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Abstract 

 
The neuronal ceroid lipofuscinoses (NCLs) are a group of severe neurodegenerative 

lysosomal storage disorders characterised by accumulation of autofluorescent ceroid 

lipopigments in most cells. NCLs are caused by mutations in at least fourteen 

recessively inherited human genes. The NCL genes encode both soluble and 

transmembrane proteins localised to the endoplasmic reticulum, Golgi apparatus or 

endosomal/lysosomal organelles. Mutations in the CLN3 gene result in juvenile 

neuronal ceroid lipofuscinoses (JNCL, Batten disease). JNCL represents the worldwide 

most common form of NCL. Currently more than 40 mutations have been characterised 

in the CLN3 gene. However, the most common mutation causes a 1-kb deletion. CLN3 

encode a multi-pass type III transmembrane protein, which is conserved in single-celled 

eukaryotes such as the fission yeast Schizosaccharomyces pombe, suggesting a 

fundamental role for this protein in eukaryotic cells. CLN3 has been functionally linked 

to many different cellular processes, including lysosomal homeostasis, autophagy, lipid 

synthesis or modification, cytoskeleton organisation and trafficking. Despite these 

endeavours, the function of CLN3 remains unclear. 

 

The main goal of this project was to investigate the role of the Golgi apparatus in the 

pathogenesis of juvenile CLN3 disease. The role of CLN3 at the Golgi apparatus was 

studied in mammalian cells and in fission yeast model. The morphology of the Golgi 

complex was studied in fibroblast cell lines from patients and in HeLa cells depleted for 

CLN3 using RNAi. The observed changes in morphology were accompanied by 

manganese dyshomeostasis within the Golgi complex, ER stress and apoptosis. The 

morphology of the Golgi complex was studied in S. pombe using electron microscopy in 
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order to confirm the changes observed in mammalian cells. Finally, drugs shown to 

ameliorate aspects of the yeast model of CLN3 disease were tested for their efficacy in 

mammalian cells as an early step in therapeutic development. In this study I have shown 

that both morphology and size of the Golgi apparatus result to be affected by the 

loss/depletion of CLN3. Moreover, the changes in Golgi complex morphology and size 

are accompanied by manganese dyshomeostasis within the Golgi complex with 

activation of ER stress and activation of the proapoptotic protein caspase 2. Together, 

these data suggest that the loss/depletion of CLN3 activates secretory stress pathways 

and cell death. A dysfunctional Golgi apparatus may be the key to uncover the role of 

CLN3 and find new targets for therapeutic development. 
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1.1 Overview 

The neuronal ceroid lipofuscinoses (NCLs) are a group of lysosome storage diseases 

caused by mutations in known and unknown proteins with different cellular locations 

such as Golgi apparatus, endoplasmic reticulum (ER) and lysosomes. They are the most 

common childhood neurodegenerative disorders and most are inherited in an autosomal 

recessive manner. Mutations in the CLN3 gene cause the juvenile form of NCL. The 

CLN3 protein localises at the Golgi complex, possibly also at the lysosome, and it is 

unclear how mutations in CLN3 lead to accumulation of storage material in the 

lysosomes. 

 

The introduction is divided in five sections; the first includes a brief description of the 

lysosomal storage diseases, the second section focuses on NCLs and introduces the 

proteins involved, the third will discussed the juvenile form of NCL and the fourth will 

present the Golgi apparatus, in mammals and yeast, and its crucial role in manganese 

(Mn2+) homeostasis along with its relation with neurodegenerative disease. The last 

section includes an introduction to the endoplasmic reticulum (ER) stress and unfolded 

protein response and their role in neurodegenerative disorders.  
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1.2 Lysosomal storage disorders 

 

Inborn metabolic errors are a common cause of inherited diseases (Burton 1998), in 

which the lysosomal storage disorders (LSDs) are grouped. LSDs share the common 

phenomenon of accumulation of storage material in the lysosome accompanied by 

cellular pathology. Over 40 different LSDs have been described to date with different 

components of storage material and different affected cell types (Vellodi 2005). 

 

They tend to be progressive, although the rate of progression is variable, and show 

almost exclusively recessive autosomal inheritance. Most LSDs result from a defect in a 

lysosomal hydrolase, leading to incomplete degradation of macromolecules and 

subsequent accumulation of these products (Winchester et al., 2000; Futerman and van 

Meer 2004).  Furthermore, alterations in the lysosome degradation have been described 

in normal brain aging and in age-related neurodegenerative diseases such as Alzheimer 

(Oyama et al., 1998), Huntington (Dyer and McMurray 2001; Qin et al., 2004) and 

Parkinson’s disease (Sevlever et al., 2008).  Those findings highlight the central role of 

lysosomes during the cell homeostasis processes. 
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1.3 Neuronal ceroid lipofuscinoses 

 

The neuronal ceroid lipofuscinoses (NCLs) were first described almost 2 centuries ago 

by Stengel (Stengel 1826; Stengel 1982). However, it was only in 1960 that Zeman and 

Dyken introduced the name NCL to distinguish them from the gangliosidoses (Zeman 

and Dyken 1969; Goebel 1999). The common characteristic of the NCLs is the presence 

of autofluorescent storage material resembling ceroid and lipofuscin lipopigments that 

also accumulate during the normal ageing process. This storage material is observed in 

many tissues and cell types. However, the pathological effect of the disease is most 

prominent in the central nervous system (CNS) and the eyes. There are several subtypes 

of NCLs, each of which is associated with a distinct gene and differs according to age of 

onset, disease progression and severity and the morphological appearance of the storage 

material (Goebel 1999; Wisniewski et al., 2001). 

  

Historically, the classification of the NCLs has been clinically led, according to the age 

at onset of symptoms in: infantile, late infantile (LINCL), juvenile (JNCL) and adult 

(ANCL) NCLs. However, the NCLs are more genetically heterogeneous than initially 

thought. Mutations in the same gene may also lead to very different disease courses 

(Lebrun et al., 2011; Kousi et al., 2012) (table 1.3.1). An internationally developed new 

NCL nomenclature clearly identifies each NCL disease both genetically and clinically  

(table 1.3.1) (Mole 2011; Williams and Mole 2012). It classifies both the defective gene 

as well as the age at disease onset (congenital, infantile, late infantile, juvenile and 

adult).  To date, fourteen different NCL genes have been described (table 1.3.1) (Kousi 

et al., 2012; Jalanko and Braulke 2009; Arsov et al., 2011; Noskova et al., 2011; Bras et 

al., 2012; Smith et al., 2012; Staropoli et al., 2012; Smith et al., 2013). More NCL genes 
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remain to be indentified as in some patients mutations cannot be demonstrated in any of 

the known NCL genes although they show the typical NCL symptoms and characteristic 

lysosomal storage material. Intracellular localisation and function (where known) (table 

1.3.2) of the defective NCL proteins are different: four NCL types are caused by defects 

in lysosomal enzymes (CLN1; CLN2; CLN10; CLN13), others by defects in 

transmembrane proteins (CLN3; CLN6; CLN7; CLN8) (Jalanko and Braulke 2009). 

Mutations in an ATPase gene (CLN12) (Bras et al., 2012) and a potassium channel gene 

(CLN14) (Staropoli et al., 2012) also cause NCL disease. The recently identified CLN4 

gene (DNAJC5) codes for a protein with putative function in synapses (Noskova et al., 

2011). How these genetic defects lead to neurodegeneration is still not clear. Clinically, 

the different NCL diseases have much in common despite their heterogeneity. This is 

important both for diagnosis and palliative care.   

 

Common pathological characteristics of NCL diseases progression include progressive 

visual deterioration leading to blindness, epilepsy, intellectual and motor decline. 

Eventually all affected individuals die prematurely due to death of cortical neurons 

(Goebel 1999). The appearance of the storage material is characteristic for each type of 

NCL and has long been used as a diagnostic tool (Goebel 1999). There are four main 

types of storage with some additional variant forms: granular osmiophilic deposits 

(GRODs), curvilinear profiles (CL), rectilinear bodies (RL) and fingerprint bodies (FB) 

(Goebel 1999). In particular the RL and FB are typical features of CLN3 disease 

(Goebel 1999).  
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Phenotype 

 
Gene and age of onset 

 
Gene  Age of onset 

Congenital CLN10/CTSD Before or 
around birth 

Infantile  CLN1/PPT1 6-24 mo 
CLN14/KCTD7  

Late 
Infantile 
(LINCL) 

Classic CLN2/TPP1 2-4 yrs 

Variant 

CLN5 4-7 yrs 
CLN6 18 mo-8 yrs 

CLN7/MFSD8  
CLN8 3-7.5 yrs 

CLN10/CTSD  
CLN1/PPT1  

 
Juvenile 
(JNCL) 

Classic CLN3  
 

4-10 yrs 
Variant 

CLN1/PPT1 
CLN2/TPP1 

CLN9 
CLN12/ATP13A2 

Northern epilepsy 
(NE)  

(progressive epilepsy 
with mental retardation 

[EPMR]) 

CLN8 5-10 yrs 

Adult (ANCL) 
(Kufs disease) 

CLN10/CTSD, 
CLN1/PPT1, 
CLN3, CLN5, 

CLN6, 
CLN13/CTSF, 
CLN11/GRN 

15-50 yrs 

Adult (ANCL) 
(Parry disease) 

autosomal dominant 
CLN4/DNAJC5 

 

Table 1.3.1 - NCL phenotypes and their known associated genes 
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Gene Protein Solubility and 
topology Localisation 

CLN1 

PPT1 
Palmitoyl 

protein 
thioesterase 1 

Soluble Lysosomes 

CLN2 
TPP1 

Tripeptidyl 
peptidase I 

Soluble Lysosomes 

CLN3 CLN3 Transmembrane 
Golgi 

complex, 
Lysosomes 

CLN4 DNAJC5 Soluble Cytoplasm 
CLN5 CLN5 Soluble Lysosomes 

CLN6 CLN6 Transmembrane  Endoplasmic 
reticulum 

CLN7 MFSD8 
 Transmembrane Lysosomes 

CLN8 CLN8 Transmembrane Endoplasmic 
reticulum 

CLN9 Not known Not known Not known 

CLN10 CTSD 
Cathepsin D Soluble Lysosomes 

CLN11 Granulin  
GRN Soluble Secreted 

CLN12 ATP13A2 Transmembrane 
(Mn transporter) Lysosomes 

CLN13 Cathepsin F Soluble Lysosomes 

CLN14 KCTD7 
Transmembrane 

(Potassium 
channel) 

Plasma 
membrane 

              Table 1.3.2 - Intracellular localisation of the NCL genes products 

 

 

Changes in lysosomal pH have been reported as a result of mutations in NCL genes 

(Holopainen et al., 2001), although to date it has not been elucidated how this affects 

lysosomal function in NCL patients. Fibroblast cell lines from patients with mutations 

in CLN1, CLN3, CLN5, CLN6 and CLN8 showed increased lysosomal pH, with CLN6 

and CLN1 being the most affected. A slight reduction in lysosomal pH was observed in 

fobroblast cells from patients with mutations in CLN2. 

 



1 Introduction 

	
   23 

1.4 Juvenile NCL (JNCL) 
 

 
The most common neuronal ceroid lipofuscinosis is the juvenile form of NCL 

(Consortium 1995), JNCL, more recently renamed as CLN3 disease. JNCL manifests 

the first symptom in children between the ages of 4-10 years old, as visual failure, 

caused by retinal degeneration, which leads to blindness within 2-4 years of onset. 

Learning difficulties become evident in early school years and epilepsy often develops 

around the age of 10. Motor symptoms become evident around puberty and clinically 

manifest as extrapyramidal and pyramidal signs, which gradually lead to loss of 

independent mobility.  The movement disorder in JNCL is Parkinsonism that is 

sometimes responsive to L-DOPA. Usually, the motor impairment is accompanied by 

speech difficulties. There are also psychiatric and sleep problems. In addition to the 

neurological manifestations, the patients present cardiac abnormalities in the second 

decade of life. The disease leads to premature death, usually in the second or third 

decade of life (Consortium 1995; Jalanko and Braulke 2009). JNCL is one of the most 

prevalent types of NCL worldwide, and results from an autosomal recessive inheritance 

of mutations in the human gene CLN3. 
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1.4.1 CLN3 

The juvenile NCL is caused by mutations in CLN3 gene, mapping on chromosome 

16p12.1 (Callen et al., 1991) and more than 40 disease-causing mutations have been 

identified in the CLN3 gene (http://www.ucl.ac.uk/ncl) (Consortium 1995; Munroe et 

al., 1997; Lauronen et al., 1999; Bensaoula et al., 2000; Kwon et al., 2005; Leman et al., 

2005; Sarpong et al., 2009; Drack et al., 2013). CLN3 is highly conserved across the 

species such as mouse, fruit fly as well as fission and budding yeast (Gachet et al., 

2005) (Figure 1.4.1.1).  

Figure 1.4.1.1 - Protein alignment between human CLN3 and its homologous proteins in 
mouse (Cln3) and two yeast species (Btn1), S. cerevisiae (S.cerev) and S. pombe (S.pombe). 
Shading indicates identical (dark) or similar (grey) residues. The position of residues 
mutated in S. pombe Btn1 during the course of this work that mimic those causing NCL are 
indicated by an asterisk (*). The likely transmembrane segments (TMS) in human CLN3 are 
indicated by ==. The positions of TMS are based on original predictions (Janes et al., 1996), 
recent work (Ezaki et al., 2003; Kyttälä et al., 2003; Mao et al., 2003) and the assumption 
that the sequence of TMS will be conserved between mammalian and yeast species. (taken 
from Gachet et al., 2005). 
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The majority of JNCL patients have a 1-kb deletion in common (Mole 2011) and 

around 74%, are homozygous for this mutation. However, about 22% of patients are 

compound heterozygous for the 1-kb mutations and one of the other rare mutations 

(Munroe et al., 1997) that comprise missense, nonsense and splice site mutations 

(http://www.ucl.ac.uk/ncl).  

 

The breakpoints of the 1-kb mutation are in introns 6 and 8, resulting in loss of exons 7 

and 8. This deletion leads to  two different transcripts; one causes a frameshift and 

premature termination after aminoacid 153 and the second one comes from alternative 

splicing bringing the 3’ end back into frame at residue 294 (Kitzmuller et al., 2008). In 

addition, it has been shown that the premature termination codon induced by the 1-kb 

deletion is recognized by nonsense-mediated decay, leading to the CLN3 mRNA 

degradation and consequent decrease in protein synthesis (Miller et al., 2013). In 

addition, it has been shown that an uncommon 16p11.2 microdeletion cause an unusual 

16p11.2 syndrome, with some feature resembling the JNCL, caused by the unmasking 

of a recessive mutation of CLN3 (Pebrel-Richard et al., 2014). 

 

The CLN3 gene encodes a highly hydrophobic type III transmembrane (TM), both N- 

and C-terminus facing the cytoplasm, protein of 438 aminoacids (Janes et al., 1996; 

Kaczmarski et al., 1999).  The first empirical topological evidence described CLN3 as a 

type II transmembrane protein with five transmembrane spanning domains (Mao et al., 

2003). However, further studies indicated that the N-terminus faces the cytoplasm that 

categorises CLN3 as a type III TM protein with six spanning domains (Kyttala et al., 

2004). In addition, a computational approach confirmed the topology of CLN3 with an 

additional inclusion of a conserved luminal amphipatic helix (Nugent et al., 2008). The 
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CLN3 topology is shown in figure 1.4..1.2.  Recently, a new CLN3 topology has been 

proposed. The new topology model for CLN3 agrees with the previous proposed CLN3 

topology. However, it differs from the precedent model in terms of position of the 

transmembrane domains (TMDs) and the length of luminal and cytosolic loops 

(Ratajczak et al., 2014). 

 

	
  

Figure 1.4.1.2 - CLN3 is a type III TM protein with six transmembrane domains, N- and C-terminus 
facing in the cytoplasm and the amphipathic helix in the third luminal loop (taken from Nugent et al., 
2008). 

 

 

Interestingly, all the known disease-causing mutations are lodged in or adjacent to a 

predicted transmembrane helix, or in the conserved luminal loop or in the C-terminus 

(Nugent et al., 2008). Indeed, mapping the missense and nonsense mutations on CLN3 

reveals that most of these mutations are in the luminal side of the protein. In particular, 

the common 1-kb deletion cause the loss of the second luminal loop, which is one of the 

most conserved across the species (Gachet et al., 2005; Muzaffar and Pearce 2008; 

Ratajczak et al., 2014) (Figure. 1.4.1.1 and figure 1.4.1.3). 
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Figure 1.4.1.3 - CLN3 topology and juvenile-onset neuronal ceroid lipofuscinosis mutations 
The predicted topology of CLN3 is depicted. Sites for post-translational modifications are shown (blue 
forked lines represent N-glycosylation, zigzag represents prenylation and dotted line represents a possible 
cleavage site following prenylation), and point mutations are marked by red (missense) and yellow 
(nonsense) colored circles. A reported polymorphism at residue 404 (H/R) is shown (dark blue). Residues 
E295 and Q352 are both red and yellow as they are sites for both missense and nonsense mutations. †A 
residue that has been associated with slower disease, in compound heterozygosity with the common 1-kb 
deletion mutation. ‡A residue that has been associated with slower disease in homozygosity (taken from 
Cotman, S.L. and Staropoli, J.F., 2012). 

 

  

Sequence analysis of CLN3 predicts different potential sites for posttranslational 

modifications. There are four putative N-glycosylation sites and consensus sequences 

for phosphorylation, farnesylation and myristoylation. Studies, done using CLN3 

overexpressed, have shown that CLN3 is present in two different forms; the non 

glycosylated and a N-glycosylated form (Jarvela et al., 1998). In particular, CLN3 has 

two glycosylation site at Asn71 and Asn85 (Storch et al., 2007) and also, it might be 

glycosylated at Asn310 (Mao et al., 2003) In addition, it has been shown that the 

glycosylation of CLN3 varies in different tissue (Ezaki et al., 2003). The membrane 

proteins involved in neuronal function often have lipid modifications. CLN3 is showing 

different putative sites for lipid modifications. An N-myristoylation site at N-terminus 
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and a prenylation/farnesylation motif at the C-terminus have been suggested (Pullarkat 

and Morris 1997; Kaczmarski et al., 1999). Indeed, at the C-terminus is present a CaaX 

farnesylation motif which is modified by farnesyl groups (Kaczmarski et al., 1999). 

This is a particular C-terminal sequence, with a cysteine residue (C) followed by two 

aliphatic residues ad a carboxyl-terminal “X” residue, which can be cysteine, serine, 

methionine, glutamine or alanine (Ma et al., 1992). Proteins containing this motif 

undergo farnesylation of the cysteine residue, proteolytic removal of the three amino 

acids distal to cysteine and methilation of the C-terminus (Ma et al., 1992). 

CLN3 has been reported to be located in many different intracellular compartments. 

However, variable results have been obtained by different groups probably due to the 

low expression level of CLN3 in mammalian cells, the overexpression modifies the 

location of CLN3 and the lack of a sensitive antibody able to detect CLN3 at basal 

level. Studies have shown that CLN3 localise at endosomes/lysosomes and is able to 

traffic through ER and Golgi complex (Jarvela et al., 1998; Kida et al., 1999; Haskell et 

al., 2000; Kyttala et al., 2004). In addition, CLN3 localises at early endosomes in 

neuronal cells (Luiro et al., 2001; Kyttala et al., 2004; Storch et al., 2007). Furthermore, 

the protein has been noticed in lipid rafts preparation (Rakheja et al., 2004). Recently, 

has been shown in both fission and budding yeast a significant localisation of the CLN3 

orthologue at the Golgi complex (Codlin and Mole 2009; Kama et al., 2011) that it has 

been previously reported, also, for CLN3 in mammalian cells (Kremmidiotis et al., 

1999). CLN3 is able to traffic to the lysomes. Indeed, two lysosomal target motifs have 

been identified (Kyttala et al., 2004). The first motif, presents in the large cytosolic loop 

of CLN3, comprises a dileucine motif (aa253-aa254) (Kyttala et al., 2004; Storch et al., 

2004; Storch et al., 2007) . However, controversial data has been shown about the bond 

between the dileucine motif of CLN3 and the main adaptor protein involved in the 
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trafficking of lysosomal proteins from the trans-Golgi network (TGN) to the lysosomes  

(Storch et al., 2004; Kyttala et al., 2005). The second lysosomal targeting motif is 

localised at the C-terminus of CLN3. This unusual motif consists of methionine and 

glycine residues separated by nine aminoacids [M(X)9G] (Kyttala et al., 2004). None of 

the reported CLN3 mutations directly affect the lysosomal targeting motif  (Kyttala et 

al., 2004).  

Recently, algorithms such as the structural classification of proteins (SCOP) and Pfam 

suggested that most of the CLN3 protein (aa 11-433) has a domain structure similar 

with members of the major facilitator superfamily (MFS). The MFS is one of the two 

largest families of membrane transporters that include small-solute uniporters, 

symporters and antiporters found across bacteria, archaea and eukaryotes (Pao et al., 

1998). MFS proteins are single polypeptide chains that contain, in most of the case, 12 

transmembrane domains. CLN3 has six transmembrane domains (Nugent et al., 2008) 

and one study showed that myc-tagged and non-glycosylated overexpressed CLN3 is 

able to form homodimers (Storch et al., 2007). However, whether the endogenous 

CLN3 also forms stable homodimers has not been yet confirmed.  

Despite the fact that the CLN3 gene and protein have been identified more than a decade 

ago, the function of this highly conserved protein remain elusive. Due to its extreme 

hydrophobicity, the generation of a specific and sensitive CLN3 antibody has turned out 

to be difficult (Kyttala et al., 2004). In addition, it is unclear if the epitopes used to 

generate peptide-specific antibodies are accesible in an intact cellular milieu (Janes et 

al., 1996) To date, proposed functions of CLN3 include lysosomal acidification, 

lysosomal arginine import, membrane fusion, vescicular transport, cytoskeletal linked 

functions, autophagy, apoptosis and proteolipid modifications. CLN3 may have 

multiple roles, or exert a primary role able to influence multiple pathways.  
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1.4.2 The CLN3 orthologue in fission and budding yeast 

 

The homologue of CLN3 in Schizosaccharomyces pombe, btn1 encodes a 396aa 

transmembrane protein that is 30% identical and 48% similar to the human CLN3 

(Gachet et al., 2005) (Figure. 1.4.1). Study of btn1, the CLN3 orthologue, in both the 

fission yeast Schizosaccharomyces pombe (S. pombe) and the budding yeast 

Saccharomyces cerevisiae (S. cerevisiae) have provided unique insights into CLN3 

protein function. Most importantly, in both yeast species, Btn1p and CLN3 have been 

demonstrated to be functional orthologues of human gene (Gachet et al., 2005; Codlin et 

al., 2008a; Codlin et al., 2008b).  Btn1p was proposed to localise and act at vacuole 

level (Croopnick et al., 1998; Pearce et al., 1999a; Pearce et al., 1999b); (Kim 2005; 

Wolfe et al., 2011) with a pre-vacuolar function indicated by Gachet et al., (2005). 

However, many of these studies used ectopic expression of Btn1p from a plasmid, 

which can result in protein overexpression that could alter localization. Recent studies 

suggest that Btn1p is located to the Golgi apparatus in S. pombe (Codlin and Mole 

2009) and later in S. cerevisiae (Vitiello et al., 2010; Kama et al., 2011). All yeast 

studies reveal multiple effects of complete loss of Btn1p in btn1∆ cells. For example, 

Btn1p is required for vacuole homeostasis (Pearce et al., 1999a), cytokinesis (Gachet et 

al., 2005) growth regulation (Codlin et al., 2008b) response to oxidative stress (Osorio 

et al., 2007) and Golgi function (Codlin and Mole 2009). In S. pombe loss of Btn1p 

affects the number of the Golgi stacks, their morphology and location within the cell 

(Figure 1.4.2.1). In addition, it has been shown, in mammalian cells, that loss of CLN3 

prevents exits from the TGN of the mannose-6phosphate receptor playing a role in 

TGN-endosome trafficking (Metcalf et al., 2008). In S. pombe, deletion of btn1 affects 

the trafficking of the vacuole hydrolase carboxipeptidase Y (Cpy1p) to the vacuole, 
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probably by its effect on the trafficking of its receptor, vacuole protein sorting 10 

(Vps10) from the endoplasmic reticulum through the Golgi to the trans-Golgi network 

(TGN) (Codlin and Mole 2009).  In contrast, in S. cerevisiae btn1∆ cells, Vps10 and 

CPY trafficking is normal (Kama et al., 2011). In addition, it has been demonstrated 

that in this budding yeast Btn1p overexpression and/or deletion affects the assembly of 

Golgi SNAREs. Indeed, It has been proposed that Btn1p could modulate the 

phosphorylation state of Sed5, an essential SNARE involved in Golgi transport and 

morphology, through the modulation of Yck3 (Kama et al., 2011), a palmitoylated-

protein kinase involved in Sed5 regulation (Banfield et al., 1994). These findings of a 

role for Btn1 at the Golgi are consistent with the multiple downstream effects of loss of 

Btn1 on other intracellular pathways that affect vacuole size and pH, cell wall structure 

and deposition, and polarised growth (Gachet et al., 2005; Codlin et al., 2008b), all of 

which are rescued by expression of CLN3. However, a role for CLN3 at the Golgi 

apparatus has not yet been explored in detail. 

 

 
Figure 1.4.2.1 - Btn1 affects Golgi morphology. Electron micrographs of recognisable 
Golgi with stacked cisternae, and examples of larger aberrant Golgi structures. Scale bar: 
0.5 µm. Graph) btn1Δ cells have many atypical Golgi and fewer Golgi with multiple 
stacked cisternae. Bar chart of % frequency of Golgi complexes with defined numbers of 
stacks (taken from Codlin et al., 2008). 
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1.4.3 Phenotypes in btn1Δ cells 

 

To date, efforts to elucidate CLN3 or Btn1 function have mainly relied on comparing 

the effects on yeast cells of complete deletion of the btn1 gene.  Expression of the wild 

type yeast Btn1p and, importantly, the human CLN3 protein rescues the resultant 

phenotypes, which has allowed the effect of some disease-causing mutations to also be 

examined.  The vacuole pH in S. pombe btn1Δ cells is less acidic than normal, 

suggesting an imbalance in pH homeostasis. Moreover, the vacuoles in cells where btn1 

is deleted are larger than wild type cells (Gachet et al., 2005). Similarly, lysosomes in 

cells depleted for CLN3 by RNAi are larger (Kitzmuller et al., 2008) and the lysosomal 

pH of JNCL cells is less acidic (Holopainen et al., 2001). In contrast, in the S. cerevisiae 

model Btn1p has been linked to vacuolar arginine transport, ion homeostasis and nitric 

oxide synthesis (Pearce et al., 1999a; Kim et al., 2003; Kim 2005; Osorio et al., 2007). 

   

The vacuolar pH is more acidic in yeast cells lack Btn1p. It could be the result of an 

inability to regulate the coupling of ATP hydrolysis and proton pumping activities of 

the V-ATPase (Padilla-Lopez and Pearce 2006). The acidification of vacuoles may be 

linked to, and modulated, by the actin cytoskeleton, which in turn, affects the activity of 

the membrane v-ATPase. Btn1p has been shown to have an effect on actin, and 

therefore in the trafficking of v-ATPase and other membrane transporters (Codlin et al., 

2008b). btn1Δ cells are viable under normal laboratory growth conditions (30°C) but 

they are slower growing and have a higher septation index, that leads to a higher 

number of binucleate cells and suggests an abnormal cell cycle (Gachet et al., 2005) 

Codlin et al., 2008). However, the presence of Btn1p is essential for growth of yeast 
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cells at 37°C. At this temperature, btn1Δ cells struggle to establish growth at new ends 

following division, resulting first in a pear-like shape, and later swelling and lysing.   

 

In the same study, it was also shown that the endocytosis process is defective in btn1Δ 

cells, both in uptake and trafficking to the vacuole route. A similar defect in neurons 

could affect the movement, release and uptake of neurotransmitter, leading to 

neurodegeneration. There are also changes in the metabolism of btn1Δ cells, such as an 

increase in glycolytic flux and amino acid changes (increase in glutamate and decrease 

in basic amino acids) (Pears et al., 2010). There is an interaction between various 

glycolytic enzymes and v-ATPase components, suggesting a link between glycolysis 

and the v-ATPase activity. Therefore, metabolic changes occurring in those cells could 

be due to the vacuolar defects that occur in those cells, which up-regulates v-ATPase in 

order to compensate for the increased vacuolar pH. This up-regulation would lead to an 

increase in the glycolytic flux. If these defects occur in neuronal cells, they could lead to 

brain dysfunctions and neurotransmitter impairment (Pears et al., 2010). In addition, 

glycolysis in neurons has recently been suggested to be tightly coupled to glutamatergic 

neurotransmission with an anti-oxidant role as well as energy production. In fact about 

80% of the energy produced by the cortical glucose is destined for the glutamatergic 

neurotransmission (Magistretti et al., 1999), which plays a key role during the 

conversion of glutamate to glutamine. Astrocytes take up the glutamate, from the 

synaptic space, via a specific transporter that uses the electrochemical gradient of Na+, 

as a driving force. The Na+ gradient is maintained by ATP, which is required to drive 

the Na+/K+-ATPase. The hypothesis of Magistretti et al. is that glycolysis is tightly 

coupled to the Na+, K+-ATPase (Magistretti et al., 1999), reminiscent of the proposed 

coupling of glycolysis to the v-ATPase in yeast. In addition, the increased glycolytic 
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flux, which has been proposed to be a characteristic of NCLs, may be associated with a 

glutamate–glutamine cycling defect, as it was reported in the CLN3 mouse (Pears et al., 

2005). Thus, the glutamate present in the synaptic space could lead to neuronal excito-

toxicity.  

