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Abstract 

For successful gene expression in eukaryotes, mRNA transcripts are processed in the 5’ 

and 3’ untranslated regions (UTRs) and non-coding mRNA is spliced out. These 

processes are crucial in determining the fate of the mRNA transcript. Rna14 and Rna15 

are subunits of Cleavage factor 1A (CF1A) and required for 3’ end processing in S. 

cerevisiae. Structural and biophysical data have determined a number of residues within 

the RNA recognition motif (RRM) of Rna15 that interact directly with RNA. However, 

although the crystal structure of the RRM revealed a mechanism for the preferential 

recognition of G/U nucleotides by Rna15 the sequence specificity for Rna15 is still 

extensively debated. This thesis applies combination of in vivo and in vitro techniques 

aimed to characterise Rna15-RNA binding, Rna15 interaction with Rna14 and examine 

consequences for RNA processing and yeast viability in vivo. An in vitro 

mutational/biophysical analysis is presented that reveals the residues essential for the 

Rna15-RNA interaction and application of NMR-quantified Scaffold Independent 

Analysis (SIA) demonstrates a clear GU-bias in the in vitro consensus sequence. 

However, given these strong effects, surprisingly only extensive mutation of the RRM 

produces growth defects in S. cerevisiae and qRT-PCR experiments employing a small 

subset of genes show only slight effects on polyA site selection. By contrast, an RNA-

sequencing (RNA-Seq) global analysis of expression and transcriptional readthrough 

reveals that expression of over 100 S. cerevisiae genes is severely affected when the 

RRM of Rna15 is deleted and in addition the 3’-UTR of the mRNA of a sample set of 

40 genes is significantly different to wild type. These results indicate that only severe 

reduction of Rna15-RNA interactions result in defects in transcriptional and 3’ end 

processing, hypothesized to be due in part to functional redundancy. Nevertheless, the 

global changes observed upon deletion of the Rna15 RRM are striking and reinforce the 

link between 3’-end processing, transcriptional regulation and gene expression. 
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Chapter 1  Introduction 

1. Introduction 

1.1 Eukaryotic mRNA processing 

 The central dogma of molecular biology, DNA-RNA-Protein, is an essential 

feature of cellular life and describes the flow of information from DNA to the resulting 

proteins. Messenger RNA (mRNA) is central to gene expression as it carries the 

message encoded in the DNA from the nucleus to the cytoplasm for translation into 

protein. Processing allows entry into the cytoplasm where the translation machinery 

resides and additionally affords the message protection from degradation to ensure it is 

efficiently translated. Processing of mRNA comprises addition of a 5' cap, synthesis of a 

3' poly(A) tail and deletion of non-coding intron sequences. The work presented in this 

thesis focuses on the process of polyadenylation which will be introduced in detail. 

However, it is pertinent to briefly describe the other processing events which immature 

mRNAs undergo.   

 

1.1.1 5' end capping 

 Capping of mRNA at the 5' end is essential for maturation of eukaryotic mRNA 

transcripts and important for the maintenance of mRNA integrity in preventing 

degradation by 5'-3' exonucleases present in the nucleus and cytoplasm (1,2). In 

addition, the 5’ cap is required for successful translation initiation as it is recognised by 

the translation machinery and this interaction promotes mRNA direction toward 

ribosomes. Binding by the translation initiation factor, eIF4F, results in mRNA 

circularisation further protecting the mRNA and aiding translation (3,4). Capping is also 

tightly coupled with transcription and occurs within elongation of the first 25-30 

nucleotides. Capping, transcription initiation and elongation are co-dependent processes 

involving proteins with functions in more than one process (5).  
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 The 5' cap consists of a 7-methylguanosine linked to the end of the transcript by 

a 5'-5' triphosphate bridge (6). In yeast, three classes of enzymes are responsible for 

formation of the cap structure, a RNA triphosphatase (Cet1), a RNA guanylyltransferase 

(Ceg1) and a RNA methyl transferase (Abd1) (7). The capping machinery localises to 

the 5' end of the mRNA transcript as it emerges from RNA polymerase II (RNAPII) 

during transcription (8). Recruitment is dependent on the phosphorylation state of the C-

terminal domain (CTD) of RNAPII that is composed of a number of heptad repeats 

YSPTSPSn. Phosphorylation of serine 5 and serine 7 (S5, S7) within the heptad repeats 

results in recruitment of Ceg1 and Abd1 to the 5’ end of the nascent transcript (9,10). 

The Kin28 subunit of transcription factor TFIIH is responsible for phosphorylation at 

this site (9). Cet1 does not associate with the phosphorylated CTD of RNAPII and is 

recruited to the transcript via interaction with Ceg1 (11–14).  

 

The CTD of RNAPII provides a platform for the capping enzymes and acts to 

stabilise them and modulate their enzymatic activities. Phosphorylation of RNAPII 

therefore has a major influence on the capping process (14,15). During transcription 

initiation the CTD of RNAPII is steadily dephosphorylated leading to dissociation of 

the Ceg1-Cet1 complex prior to transcription elongation. However, association of Abd1 

continues into the coding region (9).  

 

 In S. cerevisiae, the process of capping is essential to cell growth and mutation 

of either the guanylyltransferase or methyltransferase that result in loss of catalytic 

activity are lethal in vivo (16–20). Successful addition of a 7-methylguanosine to the 

end of the newly synthesised transcript first requires Cet1 hydrolysis of the 5' 

triphosphate to a diphosphate (6). Following this phosphatase reaction, the 5' end is then 

capped with guanine mono-phosphate (GMP) by Ceg1 (Figure 1.1) (6). Ceg1 contains a 
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number of sequence and structural motifs which are conserved in their order and 

spacing across capping enzymes from DNA viruses to higher eukaryotes (21). GTP is 

bound to motifs I, III, IIIa, IV, V and VI and the crystal structure of the Chlorella Ceg1 

demonstrated that binding of GTP to the motifs induced a conformational change in the 

enzyme allowing hydrolysis to occur (22). The enzyme is composed of two domains 

with a deep cleft between them which shifts from an open to closed state when GTP is 

bound. The closed state brings motif VI into contact with the γ and β phosphates of GTP 

resulting in their reorientation so that they are exposed to attack by the charged amino 

group of a conserved lysine residue found in motif I within a KXDG sequence 

characteristic of nucleotidyl transferases (22–24). This lysine residue is also conserved 

across diverse species (16,18,21,25–28). The evolutionary importance of these 

conformational changes is demonstrated by analysis of the guanylyltransferase enzyme 

in S. cerevisiae. The same residues responsible for maintaining contacts with GTP in the 

Chlorella crystal structure were mutated in the yeast homologue and resulted in loss of 

capping at the 5' end in vivo (20,28). 

 

 Regulation of the capping pathway is performed by the capping enzymes 

themselves. The 33-kDa subunit of the vaccinia virus capping enzyme is able to 

stimulate methyltransferase activity 50- to 100- fold by association with the catalytic 

subunit (22-23). In S. cerevisiae similar regulation is observed where the 

guanylyltransferase activity of Ceg1 is regulated by Cet1 (15). GTP hydrolysis by Ceg1 

increased ~13-fold when in complex with Cet1 and an increase in GTP affinity was also 

observed (15). In addition, the CTD of RNAPII and Cet1 have been shown to 

allosterically regulate Ceg1 activity (14). Association of Ceg1 with the CTD alone 

inhibits guanylyltransferase activity but this inhibition is relieved upon binding of Cet1 

to form a Ceg1/Cet1/CTD heterotrimer (14,15). In higher eukaryotes, a single protein 
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performs both the phosphatase and guanyltransferase roles (8). The mouse guanylyl 

transferase domain is able to functionally complement deletion of yeast, Ceg1 and the 

full length protein is able to complement deletion of Cet1 in vivo (13,21,31,32).  

 

 Following addition of GMP by Ceg1, the cap is then methylated by a 

methyltransferase (Figure 1.1). In S. cerevisiae this function is performed by Abd1 (6). 

In addition to recruitment of the capping machinery, phosphorylation of the CTD also 

mediates stimulation from transcription initiation to elongation (33). In addition to its 

methyltransferase activity in 5' capping, Abd1 has been shown to exert other effects on 

transcription (34). Temperature sensitive mutations in Abd1 have been isolated that 

result in a reduction in occupancy of RNAPII at the 5' end of genes PGK1, ENO2, 

GAL1 and GAL10 (34). In genes TEF1 and ACT1, RNAPII was shown to be 

distributed abnormally throughout the gene compared to wild type, most likely caused 

by aberrant transition from transcription initiation to elongation (34). Indeed, Abd1 has 

been demonstrated to associate with the CTD of RNAPII during transcription 

elongation (9). Together, these results demonstrate a role for Abd1 in transcription 

elongation efficiency, possibly as a checkpoint to ensure transcription proceeds after 

successful addition of the 5' cap (34).  
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Figure 1.1 5’ end capping in S. cerevisiae. 1. The capping machinery is recruited to the nascent 

transcript by association with the RNAPII CTD. 2. Cet1 completes hydrolysis of the of the 5’ 

triphosphate. 3. Ceg1 then caps the 5’ end with GMP. 4. Abd1 completes formation of the 5’ cap 

following addition of a methyl group. 
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1.1.2 mRNA Splicing 

 Following transcription, the resulting RNA product is a precursor or pre-mRNA 

which contains non-coding introns as well as coding exons. The introns are removed by 

the spliceosome, a large protein RNA complex, guided by short consensus sequences 

present at the intron-exon boundary (35–37). These consist of the 5' splice site, the 

branch point sequence (present in the intron) and the 3' splice site (38). The spliceosome 

is required to fold the mRNA transcript bringing these sequences together so that the 

intron in question can be excised (38). Different splice sites can be recognised and 

paired within a single mRNA transcript leading to alternative splicing. This means that 

a single mRNA transcript can encode different protein isoforms resulting in diverse and 

large proteomes. Sequencing of mRNA products reveals that over 95% of the human 

genome is alternatively spliced, with the products determined predominantly by stage of 

development, tissue type and external stimulus (39). In S. cervisiae, the spliceosome 

consists of five small nuclear RNAs; U1, U2, U4, U5 and U6 snRNAs, and over 100 

different polypeptides (40). The spliceosome in humans is more complex with the major 

spliceosome complex consisting of the same snRNAs but over 300 different proteins. 

Humans also have a second spliceosome unit called the minor spliceosome which 

consists of U11, U12, U4atac, U5 and U6atac snRNAs (41). Although there are some 

major differences between the yeast and human systems, a high degree of conservation 

is observed whereby 85% of the yeast spliceosome has a human homologue (40). The 

yeast spliceosome could be described as an "evolutionary conserved core" around which 

the human system has evolved (40). Adaptation and evolution of the human 

spliceosome means that the spliceosome machinery is able to exert an increasingly 

complex role in alternative splicing. The spliceosome proteins bind to the snRNAs to 

form ribonucleoprotein complexes and function to direct splicing. Other proteins are 

required to regulate the timing of the process and confirm the final product has been 
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correctly spliced (35–37). 

  

 Due to the number of proteins and the highly complex nature of splicing, it has 

taken many years to elucidate the mechanism (35–37). The current understanding of the 

process is as follows. In the human spliceosome, U1 begins splicing by binding to the 5' 

exon splice site along with other proteins of the splicing machinery which bind to the 

branchpoint of the intron. The "A complex" is then formed by displacement of splicing 

proteins by U2 and subsequent binding of U2 to the intron to be excised. The "B 

complex" is then formed by addition of the U4/U6.U5 tri-snRNP. A catalytically active 

complex, termed the B* complex, carries out excision at the 5' intron requiring 

dissociation of U1 and U4, addition of the Prp19 complex, destabilisation of proteins 

bound to U2 and association of the pre-mRNA, U2 and U6 snRNAs (40,42–44). The B* 

complex is present on pre-mRNA allowing catalytic access to the consensus sequences 

determining both the 5' and 3' splice sites and the branch point present within the intron 

(38). The phosphodiester bond bridging the 5' exon with the intron is cleaved by attack 

of a 2' hydroxyl present in an adenosine residue within the branch point consensus 

sequence. This complex, where the intron has dissociated from the 5' exon, is called the 

C1 complex. The 5' exon is then free to attack the 3' splice site resulting in the C2 

complex and exon ligation. The spliceosome is then recycled to begin intron exclusion 

at a new site (42,43). 

 

 Splicing, like capping, is tightly coupled to transcription (45,46). The 65 kDa 

component of the U2 snRNP mammalian splicing factor has been demonstrated to bind 

phosphorylated S2 in the CTD of RNAPII (47,48). In mammals, truncation of the CTD 

of RNAPII results in inefficient splicing and loss of co-localisation of splicing factors 

(49,50). Moreover, reconstituted splicing experiments in vitro using HeLa cell extracts 
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demonstrate that phosphorylation of the CTD of RNAPII result in the recruitment of the 

spliceosome, hyper-phosphorylation was shown to stimulate splicing whilst hypo-

phosphorylation inhibited splicing activity (51).  

 

1.1.3 mRNA Export 

 Following transcription and RNA processing, the transcript is exported from the 

nucleus through nuclear pores (5,52,53). This requires the function of many proteins 

which bind to and stabilise the nascent mRNA during transcription to form a messenger 

ribonucleoparticle (mRNP) (5,52,53). Binding of proteins which signal mRNA export 

from the nucleus also work to stop RNA:DNA hybridisation (54). Such pairing can act 

to stall RNA polymerase II along the DNA template resulting in decreased 

transcriptional efficiency (54). Furthermore, movement of DNA during hybridisation 

can result in DNA damage which can lead to genome instability. In S. cerevisiae, this is 

observed in cells lacking the export factor THO (55).  

 

 THO is a multisubunit complex which is required to direct export of mRNA 

from the nucleus. The core complex consists of Tho2, Hpr1, Mft1 and Thp2 (56). Other 

proteins such as Sub2, Yra1 and Mex-67 have also been observed to be associated with 

the complex (57,58). THO associates with chromatin during transcription and recruits 

Sub2 to the emerging mRNA (59,60). Sub2 then recruits Yra1 which acts as an adaptor 

protein, linking Mex-67 with the mRNA. Interaction with Mex-67 displaces Sub2 from 

Yra1 as interaction with both proteins occurs through the same domain (61–64). Export 

is facilitated through interaction of Mex-67 with nucleoporins lining the nuclear pore 

(5,52,53). The formation of the THO-Sub2-Yra1 complex has been termed the TREX 

complex due to its ability to link transcription and export (65). The THO complex is an 
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essential shuttling pathway with conserved protein counterparts in higher eukaryotes 

(5,52,53). 

 

 Mex-67 relies on adaptor proteins like Yra1 due to its low affinity for 

pre-mRNA (52). It has been demonstrated that multiple export pathways exist in S. 

cerevisiae that do not require the function of Yra1 for recruitment of Mex-67 (66,67). 

Indeed, Yra1 does not associate with all yeast transcripts (68). In addition to Yra1 

mediated association, THO can also transport Mex-67 to the mRNP by association with 

the Hpr1 component (69). This interaction is dependent on the ubiquitin ligase, Rsp5 

that polyubquitinates Hpr1 creating a substrate for the ubiquitin-associated (UBA) 

domain of Mex-67 or the proteasome (70). Following association of Mex-67 with the 

nucleoporin, Hpr1 is free to disassociate allowing entry of the pre-mRNA into the 

cytoplasm (71). This rearrangement of the pre-mRNA leads to proteasome directed 

degradation of polyubiquitinated Hpr1, possibly resulting in rapid displacement of other 

processing factors coating the pre-mRNA (72). 

 

 Along with the TREX complex, a TREX2 complex exists that directly links 

transcription and export. TREX-2 complex consists of Sac3, Thp1 and the SAGA 

histone acetylase complex (52). It has been suggested that TREX2 acts at different 

stages of mRNA export than the THO complex (53). THO associates with the 

chromatin early in export to prevent RNA-DNA hybridisation and mediates export 

through the formation of TREX (59–64). TREX-2 facilitates export immediately prior 

to mRNA entry to the cytoplasm by interacting both with the mRNA and the nuclear 

pore (73–75). Both Thp1 and Mex-67 interact with Sac3 (75). Sac3 associates with the 

nuclear pore complexes to allow export of the mRNP and along with Thp1 associates 

21 
 



Chapter 1  Introduction 

with the SAGA complex through interaction with Sus1, a SAGA complex component 

(75,76).  

 

1.2 mRNA processing at the 3' end 

 Polyadenylation is the name given to processing of mRNA at the 3' end and it is 

this process that this thesis will focus on. Apart from histone mRNAs, all mRNAs are 

polyadenylated in yeast. Polyadenylation consists of a cleavage reaction in the 3' 

untranslated region (UTR) of mRNA followed by addition of between 70 and 90 

adenosine nucleotides. Polyadenylation is a highly complex process and unlike 5' 

capping requires the coordination of a large number of protein factors into complexes 

that are highly conserved throughout evolution (5,8,77–79). Many of these protein 

factors are recruited to the site of polyadenylation by interaction with the CTD of 

RNAPII. Phosphorylation of S2 and Y1 in the heptad repeats signals for recruitment of 

the 3’ end processing machiney during transcription elongation (9,80). Polyadenylation 

is directed through the presence of sequences in the 3' UTR. The cleavage reaction 

occurs at a point in the UTR determined by specific protein factors and sequences 

surrounding the cleavage site. In S. cerevisiae, cleavage normally occurs 10-30 

nucleotides from an A-U rich polyadenylation signal (5,77).  

 

 Accurate processing of mRNA at the 3' end is of the utmost importance to 

maintain cell viability and growth (77). Normal 3' end processing facilitates export of 

mRNA to the cytoplasm (81). Disruption of polyadenylation leads to a 10 fold decrease 

in the ratio of cytoplasmic to nuclear mRNA which results in a decrease in protein 

expression (82). The poly(A) tail also enhances stability of the transcript acting to 

prevent degradation from the 3' end (83). Poly(A) binding protein (Pab1) also associates 

with the poly(A) tail to provide additional protection by 3'-5' exonucleases (83,84). In 
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addition, the poly(A) tail also enhances translation of mRNA into protein through 

indirect interaction with the 5' cap (3,83,85).  

 

The process of polyadenylation is tightly coupled to transcription with 

components of the 3' end processing complex interacting with the CTD of RNAPII and 

transcription factors to mediate successful transcription (77,84,85). Alternative 

polyadenylation can occur where multiple polyadenylation sites exist within a single 

gene. This normally occurs in the 3' UTR and results in regulation of gene expression at 

the post-transcriptional stage (88).     

 

 Abnormal polyadenylation results in thalassemias (89,90) and lysosomal storage 

disorder in humans (91). Incorrect processing can affect the expression of oncogenes 

linking aberrant 3' end processing with cancer development (92). Viral proteins also 

target host cell processing machinery so that viral protein synthesis is favoured over 

host protein synthesis (93–96).  Despite the importance of 3' end processing, relatively 

little mechanistic information is known and the full extent of the protein-protein 

interactions which contribute to successful processing is unclear. However, recent 

advances in technology such as RNA sequencing have meant that knowledge of 

proteins involved in 3' end processing is growing.  

 

1.2.1 Protein factors involved in polyadenylation in S. cerevisiae 

 A number of distinct protein assemblies are responsible for 3' end mRNA 

processing. These were initially identified as four large protein complexes named CF I, 

CF II, PF I and Pap1 (97). CF I and CF II together were sufficient to carry out cleavage 

of mRNA at the 3' end without the aid of PF I and Pap1. However, optimal addition of 

the poly(A) tail required the presence of all processing factors (97). PF I was originally 
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thought to be required to link CF I and CF II with Pap1 since it was not involved in the 

cleavage step (97). It is now known that PF I, CF II and Pap1 work together to carry out 

their roles in polyadenylation in a large complex known as the Cleavage and 

Polyadenylation Factor complex (CPF) (98,99). Once the poly(A) tail has been added 

the PAN complex, consisting of the Pan2 nuclease and the Pan3 regulatory protein, 

trims the poly(A) tail to the correct length (100,101). Prior to the introduction of 

genome wide RNA sequencing analysis, polyadenylation experiments were performed 

on a number of highly transcribed housekeeping genes, such as GAL7, ACT1 and 

CYC1. A selection of these experiments are described in the next sections illustrate the 

role of the individual components of the 3' end processing machinery.    

 

1.2.1.1 CF I 

 CF I was identified using in vitro reconstruction whereby precursor RNA 

molecules containing both the CYC1 and GAL7 gene poly(A) sites were monitored for 

cleavage and subsequent addition of the poly(A) tail with partially purified yeast 

extracts (97). These assays revealed that both cleavage and polyadenylation required 

CF I (97). Further purification of CF I revealed that it was made up of two complexes; 

CF1A and CF1B (102). CF1A is made up of Rna15, Rna14, Clp1 and Pcf11 (103–105) 

while CF1B is made up of just one protein, Hrp1 (106). Within CF1A, Rna14 and 

Rna15 form a 2:2 tetramer (107) accompanied by Pcf11 and Clp1 monomers to form a 6 

component complex (108). A schematic representation of the components of CF1A is 

shown in Figure 1.2.  
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Figure 1.2 Schematic representation of the CF1A complex. Protein domains and interaction domains 

(ID) are shaded. 
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1.2.1.1.1 Pcf11  

 Pcf11 is the 71 kDa subunit of cleavage factor 1A (CF1A) in S. cerevisiae and 

was discovered as part of the polyadenylation machinery by yeast 2-hybrid experiments 

involving already established components Rna14 and Rna15 (103,104,109). 

Temperature sensitive point mutations in Pcf11 proved lethal at a permissive 

temperature when combined with temperature sensitive point mutations in Rna14 and 

Rna15 (104). Genomic deletion of Pcf11 results in lethality whilst temperature sensitive 

mutants demonstrated a shortening of poly(A) tail length and an apparent decrease in 

the concentration of ACT1 mRNA in vivo (104). In addition, in vitro experiments with 

mutant Pcf11 resulted in a failure of pre-mRNA cleavage and polyadenylation steps as 

had been observed for Rna14 and Rna15 (103,104). Pcf11 co-purifies with Rna15 under 

non-denaturing conditions allowing purification of functional CF I (97,104). Pcf11 acts 

as a scaffold protein which forms extensive interactions with all other proteins in CF1A 

(110–113). It also mediates coupling of transcription with polyadenylation through 

interaction with the CTD of RNAPII (112,114,115). 

 

 Pcf11 makes RNAPII CTD contacts through a C-terminal interacting domain 

(CID) present in the N-terminus of the protein (Figure 1.3) (116,117). X-ray structures 

show that the CID folds into 8 α helices arranged in a righthanded superhelical 

conformation (116,117). Pcf11 binds to phosphorylated S2 within the conserved heptad 

repeats of the CTD of RNAPII (48). A structure of the CID in complex with a derived 

peptide possessing a phosphorylated serine demonstrates that binding is mediated by a 

groove formed by helices 2, 4 and 7 (Figure 1.3). Sequence alignments show 

conservation of residues present on the surface of this groove from yeast to human 

suggesting that this interaction is universal (116). The backbone of the RNAPII derived 

peptide forms 7 hydrogen bonds with the side chains of residues present within the CID 
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(116). Residues Y1 and P3 of the heptad repeats present in the CTD of the peptide are 

buried in the hydrophobic groove of the CID with Y1 hydrogen bonded to D68 in the 

CID of Pcf11 (116). The phosphorylated S2 residue present in the peptide does not form 

direct contacts with Pcf11 suggesting that Pcf11 can bind both phosphorylated and 

un-phosphorylated residues (115). However, phosphorylation of the S2 in the heptad 

repeats greatly increases binding affinity (112,115).  
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Figure 1.3 Structure of the Pcf11-CID bound to a RNAPII CTD peptide. (PDB ID 1SZA, 116) 

(PDB ID 2BFO, 117). A structural analysis of the solved structure is shown. Nobel et al (blue) and 

Meinhart and Cramer (cyan).  
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 Pcf11 binds Clp1 through a short stretch of 25 amino acids (residues 475-499) 

present between two zinc finger motifs and overlaps a previously identified Clp1 

binding site (112,118). Three conserved residues are present in the 25 amino acid 

stretch, R480, W482 and W489 and they form hydrophobic or hydrogen bonding 

interactions with Clp1(118). Although the CF1A complex does not have a direct 

homologue in mammalian processing systems, the protein factors which make up CF1A 

do have homologues. The residues which mediate Clp1 binding in Pcf11 are conserved 

from yeast to human suggesting this method of interaction is conserved (118). Mutation 

of these conserved residues has been demonstrated to increase poly(A) site readthrough 

by up to 20-fold (119).  

 

 As well as interaction with Clp1, Pcf11 makes contact with protein factors that 

are part of the CPF complex. GST pulldown experiments have identified interactions of 

Pcf11 with CPF components Cft1, Cft2, Ysh1, Pta1 and Ssu72 (120–124).  

 

1.2.1.1.2 Clp1  

 Clp1 is a 50kDa protein and was identified by purification of CF1A and 

subsequent peptide microsequencing (105). It is known to interact with Cft1, Cft2 and 

Pta1 of CPF allowing cross talk between the polyadenylation machineries (120,121). Of 

all the components of CF1A, least is known about the exact role of Clp1 other than its 

requirement for the cleavage and polyadenylation steps (123). Despite this it has been 

well characterised in terms of structure. The crystal structure of Clp1 reveals three 

domains, a large central domain flanked by two smaller domains present at the N and C 

terminus (118).  
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 The central domain is composed of a 7 stranded beta sheet surrounded by 7 

α-helices and is a member of the SIMBI class of NTPases (Figure 1.4, A) (118,125). A 

P-loop or Walker A motif is observed in the loop connecting the β1 sheet and α2 helix. 

This feature is synonymous of NTPases and often allows binding and hydrolysis of 

nucleotides. High performanice liquid chromatography (HPLC) revealed the ability of 

Clp1 to bind ATP. Residues within the P-loop and the N-terminal domain of Clp1 act to 

secure the ATP nucleotide in place through extensive hydrogen bonding (Figure 1.4, B) 

(118). The γ-phosphate of the base forms hydrogen bonds with the side chains of Q133 

and K136 in the P-loop as well as the ε amino group of K321. The β phosphate forms 

hydrogen bonds with the backbone and side chains of aromatic residue Y137. Further 

interactions are observed between the β phosphate group and backbone amides of Y134, 

G135 and K136. The α phosphate makes fewer contacts to the protein than the β 

phosphate, only forming hydrogen bonds with the main chains of Y137 and S138 and 

the side chain hydroxyl of S138. The N terminal domain mediates interaction with the 

ribose sugar by forming hydrogen bonds between the hydroxyl group present on carbon 

2 of the ribose and the backbone carbonyl of K72. The ε amino group of K72 indirectly 

supports ATP binding by interaction with A315 within the C terminus of the P-loop. 

This interaction acts to stabilise conformation of the P-loop and in turn aids the van der 

Waals interactions between the P-loop and the bound ATP (118). Two switch regions 

characteristic of ATPases are also present within the central domain. Both contain 

conserved motifs which, with the addition of a magnesium ion, aid in binding of ATP 

(118).  

 

 The N-terminal domain comprises of a 4 stranded β sheet backed by a 3 stranded 

β sheet in a sandwich conformation. Long loops are present between the 7 β sheets 

structure and the degree of curvature means the sandwich structure is quite globular 
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(118). The C terminal domain is larger than the N terminal domain and consists of a 7 

stranded β sheet combined with 3 short α helices (118) (Figure 1.4, A). 

 

 The ATP binding site of Clp1 also displays a degree of binding specificity with 

no bound GTP observed during HPLC analysis (118). The crystal structure of the ATP 

binding site revealed that D33, present in the N-terminal domain of Clp1, formed a 

hydrogen bond with the exocyclic N6 amino group of the adenine base (Figure 1.4, B). 

The presence of an O6 carbonyl oxygen in the corresponding position of the guanine 

base would not be able to form the same hydrogen bond thus inhibiting binding (118). 

 

 The structure of the Clp1:ATP complex demonstrates an apparent capability to 

support ATP hydrolysis. However, no such reaction was observed during in vitro 

experiments involving both Clp1 and Clp1 bound to other factors of the polyadenylation 

machinery (118). Indeed, in higher eukaryotes Clp1 homologues are kinases that 

phosphorylate 5' hydroxyl ends of RNA (126,127). Furthermore, a point mutation, 

G135R, in the P-loop of Clp1 is not lethal until combined with point mutations in the 

part of the protein that mediates Pcf11 binding (128). Crystal structure of the Clp1 

G135R mutant reveals a conformational change in the P-loop of Clp1 which prevents 

ATP binding (129). However, Clp1 mutants were still viable suggesting that neither 

binding of ATP nor ATP hydrolysis is required by Clp1 during cleavage and 

polyadenylation (128,130). 
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Figure 1.4 The Clp1 and ATP, Mg2+-Pcf11 complex. (PDB ID 2NPI, 118). A. Clp1-ATP-Mg2+-Pcf11 

binding. The structure of the N-, central and C-terminal domains of Clp1 bound to Mg2+ and ATP. Pcf11 

(blue) is also shown bound to the central domain. The N-terminal domain forms a β-sandwich whilst the 

C-terminal structure consists of a 7 stranded βsheet with 2αhelices. The central domain is formed of a 7 

stranded βsheet surrounded by 7αhelices. The P-loop and residues in the N-terminal domain mediate 

interaction with ATP and Mg2+. Pcf11 interacts with the central domain of Clp1. B. ATP and Mg2+ 

binding in Clp1. The residues within the N-terminal and P-loop domain involved in mediating ATP and 

Mg2+ binding are shown. Interactions are highlighted by the presence of dashed lines. 
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 Structural analysis revealed a conserved Pcf11 interaction region within the 

central domain of Clp1 (Figure 1.4, A) forming part of a hydrophobic cleft which is able 

to interact with Pcf11 (118). Combination of the mutations G135R, H267Q and L341S 

generate a Clp1 temperature sensitive mutant which results in loss of the Clp1-Pcf11 

interaction (128). In vitro experiments employing a synthetic CYC1 pre-mRNA 

transcript revealed that the clp1 mutant was unable to carry out the cleavage reaction 

required during processing (128). These results suggest that association of Pcf11 and 

Clp1 is essential to maintain wild type levels of processing.  

 

1.2.1.1.3 Rna14  

 Mutations in genes RNA14 and RNA15 were found to be responsible for 

temperature sensitive phenotypes characterised by a decrease in the total amount of 

mRNA at the restrictive temperature, 37ºC (109). Pulse chase experiments revealed no 

obvious decrease in transcriptional activity and it was therefore suggested that the 

proteins had a role in mRNA stability (109) but the function remained unclear. Further 

analysis of temperature sensitive mutations in both RNA14 and RNA15 demonstrated 

deficient cleavage and poly(A) tail addition (103). Localisation studies of Rna14 found 

it was localised to both the nucleus and the cytoplasm (131). Subcellular fractionation 

experiments revealed that the cytoplasmic fraction of Rna14 localised to the 

mitochondria implicating a role for Rna14 in mitochondrial metabolism (132). Fraction 

complementation assays and purification of CF1A together revealed both Rna14 and 

Rna15 form part of the CF1A complex (102,103). Rna14 is a 76 kDa subunit of CF1A 

and shares 25% sequence identity to mammalian polyadenylation factor CstF-77. The 

homologous regions include the highly conserved HAT (Half-a-TPR) repeats (133,134). 

These repeats are so named because they lack the conserved glycine and alanine 

residues found in the conserved tetratrico-peptide (TPR) motifs; WX2LGX2Y and 
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AX3FX2A (133). The motifs form two helices named helixA and helixB and together 

make 1 TPR/HAT repeat (133). The number of these repeats vary across species but are 

observed in all Rna14 homologues (133). 

 

 Rna14 is able to interact to form a homodimer (107). Structure analysis of 

CstF-77 from both Mus musculus and Encephalitozoon cuniculi revealed Cst-F77 forms 

these homodimers through interaction of the conserved HAT repeats (135,136). In the 

murine structure, the HAT repeats were shown to encompass residues 1-550 of CstF-77 

(135). A C- terminal collection of HAT repeats was identified between residues 242-

549 that formed a stable domain on their own. The domain included HAT repeats 6-12 

which formed 7 pairs of anti-parallel α helices (135). The helices form a curved 

structure with helix 6 almost at a right angle to helix 12. The first 5 HAT repeats, 

present in an N terminal domain, form the same structure of 5 pairs of α helices. 

However, HAT repeats 1-5 do not curve and sit at an acute angle relative to the C-

terminal HAT repeats (135). Association into a CstF-77 homodimer is achieved through 

interaction between HAT repeats 6-12 in both CstF-77 monomers (135). The α helices 

are anti-parallel to one another so that HAT repeat 12 and the immediate C terminal 

residues of one monomer are in contact with repeats 7-10 of the other (135). 

Comparison of mouse and E. cuniculi structures reveal high conservation in the 

structural basis of both CstF-77 homologues (136). Furthermore, the structure of the E. 

cuniculi and M. musculus CstF-77 homologue homodimer reveals that the association 

results in a slight bend or kink with an angle of 110º (135,136). Rna14 interacts with 

Rna15 within the CF1A complex demonstrated by yeast two hybrid analysis (106) and 

coimmunoprecipitation (102). The association of the Rna14 homodimer results in the 

formation of an Rna14-Rna15 tetramer with a stoichiometry of 2:2 demonstrated by 

electron microscopy (107). Electron micrographs revealed tetramers formed as rod 
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shaped particles possessing a kink/bend of 110º which is in agreement with the solved 

CstF-77 homodimer structures (107). Sedimentation equilibrium results revealed the 

tetrameric association constant of Rna14 and Rna15 was Ka = 6 x 105. Further, the 

orientation of associated heterodimers varied greatly between complexes demonstrating 

that although the interaction is relatively weak it is also flexible (107).     

 

 Using the murine CstF-77 homodimer as a model, two conserved residues 

involved in dimer binding were mutated in Rna14 in order to characterise the 

mechanism of Rna14 homodimerisation. Mutations R562E and Y563S resulted in loss 

of Rna14 dimerisation demonstrating the mode of binding is conserved through Rna14 

homologues (108). Although such disruption in binding was shown not to affect 

Rna14-Rna15 binding it did affect Rna15-RNA binding (108). Rna15 tethers the CF1A 

complex to the RNA via a RNA recognition motif (109). An electromobility gel shift 

assay using a labelled GAL7 3'UTR mRNA template revealed disruption of the Rna14 

homodimer resulted in a decreased affinity for the RNA which was rescued upon 

increasing concentration of rna14 and wild type Rna15  protein (108). By increasing 

concentrations of rna14 and wild type Rna15, the template RNA acts as a bridge where 

two available Rna15-Rna14 heterodimers are able to bind simulating the role of the 

tetramer (108). These result suggest that two Rna15 RRM domains are required to 

efficiently bind the mRNA and such binding is dependent on formation of the Rna14-

Rna15 tetramer through association of the Rna14 homodimer (108). Wild type Clp1 and 

Pcf11 have also demonstrated the ability to rescue the defective tetramer (108). Cross-

linking of wild type Pcf11, Clp1, Rna15 and rna14  revealed a molecular weight close 

to wild type (108). 
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 Association analysis of a series of truncated versions of both Rna14 and Rna15 

revealed the Rna14-Rna15 binding interface was located within residues 626-677 and 

127-232 respectively (137). Structural studies using NMR highlighted the extensive 

nature of the binding interface (Figure 1.5). Rna15 forms a central core of 4 α helices 

that is surounded by two Rna14 α helices joined by a loop. Additional helices at the N- 

and C- terminal region of Rna15 act to further secure the interaction. A clasp region 

present between α0 and α1within the N-terminus of Rna15 lacks secondary structure but 

acts to hold α1' of Rna14 in place (137).  
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Figure 1.5 Structural analysis of the Rna14-Rna15 binding interface. (PDB ID 2L9B, 137). A. The 

Rna14-Rna15 binding interface. Rna14 is depicted in pink whilst Rna15 is shown in orange. Rna14 

forms a monkey-tail like structure where α-helices α1’ and α2’ wrap around a helical core formed by 

Rna15. A clasp region is present in Rna15 present between α-helix 0 and α-helix 1. B. A 90° orientation 

of the binding interface. Four α-helices interact to form a tight helical core held in place by extensive side 

chain interactions. C. The residues highlighted on α-helices α1’ and α2’ represent those of Rna14 that 

interact with Rna15 to hold the monkey-tail like structure in place around the Rna15 core. D. The 

extensive nature of the side chain interactions are represented that act to stabilise the central core. Also, 

highlighted are residues T188, S206 and T209 that are found buried away from the interaction interface. 
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 The region of Rna14 involved in mediating contact with Rna15 forms a so-

called monkey-tail structure (Figure 1.5, C). The monkeytail structure forms a tight 

association with the Rna15 central core through extensive side chain interactions. A 

combination of hydrophobic and aromatic residues including V666, L658, F648, V635 

and L638 present on α 1' , α2' and the loop connecting the two helices act to stabilise the 

interaction (137).  

