Impact of basin tectonics and climate change on the timing of sediment flux to the Ainsa Basin, Middle Eocene, Spanish Pyrenees

Blanca Cantalejo López

2014

University College London

Thesis submitted for examination for the award of Doctor of Philosophy (Ph.D)
Declaration

I, Blanca Cantalejo López confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Signed ___________________________

Date ___________________________
Abstract

This thesis integrates sedimentological, geochemical, magnetostratigraphic and spectral work from field and core data from the Middle Eocene, deep-marine siliciclastic sediments in the Ainsa Basin, Spanish Pyrenees.

The deep-marine sediments of the Ainsa Basin comprise an alternation of coarse-grained sandbodies (submarine fans) and fine-grained packages of fan lateral-margin and interfan deposits. Time-series analysis performed on spectral gamma-ray and sandstone turbidite intensity data from 10 fine-grained interfan stratigraphic sections covering ~1.5 km of stratigraphy, and using multiple geochemical proxies (including high-resolution elemental XRF scanning, total organic carbon and carbon stable isotopes), all show that the interfan sediments contain a strong Milankovitch cyclicity. Orbital parameters most likely paced the cyclic delivery of the finer-grained sediments mainly by river- and delta-derived hyperpycnal turbidity currents. Sediment accumulation rates determined from spectral analysis reveal an overall decrease throughout the deep-marine stratigraphy from ~50 to ~13 cm/kyr.

Orbital tuning of the fine-grained sections using polarity reversals as anchor points permits the conversion from a depth-stratigraphy to a chronostratigraphy and also allows the estimation of the timing of initiation of each sandy submarine fan. The pacing of these sandbodies appears to have occurred at irregular time intervals and to have been of variable duration. They are, therefore, most likely controlled by the tectonic pulsating activity of the Pyrenean thrust systems linked with episodic changes in relative base level (e.g., overall tilting of the graded profile from source to sink, changing relative sea level). Climate may still have been important but only as a contributory rather than principal driver of submarine-fan development.
Table of contents

Declaration... 2
Abstract... 3
Table of contents... 4
List of figures... 16
List of tables.. 21
List of plates.. 23
List of equations... 24
List of acronyms... 25
Acknowledgements.. 27

Chapter 1 Introduction... 28

1.1 Introduction and objectives.. 28
1.2 Geological setting... 30
 1.2.1 The Pyrenean orogen.. 30
 1.2.2 Evolution of the Pyrenees.. 30
 1.2.3 Structural units... 32
 1.2.3.1 The Aquitanian Basin... 36
 1.2.3.2 The North Pyrenean Zone... 36
 1.2.3.3 The Pyrenean Axial Zone... 37
 1.2.3.4 The South Pyrenean Thrust System (SPTS) 38
 1.2.3.5 The Ebro Basin... 40
1.2.4 The Ainsa Basin: study area………………………………………… 41

1.2.4.1 Tectonic setting……………………………………………… 41

1.2.4.2 Structure of the Ainsa Basin……………………………… 45

1.2.4.3 Stratigraphy………………………………………………… 49

1.2.4.4 Sand-rich depositional systems…………………………… 51

1.2.4.5 Submarine fans versus erosional channels……………….. 53

1.2.4.6 Influence of tectonics on sedimentation patterns……… 54

1.2.4.7 Age dating of the Ainsa Basin sediments………………….. 56

1.2.4.8 Sediment accumulation rates of the Ainsa Basin……… 58

1.2.4.9 Water depths……………………………………………… 59

1.2.4.10 Palaeocurrents within the Ainsa Basin………………….. 61

1.2.4.11 Growth stages in submarine fan formation……………… 61

1.3 Milankovitch cyclicity……………………………………………… 64

1.3.1 Milankovitch theory ………………………………………… 64

1.3.2 Orbital cycles……………………………………………….. 66

1.3.3 Eccentricity…………………………………………………… 67

1.3.4 Obliquity……………………………………………………….. 68

1.3.5 Precession……………………………………………………… 70

1.3.6 The 100 kyr problem………………………………………… 72

1.3.7 Periodicities through geological time…………………….. 74

1.3.8 Possible effects of Milankovitch cycles in the Ainsa Basin during the Eocene…………………………………… 75

1.4 Eocene climate……………………………………………….. 77
2.4.2 Sources of potassium, thorium and uranium in sedimentary rocks

2.4.3 Outcrop spectral gamma-ray methodology

2.4.3.1 Sampling time period

2.4.3.2 Distance between measurements

2.4.3.3 Geometry of the measurements

2.4.4 Application of gamma ray detection in sedimentology

2.4.4.1 Facies recognition

2.4.4.2 Weathering patterns

2.4.4.3 Storminess, oxygenation levels and change in sea-levels

2.5 X-ray fluorescence scanning

2.6 Total organic carbon

2.7 Stable carbon isotopes

2.8 Scanning electron microscopy (SEM)

2.9 X-ray power diffraction (XRD)

2.10 Thin section preparation technique

2.11 Magnetostratigraphy

2.8.1 Primary and secondary remanent magnetisations

2.8.2 Techniques of demagnetisation

2.8.3 Sampling technique

2.8.3.1 Core drilling technique

2.8.3.2 Hand sampling technique

2.8.4 Sample preparation and magnetostratigraphic analysis

2.9 Cyclostratigraphy
2.9.1 Data conditioning

2.9.1.1 Interpolation

2.9.1.2 Removal of outliers

2.9.1.3 Dataset detrending

2.9.2 The discreet Fourier Transform

2.9.3 Methods of spectral estimation

2.9.3.1 The periodogram

2.9.3.2 The maximum entropy method

2.9.3.3 The multi-taper method (MTM)

2.9.3.4 REDFIT method

2.9.4 Curve-fitting models

2.9.5 Average spectral misfit (ASM)

2.9.6 Wavelet analysis

2.9.6.1 Wavelet analysis parameters

2.9.6.2 Wavelet analysis parameters used in this study

2.9.7 Frequency-selective filtering

2.9.7.1 Low-pass filters

2.9.7.2 Band-pass filters

2.9.8 Orbital tuning

2.9.8.1 Orbital tuning methodology

Chapter 3 Magnetostratigraphy in the Ainsa Basin

3.1 Introduction and objectives
3.2. Previous chronostratigraphic studies in the Ainsa Basin............ 164
3.3 Stratigraphy sampled in this study.. 165
3.4 Data quality and reliability of the study.............................. 171
3.5 Magnetostratigraphic results... 176
 3.5.1 Polarity reversals classification criteria......................... 178
 3.5.2 Polarity reversals.. 178
 3.5.3 Polarity interpretations... 180
3.6 Comparison with other magnetostratigraphic age models of
 the Ainsa Basin.. 184
 3.6.1 Comparison between Mochales et al. (2012) and this study...
 3.6.2 Comparison between Holl and Anastasio (1993) and this
 study... 187
3.7 Ainsa basin chronostratigraphy... 188
 3.7.1 The Arro System... 188
 3.7.2 The Gerbe System... 189
 3.7.3 The Banastón System.. 189
 3.7.4 The Ainsa System.. 190
 3.7.5 The Morillo System... 191
 3.7.6 The Guaso System... 191
3.8 Correlations between the Jaca and the Ainsa basins......... 192
3.9 Correlations between the Tremp-Ager and the Ainsa basins... 194
3.10 Conclusions.. 198

Chapter 4 Well A6 core.. 200
4.1 Introduction and objectives .. 200

4.2 Geochemical proxies and sedimentation patterns in deep-marine environments ... 201

4.3 The Well A6 ... 202
 4.3.1 Location of the Well A6 .. 202
 4.3.2 Stratigraphic location of the A6 core 202
 4.3.3 Age of the A6 core ... 205

4.4 Sedimentological study of the A6 core 205
 4.4.1 Sedimentary facies ... 206
 4.4.2 A6 core sedimentary divisions 212

4.5 Geochemical study of the A6 core 214
 4.5.1 XRF results ... 214
 4.5.1.1 Elemental distributions .. 215
 4.5.1.2 Grain-size distributions .. 221
 4.5.2 X-ray mapping ... 223
 4.5.3 SEM and XRD results ... 225
 4.5.4 TOC and stable carbon isotope results 228
 4.5.5 Cyclostratigraphic analysis .. 229
 4.5.5.1 Methods of spectral estimation 229
 4.5.5.2 REDFIT time-series analysis 231
 4.5.5.3 ASM analysis .. 234
 4.5.5.4 Wavelet analysis .. 237

4.6 Discussion .. 240
 4.6.1 Origin of the sediments of the A6 core 240
4.6.2 Variations in the organic content of the A6 core

4.6.2.1 Changes in the productivity of the ocean

4.6.2.2 Variation in the oxygenation of the bottom waters

4.6.2.3 Variations in the flux of terrigenous organic carbon

4.6.3 Causes of cyclicity in the A6 core

4.7 Conclusions

Chapter 5 Orbital-forcing in the sediments of the Ainsa Basin

5.1 Introduction and objectives

5.2 Gamma-ray logged sections

5.2.1 Type of sediments in the gamma-ray logged sections

5.2.2 Environment of deposition of the fine-grained successions

5.2.3 K, Th and U content of the gamma-ray sections and environmental constraints

5.2.4 Spectral analysis of the gamma-ray sections

5.3 Gamma-ray logged sections in the Ainsa deep-marine systems

5.3.1 The Arro System

5.3.1.1 Sedimentology of the Arro System

5.3.1.2 Tectonic history during deposition of the Arro System

5.3.1.3 Age of the Arro System

5.3.1.4 Tierrantona gamma-ray logged section

5.3.1.4.1 Geographical location of the Tierrantona section

5.3.1.4.2 Stratigraphic location of the Tierrantona section

5.3.1.4.3 Cyclostratigraphy of the Tierrantona section

5.3.2 The Gerbe System
5.3.2.1 Sedimentology of the Gerbe System 290
5.3.2.2 Tectonic history during deposition of the Gerbe System. 291
5.3.2.3 Age of the Gerbe System... 292
5.3.2.4 Gerbe gamma-ray logged section............................... 293
 5.3.2.4.1 Geographical location of the Gerbe section............. 293
 5.3.2.4.2 Stratigraphic location of the Gerbe section.......... 296
 5.3.2.4.3 Cyclostratigraphic studies of the Gerbe section..... 301
5.3.3 The Banastón System.. 316
 5.3.3.1 Sedimentology of the Banastón System.................... 316
 5.3.3.2 Tectonic history of deposition of the Banastón System 317
 5.3.3.3 Age of the Banastón System.................................. 318
 5.3.3.4 Labuerda gamma-ray logged sections....................... 318
 5.3.3.5 Stratigraphic location of the Labuerda sections........ 319
 5.3.3.6 Labuerda gamma-ray logged section 1..................... 322
 5.3.3.6.1 Cyclostratigraphy of the Labuerda section 1....... 327
 5.3.3.7 Labuerda gamma-ray logged section 2..................... 336
 5.3.3.7.1 Cyclostratigraphy of the Labuerda section 2....... 339
5.3.4 The Ainsa System.. 355
 5.3.4.1 Sedimentology of the Ainsa System......................... 355
 5.3.4.2 Tectonic history during deposition of the Ainsa System. 356
 5.3.4.3 Age of the Ainsa System..................................... 356
 5.3.4.4 Boltaña gamma-ray logged section.......................... 357
 5.3.4.4.1 Geographical location of the Boltaña section..... 357
 5.3.4.4.2 Stratigraphic location of the Boltaña section..... 360
 5.3.4.4.3 Cyclostratigraphic studies of the Boltaña section... 364
 5.3.4.5 Forcaz gamma-ray section................................... 380
 5.3.4.5.1 Geographical Location of the Forcaz section....... 380
5.3.4.5.2 Stratigraphic location of the Forcaz section 383
5.3.4.5.3 Cyclostratigraphic studies of the Forcaz section 387

5.3.5 The Morillo System ... 405
5.3.5.1 Sedimentology of the Morillo System 405
5.3.5.2 Tectonic history during deposition of the Morillo System .. 406
5.3.5.3 Age of the Morillo System 407
5.3.5.4 Morillo-reservoir gamma-ray logged section 407
5.3.5.4.1 Geographical location of the Morillo-reservoir section .. 407
5.3.5.4.2 Stratigraphic location of the Morillo-reservoir section .. 410
5.3.5.4.3 Cyclostratigraphy of the Morillo-reservoir section 414
5.3.5.5 Sieste gamma-ray logged section 425
5.3.5.5.1 Geographical location of the Sieste section 425
5.3.5.5.2 Stratigraphic location of the Sieste section 427
5.3.5.5.3 Cyclostratigraphic studies of the Sieste section 431

5.3.6 The Guaso System .. 442
5.3.6.1 Sedimentology of the Guaso System 442
5.3.6.2 Tectonic history during deposition of the Guaso System 443
5.3.6.3 Age of the Guaso System 444
5.3.6.4 Morillo-Bruello gamma-ray logged section 445
5.3.6.4.1 Geographical location of the Morillo-Bruello section .. 445
5.3.6.4.2 Stratigraphic location of the Morillo-Bruello section .. 448
5.3.6.4.3 Cyclostratigraphy of the Morillo-Bruello section ... 451
6.4.1 Eustatic control of the deposition of the sandbodies........... 502
6.4.2 Climatic control on the deposition of the sandbodies.......... 506
6.4.3 Autocyclic control on the deposition of the sandbodies........ 508
6.4.4 Tectonic control on the deposition of the sandbodies.......... 510

6.5 Conclusions... 515
6.6 Limitations of this study.. 517
6.7 Wider applications... 517
6.8 Further work.. 518

References... 521

Appendices... 576
List of figures

Figure 1.1 Schematic geological map of the Pyrenees showing the position of the study area (Ainsa Basin)…………………………………………………….. 33
Figure 1.2 North-south cross-section across the Pyrenees……………………………………. 35
Figure 1.3 West-east structural section of the Ainsa Basin……………………………………. 42
Figure 1.4 Palaeogeographic map of the South Central Pyrenees during the Middle Eocene………………………………………………………….. 44
Figure 1.5 Structures of the Ainsa Basin…………………………………………………………. 47
Figure 1.6 Stratigraphy of the Ainsa Basin………………………………………………………. 51
Figure 1.7 Generalised sediment-routing system for the Pyrenees during the Eocene………………. 54
Figure 1.8 Timing of the structures in the Ainsa Basin in relation to the deposition of the Middle Eocene deep-marine fan systems………………………….. 55
Figure 1.9 Age model of the Ainsa Basin………………………………………………………... 57
Figure 1.10 Idealised vertical complete succession of a submarine fan in the Ainsa Basin……………………………………………………………………. 63
Figure 1.11 Main orbital parameters: eccentricity, obliquity and precession……………………… 66
Figure 1.12 The precession cycle…………………………………………………………………… 71
Figure 1.13 Annual insolation, eccentricity, precession and obliquity curves from 50 to 40 Ma……………………………………………………………………. 76
Figure 1.14 Atmospheric CO₂ concentration and deep-sea temperature reconstruction over the past 65 Myr……………………………………………………… 81
Figure 2.1 Work-flow of the methodology used in this study……………………………………. 97
Figure 2.2 Panorama of the Ainsa basin and geological interpretation…………………………. 100
Figure 2.3 Legend used in the geological maps………………………………………………….. 103
Figure 2.4 Ainsa basin geology map adapted to underlying topography………………………... 104
Figure 2.5 Legend used in the sedimentary logs………………………………………………….. 106
Figure 2.6 Gamma-ray spectrum window for the radioactive elements K, U and Th…………………………………….. 110
Figure 2.7 Effects of sampling surface and bed geometry upon outcrop gamma-ray measurements………………………………………………………………….. 114
Figure 2.8 Geocentric axial dipole………………………………………………………………… 124
Figure 2.9 GPTS between 40 and 48.5 Myr…………………………………………………………. 126
Figure 2.10 3D representation of a Zijderveld diagram…………………………………………. 132
Figure 2.11 Work-flow of the cyclostratigraphic analysis used in this study……………………. 134
Figure 2.12 Time-series analysis of eccentricity using REDFIT, MTM, the periodogram and the maximum entropy methods………………………………………. 139
Figure 2.13 Comparison of difference curve fitting methods for the K spectrum of the Forcaz section………………………………………………………………….. 145
Figure 2.14 Morlet mother wavelet with five oscillations………………………………………… 148
Figure 2.15 Wavelet analysis contour plot…………………………………………………………. 149
Figure 2.16 Wavelet tiling………………………………………………………………………….... 150
Figure 2.17 Frequency-selective filtering……………………………………………………………. 158
Figure 3.1 Location of the palaeomagnetic sections……………………………………………… 167
Figure 3.2 Composite section showing the location of the four magnetostratigraphic sections within the stratigraphy……………………………………. 168
Figure 3.3 Geological maps showing the position of the four palaeomagnetic sections within the stratigraphy………………………………………………. 170
Figure 3.4 Z-plots showing the three demagnetization trend categories…………………………. 172
Figure 3.5 Data quality in the magnetostratigraphic sections……………………………………. 173
Figure 3.6 Stratigraphic log of the composite Ainsa palaeomagnetic section showing polarity, inclination, declination and natural remanent magnetization (NRM) intensity .. 174
Figure 3.7 Equal area stereoplot including all class A samples 175
Figure 3.8 Magnetic stratigraphic results of the Ainsa basin 177
Figure 3.9 Comparison between the biostratigraphic study of Scotchman et al. (2014) and this study ... 181
Figure 3.10 Magnetic stratigraphic age model ... 183
Figure 3.11 Magnetic stratigraphic correlation between Mochales et al. (2012) and this study ... 185
Figure 3.12 Magnetic stratigraphic correlation between Holl and Anastasio (1993) and this study ... 187
Figure 3.13 Magnetic stratigraphic correlation between Oms et al. (2003) and this study ... 194
Figure 3.14 Magnetic stratigraphic correlation between Bentham and Burkbank (1996) and this study ... 196
Figure 3.15 Summary of chronostratigraphic work undertaken in the Jaca, Ainsa and Tremp basin showing inter-basin correlations 197
Figure 4.1 Geological map of the Ainsa Basin showing the position of the Well A6 ... 204
Figure 4.2 Reconstruction of the environment of deposition for the A6 core ... 205
Figure 4.3 XRF elements showing thrust zone anomaly .. 211
Figure 4.4 Representative sedimentary logs of the three main sections of the A6 core ... 213
Figure 4.5 Cross-plots of selected elements in the A6 core ... 216
Figure 4.6 Al, Sr and Ca trends from XRF analysis compared with CaCO3 and TOC results ... 218
Figure 4.7 Sedimentary logs compared with 3.5 mm spacing XRF data ... 220
Figure 4.8 Comparison between mudstone intensity, sandstone turbidite intensity and grain-size palaeoproxy profiles ... 222
Figure 4.9 XRD spectra obtained from 6 bulk samples of the A6 core ... 225
Figure 4.10 Stable carbon isotopes of the A6 core .. 229
Figure 4.11 Methods of spectral estimation using the sandstone turbidite intensity data of the A6 core ... 230
Figure 4.12 REDFIT time-series analysis of A6 core data .. 233
Figure 4.13 Wavelet analysis of the turbidite and bioturbation intensity and the stable carbon isotopes of the A6 core ... 239
Figure 4.14 Hypopycnal, mesopycnal and hyperpycnal flows 241
Figure 4.15 Wavelet analysis of the sandstone turbidite and bioturbation intensity and the stable carbon isotopes in the A6 core ... 239
Figure 4.16 Sandstone turbidite intensity versus bioturbation intensity 243
Figure 5.1 Location of the gamma-ray logged sections in the stratigraphy of the Ainsa basin ... 251
Figure 5.2 Environments of deposition of the Ainsa basin channel systems 256
Figure 5.3 K, Th and U content of the gamma-ray logged sections 260
Figure 5.4 Ternary diagrams of all the spectral gamma-ray logged sections 261
Figure 5.5 Cross-plots of Th vs. U in the spectral gamma-ray sections 262
Figure 5.6 Th and U cross-plots of the spectral gamma-ray sections 263
Figure 5.7 Geological map and cross section of the Tierrantona section 274
Figure 5.8 Sandstone turbidite intensity in the Tierrantona section 276
Figure 5.9 Sedimentary logs of the Tierrantona section ... 277
Figure 5.10 Total gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs ... 278
Figure 5.11 Methods of spectral estimation using spectral total-gamma data of the Tierrantona section ... 279
Figure 5.12 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data of the Tierrantona section using REDFIT 281
Figure 5.13 ASM results of the Tierrantona section.. 284
Figure 5.14 Wavelet analysis of the sandstone turbidite intensity, K, total gamma and Th data of the Tierrantona section.. 286
Figure 5.15 Frequency-selective filtering of the Tierrantona section 289
Figure 5.16 Total gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Gerbe section.......................... 297
Figure 5.17 Geological map, cross section and calculated stratigraphic thickness of the Gerbe gamma-ray logged section.......................... 298
Figure 5.18 Sedimentary logs of the Gerbe section.. 299
Figure 5.19 Sandstone turbidite intensity in the Gerbe section......................... 300
Figure 5.20 Methods of spectral estimation using Gerbe spectral total-gamma data ... 301
Figure 5.21 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data of the Gerbe section using REDFIT 303
Figure 5.22 ASM results of the Gerbe section... 306
Figure 5.23 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Gerbe section.. 308
Figure 5.24 Frequency-selective filtering of the Gerbe section......................... 311
Figure 5.25 Orbital tuning of the Gerbe section.. 313
Figure 5.26 Spectral analysis using REDFIT of total-gamma records tuned to eccentricity .. 314
Figure 5.27 SAR in the Gerbe section calculated from orbital tuning the total-gamma records to eccentricity ... 315
Figure 5.28 Geological map, cross section and calculated stratigraphic thickness of the Labuerda gamma-ray logged section 1 and 2 321
Figure 5.29 Sedimentary log of the Labuerda section 1 324
Figure 5.30 Sandstone turbidite intensity in the Labuerda section 1................... 325
Figure 5.31 Total-gamma (cpm), K(%), Th(ppm), U (ppm), Th/K and Th/U data plotted against sedimentary logs of Labuerda section 1 326
Figure 5.32 Methods of spectral estimation using Labuerda section 1 spectral total-gamma data ... 327
Figure 5.33 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT ... 329
Figure 5.34 ASM results of the Labuerda section 1.. 331
Figure 5.35 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Labuerda section 1.............................. 333
Figure 5.36 Frequency-selective filtering of the Labuerda section 1 335
Figure 5.37 Sedimentary log of the Labuerda section 2 337
Figure 5.38 Sandstone turbidite intensity in the Labuerda section 2 338
Figure 5.39 Methods of spectral estimation using Labuerda section 2 spectral total-gamma data ... 339
Figure 5.40 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data in Labuerda section 2 using REDFIT 341
Figure 5.41 ASM results of the Labuerda section 2.. 344
Figure 5.42 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Labuerda section 2 347
Figure 5.43 Frequency-selective filtering of the Labuerda section 2 349
Figure 5.44 Comparison between total-gamma and sandstone turbidite intensity filtered records to the frequency 0.024 cycles/m 350
Figure 5.45 Orbital tuning of the Labuerda section 2 352
Figure 5.46 Spectral analysis using REDFIT tuned to eccentricity 353

18
Figure 5.47 SAR in the Labuerda section 2 calculated from orbital tuning the total-gamma records to eccentricity 354
Figure 5.48 Geological map, cross section and calculated stratigraphic thickness of the Boltaña gamma-ray logged section 361
Figure 5.49 Sedimentary logs of the Boltaña section .. 362
Figure 5.50 Sandstone turbidite intensity in the Boltaña section 363
Figure 5.51 Total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Boltaña section 364
Figure 5.52 Methods of spectral estimation using the spectral total-gamma data of the Boltaña section ... 365
Figure 5.53 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT ... 367
Figure 5.54 ASM results of the Boltaña section ... 369
Figure 5.55 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Boltaña section ... 372
Figure 5.56 Frequency-selective filtering of the Boltaña section 374
Figure 5.57 Orbital tuning of the Boltaña section ... 377
Figure 5.58 Spectral analysis using REDFIT of the Boltaña section tuned to eccentricity .. 378
Figure 5.59 SAR in the Boltaña section calculated from orbital tuning the total-gamma records to eccentricity ... 379
Figure 5.60 Geological map, cross section and calculated stratigraphic thickness of the Forcaz section ... 384
Figure 5.61 Sedimentary logs of the Forcaz section .. 385
Figure 5.62 Sandstone turbidite intensity in the Forcaz section 386
Figure 5.63 Simplified sedimentary logs of the Forcaz section plotted against total-gamma (cpm), K (%), Th (ppm) and U (ppm), Th/U and Th/K 387
Figure 5.64 Methods of spectral estimation using Forcaz spectral total-gamma data ... 388
Figure 5.65 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT ... 390
Figure 5.66 ASM results of the Forcaz section .. 392
Figure 5.67 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data of the Forcaz section .. 395
Figure 5.68 Frequency-selective filtering of the Forcaz section 397
Figure 5.69 Orbital tuning of the Forcaz section .. 401
Figure 5.70 Spectral analysis using REDFIT of the Forcaz section tuned to eccentricity .. 402
Figure 5.71 SAR in the Forcaz section calculated from orbital tuning the total-gamma records to eccentricity ... 404
Figure 5.72 Geological map, cross section and calculated stratigraphic thickness of the Morillo-reservoir and the Morillo-Brullo gamma-ray logged section ... 411
Figure 5.73 Detailed sedimentary log of the Morillo-reservoir section 412
Figure 5.74 Sandstone turbidite intensity of the Morillo-reservoir section 413
Figure 5.75 Simplified sedimentary logs of the Morillo-reservoir section plotted against total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data ... 414
Figure 5.76 Methods of spectral estimation of the Morillo-reservoir total-gamma data ... 415
Figure 5.77 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT ... 417
Figure 5.78 ASM results of the Morillo-reservoir section .. 419
Figure 5.79 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data of the Morillo-reservoir section

Figure 5.80 Frequency-selective filtering of the Morillo-reservoir section

Figure 5.81 Geological map, cross section and calculated stratigraphic thickness of the Sieste gamma-ray logged section

Figure 5.82 Detailed sedimentary log of the Sieste section

Figure 5.83 Sandstone turbidite intensity in the Sieste section

Figure 5.84 Simplified sedimentary logs of the Sieste section plotted against total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data

Figure 5.85 Methods of spectral estimation of the Sieste total-gamma

Figure 5.86 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data of the Sieste section using REDFIT

Figure 5.87 ASM results of the Sieste section

Figure 5.88 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Sieste section

Figure 5.89 Frequency-selective filtering of the Sieste section

Figure 5.90 Detailed sedimentary logs of the Morillo- Bruello section

Figure 5.91 Total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Morillo- Bruello section

Figure 5.92 Sandstone turbidite intensity in the Morillo- Bruello section

Figure 5.93 Methods of spectral estimation using the spectral total-gamma data of the Morillo- Bruello section

Figure 5.94 Time-series analysis of spectral gamma-ray and sandstone turbidite intensity data of the Morillo- Bruello section using REDFIT

Figure 5.95 ASM results of the Morillo- Bruello section

Figure 5.96 Wavelet analysis spectra of the sandstone turbidite intensity, K, total-gamma and Th data in the Morillo- Bruello section

Figure 5.97 Frequency-selective filtering of the Morillo- Bruello section

Figure 5.98 Geological map, cross section and calculated stratigraphic thickness of the Guaso section

Figure 5.99 Detailed sedimentary log of the Guaso section

Figure 5.100 Simplified sedimentary logs of the Guaso section plotted against total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data

Figure 5.101 Sandstone turbidite intensity in the Guaso section

Figure 5.102 Methods of spectral estimation using the spectral total-gamma data of the Guaso section

Figure 5.103 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT

Figure 5.104 ASM results of the Guaso section

Figure 5.105 Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Guaso section

Figure 5.106 Frequency-selective filtering of the Guaso section

Figure 5.107 SARs across the Upper Hecho Group in the Ainsa Basin

Figure 5.108 Interfan thickness duration in Upper Hecho Group

Figure 5.109 Accumulative time and thickness of the interfan successions

Figure 5.110 Chronostratigraphy of the Ainsa Basin

Figure 6.1 Mechanisms of sea-level change

Figure 6.2 Intrabasinal tectonic control on the deposition of the Ainsa systems

Figure 6.3 Comparison of the stratigraphy of the Ainsa Basin with global sea levels

Figure 6.4 Comparison of the stratigraphy of the Ainsa Basin with eccentricity curves

Figure 6.5 Mediano Anticline growing rates

Figure 6.6 Numerical simulations of gravel delivery to basins
List of tables

Table 1.1	SARs of the Upper Hecho Group	59
Table 1.2	Orbital periodicities for the Middle Eocene	76
Table 1.3	Phanerozoic sea-level cycles	89
Table 2.1	Spectral windows for the detection of potassium, uranium and thorium	110
Table 2.2	Wavelet analysis parameters	151
Table 3.1	Comparison between magnetostratigraphic and gamma-ray logged sections	168
Table 3.2	Absolute ages and chron durations of different age models from C21n-20n	182
Table 4.1	Summary of facies recognised in the A6 core	207
Table 4.2	Correlation coefficients calculated for pair of elements	215
Table 4.3	Methods of spectral estimation of the sandstone turbidite intensity in the A6 core	231
Table 4.4	Curve-fitting methods for the sandstone turbidite intensity in the A6 core	232
Table 4.5	REDFIT spectral results of the A6 core data	234
Table 4.6	Temporal period duration of significant frequencies in the A6 core	236
Table 5.1	List of gamma-ray logged sections in the Ainsa Basin	250
Table 5.2	Correlation coefficient in the spectral gamma ray data	259
Table 5.3	Methods of spectral estimation in the Tierrantona section	280
Table 5.4	Significant frequencies of the Tierrantona section using REDFIT	282
Table 5.5	Noise background estimation methods for the Tierrantona section	282
Table 5.6	Temporal period duration of significant frequencies in the Tierrantona section	285
Table 5.7	Methods of spectrum estimation in the Gerbe section	302
Table 5.8	Significant frequencies of the Gerbe section using REDFIT	304
Table 5.9	Noise background estimation methods for the Gerbe section	304
Table 5.10	Temporal period duration of significant frequencies in the Gerbe section	307
Table 5.11	Anchor points used for tuning in the Gerbe section	312
Table 5.12	SAR in the Gerbe section calculated from tuning the records to eccentricity	315
Table 5.13	Methods of spectrum estimation in the Labuerda section 1	328
Table 5.14	REDFIT time-series analysis results of the Labuerda 1 section	330
Table 5.15	Noise background estimation comparison of the Labuerda section 1	330
Table 5.16	Temporal period duration of significant frequencies in the Labuerda section 1	332
Table 5.17	Methods of spectrum estimation in the Labuerda section 2	340
Table 5.18	REDFIT time-series analysis results of the Labuerda 2 section	342
Table 5.19	Noise background estimation of the Labuerda section 2	342
Table 5.20	Temporal period duration of significant frequencies in the Labuerda section 2	345
Table 5.21	Anchor points for tuning in Labuerda section 2	351
Table 5.22	SAR in the Labuerda section 2 calculated from tuning the records	354
Table 5.23 Methods of spectrum estimation in the Boltaña section................................. 366
Table 5.24 REDFIT time-series analysis results of the Boltaña section............................... 368
Table 5.25 Noise background estimation in the Boltaña section.. 368
Table 5.26 Temporal period duration for significant frequencies in the Boltaña section.................. 370
Table 5.27 Anchor points used for tuning the Boltaña section.. 376
Table 5.28 SARs in the Boltaña section calculated from tuning the records......................... 379
Table 5.29 Methods of spectrum estimation in the Forcaz section....................................... 389
Table 5.30 REDFIT time-series analysis of the Forcaz section.. 391
Table 5.31 Noise background estimation in the Forcaz section.. 391
Table 5.32 Temporal period duration for significant frequencies in the Forcaz section.................. 393
Table 5.33 Forcaz section and A6 core spectral results comparison.. 399
Table 5.34 Anchor points for orbital tuning in the Forcaz section.. 402
Table 5.35 SARs in the Forcaz section calculated from tuning the records............................. 403
Table 5.36 Methods of spectral estimation in the Morillo-reservoir section............................ 415
Table 5.37 Noise background estimation of the Morillo-reservoir section................................. 417
Table 5.38 REDFIT time-series analysis of the Morillo-reservoir section................................. 418
Table 5.39 Temporal period duration of significant frequencies in the Morillo-reservoir section.................. 420
Table 5.40 Methods of spectral estimation of the Sieste section.. 432
Table 5.41 Noise background estimation of the Sieste section.. 434
Table 5.42 REDFIT time-series analysis results of the Sieste section..................................... 435
Table 5.43 Temporal period duration of significant frequencies in the Sieste section...................... 437
Table 5.44 Methods of spectral estimation in the Morillo-Bruello section............................... 453
Table 5.45 Noise background estimation of the Morillo-Bruello section................................. 455
Table 5.46 REDFIT time-series analysis of the Morillo-Bruello section.................................... 455
Table 5.47 Temporal period duration of significant frequencies in the Morillo-Bruello section........ 457
Table 5.48 Methods of spectral estimation in the Guaso section.. 468
Table 5.49 Noise background estimation of the Guaso 40 m section...................................... 470
Table 5.50 REDFIT time-series analysis results of the Guaso section..................................... 471
Table 5.51 Temporal period duration of significant frequencies in the Guaso section..................... 473
Table 5.52 Interfan duration of the Upper Hecho Group of the Ainsa Basin............................... 481
Table 5.53 Time of initiation of the sandbodies of the Ainsa Basin... 483
List of plates

Plate 3.1 Field photographs of the magnetostratigraphic study undertaken in the Ainsa Basin ... 169
Plate 4.1 Aerial photograph showing the position of the A6 core 203
Plate 4.2 Close-up photographs of the A6 core ... 209
Plate 4.3 Thin sections of the A6 core ... 210
Plate 4.4 X-ray elemental mapping across a 2.5 mm sandstone turbidite surrounded by siltstones ... 224
Plate 4.5 BSE images of the A6 core .. 227
Plate 5.1 Bioturbation in the fine-grained sequences .. 254
Plate 5.2 Aerial photograph of the Tierrantona gamma-ray logged section 271
Plate 5.3 Outcrop photographs of the Tierrantona gamma-ray logged section 272
Plate 5.4 Outcrop photographs showing tectonic deformation in the Ainsa Basin 275
Plate 5.5 Aerial photograph of the Gerbe gamma-ray logged section 294
Plate 5.6 Outcrop photographs of the Gerbe gamma-ray logged section 295
Plate 5.7 Aerial photograph of the Labuerda gamma-ray logged sections 319
Plate 5.8 Outcrop photographs of the Labuerda section 1 323
Plate 5.9 Aerial photograph of the Boltaña gamma-ray logged section 358
Plate 5.10 Outcrop photographs of the Boltaña gamma-ray logged section 359
Plate 5.11 Aerial photograph of the gamma-ray logged Forcaz section 381
Plate 5.12 Outcrop photographs of the Forcaz gamma-ray logged section 382
Plate 5.13 Aerial photograph of the gamma-ray logged Morillo-reservoir section... 408
Plate 5.14 Outcrop photographs of the Morillo-reservoir gamma-ray section 409
Plate 5.15 Aerial photograph of the area surrounding the Sieste gamma-ray section ... 425
Plate 5.16 Outcrop photographs of the Sieste section 426
Plate 5.17 Aerial photograph of the Morillo-Bruello gamma-ray logged section ... 446
Plate 5.18 Outcrop photographs of the Morillo-Bruello section 447
Plate 5.19 Aerial photograph of the area surrounding the Guaso gamma-ray section ... 462
List of equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1</td>
<td>Calculation of CaCO₃ content</td>
<td>120</td>
</tr>
<tr>
<td>Equation 2</td>
<td>Nyquist equation</td>
<td>136</td>
</tr>
<tr>
<td>Equation 3</td>
<td>Calculation of palaeolatitude from inclination</td>
<td>173</td>
</tr>
</tbody>
</table>
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Alternating field</td>
</tr>
<tr>
<td>AR1</td>
<td>1st order autoregressive process</td>
</tr>
<tr>
<td>ASM</td>
<td>Average spectral misfit</td>
</tr>
<tr>
<td>BEI</td>
<td>Backscattered electron images</td>
</tr>
<tr>
<td>BEIF</td>
<td>Bloomsbury Environmental Isotope Facility</td>
</tr>
<tr>
<td>BSE</td>
<td>backscattered electrons</td>
</tr>
<tr>
<td>CCD</td>
<td>calcite compensation depth</td>
</tr>
<tr>
<td>CL</td>
<td>Confidence levels</td>
</tr>
<tr>
<td>CPS</td>
<td>Counts per second</td>
</tr>
<tr>
<td>E</td>
<td>eccentricity</td>
</tr>
<tr>
<td>EA</td>
<td>Elemental analysis</td>
</tr>
<tr>
<td>EECO</td>
<td>Early Eocene Climatic Optimum</td>
</tr>
<tr>
<td>EECO</td>
<td>Early Eocene Climatic Optimum</td>
</tr>
<tr>
<td>EOT</td>
<td>Eocene-Oligocene Transition</td>
</tr>
<tr>
<td>ETM</td>
<td>Eocene Thermal Maximum</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>Fm</td>
<td>Formation</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>GAD</td>
<td>Geocentric Axial Dipole</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPTS</td>
<td>Geomagnetic Polarity Timescale</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>IC</td>
<td>Inorganic carbon</td>
</tr>
<tr>
<td>ICDD</td>
<td>International Centre for diffraction Data</td>
</tr>
<tr>
<td>IRMS</td>
<td>Isotope Ratio Mass Spectrometry</td>
</tr>
<tr>
<td>kyr</td>
<td>Thousands of years</td>
</tr>
<tr>
<td>LSFT</td>
<td>Lomb-Scargle Fourier Transform</td>
</tr>
<tr>
<td>M</td>
<td>Number of lags</td>
</tr>
<tr>
<td>Ma</td>
<td>Million years</td>
</tr>
<tr>
<td>MAD</td>
<td>mean angle of deviation</td>
</tr>
<tr>
<td>MEM</td>
<td>Maximum entropy method</td>
</tr>
<tr>
<td>MT</td>
<td>megaturbidites</td>
</tr>
<tr>
<td>MTC</td>
<td>Mass transport complex</td>
</tr>
<tr>
<td>MTCs</td>
<td>Mass transport complexes</td>
</tr>
<tr>
<td>MTD</td>
<td>Mass transport deposit</td>
</tr>
<tr>
<td>MTDs</td>
<td>Mass transport deposits</td>
</tr>
<tr>
<td>MTM</td>
<td>Multi-taper method</td>
</tr>
<tr>
<td>Myr</td>
<td>Million years</td>
</tr>
<tr>
<td>N</td>
<td>Number of data points</td>
</tr>
<tr>
<td>NPF</td>
<td>North Pyrenean Fault</td>
</tr>
<tr>
<td>NPFT</td>
<td>North Pyrenean Frontal Thrust</td>
</tr>
<tr>
<td>NRM</td>
<td>natural remanent magnetisation</td>
</tr>
<tr>
<td>Nsim</td>
<td>Number of simulations</td>
</tr>
<tr>
<td>O</td>
<td>obliquity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ODP</td>
<td>Ocean Drilling Program</td>
</tr>
<tr>
<td>OFAC</td>
<td>Oversampling factor</td>
</tr>
<tr>
<td>P</td>
<td>precession</td>
</tr>
<tr>
<td>PETM</td>
<td>Paleocene-Eocene Thermal Maximum</td>
</tr>
<tr>
<td>RM</td>
<td>remanent magnetisation</td>
</tr>
<tr>
<td>SAR</td>
<td>Sediment accumulation rate</td>
</tr>
<tr>
<td>SARs</td>
<td>Sediment accumulation rates</td>
</tr>
<tr>
<td>SCPU</td>
<td>South-Central Pyrenean Unit</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SGR</td>
<td>Spectral gamma-ray</td>
</tr>
<tr>
<td>SI</td>
<td>Sampling interval</td>
</tr>
<tr>
<td>SPFT</td>
<td>South Pyrenean Frontal Thrust</td>
</tr>
<tr>
<td>SPTS</td>
<td>South Pyrenean Thrust System</td>
</tr>
<tr>
<td>SQUID</td>
<td>Superconducting Quantum Interference Device</td>
</tr>
<tr>
<td>TC</td>
<td>Total carbon</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>UCL</td>
<td>University College London</td>
</tr>
<tr>
<td>WOSA</td>
<td>Welch-Overlapped-Segment-Averaging Procedure</td>
</tr>
<tr>
<td>XPL</td>
<td>cross-polarised light</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray powder diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence</td>
</tr>
</tbody>
</table>
I would like to express my sincere appreciation to my supervisor Prof. Kevin T. Pickering for his advice, guidance and enthusiasm during my research. I would also like to express my gratitude to Prof. Gerald Roberts (Earth Sciences, Birkbeck University) who kindly funded the palaeomagnetic study. I also thank the UCL Graduate School that provided extra funding for the geochemical analyses.

I would like to thank the UCL staff at the department of Earth Sciences who provided great technical support and many discussions. I would specially like to thank Dr Stuart Robinson for assistance in the measurement of stable carbon isotopes, Prof. Jürgen Thurow for his supervision with the XRF analysis, Dr Ian Wood for support with the XRD analysis and Jim Davies for the SEM analysis and thin sections. I would also like to take the opportunity to thank Dr Dave Kemp (Opening University) and Dr James Scotchman for all the guidance and great ideas with the time-series analysis. I sincerely thank Dr Conall MacNiocaill (Earth Dep., Oxford University) for supervising the palaeomagnetic work and to MSc student Kyrre Johansen for getting involved in such a fantastic project. I also would like to thank my PhD colleague and friend Nikki Dakin, for the great company during the long isolated months we spent in the Pyrenees collecting data.

Finally, I would like to thank my family and friends for their unconditional support. A very special thanks goes to Nick Lynch. I am forever grateful for your continuous support, encouragement and for being by my side every step of the way.

I dedicate this thesis to my mum who taught me that everything is possible if you have the mindset and the will to do it.
Chapter 1

Introduction

1.1 Introduction

The stratigraphy of sedimentary basins is controlled by changes in the accommodation space and sediment supply (e.g., Nelson et al., 2009; Bourget et al., 2010; Toucanne et al., 2012). These factors are mainly controlled by basin tectonics and climatic variability. In active tectonic areas, basin subsidence and tectonic uplift will have an effect on erosion (Raymo et al., 1988; Rea, 1992), weathering patterns (Riebe et al., 2001; Jacobson et al., 2003; Riebe et al., 2004; Carey et al., 2005; Dixon et al., 2012) and relative sea-level changes (Watts and Thorne, 1984; Vött, 2007). As a consequence, the nature, the amount and the path of the sediment being transported to deep-water basins play a critical role in determining depositional patterns. Climate exerts a major control on the nature and amount of sediment supply by affecting intensity and seasonality of precipitation (Kostaschuk et al., 2002; Bouraoui et al. 2004), riverine run-off (Brown and Barber, 1985; Coulthard and Macklin, 2001) and rock weathering patterns (White and Blum, 1995; Jacobson et al., 2003; Riebe et al., 2004). Differentiating climatic and tectonic forces from stratigraphic records can therefore be challenging.

Whilst many studies have demonstrated the importance of global climate change as a major driver for cyclic depositional patterns in pelagic and hemipelagic sediments in deep time (e.g., Herbert and Fischer, 1986; Fischer et al., 1991; Claps and Masetti, 1994; D’Argenio et al., 1998), there remains considerable controversy about the role of climate, tectonic and/or autocyclic processes for deep-marine
siliciclastic deposits. Deep-water siliciclastic turbidite successions have long been associated with tectonic forcings (e.g., Macdonald, 1993; Mutti et al., 2003; Underwood et al., 2003; Goldfinger et al., 2003, 2007). However, the development of deep-marine turbidite successions depends on external forcings such as river run-off and eustatic sea-level changes which control the sediment supply to the deep-marine environment (e.g., Schlager, 1993; Carvajal et al., 2009; Toucanne et al., 2012). These parameters are at the same time, affected by climatic fluctuations such as storminess and the waning and waxing of polar ice sheets. Submarine fan records have been shown to reflect climatic fluctuations (Milliman and Syvitski, 1992; Weltje and De Boer, 1993; Mutti et al., 2003; Sømme et al., 2009) and in some cases, packaging of deep-marine turbidites on convergent margins have been shown to be orbitally controlled during the Quaternary (e.g., Pickering et al., 1999; Marsset et al., 2009; Bourget et al., 2010) and in older successions (e.g., Payros and Martínez-Bracersas, 2014).

Attempting to gain a better understanding of the controls which tectonic and climatic variability exert on actively growing mountain belts and their associated basins is fundamentally important to any understanding of how Earth surface processes create the stratigraphic record. Analysis of deep-marine fine-grained thin-bedded turbidite and hemipelagic deposits in an active tectonic setting provides an opportunity to interrogate sedimentation patterns and to try and understand the main controls on sediment supply to sedimentary basins.
1.2 Geological setting

1.2.1 The Pyrenean orogen

The Pyrenees are a ~ 2,000 km long orogenic belt which extends from the northwestern part of Spain to the southern part of the Alps. The Pyrenees form an asymmetrical, east-west trending, double-wedge Alpine fold-and-thrust belt (Choukroune et al., 1989; Roure et al., 1989; Muñoz, 1992; Beaumont et al., 2000), which developed from Late Cretaceous to Early Miocene (Roest and Srivastava, 1991; Rosenbaum et al., 2002). The structural evolution of the Pyrenees has been studied integrating a wide range of geophysical techniques (e.g., deep-reflection and refraction seismic profiles (Roure et al., 1989, Choukroune et al., 1989; Muñoz, 1992), gravity (Casas et al., 1997; Jammes et al., 2010), magnetotellurics (Campanyá et al., 2012), paleomagnetic studies (Van der Voo and Zijderveld, 1971; Van der Voo and Boessenkool, 1973), geoelectrical (Ledo et al., 2000) tomography (Amaru et al., 2008; Souriau et al., 2008; Koukalov et al, 2009) and thermal studies (Tesauro et al., 2009).

1.2.2 Evolution of the Pyrenees

The Pyrenees have undergone several phases of tectonic evolution: from an Early Mesozoic rift margin, to a collisional margin during the Tertiary, followed by a large passive margin during most of the Miocene and Quaternary (Srivastava et al., 1990a, 1990b; Vergés et al., 1995; Srivastava et al., 2000; Wilson et al., 2001; Sibuet et al., 2004).

The Pyrenees developed over a previously thinned continental crust, caused by the development of an extensional to transtensional rift system during the
Triassic and Late Jurassic. Extensional forces continued throughout the Cretaceous resulting in the separation of Iberia from Eurasia (Srivastava et al., 1990a). This extensional regime was associated with the break-up of Pangaea (Torsvik et al., 2008) and the opening of the central Atlantic Ocean and the Bay of Biscay (Le Pichon et al., 1988; Srivastava et al., 1990b; Roest and Srivastava, 1991). Lower crustal and upper mantle rocks rose to upper and middle crustal depths during this rifting event (Jammes et al., 2010). The rift system had an oblique slip motion and was characterised by the development of very steep normal faults which formed strongly compartmentalised and asymmetric rift basins (Savostin et al., 1986; Jammes et al., 2010) which were infilled by carbonates and shallowing successions (Puigdefábregas and Souquet, 1986).

Seafloor spreading and the eastward opening of the Bay of Biscay in the Late Cretaceous caused the drift and progressive rotation of the Iberian microplate ~35° anticlockwise and resulted in the collision between the Iberian and the Eurasian plates during the Turonian (Choukroune, 1992; Vergés et al., 2002; Vissers and Meijer, 2012). The collision was diachronous and propagated westwards along the margins of both plates (Meigs et al., 1996; Vergés et al., 2002). Geological and geophysical data shows that the Iberian lower crust detached from the upper crust and subducted together with the lithospheric mantle into the mantle along a north-dipping plane (Roure et al., 1989; Muñoz, 1992; Beaumont et al., 2000) whilst the upper crust delaminated, resulting in the propagation of a major fold-and-thrust belt to the south (the South Pyrenean Zone) and a backthrust system to the north (the North Pyrenean Zone) (Bourrouilh, et al., 2004).

Continental collision resulted in the inversion of the Cretaceous rift basins and the reversed oblique-slip extensional faults were incorporated into the thrust
system (Roure et al., 1989; Muñoz, 1992; Beaumont et al., 2000; Vergés and García-Senz, 2001). The geometry of this fault system is responsible for the significant along-strike differences which exist in the crustal structure of the Pyrenees. Fault activity in the zone occurred in distinct tectonic pulses with active periods of deformation being followed by periods of tectonic quiescence (Meigs, 1997; Meigs and Burbank, 1997). The thrust transport direction was mainly from north/NNE to the south/SSW and remained constant throughout most of the tectonic evolution of the orogen (Dinarés et al., 1992). The end of deformation, determined by magnetostratigraphy studies on growth strata (Meigs et al., 1996) and fission track cooling ages (Fitzgerald et al., 1999) occurred during the Late Oligocene giving an estimated duration of convergence of about 60 Ma (Beaumont et al., 2000). It has been estimated from balanced and restored cross-sections a total shortening of 165 km and a mean shortening rate of ~ 0.25 cm/yr (Vergés et al., 1995; Beaumont et al., 2000). Convergence rates have probably varied during the orogenic phase and the evolution of the orogen has been estimated by age-constraining the emplacement of thrust structures through the study of syn-orogenic strata (e.g., Puigdefábregas and Souquet, 1986; Fernández et al., 2004; Fernández et al., 2012).

1.2.3 Structural units

The Pyrenean orogen can be divided from east to west, into two main sections: the Aragonese-Catalan Pyrenees and the Basque-Cantabrian Pyrenees (also known as the Western Pyrenees) (e.g., Vergés et al., 2002). These two main zones are divided by an inverted Early Cretaceous transfer zone known as the Pamplona Fault (e.g., Muñoz, 2002).
The Aragonese-Catalan Pyrenees form the main part of the orogen and can be subdivided into the Eastern Pyrenees, extending from the Mediterranean Sea to the Segre Thrust, and the Central Pyrenees, from the Segre Thrust to the Pamplona Fault (e.g., Vergés et al., 2002) (Figure 1.1).

The Aragonese-Catalan Pyrenees were formed by an asymmetric, double wedge thrust system which divided the orogen into the Northern and the Southern Pyrenees. In between these two wedges, at the centre of the orogen, there is the Axial Zone of the chain formed by Palaeozoic rocks, intensely deformed and metamorphosed (e.g., Muñoz, 1992) (Figure 1.1). Deformation of the double wedge orogen primarily migrated outward in a piggyback manner (Puigdefábregas et al., 1992; Déramond et al., 1993), although localised breakback successions have also been recognised (Vergés and Muñoz, 1990). The Southern Pyrenees are wider and
have accumulated larger amounts of cumulative shortening and displacement, ~ 37 km for the northern edge and ~ 128 km for the southern orogen (Beaumont et al., 2000). The South and North fold-and-thrust belts are flanked by two flexural foreland basins which developed by lithospheric compensation in response to crustal thickening in the Axial Zone: the Ebro Basin in the south and the Aquitanian Basin in the north.

The Pyrenees can be divided from north to south into five main structural units: the Aquitanian Basin, the North Pyrenean Zone, the Axial Zone, the South Pyrenean Zone and the Ebro Basin (Figure 1.2).
Figure 1.2 North-south cross-section across the Pyrenees. The cross-section shows the five main structural units: The Aquitanian Basin, the North Pyrenean Thrust Zone, the Axial Zone, the South Pyrenean Thrust Zone and the Ebro Basin. Modified after Muñoz (1992) and Beaumont et al. (2000).
1.2.3.1 The Aquitanian Basin

The Aquitanian Basin is a retro-foreland basin developed on the northern edge of the Iberian and over the European Plate (Bourrouilh et al., 2004). The infill of this basin comprises of a thick (~ 5 km) succession of synorogenic Upper Cretaceous turbidites (Déramond et al., 1993), overlain by a thick (~ 5 km) Palaeogene to Early Eocene alluvial and fluvial deposits (Buis and Rey, 1975). This foreland basin developed in the footwall of the North Pyrenean Frontal Thrust (NPFT) (Figure 1.1) and evolved by flexure in response to the load of the North Pyrenean Thrust (Brunet, 1986).

