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Identifying the genetic input for fetal growth will help to understand common,
serious complications of pregnancy such as fetal growth restriction. Genomic
imprinting is an epigenetic process that silences one parental allele, resulting
in monoallelic expression. Imprinted genes are important in mammalian fetal
growth and development. Evidence has emerged showing that genes that are
paternally expressed promote fetal growth, whereas maternally expressed
genes suppress growth. We have assessed whether the expression levels of
key imprinted genes correlate with fetal growth parameters during pregnancy,
either early in gestation, using chorionic villus samples (CVS), or in term
placenta. We have found that the expression of paternally expressing insulin-
like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGFIR ratio in
CVS tissues significantly correlate with crown—rump length and birthweight,
whereas term placenta expression shows no correlation. For the maternally
expressing pleckstrin homology-like domain family A, member 2 (PHLDA?2),
there is no correlation early in pregnancy in CVS but a highly significant nega-
tive relationship in term placenta. Analysis of the control of imprinted
expression of PHLDA2 gave rise to a maternally and compounded grand-
maternally controlled genetic effect with a birthweight increase of 93/155 g,
respectively, when one copy of the PHLDA? promoter variant is inherited.
Expression of the growth factor receptor-bound protein 10 (GRB10) in term pla-
centa is significantly negatively correlated with head circumference. Analysis of
the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal
transmission of type 1 diabetes protective G allele of 1s941576 single nucleotide
polymorphism (SNP) results in significantly reduced birth weight (=132 g). In
conclusion, we have found that the expression of key imprinted genes show a
strong correlation with fetal growth and that for both genetic and genomics
data analyses, it is important not to overlook parent-of-origin effects.

1. Background and results
(a) Fetal growth

Birthweight and its relationship to mortality show one of the strongest links
observed in epidemiology, illustrated by a reverse-J-shaped curve with the
highest mortality observed in the lightest and heaviest groups [1]. Growing
appropriately in utero is essential for a long and healthy life. Fetal growth
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restriction (FGR) affects approximately 6% of pregnancies,
and is identified in approximately half of stillborn fetuses with-
out malformations [2,3]. While the majority of FGR babies
demonstrate catch-up growth, the combination of suboptimal
intrauterine growth followed by accelerated childhood
growth can increase their susceptibility to adult-onset diseases,
including type 2 diabetes, hypertension and coronary artery
disease [4]. Each baby’s unique growth potential in utero is
determined by the successful nutritional and respiratory sup-
port from the mother to the fetus via a placenta, and
disturbing this balance could lead to FGR [5]. Fetal growth is
influenced by both genetic and environmental factors,
although the relevant molecular pathways are still poorly
defined. Identifying key genes and pathways that regulate
fetal growth will allow for better monitoring of intrauterine
growth, maximizing healthy outcomes.

(b) Genomic imprinting
Genomic imprinting is a process of epigenetic modification on
the genome that causes silencing of one allele according to its
parental origin, resulting in monoallelic expression, without
changing the DNA sequence [6-8]. Sex-specific imprint
marks are heritable to daughter cells, but are erased and re-
established in the germline during gametogenesis [9]. Evidence
from mouse models and rare human imprinting disorders
suggests that genes that are paternally expressed tend to
increase fetal growth, whereas maternally expressed genes
restrict fetal growth. For example, mice knockouts for pater-
nally expressed genes Igf2, mesoderm-specific transcript
(Mest) and paternally expressed gene 3 (Peg3) result in FGR,
whereas mice deficient for maternally expressed genes insu-
lin-like growth factor 2 receptor (Igf2r), H19 and Grb10 show
an overgrowth phenotype [10—14] (table 1). Rare imprinting
disorders such as the growth-restricted phenotype of Silver—
Russell syndrome (SRS) may implicate complex roles involving
both absence of growth promoters such as IGF2 and potential
increase of growth restrictors such as GBR10 (reviewed in [26]).
The kinship theory or parental ‘conflict theory’ predicts
that imprinting may have evolved as a result of competition
between the paternal and maternal genome for maternal
nutrient provision. The paternal genome encourages fetal
growth by extracting nutrients from the mother, whereas
the maternal genome counterbalances this by limiting
resources to the offspring to ensure not only her survival,
but also the equal provision of nutrients among her offspring
[41]. Genomic imprinting is observed predominantly in pla-
cental mammals, and it is, indeed, the placenta which
serves as the key regulatory site for this genomic conflict.
More than 100 imprinted genes have been identified in
mice and approximately half of them are conserved in
humans. In addition to this, many more tissue-specific
human-imprinted loci are being discovered (http://igc.otago.
ac.nz/; http://www.har.mrc.ac.uk/) [42]. In the current pro-
ject, we have studied 13 imprinted genes that are highly
expressed in human term placenta and are known to lead to
growth phenotypes when deficient in mice (table 1). In
addition, we included three non-imprinted genes that were
critical to the action of IGF2, which is a key paternally
expressed imprinted growth promoter (table 2). We have inves-
tigated the expression of these genes in both early and late
gestation using the King’s College London (KCL) CVS cohort
(11-13 weeks of gestation) and the Moore term placenta

cohort, respectively, and correlated these data with important
growth parameters such as birthweight, placental weight and
head circumference.