 

 Both the crystal structure of the Rna14-Rna15 complex from Kluyveromyces 

lactis and small angle X-Ray scattering analysis suggest that the 2 Rna15 monomers sit 

near the centre of the Rna14:Rna14 dimer (108,138). In both the mouse and E. cuniculi 

Cst-F77 dimer structures the C-terminal domain was truncated but the most C-terminal 

part of the protein did face the centre of the CstF-77 dimer (135,136).  

 

 Rna14 is referred to as a scaffolding protein as it binds both Rna15 and CF1B 

component, Hrp1. By forming interactions with both Rna15 and Hrp1 it assists these 

proteins in their individual roles and interaction with both Rna15 and Hrp1 increases 

efficiency of polyadenylation (107,139). Its association with factors within the CF II 

complex (99) infers that Rna14 may maintain a role in crosstalk between CF I and 

CF II. Binding of CF1A to the RNA may cause Rna14 to signal the initiation of the next 

polyadenylation step as it associates with Pfs2 and Fip1, both components of the CPF 

complex (99,139). However, localisation of Rna14 in the cytoplasm and in 

mitochondria suggests a role for Rna14 in addition to mRNA polyadenylation (131). 

However, mutational analysis of Rna14 did not produce any obvious impairment in 

replication or expression of mitochondrial DNA (132).   
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1.2.1.1.4 Rna15 

 Rna15 has been shown to associate with Pcf11 as well as Rna14 within the 

CF1A complex and with Sub1 of the CPF complex (140). Rna15 possesses an 

N-terminal RRM domain present between residues 16-94 that binds to the pre-mRNA 

transcript to tether the CF1A complex to the 3’ UTR (141). As in other RRM containing 

RNA binding proteins, the conserved RNA binding motifs, RNP-1 and RNP-2, are 

present within Rna15 (141). Rna15 interacts with Rna14 within the CF1A complex 

through a C-terminal binding interface present between residues 127-232 that form a 

helical structure with a hinge domain in order to lock onto Rna14 (Figure 1.5) (137). 

The extensive interface of this interaction results in extremely tight binding as measured 

by AUC sedimentation equilibrium experiments (107). Rna15 interacts with Rna14 

through a central core formed by 4 α-helices. This core structure is maintained through 

interactions between side chains within the core helices of Rna15 (Figure 1.5, D). 

Aromatic residues, F180, F184 and Y187, present on helix 2, act to stabilise the 

structure in addition to the aliphatic side chains, I165, L169, A195, L199, L205, V208 

and L212. Polar residues, T188, S206 and T209, are buried away from the central core 

and are inaccessible from the surface (137). The appearance of buried polar residues is 

unusual and in other Rna15 homologues they are replaced by hydrophobic residues 

(137). Mutation T209A and S206A don’t disrupt interaction but do affect thermal 

stability of the protein and it has been suggested that the presence of these polar 

residues may act in a coupled binding and folding reaction (137). This model is 

supported by experiments employing 2M urea that demonstrated local unfolding 

between residues 142 and 150 in Rna15 suggesting a scenario whereby under the 

correct conditions, the clasp region could unfold to allow dissociation of the two factors 

in vivo (137).  
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The primary role of Rna15 in polyadenylation appears to be poly(A) site 

selection. The crystal structure of the RRM of Rna15 reveals a 4 stranded β-sheet 

backed by two α-helices as is observed in most RRM folds (Figure 1.6) (141). However, 

there is much debate over the particular site at which Rna15 binds to direct 

polyadenylation. It has been suggested that Rna15 itself shows no specificity for RNA 

sequence and requires Hrp1 and Rna14 to help mediate RNA binding to the adenosine 

rich (A-rich) positioning element (PE) (139). Mutational analysis of conserved sites 

present near the polyadenylation signal in GAL7 3’ UTR mRNA show that Rna15 

interaction is essential for polyadenylation in vivo (139). NMR spectroscopy using the 

GAL7 anchoring RNA containing conserved UA rich efficiency element (EE) and the A 

rich positioning element (PE) revealed that Rna15 bound RNA very weakly with a 

dissociation constant in the high micromolar range with very little specificity (142). 

Crosslinking experiments involving GAL7 3’ UTR mRNA demonstrated an ability of 

Rna15 to recognize and bind A rich RNA sequences in the presence of both Hrp1 and 

Rna14 (139). In addition, such interaction was shown to be dependent on both Hrp1 and 

Rna14 as Rna15 alone did not bind the A-rich sequence (139).  
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Figure 1.6. The crystal structure of residues 16-103 of Rna15. (PDB ID 2X1B, 141). Residues 16-94 

of Rna15 make up the RRM of Rna15. The RRM forms a four stranded β-sheet backed by two α-helices. 

Also shown are residues involved in mediating RNA binding in site I and site II. 
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NMR spectroscopy experiments revealed that the RRMs of Rna15 and Hrp1 

form a horseshoe shape when bound to the PE and EE of GAL7 respectively (Figure 

1.7, A) (142). Each RRM is present at a 90° angle relative to one another with the β 

sheet of each facing the centre of the horseshoe shape. The structure provided a possible 

mechanism as to why Hrp1 influences Rna15 binding and site selection. A 

protein-protein contact was seen between Hrp1 residue D193 and Rna15 residue R87 

(Figure 1.7, B). Experiments employing in vitro cleavage and polyadenylation reactions 

revealed that mutation R87D in Rna15 results in defects in the cleavage reaction. This 

result suggests association with Hrp1 is required for efficient Rna15 mediated site 

selection and processing. NMR spectroscopy experiments employing a Rna15 R87A 

mutant and the GAL7 3' UTR mRNA sequence revealed the Rna15 mutant bound RNA 

more weakly than wild type. This decrease in Rna15-RNA binding allowed binding of 

Hrp1, effectively competing the mRNA transcript away from Rna15, a feature not 

observed in wild type. These results suggest that Hrp1 directs Rna15 to the A rich PE 

sequence through protein-protein interactions and further bridging by Rna14 is able to 

hold the complex in place (142).  
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Figure 1.7 NMR structural analysis of Hrp1 and Rna15 mediated RNA binding. (PDB ID 2KM8, 

142). A. The RRMs of both Hrp1 and Rna15 form a horseshoe shape which results in curvature of the 

RNA oligonucleotide. RNA binding occurs over the face of the RRM domains where the oligonucleotide 

interacts with residues present on the 4-stranded β-sheets of each RRM. B. Contacts between D193 of 

Hrp1 and R87 of Rna15 were suggested to maintain Rna15 contact with the positioning element.   
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 In contrast, the X-ray crystal structure of the RRM of Rna15 bound to RNA 

convincingly displays a clear specificity of the protein for G/U nucleotides (141) with 

two binding sites on the face of the central 4 stranded β sheet (Figure 1.4). The first site 

is present on the loop connecting the β1 and α1. Here the side chains of residues R87 

and Y27 form the walls of a binding pocket (Figure 1.8). Two structures demonstrate 

both G and U nucleotides are able to stack against the aromatic group and planar side 

chain. Upon RNA binding, R87 undergoes a conformational change which allows the 

nucleotide to stack against the side chain. This new re-orientation of R87 is stabilised by 

hydrogen bonding between the side chain and the main chain carbonyl and side chain 

hydroxyl of S24. Watson-Crick like hydrogen bonding between the base and the 

backbone of residues in the protein acts to further stabilise the interaction. Uracil bases 

hydrogen bond to the backbone amide of Y27 through the C-4 carbonyl and the imino 

proton of N3 is shared with the backbone carbonyl of I25. For guanine, the C-6 

carbonyl hydrogen bonds to the backbone amide of Y27 and the imino proton of N1 is 

shared with the carbonyl of I25. These hydrogen bonds are observed in standard 

Watson-Crick AU and GC base pairing and these interactions form the basis of G/U 

selectivity as in both A and C nucleotides an exocyclic amino group replaces the 

interacting carbonyl found in G and U nucleotides and there is no imino proton present. 

The structure of the RRM and the site I binding pocket in particular is conserved in the 

human homologue of Rna15, CstF-64. CstF-64 is known to bind G/U rich sequences 

known as downstream sequence elements (143,144). Together these data imply that 

binding of G/U rich sequences driven by specificity in the site I binding pocket is a 

conserved feature.  
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Figure 1.8 RNA binding at site I within the RRM of Rna15. (PDB ID 2X1A, 141). Y27 and R87 

form the walls of a binding pocket that the base of the nucleotide is able to stack against. R87 

forms hydrogen bonds with the backbone and side chain of S24 to maintain the correct orientation to 

form the binding pocket. Watson-Crick hydrogen bonding interactions between the base of the 

nucleotide and the backbone of I25 and Y27 act to stabilise the nucleotide within the binding pocket. 
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 A second binding site is present on the face of the RRM on β1 of the central 

sheet (Figure 1.9) (141). Y21 is a conserved residue present in the RNP-2 RNA binding 

motif and stacks against a guanine nucleotide. Unlike site I, Site II binding relies mainly 

on this stacking interaction with only a single hydrogen bond between the exocyclic 

amino group on the N2 of guanine and the backbone carbonyl of Y93 arguing against a 

role for site 2 in G/U selectivity. NMR spectroscopy employing UG rich RNA 

oligonucleotides highlighted the presence of a third site present on the face of the RRM 

on the β-1, β-2 and β-3 of the central sheet (141). Residues Y61 and F63 form this 

potential third site and in addition to this site other residues present on the surface of the 

RRM were also disturbed by RNA titration. Taken together these data show that the 

RNA binding surface extends over the face of the 4 stranded β sheet. 

 

 Fluorescence spectroscopy employing both A/C and G/U rich RNA 

oligonucleotides highlights a clear preference of Rna15 for G/U sequences (141). A 

range of RNA oligonucleotides were employed with increasing G/U nucleotide content 

(141). Strongest binding was observed with a G/U nucleotide; KA 2.1x105, weakest 

binding was observed with an A/C rich oligonucleotide with a KA of <1.0x104. Indeed, 

GU rich sequences are present within the 3’ UTR in S. cerevisiae (145,146) and 

mutation of such sites in the 3’ UTR of genes CYC1 and ADH1 results in deficient 

cleavage and polyadenylation (147,148).  
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Figure 1.9 RNA binding at site II within the RRM of Rna15. (PDB ID 2X1F, 141). Site II is 

predominantly mediated by a stacking interaction between the nucleotide and the aromatic of Y21. This 

interaction is held in place by a single hydrogen bond between the base of the nucleotide and the 

backbone of Y93.  
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 Immediately C-terminal to the RRM in Rna15 is a short flexible region termed 

the tail of the RRM and is present between residues 95 and 103 (141). In the crystal 

structure of the free RRM this so-called tail region forms a short α-helix that covers β1-

β3 of the RRM. When RNA is bound, the tail region adopts secondary structure with an 

extended β conformation. In CstF-64, the tail region has been implicated in regulation 

of RNA binding. This region also forms an α-helix which packs against the central 

β-sheet of the RRM. It has been suggested that upon RNA binding the helix moves 

giving access to residues F19 and F61 allowing stacking against a uracil base. NMR 

spectroscopy data show that the tail region in Rna15 also forms an interaction with the 

central β-sheet and as observed in CstF-64 is displaced upon RNA binding (141). 

Following the tail is a linker region which is present between residues 103 and 126 

which acts to bridge the RRM to the C-terminal Rna14, Pcf11 and Sub1 interacting 

domains. 

 

1.2.1.1.5 Hrp1 

 CF1B consists of a single 73 kDa protein, Hrp1 that binds the immature mRNA 

3’ UTR during processing (106). Binding occurs via 2 RRMs that are present between 

residues 158-233 and 244-318 (149). SELEX experiments (Systematic evolution of 

ligands by exponential enrichment) revealed that Hrp1 bound UA4-8 rich sequences, 

termed efficiency elements (EE), with a high affinity (150). Deletion of the UA rich 

sequence results in diminished binding of Hrp1 measured by an inability to crosslink the 

protein to mRNA (150). NMR titration using [UA]n RNA oligonucleotides aimed to 

characterise the mechanism of RNA binding (149). Upon introduction of the RNA, a 

large number of chemical shift movements were observed relative to free protein with a 

slow exchange rate suggesting a tight interaction. Furthermore, 2 Hrp1 molecules were 
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observed bound to the longer UA sequences demonstrating the possibility of multiple 

Hrp1 binding in vivo where more than one efficiency element is available (149).  

Structural analysis using NMR determined the RRMs of Hrp1 behave as 

independent entities with no NOEs observed between the two domains in the absence of 

RNA (142). Comparison of two Hrp1 structures bound to RNA reveals both RRMs of 

Hrp1 fold into βαββαβ structure as seen in the Rna15 RRM with the β strands folded 

into an antiparallel β-sheet and the α-helices packed alongside it in both RRM domains 

(Figure 1.10) (142,149). The two RRM domains are joined by a flexible linker that 

undergoes a conformational change upon RNA binding to form an α-helix (142). In the 

bound structure, RNA buries itself into a V-shaped cleft formed by the 2 RRM domains 

so that the phosphates are accessible on the surface of the interface (142). Residues in 

each RRM direct binding specificity. W168 in RRM1 is conserved across several fungal 

Hrp1-like proteins and stacks against an adenine base and appears critical for RNA 

binding since a conservative mutation to phenylalanine results in a decrease in binding 

affinity (142,149). RRM1 mediates binding of 3’ adenine and uracil residues by direct 

contact with residues present in the RNP1 and RNP2 motifs. Residues, G249 and G285, 

in RRM2 make direct contact with a uracil base present at position 1 of the RNA 

oligonucleotide (142). It has been suggested that Hrp1 binding of the AU rich efficiency 

element is required to enhance the cleavage reaction but is not essential. A more 

detailed account of the sequences that direct 3' end processing is presented in section 

1.3.  
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Figure 1.10 Hrp1-RNA structures. (PDB ID 2KM8, 142) (PDB ID 2CJK, 149). The RRMs of Hrp1 

form a cleft in which the RNA oligonucleotide is able to bind. The four stranded β-sheet of each Hrp1 

RRM faces one another to mediate RNA binding. 
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 Recent structural analysis of the Rna15-Rna14-Hrp1 complex has revealed that 

Hrp1 interacts with Rna14 via both RRMs on the opposite face to that used for RNA 

binding (151). Mutations in this Hrp1 interaction surface result in defects in 

polyadenylation in vitro and cell lethality at 37ºC (151). Computational modelling based 

on existing structural data has been used to characterise the structure of the 

Rna15-Rna14-Hrp1-RNA complex. This method, with the assistance of previously 

characterised structural data, was employed to generate a structural model of the 

complex. It is predicted that the complex forms a U-shape with Rna14 at the bottom and 

Hrp1 and Rna15 forming two arms either side (151). 

 

 Hrp1 has been shown to repress a temperature sensitive phenotype in yeast 

strains carrying a mutation in the NPL3 allele (66). Npl3 was also found to associate 

with polyadenylated RNAs in vivo (152). Temperature sensitive npl3 mutants were 

defective for localisation of some nuclear proteins and nuclear export of mRNA with 

poly(A) tails (152,153). Both Npl3 and Hrp1 are known to shuttle between the nucleus 

and cytoplasm and appear to display some functional redundancy implicating Hrp1 in 

both polyadenylation and mRNA export (154,155). This is supported by additional 

structural similarities as each protein contains an Arginine-Glycine rich box (RGG box) 

(156). It has been demonstrated that methylation of the RGG boxes in these proteins by 

Hmt1p is critical for export from the nucleus (66,157). However, methylation of Hrp1 

does not affect RNA binding of the efficiency element and it has been hypothesised that 

methylation of Hrp1 is only required for binding of RNA in export of the 

polyadenylated mRNA transcript (150).  

 

 The abundance of mutational, biophysical and structural data has led to the 

hypothetical modelling of the structure of CF1 that may form in vivo (108). A schematic 
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figure representing a 2:2:1:1 CF1A complex with Hrp1 and RNA bound is shown 

(Figure 1.11). In the model, the Rna14 homodimer interacts with 2 Rna15 monomers to 

form a tetramer within the complex. Rna15 also interacts with Pcf11 although which 

Rna15 monomer is responsible for this interaction is still unclear. Rna14 forms a 

scaffold interaction between Rna15 and Hrp1 to secure these proteins onto the mRNA 

transcript. Pcf11 interacts with Rna14, Rna15 and Clp1. 
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Figure 1.11 Schematic representation of CFI bound to RNA. Biophysical and structural data have 

demonstrated that CFI consists of an Rna14-Rna15 tetramer, a Pcf11 monomer, a Clp1 monomer and 

Hrp1 tethered to CF1A through interactions with Rna14. Pcf11 associates with all components of CF1A 

whilst Clp1 associates only with Pcf11.  
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1.2.1.2 CPF 

 Three protein complexes, CF I, CF II, PF I and protein factor Poly(A) 

polymerase 1 (PAP1) were identified as being responsible for polyadenylation in S. 

cerevisiae requiring both CFI and CFII for the cleavage reaction and CF II, PF I and 

PAP1 for the polyadenylation step (97). Further purification studies highlighted the 

presence of a CF II-PF I complex (98,99) which was termed the cleavage and 

polyadenylation factor (CPF) (99) in which Pap1 protein interacts with the Fip1 subunit 

of PF I to successfully synthesise the poly(A) tail (158).  

 

 In addition to the CPF complex, mutations in Ref2 resulted in inefficient 

polyadenylation at poly(A) sites suggesting a role in poly(A) site selection (159). Along 

with Ref2, another five proteins (Pti1, Swd2, Glc7, Ssu72 and Syc1) have been 

identified known collectively as the APT1 (associated with Pta1) complex. The APT1 

complex associates with core CPF component, Pta1. The core CPF unit comprises CF II 

and PF I whilst addition of the APT1 complex generates a holo-CPF complex required 

for cleavage and polyadenylation (160). Components of the CPF complex associate 

with factors involved in transcription initiation and influence phosphorylation state of 

the CTD of RNAPII providing a direct link between processing and transcription (161–

163). A list of the proteins required for successful polyadenylation and their mammalian 

counterparts is shown in Table 1.1.  
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Protein Factor 
(Yeast) 

Complex 
(Yeast) 

Protein 
Factor 
(Mammalian) 

Complex 
(Mammalian) Function 

Pcf11 CF1A hPcf11 CFIIm Interacts with the CTD of 
RNAPII 

Rna14 CF1A CstF-77 CstF Contains HAT repreats and 
bridges CF1A to CPF 

Clp1 CF1A hClp1  CFIIm Walker-A motif binds ATP 

Rna15 CF1A CstF-64 CstF RNA binding through a N-
terminal RRM 

Hrp1  CF1B - - Binds RNA via 2 RRMs 

Cft1 CPF CPSF160 CPSF Binds RNA possibly via β-
propellar repeats 

Cft2  CPF CPSF100 CPSF Member β-CASP superfamily 
and associates with RNA 

Ysh1 CPF CPSF73 CPSF 

Contains metallo-β-lactamase 
domain and member of β-
CASP superfamily. Is required 
for the cleavage reaction. 

Yth1 CPF CSPF30 CPSF Binds RNA via zinc finger 
structure 

Fip1 CPF hFip1 CPSF Recruits PAP 

Pta1 CPF Symplekin - CPF factor recruitment 

Pfs2 CPF CstF-50 CstF Contains WD-40 repeats and 
bridges CPF to CF1A 

Pti1 CPF CstF-64  CstF Bnds RNA via RRM 

Mpe1 CPF - - Binds RNA via a Zinc knuckle 

Ref2 CPF - - Enhances processing 
efficiency 

Swd2 CPF - - Contains WD-40 repreats and 
recruits CPF 

Syc1 CPF - - Regulates processing reaction 

Ssu72 CPF hSsu72 - 

Protein phosphatase: 
dephosphorylates CTD of 
RNAPII and regulates 
transcription 

Glc7 CPF - - 
Protein phosphatase: 
dephosphorylates CTD of 
RNAPII 

Pap1 - Pap -  Required for addition of the 
poly(A) tail 

Table 1.1 3’ end processing machinery in S. cerevisiae and their mammalian counterparts 
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1.2.1.2.1 Glc7 and Ssu72 

 CPF components have been shown to direct transcription and processing during 

early transcription. Regulation of transcription initiation and elongation is directed by 

Ssu72 as it binds transcription initiation factor TFIIB and is able to suppress mutations 

in the TFIIB gene (161,162). Both Ssu72 and Glc7 have been shown to interact with the 

CTD of RNAPII and have been implicated in the regulation of transcription termination 

by dephosphorylation (163). RNAPII is phosphorylated upon association with particular 

promoter sequences (164). Systematic phosphorylation of the CTD has been 

demonstrated as being responsible for recruitment of processing factors required for 

mRNA capping and transcription termination at the precise point in the elongation 

process that they are required (9,165). Phosphorylation of Y1 of the heptad repeats is 

required to inhibit the association of transcription termination factors before they are 

required (80). Glc7 and Ssu72 dephosphorylate Y1 and S5 respectively during 

elongation promoting association of termination factors (163,166–168). In addition to 

regulation of the transcription process, other components of CPF have been shown to 

influence poly(A) site selection by binding to the mRNA transcript. These components 

are discussed in the following sections. 

 

1.2.1.2.2 Cft1 

 Cft1 is the largest subunit of CPF and mutations in the CPF subunit Cft1 result 

in defects in both cleavage and polyadenlyation in vitro (169). Filter binding 

experiments using RNA purified from S. cerevisiae demonstrate Cft1 binds both CYC1 

and GAL7 RNAs with a Kd of 5 and 15 nM respectively (169). RNA binding by 

residues 500-750 of Cft1 are predicted to form five β-propeller repeats (169). Cft1 has 

been shown to mediate site selection within poorly defined regions surrounding 

cleavage site (169). Northern blot analysis of the 3' UTR of the ACT1 mRNA revealed 
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4 sites utilised by alternative polyadenylation. In wild type S. cerevisiae the most 

proximal site is favoured whilst, in Cft1 mutants, the distal sites are utilised (169). 

However, global analysis of poly(A) tails and their length have shown that Cft1 does 

not exert an effect on all mRNAs but only a subset (169).  

 

1.2.1.2.3 Mpe1 

 Effects on poly(A) site selection have been observed with other components of 

CPF. Northern blotting analysis of ACT1 poly(A) tails revealed that mutations in CPF 

component, Mpe1 resulted in higher usage of distal poly(A) sites rather than proximal 

site utilised by wild type (170). It has been suggested Mpe1 interacts with RNA through 

use of its zinc knuckle domain supported by the fact that the zinc knuckle domain of 

mammalian polyadenylation factor, CPSF-30 is known to bind mRNA (171). Mpe1 is 

essential for cell viability and in vitro assays have revealed mutation in Mpe1 results in 

deficient cleavage and polyadenylation. Antibodies raised against Mpe1 inhibit 

polyadenylation in wild type cell extracts. Furthermore, mutations in Mpe1 have been 

shown to suppress mutations in Pcf11 demonstrating the interdependence of the two 

complexes to carry out efficient processing (170). 

 

1.2.1.2.4 Yth1 

 Yth1 is the yeast homolog of the 30kDa subunit of mammalian CPSF-30 and has 

been implicated in both cleavage and addition of the poly(A) tail (171). CPSF-30 binds 

RNA and favours U rich sequences (171). Mutation in Yth1 leads to detrimental effects 

on both cleavage and polyadenylation in vitro. Furthermore, Yth1 has been shown to 

bind RNA through use of its second zinc finger (ZF2) present within a five zinc finger 

structure. Yth1 binding within the 3' UTR has been mapped using RNase H protection 

assays employing overlapping oligonucleotides complimentary to the 3' UTR of CYC1. 
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The experiments revealed a region near the cleavage site free from degradation and an 

additional small amount of protection was observed near the efficiency element (172). 

 

 Mutation in ZF2 also leads to a decrease in RNA polyadenylation efficiency 

implicating Yth1 RNA binding as an important feature for RNA cleavage. The binding 

of Yth1 near the cleavage site suggests that it is required to stabilise the CPF complex 

whilst cleavage takes place. In addition, ZF2 has been implicated in binding other 

components of CPF such as Cft1 and Cft2. Mutations in ZF2 may weaken their 

interaction and thus the interaction of CPF at the cleavage site (172). 

 

 The homologue of Yth1 in Drosophila melanogaster, Clipper, was demonstrated 

as having endonucleolytic cleavage activity specific for RNA hairpins (173), although 

no such activity has been reported for Yth1 to date. It is possible that endonucleolytic 

cleavage requires the other subunits of CPF to induce a conformational change allowing 

the cleavage reaction to proceed (172).  

 

1.2.1.2.5 Cft2 

 Cft2 is the 96 kDa subunit of CPF, a homologue of mammalian counterpart 

CPSF-100, and is a member of the β-CASP superfamily (77). Like Cft1 and Yth1, Cft2 

also interacts with RNA near the polyadenylation site (147,169,172). Cft2 is essential 

for cell viability (98) and is required for cleavage and polyadenylation in vitro and 

poly(A) site recognition of ACT1 mRNA in vivo (121). Cft2 has also been shown to 

bind U-rich elements within the 3' UTR of mRNA around the poly(A) site (147). 

Mutations within Cft2 have detrimental effects on cleavage of RNA in vitro (121). 

Therefore, it has been suggested that like Cft1, Cft2 is required to facilitate poly(A) site 

selection (121). The ability of core CPF proteins (Cft1, Cft2, Yth1 and Mpe1) to bind 
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RNA and act to facilitate poly(A) site selection provides additional support for 

recognition and tethering of the polyadenylation machinery to the poly(A) site (147). 

 

 Both Cft1 and Cft2 interact with the phosphorylated CTD of RNAPII and have 

similar functions in RNA binding and RNAPII binding (121,169). However, run-on 

experiments employing probes designed to hybridise to the CYC1 mRNA termination 

site demonstrate that mutation of Cft1 severely affects transcription termination in the 

CYC1 gene (169) whereas mutations in Cft2 does not (121). The apparent lack of Cft2 

role in transcription termination suggests that interaction with RNAPII occurs 

predominantly to direct the timing of polyadenylation machinery recruitment (121).  

 

1.2.1.2.6 Ysh1 

 The above results highlight the dynamic nature of the CPF complex in site 

selection and regulation of transcription elongation and termination. Once associated 

with the pre-mRNA, the CPF complex is responsible for cleavage at the poly(A) site. 

CPF factor, Ysh1 is required for cell viability (174). Both Ysh1 and its mammalian 

homologue, CPSF-73 contain a highly conserved metallo-β-lactamase domain at the 

N-terminus (175). The metallo-β-lacatamase family are a group of zinc dependant 

hydrolases implicating CPSF-73 and Ysh1 in the cleavage reaction of polyadenylation 

(176,177). In addition, both Ysh1 and its mammalian counterpart, CPSF-73, contain a 

β-CASP domain which is involved in coordinating two metal ions. Loss of metal ion 

binding leads to failure of the cleavage reaction during polyadenylation which is 

rescued upon addition of ZnCl2. Furthermore, the cleavage reaction is inhibited in 

nuclear extracts upon introduction of zinc specific chelators and EDTA (178). 
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 The crystal structure of human CPSF-73 shows the structural basis of nuclease 

activity (179). Residues 1-208 form a canonical metallo-β-lactamase structure with a 

four layered αβ/βα shape. Residues 395-460 form an additional part of the metallo-β-

lactamase region and add to the central β sheet structure. The β-CASP domain is present 

between residue 209-394 and forms a 6 stranded β-sheet that is surrounded by 6 α-

helices on both sides. The coordination of metal ions is mediated by 5 conserved motifs, 

4 of which are present in the metallo-β-lactamase region and the fifth present within the 

β-CASP domain. Zinc was shown to bind the protein with an extremely high affinity 

and the presence of the metal ion suggests the protein is capable of nuclease activity. 

Residues present in the 5 motifs act to stabilize the zinc ion within the active site and 

are conserved with other metallo-β-lactamase containing proteins (179). These 

conserved motifs are present in S. cereviase and mutation of one of the conserved 

residues within the motif results in lethality (180). A conserved histidine residue is 

utilised as a general acid for the nuclease reaction which is activated by an Asp/Glu 

residue. Mutation of the histidine residue result in lethality in S. cerevisiae (180). 

 

1.2.1.2.7 Ydh1 

 Ydh1 also contains a metallo-β-lactamase and β-CASP domains as observed in 

CPF subunit, Ysh1 (175). However, the zinc binding residues are not conserved in the 

mammalian counterpart of Ydh1, CPSF-100 (177,181). The crystal structure of yeast 

Ydh1 reveals a similar domain arrangement with no zinc ions present (179). The loss of 

zinc ions both in mammalian CPSF-100 and yeast Ydh1 suggests that they are not 

catalytically active.   
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1.2.1.3 Poly(A) polymerase 1 

Once the cleavage reaction has been completed, the next step is addition of the 

poly(A) tail. Pap1 is required to synthesise the poly(A) tail and is required for both 

cleavage and polyadenylation in mammals but is only required for the polyadenylation 

step in yeast (87). S. cerevisiae Pap1 has a molecular weight of 63 kDa and is able to 

elongate RNA primers in isolation although this requires the addition of other protein 

factors in order to achieve specificity of the polyadenylation site and regulation of 

poly(A) tail length (182).       

Pap1 is directed to the polyadenylation machinery by Fip1 (183). Fip1 is a 

component of the CPF complex and interacts directly with Pap1 (158) through a linker 

region (184). Indeed, in vitro experiments lacking the Fip1 linker resulted in severe 

defects in addition of the polyadenylate tail (184). Fip1 has low conservation across 

species and structural prediction suggests that a large amount of the protein is 

disordered (184,185). However, these predictions also reveal the presence of conserved 

structured domains within Fip1 that have been found to mediate interaction with the C-

terminus of Yth1 (172,184). Mutation of the C-terminal region of Yth1 results in defects 

in polyadenylation in vitro due to weakening of the interaction with Fip1 which leads to 

a decrease in Fip1-Pap1 recruitment to the CPF complex (172). The recruitment of Pap1 

to the CPF complex facilitates efficient Pap1 function, as Pap1 alone polyadenylates 

any substrate in a non-specific and distributive manner (98,186). Therefore, the 

Yth1-Fip1-Pap association mediates efficient accurate addition of the poly(A) tail (172).  

The structure of Pap1 has been solved and shows three globular domains. The 

active site requires the coordination of two Mg2+ ions in order to carry out catalysis 

(187). The first is required to act as a cosubstrate and binds as MgATP2-. The second is 
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required to stabilise the negative charge and orient the newly cleaved 3' end and the 

ATP molecule. A recent ternary structure of Pap1, MgATP and a 5 nucleotide poly(A) 

revealed that the N and C terminal domains of Pap1 form a cleft type structure (188). A 

conformational change is induced in this cleft when the 3' mRNA end and MgATP bind 

resulting in a closed conformation that enables catalysis to proceed (188). Pap1 shows a 

preference for polyriboadenylate and kinetic studies support the notion that an induced 

fit model may drive nucleotide specificity (189).  

1.2.1.4 Poly(A) binding protein 1 

Regulation of the poly(A) tail length has been ascribed to poly(A) binding 

protein (Pab1) (105,190,191) and depletion of Pab1 results in lengthened poly(A) tails 

in vivo (191). Pab1 associates with the tail when it is around 11-14 nucleotides in length 

to stimulate initiation of translation and regulate mRNA degradation through the 

deadenylation pathway (192–195). Binding of Pab1 continues until the poly(A) tail has 

been completely synthesised and results in an 80-fold increase in polyadenylation 

efficiency (196,197). Poly(A) tail length is controlled by the 3'-5' exonuclease Pab1-

dependent poly(A) nuclease, PAN and Nab2 (79,105,190,198). Nab2 associates with the 

poly(A) tail through three tandem Cys-Cys-Cys-His zinc fingers. Mutation of nab2 

leads to defects in length of the poly(A) tail resulting in transcripts that are 

hyperadenylated (198). In addition Nab2 mutants displayed a decrease in poly(A) RNA 

binding affinity in vitro and these mutations resulted in aberrant poly(A) tail length in 

vivo (199).   
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1.3 Sequences that direct polyadenylation 

 In addition to the large number of protein factors required to carry out 3’ end 

mRNA processing, a number of RNA sequence elements are required to direct cleavage 

and polyadenylation. As has been mentioned previously, these elements act as 

recognition sequences for the components of the polyadenylation machinery to bind. 

 

 Experiments to define these sequences have demonstrated that addition of the 3' 

UTR of the CYC1 gene transcript led to cleavage and polyadenylation of artificial 

RNAs in vitro (200,201). Cleavage and polyadenylation were found to be dependent 

upon a 38 bp region of the 3' UTR (202). Deletion of this region in cyc1-512 mutants 

resulted in increased elongation of mRNAs but with a 90% reduction in total amount of 

CYC1 mRNA in S. cerevisiae (202). The effect deletion of these regions within the 3' 

UTR had on transcription termination in vivo also demonstrated a clear coupling of the 

polyadenylation and transcription processes (203).  

 

 Further analysis of this cyc1-512 mutant uncovered sequence elements that act 

in concert to direct processing at different polyadenylation sites within the CYC1 gene 

(204,205). The first was initially characterised by an upstream element characterised by 

either UAUAUA, UAGnnnUAUGUA or UUUUUAUA motifs. These sequence motifs 

were able to enhance efficiency in the cyc1-512 mutant and are now known as the 

efficiency element (204,205). The efficiency element is thought to be positioned around 

10-30 nucleotides from the positioning element although this is highly variable from 

gene to gene (205). The second is a downstream element composed of the sequences 

UUAAGAAC and AAGAA in the CYC1 gene (204,205). These sequences directed the 

position of the polyadenylation site and are therefore known as the positioning element 

(204,205). It was also demonstrated that cleavage within the 3' UTR of the ADH1 gene 
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was positioned at a sequence composed of a pyrimidine followed by three adenosine 

residues, Py(A)3 (206).  

 

 Insertion of an effeciency element, UAGUAUGUA, present in the cauliflower 

mosiac virus (CaMV) demonstrated the functionality of this polyadenylation site in S. 

cerevisiae (207). Mutational analysis of the efficiency element revealed that the 

hexanucleotide UAUAUA was required within the efficiency element to produce 

optimum polyadenylation in vivo (207). Single point mutations in the UAUAUA 

sequence can have profound effects on polyadenylation. Mutation of the first and last U 

nucleotides result in a reduction in activity to below 20% and 14 out of 18 single base 

substitutions within the element result in a decrease in polyadenylation to below 50% 

(207). However, in comparison with the conserved mammal polyadenylation motif, 

AAUAAA, where all mutations but one results in a decrease in polyadenylation to 

below 20%, the yeast motif is fairly degenerate.  

 

 The cleavage site, Py[A]3, was first characterised in the ADH1 gene (206). 

Replacement of any of the three adenosine nucleotides following the pyrimidine base 

abolished cleavage at the respective site in in vitro processing experiments (206). Yeast 

cDNA sequences revealed that of the 8 different 3' ends arising due to alternative 

polyadenylation sites within the CBP1 gene, 6 of these ended with the motif Py[A]n 

(208). Furthermore, analysis of GAL7 3' ends revealed that the Py[A]n sequence was 

utilised as a cleavage site in this gene in both in vitro and in vivo processing 

experiments (209). Taken together these data implicate the Py[A]n as the most common 

signal for cleavage in S. cerevisiae. 
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 Positioning elements were identified in the CYC1 3' UTR of S cerevisiae with 

the motif UUAAGAAC and AAGAA (205). The positioning element is normally 

placed in the same position from gene to gene, usually 16-27 nucleotides upstream of 

the polyadenylation site (205). Mutagenesis experiments revealed that the presence of 

AAAAAA and AAUAAA sequences resulted in optimum processing efficiency (210). 

However, the positioning element is largely degenerate with only one residue critical for 

activity (210). The degenerate nature of the poly(A) elements coupled with the 

functional redundancy demonstrated by the 3 polyadenylation sequence elements makes 

a true consensus sequence for each difficult to define (210,211). 

 

 Recently, a genome wide search of polyadenylation signals has provided a more 

detailed analysis of the polyadenylation sites used in S. cerevisiae (145). An expressed 

sequence tag (EST) library of 3425 S. cerevisiae cDNA sequences was employed to 

annotate polyadenylation sites within the yeast genome. The findings were largely in 

agreement with previous data with the UAUAUA sequence most commonly used. Point 

mutations within this sequence (UACAUA, UAUGUA) were also observed in 

efficiency elements in a significant amount of genes. The most common positioning 

element was AAUAAA, the same as that observed in higher eukaryotes, although this 

varies from gene to gene (145). The poly(A) site/cleavage site was previously identified 

as being a pyrimidine followed by 3 or 4 nucleotides (206). However, the genome wide 

analysis revealed U-rich sequences both before and after the cleavage sites not 

previously annotated (145). Presence of an A or C nucleotide surrounded by the U-rich 

sequences produces optimum cleavage (145). This suggests that yeast 3' UTRs are not 

that different to higher eukaryotic 3'UTRs where U-rich sequences are also present 

(145,212–214).    
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1.4 Model for polyadenylation in S. cerevisiae 

  From extensive analysis of the protein factors and sequences required for 

successful polyadenylation, we can start to build a detailed picture of the 3' mRNA 

processing event. As previously described processing of mRNA occurs 

cotranscriptionally and thus means that both transcription and processing are tightly 

coupled events.  