1.2.3.2 The North Pyrenean Zone

The North Pyrenean Thrust System, located to the north of the Axial Zone, developed on top of the European Plate and consists of a northward directed imbricate stack composed of folds and high-angle reverse faults involving a Hercynian basement and Mesozoic to Early Eocene cover rocks (Souquet, 1988; Déramond et al., 1993). This fold-and-thrust belt is narrower than the fold-and-thrust system to the south and has undergone almost continuous deformation from the Late Cretaceous to the Late Eocene (Derâmond et al., 1993).

The North Pyrenean Thrust System is bordered to the north by the North Pyrenean Frontal Thrust (NPFT) and to the south by the North Pyrenean Fault System (NPF). The NPFT affects post-Triassic rocks which are thrusted over Eocene sediments of the Aquitanian Basin (Teixell, 1998). The NPF is a complex system of deep faults which probably affects the whole of the lithosphere (Casas et al., 1997). Crustal granulitic rocks and ultrabasic mantle rocks (lherzolites) are found to the north associated with this fault system (Hall and Bennet, 1979; Vielzeuf
and Kornprobst, 1983; Montigny et al., 1986) and many researchers believe that this fault marks the suture between the Iberian and the European plates (Choukroune, 1992; Muñoz, 1992; Casas et al., 1997; Vergés and García-Senz, 2001). The emplacement of lherzolites appears to be associated with crustal thinning in a transtensional north-south setting, emplaced at shallow levels by thrusting during mountain building and is more recent in the east (90 Ma) than in the west (95-110 Ma), indicating an oblique collision and asynchronous evolution of the Pyrenees (Casas et al., 1997).

1.2.3.3 The Pyrenean Axial Zone

The Pyrenean Axial Zone lies to the south of the North Pyrenean Fault and represents the ancient core of the mountain range (Muñoz, 1992). The Axial Zone is composed of ~ 10 km of Cambrian to Carboniferous rocks which have been affected by the Variscan Orogeny and are highly deformed, metamorphosed and intruded by crustal-derived granodioritic plutons (Vissers, 1992; Evans et al., 1998). This deformed Palaeozoic rocks are overlain unconformably by an Upper Carboniferous to Triassic cover, composed of sedimentary and volcanic rocks (Vergés et al., 1995).

The Pyrenean Axial Zone is characterised by the stacking of several southward-facing thrust and backthrusts that piled on top of each other forming an antiformal stack (Muñoz, 1992; Teixell, 1998; Muñoz, 2002). These overstacking slabs of Hercynian crust have resulted in a significant thickening of the Iberian crust in this region (Roure et al., 1989; Teixell, 1998). The four main complex thrust sheets from top to bottom are: Nogueres, Erta, Orri and Rialp (Muñoz, 1992) (Figure 1.2). The transport direction of these thrusts is towards the SSW (Saura and Teixell, 2006) and parallel to the main shortening direction of the Pyrenees (Muñoz, 1992). As new
thrusts were emplaced, previous thrust sheets rotated towards the foreland (Muñoz, 1992). The Pyrenean Axial Zone has a very complex three dimensional (3D) structure with lateral ramps and sudden changes in structural relief. This complex structure is associated with the inversion of several small Stephanian-Permian extensional basins which controlled thrust geometries and kinematics causing lateral structural variation (Saura and Teixell, 2006).

1.2.3.4 The South Pyrenean Thrust System (SPTS)

The South Pyrenean Thrust System (SPTS) lies to the south of the axial zone and comprises of a southward directed imbricate stack developed on top of the subducted Iberian Plate (Cámara and Klimowitz, 1985; Muñoz, 1992; Capote et al., 2002). The northern limit of the SPTS is the Axial Zone Nogueres nappe and the southern limit is marked by the frontal thrust of the Sierras Exteriores (Muñoz, 1992; Meigs and Burbank, 1997).

The South Central Pyrenean Unit (SCPU) is located in the central section of the South Pyrenean Thrust System and contains the study area in its western part. The SCPU has a trapezoidal shape and is bounded to the east by the Segre Thrust and to the west by a set of north-south trending folds and thrusts (such as the Mediano and Boltaña anticlines) (Séguret, 1972). These structures are transverse to the main Pyrenean trend (WNW-ESE). The SCPU is composed of three main imbricated thrust sheets detached over evaporates of the Triassic Keuper Formation, from top to bottom these are: the Bóixols-Cotiella thrust sheet, Montsec-Peña Montañesa thrust sheet and the Sierras Exteriores thrust sheet (Vergés and Muñoz, 1990; Muñoz, 1992; Puigdefábregas et al., 1992; Fernández et al., 2012). These thrust systems were generated by tectonic inversion of pre-existing Early Cretaceous
extensional faults which played a major role in controlling the geometry and configuration of oblique and lateral ramps and the lateral variation of facies across them (Farrell et al., 1987; Puigdefábregas et al., 1992; Fernández, et al., 2004; Saura and Teixell, 2006).

The emplacement of the Bóixols Thrust occurred during the Late Cretaceous (Bond and McClay, 1995). Deep, narrow basins trending east-west were developed in the footwall of the inverted extensional faults (Puigdefábregas et al., 1992) and were infilled with Upper Cretaceous turbiditic deposits of the Vallcarga Formation. During the Uppermost Maastrichtian to Palaeocene period, marine sedimentation gave way to a thick deposition (>1km) of fluvial and lacustrine red beds (Tremp Group) (Puigdefábregas et al., 1992; Ardévol et al., 2000). Lower Cretaceous extensional faults were completely inverted during Palaeocene times and the upper crust recovered its stretched nature (Puigdefábregas et al., 1992).

The Montsec-Cotiella Thrust developed during the Early Eocene (Ypresian) (Farrell et al., 1987; Muñoz, 1992, Vergés and Burbank, 1996) and involves Hercynian basement rocks. The thrust climbs up section southward from the basement into Triassic evaporates and emerges in the Sierras Exteriores at the Pyrenean thrust front (Teixell, 1996).

The Sierras Exteriores thrust sheet developed in the Middle Eocene and thrust activity continued until the Early Miocene (Puigdefábregas et al., 1992; Meigs et al., 1996). This thrust acted as an upper detachment thrust accumulating over 30 km of displacement (Cámara and Klimowitz, 1985; Fernández et al., 2012). To the north of the Ainsa Basin, several basement thrusts branch into the Sierras Exteriores Thrust, with the Gavarnie and the Guarga thrusts being the two which show the greatest displacement (Fernández et al., 2012).
1.2.3.5 The Ebro Basin

The Ebro Basin is a large intraplate pro-foreland basin developed over the Iberian Plate and limited to the north by the Pyrenees range and the Catalan and Iberian mountain ranges to the southeast and southwest, respectively. Basin formation began at the end of the Cretaceous as a response to lithospheric flexure due to loading in the Axial Zone and South Pyrenean Thrust System (Gaspar-Escribano et al., 2001; Vergés et al., 2002). The Ebro Basin is wider than the Aquitanian Basin and has a thicker syn-orogenic succession (Beaumont et al., 2000). Rocks exhumed and eroded at the Axial Zone, were transported and deposited in piggyback basins in the south thrust-and-fold belt and in the foreland Ebro Basin (Muñoz, 1992). The first syn-orogenic deposits are Upper Cretaceous turbidites, which grade upwards to shallow-marine and continental deposits (deltaic, fluvial, alluvial and occasional lacustrine) by the Miocene (Puigdefábregas et al., 1992). There is a strong lateral variability of facies due to basin compartmentation (Puigdefábregas et al., 1992). After the cessation of the compressional period, a period of quiescence followed in the Ebro Basin, where the basin slowly filled with continental clastics which progressively buried the synorogenic sediments and Pyrenean thrust structures (Coney et al., 1996; Beaumont et al., 2000). The final stage of the evolution of the basin was characterised by denudation and river incision where the Ebro Basin opened to the Mediterranean Sea (Vergés et al., 2002).
1.2.4 The Ainsa Basin: study area

1.2.4.1 Tectonic setting

The Ainsa Basin is a small basin, ~ 25 km wide and 40 km long, located in the footwall of the Montsec-Cotiella Thrust, within the oblique thrust-and-fold system of the South Central Pyrenees (Segurét, 1972) (Figure 1.3). The thrust surface underlying the Ainsa Basin is the Gavarnie-Sierras Exteriores Thrust (Fernández et al., 2012). The basin developed as a foredeep during the Cuisian-Lutetian, due to flexural subsidence caused by the advancement of the Montsec-Cotiella thrust sheet (Dreyer et al., 1999).

In the middle Lutetian and Bartonian, thrust sheets propagated westwards towards the foreland and a number of north-south trending anticlines and synclines developed in the basin within and along the leading edge of the Sierras Exteriores thrust sheet (Muñoz et al., 1998, Fernández et al., 2004). These folds are oblique to the general WNE-ESE trend of the Pyrenean structures. The northeastern side of the basin appears more severely deformed with a stack of thrust-and-fold structures known as the Arro Thrust System (Fernández et al., 2012). The development of the Mediano and the Boltaña anticlines marked the evolution from a transitional foredeep basin to a thrust-top basin which was incorporated into the hangingwall of the Gavarnie-Sierras Exteriores thrust sheet during the Middle Eocene (Muñoz et al., 1998; Dreyer et al., 1999; Fernández et al., 2004; Fernández et al., 2012). These folds developed synchronously with their dextral rotation in the footwall of the Cotiella thrust sheet (Fernández et al., 2012).
Figure 1.3 West-east structural section of the Ainsa Basin. Cross-section based on regional geological maps and seismic profiles. Modified from Dreyer et al. (1999).
The infill of the Ainsa Basin consists of 4 km of slope and base-of-slope turbidite complex. The basin was connected, at least during the Early Eocene, to the western more basinal part of the foredeep, the Jaca Basin (Mutti et al., 1972) (Figure 1.3). The basin-floor complex in the Jaca Basin consists of ‘outer-fan’ sandstone lobes, typically tens of metres thick and more than 15 km wide, which are replaced downcurrent by basinal sandstone and mudstone interbeddings (Mutti et al., 1972).

Turbidites of the Ainsa Basin were sourced from a large fluviodeltaic complex deposited in the Tremp-Ager Basin on top of the Montsec thrust sheet. Rivers and deltas entered this basin from the east forming the Montanyana Group (Mutti et al., 1985; Marzo et al., 1988) (Figure 1.4). The central and southern part of the Ager-Tremp Basin is dominated by a fluvial system that supplied sand and mud from the southeast, whilst in the northeastern part of the basin, a complex of alluvial fans and fan-deltas developed which supplied coarser-grained sediments (Nijman, 1998). Three fan-delta systems were active during the deposition of the Ainsa Basin turbidites: the Claramunt, the San Esteban and the Campanúe fans (Nijman, 1998). These fans are composed of coarse-grained sandstones and conglomerates (Puigdefábregas et al., 1992; Nijman, 1998) derived from Mesozoic and Palaeozoic source rock (Weltje et al., 1996), and related floodplain mudstones. These continental facies prograded stepwise across an oblique lateral ramp of the Cotiella-Montsec thrust sheet into the Ainsa Basin (Mutti et al., 1988).
Figure 1.4 Palaeogeographic map of the South Central Pyrenees during the Middle Eocene. The study area (the Ainsa Basin) is located between the Boltaña and the Mediano anticlines and consists mainly on deep-marine channelised slope deposits. Modified after Puigdefàbregas (1975) and Huyge et al. (2012).
As a result of this overall transgressive facies pattern, fan progradation and aggradation resulted in coarsening-up trends separated by major stratigraphic boundaries and an increase of clastic supply towards the west (Nijman, 1998). The transition between the fluvial-deltaic deposits of the Montanyana Group and the sediment gravity flow deposits present in the Ainsa and further to the west, in the Jaca basins, occurred through a succession of oblique structures where incised canyons transferred clastics from the shallow platform to the deeper basin (e.g., the Charo Canyon) (Puigdefábregas et al., 1992; Millington and Clark, 1995).

1.2.4.2 Structure of the Ainsa Basin

The structure of the Ainsa Basin is dominated by two main types of tectonic features: an oblique-lateral ramp thrust system that joins the Montsec-Peña Montañesa frontal ramp known as La Fueba or the Arro Thrust System (Casas et al., 2002; Fernández et al., 2012) and a set of N-S trending anticlines and synclines known as the Sobrarbe Fold System (Fernández et al., 2012) (Figure 1.5).

The Arro Thrust System is present in the northeastern side of the Ainsa Basin and consists of a number of NW-SE trending thrusts and related fault-propagation-folds formed during the Cuisian to early Lutetian (Muñoz et al., 1994). These thrusts typically show up to 2 km of displacement (Muñoz et al., 1994; Fernández, et al., 2012).

There are three major anticlines in the Ainsa Basin: Mediano, Boltaña and Añisclo (Figure 1.5). Fernández et al. (2012) identified a 4th anticline, the Cinca Anticline, running along the Cinca River, although this is considered a minor structure and will not be discussed further. The Mediano Anticline flanks the eastern side of the basin, the Boltaña Anticline flanks the west, and the Añisclo Anticline flanks the north
and northwest (Fernández et al., 2004; Pickering and Corregidor, 2005). These north-south verging anticlines have been interpreted as transport-oblique lateral thrust ramps (Farrell, et al., 1987), developed along the eastern margin of the Gavarnie thrust sheet (Tavani et al., 2006). The Gavarnie Thrust and these anticlines are detached over the same Triassic evaporates of the Keuper Formation (Fernández et al., 2004).

The Mediano Anticline is a 20 km long, north-plunging detachment anticline which plunges 10° towards the north (Holl and Anastasio, 1993; Poblet et al., 1998). Palaeomagnetic and stratigraphic data indicates that the growth of the Mediano Anticline started in the early Lutetian and ended by 42 Ma (Holl and Anastasio, 1993; Poblet et al., 1998). Holl and Anastasio (1993) found that the growth of Mediano was episodic with intervals of slow growth being superimposed by relatively fast and short lasting (< 1.5 Myr) growing episodes. This episodic growth associated with the pulsating activity of the Cotiella-Montsec thrust sheet caused the formation of angular and progressive unconformities as Lutetian turbidite deposits onlapped the flanks of the anticline (Holl and Anastasio, 1993). This anticline probably constituted a submarine topographic high during the infilling stages of the basin (Holl and Anastasio, 1993; Poblet et al., 1998).

The Boltaña Anticline is a cylindrical 25 km long, north-south trending fault-propagation-fold developed above two-west-verging blind thrusts (Mutti et al., 1988; Fernandez et al., 2004; Fernandez et al., 2012). This anticline is characterised by a sub-horizontal axis which extends to the north and south beyond the Ainsa Basin (Fernández et al., 2004). The anticline started to grow during the last stages of the basin fill in the late Lutetian (Fernández et al., 2012).
Figure 1.5 Structures of the Ainsa Basin. Map of the Ainsa Basin showing the main identified tectonic units. The Sobrarbe Fold System comprises the Boltaña, Mediano and the Añisclo anticlines and the Buil Syncline. The Buil Syncline is divided towards the north into the San Vicente and the Buerba synclines. The northwestern part of the basin is tectonically complicated by the Arro Thrust System (Arro TS). Modified after Fernandez et al. (2004).

The Añisclo Anticline is a west-verging fault-propagation-fold developed over a blind fault which plunges 10° towards the south in its northern sector, increasing to 25° in its southernmost termination underneath the Ainsa Basin (Fernández et al., 2004; Tavani et al., 2006). The growth of the Añisclo Anticline started more or less coeval with the Mediano Anticline but it is difficult to establish the end of the growing period due to erosion of the latest kinematic units (Fernández et al., 2012).
These three anticlines acted as submarine topography highs which played a significant role in controlling the geometry of the basin and influenced sedimentation patterns (e.g., Sutcliffe and Pickering, 209; Bayliss and Pickering, 2014a, 2014b).

A major syncline, the Buil Syncline, crops out between the Boltaña and the Mediano anticlines, and occupies mainly the western part of the basin (Figure 1.5). This syncline is a north-south trending structure, ~ 10 km across, which plunges approximately 7° towards the south (Falivene et al., 2006). To the north of the Ainsa Basin, the Buil Syncline splays around the Añisclo Anticline forming the Buerba Syncline on the west and the San Vicente Syncline on the east (Fernández et al., 2004). Most of the syncline folding postdates the infill of the basin (Falivene et al., 2006).

Superposed on these anticlines, there is the Jaca Syncline, a large east-west trending syncline structure in the Gavarnie-Sierras Exteriores thrust sheet that developed during the Late Eocene as a result of underthrusting of basement units (Muñoz, 1992; Teixell, 1996) (Figure 1.5). The development of this structure, transverse to the main folds of the Ainsa Basin, has caused the reduction of the plunge for the north plunging folds (e.g., Mediano and Boltaña anticlines) and the accentuation of the south plunging folds (e.g., Añisclo Anticline and Buil synclines) (Fernández et al., 2004).

The rotation of these structures, from an originally west-east trend to a north-south direction has been determined by magnetostratigraphy. Palaeomagnetic data shows that these anticlines postdate the emplacement of the Montsec-Peña Montañesa Thrust and originated as east-west frontal structures, which were then rotated ~ 60-80° in a clockwise direction (Pueyo et al., 2004; Mochales et al., 2012). Most of the rotation occurred from the Ilerdian to the middle Lutetian where these structures were
actively growing and the axial rotation decreased during the late Lutetian to Bartonian, spanning the final stages of anticline growth (Mochales et al., 2012).

1.2.4.3 Stratigraphy

The stratigraphy of the Ainsa Basin has been studied by multiple researchers (e.g., Garrido-Megías, 1968; Van Lunsen, 1970; Puigdefábregas, 1975; Mutti et al., 1985; Pickering and Corregidor, 2005; Arbués et al., 2007; Pickering and Bayliss, 2009) and can be divided into 4 tectonostratigraphic units.

The first and oldest unit extends from the Triassic to the base of the Early Eocene and comprises Keuper evaporites and shales which are overlain by a thick deposition (~ 1,500 m) of Cretaceous shelfal carbonates and marls. Above the Palaeocene sediments, a widespread transgressive episode during the Ypresian resulted in the deposition of the Alveolina Limestone which is present over most of the South and Central Pyrenees. These sediments were deposited prior to deformation or thrust motion (Fernández et al., 2012).

The second tectonostratigraphic unit extends from the Lower Eocene (upper Ilerdian and middle Lutetian) to Late Ypresian and includes the Millaris, Metils, Yeba and Boltaña formations. These units consist on alternating shales, marls and platform limestones (Van Lunsen, 1970; Fernández et al., 2012). The contact between the 2nd and 3rd unit is erosional, and locally the 3rd unit overlies directly the Alveolina Limestone of the 1st tectonostratigraphic unit (Fernández et al., 2012).

The third tectonostratigraphic unit includes sediments of Cuisian and Priabonian age. Within this unit there is a marked transition from shallow-marine limestones to syn-orogenic deep-marine slope and base-of-slope depositional systems in the Ainsa Basin (Mutti et al., 1972; Dreyer et al., 1999, Pickering and Corregidor,
2005). This sudden change towards deeper water lithologies reflects a northwestward plunge of the Pyrenees related to the advancement of the deformation front (Nijman et al., 1998).

The fourth tectonostratigraphic unit comprises ~ 500 m of Bartonian shallow-marine and deltaic deposits of the Sobrarbe Formation (De Federico, 1981; Dreyer et al., 1999) and the successive fluvial sediments of the Escanilla Formation (Garrido-Megías, 1968) which represents the final stages of basin infill (Puigdefábregas et al., 1992; Dreyer et al., 1999). These terrestrial sediments unconformably overlie the slope deposits of the Ainsa Basin and postdate the growth of the oblique structures of the Ainsa Basin.

Internally, the Ypresian and Lutetian slope deposits of the third tectonostratigraphic unit can be subdivided into four major unconformity-bounded depositional cycles delineated by angular unconformities parallel to the elongation of the basin (Arbués et al., 1998; Muñoz et al., 1998) (Figure 1.6). These unconformities are submarine depressions or canyons, several hundred metres deep which step down towards the foreland and are caused by thrust activity in the northeastern margin of the basin (Muñoz et al., 1994, 1998; Arbués et al., 1998). Each of these unconformities have an incidence of several million years (Arbués et al., 2007).

Approximately 4 km of syntectonic deep-marine deposits accumulated during the Ypresian and the Lutetian stages of the Eocene (Remacha and Fernandez, 2003; Fernandez et al., 2004; Pickering and Corregidor, 2005). These deposits were defined by Mutti et al. (1972) as the ‘Hecho Group’ and consist of a succession of deep-marine mudstones (Van Lunsen, 1970) and several coarser-grained sandstone units (Mansurbeg et al., 2009, Caja et al., 2010). The mudstones are characterised by thick intervals (typically hundreds of metres thick) of thin bedded laminated siltstones and
marlstones which constitute both interfan and fan lateral-margin facies (Pickering and Corregidor, 2005) deposited from basinal background settling and low-density turbidity currents (Falivene et al., 2010).

Figure 1.6 Stratigraphy of the Ainsa Basin. The figure shows the four unconformity-bounded units. Modified from Arbués et al. (1998); Fernández et al. (2004) and Fernández et al. (2012).

1.2.4.4 Sand-rich depositional systems

Eight sand-rich, deep-marine systems have been recognised, from the oldest: Fosado, Los Molinos, Arro, Gerbe, Banastón, Ainsa, Morillo and Guaso. Each of these systems contains 2-6 sandbodies interpreted as sand-prone channelised submarine fans (Pickering and Corregidor, 2005).

Sand-prone channels are typically 10-30 m thick and 0.5-2.5 km wide, but, typically reach 2.5-4 km if channel margin heterolithics, levées and overbank facies
are included (Pickering and Bayliss, 2009). Channel complexes have a low degree of sinuosity, are erosionally confined towards their bases and contain channel fills characterised by amalgamated erosional and mixed erosional-depositional sandstone turbidites (Pickering and Corregidor, 2005; Falivene et al., 2010).

Different facies have been recognised in the coarser grained units (Pickering and Corregidor, 2005; Pickering and Bayliss, 2009; Favilene et al., 2010):

- Channel infill facies composed of thickly bedded, coarse to medium-grained sandstone turbidites
- Channel-lobe transition or channel-margin represented by low net-to-gross ratio heterolithic facies
- Slumped facies consisting of soft-sediment deformation of fine-grained sediments
- Re-sedimented carbonates from destabilisation in the carbonate slope and platform developed in the southwestern section of the basin
- Debrites, including sandy and gravelly mudstones containing in occasions large and distorted sand rafts

Architectural elements from each of these systems can be related to specific environments of deposition. The Fosado System is 60 m thick and is composed of two successions (Fosado I and II) and represents lower-slope channels. Los Molinos System (~ 210 m thick) has three successions (Molinos I-III) and represents base-of-slope, slope apron with mid-slope channels. The Arro System contains two sandbodies (Arro I and Arro II) and has been interpreted as an upper/mid-slope canyon (Millington and Clark, 1995). The Gerbe System (up to 210 m thick), also contains two sandbodies (Gerbe I and II) and has been interpreted as lower-slope erosive channels. The Banastón System is the thickest of all the systems (~ 500-700 m thick) and contains six sandbodies (Banastón I-VI). Each of these sandbodies has been
interpreted as lower-slope and proximal basin-floor submarine fans (Pickering and Bayliss, 2009; Bayliss and Pickering, 2014b). The Ainsa System is up to ~ 250 m thick and contains three sandbodies (Ainsa I-III) interpreted as lower-slope and axial basin-floor channelised submarine fans (Pickering and Corregidor, 2005; Favilene et al., 2010). The Morillo System is ~ 260 m thick and comprises three sandbodies (Morillo I-III) which were accumulated in a mid-slope canyon to the south and to a lower-slope confined channel system in the north (Pickering and Bayliss, 2009; Bayliss and Pickering, 2014a). Guaso is the youngest system, has a thickness of ~ 300 m and contains two sandbodies (Guaso I and II). These sandbodies have previously been interpreted as deep-erosional, canyon-like features (Stocchi, 1992; Stocchi et al., 1992), but Sutcliffe and Pickering (2009) re-interpreted them as laterally extensive sheet-like sandbodies confined only by basin structure.

1.2.4.5 Submarine fans versus erosional channels

Previously, some researchers have referred to the deep-marine systems of the Ainsa Basin as a channelised slope system or slope complex (e.g., Cronin et al., 1998). However, these sandbodies can be defined as submarine fans *sensu stricto*, because:

(i) the proximal channelised parts can be correlated to the more distal lobe and related deposits in the Jaca Basin (Das Gupta and Pickering, 2008; Caja et al., 2010).

Typically, a submarine fan system will comprise: a sediment source area, a zone of sediment transfer, and a deposition zone (Allen, 1997) (Figure 1.7). In the study area, the source area comprises the fluvio-deltaic sediments of the Tremp-Ager Basin; the sediment-transfer zone contains submarine canyon-channel systems of the Ainsa Basin infilled with coarse-grained sediments that grade peripherally into overbank deposits containing finer-grained sediments. The more distal area where the sediment
accumulates, forming lobes and more distal deposits, is represented by the Jaca Basin (Mutti et al., 1972).

(ii) the sandbodies in the Ainsa Basin have a high degree of architectural complexity and show a vertical change from initial non-channelised, sheet-like, lobe or mouth-bar deposits, through small and then larger channels, interpreted as fan progradation (Pickering and Corregidor, 2005; Pickering and Bayliss, 2009).

![Figure 1.7 Generalised sediment-routing system for the Pyrenees during the Eocene. Modified from Graham et al. (2011) and Covault (2011).]

1.2.4.6 Influence of tectonics on sedimentation patterns

The Arro Thrust System predates the growth of the Sobrarbe Fold System (Figure 1.8). This thrust system was active during the Cuisian and is synchronous with the motion of the Montsec-Peña Montañesa Thrust (Mutti et al., 1988; Fernández et al., 2012). The Sobrarbe Fold System developed from the Lutetian to the Bartonian. The Mediano Anticline started growing during the deposition of the Ainsa System (Poblet et al., 1998; Fernández et al., 2004). The general decrease in stratigraphic thickness of the Morillo System towards the southeast and the Guaso System towards the east gives evidence of the Mediano Anticline fold growth propagating from south to north (Fernández et al., 2012). The increase of thickness between the Ainsa and Morillo systems in the San Vicente Syncline suggests that the Añisclo Anticline, associated
with the development of this synclinal structure, started growing during this time (Fernández et al., 2004, Fernández et al., 2012) (Figure 1.8). The growth of the Boltaña Anticline started at a later stage, during the Morillo and Guaso systems (Fernández et al, 2012). The growth of these anticlines, together with the presence of a carbonate platform in the southwest part of the basin, forced the sediments to enter from the southeast and to prograde towards the north-northwest within the Buil Syncline in a relatively confined environment (Puigdefábregas et al., 1991; Muñoz et al., 1994; Dreyer et al., 1999). The Sobrarbe Fold System ceased to grow by the end of the Eocene (Bartonian to Priabonian) (Poblet et al., 1998; Fernández et al., 2012).

Figure 1.8 Timing of the structures in the Ainsa Basin in relation to the deposition of the mid-Eocene deep-marine fan systems. Modified after Fernandez et al. (2012).

These folds originated with a WNW-ESE orientation and then were progressively rotated to their present north-south orientation during growth, mainly during the Lutetian. This rotation was associated with the clockwise vertical axis rotation of the Gavarnie-Sierras Exteriores Thrust. Fernández et al. (2012) suggested
that the development of this rotation can be linked to the difference in shortening along strike in the Pyrenean orogen, which accounts for more than 80 km difference from the Central to the Western Pyrenees.

1.2.4.7 Age dating of the Ainsa Basin sediments

The determination of age dating for the Ainsa Basin fill succession has been undertaken by several studies. Foraminifera zonation studies by Pickering and Corregidor (2005) established the deposition of the Ainsa submarine fans within planktonic foraminifera zones P11-P12, an age slightly younger than the estimations of the Remacha et al. (2003) study which assigned the Ainsa System within zones P12-P13. The Sobrarbe Delta has been dated by magnetostratigraphy by Bentham and Burbank (1996) between 43.3 and 42.9 Ma, establishing the top of the deep-marine Hecho Group at 43.3 Ma. The overlying fluvial sediments of the Escanilla Formation have been dated as Bartonian in age (Dreyer et al., 1999; Labourdette et al., 2008). This age dating of the deep-marine sediments of the Ainsa Basin overlaps, but, is also slightly older than estimated dates for the more distal lobe deposits of the Hecho Group in the Jaca Basin using magnetostratigraphy by Oms et al. (2003).

Scotchman et al. (2014) developed a new age model for the Ainsa Basin based on larger benthic foraminifera and calcareous nannofossil age determination ranging from the Gerbe System to the top of the Sobrarbe deltaic complex (Figure 1.9). The Lower Hecho Group (Fosado, Los Molinos and Arro systems were not included in the study due to their structural complexity). The study by Scotchman et al. (2014) shows that the Upper Hecho Group accumulated over a period of 6.4 Myr, between 48.9 and 42.5 Ma.
Figure 1.9 Age model of the Ainsa Basin. This age model, produced by Scotchman et al. (2014) is based on larger benthic foraminifera and calcareous nannofossils. This model is compared with other published age models. Modified after Scotchman et al. (2014).
1.2.4.8 Sediment accumulation rates (SARs) of the Ainsa Basin

SARs for the South Pyrenean Foreland Basin have been determined by Bentham and Burbank (1996) using magnetostratigraphy and structural data. The average rates of compacted deposition in the Ainsa Basin were calculated at ~ 15 cm/kyr prior to the main deformation area (middle Lutetian, ~ 44.5 Ma). These SARs increased to ~ 40 cm/kyr during the main deformation phase in the Pyrenees (middle Lutetian, ~ 44.5-43 Ma). The increase in sediment accumulation rate (SAR) was attributed to variations in basin subsidence caused by thrust advancement along the lateral ramp zone of the SCPU. Despite this rapid subsidence, these authors argue that the sediment supply was able to keep pace with subsidence and deltaic deposition was limited only along the axis of the basin. As uplift of the Mediano Anticline decreased towards the latest phases of basin infill, deltas and rivers of the Sobrarbe and Escanilla formations progradated and entered the basin across the structurally lower frontal ramp area to the south and spreaded across the entire region in a north/northwestern direction (Bentham and Burbank, 1996; Dreyer et al., 1999). The SAR for this deltaic system has been calculated by Dreyer et al. (1999) at ~ 32 cm/kyr.

The recognition of short eccentricity and obliquity cycles in the fine-grained sediments of the Ainsa System, after applying spectral analysis on bioturbation intensity, has permitted the calculation of SARs based on the known periodicities of these Milankovitch parameters (Heard et al., 2008). A SAR of ~ 30 cm/kyr has been estimated by Heard et al. (2008) for these fine-grained interfan successions. This result is consistent with an independent age model by Pickering and Corregidor (2005) who estimated 4 km of stratigraphy in ~ 10 Myr, giving a mean SAR of ~ 40 cm/kyr, not corrected for compaction.
Scotchman (2012) used the age model from Figure 1.9 to calculate SARs for different time intervals during the deposition of the Upper Hecho Group (Table 1.1). This table shows that SARs have greatly varied during the deposition of the Upper Hecho Group, spanning from 9 to 139 cm/kyr. Faster SARs appear to have occurred during the lower part of the Upper Hecho Group during the deposition of the Gerbe and Banastón systems, whilst SARs decreased during the Morillo and overlying systems. The average SAR for the entire Upper Hecho Group (~ 43 cm/kyr) is in agreement with the estimations of Pickering and Corregidor (2005). Heard et al. (2008) have argued that coarse-grained sandy packages and mass transport deposits (MTDs) are expected to have been deposited at much greater rates than the fine-grained interfan sediments and this can explain the large variations in the SARs estimated by Scotchman et al. (2012).

Table 1.1. SARs of the Upper Hecho Group.

<table>
<thead>
<tr>
<th>System</th>
<th>Scotchman (2012)</th>
<th>Other studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobrarbe Delta</td>
<td>33.4 ± 12.7 cm/kyr</td>
<td>32 cm/kyr (Dreyer et al., 1999)</td>
</tr>
<tr>
<td>Guaso</td>
<td>33.4 ± 12.7 cm/kyr</td>
<td></td>
</tr>
<tr>
<td>Morillo</td>
<td>9.5 ± 4.5 cm/kyr</td>
<td></td>
</tr>
<tr>
<td>Ainsa</td>
<td>Ainsa III 47.4 ± 17.9 cm/kyr</td>
<td>Ainsa III 30 cm/kyr (Heard et al., 2008)</td>
</tr>
<tr>
<td></td>
<td>Ainsa I-II 35.2 ± 0.56 cm/kyr</td>
<td></td>
</tr>
<tr>
<td>Banastón</td>
<td>Banastón V-VI 35.2 ± 0.56 cm/kyr</td>
<td>Banastón IV 139.5 ± 16.5 cm/kyr</td>
</tr>
<tr>
<td></td>
<td>Banastón IV 35.2 ± 0.56 cm/kyr</td>
<td>Banastón I-III 43.2 ± 10.5 cm/kyr</td>
</tr>
<tr>
<td>Average Upper</td>
<td>43.2 ± 10.5 cm/kyr</td>
<td>40 cm/kyr (Pickering and Bayliss, 2009)</td>
</tr>
<tr>
<td>Hecho Group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table shows SARs based on biostratigraphic studies by Scotchman (2012), time-series analysis data and stratigraphic correlation studies (Dreyer et al., 1999; Heard et al., 2008; Pickering and Bayliss, 2009). Modified after Scotchman (2012).

1.2.4.9 Water depths

Micropalaentological and palynological analysis in the Ainsa Basin (Pickering and Corregidor, 2005) indicates that the majority of the recognised foraminifera species are
typical of mid-bathyal water depths (~ 500 m) with some lower bathyal species (500-1,000 m) present such as Nuttalides which are known to have expanded their bathymetric range from abyssal depths to mid bathyal depths during the Eocene (Tjalsma and Lohmann, 1983). Analysis of benthic and planktonic foraminifera from the youngest submarine fan system, the Guaso System, shows that the majority of the species are typical of upper to mid bathyal water depths (e.g., Anomalinoides and Nutallides) with some (i.e., Globobulimina, spp) characteristic of off-shelf/upper bathyal zone. These analyses indicate that the entire stratigraphy of the Ainsa Basin had fully marine conditions prevailed with upper bathyal water depths (Pickering and Corregidor, 2005). Using these foraminifera studies in conjunction with realistic estimations of basin slope gradients, the bathyal depths during the deposition of the deep-marine Eocene clastic systems of the Ainsa Basin is estimated to be between 400 and 600 m (Pickering and Corregidor, 2005). The position of the slope right above the lateral ramp of the Cotiella-Montsec ramp may have caused, however, changes in water depth during pulsating tectonic activity (Dreyers et al., 1999).

Epifaunal morphotypes are the predominant foraminifera, suggesting either anaerobic interstitial waters and/or low oxygen availability (Pickering and Corregidor, 2005). These authors also suggest that the laminated nature of the fine-grained sediments in the basin favours low-oxygen levels. However, studies on bioturbation (Heard et al., 2008) indicate that the high degree of bioturbation in the fine-grained sediments is indicative of highly oxygenated waters with good food content. Heard et al. (2008) have suggested that orbitally-induced changes in basin oxygen levels may have caused stratification of the basin waters at Milankovitch scales.
1.2.4.10 Palaeocurrents within the Ainsa Basin

Palaeocurrents show a generally consistent palaeoflow throughout the stratigraphy towards approximately 320° (Mutti et al., 1985, Millington and Clark, 1995, Pickering and Corregidor, 2005; Pickering and Bayliss, 2009). Although Pickering and Bayliss (2009) recognised that in the southeastern lower-slope erosional channels, palaeoflow has a more westerly direction towards 290°. Palaeocurrents directions show that sand supply for all the systems was essentially point sourced via lateral supply in submarine canyons and erosional slope channels to the east, across the growing Mediano Anticline. Upon meeting the basin floor, the flows turned axially towards the NNW (Pickering and Bayliss, 2009). The abandonment of the channelised parts of the submarine fans resulted in the switch-off of coarse clastic delivery to the basin and the accumulation of thick intervals of fine-grained laminated siltstones and marlstones which constitute both interfan and fan lateral-margin deposits (Pickering and Corregidor, 2005; Pickering and Bayliss, 2009).

1.2.4.11 Growth stages in submarine fan formation

The initiation and sedimentary evolution of a typical sandy submarine fan has been described by Pickering and Corregidor (2005) based on the architectural elements present in the submarine fans of the Ainsa Basin. These authors have recognised 4 major stages of fan growth (Figure 1.10).

Stage I

The initiation of a typical submarine fan succession commences with a large-scale collapse of the submarine fine-grained slope forming intraformational sediment slides, slumps and small debris flows which result in the deposition of Type Ia Mass
transport complexes (MTCs) at the base of the slope and on the basin floor, typically metre to tens of metres thick. These Type Ia MTCs are mainly composed of fine-grained marls and very thin-bedded sandy turbidites with layers of redepoted nummulites and other shallow-marine material such as corals and echinoids in a marl matrix. These deposits lack any extrabasinal material such as fluvial pebbles or sand.

Stage II

The deposition of Type Ia MTCs are followed by the deposition of Type II MTCs which result from the collapse of the upper slope and outer shelf to lateral zone. Extrabasinal material such as shelfal and coastal sands, rounded pebbles and shallow-marine shells and nummulites are redeposited as sediment slides, debris flows and complex granular flows, gravel lags, pebbly sandstones and pebbly mudstones. These deposits typically range from a few metres to tens of metres and show a wide range of internal complexity. Bases are typically erosive with scours of up to tens of metres causing large-scale truncation surfaces at the base of the fan. Tops are irregular, creating seafloor topography of at least several metres which are typically infilled by less-confined, sheet-like, clean and well-sorted sands with shallow-marine faunas from a littoral environment, followed by coarse fluvial sediments directly fed from deltas and river mouths as hyperpycnal flows.

Stage III

This stage represents the deposition of the main sand-rich fan, typically up to tens of metres thick, comprising of coarse-grained, thick-bedded sandy turbidites and other sediment gravity-flow deposits. Submarine fans show the development of several cycles of low sinuosity erosional channels, sediment bypass and channel infill. The
abundance of woody material and land-derived palynomorphs in the channel infill indicates a dominant fluvio-delatic source rather than shallow-marine.

Stage IV

This stage represents a decrease in sediment supply to the fan and comprises tens of metres of medium to very thin-bedded, coarse to fine-grained tabular sandstones. Towards the top, this succession is capped by a few-metres thick, thinning and fining upwards trends representing fan abandonment.

Figure 1.10 Idealised vertical complete succession of a submarine fan in the Ainsa Basin.

There is a general fining-upwards profile. Typical fan thickness is ~ 10-70 m. Non-deposition, erosional processes and the location of the submarine fan within the basin (e.g., lateral, axial) can result in incomplete successions where bases and tops may be absent. Modified after Pickering and Corregidor (2005) and Pickering and Bayliss (2009).
1.3 Milankovitch cyclicity

1.3.1 Milankovitch theory

The Milankovitch theory or the astronomical theory of palaeoclimates tries to explain the recurrence of Ice Ages throughout the Earth’s history from an astronomical perspective (Berger, 1978a, 1978b). These Ice Ages are short-lasting cold periods that can be reconstructed by analysis of proxy data taken from deep-sea cores, ice cores and land records (Berger and Loutre, 2007). Some well-known Ice Ages are the Pre-Cambrian Ice Ages, the Late Ordovician Ice Age, the Permo-Carboniferous Ice Age and the Quaternary Ice Age (Berger and Loutre, 2007). The study of records for the past million years show that glaciation and deglaciation intervals have occurred with a dominant quasi-periodicity of 100 kyr with overimposed cycles of 41 and 21 kyr (Berger and Loutre, 2007). The Milankovitch theory claims that these periodicities can be related to astronomical changes in the configuration of the Earth’s orbit around the Sun and the Earth’s rotational axis. The result of these orbital variations affects the amount and distribution of radiation that the Earth receives from the Sun (insolation). The Milankovitch theory states that there is a linear relationship between insolation and total ice volume and therefore the cyclical changes in astronomical parameters can be linked to the occurrence of glacial and interglacial cycles (Hays et al., 1976; Imbrie et al., 1984; Imbrie et al., 1992).

The Milankovitch theory is based on previous work done by J.A. Adhemar and James Croll (Imbrie and Imbrie, 1979). In 1842, Adhemar explained the origin of glaciations using precession cycles. In 1864, Croll explained the Ice Ages using a combination of both the eccentricity cycle and the precession cycle. In 1875, Croll included the obliquity cycle (Imbrie and Imbrie, 1979). In 1941, Milutin Milankovitch,
using Croll's work, developed a mathematical model which calculated latitudinal differences in insolation and the corresponding surface temperature for the last 600,000 years (Berger and Loutre, 2007). Milankovitch recognised that the climatic fluctuations of the Late Quaternary characterised by an alternation between glacial and interglacial periods occurred through changes of insolation at high latitudes during the northern hemisphere summer. This theory, known as the Milankovitch theory, was however, widely disputed since it showed that the Quaternary Era had many more glacial periods than what it was recognised at the time. This was partially due to the use of incomplete and fragmented sedimentary records and to the use of inaccurate time-scales (Berger and Loutre, 2007). The interest in the Milankovitch theory revived after the work of Hays et al. (1976) and Berger (1978a, 1978b). Hays et al. (1976) used spectral analysis of deep-marine cores and found that cyclic successions with periodicities of 100, 41, 23, and 19 kyr were present in these successions. Berger (1978a) independently found the same periods associated with the variations of eccentricity, obliquity and precession using a new model of orbital forcing.

Since then, there has been a large volume of publications from Quaternary and older records identifying similar periodicities in cyclic successions all over the world and in all type of sediments and environments of deposition (e.g., aeolian, fluvial, shallow-marine and deep-marine) (e.g., reviews by De Boer and Smith, 1994). The orbital periodicities found in these cyclic sedimentary successions have been linked to climatic variations associated with changes in ice volume, precipitation and riverine run-off, ocean productivity, ocean circulation and sea-level temperatures (see sections 1.3.3-1.3.5). However, the mechanisms of how insolation variations can control the climate and the feedback mechanisms within the climate system are still not clearly understood (e.g., Raymo, 1997; Wolff et al., 2009).
1.3.2 Orbital cycles

The three orbital cycles which are known to cause climate changes in the order of tens of thousands of years are precession, obliquity and eccentricity (Figure 1.11). These cycles occur associated with changes in the gravitational interaction between the Earth and other stellar bodies such as the Sun, the Moon, Venus and Jupiter. Changes in the configuration of the Earth’s orbit around the Sun and the Earth’s rotational axis affect the amount and distribution of insolation that the Earth receives from the Sun.

Figure 1.11 Main orbital parameters: eccentricity, obliquity and precession. Objects are not to scale. Orbits are exaggerated. Modified from Weedon (2005).
The total amount of insolation received by the Earth depends only on eccentricity whilst obliquity and precession determine the latitudinal distribution (Berger, 1978a, 1978b).

1.3.3 Eccentricity

Eccentricity is a term used to describe the shape of the Earth's orbit around the Sun. The Earth's orbit changes slowly with time from an almost exact circle (eccentricity = 0.0005) to a slightly elongated shape (eccentricity = 0.0607) (Figure 1.11). The gravitational pull of two planets, Jupiter (due to its big size) and Venus (due to the proximity to the Earth) are responsible for causing the eccentricity of the Earth’s orbit to change. The torque that these planets cause in the Earth-Sun system changes in a cyclical manner. There are three main frequencies 0.0105, 0.0080 and 0.0025 cycles/kyr which correspond to periods of 95, 125 and 400 kyr, respectively. Of these periods, the ~ 100 kyr eccentricity cycle is more commonly found in palaeoclimatic records. Milankovitch argued that ice sheets were most likely to melt when summer occurs at perihelion (closest distance from the Sun) whilst ice will build-up when northern winter occurs in perihelion in the northern hemisphere. Many authors have found support for this theory and have associated the 100 kyr cycle to glaciation/deglaciation and contraction and expansion of climatic belts (Hays et al., 1976; Berger et al., 1990a, 1990b; Pillans et al., 1998; Abreu and Anderson, 1998; Berger et al., 2005; Lisiecki, 2010). However, the amount of insolation variance caused by changes in the eccentricity of the Earth’s orbit seems to be too small (less than 1%) to cause any major climatic disturbances (e.g., Imbrie et al., 1993) and this has caused and still is causing at present a lot of divided opinions about the origin of
the 100 kyr observed in the sedimentary and ice record, to the point that is now known as the ‘100 kyr problem’ (see Section 1.3.6).

Despite this, eccentricity can have a significant impact in the length of the seasons. Increasing the eccentricity lengthens the time spent near aphelion (furthest distance from the Sun) and shortens the time near perihelion. At the current orbital eccentricity (0.016722), the increase in solar irradiation at perihelion (351 W/m²) compared to the insolation at aphelion (329 W/m²) is ~ 6.8%, although the current difference between perihelion and aphelion is only 3.4% (5.1 million km). Periods of higher eccentricity increase the difference between the distance of the perihelion and aphelion and the change in the amount of received solar radiation can be as high as ~ 23% causing a large seasonal variability.

1.3.4 Obliquity

Obliquity is the variation of the tilt of the Earth's axis away from the orbital plane. The tilt varies between 22.1° and 24.5° with the average being 23.5° (Figure 1.11). The obliquity is not a purely periodic function. Dominant cycles have a periodicity of ~ 41 kyr but there is an additional lesser cycle at ~ 53 kyr (Berger, 1977; Berger et al., 1992; Levrard and Laskar, 2000; Berger et al., 2006). Changes in obliquity cause variations in the degree of seasonality equally in both hemispheres. As this tilt increases, the seasons become more exaggerated with warmer summers and colder winters. A reduction in the tilt decreases the seasonal contrast with less severe seasons, the summer hemisphere insolation decreases and the winter hemisphere insolation increases resulting in cooler summers and milder winters (Mantsis et al., 2010). During times of low obliquity (less tilt), more radiation reaches the meridional
latitudes and less reaches the poles (Phillips and Held, 1994) without causing a change in the global mean insolation (Lee and Poulsen, 2005). Mantis et al. (2010) show that a reduction in obliquity of 2° increases the insolation at the Equator by ~ 1%, whilst the insolation is reduced at the poles by ~ 9%. As a result, the insolation gradient between the Equator and the poles increases, and this have significant effects on climate. An increase in insolation contrast between meridional and high latitudes driving the atmospheric general circulation and strengthening the heat and moisture transport polewards (Vimeux et al., 1999; Trenberth and Caron, 2001; Mantse et al., 2010) is important for ice sheet growth (Vimeux et al., 1999, Raymo and Nisancioglu, 2003). Some authors have recognised different climatic effects associated with periods of low obliquity. Lawrence et al. (2010) have shown that North Atlantic sea surface temperatures decreased 2°-4°C during low obliquity periods. Lower surface conditions in the North Atlantic favoured North Atlantic deepwater formation based on Mg/Ca ratios from ostracods (Dwyer et al., 1995) and benthic foraminifera (Sosdian and Rosenthal, 2009). Low obliquity has also been associated with an increase in global ice volume as suggested by benthic δ¹⁸O records (Raymo and Nisancioglu, 2003) and by records of ostracods Mg/Ca indicating lowering of sea levels (Dwyer et al., 1995).

Obliquity is the dominant astronomical factor that affects the annual amount of insolation received in the Earth at high latitudes (Berger, 1978a). An increase of 1° in obliquity causes an increase of insolation of ~ 1% in the northern hemisphere (Berger, 2001). The cool summers are thought to allow for the yearly build-up of snow and ice at high latitudes, possibly leading to the development of an ice sheet. Obliquity change also causes equatorward motion of the tropical circles and the poleward motion of the polar circles (Berger, 2001).
1.3.5 Precession

Precession involves two factors: a wobble of the Earth's rotational axis and the orientation of the long axis of the Earth’s orbit. The Earth wobbles under the torque that the Moon and the Sun exert on its equatorial bulge. The Earth is an ellipsoid with the radius at the equator 0.34% larger than the radius at the poles. Because of this ellipticity the Moon and the Sun cause a gravitational pull which makes the Earth spin as a gyroscope. The Earth’s axis precesses with a period of 27 kyr in a clockwise direction as viewed looking down from the North Pole resulting in a shift in the celestial poles. Currently the Earth’s axis points towards the Polaris in the constellation Ursa Minor, but, 5,000 years ago the North Star was Thuban in the constellation Draco and half a precession period ago the axis was pointing at Vega (Figure 1.11). The precession of the Earth’s rotational axis causes the dates of the equinoxes to rotate around the Sun changing the Earth-Sun distance for a particular date. Simultaneous to the change in the orientation of the Earth’s axis, the long axis of the Earth’s orbit rotates anticlockwise relative to the stars, with a periodicity of 105 kyr and controls the time of year when the Earth is at perihelion. The combined effect of these two orbital factors results in two main precessional periodicities, 19 and 23 kyr. The 19 kyr cycle results from combining the eccentricity of the orbit and the precession of the axis of rotation. The 23 kyr cycle is the result of coupling the precession of the axis of rotation and the precessional changes in the Earth’s orbit. The combined effect of these two periodicities causes for each hemisphere that after summer occurs in perihelion, summer will be during aphelion at a period of ~21 kyr (Figure 1.12).

The total insolation during a year is not affected by the precession of the Earth (Berger and Loutre, 1994; Muller and MacDonald, 2000). The main reason for this is that the Earth moves faster in its orbit when is closer to the sun. If summer occurs in
the northern hemisphere during perihelion, the increase in insolation during a short amount of summer days will be balanced by a decrease in insolation during a larger number of winter days. This net amount of insolation received in the northern hemisphere is not affected greatly if the summer occurs instead in aphelion where medium length summers are balanced with medium length winters. The seasonal change however, is greater affected and can be more abrupt or milder depending on where in the orbit the summer occurs.

![Precession Cycle Diagram](image)

Figure 1.12 The precession cycle. The figure shows the rotation clockwise of the Earth’s axis tilt with a periodicity of 27 kyr and the rotation of the long axis of the Earth’s orbit with a periodicity of ~21 kyr. Modified after Weedon (2005).

The effect of precession on the intensity and length of seasons is influenced by the change in the Earth-to-Sun distance and in the change of speed of the Earth along its orbit (Weedon, 2005). The amplitude of the precession is therefore modulated by eccentricity and the combination of these two parameters is known as the precession parameter.

Time-series analysis of sedimentary successions often shows a stronger signal for eccentricity than for precession. Differences in the amplitude of these two parameters do not reflect a stronger influence of eccentricity on climate but can be
explained by the lower degree of variation of the eccentricity cycles compared with precessional cycles which may vary by a factor of two (de Boer and Smith, 1994).

Insolation is dominated by precessional cycles in equatorial latitudes (Berger, 1978b) and precession has been shown to have an effect on monsoon intensity (Tiedemann and Franz, 1997; Wang et al., 2001; Braconnot and Marti, 2003; Cruz et al., 2005, Thompson et al., 2005; Braconnot et al., 2008). Other studies have also shown that precession cycles may have an important control on precipitation and river run-off (e.g., Kutzbach, 1981; Olsen, 1994; Mallison et al., 2003; Tachikawa et al., 2011).