Also, in a separate analysis reported here, the potential influ-
ence of other variables such as the baby’s sex, gestational age,
parity, maternal weight/body mass index (BMI) and maternal
smoking were tested against gene expression. In some situ-
ations, loss of imprinting (LOI) can occur, leading to biallelic
expression of the gene. Because this could potentially influence
the overall gene dosage, term placenta and CVS samples used in
these expression studies were also investigated to see whether
they retained a normal imprinting pattern, or showed monoal-
lelic expression. In this hybrid review/research article, we
summarize our previous findings together with new data.

(c) Insulin-like growth factor axis and /GF2/H19 locus
The insulin/IGF growth factor ‘axis’ constitutes key regulat-
ory endocrine factors of pre- and postnatal growth. These
include insulin (INS), IGF1, IGF2 and their corresponding
receptors (IR, IGFIR and IGF2R), and six binding proteins
(IGFBP1-6) [48]. INS and IGF1 exclusively bind to IR and
IGFIR, respectively, whereas IGF2 can bind to IGFIR,
IGF2R and IR 11-isoform [49]. IGF2R is located on human
chromosome 6G25.3 and shows maternal expression in only
10% of term placentas and CVS [17,50]. One of its major func-
tions is the lysosomal targeting and degradation of IGF2, thus
acting as a growth suppressor [51]. IGF2 and H19 map to one
of the most intensely studied imprinted gene clusters on
human chromosome 11p15. Their reciprocal imprinting is con-
trolled by differential methylation of imprinting control region
1 (ICR1) which is normally only methylated on the paternal
allele [52]. The unmethylated maternal ICR1 allows the binding
of the CTCF transcription factor, blocking the access of IGF2
promoters to the HI19 downstream enhancers, resulting in the
activation of H19 expression. Conversely, the CTCF protein is
prevented from binding to the paternal methylated ICR1,
resulting in monoallelic paternal IGF2 expression owing to
IGF2 promoter interaction with the enhancers. Approximately
50% of the growth-restricted SRS cases show loss of methylation
at ICR1, which could lead to decreased IGF2 expression [24] and
that may well contribute to SRS growth restriction.

In our previous studies, we have shown that IGF2 and
IGF2R expression in term placenta has no correlation with
baby’s birth size parameters. However, their expression
levels in CVS tissues showed a strong positive correlation
with birthweight [17,33], indicating their role as ‘early
growth effectors’. In addition to this study, the expression
levels of H19 (n = 104) relative to the ribosomal protein L19
(L19) endogenous control gene in CVS tissues was measured
by RT-quantitative polymerase chain reaction (qQPCR). The
relative expression levels of H19 were correlated to birth
weight in a regression model adjusted for baby’s sex, parity,
gestational age at birth, maternal BMI and smoking habits.
The CVS expression data for IGF2, IGF2R, H19, PHLDA2,
IGF1 and IGFIR were also correlated to CRL at the gestational
age of 12 weeks, using the same regression model, except this
time the gestational age at CRL measurement was used instead
of gestational age at birth. Correlation between H19 expression
and birthweight was not statistically significant (p = 0.07).
However, there was significant evidence for positive associ-
ation between CRL at 12 weeks and IGF2 expression (p =
0.004; figure 1a), IGF2R expression (p=0.03; figure 1b),
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Table 1. Imprinted genes highly expressed in the placenta. Origin, parental origin of the expressed allele; M, matemally expressed; P, paterally expressed; [JEJi}
ncRNA, non-coding RNA; FGR, fetal growth restriction; Dup, duplication; UPD, uniparental disomy; ICR, imprinting control region; LBW, low birthweight; BW,