 

  Recruitment of processing factors has been demonstrated as early as 

transcription initiation. Ssu72 associates with TFIIB during transcription initiation and 

along with Glc7, plays an important role in dephosphorylation of the CTD of RNAPII 

during transcription elongation. Other factors also associate with the CTD of RNAPII in 

a phosphorylation dependent manner and it is likely that association with the CTD 

stimulates recruitment of the remaining processing factors through extensive protein-

protein interactions. Once recruited to the nascent mRNA transcript, poly(A) site 

selection is achieved through interaction of CF1A (Rna15), CF1B and several 

components of CPF. Endonucleolytic cleavage of the pre-mRNA is then mediated by 

action of the β-CASP and metallo-β-lactamase domain of Ysh1p. After cleavage, Fip1 

interacts with Pap1 to recruit the polymerase to the polyadenylation machinery. 

Recruitment is facilitated through contacts between Fip1 and Yth1. Pap1 then binds the 

newly cleaved 3' end and generates the poly(A) tail.  

 

 Pap1 can function independently of the processing machinery to synthesise the 

poly(A) tail, however, it does require interaction of other proteins to regulate tail length. 

Poly(A) binding protein (Pab1) is required to regulate the length of the poly(A) tail.  It 

binds adenosine residues preferentially through use of RRMs. Further, it has been 

suggested that interaction with Rna15 recruits the protein to the nascent mRNA 
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transcript. Association of Pab1 adjacent to PAP results in a 80-fold increase in 

efficiency of polyadenylation. Pab1 also associates with poly(A) tails to stimulate 

translation initiatiation (194).  

 

1.5 Coupling processing and transcription  

 Successful gene expression requires transcription, mRNA processing, nuclear 

export and translation. These processes are tightly coupled as is demonstrated by the 

association of protein factors with roles in different aspects of gene expression. Close 

coupling and cross talk between these processes is required as each is reliant on the 

successful outcome of both upstream and downstream events (86).  

 

1.5.1 5’ end capping and 3' end processing 

 Capping and polyadenylation together provide a framework for subsequent 

translation of the mRNA transcript. Translation initiation factors are able to bind both 

the mRNA 5' cap and Pab1 which covers the poly(A) tail. In S. cerevsiae, translation 

initiation factor eIF4E is able to bind the 5' cap and in association with eIF4G and eIF3, 

is able to recruit the 40S ribosomal unit (215). These translation factors are also able to 

interact with Pab1 (3). These interactions induce circularisation of the transcript (85). 

Mutations which disrupt interaction between eIF4E and EIF4G or association of Pab1 

and eIF4G inhibits translation initiation in vitro (194,216–218). Circularisation is 

thought to promote ribosome recycling enhancing translation efficiency. It also ensures 

that only intact mRNAs are translated (219).    

 

 

 

 

67 
 



Chapter 1  Introduction 

1.5.2 Splicing and 3’ end processing 

 Protein factors involved in splicing are also thought to be involved in 

stimulating cleavage and polyadenylation through interaction with the 3' end processing 

machinery (220,221). The polyadenylation machinery has also been implicated in 

regulation of splicing of the most 3' intron (222). Recent findings have implicated U1 

snRNP in alternative polyadenylation. In the bovine papilloma virus, the late 

polyadenylation signal is positioned near a 5' splice site which U1 snRNP binds to. 

Once bound the U1 70K subunit of the U1 snRNP interacts with Pap to inhibit 

polyadenylation (223). A subsequent whole genome study in U1 snRNP knockout HeLa 

cells revealed instances where cleavage and polyadenylation occurred at cryptic 

polyadenylation sites found within introns (224). Further whole genome analysis in 

D. melanogaster revealed cryptic polyadenylation sites within 30% of all introns. Two 

mechanisms were proposed to allow progression of the transcriptional machinery past 

polyadenylation sites. The first implied competition between the splicing machinery and 

the polyadenylation machinery with the splicing machinery able to splice out the 

polyadenylation signal containing intron before polyadenylation can take place. The 

second is a kinetic model whereby RNAPII reaches the splice site before recruitment of 

the polyadenylation machinery to the polyadenylation signal (225). These studies were 

performed in higher eukaryotes and have not been conducted in S. cerevisiae. Although 

95% of S. cerevisiae genes lack introns (226), the presence of some cryptic 

polyadenylation sites within introns has been demonstrated in the yeast genome (227).    

 

1.5.3 Export and 3' end processing 

 Addition of the poly(A) tail is essential for mRNA export (82,155,228). 

Replacement of signals known to direct polyadenylation with a cis-acting ribozyme 

within reporter constructs resulted in accumulation of the corresponding mRNA in the 
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nucleus (82,155). Coupling of 3' end processing and mRNA export is demonstrated in 

temperature sensitive CFI or poly(A) polymerase alleles where defects in export are 

observed (228). Temperature sensitive mutations in Rna14 and Rna15 result in mRNA 

retention in the nucleus around 8 minutes following a shift to the restrictive temperature 

(226). This is also observed in some mutations within Pap1, Hrp1 and Pcf11. In 

addition, processing activity was shown to be inhibited at this restrictive temperature 

but not at 23ºC. Mutations within components of the export machinery affect 

polyadenylation of mRNA transcripts. Strains with mutations in export factors Mex67 

and Rat1 display transcripts with hyperadenylated poly(A) tails (229).  

 

 Hrp1 has been implicated in mRNA nuclear export as it is able to shuttle to the 

cytoplasm (226). The association of Hrp1 and the export pathway demonstrates a direct 

link between polyadenylation and mRNA export (226). Hrp1 was first identified as a 

suppresor of the temperature sensitive export defect phenotype in npl3 mutants (66). 

Npl3 binds to the poly(A) tail of mRNAs and is able to shuttle rapidly between the 

cytoplasm and nucleus (230,231). Npl3 has also been implicated in polyadenylation site 

selection by competing with the polyadenylation machinery for RNA binding (232). It 

has been shown that high concentrations of recombinant Npl3 inhibit the cleavage and 

polyadenylation reaction in vitro. It was therefore suggested that Npl3 directs the 

cleavage and polyadenylation machinery to genuine poly(A) sites inhibiting the use of 

cryptic sites by competitively binding the RNA (232). 

 

 A hypothetical model suggests that Hrp1 binds during polyadenylation to 

package the mRNA transcript for export and stays until it has been exported from the 

nucleus (106). Once in the cytoplasm, Hrp1 is released from the mRNP package and 

reintroduced into the nucleus (106). It has been shown that Hrp1 is able to be 
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reintroduced to the nucleus through use of the nuclear import receptor Kap104p in yeast 

(233).  

 

1.5.4 Transcription and 3' end processing 

 Coupling of transcription and processing is essential to maintain the efficiency 

of gene expression, exemplified by the observation that processing of mRNAs injected 

into oocytes is less efficient than co-transcriptional processing in vivo (234). The 

poly(A) site is cleaved ~30 seconds after it is transcribed (235). When uncoupled from 

transcription cleavage and polyadenylation has been shown to take over 20 minutes 

(78). The CTD of RNAPII is known to regulate aspects of mRNA processing through 

the recruitment of protein factors (236–238). The CTD is key to tethering these factors 

at the nascent mRNA transcript. It provides a scaffold for their assembly and greatly 

increases their local concentration (78). 

 

1.5.4.1 The importance of the poly(A) site in regulation of transcription 

 Conversely, elements of the 3' end processing machinery have been implicated 

in maintaining and driving successful transcription (239). Experiments employing a 

tetracyclin inducible β-globin gene possessing a SV40 poly(A) signal was used to 

generate HEK293 cell lines. Mutation of this poly(A) site resulted in a decline in 

mRNA levels. ChIP analysis revealed association of RNAPII was increased 

downstream of the poly(A) site in the mutant upon comparison with the wild type (239). 

By contrast, association of RNAPII at the promoter and poly(A) site was decreased 3 

fold and 2 fold respectively and wild type mRNA transcript levels were 5-fold higher 

than those observed in the mutant (239). The ChIP experiments revealed that relative to 

wild type, association of transcription factor TBP with the promoter decreased 4 fold in 

the mutant (239). This reduction correlates with an increase in association of TBP with 
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the coding sequence and terminator regions (239). In addition, a reduced amount of 

transcription factor TFIIB coupled to the promoter and an increased amount in the 

coding sequence is also observed. Both mutant and wild type have similar levels of 

TFIIB associated with the terminator region of the transcript but an increase in 

readthrough of the proximal poly(A) site utilised in wild type is apparent in the mutant 

(239). It has been suggested that the poly(A) site mediates recycling of transcription 

factors and RNAPII back to the promoter for transcription initiation (239). Indeed, 

hyperphosphorylation of S2 in the CTD of RNAPII correlates with an increase in 

association of human S2 kinase CDK9 at the distal poly(A) site and is likely responsible 

for the aberrant association of transcription factors within the coding region (239). 

Similarly, in S. cerevisiae, depletion of the yeast CDK9 homologue, Ctk1, results in 

irregular association of transcription factors in the elongation complex during 

transcription (240). Similar effects on TBP and TFIIB are observed when Pcf11 is 

depleted by RNA interference suggesting a general linkage between transcription rates 

and polyadenylation (239). 

 

1.5.4.2 The role of Ssu72 and Pta1 in transcription regulation 

 Ssu72 is recruited at the 5' end and maintains a dual function in both 3' end 

processing and transcription initiation, roles that are independent of one another (166). 

Ssu72 was identified as an interaction partner of transcription factor TFIIB impliying a 

function in transcription initiation/elongation (161,162). It contains a CX5RS motif 

characteristic of tyrosine phosphatases and has been shown to desphosphorylate S5 on 

the CTD (166,241,242). Depletion of Ssu72 leads to an increase in levels of S5 

phosphorylation and apparent inhibition of transcription in vitro. It has been suggested 

that Ssu72 dependent dephosphorylation of RNAPII at S5 generates a 
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hypophosphorylated form of RNAPII allowing recycling to the promoter where it is 

able to participate in transcription initiation (166).  

 

 Pta1 associates with Ssu72 and the transcription factor, Sub1, which interacts 

with the transcription machinery at the promoter (122). Sub1 also makes contacts with 

transcription factor TFIIB although mutational analysis suggests that Sub1 and Ssu72 

proteins cannot bind simultaneously (162,243). Interaction of Pta1 with Sub1 and Ssu72 

is also mutually exclusive and a hypothetical model has been proposed whereby 

interactions between these proteins act to regulate the association of protein factors and 

the process of transcription (122). At transcription initiation Ssu72 associates with 

TFIIB at the promoter to recruit other components of CPF. ChIP analysis of proteins 

associated at the promoter have identified the presence of CPF components (114). Upon 

promoter clearance, the phosphorylated CTD associates with the CPF complex, Ssu72 

dissociates from TFIIB and associates with Pta1 in the CPF complex. TFIIB is then free 

to bind Sub1. During elongation, Sub1 associates with Rna15 and upon selection of a 

poly(A) site by Rna15, transcription termination is signalled. Transcription termination 

is facilitated by the dissociation of Sub1 from Rna15 and its association with Pta1 

subsequently stimulating release of Ssu72 and resulting in cleavage within the 3’ UTR 

(122).  

 

1.5.4.3 Gene looping and transcription termination 

 Interaction of components of the 3' end processing machinery have been shown 

to facilitate gene looping (244). Gene looping is the association of the 5' and 3' ends of 

DNA undergoing transcription and it is thought to function in transcription regulation 

(245,246). Loop formation is driven by transcription factor TFIIB which is present at 

both ends of the transcript (247,248). In addition to its interaction with Ssu72, TFIIB 
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can also bind to Rna15 (161,162,247,248). A complex of TFIIB, Rna14, Rna15, Pcf11 

and Pap1 was found to be present exclusively within looping competent strains of 

S. cerevisiae. In looping defective strains, this complex was not formed and 

transcription activation was inhibited (244). Gene looping has been proposed to 

facilitate transcription by promoting recycling of RNAPII from the terminator sequence 

to the promoter (249) resulting in enhanced transcription as the rate limiting recruitment 

step is minimised (250). Mutations in Clp1 resulted in decreased recruitment of CF1A 

to the 3' end of transcripts which led to defects in transcription termination (250). As 

well as these effects, loss of association of RNAPII at the promoter was also observed 

(250). Gene looping has also been demonstrated as dependent on Ssu72 and Pta1 (249). 

Mutation of Ssu72 or depletion of Pta1 resulted in inhibition of loop formation (249). 

Another model suggests that gene looping enables Pta1 and Ssu72 to associate with 

TFIIB at the promoter to facilitate transfer of the polymerase and allow Ssu72 directed 

dephosphorylation of S5 in the CTD (249).  

 

1.5.4.4 Transcription termination – The allosteric and torpedo models 

 Components of CF1A have been implicated in transcription termination of the 

CYC1 gene in S. cerevisiae (251). Mutation in Rna14, Rna15 and Pcf11 resulted in 

defects in transcription termination at the 3' end of the CYC1 gene (251). However, 

mutation in Pap1, Fip1 and Yth1 had little effect on transcription termination 

implicating only those protein factors involved in site selection and cleavage (251). 

Indeed, it has been observed that recognition and cleavage of the poly(A) site signals 

termination of transcription (252). Two models named the torpedo (253) and allosteric 

model (254–256), have been proposed that may explain how transcription termination 

occurs in S. cerevisiae (Figure 1.12) (257). Both models rely on the poly(A) site for 

recognition and induction of transcription termination but differ in the mechanism 
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behind which transcription termination is directed. In the allosteric model, recognition 

of the poly(A) site results in either destabilisation or conformational change in RNAPII 

and the elongating complex. This signals for recruitment of termination factors which 

facilitate in dissociation of RNAPII from the DNA template. The torpedo model relies 

on endonucleolytic cleavage at the poly(A) site which then allows entry of 5'-3' 

exonuclease Rat1 which degrades the uncapped cleaved transcript. The resulting short 

mRNA induces arrest of RNAPII and the elongation complex and promotes termination 

(257). Evidence in support of both models has been demonstrated. For the allosteric 

model, plasmid driven transcription in Xenopus laevis oocyte nuclei was visualised by 

electron microscopy (EM) and demonstrated that cleavage was not essential to 

transcript termination (258). Further EM analysis of over 100 genes in Drosophila 

melanogaster showed that in majority of cases the transcript was released before 

cleavage at the poly(A) site (259). Furthermore, it was demonstrated that whilst 

mutation of the poly(A) signal has detrimental effects on the cleavage and 

polyadenylation reactions it does not affect transcription termination in the FBP1 gene. 

This suggests that recruitment of the 3' end complex machinery is in itself sufficient to 

direct transcription termination (260). In support of the torpedo model a mutational 

analysis of S. cerevisiae Rna15 showed no effect on recruitment of the polyadenylation 

machinery to the poly(A) site but did impair the cleavage reaction leading to detrimental 

effects in transcription termination (251). In addition, the 5'-3' RNA exonuclease Rat1 

was demonstrated as a requirement for transcription termination (261). ChIP 

experiments revealed that inactivation of Rat1 results in an increase in RNAPII 

association downstream of the poly(A) site suggesting that Rat1 is required to maintain 

wild type RNAPII association and to facilitate normal transcription termination (261).  
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 The contradiction between the torpedo and allosteric models can be reconciled 

by an integration of the two models whereby degradation mediated by Rat1 does occur 

but does not result in transcription termination (262). Rather, Rat1 functions in 

termination as it enhances recruitment of 3' end processing factors to the cleavage site 

(262). Rat1 recruitment to the 3' end is also dependent upon interaction with Pcf11 

(262). Pcf11 is implicated in transcription termination and it has been suggested that it 

directs conformational changes in the CTD of RNAPII through interaction with its CID 

(112,263). Indeed, Pcf11 is essential for both 3' end processing and transcription 

termination (112). However, mutations in Pcf11 outside of the CID also induced defects 

in transcription termination suggesting that the stimulation of conformational changes 

within the CTD of RNAPII does not occur (262).  Therefore, the termination model can 

be modified such that neither conformational changes nor RNA degradation result in 

transcription termination but that cleavage is carried out by components of the 3' end 

machinery bound to RNAPII CTD and Rat1. The cleavage reaction then results in Rat1 

mediated degradation of the cleaved RNA and an allosteric change is transmitted to 

RNAPII causing transcription termination (262). The CPF component, Cft1, is proposed 

to maintain crosstalk by binding both the mRNA transcript and RNAPII (169). Upon 

site recognition, this crosstalk is thought to initiate transcript termination which is 

consistent with the above integrated termination model (169). 
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1.6 Mammalian homologues  

 The yeast 3' end processing machinery is very similar to that found in higher 

eukaryotes and many comparisons can be drawn based upon structure and function 

(Table 1.1) (8). The mammalian 3' end processing machinery is made up of a number of 

protein factors that can be grouped into complexes, as observed in yeast, that act in 

concert to carry out polyadenylation in vivo (264–266). These include the Cleavage and 

Polyadenylation Specificity Factor (CPSF), Cleavage and stimulation Factor (CstF), 

Cleavage Factor I (CF Im) and Cleavage Factor II (CF IIm). Other protein factors have 

been identified that are required for processing. These include Poly(A) Polymerase 

(PAP), poly(A) binding protein (PABP) and the C-terminal domain of RNA polymerase 

II. All these protein factors, apart from PABP are required for in vitro cleavage and only 

CPSF, PAP and PABP are required for in vitro polyadenylation (87).  

 

 The homologues in each system are often arranged into different complexes. For 

example Yth1 and Fip1 present in the yeast CF II complex of CPF are actually present 

within the PF I component of CPSF in the mammalian system and are named CPSF-30 

and hFip1 respectively. CF1A also contains subunits with homologues present within 

complexes CstF and CF IIm of the mammalian system. However, neither Hrp1 (yeast) 

or CstF-50 (human) have homologues in other systems. Also, homologues in either 

system can have different functions, for example, CPSF-160 recognises the AAUAAA 

polyadenylation signal whereas its homologue in yeast, Cft1, is mostly associated with 

the cleavage site (87).  

 

 Some factors have homologues that carry out the same function in yeast as in 

mammals. For example, Rna15 recognition of G/U rich nucleotides is also observed in 

mammalian counterpart, CstF-64 (141,143,144). CPSF-73 was identified as the factor 
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required to carry out endonucleolytic cleavage through use of its β-CASP and 

metallo-β-lactamase domains (176,177). These domains are also present in Ysh1 and 

have been demonstrated to carry out this function in the yeast system (175). 

 

 The sequence elements required to direct polyadenylation in mammals have 

been identified. They consist of the polyadenylation signal (PAS), the downstream 

element (DSE), the cleavage site and the auxiliary upstream element. The 

polyadenylation signal is similar to that observed in yeast. Extensive studies employing 

13,000 human and mice expressed sequence tags (ESTs) demonstrated that only 4% of 

genes did not possess a PAS and that AAUAAA and AUUAAA are the most common 

PAS sequences present in 70% and 15% of transcripts respectively (267). Mutations in 

this sequence element result in deficient polyadenylation and increased amounts of 

unprocessed mRNA in Xenopus laevis oocytes (268). Patients with mutations in the 

final base of the hexamer sequence (A to G) suffer from α and β-thalassaemia (89).  

 

 The DSE is less conserved than the PAS and deletion of this sequence element 

results in a 3-fold reduction in general polyadenylation (269). The DSE can be both G-

U rich and U rich but mRNA transcripts can have both, one or neither of these 

sequences (270–272). Point mutations in this sequence element have small effects on 

cleavage activity while deletion has a more significant impact (273,274).  

 

 The cleavage site is generally positioned between the PAS and the DSE (275). 

The sequence around the cleavage site is not conserved but in vertebrate pre-mRNAs 

optimal cleavage was observed where a CA dinucleotide was present and this is 

observed in 59% of 269 sequences examined (276–278).  
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 The auxiliary upstream element is located upstream of the PAS and does not 

have a consensus sequence but is often U-rich and promotes enhancement of cleavage 

and polyadenylation (279). The downstream element is generally G rich but lacks a 

conserved distance from the cleavage site and can be present more than once within a 

gene (280–284).  

 

1.7 RNA Sequencing 

 Recent advances in RNA sequencing technology have provided a powerful tool 

to observe the function and importance of individual components of the large 

polyadenylation machinery. The advantage this has over previous methods is that 

effects of mutations within the processing machinery can be observed on a genomic 

scale whereas previous experiments demonstrated effects only on a small number of 

housekeeping genes. This left room for argument over particular findings in that 

although a particular affect was observed in the expression of one gene it was possible 

that this was not maintained throughout the whole genome. The observation of 

alternative polyadenylation, differences in gene expression and bidirectional 

transcription only complicates this issue further. RNA sequencing eliminates these 

potential problems and can, for example, elucidate the location of polyadenylation sites 

within 3' UTRs and the frequency at which they are used whilst only requiring small 

amounts of experimental material.  

 

 Previous genome wide studies were derived from Expressed Sequence Tag 

(EST) databases but the high error rate and lack of coverage precludes an in depth 

analysis of polyadenylation sites. This is in part due to low numbers of full length ESTs, 

chimeric sequences, internal cDNA priming events and low quality sequencing data at 

the end of EST sequences (285–287). Other techniques such as Rapid Amplification of 
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cDNA Ends (RACE), RT-PCR and nuclease sensitivity assays are not able to provide 

the same depth, sensitivity and throughput as that obtained by RNA sequencing. The 3' 

ends of yeast mRNAs were first analysed by RNA  sequencing in 2008 but the 

resolution did not achieve distinct mapping of individual poly(A) sites (288). However, 

it did reveal that 74.5% of the unique sequence in the yeast genome is transcribed and 

globally mapped the 3' UTR boundaries of 5212 genes. Overlapping genes were 

discovered whereby transcription occurred in both the sense and antisense direction. Of 

4646 known genes, 793 contain overlapping 3' UTRs (288). Furthermore, sequencing 

data analysis revealed regions of the genome which are transcribed that had not been 

previously identified. The length of the 3' UTR ranges from 0-1461 bases with a median 

length of 104 bases (288). Sequencing analysis also revealed 540 genes had the ability 

to utilise more than 1 poly(A) site. An example of this was observed in the ACT1 gene 

in which at least 2 regions were present where a poly(A) tail was added (288).  

 

 A more in depth analysis of 3' end in both human and S. cerevisiae transcripts 

was presented in Ozsolak et al. This study obtained 7,036,730 reads by direct RNA 

sequencing, a method which eliminates the need for reverse transcription, which were 

aligned to the yeast genome (289). Each read corresponded to a polyadenylation site of 

an independent transcript (289). The results were in agreement with the previous study 

but due to higher resolution of the sequencing technique identified additional cleavage 

sites which are utilised to a lesser degree. The median 3' UTR length of 5759 open 

reading frames was 166 nucleotides (289). In 72.1% of genes analysed polyadenylation 

sites were separated by at least 50 nucleotides and in most a longer spacing in between 

sites is observed (289). This further enforces the complexity of the S cerevisiae 

polyadenylation system. Bidirectional transcription is evident in 14% of yeast genes 

where open reading frames are orientated in a tail to tail fashion and have overlapping 3' 
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ends (289). Another 14% contain cleavage sites within the exons or introns of open 

reading frames which links with splicing effects on alternative polyadenylation (section 

1.1.2) (289).  

 

 The sequences surrounding cleavage sites were also analysed on a genome wide 

scale. In humans, a novel UUUUUUUUU sequence was discovered around 21 

nucleotides upstream of the polyadenylation site present in both genic and intergenic 

regions (289). Palindromic sequences were also discovered and coincide with the U rich 

motifs (289). The role of these elements remains unclear but it is likely that these 

elements assist in positioning of the poly(A) site or maintaining efficiency of the 

cleavage reaction. No novel motifs were identified for S. cerevisiae but a yeast-like 

efficiency element was identified in a number of human poly(A) sites immediately 

upstream of the cleavage site (289). This suggests that yeast-like polyadenylation 

patterns exist within the human transcriptome/genome. Further RNA sequencing 

analysis of the fission yeast, S. pombe, revealed regulatory sequences required to direct 

polyadenylation (290). The efficiency element UGUA was found to be most prevalent 

within polyadenylation sites, a sequence which has previously been described as an 

upstream element in both S. cerevisiae and humans (145,290,291). Also, U rich 

sequences were observed in 3' UTRs of S. pombe, as seen in S. cerevisiae, highlighting 

a potentially conserved mechanism for polyadenylation (290,292). 

 

 The extensive characterisation of 3' UTRs in S. cerevisiae and higher eukaryotes 

provides detailed information on the mechanism of polyadenylation. Recent RNA 

sequencing studies aimed to characterise the importance of proteins involved in 

polyadenylation. A novel method aimed to characterise the effect on cleavage position 

when protein factors were mutated. This involved isolating poly(A) tails and the 
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immediate 5' transcript sequence from wild type and mutant strains (293). The 

technique was first implemented to characterise the structure of 3' UTRs in C. elegans 

and was then adapted to look at the state of poly(A) tails in S. cerevisiae in both wild 

type and export factor Yra1 depletion mutants (293,294). Comparison of wild type and 

Yra1 depleted mutants revealed that depletion of Yra1 resulted in effects on poly(A) site 

choice (294). This was observed by analysing 2.70 million uniquely mapped reads in 

the wild type and 1.58 million in the mutant sample (294). The ability of this technique 

to provide this amount of coverage and depth of the genome provides a powerful tool to 

demonstrate the importance and influence of 3' end processing factors.  

 

1.8 Research Objectives 

 Rna14 and Rna15 are essential proteins required for successful 3’ end 

processing in S. cerevisiae. Rna15 is known to bind RNA within the 3’ UTR to direct 

positioning of the processing reaction. The crystal structure of the RRM of Rna15 has 

been solved and illustrates two sites that direct RNA binding. Further NMR experiments 

revealed additional residues that are affected by titration of an RNA oligonucleotide. 

Despite these findings the mechanism by which Rna15 interacts with RNA to direct 

polyadenylation is poorly understood. In addition, specificity of Rna15 is debated and 

whether Rna14 association with Rna15 enhances RNA binding affinity is unclear. 

 

 The objectives of this thesis are therefore to understand the importance of 

Rna15-RNA binding for 3’ end processing and transcription activity in the entire 

transcriptome of S. cerevisiae. In order to achieve this a series of in vitro experiments 

are employed including fluorescence spectroscopy and nuclear magnetic resonance 

(NMR) to identify the residues crucial to maintain wild type RNA binding, characterise 

further the nucleotide specificity of Rna15 and analyse effect of Rna14 on the Rna15-
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RNA interaction. The importance of RNA binding residues demonstrated in the in vitro 

experiments is tested further by in vivo experiments whereby growth phenotype of S. 

cerevisiae is assayed. The impact of these mutations on transcription and processing is 

analysed by RNA sequencing and qRT-PCR. 
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2. Materials and Methods 

2.1 Bioinformatics 

2.1.1 DNA and protein information 

 The 5' UTR and coding sequences of Rna14 and Rna15 were obtained from the 

Saccharomyces genome database (http://www.yeastgenome.org/). Automated DNA 

sequencing was performed by GATC Biotech (http://www.gatc-

biotech.com/en/index.html) with results analysed using SeqMan Pro (v9 1.0) software 

from the DNASTAR Lasergene 9 sequence analysis suite. Purification and 

concentration of a recombinant protein requires calculation of its theoretical isoelectric 

point (pI), molar extinction coefficient at 280 nm (ɛ280) and molecular weight (Mr). 

These parameters were calculated using the ExPASy Prot Param tool 

(http://web.expasy.org/protparam/).  

 

2.1.2 RNA-Sequencing Analysis 

2.1.2.1 Global analysis of expression  

 A global analysis of expression in wild type, Y27A, Y27A/R87A/K90E and 

Δ16-94 was completed by Dr. Nikolay (N.I.M.R.). Reads were aligned to the yeast 

genome (ensemble version 75) using Tophat (version 2.0.9). Raw counts were 

determined using the union method in htseq-count (version 0.5.4p3) and mappings were 

filtered for a phred score of >10. EdgeR (Version 3.2.4) was used for filtering of lowly 

expressed features, normalisation and statistical analysis. Statistically significant genes 

were determined using the exact binomial test (295) and genes with FDR < 0.05 are 

reported. All mutants were analysed for statistically significant differences in expression 

upon comparison with wild type. 
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2.1.2.2 Analysis of 3' end processing 

 mRNA Sequencing data from Rna15 mutant and wild type S. cerevisiae strains 

were obtained from the high throughput sequencing facility (N.I.M.R). Analysis of the 

subsequent data was carried out using the program Tophat 

(http://tophat.cbcb.umd.edu/), Bowtie (http://bowtie-bio.sourceforge.net/index.shtml), 

the Cufflinks package (including cufflinks, cuffmerge and cuffdiff) and CummeRbund 

(http://cufflinks.cbcb.umd.edu/). Tophat aligns the short reads generated during the 

sequencing reaction to a reference genome using bowtie which is a general purpose 

short read aligner. Cufflinks then assembles transcripts with cuffcompare comparing 

these transcript assemblies to the annotated reference genome. Cuffmerge is used to 

merge two or more transcript assemblies. The merging of transcript assemblies provides 

a uniform basis for calculating expression levels and tests the statistical significance of 

observed changes. Cuffdiff then acts to distinguish between differentially expressed 

genes. The method of analysis is detailed in (296). 

 

 Aligned reads were viewed using the Integrative Genomics Viewer (IGV) 

Version 2.3.3.2. The 3' UTR of genes were analysed by measuring read number at three 

arbitrary sites within the 3' UTR in both wild type and mutant. Read count was 

normalised against expression of the gene and changes in amount of mRNA in the 3' 

UTR were expressed relative to wild type amount. Genes were grouped based on their 

role in cellular processes. Identification of appropriate genes for analysis was achieved 

using the Saccharomyces Genome Database (http://www.yeastgenome.org/). 

 

 In order to determine differences in processing activity between wild type and 

mutant S. cerevisiae strains, the amount of reads at each poly(A) site were measured and 

normalised against gene expression. The difference in mRNA amount prior to 
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processing and after was calculated for each site and expressed as a percentage of 

processing activity. This was carried out for both wild type and mutant and processing 

in each was compared. Poly(A) site positions were located in the aligned reads using 

annotated poly(A) sites listed in the Saccharomyces Genome Database 

(http://www.yeastgenome.org/).  

 

2.2 Molecular Biology 

2.2.1 Bacterial Strains 

 E. coli NovaBlue Singles™ competent cells (Novagen) were used for cloning 

purposes whilst recombinant proteins were expressed in E. coli BL21(DE3, pLysS) 

Singles™ competent cells (Novagen). The expression strain contains a chromosomal 

copy of T7 polymerase gene which is under the control of the lac operon promoter. 

Addition of IPTG induces expression of the T7 polymerase which is required for 

recombinant protein expression from the vectors employed. The genotypes used in this 

study are detailed in Table 2.1.  

 

Strain Name Genotype 

NovaBlue endA1 hsdR17 (rk12
- mk12

+) supE44 thi-1 recA1 gyrA96 relA 

BL21 (DE3) F-ompT hsdSB(rB
- mB

-) gal dcm (DE3) pLysS (CamR) 

 
Table 2.1. Genotypes of E. coli strains. 
 

2.2.2 Yeast Strains 

 The Δrna14 and Δrna15 deletion yeast strains were obtained from the European 

Saccharomyces Cerevisiae Archive for Functional Analysis (EUROSCARF- 

http://web.uni-frankfurt.de/fb15/mikro/euroscarf/yeast.html). The strains provided were 

diploid where one chromosomal copy of both the RNA14 and RNA15 gene had been 

deleted by insertion of a Kanamycin cassette. Sporulation and subsequent selection of 
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the deletion strain was completed by Dr. J. Hedden (N.I.M.R). Genotypes of S. 

cerevisiae used in this study are shown in Table 2.2. 

 

S. cerevisiae Strain 
(EUROSCARF accession no.) Genotype 

rna14Δ/RNA14 

(Y26194) 

BY4743; Mat a/a; his3D1/his3D1; leu2D0/leu2D0; 

lys2D0/LYS2; MET15/met15D0; ura3D0/ura3D0; 

rna14::kanMX4/RNA14 

rna15Δ/RNA15 

(Y24412) 

BY4743; Mat a/a; his3D1/his3D1; leu2D0/leu2D0; 

lys2D0/LYS2; MET15/met15D0; ura3D0/ura3D0; 

rna15::kanMX4/RNA15 

 
Table 2.2 Genotypes of S. cerevisiae strains. 
 

2.2.3 Plasmid constructs employed in in vitro studies 

Plasmid constructs employed in the in vitro studies are detailed in Table 2.3. A 

series of Rna15 deletion mutants were cloned by ligation independent cloning in order 

to investigate the role of regions flanking the RRM in RNA binding. Constructs were 

cloned into pET52b.  

 A pETDUET vector containing both full length RNA14 and RNA15 was 

supplied by Dr. L. Arnold, N.I.M.R. In this construct Rna14 was tagged with a 6x 

histidine tag allowing purification of both proteins as a heterodimer complex.  

 

2.2.4 Mutant constructs employed in in vitro studies 

 A series of point mutations were also introduced into in vitro construct 

Rna15 (2-103) by site directed mutagenesis following the QuikChange protocol 

(Stratagene).  
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2.2.5 Plasmid constructs employed in in vivo studies 

 Constructs employed in in vivo studies were generated by PCR amplification of 

the target sequence from Saccharomyces cerevisiae genomic DNA. Forward primers 

were designed to amplify from 500bp 5' of the start site to include the promoter region 

of the gene and included a SacII restriction site. Reverse primers employed for 

amplification of RNA15 included either an Xba1 or Pst1 site. In the case of RNA14, 

reverse primers used contained either a Nhe1 or a Pst1 restriction site as Xba1 is present 

in the open reading frame of RNA14. Restriction digestion of Nhe1 sites produces DNA 

ends able to ligate into an XbaI cleaved site. Following digestion of amplified DNA, the 

inserts were then ligated into yeast shuttle vector, pRS315 (provided by Dr. J Hedden, 

N.I.M.R). The pRS315 vector contained a 444 nucleotide sequence encoding a triple 

repeat of human influenza haemagglutinin DNA (HA-tag). The HA tag was present 

immediately 3' of a stop codon flanked by two restriction sites, XbaI (5') and Pst1 (3'). 

Four constructs were generated exploiting the presence of these two restriction sites. 

Restriction digest of the Xba1 site and subsequent ligation resulted in insertion of both 

genes so that they were untagged. However, digestion of DNA at the Pst1 site and 

ligation results in an in frame fusion so that the HA tag is present on the C-terminal end 

of both Rna14 and Rna15.  

 

2.2.6 Mutant constructs employed in in vivo studies 

 RNA14 (Δ626-677) construct was cloned by using wt RNA14-pRS315 HA 

tagged construct as a template for PCR. Primers were designed so that the 3’ primer 

annealed to and extended through the vector whereas the 5’ primer annealed adjacent to 

residue 626 effectively deleting residues 626-677 from the construct. An additional 

ligation step was added to re-circularise the DNA. 
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 RNA15 RRM single, double and triple mutations were inserted by site directed 

mutagenesis. The RNA15 RRM deletion mutant Δ16-94 was cloned by PCR where 

primers annealed to the sequence immediately adjacent to the coding sequences for 

residues both 16 and 94 and amplified outwards to effectively delete residues 16-94 

from the construct. A ligation step was added to re-circularise the DNA. 