1.3.6 The 100 kyr problem

The 100 kyr glacial-interglacial climatic cycles observed in the last ~1 Ma have often been directly associated with the 100 kyr eccentricity cycle (e.g., Clemens and Tiedemann, 1997; Lisiecki, 2010; Ganopolski and Calov, 2011). However, the small net insolation change caused by the 100 kyr eccentricity cycle (e.g., Imbrie et al., 1993) has created a lot of opposition from palaeoclimatologists to directly associate the 100 kyr glacial-interglacial climatic cycles to eccentricity. Other problems include, the absence of the 400 kyr eccentricity frequency in the reconstructions of ice volume using benthic foraminifera oxygen isotopes (Muller and McDonald, 1997) and the mismatch between the amplitude of sea-level changes and the amplitude of insolation variations caused by eccentricity (Parrenin and Paillard, 2003). In fact, for the last ~800 kyr, the timing between glaciations is only quasiperiodic and vary between 87 and 119 kyr, and the dominant 100 kyr peak observed in the spectral results has been considered as an artifact of the spectral analysis (Maslin and Ridgwell, 2005). This has
been named as the ‘100 kyr eccentricity myth’ (Maslin and Ridgwell, 2005). Several researchers have tried to develop a number of conceptual models based on different assumptions to explain the origin of these glacial-interglacial 100 kyr cycles. Many of these conceptual models relate glacial variability to changes of the Earth’s other orbital parameters; obliquity and precession, which both have a more significant influence in insolation variability at the Earth’s surface than the eccentricity parameter. However, as various authors have discussed, orbital forcing on its own is insufficient to directly drive the glacial-interglacial cycles, but, can contribute to amplify and transform changes in insolation through various complex internal feedback mechanisms of the Earth’s climate-cryosphere system (Saltzman and Maasch, 1988; Gildor and Tziperman, 2001; Ashkenazy and Tziperman, 2004; Paillard and Parrenin, 2004; Maslin and Ridgwell, 2005).

Some researchers have argued that the glacial-interglacial cycles are paced by obliquity and occur each second or third cycle, triggered at times of increased orbital obliquity (Huybers and Wunsch, 2005; Huybers, 2007; Liu et al., 2008). Obliquity causes an insolation gradient between the polar and tropical regions which has a major influence in the general circulation of the oceans and also of the atmosphere and is a link to ice sheet development (Raymo and Nisancioglu, 2003; Berger et al., 2006). Other authors have concluded that the key to explain the glacial and interglacial cycles lies in the seasonal redistribution of insolation associated with precession (e.g., Ridwell et al., 1999; Maslin and Ridwell, 2005). These authors suggest that the glacial-interglacial cycles occur each fourth or fifth precession cycle and are paced by eccentricity. The episodic occurrence of unusually low maxima in the Northern hemisphere summer insolation, pushes the glacial climate system to a critical maximum degree of glaciation, which results in catastrophic ice sheet collapse, retreat
and finally deglaciation (Raymo, 1997). There are other authors who advocate for a combination of both obliquity and precession factors (e.g., Huybers et al., 2011).

1.3.7 Periodicities through geological time

Present day orbital periodicities have not remained the same through geological time. Obliquity and precession cycles are affected by mechanisms such as lunar and solar tidal motion which slows down the Earth rotation’s rate (Berger et al., 1990a, 1990b). Eccentricity, on the contrary, does not appear to be affected by this mechanism and therefore, the ratios between the different orbital parameters (obliquity/eccentricity and precession/eccentricity) have changed through geological time.

There are different orbital configurations and insolation computations available. Berger and Loutre (1991) used trigonometric equations to quantify insolation from the effect of planetary masses and the Earth-Moon gravitational pull. These calculations recognise the 19, 23, 41, 100 and 400 kyr periodicities observed in many palaeoclimatic records. However, these solutions are only accurate back to 1.5 Ma and are considered reliable back to 5 Ma (Cronin, 2010). Laskar et al. (1993) computed insolation using a numerical solution where they included certain planetary elements using integrated secular equations. A later version of this solution was Laskar et al. (2004) which extended the numerical solutions for the past 65 Ma using improved computer and integration methods of gravitational equations. This orbital solution has now been updated and extended to the last 250 Myr in the version La2010 although the authors warn of the precision of these curves for records older than 60 Myr (Laskar et al., 2011). This updated version contain 4 different solutions (La2010a, b, c and d) which are all compatible with the position and motions of the astronomical
bodies. Of all these solutions, the La2010a is the nominal solution with higher numerical accuracy and the orbital solution chosen in this study.

Although these algorithms calculate the energy received at the top of the Earth’s atmosphere, they are unable to predict how the ocean and the atmosphere will respond to these changes (de Boer and Smith, 1994). In fact, sedimentation processes will depend on more variables than just insolation. Berger (2012) have summarised some of the difficulties faced by palaeoclimatologists when trying to determine Milankovitch cycles in past records including the effects that non-orbital factors such as tectonic uplift, continental drifting, changes in the configuration of ocean gateways, in the carbon dioxide content of the atmosphere, and in the availability of methane ice on the sea-floor can have to influence the Earth’s climatic system and obscure the orbital signal.

1.3.8 Possible effects of Milankovitch cycles in the Ainsa Basin during the Eocene

Palaeogeographic reconstructions place the Pyrenees at ~ 35°N during the Eocene (Hay et al., 1999), a latitude that is known to be sensitive to astronomically-induced climatic changes. Figure 1.13 shows the Milankovitch orbital curves for the time period between 50 and 40 Ma where the sediments of the Ainsa Basin are thought to have been deposited (Pickering and Corregidor, 2005). Annual insolation changes, obliquity and precession cycles have been calculated using Laskar et al. (2004) computations and eccentricity curves have used the updated La2010a computation of Laskar et al. (2011). The length of the orbital periods for the Eocene (~ 40 and ~ 50 Ma) are calculated using Berger et al. (1992) equations and can be seen in Table 1.2.
Table 1.2 Orbital periodicities for the Middle Eocene.

<table>
<thead>
<tr>
<th>Orbital period</th>
<th>40 Ma</th>
<th>50 Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eccentricity</td>
<td>94.78</td>
<td>123.82</td>
</tr>
<tr>
<td>Obliquity</td>
<td>40.12</td>
<td>52.48</td>
</tr>
<tr>
<td>Precession</td>
<td>18.84</td>
<td>22.68</td>
</tr>
</tbody>
</table>

Orbital periodicities calculated using the equations from Berger et al. (1992) at 40 Ma and 50 Ma.

Figure 1.13 Annual insolation, eccentricity, precession and obliquity curves from 50 to 40 Ma. Computations from Laskar et al. (2004) with the exception of eccentricity which has used the La2010a orbital solution (Laskar et al., 2011).
Sloan and Huber (2001) and Lawrence et al. (2003) have used realistic combinations of orbital parameters to model climate variability during the Eocene. These models compare the effect of orbital variability between two end members (MINSEAS and MAXSEAS). The orbital parameters used in the MINSEAS model damper the seasonal variation in the northern hemisphere and amplify it in the southern hemisphere whilst the MAXSEAS model, which occurs 11 kyr after MINSEAS (half a precessional cycle) amplifies the seasonal variability in the northern hemisphere and dampens it in the southern hemisphere.

These models show that greater seasonality in the northern hemisphere (MAXSEAS model) is associated with higher precipitation in all drainage basins in this hemisphere (mean annual precipitation and seasonal precipitation) (Lawrence et al., 2003). The effect of changes in orbital precession has however, little effect on the mean annual temperature, but affects the seasonal mean temperature range (Lawrence et al., 2003).

Sloan and Huber (2001) showed that changes in insolation over precession cycles can account for the changes in surface temperature, upwelling intensity and location and amount of continental run-off. For continental run-off, these authors calculated a 12% variance in the Pyrenees. Periods of enhanced storminess and precipitation may be linked to increase riverine run-off and higher detrital mixed and suspended river load.

1.4 Eocene climate

The deep-marine sedimentation of the Ainsa Basin covers a ~ 10 Myr period during the Middle Eocene (~ middle to late Ypresian and Lutetian, ~ 50 to 40 Ma) (Pickering and Corregidor, 2005). This time period witnessed a progressive cooling and
deterioration of global climate and marks the transition from the warm and ice-free world of the Early Eocene (~ 55 Ma) to the icehouse conditions of the Oligocene (~ 34 Ma) (e.g., Miller et al., 1987; Zachos et al., 2001, 2008; Coxall et al., 2005; Liu et al., 2009).

1.4.1 Global Eocene climate

1.4.1.1 The Early Eocene
The Early Eocene Epoch (~ 55-49 Ma) is recognised as the warmest climate of the past 65 Myr. This period was characterised by either small or absent polar ice-sheets (Miller et al., 1987; Zachos et al., 1993, 1994; Crowley and Zachos, 2000), high latitude sea surface temperatures (up to 15°C warmer than modern) (Zachos et al., 1993), diminished Equator-to-pole temperature gradients, with hotter sea surface temperatures relative to present, near the poles and least dramatic differences at the tropics (Pagani et al., 2006; Zachos et al., 1994; Greenwood and Wing, 1995; Bijl et al., 2009), and atmospheric CO₂ in excess of 1000 ppm (Yapp, 2004; Beerling and Royer, 2011). During this Early Eocene hothouse period, the climate warmed steadily until concentrations of greenhouse gases and global temperatures reached a maximum in a strong global warming event that lasted approximately 2 Myr known as the Early Eocene Climatic Optimum (EECO) (Zachos et al., 2008).

The EECO was not the only strong global warming event which occurred during the Early Eocene, high-resolution studies of carbon and oxygen isotopes show that numerous short-lasting events (< 200 kyr), known as hyperthermals occurred during this time interval (e.g., Thomas et al., 2001; Lourens et al., 2005; Zachos et al., 2006; Zachos et al., 2008; Bohaty et al., 2009). These hyperthermals were
characterised by large incursions of 13C-depleted carbon into the ocean and atmosphere and were generally accompanied by an increase in Earth surface temperature and marked shifts in the distribution and intensity of precipitation and weathering rates (Thomas et al., 2001; Zachos et al., 2008). The fossil record shows that these extreme climatic warming events during the Early Eocene were also accompanied by biotic changes where species diversification, migrations, radiations and extinction rates affected both terrestrial and marine communities (Wing et al., 1995; Slujs et al., 2007).

The most dramatic and best-studied hyperthermal is the Paleocene-Eocene Thermal Maximum (PETM or Eocene Thermal Maximum 1 (ETM-1) which occurred at 55.5 Ma and lasted less than 170 kyr. This event signalled the onset of the Eocene hothouse and showed a global surface temperature increase of 5-9°C in less than 10,000 years (Dickens et al., 1995; Thomas et al., 2002; Wing et al., 2005; Zachos et al., 2005).

The PETM event was followed by other transient warming events identified by short increases of the deep-sea benthic foraminiferal oxygen-isotope incursions and deep-sea carbonate dissolution horizons but of a lower magnitude and duration than the PETM (Zachos et al., 2008): the Eocene Thermal Maximum 2 (ETM-2) which occurred approximately at 53.7 Ma (Lourens et al., 2005; Sluijs et al., 2009; Stap et al., 2010) and the Early Eocene Climatic Optimum (EECO) (51-53 Ma) (Lowenstein and Demicco, 2006; Zachos et al., 2001). Other minor hyperthermals less known have also been recognised: H-2 at 53.6 Ma (Stap et al., 2010; Abels et al., 2013), I-1 at 53.3 Ma (Nicolo et al., 2007, Samanta et al., 2013), I-2 at 53.2 Ma (Nicolo et al., 2007, Samanta et al., 2013) and K, X or ETM-3 at 52.8 Ma (Röhl et al., 2005; Agnini et al., 2009; Galeotti et al., 2010).
Numerous studies have tried to find the causal factors which led to the extremely warm climatic conditions of the Early Eocene. In 1896, Arrhenius suggested that the high levels of carbon dioxide in the atmosphere were responsible for the warm climate observed in the chemical records. Since then, many authors have tried to recognise which mechanisms are responsible for causing the build-up of high concentrations of greenhouse gases in the atmosphere during the Eocene. For many, high CO₂ concentrations were caused by an increase of volcanic emissions and hydrothermal degassing during the Palaeocene and Eocene epochs (Owen and Rea, 1985; Berner et al., 1993). High CO₂ emissions have also been attributed to metamorphic CO₂ degassing from orogenic belts (Kerrick and Caldeira, 1998). Other authors have proposed that changes in the chemical weathering of silicate rocks (Walker et al., 1981; Brady, 1991), and methane released from storage in wetlands (Sloan, 1992) or from large oceanic gas hydrate reservoirs (Dickens et al., 1995) have resulted in the high atmospheric CO₂ levels during the Eocene.

Some authors have tried to explain the warm climate of the Eocene from the changes in continental configuration, orographic relief (e.g., uplift of the Himalayas and the Alpine region) and ocean circulation which occurred during the Eocene (e.g., Kennet, 1977; Sloan, 1994). It has also been proposed that external processes such as evolution of the Sun and solar variability and the position of the solar system relative to the galactic centre (Wigley, 1981) and changes in the orbit of the Earth (Cramer et al., 2003; Galeotti et al., 2010) caused the destabilisation of the Earth’s radiation budget and modified the Earth’s global climate.
Figure 1.14 Atmospheric CO$_2$ concentration, deep-sea benthic foraminiferal oxygen isotope and temperature reconstruction over the past 65 Myr. (a) Earth’s atmospheric CO$_2$ for the period 0 to 65 Ma. The dashed line represents present day atmospheric CO$_2$ concentration (390 ppm). Figure modified after Beerling and Royer (2011). (b) Deep-sea benthic foraminiferal oxygen isotope curved based on records from Deep Sea Drilling Project and Ocean Drilling Program sites. The Middle Eocene to Middle Miocene period includes high-resolution records from Billups et al. (2002), Bohaty and Zachos (2003) and Pälike et al. (2006). Figure modified after Zachos et al. (2008).
1.4.1.2 The Middle and Late Eocene

The succession of these warm episodes of the Early Eocene was interrupted by a prolonged interval of global climatic deterioration in the Middle to Late Eocene (~ 49 to 34 Ma), which resulted in the initiation of major permanent ice-sheets in Antarctica at the Eocene-Oligocene boundary (~ 33.5 Ma) (Lear et al., 2000; Zachos et al., 2001; DeConto and Pollard, 2003; Coxall et al., 2005). This Middle and Late Eocene global cooling trend was not linear and occurred through a series of prominent cooling steps and by several transient warming and cooling phases (Zachos et al., 2008) (Figure 1.14).

The Paleogene cooling has its major expression during the Eocene-Oligocene Transition (EOT) (33.5 Ma) (Coxall and Pearson, 2007; Lear et al., 2008), which includes the Early Oligocene isotopic Oi-1 event (Miller et al., 1991; Zachos et al., 2001). The EOT is evidenced by a large positive excursion in the mean δ18O composition of benthic and planktonic foraminifera (throughout the Atlantic, Pacific, Indian and Southern Oceans (Miller et al., 1987; Shackleton and Kennett, 1975; Zachos et al., 2001; Coxall et al., 2005; Katz et al., 2008). This period also shows a deepening of the global calcite compensation depth (CCD) by 1 km (Van Andel, 1975; Coxall et al., 2005; Rea and Lyle, 2005), an increase in thermohaline circulation (Kennett, 1977; Davies et al., 2001), a decrease in sea surface temperatures associated with ice growth by 2.5°C-5°C (Zachos et al., 2001; Lear et al., 2008; Liu et al., 2009; Miller et al., 2009), a reorganisation of the carbon cycle (Shackleton and Kennett, 1975; Diester-Haass and Zahn, 1996; Zachos et al., 2001; Coxall et al., 2005; Merico et al., 2008), an increase in ocean productivity (Diester-Haass and Zahn, 1996; Salamy and Zachos, 1999; Diester-Haass and Zachos, 2003) and sea-level fall (e.g., Miller et al., 1991; Pekar et al., 2002; Miller et al., 2008). The cooling trend during this period
also affected many marine faunas with extinctions in tropical planktonic and larger foraminifera (Keller et al., 1992; Pearson et al., 2008; Wade and Pearson, 2008), molluscan extinctions (Hansen et al., 2004) and the global diversity decline of calcareous nannoplankton (Aubry, 1992; Bown et al., 2004; Dunkley Jones et al., 2008). Floral changes and terrestrial fauna turnover occurred during this interval associated with the cold weather and an increase in regional arification (Francis, 1999; Hooker et al., 2004; Jaramillo et al., 2006; Zanazzi et al., 2007).

Different mechanisms have been proposed to explain this significant climatic change which caused the transition from the greenhouse conditions of the Early Eocene to the icehouse world of the Oligocene and at present they are still being debated. Re-distribution of land-sea masses during the Cenozoic with an increase in high latitude land masses (causing ice-albedo feedbacks) and a decrease in continentality (causing changes in seasonality and summer temperatures) failed to explain the temperature ranges of this period inferred by modelling studies (Barron, 1985). The most predominant hypothesis to explain Cenozoic cooling involves the opening of the circumpolar passages. During the Late Eocene and Oligocene, South America separated from Antarctica, resulting in the formation of the Drake Passage, and Antarctica separated from Australia causing the opening of the Tasmanian Gateway. These tectonic events resulted in the formation of the Antarctic Circumpolar current which is believed to have caused the thermal isolation of the Antarctic continent and have resulted in the build-up of an ice sheet in Antarctica (Kennett, 1977; Exon et al., 2004; Diekmann et al., 2004; Lawver and Gahagan, 2003; Sijp and England, 2004; Scher and Martin, 2006). One of the main setbacks of this theory is the lack of precise dating of these tectonic events which complicate interpretation on the causal relationship between ocean circulation and global cooling. The age of the Drake
Passage ranges from the Middle Eocene (~ 49 Ma) (Livermore et al., 2005; Livermore et al., 2007) to the Early Miocene (~ 17 Ma) (Barker, 2001), whereas the Tasmanian Gateway is dated more consistently at ~ 35.5 Ma (e.g., Kennett and Exon, 2004; Stickley et al., 2004). In addition to the difficulty in establishing an exact timing of these events, this theory has been challenged by some authors, who argue that the range in temperature reproduced by ocean-atmosphere modelling is very small to explain major Cenozoic cooling (Mikolajewicz et al., 1993; Huber et al., 2004; Zhang et al., 2010).

Another mechanism proposed as the cause of Cenozoic cooling is a decrease in atmospheric CO$_2$ (DeConto and Pollard, 2003; Pagani et al., 2005; Huber and Nof, 2006; Pearson et al., 2009; Liu et al., 2009; Peters et al., 2010). The main support for this mechanism is shown by the parallel trend of atmospheric CO$_2$ records with other palaeoclimatic proxies such as long-term δ18O records. Other mechanisms proposed to decrease global atmospheric CO$_2$ include an increase in silicate weathering (Raymo et al., 1988) or an increased in organic carbon burial (Diester-Haass and Zachos, 2003; Zachos and Kump, 2005).

Some authors have proposed other mechanisms to explain Cenozoic cooling which are not related to changes in atmospheric CO$_2$ levels or to the opening of oceanic passages. Among these mechanisms are: a decrease in solar insolation that favoured cool summers and triggered ice build-up (Coxall et al., 2005), the suppression of the Iceland mantle plume and its effect on the initiation of the North Atlantic deep-water circulation (Abelson et al., 2008); terrestrial or marine volcanism (Jicha et al., 2009) and even extraterrestrial impacts (Vonhof et al., 2000).
1.4.1.3 Land ice development prior to the Eocene-Oligocene boundary

Although, there is compelling evidence and a general consensus that Antarctic ice sheets were stable and permanent at the Eocene-Oligocene boundary (e.g., Zachos et al., 2001, 2008; Coxall et al., 2005), the extent and stability of land ice during the Middle and Late Eocene remains controversial. Some studies have suggested that there was little or no significant ice storage occurring prior to the earliest Oligocene (Miller et al., 1991; Zachos et al., 1994, 1996, 2001), although some authors do not disregard the presence of ephemeral ice sheets (De Conto and Pollard, 2003; Burgess et al., 2008). Other studies have used stratigraphic and geochemical proxies to suggest high-frequency sea-level variations in the order of tens of metres driven by glaciation in the Middle-Late Eocene in Antarctica (Browning et al., 1996; Miller et al., 2005; Pekar et al., 2005; Tripati et al., 2005; Edgar et al., 2007; Kominz et al., 2008; Payros et al., 2009; Dawber et al., 2011; Dawber and Tripati, 2011). There is also some evidence, mainly from ice-raft debris, to suggest that ice sheets developed at the same time in the Northern hemisphere (Moran et al., 2006; Eldrett et al., 2007; St John, 2008; Tripati et al., 2008; Stickley et al., 2009).

1.4.2 Palaeoclimatic conditions in the Pyrenees during the Eocene

Geochemical, paleontological and sedimentological data from the Palaeocene of the Central Pyrenees indicates that this period was characterised by a warm arid climate with little cover vegetation (Schmitz et al., 2001; Schmitz and Pujalte, 2003, 2007; Arostegui et al., 2011; Minelli et al., 2013). Also, terrestrial palynoflora from Austria and the Eastern Alps suggests a warm and humid climate during the Late Thanetian and early Ypresian (Hofmann et al., 2011). The carbon isotope excursion of the PETM is preserved in the continental Tremp Formation of the Tremp-Graus Basin (Schmitz
and Pujalte, 2003, 2007; Domingo *et al.*, 2009; Manners *et al.*, 2013) and fluvial deposits of the Ager Basin (Minelli *et al.*, 2013) and can be correlated to the west to the basin plain deposits in the Basque-Cantabrian Pyrenees (Schmitz and Pujalte, 2003, 2007; Minelli *et al.*, 2013). The PETM in the Pyrenees was characterised by a short-lasting abrupt increase in seasonal precipitation causing severe floods and rainstorms which resulted in an increase in land erosion and continental runoff (Schmitz *et al.*, 2001; Schmitz and Pujalte, 2003, 2007; Minelli *et al.*, 2013).

Tropical to subtropical, warm and humid conditions were maintained during the Middle Eocene in the Ebro Basin as evidenced from pollen taxa and floral diversity studies (Cavagnetto and Anadón, 1996). Similarly, clay mineral analysis from deep-marine pelagic and hemipelagic marlstones of the Lower Eocene in Zumaia, Western Pyrenees, are characterised by a widespread production of kaolinite which suggests that warm/perennially humid and seasonally wet climatic periods enhanced weathering (Winkler and Gawenda, 1999). Palynological data from Haseldonckx (1972, 1973) shows that tropical humid conditions were present during the deposition of the Lower Montanyana Group (Ypresian) in the Tremp Basin, changing towards a more seasonal subtropical climatic conditions during the Upper Montanyana Group deposition (Lutetian). These studies are consistent with most vegetation reconstructions for the Early to Middle Eocene which argue that the dominant vegetation at mid-latitudes was paratropical (e.g., Wolfe, 1985; Sewall *et al.*, 2000; Collinson and Hooker, 2003; Utescher and Mosbrugger, 2007). Vegetation cover at mid-latitudes in Eurasia was dominated by warm temperate vegetation with a high-diversity of evergreen woods and extra-tropical deciduous forests most probably growing under perhumid conditions (Collinson and Hooker, 2003; Utescher and Mosbrugger, 2007). Mean annual temperatures for mid-latitudes of Europe during the Middle Eocene were very high.
between 23-25°C and cold month mean temperatures were between 17 and 21°C (Mosbrugger et al., 2005). Towards the end of the Eocene, there is some evidence from pollen and floristic analysis in the Ebro Basin to suggest that climatic conditions changed to drier and cooler climatic conditions (Cavagnetto and Anadón, 1996). Data from other regions further north also shows from the Late Eocene onwards, the existence of a cooler and drier climate (Collinson, 1992; Knobloch et al., 1993).

Palaeoclimatic conditions in the Ainsa Basin area during the Eocene are determined by palynofloral and microfaunal records from unpublished Robertson Research and are summarised in Pickering and Corregidor (2005). These records suggest a tropical to subtropical climate with moderately high rainfall patterns. Flora in the hinterland was dominated by coniferous vegetation in areas at higher altitudes whilst the lowlands were in general, well-drained. Based on the relative scarcity of pteridophyte and associated spores, the development of swamps with mangrove vegetation belts was limited.

1.5 Sea level

1.5.1 Estimation of sea-level changes
There are different methodologies employed to estimate sea-level changes. Published sea-level curves from the 1970’s and 80’s were made from the study of sedimentary strata deposited on passive continental margins and epicontinental seas (e.g., Vail et al., 1977; Haq et al., 1987). This methodology has been subjected to considerable controversy, mainly from the difficulty to obtain quantitative amplitude estimates of eustasy from inferred changes in coastal onlap (e.g., Christie-Blick et al., 1990). Despite this limitation, sea-level curves created using this method are still in use nowadays since they tend to be quite consistent with calculations derived from other
methods, and are still reasonable at timing eustatic lowerings within an accuracy of ±1 Myr (Miller et al., 2011).

Oxygen isotopic data obtained from the tests of marine fossils can be used to construct sea-level curves. Marine organisms form their skeletons using calcium, carbon and oxygen available from the oceans. The $^{18}\text{O}/^{16}\text{O}$ ratio ($\delta^{18}\text{O}$) from the oceans differs from the atmosphere and from continental glaciers due to selective isotope evaporation. As a consequence, variations in the oxygen isotopic ratio of the oceans is affected by the amount of continental ice and indirectly reflects sea-level change. Studying the $\delta^{18}\text{O}$ of marine organisms gives therefore an indication of global volume of ice and sea levels. One of the drawbacks of this method is that the amount of ^{18}O incorporated in the tests of organisms does not only reflect global glaciation but also depends on the temperature and salinity of the water (Miller et al., 1991). In addition, this method cannot distinguish from eustatic changes of non-glacial origin (e.g., Miller et al., 1991). The temperature component associated with these records can be evaluated by using Mg/Ca ratios in addition to deep-sea benthic foraminifera and $\delta^{18}\text{C}$ records to provide estimates of bottom-water temperatures (e.g., Lear et al., 2000; Katz et al., 2008; Sosdian and Rosenthal, 2009). However, errors in this approach are large and Mg/Ca records cannot be used with confidence for records older than Pliocene (Miller et al., 2011).

More recently, global sea-level estimates have been produced using backstripping techniques. This methodology employs progressive decompaction and unloading of vertical successions of sedimentary layers to remove the effects of sediment compaction, loading and basin subsidence leaving a more accurate estimate of the amplitude of sea-level change (Steckler and Watts, 1978; Pekar et al., 2002; Komintz et al., 1998, 2008).
Sea-level curves produced using any of these methods, show that sea-levels can vary at different wavelengths and with different degrees of magnitude (Table 1.3). Long term \((10^7-10^8 \text{ years})\) sea-level changes are slow and are mainly associated with tectonics, oceanic crust production and continent collision which can cause large variations in sea-level amplitude (e.g., Sloss, 1963; Miller et al., 2011). Whereas, high-frequency sea-level cycles cause sea-level changes in the order of tens to hundreds of kyr, are caused by changes in the orbit of the Earth and result in much smaller amplitudes in sea-level change.

<table>
<thead>
<tr>
<th>Order</th>
<th>Time span</th>
<th>Magnitude</th>
<th>Dominant cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>100 Myr</td>
<td>Up to 500 m</td>
<td>Ocean-basin volume changes</td>
</tr>
<tr>
<td>2nd</td>
<td>5-100 Myr</td>
<td>Up to 500 m</td>
<td>Thermotectonic subsidence</td>
</tr>
<tr>
<td>3rd</td>
<td>1-5 Myr</td>
<td>Up to 200 m</td>
<td>Eustasy-tectonics</td>
</tr>
<tr>
<td>4th</td>
<td>0.3-0.6 Myr</td>
<td>Up to 30 m</td>
<td>Eustasy-tectonics</td>
</tr>
<tr>
<td>5th</td>
<td>~ 100 kyr</td>
<td>100–130 m</td>
<td>Glacio-eustasy (eccentricity)</td>
</tr>
<tr>
<td>6th</td>
<td>~ 40 kyr</td>
<td>30–100 m</td>
<td>Glacio-eustasy (obliquity)</td>
</tr>
<tr>
<td>7th</td>
<td>~ 20 kyr</td>
<td>Up to 50 m</td>
<td>Glacio-eustasy (precession)</td>
</tr>
<tr>
<td>Infra 7th</td>
<td>< 20 kyr</td>
<td>Up to 50 m</td>
<td>Eustasy-sediment supply</td>
</tr>
</tbody>
</table>

Table 1.3 Phanerozoic sea-level cycles.

Table after Fulthorpe (1991).

1.5.2 Sea-level changes in the Eocene

Numerous estimates of Eocene sea levels are available in the literature (e.g., Vail et al., 1977; Haq et al., 1987; Komintz et al., 1998, 2008; Komintz, 2001; Miller et al., 2005, 2011; Dawber et al., 2011). Stratigraphically-based sea-level curves for the Eocene are mainly from the New Jersey Coastal Plain (Komintz et al., 1998, 2008; Miller et al., 2005). New Jersey records have been correlated to other successions such as the East Tasman Plateau (Röhl et al., 2004) and the South Tasman Rise (Pekar et al., 2005) indicating that these events are global. These sea-level curves have recognised
numerous Eocene succession boundaries associated with large (> 50 m) rapid (< 1 Myr) sea-level falls.

Figure 1.15 compares sea-level curves in the Eocene from δ¹⁸O records (Cramer et al., 2009), backstripping (Miller et al., 2005; Kominz et al., 2008) and sedimentary sequences (Haq et al., 1987). These curves show a consistent general trend of sea-level change, although there is little agreement in terms of amplitude of sea levels. It has been claimed that amplitudes of the sedimentary records such as the Haq et al. (1987) sea-level curve are too high by a factor of 2-2.5 (Pekar et al., 2002; Miller et al., 2005). Despite these differences, the general consensus is that sea-levels during the Eocene were generally higher than today by 40-100 m. Sea-level curves from backstripping and benthic foraminifera oxygen isotope records show an abrupt increase in sea-level at the Early Eocene (~ 55 Ma) and then a long-term fall starting in the Late Middle Eocene that continued throughout the Oligocene. Higher frequency sea-level changes are also present in the records, although there is no evidence of sea-level fall higher than 100 m from the Palaeocene through the Oligocene in any of the sea-level curves estimates. Sea-level variability reaches as much as 40 m, but is generally less than 20 m. Many of the successions observed on the New Jersey Coastal Plain (Miller et al., 2005; Kominz et al., 2008) correspond to sequence boundaries of the global sea-level curve of Haq et al. (1987). For instance, there is a decrease in Eocene levels at 49.5 Ma that corresponds with a hiatus in the New Jersey sequences. Other estimates from δ¹⁸O records in other parts of the world (e.g., Hampshire Basin and the Southern Ocean) also show moderate amplitude (40-60 m) relative sea-level variations during the Palaeocene and Eocene (Bohaty et al., 2009; Dawber et al., 2011).
Figure 1.15 Sea-levels during the Eocene. The figure shows sea-level estimates from backstripping, New Jersey (Miller et al., 2005; Kominz et al., 2008); from seismic sequence analysis (Haq et al., 1987) and from oxygen isotopic synthesis (Cramer et al., 2009) from 65 to 35 Ma. The yellow box indicates the estimated age of the Ainsa deep-marine sediments (Pickering and Corregidor, 2005). Modified after Miller et al. (2011) and Haq et al. (1987).

1.6 Main research aim

The principal aim of this PhD is to calibrate sediment flux to a tectonic active basin in order to identify temporal changes in sedimentation patterns and to improve our understanding of what controls the nature and distribution of sediments. The analysis of high-resolution geochemical and mineralogical proxy data can help to evaluate climatic conditions in the hinterland and the resulting response that tectonics, climate and eustacy-driven changes can have on the depositional architecture of the Ainsa Basin. The comparison of these geochemical proxies against the frequency, thickness and SARs of turbidite deposits with a new developed age model can help to understand what controls sedimentation in this basin. Results from this research can have implications to our understanding of possible drivers of cyclic sedimentation in other
tectonic active basins in general and help to infer paleoclimatic changes which can serve as a model for other studies in modern and ancient deep-marine basins worldwide.

The Ainsa Basin was chosen as the study area because is one of the best world examples of confined turbidite deep-marine sedimentation, with superb three-dimensional outcrop exposure. The architectural simplicity of the basin is illustrated by clastic sediments mainly feeding from a unique southeast point source (Pickering and Corregidor, 2005) and by the development of only one major submarine channel at a time. This makes the Ainsa Basin a natural laboratory to study the evolution of the deep-marine systems through time. This PhD also focuses on a significant time period characterised by global climate which eventually led to the onset of Antarctic ice development and a switch from greenhouse to icehouse global climatic conditions.

1.7 PhD research objectives

(a) **Refine the published Ainsa geological map and link it to topography**

The calibration of the sediment influx to the basin requires a detailed geological map where stratigraphic thicknesses can be calculated with confidence. The published map of the Ainsa Basin (Pickering and Bayliss, 2009) was the product of a joined collaboration between Pickering and Corregidor (2000) and several later University College London (UCL) PhD students who mapped the different systems of the Ainsa Basin as part of their research degree. However, the use of different mapping techniques such as mapping on aerial photographs at different scales has caused that the published map appears ‘stretched’ in some areas, thus making thickness estimates difficult. One of the main objectives of this research project is to refine this map to show the geology linked to topography, in order to better calculate interfan sediment
thicknesses (i.e., determine thicknesses between the sandbodies). Estimation of stratigraphic thicknesses can be used in conjunction with the development of a new age model for the Ainsa Basin based on magnetostratigraphy data to better constrain timing of the deep-marine sedimentation in the basin.

(b) Gamma-ray logging of fine-grained interfan successions and cyclostratigraphy study of these successions

The duration of fan and interfan deposition can be established by identifying Milankovitch cycles in the finely-laminated deep-marine sediments of the Ainsa Basin using a portable gamma-ray spectrometer. Sections suitable for high-resolution gamma-ray logging should be undeformed, continuous and located between sandbodies (submarine fans) so that the timing of coarse sand flux into the basin can be established. Applying cyclostratigraphic techniques to high-resolution gamma-ray data can help to understand how these orbital cycles have had an effect on climate and ultimately in the sediment flux to the deep-marine environment.

(c) Magnetostratigraphy study across the Ainsa Basin

Rock sampling for magnetostratigraphy will be undertaken over ~ 1 km of stratigraphy in the Ainsa Basin. Sampling would occur mainly in the Upper Hecho Group (from the Gerbe to the Morillo systems) since the Lower Hecho Group is severely deformed with the emplacement of numerous thrust sheets and fault-propagation-folds, and these structurally-complex sediments would therefore not be included in these studies.
(d) Geochemical analysis of a fine-grained interfan core

The project also involves work on the Well A6 core which is one of the cores recovered from drilling in the Ainsa Basin. This core is located in the interfan deposits between the Ainsa and Morillo systems. The A6 core is ~ 230 m long and consists mainly of deep-marine marlstones and thin-bedded muddy siltstone turbidites. Work on the core involved the production of detailed sedimentary logs, chemical analysis of major and trace elements using the UCL multi-element XRF scanner (X-Ray Fluorescence), X-ray powder diffraction (XRD), total organic carbon (TOC), scanning electron microscopy (SEM) and stable carbon isotopic determination. All these analysis aim to determine the nature and provenance of the sediments in the basin and would contribute to our understanding of how climate variability has had an effect on the nature and distribution of deep-marine records. Previous work has been done on the A6 core by Heard et al. (2008) conducting bioturbation intensity studies and by Scotchman (2012) undertaking cyclostratigraphic studies from XRF data. Heard et al. (2008) described and interpreted the stratigraphy of the A6 core but sedimentary logs were not produced to support these interpretations. Time-series analysis on the A6 core by Scotchman (2012) was performed over a ~ 30 m section with the aim of identifying sub-Milankovitch cyclicity in the core. This interval is, however, insufficient to determine Milankovitch frequencies with confidence. As a result of these limitations, new work on the A6 core has been planned to include detailed sedimentary logs that can be interpreted together with geochemical analyses.
Chapter 2

Methods and mapping

2.1 Introduction

This project combines a variety of analytical approaches including field and laboratory-based techniques to help determine palaeo-environmental conditions and to reconstruct the depositional history of the Ainsa Basin. Figure 2.1 shows a work-flow diagram of the methodology adopted in this study.

This project involves a detailed sedimentological and geochemical study of an essentially fine-grained siliciclastic deep-marine sedimentary record, the Well A6 core, drilled in Middle Eocene deposits in the Spanish Pyrenees. Multiple geochemical techniques including XRF, SEM and XRD have been applied to infer variations in grain size, weathering and the geochemistry of the three main lithologies, sandstone, siltstone and mudstone. TOC and stable carbon isotope studies are also included as they provide a useful means for identifying the origin of organic matter and characterising the nature and provenance of the sediments in the basin.

Field-based techniques, including sedimentary logging, geological mapping and facies analysis have been applied to extensive areas of the Ainsa Basin. Detailed sedimentary logs were produced, including every bed thicker than 5 mm from mainly interfan and channel levée-overbank deposits covering ~ 1.5 km of stratigraphy. Geological maps have also been produced and cover an area of ~ 10 km². These maps are accompanied by geological cross-sections used to estimate stratigraphic thicknesses between sand-rich submarine fan sediments. High-resolution spectral gamma-ray logging of 10 undeformed fine-grained sections have also been undertaken.
in over 1.5 km of the basin stratigraphy. Cyclostratigraphic techniques were then applied to the spectral data to determine the potential presence of orbital cycles in these deep-marine sediments. Time-series analyses include orbital tuning of selective sections using the results from palaeomagnetic studies undertaken over ~ 1 km of stratigraphy in collaboration with the palaeomagnetic laboratory in the Department of Earth Sciences, Oxford University.

The combination of all these techniques allows for the first time the robust establishment of the timing of coarse-grained delivery to the Ainsa Basin and to make tectono-climatic inferences on sediment supply and depositional architecture at a variety of temporal scales.
Figure 2.1 Work-flow of the methodology adopted in this study.
2.2 Geological mapping

Published geological maps of the Ainsa Basin include amongst others, work produced by Fernández et al. (2004), Pickering and Corregidor (2005), Pickering and Bayliss (2009), Sutcliffe and Pickering (2009), and Pohl and McCann (2013). These maps largely vary in terms of the extension of the area mapped and the detail of the geology included, with some of the maps produced restricted to only one deep-marine system. The most detailed map produced to date is from Pickering and Bayliss (2009). This map is a composite map which integrates previous work from Pickering and Corregidor (2005) in the Ainsa System, Sutcliffe and Pickering (2009) in the Guaso System and also Bayliss (2014a, 2014b) in the Banastón and Morillo systems. This map includes valuable information on the depositional history of the Ainsa Basin and mainly focuses on the depositional history of the basin during the upper part of the basin infill (from the Banastón to the Guaso systems), although it also includes some information on older deep-marine systems such as the Fosado, Los Molinos, Arro and Gerbe systems. The main problem associated with this work lies in the fact that the map has not been built on space and the use of different mapping techniques, including, mapping on aerial photographs at different scales has caused the map to appear distorted, thus making thickness estimates difficult. Geological mapping for this project has focused on those areas in the basin which contain long undeformed sections of fine-grained sediments located in between coarse-grained submarine fans. Geological maps of these areas have been produced with underlying topography to facilitate the calculation of stratigraphic thicknesses with accuracy.
2.2.1 Study area

The study area comprises ~ 20 km² and extends from the towns of Boltaña to the west to Los Molinos to the east. The limit to the north is just south of the town of Escalona and the southern limit being the town of Morillo-de-Tou.

2.2.2 Topography

The topography of the area is dominated by vegetated ridges which contain coarse-grained turbidite sandstones at the top and by V-shaped valleys (Figure 2.2). The elevation of this region varies between 500 m to 1,400 m above sea level. The area is crosscut by two main rivers, the Cinca and the Ara, which flow in a north to south direction and they join just pass the town of Ainsa in the centre of the study area, where the Mediano Reservoir is located. There are other smaller rivers present in the area, mainly tributaries of the Ara and the Cinca Rivers, such as the Eña River and the Forcaz stream. Various small villages have been located and built around these flat plains, including the Labuerda and Margudgued villages. However, most of the towns appear to have been constructed at the top of the sandstone ridges using the resistant local sandstone turbidites as their building blocks. Figure 2.2 is a panorama of the Ainsa Basin with an interpretative geology sketch. Each of the topographic ridges contains a package of coarse-grained sandstone turbidites represented on the sketch by yellow infilling. The rest of the stratigraphy comprises mainly of fine-gained sediments and MTCs which are represented on the sketch by a light grey colour. The particular limits of the basin to the east and west are marked by the Mediano and Boltaña anticlines, respectively.
Figure 2.2 Panorama of the Ainsa Basin and geological interpretation. The Ainsa Basin is characterised by a number of topographic ridges separated by pastures and grasslands. Each of the topographic ridges contains a sandbody (coloured in yellow). Fine-grained sediments interpreted as interfan and overbank deposits are present in between the sandbodies (coloured in pale grey). The Mediano Anticline bounds the basin from the east and the Boltaña and the Añisclo anticlines bound the basin from the west and the northwest, respectively. These three anticlines are composed of carbonates and are coloured in dark blue. The Buil Syncline is clearly visible in this panorama view with the entire deep-water system folded around the Mediano Reservoir. An electronic version is provided in Appendix 2 to allow for a better visualisation of the geological interpretation of the respective areas.
2.2.3 Climate, vegetation and rock exposure

The climate in the field area is sub-arctic (severe winter, no dry season with a cool summer) and dry sub-humid. The landscape is primarily cold-deciduous pine forests with evergreens. A large proportion of the natural vegetation is still intact, although, along river valleys there are large areas of grassland, pasture landscapes and cultivated terrain. Northern hill sides are typically densely vegetated displaying poor outcrop exposure. However, at river valleys and road cuts, it is common to encounter continuous outcrop sections which allow for detailed mapping and sedimentary logging. Overall the rock exposure in the area is estimated to be $\sim 35\%$.

2.2.4 Accessibility to the area

Access to the area is provided by two main roads. The national road, N-260, runs adjacent to the Cinca River and connects the towns of Boltaña-Ainsa-Gerbe and Arro. The A-138 road connects the towns of Ainsa and Labuerda and runs parallel to the Ara River (Figure 2.4). There are also numerous secondary roads and paths which connect small villages and form a complex infrastructure network allowing access to most of the outcrops.

Some areas are, however, impenetrable or have very limited accessibility. These areas are principally associated with sandstone ridges which are extensively vegetated, with limited rock exposure forming very steep slopes. The northwestern part of the study area also has limited access associated with the presence of numerous thrusts and fault-propagation-folds. Geological mapping across these areas is therefore limited and only possible along paths or streams.
2.2.5 Mapping technique

The area was mapped using Google Earth aerial photographs (version 6.0.3.2197, 2011). A total of 9 maps were produced at a scale of 1:8000 covering an approximate area of 1.5 km × 1 km for each of the sections selected for outcrop gamma-ray logging. The scale of the maps produced was adapted in certain locations where the geology was proven to be complicated. These areas were mapped at a scale of 1:6000. Since these 9 maps cover a significant area in the Ainsa Basin, a secondary objective to this project was to attempt to adapt the map of Pickering and Bayliss (2009) to the underlying topography to remove the stretching effect. For this purpose, aerial photographs at a scale of 1:17000 covering the complete study area were used. Due to time constraints, a broader mapping technique was employed consisting in traversing areas across the maps using predetermined routes, such as stream valleys, road cuts or hiking paths with the main objective of establishing the main geological contacts and defining the geometry of the main geological and structural features.

A Global Positioning System (GPS) receiver was used to increase location accuracy at different outcrops, especially in densely vegetated areas where reference points were difficult to identify. In bright clear days, GPS position accuracy was within a radius of 3 m. However, when mapping in adverse weather conditions or in deep narrow valleys the accuracy was reduced to a radius of 10-15 m. GPS locations were recorded in a field notebook together with geological sketches, outcrop descriptions and sedimentary and structural data.

Areas of outcrops have been recorded on transparent permatrace sheets that overlaid the aerial photographs. Outcrops are marked using a green line. In areas of poor accessibility and exposure, information on vegetation and topographic changes was used to infer lithological boundaries. Inferred contacts are represented with dash
lines and clear contacts in a solid black line. Lithologies are colour coded on the field slips. A simplified facies scheme was used and is summarised in Figure 2.3 together with the symbols used on the geological maps. Palaeocurrent directions were mainly measured from flutes and grooves at the base of sandstone turbidites or from ripples in well-exposed bedding planes to record direction of flows.

<table>
<thead>
<tr>
<th>Legend used in the geological maps. A simplified facies scheme was used to describe the different lithological units present in the field. Facies key is the same as used by Pickering and Bayliss (2009).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone turbidites</td>
</tr>
<tr>
<td>Heterolithic sandstones</td>
</tr>
<tr>
<td>Fine-grained sediments</td>
</tr>
<tr>
<td>Mass transport deposits</td>
</tr>
<tr>
<td>Quaternary sediments</td>
</tr>
<tr>
<td>No exposure</td>
</tr>
</tbody>
</table>

Structural data such as faults and folds were also recorded on the permatrace sheets together with any kinematic indicators that could provide information on thrust propagation and fold directions (e.g., crystal fibre, slickenside lineations on thrust planes, fault displacement and fold axis and plunges). Mapping these structural elements is important because it can help to identify the influence of intrabasinal tectonics on facies distribution and depositional patterns. Strike and slip bedding data are collected at numerous locations throughout the study area with the aim of understanding bedding geometries and tectonic effects in the area.
Figure 2.4 Ainsa Basin geology map adapted to underlying topography. Modified after Pickering and Bayliss (2009).
2.2.6 Revised geological map of the Ainsa Basin

Figure 2.4 shows the revised geological map of the Ainsa Basin which has been produced as part of this PhD study. This new map has the advantage of showing underlying topography which facilitates a better understanding of the geometry of the sandbodies and allows the creation of cross-sections to gain a better understanding of the subsurface geology. The revised map also shows more structural and geological detail in the northwestern part of the basin which is presented with a lesser degree of detail in the Pickering and Bayliss (2009) publication. This area is tectonically deformed with numerous thrusts and thrust-propagation-folds observed. Fold axis orientations are generally northwest-southeast and fault displacements are towards the west and south-west. The sediments of the Gerbe, Arro and Los Molinos are the main systems affected by this deformation front. Geological interpretations of this revised map are discussed in detail for each of the deep-marine systems in Chapter 5.

Geological maps produced on Google Earth aerial photograph maps for each of the gamma-ray sections are compiled on Appendix 1. Most of these maps are located in the central, western and southern part of the Ainsa Basin where most of the stratigraphy is undeformed and involves mainly the sediments of the Upper Hecho Group. Larger scaled maps produced to adapt the Ainsa Basin geological map to underlying topography are compiled in Appendix 2. Each of these maps have been digitalised using the drawing software Adobe Illustrator version CS4.

2.3 Sedimentary logging

Detailed bed-by-bed sedimentary logs have been constructed in the field for each of the gamma-ray logged sections. Sedimentary logs record vertical changes in lithology, bed thickness, colour, sedimentary structures and bioturbation at centimetre scale.
Chaotic sediments were graphically represented in the logs with detailed descriptions of textural characteristics. Grain-size was also recorded in the logs using the classification scheme by Wentworth (1922). The legend used in the sedimentary logs can be seen in Figure 2.5. A total of 1.5 km of measured sections were logged at a scale of 4 cm = 1 m. Every bed with a thickness of ≥ 5 mm has been included in the logs. All the sections were continuous and relatively well-exposed along river valleys and road cuts. The length of the logged sections varied between 40 m and 350 m, although the average length was typically ~ 140 m. Scree or very weathered surfaces were localised and rarely exceeded few metres in thickness. To prevent gaps in the sedimentary logs associated with poorly exposed areas, when possible, lateral sections were correlated to fill the missing gaps in the logs. In addition, to outcrop sedimentary logging, very detailed sedimentary logs were produced from a 230 m long core (the Well A6 core). These sedimentary core logs included all beds with a thickness ≥ 2 mm. The polished and unweathered working halves of the core allowed for a better observation of colour, ichnofacies and sedimentary structures. Locally, detailed observations of grain size distributions or of sedimentary structures were made using a light microscope.

<table>
<thead>
<tr>
<th>Sedimentary deposits</th>
<th>Sedimentary structures</th>
<th>Grain size</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone Turbidites (Facies C2.3)</td>
<td>Planar lamination</td>
<td>mst/slt</td>
<td>Fault</td>
</tr>
<tr>
<td>Stumps and slides (Facies F2.1)</td>
<td>Wavy lamination</td>
<td>vf</td>
<td>Pyrite</td>
</tr>
<tr>
<td>Sandy debris flow (Facies F2.1)</td>
<td>Ripples</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Fossils</td>
<td>Bioturbation</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Corals</td>
<td>Phycosiphon isp.</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Forams (mainly nummulites)</td>
<td>Thalassinoides isp.</td>
<td>vc</td>
<td></td>
</tr>
<tr>
<td>Shells (mainly bivalves and echinoids)</td>
<td>Nereites isp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scolicia isp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.5 Legend used in the sedimentary logs. Sedimentary logs include information on grain size, type of sedimentary deposits and structures, sediment colour and presence of fossils and bioturbation.
2.4 Outcrop gamma-ray spectrometry

Radioactivity in sediments originates from the nuclear decay or disintegration of unstable isotopes which change to more stable nuclei of a different isotope by the emission of particles or energy. The three main types of radioactive decay are alpha, beta and gamma-rays. Alpha decay results in the release of an alpha particle consisting of 2 protons and 2 neutrons. Beta -ve decay emits a beta particle identical to a negatively charged electron and beta +ve decay, emits a positively charged positron. Alpha and beta particles have a low penetration range in matter and are absorbed more or less instantaneously. The emission of alpha and beta particles usually leaves the newly formed nucleus in an excited state and the energy excess is radiated as gamma-rays. Gamma-rays are photons of energy which travel at the speed of light and do not possess any charge or mass. These rays can penetrate up to 30 cm of rock and several hundred metres of air. The intensity of gamma radiation decreases with distance from the source. This is the result of gamma-rays being absorbed by material present between the source and the detector. As a consequence, the airborne gamma-ray spectrometric method is limited to approximately the top 35 cm of the Earth’s surface, where over 98% of the radiation emanating from the Earth’s surface originates (Gunn et al., 1997).

Gamma-rays are part of the electromagnetic spectrum and have a discreet energy, frequency and wavelength. The discrete energy is characteristic of the source isotope emitting the gamma-rays. By measuring this energy with a detector, the source of the radiation can be recognised (Minty, 1997).

Potassium (K), uranium (U) and thorium (Th) are the only naturally occurring elements with radioisotopes that produce gamma-rays of sufficient energy and intensity to be measured. These elements have very long-lives (in the order of 5x10^9
years) and although they have been decaying since creation, they are still relatively abundant in the Earth’s crust. \(^{40}\text{K}\) is the only radioactive isotope of K. Uranium occurs naturally as the radioisotopes \(^{238}\text{U}\) and \(^{235}\text{U}\) which give rises to decay series which terminate in the stable isotopes \(^{206}\text{Pb}\) and \(^{207}\text{Pb}\). Thorium occurs naturally as the radioisotope \(^{232}\text{Th}\) which gives rises to a cascading decay series that terminates in the stable isotope \(^{208}\text{Pb}\).

2.4.1 Gamma-ray spectrometer

Outcrop spectral gamma-ray detectors analyse the total gamma-ray radiation emanating from a formation. The gamma-ray detector is able to differentiate the likely source of the radiation and measures the individual contribution from the three major radioactivity sources: potassium, uranium and thorium.

The spectrometer used for field data collection is the portable RS-125 Super-Spec from Geomatrix. This instrument contains a large 0.35 l Sodium-Iodine (NaI) crystal detector which measures radiation from a \(\sim 0.9\) m surface diameter. Large volume scintillation crystals give acceptable precision for quantitative analyses (IAEA, 2003). The total gamma-ray decays are measured in a 0-3 MeV energy range using a multichannel collector, resulting in high-sensitivity detection. The instrument has a fully automatic spectrum stabilisation and calibration system, to keep the discrimination threshold at a constant level and calibration constants are stored in the instrument memory. Gamma-ray spectrometers detect the energy from an incoming gamma-ray and convert the pulse amplitude into an energy spectrum of detected radiation (IAEA, 2003). Since individual radionuclides emit specific gamma-ray energies, spectrometers can differentiate the source of the radiation. Table 2.1 and
Figure 2.6 show the spectral windows for the detection of potassium, uranium and thorium.