 

Four different phenotypes that have been characterised in btn1Δ cells were selected as 

marker phenotypes to further understand the effect of mutations in Btn1. These 

phenotypes were: enlarged vacuoles and the cytokinesis delay with an increased 

septation index at 25°C, and monopolar growth and cell curving at 37°C (Gachet et al., 

2005; Codlin et al., 2008b; Haines et al., 2009). All these phenotypes can be rescued by 

expression of Btn1p and CLN3. Only the first phenotype can be rescued by Btn1p 

mutant protein equivalent to the 1-kb deletion. That is, a mutant protein corresponding 

to this common mutation is functional for vacuole size but not for the other three 

phenotypes. This suggests that this mutation does not completely abolish Btn1p 

function, since mutants are able to restore the vacuole size. This data was confirmed by 

Kitzmuller et al. This study showed that the expression of mutant CLN3, equivalent to 

that present in JNCL cells (1-kb deletion) in normal fibroblast and fibroblast cells from 

JNCL patients, causes a decrease in size of lysosomes. The cell curving phenotype was 

the only one rescued by a mutant protein carrying the yeast equivalent to the 

p.Glu259Lys mutation, which is known to cause a very mild form of JNCL (Haines et 

al., 2009). Despite the studies done on CLN3 its function remain elusive. 
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1.5 Golgi apparatus 

 

The Golgi apparatus (GA) is named after Camillo Golgi, who first described the 

complex apparato reticolare interno in 1898 (Golgi 1898a; Golgi 1898b). However, 

only after the electron microscopic confirmation of the existence of the GA in cells by 

Dalton in 1951, did scientists start to believe in its reality.  The Golgi apparatus, or 

Golgi complex, is an intracellular organelle in which proteins received from the ER are 

further processed and sorted for transport to their eventual destinations, such as 

lysosomes, plasma membrane or for secretion. The Golgi complex is a multifunctional 

organelle. Its primary role is the processing of newly synthesized proteins and lipids 

moving through the secretory pathway. The processing events taking part in the Golgi 

complex are glycosylation, sulfation and proteolytic processing. Those modifications 

play roles in protein localisation, stability, activation and specificity of interactions. A 

secondary function is sorting. Exit routes from the Golgi complex for newly processed 

protein and lipids are distinct and depend on whether the cargo is destined for 

constitutive or regulated secretion or for trafficking toward lysosomes (Keller and 

Simons 1997). Furthermore, in polarised cells additional exit routes target specialised 

membranes (Keller and Simons 1997; Folsch et al., 2009; Weisz and Rodriguez-Boulan 

2009). Another important aspect of sorting is the retrieval of proteins to endoplasmic 

reticulum (ER) to ensure their localisation (Lee et al., 2004). Golgi complex 

components, such as the Golgi-resident enzymes, are also subject to sorting to ensure 

their correct localisation (Tu and Banfield 2010). Another important function of the 

Golgi complex is its size control and its role in supporting the plasma membrane 

(Gauthier et al., 2009). The Golgi complex is also involved in ion homeostasis, mainly 

calcium (Ca2+) and manganese (Mn2+) (Missiaen et al., 2007; Mukhopadhyay and 
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Linstedt 2011). Finally, the membranes of the Golgi complex serve as platform for 

different signalling pathways (Saini et al., 2009).  

 

1.5.1 Morphology of the Golgi complex 

 

The Golgi complex is known for its stacked morphology, which is evident in most 

eukaryotic cells. In many animal and plant cells the Golgi complex appears as a series 

of associated flattened membrane-enclosed sacks, so called cisternae, aligned in parallel 

to form a stack called the dictyosome (Polishchuk and Mironov 2004). In mammalian 

cells, the Golgi complex is present as a network of stacked membranes called the Golgi 

ribbon. Along the ribbon network there are zones of fenestration where adjacent stacks 

appear to connect with each other through dynamic tubular contacts (Rambourg 1997; 

Ladinsky et al., 1999). 

  

The number of cisternae per stack varies. However, they are comprised in three 

functionally distinct compartments: cis, medial and trans Golgi compartments (Figure 

1.5.1.1). cis-localised enzymes act on cargo first followed by medial and trans enzymes 

(Mellman and Simons 1992). The trans-Golgi network (TGN) is a fourth compartment 

specialised for packaging cargo into carrier vesicles as it leaves the Golgi complex 

(Griffiths et al., 1985). Both the cis- and the trans- are mainly tubular (Figure 1.5.1.1). It 

is the medial-Golgi that has the typical dictyosome or flattened cisternae structure 

(Rambourg 1997; Polishchuk and Mironov 2004), which can vary in number from one 

cell type to another. Within the same cell type, the number of cisternae can be similar 

(Ladinsky et al., 1999) or vary depending on the functional state.  
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A striking feature of the Golgi apparatus is its distinct polarity in both structure and 

function. Several gradients exist within Golgi stacks: a gradient in the cisternae 

fenestration, in the cisternae thickness, in the localizations of the Golgi enzymes (which 

show a polarised distribution in which early-acting enzymes are concentrated in cis 

while late-acting enzymes are concentrated in trans), in the lipid bilayer thickness, in 

the pH and a gradient in concentration of cholesterol. Proteins from the ER enter at the 

cis face of the Golgi, which is convex and oriented toward the nucleus, and serves 

primarily to receive transport vesicles from the ER and to sort their contents and 

proteins. Those cargoes are marked for residence within the ER are recognised and 

returned to the ER by the recycling pathway, in COPI coated vesicles. Others are 

transported through the Golgi and exit from its concave trans face, where the final 

stages of the protein processing are completed. However, the secretory pathways of 

plants and animals are not identical. In plants, the organization of the organelles that 

make up the secretory pathway differs greatly from that of mammals and yeast (for 

yeast Golgi complex see paragraph 1.5.2). Despite the identification of plant 

homologues of proteins that are known to be involved in vesicular transport in other 

systems, the mechanisms in plants have not yet been fully characterized. Given the 

differences in the features of the secretory pathway of plants compared with those of 

other organisms, it seems likely that plants have evolved unique characteristics for 

achieving efficient protein transport between organelles. The localisation of the Golgi 

complex can vary between species. Indeed, the mammalian Golgi apparatus remains 

relatively stationary in the peri-nuclear region of the cell and is much larger than the 

plant Golgi. It has been reported that in various plant cellular systems the Golgi 

apparatus is present as multiple stacks that are distributed throughout the cytosol and are 
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capable of rapid movement (Boevink et al., 1998; Nebenfuhr et al., 1999; Takeuchi et 

al., 2000). In addition, the mammalian secretory pathway contains an additional 

organelle known as the ER-Golgi intermediate compartment (ERGIC), which does not 

exist in plants, although the cis-Golgi may play a similar role. Despite these differences 

in the secretory pathways, proteins in both plants and animals are generally transported 

in the anterograde direction from the ER to the Golgi apparatus, at which point they are 

sorted for further transport, either forward, in the direction of the cell surface and 

organelles in the later secretory pathway, or back towards the ER.  

 

Golgi cisternae are the smallest functional unit of the Golgi apparatus and their 

morphology strongly contributes to the overall morphology of the organelle. All 

cisternae are fenestrated and the large openings in cisternae can form wells (Ladinsky et 

al., 1999), necessary for the movement of secretory granules (Rambourg 1997). In 

particular, critical features in cisternal size are surface area and shape. The surface area 

of the Golgi cisternae depends on the ratio of membrane input and output to the 

compartment along different trafficking routes. One example of this is that the 

inhibition of Golgi complex-to-ER transport, a Golgi efflux pathway, increases the size 

of the Golgi complex (Burman et al., 2010). The total surface area of cis, medial and 

trans cisternae is similar (Ladinsky et al., 1999), which suggests that the flux is uniform 

across the Golgi stacks at steady state. However, an altered trafficking can drastically 

change the surface area. Cisternal shape refers mainly to the degree to which the 

membranes are flattened. The resulting high surface to volume ratio increase the 

concentration of the Golgi complex enzymes (Mellman and Simons 1992). The dilation 

of the cisternae is observed in different pathological conditions such as cancer and 

neutralisation of the normal slightly acidic luminal pH (Kellokumpu et al., 2002; Maeda 
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and Kinoshita 2008).  The mechanisms that contribute to cisternal flattenig are mainly 

three. The first is the interactions in trans of the Golgi-resident enzymes. Binding in 

trans hold the membrane in close contact, thereby flattening the shape. One of the first 

identified interactions was between the medial Golgi complex enzymes N-

acetylglucosaminyltransferase I and mannossidase II (Nilsson et al., 1994; Hassinen et 

al., 2010). A second mechanism depends on actin assembly at the Golgi complex. Actin 

depolymerisation induces cisternal swelling (Egea et al., 2006). The trans Golgi-

localised protein Golgi phosphoprotein 3 (GOLPH3), yeast Vps74, links the Golgi 

membranes to an actin-based motor by simultaneously binding the phosphoinositide-4-

phosphate in the membrane and the unconventional myosin MYO18A (Dippold et al., 

2009). Depletion of the GOLPH3 dilates Golgi cisternae, suggesting that the motor 

exerts pulling forces on Golgi membranes that contribute to their flattened shape. The 

third possible mechanism is induced by membrane curvature. The edges of the flattened 

cisternae, the rims, have high membrane curvature. Energy imparted to the membranes 

to maintain this curvature could rise from local changes in lipid composition or 

interaction with curvature-inducing proteins (Graham and Kozlov 2010). 

 

Golgi complex forms stacks through proteinaceous elements that cross link adjacent 

cisternae (Mollenhauer 1965; Franke et al., 1972). These cross-linking proteins are the 

Golgi Reassembly And Stacking Proteins (GRASPs). In vertebrates two GRASPs, 

GRASP65 and 55, localise to cis and medial cisternae respectively, while lower 

eukaryotes only have one GRASP protein (Barr et al., 1997; Shorter et al., 1999; 

Kondylis et al., 2005; Behnia et al., 2007; Levi et al., 2010). In addition, it has been 

shown that the deletion of both GRASPs abolishes stack formation and that the re-

expression of both can partially rescue the phenotype (Xiang and Wang 2010). 
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Vertebrate GRASPs form homo-oligomers (Wang et al., 2003; Tang et al., 2010; Xiang 

and Wang 2010). The oligomerisation of the GRASPs is mediated by its PDZ domain 

(Sengupta et al., 2009; Tang et al., 2010). The PDZ domain is able to cross link 

membrane. For this to occur efficientely, the PDZ domain needs to be correctly oriented 

through a dual anchoring mechanism in which the PDZ domain is flanked by upstream 

and downstream membrane attachment sites (Bachert and Linstedt 2010). The first of 

these sites is a N-terminal myristoylation site while the other is a second PDZ domain 

which in GRASP65 stably binds the C-terminus of the golgin GM130 (Barr et al., 1997; 

Barr et al., 1998; Bachert and Linstedt 2010). GM130 is a predicted elongated coiled-

coil protein that extends from the membrane. GM130 binds the vesicle docking protein 

p115 at its N-terminus and has been implicated in different tethering events at cis-Golgi 

(Ramirez and Lowe 2009). However, when it comes to Golgi complex stacking the 

GRASPs cannot be the only responsible factor. Indeed, in the fruit fly the loss of the 

single GRASP has a minor effect on Golgi stacking (Kondylis et al., 2005), while in S. 

cerevisiae the cisternae are unstacked despite the presence of a GRASP known as 

Grh1p (Behnia et al., 2007; Levi et al., 2010). Plants have stacked Golgi complex yet 

they lack a GRASP altogether (Staehelin and Kang 2008; Faso et al., 2009). These 

studies suggest that other factors are involved in Golgi complex stacking and that the 

GRASPs must have further roles in addition to cisternal stacking. Indeed, GRASPs are 

involved in linking Golgi cisternae in order to form ribbons (Puthenveedu et al., 2006; 

Feinstein and Linstedt 2008), and play a role in the tethering of transport vesicles 

(Behnia et al., 2007). GRASPs can also have a role in the trafficking of certain cargoes 

(Kuo et al., 2000; D'Angelo et al., 2009). Finally, GRASPs have a role in an 

unconventional secretion, that is transport to the cell surface avoiding the typical 

secretory route through the Golgi complex (Kinseth et al., 2007; Schotman et al., 2008). 
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In most vertebrates the Golgi stacks are connected to form a ribbon (Mogelsvang et al., 

2004) which is located in juxtanuclear position around the centrosome, suggesting a 

functional link with the microtubule cytoskeleton. Indeed, it is well known that an intact 

microtubule network and the minus end-directed microtubule motor cytoplasmic dynein 

are essential to maintain the Golgi ribbon (Burkhardt 1998). Furthermore, Golgi 

complex per se can act as microtubule organiser (Chabin-Brion et al., 2001; Efimov et 

al., 2007; Rivero et al., 2009). Golgi-derived microtubules form an asymetric network 

that extends towards the leading edge of migrating cells that is important for the 

polarised delivery of Golgi carriers to this region of the plasma membrane (Efimov et 

al., 2007; Miller et al., 2009; Rivero et al., 2009). The formation of microtubules at the 

trans-Golgi is dependent of the regulator CLASP, which is recruited to the membrane 

through interaction with the golgin GCC185 (Efimov et al., 2007). Furthermore, it 

requires active dynein as is the case for centrosomal microtubules. Microtubules can 

also form  at the cis-Golgi via a distinct mechanism involving AKAP450, a well known 

interactor of the γ-tubulin ring complex found at the centrosome (Rivero et al., 2009). 

AKAP450 is recruited to the cis-Golgi through binding with GM130 and microtubules 

generated by this complex are important for polarised secretion. CLASP-dependent 

Golgi-nucleated microtubules are required also for assembly of the Golgi ribbon (Miller 

et al., 2009). During Golgi assembly they act in a “search and capture” fashion to bring 

together individual Golgi stacks which are transported from the periphery to the cell 

centre via dynein- mediated trafficking along the centrosomal microtubule network. 

Although, Golgi ribbon formation requires two sets of independently nucleated 

microtubules acting in concert. Furthermore, the Golgi-derived microtubules are 

important in the maintanance of the ribbon. 
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Figure 1.5.1.1: Golgi complex and its compartment  (taken from Bannykh, S., et al., 1997). 

 

 

1.5.2 The Golgi complex in yeast 

 

The structural organisation of the Golgi varies among different species. In yeast the 

Golgi complex is composed of tubular networks and isolated discs, which was first 

described in budding yeast S. cerevisiae sec mutants in 1980 by Novick (Novick et al., 

1980). Each compartment can be observed by electron microscopy (EM) as individual 

disk-shaped or fenestrated cisternae that rarely associate with one another. Indeed, the 

Golgi in this organism has an unusual structure, consisting of individual cisternae that 

are scattered throughout the cytoplasm. In contrast, the fission yeast S. pombe has 

multiple Golgi organelles, which form stacks.  

 

Recent evolutionary study suggests that ancestral unicellular eukaryotes had stacked 

Golgi (Mowbrey and Dacks 2009). The yeast S. pombe and P. pastoris, still have 

stacked Golgi, while S. cerevisiae has lost the stacked organisation and developed a 

dispersed Golgi complex instead. The organisation of the Golgi complex might be 
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related to the generation of this organelle (Rossanese et al., 1999). In particular, the 

COPII transport carrier is formed on the endoplasmic reticulum (ER) at specialized 

domains, the transitional-ER (tER) sites or ER exit site (ERES) (Farquhar and Palade 

1981). Because the COPII vesicles can form a pre-Golgi complex by themselves, the 

ERES is thought to be the site of Golgi generation (Bevis et al., 2002). Indeed, the 

Golgi structure in P. pastoris is suggested to depend on the organisation of ERES 

(Connerly et al., 2005). The organisation of the ERES differs among yeast species, as in 

P. pastoris and S. pombe appear as 2-5 discrete spots, whereas in S. cerevisiae appear as 

numerous small spots that appear to be detected all over the ER (Mowbrey and Dacks 

2009). ERES are dynamic structures, and it might be the difference in the size and 

number of ERES that affect the morphology of the Golgi complex in yeast. 

 

 

1.5.3 ER-Golgi intermediate compartment (ERGIC) 

	
  

After its synthesis, folding and quality control, cargo exits from the endoplasmic 

reticulum exit site and moves to the Golgi complex through the ER-Golgi 

intermediate compartment. The ERGIC is a complex membrane system between 

the rough ER and the Golgi complex that was defined following the identification 

of a 53kDa membrane protein (ERGIC-53) (Schweizer et al., 1988; Hauri et al., 

2000). It consists of vesicular-tubular clusters (VTC), defined as clusters of a few 

small vesicles and tubular-saccular elements associated with the rough ER 

(Bannykh et al., 1996; Mironov et al., 2003). Within the ER-Golgi interface, 

several post-translational modifications are performed: O-glycosylation (Tooze SA 

1988), acylation (Rizzolo et al., 1985), generation of mannose-6-phosphate signal 
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for lysosomal protein targeting (Pelham et al., 1988), protein palmytoilation, 

retrieval of misfolded proteins (Hammond and Helenius 1994) and segregation of 

secretory cargoes, regulatory secretory proteins, constitutive secretory proteins, 

protein destined for the apical plasma membrane and basolateral, endosomal and 

lysosomal proteins by enzymatic cleavage of the retention signal in the ER.  

 

 

1.5.4 Cis-Golgi network (CGN) 

	
  

The cis-Golgi network is an extensive tubular-vesicular network bound to the cis face of 

the Golgi stacks, which functions to receive the cargo from the ER. The CGN is 

composed mainly of three domains. The first domain represents the highly perforated 

disk, similar in shape with the cisternae. It is attached to the Golgi stacks and is named 

as the attached CGN or the cis-perforated cisternae of the intermediate compartment or 

CGN (CISCIC). CISCIC appears as a disk with 30 nm perforations. The second part of 

the CGN is a small tubular part that appears as the three dimensional tubular network 

near to the dictyosomes. This area of the CGN is called the free CGN. Indeed, it 

produces tubules moving towards the ER-exports site (Marra et al., 2001; Mironov et 

al., 2003). Another part of the CGN is connected with the CISCIC by tubules and has 

similar shape with the CGN. It localizes out of the organelle and appears as the late 

intermediate compartments (Marra et al., 2001) that could be rather a stable 

compartment (Bonifacino and Lippincott-Schwartz 2003). It has been shown that the 

CGN contains early processing enzymes such as α-mannosidases that trim high 

mannose N-linked oligosaccharides added to the nascent chain in the ER. The CGN 

receives newly synthesized or recycled polypeptides from the ER, which are then post-
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translationally modified such as glycosylation, sulphatation, phosphorylation, 

palmitoylation, myristoylation or methylation (de Graffenried and Bertozzi 2004). 

 

 

1.5.5 Trans-Golgi Network (TGN) 

	
  

The Trans-Golgi network (TGN) is a unique compartment located at the exit side of the 

Golgi stacks (Griffiths and Simons 1986) and is typically associated with a large 

amount of vesicles and tubular membrane. The morphology of TGN varies between cell 

types, due to a different secretory activity (Gu et al., 2001). Like the other Golgi 

cisternae, the TGN contains different resident enzymes involved in the processing of the 

cargo molecules, such as glycosyltransferase involved in addition of terminal sugars, 

several protein convertase such as Furin, and tyrosine sulphatation enzymes (Rabouille 

et al., 1995; Thomas 2002). For example, glycosaminoglycan chains are synthesized 

and sulphated in TGN (Velasco et al., 1988). However, unique functions clearly 

distinguish the TGN from the other Golgi cisternae. Firstly, the TGN sorts various 

mature cargo proteins and lipids into membrane carriers destined for the plasma 

membrane, endosomes, secretory granules or earlier Golgi cisternae or the ER (Velasco 

et al., 1988; Young et al., 2005). Secondly, the TGN receives cargo from various 

endosomal locations (Shewan et al., 2003). Sorting is one of the main functions of the 

TGN and recent studies have shown that depleted CLN3 affects the correct protein 

sorting between TGN and lysosomes (Metcalf et al., 2008).  
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1.5.6 Transport machinery at Golgi apparatus 

 

Vesicular transport provides a dynamic communication network between the subcellular 

compartments that define the structure and identity of membrane bound organelles 

(Bonifacino and Glick 2004). The mechanisms that direct this cargo flow involve 

specialised multi-protein machineries.  One of them is assembled to form a protein 

complex called coatomer that coats membrane-bound vesicles. The different types of 

coatomer that are involved in ER-Golgi trafficking are: Coat protein I and II (COPI, 

COPII) (Figure 1.5.6.1).  

 

 

1.5.6.1 Coat protein I  

 

The coat protein I is considered the most characterised coat complex, and represents the 

core machinery by which vesicle formation and cargo sorting are coupled to initiate 

vesicular transport (Bonifacino and Lippincott-Schwartz 2003). COPI vesicles have 

been implicated in both intra-Golgi transport and retrograde transport from the Golgi to 

the ER. COPI is an ADP-ribosylation factor-dependent adaptor protein. ARF belongs to 

the family of small GTPases involved in vesicular trafficking, acting as a regulator of 

COPI transport, and is post-translationally modified at its N-terminus by the addition of 

the fatty acid myristate. Like all small GTPases, guanine nucleotide exchange factors 

(GEFs) are required to catalyse the activation of Arf (Casanova 2007) and GTPase-

activating proteins (GAPs) are required to catalyse its deactivation (Inoue and Randazzo 

2007). In this way Arf switches between GTP and GDP-bound conformations, which 

cause different effects. In the GTP-bound form the myristate and the hydrophobic N-
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terminus are more exposed. In the GDP bound conformation, Arf become less 

hydrophobic and dissociates from the membrane.  For cargo sorting the coatomer 

recognizes two types of di-basic sequence on cargo proteins.  These sorting signals - 

KKXX (Lys-Lys-X-X) and KDEL (Lys-Asp-Glu-Leu) are both carboxyl terminal 

motifs important for protein retention in the ER.  However, despite the presence of one 

of these sequence signals proteins do leak from the ER towards the Golgi complex 

(Munro and Pelham 1987; Pelham et al., 1988), and so these signals also determine 

retrieval from the Golgi back to the ER.  Thus retrograde transport is COPI mediated. 

KDEL is recognised by its receptor (KDELR) and so KDEL interacts indirectly, via the 

transmembrane KDELR, with the cytosolic COPI coatomer structures (Lewis and 

Pelham 1990), whereas the KKXX signal binds directly COPI protein (Cosson et al., 

1996).  

 

 

1.5.6.2  Coat protein II (COPII) 

 

The coat protein II (COPII) are vesicle coat proteins that contribute to transport proteins 

from the ER to the Golgi, anterograde transport. COPII coat is composed of different 

proteins such as Sec23/24 (Hicke et al., 1992), Sec13/31 (Salama et al., 1993) and Sar1 

regulator Sec12 (Nakano and Muramatsu 1989). These COPII components generate 

COPII vesicles through a sequence of events. The first step is initiated by conversion of 

the small GTPase Sar1-GDP to Sar1-GTP, mediated by GEFs. Sar1 activation occurs in 

the ER, which triggers the exposure of the N-terminal amphipatic α-helix and its 

insertion into the ER membrane. Activated Sar1 recruits the heterodimer Sec23/Sec24 

by binding Sec23, forming the pre-budding complex (Kuehn et al., 1998). Subsequently 
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the pre-budding complex recruits the Sec13-Sec31 heterotetramer onto the pre-budding 

complex (Lederkremer et al., 2001). The Sar1-Sec23/24-Sec13-Sec31 complex present 

on the membrane layer deforms the membrane enough to bud a vesicle off. There is a 

negative control on the pre-budding complex, since the Sec23 subunit of Sec23/24 is a 

GAP protein that causes hydrolysis of GTP in Sar1, which leads to the loss from the 

membrane of the Sar1-Sec23/24 complex (Yoshihisa et al., 1993; Antonny et al., 2001). 

However, kinetically stable Sec23/24-Sar1 complexes are maintained on the membrane 

by the presence of the GEF Sec12, which counteracts the action of Sec23 by constantly 

charging Sar1 with GTP (Futai et al., 2004). COPII vesicles lose their coats before 

binding and fusion with the Golgi complex and this uncoating reaction is mediated by 

Sar1 GTP hydrolysis (Oka and Nakano 1994). The COPII vesicles, in mammalian cells, 

do not fuse directly with the Golgi complex but rather they appear to fuse to each other, 

that is, homotypic fusion, to form carrier intermediates that lie close by the ER. COPII 

vesicles continue to fuse with these intermediates, which become larger and eventually 

fuse with the Golgi. Different names have been given to that compartment, such as ER-

Golgi intermediate compartment (ERGIC), or pre-Golgi intermediate and vesicular 

tubular complex (VTC).  

Figure 1.5.6.1 - Vesicular trafficking 
mediated by COPI and COPII (Gaynor et 
al., 1997) 
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1.5.7 Golgi complex in neurodegenerative disorders 

 

Golgi complex is a highly dynamic organelle and the typical ribbon structure of the 

Golgi complex can change profoundly. Under pathological conditions, overexpression 

of Golgi-related proteins and pharmacological agents can cause changes in the 

organisation of the Golgi complex. Furthermore, during mitosis the Golgi complex 

fragments reversibly into vesicles and tubules that are distributed equally to the 

daughter cell (Warren and Malhotra 1998).  

 

The Golgi complex undergoes fragmentation, also during apoptosis. The caspases cause 

the fragmentation of the Golgi cleaving a Golgi-associated matrix protein (Mancini et 

al., 2000; Sutterlin et al., 2005). The most well known drug able to induce the 

fragmentation of the Golgi complex is the fungal metabolite brefeldin A, which induces 

the Golgi to collapse into tubules and vesicles that fuse with the ER (Klausner et al., 

1992). 

 

In particular, fragmentation is a classical feature of the organelle observed in 

neurodegenerative diseases. Golgi complex, in neuronal cells, shows morphological 

changes in many neurodegenerative disorders, such as lost the normal network 

configuration, which is replaced by disconnected small elements (Fujita et al., 2000; 

Sakurai et al., 2000; Sakurai et al., 2002). A fragmented Golgi complex has been 

observed in different neurodegenerative diseases such as Alzheimer’s disease (AD) 

(Baloyannis et al., 2004), amyotrophic lateral sclerosis (ALS) (Stieber et al., 1998), 

Creutzfeldt-Jacob disease (CJD) (Sakurai et al., 2000), multiple system atrophy  

(Takamine et al., 2000; Sakurai et al., 2002), Parkinson’s disease (PD) (Fujita et al., 
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2006), spinocerebelar ataxia type 2 (SCA2) (Huynh et al., 2003) and Niemann-Pick 

disease type C (NPC) (Lin et al., 2007).  

 

The fragmentation of the Golgi in neurodegenerative diseases is probably caused by 

mechanisms involving the interaction between mutant proteins and any of the proteins 

involved in the maintenance of the Golgi complex. Many studies have described that 

Golgi is fragmented in anterior horn cells of patients with sporadic ALS (Stieber et al., 

2004). The copper/zinc superoxide dismutase (SOD1) is an abundant enzyme with an 

essential role in antioxidant defense and its mutant form may be one of the causes for 

ALS. Indeed, SOD1 mutant acquire a toxic property that kills motor neurons (Xia et al., 

2005). Membranes of the Golgi complex or key proteins mediating the anchorage of 

Golgi membranes with microtubules, may be targets of the toxic function of SOD1 

mutant (Karecla and Kreis 1992). Indeed, it has been shown that there is a direct gain-

of-interaction between the SOD1 mutant and dynein (Zhang et al., 2007). 

 

α-synuclein is a 140aa protein that is enriched in presynaptic terminals of neurons 

(Goedert 2001). Neurological disorders such as PD, MSA and dementia with Lewy 

bodies are characterised by amyloid-like fibrillar aggregates of α-synuclein. Mutant or 

overexpressed α-synuclein could cause damage by interfering with particular steps of 

neuronal membrane traffic. The microtubule system seems to be a potential target of α-

synuclein (Lee et al., 2006). Indeed, the α-synuclein aggregates cause an overload of the 

microtubules that could lead to the fragmentation of the Golgi complex. 

 

Phosphoproteins of the stathmin family are important regulators of microtubule 

dynamics, in particular in the developing and mature nervous system. Stathmin, a 
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ubiquitous cytosolic phosphoprotein and generic element of the protein family that 

includes the neural specific proteins SCG10, SCLIP, RB3 and its splice variant RB3’ 

and RB3’’ are associated with the Golgi complex and vesicular membranes, through 

their palmitoylated N-terminal A domain (Gavet et al., 2002; Charbaut et al., 2005). 

Stathmin proposed to be a small regulatory protein, interferes with microtubule 

dynamics by inhibiting the formation of microtubules and favoring their 

depolymerisation. Stathmin has the ability to interact with soluble tubulin inducing the 

formation of tubulin complexes, which sequester soluble tubulin and therefore impedes 

microtubule formation (Curmi et al., 1999). Microtubules are essential for the structural 

integrity of the Golgi complex, and stathmin, the microtubule depolymerizing protein, is 

confirmed in the pathogenesis of ALS (Ozon et al., 2002). Fragmented Golgi complex 

suggests a link between the disruption of the structure of the microtubules and stathmin 

accumulation.  

