Abstract

Huntington’s disease is devastating to patients and their families — with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course and combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene which encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confers toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington’s disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype and the concept of genetic modifiers of the
disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington’s disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials.

[H1]Introduction

First described in detail by George Huntington in 1872, Huntington’s disease is the commonest monogenic neurological disorder in the developed world. Owing to its autosomal dominant inheritance, typical onset in the prime of adult life, progressive course and combination of motor, cognitive and behavioural features, the condition is devastating to patients and their families.

Huntington’s disease is caused by an expanded CAG trinucleotide repeat in HTT, which identifies the pathogenetic agent — a mutant form of the multifunctional protein huntingtin. Mutant huntingtin contains an abnormally long polyglutamine (polyQ) sequence that corresponds to the CAG genetic expansion; the protein exhibits toxic properties that cause dysfunction and death of neurons. Medium spiny neurons of the striatum are particularly vulnerable to mutant huntingtin-induced harm, but Huntington’s disease is increasingly recognized as a disease of the whole brain and body. Its known genetic cause permits predictive and diagnostic genetic testing for the disease.

After a variable ‘premanifest’ period, a prodromal phase characterized by subtle motor, cognitive and behavioural changes often precedes a formal clinical diagnosis of motor onset by up to 15 years (Figure 1). Once signs and symptoms begin, they progress inexorably over the course of the illness, which — with the exception of those patients with late-onset, who may die of other causes — is uniformly fatal, with a median survival from motor onset of 18 years.

Since no treatments can forestall or slow Huntington’s disease, the clinical care of patients focuses on expert assessment and the multidisciplinary management of symptoms, through medical and nonmedical means, focused on maximizing function and quality of life. Though incurable, Huntington’s disease is not untreatable.
Intensive study has produced substantial insights into the pathobiology of Huntington’s disease, and generated a multitude of rational targets for therapeutic development. Human trials are now planned or underway for novel agents designed with Huntington’s disease in mind — most notably, gene silencing or huntingtin-lowering agents aimed at diminishing production of the mutant protein. These trials will be supported by an array of biomarkers developed and qualified through systematic clinical testing. Moreover, the genetic certainty of Huntington’s disease enables it to serve as a model for studying shared mechanisms and therapeutic development across neurodegenerative diseases. In this Primer, we move from epidemiology to the genetics of Huntington’s disease and mechanisms of mutant huntingtin’s pathobiology, before touching on clinical features, challenges and management and finally examining the state of the art in biomarker research, therapeutic development and clinical trials that aim to improve the outlook for families impacted by Huntington’s disease.

[H1]Epidemiology

Genetic confirmation of the CAG repeat expansion is the hallmark of modern epidemiological measures of Huntington’s disease. Accurate prevalence estimates depend on comprehensive genetic testing coupled with neurological evaluation of disease onset. Prevalence studies incorporating both genetic and clinical diagnostic standards show that 10.6 to 13.7 individuals per 100,000 are affected in Western populations, or one in 7,300\(^2\leftarrow4\). Prevalence studies benefitting from genetic (molecular) diagnostics report higher rates of the disease than those employing clinical measures alone\(^7\). Longitudinal analyses show a consistent increase in the prevalence of Huntington’s disease over the past two decades, coinciding with wider availability of the genetic test\(^4,8\). As family history was once a defining criterion of diagnosis, premolecular prevalence estimates likely excluded sporadic, or de novo cases, now genetically proven to represent at least 5–8% of diagnosed patients\(^9,10\). In particular, the genetic test has enabled ascertainment of late-onset Huntington’s disease in the elderly population, for which family history is often lacking and neurological diagnosis can be more challenging\(^7,10,11\). Ageing populations and longer patient survival can also contribute to increasing prevalence in addition to improved case ascertainment. The incidence of Huntington’s disease is estimated between 4.7 and 6.9 new cases per million per year in Western populations, but whether incidence is increasing in parallel with point prevalence \(^9,10\), also representing increases over premolecular studies\(^12\), is unclear.
Huntington’s disease is endemic to all populations, but occurs at much higher frequency among individuals of European ancestry. In Japan, Hong Kong, and Taiwan, Huntington’s disease is diagnosed in only 1–7 individuals per million, approximately one-tenth as frequently as in Europe and North America. In South Africa, black people also present with lower rates in comparison to white and mixed-ancestry subpopulations. These differences are ancestry-specific, as shown in British Columbia, Canada, where Huntington’s disease is much more common among those of European descent (17.2 per 100,000) than in the ethnically diverse remainder of the population (2.1 per 100,000). Epidemiological data from other populations in Africa and Asia are limited to case studies or local clinical reviews — it remains unclear at what overall prevalence or incidence Huntington’s disease occurs worldwide. Several ‘pockets’ of high prevalence have been documented, most notably the Maracaibo region of Venezuela, where hundreds of related patients have been traced to a single founder.

Ancestry-specific prevalence rates of Huntington’s disease are thought to result from genetic differences at the HTT locus. Normal CAG repeat lengths are longer in populations with a high prevalence of the disease, averaging 18.4–18.7 repeats in people of European descent, but only 17.5–17.7 in East Asian and 16.9–17.4 in African populations (Figure 2). Underlying this genetic bias toward longer CAG repeats are specific haplotypes of high CAG length found only in populations of European descent. Disease-causing alleles (≥36 CAG repeats) and intermediate alleles (27–35 CAG repeats) leading to de novo Huntington’s disease are found preferentially on these haplotypes, suggesting repeated CAG expansion events in specific chromosomes. Germline instability of intermediate alleles increases with CAG repeat length, suggesting that longer CAG repeats in the general population might be linked to a higher CAG expansion rate and higher prevalence of Huntington’s disease. By contrast, in populations with low prevalence, expanded CAG repeats are rare and occur on a mix of local haplotypes, suggesting a lower de novo mutation rate.

Mechanisms/pathophysiology
Genetics and genetic modifiers

HTT is located at chromosome 4p16.3, and encodes the protein huntingtin, the normal function of which is not wholly understood. Included in huntingtin is a polyQ segment of variable length near the N-terminus. The length of the CAG trinucleotide repeat that encodes this segment can be
The length of the CAG repeat in \textit{HTT} determines whether an individual will develop Huntington’s disease; it is also the primary determinant of the rate of pathogenesis leading to the characteristic motor signs that underlie the clinical diagnosis25–30. Importantly, with respect to these motor signs, the timing of onset is determined by the allele with the longer CAG repeat in a completely dominant manner; the second \textit{HTT} allele, regardless of its length (normal or otherwise), does not alter the rate of the pathogenetic process that leads to clinical diagnosis27. The precise nature of the pathogenetic trigger that conforms to these genetically defined criteria (CAG length-dependence, allele dose-independence) is not known, but the demonstration that the length of the CAG repeat, even in the normal range, correlates with measures in some cellular assays (for example, cellular energy charge [ATP:ADP ratio31] or cellular adhesion32 assays) suggests that it might involve a gain-of-function that acts through augmentation or dysregulation of one or more normal functions of huntingtin. In any event, molecular and functional consequences of the CAG expansion are detectable in cultured cells from human mutation-carriers31–33, and in those individuals themselves, \textgreek{at least} 15 years before clinical onset of Huntington’s disease34.

Extensive genotype–phenotype studies in Huntington’s disease populations have set criteria for the mechanism that triggers pathogenesis23 and have indicated that pathogenesis can be modified24. Accordingly, a treatment based upon the pathogenetic process active in the human disease, while not currently available, should be possible to achieve.
In the typical CAG size range associated with mid-life adult onset of disease (40–55 CAGs), the length of the repeat accounts for ~56% of the variation observed in the age at motor onset. Much of the remaining variation (estimated at 38–56%) can be attributed to functional genetic differences elsewhere in the genome of affected individuals that modify the rate of pathogenesis. Although a number of genes — including ADORA2A, ATG7, CNR1, GRIK2, GRIN2A, GRIN2B, HAP1, PPARGC1A, MAP2K6, MAP3K5, NPY, NPY2R, OGG1, PEX7, TP53 and UCHL1 — have been proposed as genetic modifiers of Huntington’s disease, none has yet withstood stringent statistical analysis. However, genome-wide unbiased searches using the tools of modern genetics are underway and are expected to yield bona fide human genetic modifiers — naturally occurring functional variations that alter the course of Huntington’s disease in humans and might provide clues to pathways or processes prevalidated as therapeutic targets capable of delaying disease onset.

[H2] Huntington structure and function

Huntingtin protein with a normal polyQ repeat length of 23 glutamines (Q23) contains a total of 3,144 amino acids resulting in a molecular weight of 348 kDa. Huntingtin is expressed throughout the body, but at varying levels depending on cell type. Forms of the protein can be found in the nucleus and cytoplasm, and huntingtin can shuttle between these compartments. The normal functions of huntingtin are still being defined. Some broad biological functions of the normal protein have been uncovered, including its critical role in the development of the nervous system its ability to influence brain-derived neurotrophic factor (BDNF) production and transport, and its role in cell adhesion. At the same time, the specific biochemical functions of the protein in these processes, as well as the structural basis of these biochemical functions, remain largely unknown. Loss or modulation of normal huntingtin function in response to polyQ repeat expansion might also have a role in Huntington’s disease. However, since Huntington’s disease is primarily a toxic gain of function disease, the new activities of huntingtin brought on by polyQ repeat expansion must somehow be linked to alterations in the protein structure, and much research has focused on identifying the critical conformational changes.