The estimation of the K content in rocks is through the detection of 1.46 MeV gamma-rays emitted by 40K. This nuclide occurs as 0.012% of natural K. This fixed proportion allows the direct estimation of the total amount of K present and the results are reported as % K. Since Th and U do not emit gamma-rays, their concentrations are estimated indirectly from the measurement of the gamma-ray emissions from their radioactive daughter products. U is detected by the emissions of 1.76 MeV gamma rays of 214Bi, a daughter isotope in the 238U decaying series. Th is estimated by the detection of 2.62 MeV gamma ray of 208Tl, a daughter product of 232Th decay series. Estimates of U and Th concentrations are based on the assumption of equilibrium conditions in the U and Th decay series. Th usually occurs in equilibrium in nature, but disequilibrium in the U series is common. Estimates of U and Th concentrations are therefore usually reported as ppm eU (parts per million of equivalent Uranium) and ppm eTh (parts per million of equivalent Thorium) as a reminder that they are based on the assumption of equilibrium conditions.

The conventional approach to the acquisition of gamma-ray spectrometric data consists in monitoring at least three energy windows which detect the gamma-rays emitted by 40K, 214Bi and 208Tl. Suitable calibration and data processing of this data, can convert the total counts to concentrations of K, U and Th in the rocks. The portable RS-125 Super-Spec also includes a broader total-count energy window that measures the total radioactivity (Table 2.1).
Table 2.1 Spectral windows for the detection of K, U and Th.

<table>
<thead>
<tr>
<th>Window</th>
<th>Nuclide</th>
<th>Energy range (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Count</td>
<td>-</td>
<td>0.4-2.81</td>
</tr>
<tr>
<td>Potassium</td>
<td>40K (1.46 MeV)</td>
<td>1.37-1.57</td>
</tr>
<tr>
<td>Uranium</td>
<td>214Bi (1.76 MeV)</td>
<td>1.66-1.86</td>
</tr>
<tr>
<td>Thorium</td>
<td>208Tl (2.62 MeV)</td>
<td>2.41-2.81</td>
</tr>
</tbody>
</table>

Table showing the typical spectral windows for the detection and measurement of total radioactivity, K, U and Th compositions.

Figure 2.6 Gamma-ray spectrum window for the radioactive elements K, U and Th. The figure shows the photopeaks at 1.46, 1.76 and 2.62 characteristic of K, U and Th, respectively. Bars show the spectral windows for each of the radioactive elements. Modified after Minty (1997).

2.4.2 Sources of potassium, uranium and thorium in sedimentary rocks

Potassium is a volatile lithophile element, monovalent in natural conditions and abundant in the Earth’s upper crust (2.33 wt% K). Potassium is abundant in sedimentary rocks and is contained principally in alkali-feldspars, micas and illite. Alkali-feldspars and micas are more common in sandstones and illite is commonly found in fine-grained rocks such as shales. Cowan and Myers (1988) argued that since alkali-feldspar has a greater K content than illite, the gamma-ray is only a measure of clay content in the absence of significant alkali-feldspars.
Uranium has an average abundance of about 2.5 ppm in the Earth’s crust. Uranium is contained in accessory minerals such as zircon, monazite, apatite, allanite and sphene. Of these minerals, zircon and monazite are the most resistant to weathering. Uranium is also common in clays, feldspars, phosphates and organic matter. Rocks where uranium minerals tend to be present are pegmatites, syenites, carbonatites, granites and some shales. Svendsen and Hartley (2001) found that uranium was associated mainly with clay-rich sections and carbonate minerals in sedimentary rocks.

Thorium is much less abundant than K in the Earth’s crust with a concentration of about 9 ppm. Thorium is a component of detrital minerals such as allanite, monazite, xenotime, zircon and thorite and also is present as trace amounts in other rock-forming minerals such as igneous rocks. Thorium can also be found adsorbed into natural colloidal-size materials, particularly clays (Langmuir and Herman, 1980).

In detrital sedimentary rocks the mean of the typical radioelement concentrations is 1.5% potassium, 4.8 ppm eU and 12.4 ppm eTh although the range of compositions is very broad (K ~ 0-10%, U ~ 0-80 ppm, Th ~ 0-362 ppm) (Killeen, 1979).

Potassium and uranium are considered relatively soluble in aqueous solution and can be leached from soils during weathering. Weathered rocks are depleted in K and the freed K is commonly incorporated into clay minerals. Uranium can be part of soluble minerals which leach during weathering, decreasing the U concentration of weathered material and the leached U can be adsorbed in clays and precipitate in iron oxides and carbonates. Thorium is commonly insoluble and major Th-bearing minerals such as monazite and zircon, are stable during weathering. As a result, Th compounds
tend to concentrate in sediments during weathering, mainly in clays and in iron or titanium oxides. As a result of this, weathering processes can cause specific radionuclides signatures. Mature sediments will tend to have elevated Th compositions whereas immature sediments will have radioelement concentrations which tend to correlate with the original concentrations of their source rocks. Parkinson (1996) suggested that variations during weathering may be preserved during subsequent erosion, transport, deposition of the weathered material and early diagenesis. The K, U and Th partitioning which occurred during soil weathering can therefore be detected in the sedimentary rocks that were subsequently deposited.

2.4.3 Outcrop spectral gamma-ray methodology

2.4.3.1 Sampling period

The sampling time required for a measurement depends on the radioactivity of the source and the precision of the measurement required. Løvborg and Mose (1987) derived equations giving the counting time for K, U, and Th assays with a 10% error in various K, U and Th ratios. The instrument specifications recommend a sampling period of at least 120 seconds, with higher counting times giving statistically more reliable data.

Prior to spectral gamma-ray logging, an estimation of the radiochemical composition of the rocks was obtained by undertaking some random measurements in a typical fine-grained lithology using a 10 min sampling period. Averaged values of the 5 measurements gave an estimation of (K ~ 3%, U ~ 3.5 ppm and Th ~ 12 ppm).

Using the equations derived by Løvborg and Mose (1987) to obtain a 10% precision, a 120 second period was satisfactory to obtain Th and K but was borderline
for the uranium determination limit. A sampling period of 180 seconds was considered adequate as a compromise between the economy of field measurement and precision of measured count rates.

2.4.3.2 Distance between measurements

Measurements were undertaken vertically through the stratigraphy at intervals of 20 cm. The sampling interval has been determined using the Nyquist critical frequency, which suggests a minimum of 2 samples per smallest oscillation to avoid aliasing in the time-series (Weedon, 2005), although most studies recommend a minimal of 8 samples per cycle in the period of the smallest oscillation (Herbert, 1994). Spectral studies of bioturbation intensity in the Ainsa Basin suggested SARs of ~ 30 cm/kyr (Heard et al., 2008). A 20 cm sampling interval would, therefore, permit recognition of Milankovitch scale cycles with a minimum of 10 data points per shorter expected cycle (precession ~ 20 kyr). The gamma-ray logging strategy employed consisted of the identification of continuous exposed outcrops of long fine-grained laminated sediments in between the sandbodies. In order to successfully identify frequencies with confidence, at least 5 cycles should be present in a section (Weedon, 2005). Therefore, it is recommended that at the SARs of the basin, sections should be at least 150 m long in order to detect Milankovitch eccentricity cycles.

Surveying was discontinued during wet weather conditions and was not recommenced until the rocks were relatively dry. This is because rainfall can reduce the radiation flux and cause increases in U ground concentrations due to deposition of radioactive dust particles on rock surfaces (e.g., Myers and Wignall, 1987).
2.4.3.3 Geometry of the measurements

The effect of bed geometry on spectral gamma-ray logs has been well-documented by Svendsen and Hartley (2001). As these authors point out, the gamma-ray detector measures emission from the sediment body in front of the detector. Figure 2.7 shows the effects that the surface and bed geometry can have on the gamma-ray measurements. When available, the spectrometer was placed perpendicular to the rock face. Measurements close to cliff faces were avoided as this can cause an increase or a decrease in gamma-ray counts which are unrelated to lithology (Figure 2.7). Cleaned surfaces were exposed with the help of a hammer and a brush to remove accumulated weathered material.

![Figure 2.7](image)

Figure 2.7 Effects of sampling surface and bed geometry upon outcrop gamma-ray measurements. Modified after Løvborg et al. (1971), Parkinson (1996) and Svendsen and Hartley (2001).

2.4.4 Application of gamma-ray detection in sedimentology

2.4.4.1 Facies recognition

Gamma-ray curve shapes and signatures have been used for facies recognition (Chamberlain, 1984; Myers and Bristow, 1989; Bristow and Williamson, 1998; North and Boering, 1999); for stratigraphic correlation and analysis (Myers and Bristow,
1989; Slatt et al., 2000; Parkinson, 1996; Evans et al., 2007); for the identification of parasequences and sequence stratigraphic interpretations (Aigner et al., 1995; Davies and Elliot, 1996; George, 2000); for clay mineralogy and palaeoclimate studies (Myers and Wignall, 1987; Osmond and Ivanovich, 1992; Parkinson, 1996; Ruffell and Worden, 2000; Ruffell et al., 2003; Schnyder et al., 2006); for geochemical studies (Van Buchem et al., 1992; Svendsen and Hartley, 2001; Deconinck et al., 2003) and for sediment provenance (Šimíček et al., 2012).

Some studies have shown, however, the limitations of this method. An example being Rider (1990), who argued that the application of gamma-ray logs to facies recognition can cause problems if the clay content and grain size is not consistent. North and Boering (1999) tried to apply gamma-ray signatures to distinguish between fluvial and aeolian sequences. Their research showed that gamma-ray signatures failed to differentiate between both depositional environments. However, other authors have been able to discriminate lithofacies. Bristow and Williamson (1998) showed that sandstones had low-values of K and Th, whilst finer grained lithologies such as silty sandstones, sandy siltstones and claystones were less well-differentiated and showed relatively high-levels of potassium and thorium. Svendsen and Hartley (2001) using whole-rock geochemistry with outcrop gamma-ray logs showed that the potassium distribution was controlled by illite and alkali-feldspars, the uranium distribution was enriched in clay-rich sections and carbonate minerals and thorium was linked to heavy mineral distribution, although not exclusively.

In siliciclastic sequences, higher gamma-ray counts are generally attributed to fine-grained facies whilst low gamma-ray counts are more typical of sandstones (Rider, 1990). The high gamma-ray counts in fine-grained facies such as silts and shales are related to the high contents of K, U and Th in clay minerals. K is common in
clay minerals including illite and U and Th tend to be adsorbed on the surface of clay minerals and organic matter. Low gamma-ray counts in sandstones are driven by the dilution effect of quartz, carbonate cement and pore space. However, these general assumptions are often complicated by the variable contents of the K-bearing grains (e.g., K-feldspars, albite and micas), by the distribution of Th- and U-bearing heavy minerals such as zircon, apatite, monazite and rutile, in sandstones (Rider, 1990; Svendsen and Hartley, 2001), and by the variability of clay mineral compositions (illite, kaolinite, glauconite and smectite) in mudstones. The content of TOC and diagenetic effects can also have an effect on the total gamma-ray counts (Bjørlykke and Egeberg, 1993; Fabricius et al., 2003).

2.4.4.2 Weathering patterns

Various authors have tried to determine changes in climate and weathering patterns from spectral gamma-ray data comparing K/Th and U/Th ratios of sedimentary rocks (Rosholt, 1992; Osmond and Ivanovich, 1992, Parkinson, 1996; Ruffell and Worden, 2000). The U and Th content of sediments are undoubtedly also influenced by other minerals, especially by heavy minerals (Myers and Bristow, 1989; Hurst, 1990). Thus the Th/K ratio, whilst undeniably reflecting the detrital K content of sedimentary rocks, may occasionally be influenced by concentrations of thoriferous heavy minerals (for instance at transgressive surfaces). The clay mineral kaolinite is often associated with hot and humid areas, and its abundance in soils has been shown to display good correlation with high Th/K or Th/U ratios (Osmond and Ivanovich, 1992).

The clay mineral kaolinite forms in the soils of hot and humid areas and is usually associated with weathering. The mobility of potassium and uranium and the relative immobility and concentration of thorium during weathering has led some
authors (Rosholt, 1992; Osmond and Ivanovich, 1992; Parkinson, 1996) to suggest that weathering will result in elevated Th/K and Th/U ratios. Various authors have also shown a good correspondence of kaolinite with high Th/K or Th/U (Osmond and Ivanovich, 1992; Schnyden et al., 2006), indicating that elevated Th contents can therefore be used as a proxy for humid palaeo-weathering. Although, Schnyden et al. (2006) suggest that Th/U ratios appear to have less sensitivity to changes in moisture conditions. Ruffell and Worden (2000) and Deconinck et al. (2003) have found a strong correlation between cross-plots of kaolinite/illite against Th/K. These authors argue that warm and humid conditions cause intense weathering, resulting in the kaolinitisation of feldspars and illites accompanied by leaching of K and U and relative concentration of Th. During arid climates, weathering decreased and the illite, U and K content of the rocks increased, causing a low Th/K ratio. Deconinck et al. (2003) pointed out that variation in the content of organic matter may affect the correlation between the kaolinite/illite and the Th/K ratios.

2.4.4.3 Storminess, oxygenation levels and change in sea-levels

High values of Th/K ratios have also been associated with an increased in the supply of detrital material, which may be associated with storminess and increased runoff (Pierini et al., 2002; Grabowski et al., 2013), and with sea-level lows or marine regressions (Ghasemi-Nejad et al., 2010). Th/U ratios have been used as indicators of oxygenation level within the marine sediment (Wignall and Myers, 1988; Jones and Manning, 1994), with high Th/U ratios suggesting oxic conditions. Low Th/U ratios have also been associated with an increase in sea-levels and maximum flooding surfaces (Davies and Elliot, 1996).
2.5 X-ray fluorescence scanning

Well A6 core was scanned using a multi-element XRF Avaatech scanner located at UCL. A 170 m long, fundamentally continuous core length was scanned from 230 to 60 m depth below the surface using a core spacing interval of 4 cm between measurements. This section avoids the top 60 m of chaotic sediments of the A6 core (Type I MTCs, Pickering and Corregidor, 2005). A high-resolution sampling interval was selected to detect any high-frequency environmental changes using time-series analysis. A 31 m section, from 176 to 206 m depth, was scanned at a much higher resolution using a spacing interval of 3.5 mm. This spacing interval was selected to detect geochemical element associations and determine specific facies signatures of the cm-size sandstone turbidites, siltstones and structureless mudstones.

The resolution of the system was set with a 2 mm slit window and a 30 second sampling time. A two-run excitation mode was set in order to obtain a wide range of spectral data. The first run was set at 10 kV, 800 Ma with no filter being used. These settings were established to ensure reliable results for elements such as Al, Si, P, S, K, Ca, Ti, Fe and Mn. Elements such as Sr, Rb and Zr were effectively measured setting the scanner at 30 kV and 1000 Ma with a PD thick filter. These instrument settings are recommended to obtain reliable data (Richter et al., 2006).

The A6 core was analysed on a polished and smooth horizontal surface to allow for the scanner prism to sit flat on the surface of the sediment, thereby reducing the presence of air which may cause interference on the spectral analysis. Where necessary, the sampling plan was adjusted to avoid fracture areas. Prior to analysis, the scanner was calibrated and optimized for data quality and noise reduction. Voltage (kV), current (mA) and filter settings were modified to obtain satisfactory X-ray excitation for a particular set of elements of interest.
XRF data obtained was processed using WinAxilBatch software. A processing model was selected to obtain counts for each element and WinAxilBatch calculated the element counts as peak integrals and applied background subtraction. Data quality was checked by examining the processed output data. Isolated high Chi-squared (X^2) values > 3 were deleted as they indicate a poor fitting between the scanner spectrum data and the mathematical model chosen for processing the data. Conversion of total counts per second (cps) values to absolute concentration was not attempted as the primary interest was the variation of element concentrations rather than absolute values. Elements such as Mo, V and Zn had very low cps close to the nominal sensitivity of the instrument and were, therefore, excluded from interpretation.

2.6 Total organic carbon (TOC)

Total carbon (TC) and TOC was determined using a Flash EA Analyser based at UCL. A total of 142 samples were obtained from the working halves of Well A6 core at a 1 m stratigraphic interval. Sampling took place from 230 to 88 m core depth. This section consists mainly of undeformed marlstones and thin to very-thin bedded turbidites and avoids the thrust situated at 71 m core depth. The interval between 88 and 71 m core depth was not sampled due to lack of available core material.

To obtain TC, approximately 30 mg of sample was weighed to obtain satisfactory CN chromatograph peaks. The analysis of TOC required 60 mg of sample which was treated with HCl 10% to remove inorganic carbonate content and then dried on a hot plate at 50°C for a minimum 12 hours prior to analysis. Standards were used at the beginning (to calibrate the equipment), during and at the end of the run to test for accuracy of the results. Total inorganic carbon (IC) was calculated from TOC and TC contents, and then converted to %CaCO$_3$ following Equation 1.
\[
\text{CaCO}_3 = (\text{TC-TOC}) \times 8.333 \quad \text{Equation 1}
\]

2.7 Stable carbon isotopes

Stable carbon isotopes of organic matter were measured in the UCL Bloomsbury Environmental Isotope Facility (BEIF) using a Flash EA 1112 mass spectrometer. The technique used for determination of \(\delta^{13}\text{C}\) values is the EA-IRMS (Element Analysis - Isotope Ratio Mass Spectrometry). Preparation of the samples for stable carbon isotope analysis involved the treatment of the samples with HCl 10%. The high content of calcite cement in the samples required the use of at least three applications of HCl 10% to ensure digestion of all inorganic carbonate. The samples were centrifuged and the solution decanted. The samples were subsequently washed with de-ionised water (usually four to five times) and centrifuged until neutrality (pH = 7). The samples were then dried in a heater at 50°C for two days. Once dried, the samples were powdered with a mortar. Approximately 10mg of sample was required for analysis to obtain satisfactory peaks in the EA detector. Four separate sample runs were measured with five different standard samples covering a wide range of \(\delta^{13}\text{C}\) values to monitor deviation, accuracy and reproducibility. This methodology allowed to determine carbon isotope ratios with a precision of 0.72%.

2.8 Scanning electron microscopy (SEM)

Only one polished thin section from the A6 core showing a 0.5 cm-thick, fine-grained sandstone turbidite surrounded by siltstone was carbon coated for examination in the scanning electron microscope. The instrument used was the Jeol JSM-6480 LV. This instrument uses a focused beam which emits high-energy electrons. When the beam hits the sample, it generates a variety of signals. The most common signals detected
are X-rays, secondary electrons and backscattered electrons (BSE). X-rays are produced by the inelastic collisions of the incident electrons with electrons in discrete orbitals of atoms in the sample. As the exited electrons return to lower energy states, they yield X-rays which are of a fixed wavelengths characteristic for each element in a mineral. Secondary electrons and BSE are used to generate images, SEM images and backscattered electron images (BEI), respectively. BEI are based on the differences in intensity of minerals reflecting their average atomic number. Thus, heavy minerals like pyrite will appear brighter than quartz and feldspar lighter than quartz in a greyscale. This technique was used to determine chemical compositions by performing analyses of selected point locations and to study textural relations on the sample. The BEI was used in combination with energy dispersive spectra where the peak position reflects a particular element and the peak intensity is proportional to the element concentration, allowing the identification of specific minerals. X-ray element mapping was also conducted to show the spatial distribution of elements in a sample. This technique was used to distinguish the elemental distribution between the siltstones and the sandstone turbidites.

2.9 X-ray power diffraction (XRD)

A total of 6 samples from the A6 core (two sandstone turbidites, two siltstones and two structureless mudstones) were analysed using X-Ray Diffraction (XRD). The instrument used was the PANalytical X’pert PRO MPD high-resolution powder diffractometer situated at UCL. The samples were powdered using a TEMA milling machine at 960 revolutions per minute for a period of 1 minute prior to analysis and then placed randomly in a holder. The diffractometer has a Cobalt anode X-ray tube and an incident beam which generates monochromatic X-rays. Scans were run at 40
kV and 30 Ma over a scanning range of 2° to 100°20, with a step time of 203 seconds and a step size of 0.01°20. Slits were 1 mm (divergence) and 0.1 mm (receiving). Digital data was processed using MacDiff software to smooth counts, determine background levels and calculate peak intensities and peak areas (total counts). Mineral identification was made by comparing measured diffraction peaks and intensities with standard reference patterns from the International Centre for diffraction Data (ICDD). As the intensity of the peaks can also be used to estimate the relative abundance of a mineral with accuracy which is generally ≤ 10% for major constituents (e.g., Johnson et al., 1985; Fisher and Underwood, 1995), therefore, only the results from XRD were used to compare relative trends in the mineralogy of the A6 core rather than absolute values.

2.10 Thin section preparation
A total of eight 26 mm x 46 mm and 30 μm-thick thin sections from the A6 core were prepared at the UCL rock laboratory. Each core sample was first marked indicating the way-up direction and then sawn and trimmed down with a diamond saw to a chip size suitable for slice mounting, typically between 4 and 6 mm in thickness. The slices were trimmed so that when bonded to the glass slide a margin of at least 2 mm was maintained all around. The side of the chip from which the thin-section was cut was smoothed with a precision machine Lap to remove marks from the saw blade. The chip was then heated on a hot plate with the polished side upwards to avoid getting contaminated. A thin layer of low-viscosity epoxin resin was spread on the smoothed side of the warmed specimen with the frosted side of the slide then placed down on the epoxin. A slight pressure was exerted on the sample to expel any trapped bubbles and to ensure that the sample was well coated with epoxin. The slide and rock chip were
then placed in a bonding jig to ensure an even load. The sample was then left to cure for 30 minutes. The chip was then trimmed down to remove excess rock and to obtain a thickness of 30-50 μm using a diamond wafering motor saw. The specimens were then grinded to the correct 30 μm thickness using a precision machine Lap, ensuring smoothness and uniformity of thickness with all thin sections being studied using a reflected light microscope.

2.11 Magnetostratigraphy

Magnetostratigraphy is a geophysical technique which has been applied to sedimentology and stratigraphy to date sedimentary sequences.

The Earth’s magnetic field is generated by the flowing of electrical currents created by convection of conductive molten iron in the outer core. The geomagnetic field created can be approximated to that of a magnetic dipole placed at the centre of the Earth with the dipole axis inclined at 11.5° to the Earth’s rotational axis. This theoretical model is known as the Geocentric Axial Dipole (GAD) and can explain ~ 90% of the Earth’s surface field. The remaining 10% is made of non-dipole magnetic components (Butler, 1992). The difference in the orientation axis of the magnetic dipole and the Earth’s rotational axis results in the magnetic poles differing from the geographic poles (Figure 2.8).
The polarity of the Earth’s magnetic field has reversed many times throughout geological history. These reversals happen simultaneously over the whole surface of the Earth. Polarity reversals occur at random intervals without a predictable pattern and each polarity interval can last from several thousand to millions of years. The causal mechanism of a magnetic reversal appears to be linked to flow instabilities in the outer core which can change the structure of the magnetic field. In order to reverse the magnetic field, the inner core must also reverse. For this to occur, the flow instabilities in the outer core must persist long enough (~ 3000 kyr) to cause the inner core to reverse by diffusion. Through geological time, there have been many aborted reversals with the geomagnetic pole moving towards the Equator (> 45°) for a short
period of time before moving backwards and aligning again with the Earth’s spin axis. These transient changes in the geomagnetic pole direction are known as geomagnetic excursions and are believed to have resulted from the failure of the inner core to reverse (Gubbins, 1999). Magnetic reversals are well recorded across the entire globe but geomagnetic excursions are usually recorded at a more localised level.

The Geomagnetic Polarity Timescale (GPTS) records the history of reversals of the Earth’s magnetic field and have been constructed from the analysis of magnetic anomalies measured in the ocean basins. This time scale consists of a series of black and white stripes which represent periods of time with normal and reverse polarities, respectively. The GPTS can be constructed back as far as ~ 200 Ma and have suffered many calibrations and updates over the years. The polarity observed in a stratigraphic sequence can be tied to the appropriate part of the GPTS. Often, this is achieved by including biostratigraphic work to have an estimation of the age of the rocks. If a polarity reversal is identified within a sedimentary sequence, a numerical age can be assigned to that stratigraphic interval. Figure 2.9 shows the GPTS scale during the Middle Eocene, between 40 and 48.5 Ma. Biostratigraphic studies suggest that the deep-marine sediments of the Ainsa Basin were deposited during this time interval (e.g., Pickering and Corregidor, 2005; Scotchman et al., 2014). The time interval between polarity reversals is known as polarity chron. Each chron have assigned a letter, a number and a suffix. Sediments of the Cenozoic Era are preceded by the letter C, followed by the corresponding magnetic anomaly number (e.g., anomaly 22). This number is suffixed by the letter ‘n’ or ‘r’ to indicate normal or reverse polarity. The period between 40 and 48.5 Ma correspond to the chrons C18n to C21r and it records 7 polarity reversals (Figure 2.9).
Figure 2.9 GPTS between 40 and 48.5 Myr. GPTS of Gradstein et al. (2012). This period corresponds to the chron C18n to C21r. A total of 7 polarity reversals have been documented during this interval.

2.11.1 Primary and secondary remanent magnetisations

Rocks and sediments containing magnetic minerals acquire a natural remanent magnetisation (NRM) which reflects the direction of the Earth’s magnetic polarity at the time of formation or deposition. At a later stage, these rocks can be subjected to other magnetisations known as secondary NRMs. These secondary NRMs can be misleading when trying to determine the original magnetisation of the rock and need to be stripped away from the rock samples by a stepwise process known as demagnetisation.

In sedimentary rocks, the most common types of NRM are detrital remanent magnetisation (detrital RM), viscous remanent magnetisation (viscous RM) and chemical remanent magnetisation (chemical RM).

Detrital RM is acquired when small grains of magnetic minerals settle through the water column and align themselves with the Earth’s magnetic field during deposition. Verosub (1977) described how magnetisation can occur after deposition, as magnetic particles can still rotate within fluid-filled voids in the sediments. Once the water content in the sediment falls below a certain threshold, the grains are not able to rotate and the alignment of the particles is ‘locked-in’. The magnetisation of the sample can be disturbed by processes such as those caused by burrowing organisms, which, may raise the water content of the sediment and cause further rotation of the magnetic particles, changing their original orientation (Bradley, 2013). These effects
usually occur at a localised level and the magnetic record of the rock should therefore be treated as an average directional value (Bradley, 2013).

Viscous RM is the change of the magnetisation vector in ferromagnetic minerals by being exposed to a magnetic field for a period of time. This type of magnetisation is considered a secondary NRM because it can obscure the record of the ancient geomagnetic field. The longer the exposure time, the stronger is the viscous RM. This type of magnetisation can also be developed unintentionally in the lab whilst measuring the NRM. In order to avoid this, measurements are made in magnetically shielded laboratories.

Chemical RM is acquired when new ferromagnetic minerals grow within the sediment in response to a changing chemical environment. These ferromagnetic minerals can result from the alteration of pre-existing minerals, or by precipitation of a ferromagnetic mineral from solution. As these newly-formed minerals grow, they can align to record the Earth’s magnetic field. Depending on the timing of the mineral growth, chemical RM can act as a primary and/or secondary NRM.

2.11.2 Techniques of demagnetisation

Stepwise demagnetisation techniques are employed to isolate the primary NRM in a sample by selective removal of any secondary RM. The demagnetisation techniques used in this study include alternating field (AF) and thermal demagnetisation.

AF demagnetisation comprises the application of a decaying alternating magnetic field to a sample. The decaying AF results in a progressive reduction of the amplitude of each half-cycle. The resistance of a ferromagnetic mineral to become demagnetised is termed coercivity. The AF method results in the removal of any RM coercivity less than the peak intensity of the applied AF. Those magnetic particles with
coercivities lower than the applied field align themselves with the direction of the field, whilst the ones with greater coercivities will become fixed in direction. This process is repeated and will result in an equal number of grains being magnetised in the positive and in the negative direction resulting in a zero net remanent field in the sample. Secondary NRM is carried by grains that contain two or more magnetic domains (multi-domain grains) whereas primary RM is retained by single domain grains characterised by a stable magnetisation across the grain. Multi-domain grains have lower coercivities than single-domain grains and therefore are less resistant to demagnetisation. AF demagnetisation is an effective process to remove secondary RM, leaving the natural RM unaffected. Stepwise AF demagnetisation was undertaken using a 2-G Enterprises DC-SQUID (Superconducting Quantum Interference Device) cryogenic magnetometer based at Oxford University.

Thermal demagnetisation involves heating a sample to a high temperature until it reaches the grain blocking temperature and the sample demagnetises. Then, the sample is allowed to cool down to room temperature in a magnetically shielded environment to prevent the acquisition of secondary RM, especially chemical RM, as high temperatures may result in the chemical alteration of the sample and the growth of new ferromagnesian minerals.

The time it takes for a magnetic mineral to reach equilibrium with the surrounding magnetic field is called the relaxation time. The relaxation time depends on factors such as grain size and temperature. Grains with short relaxation times tend to have low blocking temperatures and are more prone to acquire secondary RM, whereas, grains with long relaxation times have higher blocking temperatures and are less likely to acquire secondary RM. Thermal demagnetisation can be an effective
process to remove secondary RM without affecting the primary RM carried by grains with longer relaxation times.

Thermal demagnetisation was used to demagnetise any magnetite or haematite present in the samples. This technique was undertaken at Oxford University in a magnetically shielded lab using a magnetic measurements thermal demagnetiser.

2.11.3 Sampling technique

Samples were collected at 10 m intervals over ~1 km of stratigraphy. The deep-marine systems sampled include the top of the Gerbe, the Banastón and the majority of the Ainsa System. A total of 4 sections were selected across the Ainsa Basin to gain samples from these systems. There is some stratigraphic overlapping in some of these sections. Sampling for magnetostratigraphy was carried out along the sections selected for spectral gamma-ray logging. Two different sampling methods techniques were used for the palaeomagnetic study in the Ainsa Basin: core drilling and hand sampling techniques.

2.11.3.1 Core drilling technique

Cores were drilled using a diamond tipped drill-bit. Ideally, cores were 6-7 cm in length but in more weathered sections this was not always possible and the cores were shorter (3-4 cm in length). Cores were oriented using a Brunton compass (accuracy ± 0.5°) mounted on an orienter. The orienter was placed into the drilled core hole leaving the cored sample still in situ. The compass was then levelled and the strike from the compass and the dip from the orienter were annotated. Sun compass readings were also taken where possible to correct for possible high magnetic intensities interfering with the compass needle. The top of the core was marked with a pencil and then extracted.
with the help of a brass rod. Cores were then cleaned and marked. The mark at the top
of the core was extended to the rest of the core forming a line with the help of the brass
rod and ticks were drawn pointing down to show the dip direction of the core.
Approximately 3-4 samples were collected per site. Mostly siltstones and very fine-
grained sandstone turbidites were the preferred lithology which allowed for the
extraction of longer cores.

2.11.3.2 Hand sampling technique
Due to damage of the drill, core drilling had to be discontinued at the end of the
Boltaña section and a hand sampling technique was used instead to finalise this section
and to sample the Forcaz and the Gerbe sections. Nevertheless, this sampling
technique was considered the most appropriate to be used in the Forcaz and the Gerbe
sections because they both are more difficult to access with steep slopes and are
lacking a nearby water source needed to operate the drill. These two sections were
characterised by more weathered areas which caused siltstones and finer lithologies to
break more easily with the main lithology sampled being very-fine to fine-grained
sandstone turbidites. Hand samples were oriented using a compass clinometer. The
strike and dip of the surface was measured and it was marked with an arrow to the
right and tick down-dip respectively. The sample was then hammered into a fist size
block. Due to the weight of the collected samples using this technique only 2 samples
were collected per site.

2.11.4 Sample preparation and magnetostratigraphic analysis
Sample preparation and analyses were completed at the Palaeomagnetic Laboratory at
Oxford University. MSc geology student Kyrre Johansen prepared and analysed all the
samples collected as part of his Master’s project under the supervision of Dr Conall MacNiocaill.

Hand specimens were converted into field cores by placing them in plaster and then drilling them to obtain cores. Cores were extracted with the help of a brass bar. The samples were then marked using the same technique as described for the drilled cores. All the core samples were cut into 2.5 cm sized core using a table saw and then cleaned and remarked. The NRM of each sample was recorded before undertaking any demagnetisation procedures. Samples were then demagnetised using AF and/or thermal demagnetisation.

AF demagnetisation used batches of 8 samples per run. In order to remove any secondary NRM components, the samples were exposed in a stepwise manner, to progressively higher peak fields up to 100 mT (Johansen, 2014). Thermal demagnetisation heated the samples using thermal treatment steps. The samples were heated rapidly at a rate of 30°C/min until a temperature of ~ 30°C below the desired peak temperature was achieved. Then, the samples were progressively heated at a slower rate of 10°C/min until reaching the peak temperature. This temperature was maintained for ~ 45 min and then the samples were cooled rapidly until they could be handled. Samples were rotated 180° between steps to prevent the influence of any possible field propagating in the furnace (Johansen, 2014).

Most of the samples were demagnetised by ~ 350°C (Johansen, 2014). This temperature is well below the Curie temperature of magnetite of 580°C. Above this temperature all NRM will be removed (Butler, 1992).

The field orientation of the samples were corrected by inserting the strike and dip into the 2G Magnetometer software and applying a tectonic correction factor. The data was analysed using the Super-IAPD2000. Anomalous peaks in magnetic
intensities were removed from the sample paths. The primary NRM was then obtained from the remaining data points by fitting lines using the LINEFIND function (Kent et al., 1983). Statistical analysis were also implemented to test the reliability of the data (Johansen, 2014). Results were plotted in a Zijderveld plot (Z-plot), a stereonet and a plot of magnetic intensity (Johansen, 2014). Figure 2.10 shows a 3D representation of a Z-plot diagram.

Figure 2.10 3D representation of a Zijderveld diagram. After Zijderveld (1967).

Z-plots are the standard method to represent the results of a stepwise demagnetization process. The direction and the intensity at each demagnetization step for a specific sample is represented by the direction and length of a vector in a 3D space. This vector is projected onto two planes at right angles of each other. Solid black symbols are projections of the vectors on a horizontal plane containing the axes NS and EW. The open symbols are the vectors projected on a vertical plane with axes NS and Up-Down. The NRM is placed at the origin of the coordinate system. The diagrams show the change in the direction of the vector during the progressive thermal or alternating field demagnetization process.
2.12 Cyclostratigraphy

Spectral analysis is an important tool in climate research because it allows the extraction of periodic signals from a dataset. The purpose of this analysis is to estimate the power spectrum (strength) of periodic components at all possible frequencies. The identification of cyclic patterns within a time-series can then be related to environmental change. Time-series analysis was performed in the spectral gamma-ray field data and in the XRF and carbon isotopes records from the A6 core. A work-flow of the methods used for time-series analysis in this study can be seen in Figure 2.11.

2.12.1 Data conditioning

The data was processed prior to performing spectral analysis to reduce the likeliness that the resulting spectra would be influenced by mathematical artefacts (Weedon, 2005). Processing of the time-series included interpolation, detrending and the removal of outliers from the data. These parameters have the potential to cause distortion of the spectrum.

2.12.1.1 Interpolation

Some of the methods employed in this study to perform time-series analysis use a constant time interval or spacing to perform cyclostratigraphic calculations. Gaps in the spectral gamma-ray field data included unreachable areas within the selected sections and small-scale sediment slides, slumps, and other chaotic sediments, although the presence of these types of distorted sediments were very localised and never reached more than 40 cm in thickness.
Figure 2.11 Work-flow of the cyclostratigraphic analysis used in this study.
Additional missing points can be added during removal of outliers (see Section 2.9.1.2). Most of the field sections are, however, continuous and if gaps were present, these constituted less than 0.5% of the total data points. Carbon isotope data was continuous and did not require any interpolation. XRF data from the A6 core contained relatively low percentages of missing data points associated with rocks fractures and interpolation was used to estimate the missing values from adjacent data. Different methods of interpolation have been summarised by Press et al. (1992) but the method used in this study was a simple linear interpolation which estimates the missing value by drawing a straight line between adjacent points. This method can introduce spurious high frequencies in the data because climatic time-series tend to possess a curved rather than a straight appearance and is not recommended when there is a lot of high-frequency noise (Weedon, 2005). However, it was considered adequate to apply this interpolation method due to the small percentage of missing points and because computations used with this method did not add new frequencies when compared with other methods of spectrum estimation which allowed unevenly-spaced datasets such as REDFIT.

2.12.1.2 Removal of outliers

Outliers are data points which have a very high or very low value, and are off from the range of the other data points. These points need to be removed from the time-series because they can cause severe distortion in the spectra and raise the level of high-frequency noise (Weedon, 2005).

Outliers were present in the XRF data usually associated with fractures. These outliers were removed and missing data was interpolated before applying time-series analysis computations.
2.12.1.3 Dataset detrending

The mean and the variance in a dataset should remain constant. If the time-series changes by progressively increasing or decreasing the trend of mean values over the length of the studied interval, interpretation of the spectrum would be difficult since the methods of spectral estimation treats the data as if it was untrended (Weedon, 2005).

The data was detrended by fitting a simple linear-square regression line to the data. Then the line was subtracted for each of the points of the series. This technique results in the trend and the mean being removed and the data oscillating around the zero line.

2.12.2 The discreet Fourier Transform

The Fourier Transform is a mathematical tool which can deconstruct any waveform into a sum of regular sine and cosine waves of different wavelengths and amplitudes. Sine and cosine waves form a set of orthogonal functions which can describe any time-series.

The frequencies investigated are defined by integer divisors of the number of data points in a time-series (N) multiplied by the sampling interval (SI). The higher frequency examined is the Nyquist frequency that is defined by Equation 2:

\[\text{Nyquist} = 2 \times \text{SI} \] \hspace{1cm} \text{Equation 2}

The discreet Fourier Transform consists in multiplying every data point of the time-series by a cosine wave of a particular frequency. The results are added up and multiplied by a constant which is \(2/N\). This computation is then repeated, but,
this time the time-series is multiplied by a sine wave of the same frequency and the results are summed up and multiplied by the same constant. The final amplitude of the time-series is calculated by averaging the results of the sine and cosine products times two and divide them by N (Weedon, 2005).

The results of the discreet Fourier Transform are presented as power spectra analysis where the results of the relative amplitudes and wavelengths of all the regular components in the time-series are represented. The frequency (1/wavelength) of the cycles is plotted against the squared amplitude, referred to as power, as it represents energy per time interval. The higher the power, the greater the importance of a specific frequency in controlling the shape of the time-series.

The discreet Fourier Transform is a slow computation and a new numerical algorithm known as the Fast Fourier Transform (FFT) was developed to speed the time-series analysis (Press et al., 1992). The application of the FFT has very rapidly extended to many fields within the science, mathematics and engineering domains.

2.12.3 Methods of spectral estimation

The spectrum of the outcrop gamma-ray data and the sandstone turbidite intensity of the A6 core have been calculated using four main methods: the periodogram, the maximum entropy, the multi-taper method (MTM) and the REDFIT methods. The MTM and the REDFIT methods have been extensively used in the literature to create time-series analysis of palaeoclimate data. The significant levels of the spectrum can easily be applied to both methods. The maximum entropy method has become more significant over the last few years as an applied method to palaeoclimatic data (e.g., Pardo-Igúzquina and Rodriguez-Tovar, 2006). One of the advantages of this method, as discussed further in Section 2.9.3.2, is that it has a
very high resolution in the frequency domain and therefore is suitable to use as a complementary method to the MTM and REDFIT to identify with accuracy the frequency of significant regular cycles. The periodogram does not constitute a reliable spectral method due to the problems discussed in Section 2.9.3.1, but many spectral estimation methods are based on this method (Weedon, 2005). The periodogram has therefore been included in this study to allow comparison of the estimated spectra with the other methods.

Figure 2.12 shows the spectrum estimation using the REDFIT, the MTM, the maximum entropy and the periodogram using a Barlett window for the eccentricity data between 50 and 40 Ma using the La2010a orbital solution of Laskar et al. (2011). Eccentricity amplitude variations between 50 and 40 Ma can be seen in Figure 1.13. These four methods identify the 3 main peaks associated with eccentricity cycles during the Middle Eocene at ~ 400, 123 and 95 kyr. Confidence levels have not been plotted. The establishment of confidence levels and the estimation of the background noise is further discussed in Section 2.9.4.
Figure 2.12 Time-series analysis of eccentricity using REDFIT, the MTM, the periodogram and the maximum entropy methods. Eccentricity data from the La2010a orbital solution of Laskar et al. (2011) between 50 and 40 Ma. REDFIT uses 6 WOSA segments and 8 degrees of freedom. MTM uses 6 tapers and ~12 degrees of freedom. The periodogram uses a Barlett window. The maximum entropy method uses number of lags \(M = N/3 \). See text for explanation.

2.12.3.1 The periodogram

The periodogram was invented by Schuster (1898) to estimate the spectral density of a spectra. The periodogram is the absolute value squared of the Fast Fourier Transform applied to evenly-spaced data. It forms the basis of many techniques in spectral estimation but should not be used for spectral analysis due to the spectral bias associated with this method (Weedon, 2005). The bias is caused by spectral leak and this bias is more significant if the time-series is short. Another problem associated with this method is the large variance of the spectrum. Increasing the number of data samples does not decrease the variance and this results in a general poor performance of the method. In order to improve performance of the
periodogram, the variance can be reduced by averaging (smoothing) using the Barlett method. This method was developed by Barlett (1948, 1950). The Barlett method consists of splitting the original time-series into a number of non-overlapping segments. For each of these segments a periodogram is calculated by computerising the square of the discreet Fourier Transform. The final spectrum is then calculated by averaging the estimates from the periodograms from each of the data segments. This method results in a reduction in the variance and the standard deviation but it also results in a reduction of the resolution when compared with other periodograms.

2.12.3.2 The maximum entropy method

The maximum entropy method (MEM) was first devised by Burg (1967, 1968). This method has been applied to astronomy, geophysics and other domains such as radar and speech processing. MEM has also been used in the analysis of climatic data (e.g., Currie and O’Brien, 1988; Pardo-Igúzquina and Rodriguez-Tovar, 2006; Laurent and Cai, 2007).

The MEM is considered a non-parametric method because it takes no assumption on the cyclicity of the data (Weedon, 2005). The MEM approximates the time-series by a linear autoregressive (AR) process (Percival and Walden, 1993). The order of the AR process is determined by the number of lags used (M). The MEM involves the calculation of the autocovariance sequence of the data out to the chosen lag M (Weedon, 2005). The choice of M determines the smoothness of the spectrum. The number of peaks in the spectrum increases with M regardless of the number of regular components present in the dataset and therefore the choice of an adequate M will have a great impact in the resulting maximum entropy spectrum.
The upper bound value of M is generally taken as $N/2$, with N being the number of data points in the time-series (Ghil et al., 2002). M is more typically chosen between $N/3$ and $N/20$ (Weedon, 2005). The degrees of freedom in the time-series can be determined by N/M. The power associated with the spectral peaks is not determined by the spectral amplitude of the peak, but by the area under the curve.

This method has a high-frequency resolution and a good performance, especially when using in short time-series which has made it a popular method in cyclostratigraphic studies of climatic data (Pardo-Igúzquina and Rodriguez-Tovar, 2006). The main drawbacks of the MEM are the difficulty in assessing the statistical significance of the spectral peaks (Percival and Walden, 1993). Also, MEM can produce additional spectral peaks if time-series are non-stationary or not well approximated by an AR process which can result in errors by interpreting spurious peaks as having a physical origin. It is, therefore, recommended to use this method when reliable spectral peaks have been established with other methods to determine the significance of the MEM peaks (Ghil et al., 2002; Weedon, 2005).

2.12.3.3 The multi-taper method (MTM)

The MTM is a common method employed to analyse palaeoclimatic records (Olsen and Kent, 1996; Mann and Lees, 1996; DeLong et al., 2009; Wu et al., 2012) The MTM is based on the periodogram. This method reduces the variance of spectral estimates of the periodogram by using a small set of orthogonal tapers or spectral windows. These tapers are constructed to minimise the spectral leakage (Percival and Walden, 1993). A set of independent estimates of the power spectrum is computed by multiplying the data by these orthogonal tapers. The resulting spectrum has well-supressed side-lobes which reduces the spectral bias and gives the spectrum
a smooth appearance. The number of tapers used are usually 4-8. The degrees of freedom doubles the number of tapers used (Percival and Walden, 1993). Therefore, in order to obtain a smooth spectrum a number of at least 8 degrees of freedom (4 tapers) is recommended. Weedon (2005) pointed out that this method has a tendency to produce flat-topped spectral peaks. An example of this effect can be observed in the MTM computation of eccentricity data in Figure 2.12. In this study most of the spectral gamma-ray data uses 4 tapers, but in shorter time-series, 4 tapers resulted in an over-smooth spectrum with flat-topped broad peaks which made difficult to estimate the significant frequencies. In these cases, the number of tapers were reduced to 3.

One of the drawbacks of this method is that it requires data evenly spaced in time, which may be problematic in most palaeoclimate datasets. In the presence of discontinuous data, interpolation of the data is necessary before computation. Interpolation introduces inevitable bias which can make it difficult to obtain an accurate estimate of the typical red-noise spectrum. The discontinuities present in the datasets used in this study are in general quite small. Therefore, interpolation errors associated with these discontinuities are likely to be small and the use of the MTM was considered adequate.

2.12.3.4 REDFIT method

The REDFIT algorithm was developed by Schulz and Mudelsee (2002). This method has been widely used in cyclostratigraphic analysis of palaeoclimatic data such as Stüben et al. (2003), Banerjee et al. (2010), Hodell et al. (2013) and Husson et al. (2014) among many others.
The REDFIT algorithm test peaks in the spectrum of a time-series against the red-noise background using a Gaussian first order autoregressive (AR1) process. An advantage of this method is that it can be used for unevenly-spaced data without the need to interpolate. This is done by applying the Lomb-Scargle Fourier Transform (LSFT; Lomb, 1976; Scargle, 1982, 1989) which is a derivative of the Discreet Fourier Transform adapted to even and unevenly-spaced data in combination with a Welch-Overlapped-Segment-Averaging Procedure (WOSA) (Welch, 1967). The WOSA algorithm divides a time-series into a number of n50 segments which overlap by 50% the final spectral estimate (Schulz and Mudelsee, 2002). The resulting spectrum is derived from averaging the n50 periodograms. The program SPECTRUM developed by Schulz and Stattegger (1997) was based on these computations. The REDFIT program adds to the SPECTRUM computations a bias correction of the LSFT which allows to overlie the spectrum calculated with a red-noise theoretical spectrum. The bias correction is calculated by running a number of randomly algorithms known as Monte Carlo simulations (Nsim) of red-noise spectra. The deviation of the average red-noise spectrum resulting from these calculations and the theoretical spectrum is used to calculate the bias correction. The number of Monte Carlo simulations established by default in the program are Nsim = 1,000. The oversampling factor (OFAC) determines the number of frequencies investigated in the LSFT. An OFAC of 4 is set as a default in the program and is considered a good compromise between computing time and the resulting smoothness of the spectrum (Schulz and Stattegger, 1997). A rectangular window which prevents the distortion of the time-series was used in the computation. The number of WOSA segments used was established in the majority of the analysis to 6 which resulted in a spectrum with 8 degrees of freedom. In those cases where the time-series were too
short, the WOSA segments were reduced to 4 or 5 which resulted in a spectrum with 5 and 6 degrees of freedom, respectively.

2.12.4 Curve-fitting models

Different curve-fitting models were tested to approximate the spectral background of the power spectrum. Inadequate models which do not approximate the spectral background shape can cause unrealistically high significance spectral frequencies which may have a negative impact on the interpretation of the data (Weedon, 2005). The different methods tested include the autoregressive model developed by Mann and Lees (1996), a quadratic and a power regression model. These three noise methods are well recognised in palaeoclimatology (Weedon, 2005). A spreadsheet was generated for each dataset and for the three methods tested. The method which appears to have the least deviation error in most of the time-series analysed in this study is the power regression method. This method uses the log power versus log frequency plot for distinguishing spectral peaks from the spectral background (Wunsch, 2000).

Figure 2.13 shows the three curve-fitting methods tested on the K spectrum of the outcrop spectral gamma-ray data of the Forcaz section. The method which contains a minor deviation error is the power regression method. The autoregressive model shows a good fit but the deviation error is higher than the power regression. The quadratic method does not fit well the background levels due to the presence of very strong spectral peaks at low-frequencies.
Figure 2.13 Comparison of difference curve-fitting methods for the K spectrum of the Forcaz section. The fitting-method with a lower summative square error is the power regression method.

2.12.5 Average spectral misfit

The Average spectral misfit (ASM) method was developed by Meyers and Sageman (2007) and is a useful method in palaeoclimatology when applied to records which lack adequate radiometric time control. The ASM method provides a quantitative evaluation of how well the time-series results fit the predicted orbital parameters. These orbital parameters are calculated from equations derived by Berger et al. (1992).

The frequencies used to determine SARs in the ASM analysis are those frequencies present in the REDFIT spectrum with confidence levels $> 90\%$. This confidence level was chosen to isolate significant frequencies as recommended by the method of Meyers and Sageman (2007). Since there is very little variation in the
orbital periods between 40 and 50 Ma (Table 1.2), all the analyses used in this study have been carried out using the orbital parameters established at ~ 45 Ma using Berger et al. (1992) equations.

The ASM method uses these significant frequencies to conduct thousands (e.g., 100,000) Monte Carlo simulations over a range of plausible SARs which were chosen between 5 and 100 cm/kyr with an increment of 0.5 cm/kyr. This range of SARs was considered adequate for the sediments of the Ainsa Basin based on previous SARs estimations by Heard et al. (2008); Pickering and Corregidor (2005), Pickering and Bayliss (2009) and Scotchman (2012) which estimated average SARs between 30 and 40 cm/kyr (see Section 1.2.4.8). The average spectral misfit is then calculated for every SAR of interest. The method is complemented with the estimation of critical significant levels of rejection above which the null hypothesis (no orbital cyclicity) is rejected. The critical level in all the ASM analysis is 0.52%. Only the SARs which have a significant level lower than the critical level have been considered. The period duration of each of the frequencies has been calculated for each of the significant SARs in order to visualise the best fit possible to the Middle Eocene orbital parameters. The spectral frequencies present in more than one spectrum and with confidence levels > 90% are more likely to represent a physical process than those only present in one spectrum or with lower confidence levels. Therefore, when deciding the most adequate SAR, this argument has been taken into consideration and discussed individually for each of the gamma-ray sections.
2.12.6 Wavelet analysis

Wavelet analysis is becoming widely used for signal processing and analysis of ancient climatic records and other geological processes (Meyers et al., 1993; Lau and Weng, 1995; Prokoph, and Barthelmes, 1996; Barrucand et al., 2006). Wavelet analysis is a useful tool to analyse time-series with non-stationary changes in frequency (Torrence and Compo, 1998) because it divides a continuous time-series into segmented time-frequency components and therefore, not only is able to determine the dominant cyclic components at specific wavelengths in the data but also identify changes of variability of these components in time (Torrence and Compo, 1998). This analysis, therefore, permits to characterise whether signals have a significant amplitude throughout the whole of the dataset or if they are only present at certain intervals (Kumar and Foufoula-Georgiou, 1997). This signal characterisation in the time domain is an advantage over the Fourier Transform which can recognise all the frequencies present in a dataset but is unable to determine how these signal vary as a function of time.

Wavelets are orthogonal functions of finite length with varying amplitude which begins at zero, increases and then decreases back to zero, rather than being maintained stable indefinitely. An example of a wavelet can be seen in Figure 2.14. A wavelet transform is produced by multiplication of a wavelet in a time-series. Different shapes of wavelets can be applied to the time-series and these are known as mother wavelets. The resulting wavelet transform is represented by a finite number of daughter wavelets which are copies of the mother wavelet, but, have been scaled (stretched or compressed) and translated at different stratigraphic positions or time periods to match the time-series using an appropriate coefficient. A correlation coefficient can, therefore, be calculated for every scale and every time (interval).
Computations at one scale will construct rows in the time-scale plane and computations at different scales construct columns in the time-scale plane. As a result of these computations, a contour plot can be constructed and is illustrated in Figure 2.15.

Figure 2.14 Morlet mother wavelet. The figure shows a Morlet mother wavelet containing five oscillations. Modified after Weedon (2005).
Figure 2.15 Wavelet analysis contour plot. Time here is represented as stratigraphic height (m) and frequencies can be established by applying the relation frequency = 1/period. The grey scaled colours represent the amplitude (power of the signal) with the black contours indicating the 10% significance regions. Computations used the online tool http://paos.colorado.edu.research/wavelets.