birthweight; HC, head circumference; CVS, chorionic villus sampling tissues; CRL, crown—rump length; PIP, phosphatidylinositol phosphate lipid; mat del, g
maternally inherited deletion; pat del, patemally inherited deletion; T1D, type 1 diabetes; TNDM, transient neonatal diabetes mellitus; BWS, Beckwith— S
Wiedemann syndrome; SRS, Silver—Russell syndrome; CNV, copy number variation; asterisk, findings from this study. ?6—’
locus gene origin description mouse KO phenotypes human growth phenotypes E;_
6q24 PLAGLT P zinc finger protein FGR, bone malformation, high TNDM (pUPD6, pDup6g24, ICR §
neonatal lethality [15] hypomethylation) [16] E
6025 IGF2R M/biallelic clearance of IGF2 fetal and placental overgrowth, (VS expression positively correlated to .
organ and skeletal abnormalities BW [17] and CRL* =
[11] N
7p12 GRB10 M/P GF receptor-hound fetal and placental overgrowth [10] implicated in SRS (mDup7p11.2—13) :c.
protein [18]; term placenta expression §
negatively associates with HC* =
7921.3 PEGTO P retrotransposon embryonic lethal due to placental hypermethylation at ICR and reduced 5
derived malformation [19] expression in LBW cord blood [20]; E
upregulated in FGR placenta [21] %
7932.2 MEST P/biallelic a/B hydrolase fetal and placental growth implicated in SRS (mUPD 7q31-qter)
fold family restriction, high postnatal [22]
lethality, abnormal maternal
behaviour [12]
1p15 H19 M long ncRNA fetal and placental overgrowth ICRT hypomethylation [24] and CNV
[13,23] [25] in SRS
1GF2 P growth factor fetal and placental growth restriction (VS expression positively correlated to
BW [17] and CRL*; implicated in
BWS and Wilm’s tumour [26]
(DKNTC M tumour suppressor gestational fetal and placental mutated in IMAGe [28], BWS [29] and
overgrowth [27] SRS [30] patients
SLC22A18 M organic cation not reported term placenta expression associated
transporter with HC [31]
PHLDA2 M PH domain, PIP placental overgrowth [32] highly expressed in lower BW and FGR
binding placenta [21,33—35]; promoter
variant associated with BW [36]
14932 DLKT P transmembrane pre- and postnatal growth associated with T1D [38], UPD14
glycoprotein restriction, high perinatal syndromes [26], T1D SNP correlated
lethality, obese postnatally [37] to BW*
MEG3 M ncRNA postnatal lethal (mat del), pre- and associated with T1D [38], reduced
postnatal growth restriction, high expression in FGR placenta [35]
perinatal lethality (pat del) [39]
19q13.4 PEG3 P zinc finger protein placental and fetal growth tumour suppressor [40]

restriction, abnormal maternal
behaviour [14]

IGF2/IGFIR ratio (p =0.03; figure 1c) and H19 expression
(p=0.04; figure 1d and table 3). These results suggest that
the many members of the IGF axis (IGF2, IGF2R and IGFIR),
and the closely associated H19, shape the growth trajectory
early in pregnancy.

There was no correlation between maternal smoking and
the expression in CVS of the genes tested (those listed above)
in our samples. Nevertheless, we observed an association

between IGF2 expression and parity, whereby IGF2 expres-
sion is higher in the “parity greater than one’ group of babies
(p = 0.03; electronic supplementary material, figure Sla); this
is consistent with the role of IGF2 as a positive growth regula-
tor. This observation is interesting as the majority of second
born babies are bigger [36]. We also found evidence that
the maternal BMI was positively correlated with IGF2R
expression (p =0.03; electronic supplementary material,
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(a) IGF2 versus CRL (b) IGF2R versus CRL
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Figure 1. Correlation between imprinted gene expression in CVS and CRL. Expression levels of each gene relative to the L79 endogenous control gene were cor-
related to crown—rump length (CRL: mm) using a multiple linear regression model adjusted for maternal BMI, baby’s sex, parity, gestational age when CRL was
measured and maternal smoking habit. Positive correlations with CRL and (a) /GF2 expression (r = 0.77; p = 0.004), (b) IGF2R expression (r = 0.76; p = 0.03), (¢)
IGF2/IGF1R ratio (r = 0.74; p = 0.03) and (d) H79 expression (r = 0.74; p = 0.04) were observed. (Online version in colour.)

Table 2. Non-imprinted genes highly expressed in the placenta.

locus gene description mouse KO phenotypes human growth phenotypes
7p12 IGFBP3 carrying protein for IGF1 and retinal vessel loss [43] implicated in common cancers [44]
IGF2
12923.2 1GF1 growth promoter pre- and postnatal growth restriction, pre- and postnatal growth
infertile [45] restriction [46]
15q26.3 IGFIR IGF1 and IGF2 receptor fetal growth restriction and perinatal lethal pre- and postnatal growth

restriction [47]

figure S1b) and negatively correlated with IGF1 (p = 0.046; (d) GBR10
electronic supplementary material, figure Slc). This suggests
that it is important to allow for correction for maternal BMI/
weight when investigating the gene expression in association
with fetal growth. Interestingly, H19 was expressed signifi-
cantly higher in males (p = 0.006; electronic supplementary
material, figure Sle and table S2). The observed sex bias
cannot be explained by LOI (i.e. biallelic expression of H19 in
males only), because all of the CVS tissues tested retained
monoallelic expression (table 4), therefore it is likely to result
from upregulation of the active maternal copy. Males are
normally born bigger than females [36], and the sexual
dimorphism in antenatal biometry has been reported to be evi-
dent around 8-12 weeks of gestation [53]. As H19 is a negative
growth regulator, the higher expression may help prevent male
babies from growing too large.