 

Tau, a microtubule- associated protein enriched in either Golgi complex or ER 

membranes, is know to stabilize and promote the formation of microtubules during 

axonal outgrowth. In several neurodegenerative disorders including Alzheimer’s 

disease, hyperphosphorylated Tau accumulates in the somatodendritic compartment, 

self-aggregates, and forms neurofibrillary tangles. They may be classified as taupathies 

(Croisier and Graeber 2006). Tau can inhibit kinesin-dependent transport of 

peroxisomes, neurofilaments and Golgi-derived vesicles into neurites. Loss of 

peroxisomes makes cells vulnerable to oxidative stress and leads to degeneration 

(Stamer et al., 2002). 
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The Golgi complex undergoes fragmentation during apoptosis, in part as result of 

caspase-mediated cleavage of several Golgi-associated proteins. For example, it has 

been shown that clusters of vesicles pinching off from the Golgi cisternae were reduced 

in size in apoptotic cells (Sesso et al., 1999). In response to FAS receptor activation or 

staurosporine treatment, several Golgi proteins, p115 and golgin-160, underwent to 

caspase-mediated cleavage and occurred independently of major changes to the actin 

and tubulin cytoskeleton (Mukherjee et al., 2007). In addition, GM130, an integral 

membrane protein, contribute to the maintenance of the Golgi complex structure and 

facilitates membrane fusion with secretory vesicles, was reduced during FAS-mediated 

apoptosis associated with Golgi fragmentation (Walker et al., 2004). The Golgi 

fragmentation is a downstream apoptotic event due to the caspase activation and 

cleavage. However, cells expressing non-cleavable golgin-160 showed a delayed 

response to apoptotic stimuli that cause ER stress or ligate death receptors (TNF1 and 

FAS) (Maag et al., 2005). Importantly, the delay of the apoptosis is observed with all 

pro-apoptotic stimuli. The cells can normally respond to a DNA damaging agents, 

protein inhibitors and a broad-spectrum kinase inhibitor. Therefore, the cleavage of 

golgin-160 appears to be required for the progression of apoptosis induced by specific 

stimuli. In addition, the caspase-cleavage fragments of some Golgi structural protein 

may actively regulate apoptosis (Chiu et al., 2002). Therefore, the Golgi complex 

fragmentation plays a pivotal role during neurodegenerative processes regulating, also, 

the apoptotic events that lead to neuronal loss. 
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1.5.8 Golgi complex and manganese homeostasis 

 

Manganese (Mn) represents an essential trace element that is accumulated and utilised 

by all form of life. It is required for normal growth, development and cellular 

homeostasis (Erikson et al., 2005). Mn exists in various chemical forms including 

oxidation states (Mn2+, Mn3+, Mn4+, Mn6+, Mn7+), salts (sulfate and gluconate), and 

chelates (aspartate, fumarate, succinate). Specifically, Mn is important in bone 

formation, fat and carbohydrate metabolism, and blood sugar regulation. This redox 

active metal is a key cofactor for a wide range of metalloenzymes, including oxidases 

and dehydrogenases, DNA and RNA polymerases, kinase, decarboxylases and sugar 

transferases (Crowley 1999). Furthermore, Mn is a required cofactor of several enzymes 

involved in neuronal and glial function, as well as enzymes involved in neurotransmitter 

synthesis and metabolism (Butterworth 1986; Hurley 1987; Erikson and Aschner 2003). 

It has been shown that, in yeast, there are roles for both ions within the Golgi, including 

roles in protein modification, in regulation of sorting and vesicular traffic and in 

removal of toxic levels of ions. Mannosyltransferases present in the Golgi complex 

require Mn as a metal cofactor (Lisman et al., 2004; Lobsanov et al., 2004). Crystal 

structures of several glycosyltransferases show Mn binds to a conserved DXD motif in 

the catalytic site (Gastinel et al., 2001; Persson et al., 2001; Lobsanov et al., 2004). In 

addition to serving as an essential nutrient, manganese can also be toxic. In humans, 

exposure to manganese can cause severe neurological damage, leading to a 

Parkinsonian-like disorder known as manganism (Barbeau 1984; Barceloux 1999; Pal et 

al., 1999; Uversky et al., 2001). Because manganese is potentially toxic, the ions are not 

free to diffuse in the cell unattended, but rather are handled in a very high controlled 

fashion by manganese homeostasis proteins. Such homeostasis factors include cell 
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surface and intracellular manganese transporters and putative manganese chaperones 

that guide the metal to a designated trafficking pathway, ending in the activation of 

manganese enzymes. The factors involved in manganese homeostasis discovered so far, 

have been revealed through studies done with S. cerevisiae. 

 

In S. cerevisiae two members of the natural resistance-associated macrophage proteins 

(NRAMP) family (Smf1p and Smf2p) act in the uptake and intracellular trafficking of 

manganese (Cellier et al., 1995). They are localised at the cell surface and provide 

uptake of manganese from the extracellular milieu. In particular, some of the Smf2p-

transported manganese reaches the Golgi complex and the mitochondria for activation 

of sugar transferase (STase) enzymes and SOD2, respectively. Such model is analogous 

to what has been shown for the mammalian Nramp transporter DMT1 (Edwards and 

Hoke 1975; Canonne-Hergaux et al., 1999; Andrews 2000). The Golgi complex, in 

yeast, acquires its manganese through the action of Pmr1p, a P-type Ca2+ and Mn2+ 

transporting ATPase (Rudolph et al., 1989). The calcium and manganese transported by 

Pmr1p facilitates the processing and trafficking of polypeptides that move through the 

secretory pathway (Rudolph et al., 1989; Antebi and Fink 1992; Durr et al., 1998; 

Rutherford and Bird 2004). Pmr1p is the prototype of a family of transporting ATPases 

known as SPCA (secretory pathway Ca2+ -ATPases) found in various fungi, C. elegans, 

D. melanogaster and mammals (human SPCA1 and SPCA2) (Ton et al., 2002; Missiaen 

et al., 2004; Xiang et al., 2005). The Golgi-localised SPCA molecules are members of a 

large superfamily of Ca2+ -ATPases that also includes calcium pumps at the cell surface 

and sarco/endoplasmic reticulum (Sorin et al., 1997; Missiaen et al., 2004); however, 

the SPCA transporters are unique in that they function in manganese and calcium 

transport (Missiaen et al., 2004).  
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Yeast cells respond to manganese starvation by increasing levels of the Smf1p and 

Smf2p transporter. The transporters then accumulate at the cell surface (Smf1p) and 

intracellular sites (Smf2p) to increase the uptake of manganese (Liu and Culotta 1999a; 

Liu and Culotta 1999b; Portnoy et al., 2000; Luk and Culotta 2001). However, 

manganese starvation does not increase the level of SMF1 and SMF2 mRNA (Liu and 

Culotta 1999b; Luk and Culotta 2001). The response of manganese starvation occurs at 

the posttranslational level. Manganese starvation leads to enhanced stability of the 

Smf1p and Smf2p polypeptides and a shift in the cellular localisation of these 

transporter (Liu and Culotta 1999a; Liu and Culotta 1999b; Portnoy et al., 2000; Luk 

and Culotta 2001). Indeed, upon manganese starvation these transporters fail to reach 

the vacuole for degradation and their localisation is shifted either to cell surface 

(Smf1p) and intracellular vesicles (Smf2p). Smf1p and Smf2p are largely absent under 

manganese-replete or manganese toxicity conditions, cells can still accumulate the 

metal by other transport mechanisms. The phosphate transporter Pho84p has been 

proposed as a manganese transporter, in yeast. PHO84 encode a cell surface phosphate 

transporter in yeast (Wykoff and O'Shea 2001). Pho84p also act as low affinity 

manganese transporter. When cells are exposed to high manganese concentrations, in 

excess of 10 µM, they accumulate the metal and deletion of pho84 eliminates the uptake 

of excess manganese (Jensen et al., 2003). Unlike Smf1p and Smf2p, there is known 

down-regulation of Pho84p in response to manganese. Therefore, the cell becomes 

vulnerable to manganese toxicity. Fortunately, much of the accumulated manganese is 

eliminated from the cell through the action of Pmr1p at the Golgi complex, which exerts 

a pivotal role in manganese detoxification. The excess manganese is either sequestered 

in the vacuole or eliminated from the cell by Pmr1p and the secretory pathway. Indeed, 

Pmr1p not only plays a role in supplying Golgi STase enzymes with manganese but also 
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is the major route for eliminating toxic manganese from the cell. Mutants lacking Pmr1p 

are sensitive to manganese toxicity and accumulate very high levels of it, largely in the 

cytosol (Lapinskas et al., 1995; Ton et al., 2002). The excess of manganese pumped into 

the Golgi complex by Pmr1p exits the cell via secretory pathway vesicles that fuse with 

the cell surface and release the manganese contents back to the extracellular 

environment. Humans express two Pmr1p homologues: SPCA1 functions in both 

calcium and manganese transport of diverse cell types (Ton et al., 2002; Fairclough et 

al., 2003; Missiaen et al., 2004) and SPCA2 is expressed specifically in the brain (Xiang 

et al., 2005). In particular, SPCA2 does not function in calcium transport but has 

specifically evolved for manganese homeostasis (Xiang et al., 2005). The central 

nervous system is particularly vulnerable to manganese toxicity and SPCA2 has been 

implicated as a major player in manganese detoxification in the brain (Xiang et al., 

2005). The role of the secretory pathway in manganese homeostasis and detoxification 

is conserved among eukaryotes and is of particular relevance in cases of manganese 

neurotoxicity in humans.  

 

 

1.5.9 Role of manganese in neurodegenerative disorders 

 

Enzymes in both neurons and glia function only in presence of manganese. These 

manganese-binding proteins, referred to as manganoproteins, include glutamine 

synthase, superoxide dismutase 2 (SOD2), arginase, pyruvate decarboxylase and 

serine/threonine phosphatases (Christianson 1997; Takeda 2003; Bowman 2010). In 

particular, glutamine synthetase (GS), the most abundant manganoprotein, is 

predominantly expressed in astrocytes where it converts glutamate to glutamine. GS 
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contain manganese and this metal is able to regulate the GS activity (Wedler and 

Denman 1984). Indeed, insufficient manganese increases glutamate trafficking, 

glutamatergic signalling and excitotoxicity (Maciejewski and Rothman 2008). In 

addition, individuals with manganese deficiency are more susceptible to seizures due in 

part to decreased GS levels and/or activity (Eid et al., 2008). Arginase regulates 

elimination of ammonia from the body by converting L-arginine, synthesised from 

ammonia, L-ornithine and urea as part of the urea cycle. Moreover, in the brain, L-

arginine is converted to nitric oxide by neuronal nitric oxide synthetase. Proper 

regulation of arginase promotes neuronal survival by impairing nitric oxide signalling 

(Ash et al., 2000; Estevez et al., 2006). Pyruvate carboxylase is an essential enzyme 

required for glucose metabolism that interacts with manganese to generate oxaloacetate, 

a precursor of the tricarboxylic acid (TCA) cycle (Mildvan et al., 1966). Interestingly, in 

the brain, pyruvate carboxylase is predominantly expressed in astrocytes in order to 

support the high-energy demand of the neurons (Yu et al., 1983; Zwingmann et al., 

2003). 

 

Manganese can cross the blood-brain barrier (BBB) and blood-cerebrospinal fluid 

barrier (BCB) through several carriers and in different oxidation states. Given the 

essential functions of manganese and the neurotoxicity associated with manganese 

overload, the absorption and transport of this metal is stringently regulated.  

 

Several manganese transporters, at the BBB have been characterised. Manganese can be 

transported via the divalent metal transporter 1 (DMT1), the transferrin receptor (TfR) 

that mediate trivalent Fe uptake, the divalent metal/bicarbonate ion symporter ZIP8 and 

ZIP14, various calcium channels, the solute carrier-39 (SLC39), park9/ATP13A2, the 
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magnesium transporter hip14 and the transient receptor potential melastatin 7 (TRPM7) 

channels/transporters (Murphy et al., 1991; Rabin et al., 1993; Aschner and Gannon 

1994). The divalent metal transporter 1 (DMT1) is a member of the family of natural 

resistance-associated macrophage proteins (NRAMP) and play a crucial role for the 

maintenance of essential metal homeostasis in the brain (Gunshin et al., 1997; Garrick 

et al., 2003; Mackenzie and Hediger 2004). DMT1 is also known as the divalent cation 

transporter (DCT1) due to its ability to transport divalent metals including Zn2+, Mn2+, 

Co2+, Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+ across the plasma membrane into the cytoplasm 

(Gunshin et al., 1997; Forbes and Gros 2003). In addition, two different isoforms of 

DMT1 are present and both localise at the plasma membrane; however, one of them 

localises also to late-endosomes and lysosomes and the other localises to early-

endosomes (Au et al., 2008). 

 

In the last decade there has been an increasing interest in the identification of novel Mn 

transporters including Hip14 and the product of park9 gene. The huntingtin-interacting 

protein 14 and 14L (Hip14 and Hip14L) mediates the transport of Mn2+ and other 

divalent metals across the cell membrane (Goytain et al., 2008; Gitler et al., 2009). 

Hip14 is involved in the palmitoylation of several neuronal protein including huntingtin 

(Au et al., 2008). In addition, it is required for endo- and exocytosis, as well as targeting 

of cysteine string protein (CSP) and synaptosomal-associated protein 25 (SNAP25) to 

the synapse (Singaraja et al., 2002; Ohyama et al., 2007). Hip14 localises in the 

presynaptic terminal, Golgi complex and vesicular structure localised in the axon, 

dendrites and soma of neurons (Stowers and Isacoff 2007). The park9 gene responsible 

for the Kufor-Rakeb syndrome (KRS), a rare parkinsonian phenotype with juvenile 

onset, also transports Mn (Gitler et al., 2009). The park9 gene encodes a putative P-type 
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transmembrane ATPase (ATP13A2) protein. Although the exact function of park9 is 

unknown, it is generally thought to be a shuttle for cations, including Mn, across the cell 

(Ramirez et al., 2006). Recently, in a family with a typical NCL pathology exome 

sequencing has been performed revealing a single homozygous mutation in ATP13A2. 

NCL and KRS may share etiological features and implicate the lysosomal pathway in 

Parkinson's disease (Bras et al., 2012).  Furthermore, manganese has been shown to be 

involved in the pathogenesis of CLN6 disease. In particular, the expression level and 

activity of the manganese-dependent superoxide dismutase (MnSOD) were increased in 

the sheep CLN6 model as well as humans affected by CLN6 disease (Heine et al., 

2003). Recently, studies conducted on ovine CLN6 model revealed and increase in Zn 

and Mn concentrations in the brain. The regions most affected are those where 

neuroinflammation and neurodegeneration occur. In addition, synaptic proteins, the 

metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular 

signalling pathways were also altered (Kanninen et al., 2013a).	
   The metals 

accumulation has been detected also in the CLN6 mouse model. Furthermore, increased 

expression of the ER/Golgi-localized cation transporter protein, Zip7, was detected in 

cerebellar Purkinje cells and whole brain fractions. Further analysis revealed biometal 

accumulation in CLN6 brain fractions expressing markers for ER, Golgi, endosomes 

and lysosomes. These data link CLN6 expression and biometal homeostasis in CLN6 

disease, and support altered cation homeostasis regulation as a key factor in NCL 

pathogenesis (Kanninen et al., 2013b). 

 

In the last few years there has been a growing interest in understanding the metabolism 

of neurotoxic metals and their influence on different neurodegenerative diseases, 

including manganism, Wilson’s disease, PD and AD. These metals also contribute to 
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Huntington’s disease though fewer studies have investigated the link. Occupational and 

environmental exposure to neurotoxic metals including Zn2+, Mn2+, Hg2+, As2+, Cr2+, 

Ni2+, Pb2+ and Al3+ have been associated with neurodegeneration and modulation of the 

age of onset and severity in neurodegenerative diseases. The brain is able to regulate the 

homeostasis of these metals in physiological conditions; however, excessive exposure 

can cause their accumulation in the brain. The distribution of metals in the brain is not 

uniform, and accumulation in specific brain regions reflects neurotoxicity. For example, 

Mn accumulation and neurotoxicity in the globus pallidus cause manganism (Robison et 

al., 2012). Alterations in metal homeostasis have been suggested to cause 

neurodegeneration via association of metals with proteins and induction of aggregates 

formation (Tamas et al., 2014). Moreover, metals can cause neurodegeneration through 

a vicious cycle by disrupting mitochondrial function (Perier and Vila 2012), which 

deplete ATP, induces ROS production leading to cell death by apoptosis and/or 

necrosis. 
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1.6 Endoplasmic reticulum (ER) stress response 

The ER is the first compartment in the secretory pathway, which is responsible for the 

synthesis, modification and delivery of active proteins to their targets. As with other 

biochemical pathways, flux through the secretory pathway is controlled at its early 

steps. The ER is the entrance site for most of the proteins processed in the secretory 

pathway. Within the ER the early steps of the protein maturation process are taking 

place, such as: the folding of the nascent polypeptide chains and posttranslational 

modifications important for the correct folding and function of the protein. If the influx 

of nascent unfolded polypeptides exceeds the folding and processing capacity of the ER 

the homeostasis of the ER would be perturbed. Under these ER stress conditions a 

signalling pathway is active, known as the unfolded protein response. 

The ER has a fine mechanism to ensure that only properly folded proteins exit the ER, a 

process termed ‘quality control’. Therefore, an important aspect of this control is the 

ability to discriminate between folded, misfolded and unfolded polypeptides. The 

protein folding status is relayed to the cytosol and nucleus by the UPR. In case of stress, 

in order to bring the folding capacity of the ER in line with the folding demand on the 

ER, the folding demand is decreased and the folding capacity of the ER increased. To 

decrease the folding demand, the transcription of genes encoding secretory proteins 

(Harding et al., 1999) is downregulated and the misfolded protein cleared through the 

ER-associated degradation (ERAD) is increased (Travers et al., 2000). To increase the 

folding capacity of the ER, the synthesis of the chaperones is increased (Kozutsumi et 

al., 1988) and the ER increases in size to dilute the increased unfolded protein load and 

to host more chaperone machineries (Dorner et al., 1989; Schuck et al., 2009). 

Upon ER stress, three independent branches sense stress, with the inositol-requiring 
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enzyme 1 (IRE1) branch being the most highly conserved among eukaryotes. In yeast 

only the IRE1 pathway is found while metazoans use two additional pathways: double 

stranded RNA-activated protein kinase-like ER kinase (PERK) and activating 

transcription factor 6 (ATF6). These ER-localised proteins are able to sense ER stress 

resulting in the activation of different pathways. Translational depletion and activation 

of UPR genes are the most common outputs. However, the UPR can lead to apoptosis if 

the cells fail to reach homeostasis and undergo prolonged stress. Early work on the UPR 

was performed in cells where the expression of ER-resident chaperones, such as 

Bip/GRP78, GRP94, PDI/ERp59 and Erp72, were shown to be induced by different 

treatments causing the accumulation of unfolded proteins in the ER (Kozutsumi et al., 

1988; Dorner et al., 1990). 

 

 

1.6.1 The UPR in fission and budding yeast 

In S. cerevisiae ER stress is monitored by the transmembrane sensor protein Ire1. Ire1 is 

activated by either direct binding of unfolded proteins or from the release of the 

molecular chaperone Bip/GRP78 from the luminal domain of Ire1. After its activation, 

Ire1 oligomerises followed by trans-autophosphorylation through its cytosolic kinase 

domain (Shamu and Walter 1996). When Ire1 is activated, its cytosolic ribonuclease 

domain cleaves the intron of the pre-mRNA HAC1 to initiate the synthesis of Hac1 

transcription factor (Cox et al., 1993; Mori et al., 1993; Cox and Walter 1996). The 

UPR can alleviate stress by reversing severe dysfunctions through the upregulation of 

nearly 400 genes (Thibault et al., 2011). These target genes include ER chaperones, 

lipid biosynthesis enzymes and ER associated degradation (ERAD) machinery. The 
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UPR program is adaptable and might be remodeled according to the needs of the cells. 

This differential regulation of the UPR, from different stressors, suggests the 

involvement of additional unknown regulatory factors (Thibault et al., 2011). The UPR 

protein Ire1 is conserved also in S. pombe (Wood et al., 2002) and despite having no 

HAC1 orthologue, Ire1 still plays a crucial role in alleviating ER stress (Frost et al., 

2012; Kimmig et al., 2012). In S. pombe Ire1 degrades ER-localised mRNAs to alleviate 

the protein load in a pathway known as regulated Ire1-dependent decay (RIDD). This 

pathway was first identified in metazoa where Ire1 degrades mRNAs (Hollien and 

Weissman 2006; Hollien et al., 2009). Moreover, certain mRNAs cleaved by Ire1 in S. 

pombe, are stabilized instead of being degraded (Kimmig et al., 2012). Indeed,  Bip1 

mRNA, which encodes an HSP70 family protein, is cleaved by Ire1 and it remains 

stable and its translation is increased. Other players are likely to work in synergy with 

Ire1 to regulate the UPR pathway. In particular the UDP-glucose-glycoprotein 

glucosyltransferases (UGT) and a calnexin orthologue (cnx1) have been identified and 

they can recognise only misfolded protein and are essential under extreme ER stress in 

S. pombe (Sousa and Parodi 1995; Fanchiotti et al., 1998). Those findings helped to 

better understand the ER stress response in yeast and elucidate the similar pattern in 

higher organisms. 

 

1.6.2 The UPR in mammals 

The ER is a major protein-folding compartment in eukaryotic cells and is second only to 

the cytosol. Many principles governing the protein folding in the cytosol apply to the 

ER. However, the protein folding in the ER is more complex than protein folding in the 

cytosol because proteins are posttranslationally modified by N-glycosylation and 
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disulphide bond formations. The protein folding in the ER has to fulfill thermodynamic 

and kinetic requirements (Dobson et al., 1998).  

The protein folding machinery of the ER consists of three classes of proteins, foldases, 

molecular chaperones and the lectins (Calnexin [CNX], Calreticulin [CRT]). Foldases 

catalyse steps in protein folding and molecular chaperones facilitate protein folding by 

shielding unfolded regions from surrounding proteins. The ER-resident chaperones are 

the HSP70 chaperones Bip/GRP78, LHS1/GRP170 (Lin et al., 1993), their co-

chaperones of the DnaJ (Feldheim et al., 1992) and GrpE families (Boisrame et al., 

1998) and the HSP90 chaperone GRP94 (Steel et al., 2004). In particular, the GRP94 

recognises partially folded proteins, which are recognized as being unfolded by 

Bip/GRP78 (Argon and Simen 1999). Bip/GRP78 bound to an unfolded protein does 

not facilitate protein folding indeed it maintains the protein in a folding-competent state. 

Bip/GRP78 has an N-terminal ATPase and a C-terminal binding domain. In the ATP-

bound state, Bip/GRP78 binds substrates with low affinity. Substrate binding triggers 

the ATPase activity of Bip/GRP78 to generate ADP. The ADP-bound state of 

Bip/GRP78 has high affinity for the bound peptide (Gething 1999). In particular, 

Bip/GRP78 preferentially binds the short hydrophobic peptides such as those forming β-

strands that are deeply buried in the protein core (Gething 1999). Therefore, the 

exposure of hydrophobic regions is the thermodynamic hallmark of an unfolded protein. 

Exchange of ADP with ATP releases the substrate from Bip/GRP78, which is free to 

progress on its folding pathway.  

Prolonged interaction of a folding protein with the chaperone machinery activates three 

ER-resident transmembrane proteins; three different ER stress transducers that facilitate 

the activation of the UPR (Walter and Ron 2011). Those transducers are activating 



1 Introduction 

	
   65 

transcription factor 6 (ATF6), the inositol requiring kinase 1 (IRE1) and double-

stranded RNA-activated protein kinase (PKR)-like ER kinase, which then transduce an 

unfolded protein signal across the ER membrane and eventually Ca2+ is released from 

the ER to activate apoptotic signalling pathways. 

Two forms of IRE1 are present in mammals where IRE1α is expressed ubiquitously 

while IRE1β is expressed only in the intestinal and lung epithelium (Bertolotti et al., 

2001; Martino et al., 2013). In humans, IRE1α and IRE1β are encoded by ERN1 and 

ERN2 respectively. The transcription factor downstream of IRE1α, XBP1, has variance 

in its primary aminoacid sequence with Hac1 but shares the common Ire1-mediated 

splicing activation of its mRNA and the basic leucine zipper motif. XBP1 activates 

similar downstream target genes as Hac1 in yeast (see paragraph 1.6.1), with the 

induction of genes involved in protein folding (Yoshida et al., 2001). In addition, IRE1-

XBP1 pathway is important for the activation of major chaperones as Bip/GRP78 and 

GRP94 (Ozcan et al., 2004). 

PERK, which is an ER transmembrane kinase, mediates transcriptional and translational 

control of the UPR (Harding et al., 1999). Upon ER stress, PERK oligomerises and 

phosphorylates itself together with eIF2α. eIF2α phosphorylation results in temporary 

attenuation of the overall protein translation and upregulation of the transcription factor 

ATF4. This translation inhibition decreases the influx of proteins entering the ER, 

reducing ER protein folding load and alleviating ER stress. Certain mRNAs are 

translated when eIF2α when is limiting, one of which is transcription factor ATF4. 

Subsequently, ATF4 upregulates C/EBP homologous protein and DNA damage-

inducible 34 (GADD34). CHOP promotes ER stress-induced apoptosis (Zinszner et al., 

1998) and GADD34 is involved in a negative feedback loop to counteract PERK by 
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dephosphorylation of eIF2α, which resumes protein synthesis and trigger apoptosis 

(Marciniak et al., 2004). Interestingly, PERK inhibits also ER-stress induced apoptosis 

through the induction of cellular inhibitors of apoptosis protein (cIAPs) (Hamanaka et 

al., 2009), and is a critical cross-talk regulator to influence the UPR in determining the 

cell fate under ER stress (Brewer 2014). In addition, the activation of PERK could lead 

to downregulation of anti-apoptosis protein XIAP, which could lead to increase in 

apoptosis (Hiramatsu et al., 2014). Upon accumulation of unfolded proteins, ATF6 is 

packaged into vesicles and transported to the Golgi complex (Schindler and Schekman 

2009). The cleavage of both ATF6 luminal and transmembrane domains occurs 

subsequently by SP1 and SP2 proteases, liberating the N-terminal cytosolic fragment, 

ATF6(N), for localisation into the nucleus to activate the UPR target genes (Yoshida et 

al., 2000). Many different genes are activated downstream of ATF6(N). In particular, 

ATF6(N) activate the transcription of Bip/GRP78, protein disulphide isomerase (PDI) 

and glucose-regulated protein 94 (GRP94). Moreover, ATF6(N) is a major inducer for 

downstream response of ER chaperones and ERAD components (Okada et al., 2002; 

Adachi et al., 2008).  

If the aforementioned pro-survival mechanisms fail to rescue the cell then apoptosis can 

occur. It is not clear at which point the switch between pro-survival and pro-apoptotic 

signalling occurs, nor are the mechanisms underlying cell death fully explained. It is 

well known that the apoptotic signals generated from excessive activation of the UPR 

converge on the mitochondria resulting in opening the permeability of the 

transmembrane pores and loss of mitochondrial membrane potential (Δψm) with 

consequent release of pro-apoptotic factors and activation of apoptosis through the 

apoptosome which is formed by the apoptotic protease activating factor 1 (Apaf-1) with 

pro-caspase 9 and cytochrome c (Olson and Kornbluth 2001; Szegezdi et al., 2009). 
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1.6.3 ER stress and UPR in neurodegenerative disorders 

Death of neurons, like that of other cells, is regulated by two pathways (Mattson 2000; 

Yuan et al., 2003). The extrinsic pathway is triggered by the activity of cell membrane 

death receptors through activation of caspase 8 that cleaves downstream substrate 

including other caspases (Degterev et al., 2003; Danial and Korsmeyer 2004). The 

intrinsic pathway is activated by different stressors, the signals triggered by the intrinsic 

pathway converge on the mithocondria causing changes in the membrane potential and 

release of pro-apoptotic factors (Olson and Kornbluth 2001; Szegezdi et al., 2009). In 

particular, in neuronal cells the extrinsic pathway plays a less prevailing role compared 

with other cell types. 

To contrast cell death, neurons express a variety of anti-apoptotic factors that counteract 

cell degeneration caused by both environmental and genetic insults (Mattson 2000; 

Yuan et al., 2003). The Bcl-2 family consists of both anti-apoptotic proteins such as 

Bcl-2 and Bcl-xL, and pro-apoptotic factors such as Bax, Bak and Bik (Danial and 

Korsmeyer 2004). Bcl-2 controls the integrity of the mitochondrial membrane under 

normal conditions (Danial and Korsmeyer 2004). The pro-apoptotic protein Bik is 

largely localised to the ER (Germain et al., 2002). In addition, Bim translocates to the 

ER membrane and is important for ER stess-mediate cell death (Morishima et al., 2004). 

However, little is known, so far, about the roles of those pro-apoptotic proteins in ER 

stress-induced neuronal death or in human neurodegenerative disorders. However, 

studies have confirmed a pathogenetic role of ER stress in neurodegenerative disorders. 