Huntingtin is linearly organized as a series of ordered domains interspersed with intrinsically disordered segments; further folding might occur as a result of interactions between folded domains. The known ordered domains are clusters of α-helical HEAT (Huntingtin, elongation factor 3, protein phosphatise 2A and TOR 1) repeats that are also found in a number of other proteins, where they serve as binding motifs for macromolecules. Considerable uncertainty exists about the exact number and location of the HEAT repeats and their roles in binding the very large number of
huntingtin-interaction partners that have been described. Separating the clusters of HEAT repeats are expanses of disordered structure, the only known functions of which are as regions for post-translational modifications (PTMs) such as proteolytic cleavage, phosphorylation, and glycosylation. The large number of PTM sites concentrated in the disordered segments of the protein represents the potential for highly complex and interactive pathways of regulation of protein activity, downregulation, and targeting to cellular structures and compartments.

Proteolytic fragmentation has been shown to be a particularly prevalent PTM, and a variety of N-terminal fragments (derived from cleavage by caspases, calpains and other endoproteases at structurally accessible sites) have been described and their possible roles in toxicity explored. Particularly important among these is an N-terminal fragment of about 100 amino acids, which for convenience has been termed HTT exon1 since it is encoded by the first exon of HTT. HTT exon1 and related fragments, which can be generated in several ways (see below), consist of three sequence-defined, disordered domains: an N-terminal segment of 17 amino acids, known as N17 or HTTNT, that is likely rapidly shaved to 16 residues in the cell by enzymatic removal of the initiator methionine; a CAG repeat-encoded polyQ segment of variable length; and a proline-rich domain (PRD) of 51 amino acids. HTTNT has many roles, including membrane targeting, binding to chaperones, nuclear export, other trafficking, a site of potential regulatory PTMs and the structural basis of oligomer formation. Although the HTTNT peptide is disordered in the monomeric state, it can take on α-helical structure when it binds to membranes or self-associates. PolyQ sequences in monomeric peptides such as HTT exon1 tend to favour a condensed, disordered state. Whether the polyQ repeat has any important function within normal huntingtin remains unclear. Finally, the HTT exon1 PRD is a target for binding to some interaction partners such as certain WW domain containing proteins. The PRD in monomeric HTT exon1 likely exists in fluctuating segments of disorder and polyproline type II (PPII) helix, a conformation that is known to be a good binding motif.

The nature of the alternative HTT exon1 conformations triggered by polyQ expansion that are responsible for development of Huntington’s disease continue to be debated. Given the general resistance of polyQ sequences of all repeat lengths to adopt specific conformations, how a specific toxic conformation might be favoured within the expanded polyQ of monomeric Huntingtin exon1 is unclear. More-complex conformational effects in monomeric HTT exon1 linked to polyQ repeat length are formally possible but challenging to establish. By contrast, the widely reported ability of HTT exon1 to readily form a variety of aggregated structures presents an array of plausible...
candidates that might mediate toxicity (see below). This aggregation links Huntington’s disease to other neurodegenerative diseases that feature a protein aggregation component, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and the spongiform encephalopathies.

Cells model organisms and patients expressing expanded polyQ versions of huntingtin or its fragments can generate massive huntingtin-rich inclusions, so large they can be visualized by light microscopy. Such aggregated inclusions can be multiple micrometres in diameter and can contain >100,000,000 molecules of huntingtin-related peptides. With the advent of superresolution fluorescence microscopy, it has become possible to distinguish aggregates smaller than inclusions, such as small clusters of amyloid fibrils, in cells with fluorescently labelled HTT exon1. This type of aggregate might contain up to 100,000 individual huntingtin fragments. Anything smaller is too small to see in microscopic real-time studies of huntingtin flux in the cell. However, using non-real-time methodologies, such small HTT exon1 aggregates exhibiting a range of morphologies and sizes have been visualized in vitro and in vivo.

The dependence of aggregation on the length of the polyQ segment has been consistently observed in a variety of molecular and environmental settings. Indeed, this dependence serves as a robust correlate to the dependence of disease risk on CAG repeat length — a correlation that might be attributable to a mechanistic role for aggregates in the disease. Emerging evidence suggests facile formation of small oligomers composed of 4–15 HTT exon1 monomers, primarily driven by self-association of the HTTNT N-termini into α-helical clusters. These initial aggregates can grow into non-β-oligomers that contain hundreds of huntingtin fragments. These fragments can rearrange at a rate that increases as polyQ repeat length increases into nuclei for formation of β-sheet-rich polyQ amyloid fibrils that individually contain several thousand fragments. Such polyQ amyloid fibrils are quite stable and, along with the amyloid clusters and inclusions, represent the end point of HTT exon1 self-association in vitro; that is, once the process is initiated, the system tends to a fibrillar end. In living cells constantly producing new huntingtin, the situation is more complex.

The initiation of amyloid growth requires nucleation, which involves the formation of a structure capable of efficient elongation into fibrils. In polyQ sequences without complex flanking sequences, nucleation is relatively unfavourable, but is enhanced as polyQ repeat length increases. However, nucleation of polyQ amyloid is greatly facilitated within HTT exon1 non-β-oligomers, whereby the attached polyQ chains are brought together at high local concentration and in the correct
orientation required for nucleus formation44,45. The requirement for nucleation can also be completely bypassed by the introduction of preformed amyloid fibrils into the system57 (‘seeding’; Figure 3).

[H2] Pathobiology of Huntington’s disease
A considerable body of data indicates that huntingtin fragmentation is a key early step in the pathogenetic mechanism of Huntington’s disease. Fragments can be detected in all full-length huntingtin mouse models of the disease as well as in all brain regions of a young presymptomatic mouse model prior to detection of aggregates54, and have also been isolated from human postmortem brains61. The relative concentration of huntingtin fragments between cells depends in part on the level of expression of HTT; its higher expression in neurons than in glial cells62 is likely to contribute to the predominant neuronal pathology. The smallest huntingtin fragment is generated through an aberrant splicing event that leads to the production of an HTT exon1 protein63. Other fragments correspond to those generated through cleavage by caspases, calpains and other proteases that have been studied extensively64. Huntingtin is post-translationally modified at multiple sites, processes that can be influenced by the expanded polyQ segment and can, in turn, affect its toxicity. Some evidence supports the fact that the polyQ segment affects PTMs through altering the structural properties of huntingtin and its cleavage64. The likelihood that protein fragments accumulate to the concentration threshold required to initiate the cell-autonomous pathogenic process will, therefore, depend on the expression level of the huntingtin protein, the extent to which the mis-splicing event occurs, specific protease activities, and the presence of pathway-modifying PTMs.

The physical state of the huntingtin fragments responsible for cytotoxicity in Huntington’s disease, development of which is expected to exhibit dependence on both time and on polyQ repeat length, remains to be defined. Early suggestions65 that polyQ expansion enables monomeric huntingtin fragments to adopt a toxic conformation that is not accessible to fragments with normal polyQ lengths have not held up to scrutiny66,67. Reliably detecting a polyQ-repeat length dependent conformational change in such a dynamic and flexible molecule is quite challenging in vitro and in silico and even more so in vivo. Indeed, it is not clear how a minute repeat length increase in the disordered polyQ sequence might so dramatically shift conformational dynamics. On the other hand, in the aggregation model, the nucleation requirement might explain the substantial increases in disease risk and age of onset in response to very small increases in repeat length60,67. As the polyQ
repeat length and concentration increase, the time delay to nucleation of amyloid formation decreases. The likelihood of a cell succumbing to the cell-autonomous effects of mutant huntingtin will depend on whether the huntingtin protein, or more likely a fragment thereof, reaches the concentration threshold needed to trigger these pathological events. A number of factors could influence this initiation, including the level of expression of mutant huntingtin, whether the cell is in mitotic arrest, the size of the CAG repeat expansion, the extent to which aberrant splicing occurs, the production of huntingtin fragments through proteolysis, PTMs, the seeding of aggregation through the prion-like spread of aggregates from one cell to another, and the competency of the proteostasis network within the cell. Other cells might become affected in a non-cell-autonomous process through dysfunctional activities, such as alterations in synaptic transmission leading to network imbalance.

The concentration threshold required for the self-aggregation of huntingtin molecules decreases with the increasing length of the polyQ tract and, consistent with this process, more areas of the brain are affected in juvenile patients with Huntington’s disease (diagnosed <20 years in age) who carry longer CAG repeat expansions than those with the adult-onset form of the disease. Highly expanded CAG repeats are also present in certain brain regions of individuals with adult-onset disease owing to CAG expansion through somatic instability. Investigation of somatic expansion in mouse models of Huntington’s disease has shown that somatic expansion occurs in post-mitotic neurons, depends on a functional mismatch repair system, and has been shown to act as a disease modifier. The extent to which somatic expansion influences the onset and progression of the human disease is not known, but factors influencing it are likely to also act as disease modifiers in affected patients.

A number of reports have provided evidence that large huntingtin-containing inclusions are not correlated with cytotoxicity and might even be protective. However, as discussed above, many aggregated precursors to inclusions are present, including individual amyloid fibrils, that are too small to be visualized by light microscopy and which, therefore, were undetectable in many of these studies. Although tracking the various oligomeric and aggregated forms of huntingtin that are below the size of an inclusion in either mouse models or patients in vivo is not possible, the observation of inclusions in a specific cell type provides evidence that self-association has progressed through a series of smaller aggregated species to an amyloid fibril end point. Inclusions form in a wide range of peripheral tissues in mouse models that carry highly expanded CAG repeats. These inclusions occur
predominantly in cells that have entered mitotic arrest, suggesting that cell division acts to delay the pathogenetic process.