The data is analysed using a time-frequency wavelet tiling (Figure 2.16). Wavelet tiling consists in filtering the time-series analysis into low and high-frequency components. The high-frequency component is multiplied by the smallest scale version of the mother wavelet chosen. Then, the low-frequency component of the time-series is again divided into high and low-frequency components and the high-frequency component is been multiplied by a larger scaled mother wavelet. This process is repeated until the lowest frequency component of the time-series is transformed. This process causes that at low frequencies, there is a good frequency resolution (the height of the boxes are shorter) but poor time resolution (the width of the boxes are longer). At high frequencies, the resolution is inversed with good time resolution but poor frequency resolution.
Figure 2.16 Wavelet tiling. This figure shows the data compartmentation in the time-frequency plane during wavelet analysis. At low frequencies the frequency resolution is good (the height of the boxes is small) but it has a poor time resolution (width of the boxes is large and is not possible to specify the exact value of time). At lower frequencies the frequency resolution gets poorer but the time resolution improves. Modified from Weedon (2005).

Significant levels in the wavelet analysis can be determined by adjusting an appropriate noise background levels to the dataset. Any peak which is significantly above the background spectrum is assumed to be a real feature with a certain confidence level which is calculated using a chi-squared distribution. This is achieved by multiplying the background level to a chi-squared value which corresponds to the confidence level aimed to calculate.

2.12.6.1 Wavelet analysis parameters

The K, Th, total-gamma, sandstone turbidite intensity and major and minor chemical elements datasets acquired from outcrop spectral gamma-ray studies, sedimentary logging analysis and elemental analysis of core data using XRF scanning were
applied to a fast wavelet transform computation using the online tool available at
http://paos.colorado.edu.research/wavelets. This tool is based upon the mathematical
algorithms of Torrence and Compo (1998). There are a number of parameters that
need to be set to perform the calculations and are summarised in Table 2.2.

Table 2.2 Wavelet analysis parameters.

<table>
<thead>
<tr>
<th>Wavelet parameters</th>
<th>Wavelet type</th>
<th>Morlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave number</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Scale width and start scale</td>
<td></td>
<td>Varied depending on dataset</td>
</tr>
<tr>
<td>Powers of two</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Pad with zeroes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Cone of influence</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Significance</td>
<td>Background spectrum</td>
<td>Red noise</td>
</tr>
<tr>
<td>Significance level</td>
<td></td>
<td>10%</td>
</tr>
</tbody>
</table>

(a) Wavelet shape

Lau and Weng (1995) have suggested that best results in the wavelet analysis are
achieved when the chosen mother wavelet has a shape which contains certain
resemblance to the signal results. The mother wavelet chosen to perform wavelet
analysis on field and laboratory-based time-series is the Morlet wavelet. The Morlet
wavelet is a continuous wavelet which consists of a plane wave modified by a
Gaussian envelope. The shape of this wavelet is characterised by a constant
wavelength and is ideally employed in wavelike time-series to capture oscillatory
behaviour. This type of wavelet has been commonly applied to climatic
cyclostratigraphic studies (e.g., Lau and Weng, 1995; Prokoph and Barthelmes,
1996). The Morlet wavelet is a complex wavelet function which combines positive
and negative peaks into a single broad peak and can provide information on both,
time-dependent amplitude and phase for different frequencies (Lau and Weng, 1995).

(b) Wave number

The wave number is the number of oscillations within the wavelet itself. A number of 6 is recommended as the errors due to non-zero mean are smaller (Farge, 1992; Torrence and Compo, 1998).

(c) Scaling parameters

Setting adequate scaling parameters is important to ensure that all the frequencies present in the time-series are sampled. Start scales define the smallest scale which can be resolved. At a sampling interval of 0.2 m in the field data, the smallest resolvable scale is $2 \delta t = 0.4$ m. Different parameters were used until adequate frequency ranges were achieved. The resulting resolution of the wavelet analysis will depend on the chosen width of the wavelet function (Torrence and Compo, 1998). It is desirable that the wavelet width shows a good balance between the width of the wavelet in real space and in Fourier space. A narrow wavelet will have good time resolution but poor frequency resolution, while a broad wavelet will have the opposite effects with a poor time resolution but a good frequency resolution. Different parameters were investigated to determine the best value of wavelet width for each of the datasets. This value was maintained below 0.5 which is the largest value that still gives adequate sampling in scale in the Morlet wavelet.
(d) Number of scales

The number of scales used in the computation of the wavelet transform is written as fractional powers of two. The number of scales used was maintained at 11 which is the default value in the Torrence and Compo (1998) wavelet algorithm.

(e) Pad with zeroes and cone of influence

Wavelet computations can result in errors at the beginning and at the end of the time-series. These errors are associated with edge effects produced by the Fourier Transform dealing with a finite length of the dataset. Torrence and Compo (1998) have recommended padding at the beginning and at the end of the time-series with zeroes and then removing them using a cone of influence once the wavelet transform has been produced. However, as the authors discuss, this approach can also result in errors since it introduces discontinuities at the endpoints and also affects the amplitude near the edges.

(f) Significance parameters

A red noise background characterised by an increase in power with decreasing frequencies is the most likely background noise associated with climatic data (Mann and Lees, 1996) and therefore a red noise wavelet power spectra has been applied to all the wavelet analysis. The significance level chosen is 10% which refers to a confidence level > 90%. A black contour line in the wavelet plot image marks the 10% significance region.
2.9.6.2 Wavelet analysis parameters used in this study

Wavelet studies in the gamma-ray logged sections have been performed on sandstone turbidite intensity, K, total gamma and Th records. The continuous wavelet transform has been produced by applying the mathematical algorithms developed by Torrence and Compo (1998) available at http://paos.colorado.edu/research/wavelets. All the analysed records have been detrended and interpolated prior to computation. The mother wavelet selected is the Morlet wavelet and a wave number of 6 have been applied to the computation. A scale width of 0.1 and 11 powers-of-two have been considered adequate to obtain good resolution wavelet analysis. Data has not been padded with zeroes and therefore a cone of influence has not been used. A red noise background has been set with a significance level established at 10%.

2.12.7 Frequency-selective filtering

Filtering is a helpful tool in spectral studies which involves manipulation of the time-series in order to isolate the signal from the noise. There are different procedures to achieve a filtered time-series. One of the most common used in cyclostratigraphic studies is frequency-selective filtering which involves the isolation of some bands of frequencies which are of interest from those which are not. Frequency-selective filtering includes high-pass, low-pass and band-pass filtering. The high-pass filters reduce the low-frequency variations and leave the high-frequency variations unaffected. Low-pass filters eliminate or reduce high-frequency variations and band-pass filters out low and high frequencies and leave a narrow band of middle frequencies unaltered. In this study, low-pass filters and band-pass filters have been used to analyse the time-series.
2.12.7.1 Low-pass filters

A simple type of low-pass filter which can be used in signal processing is the simple moving average method. This filter is a type of convolution which can be used in unevenly-spaced records. The moving average filter averages a number of points from the original data to produce a new point in the filtered signal. A filtered record is created by moving one point along the original data at each step. Because this filter removes the high-frequency variance, the filtered records have a lower variance than the original time-series.

This type of filter is very effective at reducing white random noise whilst keeping a sharp step response. The higher the number of averaged points (weight number) used, the higher the reduction of the noise. For instance, a weight-5 moving average reduces the noise by a factor of two and a weight-100 moving average reduces the noise by a factor of ten. One of the drawbacks of this method is that the filtered record is shorter than the original time-series. This is because points are loss at the beginning and at the end of the record due to the requirements of the start-up values. The total value lost from each end depends on the number of average points (n) used to filter the time series being (n-1)/2. For instance, a 5-weight moving average filtered series has a centred value at point 3 of the original time series and would result in 2 points lost at the beginning and at the end of the time-series. The shortening effect can cause undesirable effects such as shifting values in relation to their original position in the time-series. Therefore, it is important to keep a balance between noise reduction and reduction in the length of the filtered time-series. The simple moving average used in this study uses a 5-weight value to low-band pass filter K, Th, U, Th/U and Th/K spectral field data, a 3-weight value to low-band
filter TOC and CaCO₃ data from core study and a 25-weight value to low-pass filter XRF data obtained from the A6 core using a sampling interval of 4 cm.

2.12.7.2 Band-pass filters

Band-pass filters are used to isolate individual frequencies or a small and delimited range of frequencies. These filters are useful in cyclostratigraphic studies because they can show the amplitude of the signal and reflect the changing importance over time of individual frequencies in the records.

Weedon (2005) suggested that only frequencies which form statistically significant peaks in the time-series spectrum should be used for band-pass filtering. The reason for this is that filtering non-statistically significant frequencies may give a faux impression of regular cyclicity.

The frequencies which have been employed in this study to filter the total gamma-ray records are those frequencies which consistently appear in all or at least in the majority of the REDFIT spectra of the analysed data with confidence levels > 90% and which have been associated with eccentricity and obliquity orbital cycles using a combination of spectral techniques such as REDFIT, ASM and wavelet analysis. Total-gamma records have been chosen as the time-series records suitable for band-pass filtering because they tend to consistently show all the frequencies associated with orbital cycles. Sandstone turbidite intensity records have not been used because they strongly depend on outcrop exposure and weathered areas can affect the quality of the records. Th and U records are generally very noisy and cyclic trends are more difficult to visualise. K records usually show the same frequencies as the total-gamma records but the amplitude of the spectral peaks are lower and found at lower confidence levels and have therefore not been filtered.
The program used for filtering is the Macintosh program Analyseries 2.0.3 (Paillard et al., 1996). This program uses a band-pass Gaussian filter which modifies the original data by convolution with a Gaussian probability density function. This Gaussian function is centred at the specified frequency and the width of the function is determined by the filter bandwidth. The bandwidth used is the same as the one determined by spectral analysis using REDFIT. This bandwidth varies for each of the datasets but all the values range between 0.01-0.07 cycles/m. The filtered record is shown on top of the original data, using the same amplitude scale so it allows for a better comparison between the original data and the filtered records. Figure 2.17 shows an example of frequency-selective filtering by using an artificially created time-series.
Figure 2.17 Frequency-selective filtering. (a) Time-series artificially created by adding two sinusoids and some random noise. The first sinusoid has a wavelength of 2.78 m and an amplitude of 0.5 and the second sinusoid has a wavelength of 10 m and an amplitude of 1. (b) Frequency-selective filtering at 0.1 cycles/m (1/10 m) and 0.359 cycles/m (1/2.78 m) of the time-series using the program Analyseries 2.0.3 (Paillard et al., 1996) shows the presence of the two components with different amplitudes.
2.12.8 Orbital tuning

Orbital tuning is a method that can be used to refine the time scale of the time-series. This method consists in aligning the geological records to the calculated orbital periodicities of Milankovitch cycles. Since most of the geological records are in depth, this is a very useful method to obtain numerical ages from the records. Orbital tuning was first used by Hays et al. (1976) and since then, many other authors have followed (e.g., Imbrie et al., 1984; Gale et al., 1999; Bender, 2002; Weedon et al., 2004; Lisiecki and Raymo, 2005; Westerhold et al., 2013).

However, the development of an accurate orbital time-scale is influenced by the presence of temporal gaps in the stratigraphic record. These temporal gaps are the result of periods of erosion or non-deposition. Scouring by bottom currents or by erosive turbidites can lead to the removal of sediments and the formation of sedimentary hiatus in deep-marine basins. These chronostratigraphic gaps may not always be reflected in the biostratigraphy or in the sedimentological character of the strata (e.g., presence of erosional surfaces or abrupt changes in facies). Significant chronostratigraphic gaps can result in the distortion of the time-series resulting in the lost of periodicity of the orbital signals (Weedon, 1989; Meyers et al., 2001). Other sources of error which can effect the original cyclical signal in deep-marine hemipelagic sediments is the variation in sediment accumulation rates, sediment mixing on the seafloor, either through the movement of bottom currents or as a result of bioturbation (e.g., Walker, 2005).

Although small temporal gaps in the stratigraphy of the Ainsa Basin are possible and may contribute to an increase in the signal-to-noise ratio and distortion of the time-series in some of the sedimentary successions analysed, absolute dating methods such as biostratigraphy (Scotchman et al., 2014) in combination with
magnetostratigraphy (Chapter 3) do not suggest major stratigraphic gaps or unconformities present in the stratigraphy of the basin.

2.12.8.1 Orbital tuning methodology

Orbital tuning of palaeoclimatic records consists first in band-pass filtering the records to the frequencies which are significant in the time-series and have been associated with orbital periodicities. The frequencies which have been linked to eccentricity, obliquity and precession can be compared with the orbital history of eccentricity, obliquity and precession, respectively. The tuning target of old cyclostratigraphic records is the orbital solution (e.g., Laskar et al., 2004, 2011) for that time interval. In the absence of accurate radiometric dates, counting the regular cycles in the filtered records can also be used to refine the geological timescale. This strategy which is known as interval dating to differentiate it from absolute dating (Weedon et al., 1997), allows the estimation of the duration of a geological record.

The best evidence which shows that orbital tuning has been successful and that the time scale is accurate is reflected if there is a significant increase and sharpening of the orbital-frequency bands which have not been tuned (Imbrie et al., 1984, Hilgen et al., 1993; Karner et al., 2002). For instance, successful orbital tuning may cause obliquity cycles to be strengthened and showed an increase in spectral power when the records are tuned to eccentricity. However, authors have highlighted that coherency can also occur when the record has been aligned to the wrong set of orbital cycles or to the wrong part of the orbital history (Neeman, 1993; Shackleton, 1995; Weedon, 2005; Huybers and Aharonson, 2010).

Muller and MacDonald (2000) have discussed the risks of over-tuning the time-series records to match the target curve. For instance, manipulating the data to
match the target orbital curve may result in unphysical SARs. It is important therefore to reduce the number of tuning points to a minimum and to check for each interval that SARs are consistent and do not show large spikes in the time-depth plot.

The time-series analysis of field data has been tuned to eccentricity since this cycle seems to be dominant in most of the time-series analysis. Stratigraphic sections such as the Sieste and Guaso sections which are only 40 m in length or Labuerda section 1 which is 93 m long but has a much higher SAR (~ 41 cm/kyr) are too short to be able to establish eccentricity cycles with confidence. Weedon (2005) has argued that for a frequency to be detected with accuracy in the time-series, at least 4-5 cycles should be present in the records. Also, the Tierrantona section in the Arro System has not been tuned because there is a very poor radiometric control with no biostratigraphic or palaeomagnetic studies undertaken in this system. It is also very difficult to establish where in the stratigraphy of the Ainsa Basin this section is located, due to complex tectonic deformation in the Arro System. In the Morillo-reservoir and Morillo-Bruello sections located in the Morillo and Guaso systems respectively, only age determinations using biostratigraphic studies are available. Since the radiometric control in these sections is poorer, orbital tuning has not been attempted. The Gerbe, Labuerda 1 and 2, Boltaña and Forcaz sections have a good radiometric age control from biostratigraphic studies (Scotchman et al., 2014) and magnetostratigraphic studies (Chapter 3). The two identified polarity reversals in the Gerbe I and in the Labuerda section 2 have enabled the orbital tuning of these sections to the eccentricity curves of the Middle Eocene.
Orbital tuning has been performed by comparing the total-gamma records filtered to the frequency associated with eccentricity (from REDFIT and ASM spectral analysis) to the historical eccentricity curves using the La2010a orbital solution of Laskar et al. (2011). The total-gamma records have been preferred over the other analysed records such as K, Th and sandstone turbidite intensity for reasons given in Section 2.9.7.2. The control or anchor points used in the total-gamma filtered records are the depth points which constitute the top of each of the filtered cycles. These depth points have been matched with the eccentricity maxima points in the La2010a orbital solution of Laskar et al. (2011). In those cases where the top of the cycles in the total-gamma filtered records have a poorly defined curve shape, then the anchor points used are the lowest point in the cycle and these have been matched to eccentricity minima in the La2010a orbital solution of Laskar et al. (2010). The rest of the depth points in the total natural gamma time-series have been matched to absolute time by using a simple linear interpolation between anchor points.
Chapter 3

Magnetostratigraphy in the Ainsa Basin

3.1 Introduction and objectives

This chapter presents magnetostatigraphic work undertaken in the Ainsa Basin through ~1 km of stratigraphy on the deep-marine sediments of the Upper Hecho Group. The assessment of age-dating for the Ainsa Basin fill has been the focus of several biostratigraphic and magnetostatigraphic studies, although, most of them have been undertaken on the areas surrounding the basin. Magnetostatigraphic studies include the work of Mochales et al. (2012) in the shallow-marine sediments of the Boltaña Anticline and of Holl and Anastasio (1993) in the sediments of the Mediano Anticline. However, to date, no magnetostatigraphic study has been undertaken in the deep-marine sediments of the Ainsa Basin. As a consequence, there are still major uncertainties regarding the chronology of these sediments. This uncertainty also complicates the inter-basin correlation of the Upper Hecho Group sediments across the Tremp-Ager, Ainsa and Jaca basins.

The main objective of this chapter is to provide a magnetostatigraphically-constrained age model for the Ainsa Basin. This new age model can be used to test the accuracy in the age estimations of the recent biostratigraphic work of Scotchman et al. (2014) across the whole of the deep-marine stratigraphy of the basin. This study also permits improved sediment correlations by comparison with other age models undertaken in proximity to the basin or in nearby areas.
The absolute ages inferred from any polarity reversals identified in this study can also be used as anchor points to tune the gamma-ray logged records to orbital solutions to obtain a higher resolution age-model across the basin (Chapter 5).

Finally, results from this study, used in conjunction with cyclostratigraphic studies across the basin (Chapter 5) and high-resolution geochemical proxies undertaken on interfan sequences (Chapter 4), can help to understand the sedimentation history of the basin and to unravel the influence that climate and tectonics may have played in influencing the deposition of the sediments of the Ainsa Basin (Chapter 6).

3.2 Previous chronostratigraphic studies in the Ainsa Basin

The chronostratigraphy of the deep-marine sediments of the Ainsa Basin is largely based on correlations with shallow-marine successions from depositional systems along the margins of the basin (Holl and Anastasio, 1993; Bentham and Burbank, 1996; Payros et al., 2009; Mochales et al., 2012), or based on correlations with nearby basins such as the Graus-Tremp Basin (Serra-Kiel et al., 1993; Nijman, 1998; Bentham and Burbank, 1996) and the Jaca Basin (Laboume et al., 1985; Payros et al., 1999; Oms et al., 2003). Intra-basinal regional correlations are based mainly on the recognition of erosional truncations and unconformities with age estimates largely depending on the accuracy of these correlations. However, some correlations have proved to be controversial and contradict other chronostratigraphic studies. Inter-basinal correlations are also complicated by the fact that there is no general consensus on the stratigraphic nomenclature used for the various formation names. In addition, the Ainsa and Jaca basins are separated by the Boltaña Anticline where Hecho Group sediments are not represented, making it considerably more
difficult to establish correlations across these two basins (Das Gupta and Pickering, 2008).

There are a very limited number of chronostratigraphic studies published based on direct sampling of the deep-marine sediments of the Ainsa Basin. Some of these studies are limited to a specific stratigraphic interval including biostratigraphy studies undertaken by Pickering and Corregidor (2005) and Jones et al. (2005), restricted to the Ainsa System. The most complete biostratigraphic study in the Ainsa Basin has recently been undertaken by Scotchman et al. (2014). This study is based on high-resolution calcareous nannofossils and larger benthic foraminifera age determination with ~ 2 km of stratigraphy sampled across the Upper Hecho Group (Figure 1.9).

3.3 Stratigraphy sampled in this study

The methodology used in this magnetostratigraphic study is described in detail in Section 2.8. The study sampled ~ 1 km of stratigraphy at 10 m intervals and included the upper part of the Gerbe System and all of the Banastón and the Ainsa systems. Four magnetostratigraphic sections were selected across the basin to sample these systems. From oldest to youngest, these sections are: Gerbe, Labuerda, Boltaña and Forcaz. There is some degree of stratigraphic overlap between these sections to ensure that the entire stratigraphic interval was sampled. However, the degree of overlap is difficult to quantify since there is considerable lateral variability in the geometry of the sandbodies and interfan successions. Figure 3.1 shows the location of the magnetostratigraphic sections within the Ainsa Basin and Figure 3.2 shows the position of the magnetostratigraphic sections within the stratigraphy.
The magnetostratigraphic sections coincide with the outcrop spectral gamma-ray logged sections of similar name (Table 3.1). Since the whole of the Labuerda magnetostratigraphic section is not suitable for spectral outcrop gamma-ray logging, this section has been broken into Labuerda 1 and Labuerda 2 gamma-ray logs separated by an interval of ~ 238 m of unlogged sediments. The Boltaña gamma-ray section is slightly shorter than the magnetostratigraphic section as the top 50 m are poorly exposed and unsuitable for gamma-ray logging. Aerial photographs, geological maps and cross-sections employed to determine the geographical location and the position of the sections within the basin stratigraphy, together with detailed sedimentary logs, outcrop photographs and other relevant analysis are available and discussed in detail in Chapter 5.

The Gerbe section is 200 m long and the base of the section is located in the fine-grained off-axis interfan sediments of the Gerbe I and Gerbe II sandbodies. The section terminates at the base of the Banastón II sandbody (Figure 3.2 and Figure 3.3). The Labuerda section is the longest of all sections at 680 m and sample most of the Banastón System. The section starts approximately in the Banastón I-II sandbodies although the exact position within the stratigraphy cannot be determined due to the presence of a thrust located a few metres below the beginning of the section. The Labuerda section ends at the base of the Ainsa I System. The Boltaña section is 220 m long and is located between the Banastón VI and the Ainsa III sandbodies. The Forcaz section is 190 m long and onsets in the Ainsa II System and finishes in the interfan sediments of the Ainsa and Morillo systems.
Figure 3.1 Location of the palaeomagnetic sections. In stratigraphic order, from older to younger, these sections are: Gerbe, Labuerda, Boltaña and Forcaz.
Figure 3.2 Composite section showing the location of the four magnetostratigraphic sections within the Ainsa Basin stratigraphy.

Table 3.1 Comparison between magnetostratigraphic and gamma-ray logged sections.

<table>
<thead>
<tr>
<th>Deep-marine system</th>
<th>Magnetostratigraphic section</th>
<th>Length (m)</th>
<th>Gamma-ray logged section</th>
<th>Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerbe</td>
<td>Gerbe</td>
<td>200</td>
<td>Gerbe section</td>
<td>200 m</td>
</tr>
<tr>
<td>Banastón</td>
<td>Labuerda</td>
<td>680</td>
<td>Labuerda 1</td>
<td>92 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No logged section</td>
<td>238 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Labuerda 2</td>
<td>350 m</td>
</tr>
<tr>
<td>Ainsa</td>
<td>Boltaña</td>
<td>220</td>
<td>Boltaña</td>
<td>167 m</td>
</tr>
<tr>
<td></td>
<td>Forcaz</td>
<td>190</td>
<td>Forcaz</td>
<td>186 m</td>
</tr>
</tbody>
</table>
Plate 3.1 Field photographs of the magnetostratigraphic study undertaken in the Ainsa Basin. (a) Field photograph showing MSc Geology student Kyrre Johansen using a diamond tipped drill attached to a water tank. (b) Field photograph showing Dr Conall MacNiocaill (Earth Sciences, Oxford University) extracting drilled cores with the use of a brass rod. (c) Field photograph showing Brunton compass mounted on an orienter inserted in the drilled hole to orient the core samples before extraction. Sun compass also attached to measure sun readings where possible. (d) Photograph showing a collection of drilled cores, typically between 3-6 cm long, already oriented and labelled.

Figure 3.3 (next page) Geological maps showing the position of the four palaeomagnetic sections within the stratigraphy. The Ainsa Basin geological map (Figure 2.4) has been mounted on Google Earth aerial photographs to show a topographic effect. The Gerbe section is 200 m long and is composed of 2 subsections, the Arro section (Ar) is 90 m long and the Gerbe section (Ge) is 110 m long. The Labuerda section (Lb) is 680 m long and starts immediately above a thrust area probably in the Banastón I-II sandbodies. This section finishes at the base of the Ainsa I sandbody which forms a significant ridge at this location. The Boltaña section is 220 m long and is located between the Banastón VI and the Ainsa III sandbodies. The Ainsa III forms a significant ridge where the Boltaña town was built. The Forcaz section is 190 m long. The section starts in the Ainsa II sandbody and finishes in the interfan sediments between the Ainsa and Morillo systems.
3.4 Data quality and reliability of the study

The quality of the data was evaluated by using three classification categories, designated from highest to lowest quality, A, B and C (Figure 3.4). Category A included all samples which showed a smooth demagnetisation trend. Lines of MAD (Mean Angle of Deviation) < 15-20° fitted easily into these trends. The samples showed a clear polarity and an obvious natural remnant magnetism. Only a small percentage of the samples showed a secondary overprint at a lower coercivity but in most cases a high coercivity was present (Johansen, 2014). The total percentage of samples classified under this category was 41%. An example of category A demagnetisation trend can be seen in Figure 3.4a.

Category B included all the samples which showed a more chaotic demagnetisation trend which made it difficult to fit lines of MAD < 15-20° to the trends (Figure 3.4b). However, the general sense of polarity of the sample, whether it was reverse or normal, was still clear. It is likely that the generally low intensity magnetisation of the rock (averaged values = 0.588 mA/m) was responsible for these more chaotic trends. 45% of all the samples analysed were classified under this category.

Category C samples showed very chaotic demagnetisation trends which prevented the visualisation of the polarity of the sample (Figure 3.4c). The polarity of these samples was inferred from demagnetisation trends of other samples from the same site (repeats) or from samples immediately above or below the sampling site.

Figure 3.5 shows the percentage of samples for each category in the magnetostratigraphic sections. Category B is prevalent in most of the sections and dominates in the Arro/Gerbe and Forcaz sections where the majority of the samples
belong to this category. The exception is the Boltaña section where category A is dominant. In all the sections, the percentage of category C constitutes 11-23% of all the samples. There is a clear reduction in the data quality in the Forcaz section with a very low percentage of category A samples.

Figure 3.4 Z-plots showing the three demagnetization trend categories. The filled blue symbols show the magnitude and direction of the vectors in the horizontal plane (declination) and the open symbols show the magnitude and direction of the vector in the vertical plane (inclination). (a) Sample BO 5A of the Boltaña section showing a demagnetisation trend of category A. There is a clear demagnetisation trend indicating reverse polarity. (b) Sample GE 7A of the Gerbe section showing a demagnetisation trend of category B. Although the demagnetisation trend is more chaotic, the sample clearly shows a normal polarity. (c) Sample AR 4B1 of the Gerbe section showing a demagnetisation trend of category. (c) In this sample, the polarity of the sample cannot be inferred. Modified after Johansen (2014).
Category B is prevalent in most of the sampling sites with the exception of the Boltaña section where category A is dominant. The Boltaña section also contains the highest percentage of samples of category C. The quality of the Forcaz section is clearly reduced with a very low percentage of category A samples.

Most of the repeats in this study showed a similar trend to the original sample, making the interpretation of the results very consistent. All the data have been tectonically corrected. Declination, inclination and NRM intensity results are shown in Figure 3.6. The declination is the angle between the geographic North and the magnetic North. The inclination is the angle between the horizontal and a magnetic vector. If the magnetic vector points down below the horizontal the inclination is considered positive and if it points up is considered negative. Positive inclination in the Northern Hemisphere indicates normal polarity and negative inclination indicates reverse polarity. The average inclination of the samples is 62.3° (Johansen, 2014). Equation 3 allows the calculation of palaeolatitude from inclination data. An inclination of 62.3°, results in a palaeolatitude of 43.6°. This palaeolatitude is similar to the present latitude of the Ainsa Basin ~ 42.2°. The relatively stable palaeolatitude of the area since the Eocene strengthens the reliability of the data.

\[
\tan \text{(Inclination)} = 2 \times \tan \text{(palaeolatitude)}
\]

Equation 3
Figure 3.6 Stratigraphic log of the composite Ainsa palaeomagnetic section showing polarity, inclination, declination and natural remanent magnetization (NRM) intensity. NRM averaged values are 0.588 mA/m. Modified after Johansen (2014).
Figure 3.7 Equal area stereoplot including all category A samples. Black-filled circles indicate NRM oriented down (normal polarity) and open circles indicate NRM oriented up (reverse polarity), N = 103. From Johansen (2014).

Figure 3.7 shows an equal area stereoplot where all category A samples have been plotted. Two distinct groups can clearly be recognised in this figure. There is a larger group of samples which are oriented down and north (normal polarity samples) and are represented as black-filled dots. The smaller group oriented up and south (reverse polarity samples) is represented as unfilled circles. Normal polarity samples appear to show more spread out declination values than reverse samples which are more closely clustered. This higher degree of variability in the declination data is likely to reflect a secondary overprint on the normal polarity samples (Johansen, 2014). Although, this overprint does not affect the polarity results of the dataset, it has an influence on the statistical results applied to the dataset to check the reliability of the data, such as the reverse and the McElhinny fold test. Both tests were applied by Johansen (2014) and rejected with a confidence level > 95%. Despite this, the clear polarity for the majority of the samples (86%), the consistency
in the polarity results of the repeat samples and of the overlapped sections (Figure 3.8) and the reasonable palaeolatitude of the dataset, support the robustness and the reliability of the results from this study.

3.5 Magnetostratigraphic results
In the cases where the original sample did not demagnetise to origin, most of the repeats helped to establish the polarity at the sampled site by showing clear demagnetisation trends. Despite this, there are 12 sites where none of the samples successfully demagnetised to origin. The polarity of these sites was marked with a red dot in Figure 3.8 indicating the uncertainty of the polarity at that specific location. Their polarity was inferred by looking at adjacent sites or at the stratigraphic overlapped sections. The majority of these unresolved polarity sites were isolated and therefore could not contain a missed true reversal under the inclusion criteria defined in this study (see Section 3.5.1). The only exception is seen at the sites Ar-4 and Ar-5. These two sites are also very close to the boundary of a polarity reversal at site Ar-2. This polarity reversal is therefore not well-constrained and will be discussed further in Section 3.5.2.
Figure 3.8 Magnetostratigraphic results of the Ainsa Basin. Three polarity chronos identified as R1, N1 and R2. There are 12 sites where the polarity was unable to be determined (red dots). There is a clear consistency in the polarity of the overlapped sections increasing the robustness of the results. Modified after Johansen (2014).
3.5.1 Polarity reversals classification criteria

A classification criterion has been developed to differentiate true polarity reversals from other phenomena including polarity excursions or secondary RM overprints. This classification criterion has taken into consideration a number of factors such as the sampling interval, the availability of magnetic data sample repeats and the quality of the demagnetised data.

A true reversal has been considered only when two or more adjacent site samples of category A and/or B showed a similar polarity. Opposite polarities shown at a single site were considered too brief to represent a true global polarity change. It is more likely that these sites correspond to polarity excursions or to secondary overprints associated with chemical RM and caused by diagenetic processes.

3.5.2 Polarity reversals

The results of this magnetostratigraphic study have identified three polarity chron: reverse-1 (R1), normal-1 (N1) and reverse-2 (R2) (Figure 3.8).

The R1 interval is poorly constrained with only two samples (Ar-1 and Ar-2) which are located at the very beginning of the stratigraphic interval sampled in the Arro/Gerbe section. These two samples are category B and have a negative inclination and components of secondary RM (Johansen, 2014). The N1-R1 reversal boundary is located at ~ 70 m below the Gerbe II sandbody in the interfan deposits between Gerbe I and Gerbe II sandbodies.

The normal-1(N1) interval is constrained between 30 m and 610 m of stratigraphic height, from Ar-3 site to Lb-51 site. The stratigraphic intervals covered by this chron are the interfan successions of Gerbe I and II, and Banastón I to V.
sandbodies. This interval includes a total of 161 samples with an average of 2-3 samples per site. Most of the samples were of category A (43%) and B (42%). Five samples, all of category B showed reverse polarity. These samples were from sampling sites LG17, 20, 42, 44 and 45. Sample repeats at localities LG17, 44 and 45 showed normal polarity whilst repeats for the samples LG20 and LG42 were unsuccessful. Sites LG 20 and LG42 were therefore considered as sites of reverse polarity (Figure 3.8). It is possible that these sites correspond to polarity excursions or that they are secondary overprints. The duration of the N1 interval is 560 m long. Since the boundary between chron R1 and N1 is poorly constrained, the thickness of the N1 chron is therefore considered as minimal.

The R2 chron starts at 610 m stratigraphic height at sample site Lb-52 and continues throughout the stratigraphic interval sampled to the Forcaz Fz-16 site. The top of the R2 chron is not present in the sediments sampled and therefore the total thickness of this chron cannot be constrained. Nevertheless, this interval of reverse polarity can be estimated to be at least 490 m thick. The R2 interval probably starts during deposition of the Banastón V sandbody and continues up to the interfan sediments of the Ainsa III and Morillo I sandbodies. The R2 chron includes a total of 95 samples and most of the sites have an average of 2 samples since the majority of the Boltaña section and the totality of the Forcaz section samples were collected using a hand-drilling technique and only two samples were recovered per site. Most of the samples were of category A and B, 38% and 47%, respectively. Only two samples of category B showed normal polarity. These samples were from sampling site BO21 and FZ13 and repeats from these two sites were unsuccessful. As discussed above, it is likely that these sites correspond to excursions or have secondary overprints.
3.5.3 Polarity interpretations

The results of this study have been interpreted in conjunction with the biostratigraphic results of Scotchman et al. (2014). The stratigraphic nomenclature that these authors used is the same as the one used in this study, facilitating the correlation and interpretations between these two studies. The age calibration is from Gradstein et al. (2012). A comparison between these two studies can be seen in Figure 3.9.

The biostratigraphic study of Scotchman et al. (2014) uses calcareous nannofossils and larger benthic foraminifera data across a ~ 2 km composite section in the Ainsa Basin. The stratigraphic interval starts at the base of the Gerbe System and finishes at the top of the Sobrarbe Formation, and therefore all the stratigraphy sampled in this study is included in the Scotchman et al. (2014) age model.

This age model predicted the polarity reversal C21r-C21n (47.349 Myr) during the deposition of the Banastón II sandbody. It is likely that this polarity boundary is the R1-N1 shown identified in the interfan deposits between the Gerbe I and Gerbe II sandbodies. Similarly, the C21n-20r polarity reversal (45.724 Ma) is predicted by Scotchman et al. (2014) to be in the Ainsa I sandbody. The most likely match is the N1-R2 polarity reversal identified in the Banastón V sandbody. The R1, N1 and R2 chron can therefore be associated with the C21r, C21n and C20r chron, respectively. The C20r-C20n reversal, not sampled in this study, is likely to be found in the Morillo I or II sandbodies. These correlations suggest that the sediments are ~ 1 Myr younger than the age model proposed by Scotchman et al. (2014) (Figure 3.9).
Figure 3.9 Comparison between the biostratigraphic study of Scotchman et al. (2014) and this study. The chron N1 identified in this study is likely to refer to the chron C21n. The red square shows the mismatch between both studies, indicating that the sediments are ~ 1 Myr younger than the proposed age model of Scotchman et al. (2014).

SARs have been calculated for the interval C21n. Table 3.2 shows the chron C21n durations using different GPTS. The two most recent studies, Gradstein et al. (2012) and Gee and Kent (2007) show a very similar duration for this chron at ~ 1.6 Myr. This chron has a thickness of 560 m in the Ainsa Basin and covers most of the Gerbe and Banastón systems. The SAR for this interval is 34.5 cm/kyr (Figure 3.10). This SAR is slightly slower than the SAR calculated by the biostratigraphic model of Scotchman et al. (2014) which inferred a SAR for the Banastón System of ~ 43 cm/kyr in Banastón I to III sandbodies to 35 cm/kyr in the Banastón V-VI sandbodies. The model by Scotchman et al. (2014) together with other estimates
from cyclostratigraphic studies (Heard et al., 2008), suggest that the SAR in the Ainsa Basin slightly decreased during deposition of the Ainsa, Morillo and Guaso systems to ~30 cm/kyr.

Table 3.2 Absolute ages and chron durations using different GPTS from C21n-C20n.

<table>
<thead>
<tr>
<th>GPTS</th>
<th>Polarity boundary (Myr)</th>
<th>Chron duration (Myr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C21r-C21n</td>
<td>C21n-C20r</td>
</tr>
<tr>
<td>Gradstein et al.</td>
<td>47.349</td>
<td>45.724</td>
</tr>
<tr>
<td>(2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gee and Kent</td>
<td>47.906</td>
<td>46.264</td>
</tr>
<tr>
<td>(2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gradstein et al.</td>
<td>47.25</td>
<td>45.4</td>
</tr>
<tr>
<td>(2004)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.10 Magnetostratigraphic age model. The SAR calculated for the chron C21n is 34.5 cm/kyr. This is estimated for most of the Gerbe and the Banastón systems. The C20r-C20n polarity reversal is likely to be located within the Morillo System. GPTS of Gradstein et al. (2012).
3.6 Comparison with other magnetostratigraphic age models of the Ainsa Basin

There are two magnetostratigraphic studies carried out in the proximity of the Ainsa Basin. The study of Mochales et al. (2012) sampled shallow-marine sediments exposed at the Boltaña Anticline in the eastern and southern edges of the Ainsa Basin. The study by Holl and Anastasio (1993) was undertaken on the eastern edge of the Ainsa Basin and sampled both limbs of the Mediano Anticline.

3.6.1 Comparison between Mochales et al. (2012) and this study

Mochales et al. (2012) undertook a magnetostratigraphic study on ~ 2.4 km of Tertiary sediments cropping out at the Boltaña Anticline on the southern and western edges of the Ainsa Basin. The stratigraphic nomenclature which these authors use is based on the work of De Federico (1981) and refers to local formation names which cannot be applied regionally, therefore, making correlations difficult. The main lithologies sampled in this study are shallow-marine shelf deposits, mainly carbonates and siliciclastics. The lateral equivalents of the deep-marine deposits of the Hecho Group are the shallow-marine deposits of the Boltaña (Barnolas et al., 1991) and the San Vicente formations (Van Lunsen, 1970). These formations are well represented in the Coscollar section, located on the eastern limb of the Boltaña Anticline, between the villages of El Coscollar and Castellazo.

The Boltaña Formation represents a mixed shelf with siliciclastic and shallow-marine carbonates. The San Vicente Formation conformably overlies the Boltaña Formation and consists of distal carbonate ramp marls and marly limestone facies which appear frequently slumped. Two members have been recognised within the San Vicente Formation: the Paules Member and the La Patra Member (De Federico, 1981). The lower part of the Paules Member represents a retrogradational
ramp with very slow sedimentation rates which change towards a progradational regime in the upper part of the Paules Member. La Patra Member (or Coscollar Member by Barnolas et al., 1991) represents a base-of-slope carbonate breccia interlayered with slope marls and distal clastic turbidites. Figure 3.11 compares the magnetostratigraphic results of Mochales et al. (2012) and this study. The lower part of the Upper Hecho Group (Gerbe, Banastón and Ainsa systems) appear to correlate with the Paules Member of the San Vicente Formation.

Figure 3.11 Magnetostratigraphic correlation between Mochales et al. (2012) and this study. The Gerbe, Banastón and Ainsa systems correspond to the Paules Member of the San Vicente Formation. Simplified stratigraphy of the Boltaña Anticline from Mochales (2011).

Mochales et al. (2012) calculated SARs in the order of 2-5 cm/kyr in the Boltaña Anticline, whilst the SARs in the Ainsa Basin for the same interval were estimated to be ~34.5 cm/kyr (Figure 3.9). The marly and micritic character of the Paules Member has been interpreted as the drowning of the carbonate platform and
its retrogression towards the foreland (Mochales et al., 2012). This retrogressive sequence probably indicates an overall relative rise in sea levels. During this interval, the Gerbe and the Banastón systems were deposited in the Ainsa Basin. These two systems are characterised by forming the thickest sandy succession of all the Ainsa Basin deep-marine sandbodies (Pickering and Bayliss, 2009). This could be construed as contrary to the view that the initiation of submarine fans occurred during periods of relative lowstands in sea-level (Pickering and Corregidor, 2005). It is, therefore, likely that basin accommodation space differed greatly across the basin and was influenced by the different growing ages of the basin bounding anticlines (Fernández et al., 2012).

The upper part of the Paules Member shows a dramatic increase in SARs from 2-5 cm/kyr to ~ 18 cm/kyr (Mochales et al., 2012). Facies interpretation suggests that the Upper Paules Member is a progradational sequence (De Federico, 1981; Mochales et al., 2012), likely to reflect a fall in relative sea-level. In the Ainsa Basin, this interval correlates with the deposition of the Ainsa and Morillo systems which show an increase of structural confinement in relation to previous deep-marine systems (Pickering and Corregidor, 2005; Bayliss and Pickering, 2014a, 2014b). During this time, the basin was incorporated into the hangingwall of the Gavarnie-Sierras Exteriores Thrust (Muñoz et al., 1998; Dreyer et al., 1999; Fernández et al., 2004; Fernández et al., 2012) and as a result, the Boltaña and Mediano anticlines undergone a period of growth (Fernandez et al., 2012), which probably resulted in a progradational sequence in the Boltaña area and an increase in shallowing and confinement of the deep-marine basin (Bayliss and Pickering, 2014a, 2014b).
3.6.2 Comparison between Holl and Anastasio (1993) and this study

The palaeomagnetic study of Holl and Anastasio (1993) was undertaken on syn-orogenic strata in the areas surrounding the Mediano Anticline, located on the eastern edge of the Ainsa Basin. Sediment gravity flow deposits (mainly turbidites) and mudstones are exposed at the flanks of the anticline and show angular unconformities caused by pulses of anticline growth. The stratigraphic formations sampled in the study include the Castisent Group, the Santa Liestra Group and the lower part of the Campodarbe Group (after Mutti et al., 1989). Although, the study presents data from both limbs of the Mediano Anticline, only the western limb is shown in Figure 3.12.

Correlations between the study of Holl and Anastasio (1993) and this study suggest that the Gerbe and part of the Banastón System (probably BI-BIII) are coeval with the Castissent Group outcropping at the Mediano Anticline (Figure 3.12). The Santa Liestra Group probably includes the sediments of the Ainsa, Morillo and Guaso systems.

3.7 Ainsa Basin chronostratigraphy

This section considers the chronostratigraphy of each of the systems forming part of the deep-marine infill of the basin. The older systems, Fosado and Los Molinos have not been discussed due to the high level of deformation in the area and the lack of chronostratigraphic studies undertaken in these two systems.
3.7.1 The Arro System

Detailed mapping by Millington and Clark (1995) linked the erosional surface of the Charo Canyon to the Arro deep-marine depositional system. Biostratigraphic studies undertaken on the infill of the canyon has been assigned to zone NP15a by Payros et al. (2009) within chron C21n. The study of Scotchman et al. (2014) suggests that the deposition of this system occurred much earlier, within zone NP13 in chron C22r.

The C21r-C21n magnetic-reversal found in the Gerbe System (this study) suggests that the timing of deposition of the Arro System is more likely to have occurred within chron C21r and C22n. This new age estimation, positions the Arro system in the middle ground between the age estimation of Payros et al. (2009) and Scotchman et al. (2014), although the lack of direct magnetostratigraphic sampling...
of this system, makes it impossible to establish its chronology with any great
certainty.

3.7.2 The Gerbe System

The erosional unconformity of the Lascorz Canyon has been associated with the
submarine fan deposits of the Gerbe System (Mutti et al., 1985). The Gerbe System
of Mutti et al. (1985) correlates with the Castissent Group which is dated within
chron C21n (Holl and Anastasio, 1993) (Figure 3.12). The biostratigraphic study by
Scotchman et al. (2014) suggests that the deposition of the Gerbe System occurred
at an earlier stage within biozone NP14, placing the estimated age of the Gerbe
System within chron C22n and C21r.

Magnetostratigraphic work carried out on the Gerbe System (this study)
shows that this system was deposited within chron C21r-21n with the polarity
reversal located at ~ 50-100 m above the initiation of the Gerbe System. Most of the
Gerbe System deposition is therefore located within chron C21n. These results are
consistent with the previous estimations of Holl and Anastasio (1993) and will place
the top of the Gerbe System ~ 1 Myr younger than the age estimates of Scotchman
et al. (2014).

3.7.3 The Banastón System

Scotchman et al. (2014) have established the deposition of the Banastón System
between 45.82 and 48.31 Myr (late Ypresian-early Lutetian), during nannofossil
zones NP14b- NP15a and shallow benthic foraminifera zone SBZ13.
Magnetostratigraphic work carried out in the Banastón System (this study) shows the C21n-C20r polarity reversal estimated at 44.72 Ma (Gradstein et al., 2012) in the Banastón V sandbody. These results show that the Banastón System is ~ 1 Myr younger than the estimations from Scotchman et al. (2014) (Figure 3.9).

The deposition of the deep-marine Banastón System has been linked to the Formigales Canyon located at the eastern edge of the Ainsa Basin (Mutti et al., 1985). This canyon erodes underlying deltaic sediments of the Capella Formation which has been dated within chrons C21n and C20r (Cuevas-Gonzalo, 1989; Bentham and Burbank, 1996). The results from the palaeomagnetic studies support this interpretation that the Formigales Canyon was probably active during the deposition of the Ainsa and Morillo systems, in agreement with the interpretations of Scotchman et al. (2014).

3.7.4 The Ainsa System

Previous age estimations using biostratigraphic horizon, has placed the deposition of the Ainsa Basin between foraminifera zones P11-P12 and calcareous nannofossil NP14-NP15 (Pickering and Corregidor, 2005) within chron C21n. Remacha et al. (2003) has established a younger deposition for the Ainsa System within foraminifera zones P12-P13 (~ NP16). More recent biostratigraphic studies suggest that the deposition of the Ainsa System occurred within nannofossil zone NP15 and shallow benthic zone SBZ13 (Scotchman et al., 2014). This latest interpretation place the Ainsa System in chron C20r.

Magnetostratigraphic work carried out in the Ainsa System (this study) shows reverse polarity throughout the deposition of this system, corroborating the
age model of Scotchman et al. (2014) that the Ainsa System was deposited within chron C20r. Although this study suggests that the sediments of the Ainsa System are younger by ~1 Myr than the model by Scotchman et al. (2014). These authors infer the C21n-C20r magnetic reversal to be at the base of the Ainsa System, but this study has shown that this reversal occurred earlier during the deposition of the Banastón V sandbody. The estimated ages from this palaeomagnetic study place the deposition of the Ainsa System within calcareous zone NP15 at approximately 45-44 Ma between the estimations of Pickering and Corregidor (2005) and Remacha et al. (2003).

3.7.5 The Morillo System

The Morillo System was deposited between 43.2 and 44.24 Ma (late Lutetian), during nannofossil zone NP15-NP16 and shallow benthic foraminifera zone SBZ14-SBZ15 (Scotchman et al., 2014). These estimated ages are in agreement with studies from Mochales et al. (2012) who estimated the end of the Morillo System at 43.2 Ma. Although this study has not directly sampled the Morillo System, it predicts (considering a SAR of ~ 30 cm/kyr) that the C21r-C20n polarity reversal at 43.43 Ma is located in the Morillo I and Morillo II sandbodies, indicating again slightly younger age predictions than the model of Scotchman et al. (2014).

3.7.6 The Guaso System

Biostratigraphic studies suggest that the beginning of the Guaso System occurred at ~43.23 Ma (Scotchman et al., 2014). The top of the Guaso System represents the termination of the deep-marine deposition and the beginning of the deposition of
deltaics and fluvial deposits of the Sobrarbe and Escanilla formations. The cessation of the deep-marine sedimentation has been estimated to be between 41.6 to 42.3 Ma in SBZ15 and at the top of chron C20n (Bentham and Burbank, 1996; Dreyer et al., 1999; Mochales et al., 2012). Scotchman et al. (2014) suggested the top of the Guaso System to be a dark-shale anoxic horizon estimated at 42.55 Ma. This horizon was recognised as well by Mochales et al. (2012) who dated it at 42.4 Ma using magnetostratigraphy.

3.8 Correlations between the Jaca and the Ainsa basins

The palaeomagnetic study undertaken by Oms et al. (2003) was based on the Jaca Basin and sampled deep-marine clastics of the Hecho Group. The study covered a 2.2 km thick composite section. The lower part of the section sampled the Santa Liestra Allogroup (Cotefablo turbidites). These sediments are overlain by the Banastón Allogroup which includes deep-marine clastic depositional systems. This allogroup is composed of a long succession of tabular sandstone turbidites and mudstones which are occasionally interrupted by catastrophic events which resulted in the deposition of carbonate megaturbidites (MT). The upper part of the section is characterised by channelised turbidites (Rapitán System) (Remacha et al., 1995), followed by prodelta deposits (Larres marls Formation) and platform deposits (Sabiñánigo sandstone Formation) (Puigdefábregas, 1975). A summary of the Jaca stratigraphy is shown in Figure 3.13.

The study by Oms et al. (2003) suggests that the reversed polarity observed in the Cotefablo Allogroup can be associated with chron C20r. This interval correlates in this study with the uppermost part of the Banastón System (Banastón VI sandbody), Ainsa System and probably part of the Morillo System (interval not
sampled) (Figure 3.13). However, these results differ from age estimations from biostratigraphic and from intrabasinal correlations based on petrographic studies undertaken in the Ainsa and Jaca basins. The Banastón Allogroup in the Jaca Basin has been associated with the Banastón System in the Ainsa Basin using petrographic comparisons (Das Gupta and Pickering, 2008; Caja et al., 2010). Also, Payros et al. (1999) and Labaume et al. (1985) assigned planktonic foraminiferal Zone P9 to the Megaturbidite 4 (MT-4). This would imply that MT-5 occurred within chron C21r. Remacha et al. (2003) also places the initiation of the Banastón Allogroup close to the polarity reversal between C21r-C21n at ~ 47.3 Ma with most of the Banastón Allogroup occupying chron C21n. This is in close approximation with the results of this study which estimates the Banastón System at ~ 46.8 Ma within chron C21n. In order to have a better agreement between biostratigraphic and magnetostratigraphic data, the N1 chron interpreted as C20n by Oms et al. (2003) can be re-interpreted as C21n (Figure 3.13). This new proposed correlation between the Oms et al. (2003) study and this study suggests that the Cotefablo Allogroup is coeval with the Gerbe System and possibly the lowest part of the Banastón System (Banastón I and II sandbodies). The Banastón Allogroup in the Jaca Basin would therefore coincide with the rest of the Banastón System in the Ainsa Basin and may also include the lower part of the Ainsa System. Although, the lack of age control on the total thickness of the chron C20r and the expected reduction of SARs during the deposition of the Ainsa and Morillo systems (Heard et al., 2008, Scotchman et al., 2014) may result in the Ainsa System completely correlating with the Jaca Allogroup. This interpretation is supported by biostratigraphic age models which have associated the Ainsa, Morillo and Guaso systems of the Ainsa Basin with the Jaca Allogroup of the Jaca Basin (Remacha et al., 2003; Scotchman et al., 2014).
There is a minor disagreement about the termination of the deep-marine sedimentation of the Hecho Group with Remacha et al. (2003) placing it at ~ 41 Ma in the Jaca Basin and Scotchman et al. (2014) estimating it at ~ 42 Ma in the Ainsa Basin. This study has demonstrated that the sediments of the Gerbe, Banastón and Ainsa system sediments are ~ 1 Myr younger than the age model proposed by Scotchman et al. (2014). If this relationship is maintained throughout the younger systems, then the termination of the Hecho Group deposition would be coeval in both basins at ~ 41 Ma.

Figure 3.13 Magnetostratigraphic correlation between Oms et al. (2003) and this study.
The poor image quality of the Oms et al. (2003) publication does not permit the visualisation of the stratigraphic interval with accuracy. This drawing is merely interpretative and may not coincide with the original data. Dash lines show the correlations between the interpreted magnetostratigraphic data of Oms et al. (2003) and this study. However, taking into consideration biostratigraphic studies, it is possible that the R1 interval of Oms et al. (2003) originally assigned to C20r is now reinterpreted to C21r (yellow lines).

