 3D space.

Acknowledgements Xiaofei Du is supported by the China Scholarship Council scholarship.
Neil Clancy is supported by an Imperial College Junior Research Fellowship. Shobhit Arya is
supported by an NIHR-HTD 240 grant. The authors would like to thank the Northwick Park
Institute for Medical Research (NPIMR) for their assistance with surgical arrangements.

Conflict of interest The authors declare no conflict of interest.

Ethical standards All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of the institutional and/or
national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Informed consent Informed consent was obtained from all patients who were
included in the study.

References

1. Baker S, Matthews I (2004) Lucas-kanade 20 years on: A unifying framework.
International Journal of Computer Vision 56(3):221-255

2. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In:
Computer Vision—-ECCV 2006, Springer, pp 404—417

3. Bradski G (2000) The opencv library. Doctor Dobbs Journal 25(11):120-126

4. Braux-Zin J, Dupont R, Bartoli A (2013) Combining features and intensity
for wide-baseline non-rigid surface registration. In: British Machine Vision
Conference (BMVC), BMVA

5. Clancy NT, Stoyanov D, James DR, Di Marco A, Sauvage V, Clark J, Yang
GZ, Elson DS (2012) Multispectral image alignment using a three channel en-
doscope in vivo during minimally invasive surgery. Biomedical Optics Express
3(10):2567-2578

6. Delabarre B, Marchand E (2012) Visual servoing using the sum of conditional
variance. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-
national Conference on, IEEE, pp 1689-1694

7. Fua P, Brechbiihler C (1996) Imposing hard constraints on soft snakes. In:
Computer Vision—-ECCV 1996, Springer, pp 495-506

8. Giannarou S, Visentini-Scarzanella M, Yang GZ (2009) Affine-invariant
anisotropic detector for soft tissue tracking in minimally invasive surgery. In:
Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International
Symposium on, IEEE, pp 1059-1062



16

X. Du et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Giannarou S, Visentini-Scarzanella M, Yang GZ (2013) Probabilistic tracking
of affine-invariant anisotropic regions. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 35(1):130-143

Groger M, Sepp W, Ortmaier T, Hirzinger G (2001) Reconstruction of image
structure in presence of specular reflections. In: Pattern Recognition, Springer,
pp 53-60

Kalal Z, Mikolajczyk K, Matas J (2010) Forward-backward error: Automatic
detection of tracking failures. In: Pattern Recognition (ICPR), 2010 20th In-
ternational Conference on, IEEE, pp 2756-2759

Keerthi SS, DeCoste D (2005) A modified finite newton method for fast solu-
tion of large scale linear svms. In: Journal of Machine Learning Research, pp
341-361

Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb
A, Rodrigues M, Sorger J, Speidel S, Stoyanov D (2013) Optical techniques for
3d surface reconstruction in computer-assisted laparoscopic surgery. Medical
Image Analysis 17(8):974-996

Mangasarian OL (2002) A finite newton method for classification. Optimiza-
tion Methods and Software 17(5):913-929

Matthews I, Ishikawa T, Baker S (2004) The template update problem. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 26(6):810-815
Mountney P, Yang GZ (2008) Soft tissue tracking for minimally invasive
surgery: Learning local deformation online. In: Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2008, Springer, pp 364-372
Ortmaier TJ (2003) Motion compensation in minimally invasive robotic
surgery. PhD thesis, Universitdt Miinchen

Pickering MR, Muhit AA, Scarvell JM, Smith PN (2009) A new multi-modal
similarity measure for fast gradient-based 2d-3d image registration. In: Engi-
neering in Medicine and Biology Society, 2009. EMBC 2009. Annual Interna-
tional Conference of the IEEE, IEEE, pp 5821-5824

Pilet J, Lepetit V, Fua P (2008) Fast non-rigid surface detection, registra-
tion and realistic augmentation. International Journal of Computer Vision
76(2):109-122

Puerto-Souza GA, Mariottini GL (2012) Hierarchical multi-affine (hma) al-
gorithm for fast and accurate feature matching in minimally-invasive surgical
images. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, IEEE, pp 20072012

Richa R, Sznitman R, Taylor R, Hager G (2011) Visual tracking using the
sum of conditional variance. In: Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, IEEE, pp 2953-2958

Selka F, Nicolau SA, Agnus V, Bessaid A, Marescaux J, Soler L (2013) Evalu-
ation of endoscopic image enhancement for feature tracking: A new validation
framework. In: Augmented Reality Environments for Medical Imaging and
Computer-Assisted Interventions, Springer, pp 75-85

Stoyanov D (2012) Stereoscopic scene flow for robotic assisted minimally
invasive surgery. In: Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2012, Springer, pp 479-486

Stoyanov D (2012) Surgical vision. Annals of biomedical engineering
40(2):332-345



Title Suppressed Due to Excessive Length 17

25.

26.

27.

28.

29.

30.

Stoyanov D, Yang GZ (2005) Removing specular reflection components for
robotic assisted laparoscopic surgery. In: Image Processing, 2005. ICIP 2005.
IEEE International Conference on, IEEE, vol 3, pp I11-632

Stoyanov D, Darzi A, Yang GZ (2004) Dense 3d depth recovery for soft tissue
deformation during robotically assisted laparoscopic surgery. In: Medical Im-
age Computing and Computer-Assisted Intervention-MICCAI 2004, Springer,
pp 41-48

Stoyanov D, Darzi A, Yang GZ (2005) A practical approach towards accurate
dense 3d depth recovery for robotic laparoscopic surgery. Computer Aided
Surgery 10(4):199-208

Stoyanov D, Rayshubskiy A, Hillman E (2012) Robust registration of multi-
spectral images of the cortical surface in neurosurgery. In: Biomedical Imaging
(ISBI), 2012 9th IEEE International Symposium on, IEEE, pp 1643-1646
Yip MC, Lowe DG, Salcudean SE, Rohling RN, Nguan CY (2012) Real-time
methods for long-term tissue feature tracking in endoscopic scenes. In: Infor-
mation Processing in Computer-Assisted Interventions, Springer, pp 33—43
Zhu J, Lyu MR, Huang TS (2009) A fast 2d shape recovery approach by
fusing features and appearance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 31(7):1210-1224