GRBI10 is located in the human chromosome 7ql12 imprinted
region. Chromosome 7 is implicated in causality for SRS, because
10% of patients show maternal uniparental disomy of chromo-
some 7. FGR is a key feature of SRS, which has been suggested
to result either from the overexpression of a maternally expressed
gene or loss of a paternally expressed growth-promoting gene.
GRBI10 encodes a growth factor receptor binding protein that
can interact with receptor tyrosine kinases and intracellular
proteins [54]. GRBI0 is imprinted in an isoform- and a tissue-
specific manner [55]. In humans, GRB10 shows biallelic
expression in most tissues, while exhibiting isoform-specific
paternal expression in the brain but with maternal expression
confined to the placental villous trophoblast [56]. In mice,
Grb10 is paternally expressed in the brain, but shows ubiquitous
maternal expression in other tissues [55]. This pattern is roughly
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Table 3. The association between mRNA levels and fetal growth in term placenta and CVS. Shading indicates previously published results [17,33]. |}
The correlation significance is indicated by p-values. Correlation coefficient (r) is presented underneath the p-values for the associations reaching significance.

n, number of samples; BW, birth weight; PW, placental weight; HC, head circumference; CRL, crown—rump length; NT, not tested. %

2

term placenta g

s

S
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Table 4. Summary of imprinting analysis in CVS tissues and term placenta. M, maternal expression; P, paternal expression. %, percentage of samples with
monoallelic expression within informative samples; n.a., not available.

parental origin imprinting in term placenta imprinting in CVS polymorphic site

16F2 P 67/67 (100%) 40/40 (100%) rs680

IGFR M/bialllic na. V7YX 151805075

o w iy 1,.(v1. 00%) vvvvvvvvvvvvvvvvvvvvvv o (100%) vvvvvvvvvvvvv r5'1'3'3'9('),' osegs

MEST P/biallelic 34/42 (81%) na. rs10863

DLK1 P 30/30 (100%) na. rs1802710

e o o (1.00%) L L o r545517334, oSS

PEG3 P 14/16 (88%) na.  rs1055359

PEGIO P 42042 (100%) na rs13073, 1513226637

GRB10 ‘ M (placenta), P (brain) n.a. ‘ n.a. ‘ ‘ n.a.

woms  w .23./23,.(100%). L - S r51043046, oot

PLAGLT P a0 na 152076684

o o o (,1 00%,) .................. o . répééf .........
the opposite of what is seen for Igf2, where it is preferentially of its role as a potent growth suppressor [10]. In contrast, mice
maternally expressed in the adult mouse brain but paternally with a disrupted paternal copy showed normal growth but
expressed in other tissues [57]. Inactivation of the maternal increased social dominance behaviour, illustrated by increased

copy of Grb10 results in fetal and placental overgrowth, indicative facial barbering (whisker removal) on cage-mates [58].
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GRBI0 versus HC

adjusted head circumference

-6 -5 -4 -3
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Figure 2. Negative correlation between GRB10 term placental expression and
head circumference. The expression level of GRBT0 relative to the L79 house-
keeping gene was correlated to head circumference (cm) using a multiple
linear regression model adjusted for baby’s sex, parity, gestational age at
birth, maternal weight and smoking habits. GRBT0 expression values in log-
arithmic scale was used. Significant negative association was observed for
GRB10 term placenta expression and head circumference (r =—0.35;
p = 0.04). (Online version in colour.)

In this study, we have observed a significant negative
association between GRBI0 expression (all isoforms) and
head circumference (figure 2, p=0.04), but no significant
correlation with birthweight (p = 0.64) or placental weight
(p = 0.69; table 3). The direction of association is consistent
with the role of GRBI10 as a negative growth regulator. It is
interesting that the observed association is specific to head
circumference, because it is oppositely imprinted in the
brain. There was no correlation between maternal smoking
and expression of the genes tested in term placenta samples
(electronic supplementary material, table S3). Interestingly,
GRB10 expression showed a positive association with increas-
ing gestational age (p=0.03; electronic supplementary
material, figure S2a). This suggests that GRB10 is acting to
suppress the head circumference of the baby close to birth,
because a head size too large for the birth canal would be
detrimental for the mother.

(e) PHLDAZ

PHLDA? is a maternally expressed gene located on the centro-
meric domain of the Chrl1p15 imprinting cluster, along with
other maternally expressed genes CDKNIC and SLC22A1S.
PHLDA? encodes a small (144 amino acid) protein with a
Pleckstrin-homology (PH) domain which has the capacity
to bind membrane phosphatidylinositol phosphate lipids
(PIPs) [59], suggesting a role for it as a cell signalling protein.
In line with the kinship theory, Phlda2-deficient mice have an
enlarged placenta, whereas overexpression of Phlda2 in trans-
genic mice results in placental stunting with a modest
reduction in fetal weight [60,61]. We have previously shown
that birth weight is not correlated with PHLDA?2 expression
levels in CVS tissues, but has a significant negative correlation
in term placenta [17,33], indicative of a function as a ‘late
growth effector’. Other studies have observed upregulation

of PHLDA? in FGR placentas [21,34,35], and in first and
second trimester miscarriage placentas [62]; these data all
support the hypothesis that PHLDA? is an important negative
regulator of growth.

More recently, upregulation of placental PHLDA? expres-
sion among mothers who smoke during pregnancy has been
reported [63]. In our study, however, we did not observe any cor-
relation between maternal smoking and CVS or term placental
expression of PHLDA2 (electronic supplementary material,
table S3). PHLDA?2 expression in CVS and term placenta did
not show correlation with any of the confounding variables
used in the model, except for gestational age. We identified
that reduced PHLDA? expression in CVS tissues was associated
with advancing gestational age at birth (p = 0.0092; electronic
supplementary material, figure Sle). Because a shorter gestation
results in smaller babies, its high expression in CVS fits its role as
a growth suppressor.