Indeed, ER stress in conjuction with abnormal protein degradation can contribute to the 

pathophysiology of Parkinson’s disease (Kuang et al., 2014) as well as in Alzheimer’s 

disease together with disturbed calcium homeostasis (LaFerla 2002; Katayama et al., 

2004; Verkhratsky 2005), and also in the Amyotrophic lateral sclerosis (Wootz et al., 
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2004). 

In lysosomal storage disease (LSD) ER stress has been shown to play a role in 

pathophysiology. There are at least 45 different disorders classified as LSD. In GM1-

gangliosidosis, the ER stress and the UPR response were shown to accompany the 

disease (Tessitore et al., 2004). Indeed, there is an upregulation of Bip/GRP78, CHOP 

and the activation of caspase 12 and JNK2  pathaways causing cell death. 

In LINCL and progressive epilepsy with mental retardation (EPMR) caused by 

mutations in CLN8 gene, which encode a protein that localises to the ER, ER stress 

plays a crucial role in the pathogenesis. Indeed, it has been shown that Bip/GRP78, 

CHOP, ATF6 are upregulated and caspase 12 activation in CNS and retina of the 

CLN8mnd mouse model, suggesting that ER-stress combined contribute to the 

progression of the disease in CNS structures (Galizzi et al., 2011).  

In view of this, it is important to know more about the role of the ER stress in 

neurodegenerative disorders. In particular, which step of the ER stress is peculiar to 

each neurodegenerative disease and which step of the ER stress response to target and at 

what particular stage of the disease. 
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1.7 Project aims 

CLN3 is a multi-pass transmembrane protein, which is conserved in single-celled 

eukaryotes such as the fission yeast S. pombe, suggesting a fundamental role for this 

protein in eukaryotic cells. CLN3 has been functionally linked to many diverse cellular 

processes, including lysosomal homeostasis, autophagy, lipid synthesis or modification 

and cytoskeleton organisation. Despite these endeavours, the function of CLN3 remains 

elusive. However, recent works have shown that Btn1p, in yeast, localises at the Golgi 

complex and its deletion affects trafficking of the vacuolar sorting protein 10 (Vps10p) 

and depletion of CLN3 affects the trafficking of mannose 6-phosphate receptor in 

mammalian cells. Since the Golgi complex play a pivotal role in the cellular 

homeostasis maintenance and regulation. The lack of Golgi homeostasis regulation 

would explain most of the aforementioned phenotypes observed in CLN3/Btn1p 

models. In particular the topology of CLN3 suggests a role as ions transporter, either 

calcium or manganese, which both play a fundamental role within the Golgi complex. 

Therefore, the aim of this project is to clarify the role of CLN3 and Btn1p at the Golgi 

complex in yeast and mammalian cells and how this is affected in CLN3 disease. My 

results will be directly relevant for the understanding of JNCL and may have a wider 

impact on the identification of new targets suitable for therapeutic intervention in JNCL 

as well as uncover new roles of the Golgi complex within the cell. Furthermore, they 

also may be relevant to understanding the molecular basis of NCLs caused by mutations 

in CLN6 and CLN8 proteins, which are located upstream of the Golgi apparatus, in the 

endoplasmic reticulum. 
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2.1 Materials  

2.1.1 List of reagents 

Listed here are frequently used reagents, including information about the manufacturer 

and whether they were stored as a stock solution. 

 

Acrylamide (30% acrylamide/ 0.8% bis-acrylamide): Sigma 

Agar: Sigma 

Alloxazine: Sigma 

Ammonium chloride: Sigma 

Ampicillin: Sigma 

APS (ammonium Persulphate): Sigma 

Beta-mercaptoethanol (BME): Sigma 

Bromophenol blue: Sigma 

Albumin fraction V from bovine serum  (BSA): VWR 

Complete, Mini, EDTA-free: Roche 

DAB (TAAB): 

DDSA: TAAB 

DMEM: GIBCO® Life Technologies 

DMP-30: TAAB 

DMSO: Sigma 

DNA marker: 1-kb ladder (Promega) 

DNA marker: 100 bp ladder (Promega) 

DO mix: Formedium 

DO supplements: Formedium 

E64: Sigma 
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Enhanced Chemo-luminescence (ECL): Pierce® ECL, Thermo Scientific 

ECL+: SuperSignal® west femto, Thermo Scientific 

Foetal bovine serum (FBS): Sigma 

Fluoroorotic Acid (FOA): Sigma 

Glucose: Formedium 

Glycine: Sigma 

Hydrochloric acid (HCl): Sigma 

Isopropanol: Fisher Scientific 

Manganese chloride (MnCl2): Sigma 

Metafectene®Pro: Biontex Laboratories, GmbH 

Methanol: Fisher Scientific 

MNA: TAAB 

Osmium tetraoxide: TAAB 

PFA (paraformalaldehyde): Sigma 

Penicillin/streptomycin: Sigma 

Phenylmethanesulfonylfluoride (PMSF): Cell Signalling 

Ponceau red: Sigma 

Potassium ferricyanide: 

Prochlorperazine dimaleate: Sigma 

Propylen oxide (PO): Sigma 

Protease inhibitor mix: Roche 

PVDF: BioRad 

Rainbow protein marker: Thermo Scientific 

RIPA buffer 10X: Cell Signalling 

Saponin: Sigma 
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SDS: BDH 

SOC media: Invitrogen 

Sodium Cacodylate: Sigma 

Sodium chloride (NaCl): Sigma 

Sodium hydrogen phosphate (Na2HPO4): Sigma 

Sodium hydroxide (NaOH): Sigma 

SYBR green: Thermo Scientific 

TAAB resin: TAAB 

Tannic acid: TAAB 

TEMED: Sigma 

Tris base: Sigma 

Triton-X: Sigma 

Trypsin: Sigma 

Tween-20: Sigma 

Yeast extract: Formedium  
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2.1.2 Mammalian cells culture 

 

2.1.2.1 Cell type/lines used 

Cell line Species Transformed/primary Source 
 

HeLa 
 

 
Human 

 
Transformed Mole lab stock 

 
Fibroblasts 

 
Human 

 
Primary 

 
Mole lab and 

others 
 

Table 2.1.2.1.1 – cell lines used 

 

2.1.2.2 Fibroblast cell lines used 

Code Diagnosis Gene Mutation Source 

HF523N Healthy 
control - Cell line established 

5.7.05 
Elaine Aegius, 

Mole Lab 

HF524N Healthy 
control - Cell line established 

5.7.05 
Elaine Aegius, 

Mole Lab 

HF526N Healthy 
control - Cell line established 

5.7.05 
Elaine Aegius, 

Mole Lab 

HF527N Healthy 
control - Cell line established 

5.7.05 
Elaine Aegius, 

Mole Lab 
HF470Pa JNCL CLN3 1-kb/1-kb GOS 
HF478Pa JNCL CLN3 1-kb/1-kb Kohlschutter 
HF480Pa JNCL CLN3 1-kb/1-kb Kohlschutter 
HF481Pa JNCL CLN3 1-kb/1-kb Kohlschutter 
HF338Pa 
HF338Pb vJNCL CLN3 Deletion exons 9-15 Isabella Carreira, 

Portugal 

HF423Pa 
HF423Pb vLINCL CLN6 

c.316insC/c.316insC 
p.[Arg106fs]+[Arg10

6fs] 

France/GOS 
Sent to Simonati. 

HF471Pa VLINCL CLN6 
E72X/E72X 

p.[Glu72X]+[Glu72X
] 

Costa 
Rica/Boustany 

HF170Pb cLINCL CLN2 IVS5-1G>C/IVS5-
1G>C GOS 

HF532Pa LINCL CLN2 Q509X/Q509X Santorelli. Italy 

HF467Pa vLINCL CLN7 c.881C>A 
p.Thr294Lys homoz 

Elleder 
Sent to Gasnier 

HF474Pa vLINCL CLN7 c.1393C>T 
p.Arg465Trp homoz 

Greece 
Sent to Gasnier 

HF469Pa INCL CLN1 R151X/R151X GOS 
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HF530Pa INCL CLN1 L222P/L222P Santorelli. Italy 
HF534Pa vLINCL CLN8 A30P/A30P Santorelli. Italy 

HF535Pa vLINCL CLN8 Y158C/c.66delG 

Santorelli. Italy, 
Cannelli et 

al neurogenetics 
2006 

HF484Pa 
HF484Pb vLINCL CLN5 

c.35G>A 
p.Arg112His; 

c.619T>C 
p.Trp207Arg 

Guys Hospital/ 
Ruth Williams 

HF546Pa VLINCL CLN5 homozygous for 
c.1072-1073delTT 

Mewasingh, 
Leicester, line 
made by CK 

           Table 2.1.2.2.1- Human fibroblasts used in this project 

 

 

2.1.2.3 Cell culture media 

Growth medium composition 
DMEM                                     500ml 

Penicillin/streptomycin                5ml 
Foetal bovine serum                   50ml 
 

Freezing medium 
 

DMSO                                         10ml 
FBS                                              80m 

                                       Table 2.1.2.3.1 – cell culture media used 
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2.1.3 siRNA, plasmids and qPCR primers 

 

2.1.3.1 Primers, siRNA and plasmid used 

Primers (qPCR)  

CLN3 
F GTACCAGGCTGGCGTCTTT 

R AGGAACACCAGGTTGAGGC 

CLN6 
F CAGCACCTGGGAGCGAC 

R AGAACCAGAGGTCGAGGTGG 

GAPDH 
F AAGGTGAAGGTCGGAGTCAAC 

R GGGGTCATTGATGGCAACAATA 

siRNA  

CLN3 
sense 

 

GGUCGGAGAGGGAAGCCCUUdTdT 

Anti-sense 

 

AAGGGCUUCCCUCUCCGACCdTdT 

CLN6-1 
sense 

 

CCGGUCUCUUCCUCGGAAAdTdT 

Anti-sense 

 

UUUCCGAGGAAGAGACCGGdTdT 

CLN6-2 
sense 

 

CCAGAGACCGAGAGCAUGAdTdT 

Anti-sense 
 

UCAUGCUCUCGGUCUCUGGdTdT 

Plasmids    

Btn1  
pREP42GFP-Btn1 

 

NatMX  pFA6a 

Genomic 

integrants 
 pSL1180 

Table 2.1.3.1.1 – primers used for qPCR and siRNA sequences used for gene  
depletion and plasmids used. 
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2.1.4 qPCR reaction and FastStart PCR 

qPCR (20 µL total volume for each reaction) 
 
SYBR green master mix                                                                                              10 µl 
Primer pairs (1.2 µM)                                                                                                    5 µl 
cDNA                                                                                                                          10 µl 
Filter-sterile ddH2O                                                                                                       3 µl 

Table 2.1.4.1 – reagents added for each qPCR reaction 

 

 

FastStart PCR  
 
10X buffer + Mg2+                                                                                                                                                         10µl 
DMSO                                                                                                                         1.5µl 
dNTPs                                                                                                                             2µl 
Sense primer                                                                                                                   4µl 
Antisense primer                                                                                                            4µl 
DNA                                                                                                                               1µl 
FastStart polymerase                                                                                                   0.3µl 
H2O                                                                                                                            81.5µl 

Table 2.1.4.2 – reagents added for each Fast Start PCR reaction 
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2.1.5 Protein extraction and SDS-page 

2.1.5.1 List of antibodies used 

Name Description Application Dilution Source 

 
GM130 

 
Anti-GM130, 

cis-Golgi 
marker 

 

IF 1:700 
BD 

Transduction 
laboratories 

GRP78 ER stress 
marker WB 1:1000 Abcam 

GPP130 

 
Anti-GPP130, 
protein Mn2+, 
monoclonal 

mouse 
 

WB 1:1500 Santa Cruz 

CHOP/GADD153 

 
ER-stress 
marker, 

monoclonal 
mouse 

 

WB 1:1500 Santa Cruz 

Giantin 

 
Medial-Golgi 

marker 
 

IF 1:1000 Abcam 

TGN46 
 

TGN marker 
sheep 

IF 1:1500 AbD Serotec 

ϒ-adaptin Mouse WB 1:1000 
BD 

Transduction 
laboratories 

Caspase 2 Monoclonal 
rabbit WB 1:1000 Abcam 

β-tubulin  
 WB 1:1000 Santa Cruz 

EGFR 
monoclonal 

rabbit 
 

WB 1:1000 Santa Cruz 

Table 2.1.5.1.1 - Primary antibodies. WB: western blot, IF: indirect immunofluorescence. 
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Name Tag Application Dilution Source 
 

Goat anti-mouse 
 

HRP 
 

WB 
 

1:1000 
 

Santa Cruz 
 

Goat anti-rabbit 
 

HRP WB 1:1000 Promega 

AlexaFluor488 Mouse, rabbit, 
sheep IF 1:700 Invitrogen 

AlexaFluor534 Mouse, rabbit, 
sheep IF 1:700 Invitrogen 

Table 2.1.5.1.2 - Secondary antibodies. WB: western blot, IF: indirect immunofluorescence. 

 

2.1.5.2 Mammalian cells lysis buffer 

Lysis buffer 
 
RIPA 1X  (50mM Tris pH7.8; 150mM NaCl; 1% NP40; 0.5% Na deoxycholate; 0.1% 
SDS) 
Protease inhibitor cocktail (Complete, Mini, EDTA-free)(1 tablets every 10mL of RIPA 
1X) 
PMSF 200mM (working concentration 1mM)  

 
Table 2.1.5.2.1 – Lysis buffer composition 

 

2.1.5.3 Laemmli buffer 

2X (50mL) 
 
1M Tris-HCl pH6.8                                                                                                    25 ml 
10% SDS                                                                                                                    15 ml 
0.8% BME                                                                                                                  10.4g 
Bromophenol blue        

 
Aliquots and store at -20°C 

Table 2.1.5.3.1 – Sample buffer composition 
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2.1.5.4 Protein gel buffers 

Running Buffer (per litre) 
 
Tris-base                                                                                                                          3g 
 
Glycine                                                                                                                       14.4g 
 
10% SDS                                                                                                                    10 ml 

Table 2.1.5.4.1 – Running buffer composition 

 

 

 

 

Half Towbin transfer buffer (per litre) 
 
Tris-base                                                                                                                     1.45g 
 
Glycine                                                                                                                         7.2g 
 
Methanol                                                                                                                  100 ml 

 
10% SDS                                                                                                                  500 µl 

Table 2.1.5.4.2 – Transfer buffer composition 
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2.1.5.5 Protein gels 

Resolving gel 7.5% 12% 

 

30% acrylamide/bis-acrylamide  

 

2.5 ml 

 

4 ml 

1.5M Tris-HCl pH8.8  2.5 ml 2.5 ml 

10% Ammonium Persulphate (fresh) 0.05 ml 0.05 ml 

10% SDS 0.1 ml 0.1 ml 

TEMED  0.02 ml 0.02 ml 

Water  4.84ml 3.34ml 

Stacking gel   

                   

30% acrylamide/bis-acrylamide  

 

1.3 ml 

 

0.5M Tris-HCl pH6.8  2.5 ml  

10% Ammonium Persulphate (fresh) 0.05 ml  

10% SDS 0.1 ml  

TEMED  0.02 ml  

Water  6 ml  

Table 2.1.5.5.1 - Gel casting    
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2.1.6 S. pombe strains and maintenance 

 

2.1.6.1 S. pombe strains used 

 

Standard nomenclature has been used in this thesis to describe all the S. pombe used. 

SP23 is an auxotrophic wt strain, lacks adenine, leucine and uracil (Obtained from Kazu 

Tomita). This strain has been used to create SP29, in which btn1 has been replaced with 

the NatMX cassette in order to generate the btn1 deleted strain.  

 

Strain      Genotype 
 

SP23       h-, Leu1-31, ura4-D18, ade6-M210 

SP29       h-, btn1::NatMX, Leu1-31, ura4-D18, ade6-M210 

Table 2.1.6.1.1 – Fission yeast strains. :: replacement, h- mating type (M type), - fusion. 
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2.1.6.2 Growth media 

Yeast Extract with supplements (YES) liquid media (500 ml) 
 

Yeast extract                                                                                                                 2.5g 

Glucose                                                                                                                       12.5g 

Leucine                                                                                                                     250mg 

Adenine                                                                                                                    250mg 

Uracil                                                                                                                        250mg 

Histidine                                                                                                                   250mg 

Table 2.1.6.2.1 – Liquid rich medium composition 

 

 

 

Yeast Extract with supplements (YES) solid media (500 ml) 
 

Yeast extract                                                                                                                    2g 

Glucose                                                                                                                          10g 

Bacto agar                                                                                                                        8g 

Leucine                                                                                                                     200mg 

Adenine                                                                                                                    200mg 

Uracil                                                                                                                        200mg 

Histidine                                                                                                                   200mg 

Table 2.1.6.2.2 – Solid rich medium composition 
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AA plates 
 

Bottle 1:                                                   

Water                                                                                                                         250ml 

DO mix                                                                                                                     750mg 

Do supplements                                                                                                        250mg                                                                                                                    

Yeast nitrogen base                                                                                                  850mg                                                                                                              

Ammonium sulphate                                                                                                    2.5g  

                                                                                                                     

Bottle 2: 

Water                                                                                                                         300ml 

Glucose                                                                                                                          12g 

Bacto Agar                                                                                                                    8.5g 

 

Sonicate bottle 1 and autoclave both bottles 

Pour bottle 2 down to 250ml and add bottle 2 to bottle 1, mix and pour 

Table 2.1.6.2.3 – AA plates composition. 
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FOA plates 
 

Bottle 1:                                                   

FOA                                                                                                                          437mg 

Uracil                                                                                                                          50mg 

AA supplements                                                                                                       250mg                                                                                                                    

Yeast nitrogen base                                                                                                  850mg                                                                                                              

Ammonium sulphate                                                                                                    2.5g  

 DO mix                                                                                                                    750mg 

Water                                                                                                                         250ml 

                                                                                                                    

Bottle 2: 

Water                                                                                                                         300ml 

Glucose                                                                                                                          12g 

Bacto Agar                                                                                                                    8.5g 

 

Sonicate bottle 1 and warm to 50°C, autoclave bottle 2 

Pour bottle 2 down to 250ml and add bottle 2 to bottle 1, mix and  pour 

Table 2.1.6.2.4 – FOA selective plate composition. 
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Minimal Medium (MM) (500ml) 
 

Water                                                                                                                        440mL 

NH4Cl                                                                                                                          l2.5g 

Na2HPO4                                                                                                                                                                                  1.1g 

Potassium hydrogen phthalate                                                                                      1.5g 

Adenine                                                                                                                    250mg 

Uracil                                                                                                                        125mg 

Leucin                                                                                                                       125mg 

Autoclave and cool and add: 

20% Glucose                                                                                                              50mL 

Stock salts1                                                                                                                 10mL 

Stock vitamins 2                                                                                                        500µL 

Stock minerals3                                                                                                           50µL 

Table 2.1.6.2.5 – Minimal medium composition 

 

 

Stock salts1 (50X) 500mL 
 

MgCl2.6H2O                                                                                                             26.25g 
 

CaCl2 .2H2O                                                                                                             367mg 
 

KCl                                                                                                                                25g 
 

Na2SO4                                                                                                                                                                                           1g 
 

Autoclave and store at 4°C 
Table 2.1.6.2.6 – 50X stock salts solution 
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Stock vitamins2 (1000X) 100mL 
 
Pantothenic acid                                                                                                       100mg 

 
Nicotinic acid                                                                                                                   1g 

 
Inositol                                                                                                                             1g 

 
Biotin                                                                                                                                                                                          1mg 

 
Filter sterilized and store at 4°C 

Table 2.1.6.2.7 – 1000X vitamins stock solution 

 

 

 

Stock minerals3 (10000X) 100mL 
 

Citric acid                                                                                                                        1g 
 

Boric acid                                                                                                                 500mg 
 

MnSO4 .H2O                                                                                                             500mg 
 

ZnSO4 .H2O                                                                                                              400mg 
 

FeCl3 .6H2O                                                                                                              200mg 
 

Molybidic acid                                                                                                          305mg 
 

KI                                                                                                                              100mg 
 

CuSO4 .5H20                                                                                                               40mg 
 

Add in order shown, filter sterilized and store at 4°C 
Table 2.1.6.2.8 – 10000X minerals stock solution 
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2.2.1 Cell culture and maintenance 

 

HeLa cells and Human fibroblast cell lines (tables 2.1.2.1.1 and 2.1.2.2.1) were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% complete 

foetal bovine serum (FBS), 1X penicillin-streptomycin (see Table 2.1.2.3.1). All cells 

were grown in incubators at 37°C in 5% CO2. All cell cultures were passaged when they 

reached ~90% of confluence. Cells were washed twice in sterile PBS and detached from 

flasks using 5ml of 1X trypsin/EDTA per 75 cm² culture flask for 5 minutes at 37°C.  

Cell lines were frozen and stored by re-suspending aliquots of 4x106 cells in 1ml of 

freezing medium (see Table 2.1.2.3.1) in cryo-vials (1 ml/vial). Vials were slowly frozen 

(–80°C overnight) in isopropanol using a freezing container (Nalgene® Sigma), which 

provides the critical 1°C/min cooling rate required for successful cryo-preservation of 

cells, and transferred to liquid nitrogen after 24 hours. 

	
  

	
  

2.2.2 siRNA Transfection of HeLa cells using Metafectene®Pro 

 

The day before transfection HeLa cells were seeded in the culture vessel of choice in 

DMEM without FBS, so they would reach 80% confluency on the day of transfection. 

Cells were transfected with CLN3 or CLN6 siRNA (sequence table 2.1.3.1.1) using 

Metafectene®Pro (Biontex Laboratories GmbH). Before transfection, growing medium 

was removed and replaced with 0.8 ml of transfection medium (DMEM, serum and 

pen/strep free). A total of 5 µl of siRNA (Dharmacon, 20pmol/ µL) was added to 95 µl 

of transfection medium, and 6µl of Metafectene®Pro was added to 96 µl of transfection 
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medium in separate tubes. The two solutions were then combined together and 

incubated at room temperature for 30 min. For the control cells only Metafectene®Pro 

was added with no siRNA in order to check that the Metafectene®Pro is not toxic and 

any observed results are due to the depletion of the gene of interest. The 200 µl of 

siRNA- Metafectene®Pro complexes were added to the cells and, after gentle mixing, 

were incubated at 37°C with 5% CO2 for 4 hours. Transfection medium was then 

replaced with normal growth medium and cells were allowed to recover for 72 hours 

before further experiments were performed. 
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2.2.3 Quantitative PCR (qPCR) 

 

In order to assess the efficiency of gene knockdown by siRNA a qPCR was performed. 

In the following paragraph every step has been described. 

 

 

2.2.3.1 RNA extraction from HeLa 

 

RNA extraction was done with Qiagen Kits according to the manufacturer’s 

instructions. Cells were lysed and passed through a QiaShredder and RNA extracted 

using an RNeasy mini kit. RNA was then eluted in RNase free water and stored at -

20°C.  

 

 

2.2.3.2 RNA reverse transcription 

 

The extracted RNA was retro-transcribed using the QuantiTect reverse transcription kit 

(QIAGEN). Once the reverse transcription reaction was set up, the reaction tubes were 

incubated at 42°C for 15 minute. The reverse transcriptase was inactivate at 95°C for 3 

minute. The cDNA was then stored at -20°C or kept on ice if being used immediately 

after the retro-transcription. 
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2.2.3.3 Endpoint PCR using FastStart polymerase 

 

A total reaction volume of 50µl was used, containing 1µg of sense and antisense 

oligonucleotide primer each, and 10-50ng of template DNA. Deoxyribonucleoside 

triphosphates (dNTPs) (dATP, dCTP, dGTP and dTTP) were used at a final 

concentration of 0.2mM. The PCR cycle consisted of a denaturation step of 94°C held 

for 30 seconds, followed by an annealing step of between 40 and 60°C held for 60 s. 

The extension step (72°C) was held for 60 seconds per kilobase of product. 30 cycles of 

amplification were used per reaction. Reactions were concluded with 7 minutes 

incubation at 72°C to allow complete product extension. 

 

2.2.3.4 qPCR calibration curve 

 

The qPCR technique was used to quantify the amount of target template in a sample. In 

order to check the primer efficiency and sensitivity a qPCR on serially diluted samples 

(1:10) must be performed.  

A PCR (40 cycles) was performed in order to generate a considerable amount of 

specific amplicons. Using the FastStart PCR protocol an end-point PCR was performed 

using the primers listed in table 2.1.3.1.1 using the cDNA made from the RNA 

extracted from the HeLa. The PCR product was separated in a 1% agarose in TAE gel 

against a 100bp DNA ladder. A unique band of the expected size has been cut and 

purified. The concentration of the amplicons was determined using the Nanodrop. Once 

the concentration in ng/µl was determined it was converted to copy number. The 

amplicon was diluted at 1x106 and six 10X dilutions were made. So, the final dilution  
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contained only template copies. A qPCR was performed using the amplicon as template 

and the CLN3/CLN6 primers (Figure 2.2.3.4.1). 

 

 

 

2.2.3.5 qPCR  

 

The qPCR was performed (Eppendorf) with the reaction mixture shown in table 2.1.4.1. 

Knockdown efficiency was quantified in triplicate samples from each transfection 

experiment compared with the housekeeping gene GAPDH. Furthermore, Data have 

been analysed using the 2-ΔΔC(T) method (Livak and Schmittgen 2001). Samples were 

done in triplicates. The conditions are shown in figure 2.2.5.5.1. 

Figure 2.2.3.4.1 – qPCR calibration curve. Both primers (CLN3 and CLN6) efficiency and sensitivity were tested. 
qPCR was performed on serially diluted samples (1:10). 
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2.2.4 Manganese (Mn2+) exposure 
 

HeLa depleted for CLN3 and fibroblast cells were plated in 6 well plates for protein 

assessment and 24 well plate for indirect immunofluorescence and exposed to 500 uM 

Mn2+. The cells exposed to Mn2+ were incubated at 37°C in 5% CO2 for 0, 1, 8 hours. 

After the time course the cells destined for protein assessment were harvested. 

 

 

 

 

 

 

	
  
 

	
  
 

Figure 2.2.3.5.1 – qPCR conditions. The figure shows the qPCR set up, with melting curve (65-95°C) read every 
0.5°C. 
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2.2.5 Indirect Immunofluorescence (IF) 

 

The cell lines used for this project were observed using the confocal light microscope 

(LEICA SPE scanning confocal microscope) and fixed and stained using the following 

protocol.  

The day before immunofluorescence (IF) HeLa depleted for CLN3 and CLN6 and the 

human fibroblast cell lines were seeded onto 20 mm diameter coverslips in complete 

DMEM, so they would reach 75% confluence on the day of the IF, and left overnight at 

37°C in 5% CO2.  The next day the DMEM was removed and the coverslips washed 3 

times in PBS 1X and fixed for 20 minute at room temperature (RT) with 4% PFA in 

PBS 1X solution. The fixed cells were washed 3 times in PBS 1X and incubated for 10 

minute in Perm solution (0.1% Triton X-100 in PBS 1X). Once the cells had been 

permealised, the coverslips were rinsed in PBS 1X and incubated in the blocking 

solution (1% BSA, 0.025% Saponin in PBS 1X) for 30 minute at 4°C. Meantime, the 

solution containing the primary antibody was prepared in Blocking solution and after 

the blocking step the coverslips have been washed 5 times with PBS 1X and flipped 

onto 40ul of primary antibody (AbI) solution. The coverslips were incubated in AbI for 

1 hour at RT. After 1 hour the coverslips were washed 5 times in PBS 1X and 

incubated, for 1 hour at RT in the dark, with the secondary antibody dilute in 1% BSA 

in PBS 1X. The nuclei were stained with Hoechst diluted 1:10000 in PBS 1X and 

incubated for 2 minute. The coverslips have been post-fixed, in 2% PFA for 10 minute 

to prevent any dissociation of the secondary antibody. The coverslips were mounted 

onto a drop of mountant solution (90% glycerol, 3% N-propyl-galate in PBS 1X) and 

sealed with nail varnish. Specific dilutions for all primary and secondary antibodies 

used for IF are stated in table 2.1.3.1.1 and 2.1.3.1.2. 
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2.2.6 Mammalian protein extraction and quantification 

 

 
2.2.6.1 Protein harvesting and lysis 

 

For the assessment of protein expression such as GPP130, CHOP/GADD153, EGFR, 

caspase 2 and GRP78 HeLa cells were grown to confluence in 6 well tissue culture plate 

washed with 10 ml ice-cold PBS and incubated for 5 minute with trypsin and then 

harvested. The cells were centrifuged at 800 revolutions per minute (rpm) for 8 minute 

and then lysed. The pellets were suspended in 50µl of lysis buffer (table 2.1.3.2.1) and 

placed on ice for 30 minutes. The suspension was centrifuged at 12,000 rpm for 20 

minutes at 4°C and the supernatant transferred to a clean tube.  

	
  

	
  

2.2.6.2 Protein quantification 
 

Protein concentration was determined using the PIERCE™ BCA protein assay kit and 

following the instructions given by the supplier.  The 1:10 dilution of the stock solution 

containing the proteins was made (45µl of PBS 1X plus 5µl of protein stock solution). 