The acceleration of aggregation through seeding suggests the possibility of a prion-like mechanism of cell-to-cell transmission79. \textit{In vitro}, mammalian cells efficiently take up small amyloid fibrils of polyQ proteins80 that can go on to recruit endogenous polyQ-containing proteins like huntingtin exon1 into growing aggregates81 and kills cells80. Recent reports suggest that the spread of aggregates from one cell to another might occur in Huntington’s disease82,83. Seeding also facilitates the recruitment of other polyQ proteins into huntingtin fibrils, which might provide a mechanism of polyQ toxicity through sequestration and depletion84.

The chronic expression of mutant huntingtin leads to the collapse of the proteostasis network, which maintains the integrity of the proteome through molecular chaperones and protein clearance machineries85 (Figure 4). The levels of basal chaperones decrease with disease progression86, endoplasmic reticulum stress occurs through multiple pathways87, and the ubiquitin-proteasome system88 and autophagy89 might become compromised. However, some balance can be restored, as increasing protein folding capacity has been shown to alleviate disease-related phenotypes in multiple models86. The ability to rapidly respond to stress is important for all organisms to protect against environmental insults, but in Huntington’s disease the ability to induce the major stress response pathway — the heat shock response — becomes severely compromised with disease progression80, which would be expected to further exacerbate pathogenesis.

Once the cytotoxic forms of huntingtin are generated, their aberrant behaviour can cause dysfunction in many downstream cellular processes64, including transcription and intracellular signalling64,91, intracellular transport92, the secretory pathway87, endocytic recycling77, mitochondrial impairment92,93, synaptic dysfunction84 and immunity95 — leading to an extremely complex pathogenicity. Cellular dysfunction arising from the intrinsic effects of mutant huntingtin results in network imbalance. For example, excitotoxicity arising from altered neuronal circuitry68 and non-cell-autonomous dysfunction96 contribute to the neurological and non-neurological symptoms of Huntington’s disease (Figure 4).

[H1]Diagnosis, screening and prevention
Huntington’s disease is diagnosed on the basis of clinical evaluation, family history (if available), and — in most cases — genetic testing for the presence of the CAG expansion in \(HTT\). The triad of symptoms that characterize the condition are motor dysfunction (most typically chorea), cognitive impairment (for example, problems with attention and emotion recognition), and neuropsychiatric features (such as apathy and blunting-of affect). Visual and olfactory abnormalities might also be present. Neuroimaging and other tests can support the diagnosis, primarily by ruling out other conditions, and typically are not necessary, especially if there is a characteristic presentation of an individual with a known family history and a positive genetic test. However, an MRI or CT scan showing symmetrical striatal atrophy (and often, to a lesser degree, atrophy in other subcortical regions, cerebral cortical grey matter and subcortical white matter) in the absence of other substantial changes is strongly suggestive of a diagnosis of Huntington’s disease, and changes might be detectible even prior to ‘motor onset’ (Figure 5).

Diagnosis of ‘motor onset’ of ‘manifest Huntington’s disease’ is currently made in someone at risk, or tested genetically positive for the CAG expansion, on the basis of the Unified Huntington’s Disease Rating Scale (UHDRS)\(^97\) motor examination; the unequivocal presence of an otherwise unexplained extrapyramidal movement disorder yields a diagnostic confidence score of 4, which corresponds to 99% confidence that signs are attributable to Huntington’s disease\(^6\). A UHDRS total motor score (TMS) of approximately 15 in an adult, with characteristic findings of delayed and slow saccades, dysdiadochokinesis, chorea, and difficulty with tandem walk, is usually strongly supportive of the diagnosis. The diagnosis can be made with greater confidence in individuals with relatively low scores (e.g. less than 20) when the patient has been followed up longitudinally (e.g. for several years) and clearly has progressive motor changes.

The definition of Huntington’s disease is evolving, and cognitive factors are increasingly being taken into account. Cognitive function test scores can support the diagnosis; however, owing to the wide range of baseline cognitive abilities, clear evidence of a change from baseline in an individual provides the strongest support. Recently, a more extensive series of diagnostic classifications has been proposed, taking into account results of recent natural history and neuroimaging studies (see below). In 2014, Reilmann \textit{et al.} proposed more-formal definitions of the following terms: premanifest (consisting of a presymptomatic period), followed by a prodromal phase, followed by manifest Huntington’s disease\(^98\) (see Figure 1).
The differential diagnosis of Huntington’s disease is broad and includes autosomal dominant genetic conditions, such as Huntington’s Disease Like 2 (HDL2) and dentatorubral-pallidoluysian atrophy as well as spinocerebellar ataxia (types 2, 3, 12 and 17), neuroacanthocytosis and brain–thyroid–lung syndrome. In some cases C9orf72 expansions can cause an Huntington’s-like presentation, though careful examination of the phenotype is likely to demonstrate differences. Some nonprogressive extrapyramidal disorders, such as benign hereditary chorea and Sydenham’s chorea, are also included in the differential diagnosis. Juvenile Huntington’s disease is more difficult to diagnose as there is often little chorea. Occasionally, patients with juvenile-onset disease can be diagnosed even though their parents are seemingly unaffected because of striking anticipation. For example, a father in his 30s with a CAG repeat length of 45 might remain premanifest, but through expansion of the unstable CAG repeat, his child might have a repeat length of 50–60 units and have manifest juvenile-onset disease.

Genetic testing for Huntington’s disease

Genetic testing can be diagnostic or predictive, depending on the circumstances. If a patient has features typical of Huntington’s disease, the most useful confirmatory diagnostic test is CAG-repeat testing. A positive result has many implications for the patient and family, so it is usually best to give information about the disease beforehand so that they are prepared. When presenting the results of a positive test, the patient should come in with a spouse, supportive friend or family member. The delivery of a diagnosis can be a substantial emotional event for the patient and represents a critical time for educating the family further about Huntington’s disease and its genetic implications for family members and family planning. If confirmatory genetic testing is negative, the patient will likely need referral to a movement disorders expert to detect other possible causes of their symptoms.

International guidelines regarding predictive and prenatal testing for this fatal neurodegenerative disorder were written in 1994, shortly after the discovery of the HTT genetic defect and refreshed in 2013. The salient features of the earlier predictive testing guidelines include genetic counselling, a psychological assessment, a neurological examination, time for the patient to reconsider the decision to test, and results to be given in person in the context of post-test support. The fact that children under 18 years in age are not genetically tested unless they are symptomatic, and insurance and potential genetic discrimination issues, should also be part of the discussion. Current considerations include: genetic counselling via telemedicine; performing a baseline
neurological exam after, rather than before, genetic testing in some individuals; results given by a local family doctor after counselling at an Huntington’s disease centre; involvement of specialists who can provide information on reproductive options. The availability and uptake of prenatal and preimplantation genetic diagnosis and testing varies considerably in different countries; the issue of uptake rates has now been discussed in detail. Counselling implications for individuals with intermediate alleles have also been reported.

[H2]Natural history

The age of motor onset of Huntington’s disease is strongly dependent on the length of the CAG repeat expansion within HTT, with longer expansions causing earlier onset. The mean age of onset is about 45 years, but can rarely occur in early childhood or late life. Longer CAG repeat expansions also cause more-rapid progression. The index age × (CAG – L) is a good predictor of the extent of clinical progression during life and brain pathology postmortem; age is the current age of the individual, CAG is the repeat length, and L is a constant near the threshold of CAG repeat expansions for disease. The ‘CAG age product’ or CAP score, therefore, provides an approximate measure of the length and severity of the patient’s exposure to the effects of mutant huntingtin and is useful for conveying longitudinal data from cohorts of patients with a range of ages and CAG repeat lengths.

Several longitudinal observational studies of Huntington’s disease have shown that signs and symptoms begin many years before motor onset can be confidently diagnosed, and that brain changes can be detected at least 10–15 years before motor onset, and progress gradually. These studies include the COHORT study, which followed up individuals with manifest and premanifest Huntington’s disease; the PREDICT-HD study, which is a large multicentre study with >800 patients with premanifest Huntington’s disease and 200 controls who were followed up for 10 years using clinical, neuropsychological and imaging measures; and TRACK-HD, which included 120 premanifest patients stratified by time to predicted onset, 120 early stage patients, and 120 matched controls and involved extensive annual assessments with imaging and clinical measures. Additionally, REGISTRY is the largest multicentre clinical study to date, with >13,000 participants from 16 countries, but does not have an imaging component. A longitudinal study at Johns Hopkins has followed up patients and families clinically for >30 years and includes neuropsychology and imaging data. Finally, in some individuals, data has been gathered through the late stages of the disease to autopsy and neuropathological assessments.
Diagnosis of Huntington’s Disease has traditionally been based on motor signs and symptoms. Motor signs can be specified and quantified relatively reliably by neurological exam, and motor findings are relatively sensitive and specific, since for most individuals without previous neurological difficulties, the baseline UHDRS total motor score should be close to zero, or at least low and stable. However there has been increasing appreciation of the importance of cognitive and emotional features of Huntington’s Disease in causing functional disability, and thus the importance of including these features in diagnosis. Changes in cognition are especially important, but sometimes difficult to document, as baseline cognitive abilities vary widely. Emotional features may be important in some individual, but are more difficult to incorporate into diagnosis, as there are so many non-Huntington’s Disease-related influences on emotion. These issues are discussed in more detail in Reilmann et al (2014).

[H3]Motor disorder

Motor disorder in Huntington’s disease can be conceptualized as having two major components. The first component is involuntary movement disorder; chorea is common in adult patients but not juvenile patients, and usually begins early in the course of the disease. The second component consists of impairment of voluntary movements, and includes incoordination and bradykinesia. The impairment is most prominent in early onset disease (related to long CAG expansions), especially juvenile Huntington’s disease, and also supervenes in the late stages of the more common adult-onset disease. By contrast, chorea usually plateaus, and often decreases in late stages of the disease, when parkinsonism, dystonia and rigidity dominate. Voluntary motor impairment progresses more steadily than chorea\(^{111}\) and predicts functional disability better than chorea does\(^{29}\).