All the samples used in the analysis showed monoallelic
expression of PHLDA?, demonstrating that LOI cannot account
for the increased expression seen in the smaller birth weight
babies [33]. To further investigate this correlation, we succes-
sively interrogated the nearby region for potential genetic
variations that correlate with fetal growth. We identified a
rare 15 bp repeat sequence variant (RS1) in the PHLDA?2 pro-
moter region, which has been shown to reduce the PHLDA?2
promoter efficiency [36]. Maternal inheritance of RS1 resulted
in a 93 g increase in birthweight, and when the mother is
homozygous for RS1, the effect on birthweight is 155 g,
suggesting a grand-maternal influence. Paternal inheritance
of RS1 does not influence fetal growth as the variant lies on
the epigenetically silenced paternal allele, emphasizing the
importance of taking into account parent-of-origin effects
when analysing genetic variants. Taken together, these data
show that PHLDA? is a strong negative growth suppressor
and provide a potential pre-pregnancy test, using the RS1
variant, to predict birthweight.

(f) DLKT

DLK1 (PREF1 and FA1) is a paternally expressed gene located
in the human chromosome 14q32 imprinting cluster, approxi-
mately 90 kb away from the maternally expressed non-coding
RNA gene MEG3 (also called GTL2). DLK1 encodes a trans-
membrane glycoprotein with six epidermal growth factor-
like repeat motifs [64], known to be involved in adipogenesis
[65]. DIkI-null mice show high perinatal lethality, pre- and
postnatal growth restriction followed by an obese phenotype
[37], suggesting that it acts as a growth promoter.

In this study, the expression levels of DLK1 (all isoforms) in
CVS (1=99) and term placenta (n = 272) were correlated to
fetal growth parameters. For the CVS analysis, only the tissues
from extreme birthweight babies (less than 10th centile
and more than 90th centile) were used. Using the regression
model as described for H19, we did not observe any association
between DLKI expression and birthweight (p=0.23) or
with CRL (p = 0.16). However, term placental DLK1 expres-
sion did show a weak positive association with birthweight
(p = 0.07; table 3). Although this trend did not reach statistical
significance, the direction of influence is consistent with its
role as a growth promoter. Interestingly, DLKI expression
showed a positive correlation with increasing parity (p = 0.05;
electronic supplementary material, figure S2b and table S3),
possibly increasing the size of the later parity babies.
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Figure 3. The association between paternal A/G SNP rs941576 at the DLKT locus and fetal growth. Partial residual plots illustrating the correlation between paternal
inheritance of the A or G allele and (a) birthweight (g), (b) head circumference (cm) and (c) placental weight (g), corrected for baby’s sex, parity, gestational age,
maternal weight and smoking habit in the multiple regression model. In comparison to the A allele, paternal G allele inheritance is associated with significantly
reduced birthweight (p = 0.01, 95% (I —232 to —32) and head circumference (p = 0.01, 95% (I —0.85 to —0.11) but not with placental weight (p = 0.98,
95% (I — 35 to 35). Paternal A/G, paternal transmission of A/G SNP rs941576; A, paternal transmission of the A allele; G, paternal transmission of the G allele; BW,
birthweight; HC, head circumference; PW, placental weight. (Online version in colour.)

The rs941576 (G/A) SNP of the DLK1-MEG3 gene region
on human chromosome 14 has previously been identified as
a type 1 diabetes (T1D) susceptibility locus [38]. A reduced
paternal, but not maternal, transmission of the protective G
allele was observed in the T1D-affected individuals, showing
a clear parent-of-origin effect. It was suggested that the
rs941576 variant may affect nearby paternally expressed
genes, including DLKI. Notably, higher birthweight has
been linked to increased T1D risk [66—68]. This prompted
us to test whether paternal transmission of the protective G
allele is associated with (i) lower DLKI expression and/or
with (ii) reduced birthweight using the DNA samples from
the Moore cohort. Because this is located within intron 6
of MEG3 and 105 kb downstream of DLKI, its potential
influence on MEG3 expression was also tested.

In this study, 295 trio DNA samples from the Moore cohort
were used for genotyping the rs941576 SNP. The resulting
frequencies of the three genotypes were GG: 24%, AG: 45%
and AA: 31%. 112 and 141 babies inherited paternal G and
Abases, respectively, and 119 and 132 babies inherited maternal
G and A, respectively. Using multiple linear regression analy-
sis, we found that paternal or maternal transmission of the
G allele is not correlated with DLK1 expression (p = 0.47 and
p=0.63, respectively) or with MEG3 expression (p=0.7
and p = 0.085, respectively).