3.9 Correlations between the Tremp-Ager Basin and the Ainsa Basin

The two most important chronostratigraphic studies undertaken in the Tremp Basin are the study by Nijman (1998) based on sequence stratigraphic correlations and the study by Bentham and Burbank (1996) which included extensive magnetostratigraphic work.
The deep-marine sediments of the Ainsa Basin were sourced from a large fluviodeltaic complex which entered the Tremp-Ager Basin from the east forming the Montanyana Group (Mutti et al., 1985; Marzo et al., 1988). Nijman (1998) divided the Montanyana Group into the Lower Montanyana (LM), Middle Montanyana (MM) and Upper Montanyana (UM) groups. The Lower Montanyana Group (Castigaleu Formation) can be subdivided into two megasequences (LLM and ULM) and this group is characterised by trunk river sheet sandstone facies (Nijman, 1998). The Middle Montanyana (Castissent Formation) only contains one megasequence. This group is characterised by amalgamated sheet sandstones typical of the main channel fluvial feeders. The Upper Montanyana Group is subdivided into five megasequences (UMA-UME) and contains the Capella and the Perarrua formations.

Three main fan-delta systems were active during the deposition of the Hecho Group sediment-gravity flow deposits, including turbidites, namely the Claramunt, San Esteban and Campanué fans (Nijman, 1998). These fans are composed of coarse-grained sandstones and conglomerates (Puigdefábregas et al., 1992; Nijman, 1998). The San Esteban Fan was active during the initiation of the Montanyana Group and prograded significantly into the Middle Montanyana Castissent fluvial environment. This fan continued its activity during the lower part of the Upper Montanyana. At the base of the UMB megasequence, sedimentation was then overtaken by the Campanué Fan.

The study undertaken by Bentham and Burbank (1996) used many magnetostratigraphic sections in the Tremp-Ager and in the Ainsa basins and attempted to correlate the stratigraphy between these two basins. However, these authors only differentiated the deep-marine sediments of the Hecho Group from the
overlying deltaics of the Sobrarbe Formation, and they did not attempt to break
down the Hecho Group into the different deep-marine systems. As a consequence,
the correlations established between these two basins are broad scale and cannot
resolve the age uncertainties of the individual systems. Figure 3.14 shows a
composite section of the Tremp-Ager Basin stratigraphy using the Essera Valley
section and the upper part of the Navarri section. This composite section is
compared with the magnetostratigraphic results of this study. The Gerbe System
correlates with the Perarrua Formation in the Upper Montanyana Group, suggesting
that the older systems Los Molinos, Fosado and Arro correspond with the Middle
Montanyana Castisent Formation and probably the upper part of the Lower
Montanyana Group. The Banastón and the Ainsa systems appear coeval with the
sediments of the Capella Formation in the Upper Montanyana Group, and the
Morillo and Guaso systems are likely to correlate with the conglomeratic units of the
Pano Formation (Figure 3.14).

Figure 3.14 Magnetostratigraphic correlation between Bentham and Burbank (1996)
and this study. The Gerbe System is coeval with the Perarrua Formation and the Banastón
and the Ainsa systems are coeval with the sediments of the Capella Formation. The Morillo
and Guaso systems are likely to be coeval with the conglomeratic units of the Pano
Formation.
Figure 3.15 Summary of chronostratigraphic work undertaken in the Jaca, Ainsa and Tremp basins showing inter-basin correlations. Results from this study are highlighted in yellow. Modified after Scotchman et al. (2014).
3.10 Conclusions

This chapter has presented, for the first time, magnetostratigraphic work across ~ 1 km of stratigraphy of the deep-marine sediments of the Upper Hecho Group in the Ainsa Basin. The study sampled the majority of the Gerbe System and the totality of the Banastón and the Ainsa systems. This study has identified three main polarity chron: R1, N1 and R2. Using the recent biostratigraphic study of Scotchman et al. (2014), the R1, N1 and R2 chron has been associated to the chron C21r, C21n and C20r, respectively. The C20r-C20n polarity reversal, although not sampled in this study is predicted to be found in the Morillo I- II sandbodies. These correlations suggest that the sediments are ~ 1 Myr younger than the age model proposed by Scotchman et al. (2014). The SARs during the deposition of the Gerbe and the Banastón systems have been established at ~ 34.5 cm/kyr.

Results from this study have been compared with the magnetostratigraphic studies carried out by Mochales et al. (2012) and Holl and Anastasio (1993) at the edges of the Ainsa Basin, in the Boltaña and in the Mediano anticlines, respectively. In the Boltaña Anticline, the shallow-marine retrogressive sequence of the lower part of the Paules Member has been linked with the deposition of the Gerbe and the Banastón systems whilst the progradational sequence of the upper part of the Paules Member is correlated with the deposition of the Ainsa and Morillo systems. Comparisons with the study of Holl and Anastasio (1993) in the Mediano Anticline suggest the Gerbe and part of the Banastón systems (probably BI-BIII sandbodies) are coeval with the Castissent Group and that the Ainsa, Morillo and Guaso systems are of a similar age as the Santa Liestra Group.

Interbasin correlations between the Jaca and Ainsa basins suggest that the Cotefablo Allogroup in the Jaca Basin is coeval mainly with the Gerbe System in the
Ainsa Basin and that the Banastón Allogroup coincides with most of the deposition of the Banastón System. The Ainsa and the Morillo systems seem to correlate with the Jaca Allogroup. In the Tremp-Ager Basin, the Gerbe System correlates with the Perarrua Formation; the Banastón and the Ainsa systems are coeval with the Capella Formation of the Upper Montanyana and the Morillo and Guaso systems are likely to be coeval with the conglomerates of the Pano Formation. A summary of all the chronostratigraphic studies undertaken in the Tremp-Ager, Ainsa and Jaca basins including results from this study can be seen in Figure 3.15.
Chapter 4

Well A6 core

4.1 Introduction and objectives
The fine-grained sediments of the Middle Eocene Ainsa Basin are finely laminated with an alternation of lighter and darker coloured bands and are characterised by thin sandstone turbidites packages forming cyclic sequences (this chapter and Chapter 5). In order to try and understand better the underlying causes for cyclic deposition of fine-grained siliciclastic deposits in a tectonically active basin, this chapter combines detailed sedimentological with multiple geochemical proxies of an essentially fine-grained siliciclastic deep-marine Middle Eocene core from the Ainsa Basin, Spanish Pyrenees. Detailed sedimentary logging, high-resolution multi-element XRF geochemistry, SEM and XRD results are combined to infer variations in grain size, weathering, organic content and changes in the geochemistry of the main recognised lithologies. TOC and stable carbon isotope studies are also included as they provide a useful means for prospective identification of the origin of organic matter and characterising the nature and provenance of the sediments in the basin.

Cyclostratigraphic techniques have been applied to the high-resolution sedimentological and geochemical records to determine the potential presence of Milankovitch orbital periodicities. Eccentricity, obliquity and precession cycles, can have an effect on sedimentation patterns as they affect the amount and distribution of incoming solar radiation and have a significant effect on precipitation and storminess, ice volume and sea-level change among others (see Section 1.3). Although the link between orbitally forced climatic variability and sedimentation is still poorly
understood (Meyers and Sageman, 2000), the recognition of Milankovitch forcing in a siliciclastic sequence can help our understanding of how these orbital cycles have affected the detrital and biogenic flux to deep-marine environments.

4.2 Geochemical proxies and sedimentation patterns in deep-marine environments

The geochemistry of ancient deep-marine sediments provide important information on sediment sources (e.g., Heller and Frost, 1988; McLennan et al., 1993), sediment transport processes, palaeoclimatic and palaeoenvironmental conditions for example fluctuations in biological productivity and the redox state of bottom waters (Stein et al., 1989; Shimmield and Mowbray, 1991; Salamy and Zachos, 1999; Werne et al., 2000). Geochemical proxies are commonly used to deduce the likely environment for formation of deep-marine sedimentary rocks (Feng and Kerrich, 1990; Calvert and Pedersen, 1993; Schneider et al., 1997; Schnetger et al., 2000). Individual proxies have their limitations and therefore, a multi-proxy approach is preferred to obtain a comprehensive understanding of palaeoenvironments.

Analysis of deep-marine fine-grained thin-bedded turbidite and hemipelagic deposits provides an opportunity to interrogate sedimentation patterns, because this combines both a terrigenous detrital component (represented in the delivery of clays and terrestrial organic matter), and a pelagic biogenic component containing mineralised skeletal remains and marine organic matter. Additionally, the authigenic component reflects the burial and diagenetic history. The terrigenous component, mainly fluvial and aeolian, is affected by changes in precipitation, erosion, and weathering (e.g., White and Blum, 1995; Kostaschuk et al., 2002; Jacobson et al., 2003; Bouraoui et al. 2004; Riebe et al., 2004). The biogenic component is sensitive to
water column conditions which affect productivity. Climate can also influence the biogenic influx by regulating nutrient supply and by controlling water-column stability (e.g., Werne et al., 2000; Moreno et al., 2002). Tectonic processes can also exert a major control on the terrigenous and biogenic component via tectonic uplift/subsidence and basin accommodation space which, in turn, will affect rates of weathering and erosion and may cause relative sea-level changes (e.g., Watts and Thorne, 1984; Raymo et al., 1988; Rea, 1992; Riebe et al., 2001, 2004; Jacobson et al., 2003; Carey et al., 2005; Vött, 2007; Dixon et al., 2012)

4.3 The Well A6

4.3.1 Location of Well A6

The Well A6 was drilled ~ 1.9 km south of Labuerda and 2.4 km north of Ainsa towns, next to the Forcaz stream at ~ 400 m west of the road A-138 which connects the villages of Labuerda and Ainsa. Plate 4.1 shows an aerial photograph with the location of the A6 Well. The A6 Well was drilled to a subsurface depth of ~ 230 m with ~ 97% of core recovery.

4.3.2 Stratigraphic location of the A6 core

The A6 core was drilled between the Ainsa and Morillo submarine fan systems (Figure 4.1). The Ainsa System has been interpreted as a lower-slope and proximal basin-floor channelised fan system (Pickering and Bayliss, 2009), and the Morillo System is an erosional slope and base-of-slope channel system (Bayliss and Pickering, 2014).

The A6 core records deposition of both fine-grained sediments at the lateral margin and levée sites of the sandy Ainsa III Fan and the overlying interfan sediments
below the Morillo I Fan (Figure 4.2) and is characterised by the deposits of low-concentration and low-velocity turbidity currents.

The deep-marine systems of the Ainsa Basin appear to be characterised by only one major submarine channel being active at any time which fed from a point source towards the southeast over the growing Mediano Anticline (Pickering and Bayliss, 2009). The abandonment of the channel resulted in the switch-off of coarse clastic delivery to the basin and fine-grained sedimentation dominated these intervals. The stratigraphy of the Ainsa Basin shows this successive activation and abandonment of coarse-grained channelised systems. The relative linearity and confinement of the basin, makes the position of the A6 core ideal to study the temporal evolution of the deep-marine systems and the possible effects that allocyclic factors such as climate and tectonics exerted on the chemistry and sedimentation patterns of these sediments.

Plate 4.1 Aerial photograph showing the position of the Well A6. The Well A6 core site can be accessed from the road A-138 ~ 2 km north of Ainsa town and is located next to the Forcaz stream. Aerial photograph available from www.sigpac.mapa.es/fega/visor.
Figure 4.1 Geological map of the Ainsa Basin showing the position of Well A6. The well is positioned within the Ainsa and Morillo submarine fan systems. Modified after Pickering and Bayliss (2009).
Figure 4.2 **Reconstruction of the environment of deposition for the A6 core.** The lower part of the A6 core represents the off-axis fan lateral-margin deposits to the Ainsa III Fan and the upper part represent interfan deposits between the Ainsa and Morillo sandy fans. Modified from Pickering and Bayliss (2009).

4.3.3 Age of the A6 core

Using a planktonic foraminifera zonation, the age of the core is constrained within the upper middle Lutetian, very close to the P11-P12 Biozones (Pickering and Corregidor, 2005). Spectral studies of bioturbation intensity suggest SARs of ~ 30 cm/kyr, yielding an estimate of 0.8 Ma of stratigraphy for the entire A6 core (Heard et al., 2008).

4.4 Sedimentological study of the A6 core

220 m of detailed sedimentary logs have been produced from the A6 core (Appendix 3). All beds thicker than 2mm have been included in the logs. In addition, a total of six thin sections were taken from the core to understand some of the sedimentary features.
Special attention was given to the geometry of mm- to cm-sized fine-grained turbidite sandstones and the nature of muddy dark bands.

4.4.1 Sedimentary facies

The core shows colour variations from pale, medium and dark grey. Very rarely, light grey-orange-coloured bands are present. These changes in colour probably reflect compositional (both primary and diagenetic) changes and grain-size variations. The core is tightly carbonate cemented and locally contains abundant pyrite mainly as frambooids in sandstone turbidites, hemipelagic mudstones, shells and burrows.

The A6 core comprises essentially hemipelagic marlstones, laminated, very thin-and thin-bedded normally-graded sandstone turbidites, silty and muddy-siltstones together with some chaotic sediment slide and slump deposits.

Fine-grained sandstone turbidites (Facies C2.3), mud and silt couplets (Facies D2.3) and graded siltstones (Facies D2.1) form part of the levée facies association. Apart from turbidites, other sediment gravity-flow deposits are present in minor amounts in the A6 core sediments. These include cohesive-flow deposits (slides and slumps) (Facies F2.1) and other laminar-flow deposits, as well as those resulting from the settling from suspension (Facies E1.1, interpreted as hemipelagites). There are mm-to-cm-sized bands in the core composed mainly of *nummulites, alveolinids* and disaggregated shell material (Plate 4.2c). They tend to occur towards the top of the A6 core. These nummulitic packstones were probably redeposited into deep-water from adjacent carbonate platforms during storm events (as tempestites).
<table>
<thead>
<tr>
<th>Facies name</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin-bedded sandstones (C2.3)</td>
<td>Sandstones are moderately sorted and show subtle gradational fining upward trends (Plate 4.2a). Thickness range from mm to up to 6 cm thick. Bouma divisions are mainly Tc and Td and may contain a thin mudstone cap (Te division) (Plate 4.2c). Many beds are flat topped but locally may be current-rippled. Planar laminations generally occur in turbidites > 1 cm thick. Turbidite bases are sharp but with little (mm) or no erosion. Pyrite is common in the turbidites and forms small cubic opales that concentrate forming clusters (Plate 4.3b). Filaments of organic matter parallel to bedding are common (Plate 4.3e).</td>
<td>Dilute/low-density turbidity current deposits. The combination of biogenic and detrital elements is typical of re-sedimented deposits.</td>
</tr>
<tr>
<td>Regular siltstone and mudstone laminae (D2.3)</td>
<td>Thin regular silt and mud laminae. Siltstone laminae show generally sharp tops and bases. Intervals of silt and mud laminae can reach 2 m thick (Plate 4.2l).</td>
<td>Transportation by waning low-density turbidity currents. Deposition by suspension fall-out.</td>
</tr>
<tr>
<td>Structureless mudstones (E1.1)</td>
<td>Mudstones are dark grey in colour, homogeneous with a uniform grain-size distribution (Plate 4.2h and 4i). The mudstones lack primary sedimentary structures including fine laminations. Bed tops and bases are sharp. Thickness is typically between 1 and 6 cm. Burrowing structures are commonly present and pyritised burrow tubes can commonly be seen in these bands.</td>
<td>The lack of sedimentary structures and the presence of bioturbation suggests hemipelagic deposition by suspension fall-out.</td>
</tr>
<tr>
<td>Unstratified siltstones (D1.3) and silty-mudstones (E 1.3)</td>
<td>Pale grey in colour, commonly disorganised. Bed top and bases can be sharp or gradational. Sorting is poor to moderate. Bioturbation can be locally very intense and can totally homogenise the sediments.</td>
<td>Deposition by suspension fall-out.</td>
</tr>
<tr>
<td>Graded and stratified siltstones (D2.1)</td>
<td>Thin-to-medium-bedded, well sorted, light-grey in colour, normally graded from silt to clay-size particles and densely bioturbated (Plate 4.3b). The bases of beds are commonly sharp.</td>
<td>Transported via low-concentration turbidity currents.</td>
</tr>
<tr>
<td>Chaotic sediments-muddy slides and slumps (F2.1) and disorganised gravely muds (A1.2)</td>
<td>Folded and contorted siltstones and mudstones. Locally, sand packages and shallow marine debris including corals and shells are present (Plate 4.2e). Thickness varies from 10 cm to 4m. Locally, sedimentary structures such as siltstone-mudstone laminae are preserved (Plate 4.2f). Typically the folds are tight and most are recumbent relative to bedding. Bases are sharp and tops vary from planar to irregular. Bioturbation is absent to sparse.</td>
<td>Deposited via slumps and slides and cohesive debris flows. These events were caused by basin slope failure.</td>
</tr>
<tr>
<td>Disorganised nummulitic sandstones (A1. 4)</td>
<td>Carbonate cemented nummulitic sandstones form thin bands (up to 5 cm thick) of nummulites, broken thin shells and other shallow marine material (Plate 4.2c, 4.2e and 4.3f). Occur mainly in the uppermost 45 m of Well A6.</td>
<td>Storm deposits transferred from adjacent carbonate platforms. Re-deposited tempestites/storm layers.</td>
</tr>
</tbody>
</table>

Table 4.1 Summary of facies recognised in the A6 core. Facies classification scheme from Pickering *et al.* (1986b, 1989).
Locally, the core shows tectonic deformation, e.g., at 71 m core depth there is a 10 cm-thick duplex structure with calcite veining which is interpreted as a post-depositional thrust-fault zone (Plate 4.2a, Appendix 3). This area corresponds with pronounced peaks in the natural gamma and several XRF elements (Figure 4.3). These observations suggest that the duplex probably represents a zone of significant but non-quantifiable tectonic dislocation. Also, at 142 m core depth, there is a 15 cm-thick breccia with crystal-fibre slickensides caused by shearing (Plate 4.2b, Appendix 3). Unlike the duplex, this horizon is not represented by any natural gamma-ray or XRF anomalies (Figure 4.3), and although it is likely to be a thrust, it is possible that any tectonic dislocation was less significant than that for the duplex structure at 71 m core depth.

Locally, the core is intensively bioturbated and different ichnospecies have been recognised and studied by Heard and Pickering (2008), and Heard et al. (2008). The most common ichnotaxa identified from shallowest to deepest tier, are *Phycosiphon, Nereites, Planolites, Scolicia, Thalassinoides, Zoophycos* and *Chondrites*. Burrows appear flattened due to burial compaction and show a typical ratio of 4:3 mm suggesting a 60% degree of vertical compaction. Table 4.1 summarises the various facies identified in the A6 core adopting the hierarchical and descriptive facies classification scheme of Pickering et al. (1986b, 1989). Plates 4.2 and 4.3 show selected examples of facies and structures observed in the core.
Plate 4.2 Close-up photographs of the A6 core (a) Duplex structure at 71 m core depth. (b) Breccia with crystal-fibre slickensides at 142 m core depth. (c) Nummulitic packstone (Facies A1.4) at 20 m core depth. (d) Nummulitic packstones at 52 m core depth associated with sediment slide unit (Facies F2.1). (e) Sediment slide at 22 m core depth showing folded siltstones (Facies F2.1), containing shallow-marine material such as nummulites and corals. (f) Sediment slide (Facies F2.1) at 41 m core depth showing and increase in dip in the finely laminated mudstone-siltstone laminae. (g) Debris flow deposits at 37 m core depth (Facies A1.2). (h) Muddy dark band with sharp boundaries at 69 m core depth showing bioturbation (Facies E1.1). (i) Dark band with sharp boundaries (Facies E1.1) at 114 m core depth. (j) Graded siltstones and structureless muds (Facies D2.1 and E1.1) at 72 m core depth. (k) Intense bioturbation of the core which has erased part of the original sedimentary structures at 222 m core depth. (l) Silt and mud laminae with very fine-grained sandstone turbidites (Facies D2.3 and C2.3) at 189 m core depth.

209
Plate 4.3 Thin sections of the A6 core. (a) Field of view (FOV) 4.5 mm, cross-polarised light (XPL). Sandstone turbidite (Facies C2.3) showing sharp boundaries and subtle normal grading at 175 m core depth. (b) FOV 1.1 mm, XPL. Turbidite sandstone at 174 m core depth. Most grains are quartz (qz) and carbonates (ca) with some plagioclase feldspars (pla) showing characteristic lamellar twinning and alkali feldspars with perthitic textures (pe). Muscovite (mu), pyrite framboids (py) and Fe-oxides are present in minor amounts. Shell fragments and nummulites are commonly seen. (c) FOV 4.5 mm, XPL. Sandstone turbidite with 2mm mud cap at 175 m core depth. (d) FOV 2.25mm, XPL view. Foraminifera preserved in silty sediment at 112 m core depth. Initial geopetal infill with pyrite and then cavity finally filled with sparite calcite. (e) FOV 1.1mm, XPL. Organic matter and pyrite in sandstone turbidite at 65 m core depth. (f) FOV 4.5mm, XPL. Package of remobilised nummulites (nu), echinoids (ech) and bryozoans (br), pyrite also present at 64 m core depth. (g) FOV 2.25 mm, XPL. Flattened burrows in siltstones due to compaction at 112 m core depth. (h) Normally-graded silty beds at 175 m core depth. FOV 4.5 mm, XPL.

Figure 4.3 XRF elements showing thrust zone anomaly. Anomalous spike at ~ 71 m depth can be seen in the natural gamma and in most of the XRF elements. This spike is associated with a thrust zone (Plate 4.2a). The breccia seen at ~ 142 m (Plate 4.2b) does not show any anomaly in the XRF elements. cps - counts per second.
4.4.2 A6 core sedimentary divisions

The A6 core can be divided into three principal stratigraphic intervals. The lower (oldest) 50 m section is characterised by abundant thin-bedded, very fine and fine-grained sandstone turbidites. There are intervals of thin, regular, siltstone-mudstone laminae (Plate 4.2l) tens of cm thick and bioturbated siltstone and silty mudstones (Plate 4.2j). This core section corresponds to the top of the Ainsa II Fan and is deposited off-axis from the basin-floor Ainsa III Fan (Figure 4.1). In the middle part of the A6 core, there is a lower frequency of thin-bedded, fine and very fine-grained sandstone turbidites. These sandstone turbidites tend to be thinner (average 1-2 cm) than in the fan abandonment and off-axis deposits. Where bioturbation intensity is least, packages of siltstone and mudstone laminae with interbedded mm-size sandstone turbidites are well preserved. Mapping suggests that this middle section represents the interfan deposits between the Ainsa III and Morillo I fans (Pickering and Bayliss, 2009). The upper 45 m of the core comprises several MTDs consisting mainly of cm to m-scale sediment slides (Plate 4.2e and 4.2f), and debris-flow deposits (Plate 4.2g), containing redeposited nummulites (Plate 4.2d) and other shallow-marine material such as coral fragments redeposited from shallow-marine sites (Plate 4.2f). Sediment slides are identified by anomalous bed dips, folding, attenuation and disaggregation of beds. These MTDs probably resulted from the gravitational collapse of lateral-margin basin-slope sediments, as there is an absence of coarse detrital material. This upper core section possibly represents the initiation of the Morillo I sandbody (fan) (Figure 4.1). Representative sedimentary logs of the main sections of the A6 core can be seen in Figure 4.4.
Figure 4.4 Representative sedimentary logs of the three main sections of the A6 core. This figure shows the variability in abundance of sandstone turbidites. The lower section is characterised by a larger number of turbidites, the middle section contains thick intervals of finely laminated mud-silt couplets and the top section is characterised by numerous sediment slides. Appendix 3 shows complete sedimentary logs of the A6 core.
4.5 Geochemical study of the A6 core

This section combines the results from the XRF scanning, XRD, SEM, TOC and carbon isotope analyses to interpret environmental and depositional changes in the chemistry of the sediments. Parameters such as bioturbation and sandstone turbidite abundance have also been included to link chemical changes to the sedimentology of the A6 core. Bioturbation intensity was studied by Heard and Pickering (2008) and Heard et al. (2008). Sandstone turbidite intensity was calculated by counting the number of sandstone turbidites ≥ 0.2 mm thick in successive 10 cm-thick vertical core intervals. Lithogenic elements have been normalised to aluminium content in order to account for carbonate dilution effects (Shimmield and Mowbray, 1991). Normalising data to a conservative element such as Al is useful to determine relative changes in other elements in settings where biological and diagenetic processes may influence their geochemistry (Löwemark et al., 2011).

4.5.1 XRF results

Well A6 core was scanned using a multi-element XRF scanner from 230 to 60 m depth below the surface using a core spacing interval of 4 cm between measurements. This section avoids the top 60 m of chaotic sediments of the A6 core but contains the thrust at ~ 71 m core depth. Any geochemical work undertaken in the A6 core was therefore restricted to 230-80 m depth to prevent this deformed area. The methodology used for the XRF scanning has been detailed in Section 2.5.
4.5.1.1 Elemental distributions

Correlation-coefficient matrices between element pairs for a 31 m long dataset using a spacing interval of 3.5 mm (N = 8,300) were determined in order to examine potential relationships (Table 4.2) and any controls on the chemical composition of the sediments in the A6 core. Elements such as Al, Ti, K, Rb and Zr are exclusively present in the detrital component and are not influenced by biogenic or diagenetic processes. These elements can, therefore, reveal changes in the composition of the detrital inputs.

Table 4.2 Correlation coefficients calculated for pair of elements.

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Mn</th>
<th>Fe</th>
<th>Cr</th>
<th>Rb</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-0.04</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.88</td>
<td>0.19</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>-0.71</td>
<td>-0.3</td>
<td>-0.07</td>
<td>-0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.44</td>
<td>0.42</td>
<td>0.08</td>
<td>0.61</td>
<td>-0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>-0.34</td>
<td>-0.06</td>
<td>0.07</td>
<td>-0.25</td>
<td>0.31</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.74</td>
<td>0.32</td>
<td>0.08</td>
<td>0.75</td>
<td>-0.59</td>
<td>0.45</td>
<td>-0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.08</td>
<td>0.17</td>
<td>0.06</td>
<td>0.12</td>
<td>0.01</td>
<td>0.20</td>
<td>0.18</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.74</td>
<td>0.38</td>
<td>0.08</td>
<td>0.78</td>
<td>-0.6</td>
<td>0.47</td>
<td>-0.26</td>
<td>0.62</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>-0.19</td>
<td>0.07</td>
<td>0.03</td>
<td>-0.19</td>
<td>0.23</td>
<td>-0.12</td>
<td>0.18</td>
<td>-0.14</td>
<td>0.02</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>0.01</td>
<td>0.43</td>
<td>0.04</td>
<td>-0.08</td>
<td>-0.03</td>
<td>0.14</td>
<td>0.05</td>
<td>0.01</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Resolution 3.5mm spacing interval through 31 m of core stratigraphy. N = 8,300. Shown in bold strong correlation coefficients (>0.6).

The correlation matrices show positive association between Al, Ti, K, Rb, and Fe (Table 4.2), which reflects the continental, derived silicate fraction of the sediment. These elements are inversely related to Ca content, which represents the most important biogenic (and diluting) component in the Ainsa Basin sediments. The negative correlation between typical terrigenous and biogenic elements reflects the mixed marine and terrestrial sources of the sediments. Aluminium is principally derived from aluminosilicate clay minerals. The strong association between Al, K and
Rb (0.74-0.88) suggests detrital clay input of relatively uniform composition. Iron can appear incorporated into clay minerals such as chlorite, smectite and illite (Goldhaber and Kaplan, 1974). The strong association of Fe with K, Rb, and Al is evidence for the presence of detrital Fe-bearing clay minerals (Cosgrove, 1973). The Fe versus Al cross-plot, for example, shows this correlation (Figure 4.5).

Figure 4.5 Cross-plots of selected elements in the A6 core. N = 8,300. There is a positive correlation between Al, K and Rb with Fe indicating the presence of Fe-bearing clay minerals. Si correlates well with Zr and Ti indicating that Zr and Ti mainly appear as zircon (ZrSiO₄) and sphene (CaTiSiO₅), respectively. The Si versus Al cross-plot shows a small compositional group that correlates positively with Al, and probably shows the association of some Si to clay minerals. There is a larger group that does not show correlation with Al and probably indicates that the majority of the Si resides in quartz.
Titanium is present in soils and sediments in the form of Ti-oxides and silicate mineral phases such as rutile (TiO$_2$), sphene (CaTiSiO$_5$) and ilmenite (FeTiO$_3$) (Force, 1976; Humphrey and Bowen, 1982). In the A6 core, Ti has a moderate correlation with elements such as K, Al, Rb and Fe ($R = 0.44-0.61$), and this probably indicates the presence of Ti in clay minerals. The positive association of Ti with Si ($R = 0.42$), which may indicate the presence of Ti-bearing mineral phases such as sphene, tend to be transported in the coarse fraction. This may indicate that the Ti is partitioned between the coarse and the fine fraction with some Ti associated with clay minerals and the rest transported in the coarse fraction associated with heavy minerals (e.g., Correns, 1954; Boyle, 1983).

Zirconium occurs in sediments mainly as the mineral zircon (ZrSiO$_4$). Zircon is a mineral chemically resistant to weathering due to its hardness and lack of cleavage (Sudom and St. Arnaud, 1971; Milne and Fitzpatrick, 1977; Dypvik and Harris, 2001). Cross-plots of Si versus Zr (Figure 4.5) show a compositional grouping probably indicating that most of Zr is present in the sediments in the form of zircon. Zirconium tend to be transported in the coarse fraction and is likely to be concentrated in the sandstone turbidites. Zirconium is likely to be sourced by granites and this inference is supported by petrographic analyses of Ainsa Basin sediments by Das Gupta and Pickering (2008) who found that the quartz grains in sandstone turbidites were exclusively derived from an igneous plutonic origin.

The correlation of silica with detrital elements is in general moderate ($R = 0.4$). Silica may be associated with detrital quartz or bonded in clay minerals such as aluminosilicates. Quartz will tend to be delivered in the coarse fraction while Si-bound in clay minerals would have been transported in the fine fraction. The cross-plot of Si versus Al shows that the majority of the data does not display any robust correlation.
There is, however, a small grouping indicated with an arrow in Figure 4.5 that shows a positive correlation and may indicate the association of Si with detrital clay minerals.

Figure 4.6 Al, Sr and Ca trends from XRF analysis compared with CaCO$_3$ and TOC results. TOC values are low and stable. Ca and CaCO$_3$ follow a similar profile indicating that most of the Ca in the rocks derives from CaCO$_3$. It does not appear to have major changes in productivity in the A6 core sediments. A weight-3 moving average has been applied to the CaCO$_3$ and TOC values and a weight-25 moving average has been applied to the XRF data.

Strontium occurs in a variety of rock-forming minerals including feldspars, calcite and dolomite. In marine carbonates, Sr tends to show a good association with Ca since Sr substitutes for Ca in the calcite lattice causing a strong linear relationship between these two elements (Deer *et al.*, 1966). Strontium can also be of detrital
origin. During weathering, Sr can be easily mobilised and incorporated into clay minerals where it has a strong adsorption. Figure 4.6 shows the profiles of Al, Sr and Ca. The Sr and Al profiles show a similar trend but they differ from the Ca profile. The similarities between the Sr and Al trend suggests that most of Sr present in the A6 sediments originated from the weathering of carbonates and was likely transported in rivers associated with clay minerals. A comparison between Ca from XRF and CaCO$_3$ from TC and TOC analyses shows a similar general profile (Figure 4.6), suggesting that the most important source of Ca in the A6 core material came from calcium carbonate. The lower 50 m of Well A6 has a lower degree of correlation between Ca and CaCO$_3$. This part of the core is characterised by a greater abundance of sandstone turbidites, and it is likely that the profile was affected by additional sources of Ca which may be present in plagioclase feldspars (as seen in thin-sections of sandstone turbidites) and in heavy minerals such as titanite (CaTiSiO$_5$), as inferred by the correlation index between Ca and Ti -0.45 (Table 4.2).
Figure 4.7 Sedimentary logs compared with 3.5mm spacing XRF data. Elements have been normalised to Al to account for dilution effects. Note the enrichments of Si, Ti, Fe, Zn, Zr, K, Sr, and Mn in the sandstone turbidites and the depletions of these same elements in the mudstones (grey bands).

Multi-element XRF data collected using a 3.5 mm spacing was compared with sedimentary logs to evaluate the relative abundance of chemical elements in the different sedimentary facies of the A6 core (Figure 4.7). Fine-grained sandstone turbidites are characterised by enrichments of Si, Ti, Fe, Zn, Zr, Ca, Sr, Mn and S relative to the surrounding siltstones. In contrast, structureless mudstones have a higher content of S at their base, but low contents of Ca, Si, K, Fe, Sr, Zr, Zn and Mn. Sandstones are, therefore, enriched in detrital elements such as Zr, K, Ti and Fe and in biogenic elements such as Ca whilst the mudstones are relatively depleted in these same elements. Mn forms insoluble compounds and accumulates in sediments.
deposited under oxygenated conditions and its content is also high in the sandstones. The only element which appears to be elevated in both sandstones and mudstones in relation to the surrounding siltstones is S. The presence of S is confirmed by the visual observation of pyrite (FeS₂) mainly concentrated in these two sedimentary facies.

4.5.1.2 Grain-size distributions

Some elemental ratios in the A6 core can be used as a reliable proxy for grain size, e.g., Zr/Rb, Zr/Al, Si/Al and Ti/Al (Boyle, 1983; Schneider et al., 1997; Schnetger et al., 2000; Bloemsma et al., 2012). Zirconium, silica and titanium are mainly transported with the sand and coarse-silt fractions and can be used as a representative of the detrital coarse fraction (Correns, 1954; Boyle, 1983; Brumsack, 1986). The use of Si/Al ratios may be affected by the presence of biogenic silica, although most of the Si in the Ainsa sediments appears to be associated with detrital quartz and clay minerals. The Ti/Al ratio is useful as a proxy for grain size since the origin of Ti is considered to be exclusively terrigenous (Murray and Leinen, 1996). In contrast, Al and Rb provide a proxy for the fine-size fraction: the latter two elements are strongly sorbed to clay minerals which prevent their environmental mobility (Arthur et al., 1985). The use of Zr/Rb ratios as a proxy for grain-size, however, can be unreliable if there is a significant contribution of Rb from K-feldspars, commonly associated with coarse silt and sand size fractions. XRD results indicate that feldspar is present in a low percentage in both sandstone turbidites and siltstones. Graphs of Zr/Al, Ti/Al, Zr/Rb and Si/Al used as proxies for grain size, all show similar profiles with a progressive decrease in grain size towards the top of the A6 core (Figure 4.8). When compared with sandstone turbidite intensity, these grain-sized proxies show good agreement, suggesting that most of the Zr, Ti and Si is indeed contained within the
sandstone turbidite (Figure 4.8). These findings corroborate the interpretation that the lower part of the A6 core represents the off-axis deposits of the Ainsa III Fan. Figure 4.8 also compares sandstone turbidite and mudstone intensities. Both facies appear to be more common in the lower part of the core. The turbidite intensity appears to decrease cyclically but the mudstone intensity is maintained relatively constant.

Figure 4.8 Comparison between mudstone intensity, sandstone turbidite intensity and grain-size palaeoproxy profiles. Higher sandstone and mudstone intensity occur in the lower parts of the core whilst turbidite intensity decreases cyclically, mudstone intensities are maintained relatively constant. There is a similar decrease trend in all the grain-size palaeoproxy profiles which is inversed to the sandstone turbidite profile. This inverse relationship suggests that most of the detrital quartz, Ti-rich minerals and heavy minerals (zircon) are associated with the sandstone turbidites. Note the progressive decrease in grain size in the core with a dominance of clay minerals towards the top of the core.
4.5.2 X-ray mapping

An x-ray elemental map of a 2.5mm thick sandstone turbidite surrounded by siltstones from the A6 core can be seen in Plate 4.4. X-ray mapping highlights the spatial variation of grain size in siltstone and sandstone turbidites. Minerals containing elements such as Si, Al, Ca, Rb and Sr show a significant increase in grain size in the sandstone turbidites, whilst minerals containing Fe, K, Ti and Zr do not display any significant grain-size distribution. S appears exclusively in the sandstone turbidites, mainly concentrated at the base of the beds.

Aluminium and K appear to be more abundant in the siltstones, whereas Ca, Si, Rb and Sr dominate in the sandstone turbidites. Zirconium shows a very subtle preferential distribution within the sandstone turbidites and Ti is partitioned equally between the sandstone and siltstones. It should be noted that this elemental mapping technique shows the bulk of the element distribution and does not take into consideration dilution effects of the carbonate content.

Plate 4.4 (next page) X-ray elemental mapping across a 2.5mm sandstone turbidite surrounded by siltstones. The X-ray photograph shows the spatial distribution of different chemical elements. Significant grain size variations between the sandstones and siltstones can be seen in minerals containing elements such as Al, Ca, Si, Rb and Sr whilst Fe, K, Zr and Ti do not show particular grain size changes. S is mostly concentrated in the sandstone turbidites.
4.5.3 SEM and XRD results

The bulk mineralogy for samples from Well A6 were determined by XRD and analysed by SEM (Plate 4.5). XRD was undertaken in 6 samples: 2 siltstones, 2 unstructured mudstones and 2 sandstone turbidites. The XRD spectra plots of the 6 samples are shown in Figure 4.9.

Detrital quartz and calcite are present in major amounts, together with some phyllosilicates (chlorite and muscovite) and feldspars (probably albite) (Figure 4.9, Plate 4.5). Minor minerals such as framboïds of pyrite are also present in the samples although they appear more concentrated at the base of the sandstone turbidites (Plate 4.3a and 4.4). Rare grains of titanite (sphene) are found in the sandstone turbidite (Plate 4.5). BSE images of the sandstone and siltstones show that the rocks are tightly cemented by calcite, ranging from micrite to microsparite and locally dolomite is present (appears less crystalline in the XRD analysis).

Figure 4.9 XRD spectra obtained from 6 bulk samples of the A6 core. The samples were analysed using X-ray powder diffractometry. The three main lithologies of the A6 core were sampled: sandstone (orangey colour), unstructured mudstones (dark grey colour) and siltstones (pale grey colour). Due to large differences in the total counts for each of the samples, intensities have been re-scaled to a total value of 1 and then each spectrum has been artificially separated by adding a constant small percentage. Despite these computations, the relative intensity between the peaks is maintained intact allowing for the determination of semi-quantitative mineral concentrations.
Figure 4.9 shows that all the samples have a very similar mineralogy, although there is probably some variation in the amounts of quartz and calcite relative to layer silicates. The spectral plots indicate that it seems quite likely that the siltstone 1607 and the sandstone turbidites 1611 and 1613 have rather more layer silicates in them. Trying to quantify the numerical differences in the proportion of these minerals was not attempted as it is likely that the results produced would not be reliable without including more samples.

The sandstone turbidite 1611 shows reflections from the mica mineral which are much sharper than in the other samples, implying better crystallinity and possibly larger grains. The reflections from the layer silicates in the other sandstone turbidite 1613, look somewhat different from those in the 1611 pattern; the 14 Ångström reflection (about 7 degrees 2 theta) is relatively weaker, so it is possible that either there is some difference in the composition of the chlorite or is due to the presence of a 1:1 layer silicate. Pyrite reflections seem to be more prominent in the sandstone turbidite and in the dark bands, whilst reflections of chlorite appear more significant in the dark bands.
Plate 4.5 BSE images of the A6 core. The plate shows a 2.5mm thick sandstone turbidite surrounded by siltstones from the A6 core. Angular quartz and calcite grains constitute the majority of the grain compositions. Laths of phyllosilicates such as chlorite and muscovite and plagioclase and perthite feldspars are present in minor amounts. Pyrite forms framboids and tend to concentrate at the base of the sandstone turbidite. Rare grains of titanite (sphene) are found in the sandstone turbidite. Ti is also found in the siltstone matrix probably forming part of clay minerals. Grains are tightly cemented by calcite cement, mostly micritic, but, patches of microsparitic calcite are also present.
4.5.4 TOC and stable carbon isotope results

Throughout the Well A6, values for TOC content are typically low, ranging from 0.24-0.7 wt% (averaging 0.36%) (Figure 4.6). These values are typical for modern open-marine environments (McIver, 1975). TOC shows no trend with depth.

The relative amount of terrestrial and marine-sourced organic matter preserved in sediments is commonly determined using C/N ratios, since the C/N ratio of marine zooplankton and phytoplankton differs from those of land plants (Stein et al., 1989). The low values of organic carbon and nitrogen in the A6 core sediments increase the uncertainty of the results (Leventhal, 2004) and C/N ratios were, therefore, not used in this study.

In Well A6 samples, carbon isotope compositions range between -25‰ and -21‰ with average values of approx. -23‰ (Figure 4.10). These results are consistent with mixing of terrigenous and marine organic matter. The oldest 40 m of the A6 core are characterised by slightly more negative δ^{13}C values (δ^{13}C = -24 ± 0.81 ‰) than the younger sediments (δ^{13}C = -23.7 ± 0.67 ‰), suggesting a higher proportion of terrestrial organic matter. It is possible that the the more negative carbon isotope values are linked to the higher percentage of sandstone turbidites (~ 8.4%) in the first 40 m of the core, showing a much sandier interval than the younger core section (3.9%). From 170 m to 88 m core depth, results appear to vary in a cyclical manner. This section corresponds to the interfan deposits between the Ainsa III and Morillo I fans. Figure 4.10 compares the stable carbon isotope values with the sandstone turbidite intensity in the A6 core. Periods of enhanced coarse-grained delivery to the basin are associated with lighter carbon isotope values and a higher content of terrestrial organic carbon delivery.
4.5.5 Cyclostratigraphic analysis

Time-series analyses of multi-element XRF data, sandstone turbidite intensity and δ¹³C were undertaken in order to ascertain if there is any cyclicity in the geochemical proxies of the A6 core. Heard et al. (2008) have already demonstrated that the bioturbation intensity in Well A6 was controlled by orbital changes.

4.5.5.1 Methods of spectral estimation

The spectrum of the sandstone turbidite intensity data has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Barlett window. Each of these methods is explained in detail in Section 2.9. Figure 4.11 shows the spectral results obtained from applying each of these methods and Table 4.3 summarises the main frequencies present from 0-0.3
cycles/m. There are three main frequencies which consistently appear in all of the spectra analysed: ~ 0.032 cycles/m (1/30 m), 0.09 cycles/m (1/11 m) and 0.14 cycles/m (1/7 m).

Figure 4.11 Methods of spectral estimation using the sandstone turbidite intensity data of the A6 core. REDFIT spectrum uses 4 WOSA segments, ~ 6 degrees of freedom and a bandwidth of 0.02 cycles/m. The MTM method uses 3 tapers and ~ 6 degrees of freedom. The periodogram has been modified with a Bartlett window. The maximum entropy method uses numbers of lags $M = N/3 = 501$). REDFIT spectral computations used the REDFIT software developed by Schulz and Mudelsee (2002). The periodogram, maximum entropy and the MTM spectra used the Analyseries software developed by Paillard et al. (1996).
Table 4.3 Methods of spectral estimation of the sandstone turbidite intensity data in the A6 core.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.008</td>
<td>125</td>
<td></td>
<td>0.006</td>
<td>166.7</td>
</tr>
<tr>
<td></td>
<td>0.033</td>
<td>30.3</td>
<td></td>
<td>0.016</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>0.0875</td>
<td>11.4</td>
<td></td>
<td>0.03</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>0.1416</td>
<td>7.06</td>
<td></td>
<td>0.07</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Periodogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTM</td>
<td>0.00488</td>
<td>204.9</td>
<td></td>
<td>0.008</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>0.0122</td>
<td>81.9</td>
<td></td>
<td>0.032</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>43.5</td>
<td></td>
<td>0.09</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>27</td>
<td></td>
<td>0.142</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum entropy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.3 cycles/m.

4.5.5.2 REDFIT time-series analysis

REDFIT time-series analysis has been undertaken on sandstone turbidite intensity, stable carbon isotopes and multi-element XRF elemental data normalised to Al. Three different curve-fitting models have been applied to the REDFIT spectrum: the AR1 model of Mann and Lees (1996), a quadratic model and a power regression model. Table 4.4 summarised the summative square error associated with each of these models. The best curve fit model in most cases is the power regression method. This model results in the lower summative square error indicating a better fit of the background spectral noise. This curve-fitting model has been applied to all the data analysed using REDFIT. The time-series results have been re-scaled to allow comparison between different variables.
Time-series analysis confirms that cyclicity exists in the sediments of Well A6 (Fig 4.12). There are four recurring peaks which appear to be present in most of the elements, i.e., 0.032, 0.095, 0.15 and 0.196 cycles/m (Table 4.4). All the peaks are > 95% confidence levels, although elements such as Ca, Sr, and Ti show very distinctive peaks > 99%. Most of the elements only show one prominent value indicating that the abundances of these elements must be controlled by a dominant orbital parameter.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1</th>
<th>Quadratic</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone turbidite intensity</td>
<td>3118</td>
<td>3014</td>
<td>1152</td>
</tr>
<tr>
<td>Bioturbation Intensity</td>
<td>12015</td>
<td>38931</td>
<td>24776</td>
</tr>
<tr>
<td>Ca/Al</td>
<td>3047</td>
<td>2961</td>
<td>1737</td>
</tr>
<tr>
<td>Sr/Al</td>
<td>5724</td>
<td>5553</td>
<td>2903</td>
</tr>
<tr>
<td>K/Al</td>
<td>7484</td>
<td>10308</td>
<td>3417</td>
</tr>
<tr>
<td>Mn/Al</td>
<td>944</td>
<td>860</td>
<td>723</td>
</tr>
<tr>
<td>Fe/Al</td>
<td>2664</td>
<td>2497</td>
<td>708</td>
</tr>
<tr>
<td>Ti/Al</td>
<td>3297</td>
<td>3271</td>
<td>1422</td>
</tr>
<tr>
<td>δ¹³C</td>
<td>39.9</td>
<td>39.8</td>
<td>39</td>
</tr>
<tr>
<td>Cr/Al</td>
<td>439</td>
<td>259</td>
<td>701</td>
</tr>
<tr>
<td>S/Al</td>
<td>2010</td>
<td>2470</td>
<td>981</td>
</tr>
<tr>
<td>Si/Al</td>
<td>1610</td>
<td>1448</td>
<td>1210</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicating the most adequate fitting curve method is shown in bold numbers. In most cases, the power regression method has the least summative square error. AR1 method derived from Mann and Lees (1996) equations.

Figure 4.12 (next page) REDFIT time-series analysis of A6 core data. Time-series analysis of XRF elements uses a 4 cm spacing interval and 6 WOSA segments; bioturbation and sandstone turbidite intensity uses a 10 cm spacing interval and 4 WOSA segments. δ¹³C uses 1 m interval and 4 WOSA segments. Power-regression curve fitting method is applied to all the spectral analysis. Spectra have been re-scaled to allow spectral comparison from different variables (Weedon, 2005). The most prominent peaks in the data appears to be associated with eccentricity and obliquity, whilst frequencies associated with precession are less prominent for most elements. The Si/Al and Fe/Al spectra are noisy. This is probably associated with the fact that these elements appear fractioned between coarse and fine fractions. Milankovitch frequencies have been labelled (E-eccentricity, O-obliquity, P-precession).
Table 4.5 REDFIT spectral results of the A6 core data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Principal frequencies (cycles/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S/Al</td>
<td>0.041 0.111</td>
</tr>
<tr>
<td>K/Al</td>
<td>0.087 0.134 0.20</td>
</tr>
<tr>
<td>Mn/Al</td>
<td>0.04 0.099 0.157</td>
</tr>
<tr>
<td>Ca/Al</td>
<td>0.099 0.151 0.192</td>
</tr>
<tr>
<td>Si/Al</td>
<td>0.09 0.151 0.192 0.245 and 0.31</td>
</tr>
<tr>
<td>Cr/Al</td>
<td>0.029 0.087</td>
</tr>
<tr>
<td>Fe/Al</td>
<td>0.029 0.08 and 0.11</td>
</tr>
<tr>
<td>Sr/Al</td>
<td>0.099 0.19</td>
</tr>
<tr>
<td>Ti/Al</td>
<td>0.099 0.244 and 0.32</td>
</tr>
<tr>
<td>Bioturbation intensity</td>
<td>0.029 0.08 and 0.104</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.029 0.093</td>
</tr>
<tr>
<td>δ13C</td>
<td>0.03 0.163</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>0.032 0.095 0.15 0.195 0.24 0.31</td>
</tr>
</tbody>
</table>

All results show a confidence levels are > 95% unless otherwise stated.

4.5.5.3 ASM analysis

The ASM method developed by Meyers and Sageman (2007) has been applied to the turbidite and bioturbation intensity data, first to test if the results reject the null hypothesis of no orbital cyclicity and, secondly, to determine the best fit between the spectral frequencies identified in the time-series analysis and the expected orbital periods for the Middle Eocene. For the Middle Eocene, the expected orbital parameters for eccentricity (E), obliquity (O) and precession (P) (~ 45 Ma) taken from Berger et al. (1992) are the following: E1 = 404 kyr, E2 = 124 kyr, E3 = 95 kyr, O1 = 52 kyr, O2 = 40 kyr, P1 = 23 kyr, P2 = 19 kyr.
Figure 4.13 ASM results of the sandstone turbidite and bioturbation intensity of the A6 core. (a) F-test results for bioturbation and sandstone turbidite intensity using a 3-taper 4π MTM power spectrum. Dotted line marks the 90% F-test significant level. (b) Average misfit results for bioturbation and sandstone turbidite intensity for SARs between 5 and 80 cm/kyr. The significant levels for bioturbation and sandstone turbidite intensity are calculated using 37 and 56 frequencies per spectrum respectively and 100,000 Monte Carlo simulated spectra. Dash lines indicate the critical significance level.

Figure 4.13a shows the results from the MTM harmonic F-test. Frequencies > 90% significance level are present above the dash line. The average spectral misfit recognises an optimal SAR of 28 cm/kyr which exceeds the critical significance level of 0.5% in the bioturbation intensity spectrum ($\text{ASM} = 1.6 \times 10^{-3}$ cycles/kyr, 0.12% significance level) (Figure 4.13b). The ASM method for the sandstone turbidite intensity identifies 5 possible SARs which exceed the critical significance levels (8, 10, 11, 13 and 28.5 cm/kyr); of these, 8, 10 and 28.5 cm/kyr contain the highest H_0 significance level (Figure 4.13b). The 8 and 10 cm/kyr values suggest that the 0.03 cycles/m frequency can be linked to the 400 kyr long eccentricity period which is
unlikely to be represented in the record as the core length is too short to contain this frequency. The most reasonable sediment accumulation rate chosen is 28.5 cm/kyr (ASM = 2.1 x 10^-3 cycles/kyr, 0.27% significance level), a value that is in good agreement with the estimated SAR for the bioturbation data of Heard et al. (2008). The estimated length of the orbital periods using 28 cm/kyr SARs can be seen in Table 4.6.

Table 4.6 Temporal period duration of significant frequencies in the A6 core.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>MTM Probability (%)</th>
<th>Periodicity (kyr) using 28 cm/kyr</th>
<th>Frequency (cycles/m)</th>
<th>MTM Probability (%)</th>
<th>Periodicity (kyr) using 28.5 cm/kyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.032</td>
<td>0.97</td>
<td>112.2</td>
<td>0.032</td>
<td>0.99</td>
<td>108.6</td>
</tr>
<tr>
<td>0.085</td>
<td>0.91</td>
<td>41.7</td>
<td>0.066</td>
<td>0.99</td>
<td>52.3</td>
</tr>
<tr>
<td>0.103</td>
<td>0.94</td>
<td>34.7</td>
<td>0.084</td>
<td>0.90</td>
<td>40.9</td>
</tr>
<tr>
<td>0.158</td>
<td>0.95</td>
<td>22.6</td>
<td>0.111</td>
<td>0.90</td>
<td>31.0</td>
</tr>
<tr>
<td>0.193</td>
<td>0.94</td>
<td>18.5</td>
<td>0.127</td>
<td>0.98</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1611</td>
<td>0.97</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.194</td>
<td>0.90</td>
<td>17.7</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequencies (> 90% confidence levels) at a SAR of 28 cm/kyr in the bioturbation intensity and 28.5 cm/kyr in the sandstone turbidite intensity data. At these SARs the frequency at 0.032 cm/kyr represents eccentricity ~ 110 kyr, the frequency 0.085 cycles/m represents obliquity 40 kyr and the frequencies 0.15 and 0.19 cycles/m represent precession 22 and 18 kyr, respectively. These periodicities are consistent with calculations of orbital periodicities in the Middle Eocene using Berger et al. (1992) equations (eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr).