 

Construct Name Vector Organism Marker Function 

Rna15-FL pET52b (novagen) E. coli AmpR 
Expression of 

full length 
Rna15 

 
Rna15-2-94 

 
pET52b 

(novagen) 

 
E. coli 

 
AmpR 

 
Expression of 

residues 2-94 of 
Rna15 

 
Rna15-2-103 

 
pET52b 

(novagen) 

 
E. coli 

 
AmpR 

 
Expression of 
residues 2-103 

of Rna15 

 
Rna15-16-94 

 

 
pET52b 

(novagen) 

 
E. coli 

 
AmpR 

 
Expression of 
residues 16-94 

of Rna15 

 
Rna15 WT 

 
pRS315 

 
S. cerevisiae 

 
AmpR/LEU2 

 
Complementati
on of Rna15Δ 

strain 
     

Rna14 WT pRS315 S. cerevisiae AmpR/LEU2 
Complementati
on of Rna14Δ 

strain 

 
Rna14 WT: 
Rna15 WT 

 
pET-Duet1 
(novagen) 

 
E. coli 

 
AmpR 

 
Expression of 

both full length 
Rna14 and 

Rna15 
 
Table 2.3 Wild type constructs used in this study. Mutant constructs are listed in chapter 3. 
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2.2.7 Polymerase Chain Reaction (PCR) 

 Template DNA was amplified by PCR using the Kod Hot Start Polymerase kit 

(Novagen) using a Mastercycler PCR machine (Eppendorf). In general, 50 µL reactions 

were set up in 200 µL thin-walled tubes (Abgene/Thermoscientific) with either 100 ng 

genomic DNA or 10 ng of plasmid DNA. The protocol consisted of 20-40 cycles 

(depending whether template DNA was genomic or plasmid) of strand denaturation, 

primer annealing and extension. Following PCR, 5 µL of the reaction was taken and 

resolved on a 1 % agarose gel in order to determine the product size and assess yield. 

PCR products were purified using the QIAquick PCR Purification kit (Qiagen) 

according to manufacturer’s instructions and eluted in 30 µL of dH2O. A typical 

reaction set up and cycling conditions are shown in Tables 2.4 and 2.5. 

 

Component Volume (µL) Final concentration 

KOD Hot Start Buffer (10X) 5 1X 

MgSO4 (25 mM) 3 1.5mM 

dNTPs (2mM each) 5 0.2mM (each) 

Forward oligonucleotide primer (10 µM) 1.5 0.3µM 

Reverse oligonucleotide primer (10 µM) 1.5 0.3µM 

Template DNA X 10 ng / 100 ng 

KOD Hot Start 1 1 U/µL 

dH2O X - 

Final reaction volume 50  

 
Table 2.4 Typical PCR reaction conditions. 
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Step Temperature (°C) Time 

1. Polymerase Activation 95 2 mins 

2. Strand Denaturing 95 20 s 

3. Primer Annealing 55-57 10 s 

4. Extension 70 20 s/ kb 

5. Repeat Steps 2-4 for 20-40 cycles   

6. Final Extension 70 2 mins 

7. Cooling 4 5 mins 

 
Table 2.5 Typical cycle for PCR reactions. Annealing temperature was adapted for optimum 

amplification of the product.  
 

2.2.8 Agarose gel electrophoresis 

 Agarose gel electrophoresis was used to determine DNA fragment size by 

comparison with the DNA size marker 1kb plus DNA ladder (Invitrogen). Gels were 

prepared by dissolving 1% (w/v) agarose (Bio Rad) in 1X TAE buffer (40mM Tris 

Acetate pH 8.3, 1mM EDTA). Ethidium Bromide (Bio-Rad) at a final concentration of 

0.5 µg/mL was added to allow visualization of DNA bands by ultraviolet (UV) light at 

254 nm.  

 

2.2.9 Determination of DNA Concentration 

 DNA concentrations were determined using UV spectrophotometry by 

measuring absorbance at 260 nm on a NanoDrop® ND-1000 spectrophotometer 

(ThermoScientific). 

 

2.2.10 Restriction Enzyme Digest 

 PCR products and plasmid vectors were digested using enzymes purchased from 

New England Biolabs. Double digests were carried out using a buffer suitable for both 

enzymes according to the NEBuffer Activity Chart for Restriction Endonucleases. 

Reactions were carried out for 1 hour at 37ºC. Where buffers and temperatures could 
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not be matched sequential digestions were carried out for two hours employing the 

correct buffers and temperature. Typical reaction conditions are detailed in Table 2.6.  

 

 Following digestion of PCR products, the reactions were purified using the 

QIAQuick PCR purification kit (Qiagen) following the manufacturer's instructions. 

DNA was eluted in 30 µL of dH2O. Once digested, vector DNA was treated with 

Antarctic Phosphatase (NEB) to remove 5'-phosphate groups in order to prevent 

recircularisation and gel purified (section 2.2.3) using the QIAquick gel extraction kit 

(Qiagen) following the manufacturer's instructions.   

 

Component Volume (µL) Final Concentration 

NEB Buffer (10X) 3 1X 

BSA (100X) 0.3 1.5mM 
DNA (vector 1-3µg) (total PCR 
Product) 1-3/30 0.2mM (each) 

NEB Enzyme 1 (10 U/µl) 1.5 0.3µM 

NEB Enzyme 2 (10 U/µl) 1.5 0.3µM 

dH2O to final volume 30  

 
Table 2.6 Typical restriction digest conditions. For sequential digest the reaction was incubated with 

enzyme 1 in the correct buffer at the correct temperature for 1 hour. Heat inactivation at 65ºC for 10 

minutes was performed before incubation with enzyme 2. An additional clean-up step was included 

before incubation with enzyme 2 using the QIAquick PCR purification kit (Qiagen). The reaction was 

held for a second hour in the correct buffer at the optimum temperature for enzyme 2. 

 

2.2.11 Ligation  

 Ligation reactions were carried out using T4 DNA ligase (NEB) and incubated 

overnight at 16 °C. A typical reaction setup is detailed in Table 2.7.  

  

92 
 



Chapter 2  Materials and Methods 

Reagent Volume (µL) 

Linearized Vector (25 ng/µL) 4 

Digested Insert (x ng/µL) X 

Reaction Buffer (10x) 2 

T4 DNA ligase (400 U/µL) 1 

dH2O to final volume 20 

 
Table 2.7 Ligation reaction. The amount of vector used was always 100 ng. A molar ratio of 3:1 (PCR 

Insert:vector) was used in all ligation reactions where the exact amount of insert added is dependent on 

concentration of the PCR product. 

 

2.2.12 Ligation Independent Cloning 

 Constructs used for in vitro studies were cloned using Ligation Independent 

Cloning (LIC). Primers were designed to include a 21 base pair overhang corresponding 

with the LIC site in the cloning vector, pET52b. Deletion mutant constructs were cloned 

using primers that annealed at different sites within the Rna15 gene allowing 

amplification of the desired sequences only. PCRs were set up using 100 ng of 

Saccharomyces cerevisiae genomic DNA and followed the KOD HotStart Protocol as 

described in section 2.2.7. Extension time during the PCR cycle was altered depending 

on construct length. PCR products were purified using the QIAquick PCR Purification 

kit (Qiagen) according to the manufacturer’s instructions and eluted in 30 µL of dH2O. 

Purified PCR products together with pre-cut and purified pET52b vector (provided by 

Vangelis Christodoulou, N.I.M.R) were treated separately with T4 DNA polymerase. 

Around 0.2 pmole of PCR insert were treated with dATP while 1 pmole of vector was 

treated with dTTP for 20 minutes at room temperature. The enzyme was heat 

inactivated through incubation at 75°C for 20 minutes. Following heat inactivation, LIC 

reactions were carried out by adding 2 µl of insert to 1 µL vector (~50ng/µL) with 5 

minutes incubation at room temperature. Following incubation, 1 µL EDTA was added 

and the reaction was incubated for a further 5 minutes. Finally, 2 µL of the LIC reaction 
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was transformed into 50 µL of chemically competent E. coli NovaBlue singles™ 

(Novagen) as described in section 2.2.8.  

 

2.2.13 Transformation of Bacterial Strains 

 Plasmid DNA was transformed into E. coli Novablue or BL21 DE3 competent 

cells for cloning and protein expression purposes respectively. Generally, 

transformations were carried out using approximately 10 ng/µL of plasmid DNA which 

was then added to a 50 µL aliquot of the relevant competent cells and incubated on ice 

for 5-10 minutes. Cells were heat-shocked at 42 °C and then placed on ice for 2 

minutes. Around 1mL of Luria-Bertani broth (LB) was added and the cells incubated at 

37 °C for 1 hour. A 200 µL sample was plated on LB agar containing the appropriate 

antibiotic. Plates were incubated overnight at 37 °C.  

 

2.2.14 Site-directed Mutagenesis 

 Site-directed mutagenesis of both protein expression and yeast shuttle vector 

constructs were performed using PCR as described in previous section using the KOD 

Hot Start DNA polymerase kit (Novagen). Mutagenic primers were designed in 

accordance with the QuikChange protocol (Stratagene) where overlapping primers 

contained the desired mutation and the KOD HotStart protocol was utilised for 

amplification. Following successful PCR, parent wild type DNA was digested using 

DpnI. This works on the premise that parent strand DNA is methylated after synthesis in 

E. coli. DpnI targets this methylation resulting in complete digestion of parental DNA. 

Constructs were then transformed into NovaBlue strain E. coli (Novagen) (as described 

in section 2.2.13) and plated on the appropriate selective medium. Plasmids were 

recovered using Qiaquick mini prep kit (Invitrogen) and successful mutagenesis was 

verified by DNA sequencing (GATC biotech).  
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2.3 Protein purification 

2.3.1 Protein expression 

 Plasmids were transformed into BL21 (DE3) cells for expression using the 

method described in section 2.2.8. Cells were plated on LB-agar supplemented with 

ampicillin at 100 µg/mL and incubated at 37°C overnight. Starter cultures of 100 mL 

were inoculated with a single colony the following day and incubated at 37°C overnight 

with shaking (220 RPM). Around 7.5 mL of starter culture was used to inoculate each 

of the 12 2 L flasks containing 750 mL of LB + ampicillin media for large scale 

expression. Cultures were incubated at 37°C until cell density reached 0.6 OD. Protein 

expression was induced using 1mM IPTG and the temperature was decreased to 25°C 

and left to grow overnight following induction (~16 hours). Cells were then harvested 

by centrifugation at 4000 RPM for 20 minutes at 4ºC, supernatant was discarded and 

cells frozen and stored at -20ºC.  

 

 Rna15 (2-103) protein expressed for NMR spectroscopy was grown following 

the same protocol as above but in minimal media containing 15N ammounium sulphate. 

The components of minimal media are detailed in Table 2.8. 
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15N-M9 minimal media Volume Final Concentration 

Water 800ml - 

CaCl2 (1M) 300µl 0.3 mM 

MgSO4 (1M) 1ml 1 mM (each) 

Thiamine (1 mg/ml) 1ml 1µg/ml 

Biotin (1 mg/ml) 1ml 1µg/ml 

Ampicillin (100mg/ml) 1ml 100 µg/ml 
15N Ammonium Sulphate 1g 1mg/ml 

Glucose (20%) 20ml 0.4% 

M9 salts (10X) 100ml 1X 

Final Volume 1L 

Table 2.8 Minimal media used for expression of 15N labelled Rna15 2-103. 

2.3.2 Cell lysis and sample preparation 

All protein purifications were carried out at 4ºC. In general cells were 

re-suspended in lysis buffer (100 mM Tris pH 8.3, 300 mM NaCl, 0.5 mM TCEP) using 

10mL of buffer per gram of pellet. One complete Protease Inhibitor cocktail tablet 

(Roche) per 50 mL of lysis buffer was added to prevent protein degradation, according 

to manufacturer's instructions. In addition, 1µL of Benzonase nuclease (Novagen) and 

1µL rLysozyme (Novagen) were added to reduce viscosity and aid lysis. Samples were 

sonicated on ice at 40% power, 10-12 times x 30 sec with 30 sec rest between cycles on 

a Branson Sonifier 450 sonicator. Lysate was clarified by centrifugation at 20000 xg for 

1 hour at 4ºC in a Beckman JA-25.50 and the supernatant collected. Samples of whole 

cell extract and cleared lysate were analysed by SDS-PAGE.  

2.3.3 Strep-Tactin® affinity chromatography 

Proteins tagged with Strep-Tag® II (iba) was initially purified using 

Strep-Tactin® affinity chromatography. Cleared lysate was applied to a 5mL column of 

Strep-Tactin® high performance resin (iba) packed into a polyprep disposable column 

(BioRad). Once bound, the protein was washed with 5 X 5 mL of lysis buffer and then 
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eluted in 5 X 5 mL aliquots of 10 mM desthiobiotin. Protein was detected within 

the fractions by spotting 10 µL onto chromatography paper (Whatman) and staining 

with Coomassie Blue (BioRad). A sample of the wash fraction and protein fraction 

were taken for analysis by SDS-PAGE. Protein was dialysed into 20 mM Tris-HCl 

pH 8.3, 150mM NaCl, 0.5mM TCEP at 4°C overnight. The streptavidin tag was 

cleaved overnight during dialysis using 3C protease (produced in house). 

Approximately 1 mg of 3C protease was used for every 10 mg of target protein. 

2.3.4 Nickel-affinity chromatography 

Nickel affinity chromatography was used as an initial purification step for his-

tagged Rna14 during purification of both Rna14 and Rna15 expressed from a pET duet 

vector. Cells were lysed as above in lysis buffer suitable for nickel affinity 

chromatography (100 mM Tris-HCl pH 8.3, 300 mM Nacl, 0.5 mM TCEP, 10 mM 

imidazole). Cleared lysate was applied to a 5 mL of Ni-NTA Superflow resin (Qiagen) 

packed in a XK-16 column (GE Healthcare). Resin was then washed with lysis buffer to 

remove any non-specifcally bound proteins. The protein was then eluted with a 

20-500 mM imidazole gradient over 50 mL. Fractions eluted from the column were 

analysed using SDS-PAGE and further purified using SDS-PAGE. Imidazole was 

removed from the sample during size exclusion chromatography.  

2.3.5 Size exclusion chromatography 

Size exclusion chromatography (SEC) was used as a final polishing step to 

improve sample homogeneity. Protein samples were concentrated to just under 5 mLs 

and loaded onto either a superdex-75 or superdex-200 (26/60 or 16/60) columns (GE 

Healthcare) depending on protein size and sample volume. Columns were equilibrated 

and sample eluted in 20 mM Tris-HCl pH 8.3, 300 mM NaCl, 0.5 mM TCEP (SEC 
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buffer) using an AKTA Prime (GE Healthcare). Fractions containing protein were 

analysed by SDS-PAGE, pooled and concentrated.  

 

2.3.6 SDS-PAGE 

 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

used to analyse the purity of the protein sample after each step of purification. NuPAGE 

Bis-Tris precast polyacrylamide gels were used with 1X NuPAGE MES SDS running 

buffer (Invitrogen). Gels were run in an XCell Sure Lock mini-cell using a Power-Ease 

500 power supply (Invitrogen). A 10 µL sample of protein was taken and mixed with 

3X SDS loading buffer and 100mM dithiothreitol to a final concentration of 33 mM. 

Samples were heated at 95 °C for 5 minutes prior to loading. Protein sizes were 

estimated against SeeBlue® Plus2 molecular marker (Novagen). Gels were developed 

by staining with Coomassie Blue solution (50 % Methanol, 10 % acetic acid, 0.05 % 

Coomassie Brilliant Blue R-250) for 5 minutes and destained by washing with 

destaining solution (10 % Acetic Acid, 10 % Methanol).  

 

2.3.7 Protein concentration, storage and dialysis 

 Proteins were concentrated by centrifugal ultrafiltration using Vivaspin 

concentrators (Vivaproducts) of the appropriate molecular weight cutoff to ~10 mg/mL. 

For buffer exchange during purification proteins were dialysed in 2 L of the appropriate 

buffer overnight at 4 °C. Samples were injected into a Slide-a-lyzer dialysis cassettes 

(ThermoScientific) of appropriate size and molecular weight cut off. The sample was 

then dialysed against 2 L of the appropriate buffer for ~2 hours, at which point the 

sample was placed in fresh dialysis buffer and left overnight at 4°C. Purified protein 

was flash frozen in liquid nitrogen and stored at -80°C in 200 µL aliquots. 
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2.3.8 Determination of protein concentration  

Protein concentrations were determined by UV absorption spectroscopy using a 

spectrophotometer (Cary 50 Bio UV-Visible Spectrophotometer). The protein sample 

was diluted 1:10 and 200 µL was added to a cuvette. The absorbance was scanned 

between 220-400 nm and protein concentration (c) was calculated from Beer-Lambert’s 

Law: 

Equation 2.1 A= ɛ.c.l 

Where A=absorbance, ɛ= molar extinction coefficient (M-1 cm-1), c=concentration (M) 

and l = cell path length. 

 

2.4 In vitro analysis of Rna15-RNA binding 

2.4.1 Fluorescence spectroscopy of Rna15 constructs 

Dissociation constants for the interaction of proteins with Tetrachlorofluorescein 

(TET)-labelled RNA were determined at 20°C in 20 mM Tris-HCl pH 8.3, 150 mM 

NaCl, 0.5 mM TCEP. Titrations were performed keeping RNA at a constant 

concentration with increasing protein concentration. Protein was introduced to the RNA 

in ~2µM steps and changes in fluorescence were monitored. Titrations were performed 

on a Jasco FP-6300 spectrofluorimeter with excitation at 515 nm and emission at 560 

nm. Experiments were repeated three times and the derived equilibrium dissociation 

constants are an average of the experiments. Dissociation constants were derived from 

data by using a 1:1 interaction model as follows. 

 

1-1 interaction model - The interaction of a protein (P) with a ligand (L) to form a 

simple 1-1 complex (PL) is represented by the following scheme: 

P + L            PL 

with the dissociation constant, Kd, defined as Kd =    
Kd 

[P][L] 
[PL] 
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For any mixture of P and L the observed fluorescence signal (FOBS) is given by: 

Eq 2.2    FOBS = FP[P] + FL[L] + FPL[PL] = FP[P0] + FL[L0] + (FPL-FP-FL)[PL] 

where [X0], [X], and FX represent the total concentration, the equilibrium concentration, 

and the molar fluorescence coefficient of species X (note FP=0). A non-linear least-

squares fit to equation (2.2) with [PL] calculated using equation (2.3) yields the Kd for 

the interaction and the FX values. 

 

Eq 2.3 

 

2.4.2 Fluorescence spectroscopy of the Rna14-Rna15 complex with RNA 

 Titrations were performed on a Jasco FP-6300 spectrofluorimeter using an 

excitation wavelength of 515 nm and emission of 560nm. Experiments were performed 

at 20°C in 20 mM Tris-HCl pH 8.3, 150 mM and NaCl 0.5 mM TCEP. Titration 

experiments involved using 3 RNA oligonucleotides each possessing two GUGUGU 

sequences separated by an increasing number of nucleotides (see section 5). 355 µM of 

unlabelled RNA oligonucleotide spiked with 5 µM of a labelled version of the same 

oligonucleotide was titrated and the change in fluorescence was observed. Total protein 

concentration was kept constant at 30 µM Rna14-Rna15 protein by including the 

proteins in the oligonucleotide stock. Around 2 µL additions of the stock were made and 

the change in fluorescence recorded. A binding isotherm was generated by calculating 

the difference between the titration and a control titration with no protein. Each 

experiment was repeated three times and the derived equilibrium dissociation was 

determined using a 1:1 binding model (section 2.4.1).  

 

 

 

( ) ( )
2

]L][P[4]L[]P[K][L  ]P[K
]PL[ 00

2
00d00d −++−++

=
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2.4.3 Competition assays 

 In order to determine whether the tetrachlorofluoroscein (TET) label present on 

the 5’ end of the RNA oligonucleotide affected the measured dissociation constant of 

the Rna15 protein for the RNA, a series of competition assays were performed. 

Competition assays were performed on a Jasco FP-6300 spectrofluroimeter at 20°C in 

20 mM Tris-HCl pH 8.3, 150 mM NaCl, 0.5 mM TCEP. Titrations followed the 

protocol detailed in section 2.4.1.1. However, in this case an excess of unlabelled RNA 

was included in the cuvette. Data were fitted following the scheme detailed below. 

When two ligands (L and N) compete for binding to a single site on a protein (P) the 

following scheme is appropriate: 

P + L PL 

P + N  PN 

The dissociation constants for the two ligands are defined as: 

]PL[
]L][P[K L,d =  

]PN[
]N][P[K N,d =  

For any mixture of P, L and N the observed fluorescence signal (FOBS) is given by: 

Eq 2.4   ]PN[F]PL[F]N[F]L[F]P[FF PNPLNLPOBS ++++=  

 

A non-linear least squares fit to equation (2.4) yields the Kd,N value (with Kd,L fixed) for 

the interaction and the FX values. Since the protein and the displacing ligand (N) are 

non-fluorescent then FN = FPN = FP = 0. For this system, the concentrations are 

calculated in the following way. The free protein concentration is given by the root of 

the following equation:  

0C]P[C]P[C]P[C 01
2

2
3

3 =+++  

where  

Kd, L 

Kd, N 
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N,dL,d00

L,d0N,d0N,dL,dN,d0L,d01

00N,dL,d02

3

KK]P[C

K]N[K]L[KKK]P[K]P[C

]N[]L[KK]P[C
1C

−=

+++−−=

++++−=
=

       

 [PL] and [PN] can then be calculated from equations (2.5) and (2.6) and the 

remaining concentrations from the expressions for the Kds or from conservation of mass 

(e.g., [L] = [L0] - [PL]). 

Eq 2.5     
]P[K

]P][L[]PL[
L,d

0
+

=  

Eq 2.6    
]P[K

]P][N[]PN[
N,d

0
+

=   

 

2.4.4 Scaffold independent analysis (SIA) 

 Scaffold Independent Analysis (SIA) was performed in collaboration with 

Katherine Collins (Ramos Group, N.I.M.R) following the method described in Beuth et 

al. 2007. A pool of 16 RNA oligonucleotides was employed to determine a potential 

consensus sequence for optimal Rna15 binding. Concentration of Rna15 protein was 

maintained at 25 µM while increasing amount of each RNA pool was added at the 

following ratios 1:1, 1:3. Titrations were performed in 20 mM Tris-HCl pH 7.0, 40 mM 

NaCl, 0.5 mM TCEP at 25°C on a Bruker Avance spectrometer equipped with 

cryoprobe and operating at 700 MHz 1H frequency. The weighted average chemical 

shift perturbations at each titration point for 16-21 non-overlapped peaks were 

calculated using the equation (2.7).  

Eq 2.7                                   Δδav = �(𝛥𝛿𝐻)2 + (𝛥𝛿𝑁/10)2 

The results were visualised using sparky assignment and integration software 

http://www.cgl.ucsf.edu/home/sparky/.  
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2.4.5 Nuclear Magnetic Resonance (NMR) 

 Prior to NMR experiments Rna15 (2-103) was dialysed in 

20 mM Tris-HCl pH 7.0, 50 mM NaCl and 0.5 mM TCEP. Titrations were performed 

on a Bruker 600 NMR MHz NMR spectrophotometer. 25 µM Rna15 (2-103) was 

titrated against 5’ labelled and unlabelled RNA oligonucleotide, GUGUGU (1:1). A free 

25 µM Rna15 (2-103) protein sample was also included. Movement and position of 

peaks were calculated using equation (2.7) detailed in section 2.4.4 and visualised using 

integration software http://www.cgl.ucsf.edu/home/sparky/. Previously assigned NMR 

spectra were employed to assign peaks to corresponding Rna15 amino acids.   

 

2.4.6 Circular Dichroism 

 For CD experiments, protein samples were dialysed into 20 mM Tris-HCl 

pH 8.3 150 mM NaCl 0.5 mM TCEP overnight at 4°C. The sample was concentrated to 

0.16 mg/mL and far-UV spectra was recorded on a Jasco-J815 spectropolarimeter using 

a quartz cuvette with a 1mm pathlength for Rna15 (2-103) and all Rna15 mutants. 

Spectra were taken with a 200nm/min scan rate, 0.25 s time constant and 1nm spectral 

bandwidth. CD was measured from 260nm-200nm. Thermal unfolding experiments 

were carried out on Rna15 (2-103) and Rna15 (2-103) Y27A by recording CD at 

204 nm as the temperature was increased from 20°C to 80°C. During thermal 

experiments, CD was measured with a 8 s time constant and a 1nm spectral bandwidth. 

Final spectra were the average of 20 scans. Data analysis was carried out with Dr S. 

Martin (N.I.M.R) using in house software. The CD signal was measured in millidegrees 

(mdeg) and converted to the mean residue weight CD extinction coefficient (Δɛmrw) 

using equation 2.8. 

Eq 2.8 Δεmrw =   

 

S·(mrw) 
(3290)·C·l 

103 
 



Chapter 2  Materials and Methods 

Where S is the CD signal in millidegrees, mrw is the protein mean residue weight (a 

value close to 108 Da), C is the protein concentration in mg/mL and l is the pathlength 

of the cuvette. Fitting of protein secondary structure content from far-UV CD spectra 

was carried out using the CDpro program (with Dr S. Martin, N.I.M.R): the CONTIN, 

SELCON3 and CDSSTR methods of secondary structure estimation from CD data were 

used as recommended by Sreerama and Woody (297). The final estimated secondary 

structure content was calculated by averaging the results provided by each method. 

 

2.4.7 Fluorescence anisotropy experiments 

 Fluorescence anisotropy was carried out on a Jasco FP-6300 spectrofluorimeter. 

The excitation wavelength used was 515 nm and the emission was 560 nm. Vertical and 

horizontal polarisation was measured on 0.2 µM labelled RNA (5’TET-GUGUGU) 

alone before adding a saturating concentration of Rna15 2-103 protein (20 µM). The 

polarisation values were correlated to movement of the protein in solution using the 

physical theory of Brownian motion by Perrin shown in chapter 3. 

 

2.5 Yeast methods 

2.5.1 Yeast transformation 

 The desired S. cerevisiae strain to transform was streaked onto YPD agar and 

incubated at 30°C for 2 days. Following incubation, cells were inoculated into 20 mL of 

YPD media and incubated overnight at 30°C with shaking (180 RPM). The following 

morning, 1 mL of the overnight culture was inoculated into 50 mLs of YPD media and 

left to incubate at 30°C for 5 hours. Cells were then harvested by centrifugation at 

3,000 xg for 2 minutes and washed with 30 mL of dH2O and 1 mL of 100 mM lithium 

acetate, before being resuspended in 1 mL of 100 mM lithium acetate at a ratio of 5:1 

(lithium acetate:cells). A transformation mix containing treated cells, the plasmid to be 
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transformed and a number of transformation reagents was prepared (Table 2.9). The 

transformation reaction was mixed thoroughly by vortex and incubated at 30°C for 30 

minutes and then 42°C for 30 minutes. Following heat-shock, cells were placed on ice 

for 5 minutes and then harvested by centrifugation at 6200 xg for 1 minute. Cells were 

resusupended in 600 µL of dH2O and 200 µl was plated onto the appropriate selective 

medium (in this study minimal meda minus leucine for LEU2 plasmid constructs). 

Plates were incubated for 2-3 days at 30°C.  

 

Component Volume (µL) 

Competent cells 50 

Polyethylene glycol 3350K (PEG) 240 

Lithium Acetate (1M) 36 

Salmon sperm DNA (1µg/µl) 50 

Plasmid DNA to be transformed (100ng/µl) 2 

Final volume 378 

 
Table 2.9 Typical yeast transformation mix. 
 

2.5.2 5-FOA plasmid shuffle 

 The 5-FOA plasmid shuffle technique was used to visualise the effects of 

mutations in target genes, RNA14 and RNA15. Initially, the target, URA and LEU 

genes are deleted from the haploid genome of S. cerevisiae. The target genes are 

essential and so are introduced on a URA3 plasmid to maintain cell viability. The 

mutated copy of the target gene can then be transformed on a LEU2 plasmid in order to 

visualise the effect of the mutation on phenotype. Selection for cells which have been 

successfully transformed with the mutated copy of the target gene is achieved through 

use of 5-fluoroorotic acid (5-FOA). This method works on the basis that cells which are 

URA+ are sensitive to 5-FOA and are not viable allowing effect of the mutation to be 

observed.  
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 Sensitivity to 5-FOA is due to the presence of the wild type copy of the target 

gene on a plasmid which contains the URA gene. This encodes the orotidine 

5’-phosphate decarboxylase enzyme (OMP-decarboxylase) which converts 5-FOA to 5-

flurouracil. This compound is toxic and results in cell death by inhibition of thymidylate 

synthase which is involved in the production of thymidine for DNA synthesis and 

repair. Therefore, cells where the URA plasmid is still present are no longer viable. 

Populations of cells where the URA plasmid has been lost due to asymmetric plasmid 

segregation during mitosis maybe viable if they possess the LEU2 plasmid containing 

the RNA15 gene only if the mutation itself does not result in loss of viability. Both the 

rna14Δ and rna15Δ haploid strains supported by wild type RNA14 and RNA15 on the 

pRS316-URA construct were supplied by Dr. J. Hedden (N.I.M.R). These strains were 

both transformed with LEU2 plasmids containing the desired RNA14 or RNA15 

construct as described in section 2.5.1. An individual colony was taken from the 

transformant plate and streaked onto minimal media minus leucine and incubated at 

30°C for 2-3 days. The 5-FOA assay was completed as follows; cells were taken from 

the minimal media and diluted into 1mL of dH2O. A further dilution of 30 µL into 1mL 

of dH2O was made to obtain the first point in the dilution series. Three serial dilutions 

of 1:10 ratio (cells:dH2O) were made from the first point in the series and 5 µL of each 

dilution was plated. Cells were plated onto minimal media containing 5-FOA (1mg/mL) 

and YPD. Plates were allowed to dry and incubated at 22°C for 5 days. To look for 

temperature sensitivity, a duplicate set of plates were incubated at 37°C (or other 

specified temperatures) for 2-3 days. 

 

2.5.3 Measuring S. cerevisiae cell density 

 For growth curves, RNA purification etc, the amount of yeast cells contained 

within a culture had to be measured accurately. In order to do this a haemocytometer 
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was used. Counting cells in this way is only practical if the density of the culture is 

between 1x105 and 5x106 cells/mL. Therefore, overnight cultures grown to saturation 

(~1x108) were diluted 100-fold. The heamocytomoter is made up of a number of grids 

measuring 1 mm2. Each grid is made up of 16 squares identical in size. Following 

addition of 100µl of cell culture, a coverslip was used to cover the cells. Since the 

distance between the coverslip and the grid is fixed at 100 µm, the volume measured is 

0.1 mm3. Therefore, subsequent counting of cells within the 16 square of the grid can be 

multiplied by 104 to convert the amount to cells/ml. 

 

2.5.4 Growth rate assays 

 Following transformation and 5-FOA selection of wild type and mutant Rna15 

constructs, a small clump of cells was streaked onto YPD agar and incubated for 2 days 

at 30ºC. A 20 mL culture of YPD was then inoculated and incubated at 30ºC, shaking 

(180 RPM). The following morning, the cell density of the overnight culture was 

measured by counting cells on a haemocytometer grid to determine the amount of cells 

within the culture (cells/mL). A 50 mL culture of fresh YPD was prepared and cells 

added from the overnight culture to achieve a cell density of 1 X 106 cells/mL. Cultures 

were incubated at 30ºC with shaking (180 RPM) for 10 hours and cell density was 

determined once every hour.  

 

2.5.5 Viable cell count 

 Following 5-FOA selection, Rna15 WT, Rna15 Y27A, R87A, K90E and Rna15 

Δ16-94 were streaked onto YPD-agar and incubated at 30°C for 2 days. A small amount 

of cells were picked and inoculated into 20mL of YPD broth + 2% glucose. Cultures 

were incubated overnight at 30°C with shaking (180 RPM). The following morning, 

cells were counted. Cells were diluted into 50 mLs of YPD to give a starting density of 
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1x106cells/ml and incubated at 30°C with shaking (180 RPM) until each culture reached 

a density of 1x107cells/ml. At this point, cultures were diluted to give a 3 point 100 fold 

dilution series of each mutant; 1x106, 1x104 and 1x102. Equal amounts from each point 

were plated onto minimal agar -Leucine in triplicate. Plates were incubated at 30°C for 

2-3 days. 

 

2.5.6 Western blotting 

 Strains transformed with HA tagged wild type and mutant Rna14 and Rna15 

proteins were employed in western blotting. A HA tag was added onto the C-terminal 

end of the protein to allow detection of the protein within the yeast cell lysate. Western 

blotting analysis was employed as a control experiment to distinguish whether mutation 

of either Rna14 and Rna15 resulted in unstable protein within the cell. A LEU construct 

containing the desired gene was transformed into the appropriate haploid strain. A 

single colony was picked following transformation and streaked onto -LEU minimal 

media and incubated at 30ºC for 2-3 days. Cells were inoculated into 20 mL of minimal 

media and incubated at 30ºC with shaking (180 RPM) overnight. The following 

morning 2 mL of overnight culture was diluted into 50 mL of minimal media and 

incubated at 30ºC with shaking (180 RPM) for 5 hours. Cells were then harvested by 

centrifugation at 3000 xg and washed with 1 mL PBS. Cells were then spun down to 

form a pellet and the supernatant disposed. Cells were then snap frozen in liquid 

nitrogen and held at -80ºC.  

 

 The following morning, cells were resuspended in 500 µL yeast lysis buffer 

(50 mM Tris-HCl pH 7.4, 250 mM NaCl, 0.5 mM EDTA). Nonidet P-40 was added to a 

final concentration of 0.2% v/v in order to support lysis and 5µL of 100X Halt Protease 

Inhibitor Cocktail (Thermo scientific) was added to inhibit protein degradation. To 
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achieve lysis, chilled 500µm diameter acid washed glass beads (Sigma) were added to 

each sample. Yeast cells were lyzed using a FastPrep-24 ribolyzer (MP Biomedicals) 

where cells were subjected to 4-5 10 second bursts with 2 minutes rests on ice in 

between. Whole cell extract was collected by centrifugation twice at 20, 000 xg for 15 

minutes at 4ºC. The protein concentration of the cleared lysate was determined using 

Bio-Rad protein assay following the manufacturers protocol (Bio-Rad), using an 

Eppendorf BioPhotometer (Eppendorf).  

 

 For Western blotting a sample of 2mg/mL lysate, 100 mM DTT and 1X SDS 

was prepared. Samples were then heated 95ºC for 5 minutes and subjected to SDS-

PAGE. After SDS-PAGE, the gel was incubated in Western Transfer buffer (25mM 

Tris pH 8.3, 194mM glycine, 10% methanol) for around 15 minutes. Proteins were 

transferred from the gel to an Immobilon-P Transfer membrane (Millipore) in a BioRad 

Trans-Blot Cell (100 V for 1 hour). Following protein transfer, the membrane was 

blocked overnight with 10mL 1X Western Blocking Reagent (Roche) at 4ºC with gentle 

agitation.  

 

 The following morning, the membrane was probed with 1:1000 dilution of 

mouse Anti-HA antibody (clone12CA5, Roche) for either 1 or 5 hours at room 

temperature. The primary antibody was diluted in 0.5X Western Blocking Reagent 

(Roche). After 1 hour, the membrane was washed 4 times for 10 minutes with 20 mLs 

of Tris buffered saline plus 0.1% Tween-20 (TBST) to remove any non-specifically 

bound antibody. The secondary antibody (peroxidase-conjugated goat anti-mouse 

antibody, Thermo Scientific) was diluted to a final conentration of 1:5000 in 0.5X 

Western Blocking Reagent. The membrane was incubated with the secondary antibody 

for 1 hour at room temperature. The membrane was washed as described previously. 
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SuperSignal West chemiluminescent substrate was applied in accordance with the 

manufacturer's protocol (Thermo Scientific) and protein bands were visualised using 

X-Ray film (Amersham Hyperfilm MP, GE Healthcare). Film was exposed for 2 

minutes 30 seconds and the films were developed using a Fujifilm FPM-3800 AD film 

processor.  

 

2.5.7 Preparation of total RNA  

 Deletion strains which were successfully transformed with the desired gene were 

streaked onto YPD agar following the 5-FOA assay. Plates were incubated for 2 days at 

30ºC. Cells were inoculated into 20 mL YPD and incubated overnight at 30ºC with 

shaking (180 RPM). The following morning cell density of the overnight culture was 

determined using a haemocytometer. Fresh 50 mL cultures were prepared with the 

appropriate amount of overnight culture to give a cell density of 2 X 106 cells/mL. The 

cultures were grown for 8 hours at 30ºC with shaking (180 RPM). Following 

incubation, cells were harvested by centrifugation at 3000xg and the cell pellet flash 

frozen in liquid nitrogen and stored at -80ºC overnight. The following day, total RNA 

was prepared from cells using the RiboPure Yeast Kit (Ambion) in accordance with the 

manufacturer's protocol. Purified RNA was aliquoted into 10 µL aliquots, flash frozen 

in liquid nitrogen and stored at -80ºC. The concentration of the RNA samples was 

measured using a NanoDrop spectrophotometer (ThermoScientific) and the purity of the 

sample was analysed using the A260:A280 ratio (a high purity sample has a A260:A280 

ratio of 1.8 to 2.1). 

