UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force

Bichet, M; Joly, C; Henni, AH; Guilbert, T; Xémard, M; Tafani, V; Lagal, V; ... Tardieux, I; + view all (2014) The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force. BMC Biology , 12 , Article 773. 10.1186/s12915-014-0108-y. Green open access

[thumbnail of The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force.pdf]
Preview
Text
The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force.pdf

Download (9MB) | Preview

Abstract

BACKGROUND: The public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their related causative agents Toxoplasma and Plasmodium, respectively, to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their host cells has been highlighted as a priority research with the perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanism of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell-cell junction but this model lacks direct evidence and has been challenged by recent genetic studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyze characteristic features of the kinematics of penetration of more than 1,000 invasion events. RESULTS: The majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into an invaginating host cell plasma membrane. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and, therefore, are unable to locally remodel the cortical actin cytoskeleton, the junction travels retrogradely with the host cell membrane along the parasite surface allowing the formation of a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However, about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RhOptry Neck (RON2) molecules are posteriorally capped before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics junction capping and entry failure are drastically reduced. CONCLUSIONS: This kinematic analysis newly highlights that to invade cells parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.

Type: Article
Title: The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s12915-014-0108-y
Publisher version: http://dx.doi.org/10.1186/s12915-014-0108-y
Language: English
Additional information: Copyright © Bichet et al.; licensee BioMed Central. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Keywords: Actin Capping Proteins, Actins, Cell Membrane, Cells, Cultured, Host-Parasite Interactions, Humans, Intercellular Junctions, Luminescent Proteins, Models, Biological, Plasmodium, Protozoan Proteins, Toxoplasma
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology
URI: https://discovery.ucl.ac.uk/id/eprint/1460473
Downloads since deposit
77Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item