The motor features of Huntington’s disease can be assessed with the UHDRS-TMS\(^{97,118}\), which has ratings for items that include eye movements, speech, chorea, dystonia, rapid alternating movements, bradykinesia, and gait. Quantification of some features of the motor disorder can be achieved with force-transducer-based measures, as in the quantitative motor (Q-Motor) battery used in the TRACK-HD study\(^{119,120}\). Q-Motor assessments can have less variability than the UHDRS-TMS and, accordingly, should be less susceptible to placebo effects in clinical trials.

[H3]Cognitive disorder
Cognitive difficulty, like subtle motor problems, can occur years before diagnosable motor onset of Huntington’s disease121. Like motor impairment, cognitive decline progresses gradually. The features of cognitive disability in Huntington’s disease is similar to disorders associated with striatal–subcortical brain pathology (for example, vascular dementia and Parkinson’s disease), but is dissimilar to Alzheimer’s disease122–124. Notable in patients with Huntington’s disease are problems of attention, mental flexibility, planning, and emotion recognition along with cognitive slowing121,125. Learning and retrieval of new information are decreased but, differing from Alzheimer’s disease, rapid forgetting is not as pronounced. Language in Huntington’s disease is relatively preserved even late in the course, though production of words can be disrupted123. Cognitive losses often lie at the intersection between cognitive and psychiatric domains, and include problems with initiation, lack of awareness of deficits, and disinhibition126. Thus, patients with Huntington’s disease can have social disengagement, decreased participation in conversation, and slowed mentation, often accompanied by lack of awareness of deficits and by impulsivity127.

In the TRACK-HD study, ten of 12 cognitive outcomes showed evidence of deterioration in early Huntington’s disease112,128,129. Of these, the Symbol Digit Modalities Test (which measures visual attention and psychomotor speed), the Circle Tracing Test (which measures visuomotor and spatial integration and transformation), and the Stroop Word Reading Test (which measures psychomotor speed within the spoken context) showed the most pronounced results for patients compared with controls. By contrast, in relatively late premanifest Huntington’s disease, a sample of 117 participants showed little evidence of detectable deterioration over 2 years. Many of the tests most affected in TRACK-HD have a substantial motor or psychomotor component, highlighting the close relationship between motor and cognitive features of Huntington’s disease, both of which depend on cortical–basal ganglia circuits.

[H3]Neuropsychiatric features

The neuropsychiatric features of Huntington’s disease are not as consistent as the motor or cognitive features, but can cause substantial disability, be prominent early in the course of the disease, and even occur as initial features. Depression is very common and some depressive symptoms are reported by up to half of patients at some point during the course of the illness130. Major depression in Huntington’s disease is clinically similar to depression in individuals without the disease, and management is also similar131. Irritability is frequent and can be a feature132. Apathy is
common and often disabling, especially in later stages of the disease, and is progressive112. Notably, the TRACK-HD study showed that apathy is a feature in individuals with premanifest Huntington’s disease112. Neuropsychiatric symptoms sometimes described as ‘executive function’ or ‘frontal lobe’ problems, are significantly associated with functional decline in the early stage disease. Less common, though clinically very important, are more-severe psychiatric problems such as delusional depression or a schizophrenia-like psychosis. These conditions might require acute management that includes inpatient psychiatric treatment.

[H1] Management

In the absence of an effective disease-modifying therapy, the current management of Huntington’s disease is centred on treating symptoms. Ideal management of patients includes a team of healthcare providers (Box 1) who can attend to its wide-ranging impact on the individual and family133. Indeed, guidelines for management by the speech pathologist, physiotherapist, nutritional therapist occupational therapist and dentist, were reported by the European Huntington’s Disease Network Standards of Care group134. The key role of the Huntington’s nurse in the management of the patient and families has also been discussed135–137.

The only drug specifically licensed by the FDA for use in patients with Huntington’s disease is the synaptic vesicular amine transporter inhibitor tetrabenazine, which was approved in 2008 for the treatment of chorea138. Studies are underway to investigate other potential treatments for chorea in patients with Huntington’s disease, including pallidal deep-brain stimulation (139-140) and a deuterated tetrabenazine molecule (141)139–141. Indeed, several reviews have emphasized the weak evidence supporting any other pharmacological intervention in the management of Huntington’s disease142,143. In an effort to reduce therapeutic nihilism in the absence of proven treatments, a series of algorithms for the treatment of chorea, irritability, and obsessive-compulsive behaviours were reported in 2011 by an international group, based on surveys of Huntington’s experts144–146. Until better evidence accrues, the clinician must adopt the attitude that treatments providing benefit to patients without Huntington’s disease who have neuropsychiatric symptoms should also be expected to help people with Huntington’s disease who have the same symptoms. Clinicians should proceed thoughtfully to optimize the patient’s quality of life with available medications and supportive therapies.
For the 10% of affected individuals with juvenile-onset Huntington’s disease, special attention for a variety of reasons is pertinent. These patients often come from a family with a simultaneously affected father, present with severe behavioural issues prior to motor symptoms (which complicates the diagnosis), and can be experiencing seizures, rigidity, and developmental-behavioural challenges that require specialty care not always available even in specialized clinics. The late stages of Huntington’s disease should not be neglected either. Affected individuals can spend 5–10 years in residential care. Specialty care facilities exist in some areas of the world, but not most. Programmes to support individuals with late-stage Huntington’s disease have been described, and as the disease progresses and symptoms evolve, the ongoing need for each medication should be re-evaluated at intervals. Hospice care can be appropriate in the terminal stages.

[H2]Current clinical trials

Clinical trials for Huntington’s disease have increased moderately over time, whereas the average number of participants has increased exponentially. From 1990 to 2004, 15 clinical trials were reported, with an average of 23 participants. From 2005 to 2014, 22 clinical trials have reported results with an average sample size of 139 participants. However, the overwhelming majority of studies to date have not demonstrated efficacy. A 2006 evidence-based review reported that of the 20 level-I studies included, no clear treatment recommendation of clinical relevance could be made. Similarly, a 2011 systematic review concluded, “[There] is weak evidence to support most of the treatment decisions in [Huntington disease].”

Fuelled by the large unmet need, the FDA approval of tetrabenazine for the treatment of chorea in Huntington’s disease, continued scientific advances, and increased interest in drugs for orphan conditions, interest in drug development is currently at its highest level ever. Ongoing and recently completed trials are examining symptomatic treatments as well as treatments aimed at modifying the underlying pathogenesis of the disease (Table 1). The trials are diverse in their funding source (including academic institutions, government sources, and industry), duration (from days to years), and stage of development (from phase I to phase IV). Some investigational therapies are aimed primarily at particular symptoms, such as motor disorders (cysteamine, deuterated tetrabenazine, and pridopidine) and cognition (PBT2). Furthermore, many novel mechanisms are under investigation. For example, due to the impairment of and decrease in transcription factor cAMP response element-binding protein (CREB) in Huntington’s disease, current drug trials are targeting phosphodiesterases that are capable of increasing CREB. Other interventions, such as delayed-release cysteamine bitartrate, are being studied as potential disease-modifying and
symptomatic treatments in patients. Others experimental treatments, including coenzyme Q$_{10}$ and creatine, are aimed at improving overall function for people with the disease. However, the trials of these compounds (2CARE and CREST-E studies) were the largest ever conducted in Huntington’s disease but were closed prematurely due to futility. The 2CARE study evaluated coenzyme Q$_{10}$ (2,400 mg/day) in 609 individuals for a planned duration of 5 years. The CREST-E study evaluated creatine (up to 40 grams daily) in 553 individuals for a planned duration of 3 years. Overall function for participants within the 2CARE and CREST-E studies was assessed based on Total Functional Capacity. Their premature termination argues that more-sensitive markers of disease progression are needed to identify potential signs of efficacy (or lack thereof) earlier and minimize the risk and cost of large-scale studies of agents that lack efficacy.

[H1]Quality of life

The impact of Huntington’s disease on health-related quality of life (QOL) extends over the life of an individual, beginning long before the diagnosis (Figure 6). The assessment of QOL is challenging in this disease for three reasons: the lifelong influence of the disease on QOL; unawareness/denial and progression of dementia in affected individuals; and the absence, until recently, of disease-specific QOL tools.

The impact of Huntington’s disease often begins with the family-disrupting development of the disease in a parent, followed by the child’s gradual awareness of his or her own genetic risk. In one study, over 50% of 74 adults at risk had experienced adverse childhood events related to Huntington’s disease including: conflicts with family members, negative interactions with friends, parents and others; challenges in the performances of household tasks; financial and health stresses. To study these experiences, Dreissnack et al. developed the HD-Teen Inventory, which qualitatively assesses issues and concerns common in teenagers—including changes in personal and family relationships, genetic risk, information about the disease, and emotional support. Similar concerns in adults were shown to affect social activities, career, marriage, and reproductive decisions. Unawareness, denial of symptoms, and the progression of dementia also complicate the measurement of QOL in symptomatic individuals. To address these difficulties, studies are ongoing to determine how and when to use caregiver or other proxy reports regarding QOL in addition to, or instead of, patient reports and whether these are equivalent to the reports from the
affected individual173,174. Indeed, clinical trials in Huntington’s disease are increasingly including caregiver assessments of QOL as well as self-reported patient outcomes.