 

2.5.8 Analysis of RNA quality 

 Purified RNA was analysed for degradation using an Agilent 2100 bioanalyser 

384 (Agilent Technologies). This method is an electrophoretic assay based on the 
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principles of traditional gel electrophoresis but in chip format. Each chip contains 12 

wells and an additional well for a molecular size marker. Preparation of the chip 

involves filling the wells with a sieving polymer and a fluorescent dye. The sieving 

polymer separates the sample in question by size while the fluorescent dye integrates 

with the RNA sample so that a fluorescent signal is emitted upon excitation by a laser. 

Once the wells and channels of the chip are filled and the RNA sample in question has 

been added, the chip becomes an integrated electrical circuit where pin like electrodes 

fit into the wells present on the chip. The eukaryote total RNA Nano samples 2100 

expert software (Agilent Technologies) plots fluorescence intensity versus molecular 

size (nt) and produces an electrogram for each sample (appendices). For RNA analysis, 

intact RNA is demonstrated by two distinct peaks and bands that are representative of 

28S and 18S ribosomal RNA. This was demonstrated in wild type and Rna15 mutant 

RNA samples purified from S. cerevisiae (Appendix 7.4). 

 

2.5.9 Quantitative real time PCR  

 Quantitative real time PCR (qPCR) is a technique that is used to quantify 

amount of DNA target within a sample. qPCR experiments employing reverse 

transcribed RNA (qRT-PCR) provide a direct measurement of the amount of a target 

RNA within a sample allowing analysis of DNA expression. The amount of a target is 

quantified by monitoring the amplification of the sequence using a fluorescence reporter 

system. The experiments presented in this study were completed using the 5' nuclease 

(TaqMan) assay that employs hydrolysis probe technology and utilises the 5'-3' 

exonuclease activity of Thermus aquaticus DNA polymerase. During the annealing 

step, a dual labelled hydrolysis probe hybridises to its complementary sequence within 

the target. The probe maintains a fluorescent marker present on the 5' end which is near 

a non-fluorescent quencher present on the 3' end of the probe. Prior to amplification, 
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excitation which leads to emission of fluorescence by the fluorescent marker is 

quenched due to the close proximity of the 3' end quencher. Amplification by the DNA 

polymerase in the 5'->3' direction from the forward primer results in cleavage of the 

fluorescent marker from the probe. This frees the probe resulting in emission of 

fluorescence and allowing detection of the fluorescent signal illustrated in Figure 2.1. 

 

 
Figure 2.1 Principle of qRT-PCR. 1. The forward and reverse primers (green) bind to the sense strand 

(blue) and antisense strand (red) respectively. The TaqMan probe (purple) also hybridises to its target 

sequence. 2. The DNA polymerase amplifies both strands. 3. Amplification of the sense strand results in 

degradation of the probe due to the 5’->3’ exonuclease activity of the polymerase. This releases the 5’ 

fluorophore (yellow star) from the quencher (grey sphere) resulting in a fluorescence emission upon 

excitation. 4. The thermal cycler can then quantify the fluorescent signal resulting in a direct correlation 

with the amount of cDNA.  
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 The most useful measurement for quantification of a target is determination of 

the threshold cycle (CT). This is the point at which a significant increase in fluorescence 

signal is detected (in the exponential phase of PCR). There are different methods that 

can be used to derive absolute or relative quantities of target from CT values. These are 

detailed in Applied Biosystems User Bulletin #2) (298). In the experiment presented in 

this study, data were analysed to generate relative amounts by using the standard curve 

method. This involves the inclusion of a RNA or DNA dilution series of known quantity 

to generate a calibration curve allowing a correlation between fluorescence signal and 

mRNA quantity. Following standard curve analysis, relative quantification was 

determined by firstly normalising to a data set unbiased by the presence of the mutation 

(SNR52) and secondly dividing against quantity of a calibrator to generate a final target 

quantity expressed as an n-fold difference to the calibrator (ie mutant and wild type). 

 

 qRT-PCR experiments were carried out on an Applied Biosystems 7500 Fast 

Real Time PCR system. Primers and probes employed were designed using the Primer 

Express 2.0 software (Applied Biosystems) and purchased from Applied Biosystems. 

Primer and probe sequences can be found in appendices. All  target amplicons were 

detected by the 5' nuclease (TaqMan) assay using 5'-6-carboxyfluorescein (6-FAM) 3' 

minor groove binder (MGB) labelled probes and TaqMan One Step RT PCR Master 

Mix reagents kit (Applied Biosystems). Reactions were set up on ice in 0.1 mL 

MicroAmp Fast Optical 96-Well Reaction Plates (Applied Biosystems). The reaction 

setup used is described in Table 2.10 and the cycling parameters are presented in Table 

2.11. Each target sequence was detected in triplicate and each plate was repeated three 

times (i.e. quantity of each target was measured 9 times). An eight point, 2 fold dilution 

series of S. cerevisiae genomic DNA (Stratagene) ranging from 250ng-1.95ng was used 

to generate a standard curve required for quantification of cDNA amount in both targets 
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and controls. The reaction threshold for each target was generated automatically by the 

7500v2.0.5 analysis software from Applied Biosystems. 

 

Reagent Volume (µL) 

Master Mix (2X) 12.5 

Reverse transcriptase (40X) 0.625 

Forward primer (10µM) 2.25 

Reverse primer (10µM) 2.25 

TaqMan probe (10µM) 0.625 
RNA template 20ng/µl 
or 
Genomic DNA (serial dilution) 

5 

dH2O (RNase free) 1.75 

Total 25 

 
Table 2.10 Typical reaction setup for a qRT-PCR experiment.  

 

Step Temperature Time 

1 48ºC (Reverse transcription) 15 minutes 

2 95ºC (DNA polymerase activation) 10 minutes 

3 95ºC (melting) 15 seconds 

4 60ºC (annealing/extension) 1 minute 

5 Repeat 3-4, 40 cycles  

 
Table 2.11 Thermal cycling parameters used in a typical qRT-PCR reaction. These conditions are 

identical to those specified by the Applied Biosystems 7500 Fast Real-Time PCR system software v2.0.5 

for a standard one step amplification from an RNA template.  

 

 Changes in amount of mRNA and therefore changes in expression were 

measured from five genes (TDH2, YPT1, ACT1, CYC1 and ADH1) in both wild type 

and Rna15 RRM mutant S. cerevisiae strains. Primers and probes were designed to 

hybridise and amplify within the open-reading frame or within the 3' UTR prior to the 

poly(A) site. Data were analysed using the standard curve method and quantities of 

mutant cDNA were expressed relative to wild type cDNA quantity. 
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2.5.10 RNA sequencing – library preparation and sequencing 

 RNA sequencing experiments are discussed in detail in chapter 4. RNA was 

purified from Rna15 wild type and Y27A, Y27A/R87A/K90E, Δ16-94 mutants. Prior to 

library preparation, RNA samples were analysed using the bioanalyser following the 

manufacturers' instructions. Ribosomal RNA (rRNA) was removed from RNA using the 

RiboZero™ Magnetic Gold kit (Illumina) following the manufacturer's protocol. The 

RNA sequencing library was generated using the ScriptSeq™ v2 RNA-Seq Library 

Preparation kit (Illumina) following the manufacturer's protocol. Sequencing was 

carried out on a Illumina GAIIx as a single read 40 cycles run. The resulting fast-Q files 

were generated using Illumina CASAVA 1.8.2. 
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3.1 Introduction and Overview  

 Rna15 binds RNA through an RNA recognition motif engaging the CF1A 

complex onto the 3' UTR to direct polyadenylation. The aim of this chapter is to 

characterise the mechanism of Rna15-RNA binding and identify the residues 

responsible. Previous NMR experiments revealed an α-helical structure formed by 

residues 96-101 of Rna15 packs against the RRM to occlude RNA binding sites II and 

III. Upon RNA binding this α-helical structure is displaced, a feature that is also 

observed in human Rna15 homologue, CstF-64 (140,141). This observation 

demonstrates a possible mechanism for regulation of Rna15-RNA binding.   

 The crystal structure of the free Rna15 RRM forms a four stranded β-sheet 

backed by two α-helices (141). The crystal structure bound to RNA revealed two sites 

were able to direct RNA binding. The first, a binding pocket formed by the side groups 

of Y27 and R87 and a second, formed by the side group of Y21 (141). Fluorescence 

spectroscopy experiments revealed that mutation of these residues results in a loss in 

RNA binding affinity. Additional NMR spectroscopy demonstrated that residues over 

the face of the RRM were also involved in binding RNA including those observed in the 

crystal structure (141). However, the mechanism by which these residues bind RNA and 

also the extent to which they are involved in RNA binding remains unknown.  

 This chapter aims to explore in further detail Rna15-RNA binding properties 

discussed above. The role of the C-terminal tail in RNA association and the effect of 

residues present on the surface of the RRM on RNA binding affinity were investigated 

using fluorescence spectroscopy.  
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3.2 Analysis of Rna15, Rna15 (2-94) and Rna15 (2-103) RNA binding in vitro 

3.2.1 Cloning Rna15 in vitro constructs 

 A full length Rna15 construct and two shorter constructs of Rna15 comprising 

residues 2-94 and residues 2-103 were prepared. The Rna15 (2-94) construct consisted 

of the disordered N-terminal region and the RRM whilst the 2-103 construct 

additionally included the C-terminal tail. Rna15, Rna15 (2-94) and Rna15 (2-103) were 

amplified from S. cerevisiae genomic DNA (invitrogen) by PCR employing ligation 

independent cloning (LIC) adapted primers (see section 2.2.12). Constructs were cloned 

into vector pET52b so as to include an N-terminal Streptavidin tag, cleavable via a 3C 

protease site immediately downstream. Constructs were transformed into E. coli strain 

Novablue (Novagen) and clones verified by DNA sequencing.  

 

3.2.2 Expression and purification of Rna15 in vitro constructs 

 Rna15, Rna15 (2-94) and Rna15 (2-103) were expressed as described in section 

2.3.1. Initial expression tests determined that optimum expression in all cases was 

achieved by induction at 25ºC overnight. Initial purification of Rna15 employed 

streptactin affinity chromatography. The protein successfully bound to the streptactin 

column through interaction with the N-terminal strep II tag. Due to high expression not 

all protein was captured and some is detected in the flowthrough (Figure 3.1 A, FT). A 

sample of the eluted protein was taken for analysis (Figure 3.1 A, E). The remainder of 

the protein sample was dialysed overnight in dialysis buffer with 3C protease to cleave 

the strep II tag. The cleaved protein was then applied to a size exclusion 

chromatography column for final purification (Figure 3.1 A, Cl). Following elution 

from the column, peak fractions were examined by SDS-PAGE. Peak fractions were 
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pooled and concentrated using Vivaspin concentrators with a molecular weight cut-off 

of 20K (Figure 3.1 A, 1-4).    

 Rna15 (2-94) and (2-103) were purified using the same method. Rna15 (2-94) 

was purified by exploiting the strep II tag present on the N-terminal end of the protein. 

However, high level of overexpression meant that not all of the protein was captured 

and some was detected in the flowthrough (Figure 3.1 B, FT). Rna15 (2-94) protein was 

eluted from the column and dialysed overnight with 3C protease in order to cleave the 

strep II tag. Following 3C cleavage, the protein was applied to a size exclusion column 

for final purification (Figure 3.1 B, Cl). The band is shifted slightly when compared to 

pre-cleaved Rna15 (2-94) protein (Figure 3.1 B, E), demonstrating the strep II tag has 

been successfully cleaved. Peak fractions eluted from the size exclusion column were 

pooled and concentrated using a Vivaspin concentrator with a 3 kDa molecular weight 

cut off (Figure 3.1 B, 1-4).  
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Figure 3.1 Purification of Rna15 and Rna15 (2-94) protein after overexpression in E. coli. Each 

stage of purification was analysed. A. SDS-PAGE analysis of Rna15 purification: M, Marker (SeeBlue® 

Plus 2 by life technologies); FT, Flow-through from Streptactin affinity column; E, Elution faction; Cl, 

cleaved protein. Peak fractions pooled from size exclusion chromatography are shown in lanes 1-4. B. 

SDS-PAGE analysis of Rna15 (2-94).  
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3.2.3 Principles of fluorescence spectroscopy 

 Fluorescence spectroscopy was selected to analyse RNA binding affinity as it is 

a sensitive technique and therefore does not require a large amount of working material. 

Fluorescence spectroscopy requires fluorescent markers called fluorophores that 

become excited when a photon of the appropriate energy is absorbed. Absorption results 

in an electronic transition from the ground state to a higher energy excited state. This 

excess energy is then released so that the electrons of the fluorophore return to the 

lowest vibratrional level of the first excited state. This process is illustrated in the 

Jablonski diagram (Figure 3.2). This release of energy coincides with the release of a 

photon in the form of fluorescence. The fluorophore is extremely sensitive to changes in 

its environment. Experimental parameters such as temperature and solvent polarity can 

affect the emitted fluorescence signal as they can affect the way in which energy is lost 

upon excitation. Therefore, fluorescence spectra need to be collected using accurate 

temperature control and appropriate buffer conditions. This sensitivity of fluorophores 

to change in their environment is exploited in binding experiments and can be used to 

determine binding affinities. In the experiments presented in this study, a 6 nucleotide 

RNA, 5' UGUUGU 3' (ThermoScientific) labelled at the 5' terminus with the 

fluorophore tetrachlorofluoroscein (TET) was employed. Addition of Rna15 protein 

results in formation of a TET-RNA-protein complex altering the environment of the 

fluorophore and affecting the emission spectra recorded following excitation. In the case 

of fluorescence titrations presented in this study, a red shift was observed upon addition 

of Rna15 protein. Data were fit to a 1:1 binding model where one oligonucleotide binds 

to one Rna15 monomer. All titrations were repeated three times and the average and 

standard deviation of the mean calculated.  
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Figure 3.2 Jablonski diagram. Absorption of a photon due to excitation results in an electronic 

transition from the ground energy level (S0) to an excited energy state (S1, S2). Excess energy is lost via 

internal conversion until the lowest vibrational state of the excited state is reached (S1). A photon is them 

emitted as fluorescence to return the specices to S0. The species may return to one of multiple vibrational 

states of S0. 
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3.2.4 Fluorescence Spectroscopy of Rna15, Rna15 (2-94) and Rna15 (2-103) 

 The 5' UGUUGU 3' sequence was chosen as previously published data showed 

that a Rna15 construct composed of the RRM, tail and part of the linker (residues 16-

111) bound this RNA oligonucleotide with a Kd 4.8µM (139). Fluorescence 

spectroscopy was used to characterise the role of the C-terminal region in RNA binding 

by determining their effect on RNA binding affinity. 

 Analysis of fluorescence titrations revealed that association with the 

oligonucleotide was similar for all constructs. The full length Rna15 construct and the 

Rna15 (2-103) construct both bound with a Kd of 6.4µM ± 2.1µM and ± 0.5µM 

respectively (Table 3.1). The similar binding affinity of both these constructs 

demonstrates RNA binding is mediated wholly by the RRM present between 16-94 but 

does not rule out the possibility that the N-terminal region and C-terminal tail (residues 

2-16 and 94-103 respectively) may affect RNA binding indirectly either by regulating 

binding or stabilising the RNA-RRM interaction. However, these experiments 

demonstrate residues present C-terminal to the tail of Rna15 may not exert any 

influence on RNA binding. In the construct where the tail domain is excluded, construct 

Rna15 (2-94), the Kd is 7.6µM ± 2.6µM (Table 3.1) which is very similar to the 

observed Kd when the tail region is present (Rna15 2-103 Kd of 6.4µM ± 0.5µM). This 

result suggests that the tail does not exert any major regulatory role in binding affinity 

that results in an effect on Rna15 binding affinity.   

  Following characterisation of RNA binding, Rna15 (2-103) was chosen as a 

template for a mutagenic analysis of specific residues within the RRM for RNA binding 

on the basis that the fluorescence titrations performed yielded the smallest error in RNA 

binding.   

  

122 
 



Chapter 3   Analysis of Rna15-RNA binding in vitro 

 
Table 3.1 Fluorescence spectroscopy analysis of Rna15 deletion constructs. Dissociation constants of 

Rna15 deletion constructs when titrated with RNA 5'-UGUUGU-3'. Measured values are the average of 

three independent titrations and their standard deviation of the mean calculated. 

 

3.3 Rna15-RNA interactions - Investigation of residues that direct RNA binding 

 The crystal structure of the RRM of Rna15 bound to a GU dinucleotide revealed 

key residues involved in RNA binding, Y27, R87, S24 and Y21. These residues have 

been identified in several studies as critical for RNA binding (139). However, additional 

residues present on the surface of the RRM were implicated in RNA binding by NMR 

spectroscopy experiments employing the 5'UGUUGU3' oligonucleotide (141). The 

15N-1H HSQC spectrum of Rna15 16-111 was recorded at increasing stoichiometric 

concentrations of the ribo-oligonucleotide. Chemical shift peaks corresponding to Y61 

and F63 were affected by introduction of RNA and have been implicated in RNA 

binding in other studies (139,141). These neighbouring aromatic residues present a 

potential third site for binding whereby a nucleotide could stack against the aromatic 

ring of both Y61 and F63 as observed at site I and site II. The free structure of the RRM 

also highlighted the presence of lysine residues present on the surface that could 

potentially interact with the RNA oligonucleotide through charge interactions mediated 

by the side chain. NMR spectroscopy identified chemical shift perturbations upon 

introduction of RNA in K59 which is present near the potential third site (141). 

Additional NMR studies revealed that K90 makes contacts with the phosphate group of 

a bound nucleotide and K48 was present in close proximity to the RNA (142). As they 
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are accessible, charged residues present on the surface of the RRM and therefore, 

potentially important for RNA binding they were included in mutagenesis studies.  

 

3.3.1 Cloning, expression and purification of Rna15 (2-103) point mutations  

Using the Rna15 (2-103) construct as a template, point mutations were 

introduced by site directed mutagenesis at the residues detailed above. The resultant 

mutant Rna15 (2-103) constructs were then expressed and purified as for the wild type 

protein. A typical purification is demonstrated in Figure 3.3. Following lysis, a sample 

of cleared lysate was analysed by SDS-PAGE (Figure 3.3 A, S). An intense band of 

approximately 10kDa is clearly visible. This intense band is missing from the unbound 

fraction eluted from the streptavidin column suggesting that this represents the protein 

of interest (Figure 3.3 A, FT). Samples were removed for analysis by SDS-PAGE 

following elution and 3C protease treatment to remove the affinity tag (Figure 3.3, lanes 

E and Cl respectively). The slight increase in protein mobility (Figure 3.3 A, E-Cl) 

demonstrates that the tag has been successfully cleaved. Proteins were then applied to a 

size exclusion column for further purification. A sample of the peak fractions were 

taken for analysis and then pooled and concentrated using Vivaspin concentrators with a 

3kDa molecular weight cut-off (Figure 3.3 A, 1-4). An example of a typical size 

exclusion chromatography experiment is shown in Figure 3.3 B. The second peak 

corresponds to that of the Rna15 2-103 protein whilst the third peak corresponds to the 

Strep II tag. Indeed, when a sample of this peak is analysed by SDS-PAGE a faint low 

molecular band is observed corresponding to the streptavidin tag which is just over 

2kDa in this construct. The first peak corresponds to the void volume. A sample of this 

peak was analysed by SDS-PAGE but no protein species were observed using 

coomassie staining which suggests that this peak consists of nucleic acids. The 
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A260/A280 ratio of the purified protein was ~0.5 demonstrating no significant nucleic 

acid contamination. All mutant constructs were expressed and purified in exactly the 

same way. 

 
Figure 3.3 Purification of Rna15 (2-103) mutant constructs. A. SDS analysis of Rna15 (2-103) 

purification. B. Size exclusion chromatography profile demonstrating a typical Rna15 (2-103) mutant 

purification. Peak no. 1 is the void volume, peak no.2 is the target protein and peak no.3 is the cleaved 

strep II tag. 
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3.3.2 Circular dichroism and mass spectroscopy  

 In order to determine whether point mutations made in Rna15 (2-103) affected 

the secondary structure of the protein, circular dichroism (CD) was performed. This 

method measures the differentially absorbed left- and right- handed circularly polarised 

light that is sensitive to the conformation of protein structure. As CD exploits the 

absorption properties of a protein, the chromophores that contribute to an absorption 

spectrum are identical to those that contribute to a CD spectrum. CD signal is only 

detected when a molecule is achiral so proteins are ideal candidates as backbone of the 

protein provides a plane of symmetry.  

 The tertiary and sometimes quaternary structure of proteins can be derived from 

the near-UV CD spectrum as Tryphtophan, Tyrosine and Phenylalanine absorb between 

wavelengths 310-255 nm. CD absorption in the far-UV (below 250nm) reveals the 

secondary structure of a protein, for example α-helical, β-sheet, β-turn or disordered. 

The structural results are low resolution but are extremely sensitive to differences in 

conformation of the protein. Usually α-helical proteins produce a intense negative signal 

with two peaks at 208 and 222nm and a strong positive signal between wavelengths 

191-193nm. Proteins that are predominantly formed of β-sheets or β-turns exhibit a 

negative signal between 210-225nm and a strong positive band between 190-200 nm. 

 Therefore, CD was used to determine whether mutation of residues within the 

RRM of Rna15 had any effect on the structural integrity of the protein when compared 

to wild type Rna15 (2-103). Mutations were selected on the basis of their location on 

the surface of the crystal structure of the RRM so they were not expected to alter the 

conformation of the four stranded β-sheet backed by two α-helices structure of the 

RRM. CD spectra were recorded for wild type Rna15 (2-103) and all mutant 

Rna15 (2-103) proteins (Appendix 7.2). The spectra of all Rna15 (2-103) mutant 

126 
 



Chapter 3   Analysis of Rna15-RNA binding in vitro 

proteins were identical to that of the wild type. The proteins had significant secondary 

structure demonstrated by the absence of a strong negative signal between wavelengths 

195-200nm and absence of a weak signal between 215 and 230nm. Rna15 (2-103) is 

composed both of β-sheets and α-helices with a small amount (residues 2-16) being 

highly disordered. In proteins with high α-helical and β-sheet structures, the α-helical 

signal of the protein tends to be dominant over the signal produced by the β-sheet 

structural component. CD spectra for proteins like Rna15 (2-103) would normally 

produce spectra with a signal at either 222, 208 or between 190-195nm. Often an 

additional signal may be shown between 210 and 220nm because of the overlapping α-

helical and β-sheet components. As expected, the CD spectra for all were extremely 

similar and revealed a high negative signal around 210nm demonstrating a 

predominantly α-helical and β-sheet structure as expected given the crystal structure of 

the RRM of Rna15 (Figure 3.4). Therefore, we can conclude that mutations presented in 

this study do not affect the conformation of the RRM structure.    

 In addition to CD, the molecular weight of all Rna15 (2-103) proteins, including 

wild type, were measured using mass spectrometry (Appendix 7.3). The expected 

molecular weight was calculated for all proteins and compared with the derived 

molecular weights determined by mass spectrometry. These results combined with 

sequencing of all constructs adequately demonstrate that mutagenesis of residues within 

the RRM of Rna15 was successful. A thermal shift assay was performed on 

Rna15 (2-103) and Y27A and demonstrated that both maintained observed secondary 

structure up to 60°C. 
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Figure 3.4 Circular Dichroism of Rna15 (2-103) and mutants Y27A and K90E. The above CD 

spectra demonstrate identical plots for Rna15 2-103 (black), Y27A (red) and K90E (blue). Plots are 

representative of all mutant constructs. Complete spectra of all constructs can be found in appendices.  
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3.3.3 Analysis of residues in the RRM that direct RNA binding 

 Fluorescence titrations were carried out in triplicate for each mutant and the 

dissociation constant and the standard deviation of the mean calculated. The 

5'-TET-UGUUGU-3' ribo-oligonucleotide was used to provide a direct comparison to 

wild type RNA binding affinity demonstrated in previous experiments. Representative 

emission spectra from a single S24T fluorescence spectroscopy experiment are shown 

(Figure 3.5). The mutants prepared can be divided into three groups centred on site 

I/site II, site III and the surface lysines and will be considered separately.  

 

 

 
Figure 3.5 Measured emission spectra of mutant S24T. The above spectra are typical of a fluorescence 

titration. The fluorescence signal decreased upon addition of protein. The initial fluorescence emitted 

prior to addition of protein is represented by the blue plot. The last scan measured in excess of S24T 

protein is represented by the red plot.  
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3.3.3.1 Mutational analysis of residues involved in site I and II RNA binding 

 Residues R87, Y27, S24 and Y21 were mutated by either conservative or 

non-conservative changes at each position (Table 3.1). In each case, the 

non-conservative mutation was to alanine as the CH3 side chain would be expected to 

disrupt the polar or charged interactions mediated by the wild type side chains to the 

RNA oligonucleotide. Furthermore, the side chain of alanine is small and does not 

actively interact with other residues and should not, therefore, affect binding of RNA 

mediated by proximal residues. As such any effects on RNA binding can be directly 

attributed to the residue in question. The conservative mutations were chosen to 

determine whether addition of a chemically similar amino acid altered binding affinity.  

 Site I binding is mediated by Y27 and R87 which together form the walls of the 

binding pocket through the aromatic side chain of Y27 and the planar side chain of R87 

which allows stacking of both a G and U nucleotide. Unsurprisingly, mutation R87A 

results in a large decrease in binding affinity for the oligonucleotide resulting in a 

dissociation constant of 43 µM ± 10.8 µM (Figure 3.6). The loss of the planar side chain 

likely leads to disruption of the wall of the binding pocket preventing stacking of the 

nucleotide. Also, the loss of the stacking interaction may indirectly lead to loss of the 

Watson-Crick hydrogen bonding also observed at this site since the loss of one side of 

the pocket wall may mean that the base of the nucleotide cannot make the necessary 

hydrogen bonds. The conservative mutation R87K also displays a decrease in RNA 

binding with a dissociation constant of 33.8 µM ± 9.6 µM (Figure 3.6). This infers that 

the role of R87 is likely structural and loss of planarity in the R87K mutant may impede 

stacking. This supports the hypothesis that R87 interacts with the RNA predominantly 

through the stacking interaction with the side chain as observed in the crystal structure.   
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 Mutation of Y27 results in a decrease in RNA binding. Alanine substitution 

results in a more than 10 fold reduction in binding (Kd 76.7µM ± 16µM), presumably 

from loss of the stacking interactions, resulting in a overall decrease in stability of the 

binding pocket (Figure 3.6). Loss of the stacking at one side of the binding pocket in 

Y27A may also affect the orientation of the bound nucleotide and therefore lead to loss 

of the hydrogen bonding interactions demonstrated in the crystal structure.  

Interestingly, mutation Y27F demonstrates a slight increase in RNA binding 

affinity resulting in a dissociation constant of 4.3 µM ± 0.2 µM (Figure 3.6). This is 

likely due to composition of the aromatic side chain of phenylalanine. The delocalised 

electron arrangement present in the aromatic side chain due to the absence of the 

tyrosine hydroxyl group may facilitate improved stacking against the base of the 

nucleotide. S24 was selected for mutation as hydrogen bonding between its side chain 

hydroxyl group and the side chain of R87 acts to hold R87 in place in order to form the 

binding pocket. Unexpectedly, the conservative mutation of S24T results in a larger 

decrease in binding affinity than the non-conservative mutation S24A, 18.1µM ± 2.1µM 

and 8.8µM ± 0.5µM respectively. It is possible that backbone interactions made by 

S24A are adequate to hold R87 in the correct orientation to stack against the nucleotide. 

Indeed, it is not as effective as the wild type demonstrating that hydrogen bonding 

between the hydroxyl present in the side chain of S24 is required to maintain wild type 

RNA binding affinity. The decrease in binding affinity observed in S24T is surprising 

as like serine, theronine is both polar and contains a hydroxyl group. It is possible that 

the slight increase in overall size of the side chain may affect the interaction with R87 

and that the orientation and position of the hydroxyl group present in threonine does not 

adequately facilitate hydrogen bonding. 
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Table 3.2 Fluoresence spectroscopy analysis of Rna15 (2-103) site I and site II mutants. Titrations 

were repeated three times for each mutant and the average of these along with the standard deviation of 

the mean is displayed in the above table. 

. 
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Figure 3.6 Determination of Kd values for Rna15 (2-103), Y27F, Y27A, R87K and R87A RNA 

binding using fluorescence spectroscopy. Protein was titrated into labelled RNA and the change in 

signal observed. The symbols represent the experimental data and the solid lines are the fit to the data 

using a single site binding model. Wild type-RNA binding is represented by black lines and symbols 

while mutant-RNA binding is represented by red lines and symbols.  
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 In conclusion, mutational analysis of the site I binding pocket reveals that both 

R87 and Y27 are essential for RNA binding. Mutation of S24 to alanine and threonine 

results in slight decrease in affinity. The crystal structure revealed that both the 

backbone and side chain hydroxyl groups interact with R87 to hold it in the correct 

orientation to stack against the nucleotide. It is apparent from the above experiments 

that this interaction although important is not essential to maintain RNA binding. This is 

possibly due to interactions between the backbone hydroxyl of threonine and R87 which 

may act to hold R87 in the correct orientation in the absence of wild type S24. 

Therefore, although mutational analysis implies S24 interaction is not essential, 

mutation S24A and S24T results in a moderate decrease in binding demonstrating its 

requirement for optimum RNA binding.      

 From the crystal structure, the site II binding pocket is predominately formed by 

a stacking interaction between Y21 and the base of a guanine nucleotide. Similar to 

Y27F in site I, Y21F also produces an increase in binding affinity of the same order of 

magnitude (Kd 3.1µM ± 0.9µM). Again this is likely due to the altered composition of 

the aromatic phenylalanine which has a continuous arrangement of delocalised electrons 

without the presence of a hydroxyl group as observed in tyrosine. This could lead to an 

increase in stability in the stacking interaction. Mutation Y21A leads to a more than 4-

fold decrease in RNA binding resulting in a dissociation constant of 28µM  ± 2.1µM. 

This is more than likely due to loss of the base stacking interaction. These results 

demonstrate that Y21 is important but not as essential to RNA binding as R87 and Y27, 

possibly due to the lack of extensive hydrogen bond interactions as seen in site I.  

134 
 



Chapter 3   Analysis of Rna15-RNA binding in vitro 

3.3.3.2. Mutational analysis of residues involved in site III RNA binding 

 In addition to residues in sites I and II other residues are thought to be involved 

in RNA binding due to their chemical shift movement during NMR RNA titrations. 

This revealed that residues present on the surface of the entire RRM were affected by 

introduction of RNA and highlighted a possible third stacking interaction site present at 

residues Y61 and Y63. Taking into account this evidence and the structure of the RRM, 

residues were selected for mutational analysis on the basis of position within the RRM 

and chemical features which may facilitate RNA binding. The positioning of the two 

aromatic rings of Y61 and F63 on the surface of the RRM could potentially form two 

sides of a binding pocket as observed in site I. To investigate RNA binding at this 

position both Y61 and F63 were mutated in point and double mutation constructs (Table 

3.3). In the point mutation constructs Y61 was mutated to phenylalanine, alanine and 

serine. Mutation Y61S did not affect RNA binding in the Rna15 (2-103) construct as the 

measured Kd was similar to that of wild type, 8.7µM ± 1.2µM. Mutation Y61A resulted 

in a two-fold decrease in RNA binding with a measured Kd of 11.7 µM ± 0.6 µM. A 

slight increase in RNA binding affinity is observed in the Y61F mutation, 2.5 µM  ± 

1 µM the same order of magnitude as the site I Y27F mutation. The increased binding 

affinity in both the Y27F and Y61F suggest that a stacking interaction also exists at site 

III. The apparent lack of effect on the RNA binding affinity in the Y61 mutants suggests 

that although involved, it is not essential for RNA binding. A similar pattern was also 

observed in the F63 point mutations. Conservative mutation F63Y had no apparent 

affect in RNA binding (Kd 7.4µM ± 1.5µM) whilst non-conservative mutation to 

alanine only produced a slight decrease in RNA binding affinity upon comparison with 

wild type (Kd 15.4µM ± 3.9µM). A more pronounced affect is observed in F63S where 

the Kd is 21.9µM  ± 8.6µM demonstrating a larger decrease in RNA binding affinity. 

Point mutations at both Y61 and F63 do not display a dramatic reduction in RNA 
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binding as seen in the mutational analysis of site I. Therefore, both Y61 and F63 

mutations were combined in double mutation constructs in order to determine whether 

mutation of both resulted in significant loss of RNA binding affinity. Mutations 

Y61F/F63Y and Y61S/F63S displayed similar RNA binding affinities with dissociation 

constants of 22.3 µM ± 2 µM and 17.6 µM ±1.1 µM respectively. The decrease in 

binding in the conservative Y61F/F63Y double mutation is surprising as the Y61F and 

F63Y single mutations had such minimal effect. It is possible that an effect in binding is 

only observed when both are mutated because both Y61 and F63 may act in a redundant 

manner to stack against the nucleotide base. The Y61S/F63S RNA binding affinity (Kd 

17.6 µM ± 1.1 µM) suggests that the presence of serine at both positions does slightly 

reduce binding affinity for the RNA upon comparison with wild type RNA binding 

affinity. However, the presence of the double mutation does not result in a significantly 

larger decrease in binding affinity than that observed in the Y61S and F63S point 

mutations where the dissociation constant measured was 8.7 µM ± 1.2 µM and 21.9 µM 

± 8.6 µM respectively. Since mutation F63S affects Rna15 2-103 binding affinity it is 

not surprising that the Kd presented in the double is comparable to that displayed in this 

mutant. These results seem to suggest that mutation Y61S is tolerated while F63S is not. 

This is perhaps due to the orientation of the serine side chains at either position where at 

position 61 they are able to interact in some way with the nucleotide to support RNA 

binding but at position 63 the side chain of serine obstructs interaction with the RNA. 

However, the double mutation Y61A/F63A resulted in a 6-fold reduction in RNA 

binding affinity (Kd of 36.2 µM ± 4.7 µM. The decrease in RNA binding observed is 

comparable to those seen in single mutations of site I. The decrease in binding 

reinforces the NMR data suggesting that these residues are also important for RNA 

binding. In the crystal structure, the side chain of R87 was shown to stack against the 

base of the nucleotide; moreover, interactions observed at site II were also 
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predominantly stacking interactions mediated by Y21. Mutation at site III results in 

reduction in binding affinity comparable to that observed in the R87 and Y21 mutants. 

Therefore, it is possible that nucleotide binding at site III is mediated by a stacking 

interaction between the base of the nucleotide and the aromatic rings of Y61 and F63. 

However, structural evidence is required to provide an adequate argument of the nature 

of site III mediated RNA binding. 

 

 
Table 3.3 Fluorescence spectroscopy analysis of Rna15 (2-103) mutants in site III.  

 

3.3.3.3 Mutational analysis of surface lysine residues 

 In addition to the three discete RNA binding sites, the effect of RRM surface 

lysine residues on RNA binding was analysed by mutagenesis. Positively charged 

surface lysines, K48, K59 and K90, were selected for mutagenesis due to their surface 

accessibility and proximity to the three mapped binding sites.  

 Lysines, K90 and K48 were mutated to alanine, arginine and glutamate whilst 

K59 was mutated to arginine and glutamate (Table 3.4). There is no K59A mutant as 

site directed mutagenesis failed to generate a positive clone after several attempts. The 
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aim of mutational analysis was to determine whether these lysine residues formed 

charge-charge interactions with the RNA. For K48R a slight increase in RNA binding 

affinity is observed (Kd is 3.7 µM ± 0.61 µM). This is unsurprising given that arginine 

has two NH2 groups present within the side chain which may facilitate a stronger 

electrostatic interaction with the negatively charged RNA backbone. However, K48E 

and K48A do not result in any effect on RNA binding affinity. The mutation to alanine 

signifies a complete loss in charge whilst mutation to glutamate represents a charge 

reversal to a negatively charged amino acid. The resulting dissociation constant for 

K48E is 7µM ± 0.2µM and for K48A is 6.6µM ± 3.3µM and statistically 

indistinguishable from the measured wild type dissociation constant. The wild type 

binding demonstrated in the K48A and K48E mutants demonstrates that K48 does not 

play a significant role in RNA binding. 

 

 Residue K59 was also mutated to arginine and glutamate due to its position near 

to site III. As with K48R, K59R resulted in a slight increase in RNA binding affinity 

(Kd 3.3µM ± 0.7µM) and again this is likely due to the increase in positive charge 

leading to an increased non-specific attraction for the negatively charged RNA. 

Analysis of K59E revealed that the measured Kd was 28.2 µM ± 7.7 µM which 

demonstrates a decreased RNA binding affinity compared to wild type. Mutant K59E 

produces a more pronounced effect on RNA binding affinity than K48E. The measured 

value implies that K59 maintains some type of contact with the bound RNA 

oligonucleotide. However, the affinity for the K59E mutant is not sufficiently decreased 

to represent the loss of a contact critical for RNA binding. The apparent loss in RNA 

binding in the K59E mutant implies a charge-charge interaction. However, without at 
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K59A binding affinity it is possible that the measured K59R and K59E binding 

affinities are due to non-specific binding. 