Applying the results of ASM analysis to the frequencies observed in the XRF elements and carbon isotope values, it can be inferred that the four recurrent frequencies at 0.032, 0.095, 0.15 and 0.196 cycles/m represent E1 (~ 110 kyr), O2 (~ 40 kyr), P1 (~ 23 kyr) and P2 (~ 19 kyr), respectively. All the elements show very prominent obliquity cycles, whilst eccentricity and precession are not always represented. An exception is δ13C which shows a very prominent precession cycle (Figure 4.12). Elements such as Si and Fe shows a noisy spectrum, which is associated...
with the partitioning of the element between the coarse- and fine-grained sediment fractions. Elements such as Ti, Si and δ^{13}C show an additional significant frequency at 0.24 and 0.32 cycles/m which may represent a harmonic of obliquity and precession, but could also represent sub-Milankovitch cycles.

4.5.5.4 Wavelet analysis

Wavelet analysis has been performed in the sandstone turbidite and bioturbation intensity records and also in the stable carbon isotope records (Figure 4.14). XRF data has not been analysed using the wavelet method because the high-resolution sampling interval (4 cm) resulted in records too large (N = 3600) to be computerised with this method. The wavelet method used the available online tool http://paos.colorado.edu/research/wavelets based on the algorithms of Torrence and Compo (1998).

Wavelet analysis of the analysed records shows a number of significant frequencies > 90% confidence levels. The most spatially persistent frequency, present in all the analysed records > 90% confidence level is ~ 0.03 cycles/m (1/33 m). This frequency has been associated with short eccentricity combining REDFIT and ASM analysis. This frequency is present in all of the stratigraphic records. The turbidite and bioturbation intensity records appear continuous throughout the A6 core interval but in the stable carbon isotopes it is only present in the second half of the records. The frequency present at ~ 0.09 cycles/m (~ 1/11 m) is significant in the turbidite and bioturbation intensity records but completely absent in the stable carbon isotopes. This frequency is spatially discontinuous, and is significant mainly in the first half of the records. This frequency has been associated with obliquity 40 kyr using ASM analysis. The frequency at ~ 0.14 cycles/m (1/7 m) is present but spatially sporadic in the three
spectra investigated, with only short intervals where this frequency is > 90% significant levels. However, in the stable carbon isotopes, there is an increase in spectral power mostly continuous at this frequency throughout the records (Figure 4.14). This frequency has been associated with orbital precession using REDFIT and ASM analysis and appears to be more dominant at controlling the distribution of $\delta^{13}C$ in the A6 core.

Figure 4.14 (next page) Wavelet analysis of the sandstone turbidite and bioturbation intensity and the stable carbon isotopes of the A6 core. (a) The wavelet power spectrum identifies spectral power at different frequencies throughout a ~ 150 m thick sequence of the A6 core. Black contours mark the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line are significant > 90% confidence level. Significant spectral peaks which have been linked to Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, P-precession). Data computerised using the online tool http://paos.colorado.edu/research/wavelets.
4.6 Discussion

4.6.1 Origin of the sediments of the A6 core

Sandstone turbidites are enriched in ‘terrestrial’ minerals, such as quartz grains, feldspars, sphene and zircon, which were probably transported in the coarse fraction. Calcite grains enrichment in the turbidites reflects a greater entrainment of detrital carbonate grains from shallow-marine environments. Sandstone turbidites composition, therefore, shows the mixing of terrestrial and marine sediments in shallow-marine environments where biogenic material from ocean productivity was mixed with the terrestrial input of river-derived and aeolian sediments. The concentration of pyrite in the sandstone turbidites is likely to be associated with higher rates of sediment accumulation (Lyons and Berner, 1992), because such rates result in a decrease of oxic respiration and a corresponding increase in sulphate reduction (Canfield, 1991).

The sediment gravity-flows that produced the sandstone turbidites probably originated from fluvio-deltaic environments, with the detrital minerals (such as quartz, feldspars and heavy minerals) transported as mixed loads in the river discharge. These flows entered the marine environment as hyperpycnal flows. The high content of Ca and the presence of abundant nummulites and other shallow-marine biogenic material is indicative of material eroded and entrained into the flows.

The structureless mudstones have a higher content of clay minerals. They have a lower content of elements such as Ca and of other elements that are commonly associated with the coarse detrital fraction, such as Si, Zr and Ti. High content of S is probably associated with the precipitation of pyrite, especially at the base of these layers. The mudstones are generally bioturbated, but the low content of Mn in the dark
layers suggests deposition under slightly reducing conditions (Calvert and Pedersen, 1996). Pyritised burrows and some small thin shells of bivalves occur in these bands. The increased preservation of organic matter in these layers may have caused enrichments of pyrite and the characteristic dark colouration. The uniform grain-size distribution, the lack of internal current structures and the pervasive bioturbation, all support the interpretation that the mudstones are hemipelagites (e.g., Rupke and Stanley, 1974; Stow and Tabrez, 1998).

The higher content of detrital clay minerals in the structureless mudstones, and the low content of marine biogenic elements such as Ca, suggests that these sediments probably originated from dilute riverine flows (suspended-load plumes or hypopycnal flows). When a river carrying fine-grained material enters the sea, the temperature and density contrast between river and salt water can generate a hypopycnal plume which remains at the surface (Nittrouer et al., 2007) The mixture of muddy freshwater with seawater may have facilitated the flocculation of clay particles and a relatively rapid settling of these particles (cf. Leeder, 2011). Thus, the sediments of the A6 core appear to have formed by a combination of hyperpycnal (sandstone turbidites) and hypopycnal flows (mudstones) (Figure 4.15).

Figure 4.15 Hypopycnal, mesopycnal and hyperpycnal flows. Diagram modified from Parsons et al. (2001) to show the formation of hyperpycnal flows from the convection instability of hypopycnal flows. The hyperpycnal flow (turbidity current) will result in the deposition of sandy turbidites. Sediment fall-out of suspension from the remnant hypopycnal flow will result in the formation of hemipelagites which in the core are represented by unstructured dark mudstones. Note, the “idealised” tripartite unit reflects three discrete depositional events (beds).
4.6.2 Variations in the organic content of the A6 core

Three processes are known to control changes in the carbon records through geological time: (a) changes in the productivity of the ocean; (b) variation in the oxygenation of the bottom waters, and (c) variations in the flux of terrigenous organic carbon (Fahl and Stein, 1997). Variations in any of these variables can affect bioturbation intensity.

4.6.2.1 Changes in the productivity of the ocean

TOC has been used by some researchers as a proxy for changes in productivity (e.g., Stein et al., 1989; Werne et al., 2000; Moreno et al., 2002). TOC values in the A6 core are uniformly low, with no significant vertical changes which may suggest changes in productivity (Figure 4.6).

Shimmield and Mowbray (1991) used Ca values from XRF measurements to estimate the calcareous biogenic component, whilst other authors have used HCO$_3$ content (Moreno et al., 2002). The CaCO$_3$ can be of in-situ marine biogenic origin or detrital, but the percentage of each component cannot be determined by visual inspection of the geochemical profiles. Ca and CaCO$_3$ show no trends or significant enrichments or depletions (Figure 4.6). These results, together with the lack of significant changes in the TOC values, could be interpreted as indicating that no significant events of enhanced production or preservation of organic matter occurred.

4.6.2.2 Variation in the oxygenation of the bottom waters

Increased bottom-water oxygenation generally results in increased rates of degradation of organic matter (Moodley et al., 2005), in a high-diversity trace-fossil assemblage (Ekdale, 1985), and intensity of bioturbation. The overall high bioturbation intensity throughout the A6 core is indicative of generally highly oxygenated depositional
environments. Heard et al. (2008) observed significant variation in bioturbation in the A6 core and postulated that changes in oxygenated marine bottom-waters might have caused changes in bioturbation intensity. However, the inverse relationship between sandstone turbidite intensity and bioturbation intensity (Figure 4.16) suggests that temporal variations in SARs may have been the dominant control on bioturbation intensity. Temporal reduction in SARs may have provided an opportunity for burrowing organisms to colonise the sediment. Higher SARs during periods of high turbiditic intensity may have regulated the bioturbation patterns observed in the core.

![Figure 4.16 Sandstone turbidite intensity versus bioturbation intensity.](image)

Figure 4.16 Sandstone turbidite intensity versus bioturbation intensity. Periods of high bioturbation intensity coincide with periods of low sandstone turbidite intensity. It is likely that bioturbation intensity has been controlled by changes in SARs of coarse-grained sediment delivery. Sandstone turbidite intensity from Heard et al. (2008). A weight-5 moving average has been applied to both records.
Alternatively, salinity changes may have been the dominant control on bioturbation intensity, with periods of increased river discharge associated with freshwater flushing of the enclosed Ainsa Basin. At such times, one might expect a dramatic die-back of marine organisms (bioturbators) and increased turbidite accumulation and preservation as the enhanced river discharge would have brought greater sediment volumes into the basin with a greater propensity for hyperpycnal flows in the less dense waters (underflows), with commensurate increased rates of sediment accumulation.

4.6.2.3 Variations in the flux of terrigenous organic carbon

δ^{13}C data shows the variation of terrestrial and marine organic matter in the A6 core. Figure 4.10 compares sandstone turbidite frequency with carbon isotope values and shows an association between low isotopic values and abundance of sandstone turbidites. The oldest 40 m of the A6 core are characterised by slightly more negative δ^{13}C values (δ^{13}C = -24 ± 0.81 \permil) than the younger sediments (δ^{13}C = -23.7 ± 0.67 \permil). Isotopically lighter values of δ^{13}C are indicative of greater amounts of land-derived organic matter present in the sediments. The variation which is observed in the δ^{13}C is probably an effect of the dilution of the marine organic matter by terrestrial input. In periods of decreased turbidite frequency we observe a shift towards heavier isotopic values (Figure 4.10). These results are in agreement with those from Waseda et al. (1995) in Pliocene to Pleistocene sediments from the Chile continental margin, who found that turbiditic sections have lighter δ^{13}C and that the sections interpreted as pelagic fallouts have heavier δ^{13}C values. It should be noted that stable carbon isotope ratios may be affected by microbial sulphate reduction, since this mechanism preferentially uses the more metabolisable marine organic matter to produce FeS and
pyrite \((\text{FeS}_2)\) (Westrich and Berner, 1984; Berner and Westrich, 1985). Diagenetic effects may cause a \(-2\%\) shift (difference) in the isotopic carbon results (Hayes et al., 1989; Meyers, 1994). The presence of pyrite throughout the core suggests that the actual content of marine organic matter in the sediments may have been initially much higher. Pyrite tends to be concentrated in the sandstone turbidites, mainly at the base as observed in thin-sections (Plate 4.3a) and in X-ray elemental mapping (Plate 4.4). It seems plausible that an increase in sandstone turbidite intensity may have caused an increase in burial rates and pyrite formation, which may have shifted \(\delta^{13}C\) results towards the lighter values observed.

4.6.3 Causes of cyclicity in the A6 core

Time-series analysis of the various sedimentological and geochemical data all reflects a strong cyclicity at Milankovitch-like frequencies. It, therefore, seems reasonable to conclude that a generic linkage exists between these variables and any cyclicity. Here, it is argued that this association is likely to result from the variable supply of relatively coarser and finer-grained sediment to the deep-marine basin. Within the interfan and fan lateral-margin deposits, the coarser-grained sandstone turbidite intensity shows a Milankovitch-like cyclicity (Figure 4.12). This means that the turbidity currents transported mixed-load river sediments into deep-water and also entrained detrital and biogenic shallow-marine material to deposit sandstone turbidites with this periodicity. Periods of high sandstone turbidite intensity were associated with higher sediment supply and accumulation rates that may have affected the bioturbation intensity and the preservation of organic carbon. Rapid SARs linked to periods of active turbidite deposition reduced the time for organisms to bioturbate the sediment and oxidise organic matter. Rapid burial probably led to the reduction of organic matter by
sulphate-reducers and resulted in the precipitation of pyrite in the sandstones. During periods of hemipelagic deposition, lower SARs may have resulted in greater bioturbation of sediment and oxidation of organic matter, limiting the formation of pyrite. The δ^{13}C isotopes show that greater sandstone turbidite accumulation corresponds with lighter δ^{13}C isotopic values, suggesting a greater terrestrial supply of organic carbon. Since bioturbation intensity and carbon-isotope values appear to be linked with intensity of the turbidite accumulation, time-series analysis of these parameters shows a similar cyclical behaviour.

The principal processes which drive high-frequency modulation of sediment flux to deep-marine environments and, therefore, create cyclicity in the sedimentary record, include high-frequency climatic cycles (linked with changes in chemical and physical weathering and erosion), tectonics, autocyclic and/or eustatic sea-level changes. These processes are discussed in detail in Chapter 6.

4.7 Conclusions

The A6 core is a siliciclastic succession of deep-marine siltstones, fine-grained sandstone turbidites and hemipelagic mudstones (marlstones) which were deposited as overbank off-axis and interfan deposits in the Ainsa System submarine fan environments (Pickering and Bayliss, 2009). The combined palaeo-proxies used in this study show that there is a combination of terrigenous and biogenic components in these sediments. Grain-size proxies suggest there is an overall fining upwards trend throughout Well A6, recorded as a progressive decrease in the number and thickness of sandstone turbidites. Sandstone turbidites show enrichments of detrital elements such as Si, Zr and Ti, which suggest that they have higher contents of quartz and heavy minerals than the surrounding siltstones while hemipelagic unstructured mudstones are
low in all these components and have a higher content of clay minerals. The detrital fraction in the sediments is likely to be derived from fluvial sources and transported by waning low-density turbidity currents to the deep-marine environment.

TOC values are in general low and typical of open-marine conditions, in strong agreement with the micropalaeontological data which suggests essentially continuous and fully marine conditions throughout the deposition of these sediments. CaCO$_3$ values do not show major changes which might imply important changes in palaeo-productivity. Isotopically lighter δ^{13}C isotopes appear to be associated with periods of higher turbidite occurrence. It is possible that the carbon isotopic signal may reflect terrestrial organic matter supplied to the deep-marine basin preferentially by sandy turbidity currents that led to deposition from hyperpycnal flows. High bioturbation intervals are associated with periods of low turbidity-current frequency, and are likely to have been associated with times of reduced SARs. However, salinity changes linked with times of high fluvial discharge and freshwater flushing of the Ainsa Basin (associated with increased sandy turbidity currents) remains a plausible mechanism to account for the observations, e.g., changes in bioturbation intensity.

Cyclostratigraphic studies reveal a strong Milankovitch cyclicity in the sediments of Well A6, i.e. results of ASM analysis to the frequencies observed in the XRF elements and carbon isotope values suggests the presence of four recurrent frequencies representing ~ 110 kyr (eccentricity), (~ 40 kyr (obliquity), and ~ 23 kyr and ~ 19 kyr (precession couplet). All the elements studied show prominent obliquity cycles, although, eccentricity and precession are not always represented - an exception being δ^{13}C which shows a very prominent precession cycle.
Chapter 5

Orbital forcing in the sediments of the Ainsa Basin

5.1 Introduction and objectives

Chapter 4 examined the detailed sedimentology and geochemistry of a ~ 230 m long deep-marine siliciclastic core (the Well A6 core). The multiple geochemical proxies applied and the use of multiple cyclostratigraphic techniques have demonstrated the cyclic delivery of coarser-grained sediment by turbidity currents associated with Milankovitch forcing. The first objective of this chapter is to expand this study to other fine-grained successions in the Ainsa Basin to demonstrate that Milankovitch forcing has driven these sediments throughout the entire deep-marine stratigraphy of the basin. In order to achieve this, high-resolution spectral gamma-ray logging has been undertaken on long and undeformed sections of fine-grained sediments in many interfan and overbank successions within the deep-marine systems of the Hecho Group. Similar cyclostratigraphic techniques to those ones used in the analysis of the A6 core have been applied to each of these successions. This chapter, not only tries to recognise regular components within these sections but also gives an insight into the sedimentary and geochemical evolution of the basin in deep time by looking at changes in the sand content, SARs and chemical signatures (e.g., U, Th and K content) in each of the deep-marine systems.

The second main objective of this chapter is to determine the timing of deposition of the coarse-grained sandbodies. This can be achieved by estimating stratigraphic thicknesses of the interfan deposits by using geological mapping and building cross-sections across the gamma-ray logged sections in the basin. The timing
between the sandbodies can then be determined by applying the SARs calculated from cyclostratigraphic studies to the interfan stratigraphic thicknesses.

In addition, this chapter integrates spectral results from the gamma-ray logged sections with magnetostratigraphic results (Chapter 3) and published biostratigraphic studies in the basin (Pickering and Corregidor, 2005; Scotchman et al., 2014) or in the vicinities of the basin (e.g., Holl and Anastasio, 1993; Mochales et al., 2012) to permit the tuning of the data to orbital parameters using the La2010a orbital solution of Laskar et al. (2011). Orbital tuning has only been applied to gamma-ray logged sections within the Gerbe, Banastón and Ainsa systems where magnetostratigraphy can provide robust age control points. These calculations permit to adapt the basin depth-stratigraphy into an age-stratigraphy which can help to establish any associations between the initiation of the sandbodies and specific orbital periods (e.g., during the 400 kyr eccentricity minima).

5.2 Gamma-ray logged sections

Ten continuous and undeformed successions of fine-grained sediments were selected for gamma-ray logging across the basin. These sections span a time interval from ~ 48 to ~ 41 Ma and sample the Ainsa Basin systems from the Arro to the Guaso systems. The two older systems in the basin, Fosado and Los Molinos have not been sampled as these systems are tectonically deformed and no suitable sections for gamma-ray logging were identified. Table 5.1 summarises the gamma-ray sections logged, their length and the stratigraphic system in which they are located. Fine-grained sediments in the Morillo and Guaso systems are generally weathered and poorly exposed. Locally, these successions contain large-scaled sediment slides and slumps which cause discontinuities in the vertical succession of hemipelagic fine-grained
It is, therefore, difficult to identify long and undeformed sections suitable for gamma-ray logging in these two systems. The Sieste and Guaso sections located in the Morillo and Guaso systems, respectively, are only 40 m in length. Figure 5.1 shows the location of the gamma-ray logged sections within a composite stratigraphic column of the Ainsa Basin built by integrating numerous cross-sections across the gamma-ray logged areas.

Table 5.1 List of gamma-ray logged sections in the Ainsa Basin.

<table>
<thead>
<tr>
<th>Gamma-ray section*</th>
<th>Length (m)</th>
<th>Stratigraphic system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierrantona</td>
<td>167 m</td>
<td>Arro</td>
</tr>
<tr>
<td>Gerbe</td>
<td>200 m</td>
<td>Gerbe</td>
</tr>
<tr>
<td>Labuerda</td>
<td>92 m</td>
<td>Banastón</td>
</tr>
<tr>
<td>Labuerda Banastón</td>
<td>350 m</td>
<td>Banastón</td>
</tr>
<tr>
<td>Boltaña</td>
<td>167 m</td>
<td>Ainsa</td>
</tr>
<tr>
<td>Forcaz</td>
<td>185 m</td>
<td>Ainsa</td>
</tr>
<tr>
<td>Morillo-Reservoir</td>
<td>122 m</td>
<td>Morillo</td>
</tr>
<tr>
<td>Sieste</td>
<td>40 m</td>
<td>Morillo</td>
</tr>
<tr>
<td>Morillo-Bruello</td>
<td>108 m</td>
<td>Guaso</td>
</tr>
<tr>
<td>Guaso</td>
<td>40 m</td>
<td>Guaso</td>
</tr>
</tbody>
</table>

*The sections have been named after the name of the village closest to the gamma-ray logged section.
Figure 5.1 Location of the gamma-ray logged sections in the stratigraphy of the Ainsa Basin. The stratigraphy of the Ainsa Basin has been created by joining cross-sections drawn across the gamma-ray logged sections. Stratigraphic overlapping is seen in some of the gamma-ray sections. In all the cases, the gamma-ray logs have been undertaken in interfan and overbank off-axial deposits from the main sandbodies (submarine fans). The exact location of the Tierrantona section within the stratigraphy cannot be established due to the high degree of tectonic deformation of the Arro System.
5.2.1 Type of sediments in the gamma-ray logged sections

The types of sediments present in the gamma-ray logged sections have been classified using the descriptive facies classification scheme of Pickering et al. (1986b, 1989).

The sediments consist mainly of hemipelagic marlstones, laminated, very thin-, thin- and medium-bedded normally-graded and ungraded sandstones (Facies C2.3), silty and muddy-siltstone turbidites. The sandstone turbidites are generally very-fine and fine-grained, and are typically cm in size. However, some sections can contain coarser-grained turbidites (medium to coarse) which can reach up to 60 cm in thickness, although these turbidites are rare in the fine-grained sediments and constitute less than 1% of the total sandstone turbidite beds. Mud and silt couplets (Facies D2.3) are common and form metre-size laminated successions. Apart from turbidites, other sediment gravity-flow deposits are present in minor amounts such as cohesive-flow deposits (sediment slides and slumps) (Facies F2.1) and other laminar-flow deposits, although, these are rare and commonly do not exceed ~ 1 m in thickness. The Tierrantona and the Labuerda section 2 contain small-scale Type 1a MTCs and some debris flows (Pickering and Corregidor, 2005). Gamma-ray measurements have not been undertaken across these deformed areas as anomalous readings can affect the cyclostratigraphic studies of these successions. These small-scaled chaotic intervals have resulted in discontinuities in some of the gamma-ray logged records. Locally, the Forcaz section contains mm- to cm-sized nummulitic packstones which were probably redeposited into deep-water from adjacent carbonate platforms during storm events (as tempestites). These sediments have also been seen in the Ainsa-Morillo interfan deposits of the Well A6 core but are rare in any other deep-marine systems. A detailed description of the facies identified within the fine-grained gamma-ray logged sections and the sedimentary processes involved can be seen in Table 4.1.
The fine-grained sediments are locally intensively bioturbated and it is possible to observe different ichnospecies. Plate 5.1 shows examples of bioturbation in the fine-grained sections. Examples of the ichnospecies identified are *Skolithos*, *Phycosiphon*, *Nereites*, *Planolites*, *Scolicia*, *Thalassinoides*, *Zoophycos* and *Chondrites*. Detailed bioturbation studies in the Ainsa Basin based on core and outcrop samples have been undertaken by Heard and Pickering (2008), Heard *et al.* (2008) and Heard *et al.* (2014).

Sedimentary logs have been produced for each of the gamma-ray logged sections. These logs include every bed that is thicker than 0.5 cm. The logs record information on sedimentary structures, grain-size variations, bioclastic content and bioturbation. The logs also include information on sediment colour, recording the presence of cm-sized dark-grey bands and orangey bands which are probably both primary and diagenetic in origin. The key symbols used in the sedimentary logs can be seen in Figure 2.5.

Plate 5.1 (next page) Ichnofacies in the fine-grained successions. (a) Sandstone turbidite dominated by *Nereites*. Ainsa System, Boltaña section. (b) Intense bioturbated sandstone turbidite consisting mainly of *Ophiomorpha Annulata*, interfan deposits between Guaso I and Guaso II sandbodies. (c) *Helminthorhaphe* in the Ainsa System, Forcaz section. (d) *Scolicia* in the Ainsa System, Boltaña section. (e) *Arenicolites* burrows in the Banastón System, Labuerda section 1. (f) *Arenicolites* forming vertical branches in the Sieste stream section. (g) Sandstone bed containing *Spiroraphe* (*Nereites* ichnofacies), Ainsa System, Boltaña section. (h) *Cosmorhaphe* forming meandering feeding traces in a sandstone turbidite in the interfan deposits of Gerbe and Banastón systems, Gerbe section.
5.2.2 Environment of deposition of the fine-grained sequences

The fine-grained gamma-ray logged sections are mainly interpreted as interfan successions and channel levée-overbank deposits. Figure 5.2 shows a schematic representation of the typical environments of deposition seen in the deep-marine sediments of the Ainsa Basin.

The deposition of levée and overbank deposits occurs when sediment gravity flows such as turbidity currents, are confined within a submarine channel and overtop the channel margins to deposit sediment beyond the channel axis (Mutti and Normark, 1987). Levée deposits are characterised by packages of very thin-bedded siltstones interbedded with thin-bedded sandstone turbidites. Climbing-ripple and cross-lamination are observed in some of these sandstone turbidites. There are significant thickness variations in the sandstone turbidites which tend to decrease away from the channel margins.

Overbank deposits are lithologically very similar to levée deposits and can be interpreted as the lateral continuation of a levée. These deposits are, in general, characterised by a lower net-to-gross ratio as many sandstone turbidites have already pinched out away from the channel. Interfan deposits are very similar to overbank deposits although they tend to be characterised by larger intervals of laminated siltstone and mudstone couplets.

In the absence of detailed mapping and lateral correlations, similarities in the sedimentology of levées, overbank and interfan deposits make the distinction between these three types of sedimentary environments difficult to differentiate. As a result, interpretations have been made by taking into consideration the location of the gamma-ray sections in relation to the channel axis using the Ainsa Basin geological map.
Figure 5.2 Environments of deposition of the Ainsa Basin channel systems. The figure shows a schematic cross-section of a channel levee-overbank system. The three main environments of deposition seen in the fine-grained successions are levee-overbank, fan abandonment and interfan. After Heard et al. (2014).

5.2.3 K, Th and U content of the gamma-ray sections and environmental constraints

The K (%), U (ppm) and Th (ppm) contents of the fine-grained sediments are in general, higher in the older sections (Arro, Gerbe and Banastón systems) than in the younger sections (Ainsa and Morillo systems) (Figure 5.3a and 5.3c), although the Morillo-Bruello and Guaso sections shows a mild increase in the content of these elements. The recalculated content of these elements to 100% shows that the K in the rocks has remained relatively stable throughout the stratigraphy at ~ 13-14%, whilst the Th and the U tend to compensate the win and the loss for each other (Figure 5.3e). The Labuerda 2 and Boltaña sections, for instance, appear to be particularly enriched in Th relative to U, whilst the Sieste Stream and Morillo-Bruello sections appear to be particularly enriched in U relative to the Th content (Figure 5.3e).

Ternary diagrams of these three elements show a similar compositional trend in all the gamma-ray logged sections with all the values plotting in the lower left corner.
of the K-Th-U triangle indicating a dominance of Th in the rock composition (Figure 5.4). The four youngest sections Morillo-reservoir, Sieste, Morillo-Bruello and Guaso sections located within the Morillo and Guaso systems show a subtle change of values spreading towards the U field (Figure 5.4).

The sand percentage for each of the fine-grained successions has been calculated to estimate whether there has been any significant differences in the sand content of the interfan and overbank deposits of the different deep-marine systems. Sand percentage has been calculated by adding the thickness of all the sandstone turbidites present in each fine-grained succession (Figure 5.3b). The Ainsa System, for example, shows the lowest sandstone content (3.6%) represented in the Boltaña and the Forcaz sections whilst the Banastón System contains the highest sandstone percentage, close to ~11% in both Labuerda sections. Comparison of sedimentary logs with total-gamma and K content shows that periods of high-frequency sandstone turbidite deposition appear to be associated with low gamma-ray counts and low K contents. This association can clearly be seen in the Tierrantona section (Figure 5.10), although in other sections, such as the Boltaña section (Figure 5.51), this correlation is more difficult to establish. It is likely that there is some sand content present in the siltstones, interfering the signal.

Cross-plots of Th versus U, Th versus K and U versus K have been produced for each of the sections to determine the presence of any association between these pair of elements. Although the correlation coefficient (R) between Th and U is low for all the gamma-ray sections (average R = -0.29 ± 0.13) (Table 5.2), most of the cross-plots of Th versus U tend to show a negative trend with the exception of the Gerbe section where there is no trend observed (Figure 5.5). The Th versus K cross-plots show a
moderate positive association with averaged values of $R = 0.39 \pm 0.08$ (Table 5.2, Figure 5.6). This moderate correlation probably reflects that there is some association between K and Th as part of clay minerals in mudstones and very-fine lithologies, but the presence of thoriferous minerals and feldspars in coarser lithologies may be responsible for the scattering observed in the cross-plots. There is no association between U and K ($R = 0.013$) in any of the gamma-ray sections (Table 5.2).

The Th/K ratios show little variation in all the sections with values remaining relatively stable between 4.3-4.9 (Figure 5.3d). Th/U ratios show a higher degree of variation with values ranging from 3.2-4.9 (Figure 5.3d). Most upper crust rocks have a typical Th/U ratio of between 3.5 and 4 (McLennan et al., 1993). Weathering and sedimentary recycling may result in the loss of U and result in an increase in the Th/U ratios. Th/U values > 4 are considered to indicate significant weathering in the source areas (McLennan et al., 1993). The Labuerda section 2 and the Boltaña section have relatively high Th/U values (~ 4.9), suggesting that an increase in weathering and/or sediment recycling may have occurred during the deposition of the Banastón and Ainsa systems. However, the relative stability of the Th/K ratios across the whole stratigraphy, suggests there were no significant variations in rock weathering patterns occurring in the source areas.

Th/U ratios can also reflect water oxygenation conditions during sediment deposition. Wignall and Twitchell (1996) considered that values between 0 and 2 were characteristic of anoxic conditions, whilst values of ~ 8 reflected strongly oxidising conditions. The Th/U values in the Ainsa Basin reflect in general oxic conditions throughout the stratigraphy. The four youngest sections (Morillo-reservoir, Sieste, Morillo-Bruello and Guaso) have slightly lower Th/U ratios (between 3.2 and 3.5) and this may reflect a reduction in basin oxygenation. The significant growth of the
bounding anticlines of the Ainsa Basin during the deposition of these systems may have contributed to a restricted environment.

Table 5.2 Correlation coefficient (R) in the spectral gamma ray data.

<table>
<thead>
<tr>
<th>Gamma-ray sections</th>
<th>Th/U</th>
<th>U/K</th>
<th>Th/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierrantona</td>
<td>-0.36</td>
<td>-0.049</td>
<td>0.388</td>
</tr>
<tr>
<td>Gerbe</td>
<td>0.052</td>
<td>0.331</td>
<td>0.604</td>
</tr>
<tr>
<td>Labuerda section 1</td>
<td>-0.257</td>
<td>0.111</td>
<td>0.369</td>
</tr>
<tr>
<td>Labuerda section 2</td>
<td>-0.312</td>
<td>0.0068</td>
<td>0.416</td>
</tr>
<tr>
<td>Boltaña</td>
<td>-0.368</td>
<td>-0.057</td>
<td>0.344</td>
</tr>
<tr>
<td>Forcaz</td>
<td>-0.378</td>
<td>-0.065</td>
<td>0.3036</td>
</tr>
<tr>
<td>Morillo-reservoir</td>
<td>-0.337</td>
<td>-0.123</td>
<td>0.3991</td>
</tr>
<tr>
<td>Sieste</td>
<td>-0.396</td>
<td>-0.122</td>
<td>0.29</td>
</tr>
<tr>
<td>Morillo-Bruello</td>
<td>-0.31</td>
<td>-0.0022</td>
<td>0.4</td>
</tr>
<tr>
<td>Guaso</td>
<td>-0.25</td>
<td>0.107</td>
<td>0.433</td>
</tr>
<tr>
<td>Average</td>
<td>-0.29</td>
<td>0.013</td>
<td>0.395</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.13</td>
<td>0.13</td>
<td>0.08</td>
</tr>
</tbody>
</table>

The Th *versus* U cross-plots shows a week relationship and the Th *versus* K cross-plots show a moderate relationship. The U *versus* K cross-plots does not show any association.
<table>
<thead>
<tr>
<th>Location</th>
<th>Total %</th>
<th>Average</th>
<th>St Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierrantona</td>
<td>13.7%</td>
<td>2.41</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>19.1%</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>67.2%</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.97</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.97</td>
<td>2.18</td>
</tr>
<tr>
<td>Gerbe</td>
<td>14.84%</td>
<td>2.85</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>19.09%</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>66.07%</td>
<td>12.79</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.5</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.76</td>
<td>1.41</td>
</tr>
<tr>
<td>Labuerda 1</td>
<td>14.25%</td>
<td>2.61</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>19.68%</td>
<td>3.59</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>65.05%</td>
<td>12.13</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.69</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.66</td>
<td>1.46</td>
</tr>
<tr>
<td>Labuerda 2</td>
<td>14.23%</td>
<td>2.31</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>17.6%</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>68.17%</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.86</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>4.43</td>
<td>2.56</td>
</tr>
<tr>
<td>Boltaña</td>
<td>14.02%</td>
<td>2.14</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>17.4%</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>68.57%</td>
<td>10.54</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.5</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>4.97</td>
<td>0.79</td>
</tr>
<tr>
<td>Forcz</td>
<td>14.61%</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>19.47%</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>60.91%</td>
<td>9.11</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.5</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.81</td>
<td>2.18</td>
</tr>
<tr>
<td>Morillo-reservoir</td>
<td>14.61%</td>
<td>1.81</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>21.23%</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>64.16%</td>
<td>8.01</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.46</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.45</td>
<td>1.58</td>
</tr>
<tr>
<td>Sieste</td>
<td>14.34%</td>
<td>1.56</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>22.14%</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>63.5%</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.53</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.45</td>
<td>2.18</td>
</tr>
<tr>
<td>Morillo-Bruezzo</td>
<td>14.89%</td>
<td>1.93</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>21.83%</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>63.28%</td>
<td>8.28</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.34</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.24</td>
<td>1.45</td>
</tr>
<tr>
<td>Guaso</td>
<td>13.85%</td>
<td>1.76</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Th (ppm)</td>
<td>21.6%</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>U (ppm)</td>
<td>65.5%</td>
<td>8.31</td>
</tr>
<tr>
<td></td>
<td>Th/K</td>
<td>4.75</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Th/U</td>
<td>3.35</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Figure 5.3 K, Th and U content of the gamma-ray logged sections. (a) Table showing the K, U, Th, Th/K and Th/U content of the gamma-ray logged sections. Average and standard deviation values are shown. (b) Graph comparing the sand percentage of all the gamma ray-logged sections. Values calculated from sandstone turbidite intensity studies. (c) Graph showing the K, U and Th content variation in the gamma-ray logged sections. (d) Graph showing the Th/K and Th/U variation in the gamma-ray logged sections. (e) Graph showing the K, Th and U contents recalculated to 100% in all the gamma ray logged sections. U content appears to increase across the stratigraphy.
Figure 5.4 Ternary diagrams of all the spectral gamma-ray logged sections. All the sections show a similar compositional trend with all the values plotting in the lower left corner of the Th-U-K triangle indicating a dominance of Th in the rock composition.
Figure 5.5 Cross-plots of Th versus U in the spectral gamma-ray sections. There is a weak negative correlation between the Th and U in all the gamma-ray sections (averaged values $R = -0.29$) with the exception of the Gerbe section where there is no correlation.
Figure 5.6 Th and K cross-plots of the spectral gamma-ray sections. There is a moderate positive correlation between Th and U in all the gamma-ray sections (averaged values $R = 0.395$).
5.2.4 Spectral analysis of the spectral gamma-ray sections

Detailed information on the spectral gamma-ray methodology used in this study can be found in Section 2.4. The cyclostratigraphy analysis work-flow used for the interpretation of the gamma-ray logged sections can be seen in Figure 2.11.

Time-series analysis of the total-gamma (cpm), K (%) and Th (ppm) has been undertaken for each of the gamma-ray logged sections. The U (ppm), Th/U and Th/K plots are in general noisy and this is probably associated with the relatively low content of U and K in the rocks. Preliminary time-series results of these records have not shown any significant cyclicity and therefore they have not been included in the time-series analysis of the outcrop gamma-ray logged sections. Sandstone turbidite intensity has also been calculated for each of the gamma-ray logged sections by counting the number of sandstone turbidites (≥ 0.5 mm thick) in successive 20 cm-thick vertical intervals. A spacing interval of 20 cm was considered adequate to match the sampling resolution of the gamma-ray logging technique. Time-series analysis of the sandstone turbidite intensity records has also been undertaken for each of the gamma-ray sections to provide an additional estimate of the cyclicity present in these fine-grained successions.

Methods of spectral estimation include the software packages REDFIT (Schulz and Mudelsee, 2002) and Analyseries (Paillard et al., 1996). The methodology and program input parameters have been described in Section 2.9. The power spectrum of the total-gamma data created using the REDFIT method has been compared with the spectra derived from other methods such as the MTM, the maximum entropy and the modified periodogram to show that these four methods can produce a similar spectrum with the most significant spectral peaks present at similar frequencies. The preferred method of analysis in this study is considered to be REDFIT because it has the
advantage of being used in unevenly-spaced data without introducing interpolation errors. In addition, this method resulted in smoother spectral results (high degrees of freedom) without losing frequency resolution. Time-series analysis of the total-gamma, K, Th and sandstone turbidite intensity has also been undertaken using this method. Different system parameters have been tried for each of the gamma-ray sections with the aim of obtaining the best frequency resolution/smooth power spectrum. Shorter sections require, in general, a reduction in the number of WOSA segments and in the degrees of freedom, to prevent over-smoothing the spectrum and causing loss of frequency resolution. A summary of the parameters used for each spectral computation is described in each of the gamma-ray logged sections.

Comparison of the power of the spectrum for the four different parameters was facilitated by re-scaling the spectra.

In order to estimate the spectral noise and establish reliable confidence levels of the power spectrum, three different methods to fit the background noise have been applied to all the REDFIT spectra. These models include: the AR(1) of Mann and Lees (1996), a power regression and a quadratic fitting-curve method (see Section 2.9.4). A table with the square errors resulting from applying each of these methods is included for each of the gamma-ray logged sections. Most of the field sections show that the least summative square error and therefore the best noise background fitting method is the power regression, although, there are a few exceptions in some of the shorter sections where the least error is produced by the AR(1) method of Mann and Lees (1996). Finally, each section includes a table with all the main frequencies identified > 90% confidence levels, unless otherwise stated.

Wavelet analysis has also been included in this study to complement the time-series analyses by adding information about the spatial variability of certain
frequencies throughout the records. This method permits to characterise the stratigraphic intervals where the frequencies have enough amplitude to be significant.

The significant frequencies determined by REDFIT have been selected for ASM analysis. ASM studies estimate the SAR which best fit the expected Milankovitch periodicities for the Middle Eocene (~ 45 Ma). ASM analysis has been carried out using the method of Meyers and Sageman (2007) which includes critical significant levels of rejection of 90% above which the null hypothesis of no orbital cyclicity is rejected. The frequencies which have been associated with eccentricity and obliquity cycles from ASM studies have then been used to filter the total-gamma records to determine changes in the amplitude of these cycles throughout the stratigraphy.

Finally, orbital tuning has been applied to the Gerbe, Labuerda 2, Boltaña and Forcaz sections. These four gamma-ray sections have a good radiometric control from biostratigraphy (Scotchman et al., 2014) and palaeomagnetic studies (Chapter 3) and have a sufficient length to recognise eccentricity cycles with confidence.
5.3 Gamma-ray logged sections in the Ainsa deep-marine systems

5.3.1 The Arro System

5.3.1.1 Sedimentology of the Arro System

The Arro System is part of the Lower Hecho Group and is stratigraphically located between the Los Molinos and the Gerbe systems. The sediments of the Arro System were incorporated into a major thrust system which caused intense distortion, faulting, major fault-propagation-folds and stratigraphic duplications. As a result, the Arro System is one of the most tectonically deformed deep-marine systems in the Ainsa Basin. Despite this intense deformation, there are a number of well-exposed outcrops which have allowed its study and interpretation by several researchers (e.g., Mutti et al., 1985; Millington and Clark, 1995; Clark and Pickering, 1996; Remacha et al., 2003).

The total thickness of the Arro System has been investigated by several authors. Mutti et al. (1985) and Clark and Pickering (1996) have estimated a thickness of ~ 145 m. These estimations are in close proximity to those of Millington and Clark (1995) who estimated a variation from 120 m in the proximal sections to 150 m in the distal sections. Remacha et al. (2003) gave an estimation of ~ 280 m. However, these authors included the underlying sandbodies of the Los Molinos System into the Arro System.

The sedimentology of the Arro System has been described and interpreted by Millington and Clark (1995) and Bayliss (2011). This system is composed of three sandy successions or sandbodies classified from older to younger, Arro I to III sandbodies. The Arro System has been interpreted as a base-of-slope sheet-like sand-prone system developed in front of a canyon mouth. The sediments of the Arro System
can be traced directly into its canyon source, the Charo Canyon. The Arro sandbodies are characterised by medium to coarse-grained erosive sandstone turbidites interpreted as sediments deposited at the canyon mouth. Petrographic studies indicate that these sandstones are subarkose arenites enriched in shallow-marine faunas such as echinoderms and bivalves (mainly oyster shells) and large foraminifera such as nummulites and alveolines (Das Gupta and Pickering, 2008). The abundance of marine faunas probably indicates that the sediments were sourced from shelfal areas and fed the canyon by littoral drift (Millington and Clark, 1995). The Arro II and III sandbodies also contain large amounts of wood material which may indicate progradation of rivers which fed directly into the canyon mouth. Interbedded with these erosively-based turbidites, there are large intervals of contorted muddy sediments (Type Ia MTDs) containing large open shear-fold structures interpreted as sediment slides. These MTDs, which are mainly found at the base of the Arro II sandbody, have incorporated distorted sand rafts into their flow which probably suggest that they were very erosive events able to incorporate semi-lithified sediment from the seafloor (Bayliss, 2011). These sediment slides were sourced from the collapse of nearby slopes (Millington and Clark, 1995).

The Arro System rapidly thins downslope, away from the canyon mouth, forming a heterolithic package containing sheet-like, thin to medium-bedded sandstones (Millington and Clark, 1995). This change in facies, from highly erosive sandstone turbidites to thin sheet-type facies, has been interpreted as density flows which underwent a hydraulic jump due to an inferred break of slope at the canyon mouth (Millington and Clark, 1995).

There is a general paucity of extra-formational rounded pebbles within the Arro System and also, in older turbidite systems including the Fosado and Los Molinos.
This paucity of pebbles most likely indicates the source of sediments to the Ainsa Basin were mature fluvial systems which developed in the Tremp-Graus Basin at this time. From the Gerbe System onwards, larger amounts of rounded pebbles were delivered to the Ainsa Basin. This change in the amount of pebbles between the Arro and the Gerbe systems suggests a period of significant uplift in the Tremp-Ager Basin source areas. The increase in slope gradients probably resulted in the transition from mature to immature rivers with the ability to transport down the system significant volumes of pebbles from well-developed alluvial fans and store them on shelfal areas (Heard, 2007; Scotchman et al., 2014).

5.3.1.2 Tectonic history during the deposition of the Arro System

The deposition of the Arro System is synchronous with a major uplift event associated with the motion of the Montsec-Peña Montañesa Thrust (Mutti et al., 1988; Fernández et al., 2012) which resulted in significant intrabasinal tectonic activity and the emplacement of the Arro Thrust System. This intense tectonic activity resulted in an increase in slope gradients which caused slope instabilities, collapses and resulted in the large quantities of slump and slide sediments observed in the Arro System.

The Los Molinos Thrust is part of the Arro Thrust System and is responsible for overturning the Arro I sandbody in the southwestern section of the basin. The Arro System developed coevally with the onset and first stages of this thrust and of the Mediano detachment fold (Mutti, 1992). Bentham and Burbank (1996) proposed that the initiation of the development of the Mediano Anticline probably occurred during the late Ypresian/early Lutetian, although the most prominent growth did not commence until the middle Lutetian coinciding approximately with the deposition of
the Ainsa System (Fernández et al., 2004). The lack of thickness changes in the Arro System across this structure could suggest an onlapping relationship. Poblet et al. (1998) suggest this structure did not form a significant topographic high at the time of this system deposition.

5.3.1.3 Age of the Arro System

The timing of deposition of the Arro System is likely to have occurred within chron C22n-C21r (this study). These estimations are in close agreement with the ages proposed by Scotchman et al. (2014), suggesting that the deposition of this system occurred within zone NP13 in chron C22.

5.3.1.4 Tierrantona gamma-ray logged section

5.3.1.4.1 Geographical location

The Tierrantona section is 167 m long and is located ~ 2.5 km west of Arro town and ~ 4 km south of the village of Tierrantona. The section is exposed along the road HU-V-6442 which joins the N-260 main road with the village of Tierrantona (Plate 5.2).

The first 60 m of the section are weathered and locally are covered by scree (Plate 5.3a). Gamma-ray logging of this area required the removal of the weathered material with a hammer and a brush to allow the portable gamma-ray spectrometer to sit on fresh rock. This poorly-exposed area may have resulted in inaccuracies whilst recording the sandstone turbidite intensity in the sedimentary logs. As a result, the cyclostratigraphic studies of the sandstone turbidite intensity of this section may have been affected. Rock exposure clearly improves from 60 m onwards and remains
satisfactory until the end of the logged section. Some small scale slumps are found towards the top of the section (Plate 5.3c). There is a general increase in the sand content throughout the section with thicker sandstone turbidites found towards the top (Plate 5.3b). The gamma-ray logged section was discontinued at 167 m due to the sediments immediately above appearing to be tectonically distorted and highly fractured with the presence of numerous calcite veins also being observed across the outcrop. This tectonically deformed area is likely to be associated with a thrust which crosses the northwestern part of the geological map (Figure 5.7).

Plate 5.2 Aerial photograph of the Tierrantona gamma-ray logged section. The Tierrantona section is exposed next to the HU-V-6442 road. This road joins the N-260 road to the village of Tierrantona. The first 60 m of the section are weathered and locally thick scree covers fresh surfaces making it difficult to undertake sedimentary and gamma-ray logging of the section. Aerial image from www.sigpac.mapa.es/fege/visor.
Plate 5.3 Outcrop photographs of the Tierrantona gamma-ray logged section. (a) Photograph showing the lower-part of the Tierrantona gamma-ray section by the side of the HU-V-6442 road. This part of the section is very weathered and covered by thick scree. (b) Outcrop photograph of a heterolithic package seen at ~ 150 m height towards the top of the Tierrantona section. The top 30 m contains some calcite veining, up to 5 cm-thick which seems to follow the strike of the beds. Fracture zones become more common immediately above the Tierrantona section with sheared and deformed sediments also common indicating a nearby thrust. (c) Close-up photograph of a syn-sedimentary fold seen in the fine-grained sediments. Sediment slumps and slides in the Tierrantona section are common towards the top of the section but are in general small and do not exceed ~ 15 cm in thickness. Slumps within the Arro System, however, are numerous and can reach up to 20 m in thickness.
5.3.1.4.2 Stratigraphic location

The Tierrantona section is located within the Arro System. Figure 5.7 shows a geological map and a cross-section of the area. The Arro System is tectonically deformed with many thrusts and fault-propagation-folds trending in a north-south direction and with a main displacement direction towards the west and the southwest. The intense tectonic deformation of the area has not permitted to determine the exact location of the Tierrantona section within the stratigraphy of the Arro System. As a result of this, a stratigraphic column for this section has not been constructed.

Plate 5.4 shows some outcrop photographs showing the degree of deformation which has mainly affected the sediments of the Lower Hecho Group (Arro, Los Molinos and Fosado systems) and some parts of the Gerbe System in the Upper Hecho Group. These deformed areas are mainly restricted to the northwestern area of the Ainsa Basin forming part of the Arro Thrust System.

Figure 5.8 shows the sandstone turbidite intensity variation of the Tierrantona section. The sandstone turbidite intensity appears to vary cyclically and two cycles with a period of 30-40 m can easily be distinguished in the middle and upper part of the section. There is a general increase in the sandstone turbidite intensity throughout the Tierrantona section (Figure 5.8). Figure 5.9 shows detailed sedimentary logs of the Tierrantona section. Electronic versions of these logs are available in Appendix 3. Figure 5.10 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the Tierrantona section. Heterolithic packages containing thick sandstone turbidites are characterised by low total-gamma counts and a decrease in the K content.
Figure 5.7 Geological map and cross-section of the Tierrantona section. (a) Geological map of the area surrounding the Tierrantona gamma-ray section. The Arro System is severely deformed and two main thrusts can be observed in the area. The area is also characterised by large-scale fault-propagation-folds. The Arro I sandbody occupies the western part of the map and is upside-down with beds dipping 75-85°. There are large changes in the stratigraphic dip in the area ranging from 20° dip to completely vertical strata. There are also numerous large-scale slumps within the fine-gained sediments of the Arro System but they have not been mapped in detail due to mapping time-constraints. (b) Cross-section showing the position of the Tierrantona gamma-ray logged section. Due to the large-scale deformation within this system it is not possible to infer the exact location of the Tierrantona section within the stratigraphy.
Plate 5.4 (previous page) Outcrop photographs showing tectonic deformation in the Ainsa Basin. (a) Outcrop photograph of a thrust plane exposed in the Arro stream. This thrust is located ~ 50 m below the Arro sandbody and fault displacement has resulted in folding and overturning the strata in the area. (b) Outcrop photograph exposed along a path ~ 500 m north of San Vicente town showing tight folds in the sandstone turbidites of the Gerbe System. (c) Outcrop photograph of reverse faults seen on the road that joins the N-260 with Fosado village, 2 km south of Fosado. These faults are located in Los Molinos System. (d) Photograph of a distorted outcrop exposed along the road which joins Ainsa and El Soto town, ~ 1 km SW of El Soto. The outcrop shows faulted beds in the fine-grained sediments with numerous calcite veining. This deformed area is located in the Gerbe System. (e) Outcrop photograph exposed along the road N-260, ~700 m SW of the village of Fuendecampo, showing large scale folds with vertical and overturned strata in Los Molinos System. (f) Outcrop photograph showing a 70 cm vertical sandstone dyke exposed at the Arro stream in the Los Molinos System. (g) Outcrop photograph showing a thrust plane well exposed at a stream cut, ~ 1.5 km south of Los Molinos town. This thrust is located in the Los Molinos-Fosado systems. The main thrust direction is towards 240°. (h) Outcrop photograph of a broad anticline exposed at a stream cut, visible from the road that joins Ainsa and Araguás towns, ~ 600 m west of Araguás, in the Arro System.

Figure 5.8 Sandstone turbidite intensity of the Tierrantona section. There are two well defined cycles with a period of 35-40 m. The lack of clear cyclicity in the first 60 m of the section is probably due to poor outcrop exposure. The averaged sand percentage for the whole section is ~ 8.7%.
Figure 5.9 Sedimentary logs of the Tierrantona section. The low degree of sandstone turbidite intensity in the first 60 m of the section is likely to have resulted from poor exposure of the outcrop. Towards the end of the section, between 144-152 m, there is a significant heterolithic package containing thick sandstone turbidites. Sedimentary logs include every bed thicker than 0.5 cm. Figure 2.5 includes a legend of the symbols used in the sedimentary logs. Appendix 3 includes an electronic version of these sedimentary logs for detailed visualisation.
5.3.1.4.2. Cyclostratigraphic studies of the Tierrantona section

(a) Methods of spectral estimation

The total-gamma spectrum has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.11 shows the spectral results obtained from applying each of these methods and Table 5.3 summarises the main frequencies present from the frequency range 0-0.2 cycles/m. The spectrum created is similar using these four
methods, although frequencies in the MTM method appear flattened and poorly defined. The MTM significance test does, however, shows very similar frequencies to the other spectra. The frequency range 0.019-0.022 cycles/m (1/44-1/52 m) and the frequencies 0.059 cycles/m (1/16 m), 0.089 cycles/m (1/11 m), 0.15 cycles/m (1/6.7 m) and 0.19 cycles/m (1/5 m) consistently appear in all of the spectra analysed.