Each standard (table 2.2.6.2.1) and unknown samples (1:10 dilution) were pipetted 

(25µl) in replicate into a 96 well plate and 200µl of the working reaction (WR) was 

added.  The final volume of the working reaction, made with reagent A and B in ratio 

50:1, was calculated using the following formula:  

	
  
(9 standards + number of unknown) x (number of replicate) x (volume of WR for each 

sample) 

i.e. (9 +6) x (2) x (200µl) = 6ml 
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Once the standards, samples and working reaction were added the 96 well plate was 

covered in foil and incubated at 37°C for 30 min. The plate was cooled at room 

temperature and the absorbance read at 562nm on an ELISA plate reader (machine). 

	
  
	
  
	
  

Vial PBS 1X (µl) BSA (µl) Final [BSA] µg/ml 
A 0 300 of stock 2000 
B 125 375 of stock 1500 
C 325 325 of stock 1000 
D 175 175 of vial B solution 750 
E 325 325 of vial C solution 500 
F 325 325 of vial E solution 250 
G 325 325 of vial E solution 125 
H 400 100 of vial F solution 25 
I 400 0 0=Blank 

               Table 2.2.6.2.1 – Standard BSA preparation 
	
  
	
  
	
  
	
  
2.2.6.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate proteins according to their electrophoretic mobility, which is dependent on the 

molecular weight of proteins. 

The separation of the proteins was performed in polyacrylamide gels that consist of 

“stacking” and “resolving” gels. The reagent concentration of the resolving gel was 

chosen according to the molecular weight of the proteins to be separated. A 7.5% 

resolving gel was used for the detection of GPP130. For detection of CHOP/GADD153 

12% resolving was used. Both resolving gels and stacking were prepared following the 

conditions shown in table 2.1.5.5 (2.1 Materials) and cast using the 1.5 mm thick glass 

plate (BioRad, MiniPROTEAN® electrophoresis system). 

The resolving gel was poured to within 2 cm of the top of the glass plates and overlaid 

with isopropanol. The resolving gel was left to polymerise before the isopropanol was 

removed and the stacking gel poured on the top. Combs were immediately added to the 
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stacking gel to create sample wells. Once the stacking gel had polymerised the combs 

were removed and the gel was placed into an electrophoresis chamber (BIORAD Mini) 

(50mA for the stacking and 70mA for the resolving gel). Before loading onto the gel, 

protein samples were diluted 5-fold with 2X Laemmli loading buffer (table 2.1.7.1) and 

denatured using a heating block for 5 minutes at 100°C. The gel was run in running 

buffer (table 2.1.8.1) for ~1 hour (till the loading dye had reached the bottom of the gel) 

at 50mA for the stacking and 70mA once they had reached the resolving gel. A rainbow 

protein ladder (Thermo Scientific) was loaded on the same gel to evaluate the correct 

size of the protein bands.  
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2.2.7 Western Blotting 

 
 

2.2.7.1 Electrophoretic Transfer to PVDF Membrane 
 

The resolved proteins were transferred from the SDS-PAGE gel (section 2.3.2.1) to a 

polyvinylidene difluoride membrane (PVDF, BioRad) for detection of proteins by 

Western blot. The PVDF membrane was first activated in methanol before the blotting 

sandwich was prepared in 1X Half Towbin transfer buffer (table 2.1.8.2) in the 

following order: fibre pad, filter paper, PVDF membrane, gel, filter paper, fibre pad. 

The sandwich was placed into the transfer device in order to allow the electrotransfer of 

proteins from the gel to the PVDF membrane. The transfer was performed in 1X Half 

Towbin transfer buffer at 250 mA, constant amperage, for 1.5 hours in the cold room, to 

avoid the overheating of the apparatus. 

 

 

2.2.7.2 Western Blot detection 

 

Prior to the detection process the membrane was first blocked in 5% BSA in TBS-T 1X, 

on a shaker, for 1 hour at room temperature (or alternatively overnight at 4°C). The 

membrane was then incubated with the primary antibody diluted in 1% BSA solution 

for 1 hour at room temperature (or overnight at 4°C). Specific dilutions for all primary 

antibodies used for Western blotting in this thesis are reported in table 2.1.5.1.1. The 

membrane was then washed three times on a shaker (~200 rpm) with TBS-T 1X, for 10 

minutes each time. Next, the membrane was blocked with diluted secondary antibody 

(table 2.1.5.1.2) in 1% TBS-T and incubated at room temperature for 1 hour. Membrane 

washes were repeated as above. The secondary antibodies were all conjugated to Horse 
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Radish Peroxidase (HRP) which allows detection once the membrane is incubated with 

the enhanced chemo-luminescence (ECL) western blotting detection system reagents 

(Pierce® ECL, Thermo Scientific) at a ratio of 1:1 for reagent A:B. The membrane was 

exposed and developed using the ImageQuant 2000 using 10 seconds incremental 

exposure. The western blot were analised comparing the density of each band. The band 

intensity was then normalised with the intensity of the loading control’s band. The 

western blot analysis was performed using the open source software FIJI. Statistical 

analysis was performed using GraphPad Prism software version 6.0b for mac 

(GraphPad Software Inc. San Diego, CA, USA). 

	
  
	
  
2.2.8 Lysosome function assay 

HeLa cells CLN3 depleted have been tested for lysosomal function using the 

VIVAprobe™lysosome assay kit. The kit use the photostable red fluorophore cresyl 

violet (CV), bi-substituted via amide linkage to the peptide sequence Arg-Arg to give 

the cathepsin B substrate CV-(RR)2. The cathepsin B substrate diluted in 52μl DMSO to 

constitute the stock concentrate. The working solution was made in PBS1X, 1:10 ratio. 

The HeLa cells were collected (concentration of 2x106 cells/ml) in a falcon tube and 

incubated for 1 hours at 37°C with the cathepsin B substrate working solution (20μl 

every 300μl of cell sample). 100μl of cells were pipetted in each well of a 96 well plate 

and the fluorescence intensity was measured in ELISA plate reader. Cathepsin B 

substrate has an optimal excitation and emission wavelength of 592nm and 628nm. 
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2.2.9 Image processing and analysis 

 

To quantify the morphology of the Golgi complex, in these cells, the 

immunofluorescence was recorded as a digital 8-bit gray-scale, 1024X1024 pixels 

image (Confocal images were acquired using a Leica TCS SPE confocal imaging 

system with plan-Apochromat 63X 1.25 NA oil objective and recorded using Leica 

LAS AF software. Images were opened and analysed in ImageJ). The threshold of the 

images was set at ~90 for GM130 and at ~45 for both Giantin and TGN46 (all pixels 

with a value under 90 and/or 45 are excluded from the quantification) to remove 

background pixels from measurements. The region of interest was defined for each cell 

and the corresponding area measured. All image processing and analysis, IF and WB, 

was performed using the open source software FIJI (http://imageJ.nih.gov/ij). 
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2.2.10 S. pombe mutant strains 

 

2.2.10.1 S. pombe btn1 deleted strains 

 

The fission yeast btn1 deleted strain was made by Dr. Michael Bond and Mariana Vieira 

using the long primer method. Essentially, a new yeast strain was made for the Hermes 

project (not explained in this thesis). For this project it was needed to use a strain that 

was auxotrophic for leucine. The previous strain used by Codlin (Codlin et al., 2009) 

used leu2 to replace btn1. Once the new strain was made we start to use it in order to 

obtain consistent results with one another. In this method long primers (100nt) are 

designed in which the first 80nt are homologous to the flanking regions of the gene of 

interest and the last 20nt are homologous to a generic plasmid, in this case pFA6a. 

When these primers are used to amplify from pFA6a a product is generated with the 

flanking regions of btn1 either side of a cassette. There are a number of versions of this 

plasmid, but in this case the one containing the NatMX cassette was used (Figure 

2.2.10.1.1). 

The NatMX cassette is a simple resistance cassette and it confers resistance to the anti-

fungal nourseothricin sulfate, also called ClonNat. Following transformation, cells were 

plated onto YES. After 24h they were replica plated onto ClonNat (this gives the cells a 

chance to express the resistance gene before selection), and resistant colonies selected. 

To check if the integration occurred at the right place a PCR was performed (Bähler et 

al., 1998). 
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Figure 2.2.10.1.1 – S. pombe btn1 deleted strain. Long primers (100nt) 
are designed in which the first 80nt are homologous to the flanking 
regions of btn1 and the last 20nt are homologous to a generic plasmid, in 
this case pFA6a.  
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2.2.11 S. pombe transformation 

 

S. pombe was transformed with plasmid DNA or linear DNA fragments using the 

lithium acetate method described by Okazaki et al. (1990) (Okazaki et al., 1990). 
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2.2.12 Transmission Electron Microscopy (TEM) 

	
  

2.2.12.1 High-pressure freezing (HPF) and freeze substitution (FS) of   

S. pombe for TEM 

 

The aim of the high pressure freezing is to preserve the biological samples and 

minimise artifacts related to conventional aldehyde fixation and room 

temperature dehydration.  

   

2.2.12.1.1 Rapid freezing in Electron Microscopy sample preparation 

 

The freezing of biological samples at a rapid rate allows the formation of vitreous ice so 

that ice crystals formed cannot be detected by the electron microscope. Mainly, there 

are four method of cryo-fixation: a) plunge freezing, b) propane jet freezing, c) cold 

metal block freezing and d) high pressure freezing (HPF) (Gilkey and Staehelin 1986). 

However, for samples thicker than 0.6 mm the HPF is the technique most suitable. 

Indeed, the other three methods are suitable for very thin samples such as monolayer of 

cells. This is because only thin samples can reach, at atmospheric pressure, a freezing 

ratio of 10000°C/sec. The high pressure (~2050 bar) applied immediately before the 

freezing step is able to change the properties of the water avoiding the formation of ice 

crystals (Gilkey and Staehelin 1986; Moor, 1987 #1940). 
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2.2.12.1.2 S. pombe growth preparation for HPF and FS 

 

To ensure a successful HPF in S. pombe it is important to filter and prepare the yeast at 

the mid log phase (0.4-1.0×107 cells/mL). A start culture was prepared two days before 

the filtration process. S. pombe strains (table 2.1.3.1.1) were inoculated in 10 ml YES 

medium (table 2.1.3.2.1) and incubated for 17 hours at 30°C. 

After 17 hours a larger volume culture was set up using both minimum (table 2.1.3.2.3) 

and rich (table 2.1.3.2.1) media. The optical density (OD600) of the start cultures was 

measured to calculate the cell concentration. The cell concentration together with the 

doubling time of S. pombe (~2.5 hours) allows us to calculate the volume of start culture 

to inoculate in100 ml culture using the following equation: 

 

[V(Y/X)] / [2(T/DT)] 

 

Y is the target OD 600; X is the current OD 600; T is the number of hours of growth; V 

is the culture volume in ml; DT is the doubling time in hours. The large culture (100 ml) 

was then incubated for 17 hours at 30°C in order to reach the mid log phase.  
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2.2.12.1.3 S. pombe filtration and HPF  

 

The S. pombe filtration and HPF was performed following the protocol (Murray 2008) 

with some adjustment. The yeast was collected by filtration using cellulose acetate 

filters (25mm diameter, pore size 0.45µm, Sartorius Stedim) mounted on a Whatham 

filter holder (25mm×50ml, Scientific laboratory supplies) connected to a vacuum pump. 

The filter was allowed to equilibrate for 2 minute in appropriate yeast medium, before 

being inserted. Yeast culture (10 ml) was poured into the filter holder. This filtration 

step is critical, if the filter is either too wet or too dry, the freezing will be 

unsatisfactory. The filtered yeast on the membrane filter should have a consistency of 

apple sauce (Murray 2008). In order to reach the right consistency the vacuum pump 

was turned off prior to the meniscus of the medium reached the filter membrane at the 

bottom of the filter system and the pump released. The filter membrane was plated on a 

drop of 40µl medium spotted on a petri dish lid, to keep the yeast humid, avoiding to 

drying out. A portion of the yeast paste was scraped from the filter using a pipette tip 

and loaded into the specimen carrier (100 nm deep, Leica). The scraping and loading is 

a critical step, drying out of the sample must be avoided so, it is recommended to 

proceed quickly and with the help of a colleague. The specimen carrier, filled with the 

yeast paste, was mounted in the specimen rod and clamped into position in the HPF 

EMPACT (Leica). The specimen was inserted into the HPF and locked. Once all the 

samples had been frozen, they were transferred to the automatic freeze substitution unit 

(Leica) and the remaining samples stored in liquid nitrogen. 
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2.2.12.1.4 S. pombe freeze substitution (FS) and embedding 

 

Freeze substitution is the process that allows the dissolution of vitreous ice by an 

organic solvent in the presence of a secondary fixative (Steinbrecht and Muller 1987). S. 

pombe AFS was carried out using the FS Leica system according to the conditions 

showed below in the figure 2.2.12.1.4.1. 

 

 

 

The freeze substitution was carried out in Leica AFS. The samples were kept in 0.1% of 

tannic acid in 98% acetone for 22 hours at -90°C. After the aforementioned time the 

specimens were washed with 98% acetone for 2 hours at the same temperature. The 

samples once were washed in acetone were incubated in 2% osmium tetraoxide (OsO4) 

solution in acetone for 8 hours at –90°C, the temperature then shifted from -90°C to -

60°C (6 hours step, 5°C /hour). The samples then were kept for 8 hours at -60°C before 

the temperature start to increase from -60°C to -30°C (6 hours, 5°C /hour). After 28 

Figure 2.2.12.1.4.1 - Automatic freeze substitution program. The AFS was carried out according to the program 
showed in the figure and the solutions and temperature steps are explained in the text. 
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hours in 2% in OsO4, this was replaced with 98% acetone and incubated for 15 hours (8 

hours at -30°C) after 8 hours the temperature increased (5°C /hour) till 0°C. The 

samples then, were incubated in acetone for 1 hour, from 0°C to 20°C, followed by a 

second incubation with acetone at 20°C for 2 hours. The specimens kept at 20°C were 

incubated twice in PO (2x10mins) and then incubated in PO-Epon for 1 hour. After that 

the sample were incubated in Epon twice (2x2 hours) embedded and baked overnight at 

60°C 

 

 

2.2.12.2 Fixation and embedding of mammalian cell lines for TEM 

 

2.2.12.2.1 Fixation  

 

Human fibroblast and HeLa cell lines were plated in 20mm diameter coverslips and 

fixed, for 30 minute at room temperature, using a solution of 1.5% glutaraldehyde and 

2% PFA in 0.1M of Na2+ Cacodylate. Fixative was removed and the coverslips washed 

3X with 0.1M of Na2+ Cacodylate. In order to make the cells electron dense and 

improve contrast the cells were incubated for 1 hour at 4°C in the presence of 1%OsO4 

and 1.5% K+Fe2cyanide. The working solution was made from 2% OsO4 and 3% 

K+Fe2cyanid in H2O stock solution and mixed in 1:1 ratio to obtain the final 

concentration. After 1 hour the solution was removed and the coverslips washed 3X 

with 0.1M of Na2+ Cacodylate. If necessary the coverslips could be left in 0.1M of Na2+ 

Cacodylate for a week.  
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2.2.12.2.2 Mammalian cells embedding for EM 

 

In order to proceed with embedding, the 0.1M Na2+Cacodylate was removed and the 

coverslips incubated for 45 minute in the dark with 0.1% tannic acid  (TA) in 0.05M of 

Na2+ Cacodylate. After 45 minutes, the 0.1% TA was removed and the coverslips were 

rinsed and incubated for 5 minute in 1% Na2+sulphate in 0.05M Na2+Cacodylate. The 

coverslips were rinsed and incubated for 3 minute in dH2O. The coverslips have been 

dehydrated in ethanol (EtOH) following the conditions illustrated in table 2.2.12.2.2.1. 

	
  

EtOH dehydration 
 
2X wash in 70% EtOH (5min each) 
2X wash in 90% EtOH (5min each) 
2X wash in 100% EtOH (5min each) 

 
                                Table 2.2.12.2.2.1 – Dehydration steps in EtOH 

	
  

After dehydration the coverslips were incubated in propylene-oxide EPON (PO-EPON), 

1:1 solution, for 1 hour at room temperature. The PO-EPON was removed and 

substituted with EPON for 2 hours at RT. After 2 hours the EPON was replaced with 

fresh EPON and incubated for 2 more hours at room temperature. Finally, the coverslips 

were mounted on the top of EPON stabs and baked overnight at 60°C. 
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2.2.12.3 Sectioning 

	
  

Sections were cut with a Leica Ultracut UC7 microtome onto formvar-coated slot grids, 

stained for 10 minutes with lead citrate (Lead nitrate 133g, Sodium citrate 1.76g and 

0.8ml of 10N NaOH in 30ml of deionised water), and viewed with a transmission 

electron microscope (TECNAI12: Philips, Eindhoven, The Netherlands). Images were 

acquired using a Morada digital camera (Olympus-SIS).	
  

	
  

 

2.2.13 Bacterial Strains and transformation 

 

Cloning was performed using the Escherichia coli (E. coli) strain DH5α (Stratagene, 

Cambridge, UK). 1 µL of plasmid (stated in table 2.1.3.1.1) was added to 100µL of 

DH5α Escherichia coli competent cells and incubated on ice for 30 min. Cells were 

subjected to heat shock at 42 °C for 45 seconds and immediately placed on ice for 2 

minutes. Cells were then allowed to grow by adding 500µL of SOC medium 

(Invitrogen) and incubating in an orbital shaker at 37°C for 30 minute at 220 rpm. 

Subsequently, 200 µl were spread onto LB agar plates supplemented with the 

appropriate antibiotic. Plates were incubated overnight at 37°C.    

 

 

2.2.14 Plasmid DNA Purification, Miniprep 
 

Plasmids were extracted from overnight bacterial cultures using the QIAGEN mini-prep 

kit. 5 ml of bacterial cultures were pelleted by centrifugation at 3,200 rpm for 5 

minutes. The resulting pellet was resuspended in 250 µl of Buffer P1 and transferred to 
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a 1.5 ml micro-centrifuge tube before addition of 250 µl of Buffer P2 to allow cell lysis. 

The tube was carefully inverted several times. Subsequently 350 µl of the alkaline 

Buffer N3 was added, and the solution was immediately mixed by inversion. The 

mixture was then centrifuged at 13,000 rpm for 10 minutes to pellet cellular debris, 

including genomic DNA. The supernatant, which contained the plasmid DNA, was 

transferred to a QIAprep spin column and centrifuged for 1 minute at 13,000 rpm. The 

column, with bound plasmid DNA, was washed with 750 µl of Buffer PE and 

centrifuged as above. The flow through was discarded and the column was centrifuged 

for a further 1 minute at 13,000 rpm to wash away any residual buffer. The QIAprep 

column was then placed into a clean 1.5 ml tube and 50 µl of elution buffer was added 

to the centre of the column and left to stand for 1 minute. The column was then 

centrifuged at 13,000 rpm for 1 minute to elute the plasmid DNA and the concentration 

was determined by NanoDrop® (Spectrophotometer, ND-10000). 

 

 

2.2.15 Agarose Gel Electrophoresis 

 

1% agarose gel was prepared by dissolving 1 % w/v agarose in 1X TBE buffer (90 mM 

tris-base, 90 mM boric acid, and 2 mM EDTA, pH=8.0) and heating, then supplemented 

with 5 µl of ethidium bromide (EtBr, 10 ng/ml). 6X DNA loading buffer (2 mM EDTA, 

50% glycerol and 0.1% orange G) was added to the sample before loading on the 

agarose gel. A DNA ladder (Promega) was loaded on the same gel as a size standard. 

The electrophoresis was run at 120 Volts for ~45 minute.  
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2.2.16 Analysis of data 

 

Statistical analysis was performed using GraphPad Prism software version 6.0b for Mac 

(GraphPad Software Inc. San Diego, CA, USA). Statistical significance was determined 

using either unpaired t-student test or ANOVA. All images were downloaded to either 

Microsoft Excel for analysis, or to Adobe Photoshop 4 and Illustrator 4 for assembly 

into montages. 

 

 

2.2.17 Stereology 

 

The streological approach was used in order to estimate the ER and yeast Golgi 

complex volume fraction, using a point counting grid and the square array (Hally 1964). 

In the square array the points lie at the vertices of adjacent squares (Figure 2.2.17.1). 

The unit ‘cell’ is a square of side d unit long, d = 0.1. The grid of choice was 

superimposed on the images in question.  

 

 

 

Figure 2.2.17.1 - Square array. Point 
counting grid with the points arranged 
in a square pattern. In this pattern the 
unit cell is also a square with d = 0.1 
 
 

	
   d 
d 
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Points that fall within the contour at each of the superimpositions were counted. Finally, 

the area A enclosed by the profile was calculated from: 

A = n a 

Where n is the number of points counted and a is the area of the unit cell as defined 

above.  

To estimate the volume of the ER the fractional area occupied by the ER within the 

general containing transection was calculated. This is illustrated in figure 2.2.17.2. 

 

 

The area of the whole is A and the area of the inner object α. The fractional area (AA) of 

α is calculated from: 

AA = α/A 

In addition, the fractional area (AA) and the fractional volume (VV) of these objects are 

estimated by quotients, in short: 

VV = AA 

 

 

 

Figure 2.2.17.2 - Fractional area. The 
fractional area enclosed by the inner 
(shaded) contour α is estimated by the 
number of grid points which fall on it, 
in relation to the total number of grid 
points which fall on the area A as a 
whole. 
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Chapter Three 

 

Effects of CLN3 loss/depletion in mammalian cells 

 

3.1 Loss/depletion of CLN3 affects Golgi complex morphology 

 

This section details the effects of CLN3 gene depletion by siRNA on the morphology of 

the Golgi apparatus in HeLa cells. In addition, it examines the morphology of the Golgi 

apparatus in fibroblast cell lines generated from biopsies of patients homozygous for the 

common 1-kb deletion.  
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3.1.1 Golgi complex morphology in CLN3 depleted HeLa cells 

 

Previous work in our laboratory investigated the connection between Golgi apparatus 

morphology and btn1 mutations in yeast (Codlin et al., 2009). Here, I investigate the 

correlation between Golgi morphology and CLN3 in mammalian cell lines. An 

observation of Golgi morphological changes in the cells from patients with CLN3 

disease would give further indication as to whether Golgi defects are likely to play a 

role in the human pathology.  

 

As a step towards addressing the role of CLN3 at the Golgi complex, the morphology of 

this organelle was monitored in CLN3-depleted HeLa cells, by immunostaining with 

antibodies against GM130, Giantin and TGN46 (table 2.1.5.1.1), proteins that localise 

at the cis, medial and trans Golgi network (TGN) respectively (Prescott et al., 1997; 

Marra et al., 2001; Rudell et al., 2014). Since the depletion experiments are performed 

in the same cell line, any differences in Golgi morphology should be a consequence of 

CLN3 depletion. 

 

In HeLa cells 48 hours after gene depletion (Figure 3.1.1.1, D), the Golgi complex 

undergoes significant morphological changes, which are more evident in the cis and 

trans-Golgi network. A 26% increase in area was observed for both cis-Golgi (Figure 

3.1.1.1, Panel A [i, i’, ii, ii’], Graph B) and TGN (Figure. 3.1.1.3). However, the medial 

compartment does not show a significant increase in its area (Figure 3.1.1.2). To 

confirm that the morphological changes in the Golgi complex are specific to CLN3 

depletion, the Golgi morphology was also analysed in CLN6-depleted HeLa cells 

(Figure 3.1.1.1, panel A [iii, iii’], graph C). CLN6 is a transmembrane ER-resident 
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protein (Heine et al., 2004; Mole et al., 2004). Mutations in CLN6 generally cause 

disease with onset in late infancy (CLN6 variant late infantile disease) (Sharp et al., 

1997). The Golgi apparatus of HeLa cells depleted for CLN6  (stained for GM130) was 

relatively normal and similar to the Golgi complex of mock-treated cells (Figure 

3.1.1.1, panel A [iii, iii’], graph C). This suggests that changes of the Golgi apparatus 

are striking features of CLN3 depletion. 

 

Since the morphology of the Golgi complex is strictly correlated to its organisation 

(Sens and Rao 2013), the latter was also studied.  Compactness was used as a parameter 

to study the organisation of the Golgi complex. The compactness known also as 

coefficient of circularity is an adimensional number comprised between 1.0 (a perfect 

circle) and 0.0 (a less circular, more polygonal geometrical object (Figure 3.1.1.4, A and 

B). In order to calculate the compactness of the Golgi complex the area of the organelle 

was factored with the square value of its perimeter and multiplying it by 4π. Because 

the Golgi apparatus is generally formed of several clusters of Golgi stacks, we adapted 

the equation by using the sum of the areas of the clusters and the sum of their perimeters 

to calculate the “compactness” of the whole structure (Figure 3.1.1.4, graph C). The 

equation used to calculate the compactness is showed below (Bard et al., 2003): 

 

4π(Σ area)/(Σ perimeter)2 

 

Using this method we verified that the Golgi complex is bigger and less 

compact/organised in CLN3 depleted cells (Figure. 3.1.1.4, C). These results are 

consistent with observations in S. pombe lacking all btn1 function, published by Codlin 

et al., (2009) (see figure 1.4.2.1, introduction).  
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Figure 3.1.1.1 - CLN3 siRNA dependent changes in cis-Golgi morphology. A) Immunofluorescence images of 
HeLa cells, control and CLN3 depleted, stained for GM130 (i and ii). To quantify the GA area the images were 
set at a threshold of  ~90 (i’ and ii’) and the region of interest selected (I’’), images were taken using a Leica 
SPE scanning confocal microscope (Scale Bar 20 µM). B) The graph depicts the increase in GA area upon CLN3 
depletion. C) The graph shows the Golgi complex in CLN6 depleted cells. D) The graph shows the knockdown 
efficiency for CLN3 and CLN6 compared with mock treated cells were any siRNA was added but only the 
transfection reagent. (The experiment was done in triplicate, and the data shown are mean±SEM shown in 
Appendix A).  
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Figure 3.1.1.2 – CLN3 depletion does not affect the medial-Golgi area. A) Images show the 
immunostaining of the medial-Golgi using Giantin as a marker (upper panel) and the thresholded images 
for the quantification (Scale Bar 10 µM). B). The graph shows the mean of the medial-Golgi area upon 
CLN3 depletion (The experiment was done in triplicate, and the data shown are mean±SEM shown in 
Appendix A). 
 
 
 
 
 

Figure 3.1.1.3 – CLN3 depletion affects the TGN area. A) The images show the immunostaining of 
the TGN using TGN46 as a marker (upper panel) and the thresholded images for the quantification 
(Scale Bar 10 µM). B). The graph shows the mean of the TGN area upon CLN3 depletion (The 
experiment was done in triplicate, and the data shown are mean±SEM shown in Appendix A). 
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Figure 3.1.1.4 – CLN3 depletion affects the Golgi complex compactness. 
Circularity/compactness is an adimensional number comprised between 1.0 
(a perfect circle, A) and 0.0 (a less circular, more polygonal geometrical 
object, B). C) The graph shows the decrease in Golgi compactness (the cis-
Golgi compartment) upon CLN3 depletion (The experiment was done in 
triplicate, and the data shown are mean±SEM shown in Appendix A). 
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3.1.2 Golgi complex morphology in 1-kb patient fibroblast cell lines 

 

The same measurements, described in the previous section, were conducted on the 

Golgi complex of human fibroblast cell lines generated from skin biopsies taken from 

patients homozygous for the 1-kb deletion in CLN3. For this study 4 different 1-kb 

patient cell lines and 4 fibroblast cell lines generated from 4 different healthy donors 

were compared (table 3.1.2.1). Figure 3.1.2.1 shows healthy and patient fibroblasts 

stained with an antibody against GM130, a marker for cis-Golgi. 

 

The 4 different 1-kb patient cell lines show an increase in the Golgi area of ~22% 

(Figure 3.1.2.1, panel B, graph D) when compared to the 4 different control cell lines 

(Figure 3.1.2.1, panel A, graph C). The mean of control and 1-kb patients was plotted in 

the graph E in figure 3.1.2.1. Significantly, the increase in area observed in the 1-kb 

patient cell lines is consistent with the increase observed in CLN3 depleted cells (Figure 

3.1.1.1, graph B). In addition, the less organised Golgi morphology observed in HeLa 

cells depleted for CLN3 was also observed in 1-kb patient fibroblasts (Figure 3.1.2.1, 

F). The medial and TGN area were also assessed in one of the 1-kb patient cell lines 

(HF480Pa) and, similar to that observed in HeLa cells, the TGN showed a significant 

increase in its area (Figure 3.1.2.3) whereas no changes were detected in the medial 

compartment (Figure 3.1.2.2). 

 

Furthermore, the Golgi complex was also analysed in fibroblasts generated from 

siblings affected by CLN3 disease homozygous for a different mutation in CLN3, a 

larger deletion (exon 9-15) (Figure 3.1.2.4, A).  In this cell line, the Golgi complex area 

was increased (Figure 3.1.2.4, B) and it showed a less compact/organised morphology 
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(Figure 3.1.2.4, C). This increase in Golgi complex area is similar to the increase 

observed in the 1-kb patient fibroblast cell lines (Figure 3.1.2.4, D). Moreover, the 

Golgi complex seems not to be significant affected in other types of NCL. Indeed, a 

screening conducted in patient fibroblast cells affected by a different subtype of NCL 

revealed that this organelle is not affected in other NCL subtype. These results show 

that the Golgi complex is slightly increased in CLN6 patient fibroblast cells (Figure 

3.1.2.5). 