 K90 was also mutated due to is position between sites I and II. As observed with 

the other lysine to arginine mutants, K90R gave tighter binding with an affinity of 

2.1µM ± 0.4µM. Further information as to the nature of the K90 interaction was 

provided by mutation K90A. The observed dissociation constant was 18.9µM ± 3.3µM, 

demonstrating a weaker RNA binding affinity when compared to wild type. The 

observed decrease in binding affinity indicates an interaction between K90 and the 

bound RNA. Moreover, mutation to K90E resulted in a loss of RNA binding. The lack 

of binding in the K90E mutant suggests that the RNA oligonucleotide is repelled from 

the face of the RRM. The nature of the K90-RNA interaction is likely based on charge 

since mutation to an acidic residue completely abolishes RNA binding. Other 

interactions may be mediated by K90 resulting in the slight decrease in RNA binding in 

the K90A but K90E shows that the charged group exerts the dominant effect. 

 

 
Table 3.4 Fluoresence spectroscopy analysis of lysine residues. Experiments were repeated three times 

and the average shown in the above table.  
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Figure 3.7 Determination of the Kd of Rna15 (2-103), K90E, K90R and K90A RNA binding. The 

symbols represent the signal observed upon increasing concentration of protein while the solid line 

represents the fit. Black symbols and lines represent wild type-RNA binding while red lines and symbols 

represent mutant-RNA binding. 
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 The results presented in this chapter provide insight into the mechanism of RNA 

binding in Rna15. Site I is clearly essential to maintain binding to the UGUUGU RNA 

oligonucleotide. This is not unexpected given the extensive network of interactions 

displayed in the crystal structure. Residue K90 forms an essential charge-charge 

interaction with the RNA oligonucleotide that is crucial for RNA binding. The 

mutational analysis also implicated residues within site II and site III in RNA binding 

but these sites appear less critical to RNA binding affinity. K59 interacts with the RNA 

oligonucleotide in similarly non-essential fashion. However, these results do not 

demonstrate whether Rna15 binds one continuous stretch of RNA or more than one 

RNA oligonucleotide. Previous results suggest that the stoichiometry of the Rna15-

RNA interaction is 1:1 (107, 108, 142). In addition, NMR spectroscopy experiments 

revealed that residues across the entire surface are affected by titration of an RNA 

oligonucleotide. Therefore, it is highly likely that a single RNA oligonucleotide binds 

across the surface of the RRM and the residues presented here mediate binding of the 

RNA. The three sites and charge-charge interactions with K90 appear sufficient to 

anchor the RNA. However, additional residues are affected by titration of RNA during 

NMR spectroscopy experiments perhaps with an accessory role in RNA binding. In 

order to generate a more detailed analysis of the extent of residues involved in RNA 

binding further mutational analysis of the residues present on the surface of the RRM is 

required.     

 The data provide a detailed analysis of the mechanism behind Rna15 RRM RNA 

binding. However, it was not known whether Rna15 could distinguish between G/U 

nucleotides, at different positions in the binding sites. Such specificity may account for 

the differing effects observed in mutational analysis using only the 5' TET-UGUUGU 3' 

sequence. Therefore, mutation of these residues does not characterise the binding 

specificity of Rna15 (2-103) in terms of a consensus sequence for binding. Specificity 
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for both guanine and uracil nucleotides has already been demonstrated in the crystal 

structure of the bound RRM at site I in the crystal structure but has not been shown for 

sites II or III.  

3.4 Summary 

 This chapter has characterised Rna15-RNA binding using in vitro techniques. 

Initially, a number of deletion constructs were cloned, expressed and purified. These 

constructs were designed to facilitate analysis of the role of the regions flanking the 

RRM of Rna15. Deletion of the tail region (residues 94-103) did not have any effect on 

Rna15 mediated RNA binding affinity demonstrated by fluorescence titrations. Previous 

NMR experiments suggested a possible regulatory role of the tail regions which may 

cover possible RNA recognition sites present on the RRM (139). However, these 

experiments did not provide significant evidence that the tail region has a role in 

regulation of RNA binding as not effect in RNA binding affinity was observed. 

However, this does not mean that the tail does not perform this regulation of RNA 

binding and further characterisation is required.  

 Extensive mutational analysis of the RRM reveals that Y27, R87 and K90 are 

essential for Rna15 (2-103) binding to the UGUUGU RNA oligonucleotide. This is 

illustrated by the decrease in RNA binding affinity demonstrated by fluorescence 

titration employing the Rna15 (2-103) mutants. The defect in RNA binding 

demonstrated by the K90E mutation demonstrates a previously uncharacterised site for 

RNA binding. Other mutants impose a less severe effect on RNA binding but still affect 

the binding affinity of Rna15 (2-103) implying that residues present across the surface 

of the RRM are required to maintain wild type RNA binding. Results presented in this 

chapter have provided a deeper insight into the mode of RNA binding by the RRM of 
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Rna15. The importance of the previously annotated binding sites present on the RRM 

has been demonstrated in terms of their influence on binding affinity.  
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4.1 Introduction and Overview 

 This chapter aims to characterise the effect of point mutations within the RRM 

of Rna15 on the overall health of S. cerevisiae by comparing the growth phenotype of 

wildtype and Rna15 mutants. In order to do this the Rna15 RRM mutations studied in 

Chapter 3 are introduced into haploid strains of S. cerevisae to determine the effect of 

these mutations on growth. This allows the correlation between RNA binding and 

overall health through analysis of growth of the cell to be investigated.  

 The effect of these mutations on 3' end processing activity was assessed by 

Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) to 

determine whether mutation of Rna15 affected expression of 5 housekeeping genes, 

ACT1, CYC1, ADH1, TDH2 and YPT1. Finally, any effects on transcription and 

potential readthrough of proximal polyadenylation sites were assayed by RNA 

sequencing (RNA seq). This technique is extremely sensitive and allows the sequencing 

and mapping of total mRNA resulting in analysis of transcription within Rna15 strains 

on a global level. 

 

4.2 Establishing the Rna14 and Rna15 haploid strains  

 Both RNA14 and RNA15 genes were inserted into yeast shuttle vector, pRS315, 

as described in Chapter 2. The resulting clones were then transformed into haploid S. 

cerevisiae strains where the genomic copy of the gene had been deleted by insertion of a 

Kanamycin cassette. Both RNA14 and RNA15 are essential genes so both haploid 

strains are kept viable by introduction of wild type genes present in pRS316 yeast 

shuttle vectors. Constructs were transformed into S. cerevisiae and selected for using a 

5-FOA assay. The 5-FOA selection method exploits the URA+ marker present on the 
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pRS316 vector and results in selection of the LEU+ pRS315 construct. The RNA14 and 

RNA15 pRS315 constructs were transformed into the appropriate haploid S. cerevisiae 

Δrna14/Δrna15 strain containing a wild type copy of each gene on the pRS316-URA 

construct. The pRS315-LEU constructs were selected for by incubation on minimal 

media minus leucine. Cells containing the pRS315-LEU construct and therefore viable 

on -LEU media were taken for 5-FOA selection. Selection was achieved by incubating 

yeast on 5-FOA containing media. The URA marker present in the pRS316 vector 

encodes the enzyme orotidine 5-phosphate decarboxylase which functions in uracil 

synthesis. This enzyme converts the 5-FOA to the toxic compound, 5-fluorouracil, 

resulting in cell death. Therefore, cells viable on 5-FOA containing media following 

transformation must contain only the pRS315 construct (Figure 4.1). Both tagged and 

untagged RNA14 and RNA15 pRS315 constructs were transformed into their respective 

Δrna14 and Δrna15 S. cerevisiae strains containing the pRS316-URA constructs in 

order to demonstrate whether presence of the HA tag affected either Rna14 or Rna15 

function and thus resulting in inviable cells.  
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Figure 4.1 Schematic representation of the 5-FOA selection assay.  
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 Transformation of wildtype RNA14 and RNA15 on pRS315-LEU are shown in 

Figure 4.2. The top two panels show transformation of RNA14. Cells are shown as 

spots and are present as a dilution series where cells were diluted serially 1:10 four 

times. The first row of cells represents a control to demonstrate that the 5-FOA assay 

worked as expected. The S. cerevisiae strain used is a haploid Δrna14 cell line kept 

viable through presence of the RNA14-pRS316 yeast shuttle vector. Cells are viable on 

rich medium at 22ºC but are unable to grow on minimal medium due to the presence of 

5-FOA. The second row of cells demonstrates the effect of transformation of an empty 

pRS315-LEU plasmid. The cells are viable on rich medium at 22ºC due to the presence 

of the RNA14-pRS316 vector prior to selection but incubation with 5-FOA results in 

cell death due to the lack of wild type RNA14 gene. Transformation of the pRS315 

yeast shuttle vector containing wild type RNA14 results in cell viability on both rich 

and minimal medium containing 5-FOA at 22ºC. This demonstrates transformation and 

subsequent selection of cells containing only the RNA14-pRS315 construct is 

successful. The final row present in the top two panels represents transformation of the 

HA-tagged version of the RNA14-pRS315 construct. Growth of cells is evident on both 

the rich and minimal media at 22ºC. Growth of the HA-tagged and untagged versions of 

RNA14 pRS315 are comparable demonstrating that the HA-tag does not interfere with 

RNA14 function within the cell. Transformation of the RNA15-pRS315-LEU construct 

was carried out in the same way as the RNA14-pRS315-LEU transformation. The 

appropriate controls were included and neither the Rna15-pRS316-URA strain nor cells 

containing the empty pRS315-LEU plasmid were able to grow on 5-FOA. However, 

this phenotype was rescued by transformation of both the RNA15 HA-pRS315-LEU 

and RNA15-pRS315-LEU constructs (Figure 4.2).  
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Figure 4.2 Testing the Rna14 and Rna15 S. cerevisiae strains. Transformation of Rna14-pRS315-LEU 

and Rna15-pRS315-LEU constructs into the Δrna14 and Δrna15 S. cervisiae deletion strain respectively. 

Cells are plated as “spots” in a dilution series. Plating on 5-FOA media selects against the 

RNA14/RNA15-pRS316-URA plasmid making the cells reliant on the RNA14/RNA15-pRS315-LEU for 

viability.  
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4.3 Analysis of Rna15 RRM mutations on growth phenotype of S. cerevisiae 

 The Rna15 RRM point mutations (Table 4.1) were introduced into the 

Rna15-HA-pRS315-LEU construct in order to determine the effects of these mutations 

on the growth phenotype of S. cerevisiae. Again mutant constructs were transformed 

into the S. cerevisiae strain supported by presence of the RNA15-pRS316-URA plasmid 

and selected for by the 5-FOA assay. Western analysis of a number of transformed 

Rna15 RRM mutations were performed to demonstrate that all mutations were stably 

expressed and mutagenesis did not result in degradation. Detection of each Rna15 

construct was achieved by employing an antibody able to recognise and bind the HA-

tag present on all Rna15 constructs. A subset of Rna15 mutants are shown to express 

similarly to wild type (Figure 4.3). The band corresponding to the Rna15 Δ16-94 

resolves at a smaller molecular weight upon comparison with wild type Rna15 due to 

deletion of the RRM.   

 
Figure 4.3 Western analyses of Rna15 wild type and mutant constructs. The highlighted bands 

correspond to Rna15-HA wild type and mutant constructs. All proteins are similarly expressed 

demonstrating that mutation does not affect stability of the protein. Due to the slightly smaller molecular 

weight of Rna15 Δ16-94, this band resolves slightly further down the gel. 
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Table 4.1 List of RNA15 RRM point mutations. 
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All Rna15-RRM point mutations tested gave identical results therefore only a 

subset of results are shown (Figure 4.4). The RNA15-pRS316-URA strain was able to 

grow on rich media at 22ºC and as expected demonstrated no temperature sensitivity at 

37ºC. However, selection on 5-FOA rendered the RNA15-pRS316-URA strain non-

viable at both 22ºC and 37ºC. Transformation of the empty pRS315 plasmid followed 

the same pattern. Transformation of the wild type RNA15-pRS315-LEU construct 

supported growth on both rich and 5-FOA at 22ºC and displayed no temperature 

sensitvity at 37ºC. Introduction of point mutations into the RRM of Rna15 and the 

subsequent transformation and selection resulted in growth comparable to the wild type 

RNA15-pRS315-LEU (Figure 4.4). The reduction in RNA binding affinites described in 

chapter 3 do not result in any detrimental effect on growth of S. cerevisiae. 

Fluorescence spectroscopy experiments demonstrated that mutation K90E completely 

abolished Rna15 mediated RNA binding. However, introduction of this mutation into S. 

cerevisiae had no effect on cell growth (Figure 4.5). 
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Figure 4.4 5-FOA selection assay of point mutations within the Rna15 RRM. 5-FOA plasmid shuffle 

assay to determine the effect of mutations within the RRM of Rna15 on phenotype of S. cerevisiae. Cells 

have been plated as “spots” on both rich and minimal media supplemented with 5-FOA. Each spots 

represent a serial dilution from 104-101. The top panels show yeast plated and held at a permissive 

temperature of 22°C whilst the bottom panels demonstrate yeast incubated at the higher temperature of 

37°C in order to look for temperature sensitivity in the mutants. As observed in previous 5-FOA assays 

cells supported by either the RNA15-pRS316-URA construct or the empty pRS315 plasmid are not viable 

on 5-FOA. However, this phenotype is rescued upon transformation of the wildtype RNA15-pRS315-

LEU construct at both 22ºC and 37ºC. Transformation of Rna15 RRM site I mutants results in no growth 

defect at both 22ºC and 37ºC upon comparison with wildtype. 
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Figure 4.5 5-FOA selection assay demonstrating the effect of point mutations in the RRM of Rna15. 

Cells were plated as spots on both rich and minimal media containing 5-FOA. The top two panels 

represent incubation at 22ºC whilst the bottom two panels demonstrate the results of incubation at 37ºC. 

Spots represent a dilution series ranging from 104-10.  
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 Previously published data demonstrated a defect in growth of a R87D S. 

cerevisiae mutant when grown on medium containing 1.5% formamide (140). 

Therefore, following 5-FOA selection, all mutants were grown in the presence of 1.5% 

formamide (v/v) in order to determine whether this effect could be replicated. As 

expected, the wild type Rna15-pRS315-LEU construct was able to grow on both rich 

and minimal media containing 1.5% formamide at 30ºC (Figure 4.6). However, wild 

type colonies grown on rich and minimal media containing 1.5% formamide are slightly 

smaller than those grown in the absence of 1.5% formamide. This is likely due to the 

increase in stress in growth conditions due to the presence of the formamide. Mutations 

R87K, R87A, Y27F, Y27A and S24T display growth comparable to wild type S. 

cerevisiae on both rich and minimal media containing 1.5% formamide at 30ºC. All 

other point mutations grew similarly to wild type. The temperature of incubation was 

raised to 40ºC as an additional stress condition in order to determine whether point 

mutations within the RRM displayed temperature sensitivity when grown on formamide 

(Figure 4.7). Growth of all constructs, wild type and mutant, were observed on rich 

medium and on minimal medium at 40ºC but colonies were smaller than observed in the 

previous growth assay (Figure 4.7) demonstrating a slight sensitivity of S. cerevisiae at 

40ºC. Growth is severely affected on minimal media at 40ºC upon comparison with 

previous assays. A slight effect in growth is observed in the R87A mutant where no 

growth is observed in the last spot of the dilution series. This may represent a slight 

defect in growth in the R87A mutant at 40ºC on rich media. In the presence of 1.5% 

formamide, both wild type and mutant S. cerevisiae were not able to grow at 40ºC. 

Again, the same result was demonstrated for all Rna15 RRM point mutations.  
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Figure 4.6 Growth of S. cerevisiae Rna15 RRM point mutations on minimal media contaning 1.5% 

formamide. Cells were plated as spots in a dilution series ranging from 104-10. The top two panels 

demonstrate the wild type Rna15-pRS315-LEU construct and Rna15 RRM site I point mutations 

incubated on rich and minimal media at 30ºC. The bottom two panels demonstrate wild type and mutant 

yeast grown on rich and minimal media both containing 1.5% formamide. Growth of both wild type and 

mutant S. cerevisiae is observed in all panels. 
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Figure 4.7 Growth assay to determine the effect of temperature and 1.5% formamide on growth of 

Rna15 RRM site I mutants. Cells are plated as spots in a dilution series ranging from 104-10. The top 

two panels demonstrate incubation of wild type Rna15 and site I mutants on rich and minimal media at 

40ºC. The bottom two panels demonstrate growth of wild type and site I mutant S. cerevisiae on rich and 

minimal media containing 1.5% formamide at 40ºC. Both wild type and mutant S. cerevisiae are viable at 

40ºC on rich and minimal media, however, both wild type and mutant S. cerevisiae display temperature 

sensitivity at 40ºC on 1.5% formamide.  
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 The assay was repeated again at 37ºC with 1.5% formamide. Yeast containing 

the wild type Rna15-pRS315-LEU construct were able to grow on rich and minimal 

media containing 1.5% formamide at 37ºC (Figure 4.8). At 37ºC all site I point 

mutations grew on rich and minimal media as demonstrated in previous experiments. 

Growth was also comparable to wild type S. cerevisiae showing that the point mutations 

do not have any effect on growth phenotype. A slight decrease in growth is observed in 

the final spot of the dilution series corresponding to wild type S. cerevisiae on minimal 

media (top panels, Figure 4.8). Growth of both wild type and mutant S. cerevisiae is 

clearly affected by incubation at 37ºC on media containing 1.5% formamide (bottom 

panels, Figure 4.8). A slower growth is demonstrated by the smaller colonies shown in 

the bottom panels of Figure 4.8. This phenotype is demonstrated in both wild type and 

Rna15 RRM site I mutants demonstrating that under temperature stress, mutations in 

site I of the RRM that lead to an decrease in RNA binding affinity in in vitro 

experiments, do not have any effect on the growth phenotype of S. cervisiae.  
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Figure 4.8 Growth of site I mutants on 1.5% formamide at 37ºC. Cells were plated as spots in a 

dilution series. The top two panels demonstrate wild type and Rna15 site I mutants grown on rich and 

minimal media at 37ºC. Growth of both wild type and mutant is observed. The bottom two panels 

demonstrate incubation on rich and minimal media both containing 1.5% formamide at 37ºC. Wild type 

and mutant S. cerevisiae show affected growth on 1.5% formamide upon comparison to the top two 

panels.  
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4.4 Deletion of the RRM is lethal on 5-FOA at 37°C 

 Point mutations in the RRM of Rna15 failed to produce an effect on growth 

phenotype of S. cerevisiae despite differences in measured RNA binding. In order to 

maximise the chances of seeing an effect further mutagenesis was undertaken 

combining the mutations Y27A, R87A and K90E. These were selected as they resulted 

in the largest decreases in RNA binding affinity. Two double mutations, Y27A/K90E 

and R87A/K90E alongside a triple mutation, Y27A/R87A/K90E were prepared. In 

addition to the double and triple mutations the RRM of Rna15 was also deleted from the 

RNA15-pRS315-LEU construct.  

 The double, triple and deletion mutants were transformed into the appropriate 

haploid S. cerevisiae strain as previously discussed. Selection for the mutant constructs 

was achieved by the 5-FOA assay. Following selection, the mutants were plated again 

to establish the growth phenotype in comparison with wild type. The double, 

Y27A/K90E, R87A/K90E and triple Y27A/R87A/K90E mutants were viable on both 

rich and minimal media supplemented with 5-FOA with growth comparable to wild 

type at 22°C (Figure 4.9). The Rna15 RRM deletion displayed a very slight decrease in 

growth upon comparison with wild type on 5-FOA at 22°C (Figure 4.9). 

 At 37ºC, the Y27A/K90E and R87A/K90E double mutants and the triple mutant, 

Y27A/R87A/K90E do not demonstrate temperature sensitivity on rich media. However, 

on minimal media supplemented with 5-FOA a decrease in growth at 37ºC is observed 

in the 104 and 103 serial dilutions upon comparison with the wild type (Figure 4.9). 

Deletion of the RRM in Rna15 results in a decrease in growth in S. cerevisiae on rich 

media at 37ºC. On minimal media supplemented with 5-FOA at 37ºC deletion of the 

RRM is lethal (Figure 4.9).  
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In order to determine whether the addition of 5-FOA to the minimal medium was 

responsible for the non-viable phenotype displayed by the Rna15 RRM deletion, the 

Rna15Δ16-94-pRS315-LEU strain was incubated on a variety of different media at 

37ºC (Figure 4.10). The deletion of the RRM does not result in cell death on other 

media as demonstrated on 5-FOA. However, growth is inhibited on both rich and 

minimal media upon comparison with wild type at 37ºC. Incubation of the deletion 

mutant on rich and minimal media supplemented with 1.5% formamide demonstrates a 

severe decrease in growth of S. cerevisiae upon comparison with wild type. Therefore 

although the deletion of the RRM does not appear to be lethal when 5-FOA is absent it 

severely inhibits growth. 
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Figure 4.9 5-FOA assay of Rna15 double, triple and deletion mutants. Cells were plated as spots in a 

dilution series ranging from 104-10. The top two panels demonstrate growth of wild type, double, triple 

and deletion mutants on rich and minimal media containing 5-FOA at 22ºC. The bottom two panels 

demonstrate incubation at 37ºC.  
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Figure 4.10 Analysis of deletion of the RRM on growth phenotype of S. cerevisiae. Deletion of the 

RRM resulted in inhibited growth of S. cerevisiae in all conditions upon comparison with wild type but 

did not result in lethality as observed on minimal media supplemented with 5-FOA. 
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 In order to determine whether extensive mutation of the RRM had any effect on 

the growth rate of S. cerevisiae, a growth rate experiment was performed. The growth of 

the Y27A/K90E and R87A/K90E double mutants alongside the triple 

Y27A/R87A/K90E and the RRM (Δ16-94) deletion mutant were monitored over a 11 

hour period in rich media at 30ºC. Triplicate cultures inoculated with the wildtype and 

four mutants were incubated overnight at 30ºC, shaking 200rpm. The following 

morning, cells were counted using a haemocytometer and each culture was diluted to 

1x106 cells/ml. Cultures were incubated at 30ºC with shaking at 200rpm and the growth 

monitored over an 11 hour period. Growth of the Y27A/K90E and Y27A/R87A/K90E 

mutants (Figure 4.11, A) demonstrates a slight decrease in growth rate upon comparison 

with wild type. The growth rate of the R87A/K90E mutant, however, is comparable to 

wild type (Figure 4.11, B). These results demonstrate that double and triple mutation of 

the RRM fails to severely affect growth rate. Deletion of the RRM (residues 16-94) 

results in a severe decrease of growth rate (Figure 4.11, B). As cells were counted on a 

haemocytometer, there is a possibility that not all the cells counted are viable. 

Therefore, a viable cell count was also performed. Cells of known concentration were 

plated onto minimal media and incubated at 30ºC for 2-3 days. Following incubation, 

colonies of wild type, the Y27A, R87A, K90E and Δ16-94 mutants were counted and 

recorded. The Y27A, R87A, K90E triple mutant grew similarly to wild type (Figure 

4.11, C). However, growth of the deletion mutant was severely impaired (Figure 4.11, 

C). Around a 7-fold decrease in cell number is observed in the deletion mutant 

demonstrating that loss of the RRM greatly impairs growth of S. cerevisiae.      

 Despite the large decrease in RNA binding affinites exhibited by both the Y27A 

and R87A mutations and the lack of binding by K90E demonstrated during in vitro 

experiments, they demonstrate very little effect on cell growth (Table 4.2). Deletion of 

the RRM had a more severe effect with reduced growth in rich media at 30ºC and 
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inviability at 37ºC on 5-FOA (Table 4.2). It is likely that this mutant has a defect in 

polyadenylation. Also, although no effect on phenotype is observed with the triple, 

double and point Rna15 RRM mutations it is still possible that polyadenylation is 

altered with respect to wild type. In addition due to the tightly coupled nature of 

transcription and polyadenylation it is likely that these mutations will also affect gene 

expression levels. The next sections aim to characterise the effect of these mutations on 

polyadenylation and transcription. 

Table 4.2 Summary of Rna15 wild type and mutant RNA binding affinities, viability and 
growth rate assays in S. cerevisiae. The - symbol denotes cases where the experiment was not carried 
out. The X symbol represents immeasurable RNA binding by fluorescence spectroscopy in the Rna15 
K90E mutant. 
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Figure 4.11 Growth of the S. cerevisiae mutants. A. Growth curves of wild type, Y27A, K90E and 

Y27A, R87A, K90E mutants. Growth was monitored over an 11 hour period and cells were counted every 

hour using a haemocytometer. B. Growth curves demonstrating growth of wild type S. cerevisiae, the 

R87A, K90E and RRM deletion mutants. C. Viable cell count of the triple mutant and the deletion 

mutant.  
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4.5 Analysis of transcription in Rna15 mutants  

 The effect of deletion of the RRM on expression of a subset of genes was 

studied using qRT-PCR. Total mRNA was purified from both wild type S. cerevisiae 

and the rna15 Δ16-94 deletion mutant. The aim of this experiment was to quantify the 

amount of ACT1, TDH2, YPT1, CYC1 and ADH1 mRNA relative to wild type. 

Transcription of all genes examined was affected in the rna15 Δ16-94 mutant (Figure 

4.12). Since transcription of genes by RNA polymerase II is tightly linked to 

polyadenylation, raw data need to be normalised to data unbiased by the presence of 

mutations in RNA15 to provide a more accurate experimental value. Therefore, 

measured values were normalised to the amount of mRNA produced by the SNR52 

gene. This encodes for a small nucleolar RNA and is transcribed by RNA polymerase 

III and therefore is not polyadenylated. Where 100% of mRNA represents wild type 

levels, all genes either increased or decreased as a result of deletion of the RRM. 

Expression of ACT1 decreased by almost 20% relative to wild type whilst YPT1 

decreased 11%. A more significant decrease in expression levels is observed in genes, 

TDH2 and ADH1. Amount of TDH2 mRNA decreased by 40% relative to wild type 

and expression of ADH1 decreased by 32%. Levels of mRNA corresponding to CYC1 

seem to increase by 17% signalling an apparent increase in expression of this gene. As 

previously stated the RRM of Rna15 is required for selection of G/U rich sequences. 

Therefore, it is possible that these changes in amount of mRNA are due to usage of the 

distal polyadenylation sites rather than the proximal polyadenylation sites. In order to 

determine whether this was the case, RNA sequencing was used to generate a 

transcription library to assess globally the effect deletion of the RRM has on 

transcription and poly(A) site selection.     
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Figure 4.12 Transcription of a subset of genes in the rna15 Δ16-94 mutant. Transcription of each 

gene is relative to wild type where % of transcription of wild type is equal to 100%. RNA was quantitated 

three times in each qRT-PCR plate and the entire experiment was also repeated in triplicate. Raw data 

was normalised to amount of RNA polymerase III transcribed SNR52 snoRNA.  
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4.6 Preparation of libraries for RNA sequencing 

 Following 5-FOA selection, wild type, Δ16-94, Y27A and Y27A/R87A/K90E 

mutant strains of S. cerevisiae were grown at 30ºC in rich media until reaching a cell 

density of 1 X 107 cells/ml. Cells were pelleted and the total mRNA was purified. 

Ribosomal RNA (rRNA) was removed using the RiboZero™ Magnetic Gold (Yeast) kit 

following manufacturer’s instructions (epicentre, illumina). Following removal of 

rRNA, an RNA sequencing library was generated using the ScriptSeq™ v2 RNA-Seq 

Library Preparation Kit following the maufacturer’s instructions (epicentre, illumine). 

The kit works by fragmenting purified RNA samples and creating cDNA using a 

randomised hexamer with a tagging sequence. The short RNA sequences produced by 

fragmenting inhibits contamination of neighbouring colonies during PCR amplification 

on the flow cell surface. This tagging sequence acts to tag the 5’ end of the resulting 

cDNA. Tagging of the cDNA at the 3’ end requires the tag sequence fused to a 

randomised sequence with a dideoxy nucleotide present at the 3’ end. PCR results in 

generation of the tag by amplifying in the antisense direction. Generation of the second 

strand is achieved by use of primers that pair to the tags present at the 5’ and 3’ ends. A 

barcode sequence can be included that is unique to mRNA purified from different 

samples (i.e. wild-type and mutant) (Figure 4.13).  

 Following library preparation, sequencing was carried out using the Illumina 

platform. The method works by attaching the cDNA fragments to a chip surface. A 

bridging PCR reaction is carried out generating “colonies” of identical cDNA sequence 

(Figure 4.14). The sequencing reaction then proceeds whereby all four dye labelled 

reversible terminator nucleotides are added along with primers and DNA polymerase 

enzyme. The sequencing reaction reads a single nucleotide at a time by laser excitation 

which captures the emitted fluorescence from each colony. The identity of the first base 
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is recorded and following removal of the dye, the second cycle can begin on the next 

nucleotide. Again, all four labelled reversible terminators, along with DNA polymerase, 

are added to the flow cell. Laser excitation results in the fluorescence emission of the 

next nucleotide along. The signal emitted from every colony is recorded and the 

nucleotide identified. This is repeated until ~80 bases have been sequenced in a given 

fragment (Figure 4.15). The resulting data can then be collated for analysis. 

 

 
Figure 4.13 ScriptSeq™ v2 RNA-Seq Library Preparation Kit Protocol. 
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Figure 4.14 Formation of cDNA colonies on a flow cell. The resulting cDNA fragments generated using 

the ScriptSeq™ v2 RNA-Seq Library Preparation Kit are attached to the flow cell. Bridging amplification 

results in formation of a “colony” where all cDNA fragments present are of identical sequence. The above 

schematic demonstrates only one colony. Typically, a flow cell will contain many colonies, each 

representative of different cDNA fragments.  
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Figure 4.15 Illumina sequening of cDNA colonies. The schematic presented is representative of one 

colony present on a flow cell. Addition of labelled reversible terminator nucleotides, primers and DNA 

polymerase is required for the sequencing reaction. Each nucleotide is labelled differently resulting in 

different emission colour following excitation. Excitation results in fluorescence emission of labelled 

nucleotides present in each colony. The emission is recorded and corresponds to a labelled nucleotide. 

This process is repeated until every nucleotide is recorded within a fragment generating the cDNA 

sequence.  
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4.7 Analysing RNA sequencing data 

 Data analysis was split into two main areas. A global analysis of expression was 

undertaken by Nickolay Nickolov (N.I.M.R). Separately, processing activity within the 

3' UTR of 40 genes was investigated. These genes were separated into classes based on 

their cellular function, i.e metabolism, cell cycle, cell wall maintenance and translation. 

In addition, poly(A) site readthrough was analysed in genes ACT1, TDH2, ADH1 and 

YPT1 where the position of poly(A) sites within the 3'UTR are known. 

4.7.1 Analysis of expression of genes using RNA sequencing 

 A global analysis revealed that expression of 131 genes was significantly 

affected by deletion of the RRM of Rna15. Under the same parameters of analysis 47 

genes are affected in the Y27A/R87A/K90E mutant while no genes where shown to be 

affected in the Y27A mutant. However, it is important to note that stringent statistical 

analysis was performed on each mutant (FDR value <0.05) and it is possible that a 

larger number of genes in each mutant are affected by deletion of the RRM. In the 

Δ16-94 mutant the 131 genes were grouped according to their role in various cellular 

processes in order to determine whether a trend in expression emerged specific to gene 

role. 39 genes involved in various metabolic processes within the cell were affected by 

deletion of the RRM (Figure 4.16). This represents 4.3% of the total number of genes 

within the S. cerevisiae genome that have specific metabolic roles. Deletion of the RRM 

appears to affect a larger proportion of metabolic genes than is observed in other 

groups. The effect on expression displays no obvious trend where an increase in 

expression is observed in 20 and decrease in expression is observed in 19. A high 

proportion of genes involved in maintaining the integrity of the cell wall are also 

affected by deletion of the RRM (Figure 4.17, A). Expression of 4% of the total amount 

of genes present in S. cerevisiae that encode for products involved in maintaining cell 
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wall integrity are affected in the mutant. The majority of genes in this group display an 

increase in expression in the mutant while only 2 of the 7 demonstrate a decrease in 

expression. Only 2.8% of total genes involved in the transport of molecules in the cell 

are altered by deletion of the RRM (Figure 4.17, B). Deletion of the RRM appears to 

lead to decrease in expression in the majority of genes involved in molecular transport 

and an increase is expression is observed in only 2 of the 12 genes affected. Genes that 

encode for products required for RNA and protein modifications display differences in 

expression in the mutant (Figure 4.18). Around 1.3% of the total number of genes 

required for RNA modifications are affected by deletion of the RRM (Figure 4.18, A). 

In general, a decrease in expression is observed in the majority of genes in this group. 

Expression of 1.8% of total genes involved in mediating protein modifications are 

influenced significantly by deletion of the RRM of Rna15 (Figure 4.18, B). A less 

obvious trend is observed in this group where expression of 4 genes increases while 6 

decrease. Expression of 2.5% of genes induced in response to stress factors is also 

affected by deletion of the RRM (Figure 4.19, A). As cells were grown in rich media at 

30°C it is not surprising that these genes are expressed at a relatively low level upon 

comparison with other genes as demonstrated by the normalised read count value for 

each gene. However, expression of 3 of these genes is shown to increase while a 

decrease in expression is demonstrated in 4. In general, differences in expression are 

demonstrated in genes that cannot be assigned to previous groupings but are involved in 

various other cellular processes (Figure 4.19, B). In addition, expression of genes that 

encode proteins with no known function are also shown to be affected by deletion of the 

RRM (Figure 4.20). 

 

In conclusion, this analysis reveals that deletion of the RRM of Rna15 has 

significant effects on the transcription of 131 genes. A larger proportion of genes are 
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affected in processes where expression rate is generally higher upon comparison with 

other groupings (i.e. cell wall and metabolism). However, no trend is observed in 

expression in each gene in each group when wild type and mutant are compared. 

Fluctuations in expression appear random from gene to gene however a significant 

difference in expression of each is observed in the mutant. However, it is important to 

note that observed decreases in expression in the rna15 Δ16-94 mutant could be due to 

decreased efficiency in polyadenylation leading to unstable transcripts that are readily 

degraded. In this instance, observed decreases in mRNA abundance are an indirect 

product of decreased stability due to inefficient 3' end processing.  
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Figure 4.16 Expression of genes involved in metabolism. 
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Figure 4.17 Expression of genes involved in maintaining the cell wall (A) and in transport of 
molecules (B). 
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Figure 4.18 Expression of genes involved in modifying RNA molecules (A) and in mediating protein 

modification (B). 
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Figure 4.19 Expression of genes induced by stress factors (A) and required for numerous cellular 

processes (B). 
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Figure 4.20 Expression of genes of unknown function.  
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4.7.2 Analysis of the 3’ UTR of genes using RNA sequencing 

 Prior to analysis, sequencing data from each mutant was collated and aligned to 

reference genome using the software programs, Tophat and Bowtie (295). This 

generated an aligned data file for each of the triplicate samples for each mutant. Both 

wildtype and mutant alignments were visualised using Integrative genomics viewer 

(IGV) (figure 4.21) which shows the annotated S. cerevisiae genome and the aligned 

sequencing reads. An accompanying plot provided an overview of the number of 

sequencing reads at any given point allowing analysis of processing activity within the 

3' UTRs of genes.  
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Figure 4.21 Representative aligned RNA sequencing data. The deletion of the RRM is visible in the 
Δ16-94 mutant where no reads are mapped to the RRM region. Individual reads are shown in blue and 
pink where pink represents sense reads and blue represents antisense reads. 

  

181 
 



Chapter 4   Analysis of Rna15-RNA binding in vivo 

 By measuring the amount of reads in three arbitrary sections of the 3' UTR for 

each class of gene in the Δ16-94 mutant and wildtype, potential readthrough is inferred 

by differences in read count. Where read count is high, a processing event is unlikely to 

have occurred. Polyadenylation within the 3' UTR coincides with a sharp reduction in 

mRNA amount. The number of reads was taken from triplicate samples of wildtype and 

duplicate samples of the Rna15 Δ16-94 mutant.  

 

 

 

 

 
Figure 4.22 Analysis of the 3’ UTR. Three sites are chosen outside the coding region of the target gene. 