Subtle changes in cognition and mood begin years before the motor symptoms manifest112,116 and Huntington’s disease-specific QOL tools that account for this feature are under development173–176. Some work has shown that QOL is affected by neuropsychiatric symptoms and executive dysfunction in gene-positive premanifest individuals177; depression and lower functional capacity is also common in diagnosed individuals178, determined by measurement of psychological function, social interaction, and motor function175. Family members of patients frequently express concerns surrounding emotional, social, physical, cognitive, and end-of-life issues179. However, in the late stages of the disease, motor symptoms180,181 and cognitive and functional — but (surprisingly) not psychiatric — features181 predict placement into long-term care. Thus, disease-specific QOL tools for these patients must cover the whole spectrum: behavioural, cognitive, functional, and motor domains.

With respect to patients receiving palliative care in the late stages of the disease, the following domains were identified by a panel of experts as being relevant: autonomy; dignity; meaningful social interaction; communication; comfort; safety and order; spirituality; enjoyment, entertainment, and well-being; nutrition; and functional competence137. However, no studies have evaluated the effects of interventions to these areas on QOL. Booij and colleagues in the Netherlands, a country where physician-assisted suicide (euthanasia) is legal, have emphasized the importance of a discussion between the patient and physician about end-of-life plans, including suicide, to the patient’s autonomy and well-being182.

Overall, the impact of Huntington’s disease on QOL in affected families evolves over the lifetime of the affected individuals. Psychosocial issues dominate early in the life of an at-risk individual, and cognitive and behavioural issues during the prodromal and early symptomatic stages of the disease. In late-stage patients, lower motor and functional capacity predominate. How to assess or improve QOL in the terminal stages of the disease remains an open question.

[H1]Outlook

Key outstanding questions in the pathobiology of Huntington’s disease centre on determining the structure and nature of toxic huntingtin species, their immediate cellular target(s) and mechanisms of toxicity. Further study is needed, especially in humans, on the generation of the various
huntingtin fragments and the extent to which each contributes to pathogenesis. Critical experiments need to be designed to address the extent to which prion-like aggregate propagation contributes to disease progression.

The most pressing unmet need in Huntington’s disease is for a therapeutic that shows evidence of disease-modification — slowing, preventing or even reversing the disease in mutation carriers. Despite a multitude of therapeutic targets, few are well-validated and therapeutic successes in model systems have failed to translate to patients, in part because of the difficulty of studying the pathobiology in living humans. One mystery that will perhaps only be answered by clinical trials is to what extent modulating the non-CNS pathology of Huntington’s disease, by agents acting peripherally, might be capable of modifying the course of the disease as animal studies have suggested. If we are to reach the ultimate goal of preventing the disease in premanifest mutation carriers, we will need a battery of effective and well-characterized biomarkers to give early indications that drugs are achieving the desired biological effects in people showing no overt signs of the disease.

[H2]Biomarkers
Biomarkers provide important information on drug effects (pharmacodynamic), the presence (trait) of disease, or the severity (state) of disease. Genetic testing provides an excellent trait biomarker for Huntington disease. Prevention of disease is the ultimate goal of trials in pre-manifest Huntington disease, but in the absence of clinical symptoms, it is difficult to determine whether a given intervention alters disease onset. Clinical, cognitive, neuroimaging, and biochemical biomarkers are currently being investigated for their potential in clinical use and their value in the development of future treatments for patients (Table 2), and might be eventually used in combination to provide the optimal measure of onset and progression at different disease stages.

[H3]Cognitive and motor measures
Commonly used clinical rating scales such as the UHDRS might be insensitive to subtle changes over short periods of time, are subjective, susceptible to bias, and are affected by inter-rater and intra-rater variability. However quantitative cognitive end points are emerging, such as the HD Cognitive Assessment Battery (HD-CAB), which shows great potential for use in clinical trials in Huntington’s disease. Unfortunately, many cognitive measures have significant limitations owing
to floor and ceiling effects and confounding by the levels of education and moods of the patients. Accordingly, these measures might not be sensitive to subtle changes in cognitive function over time and might not respond to potential treatments. Quantitative motor assessments — such as finger tapping, grip force variability, and tongue force measures — might counter such confounders and are currently being evaluated in Huntington’s disease drug trials.120

[H3] Biosampling

Aside from these metrics, biomarker identification and quantification from various samples have yielded a number of candidates in Huntington’s disease, though none has yet been validated for therapeutic studies. The majority of published studies have examined serum or plasma of patients, likely owing to the wide range of established analytical techniques available and the ease with which large volumes of samples can be obtained. Other components of blood such as erythrocytes, platelets, or leukocytes are also potential sources of peripheral Huntington’s disease biomarkers.185,186 Research in urine and saliva samples has been limited, despite the ease of obtaining these types of samples.

Recent attention has focused on CNS-derived samples, specifically cerebrospinal fluid (CSF). The use of CSF for Huntington’s research is of great appeal because of its high concentration of brain-specific proteins.187 Additionally, CSF studies have sparked a renewed interest in immune system dysfunction in Huntington’s disease;188 elevated CSF levels of cytokines (IL-6, IL-8, and clusterin) correlate with disease progression. However, sampling techniques, type of sample collected, and analytic techniques vary widely between studies — often making comparisons difficult. Furthermore, the relatively invasive lumbar puncture procedures required for CSF sample collection presents challenges in a wider clinical setting.

[H3] Electrophysiological measures

Electrophysiological measures such as electroencephalography have also been assessed in Huntington’s disease. Alterations in visual, motor, and somatosensory-related potentials have been reported, but small sample sizes and the variations in protocols make it difficult to draw conclusions about the usefulness of these potential biomarkers.

[H3] Pharmacodynamic biomarkers

Pharmacodynamic biomarkers for specific treatments are also a pressing need in Huntington’s disease research, but will require validation for each drug. For example, HTT-silencing therapeutics
are of great interest and are in development. Measurement of huntingtin levels in CSF might be a potential pharmacodynamic biomarker for these novel treatments. Indeed, the development of highly sensitive techniques to quantify low concentrations of mutant huntingtin in biofluids offers great hope for measuring the specific effects of these novel therapies. However, large-scale human studies are still needed to establish the utility of these types of clinical assays for use in clinical trials.186,196,197

Longitudinal observational studies, including PREDICT-HD34 and TRACK-HD129,164, have identified a large number of potentially useful biomarkers that are currently being assessed in the context of ongoing investigational drug trials.6 Predicting how a specific treatment will affect a given biomarker is difficult; thus, it is reasonable to assess multiple biomarkers in these studies. Furthermore, different combinations of biomarkers might be required to assess all the aspects of the disease that a drug targets. Along these lines, different biomarkers could be more-useful at different points in the course of the disease, with some biomarkers correlating best with particular clinical features.

To date, only a few novel biomarkers have been assessed in drug studies in Huntington’s disease. Reported serum biomarkers, such as 8-hydroxy-2’-deoxyguanosine (8OHdG198, a DNA oxidation product) or BDNF199, have been evaluated in a few drug studies. However, these measures have not been validated; 8OHdG has specifically failed rigorous replication attempts.191 Identification of reliable pharmacodynamics and state biomarkers will advance Huntington’s Disease therapeutic development. Rigorous and blinded evaluation, including independent validation and assessment, of potential candidate biomarkers must be pursued to ensure that the potential benefits of biomarker development for Huntington’s Disease and fully realised.

[H3] Neuroimaging

Imaging enables the visualization of the macroscopic neuropathological effects underlying Huntington’s disease, providing invaluable insights into the natural history of the disease.6 However, a key focus now is the development and validation of imaging measures as biomarkers for use in clinical trials. Structural MRI shows considerable promise in this respect. For example, TRACK-HD128,164 has identified progressive white matter atrophy across the spectrum of disease (Figure 7). Measures such as caudate atrophy are robust across different scanners and are sensitive to disease effects, giving rise to large effect sizes that suggest sample sizes typical in clinical trials.129 Altered metabolite patterns indicative of reduced neuronal health can be demonstrated using magnetic resonance spectroscopy200 and this technique could be used to show a dynamic response to
therapeutic intervention. PET imaging can highlight altered metabolic patterns201,202; a small open-label study recently demonstrated increased metabolic activity in response to pridopidine treatment203. In addition, PET imaging of microglial activation shows promise as a biomarker in the premanifest stages of the disease204. Many of these imaging modalities are currently being implemented as exploratory end points in ongoing clinical trials.

Future work is likely to focus on imaging techniques that provide additional information on the range of downstream effects of the presence of mutant huntingtin. For example, loss of connectivity within brain networks is increasingly recognized to occur many years before symptom onset and plays a key part in subsequent functional decline as cortico–striatal communication is compromised205; diffusion imaging coupled with advanced image analysis tools such as graph theory206 are being implemented to provide detailed mapping of this changing connectivity. Brain activity can be interrogated using both task and resting-state functional MRI and a growing number of PET tracers are available to highlight specific metabolic processes \textit{in vivo}, such as depletion of dopamine receptors207. The relationship between imaging readouts and functional performance in Huntington’s disease is yet to be established but future intervention studies are likely to provide insight.

\textbf{[H2]Future clinical trials}

Future clinical trials in Huntington’s disease will use broader objective measures of the disease, including quantitative motor assessments, biochemical biomarkers, and imaging112,162. In addition, movement disorders with clear external manifestations that can be measured in response to treatment will see the implementation of innovative techniques, such as wearable sensors. These objective measures will initially be used to supplement subjective clinician-rated scales but their applications and impact on movement disorder research will likely expand over time97,163.

Furthermore, future clinical trials aimed at modifying the underlying pathogenesis will increasingly rely on biological measures of disease activity to determine whether their action in humans mirrors that from animal studies. Future trials in Huntington’s disease will also increasingly investigate intervention prior to the clear manifestation of symptoms. Because of its nearly complete penetrance, evidence of its pathogenesis before symptom onset, and potentially new regulatory framework for prodromal disorders, future trials will evaluate treatments in individuals who carry
the expanded allele but do not yet have clear symptoms of the disease164,165. At least two previous trials in this population have demonstrated the feasibility of this approach166,167.