 

Together these results clearly demonstrate that a loss or a CLN3 mutation affects the 

Golgi morphology.  
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Figure 3.1.2.1 - CLN3 1-kb deletion dependent changes in Golgi complex morphology.  
Immunofluorescence images of human fibroblast cell lines, control (panel A) and CLN3 1-kb patient 
cell lines (panel B), stained for GM130. To quantify the Golgi complex area images were set at a 
threshold of  ~45 (A and B) images were taken using a Leica SPE scanning confocal microscope 
(Scale Bar 10 µM). C) Golgi complex area of the 4 different healthy fibroblast cell lines. D) Golgi 
complex area of 4 different 1-kb fibroblasts. E) Mean of the Golgi complex area in both healthy 
fibroblast and 1-kb patient cell lines. F) Compactness of healthy and 1-kb patient fibroblast cell 
lines. (The experiment was done in triplicate, and the data shown are mean±SEM shown in 
Appendix A).  
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Figure 3.1.2.3 - CLN3 1-kb deletion affects the TGN area.  Immunofluorescence images of 1-kb fibroblast cell 
lines (panel A), stained for TGN46, images were taken using a Leica SPE scanning confocal microscope (Scale 
Bar 10 µM). B) The graph shows the mean of the TGN area in 1-kb patient cell lines (The experiment was done 
in triplicate, and the data shown are mean±SEM shown in Appendix A). 

Figure 3.1.2.2 - CLN3 1-kb deletion does not affect the medial-Golgi area.  Immunofluorescence images of 1-kb 
fibroblast cell lines (panel A), stained for Giantin. Images were taken using a Leica SPE scanning confocal 
microscope (Scale Bar 10 µM). B) The graph shows the mean of the medial-Golgi area in 1-kb patient cell lines 
(The experiment was done in triplicate, and the data shown are mean±SEM shown in Appendix A). 
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Figure 3.1.2.4 - CLN3 exons 9-15 deletion dependent changes in Golgi complex morphology.  
Immunofluorescence images of 9-15 patient fibroblast cell lines (panel A), stained for GM130, 
images were taken using a Leica SPE scanning confocal microscope (Scale Bar 10 µM). B) The 
graph depicts the Golgi complex area in HF338Pa and HF338Pb. C) Compactness of the Golgi 
complex in CLN3 ex9-15 deletion fibroblast cell lines. D) The graph compares the Golgi complex 
area of the cell lines carrying the ex9-15 deletion vs 1-kb patient cell lines.  (The experiment was 
done in triplicate, and the data shown are mean±SEM shown in Appendix A).  
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Figure 3.1.2.5 – Golgi complex morphology is not affected in other NCLs.  A screening 
conducted in fibroblast cells from patients affected by different subtype of NCL. (The 
experiment was done in triplicate, and the data shown are mean±SEM shown in 
Appendix A). 
 



3 Effects of CLN3 loss/depletion in mammalian cell lines 

	
  

	
   129 

3.1.3 Synopsis   

 

Previous work in the lab established a connection between the morphology of the Golgi 

apparatus and deletion of btn1, the yeast orthologue of CLN3. In this study mammalian 

cell lines that were depleted for CLN3 and fibroblasts from patients homozygous for the 

1-kb deletion were analysed to investigate if this phenomenon is conserved in 

mammalian cells. The observation, that only loss of CLN3 activity is linked to marked 

morphological changes in the Golgi complex in mammalian cells, supports the 

hypothesis that defects in the Golgi complex are likely to play a role in the pathology of 

CLN3 disease. CLN3 depletion causes an increase in the Golgi complex area, in 

particular in the cis-Golgi and TGN. Analysis of CLN3 depleted HeLa cells are 

consistent with the results obtained from the 1-kb patient fibroblast cell lines, where a 

25% increase in Golgi area was observed. Moreover, fibroblast cells generated from 

siblings affected by CLN3 disease carrying a larger deletion (that removes exons 9-15) 

also show similar defects in the Golgi area. 

 

The whole Golgi complex is affected in CLN3 disease, with an unusual less compact 

organisation. These data are consistent with the published data from Codlin et al., 

(2009) where the lack of btn1 was shown to affect the Golgi complex morphology and 

organisation. Moreover, cells from CLN6 patients also have a slight increase in the area 

of the cis- Golgi, but those from patients with other types of NCL do not. This 

emphasizes the specificity of the changes at the Golgi apparatus in CLN3 disease.
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Chapter Four 

 

Golgi complex morphological changes are accompanied by 

Mn2+ dyshomeostasis in CLN3 disease 

 

4.1 CLN3 depletion/loss affects the Mn2+ homeostasis at the Golgi 

complex in mammalian cell lines 

 

Codlin et al., (2009) showed how the absence of Btn1p causes mis-trafficking and 

secretion of the vacuolar protein Carboxypeptidase Y, due to the mis-trafficking of its 

receptor Vps10. However, the cause of this mis-trafficking is not known.  

 

Recently, Dr. Michael Bond showed that fission yeast lacking btn1 is more sensitive to 

manganese (Mn2+), with cells less able to survive with increasing concentration 

(unpublished data). Mn2+ homeostasis is finely regulated by the Golgi complex (see 

introduction, section 1.5.8). However, the molecular mechanism by which this 

regulation occurs is not completely understood. Moreover, it is unclear what the 

physiological concentration of Mn2+ is inside the organelle, as current commercially 

available probes are not sensitive enough to detect manganese. Therefore, to date, the 

best current and commonly used tool to investigate Mn2+ in the Golgi is GPP130. 

GPP130 is a Golgi-resident protein that is sensitive to intra-Golgi Mn2+ concentration, 

which is degraded by the lysosomes when the intra-Golgi Mn2+ concentration increases. 
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This chapter frames the effects of CLN3 on Golgi complex and Mn2+ homeostasis. The 

experiments shown in this section were performed in two complementary cell lines: 

HeLa cells transiently depleted for CLN3 and the 1-kb patient fibroblasts. Both cell 

types show an unusual divalent ionic homeostasis, in particular of Mn2+. 
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4.1.1 CLN3 depletion affects Mn2+ homeostasis at the Golgi complex 

 

The sensitivity of the fission yeast S. pombe to different metals was investigated in our 

lab, by Dr. Michael Bond (unpublished data). Wild-type and btn1 depleted yeast cells  

(see tab. 2.1.6.1.1) were plated onto YES+agar (see tab. 2.1.6.2.2) containing different 

divalent metals (calcium, magnesium and manganese) and growth was assayed by 

growing at 30°C for 2 to 3 days (Figure 4.1.1.1). Cells lacking btn1 showed a higher 

sensitivity to Mn2+ (Figure 4.1.1.1). 

  

 

 

 

 

Figure 4.1.1.1 - S. pombe metal sensitivity assay. Lack of btn1 confers sensitivity 
to Mn2+ but not to Ca2+ and Mg2+. Wild-type and btn1 deleted strains were grown 
to mid-log phase at 30°C before serial dilution (10X) and plated by drops onto pre-
warmed solid medium (YES+AGAR). Plates were grown for 2 to 3 days at the 
indicated metal concentration before photodocumentation. (Images from Dr. Bond, 
M., unpublished data). 
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These results show that fission yeast deleted for btn1 are sensitive to high Mn2+ 

concentration (Figure 4.1.1.1) and that Btn1 function may be connected with Mn2+ 

homeostasis. The same may be true for mammalian cells. Therefore, in order investigate 

whether the morphological changes in the Golgi complex caused by CLN3 are 

accompanied by changes in Golgi-Mn2+ homeostasis, the GPP130 levels were 

investigated. GPP130 is a Golgi-resident protein that is sensitive to Mn2+ concentration. 

Moreover, its lysosomal-dependent degradation correlates with an increase in the intra-

Golgi Mn2+ concentration (Mukhopadhyay et al., 2010; Mukhopadhyay and Linstedt 

2011; Masuda et al., 2013). Under normal intra-Golgi Mn2+ concentration, GPP130 

recycles between the Golgi complex and endosomes. However, when the intra-Golgi 

Mn2+ concentration increases, GPP130 is redirected to the lysosomes for degradation 

(Figure 4.1.1.2). Therefore we investigated GPP130 levels in CLN3 depleted cells after 

exposure to 500 µM of Mn2+ for 0, 1, and 8 hours.  

 

Figure 4.1.1.2 - GPP130 as Mn2+ sensor. a) At normal intra-Golgi Mn2+ 

concentration GPP130 recycles between Golgi and endosomes. b) At 
high intra-Golgi Mn2+ concentration GPP130 is trafficked to lysosomes 
and degraded. 
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In mock-transfected HeLa cells, GPP130 is degraded 8 hours after incubation with 

Mn2+. However, in CLN3-depleted HeLa cells the levels of GPP130, upon Mn2+ 

exposure, do not change (Figure. 4.1.1.3, panel A, i and ii). This suggests that Mn2+ 

intake by the Golgi complex is impaired when CLN3 is absent, or that an increase can 

no longer be sensed. Many scenarios could be envisaged to explain this result.  CLN3 

could be directly linked to the transport of manganese or it could regulate its intake by 

modulating other factors such as SPCA1, the main Golgi Ca2+/Mn2+ pump (see 

introduction, section 1.5.8). In addition, the lack of GPP130 degradation could also be 

due to aberrant function within lysosomes in this CLN3 disease model, given that CLN3 

disease is a LSD. To test lysosomal function, the lysosomal-dependent degradation of 

the epidermal growth factor receptor (EGFR) was assessed (Figure 4.1.1.3, panel A, i, 

iii and iii’). Various agents are able to stimulate EGFR in the absence of ligand binding. 

The activity of EGFR is, also, dependent on divalent cations, in particular Mn2+ is a 

powerful activator (Mohammadi et al., 1993). The activation of EGFR is followed by its 

internalization and it is either recycled and/or degraded within lysosomes (Dikic 2003; 

Herbst 2004). To test the functionality of the lysosomes the EGFR levels were 

investigated. CLN3-depleted HeLa cells supported degradation of EGF receptor by 

lysosomes. These results suggest that lysosomes are still functional, at least for this 

activity, after CLN3 depletion. Indeed, the degradation of EGFR still occurs in CLN3 

depleted HeLa cells (Figure 4.1.1.3. panel A, iii’). Moreover, the lysosome function was 

tested in CLN3-depleted HeLa cells using the VIVAprobe™ lysosome assay kit 

(Methods, section 2.2.8). The kit use the photostable red fluorophore cresyl violet (CV), 

bi-substituted via amide linkage to the peptide sequence Arg-Arg to give the cathepsin 

B substrate CV-(RR)2. In CLN3-depleted cells, lysosomes show a significant decrease 

in this functionality, although this is not abolished (Figure 4.1.1.3, B).  



4 Golgi complex morphological changes are accompanied by Mn2+ dyshomeostasis  

	
   136 

We next investigated the fate of GPP130 levels upon manganese exposure, in patient 

cell lines. Fibroblasts from 1-kb patients show much increased levels of GPP130 protein 

compared to control fibroblasts (Figure 4.1.1.4, panel A, i and ii). This relative 

difference remains after exposure to Mn2+ (Figure 4.1.1.4, A and B). Upon manganese 

exposure, a decrease in GPP130 levels was observed in both control and patient 

fibroblasts (Figure 4.1.1.4). The initial general increase observed in patient fibroblasts 

suggests that CLN3 affects GPP130 turnover efficiency and that these patient cells may 

have decreased manganese sensitivity.  Since a decrease in GPP130 levels is still seen 

upon manganese exposure, we investigated whether trafficking of this protein still 

occurs allowing degradation in the lysosome. GPP130 degradation is similar in both 

types of cells, suggesting that trafficking is occurring normally (Figure 4.1.1.4, panel A, 

ii and iii). In addition, lysosome function of the 1-kb patient fibroblast cell lines was 

tested. These cells retain cathepsin B function. Lysosome activity of patient cells is 

affected less than that of CLN3 1-kb deleted, consistent with patient cells retaining 

residual CLN3 function (Figure 4.1.1.4, graph B). 

 

Patient fibroblasts are not manganese irresponsive, although higher levels of manganese 

appear to be necessary to achieve a turnover similar to that observed in control cells. If 

patient cells were irresponsive to manganese concentrations, and not merely insensitive, 

no changes in GPP130 levels upon manganese exposure would be expected. This may 

be due to the fact that mutant CLN3, in 1-kb patients, still possesses residual function. 
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Figure 4.1.1.3 - CLN3 depletion affects GPP130 levels. A) i) WB analysis of GPP130 in HeLa cells upon Mn2+ 
exposure in CLN3 depleted and Mock-treated cells (upper panel), with γ-adaptin as a loading control (lower 
panel). ii) The degradation ratio of GPP130 on CLN3-depleted and mock-treated cells. iii and iii’) The 
lysosomal-dependent degradation of EGFR. B) Reduced lysosomal function in HeLa depleted cells (The 
experiment was done in triplicate, and the data shown are mean±SEM shown in Appendix B). 
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Figure 4.1.1.4 - CLN3 1-kb deletion affect GPP130 levels. A). i) WB analysis of GPP130 upon Mn2+ 
exposure in 1-kb patient fibroblast cell lines and control fibroblast (upper panel) and β-tubulin as a loading 
control (lower panel). ii and iii) The graph shows the degradation ratio of GPP130 on both 1-kb patient cell 
lines and healthy control. B) The graphs show the reduced lysosomal function in 1-kb patient fibroblast cell 
lines. (The experiment was done in triplicate, and the data shown are mean±SEM shown in Appendix B). 
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4.1.2 Synopsis  

 

In this Chapter, I have shown that CLN3-depleted HeLa cells and fibroblast cells from 

1-kb patients cannot deal efficiently with high manganese concentrations, using the 

Golgi-resident protein GPP130 as a marker for intra-Golgi manganese concentrations. 

The data suggest that the Golgi complex intakes Mn2+ less efficiently in 1-kb patient’s 

fibroblast cell lines. It is also clear that in patients homozygous for the 1-kb deletion in 

CLN3, the mutant protein possesses a residual function. Indeed, in these patient cells, 

the turnover of the GPP130 is reduced. GPP130 is, however, still able to traffic to the 

lysosomes upon Mn2+ exposure, as there are no differences in degradation of the protein 

in patient fibroblasts. The data here shown suggest that when CLN3 is depleted by 

siRNA in HeLa cells, the Golgi complex is not able to sequestrate the Mn2+ from the 

cytoplasm. 

 

 

The results suggest that CLN3 regulates Mn2+ intake by the Golgi complex. This might 

be achieved either by regulating the main Ca2+/Mn2+ pump, SPCA1, or CLN3 might, 

itself, be a key factor in Mn2+ homeostasis, even acting as a channel or transporter for 

Mn2+ in the Golgi complex. In which case, the decrease in GPP130 degradation may be 

due to inefficient uptake of Mn2+ from the cytoplasm into the Golgi. Certainly, 

lysosomes are still functional in CLN3 depleted cells and so any Mn2+-stimulated 

trafficked GPP130 could still be degraded. Interestingly, 1-kb patient fibroblast cell 

lines do not have a significant decrease in lysosomal-activity (Figure 4.1.1.4, B) in 

contrast to the significant decrease observed in CLN3 depleted HeLa cells (Figure 

4.1.1.3, B). This effect is most likely due to the CLN3 1-kb mutant protein possessing a 
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residual function that affects lysosomal activity in these cells less than when it is acutely 

depleted.
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Chapter Five 

 

CLN3 dysfunction triggers ER stress  

 

5.1 Lack of CLN3 triggers ER stress in mammalian cells 

 

In the previous section I showed data that suggested that when CLN3 is depleted or 

mutated the Golgi complex is not able to uptake Mn2+ efficiently. A reduced 

manganese concentration within the Golgi complex, is known to trigger ER stress 

leading to unfolded protein response activation (Xu et al., 2010). The early steps of 

protein maturation take place in the ER, such as: folding of the nascent polypeptide 

chains and posttranslational modifications important for the correct folding and 

function of the protein (Harding et al., 1999). When the influx of nascent unfolded 

polypeptides exceeds the folding and processing capacity of the ER the 

homeostasis of the ER is perturbed. Under these ER stress conditions a signalling 

pathway is activated, known as the unfolded protein response (UPR) (Harding et 

al., 1999).  Therefore, the role of the ER in the pathogenesis of CLN3 disease in 

CLN3-depleted HeLa cells and 1-kb patient fibroblast cell lines was investigated. 

This chapter shows that loss or depletion of CLN3 triggers ER stress. In particular, 

when CLN3 is mutated and/or depleted, the membrane system of the ER increase 

its size in order to overcome the stress stimulus that lead to activation of the UPR, 

which eventually leads to apoptosis. 
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5.1.1 ER stress in CLN3-depleted HeLa cells and 1-kb patient 

fibroblast cell lines 

 

As the previous observations of the Golgi complex morphology and manganese dis-

homeostasis are consistent in both CLN3-depleted HeLa cells and 1-kb patient 

fibroblast cell lines, the ER morphology was studied by transmission electron 

microscope in 1-kb patient fibroblasts only. 

 

Fibroblast cells from 1-kb patients were fixed and embedded for transmission electron 

microscopy as described in Materials and Methods, section 2.2.13.2. The ER volume 

was estimated using a stereological approach (Materials and Methods, section 2.2.17).  

 

The increase of the ER size is a clear sign of ER stress (Schuck et al., 2009). It can 

occur when unfolded proteins build up in the ER causing stress activation. The ER deals 

with the stress by increasing its volume in order to dilute the increased unfolded protein 

load and to host more chaperones (Schuck et al., 2009) (see Introduction, section 1.6). 

EM analysis of 1-kb patient fibroblast cells revealed a striking increase in the volume of 

the endoplasmic reticulum (ER). The micrographs in figure 5.1.1.1, panel A, clearly 

demonstrate an enlargement of the ER, which increase its volume 3.5 fold compared to 

the control fibroblast cells (Figure 5.1.1.1 panel B, graph i). The ER of CLN6 patient 

fibroblast was also analysed. CLN6 is a transmembrane ER-resident protein (Heine et 

al., 2004; Mole et al., 2004). Mutations in CLN6 cause vLINCL disease (Sharp et al., 

1997). The ER of these CLN6 fibroblast cell lines is increased as in CLN3 1-kb patient 

fibroblast (Figure 5.1.1.1, panel B, graph ii). This result suggests that ER stress 

activation is a shared feature between CLN3 and CLN6 disease.  
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Figure 5.1.1.1 - ER membrane size in CLN3 1-kb and CLN6 patient fibroblast cell lines. The ER in these cell lines 
presents an increased volume fraction. The ER volume increases 3.5 fold in CLN3 fibroblasts and 3 fold in CLN6 
fibroblasts compared to the healthy control. Scale bar 500nm. (The experiment was done in triplicate, and the data 
shown are mean±SEM shown in Appendix C). 
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However, ER expansion alone is not sufficient to determine whether there is an 

accompanying UPR activation in this cell line. Therefore, the levels of the ER stress 

markers GRP78/BiP and CHOP/GADD153 were assessed in CLN3-depleted HeLa cells 

upon Mn2+ exposure. GRP78 is a key factor for the protein folding processes in the ER. 

This protein recognises unfolded proteins and by a prolonged interaction with the still-

folding protein is able to trigger the UPR. GRP78 expression increases in conjunction 

with the ER volume expansion (Walter and Ron 2011) (see introduction, section 1.6.2).  

 

GRP78 was detected by western blot after 48 hours of CLN3 depletion, and again after 

cells were exposed to 500 µM of Mn2+ for the indicated time points (see tab. 2.1.2.3.1). 

Cells were harvested and the protein extracted (see Material and Methods. Section 

2.2.7). GRP78 protein levels were observed to be higher in CLN3 depleted HeLa cells, 

than those that were mock-treated. Levels are further increased upon Mn2+ exposure 

(Figure 5.1.1.2). This data highlights that after CLN3 depletion not only is the volume 

of the ER expanded, as observed in fibroblast from 1-kb patients (Figure 5.1.1.1), but 

also the expression of GRP78 is enhanced.  

 

Many studies have established that the specific induction of GRP78 is indicative of ER 

stress (Lee 2001). ER stress can occur under various physiological settings that have 

significant implications in health and disease (Lee 2001). Recently, it was reported that 

the levels of GRP78 decrease in CLN3-depleted cells exposed to tunicamycin whereas 

GRP78 levels are increased following overexpression of exogenous CLN3 (Wu et al., 

2014). These results are in contradiction with the observations reported here. This 

apparent difference could be due to tunicamycin and manganese triggering different ER 

stress pathways. 
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Loss/depletion of CLN3 triggers ER stress in both HeLa and 1-kb fibroblast cells. 

Therefore, I investigated whether the ER stress induced in this acute model of CLN3 

disease is followed by UPR activation. As a marker of UPR activation the endogenous 

levels of CHOP were assessed. CHOP is a proapoptotic protein that is upregulated 

downstream of the transcription factor ATF4, which is uniquely responsive to ER stress 

(Welihinda and Kaufman 1996). CHOP is activated in the final step of the UPR and 

causes downregulation of anti-apoptotic proteins (Zinszner et al., 1998) (see 

introduction, section 1.5.6). 

 

In CLN3-depleted HeLa cells the levels of CHOP increase significantly (more than 2 

fold) 56 hours post-transfection (Figure. 5.1.1.3). Moreover, when these CLN3-depleted 

cells are exposed to high manganese concentrations the levels of CHOP have already 

increased by 1 hour after exposure (Figure. 5.1.1.3). The result obtained upon Mn2+ 

exposure is due to the fact that the lack of Mn2+ within the Golgi complex impairs the 

correct glycosylation process causing mis-folding of the processed proteins (Xu et al., 

2010). Furthermore, the Golgi complex is not able to detoxify the excess of Mn2+ 

causing the Mn2+ accumulation within the cytoplasm, which is also able to trigger ER 

stress (Xu et al., 2010). The levels of CHOP were also assessed in 1-kb patient 

fibroblasts. The fibroblasts from 1-kb patients are less resistant to ER stress, and when 

these cells are exposed to high manganese concentration, CHOP is further upregulated 1 

hour after exposure (Figure 5.1.1.4). 

 

Together these results indicate that loss or depletion of CLN3 is able to trigger ER stress 

leading to UPR activation. 
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Figure 5.1.1.2 - CLN3 depletion enhances GRP78/BiP levels. A) WB analysis of GRP78 
(upper panel) with β-tubulin as a loading control (lower panel). B) The bar chart shows the 
significant increase of GRP78 in CLN3-depleted HeLa cells and a further increase when 
exposed to Mn2+ (The experiment was done in triplicate, and the data shown are mean±SEM 
shown in Appendix C).  
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Figure 5.1.1.3 - CLN3 depletion enhances CHOP/GADD153 levels. A) WB analysis of CHOP with and without 
exposure to Mn2+ with β-tubulin as a loading control. B) The bar chart shows a significant increase of CHOP in 
CLN3-depleted HeLa cells exposed and not to Mn2+.  (The experiment was done in triplicate, and the data shown 
are mean±SEM shown in Appendix C). 
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Figure 5.1.1.4 – 1-kb CLN3 fibroblast are less resistant to ER stress. A) WB analysis of CHOP upon 
Mn2+ exposure with β-tubulin as a loading control. B) The bar chart shows the significant increase of 
CHOP in 1-kb patient fibroblast cells upon Mn2+ exposure (The experiment was done in triplicate, and 
the data shown are mean±SEM shown in Appendix C) 
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5.1.2 Depletion of CLN3 causes activation of the caspase 2 

 

In the previous sections of this chapter we have shown that deletion/depletion of CLN3 

affect Mn2+- Golgi complex intake, which in turn can lead to ER stress and UPR 

activation. The ER membrane expansion along with the enhanced levels of both GRP78 

and CHOP confirm that ER stress and UPR activation is occurring in CLN3 depleted 

HeLa cells and 1-kb patient fibroblasts. CHOP expression, as mentioned, increases in 

the final step of the UPR, in particular, by promoting ER stress-induced apoptosis 

(Zinszner et al., 1998) (see introduction, section 1.6.2). In order to investigate whether 

apoptosis is activated in CLN3 depleted HeLa cells, the activation of caspase 2 was 

pursued. 

 

Apoptosis is an evolutionarily conserved programmed cell death pathway designed to 

remove extraneous or damaged cells (Ferri and Kroemer 2001; Reed et al., 2004).  

Caspases are the central mediators of apoptotic cell death (Riedl and Shi 2004). 

Caspases are cysteine proteases that cleave after aspartate residues within specific 

proteins, irreversibly modifying target protein function. Caspases are synthesized as 

zymogens with low intrinsic activity but are fully activated by cleavage, releasing an 

inhibitory prodomain and separating the protease subunits. 

 

Caspase 2 activation occurs during both intrinsic and extrinsic apoptotic signalling 

(Kumar 2009). Caspase 2 is activated by ER stress stimulus and the activated form of 

caspase 2 leads to apoptosis through activation of caspase cascade and pro-apoptotic 

factors (Kumar 2009).  The discovery of a pool of caspase-2 localized to the 

cytoplasmic face of the Golgi complex indicates that caspase-2 may play a key role in 
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apoptotic signalling at the Golgi complex (Mancini et al., 2000). The Golgi localization 

of caspase-2 implies that it is positioned to interact with upstream apoptotic regulators 

at the Golgi, resulting in the cleavage of substrates enriched at the Golgi, such as 

golgin-160 (Mancini et al., 2000). Caspase cleavage was monitored following CLN3-

depletion and activation of ER stress.  In CLN3 depleted HeLa cells exposed to Mn2+, 

caspase 2 is cleaved (Figure 5.1.2.1). These results suggest that depletion of CLN3 is 

able to trigger apoptosis through ER stress activation.  
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Figure 5.1.2.1 - CLN3 depletion causes activation of caspase 2. A) WB analysis of caspase 2 (pro-caspase 
2 and the active caspase 2 cleaved forms) upon Mn2+ exposure (upper panel) with β-tubulin as a loading 
control (lower panel). B) The bar chart shows the increase of the active caspase 2 cleaved 18kDa fragment 
following CLN3 depletion and Mn2+ exposure. (The experiment was done in triplicate, and the data shown 
are mean±SEM shown in Appendix C)  

 
 
 
 

B) 
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5.1.3 Synopsis 

 

The ER increases the size of its membrane to alleviate stress. Consequently, its incresed 

volume creates more space for the unfolded proteins, increase in chaperones and folding 

machineries. Doing so is an attempt to overcome the state of emergency, eventually, 

leading to activation of the UPR. In this chapter fibroblast cell lines from 1-kb patients, 

were shown to possess an ER increased in size, which is a clear sign of stress. 

Consistent with this observation, CLN3 depleted HeLa cells also showed an ER 

enlarged, and an increase in GRP78 protein levels. Moreover, the ER stress in CLN3-

depleted HeLa cells leads to the activation of the UPR, as demonstrated by the increase 

in CHOP levels. In these cells, CHOP increases even more significantly when the cells 

are exposed to high manganese concentration. This effect could be due to an inability of 

the Golgi complex to detoxify the excess manganese, with the ion accumulation in the 

cytoplasm generating stress. Another possibility is that there is a lack of Mn2+ in the 

Golgi lumen that affects protein glycosylation. Improper protein glycosylation itself 

triggers ER stress since proteins cannot fold properly and accumulate in the ER (Xu et 

al., 2010). Indeed, this bivalent cation is the main cofactor of Golgi-resident 

glycoysyltransferases (Gastinel et al., 2001; Persson et al., 2001; Lobsanov et al., 2004).  

In addition, CLN3 depleted HeLa cells cannot overcome the UPR, leading to activation 

of the apoptotic pathway as indicated by caspase 2 cleavage. 

 

These results show that CLN3 is involved in Golgi Mn2+ homeostasis and deregulation 

of this process leads to a very stressful event for the cells. Therefore, as a result of the 

incapacity of the ER to overcome this deregulation, the persistent stress conditions 

activate the UPR, leading to the activation of the apoptotic pathway.  
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Furthermore, the ER of CLN6 fibroblast cell lines is also increased in the same way as 

CLN3 1-kb patient fibroblast. This result suggests that the ER stress activation may be a 

shared feature between CLN3 and CLN6 disease. However, further studies are needed 

to establish the role of the ER stress in CLN6 disease and to elucidate the source of the 

stress in these CLN6 patients’ fibroblast cell lines and in CLN6 depleted HeLa cell 

lines.
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Chapter Six 

 

Deletion of btn1 in S. pombe affects Golgi complex 

morphology and causes expansion of the ER  

 

6.1 Absence of btn1 in S. pombe causes morphological changes in the 

Golgi 

 

This chapter shows that lack of btn1, the CLN3 orthologue in fission yeast, causes an 

enlargement of both the Golgi complex and the ER. Those results are concordant with 

the results observed in mammalian cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 



6 Lack of btn1 in S. pombe affects Golgi complex morphology and the ER 

 

	
   157 

6.1.1 Golgi complex morphology in the S. pombe model for Batten disease 

 

The morphological changes of the Golgi complex observed in mammalian cell lines are 

also present in fission yeast btn1∆. New mutant strains, created by Dr. Michael Bond 

and Mariana Vieira (Methods, section 2.2.10) were used for this study. The observation 

previously made by Codlin et al., (2009) used a fission yeast strain with a different 

genetic background from that used in this study. The observations made using the 

electron microscope gave us more information about Golgi complex and ER stress in 

CLN3 disease. The volume fraction of the Golgi complex in fission yeast, for this study, 

has been quantified by stereological approach (Materials and Methods, section 2.2.17).  