The read count for each site is calculated for both mutant and wild type. 
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4.8 Analysis of processing events using RNA sequencing 

4.8.1. Analysis of processing in genes involved in metabolism and translation 

 In general, processing in the 3’ UTR of genes involved in cell metabolism 

remain largely unaffected by deletion of the RRM of Rna15 (Figure 4.23, A). Details of 

genes analysed and their role in metabolism are detailed in Table 4.3. The largest 

difference in mRNA amount is in the 3’ UTR of TDH1. This gene encodes a protein 

involved in glycolysis and gluconeogenesis within the cell. Although the difference in 

amount of mRNA in the 3'UTR is clear, the error is quite large suggesting this result is 

ambiguous. Amounts of mRNA observed in genes including RAT1, YCK2 PSK1, 

remain similar to that of wildtype. Therefore, it is clear that deletion of the RRM does 

affect 3' end processing in these genes, however, these results suggest that differences 

are relatively small upon comparison with wild type.  

 The amounts of mRNA in the 3’ UTR of genes involved in translation follows 

much the same pattern (Figure 4.23, B). A list of genes involved in translation and their 

role is detailed in Table 4.4. Large differences in the 3’ UTR is observed in RPG1 

which encodes a subunit of the translation initiation factor, eIF3. However, relatively 

small changes are observed in other genes. As observed in genes involved in 

metabolism, deletion of the RRM does not affect the 3’ UTRs of these genes in a 

distinct pattern based on their role in translation.  
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Gene Name Systematic Name Encodes Role 

PSK1 YAL017W PAS domain Carbohydrate metabolism 

PDX3 YBR085C Phosphate oxidase Nitrogen metabolism 

ARA1 YBR149W NADP+ dehydrogenase Carbohydrate metabolism 

PAP2 YOL115W Poly(A) polymerase 2 RNA metabolism 

CYR1 YSL005W Adenylate cyclase cAMP pathway (required for 
metabolism) 

PLB2 YMR006C Phospholipase B Lipid metabolism 

RAT1 YOR048C Exonuclease RNA metabolism 

YCK2 YNL154C Casein kinase 1 Glucose metabolism 

PHO91 YNR013C Phosphate transporter Phosphate metabolism 

TDH1 YJL052W Dehydrogenase Glycolysis and 
gluconeogenesis 

 
Table 4.3 Genes involved in metabolism. 
 

Gene Name Systematic Name Encodes Role 

EFB1 YAL003W Translation elongation 
factor 1 beta Translation elongation 

FUN12 YAL035W Translation initiation 
factor Translation initiation 

NCL1 YBL024W tRNA methyltransferase Translation elongation 

HEK2 YBL032W RNA binding protein Translation regulation 

OLA1 YBR025C ATPase Translation regulation 

RPG1 YBR079C eIF3a subunit of 
initiation factor eIF3 Translation initiation 

PAB1 YER165W Poly(A) binding protein Promotes translation 
initiation 

TRM1 YDR120C tRNA methyltransferase Translation elongation 

NOB1 YOR056C Endoribonuclease Required for ribosome 
biogenesis 

TRM112 YNR046W tRNA methyltransferase Translation regulation 

 
Table 4.4 Genes involved in translation. 
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Figure 4.23 mRNA amounts relative to wild type at three distinct sites within the 3'UTR of genes. 

The dotted black line denotes wild type mRNA levels. 
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4.8.2. Analysis of processing in genes involved in cell cycle and cell wall 

maintenance 

 The 3’ UTR of genes involved in maintaining the integrity of the cell wall are 

affected by the deletion of the RRM in Rna15 (Figure 4.24, A). Genes analysed based 

on their involvement in maintaining cell wall integrity are detailed in Table 4.5. 

Increases in the distal mRNA within the 3’ UTR is observed in genes NBP2, RHO1 and 

ACK1. In other genes such as SKG1 and DSE1 there are decreases in the distal mRNA 

in the 3’ UTR. Again these differences do not follow any distinct pattern and therefore 

demonstrate that deletion of the RRM does not affect processing in these genes based 

on their role in cell.  

 In the case of genes that encode for proteins that regulate and maintain the cell 

cycle, the amount of mRNA in the 3’ UTR is affected by deletion of the RRM (Figure 

4.24, B). Genes included in analysis based on their role in cell cycle regulation are 

detailed in Table 4.6. In the case of CDC28 a large increase is observed in the third site 

within the 3’ UTR. Increases in the amount of mRNA in the 3’ UTR is observed in 

genes, CDC34 and UNG1. However, a general decrease in mRNA amount is observed 

in genes, ATG1 and MRC1 while MIH1 and CDH1 remain largely unaffected by 

deletion of the RRM. In general, as observed in other gene groupings, deletion of the 

RRM does not produce an effect that is distinctive with genes involved in cell cycle 

regulation. This is demonstrated by the random differences in mRNA amount between 

genes.  
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Gene Name Systematic Name Encodes Role 

PKC1 YBL150C Serine/threonine kinase Cell wall remodelling 

FLC2 YAL053W FAD transporter Cell wall maintenance 

TOS1 YBR162C Target of Sbf Associated with cell wall 

DSE1 YER124C Daughter cell specific 
protein 

Regulates cell wall 
integrity after separation 

SKG1 YKR100C Transmembrane protein Maintain cell wall polymer 
composition 

ACK1 YDL203C Functions in cell wall 
integrity pathway 

Maintain cell wall 
composition 

NBP2 YDR162C Regulates cell wall 
integrity pathway 

Maintain cell wall 
composition 

RHO1 YPR165W GTP binding protein Regulates cell wall 
synthesising enzyme 

YGP1 YNL160W Glycoprotein Maintain cell wall 
composition 

PRS1 YKL181W Pyrophosphate synthase Required for cell wall 
integrity pathway 

 
Table 4.5 Genes involved in maintaining the composition of the cell wall. 
 

 

Gene Name Systematic Name Encodes Role 

CDC28 YBR160W Cyclin dependent kinase Regulates cell cycle 
progression 

MRC1 YCL061C S phase checkpoint 
protein 

Regulates cell cycle 
progression 

PPS1 YBR276C Phosphatase Required during cell cycle 
DNA replication step 

ROK1 YGL171W RNA dependant ATPase Regulates cell cycle 
progression 

ATG1 YGL180W Serine/threonine kinase Regulates cell cycle 
progression 

MIH1 YMR036C Tyrosine phosphatase Regulates cell cycle 
progression 

CDH1 YGL003C Directs ubiquitination of 
cyclins 

Regulates cell cycle 
progression 

UNG1 YML021C Uracil DNA glycosylase Required for DNA repair 
during checkpoint 

CDC34 YDR054C Ubiquitin conjugating 
enzyme 

Regulates cell cycle 
progression 

PSY4 YBL046W Subunit of phosphatase 
PP4 

Required for DNA repair 
during checkpoint 

 
Table 4.6 Genes involved in regulation and progression of the cell cycle. 
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Figure 4.24 Relative amounts of mRNA for genes involved in maintenance of the cell wall and cell 

cycle. The black dotted line denotes wild type amounts of mRNA.  
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4.8.3 Analysis of poly(A) site selection in ACT1, TDH2, ADH1 and YPT1 

 Using previously annotated poly(A) sites provided on the Sacchromyces 

cerevisiae genome database (SGD), poly(A) site selection in genes ACT1, TDH2, 

ADH1 and YPT1 was investigated. In the same way as before, read count number was 

taken at the annotated poly(A) site for each triplicate of wild type and duplicate of the 

Δ16-94 mutant. The amount was normalised by an average expression of each gene 

(average expression was defined by averaging three read counts within the open reading 

frame of each gene) and the total amount of processing was calculated by subtracting 

the read count from poly(A) site 1 from the amount of mRNA present within the 3' UTR 

prior to processing. This was repeated for subsequent poly(A) sites within each gene. 

The resulting values were expressed as a percentage of the total amount of mRNA 

processed.  

 

 In the ACT1 gene, slight differences in the amount of processing at all sites are 

observed (Figure 4.25, A). An increase in the amount of processing activity is observed 

at the proximal site (site 1) upon comparison with wild type. This is observed again at 

distal site 3, where a slight increase in processing activity occurs. Conversely, a 

decrease in processing activity is observed at sites 2 and 4 within the ACT1 gene, 

however the error demonstrated in the in the mutant at site 4 suggests this result is 

highly unreliable. In the case of TDH2 (Figure 4.25, B), a similar pattern occurs where 

processing activity decreases at the proximal site (site 1) but increases at the second 

distal processing site. A final decrease in processing activity is observed at the third site, 

again highlighting slight differences in processing activity within the Δ16-94 mutant. In 

ADH1, slight differences in processing are observed at all three sites within the 3' UTR 

(Figure 4.26, A). Again this is characterised by a slight decrease at site 1 followed by an 
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increase in processing at sites 2 and 3. In YPT1, it is important to note that results are 

ambiguous due to the large error produced at site 2. Nevertheless, wild type processing 

occurs at the first site implying that deletion of the RRM does not affect processing in 

YPT1 (Figure 4.26, B). However, a reduction in processing activity is observed at site 2 

followed by increases in processing activity at sites 3 and 4.  

 

 Analysis of the sequences that direct polyadenylation in genes ACT1, ADH1, 

TDH2 and YPT1 reveal that cleavage occurs at the expected site in all genes, Py[A]3. 

The composition of the polyadenylation signal and efficiency element present upstream 

from the poly(A) site are in agreement with previously defined sequences. In all genes 

the positioning element is present as either AAUAAA or AAAAA, however, the exact 

position of this sequence differs from gene to gene. Also, there appears no relationship 

between occurrence of the different positioning elements and changes in 

polyadenylation observed in the Rna15 mutant. The efficiency element consists of the 

expected UAUAUA sequence at sites 1, 2 and 2 of genes ACT1, TDH2 and ADH1 

respectively. At other sites this element is present with at least one mutation. 

Interestingly, there appears to be a correlation of increased processing at sites where 

UAUAUA is present in the Rna15 Δ16-94 mutant. It is possible that the loss of the 

RRM in Rna15 enhances Hrp1 binding to this efficiency element sequence. Indeed, 

SELEX experiments have shown that Hrp1 preferentially binds this sequence during 

polyadenylation (150). However, this is only observed in these genes presented and a 

global analysis of polyadenylation in the Δ16-94 mutant is needed to make a confident 

assessment of the relationship between sequences that direct processing and loss of the 

RRM of Rna15.  
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Figure 4.25 Poly(A) site selection in the ACT1 gene (A) and the TDH2 gene (B).  
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Figure 4.26 Poly(A) site selection in the ADH1 gene (A) and the YPT1 gene (B). 
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4.8.4 RNA sequencing conclusions 

 Global analysis of expression in the S. cerevisiae Δ16-94 mutant reveals 

alterations in expression of genes required for a wide variety of cellular processes. It 

appears a higher proportion of genes that are highly expressed are affected by deletion 

of the RRM. However, aside from this observation there are no distinct similarities 

between differences in expression between groupings. Overall expression both increases 

and decreases in each class of gene. This effect demonstrates that the overall process of 

transcription is affected by deletion of the RRM. However, it is important to note that 

the 131 genes that are affected by deletion of the RRM of Rna15 represent 2% of the 

total S. cerevisiae genome. These 131 genes are representative of those chosen based on 

very stringent statistical analysis (FDR value <0.05). This means that these genes are 

likely to be the greatest affected by deletion of the RRM, however, it is possible that a 

larger group of unambiguous genes are affected that do not fall into the FDR <0.05 

category. 

In general, it appears that deletion of the RRM in Rna15 does result in 

widespread differences in processing activity within the 3' UTRs of genes. This is 

shown by the differences in read number from wild type to mutant from genes within 

each class. Another common feature is the random nature of mRNA amount in the 3' 

UTRs of genes from gene to gene within each class and from class to class also. This 

shows that deletion of the RRM affects each gene differently and the mutation does not 

result in biased changes within genes based on their specific role within the cell. 

Without annotated poly(A) sites for all genes analysed it is difficult to say for certain 

how processing at poly(A) sites differ between wild type and mutant. However, it is 

clear that there are differences in distal mRNA within the 3' UTR and therefore, 

processing in these genes has clearly been affected. It is possible that these differences 

193 
 



Chapter 4   Analysis of Rna15-RNA binding in vivo 

are due to differences in expression level of genes in the mutant. However, amounts 

differ from site to site in all genes within the 3' UTR possibly due to differences in 

processing.  

 Using previously annotated poly(A) sites for ACT1, YPT1, TDH2 and ADH1, it 

was possible to calculate the processing activity in both wild type and the Δ16-94 

mutant. Although a difference in processing activity was observed in all genes, the 

amount of processing activity was not significantly different from wild type. These 

results suggest that deletion of the RRM in Rna15 does not result in major differences in 

poly(A) site selection within the 3' UTRs of these genes. 

 

4.9 Summary 

 This chapter has aimed to characterise the effect of mutation of the RRM of 

Rna15 on both viability and mRNA 3' end processing activity in S. cerevisiae. In 

general, point mutations that affect RNA binding in vitro do not affect cell viability in 

vivo and combination of the most severe mutations that result in loss of RNA binding in 

vitro do not have any effect on cell viability. However, deletion of the RRM of Rna15 

does result in lethality at 37ºC on minimal media containing 5-FOA. Furthermore, 

growth curve experiments demonstrated that deletion of RRM resulted in retarded 

growth upon comparison with wild type in rich media at 30ºC. Further investigation into 

cellular processes within S. cerevisiae demonstrated that transcription of a small subset 

of genes is strongly affected by deletion of the RRM. RNA sequencing results 

demonstrate that expression of 131 genes are significantly affected by deletion of the 

RRM of Rna15 when assessed using strict statistical analysis. In addition, RNA 

sequencing results demonstrate that processing at previously annotated poly(A) sites is 
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affected by the deletion. Defects in polyadenylation are further evidenced by RNA 

sequencing analysis of 50 genes that display differences in mRNA amount within the 3' 

UTR of genes. However, differences in transcription and polyadenylation in ACT1, 

TDH2, YPT1 and ADH1 appear small upon comparison with wild type. A larger 

investigation into polyadenylation is required in order to ascertain whether these small 

differences are representative of processing within the entire transcriptome. However, if 

these small affects were representative of global polyadenylation in the Δ16-94 mutant 

then it is possible to understand why a more severe effect on cell viability is not 

observed. It is possible that other RNA binding proteins part of the polyadenylation 

machinery, such as, Hrp1, are able to complement mutations in rna15 and direct the 3' 

end processing machinery to the 3' UTR so that processing can be successfully carried 

out. However, it is important to note that although the process of polyadenylation may 

still occur in these strains, the positioning of the cleavage reaction may be compromised 

where there is loss of Rna15-RNA binding.  
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5.1 Introduction and Overview 

 This chapter aims to characterise how additional factors affect Rna15-RNA 

binding. These include the interaction with Rna14 and the type of RNA sequence 

favoured by Rna15. Increasing data regarding the mechanism by which Rna15 binds 

RNA has led to debate over sequence specificity. Previous studies have identified that 

Rna15 displays sequence specificity for A rich sequences when in complex with Rna14 

and Hrp1 (139). However, when alone, Rna15 displays extremely weak RNA binding 

for A-rich sequences resulting in a Kd value in the 10-5 M range (141). By contrast, the 

crystal structure demonstrates specificity in the site I binding pocket for G and U 

nucleotides. In addition, fluorescence spectroscopy experiments demonstrate that Rna15 

(16-111) binds a G/U rich RNA oligonucleotides in the 10-6 M range (141). Experiments 

presented determine whether Rna15 is able to select preferential RNA binding sites 

without the assistance of other protein factors resulting in tighter RNA association. 

Finally, the orientation of the bound RNA was explored using NMR spectroscopy. In 

addition, Rna14 binds to Rna15 tightly and forms a self-associative tetramer via Rna14-

Rna14 interactions (107,108,137). This tetramer makes contacts with Hrp1 and Rna14 

acts as a scaffold between Hrp1 and Rna15 when bound to RNA during polyadenylation 

(151).  

 Therefore, the aim of this chapter is, initially, to distinguish whether Rna15 

displays nucleotide preference using a novel NMR based method (SIA). Binding 

analyses are presented using Rna14-Rna15 protein to determine whether presence of 

Rna14 protein and formation of the Rna14-Rna15 tetramer affects Rna15-RNA binding 

affinity. Finally the importance of the Rna14-Rna15 interaction is demonstrated by 

analysing what effect deletion of the interaction domain of Rna14 has on the growth 

phenotype of S. cerevisiae.  
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5.2 Generating a Rna15 consensus sequence  

 Scaffold Independent Analysis (SIA) was used to generate a potential consensus 

sequence for Rna15. This technique was developed by Dr A. Ramos (N.I.M.R) and 

allows unbiased analysis of the target protein binding preference to a pool of short 

randomised RNA sequences .  

 The RNA sequences tested comprise 16 pools of RNA oligonucleotides. In each 

pool there are 64 pentameric RNAs where four out of the five nucleotides are random 

whilst one nucleotide is constant in position and type of nucleotide base. In position 2, 

each pool has either an adenine, uracil, guannine or cytosine present in the second 

position while position 1, 3, 4 and 5 are random. This pattern continues in positions 3, 4 

and 5 to generate the 16 pools required for SIA (Table 5.1). 

 

 
 
Table 5.1 RNA pools employed in SIA experiments. The above pools were titrated with Rna15 (2-103) 

protein in order to determine a nucleotide preference and generate a consensus sequence.  

 

In SIA, to assess the protein-RNA binding, the target protein is titrated against 

each of the 16 pools of RNA oligonucleotides and analysed by correlation 15N-1H 

heteronuclear NMR spectroscopy. Binding affinity for the 16 pools is evaluated by 

comparison of the 15N-1H HSQC spectra generated from each titration. In a SIA 

experiment, the target protein is titrated with each randomised 64 sequence RNA pool 

employing increasing concentrations of RNA at the ratios, 1:0, 1:1 and 1:3 

(protein:RNA). The chemical shift position is reflective of the average of the 64 RNAs 

in the pool bound by the target protein. Analysis of RNA binding is dependent on 
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movement of the same protein resonances in each of the 15N-1H HSQC spectra taken 

from each RNA pool and that each move in an concerted direction. This is to ensure a 

fair comparison as it is possible that movement of protein resonances may become 

altered when titrated with each RNA pool as chemical shift movements are extremely 

sensitive to change in the surrounding environment. However, small differences can be 

averaged out following simultaneous evaluation of a set of peaks. The shifts observed in 

peaks that are in fast exchange can then be related to the molar fraction of bound 

protein. This relationship is exploited to rank the preference of the protein for a 

ribonucleotide in a given position. Whilst this comparative analysis is successfully 

exploited to generate an insight into binding specificity, it is important to consider the 

limitations of analysing chemical shift perturbations in protein-ligand interactions. 

Indeed, chemical shift movements are indicative of protein-ligand interaction, however, 

introduction of a ligand can result in chemical shift perturbations that are not due to 

direct binding of the ligand. This is due to amide chemical shifts that are sensitive to 

structure, hydrogen bonding and solvent accessibility. Therefore, chemical shift 

perturbations induced upon ligand binding may be remote from the actual binding site 

and represent a conformational change in the protein itself rather than direct ligand 

binding. 

 In this SIA experiment, Rna15 (2-103) was titrated with each of the 16 RNA 

pools and the spectra for each was recorded (Figure 5.1). Comparative analysis of each 

spectrum was achieved by measuring the change in the chemical shift (Δδ) of 16 

individual protein resonances upon titration of the RNA pools. Under the conditions of 

the experiment saturated 1:3 spectra were excluded from analysis as Rna15 (2-103) was 

saturated at these concentrations so a preference in binding could not be determined. 

The Δδ of each individual peak was normalised against the largest Δδ observed between 

the corresponding four RNA pools with each nucleotide present at a single position (ie 
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nAnnn, nCnnn, nGnnn and nUnnn). The normalised peak positions were then averaged 

to generate an SIA score relating to preference of that particular nucleotide. 
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Figure 5.1 Scaffold independent analysis. Example of NMR spectra during an SIA experiment. Rna15 

(2-103) protein was added to each pool of RNA at a stoichiometry of 1:0, 1:1 and 1:3 (protein:RNA). Red 

peaks correspond to free protein, yellow peaks represent 1:1 ratio of protein:RNA and the blue peaks 

correspond to the 1:3 ratio of protein:RNA. Grey arrows demonstrate the direction of movement of the 

labelled peaks that were analysed. 
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 The resulting SIA values demonstrate a clear preference for G/U nucleotides 

(Table 5.2). However, the results indicate that Rna15 (2-103) is still able to bind the 

RNA pools with A and C present in positions one, two, three and four but the affinity 

for these RNAs are lesser than that observed for the G and U RNA pools. At position 1 

the SIA values for A and C are 0.49 and 0.45 respectively. For both G and U 

nucleotides the values are 0.91 and 0.95 respectively indicating a clear preference. At 

position 2, U is favoured over all other nucleotides with an SIA value of 0.98 with G 

next (0.78) and finally C (0.62) and A (0.54). A G nucleotide is preferred at position 3 

demonstrated by the SIA value of 0.97 and again both A and C RNA pools have low 

SIA values, 0.44, whilst U displays an intermediate value, 0.73. At position 4, the SIA 

value for the A RNA pool is somewhat higher than at position 1-3. However, the U pool 

is favoured with an SIA value of 0.94. At position 4, the G pool demonstrates a high 

affinity for Rna15 2-103 indicated by the SIA value of 0.85. Again the C pool shows 

weak preference with a SIA value of 0.54.  

 

 
 
Table 5.2 SIA results showing a clear consensus for G/U rich nucleotides. The chemical shift 

variation (Δδav) between 16 corresponding peaks for each ratio (1:0, 1:1 and 1:3) was measured. The 

resulting values were then normalised and the results of which are shown above. The above values are 

repsentative of apparent movement of peaks induced upon introduction of RNA at the ratio of 1:1. 

 
 The results clearly demonstrate a strong preference of G and U nucleotides over 

A and C nucleotides in every position bar position 4, allowing the generation of a 

consensus sequence. Two consensus sequences are demonstrated from the SIA data, 

5' UUGU 3' and 5' GUGU 3' (Figure 5.2). The presence of G/U rich sequences at the 
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poly(A) site has been demonstrated in the 3' UTRs of S. cerevisiae (145,146). 

Therefore, it is possible that the G/U rich sequences are the preferred binding site for 

Rna15 to anchor CF1A to the 3' UTR.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 SIA generated consensus sequence. The figure highlights the sequence generated by SIA 

that is the preferential binding of Rna15. The bases that were favoured over others are highlighted in red. 

The size of the letters also relate to their score in binding after normalisation.  
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 To verify the SIA derived consensus, sequences GUGUGU and GUUUGU were 

employed in fluorescence spectroscopy experiments. Both were labelled at the 5’ 

terminus with TET. Previous fluorescence experiments demonstrated that a six 

nucleotide sequence was required for optimal signal detection. Therefore, a dinucleotide 

of GU was added to the 5' end of the RNA oligonucleotides to maintain optimum signal. 

The dissociation constant for the 5'TET-GUGUGU oligonucleotide was 1.4 µM ± 0.4 

µM whilst the dissociation constant for the 5' TET-GUUUGU 3' was 2.2 µM ± 0.9 µM 

(Table 5.3). The results demonstrate that Rna15 is able to bind both SIA generated 

consensus sequences with a higher binding affinity than observed with the orginal 5' 

TET-UGUUGU 3' RNA oligonucleotide. The combined SIA and fluorescence 

spectroscopy results demonstrate that Rna15 does display binding specificity with an 

overall G/U preference that results in an increase in Rna15 RNA binding affinity as 

demonstrated by tighter association of Rna15 (2-103) with the SIA derived sequences. 

 

RNA oligonucleotide Kd (x10-6 M) 

5’ TET-UGUUGU 3’ 6.4 ± 0.5 

5’ TET-GUGUGU 3’ 1.4 ± 0.4 

5’ TET-GUUUGU 3’ 2.2 ± 0.9 

 
Table 5.3 Binding constants of Rna15 (2-103) with SIA generated RNA oligonucleotides. 

Fluorescence titrations were carried out in triplicate and the standard deviation of the mean calculated. 

Rna15 (2-103) wild type was used in these titration experiments. 
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5.3 Identifying the orientation of the RNA oligonucleotide  

 Previous mutational and NMR analysis experiments demonstrated the likelihood 

that RNA binds across the surface of the RRM through interactions with the side chains 

of residues present on the surface (141). In order to provide further detail into the 

mechanism of Rna15 mediated RNA binding NMR spectroscopy experiments were 

employed to attempt to distinguish the orientation of the RNA oligonucleotide. Two 

RNA oligonucleotides were employed, one labelled with TET at the 5' termini and the 

other unlabelled. The sequence of the oligonucleotides was that generated by SIA, 5' 

GUGUGU 3'. The assigned HSQC spectrum was obtained from previous NMR 

experiments using Rna15 (16-111) (141) which had identified the third binding site 

(Figure 5.3). Then the presence of the 5' label was exploited in order to identify the 

orientation of the RNA oligonucleotide. Rna15 2-103 was titrated with labelled and 

unlabelled RNA oligonucleotide, 5' GUGUGU 3' in separate titrations in order to 

identify the chemical shift peaks that behave differently upon presence of the 5' TET 

label.  
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Figure 5.3 Assigned 2D-NMR spectra of Rna15 (2-103). 2D spectra showing the movement of 

chemical shift peaks in relation to presence or absence of 4-tetrachlorofluoroscein label on the RNA 

sequence GUGUGU. Assigned peaks are labelled. The grey peaks represent the free protein, the green 

peaks represent Rna15 (2-103) bound to unlabelled RNA and the red peaks correspond to Rna15 (2-103) 

bound to RNA where the dye is present on the 5’ end.  
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 In the experiment, residues Q83, G81, L89, K90, S58 and T55 that are present 

on one face of the RRM display the largest change in presence of the label. Movements 

of residue Q83 was only observed when unlabelled RNA was titrated with Rna15 (2-

103) and the chemical shifts of G81 and T55 are perturbed only upon introduction of the 

labelled RNA. Chemical shift peaks previously assigned to L89, K90 and S58 move 

further with the unlabelled RNA than was observed with the labelled RNA. When 

mapped onto the free Rna15 structure it is apparent that all residues affected by the 5’ 

TET label are positioned on the top face of the structure thus highlighting the 

orientation of the ribo-oligonucleotide and the label. Moreover, the label itself is 

connected to the 5' nucleotide by a highly flexible C6 linker. This degree of flexibility 

allows residues present on the top of the RRM on both sides of site I to be perturbed 

(Figure 5.4). The lack of affected residues in the remainder of the protein (Figure 5.4, 

D) could potentially mean that the dye sits slightly forward and rotates through its 

flexible carbon chain to affect the residues highlighted in blue.  
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Figure 5.4 Orientation of the RNA oligonucleotide bound to the RRM of Rna15. A. A model of how 

the 5’ TET label may be positioned when the 6 nucleotide long RNA is bound to the Rna15 RRM. The 

dye is attached to the 5’ nucleotide through a highly flexible 6 carbon chain allowing free movement of 

the dye around the top part of the RRM. B. The residues that contact the TET label are highlighted in blue 

on this structure. C. The structure shown in (A) has been rotated 90° to highlight further the part of Rna15 

affected by the dye. D. The surface model of Rna15 has been rotated to clearly indicate the affected 

residues. The lack of affected residues at the back of the protein  
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In order to determine how the protein moves in solution when bound to the 

labelled RNA oligonucleotide, anisotropy experiments were performed. Polarised 

fluorescence was detected upon excitation of the RNA in the presence of an excess 

amount of Rna15 2-103 protein. Polarisation of the fluorescent label was derived using 

the physical theory of Brownian motion by Perrin: 
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where Po represents the fundamental polarisation of the fluorophore (0.45 for TET), τ is 

the excited state lifetime of the fluorophore (4.1 ns for TET) and ϕ is the rotational 

correlation time. The measured polarisation (0.24) corresponds to a rotational 

correlation time of 4ns. Previous NMR experiments demonstrated that free Rna15 (2-

94) had a correlation time of 7ns (139). The increase in correlation time presented in 

this study is likely due to the 5’-TET label that is able to move freely due to the flexible 

carbon linker. In addition, the similar value generated for both the free and bound 

Rna15 constructs demonstrate that the RNA is tightly associated with the protein. 

As TET labelled RNA oligonucleotides have been used in all binding 

experiments, the relationship between the TET label and the protein was investigated by 

a series of competition assays. The aim of these experiments were to exclude the 

possibility that the TET label may interfere with Rna15 (2-103)-RNA binding. Since 

K90 was one of the residues shown to be affected by the dye during NMR experiments 

K90R was also included in the competition assays. Initially competition assays were 

completed using wild type Rna15 (2-103) protein with unlabelled and labelled RNA 

oligonucleotide, 5' GUGUGU 3'. Inclusion of the unlabelled RNA oligonucleotide 
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demonstrates whether the presence of the TET label affects the dissociation constant 

measured during fluorescence titrations employing the labelled RNA oligonucleotide. 

The dissociation constant for the 5' TET labelled oligonucleotide was previously 

demonstrated to be 1.4 µM ± 0.4µM (Figure 5.5, Table 5.3). The dissociation assay 

employing unlabelled RNA 5' GUGUGU 3' revealed a very similar dissociation 

constant of 2µM ± 0.4µM  (Figure 5.5). This result demonstrates that addition of the 5' 

TET label does not significantly influence the apparent binding affinity demonstrated by 

the protein for the RNA oligonucleotide. In addition, competition assays were 

performed using the Rna15 2-103 K90R construct. This was included as mutation at this 

residue (K90E) resulted in abolished RNA binding demonstrating direct contact of this 

residue with the RNA. Subsequent NMR analysis demonstrated that the chemical shift 

peak corresponding to K90 was affected upon addition of the labelled RNA (5'-TET-

GUGUGU-3') compared to the unlabelled RNA (5' GUGUGU 3'). Therefore, in order to 

establish whether the dye was affecting the abrogation of binding observed upon 

mutation of this residue, competition assays were performed. Fluorescence titration of 

the K90R mutant with the 5'-TET-GUGUGU-3' RNA oligonucleotide demonstrated a 

dissociation constant of 1.5µM (Figure 5.5). The dissociation assay employing the 

unlabelled 5'-GUGUGU-3' oligonucleotide results in a dissociation constant of 2.2µM. 

This result demonstrates the TET label does not affect binding affinity and the measured 

dissociation constant is reflective of Rna15 2-103 K90R-RNA binding. 
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Figure 5.5 Analysis of the effect of the TET dye on RNA binding. Association experiments for both 

wild type and K90R mutants are displayed in the left top and bottom panels. Dissociation curves for both 

wild type and K90R mutants are demonstrated in the right top and bottom panels.  
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5.4 The effect of the Rna14-Rna15 tetramer on RNA binding 

5.4.1 Expression of Rna14 and Rna15 

 RNA14 and RNA15 present in a pETduet1 vector (supplied by Dr. L. Arnold) 

allow co-expression of both Rna14 and Rna15. Purification of both was achieved via a 

6X histidine tag present on the N-terminal of Rna14. Subsequent purification by size 

exclusion chromatography revealed the presence of two bands within the peak fractions 

(Figure 5.6). Rna14 is represented in the peak fractions by the clearly defined band 

present around the 62kDa marker. Rna15 is represented by the clear protein band 

present around the 38kDa marker band.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Size exclusion purification of Rna14 and Rna15 protein after overexpression in E. coli. 

SDS analysis of purification: M, Marker (SeeBlue® Plus 2, Invitrogen); L sample load. Peak fractions 

pooled following size exclusion chromatography are shown in lanes 1-9. 
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5.4.2 Fluorescence spectroscopy of the Rna14-Rna15 tetramer with RNA 

 Electron microscopy experiments involving Rna14 demonstrated that the 

Rna14-Rna14 homodimer formed a rod like structure with a kink of ~110º (Figure 5.7, 

A) (107). Indeed, the structure of the CstF-77 homodimer (murine homologue of 

Rna14) adopts the same structure with a small bend present at the interface (Figure 5.7, 

B) (135). The proposed architecture of the Rna14-Rna15 tetramer is shown in the 

schematic of the Rna14-Rna15 tetramer (Figure 5.7, C). This structure would orientate 

the RRMs of Rna15 to allow them to freely access the RNA transcript allowing a very 

tight binding affinity. A tighter association with RNA has been demonstrated when both 

Rna14 and Rna15 are present. It was thought that this was due to the formation of the 

Rna14-Rna15 tetramer resulting in binding of one tetramer in two places on the RNA 

which results in an increase in RNA binding affinity. However, although an increase in 

Rna15 RNA binding affinity has been observed when Rna14 is present, the mode of 

binding has not yet been studied. This next section aims to determine how the 

Rna14-Rna15 tetramer interacts with the RNA to bind it. 
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Figure 5.7 The Rna14-Rna15 tetramer. A. Electron microscopy of the Rna14-Rna14 homodimer 

reveals the presence of rod like particles present with a 110º kink. B. Crystal structure of the CstF-77 

homodimer in mouse. C. The hypothetical structure of the Rna14-Rna15 tetramer is demonstrated as a 

schematic. The two Rna14 monomers interact via HAT repeats. Each Rna14 monomer is then free to 

form the monkeytail-hinge like structure with an Rna15 monomer resulting in formation of the tetramer. 
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 Fluorescence spectroscopy was employed to study the mechanism of tetramer-

RNA binding. It was hypothesised that formation of the tetramer would result in tighter 

binding than the monomeric Rna15-RNA dissociation constant of 1.4µM. The presence 

of two Rna15 RRM domains in the tetramer would allow binding to an RNA 

oligonucleotide at two distinct sites (Figure 5.8). In order to test this hypothesis and 

elucidate the tetramer mode of RNA binding, three RNA oligonucleotides were 

designed that differed in terms of nucleotide length (Table 5.4). All oligonucleotides 

contained two separate Rna15 binding sites made up of the consensus sequence 

determined by SIA, GUGUGU, both separated by 4, 12 or 20 nucleotides of A/C rich 

sequence.  

 Rna14/Rna15 protein was kept at a constant concentration of 30µM during the 

titration experiments while an excess (355µM) of the unlabelled RNA oligonucleotide 

spiked with labelled RNA was titrated into the protein and the change in fluorescence 

signal detected. The unlabelled RNA oligonucleotide was spiked with a small volume of 

the same labelled version of the oligonucleotide ~5µM and titrated. A control 

experiment was run alongside the binding experiments using the same amount of RNA 

oligonucleotide but did not include any protein. This control titration was then 

subtracted from the binding titration during analysis.  
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Figure 5.8 Hypothetical tetramer-RNA binding. The diagram shows a schematic representation of the 

hypothetical mechanism of Rna14-Rna15 tetramer-RNA binding. The two RRMs of Rna15 are free to 

bind two distinct binding sites present in the oligonucleotide. The red line represents the A/C rich linker 

of unknown length to facilitate tetramer RNA binding. Binding in this way would result in a large 

increase in binding affinity from the dissociation constant of 1.4µM observed in the Rna15 2-103 

monomer. 
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 Alongside the 16, 24 and 32 RNA oligonucleotides, the original 

5’-GUGUGU-3’ was also employed in titrations. Titration of all RNA oligonucleotides 

resulted in dissociation constants that were similar despite the differences in number of 

nucleotides (Table 5.4, Figure 5.9). In addition the measured binding affinities indicated 

a less tight association with the RNA than was demonstrated by the 

Rna15 2-103-5’-GUGUGU-3’ association.  

 
 

 
Table 5.4 Fluorescence spectroscopy of the Rna15-Rna15 tetramer with RNA. The sequence for each 

oligonucleotide employed in fluorescence titrations with Rna14-Rna15 protein is shown. The measured 

dissociation constant for each is also demonstrated. 

 

 The concentration of the Rna14-Rna15 protein employed in fluorescence 

titrations should result in 74% of tetramer within the sample given its Ka. The large 

proportion of Rna14-Rna15 tetramer and lack of increase in RNA binding affinity 

suggests that the tetramer does not bind any of these oligonucleotides as hypothesised. 

However, the measured affinity of the Rna14-Rna15 tetramer for the 5’-GUGUGU-3’ 

oligonucleotide demonstrates only a slight decrease in binding affinity than was 

observed with the Rna15 (2-103) monomer. It is possible that the orientations of the 

RRMs of Rna15 are such that RNA binding across the two RRMs as hypothesised is 

obstructed resulting in two RNA oligonucleotides binding to one tetramer. Indeed, 

electron microscopy of the tetramer resulted in various conformations of the tetramer at 

the Rna14-Rna14 interface (107). It is possible that where an RNA oligonucleotide is 
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present at the optimum length for tetramer binding, the RNA itself helps to rearrange 

the flexible Rna14-Rna14 interface to anchor the tetramer onto the RNA. The slight 

decrease observed in binding affinity as the length of the RNA oligonucleotide 

increases (5-9µM) is likely due to the increased entropy of binding to the longer 

oligonucleotides. The possibility that the RNA oligonucleotide may also form some 

type of secondary structure has not been explored thus far. Formation of secondary 

structure within the oligonucleotides may lead to obstruction of at least one of the GU 

rich binding sites. Indeed, the A/C rich linker may interact with the GU rich binding site 

so that Rna15 cannot bind resulting in a lack of increase in binding affinity observed 

with these oligonucleotides. 