Next, the association between the inheritance of a paternal
G allele with fetal growth was investigated, using a multiple
linear regression model, adjusted for sex of the baby, parity,
gestational age and maternal weight and smoking habit.
Paternal transmission of the G allele was significantly

associated with an average decrease of birthweight by 132 g
(p=0.01, 95% CI— 232 to —32; figure 3a), and a 0.5cm
reduction in head circumference of the baby (p = 0.01, 95%
CI —0.85 to —0.11; figure 3b), but not with placental weight
(—0.45¢g; p=0.98, 95% CI —35 to 35; figure 3c). Importantly,
the scale of birthweight reduction (—132 g) associated with
paternal G transmission is similar to that of the maternal smok-
ing (—152 g). Maternal inheritance of the G or A allele was not
associated with birthweight (p =0.8), head circumference
(p=0.62) or placental weight (p=0.86), consistent with
the observed paternal effect of the protective G allele in
T1D susceptibility.

(g) Other imprinted genes studied

No evidence of correlation between H19, MEG3, PEG10, PEG3,
SLC22A18, CDKNI1C, PLAGLI_imp (imprinted transcript),
PLAGLI_all (all transcripts) or IGFBP3 expression, in term pla-
centa, with fetal growth was observed (summarized in table 3).
In addition, we were unable to corroborate a previously
reported association between SLC22A18 expression and head
circumference [31]. We did not observe any LOI in our samples,
except for PEG3, where 2/16 (12%) samples showed biallelic
expression in term placenta. Table 4 details the polymorphic
variants used for each gene and imprinting analysis results.

It was not possible to test all the candidate genes in both
term placenta and for CVS tissues, owing to the limited avail-
ability of material for the latter, whereas some candidates
also showed a level of expression undetected by quantitative
PCR. Therefore, the candidate genes have been prioritized
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according to their functional relevance. Although it would
have been interesting to test GRBI0 expression in CVS,
head circumference measurements were not available for
the KCL CVS cohort.

2. Discussion

Suboptimal or excessive intrauterine growth leads to perinatal
morbidity and mortality, as well as an increased risk for adult-
hood diseases [4]. Finding genetic factors that regulate normal
fetal growth will potentially provide more precise monitoring
of intrauterine growth. Genomic imprinting epigenetically
silences one parental allele resulting in monoallelic expression.
It is now accepted that paternally expressed genes tend to
encourage fetal growth, whereas maternally expressed genes
restrict this. In this paper, the role of imprinted genes on fetal
growth was explored by summarizing and connecting our
previous and current findings. Although DNA methylation
plays a key regulatory role in imprinted gene expression,
their methylation statuses were not assessed in our samples
as CVS is a limited resource. RNA expression variation is
downstream of DNA methylation or other possible DNA regu-
latory factors, and therefore potentially more functionally
relevant. An additional DNA methylation status assessment
would be an interesting aspect for the future study.

(a) The early and late effectors of fetal growth
Combining past and present studies, we have investigated
the correlation between fetal growth measurements and
expression levels of 13 imprinted and three non-imprinted
genes highly expressed in CVS tissues and term placenta
(tables 1 and 2). Our candidate gene approach has identified
some early and late effectors of fetal growth. We have shown
that the CVS expression of IGF2 and IGF2R is positively cor-
related to birthweight, whereas this correlation disappears in
term placenta (table 3). Conversely, PHLDA?2 expression in
CVS is not correlated to birthweight, whereas PHLDA?2
expression at term is strongly negatively correlated to birth-
weight. Although GRBI10 expression in CVS was not tested,
its expression in term placenta showed a strong negative
association with head circumference. These observations
suggest that IGF2 and IGF2R can act to set the growth poten-
tial of the baby early in the pregnancy, and two maternally
expressed growth suppressing genes, PHLDA2 and GRBI0,
act to fine tune growth in late pregnancy, potentially to
avoid the risk of giving birth to a macrosomic baby. Impor-
tantly, mouse studies indicate that both Phlda2 and Grb10
control placental growth by mechanisms independent of
Igf2 [10,32], implying the evolution of separate pathways to
control overall fetal size, possibly reflected by the difference
in timing of their functional action.

The first half of placental development is characterized by a
series of important trophoblast proliferation and differentiation
processes, forming mature villous and extravillous structures.
The second half of gestation results in an extensive vasculariza-
tion and placental mass expansion [69]. Early gestational insults
such as maternal diabetes have been associated with long-
term effects on the fetus, owing to their influence on the initial
structural formation of the placenta. It is possible that IGF2
and IGF2R are key regulators of early formation of the placenta,
which then sets the growth capacity of the fetus and placenta for
the rest of gestation. Interestingly, overexpression of mouse

Phlda?2 results in placental size reduction, with decreased glyco- [ 8 |

gen storage and failed mobilization, accompanied by
progressive fetal weight loss in late gestation [61]. It has been
suggested that halving Phlda2 expression by silencing the
paternal allele later in gestation may promote energy provision
for the fetus at this time, by increasing the glycogen stores that
will be used in late gestation when there is a particularly high
nutrient demand from the fetus [61].