The S. pombe cells were inoculated in minimal medium, grown and prepared for TEM 

(Methods, section 2.2.12.1). The Golgi complex in the btn1-deleted strain shows an 

increase in volume (Figure 6.1.1.1). This increase observed in fission yeast is consistent 

with the increase observed in HeLa cells CLN3 depleted (Results, chapter 3, section 

3.1.1) and 1-kb patient fibroblast (Results, chapter 3, section 3.1.2). 

In addition, the Golgi complex in btn1-deleted cells shows abnormal shapes (Figure 

6.1.1.2). For example, the curvilinear shape occurs more in in btn1-deleted cells than in 

the wild type strain whereas the expected linear shape is observed with less frequency. 

These results suggest that the Golgi complex responds to the lack of Btn1p and, as a 

result, the organelle change its shape. The changes observed could initiate a stress 

signal. Indeed, it has been previously reported that the Golgi complex fragmentation is a 

common characteristic shared by different neurodegenerative disorders (Gonatas et al., 

2006). 
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Figure 6.1.1.1 – btn1∆ exhibits changes in GA morphology. A) The micrographs are showing the Golgi complex 
in fission yeast. i) wild-type cells; ii) btn1∆, (scale bar 200nm). B) The bar chart shows an increased area of the 
Golgi complex in fission yeast, S. pombe, lacking btn1. GA=Golgi Apparatus; ER= endoplasmic reticulum. (The 
experiment was done in triplicate, and the data shown are mean±SEM shown in Appendix D). 
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Figure 6.1.1.2 – Golgi complex morphology in fission yeast btn1∆. Golgi complex in fission 
yeast deleted for btn1 shows abnormal shapes (A and B). Scale bar 200nm. GA=Golgi apparatus; 
ER=endoplasmic reticulum; L=lipid droplet; N=nucleus. (wt: Linear= 53; curved=23; 
fragmented=15. btn1∆; Linear=25; curved=40; fragmented=35) (The experiment was done in 
triplicate).  
 

Linear Curved 
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6.1.2 ER volume fraction in S. pombe model for Batten disease 

 

The early steps of the protein maturation process, such as folding of the nascent 

polypeptide chains and posttranslational modifications important for the correct 

folding and function of the protein take place within the ER (Harding et al., 1999). 

If the influx of nascent unfolded polypeptides exceeds the folding and processing 

capacity of the ER the homeostasis of the ER is be perturbed. Under ER stress 

conditions, the ER membrane increases its volume (Schuck et al., 2009). The ER 

deals with the stress by increasing its volume in order to dilute the increased 

unfolded protein load and host more chaperones (Schuck et al., 2009) (see 

Introduction, section 1.6). 

Therefore, I investigated whether the increase of the ER volume fraction observed 

in HeLa cells CLN3 depleted and 1-kb patient fibroblast cell lines also occur in S. 

pombe deleted for btn1. The stereological analysis revealed that the ER of S. 

pombe lacking btn1 is enlarged (Figure 6.1.2.1). The volume fraction of the ER of 

fission yeast, lacking btn1, shows a significant increase compared with the wild 

type strain (Figure 6.1.2.1). 
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Figure 6.1.2.1 – ER volume fraction in fission yeast.  The yeast btn1∆ shows a significant 
increase in the ER volume (A), which is quantified in bar chart B. i) scale bar, 200nm. ii) 
scale bar 200nm.. GA=Golgi apparatus; ER=endoplasmic reticulum. (The experiment was 
done in triplicate, and the data shown are mean±SEM shown in Appendix D). 
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6.2 Synopsis 

 

In this chapter I have shown that both the morphological changes observed at Golgi 

complex level and the increase of the ER volume in CLN3-depleted HeLa cells and in 

fibroblast generated form 1-kb patient skin biopsies are also present in fission yeast S. 

pombe lacking btn1. Specifically, fission yeast lacking btn1 show an increased volume 

fraction of the Golgi complex, which is accompanied by morphological changes. The 

Golgi complex in fission yeast lacking btn1 more frequently adopts a curvilinear shape 

rather than the canonical linear morphology observed in wild-type cells. These results 

further corroborate the fact that Golgi complex and ER play a pivotal role in the CLN3 

disease pathogenesis that is conserved across diverse species (Codlin and Mole 2009).
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Chapter Seven 

 

Pharmacological rescue of the Golgi complex organisation in 

juvenile CLN3 disease patient fibroblasts 

 

7.1 Drug rescue of the Golgi compactness in juvenile CLN3 disease 

patient cell lines 

 

This chapter details the ability of three drugs, Alloxazine, E64 and prochlorperazine 

dimaleate, to rescue the aberrant Golgi complex organisation in juvenile CLN3 patient 

fibroblast cell lines homozygous for the 1-kb deletion.  
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7.1.1 Drug screening in juvenile CLN3 disease patient cell lines 

 

A screen of the LoPAC drug library of pharmacologically active compounds for rescue 

of cell death in S. pombe deleted for btn1 grown in restrictive conditions, by Vieira 

Mariana, revealed that 3 out of >1000 compounds significantly rescued the phenotype. 

Those 3 compounds are: Alloxazine an adenosine A(2B)AR receptor antagonist (Liang 

and Haltiwanger 1995); L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E64), 

which is a cysteine peptidases inhibitor (Barrett 1982); and prochlorperazine dimaleate 

a dopamine D2 receptor antagonist (Lummis and Baker 1997). To test whether these 

same drugs alleviated the abnormal Golgi morphology of fibroblasts from juvenile 

CLN3 disease patients, one healthy control and one patient fibroblast line with typical 

aberrant Golgi morphology (Chapter 3, section 3.1.2) were incubated with different 

concentrations of alloxazine, E64 and prochlorperazine dimaleate (5, 10 and 20µM) for 

24 hours. Afterwards, cells were stained, using GM130 as a marker, and imaged.  

 

The compactness of the Golgi apparatus was measured for all the fibroblasts, with and 

without drug treatment. A difference in Golgi complex compactness between 1-kb 

patient and healthy control untreated fibroblasts was observed (Chapter 3, section 

3.1.2): 0.08 in control and 0.02 in patient cells.  

 

After incubation with the three compounds at three different concentrations (5, 10 and 

20µM), all except alloxazine significantly rescue the low compactness of the Golgi 

apparatus in the fibroblasts with the 1-kb deletion (Figure 7.1.1.1, D; E and F). E64 

restores the compactness value to 0.08 at 5 and 10µM and to 0.1 at the higher 

concentration of 20µM (Figure 7.1.1.1, E). Prochlorperazine dimaleate also restores the 
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value to 0.09 and 0.08 at 5 and 10 µM respectively (Figure 7.1.1.1, F). At a higher 

concentration (20µM), it seems that this compound kills the cells, since no cells 

remained in any of the two experiments (Figure 7.1.1.1, C and F). With the exception of 

prochlorperazine dimaleate at 20µM, none of the compounds at any concentration 

altered the Golgi compactness of the healthy control fibroblasts (Figure 7.1.1.1, A; B; 

C). 

	
  
	
  
  

 
  

 

Figure 7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex compactness of 1-
kb patient fibroblast cell lines. A; B and C) Control HF527N 24h incubation with Alloxazine (A) E64 (B) and 
prochlorperazine dimaleate (C). D; E and F) 1-kb Patient fibroblast cell lines, HF480Pa 24h incubation with 
Alloxazine (A) E64 (B) and prochlorperazine dimaleate (C). After incubation with the three compounds at three 
different concentrations (5, 10 and 20µM) (The experiment was done in triplicate, and the data shown are 
mean±SEM shown in Appendix E). 
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In conclusion, E64 and prochlorperazine dimaleate used in this study can rescue 

significantly the altered Golgi compactness of juvenile CLN3 disease. The 5µM drug 

concentration is enough to rescue the phenotype as it is shown in Figure 7.1.1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.1.2 – Rescue of the Golgi complex compactness in 1-kb patient fibroblast.  The 
Graph is showing the effect of the drugs on the Golgi complex compactness.  In the graph 
A= alloxazine and P= prochlorperazine dimaleate. The values plotted in this graph are those 
deriving from the 5µM drug concentration (The experiment was done in triplicate, and the 
data shown are mean±SEM shown in Appendix E). 
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6.1.2 Synopsis 

In this chapter we have shown the ability of three drugs, Alloxazine, E64 and 

prochlorperazine dimaleate, to rescue the Golgi complex organisation in 1-kb patient 

fibroblast cell lines. The drug that more efficiently rescues the Golgi compactness is 

E64. The promising results obtained from the drug screening are encouraging further 

investigations.  
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8.1 Discussion  

 

Defects in CLN3 lead to the juvenile form of neuronal ceroid lipofuscinosis (juvenile 

CLN3 disease, JNCL or Batten Disease). CLN3 is a multi-pass trans-membrane protein 

that is highly conserved in single-celled eukaryotes such as the fission yeast S. pombe, 

suggesting a fundamental role for this protein. CLN3 has been linked to many different 

cellular processes including autophagy, lipid synthesis and/or modification, lysosomal 

homeostasis, cytoskeleton organisation and trafficking. Despite these endeavours, the 

function of CLN3 remains elusive. Overexpression of GFP-tagged CLN3 in mammalian 

cells shows a consensus localisation at the lysosomal membrane. However, Codlin et 

al., (2009) showed that a GFP-tagged fission yeast orthologous protein, Btn1p, localises 

at steady state to the Golgi complex as well as later trafficking to the vacuole membrane 

(the equivalent organelle to the mammalian lysosome).  A Golgi location for Btn1 was 

later reported in budding yeast. In addition, loss of Btn1 function in S. pombe affects 

Golgi homeostasis, including both number and morphology, and trafficking of the 

hydrolase carboxypeptidase Y, Cpy1p, to the vacuole, probably by retarding the 

trafficking of its receptor, vacuole protein sorting 10 (Vps10) from the endoplasmic 

reticulum through the Golgi to the trans-Golgi network (TGN) (Codlin and Mole 2009). 

The results presented in this study indicate the importance of CLN3 at the Golgi 

complex and in disease pathogenesis. Moreover, the evidences depicted in this study 

highlight the role of the Golgi complex in sensing and transducing stress. This lays the 

basis for further work to determine both the exact mechanism of CLN3 activity and the 

stress-transducing pathways affected. 
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8.1.1 CLN3 and Golgi complex 

 

Both mutation and depletion of CLN3 in mammalian cells affects the Golgi complex 

morphology. In CLN3 depleted HeLa cells the area of the Golgi complex is increased, 

with the cis-Golgi and TGN the most affected compartments. The same increase in cis-

Golgi and TGN was observed in fibroblast cell lines generated from CLN3 patients’ 

biopsies. Moreover, it is not only the size of the Golgi complex that is affected in these 

cell lines. The organisation of this organelle is also affected as demonstrated by the 

compactness studies. Significantly, the Golgi complex morphological changes observed 

in CLN3 depleted cells and/or fibroblast cell lines generated from patients with the 1-kb 

mutation are not present in fibroblast cell lines generated from patients affected by the 

other forms of NCLs.  

 

Furthermore, the same morphological changes were observed in S. pombe deleted for 

btn1. In these fission yeast cells the fractional area of the Golgi complex increases, and 

there are changes in the organisation of the Golgi complex. We observed, more 

curvilinear shaped and less linear Golgi complex in btn1 deleted cells.  

 

These results suggest that the Golgi complex is affected by the catastrophic events 

triggered by loss of CLN3/Btn1 function. The Golgi responds to the loss of CLN3/Btn1 

function by changing its shape that could originate some kind of stress signals. 

Importantly, this change is specific to CLN3 and is conserved across diverse species, 

suggesting that it is fundamentally connected with loss of CLN3/Btn1 function. 
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8.1.2 CLN3 and manganese 

 

The morphological changes of the Golgi complex are accompanied by evidence that the 

Golgi cannot efficiently take manganese in from the cytoplasmic milieu upon depletion 

of CLN3 or when CLN3 is mutated, as in patient fibroblast. The Golgi-resident protein 

GPP130, which senses a rise in the concentration of the intra-Golgi Mn2+ levels and is 

degraded, is not degraded when CLN3 is either depleted or mutated, suggesting that 

Mn2+ is not being taken up by the Golgi, even when exposed to high concentrations. 

GPP130 degradation is strictly correlated with manganese concentration 

(Mukhopadhyay et al., 2010; Mukhopadhyay and Linstedt 2011; Masuda et al., 2013) 

within the Golgi complex. This failure in degradation is not a result of aberrant 

trafficking of GPP130 or lysosomal-dependent degradation upon the loss/depletion of 

CLN3. A normal EGFR degradation pattern was observed in CLN3 depleted HeLa cells, 

supporting functional trafficking and degradation by lysosomes in these cells. 

Moreover, the lysosomal activity, of both CLN3 depleted HeLa cells and 1-kb patient 

fibroblast cell lines, was assessed by measuring the Cathepsin B activity. Interestingly, 

and consistent with partial retention of function by the 1-kb mutant CLN3 protein, the 

reduction of the lysosomal activity of the 1-kb patient cell lines is less than that 

observed in CLN3 depleted HeLa cells. 

It is not easy to study Mn2+ homeostasis within the Golgi complex. To date, there are no 

commercially available probes that efficiently measure intra-Golgi manganese level. 

Some probes were tested but none were satisfactory. The failure of these probes is 

probably due to the much higher Ca2+ concentration compared to the manganese 

concentration within this organelle. As Mn2+ and Ca2+ are ions that share the same 
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divalent charge and are of similar size, probes supposed to detect Mn2+ may actually 

instead detect intra-Golgi Ca2+ concentrations (Liang and Canary 2010). Alternatively, 

the intra-Golgi calcium concentration is also affected, and this interferes with the use of 

these probes. 

The most powerful tool available to indicate manganese concentration in the Golgi is 

therefore the protein GPP130, which is sensitive and specific. However, little it is 

known about the relation between GPP130 and manganese. Manganese could exist in 

various chemical forms including oxidation states (Mn2+, Mn3+, Mn4+, Mn6+, Mn7+), 

salts (sulfate and gluconate), and chelates (aspartate, fumarate, succinate). It is not 

known whether one of the manganese chemical forms blocks and/or decrease the 

degradation ratio of GPP130.  

In order to answer this question a key experiment would be the isolation of the Golgi 

complex by subcellular fractionation. The purified fraction of Golgi complexes exposed 

to high manganese concentration could be then analysed using inductively coupled 

plasma mass spectrometry (ICP-MS). In particular, ICP-MS is able to detect and count 

the number of ions present within the Golgi complex. 

 

 

 

 

 



8 Discussion 

	
  

	
   174 

8.1.3 CLN3 and ER stress 

In both 1-kb patient fibroblast cell lines and fission yeast, significant increase in the 

volume of the ER is detected and the protein levels of GRP78 are also enhanced in the 

mammalian cell model for CLN3 disease. The CLN3 1-kb mutated likely affects the 

Golgi complex intake of Mn2+. A lack of Mn2+ within the Golgi complex can 

compromise the correct protein glycosylation steps (Butterworth 1986; Hurley 1987; 

Erikson and Aschner 2003). It is well known that incorrect protein glycosylation leads 

to accumulation of unfolded and misfolded protein within the ER (Xu et al., 2010). 

Such proteins building up in the ER can trigger the stress on the reticulum.  

  

The ER stress leads to the activation of the unfolded protein response. The CLN3 HeLa 

cells depleted and 1-kb patient fibroblast cell lines also show an increase in CHOP 

protein levels. CHOP is activated in the final step of the UPR and causes 

downregulation of the anti-apoptotic proteins (Zinszner et al., 1998). I also showed that 

loss/depletion of CLN3 leads to apoptosis, via caspase 2 cleavage and activation. 

Caspase 2 activation occurs during both intrinsic and extrinsic apoptotic signaling and 

leads to apoptosis through activation of caspase cascade and pro-apoptotic factors 

(Kumar 2009).  
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8.1.4 Model for cellular dysfunction 

 

Experimental evidences suggest that several organelles are capable of sensing and 

relaying pro-apoptotic signals, culminating in the proteolytic activation of caspases and 

cell death (Reed et al., 2004). Each organelle is likely to be uniquely poised and 

equipped to sense specific stimuli related to their function and structure. For example, 

the ER is a major site for folding, modification and assembly of newly synthesized 

transmembrane and secretory proteins and has evolved a stress response pathway, the 

unfolded protein response, to cope with the accumulation of unfolded or misfolded 

proteins (Rutkowski and Kaufman 2004). Activation of the UPR has been shown to 

induce the expression of chaperones, attenuate translation, and degrade misfolded 

proteins in an attempt to alleviate the stress. Prolonged ER stress resulting in irreparable 

damage leads to apoptosis. Due to its central function in protein folding, the ER has 

evolved a unique ability to monitor the folding state of proteins and respond to 

improperly folded proteins by first adapting or, if the damage is too severe, causing cell 

death (Zinszner et al., 1998). 

 

Evidence suggests that there is also a post-ER quality control system that operates at the 

Golgi complex to eliminate mutant or misfolded proteins that escape the ER (Arvan et 

al., 2002; Ramos-Castaneda et al., 2005). It is also likely that the Golgi complex can 

sense and transduce unique stress signals. Similar to ER stress signalling, the Golgi 

complex may initiate stress signaling through components of Golgi-localized 

machinery. Apoptosis would result if the stress cannot be alleviated. The discovery of a 

pool of caspase-2 localized to the cytoplasmic face of the Golgi complex suggests that 

caspase 2 may play a key role in apoptotic signaling at the Golgi complex (Mancini et 
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al., 2000). 

 

Changes in both Golgi cisternae structure, including unstacking or swelling, and Golgi 

ion content, could also lead to transduction of a stress signal (Mancini et al., 2000). For 

example, changes in membrane curvature, as we observed in fission yeast, induced by 

swelling could result in either the recruitment or release of specific proteins allowing 

the activation of a proapoptotic-signalling cascade.  

 

The results in CLN3 depleted cells suggest that CLN3 regulates or influences the Mn2+ 

intake by the Golgi complex. This might be achieved either by regulating the main 

Ca2+/Mn2+ pump, SPCA1, or CLN3 itself might be a key factor in the Mn2+ homeostasis 

at the Golgi complex. In addition, I observed that Mn2+ dyshomeostasis could be one of 

the initiating stress signals at Golgi complex. The Mn2+ dyshomeostasis along with the 

Golgi cisternae morphological changes presented in this study seem to transduce stress 

signals from Golgi. In CLN3 disease activation of the ER stress and UPR could be 

either a downstream effect of the Golgi stress activation or a parallel pathway. 

Activation of caspase 2 is consistent with both hypotheses.  

 

Golgi-localized caspase 2 may be the best key to unlocking the role of the Golgi 

complex in apoptotic signalling. Understanding the mechanism by which stresses are 

sensed at the Golgi complex leading to activation of caspase 2 may shed some light on 

the role of Golgi structure in stress signalling. In addition, it will be important to 

determine whether or not the Golgi complex initiates a stress repair response analogous 

to the UPR prior to initiating apoptosis. Once Golgi-specific stimuli are identified, it 

will be interesting to determine the gene expression profile of Golgi and other secretory 
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pathway proteins during apoptosis. In assessing the role of Golgi structure in stress 

signalling, it will be important to determine if the structural changes observed in yeast 

and mammalian models of CLN3 disease are clear signs of stress. 

 

Accumulation of biometals, in particular manganese, has been detected for other NCL 

subtypes such as CLN6 and CLN12/ATP13A2 (Bras et al., 2012). This latter protein, 

also known as PARK9 more usually underlies Kufor-Rakeb syndrome (KRS), a rare 

parkinsonian phenotype with juvenile onset, and is a putative P-type transmembrane 

that acts as a shuttle for cations, including Mn, across the cell and blood brain barrier 

(Ramirez et al., 2006; Gitler et al., 2009). The expression level and activity of the 

manganese-dependent superoxide dismutase (MnSOD) were increased in the sheep 

CLN6 model as well as human affected by CLN6 disease (Heine et al., 2003). Recently, 

studies conducted on this ovine CLN6 model revealed an increase in Zn and Mn 

concentrations in the brain. The regions most affected are those where 

neuroinflammation and neurodegeneration occur. In addition, synaptic proteins, the 

metal-binding protein metallothionein, and the AKT/GSK3 and ERK/MAPK cellular 

signaling pathways were also altered (Kanninen et al., 2013a).	
  Metals accumulation has 

also been detected in the CLN6 mouse model. Increased expression of the ER/Golgi-

localized cation transporter protein, Zip7, was detected in cerebellar Purkinje cells and 

whole brain fractions and analysis revealed biometal accumulation in CLN6 brain 

fractions expressing markers for ER, Golgi, endosomes and lysosomes. These data link 

CLN6 expression and biometal homeostasis in CLN6 disease, and support altered cation 

homeostasis regulation as a key factor in NCL pathogenesis (Kanninen et al., 2013b). 

 

 



8 Discussion 

	
  

	
   178 

This work may therefore also be relevant to understanding the molecular basis of NCL 

caused by mutations in CLN6 protein, which is located upstream of the Golgi apparatus, 

in the endoplasmic reticulum. However, mutated CLN6 does not affect the morphology 

of the Golgi complex, but it does cause ER membrane expansion in fibroblast cell lines 

from CLN6 patients. 

 

 

8.1.5 Proposed model for CLN3 disease 

 

The Golgi complex changes shape and increase its dimensions when CLN3 is mutated 

and does not efficiently take Mn2+ in. In addition, the depletion/mutation of CLN3 

causes ER stress with UPR activation. Furthermore, in CLN3 mammalian cells model 

there is activation of apoptotic pathway (Figure 8.1.5.1).  

 

 

 

 

 

 

 

 

 

 

 



8 Discussion 

	
  

	
   179 

 

F
ig

ur
e 

8.
1.

5.
1 

– 
A

 p
ro

po
se

d 
m

od
el

 fo
r C

LN
3 

di
se

as
e.

 W
he

n 
C

LN
3 

is
 m

ut
at

ed
 G

ol
gi

 c
om

pl
ex

 c
ha

ng
es

 m
or

ph
ol

og
y 

an
d 

in
cr

ea
se

 it
s 

di
m

en
si

on
s. 

Th
es

e 
m

or
ph

ol
og

ic
al

 
ch

an
ge

s 
ar

e 
ac

co
m

pa
ni

ed
 b

y 
M

n2+
 d

ys
ho

m
eo

st
as

is
. 

Th
e 

G
ol

gi
 c

om
pl

ex
, 

in
 t

he
 C

LN
3 

di
se

as
e 

m
od

el
, 

do
es

 n
ot

 e
ff

ic
ie

nt
ly

 t
ak

e 
M

n2+
 i

n.
 I

n 
ad

di
tio

n,
 t

he
 

de
pl

et
io

n/
m

ut
at

io
n 

of
 C

LN
3 

ca
us

e 
ER

 s
tre

ss
 w

ith
 U

PR
 a

ct
iv

at
io

n.
 B

ot
h 

G
ol

gi
 c

om
pl

ex
 m

od
ifi

ca
tio

ns
 a

nd
 E

R
 s

tre
ss

/U
PR

 a
ct

iv
at

io
n 

ar
e 

ab
le

 to
 tr

ig
ge

r 
th

e 
ap

op
to

si
s 

th
ro

ug
h 

ca
sp

as
e 

2 
cl

ea
va

ge
.  



8 Discussion 

	
  

	
   180 

8.1.6 Conclusions and future perspectives 

 

Here, we provide evidence that CLN3, is involved in Golgi complex homeostasis and 

both CLN3 depletion and 1-kb mutated form is able to trigger stress pathways in 

mammalian cells as well as deletion of btn1 in fission yeast S. pombe. However, we 

previously showed that a GFP-tagged Btn1p localises at steady state to the Golgi 

complex in fission yeast (Codlin et al., 2009a). Moreover, I have shown that loss of 

Btn1p affects both number and morphology of the Golgi complex as well as trafficking. 

The Cpy1p is secreted in cells lacking Btn1, due to the mis-trafficking of its receptor 

vacuolar protein sorting 10 (Vps10) (Codlin and Mole 2009a).  Here it is reported a 

newly identified mechanism, suggesting a potential role for CLN3 in Mn2+ homeostasis. 

This role for CLN3 would explain most of the phenotypes so far observed in the CLN3 

disease models, which we believe to be, all, downstream effect of loss of Golgi complex 

homeostasis. 

 

The findings presented in this study do not necessarily contradict previous work using 

CLN3 disease models. Early work in mammalian systems concluded that the functional 

location for CLN3 was the lysosome. However, endogenous levels of CLN3, like 

Btn1p, are low; hence the need for overexpression of CLN3, which might have affected 

its subcellular distribution. Nevertheless, a recent study (Storch et al., 2007) concluded 

that, like Btn1p in S. pombe, trafficking of wild type CLN3 to lysosomes was 

considerably slower than lysosome membrane-resident proteins, and that CLN3 remains 

in the Golgi compartment for a significant time. Indeed, a location of CLN3 in the 

Golgi has been noted previously (Haskell et al., 2000; Kremmidiotis et al., 1999). 
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Evidences suggest that several organelles are capable of sensing and relaying 

proapoptotic signals; culminating in the caspase activation and cell death (Fava et al., 

2012) and Golgi complex could play a role in stress sensing. The Golgi complex shape 

undergoes to a fine regulation, which is controlled and maintained by many factors 

(Sengupta and Linstedt 2011). In particular, the glycosyltransferases play a very 

important role in maintaining the structure and function of the Golgi complex (Nilsson 

et al., 1994; Hassinen et al., 2010). Indeed, acting in trans those enzymes keep the Golgi 

cisternae flat (Nilsson et al., 1994; Hassinen et al., 2010). Moreover, those enzymes are 

responsible for the protein glycosylation, which ensure a correct protein folding. Those 

enzymes use Mn2+ as cofactor and the disturbance of Mn2+ concentration within both 

the cell and the Golgi complex compromises the protein glycosylation steps, which lead 

to accumulation of unfolded/misfolded proteins (Butterworth 1986; Hurley 1987; 

Erikson and Aschner 2003). Here, we have shown that CLN3 depletion mutation cause 

morphological and size changes of the Golgi complex. We believe that these changes 

are caused by Mn2+ dyshomeostasis within the Golgi. When CLN3 is mutated or deleted 

The Golgi complex cannot efficiently take Mn2+ in and the reduced intra-Golgi 

manganese concentration trigger stress events. First of all in absence of Mn2+ the 

glycosiltransferases cannot form complexes and act in trans shaping the Golgi, and this 

would explain the increased size and morphological changes observed in our models. In 

particular, the curved shape adopted by the Golgi along with ion dyshomeostasis could 

trigger stress pathways that lead to the activation of the caspase 2.  Golgi localised 

caspase 2 may be the best candidate to unlock the role of the Golgi complex in both 

stress sensing and apoptotic signaling. The results in CLN3 depleted HeLa cells suggest 

that CLN3 influence the Mn2+ intake, this might be achieved either regulating the main 

Ca2+/ Mn2+ pump, SPCA1, or CLN3 itself may play a role as transporter.  Indeed, the 
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CLN3 depleted HeLa cells are irresponsive to Mn2+. Patient fibroblasts are not 

manganese irresponsive, although higher levels of manganese appear to be necessary to 

achieve a turnover similar to that observed in control cells. If patient cells were 

irresponsive to manganese concentrations, and not merely insensitive, no changes in 

GPP130 levels upon manganese exposure would be expected. This may be due to the 

fact that mutant CLN3, in 1-kb patients, still possesses residual function. However, is 

not easy to investigate Mn2+ concentration in Golgi. To date there are no commercially 

available probes that efficiently measure the intra-Golgi Mn2+ concentration. Some 

probes have been tested but all of them failed. The failure of these probes is due to the 

fact that in Golgi the Ca2+ concentration is highly superior to the manganese 

concentration. Moreover, Mn2+ and Ca2+ are ions that are sharing the same divalent 

charge and similar size. Therefore, the probes made to detect Mn2+ truly sense and 

detect the intra-Golgi Ca2+ concentrations (Liang and Canary 2010). The most powerful 

tool available is the protein GPP130, which is sensitive and specific to intra-Golgi 

divalent manganese concentration. However, little it is known about the relation 

between GPP130 and manganese. The manganese could exist in various chemical forms 

including oxidation states (Mn2+, Mn3+, Mn4+, Mn6+, Mn7+), salts (sulfate and 

gluconate), and chelates (aspartate, fumarate, succinate). It is not know whether the 

increase of one of the manganese chemical forms could block and/or decrease the 

degradation ratio of GPP130. In order to answer to this question a key experiment 

would be the isolation of the Golgi complex. The purified fraction of the Golgi complex 

exposed to high manganese concentration could be then analysed using the inductively 

coupled plasma mass spectrometry (ICP-MS). In particular, the ICP-MS is able to 

detect and count the number of ions present within the Golgi complex. Moreover, it has 

been shown that lack of Mn2+ impairs the correct protein glycosylation, which could 
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trigger ER stress. In our model we observed ER stress and UPR activation. Whether the 

Golgi stress occurs earlier than ER stress is still unknown but for sure they act in an 

orchestral manner to keep constant the cellular homeostasis. In particular, it seems to be 

confirmed by the fact that the caspase 2 is activated, as well, by ER stress stimulus and 

the activated form of caspase 2 leads to apoptosis through activation of caspase cascade 

and pro-apoptotic factors activation (Kumar 2009).  The discovery of a pool of caspase-

2 localized to the cytoplasmic face of the Golgi complex indicates that caspase-2 may 

play a key role in apoptotic signalling at the Golgi complex (Mancini et al., 2000). The 

Golgi localization of caspase-2 implies that it is positioned to interact with upstream 

apoptotic regulators at the Golgi, resulting in the cleavage of substrates enriched at the 

Golgi, such as golgin-160 (Mancini et al., 2000). In summary this work points to a role 

for CLN3 in the regulation of Golgi complex homeostasis. In particular, we propose a 

new role for CLN3 in the regulation of the Mn2+ homeostasis within the Golgi complex. 