 

 
Figure 5.9 Rna14-Rna15-RNA binding curves. The dots represent measured values while the solid line 

is the fit. Data was fit using a 1:1 binding model (i.e. one Rna15 to one RNA oligonucleotide).  
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5.5 Deletion of the Rna15 binding interaction domain is lethal in S. cerevisiae 

 The Δrna14 haploid strain supported by wild type RNA14 present on the 

pRS316 URA plasmid was employed to study the effects of Rna14 mutation. Previous 

experiments had demonstrated that the strain was functional and could be used for 

effective analysis of growth phenotype (chapter 4).  

 

 The Rna15 interaction domain of Rna14 in S. cerevisiae (residues 626-677) was 

deleted from the RNA14 HA pRS315-LEU construct. The mutant Rna14 Δ626-677 

pRS315-LEU construct was transformed into the Δrna14-RNA14 pRS316-URA and a 

number of mutant Rna14 Δ626-677 pRS315-LEU transformants were taken for 5-FOA 

selection (Figure 5.10).   
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Figure 5.10 Deletion of the Rna15 interaction domain. A. Cells were plated in a dilution series on both 

rich and minimal media at 22ºC and 37ºC. At 22ºC and 37ºC, this mutant is inviable. B. Western 

analyses of Rna14 wild type and Rna14 Δ626-677. Both Rna14 wild type and mutant proteins are HA 

tagged allowing detection by western analysis. In this particular experiment there is high background 

making identification of both wild type and mutant difficult.  
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 The functionality of the 5-FOA selection assay is demonstrated by the growth of 

the positive Rna14 wildtype LEU+ and the inviability of the strain containing the 

RNA14-pRS316-URA construct (Figure 5.10, A). Deletion of the Rna15 interaction 

domain in Rna14 (Δ626-677) is lethal in S. cerevisiae. From the 5 transformants tested 

none were viable on 5-FOA at either 22ºC or 37ºC. Growth is observed in one mutant at 

one dilution point on 5-FOA at 22ºC. This is most likely due to cross contamination 

with the wild type as growth is not observed at the higher concentrations within the 

dilution series. At 37ºC, growth of wild type S. cerevisiae is inhibited on minimal media 

containing 5-FOA. However growth is observed at both the 104 and 103 dilution points 

and is not observed in any of the mutants. This demonstrates that the mutation does 

result in inviabililty in comparison with wild type as is observed at 22ºC. 

 In order to determine whether it is the mutation itself that results in inviability 

and not differences in expression levels in comparison with wild type, western blot 

analysis was carried out. This experiment exploited the use of the HA tag present on the 

C-terminal end of the protein. As the Rna14 Δ626-677 mutant is inviable, transformants 

containing both the HA tagged mutant and untagged Rna14-pRS316-URA constructs 

were taken for western analysis. However, antibodies employed in the western analysis 

only recognise the HA tag and therefore only the mutant is detected. The resulting 

western have a high background but distinct bands are clearly visible in each of the 

mutant lanes (Figure 5.10, B). Comparison of these bands between wild type and 

mutant illustrate a difference in expression between the wild type and mutant as other 

corresponding background bands are of similar intensity. It is possible that this 

difference in expression is a factor in the deletion mutant lethality. However, the 

appearance of a second set of bands that resolves further down the gel make it difficult 

to distinguish which represent Rna14 protein. These bands may represent a degradation 

product as they have the same molecular weight. Although the western analysis was 
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repeated a number of times using fresh materials, varying antibody concentration and 

load concentration, in all cases the background was high. 

 

5.6 Summary 

SIA experiments were performed to analyse the nucleotide preference of Rna15. 

The results provided a clear bias of Rna15 toward G and U nucleotides. Taken together 

the fluorescence and SIA results suggest that binding to G/U rich sequences is driven by 

site I residues, Y27 and R87 and by a charge-charge interaction with K90. Further NMR 

analysis employing labelled and unlabelled RNA oligonucleotides aimed to characterise 

the orientation of RNA over the face of the RRM. The 5’ terminus of the RNA 

oligonucleotide was revealed to be present at the top of the RRM.   

 Fluorescence experiments aimed to characterise the mode of tetramer RNA 

binding resulted in binding affinities similar to those observed with monomer 

Rna15 (2-103). These results demonstrate that the Rna14-Rna15 tetramer is unable to 

bind the oligonucleotides in the way hypothesised previously. This result does not 

exclude the possibility that the Rna14-Rna15 tetramer may bind the oligonucleotide in 

this way. However, these particular RNA oligonucleotides used are unable to bind in 

this manner.  

The importance of the Rna14-Rna15 interaction both in vivo and in vitro has 

also been demonstrated. Deletion of the Rna15 interaction interface in Rna14 is lethal in 

S. cerevisiae. This was demonstrated by the 5-FOA assay where growth of the mutant 

was not observed on 5-FOA at 37°C. This result suggests that incorporation of Rna15 in 

the tetramer structure within CF1A is crucial for cell viability. 
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6. Discussion 

6.1 The importance of the C-terminal domain of Rna15 

 The work presented in chapter 3 characterised the extensive relationship 

between Rna15 and RNA. Initial experiments aimed to establish whether the region 

immediately C-terminal to the RRM of Rna15 was capable of regulating Rna15-RNA 

binding. Residues 95-103 form a short α-helix that has been shown to interact with 

residues present on the face of the RRM and in human homologue, CstF-64, a 

C-terminal region has also been shown to pack against the RRM (141,299). It has been 

hypothesised that this interaction forms the basis of a type of regulatory RNA 

recognition interaction whereby RNA binding displaces the C-terminal helix allowing 

access to key RNA binding residues on the RRM (299). Measured binding affinities for 

both Rna15 2-94 and Rna15 2-103 constructs are essentially the same and therefore it 

would appear that the C-terminal region of Rna15 does not impede interaction of the 

5'-TET-UGUUGU-3' RNA oligonucleotide. However, unlike CstF-64, the C-terminal 

region of Rna15 is highly unstable and adopts multiple conformations as demonstrated 

by NMR experiments and the crystal structure (141). In addition NMR experiments 

demonstrated the transient nature of the interaction between RRM and the C-terminal 

domain. Therefore, due to the flexibility of the C-terminal region and the weak 

interaction it makes with the RRM it is highly unlikely that any effect of the C-terminal 

region would be observed in experiments presented in chapter 3 where a high affinity 

for RNA is displayed. It is still possible that the C-terminal region does maintain a 

regulatory role in Rna15-RNA binding but experiments presented here do not provide 

evidence that such an interaction exists.  

 

 The measured binding affinity for the full length Rna15 construct  is comparable 

to the measured binding affinity of both the Rna15 (2-94) and Rna15 (2-103) constructs 
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demonstrating that residues C-terminal to the RRM and short α-helix do not directly 

bind RNA. However, residues between 243 and 296 are required for interaction with 

Pcf11 and this interaction is important for 3’ end processing (140). Deletion of the 

entire C-terminal domain resulted in viability and subsequent RNA processing 

experiments employing cell extracts from the viable mutant demonstrated a reduction in 

polyadenylation at 3' ends (140). Despite the requirement for the full length Rna15 

protein for wild type levels of polyadenylation in vivo, only the RRM is required for 

direct RNA binding.  

 

 The results provide sufficient evidence that residues 16-94, comprising the RRM 

domain, are required to mediate Rna15-RNA binding. Previous studies published 

demonstrate that a Rna15 construct including residues 16-111 binds the 5' TET-

UGUUGU-3' RNA oligonucleotide with a dissociation constant of 4.7µM (141). This 

binding affinity is comparable to that of other constructs presented in this study and 

further enforces the argument that the RRM alone mediates RNA binding.  

 

6.2 The importance of residues within the RRM of Rna15 

 In this study mutation of residues across the entire surface of the RRM were 

shown to have varying effects on RNA binding in vitro. These results demonstrate the 

extent to which residues across the surface of the RRM are involved in direct RNA 

binding. Previously published results have demonstrated the impact of mutation within 

the RRM on RNA binding, processing activity and S. cerevisiae viability. Mutation of 

residues F63 and F66 to alanine were reported to have severe detrimental effects on 

binding to A rich elements in the presence of increasing amounts of salt (KCl) and 

demonstrated an inability to direct cleavage and polyadenylation on an RNA precursor 

(139). In addition, transformation of this mutant into S. cerevisiae resulted in lethality, 
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however, western analysis demonstrated that the Rna15 mutant was still able to interact 

with other components of CF1A (139). Following these results, the crystal structure of 

the RRM demonstrated that only F63 is present on the surface of the RRM with F66 

partially buried. It is possible that this severe decrease in RNA binding and apparent 

lethality may be due to a decrease in stability of the protein and is not directly due to a 

decrease in Rna15-RNA binding affinity. In addition, NMR spectroscopy experiments 

reported that residues between Y60-F63 were perturbed upon introduction of the 

UGUUGU ribooligonucleotide and not F66 (141). Indeed, double mutation of 

Y60A/F63A did result in a 6-fold decrease in RNA binding. Mutation of F63 appeared 

to have more of an effect on RNA binding than point mutation of Y61. Therefore, it 

does appear that residues involved in the so-called third site are required for Rna15 

RNA binding.  

 

 Previous studies have suggested that R87 mediates contacts with Hrp1 when 

both are bound to the 3' UTR of gene GAL7 (142). NMR spectroscopy experiments 

determined that no unambiguous NOEs were observed between Rna15 and Hrp1 (142). 

Mutational analysis of R87 failed to generate an effect on the phenotype of S. 

cerevisiae. However, a decrease in growth was observed on 1.5% formamide in 

previously published results (142). Subsequent in vitro cleavage and polyadenylation 

assays revealed that the cleavage reaction and on occasion the polyadenylation step was 

severely inhibited (142). Further structural results demonstrated that the R87D mutant 

was incapable of binding RNA while a R87A mutant was still able to interact with the 

RNA but with less affinity that observed in wild type. Indeed, Hrp1 was observed to 

"compete" the anchoring RNA away from the Rna15 R87A mutant. This lead to the 

hypothesis that contacts between Hrp1 and Rna15 allow simultaneous loading of both 

proteins onto the RNA (142). However the results presented in this study demonstrate 
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that a large decrease in binding affinity for the 5'-TET-UGUUGU-3' RNA 

oligonucleotide is attributed to the R87A mutant. Indeed, the crystal structure showing 

RNA bound at site I demonstrates the extensive contacts mediated by this residue for 

the RNA (141). This evidence in addition to the lack of unambiguous NOEs between 

R87 and D193 of Hrp1 demonstrate that this residue is essential to maintain 

Rna15-RNA contact. 

 

 Alongside R87, Y27 forms extensive contacts with RNA in the site I binding 

pocket (141). Therefore it is not surprising that the Y27A mutation results in a 

considerable decrease in RNA binding affinity. This result demonstrates that the site I 

binding pocket is crucial in maintaining wild type binding affinity for the 5' TET-

UGUUGU-3' RNA oligonucleotide.  

 

 In addition to site I and site III, the site II binding pocket composed 

predominantly of Y21 was also investigated using mutational analysis. Mutation of this 

Y21 to alanine results in a decrease in affinity demonstrating its involvement in RNA 

binding. The loss of RNA binding is not as severe as observed in the site I binding 

pocket. This is not unexpected given the crystal structure demonstrates interaction at 

Y21 is primarily a stacking interaction and lacks the extensive hydrogen bonds formed 

in site I. The involvement of Y21 in RNA binding is not a novel finding as in addition 

to the crystal structure, NMR spectroscopy experiments demonstrated that Y21 along 

with Y61 and F63 were shown to interact with an A/U rich sequence in the 3' UTR of 

GAL7.  

 

 Mutational analysis of lysine residues present on the surface of the RRM reveal 

the extent to which they directly interact with RNA. Mutation of K48 displays very little 
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effect on RNA binding affinity. A slight increase in RNA binding affinity is observed in 

the K48R mutation. NMR spectroscopy experiments demonstrated that in some 

structures RNA bound in close proximity to the charged side chain of K48 (142). This 

may explain the slight increase in RNA binding affinity observed in the K48R mutant. 

Mutation K59E resulted in a slightly larger decrease than observed in K48E. However, 

mutation K90E abolished RNA binding measured by fluorescence spectroscopy. 

Indeed, NMR spectroscopy experiments revealed that K90 is able to make contacts with 

the phosphate group of a bound RNA nucleotide (142). 

 

 Data presented in this study is largely in agreement with published data as to the 

residues that mediate RNA binding. The results presented here demonstrate that RNA 

binding involves residues over the entire face of the RRM. Additional NMR 

spectroscopy experiments revealed that TET label present on the 5' end of the RNA 

oligonucleotide was present near the site I binding pocket demonstrating the orientation 

of the RNA oligonucleotide. Mutational analysis studies sufficiently demonstrate the 

extent of involvement of residues present on the surface of the RRM in RNA binding. It 

is clear that residues Y27, R87 and K90 are essential to maintain wild type Rna15-RNA 

binding affinity to a U/G rich RNA oligonucleotide while residues Y21, Y61, F63 and 

potentially K59 form a more modest binding affinity to this RNA oligonucleotide. 

 

6.3 Mutational analysis of the RRM in vivo 

 Despite the severe effect on RNA binding affinity demonstrated by Rna15 RRM 

point mutations in vitro, these mutations fail to exert any detrimental effect on growth 

phenotype of S. cerevisiae. Transformation of all point mutations resulted in growth 

comparable to wild type. This is possibly not unexpected in those mutations that fail to 

severely impair RNA binding affinity but it is surprising that mutations such as Y27A, 
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R87A and K90E do not inhibit growth. It has been demonstrated that transformation of 

an Rna15 R87D mutation resulted in slow growth on 1.5% formamide (142). However, 

defects in growth of all Rna15 point mutants were not observed on 1.5% formamide 

(v/v) in this study. A triple mutant construct, Y27A, R87A and K90E failed to produce 

any effect on the growth phenotype of S. cerevisiae. Only deletion of the RRM (Δ16-

94) resulted in lethality on 5-FOA at 37ºC and severely inhibited growth in rich media 

at 30ºC. These results are surprising given the considerable RNA binding differences 

observed in the in vitro experiments. However, investigation into transcription and site 

selection of a subset of genes using Q-RT PCR and RNA sequencing provides an 

explanation as to why a growth defect is not observed. Transcription rate is affected in 

all genes investigated (ACT1, CYC1, ADH1, YPT1 and TDH2) by Q RT-PCR. 

Transcription rate of both TDH2 and ADH1 appear to decrease by around 40% of 

expression observed in wild type. A slightly less obvious effect is observed in ACT1 

and YPT1 where only a slight decrease in expression is apparent while a slight increase 

in expression is apparent in CYC1. Despite these differences from wild type expression, 

all genes are still expressed and levels are not significantly different to that of wild type. 

In addition, investigation into poly(A) site readthrough revealed that selection of the 

proximal site in all housekeeping genes occurs in the Δ16-94 mutant albeit with a 

slightly higher or lower frequency depending on the gene. This is also true for distal 

sites where again selection at these sites occurs with a slightly lower or higher 

frequency depending on each gene. In general, site selection in ACT1, TDH2, ADH1 

and YPT1 is relatively unaffected in the deletion mutant.  

 

 Although investigation into these genes form a good basis of analysis as they are 

housekeeping genes and therefore constitutively expressed, a whole global analysis of 

polyadenylation allows insight into 3' end processing activity of the entire 
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transcriptome. In this study, expression libraries for wild type and the deletion mutant 

were generated to allow a global analysis of transcription of all genes. The library 

sequenced was directional (sequenced in only antisense direction) and so genes 

transcribed on the antisense or sense strand could be distinguished. This allowed 

analysis of amount of mRNA in the 3' UTR of genes. Levels of mRNA varied between 

genes in the same class and also varied between classes demonstrating no pattern in 

readthrough or poly(A) site selection. Despite previous experiments detailing inhibition 

of cleavage and polyadenylation in in vitro polyadenylation assays (142), the results 

presented here appear to demonstrate that deletion of the RRM affects each gene 

differently and that in genes that are consistently expressed poly(A) site selection is not 

significantly altered. However, these effects in transcription and poly(A) site selection 

in the deletion mutant may account for the decrease in growth of the deletion mutant.  

 

 The discrepancy between the in vitro and in vivo results raises questions about 

the extent to which Rna15 directs cleavage and polyadenylation. Indeed, its primary 

function appears to be in poly(A) site selection, however, deletion of the entire RRM 

does not result in severe effects in poly(A) site selection when compared with wild type. 

However, it remains unclear the extent to which other proteins such as Rna14 and Hrp1 

influence site selection during polyadenylation in vivo and the target binding site for 

Rna15 is still debated. These are important details that may lead to a greater 

understanding as to why severe defects in RNA binding in vitro do not translate to 

lethality in S. cerevisiae. 

 

6.4 Nucleotide specificity of Rna15 

 The Rna15 target sequence within the 3' UTR of genes is still debated. A clear 

consensus sequence for Rna15 is difficult to identify due to the degeneracy of yeast 
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polyadenylation signals. However, early SELEX (selection amplification) experiments 

demonstrated a consensus sequence similar to the binding target of Rna15 homologue 

CstF-64 (143). The sequence was G/U rich and almost identical in sequence to the 

consensus sequence generated for CstF-64. However, CstF-64 displayed no affinity for 

the Rna15 consensus sequence demonstrating the similar but distinct nature of sequence 

recognition from yeast to mammals (143). Indeed, the crystal structure reveals the 

molecular basis of G/U selectivity whereby only a G or U nucleotide is able to form the 

Watson-Crick like hydrogen binding to the backbone of Y27 and I25 (141). 

Furthermore, the site I binding pocket is conserved through evolution and is evident in 

the CstF-64 homologue of Rna15 thus providing another link between yeast and 

mammalian 3' end processing systems. Furthermore, the conservation of G/U base 

selectivity further enforces the specificity of Rna15 for G/U rich sequences within the 3' 

UTR. Global sequencing analysis have revealed the appearance of U rich sequences 

within the 3' UTRs of S. cerevisiae (145). In addition, insertion of mutation of U rich 

sequences within the 3' UTRs of CYC1 and ADH1 drastically reduce polyadenylation 

while introduction of U rich sequences enhance polyadenylation in the GAL7 3' UTR 

(147,148). SIA results presented in this study further enforce previous finding and 

demonstrate that Rna15 has an intrinsic preference for G-U nucleotides over A-C 

nucleotides. In addition, Rna15 association with each pool generates a consensus 

sequence based entirely on Rna15 nucleotide preference at each position. 

Accompanying fluorescence spectroscopy experiments demonstrate that Rna15 binds 

this consensus sequence with a higher affinity.  

 

 These results are in disagreement with previously published crosslinking 

experiments involving the 3' UTR of GAL7 which demonstrate that Rna15 does not 

show sequence specificity when bound to the 3' UTR. However addition of Rna14 and 
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Hrp1 was shown to alter Rna15 binding so that it associated with the A-rich positioning 

element in the 3' UTR of GAL7 (139). Indeed NMR spectroscopy experiments 

demonstrated the ability of Rna15 to associate with the positioning element of GAL7 

when Hrp1 is also associated with the efficiency element (142). Prior to addition of 

Hrp1, NMR spectra for Rna15 demonstrated weak binding and appeared to associate at 

different places on the anchor RNA made up of the positioning element and efficiency 

element found in the 3' UTR of GAL7 (142). However, the NMR structure of the GAL7 

anchor RNA on the face of the RRM revealed that chemical shifts corresponding to 

Y21, Y61 and F63 were perturbed upon addition of the RNA (142). Indeed, Y21 is 

shown to interact with RNA in the crystal structure and unlike site I does not mediate 

G/U selectivity as RNA binding at this site predominantly a stacking interaction against 

the aromatic side chain. Therefore it is possible that if Rna15 associates weakly with A 

rich positioning elements found in the 3' UTRs of genes then it is possible that deletion 

of the RRM would not have a significant effect on transcription and 3' end processing as 

is observed in Q-RT PCR and RNA sequence results. 

 

 However, G/U selectivity is an intrinsic feature of Rna15 and conserved through 

evolution and therefore an important feature of the RRM. The evidence presented 

provides unambiguous evidence that Rna15 associates with G/U rich sequences within 

the 3' UTR of genes. Although, the differences in transcription and poly(A) site 

selection do not appear significantly altered in the deletion mutant when compared with 

wild type, growth of the mutant is severely impaired at 30ºC in rich media. 

Furthermore, deletion of the RRM is lethal on 5-FOA at 37ºC. This demonstrates that 

loss of RNA binding does affect growth phenotype of S. cerevisiae. It is possible that 

discrepancies between in vitro and in vivo results presented in this work are due to other 

protein factors involved in poly(A) site selection during 3' end processing events.  
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6.5 The influence of Rna14 on Rna15-RNA binding 

Deletion of the Rna14 "monkey-tail" interaction domain resulted in lethality of 

yeast at both 22ºC and 37ºC. This result demonstrates that the Rna14-Rna15 interaction 

is essential for cell viability. Rna14 and Rna15 associate together to form a heterodimer 

(107,108,137). The NMR structure of the heterodimer demonstrates the formation of a 

Rna15 helical bundle that an Rna14 monkeytail is able to wrap round (137). Within 

CF1A, two heterodimers were shown to associate into a tetramer via a Rna14-Rna14 

homodimer (107,108). Further contacts have been demonstrated whereby Rna14 

contacts Hrp1 and acts as a scaffold between Hrp1 and Rna15 (139). Association of 

Rna15 with RNA was shown to tether the CF1A complex to the 3' UTR during 3' end 

processing. However, deletion of the RRM does not demonstrate such a severe 

phenotype as is observed when the Rna14-Rna15 interaction is disrupted. This result 

demonstrates that deletion of the RRM alone is not enough to dissociate CF1A from the 

RNA. However, deletion of the Rna14-Rna15 interface could potentially lead to loss of 

CF1A interaction at the 3' UTR. Indeed, Rna14 has been shown to associate with Hrp1 

in the Rna14-Rna15-Hrp1 scaffold complex, however, it is possible that this interaction 

is not strong enough to keep CF1A anchored at the 3' end. Also, it is possible that loss 

of the Rna14-Rna15 interaction destabilises the Rna14-Hrp1 interaction. Rna14 and 

Rna15 form an extensive interaction with many contacts between the two proteins 

resulting in a tight interaction, Kd 1.6 µM. The formation of two Rna14-Rna15 

interaction domains in the tetramer results in a tight association of CF1A with RNA 

where two RRMs present in the tetramer contacts the RNA. Deletion of the Rna15 

binding interface in Rna14 potentially results in loss of CF1A at the 3' UTR so that 

other protein factors, holo-CPF, may not be recruited effectively inhibiting both the 
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cleavage and polyadenylation reactions in all genes. This global affect on the 3' end 

processing explains the lethality observed in S. cerevisiae.  

In vitro experiments aimed to characterise the effect of the tetramer on RNA 

binding did not produce the desired effect. The formation of the Rna14-Rna15 (2:2) 

tetramer was expected to result in an increase in RNA binding affinity due to the 

presence of the two RRMs belonging to each of the two Rna15 monomers. However, 

this was not observed in experiments presented in this study but previously published 

results demonstrate that disruption of the Rna14-Rna14 interface impairs RNA binding 

(108). An increase in affinity may not be observed in these studies due to flexibility at 

the Rna14-Rna14 interface meaning that the RNA oligonucleotide employed in this 

study were not of optimum length to sufficiently anchor both RRMs of Rna15 in the 

correct orientation to facilitate binding of one RNA oligonucleotide to one tetramer 

complex. 

6.6 Concluding remarks 

In general, the results demonstrated in this thesis show that Rna15 has an 

intrinsic ability to select G/U nucleotides over A/C nucleotides within the 3' UTR. 

However, it is possible that in genes such as GAL7, where there is a lack of G/U rich 

sequences, Hrp1 may influence Rna15 binding through the Rna14 mediated scaffold. 

Hrp1 has been shown to bind a region in the 3' UTR of genes termed the efficiency 

element in a number of previously published results demonstrating a concise site for 

binding (139,142). Hrp1 association with this target site using both RRMs may provide 

functional redundancy within the Rna15 Δ16-94 mutant where the Rna14-Rna15 

interaction is still intact. However, further experiments involving the Rna14-Rna15-

Hrp1 in complex with both G/U and A/C rich sequences is required to elucidate whether 

Hrp1 is able to influence Rna15-RNA binding. A combination of NMR spectroscopy 
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and fluorescence spectroscopy using long RNA oligonucleotides would aim to elucidate 

the mode of binding of the Rna14-Rna15-Hrp1 complex. Also, inclusion of A rich 

oligonucleotides would reveal whether an increase in RNA binding affinity is observed 

as has been previously stated. In addition a more global analysis of 3’ end processing 

within the Δ16-94 is required in order to determine whether a more severe effect is 

observed in processing of other genes than those analysed in this study. RNA 

sequencing of the 3’ UTRs of genes only would provide an in depth analysis and precise 

positioning of the actual polyadenylation event. By sequencing only the 3’ UTR of 

genes in a method described in references 293 and 294 the coverage is such that the 

polyadenylation event can be precisely mapped. In this way, the effect on processing 

and in particular poly(A) site selection can be clearly shown.  
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7.0 Appendix 

7.1 Oligonucleotide primers for PCR 

7.1.1 LIC primers for cloning in vitro constructs 

Primer Name Sequence (5’-3’) 

Rna15 2 F CAGGGACCCGGTAATAGGCAGAGCGGTGTGAAT 

Rna15 94 R GGCACCAGAGCGTTAGGAGTAACCGCATTTCAAAAAC 

Rna15 103 R GGCACCAGAGCGTTATGAAACTCCCGATATATCACT 

Rna15 296 R GGCACCAGAGCGTTAAAATGCACCAAATTCTCCCCTTAA 

7.1.2 Primers for cloning in vivo constructs 

Primer Name Sequence (5’-3’) Restriction site 

Rna15 F GCTGGCGCCGCGGACTTTTGTTCTTTTCTAGATTC SacII 

Rna15 R CGCCAGCTCTAGAAAATGCACCAAATTCTCCCCTTAATG Xba1 

Rna15 R + HA CGCCAGCCTGCAGAAATGCACCAAATTCTCCCCTTAATG Pst1 

Rna14 F GCTGGCGCCGCGGGTACATATATTTTTATGTAAG SacII 

Rna14 R CGCCAGCGCTAGCACCTGACTTGGTGCTCTCAACTG Nhe1 

Rna14 R + HA CGCCAGCCTGCAGACCTGACTTGGTGCTCTCAACTG Pst1 
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7.1.3 Primers for mutagenesis 
 
Primer Name Sequence (5’-3’) 

Y27F F CTGGGTTCTATACCATTCGATCAAACAGAGGAG 

Y27F R CTCCTCTGTTTGATCGAATGGTATAGAACCCAG 

Y27A F GTATCTGGGTTCTATACCAGCGGATCAAACAGAGGAGCAG 

Y27A R CTGCTCCTCTGTTTGATCCGCTGGTATAGAACCCAGATAC 

R87A F GGATACCAATTAGGCTCTGCGTTTTTGAAATGCGGTTAC 

R87A R GTAACCGCATTTCAAAAACGCAGAGCCTAATTGGTATCC 

R87K F GGATACCAATTAGGCTCTAAATTTTTGAAATGCGGTTAC 

R87K R GTAACCGCATTTCAAAAATTTAGAGCCTAATTGGTATCC 

S24A F GAGTGGTGTATCTGGGTGCGATACCATACGATCAAAC 

S24A R GTTTGATCGTATGGTATCGCACCCAGATACACCACTC 

S24T F CGAGTGGTGTATCTGGGTACTATACCATACGATCAAAC 

S24T R GTTTGATCGTATGGTATAGTACCCAGATACACCACTCG 

K59R F CAAACTGGTAGGTCGCGCGGGTACGCGTTTATTG 

K59R R CAATAAACGCGTACCCGCGCGACCTACCAGTTTG 

K59E F CCCAAACTGGTAGGTCGGAAGGGTACGCGTTTATTG 

K59E R CAATAAACGCGTACCCTTCCGACCTACCAGTTTGGG 

K90A F GGCTCTAGGTTTTTGGCGTGCGGTTACTCCAGC 

K90A R GCTGGAGTAACCGCACGCCAAAAACCTAGAGCC 

K90R F GGCTCTAGGTTTTTGCGCTGCGGTTACTCCAGC 

K90R R GCTGGAGTAACCGCAGCGCAAAAACCTAGAGCC 

K90E F GGCTCTAGGTTTTTGGAATGCGGTTACTCC 

K90E R GGAGTAACCGCATTCCAAAAACCTAGAGCC 

Y21A F CACCATCCCGAGTGGTGGCGCTGGGTTCTATACCATAC 

Y21A R GTATGGTATAGAACCCAGCGCCACCACTCGGGATGGTG 

Y21F F CATCCCGAGTGGTGTTTCTGGGTTCTATAC 
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7.1.3 Primers for mutagenesis cont. 

Primer Name Sequence (5’-3’) 

Y61F F CTGGTAGGTCGAAAGGGTTCGCGTTTATTGAATTTAG 

Y61F R CTAAATTCAATAAACGCGAACCCTTTCGACCTACCAG 

Y61A F CTGGTAGGTCGAAAGGGGCCGCGTTTATTGAATTTAG 

Y61A R CTAAATTCAATAAACGCGGCCCCTTTCGACCTACCAG 

F63A F GTAGGTCGAAAGGGTACGCGGCGATTGAATTTAGAGATTTAG 

F63A R CTAAATCTCTAAATTCAATCGCCGCGTACCCTTTCGACCTAC 

F63Y F CGAAAGGGTACGCGTATATTGAATTTAGAG 

F63Y R CTCTAAATTCAATATACGCGTACCCTTTCG 

Y61F/F63Y F TGGTAGGTCGAAAGGGTTCGCGTATATTGAATTTAGAGATTTAG 

Y61F/F63Y R CTAAATCTCTAAATTCAATATACGCGAACCCTTTCGACCTACCA 

Y61A/F63A F TGGTAGGTCGAAAGGGGCGGCGGCGATTGAATTTAGAGATTTAG 

Y61A/F63A R CTAAATCTCTAAATTCAATCGCCGCCGCCCCTTTCGACCTACCA 

K48R F CCGTGATCAATTTGAGAATGATGTTCGACCC 

K48R R GGGTCGAACATCATTCTCAAATTGATCACGG 

K48A F CCCGTGATCAATTTGGCGATGATGTTCGACCCCC 

K48A R GGGGGTCGAACATCATCGCCAAATTGATCACGGG 

K48E F CCCGTGATCAATTTGGAAATGATGTTCGACC 

K48E R GGTCGAACATCATTTCCAAATTGATCACGGG 

Y61S/F63S F GGTAGGTCGAAAGGGTCGGCGTCGATTGAATTTAGAGATTTAG 

Y61S/F63S R CTAAATCTCTAAATTCAATCGACGCCGACCCTTTCGACCTACC 

Y61S F GGTAGGTCGAAAGGGTCGGCGTTTATTGAATTTAG 

Y61S R CTAAATTCAATAAACGCCGACCCTTTCGACCTACC 

F63S F GTCGAAAGGGTACGCGTCGATTGAATTTAGAGATTTAG 

F63S R CTAAATCTCTAAATTCAATCGACGCGTACCCTTTCGAC 

R87A/K90E F GGATACCAATTAGGCTCTGCGTTTTTGGAATGCGGTTACTCCAGCAATAG 

R87A/K90E R CTATTGCTGGAGTAACCGCATTCCAAAAACGCAGAGCCTAATTGGTATCC 

Δ 16-94 F AGCAATAGTGATATATCGGGAGTTTC 

Δ 16-94 R TGGGTTGTTCTGTACCCCCGCATTC 

Rna14 Δ 626-677 F CTGCAGAGCGGCCGCATCTTTTAC 

Rna14 Δ 626-677 R GAATTTCTTATTGGAGAAGTTTC 
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7.3 Mass Spectrometry of Rna15 and mutant constructs 

7.3.1 Representative deconvoluted mass spectrum report  
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7.3.2 Mass spectrometry results for Rna15 and mutant constructs 
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7.4 Analysis of RNA quality 
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7.5 Primers and probes employed in qRT-PCR experiments 

Primer Name Sequence (5’-3’) Tm (°C) 

ACT1 F CAACAAATGTGGATCTCAAAACAAG 58.1 

ACT1 R CATAAACATACGCGCACAAAAGCA 59.3 

TDH2 F CATCGTTGATGGTCACAAGATC 58.4 

TDH2 R TGGAGTCAATGGCGATGTCAA 57.9 

ADH1 F CAGAGCTGACACCAGAGAAG 59.3 

ADH1 R GTAAATTTCTGGCAAGGTAGACAAG 59.7 

CYC1 F GTACACAGATGCCAATATCAAGA 57.1 

CYC1 R AACCCACCAAAGGCCATCTT 57.3 

YPT1 F ACACACGCGAGAACATATATACA 57.1 

YPT1 R GCATTAATTGCTGTGGCAGCT 57.9 

SNR52 F TTTCAGAAGGAAGGCAACATAAGT 57.6 

SNR52 R TACTATGATGAATGACATTAGCGTG 58.1 

Probe Name Dye/quencher Sequence (5’-3’ Tm 
(°C) 

ACT1 6-FAM/MGB CGAAAGTGGTCCATCTATCGTTCACCACAAGT 68.2 

TDH2 6-FAM/MGB CCAAGAAAGAGACCCAGCTAACTTGCCATG 68 

ADH1 6-FAM/MGB CTTCTTCGCCAGAGGTTTGGTCAAGTCTCCAA 69.5 

CYC1 6-FAM/MGB CATGTCAGAGTACTTGACTAACCCAAAGAAATATATT
CC 67.4 

YPT1 6-FAM/MGB CAACCTGAAGGGACAGAGTTTAACCAACACCG 67.4 

SNR52 6-FAM/MGB TTTCTAATCCTAAAATCTTTCGATTTTGTATCAGAGAT
TG 64.3 
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7.6 CT and quantity data from qRT-PCR experiments 

7.6.1.Rna15 Wild type 

Amplicon CT Mean (S.D.) Exp 1 CT Mean (S.D.) Exp 2 CT Mean (S.D.) Exp 3
ACT1 20.4 (0.05) 20.1 (0.01) 20.8 (0.04) 
TDH2 19.16 (0.11) 16.7 (0.05) 19.6 (0.03) 
ADH1 15.8 (0.02) 16.1 (0.1) 14.5 (0.3) 
CYC1 21.7 (0.21) 22 (0.3) 23.1 (0.14) 
YPT1 23.6 (0.02) 23.8 (0.05) 23.4 (0.15) 

SNR52 15.1 (0.26) 17.2 (0.25) 14.8 (0.2) 

Amplicon Quantity Mean (S.D.) Exp
1 

Quantity Mean (S.D.) Exp 
2

Quantity Mean (S.D.) Exp 
3

ACT1 172 (4.7) 229.9 (1.5) 139.1 (2.7) 
TDH2 185.2 (1) 214.5 (4.8) 174 (2.2) 
ADH1 389.9 (3.7) 458.6 (19.5) 312 (39.4) 
CYC1 22.4 (2.2) 37.9 (4.5) 27.2 (1.7) 
YPT1 30.2 (0.3) 53.6 (1.2) 34.7 (2.2) 
SNR52 911.8 (105.3) 832.1 (82.7) 1029.7 (69.1) 

7.6.2.Rna15 Δ16-94 

Amplicon CT Mean (S.D.) Exp 1 CT Mean (S.D.) Exp 2 CT Mean (S.D.) Exp 3
ACT1 20.63 (0.04) 20.3 (0.05) 21 (0.2) 
TDH2 20.3 (0.14) 17.9 (0.2) 20.5 (0.02) 
ADH1 16.5 (0.06) 16.8 (0.06) 15.2 (0.2) 
CYC1 21.2 (0.15) 22 (0.3) 22.5 (0.13) 
YPT1 23.7 (0.13) 24 (0.07) 23.5 (0.08) 
SNR52 14.9 (0.24) 17.2 (0.22) 14.5 (0.17) 

Amplicon Quantity Mean (S.D.) Exp
1 

Quantity Mean (S.D.) Exp 
2

Quantity Mean (S.D.) Exp 
3

ACT1 149.8 (3.4) 208.3 (4.7) 124.4 (9.6) 
TDH2 107.5 (7.5) 132.5 (8.1) 114.8 (0.9) 
ADH1 278.5 (8.2) 346.1 (9) 219 (18.4) 
CYC1 27.2 (1.9) 47.4 (5.6) 35.5 (2) 
YPT1 29 (1.8) 49.5 (1.4) 33.9 (1.1) 
SNR52 983.9 (107.9) 825.1 (68.6) 1161.4 (76.7) 
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