(b) Environment and other physiological effectors on
gene expression

Although placenta is fetal in origin, it is under the influence
of both maternal and fetal circulation. The placental villi con-
sist of syncytiotrophoblasts facing the maternal blood, with
cytotrophoblasts in the middle and endothelial cells facing
the fetal circulation [69]. Therefore, the mRNA measured in
the placenta could be a result of response to the hormones
and growth factors present in both maternal and fetal circula-
tion. In this study, potential influences of environmental
variations (maternal weight/BMI and maternal smoking)
and physiological variation (baby’s gender, gestational age
and parity) on gene expression were tested.

We did not observe a correlation between maternal smok-
ing and gene expression levels with all genes tested in both
CVS and term placenta (electronic supplementary material,
table S2). This result contradicts the previous report where
the upregulation of placental PHLDA?2 in smokers (n = 12)
compared with non-smokers (1 =64) was observed in a
microarray experiment [63]. This could be due to different
sensitivities between the two techniques. However, our cohorts
contained more smokers (n =27, Moore cohort and n = 33,
CVS cohort; electronic supplementary material, table S1),
which allows for more accurate measure of expression. IGF2R
expression in CVS showed a positive association with mater-
nal BMI (electronic supplementary material, figure S1b and
table S2). This is interesting, because IGF2R has been found
in the syncytiotrophoblast, which is in direct contact with the
maternal blood circulation, and therefore possibly regulating
the effect of fetal IGF2 levels on the mother [70].

Notably, we have found a sex-biased expression of H19
in CVStissues, where it is expressed more highly in males (elec-
tronic supplementary material, figure S1d). H19 has previously
been reported to show female-biased expression in mouse eyes
[71]. Therefore, H19 expression could be dually regulated
according to the sexes of the parent (imprinting) and also the
baby (sexual dimorphism), in a tissue- and time-specific
manner. Moreover, downregulation of PLAGL1 in FGR pla-
centa of females, but not males, has been reported [72]. This
was not evident in our normal term placenta samples, imply-
ing FGR-specific effects. Insight into the effect of sexual
dimorphism is important for understanding both normal
molecular mechanisms and sex-biased disease conditions.

(c) DLKT, type 1 diabetes and parent-of-origin effect on
fetal growth

Type 1 diabetes (T1D) is caused by autoimmune destruction of
pancreatic beta cells, resulting in insulin deficiency, although
its aetiology is not fully understood [68]. The DLK1-MEG3
imprinting locus has recently been identified as a T1D suscep-
tibility region, marked by the rs941576 SNP in which paternal
inheritance of a G allele was associated with reduced risk [38].

2007107 ‘0LE § 205 Y "supi] Jiyd  Bio-buysigndAranosieforqiss


http://rstb.royalsocietypublishing.org/

Downloaded from http://rstb.royalsocietypublishing.org/ on May 15, 2015

paternal G

\ A
paternal G ' N
slight decrease associated with 1 POS'UVe'
but not significant reduced BW : correlation
1
1
DLK] expression - birthweight

positive trend

Figure 4. Current hypothesis on the association between paternal G SNP
1941576 and fetal growth. Solid lines indicate results from this study and
dotted lines indicate published data [41—43]. Paternal inheritance of the
G allele is associated with an average reduction in birthweight by 132 g
(p=0.01). The paternal G allele is also correlated with reduction in
DLK7 expression although not significantly (p = 0.47). There was a trend
of positive association between DLKT expression in term placenta and
birthweight (p = 0.07). Our hypothesis suggests that the paternal G
allele reduces DLKT expression which causes reduction in birthweight and
risk of type 1 diabetes. (Online version in colour.)

DLK1 is highly expressed in pancreatic islet cells and is
involved in differentiation of pancreatic beta cells, suggesting
its strong functional candidacy [73].

In this study, we found that paternal transmission of the
protective G allele results in a significant decrease of birth-
weight, by 132 g (figure 3a), and head circumference, by
0.5cm (figure 3b). Of note, higher birthweight has been
linked to increased T1D risk [66—68]. Therefore, paternal
inheritance of the G allele may give protective effect from
T1D via its association with reduced birthweight. This could
also be associated with a decrease in DLK1 expression although
this association did not reach statistical significance. Impor-
tantly, the magnitude of birthweight reduction (—132 g) and
head circumference (—0.5 cm) related to the paternal G allele
inheritance was similar to that observed for the increase in
birthweight (+155 g) and in head circumference (4+0.23 cm)
caused by inheriting a PHLDA2 promoter RS1 allele from a
RS1 homozygous mother [36]. Our current working hypothesis
regarding the relationship between the role of DLKI in fetal
growth and T1D is described in figure 4 [37,64,65].