The new phenotypes presented here open new horizons in term of therapy development. 

In addition, the insight on CLN3 could help to understand the molecular basis of NCLs 

caused by mutations in CLN6 and CLN8 proteins, which are located upstream of the 

Golgi complex, in the endoplasmic reticulum. 
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Appendix A 
 
 
 

Column B siRNA CLN3 
vs. vs. 
Column A Mock 
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=6.936 df=80 
  How big is the difference? 

 Mean ± SEM of column A 26.49 ± 1.798 N=41 
Mean ± SEM of column B 59.95 ± 4.476 N=41 
Difference between means 33.46 ± 4.824 
95% confidence interval 23.86 to 43.06 
R square 0.3755 

3.1.1.1 - CLN3 siRNA dependent changes in cis-Golgi morphology. Graph B 
 
 
 
 

Column B siRNA CLN6 
vs. vs. 
Column A Mock 
  Unpaired t test 

 P value 0.0630 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=1.885 df=80 
  How big is the difference? 

 Mean ± SEM of column A 26.49 ± 1.798 N=41 
Mean ± SEM of column B 31.66 ± 2.071 N=41 
Difference between means 5.170 ± 2.742 
95% confidence interval -0.2874 to 10.63 
R square 0.04254 

3.1.1.1 - CLN3 siRNA dependent changes in cis-Golgi morphology. Graph C 
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Column A Mock 
vs. vs. 
Column B siRNA CLN3 
  Unpaired t test 

 P value 0.1497 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=1.458 df=64 
  How big is the difference? 

 Mean ± SEM of column A 32.11 ± 2.989 N=33 
Mean ± SEM of column B 38.39 ± 3.106 N=33 
Difference between means -6.286 ± 4.311 
95% confidence interval -14.90 to 2.326 
R square 0.03216 

3.1.1.2 – CLN3 depletion does not affect the medial-Golgi area. Graph B 
 
 
 

Column A Mock 
vs. vs. 
Column B siRNA CLN3 
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=4.146 df=80 
  How big is the difference? 

 Mean ± SEM of column A 33.32 ± 2.147 N=41 
Mean ± SEM of column B 45.90 ± 2.143 N=41 
Difference between means -12.58 ± 3.034 
95% confidence interval -18.62 to -6.541 
R square 0.1769 
3.1.1.3 – CLN3 depletion affects the TGN area. Graph B 
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Column B siRNA CLN3 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.0017 
P value summary ** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=3.232 df=89 
  How big is the difference? 

 Mean ± SEM of column A 0.1320 ± 0.01856 N=45 
Mean ± SEM of column B 0.05644 ± 0.01430 N=46 
Difference between means -0.07552 ± 0.02336 
95% confidence interval -0.1219 to -0.02910 
R square 0.1051 

3.1.1.4 – CLN3 depletion affects the Golgi complex compactness. Graph C 
 
 
 
Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     HF524N vs. HF523N 18.05 7.485 to 28.61 Yes *** 
HF527N vs. HF523N 14.56 2.839 to 26.29 Yes ** 
HF526N vs. HF523N 16.00 6.881 to 25.11 Yes **** 
HF527N vs. HF524N -3.482 -15.54 to 8.573 No ns 
HF526N vs. HF524N -2.049 -11.59 to 7.488 No ns 
HF526N vs. HF527N 1.433 -9.379 to 12.25 No ns 
 3.1.2.1 - CLN3 1-kb deletion dependent changes in Golgi complex morphology.Graph 
C 
  
 
Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     HF470Pa vs. HF481Pa -31.49 -61.84 to -1.150 Yes * 
HF470Pa vs. HF478Pa -38.82 -70.01 to -7.640 Yes ** 
HF470Pa vs. HF480Pa -20.94 -51.27 to 9.386 No ns 
3.1.2.1 - CLN3 1-kb deletion dependent changes in Golgi complex morphology.Graph 
D 
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Column B Patients 
vs. vs. 
Column A Control  
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=2.135 df=5 
  How big is the difference? 

 Mean ± SEM of column A 40.66 ± 4.113 N=4 
Mean ± SEM of column B 63.23 ± 11.22 N=4 
Difference between means 22.57 ± 10.57 
95% confidence interval -4.606 to 49.75 
R square 0.4769 

3.1.2.1 - CLN3 1kb deletion dependent changes in Golgi complex morphology.Graph E 
 
 
 
 

Column B Patients 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.2365 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=1.315 df=6 
  How big is the difference? 

 Mean ± SEM of column A 0.4159 ± 0.2423 N=4 
Mean ± SEM of column B 0.09543 ± 0.02551 N=4 
Difference between means -0.3205 ± 0.2437 
95% confidence interval -0.9167 to 0.2758 
R square 0.2238 

3.1.2.1 - CLN3 1kb deletion dependent changes in Golgi complex morphology.Graph F 
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Column A Control 
vs. vs. 
Column B 1kb Patients 
  Unpaired t test 

 P value 0.3804 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=0.8790 df=209 
  How big is the difference? 

 Mean ± SEM of column A 52.40 ± 2.093 N=78 
Mean ± SEM of column B 49.64 ± 2.065 N=133 
Difference between means 2.758 ± 3.138 
95% confidence interval -3.428 to 8.945 
R square 0.003683 

3.1.2.2 - CLN3 1-kb deletion does not affect the medial-Golgi area. Graph B 
 
 
 
 

Column B 1kb Patients 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=4.166 df=80 
  How big is the difference? 

 Mean ± SEM of column A 39.52 ± 3.020 N=41 
Mean ± SEM of column B 59.73 ± 3.796 N=41 
Difference between means 20.21 ± 4.851 
95% confidence interval 10.56 to 29.87 
R square 0.1783 

3.1.2.3 - CLN3 1-kb deletion affects the TGN area, graph B 
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3.1.2.4 - CLN3 exons 9-15 deletion dependent changes in Golgi complex morphology, 

graph B. 
 
 
 
Sidak's multiple comparisons test Mean Diff. 95% CI    of D Significant? Summary 
     Patients vs. HF338Pa -4.106 -20.36 to 12.15 No ns 
Patients vs. HF338Pb -10.39 -28.89 to 8.097 No ns 
3.1.2.4 - CLN3 exons 9-15 deletion dependent changes in Golgi complex morphology, 

graph C. 
 
 
 

3.1.2.4 - CLN3 exons 9-15 deletion dependent changes in Golgi complex morphology, 
graph D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sidak's 
multiple 
comparisons 
test 

Mean 
Diff. 

95% CI 
of diff. Significant? Summary Adjusted 

P Value 

      Control vs. 
HF338Pa 

-
35.34 

-47.06 to 
-23.62 Yes **** < 0.0001 

Control vs. 
HF338Pb 

-
41.63 

-54.83 to 
-28.43 Yes **** < 0.0001 

Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary P Value 
      HF338Pa vs. Control -0.3178 -0.4719 to -0.1637 Yes **** < 0.0001 

HF338Pb vs. Control -0.3078 -0.4639 to -0.1518 Yes **** < 0.0001 
HF338Pb vs. HF338Pa 0.009971 -0.05274 to 0.07268 No ns 0.9241 
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Column B CLN1 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.6534 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=0.4495 df=295 
  How big is the difference? 

 Mean ± SEM of column A 88.08 ± 4.084 N=65 
Mean ± SEM of column B 91.10 ± 3.367 N=232 
Difference between means 3.022 ± 6.722 
95% confidence interval -10.21 to 16.25 
R square 0.0006845 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN1. 
 
 
 
 
 

Column B CLN2 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.1278 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=1.529 df=197 
  How big is the difference? 

 Mean ± SEM of column A 88.08 ± 4.084 N=65 
Mean ± SEM of column B 99.36 ± 4.736 N=134 
Difference between means 11.28 ± 7.376 
95% confidence interval -3.266 to 25.83 
R square 0.01173 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN2. 
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Column B CLN5 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.1030 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=1.634 df=486 
  How big is the difference? 

 Mean ± SEM of column A 86.22 ± 3.695 N=64 
Mean ± SEM of column B 79.65 ± 1.460 N=424 
Difference between means -6.570 ± 4.022 
95% confidence interval -14.47 to 1.333 
R square 0.005460 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN5. 
 
 
 
 
 

Column B CLN6 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.0278 
P value summary * 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=2.210 df=306 
  How big is the difference? 

 Mean ± SEM of column A 88.08 ± 4.084 N=65 
Mean ± SEM of column B 106.5 ± 4.177 N=243 
Difference between means 18.47 ± 8.355 
95% confidence interval 2.025 to 34.91 
R square 0.01571 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN6. 
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Column B CLN7 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.8796 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=0.1516 df=356 
  How big is the difference? 

 Mean ± SEM of column A 88.08 ± 4.084 N=65 

Mean ± SEM of column B 
87.26 ± 2.375 

N=293 
Difference between means -0.8185 ± 5.399 
95% confidence interval -11.44 to 9.799 
R square 6.455e-005 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN7. 
 
 
 
 

Column B CLN8 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.3875 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=0.8652 df=346 
  How big is the difference? 

 Mean ± SEM of column A 86.22 ± 3.695 N=64 
Mean ± SEM of column B 90.09 ± 1.952 N=284 
Difference between means 3.869 ± 4.472 
95% confidence interval -4.926 to 12.66 
R square 0.002159 

3.1.2.5 – Golgi complex morphology is not affected in other NCLs, CLN8. 
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Appendix B 
 
 

Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. Significant

? 
Summar

y 
     Mock 

    0h vs. 1h 0.3500 0.2310 to 0.4690 Yes *** 
0h vs. 8h 0.4650 0.3460 to 0.5840 Yes **** 

     siRNA CLN3 
    

0h vs. 1h 0.08500 
-0.03397 to 

0.2040 No ns 

0h vs. 8h 0.0900 
-0.02897 to 

0.2090 No ns 
 

 
Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock - siRNA CLN3 
    0h 0.05000 -0.08163 to 0.1816 No ns 

1h -0.2150 
-0.3466 to -

0.08337 Yes ** 
8h -0.3250 -0.4566 to -0.1934 Yes *** 
 4.1.1.3 –CLN3 depletion affect GPP130 degradation Panel A, graph ii. 
 
 
 
Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     Mock 

    0h vs. 1h 1.110 0.1672 to 2.053 Yes * 
0h vs. 8h 2.670 1.727 to 3.613 Yes *** 
1h vs. 8h 1.560 0.6172 to 2.503 Yes ** 
     siRNA CLN3 

    0h vs. 1h 1.150 0.2072 to 2.093 Yes * 
0h vs. 8h 1.610 0.6672 to 2.553 Yes ** 
1h vs. 8h 0.4600 -0.4828 to 1.403 No ns 
4.1.1.3 - CLN3 depletion affect GPP130 degradation. Panel A, graph iii. 
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Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     Mock - siRNA CLN3 

    0h 1.870 0.9272 to 2.813 Yes ** 
1h 1.910 0.9672 to 2.853 Yes ** 
8h 0.8100 -0.1328 to 1.753 No ns 
4.1.1.3 - CLN3 depletion affect GPP130 degradation Panel A, graph iii. 
 
 
 
Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     Mock - siRNA CLN3 

    0h to 1h Mn2+  -0.8700 -2.678 to 0.9384 No ns 
1h to 8h Mn2+  0.1600 -1.648 to 1.968 No ns 
0h to 8h Mn2+  -1.600 -3.408 to 0.2084 No ns 
 4.1.1.3 - CLN3 depletion affect GPP130 degradation Panel A, graph iii’. 
 
 
 
 

Column B siRNA CLN3 
vs. vs. 
Column A Mock 
  Unpaired t test 

 P value 0.0005 
P value summary *** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=4.990 df=10 
  How big is the difference? 

 Mean ± SEM of column A 0.04667 ± 0.003639 N=6 
Mean ± SEM of column B 0.01867 ± 0.004271 N=6 
Difference between means -0.0280 ± 0.005611 
95% confidence interval -0.04050 to -0.01550 
R square 0.7134 
4.1.1.3 - CLN3 depletion affect GPP130 degradation Panel B 
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Sidak's 
multiple 
comparisons 
test Mean Diff. 95% CI of diff. Significant? Summary 
     Control 

    0h vs. 1h 0.2600 0.09003 to 0.4300 Yes ** 
0h vs. 8h 0.5000 0.3300 to 0.6700 Yes *** 
     Patient 1kb 

    0h vs. 1h 0.6700 0.5000 to 0.8400 Yes **** 
0h vs. 8h 1.040 0.8700 to 1.210 Yes **** 
4.1.1.4 - CLN3 1-kb deletion affect GPP130 degradation. Panel A, graph ii 

 
 
Sidak's multiple comparisons test Mean Diff. 95% CI of diff. Significant? Summary 
     0h to 1h Mn2+ vs. 1h to 8h Mn2+  -1.025 -2.387 to 0.3367 No ns 
0h to 1h Mn2+ vs. 0h to 8h Mn2+  -2.775 -4.137 to -1.413 No ns 
1h to 8h Mn2+ vs. 0h to 8h Mn2+  -1.750 -4.473 to 0.9734 No ns 

4.1.1.4 - CLN3 1-kb deletion affect GPP130 degradation. Panel A, graph iii 
 
 
 
 

Column B 1kb Patients 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value 0.3806 
P value summary ns 
Significantly different? (P < 0.05) No 
One- or two-tailed P value? Two-tailed 
t, df t=0.9173 df=10 
  How big is the difference? 

 Mean ± SEM of column A 0.0320 ± 0.007461 N=6 
Mean ± SEM of column B 0.0245 ± 0.003344 N=6 
Difference between means -0.0075 ± 0.008176 
95% confidence interval -0.02572 to 0.01072 
R square 0.07761 

4.1.1.4 - CLN3 1-kb deletion affect GPP130 degradation Panel B 
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Appendix C 
 

 
Column B 1kb patients 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=5.439 df=168 
  How big is the difference? 

 Mean ± SEM of column A 0.002212 ± 0.0003283 N=47 
Mean ± SEM of column B 0.006803 ± 0.0005057 N=123 
Difference between means 0.004591 ± 0.0008441 
95% confidence interval 0.002925 to 0.006258 
R square 0.1497 

5.1.1.1 - ER membrane expansion in 1-kb and CLN6 patient fibroblast cell 
lines, panel B, graph i. 

 
 
 
 
 

Column B CLN6 
vs. vs. 
Column A Control 
  Unpaired t test 

 P value < 0.0001 
P value summary **** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=8.325 df=92 
  How big is the difference? 

 Mean ± SEM of column A 0.002212 ± 0.0003283 N=47 
Mean ± SEM of column B 0.006064 ± 0.0003261 N=47 
Difference between means 0.003852 ± 0.0004627 
95% confidence interval 0.002933 to 0.004771 
R square 0.4296 
5.1.1.1 - ER membrane expansion in 1kb and CLN6 patient fibroblast cell 

lines, panel B, graph ii. 
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Tukey's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock 
    

0h vs. 1h 0.0 
-0.06509 to 

0.06509 No ns 

0h vs. 8h -0.1500 
-0.2151 to -

0.08491 Yes *** 

1h vs. 8h -0.1500 
-0.2151 to -

0.08491 Yes *** 
     siRNA CLN3 

    0h vs. 1h -0.4000 -0.4651 to -0.3349 Yes **** 
0h vs. 8h -1.070 -1.135 to -1.005 Yes **** 
1h vs. 8h -0.6700 -0.7351 to -0.6049 Yes **** 
 
 
 
Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock - siRNA CLN3 
    

0h -0.2300 
-0.2994 to -

0.1606 Yes *** 

1h -0.6300 
-0.6994 to -

0.5606 Yes **** 
8h -1.150 -1.219 to -1.081 Yes **** 
5.1.1.2 - CLN3 depletion triggers the ER stress with increase of GRP78/Bip levels, 
graph B. 
 
 
Tukey's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     +Mn2+ 
    

0h vs. 1h 0.06000 
-0.4929 to 
0.6129 No ns 

0h vs. 8h 0.01000 
-0.5429 to 
0.5629 No ns 

0h vs. 0h 0.005000 
-0.5479 to 
0.5579 No ns 

0h vs. 1h -1.255 -1.808 to -0.7021 Yes **** 
0h vs. 8h -1.455 -2.008 to -0.9021 Yes **** 

1h vs. 8h -0.05000 
-0.6029 to 
0.5029 No ns 

1h vs. 0h -0.05500 
-0.6079 to 
0.4979 No ns 

1h vs. 1h -1.315 -1.868 to -0.7621 Yes **** 
1h vs. 8h -1.515 -2.068 to -0.9621 Yes **** 
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8h vs. 0h -0.005000 
-0.5579 to 
0.5479 No ns 

8h vs. 1h -1.265 -1.818 to -0.7121 Yes **** 
8h vs. 8h -1.465 -2.018 to -0.9121 Yes **** 
0h vs. 1h -1.260 -1.813 to -0.7071 Yes **** 
0h vs. 8h -1.460 -2.013 to -0.9071 Yes **** 

1h vs. 8h -0.2000 
-0.7529 to 
0.3529 No ns 

     -Mn2+ 
    

0h vs. 1h 0.1250 
-0.4279 to 
0.6779 No ns 

0h vs. 8h -0.01500 
-0.5679 to 
0.5379 No ns 

0h vs. 0h 0.1850 
-0.3679 to 
0.7379 No ns 

0h vs. 1h -0.2100 
-0.7629 to 
0.3429 No ns 

0h vs. 8h -1.760 -2.313 to -1.207 Yes **** 

1h vs. 8h -0.1400 
-0.6929 to 
0.4129 No ns 

1h vs. 0h 0.06000 
-0.4929 to 
0.6129 No ns 

1h vs. 1h -0.3350 
-0.8879 to 
0.2179 No ns 

1h vs. 8h -1.885 -2.438 to -1.332 Yes **** 

8h vs. 0h 0.2000 
-0.3529 to 
0.7529 No ns 

8h vs. 1h -0.1950 
-0.7479 to 
0.3579 No ns 

8h vs. 8h -1.745 -2.298 to -1.192 Yes **** 

0h vs. 1h -0.3950 
-0.9479 to 
0.1579 No ns 

0h vs. 8h -1.945 -2.498 to -1.392 Yes **** 
1h vs. 8h -1.550 -2.103 to -0.9971 Yes **** 
          
Test details Mean 1 Mean 2 Mean Diff. 

SE of 
diff. 

     +Mn2+ 
    0h vs. 1h 0.6450 0.5850 0.06000 0.1646 

0h vs. 8h 0.6450 0.6350 0.01000 0.1646 
0h vs. 0h 0.6450 0.6400 0.005000 0.1646 
0h vs. 1h 0.6450 1.900 -1.255 0.1646 
0h vs. 8h 0.6450 2.100 -1.455 0.1646 
1h vs. 8h 0.5850 0.6350 -0.05000 0.1646 
1h vs. 0h 0.5850 0.6400 -0.05500 0.1646 
1h vs. 1h 0.5850 1.900 -1.315 0.1646 
1h vs. 8h 0.5850 2.100 -1.515 0.1646 
8h vs. 0h 0.6350 0.6400 -0.005000 0.1646 
8h vs. 1h 0.6350 1.900 -1.265 0.1646 
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8h vs. 8h 0.6350 2.100 -1.465 0.1646 
0h vs. 1h 0.6400 1.900 -1.260 0.1646 
0h vs. 8h 0.6400 2.100 -1.460 0.1646 
1h vs. 8h 1.900 2.100 -0.2000 0.1646 
     -Mn2+ 

    0h vs. 1h 0.6250 0.5000 0.1250 0.1646 
0h vs. 8h 0.6250 0.6400 -0.01500 0.1646 
0h vs. 0h 0.6250 0.4400 0.1850 0.1646 
0h vs. 1h 0.6250 0.8350 -0.2100 0.1646 
0h vs. 8h 0.6250 2.385 -1.760 0.1646 
1h vs. 8h 0.5000 0.6400 -0.1400 0.1646 
1h vs. 0h 0.5000 0.4400 0.06000 0.1646 
1h vs. 1h 0.5000 0.8350 -0.3350 0.1646 
1h vs. 8h 0.5000 2.385 -1.885 0.1646 
8h vs. 0h 0.6400 0.4400 0.2000 0.1646 
8h vs. 1h 0.6400 0.8350 -0.1950 0.1646 
8h vs. 8h 0.6400 2.385 -1.745 0.1646 
0h vs. 1h 0.4400 0.8350 -0.3950 0.1646 
0h vs. 8h 0.4400 2.385 -1.945 0.1646 
1h vs. 8h 0.8350 2.385 -1.550 0.1646 

5.1.1.3 - CLN3 depletion enhances CHOP/GADD153 levels, graph B. 
 
 
 
 
Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock +Mn2+ 
    

0 vs. 1 0.06000 
-0.6467 to 
0.7667 No ns 

0 vs. 8 0.01000 
-0.6967 to 
0.7167 No ns 

1 vs. 8 -0.05000 
-0.7567 to 
0.6567 No ns 

     siRNA CLN3 +Mn2+ 
    0 vs. 1 -1.260 -1.967 to -0.5533 Yes ** 

0 vs. 8 -1.460 -2.167 to -0.7533 Yes ** 

1 vs. 8 -0.2000 
-0.9067 to 
0.5067 No ns 

          
Test details Mean 1 Mean 2 Mean Diff. 

SE of 
diff. 

     Mock +Mn2+ 
    0 vs. 1 0.6450 0.5850 0.06000 0.2159 

0 vs. 8 0.6450 0.6350 0.01000 0.2159 
1 vs. 8 0.5850 0.6350 -0.05000 0.2159 
     siRNA CLN3 +Mn2+ 

    0 vs. 1 0.6400 1.900 -1.260 0.2159 
0 vs. 8 0.6400 2.100 -1.460 0.2159 
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1 vs. 8 1.900 2.100 -0.2000 0.2159 
5.1.1.3 - CLN3 depletion enhances CHOP/GADD153 levels, graph B 
 
 
Tukey's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock -Mn2+ 
    0 vs. 1 0.1250 -0.1423 to 0.3923 No ns 

0 vs. 8 -0.01500 -0.2823 to 0.2523 No ns 
1 vs. 8 -0.1400 -0.4073 to 0.1273 No ns 
     siRNA CLN3 -Mn2+ 

    
0 vs. 1 -0.3950 

-0.6623 to -
0.1277 Yes ** 

0 vs. 8 -1.945 -2.212 to -1.678 Yes **** 
1 vs. 8 -1.550 -1.817 to -1.283 Yes **** 

 5.1.1.3 - CLN3 depletion enhances CHOP/GADD153 levels graph B 
 
 

Sidak's multiple comparisons test 
Mean 
Diff. 

95% CI of 
diff. 

Significan
t? 

Summar
y 

     siRNA CLN3 +Mn2+ - siRNA CLN3-
Mn2+ 

    
0 0.2000 

-0.5414 to 
0.9414 No ns 

1 1.065 0.3236 to 1.806 Yes ** 

8 -0.2850 
-1.026 to 
0.4564 No ns 

5.1.1.3 - CLN3 depletion enhances CHOP/GADD153 levels, graph B 
 
 
 
 
Tukey's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Control 
    0h vs. 1h -0.0760 -1.270 to 1.118 No ns 

0h vs. 8h -3.045 -4.239 to -1.851 Yes *** 
1h vs. 8h -2.969 -4.163 to -1.775 Yes *** 
     1kb Patients 

    
0h vs. 1h -1.728 

-2.921 to -
0.5339 Yes * 

0h vs. 8h -2.208 -3.401 to -1.014 Yes ** 
1h vs. 8h -0.4800 -1.674 to 0.7136 No ns 
5.1.1.4 – 1-kb CLN3 fibroblast are less resistant to ER stress, graph B. 
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Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Control - 1kb Patients 
    0h -0.0025 -1.276 to 1.271 No ns 

1h -1.654 
-2.928 to -

0.3804 Yes * 
8h 0.8350 -0.4386 to 2.109 No ns 
5.1.1.4 – 1kb CLN3 fibroblast are less resistant to ER stress, Graph B 
 
 
 
 
Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock 
    0h vs. 1h 0.0 -0.1637 to 0.1637 No ns 

0h vs. 8h 0.0 -0.1637 to 0.1637 No ns 
1h vs. 8h 0.0 -0.1637 to 0.1637 No ns 
     siRNA CLN3 

    
0h vs. 1h -0.3300 

-0.4937 to -
0.1663 Yes ** 

0h vs. 8h -2.570 -2.734 to -2.406 Yes **** 
1h vs. 8h -2.240 -2.404 to -2.076 Yes **** 
 
 
 
 
Sidak's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     Mock - siRNA CLN3 
    

0h -0.7700 
-0.9337 to -

0.6063 Yes **** 
1h -1.100 -1.264 to -0.9363 Yes **** 
8h -3.340 -3.504 to -3.176 Yes **** 
 5.1.2.1 - CLN3 depletion causes activation of caspase 2, graph B 
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Appendix D  
 

Column B Δbtn1 MM 
vs. vs. 
Column A btn1wt MM 
  Unpaired t test 

 P value 0.0004 
P value summary *** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=3.752 df=52 
  How big is the difference? 

 Mean ± SEM of column A 0.004486 ± 0.0003775 N=22 
Mean ± SEM of column B 0.009555 ± 0.001087 N=32 
Difference between means 0.005069 ± 0.001351 
95% confidence interval 0.002358 to 0.007780 
R square 0.2130 

6.1.1.1 – btn1∆  exhibits changes in GA morphology 
 
 
 
 
 

Column B ∆btn1 MM 
vs. vs. 
Column A btn1wt MM 
  Unpaired t test 

 P value 0.0009 
P value summary *** 
Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 
t, df t=4.070 df=16 
  How big is the difference? 

 Mean ± SEM of column A 0.004895 ± 0.0008157 N=10 
Mean ± SEM of column B 0.03367 ± 0.007902 N=8 
Difference between means 0.02878 ± 0.007072 
95% confidence interval 0.01379 to 0.04377 
R square 0.5086 

6.1.2.1 – ER volume expansion in fission yeast 
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Appendix E  
 
 
Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     
0 uM A vs. 5 uM A 0.005721 

-0.02791 to 
0.03935 No ns 

0 uM A vs. 10 uM A 0.01052 
-0.02235 to 
0.04338 No ns 

0 uM A vs. 20 uM A -0.02709 
-0.05880 to 
0.004627 No ns 

7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph A). 
 
 
Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     
0 uM E vs. 5 uM E 0.005665 

-0.03387 to 
0.04520 No ns 

0 uM E vs. 10 uM E -0.03182 
-0.07306 to 
0.009428 No ns 

0 uM E vs. 20 uM E -0.007294 
-0.04409 to 
0.02951 No ns 

7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph B). 
 
 
Dunnett's multiple comparisons test Mean Diff. 95% CI of diff. Significant? 
    0 uM P vs. 5 uM P 0.001197 -0.05404 to 0.05643 No ns 
0 uM P vs. 10 uM P -0.05238 -0.1052 to 0.0004441 No ns 
7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph C). 

 
 

Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     
0uM vs. 5uM -0.01774 

-0.03357 to -
0.001904 Yes * 

0uM vs. 10uM -0.005723 
-0.02020 to 
0.008751 No ns 

0uM vs. 20uM 0.003571 -0.01226 to 0.01940 No ns 
7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph D). 
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Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     
0uM vs. 5uM -0.05753 

-0.08916 to -
0.02590 Yes **** 

0uM vs. 10uM -0.06238 
-0.09541 to -

0.02936 Yes **** 

0uM vs. 20uM -0.07865 
-0.1095 to -

0.04776 Yes **** 
7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph E) 
 
 
Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     
0uM vs. 5uM -0.06404 

-0.09293 to -
0.03516 Yes **** 

0uM vs. 10uM -0.05334 
-0.08295 to -

0.02372 Yes *** 
7.1.1.1 - Effect of alloxazine, E64 and prochlorperazine dimaleate on Golgi complex 
compactness of 1-kb patient fibroblast cell lines (Graph F) 

 
 

 
Dunnett's multiple comparisons 
test 

Mean 
Diff. 95% CI of diff. 

Significant
? 

Summar
y 

     WT / DMSO vs. CLN3 1kb / 
DMSO 0.07139 

0.04390 to 
0.09888 Yes **** 

WT / DMSO vs. CLN3 1kb / A 0.05499 
0.02212 to 

0.08786 Yes *** 

WT / DMSO vs. CLN3 1kb / E64 -0.008181 
-0.03585 to 

0.01949 No ns 

WT / DMSO vs. CLN3 1kb / P 0.005206 
-0.04323 to 

0.05364 No ns 
7.1.1.2 – Rescue of the Golgi complex compactness in 1-kb patient fibroblast
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