The next decade will almost certainly witness more trials, increasingly aimed at the underlying pathogenesis168,169. With better means of assessing the efficacy of treatments (as has occurred in multiple sclerosis), screening and detection of potential efficacy will be easier and more informative. Huntington’s disease stands poised to become an increasingly treatable condition.

\textbf{[H3] Experimental disease modifying therapeutics}

Our ever-increasing understanding of how mutant huntingtin causes neuronal dysfunction and death has produced a multitude of rational therapeutic targets (Figure 8). Reducing production of mutant huntingtin ought to prevent its adverse effects. Indeed, ‘designer’ oligonucleotide-based therapeutics are being developed that bind huntingtin mRNA selectively and target it for degradation by cellular mechanisms. When the agent is a short interfering RNA (siRNA) or microRNA, the huntingtin mRNA is degraded by cytoplasmic RNA-induced silencing complex (RISC) — a process known as RNA interference or RNAi. Alternatively, a single-stranded modified DNA molecule or antisense oligonucleotide (ASO) can be used to direct the transcript for degradation by nuclear ribonuclease H.

These methods now have a secure pedigree of preclinical success, producing phenotypic reversal in multiple model systems208–211. However, delivery is a challenge: all such agents require direct CNS administration — intrathecally into the lumbar CSF for ASOs; and intraparenchymally or intraventricularly, encoded by a viral vector or infused under pressure, for RNAi. Two human trials have demonstrated safety and some efficacy signals for ASO-based drugs in familial amyotrophic lateral sclerosis212 and spinal muscular atrophy213; the first human trial of an ASO therapeutic in Huntington’s disease is planned214.

The first huntingtin-lowering drugs bind both wild-type and mutant \textit{HTT} mRNA, but allele-selective drugs are also under development. By targeting heterozygous single-nucleotide polymorphisms on the allele bearing the CAG expansion, these agents aim to avoid the theoretical risk of lowering wild-type huntingtin215, but, since each drug could only target a SNP found in a proportion of individuals, multiple agents would be needed to treat the majority of patients.
Zinc-finger therapeutics aim to achieve transcriptional repression of HTT, reducing not only all huntingtin protein species but also avoiding possible toxicity from its mRNA. Necessitating viral delivery, these drugs face the same delivery challenges as RNA-based huntingtin-lowering drugs but have shown early promise in rodent models216,217.

Some therapeutic approaches aim to reduce the toxicity of mutant huntingtin. Small-molecule kinase inhibitors might enhance post-translational modifications, such as phosphorylation at serines 13, 16 and 421, which would encourage less-harmful forms or intracellular locations218–220. Such ‘virtuous phosphorylation’ has been suggested to underlie the striking phenotypic reversal seen in mouse models after intraventricular infusion of the ganglioside GM1, one of a family of large membrane-associated organic molecules found abundantly in the221.

Therapeutic successes have also been reported from upregulating chaperone protein HSJ1a in transgenic mice expressing human mutant huntingtin exon 1222 and direct application of a recombinant chaperone moiety ApiCCT1 in vitro. Several agents that enhance macroautophagy have been shown to enhance huntingtin clearance and improve phenotypes in model systems223,224. Selisistat, an inhibitor of the deacetylase sirtuin 1 (also known as NAD-dependent protein deacetylase sirtuin-1), produced beneficial effects in cell, fly and rodent Huntington’s disease models225 and was recently shown as safe and tolerable in patients226.

Inhibition of histone deacetylase (HDAC) enzymes aims to prevent mutant huntingtin-induced transcriptional dysregulation. HDAC4 knockdown produces potent phenotypic amelioration227–230 but surprisingly does so through effects on cytoplasmic mutant huntingtin aggregation, not transcriptional dysregulation227. This finding has prompted a reappraisal of previous success in mice with suberoylanilide hydroxamic acid, a nonselective HDAC inhibitor231.

Phosphodiesterase (PDE) 10A is a major modulator of striatal synaptic biology, regulating cAMP and cGMP signalling, synaptic plasticity and the response to cortical stimulation232,233. Treating model Huntington’s disease mice with a PDE10A inhibitor lessened motor deficits, striatal atrophy and neurotrophin depletion234. Two human trials of PDE10A inhibition are now underway235,236.

Depletion of neurotrophins, especially BDNF, is a prominent feature of Huntington’s disease and a high-priority therapeutic target. However, direct or virally mediated delivery of neurotrophins is possible but challenging237–239. Agonism of the BDNF tyrosine receptor kinase B (TrkB) is appealing,
but initial reports of successes240,241 have not been replicated242; agonism by monoclonal antibodies is under investigation242. A human trial of cysteamine, which possibly acts through increasing BDNF levels, showed a suggestion of benefit in a subgroup analysis159.

Many tractable aspects of glial function have been implicated in Huntington’s disease. Among the most promising are inhibition of kynurenine 3-monooxygenase (KMO), which determines the balance of excito-toxic and neuroprotective tryptophan metabolites produced by microglia243 and has been implicated by numerous studies in model systems and humans244,245. The KMO inhibitor JM6 proved successful in a mouse model of the disease246 and other KMO inhibitors are progressing towards human trials247.

Modulation of the innate immune system, which is hyperactive in Huntington’s disease190,248, is now a focus for therapeutics research. The first trial of an immunomodulatory agent, laquinimod, is beginning soon249.

Finally, the mitogen-activated protein kinase (MAPK) signalling pathway is deranged in Huntington’s disease and presents numerous potential therapeutic targets, including activation of dual specificity protein phosphatase 1 (also known as MKP-1) and extracellular signal-regulated kinases or inhibition of MLK2, c-Jun N-terminal kinases (MAPK8, MAPK9, and MAPK10) and p38 (MAPK11, MAPK12, MAPK13, and MAPK14)250–255. However, the complex intersecting pathways and their role in Huntington’s disease remain poorly understood. The same is true of the complex metabolic derangements in Huntington’s disease, for which extensive therapeutic trials have failed to yield clear success256.

In this article we have described the genetic and clinical diagnosis of Huntington’s Disease, as well as the multidisciplinary management of symptoms. Although there are currently no effective disease-modifying therapies, we discuss past and present clinical trials and therapeutic strategies currently under investigation. Importantly there are impending trials of targeted huntingtin-lowering drugs and we review the progress in development of biomarkers that will support the next generation of trials.

Competing interests
S.J.T. has served on advisory boards or had consultancies with GSK, Ixico Technologies, Isis Pharmaceuticals, Novartis, Roche, Sanofi-Aventis, Siena Biotech Takeda Pharmaceuticals
International and TEVA Pharmaceuticals. All honoraria paid for these consultancies and advisory boards go to University College London, S.J.T.’s employer. R.D. has received compensation for consulting activities from Clintrex, Lundbeck, mc10, Shire, and the National Institute of Neurological Disorders and Stroke, research support from Auspex Pharmaceuticals, Biogen, Davis Phinney Foundation, Great Lakes Neurotechnologies, Huntington Study Group, Lundbeck, The Michael J. Fox Foundation, National Science Foundation, Patient-Centered Outcomes Research Institute, Prana Biotechnology, and Sage Bionetworks, and has stock options in Grand Rounds. He is an uncompensated advisor to SBR Health and Vidyo. M.R.H. is president of Global R&D and Chief Scientific Officer at Teva. B.L. is the Co-Chair of the Huntington Study Group; has acted as a consultant for Novartis, Pfizer, Siena Biotech, Teva, and Isis; and has received relevant research grant support from CHDI, Teva, the Canadian Institutes of Health Research and the Michael Smith Foundation. M.N. has served on paid advisory boards for Lundbeck Inc. and Auspex Pharmaceuticals, and receives research grant funding from Teva Pharmaceuticals and NeuroSearch. C.R. currently acts as a consultant for Raptor Pharma; has consulted for Isis, Pfizer, Delbiopharm and Lundbeck; and receives research funding from Johnson & Johnson/Janssen Pharma. The other authors declare no competing interests.

Author contributions
Authorship is ordered alphabetically with the exception of S.J.T. who is corresponding author. Introduction (S.J.T., E.J.W.); Epidemiology (M.R.H., C.K.), Mechanisms/pathophysiology (J.F.G., R.W., G.P.B.); Diagnosis, screening and prevention (C.A.R.); Management (M.N., R.D.); Quality of life (M.N.); Outlook (B.L., S.J.T., R.I.S., E.J.W., M.N., R.D.); overview of the Primer (S.J.T.).

Acknowledgements
We would like to thank Ryan Korn, BA, for his assistance in preparing and editing the Current clinical trials section. We thank James Behagg for his assistance in preparing the manuscript and Mina Razzak for critical review.