3. Conclusion

We have identified that expression of IGF2 and IGF2R in
early placenta (CVS) are positively correlated to CRL and
birthweight, but not in term placenta when the oppositely
maternally expressed genes PHLDA2 and GRBI0 act to
negatively regulate growth. We have also identified that the
paternal transmission of the TI1D protective G allele of
rs941576 SNP results in a significant reduction in birthweight
(p=0.01, 95% CI—232 to —32), emphasizing the importance
of accounting for parent-of-origin effects when analysing geno-
mic data. Characterization of genes important in intrauterine
growth will allow a more accurate surveillance of fetal growth
and help identify targets for clinical intervention in suboptimal
pregnancies. During pregnancy, a combination of different
levels of imprinted genes or genetic predispositions will affect
the baby’s birthweight. An additional environmental layer is
added by maternal smoking. Further investigation of all these
candidates is warranted in larger cohorts to identify further
genetic variants that exhibit parent-of-origin associated

growth regulation and to find gene expression variations. [ 9 |

Together with previously known genetic variants associated
with fetal growth (reviewed in [26]), and expression studies,
these may be used as an effective, combined diagnostic tool
to identify and predict growth-restricted and macrosomic
babies, which would provide huge benefits for the short- and
long-term health of both mother and baby.

4, Materials

(a) King’s College London chorionic villus sample cohort
CVS was carried out between 11 and 13 weeks of gestation in
355 singleton pregnancies that were followed by normal live
birth at term. Participants were undergoing CVS for prenatal
diagnosis for chromosomal abnormality at King’s College
Hospital London. The samples used in this study were
obtained from excess CVS tissues from fully ethically con-
sented women, and the research was approved by the King’s
College Hospital Ethics Committee. The medical records of
this cohort are summarized in the electronic supplementary
material, table S1 [17].

(b) Moore cohort

The Moore cohort consists of 302 consented white European trios
recruited at Queen Charlotte’s and Chelsea Hospital between
2003 and 2004 [33]. The placental samples were collected from
ultrasound dated, live birth singleton pregnancies. Each placen-
tal sample was dissected into four pieces near the umbilical cord
insertion point, washed in phosphate-buffered saline, snap-
frozen in liquid nitrogen and stored at —80°C. Parental blood
samples (10 ml) were collected in EDTA tubes. The medical
records and characteristics of the Moore cohort are summarized
in the electronic supplementary, table S1.

5. Methods
(@) DNA and RNA extraction

Total RNA from term placental tissue was extracted using Trizol
reagent (Life Technologies), and treated with TURBO DNase
(Ambion) according to the manufacturers guidelines. Fetal
DNA from 1 g of term placental tissue and parental DNA from
2ml of whole blood were isolated using a standard phenol-
chloroform protocol. RNA and DNA from CVS tissues were
extracted by the iPrep PureLink total RNA and TrizolPlus
RNA kit, including the DNase treatment and iPrep Charge-
Switch gDNA tissue kit using the iPrep purification instrument
(Life Technologies) following the manufacturer’s instructions.
The quantity and purity of nucleic acid was measured by Nano-
Drop ND-1000 spectrophotometer (Thermo Scientific). Only
RNA samples with the 260/260 ratio in the range of 2 + 0.2
were used for further study.

(b) Reverse transcription

A first strand of complementary DNA (cDNA) was synthesized
from 1 ug (term placenta) and 100 ng (CVS) of RNA with Molo-
ney murine leukemia virus reverse transcriptase (M-MLV RT)
according to the manufacturer’s instructions (Promega). Dupli-
cate sets of samples without reverse transcriptase were made
as negative controls to detect any genomic contamination in
RNA samples. The conversion of RNA to cDNA was confirmed
by polymerase chain reaction (PCR) with Tag DNA polymerase
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(Bioline) beta-actin (ACTB) primers (electronic supplementary
material table S5).

() Quantitative polymerase chain reaction

qPCR was performed using the Power SYBRGreen PCR master
mix (Life Technologies). Each sample was tested in triplicate,
and each plate contained a no-template-control and a cDNA
pool as a reference sample to control for interplate variations.
The reaction plate was placed on the StepOne plus real-time
PCR systems, analysed in the comparative C; mode. Ribosomal
protein L19 (L19) housekeeping gene was used as an endogenous
control throughout the experiments. Thermal cycle conditions
consist of initial incubation at 50°C for 2 min for one cycle, poly-
merase activation at 95°C for 10 min for one cycle and 40 cycles
of denaturation at 95°C for 15 s, and annealing and extension at
60°C for 1 min. The efficiency of the primers was determined by
running a standard curve and calculated by 10C1/51°P) — 1. The
qPCR primer sequences are provided in the electronic sup-
plementary material, table S4. The resulting data were analysed
with the STEPONE v. 2.1 software to obtain relative quantification
(RQ) values, using the formula RQ = pmAACt

(d) Imprinting analysis

Monoallelic expression of genes was investigated by sequencing
gene-specific amplicons from cDNA samples that corresponded
to genomic DNA heterozygous for selected SNPs. Parental DNA
was available for term placental samples, and was used for sequen-
cing to check the parental origin of the expressed allele. SNPs with
relatively high average heterozygosity were chosen for each gene
within the exon covering all isoforms. PCR primer sequences are
summarized in the electronic supplementary material, table S5,
and the list of selected SNPs is found in table 4. Sequencing was
carried out using the BigDye terminator v. 1.1 cycle sequencing
kit (Life Technologies), and the read-out was analysed with
SEQUENCHER V. 4.8 (Gene Codes Corporation).

(e) Statistical analysis
All statistical analyses were performed using the R software (R
Foundation for Statistical Computing). The relative expression
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