Box 1. The Huntington’s disease health care team

[h1]Neurologist

Diagnosis, management
[h1] Psychiatrist
Diagnosis, management

[h1] Genetics specialist
Genetic counselling, genetic testing (including diagnostic, predictive or premanifest, prenatal or preimplantation)

[h1] Neuropsychologist
Cognitive assessment, counselling

[h1] Psychologist
Psychological assessment, counselling, support (for patient and family)

[h1] Physiotherapist
Gait evaluation, exercise programme, assistive equipment

[h1] Occupational therapist
Home safety and adaptive equipment

[h1] Speech pathologist
Speech and communication assessment; dysphagia assessment and counselling

[h1] Nutritional therapist
Nutritional assessment and counselling

[h1] Social worker
Disability counselling; financial and life-planning counselling; evaluation of in-home services or out-of-home placement; interface with criminal justice and government programmes

[h1] Nurse or case manager
Case management and family support

[h1] Research team
Engage patient and family in research

Primary care provider
Attend to other aspects of general health

Dentist
Ensure appropriate dental care

Lay organization representatives
Liaison with family, provide support

Long-term care organization representatives
Skilled care of patients in late stages of the disease

Figure 1 Natural history of clinical Huntington's disease. The normalized CAP score enables progression of many individuals with different CAG expansion lengths to be plotted on the same graph. Mean disease onset is at CAP score ~100 (typically ~45 years of age), but substantial interindividual variability exists. Without 'normalization', the CAP score at onset exceeds 400. The period before diagnosable signs and symptoms of Huntington’s disease occur is termed 'premanifest'. During the 'presymptomatic' period, no signs or symptoms are present. In 'prodromal' Huntington’s disease, subtle signs and symptoms are present. Manifest Huntington’s disease is characterized by slow progression of motor and cognitive difficulties, with chorea often prominent early but plateauing or even decreasing later. Fine motor impairments (incoordination, bradykinesia, and rigidity) progress more steadily. Abbreviation: CAP, CAG age product. Permission obtained from Nature Publishing Group © Ross, C. A. et al. Nat. Rev. Neurol. 10, 204–216 (2014).

Figure 2 Ethnic differences in the prevalence of Huntington’s disease correlate with average CAG repeat length in each population. Longer CAG repeats in individuals of European descent are thought to result in higher rates of CAG repeat expansion and de novo HTT mutation. 7

Figure 3 Huntingtin structure and transformations. Expression of HTT generates an initial RNA transcript that is normally processed (1) into an mRNA encoding the full-length huntingtin protein, but can also be aberrantly processed (2) into mRNA encoding only exon1 if the gene contains an expanded CAG repeat. Translation generates either (3) the full-length huntingtin protein or (4) the
so-called HTT exon1 protein. The HTT exon1 fragment consists of the 17 amino acid mixed sequence HTTNT (green), the polyQ sequence (orange) encoded by the CAG repeat, and a PRD sequence (black). The full-length huntingtin protein consists of this exon1 sequence followed by a series of ordered (boxes) and disordered (loops) protein segments. Proteolytic cleavage (5; arrows) mediated by recognition sequences located in the disordered segments generates a series of products including HTT exon1-like fragments. Such fragments containing expanded polyQ segments have important roles in triggering Huntington’s disease, by molecular mechanisms that are yet to be worked out. Abbreviations: polyQ, polyglutamine; PRD, proline-rich domain.

Figure 4 Schematic of pathogenic cellular mechanisms in Huntington’s disease. (1) HTT is translated to produce the full-length huntingtin protein as well as an N-terminal exon1 HTT fragment (the result of aberrant splicing). The length of the polyQ tract in these proteins depends on the extent of somatic instability. (2) Full-length native huntingtin is cleaved through proteolysis to generate additional protein fragments. (3) Protein fragments enter the nucleus. (4) Fragments are retained in the nucleus through self-association, oligomerization, and aggregation — leading to the formation of inclusions, a process that causes transcriptional dysregulation through the sequestration of other proteins as well as other incompletely defined mechanisms. (5) Huntingtin fragments oligomerize and aggregate in the cytoplasm. (6) The aggregation of huntingtin is exacerbated through the disease-related impairment of the proteostasis network, which also leads to global cellular impairments. (7) The aberrant forms of huntingtin result in additional global cellular impairments including synaptic dysfunction, mitochondrial toxicity, and a decreased rate of axonal transport. Abbreviations: polyQ, polyglutamine; PRD, proline-rich domain; Ub, ubiquitin.

Figure 5 Atrophy in prodromal Huntington’s disease shown using 7T MRI. Note the bilateral atrophy of the caudate and putamen, and concomitant increase in size of the fluid-filled lateral ventricle in the gene carrier compared with the control. This prodromal participant has only subtle signs and symptoms insufficient for diagnosing manifest Huntington’s Disease. Note also subtle change in cortical grey matter and overall atrophy of subcortical white matter.

Figure 6 The impact of various life events and disease milestones on different domains of quality of life in a hypothetical person with Huntington’s disease. Note that the impact of the disease on a person’s quality of life begins long before the person has any symptoms of the disease. Quality of life domains are differentially impacted by these events and milestones.
Figure 7 White matter atrophy across the spectrum of Huntington’s disease. (a) Statistical parametric maps, based on data from the TRACK-HD study, show regions with statistically significant longitudinal change in white matter over 24 months relative to controls. Results were adjusted for age, sex, study site and scan interval and are corrected for multiple comparisons with familywise error at the $P<0.05$ level. (b) Boxplots showing 0-12 and 0-24 month change and (c). Corresponding longitudinal plots showing mean values at baseline, 12 months and 24 months. Significant change differences relative to controls over 0-12, 12-24 and 0-24 months are represented by *$P<0.05$, **$P<0.01$ and ***$P<0.001$. Abbreviations: Ctrl, control; PreHD-A, premanifest A (more than 10 years from predicted disease onset); PreHD-B, premanifest B (less than 10 years from predicted disease onset); HD1, Stage 1 Huntington’s Disease; HD2, Stage 2 Huntington’s Disease. Permission obtained from Elsevier © Tabrizi, S. J. et al. Lancet Neurol. 11, 42–53 (2012).

Figure 8 Schematic depicting current priority preclinical therapeutic targets under investigation for Huntington’s disease. Abbreviations: ASO, antisense oligonucleotide; CB2, cannabinoid receptor 2; EAAT2, excitatory amino-acid transporter 2; PPAR, peroxisome proliferator-activated receptors; RNAi, RNA interference; GM1, monosialotetrahexosylganglioside; P, phosphate; Ac, acetyl; Su, sumoyl; MAPK, mitogen-activated protein kinase; mHTT, mutant huntingtin; MKP-1, dual specificity protein phosphatase 1; KMO, kynurenine 3-monooxygenase; NMDA, N-methyl-D-aspartate; PDE, phosphodiesterase; BDNF, brain-derived neurotrophic factor; HDAC, histone deacetylase; TrkB, tyrosine receptor kinase B; JNK, Jun N-terminal kinases (MAPK8, MAPK9, and MAPK10). Permission obtained from Nature Publishing Group © Ross, C. A. et al. Nat. Rev. Neurol. 10, 204–216 (2014).
Table 1. Status of recent and current clinical trials in Huntington’s disease*

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Study name and/or identifier</th>
<th>Study agent</th>
<th>Design</th>
<th>Trial length</th>
<th>Status</th>
<th>Target symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York Medical College</td>
<td>NCT01834911</td>
<td>Tetrabenazine</td>
<td>Prospective case–control study comparing Stroop Visual Interference Scores in individuals who are already taking tetrabenazine</td>
<td>6 hours</td>
<td>Currently enrolling</td>
<td>Motor</td>
</tr>
<tr>
<td>Phase II/III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raptor Pharmaceuticals</td>
<td>CYST-HD NCT02101957</td>
<td>Cysteamine bitartrate delayed-release capsules</td>
<td>Double-blind, placebo-controlled study followed by an open-label extension study. Endpoint: Total Motor Score</td>
<td>36 months</td>
<td>Study ongoing, preliminary results released</td>
<td>Motor</td>
</tr>
<tr>
<td>Phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Institute of Neurological Disorders and Stroke</td>
<td>2CARE NCT00608881</td>
<td>Coenzyme Q10</td>
<td>Randomized double-blind study examining effect on slowing the worsening of symptoms</td>
<td>5 years</td>
<td>Study concluded for futility</td>
<td>Function</td>
</tr>
<tr>
<td>National Center for Complementary and Alternative Medicine</td>
<td>CREST-E NCT00712426</td>
<td>High-dose creatine</td>
<td>Randomized double-blind study examining effect on slowing progressive functional decline</td>
<td>3 years</td>
<td>Study concluded for futility</td>
<td>Function</td>
</tr>
<tr>
<td>Auspex Pharmaceuticals</td>
<td>FIRST-HD NCT01795859</td>
<td>SD-809 extended release</td>
<td>Randomized double-blind study examining effect on chorea; to be followed by an open-label, long-term safety study</td>
<td>12 weeks</td>
<td>Enrollment complete, study ongoing</td>
<td>Motor</td>
</tr>
<tr>
<td>Sponsor/Institution</td>
<td>Study ID</td>
<td>Intervention</td>
<td>Study Design</td>
<td>End point</td>
<td>Duration</td>
<td>Enrollment Status</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Auspex Pharmaceuticals</td>
<td>ARC-HD NCT01897896</td>
<td>SD-809 extended release</td>
<td>Open-label, long-term safety study</td>
<td>End point: Safety/Efficacy</td>
<td>58 weeks</td>
<td>Enrollment complete, study data collection complete</td>
</tr>
<tr>
<td>Assistance Publique - Hôpitaux de Paris</td>
<td>NEUROHD NCT00632645</td>
<td>Olanzapine, tetrabenazine, and tiapride</td>
<td>RCT comparing three neuroleptics</td>
<td>End point: Safety/Efficacy</td>
<td>1 year</td>
<td>Currently enrolling</td>
</tr>
<tr>
<td>Phase II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charité University</td>
<td>ETQN-Study NCT01357681</td>
<td>Epigallocatechin gallate</td>
<td>Randomized double-blind study</td>
<td>Efficacy in changing cognitive function and tolerability</td>
<td>1 year</td>
<td>Enrollment complete, study ongoing</td>
</tr>
<tr>
<td>Charité University</td>
<td>Action-HD NCT01914965</td>
<td>Bupropion</td>
<td>Randomized double-blind study</td>
<td>Efficacy in changing apathy and tolerability</td>
<td>10 weeks</td>
<td>Enrollment complete, final study data collection complete</td>
</tr>
<tr>
<td>Ipsen</td>
<td>NCT02231580</td>
<td>BN82451B</td>
<td>Dose escalation, proof of concept study</td>
<td>Investigating safety, tolerability, pharmacokinetic and the pharmacodynamic properties</td>
<td>28 days</td>
<td>Currently enrolling</td>
</tr>
<tr>
<td>Omeros Corporation</td>
<td>NCT02074410</td>
<td>OMS643762</td>
<td>Randomized, double-blind, placebo-controlled, sequential cohort study</td>
<td>To evaluate safety and efficacy</td>
<td>28 days</td>
<td>Clinical trial currently suspended</td>
</tr>
<tr>
<td>Prana Biotechnology</td>
<td>REACH2HD NCT01590888</td>
<td>PBT2</td>
<td>Randomized double-blind safety and tolerability study</td>
<td></td>
<td>6 months</td>
<td>Study complete, top line results released</td>
</tr>
<tr>
<td>Company</td>
<td>NCT Number</td>
<td>ID Number</td>
<td>Description</td>
<td>Duration</td>
<td>Status</td>
<td>Disorder</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---</td>
<td>----------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Pfizer</td>
<td>NCT01806896</td>
<td>PF-0254920</td>
<td>RCT evaluating safety, tolerability and brain cortico-striatal function</td>
<td>28 days</td>
<td>Currently enrolling</td>
<td>Motor</td>
</tr>
<tr>
<td>Pfizer</td>
<td>NCT02197130</td>
<td>PF-0254920</td>
<td>Randomized, double-blind, placebo-controlled proof of concept study of the efficacy and safety</td>
<td>26 weeks</td>
<td>Not yet recruiting</td>
<td>Motor</td>
</tr>
<tr>
<td>Teva Pharmaceutical Industries</td>
<td>PRIDE-HD NCT02006472</td>
<td>Pridopidine</td>
<td>Randomized, double-blind, placebo-controlled study of safety and efficacy</td>
<td>26 weeks</td>
<td>Currently enrolling</td>
<td>Motor</td>
</tr>
<tr>
<td>Teva Pharmaceutical Industries</td>
<td>OPEN-HART NCT01306929</td>
<td>Pridopidine</td>
<td>Open-label, single group assignment study assessing long-term safety</td>
<td>2 years</td>
<td>Enrollment complete, study ongoing</td>
<td>Motor</td>
</tr>
<tr>
<td>Teva Pharmaceutical Industries</td>
<td>Legato-HD NCT02215616</td>
<td>Laquinimod</td>
<td>Randomized, double-blind, placebo-controlled, parallel-group study evaluating efficacy and safety</td>
<td>12 months</td>
<td>Currently enrolling</td>
<td>Motor</td>
</tr>
</tbody>
</table>

* As of November 2014. Abbreviation: RCT, randomized controlled trial.

This trial was suspended due to an observation from a nonclinical study in rats. The observation occurred in several of the rats receiving the study's maximum dose of OMS824, a dose that resulted in OMS824 free-plasma concentrations multiply higher than those that have been measured in patients. The drug exposure at that maximum dose in the rat study is multiply above the drug exposure in humans at the doses used in the Huntington's disease trial, and the potential relevance of the nonclinical findings to humans, if any, is unknown. Based on follow-up communications with FDA, Omeros has suspended the ongoing Huntington's disease trial. (http://www.prnewswire.com/news-releases/omeros-provides-update-on-pde10-inhibitor-program-322137646.html)
<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Measure</th>
<th>Alteration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speeded tap interval</td>
<td>Q-motor</td>
<td>Increased</td>
<td>Reilmann et al., 2013^120</td>
</tr>
<tr>
<td>Grip force</td>
<td>Q-motor</td>
<td>Increased variability</td>
<td>Reilmann et al., 2013^120</td>
</tr>
<tr>
<td>HD-CAB</td>
<td>Cognitive</td>
<td>Increased score</td>
<td>Stout et al., 2014^144</td>
</tr>
<tr>
<td>Imaging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudate volume</td>
<td>MRI</td>
<td>Decreased</td>
<td>Tabrizi et al., 2012^128</td>
</tr>
<tr>
<td>Fractional anisotropy/ mean diffusivity</td>
<td>Diffusion imaging</td>
<td>Decreased/increased</td>
<td>Hobbs et al., 2012^298</td>
</tr>
<tr>
<td>Thalamic FDG activity</td>
<td>PET</td>
<td>Increased</td>
<td>Reviewed in Eidelberg et al., 2011^201</td>
</tr>
<tr>
<td>Putaminal NAA / MI</td>
<td>MRS</td>
<td>Decreased/increased</td>
<td>Sturrock et al., 2010^200</td>
</tr>
<tr>
<td>Electrophysiological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortical activity</td>
<td>EEG</td>
<td>Decreased α signal</td>
<td>Reviewed in Nguyen et al., 2010^202</td>
</tr>
<tr>
<td>Biochemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurofilament</td>
<td>CSF</td>
<td>Increased levels</td>
<td>Constantinescu et al., 2009^259</td>
</tr>
<tr>
<td>Clusterin</td>
<td>Plasma</td>
<td>Increased levels</td>
<td>Darymple et al., 2007^399</td>
</tr>
<tr>
<td>24 hydroxycholesterol</td>
<td>Plasma</td>
<td>Decreased levels</td>
<td>Leoni et al., 2008^390</td>
</tr>
<tr>
<td>Pharmacodynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant huntingtin levels</td>
<td>CSF</td>
<td>Treatment response</td>
<td>Weiss et al., 2009^396</td>
</tr>
</tbody>
</table>

Abbreviations: CSF, cerebrospinal fluid; MRS, magnetic resonance spectroscopy; EEG, electroencephalography; FDG, fluorodeoxyglucose; HD-CAB, Huntington’s Disease Cognitive Assessment Battery; NAA, N-acetylaspartate; MI, myoinositol
References

 This study, the most recent and comprehensive ascertainment of Huntington’s disease patients across a large, defined service area, demonstrates the combined use of genetic test results and clinical records to estimate the minimum and maximum prevalence of Huntington’s disease in a predominantly Caucasian population.

 This paper describes the identification and fundamental characteristics of the HTT genetic defect: a polymorphic CAG trinucleotide repeat in the coding sequence of huntingtin that is expanded beyond its normal size and is unstable through intergenerational transmission.

 This very recent review summarizes the current status of biomarker research in Huntington’s disease and places this process in the context of novel therapeutics in development and an improved understanding of Huntington’s disease natural history.

This paper was the first to link specific haplotypes of the CAG expansion to high normal CAG repeat lengths in populations in which Huntington’s disease is more frequent, illuminating a genetic basis for variable prevalence of the disease.

This recent review summarizes the evidence that the disease process can be modified by other genetic factors prior to actual disease onset, suggesting a strategy to identify potential targets for therapeutic intervention from mutation carriers.

This paper establishes that the HTT mutation leads to motor onset in a completely dominant fashion such that the length of the expanded CAG repeat both represents the trigger of Huntington’s disease pathogenesis and determines its rate, with no contribution of the normal length CAG repeat in ‘heterozygotes’ or of a second expanded allele in ‘homozygotes’.

This recent review chapter summarizes current knowledge about the molecular evolution, post-translational modification, distribution, and normal functions of the huntingtin protein.

This recent review chapter summarizes current knowledge about the structure of the huntingtin protein and its important exon 1 fragment and how expanded polyglutamine versions of huntingtin fragments form aberrant molecular species that might be responsible for triggering Huntington’s disease.

This was the first paper to show that ablation of the mismatch repair system prevents somatic instability in mouse models of Huntington’s disease which prompted many further studies.

This paper demonstrated the additional power of a range of biomarkers, over and above that of age and CAG, for predicting conversion to manifest disease and subsequent clinical progression.

Defined a battery of potential outcome measures with utility for clinical trials in early HD.

This is a systematic review of clinical pharmacologic trials in Huntington’s disease through the mid-2000s.

This is an online summary of the current approaches to the management of juvenile onset Huntington’s disease, emphasizing areas in which the management differs from that of adult-onset disease.

This 2006 comprehensive review critically examines the evidence for a wide range of pharmaceutical agents for Huntington’s disease and finds little evidence for any treatment recommendation.

 This study provides evidence for the use of in clinic quantitative motor assessments in HD that are now increasingly used as an objective measure in HD clinical trials.

 This paper includes vignettes of patient experiences, which emphasizes the importance of qualitative experience in our understanding of quality of life in Huntington’s disease.

 This is an initial report from one of groups working to develop an HD-specific tool for measuring quality of life.

This paper examined a large number of quantitative cognitive tests and developed a concise battery of cognitive assessments that are specifically designed for use as a clinical trial endpoint in Huntington’s disease therapeutic trials.

This paper resolved an outstanding issue in the field and demonstrated unequivocally that 8OHdG is not a clinically useful biomarker in Huntington’s disease. The authors also established an important series of recommendations that should be considered for future biomarker validation studies.

A detailed review of techniques for identifying disease-related alterations in metabolic activity and their potential use in clinical trials.

This is an important demonstration that huntingtin lowering, achieved through an antisense oligonucleotide drug of the kind entering human trials in the near future, produces reversal of Huntington’s disease manifestations in model rodents that outlasts the presence of the compound, supporting the notion of a ‘huntingtin holiday’ - a brief or minor repression of HTT synthesis allowing significant recovery through cellular repair mechanisms.

JM6, a drug acting peripherally to produce CNS inhibition of KMO, extended survival in an Huntington’s disease model mouse. As well as supporting KMO inhibition as a target, this study raises the prospect of developing therapies that do not cross the blood-brain barrier but can produce CNS benefits nonetheless.