Figure 5.11 Methods of spectral estimation using spectral total-gamma data of the Tierrantona section. REDFIT spectrum created using 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.018 cycles/m. MTM method uses 4 tapers and ~ 8 degrees of freedom. The periodogram spectrum is modified with a Bartlett window. The maximum entropy method uses numbers of lags M = N/3 = 280. Computations were made with the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).
Table 5.3 Methods of spectral estimation in the Tierrantona section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.0224</td>
<td>44.6</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.006</td>
<td>166.7</td>
</tr>
<tr>
<td></td>
<td>0.0449</td>
<td>22.3</td>
<td></td>
<td>0.02</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.0598</td>
<td>16.7</td>
<td></td>
<td>0.059</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>0.0898</td>
<td>11.1</td>
<td></td>
<td>0.089</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>0.1459</td>
<td>6.9</td>
<td></td>
<td>0.126</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>0.183</td>
<td>5.5</td>
<td></td>
<td>0.15</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.162</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>5.3</td>
</tr>
<tr>
<td>MTM</td>
<td>0.006</td>
<td>166.7</td>
<td>Maximum entropy</td>
<td>0.02</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.0195</td>
<td>51.3</td>
<td></td>
<td>0.06</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>0.034</td>
<td>29.4</td>
<td></td>
<td>0.09</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.058</td>
<td>17.2</td>
<td></td>
<td>0.149</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>11.2</td>
<td></td>
<td>0.185</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>0.1232</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.148</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.191</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.2 cycles/m.

The frequencies that consistently appear in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT time-series analyses of the Tierrantona section were undertaken on the total-gamma, K, Th and sandstone turbidite intensity records. Figure 5.12 shows the estimated spectra using 4 WOSA segments, ~ 6 degrees of freedom and a bandwidth of 0.018 cycles/m. Table 5.4 compiles all the significant frequencies present in the analysed spectra. The background noise has been estimated using a power regression method (Table 5.5).

Various significant frequencies can be recognised within the range 0-0.5 cycles/m (Figure 5.12). The frequency range 0.018-0.022 cycles/m (1/53-1/44 m) is present with a confidence level > 99% in all the analysed parameters. Total-gamma, K and Th spectra show another frequency at 0.059 cycles/m (1/17 m) with confidence levels > 90%. The frequency ~ 0.088 cycles/m (1/11 m) is present in the sandstone turbidite intensity and total-gamma with confidence levels > 95% and 99%.
respectively. The Th spectrum shows another frequency at 0.11 cycles/m (1/8 m) with a confidence level > 90%. Finally, the total-gamma and Th spectra show a significant frequency range 0.14-0.15 cycles/m (1/6 m) with a confidence level > 90%.

Figure 5.12 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data of the Tierrantona section using REDFIT. REDFIT spectral results used 4 WOSA segments and 6 degrees of freedom. REDFIT results were plotted using a power regression noise background curve-fitting model. Graphs have been re-scaled. Analysis used the REDFIT software developed by Schulz and Mudelsee (2002).
Table 5.4 Significant frequencies of the Tierrantona section using REDFIT.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequencies (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.0224</td>
<td>44.64</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0449</td>
<td>22.27</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.0598</td>
<td>16.72</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.0898</td>
<td>11.13</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.1459</td>
<td>6.85</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.3143</td>
<td>3.18</td>
<td>95%</td>
</tr>
<tr>
<td>K</td>
<td>0.067</td>
<td>53.47</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0598</td>
<td>16.72</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.3143</td>
<td>3.18</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.4229</td>
<td>2.36</td>
<td>90%</td>
</tr>
<tr>
<td>Th</td>
<td>0.0224</td>
<td>44.64</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0598</td>
<td>16.72</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.116</td>
<td>8.62</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.1534</td>
<td>6.51</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.2245</td>
<td>4.45</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.4565</td>
<td>2.19</td>
<td>90%</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0187</td>
<td>53.47</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0411</td>
<td>24.33</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.0860</td>
<td>11.62</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.3742</td>
<td>2.67</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.3929</td>
<td>2.54</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.4341</td>
<td>2.3</td>
<td>90%</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 4 WOSA segments and 6 degrees of freedom.
*Frequencies shown between 0-0.5 cycles/m > 90% confidence levels.

Table 5.5 Noise-background estimation methods for the Tierrantona section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>2551</td>
<td>3140</td>
<td>2540</td>
</tr>
<tr>
<td>K</td>
<td>1454</td>
<td>1639</td>
<td>985</td>
</tr>
<tr>
<td>Th</td>
<td>460</td>
<td>421</td>
<td>347</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>2746</td>
<td>2204</td>
<td>988</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The best noise-estimation method has the least summative square error and is represented in bold numbers.
(c) ASM results

ASM analysis has been undertaken using the software developed by Meyers and Sageman (2007). A total of 10 frequencies have been included in the ASM analysis (Table 5.6). These frequencies are present in the REDFIT spectral gamma-ray and sandstone turbidite intensity analysis with confidence levels > 95%.

ASM analysis of the Tierrantona section (Figure 5.13) shows significant SAR values within the range 11.5-100 cm/kyr with a small interval of non-significant SAR between 18 and 24 cm/kyr. The most significant SARs are found within three main SAR groups. Group 1 (13.5-14.5 cm/kyr) and Group 2 (29.5-31 cm/kyr) has a null hypothesis significant level of 0.001%. Group 3 (50-51 cm/kyr) has a null hypothesis significance level of 0.002% (Figure 5.13). Taking into consideration those frequencies which have higher confidence levels and those which appear in the spectra of more than one investigated parameters, the SAR which most closely reflects the Middle Eocene orbital cycles is 50 cm/kyr (Table 5.6). At a SAR of 50 cm/kyr, the frequency range 0.0187-0.0224 cycles/m can be linked to eccentricity 95 kyr, the frequency range 0.0411-0.059 cycles/m represents obliquity 40 kyr and the frequency 0.088 cycles/m represents precession 23 kyr cycles.
A total of 10 frequencies identified from spectral analysis of spectral gamma-ray and sandstone turbidite intensity with a confidence level > 95% have been applied to the ASM analysis. For a list of frequencies refer to Table 5.6. The analysis used a Rayleigh number of $2.38948626 \times 10^{-4}$ and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger et al. (1992) equations. A total of 191 SAR ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr have been investigated using 100,000 Monte Carlo simulations. The critical level was established at 0.52%. ASM analysis has identified significant SAR values ranging from 11.5-100 cm/kyr with a small interval of non-significant SAR between 18 and 24 cm/kyr. The most significant SARs are found within the SAR ranges 13.5-14.5 cm/kyr, 29.5-31 cm/kyr and 50-51 cm/kyr. All 7 orbital parameters including eccentricity, obliquity and precession have been included in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.6 Temporal period duration of significant frequencies in the Tierrantona section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)*</th>
<th>C.L (%)</th>
<th>N°</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SARs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group 1</td>
</tr>
<tr>
<td>0.0187</td>
<td>99</td>
<td>2</td>
<td>53.5</td>
<td>396.1</td>
</tr>
<tr>
<td>0.0224</td>
<td>99</td>
<td>2</td>
<td>44.6</td>
<td>330.7</td>
</tr>
<tr>
<td>0.0411</td>
<td>95</td>
<td>1</td>
<td>24.3</td>
<td>180.2</td>
</tr>
<tr>
<td>0.0449</td>
<td>95</td>
<td>1</td>
<td>22.3</td>
<td>165</td>
</tr>
<tr>
<td>0.0598</td>
<td>95</td>
<td>3</td>
<td>16.7</td>
<td>123.9</td>
</tr>
<tr>
<td>0.088</td>
<td>99</td>
<td>2</td>
<td>11.4</td>
<td>84.2</td>
</tr>
<tr>
<td>0.1534</td>
<td>99</td>
<td>1</td>
<td>6.5</td>
<td>48.3</td>
</tr>
<tr>
<td>0.3143</td>
<td>95</td>
<td>1</td>
<td>3.2</td>
<td>23.6</td>
</tr>
<tr>
<td>0.3742</td>
<td>95</td>
<td>1</td>
<td>2.7</td>
<td>19.8</td>
</tr>
<tr>
<td>0.3929</td>
<td>95</td>
<td>1</td>
<td>2.5</td>
<td>18.9</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency > 95% confidence levels (CL) at different SARs. The SARs which are more closely associated with the orbital periods of the Middle Eocene appear highlighted in bold numbers. Underlined frequencies indicate those frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%. Estimated orbital cycles for the Middle Eocene (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

* include all frequencies within the range 0-0.5 cycles/m with confidence levels > 90%.

number of parameters containing that specific frequency in the REDFIT spectrum.

Figure 5.14 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data of the Tierrantona section. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Tierrantona section. Black contours mark the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line are significant > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). The analysis has used the online tool available at http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.14 Wavelet analysis of the Tierrantona section.

Turbidite intensity data

a. Wavelet Power Spectrum

b. Global Wavelet

K data

a. Wavelet Power Spectrum

b. Global Wavelet

Total gamma data

a. Wavelet Power Spectrum

b. Global Wavelet

Th data

a. Wavelet Power Spectrum

b. Global Wavelet

http://paos.colorado.edu/research/wavelets/
(d) Wavelet analysis

Results from the wavelet analysis include a number of significant frequencies > 90% confidence levels (Figure 5.14). The most spatially persistent frequency, present in all the analysed records with confidence levels > 90% is the frequency range 0.018-0.022 cycles/m (1/53-1/44 m). Spectral analyses using REDFIT and ASM have associated this frequency to eccentricity 95%.

The frequency range ~ 0.041-0.059 cycles/m (~ 1/17-1/24 m) is significant in the K wavelet spectrum between 80 and 130 m and is significant throughout the Th records. In the total-gamma records, there is an increase in the power spectra at around this frequency but it is not sufficient to be significant > 90% confidence levels. In the sandstone turbidite intensity records, this frequency is not well defined and only present sporadically towards the top of the Tierrantona section. This frequency range has been associated with obliquity using ASM analysis.

The frequency 0.088 cycles/m (1/11 m) is present in all the records but is only spatially significant (> 90% confidence levels) across a narrow stratigraphic interval between 130 and 160 m height. This frequency has been associated with precession by ASM analysis.

(e) Frequency-selective filtering

The total-gamma records have been frequency-selective filtered by applying a Gaussian filter. The methodology used is described in Section 2.9.7. Two frequencies, 0.0224 and 0.0598 cycles/m have been filtered using a bandwidth of 0.018 cycles/m (Figure 5.15). The frequency 0.0224 cycles/m is present in the total-gamma records
with a confidence level > 99% and has been linked to eccentricity cycles. The
frequency 0.0598 cycles/m is present with confidence levels only > 90% but it has
been chosen in preference of the frequency 0.0449 cycles/m as a representative of
obliquity because the latter is not significant in any of the other analysed spectra (K,
Th and sandstone turbidite intensity). It is also probable that the frequency 0.0449
cycles/m is a second harmonic of the frequency 0.0224 cycles/m. Since the 0.0598
cycles/m is also present in the K and Th spectra, it is likely that this frequency
represents a real event.

The oldest 100 m of the total-gamma records filtered at a frequency of 0.0224
cycles/m show very broad low-amplitude eccentricity cycles (Figure 5.15). These
cycles appear better defined from 100 to 167 m. Similarly, in the wavelet spectrum,
this frequency shows an increase in the spectral power during this same stratigraphic
interval in all the analysed data.

The total-gamma records filtered at a frequency of 0.059 cycles/m (1/17 m)
show well developed cycles mainly in the central part of the records, from 50 to 150
m, but the amplitude of the cycles is significantly attenuated towards the edges of the
section.
Figure 5.15 Frequency-selective filtering of the Tierrantona section. Total-gamma records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.018 cycles/m using the software package Analyseries developed by Paillard et al. (1996). Total-gamma records have been filtered to the frequency 0.022 and 0.0598 cycles/m. These two frequencies have been respectively associated with eccentricity and obliquity using REDFIT spectral analysis and ASM studies.
5.3.2 The Gerbe System

5.3.2.1 Sedimentology of the Gerbe System

The Gerbe System is stratigraphically located between the Arro and the Banastón systems. It has been interpreted as a canyon-erosive submarine channel system (Clark and Pickering, 1996). The Gerbe System comprises two sandbodies designated, from older to younger, Gerbe I and Gerbe II. These sandbodies are typically tens of meters thick and are separated by a thick interval of fine-grained sediments. The Gerbe sandbodies have been deposited in an upper/mid-slope canyon to lower-slope erosional channel setting (Millington and Clark, 1995; Pickering and Bayliss, 2009). The sediments of the Gerbe System were sourced from the Charo Canyon (Mutti et al., 1985) near the village of Charo. The initiation of this system is marked by an angular unconformity and is overlain by abundant Type Ia and II MTDs/MTCs suggesting mass wasting and collapse of the outer shelf and upper slope environments (Millington and Clark, 1995). The Charo Canyon cuts into the underlying fine-grained basin-slope forming a large-scale subaerial erosional surface with several tens of metres of erosional cut down. This deep basal unconformity caused the confinement of the Gerbe succession in the most proximal setting resulting in significant sediment bypass and erosion forming large scours which were infilled by pebbly lag deposits and finer-grained backfilling sandstone successions (Bayliss, 2011).

The Gerbe sandbodies can be interpreted as slope channelised submarine fans. The channel fill is heterogeneous and is characterised by different types of MTCs such as conglomerates (FA2b), pebbly sandstones (FA3a) and mud- and sand-filled scours (FA3g) (Bayliss, 2011). The sandstone turbidites are generally medium-bedded sandstones, fine to medium-grained, moderately to poorly sorted and can be classified
as subarkose arenites (Das Gupta and Pickering, 2008). Locally, the sandstone beds show truncated geometries and have well-developed cross bedding structures. Some of the sandstone beds contain embedded pebbles and shallow-marine material. This facies association is characteristic of erosive, highly concentrated turbidity currents and debris flows and probably indicate substantial sediment bypass (Bayliss, 2011).

5.3.2.2 Tectonic history during the deposition of the Gerbe System

Millington and Clark (1995) recognised a change in depositional style from a canyon-base-of-slope sheet system during the deposition of the Arro System to a canyon-submarine channel during the deposition of the Gerbe System. This rapid change was attributed to a significant reduction in the sediment supply that followed the period of thrust propagation and tectonic uplift which occurred during the deposition of the Arro System. These authors also argue that a change in the basin configuration and slope gradients could explain the change in the depositional style of these two systems. After a period of slope over-steepening and massive slope failures during the deposition of the Arro System, it followed a period of re-equilibration and healing of the slope which allowed a typical canyon-submarine channel complex to develop.

The Gerbe System marks the first significant volume of extra-formational rounded pebbles to enter the deep-marine Ainsa Basin. The deposition of gravelly material in the Ainsa Basin probably marks the transition from mature to immature, high energy, braided fluvial systems in the Tremp-Ager Basin in response to tectonic activity in the hinterland and increase in slope gradient and sediment supply via alluvial fans (Heard, 2007; Scotchman et al., 2014).
5.3.2.3 Age of the Gerbe System

Magnetostratigraphic work carried out in the Gerbe System (this study) shows a polarity reversal, from reverse to normal, in the interfan deposits of the Gerbe I and Gerbe II sandbodies, at ~ 100 m above the Gerbe I sandbody. Normal polarity remains throughout the rest of the Gerbe section. It is likely that the changed in polarity refers to the chron C21r- C21n magnetic reversal estimated to have occurred at 47.35 Ma (Gradstein et al., 2012). These results place the top of the Gerbe System ~ 1 Myr younger than the age estimates by Scotchman et al. (2014). For further discussion, see Section 3.7.
5.3.2.4 The Gerbe gamma-ray logged section

5.3.2.4.1 Geographical location of the Gerbe section

The Gerbe section is 200 m long and is located ~ 1.5 km north of Gerbe town and ~ 3 km west of Arro town. The section can be accessed from the main road N-260 and is exposed along a small stream (Plate 5.5 and Plate 5.6a).

The section is composed of two subsections: Gerbe 1 (72 m) and Gerbe 2 (128 m) which are separated ~ 50 m. Gerbe 1 starts at a stream cut and finishes at a prominent heterolithic package located at the top of a small hill. The area immediately below the beginning of the Gerbe 1 section is tectonically faulted. Sediments appear dislocated and heavily fractured with numerous calcite veins running through the outcrop (Plate 5.6b). The Gerbe 1 gamma-ray logged section starts immediately above this deformed area and was discontinued at the top of the heterolithic package which has been identified as the off-axial Gerbe II submarine fan. These same heterolithics are well exposed at the road cut ~ 50 m to the west of the Gerbe 1 log and mark the beginning of the Gerbe 2 section (Plate 5.6e). The first 30 m of this section are slightly weathered and contain a ~ 1 m thick Type 1a MTD which was not included in the gamma-ray log. The rest of the Gerbe 2 section is clean and well-exposed. The section was discontinued at the top of a hill immediately below a 20 m slump which marks the initiation of the Banastón II System (Plate 5.6d). Figure 5.16 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the Gerbe section.
Plate 5.5 Aerial photograph of the Gerbe gamma-ray logged section. The Gerbe section is fragmented into Gerbe 1 and Gerbe 2 logs. Gerbe 1 forms a small hill which is capped by the Gerbe II sandbody and the Gerbe 2 log is well exposed along a river cut. There is a ~20 m slump at the top of the Gerbe 2 log which marks the initiation of the Banastón II submarine fan. The Banastón II sandbody constitutes a vegetated hill striking towards the NE. Aerial image from www.sigpac.mapa.es/fega/visor.

Plate 5.6 (next page) Outcrop photographs of the Gerbe gamma-ray logged section. (a) Photograph showing the Gerbe 2 gamma-ray logged section. The top 40 m of this log is not shown in the photograph. The section starts in the interfan sediments between the Gerbe I and Gerbe II sandbodies and finishes immediately below the Banastón II submarine fan. The Banastón I sandbody has completely pinched out at this location and its exact location within the stratigraphy cannot be determined. (b) Outcrop photograph showing a faulted area with numerous calcite veins located immediately below the Gerbe 1 log. This tectonically deformed area has not been included in the gamma-ray logged section. (c) Outcrop photograph showing some well-developed ripples in a sandstone turbidite bed. Palaeocurrent directions from ripples in this area suggest a preferential direction towards 240°. (d) Photograph showing a 20 m chaotic interval classified as a Type 1a MTC (Pickering and Corregidor, 2005). This sediment slide is located at the base of the Banastón II sandbody and the base of this chaotic event marks the top of the Gerbe gamma-ray logged section. (e) Photograph showing the Gerbe II sandbody exposed at the N-260 road, here off-axis forming a prominent heterolithic package.
Plate 5.6 Outcrop photographs of the Gerbe gamma-ray logged section
5.3.2.4.2 Stratigraphic location of the Gerbe section

The Gerbe section comprises mainly of the fine-grained and overbank deposits of the upper section of the Gerbe System and the lower part of the Banastón System. Figure 5.17 shows a geological map, a cross-section and a stratigraphic column indicating the exact location of the Gerbe section within the Ainsa Basin stratigraphy. The base of the section contains 70 m of the interfan deposits between the Gerbe I and Gerbe II sandbodies. The Gerbe II sandbody is present at 70 m height and constitutes a prominent sand-rich package of ~ 10 m (Plate 5.6e) which can easily be distinguished in the sedimentary logs (Figure 5.18) and in the sandstone turbidite intensity graph (Figure 5.19). The rest of the logged section comprises the fine-grained interfan sediments between the Gerbe II and Banastón I systems and between the Banastón I and Banastón II systems. The Banastón I sandbody has completely pinched out at this location and is only present as a thin sandbody ~ 500 m north of this location. The Banastón II sandbody forms a vegetated ridge (Plate 5.5) located immediately above the top of the Gerbe section.
Figure 5.16 Total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Gerbe section. The black line is a 4-period moving average. Simplified logs only show sandtone turbidites ≥ 1.5 cm, for complete logs refer to Figure 5.18 or Appendix 3.
Figure 5.17 Geological map, cross-section and vertical stratigraphic column of the Gerbe gamma-ray logged section. (a) Geological map of the Gerbe section. The green line indicates the position of the cross-section A-A’ which is parallel to the Gerbe gamma-ray logged section and perpendicular to the main outcrop strike to facilitate the calculation of true stratigraphic thicknesses. (b) Cross-section of the Gerbe area showing the position of the gamma-ray logged section in the interfan sediments between the Gerbe I and the Banastón II sandbodies. (c) Stratigraphic column showing the exact position of the Gerbe section within the stratigraphy.
Figure 5.18 Sedimentary logs of the Gerbe section. Sedimentary logs include every bed thicker than 5 mm. Gerbe I and Gerbe II logs have been joined to produce a 200 m Gerbe log. The key symbols used in the sedimentary logs can be seen in Figure 2.5. Electronic versions of these logs to allow for a more detailed study are included in Appendix 3.
Figure 5.19 Sandstone turbidite intensity in the Gerbe section. The prominent heterolithic package between 65 and 80 m height is the Gerbe II sandbody. The averaged sandstone content for the Gerbe section is ~ 6%.
5.3.2.4.3 Cyclostratigraphic studies of the Gerbe section

(a) Methods of spectral estimation

The total-gamma spectrum of the Gerbe section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.20 shows the spectral results obtained from applying each of these methods. Table 5.7 summarises the main frequencies present within the frequency range 0-0.2 cycles/m. The general spectrum created is similar using these four methods (Figure 5.20). There are 3 frequencies which consistently appear in all the spectra: the frequency range 0.019-0.024 cycles/m (1/42-1/53 m), and the frequencies 0.07 cycles/m (1/14 m) and 0.098 cycles/m (1/10 m).

Figure 5.20 Methods of spectral estimation using Gerbe spectral total-gamma data. The REDFIT spectrum has been created using 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.014 cycles/m. The MTM method uses 4 tapers and ~8 degrees of freedom. The periodogram uses a Bartlett window. The maximum entropy method uses a numbers of lags M = N/3 = 335. Analysis used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).
Table 5.7 Methods of spectral estimation in the Gerbe section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.019</td>
<td>53.5</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.031</td>
<td>32.2</td>
<td></td>
<td>0.024</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>0.072</td>
<td>13.9</td>
<td></td>
<td>0.073</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>0.099</td>
<td>10</td>
<td></td>
<td>0.098</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>0.159</td>
<td>6.3</td>
<td></td>
<td>0.151</td>
<td>6.6</td>
</tr>
<tr>
<td>MTM</td>
<td>0.012</td>
<td>82</td>
<td>Maximum entropy</td>
<td>0.012</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>43.5</td>
<td></td>
<td>0.024</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>28.6</td>
<td></td>
<td>0.067</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
<td>22.2</td>
<td></td>
<td>0.08</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0.071</td>
<td>14.1</td>
<td></td>
<td>0.098</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>0.098</td>
<td>10.2</td>
<td></td>
<td>0.155</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>8.3</td>
<td></td>
<td>0.198</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.2 cycles/m.

†Frequencies present in the MTM significant test with confidence levels > 80%.

Frequencies which appear consistently in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT time-series analysis of the Gerbe section was undertaken on the total-gamma, K, Th and sandstone turbidite intensity records using 4 WOSA segments and ~ 6 degrees of freedom (Figure 5.21). The most significant frequencies found in each spectrum within the frequency range 0-0.5 cycles/m are summarised in Table 5.8. The background noise has been estimated by using a power regression method (Table 5.9).

REDFIT analysis reveals three main significant frequencies within the 0-0.5 cycles/m range. Sandstone turbidite intensity, total-gamma and K spectra show two main frequencies: 0.0187 cycles/m (1/53 m) and 0.07 cycles/m (1/14 m). These two frequencies are significant > 95% confidence levels and in some cases the spectral peaks are well > 99% confidence levels. The 0.0187 cycles/m frequency is also present in the Th spectrum with a confidence level > 95%, being this, the only significant frequency found in the spectrum of this element. The frequency range 0.031-0.034
cycles/m (1/32-1/29 m) is significant in the total-gamma and K data > 99% confidence levels, however, this frequency is absent in the other spectra.

Figure 5.21 Time-series analysis of spectral gamma-ray and sandstone turbidite intensity data of the Gerbe section using REDFIT. REDFIT spectral results used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.014 cycles/m. REDFIT results plotted using a power regression fitting model. Graphs re-scaled to allow comparison between variables. The analysis used the REDFIT software developed by Schulz and Mudelsee (2002).
Table 5.8 Significant frequencies of the Gerbe section using REDFIT.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequencies (cycles/m)</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.01871</td>
<td>53.44</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.03112</td>
<td>32.13</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.07117</td>
<td>13.95</td>
<td>95%</td>
</tr>
<tr>
<td>K</td>
<td>0.0186</td>
<td>53.76</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0342</td>
<td>29.24</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.0747</td>
<td>13.4</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>0.3114</td>
<td>3.21</td>
<td>90%</td>
</tr>
<tr>
<td>Th</td>
<td>0.0187</td>
<td>53.47</td>
<td>95%</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0187</td>
<td>53.47</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
<td>22.22</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>0.0713</td>
<td>14.02</td>
<td>99%</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 4 WOSA segments and 6 degrees of freedom. The frequencies shown are all frequencies between 0-0.5 cycles/m > 90% confidence levels.

Table 5.9 Noise background estimation methods for the Gerbe section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>8910</td>
<td>7558</td>
<td>5181</td>
</tr>
<tr>
<td>K</td>
<td>4793</td>
<td>4164</td>
<td>2196</td>
</tr>
<tr>
<td>Th</td>
<td>6702</td>
<td>5856</td>
<td>2524</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>1684</td>
<td>1307</td>
<td>783</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicating the most adequate fitting curve method is represented in bold numbers.
(c) ASM results

The ASM analysis identifies two main significant SAR ranges: 16.5-17.5 cm/kyr and 42-100 cm/kyr (Figure 5.22). The lowest significant level at 0.002% is found in the SAR range between 54.5 and 71 cm/kyr. Table 5.10 calculates the duration of the cycles for different frequencies at specific SARs. The SAR which most closely mirrors the orbital periods of the Middle Eocene is 57 cm/kyr. This SAR associates the most significant frequency 0.0187 cycles/m, present in all the analysed spectra, with eccentricity 95 kyr. Higher SARs do not link this frequency to any orbital cycles and therefore have been discarded as no significant, since eccentricity cycles are the most dominant orbital cycles in all the other gamma-ray sections in the Ainsa Basin. At 57 cm/kyr, the frequencies 0.034 cycles/m and 0.045 cycles/m are associated with obliquity, and the frequency 0.07 cycles/m is linked to precession 23 kyr. However, it is likely that the frequency 0.034 cycles/m represents a second harmonic of 0.0187 cycles/m since the ~ 0.034 value closely approximates the double of this frequency. Harmonics can occur in records which show a change in SARs. Variations in the SAR can result in non-linear distortion of the time-series resulting in the development of harmonics (Weedon, 2005).

Orbital tuning of the Gerbe records in Section 5.3.2.4.3f indicates that the most likely SAR rate for the Gerbe section is 47 cm/kyr (Table 5.10). The good age control in the Gerbe section with the C21r/C21n polarity reversal identified at the beginning of the section implies that the SAR inferred from tuning the records to eccentricity are likely to be correct. The SAR 47 cm/kyr is significant in the SAR analysis with a significant level of 0.082%. This SAR also considers that the most predominant spectral peak at 0.0187 cycles/m can be interpreted as eccentricity (~ 114 kyr in duration), and the frequency 0.045 cycles/m will therefore be considered as obliquity.
However, at this SAR the frequency 0.07 cycles/m have a duration of ~ 29 kyr which could represent precession, although, its duration is slightly on the high side. Orbital tuning of the records also suggests that SARs may have varied a lot in the Gerbe section from 28 to 63 cm/kyr and this variation may have affected the periodicity of the precession cycles and the presence of harmonics (Weedon, 2005). A SAR of 47 cm/kyr in the Gerbe System closely approximates the SAR estimated for the stratigraphically older Arro System at 50 cm/kyr.

Figure 5.22 ASM results of the Gerbe section. ASM analysis includes a total of 7 frequencies identified from the spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 90%. For a list of frequencies refer to Table 5.10. The analysis used a Rayleigh number of 1.99004975 x 10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger *et al.* (1992) calculations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo simulations. Critical levels were established at 0.52%. ASM analysis has identified significant SAR values ranging from 42-100 cm/kyr. All 7 orbital parameters (eccentricity, obliquity and precession) have been included in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.10 Temporal period duration of significant frequencies in the Gerbe section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>C.L (%)</th>
<th>N°</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47 cm/kyr</td>
</tr>
<tr>
<td>0.018</td>
<td>99</td>
<td>4</td>
<td>53.5</td>
<td>113.8</td>
</tr>
<tr>
<td>0.031</td>
<td>99</td>
<td>1</td>
<td>32.1</td>
<td>68.4</td>
</tr>
<tr>
<td>0.034</td>
<td>99</td>
<td>1</td>
<td>29.2</td>
<td>62.2</td>
</tr>
<tr>
<td>0.045</td>
<td>90</td>
<td>1</td>
<td>22.2</td>
<td>47.3</td>
</tr>
<tr>
<td>0.071</td>
<td>95</td>
<td>2</td>
<td>14.1</td>
<td>29.7</td>
</tr>
<tr>
<td>0.074</td>
<td>95</td>
<td>1</td>
<td>13.4</td>
<td>28.5</td>
</tr>
<tr>
<td>0.311</td>
<td>90</td>
<td>1</td>
<td>3.2</td>
<td>6.8</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence level) at different SARs. The SAR which most closely matches the orbital periods of the Middle Eocene (~ 45 Ma) is 57 cm/kyr (bold numbers). The SAR at 47 cm/kyr is also considered as significant. See text for further explanation. The frequencies underlined are contained in more than 1 spectrum with confidence levels > 95%. Estimated orbital cycles for the Middle Eocene (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

* include all frequencies within the range 0-0.5 cycles/m with confidence levels > 90%.
□ number of parameters containing that specific frequency in the REDFIT spectrum.

Figure 5.23 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Gerbe section. (a) The wavelet power spectrum identifies spectral power at different frequencies throughout the Gerbe stratigraphic section. Black contours mark the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line are significant > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool available at http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.23 Wavelet analysis of the Gerbe section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(d) Wavelet analysis

Results from the wavelet analysis include a number of significant frequencies > 90% confidence levels (Figure 5.23). The most spatially persistent frequency, present in all the analysed records with confidence levels > 90% is 0.0187 cycles/m (1/53 m). This frequency has been associated with short eccentricity combining REDFIT and ASM analysis. This frequency is present in all of the stratigraphic records. In the sandstone turbidite intensity and Th wavelet spectra, this frequency appears continuous throughout the stratigraphy but in the total-gamma and K records it shows some spatial discontinuities mainly in the central part of the records.

The frequency 0.045 cycles/m (1/22 m) is also significant and spatially persistent in the wavelet spectra of all the records analysed. The sandstone turbidite intensity data shows this frequency is significant throughout the records, but, the K, Th and total-gamma spectra show a decrease in power in the central part of the records at ~ 80-130 m. This frequency has been associated with obliquity using ASM studies.

There is another frequency present at ~ 0.07 cycles/m (1/14 m) which is significant between 60 and 130 m in all the studied records. This frequency is associated with precession cycles.
(e) Frequency-selective filtering

Three frequencies, 0.0187, 0.03 and 0.07 cycles/m have been filtered using a bandwidth of 0.014 cycles/m which has been determined by REDFIT analysis. The frequencies 0.0187 and 0.03 cycles/m are present in the total-gamma records with confidence levels > 99% and the frequency 0.07 cycles/m has confidence levels > 95%.

The filtered records of the Gerbe section using a frequency of 0.0187 cycles/m and 0.03 cycles/m (Figure 5.24) show a very similar number of well-defined broad cycles. This figure shows that it is unlikely the frequency 0.03 cycles/m represents obliquity and can better be interpreted as a second harmonic of the eccentricity caused by variations in the SAR. The figure also shows how eccentricity cycles become less defined in the central part of the total-gamma records and this probably reflects the decrease in power and significance identified in the wavelet spectrum of the total-gamma records (Figure 5.23).

The filtered records at 0.07cycles/m (1/14 m) show well developed cycles throughout the records. The cycles seem to increase in amplitude in the central part of the section where eccentricity cycles are less dominant.
Figure 5.24 Frequency-selective filtering of the Gerbe section. The records have been interpolated and detrended before analysis. Filtering has used a band-pass Gaussian filter and a bandwidth of 0.015 cycles/m. Total-gamma data has been filtered to 0.0187, 0.031 and 0.07 cycles/m. The frequency 0.0187 cycles/m has been linked to eccentricity and the frequency 0.07 cycles/m has been associated with precession. The program used for filtering was Analyseries of Paillard *et al.* (1996).

(f) Orbital tuning

Orbital tuning of the Gerbe section has been performed by comparing the total-gamma records filtered to 0.0283 cycles/m which is the frequency associated with eccentricity (from REDFIT and ASM spectral analysis) to the eccentricity curves for the Middle
Eocene using the La2010a orbital solution of Laskar et al. (2011). Five anchor points have been used for tuning the records (Table 5.11).

Table 5.11 Anchor points used for tuning in the Gerbe section.

<table>
<thead>
<tr>
<th>Stratigraphic height (m)</th>
<th>Age (Ma)*</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>47.338</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>37.4</td>
<td>47.236</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>58.3</td>
<td>47.189</td>
<td>Eccentricity minima</td>
</tr>
<tr>
<td>102.5</td>
<td>47.082</td>
<td>Eccentricity minima</td>
</tr>
<tr>
<td>179.5</td>
<td>46.960</td>
<td>Eccentricity maxima</td>
</tr>
</tbody>
</table>

The table shows the 5 anchor points employed to tune the Gerbe section to the eccentricity time scale. *Ages obtained from the GPTS of Gradstein et al. (2012).*

The best match between the total-gamma filtered records of the Gerbe section and the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011) (Figure 5.25), suggests that the base of the Gerbe section can be dated at 47.36 Ma. This is in agreement with the age of the C21r-C21n polarity reversal found at the base of the section (~ 10 m stratigraphic height). The top of the Gerbe section which has been interpreted as the base of the Banastón II System, can be established at 46.93 Ma, giving a total duration for the Gerbe section of ~ 420 kyr.

Figure 5.26 shows that tuning the records to eccentricity has strengthened the power of the obliquity peak (~ 47 kyr). This peak can be associated with the obliquity O1 orbital period of 52 kyr which is now significant with confidence levels > 99%. The peak at 32 kyr is also more prominent in the tuned data. This peak is likely to be associated with the obliquity O2 40 kyr orbital period. Tuning the records has also strengthened the precessional cycles (21 kyr and possibly 16 kyr) which were not significant in the original spectrum (below the 80% confidence levels).
Figure 5.25 Orbital tuning of the Gerbe section. The filtered total-gamma records of the Gerbe section (Figure a) have been matched to the eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) orbital solution (Figure b) using 5 anchor points designated with an asterisk (*). The resultant tuned records (Figure c) show the distortion of the original data. The C21r-C21n polarity reversal dated at 47.35 Myr identified at ~ 10 m stratigraphic height in the Gerbe section has also been used as a control point.
Figure 5.26 Spectral analysis using REDFIT of total-gamma records tuned to eccentricity. The tuned records show a strengthening of the obliquity peak (~ 47 kyr) which is now present > 99% confidence levels. It is likely that the 32 kyr peak > 95% confidence levels is also associated with obliquity and may indicate some variation in the duration of the obliquity cycles (e.g., obliquity O1 52 kyr and obliquity O2 40 kyr orbital periods). Tuning the records has also strengthened the precessional cycles (21 kyr and possibly 16 kyr) which were no significant in the original spectrum.

SARs have been calculated for each of the intervals between anchor points to ensure that the tuned total-gamma records of the Gerbe section have not resulted in unrealistic SARs (Table 5.12). The SARs have varied between 28.6 cm/kyr and 63.2 cm/kyr although averaged values are around 47 cm/kyr. Figure 5.27 shows the variation of SAR across the tuned Gerbe section and the averaged SAR of the section is represented as a linear trend. This averaged SAR is lower than the most significant SAR ranges identified from ASM analysis, between 54.5 and 71 cm/kyr, but is still located within the range of significant SARs (Figure 5.22).
Table 5.12 SARs in the Gerbe section calculated from tuning the records to eccentricity.

<table>
<thead>
<tr>
<th>Height interval (m)</th>
<th>Age interval (Ma)</th>
<th>SAR (cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7.6</td>
<td>47.365-47.338</td>
<td>28.6 cm/kyr</td>
</tr>
<tr>
<td>7.6-37.4</td>
<td>47.338-47.236</td>
<td>29.2 cm/kyr</td>
</tr>
<tr>
<td>37.4-58.3</td>
<td>47.236-47.189</td>
<td>44.4 cm/kyr</td>
</tr>
<tr>
<td>58.3-102.5</td>
<td>47.189-47.082</td>
<td>41.3 cm/kyr</td>
</tr>
<tr>
<td>102.5-179.5</td>
<td>47.082-46.96</td>
<td>63.1 cm/kyr</td>
</tr>
<tr>
<td>179.5-200.6</td>
<td>46.96-46.9266</td>
<td>63.2 cm/kyr</td>
</tr>
</tbody>
</table>

The table shows SAR calculated at different time intervals throughout the Gerbe section length. Averaged SAR is 47 cm/kyr.

Figure 5.27 SARs in the Gerbe section calculated from orbital tuning the total-gamma records to eccentricity. The figure shows the variation of SARs across the Gerbe section. The averaged SAR is 47 cm/kyr and is represented in the figure as a linear trend. This averaged SAR is much lower than the one estimated from ASM analysis at 57 cm/kyr.
5.3.3 The Banastón System

5.3.3.1 Sedimentology of the Banastón System

The Banastón System forms the thickest accumulation of sandstone turbidites in the Ainsa Basin. The thickness of the system varies from ~ 500 m in the most proximal areas to ~ 700 m in the most distal areas (Bayliss, 2011). The Banastón System has been extensively mapped and interpreted in detail by Bayliss (2011) and Bayliss and Pickering (2014b). The system comprises 6 sandbodies, designated from older to younger, Banastón I to Banastón VI. These sandbodies show a transitional depositional style from lower-slope erosional channel canyon infill in the eastern part of the Ainsa Basin to a more proximal basin-floor and overbank environments ~ 3 km to the northwest, in the proximities of the San Vicente and Boltaña towns (Bayliss and Pickering, 2014b). The transitional change in the environment of deposition of these sand-prone systems is reflected in the architectural elements which constitute these sandbodies (Bayliss and Pickering, 2014b). The proximal lower-slope channels are characterised by vertically-stacked erosional channels. These channels have an erosive base in the scale of tens of metres and are overlain by thick chaotic intervals, mainly Type II MTC deposits, comprising of mainly distorted mudstones with sand rafts which range from metres to hundreds of metres in length. The more distal deposits of the Banastón System have been deposited in a basin-floor setting and are characterised by less confined sediments with sand accumulation occupying a wider area. The channels show a lower degree of erosion at the base.

Palaeocurrent directions determined from current ripples, cross-stratified beds and sole marks suggest that the current direction of the most eastern slope channels
have a dominant westerly direction (290°) and the basin-floor channels have a more north to northwest dominant direction (320°) (Bayliss and Pickering, 2014b).

5.3.3.2 Tectonic history during the deposition of the Banastón System

The sediment distribution patterns of the sandbodies of the Banastón System are characterised by structural confinement between intrabasinal structural highs and the edges of the basin margins. The Banastón sandbodies onlap and pinch out against the Boltaña and the Mediano structural highs, indicating these structures played an important role in confining these flows (Bayliss and Pickering, 2014b).

Cross-sections drawn perpendicular to the main palaeoflow direction, show a lateral migration of the depositional axis of the Banastón System towards the SSW. Bayliss and Pickering (2014b) have associated this lateral migration with the syn-sedimentary growth of the Añisclo Anticline during the deposition of the Banastón System. The progressive growth of this intrabasinal structure has resulted in an offset-stack of successive channels towards the SSW away from the deformation front.

Growth rates of this anticline probably exceeded the SAR during the deposition of the Banastón I and II sandbodies and resulted in the structural confinement of these two sandbodies between the Boltaña and the Añisclo anticlines. The Banastón III and IV sandbodies do not show a significant change in thickness across this structure and have a lower degree of confinement. This may indicate that this structure was latent or the depositional accumulation of these two sandbodies exceeded structural growing rates (Bayliss and Pickering, 2014b). The Banastón V and VI sandbodies are thicker towards the west indicating SARs did not keep pace with the growth of this structure (Bayliss and Pickering, 2014b).
5.3.3.3 Age of the Banástón System

Magnetostratigraphic work carried out in the Banástón System (Chapter 3) shows that most of the Banástón System has a normal polarity. There is a change in the magnetic polarity, from normal to reverse, in the interfan deposits between the Banástón IV and V systems. Normal polarity remains throughout the rest of the Banástón System. The polarity reversal probably marks the transition between chronrs C21n and C20r which is estimated to have occurred at 44.72 Ma (Gradstein et al., 2012). This result suggests that the Banástón System is ~ 1 Myr younger than the estimations from Scotchman et al. (2014) (see Chapter 3).

5.3.3.4 Labuerda gamma-ray logged sections

Two sections have been logged in the Banástón System, ~ 1 km northwest of Labuerda town. Labuerda section 1 has a thickness of 92 m and Labuerda section 2 is 365 m thick. These two sections are separated by ~ 240 m of fine-grained sediments. The fine-grained sediments in between these two sections contain some large-scale slumps and locally outcrop exposure can be very poor causing discontinuous vertical successions. As a result, this intermediate section was considered unsuitable for high-resolution gamma-ray logging and therefore not included in this study. Labuerda section 1 and 2 can be accessed from the road which joins the villages of Labuerda and San Vicente and both sections are well exposed along small stream valleys (Plate 5.7).
Plate 5.7 Aerial photograph of the Labuerda gamma-ray logged sections. This plate shows the location of the Labuerda 1 and 2 sections outcropping at stream valleys between the towns of Labuerda and San Vicente. The area between these two sections is poorly exposed and not suitable for gamma-ray logging. To the northwest and southeast of the plate there are two vegetated ridges which correspond to the Gerbe I and Ainsa I sandbodies, respectively. Aerial image from www.sigpac.mapa.es/fega/visor.

5.3.3.5 Stratigraphic location of the Labuerda sections

The Labuerda 1 and 2 sections are both located in the Banastón System and these sections mainly represent the fine-grained overbank deposits and interfan sediments of the Banastón submarine fans. Figure 5.28 shows a geological map, cross-section and stratigraphic column of the area surrounding the Labuerda sections.

The Labuerda section 1 starts immediately above a tectonically deformed area which contains numerous small-scale reverse faults. The sediments in this area also show an increase in the sedimentary dip of up to 30°. Towards the NE, ~ 120 m from
the beginning of the Labuerda 1 section, there is a densely vegetated ridge which contains at the top a thin sandstone package. This thin sandbody has been interpreted as the Gerbe I sandbody (Plate 5.7, Figure 5.29). It is inferred that the deformed area between the Gerbe sandbody and the beginning of the Labuerda section is associated with a thrust which can be traced towards the NW and SE of this location (Figure 2.4). This thrust belongs to the Arro Thrust System and has deformed certain areas of the Gerbe System (Plate 5.4). The Gerbe System was thrust over the first successions of the Banastón System (Banastón I and possibly part of Banastón II). It is therefore very difficult to determine the exact stratigraphic location of the beginning of the Labuerda section 1. A stratigraphic overlapping between the Labuerda section 1 and the Gerbe section is likely, although it is not possible to determine with accuracy, the exact degree of overlapping.

The fine-grained sediments of the Labuerda section 1 and 2 are sandy-rich (~11.8 and 10.3% sand, respectively). This high percentage of sand content makes the overbank and interfan deposits of the Banastón System the sandiest of all the systems of the Ainsa Basin. Interestingly, the Banastón System also comprises the thickest turbidite successions of all the Ainsa deep-marine systems. The Banastón V and VI sandbodies have completely pinched out at this location and their exact position within the stratigraphy cannot be determined with certainty. The top of the Labuerda season 2 log is located ~ 40 m below the Ainsa I sandbody which is represented in Plate 5.7 by a vegetated ridge. The top of the Labuerda season 2 log finishes in a very steep and narrow valley with a large heterolithic package at the top which marks the initiation of the Ainsa I Fan. Access to this heterolithic package is not possible due to the steepness of the slopes.
Figure 5.28 Geological map, cross-section and vertical stratigraphic column of the Labuerda gamma-ray logged section 1 and 2. (a) Geological map of the area west of the village of Labuerda showing the gamma-ray logged Labuerda section 1 and 2. In the northwestern part of the area, there is a significant ridge containing the Gerbe I sandbody. The area appears slightly deformed with reverse faults and the sediments show an increase in the depositional dip. It has been interpreted that the Gerbe System has been thrust over the first successions of the Banastón System (Banastón I and possibly part of Banastón II which are absent in this area). The green line indicates the position of the cross-section A-A’, parallel to the Labuerda gamma-ray sections. (b) Cross-section showing the position of the gamma-ray logged section in the interfan and overbank sediments between the Banastón II and the Ainsa I sandbodies. The Banastón II, V and VI sandbodies have completely pinched out at this location and it is not possible to determine their exact position within the stratigraphy. (c) Stratigraphic column showing the thickness of the sediments and the position of the Labuerda gamma-ray logged sections 1 and 2. The total stratigraphic thickness of the sediments between the Labuerda section 1 and 2 is ~ 240 m.
5.3.3.6 Labuerda gamma-ray logged section 1

The Labuerda section 1 has a significant interval ~ 13 m thick between 28 and 41 m height that shows a large occurrence of *Arenicolites* burrows (Plate 5.8). This bioturbated interval is quite remarkable and only one other area in the Ainsa Basin, associated with the Gerbe 1 sandbody has shown such a high concentration of *Arenicolites* burrows (Heard, 2007). These burrows cut the strata vertically and are typically 50 cm in length. However, locally they can reach up to a few metres thick. The burrows are sharp-walled, U-shaped and ~ 1 cm in diameter. These burrows have been interpreted as dwelling and feeding structures and are associated with suspension-feeding annelids or small crustaceans (Ekdale and Lewis, 1991; Pervesler and Uchman, 2004). The abundance of vertically orientated *Arenicolites* in the Labuerda section 1 is probably indicative of a high energy environment with significant sediment bypass (Heard, 2007). *Arenicolites* burrows are infilled with coarser grained sand than the surrounded siltstones and mudstones indicating sediment bypass of coarse-grained turbidites or sandy MTDs/MTCs.

Figure 5.29 shows complete sedimentary logs of the Labuerda section 1. The interval of *Arenicolites* can be easily distinguished in the logs. The last 30 m of the Labuerda section 1 are characterised by thick intervals of siltstone-mudstone couplets. Figure 5.30 shows the sandstone turbidite intensity variation of the Labuerda section 1. The turbidite intensities appear to vary cyclically from 40 m height to the end of the section with periodicities of ~ 10 m. Figure 5.31 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the Labuerda section 1.
Plate 5.8 Outcrop photographs of the Labuerda section 1. The photographs show a large concentration of Arenicolites burrows in the Labuerda section 1 between 28 and 41 m height. (a) Close-up photograph of some Arenicolites burrows where it can be appreciated the verticality of this type of burrows cutting perpendicularly across bedding. (b) Arenicolites burrows are U-shaped, ~ 1 cm thick and typically 50 cm in length but they can reach up to few metres. Arenicolites burrows are infilled with coarser grained sand than the surrounding siltstones and mudstones. The coarse-grained infill has made these burrows more resistant to weathering and has contributed to their preservation. (c) Outcrop photograph showing a large concentration of Arenicolites burrows in the area.
Figure 5.29 Sedimentary log of the Labuerda section 1. Sedimentary logs include every bed thicker than 0.5 cm. Figure 2.5 includes a legend of the symbols used in the sedimentary logs. The sedimentary logs show the Arenicolites horizon between 28 and 41 m height. The Labuerda section 1 is characterised by a high intensity of sandstone turbidites and contains many intervals of laminated siltstone-mudstone couplets. Appendix 3 includes an electronic version of these sedimentary logs for detailed visualisation.
Figure 5.30 Sandstone turbidite intensity in the Labuerda section 1. The first 40 m of the section contains a higher number of sandstone turbidites. From 40 m to the top of the section, the sand content appears to have varied in a cyclical manner with periodicities of ~ 10 m. This 10 m period is associated with a precessional cycle (see Section 5.3.3.6.1). The averaged sand content for the whole section is ~ 11.9%.
Figure 5.31 Total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data plotted against sedimentary logs of Labuerda section 1. Simplified sedimentary logs only showing sandstone turbidites ≥ 1.5 cm, for complete logs refer to Appendix 3.
5.3.3.6.1 Cyclostratigraphy of the Labuerda section 1

(a) Methods of spectral estimation

The total-gamma spectrum of the Labuerda section 1 has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.32 shows the spectral results obtained from applying each of these methods. Table 5.13 summarises the main frequencies identified within the range 0-0.2 cycles/m. The four methods result in spectra which contain spectral peaks at similar frequencies. The frequencies 0.04 cycles/m (1/25 m), 0.068 cycles/m (1/14 m) and 0.11 cycles/m (1/9 m) consistently appear in all the spectra analysed.

![Figure 5.32 Methods of spectral estimation using Labuerda section 1 spectral total-gamma data. REDFIT spectrum used 2 WOSA segments, 3 degrees of freedom and a bandwidth of 0.0194 cycles/m. MTM method used 2 tapers, ~ 4 degrees of freedom. The periodogram spectrum used a Bartlett window. The maximum entropy method used number of lags M = N/3 = 155). The analysis used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).](image-url)
Table 5.13 Methods of spectral estimation in the Labuerda section 1.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.012</td>
<td>83.3</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.012</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>0.048</td>
<td>20.8</td>
<td>0.04</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.068</td>
<td>14.7</td>
<td>0.068</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.117</td>
<td>8.5</td>
<td>0.11</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>MTM*</td>
<td>0.0158</td>
<td>63.3</td>
<td>Maximum entropy</td>
<td>0.042</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0.041</td>
<td>24.4</td>
<td>0.07</td>
<td>14.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.068</td>
<td>14.7</td>
<td>0.11</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.105</td>
<td>9.5</td>
<td>0.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.135</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.2 cycles/m.

* Frequencies present in the MTM significant test with confidence levels > 80%.
The frequencies that appear consistently in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT analyses of the Labuerda season 1 section have been undertaken using 2 WOSA segments (Figure 5.33). Table 5.14 summarises the most significant frequencies found within the frequency range 0-0.5 cycles/m. Table 5.15 shows the summative square errors for different background noise fitting methods. The method used is the Labuerda section 1 is the autoregressive AR1 method of Mann and Lees (1996) with the exception of the sandstone turbidite intensity spectrum where a power regression method has shown to fit better the spectral background noise (Table 5.15).

The most significant frequency identified is 0.047 cycles/m (1/21 m). This frequency is present in the total-gamma and K spectrum > 95% confidence levels and in the Th spectrum > 99% confidence levels. At 0.0645 cycles/m (1/15 m) and at 0.104 cycles/m (1/9 m) the sandstone turbidite intensity spectrum shows two spectral peaks well > 99% confidence level. These frequencies are characterised by relatively low power peaks below the 80% confidence levels in the total-gamma, Th or K spectra.
Figure 5.33 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 2 WOSA segments, 3 degrees of freedom and a bandwidth of 0.0194 cycles/m. REDFIT results plotted using the autoregressive model AR1 of Mann and Lees (1996) with the exception of sandstone turbidite intensity data which uses a power regression method. Graphs have been re-scaled to allow comparisons between variables.
Table 5.14 REDFIT time-series analysis results of the Labuerda 1 section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequencies (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence levels (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.0472 0.2764</td>
<td>21.2 3.6</td>
<td>95 99</td>
</tr>
<tr>
<td>K</td>
<td>0.0472</td>
<td>21.2</td>
<td>95</td>
</tr>
<tr>
<td>Th</td>
<td>0.047</td>
<td>21.2</td>
<td>99</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0645 0.1048 0.3629</td>
<td>14.5 9.5 2.7</td>
<td>99 99 99</td>
</tr>
</tbody>
</table>

* Frequencies shown are all frequencies between 0-0.5 cycles/m > 95% confidence levels.

Table 5.15 Noise background estimation of the Labuerda section 1.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>3032</td>
<td>6123</td>
<td>4306</td>
</tr>
<tr>
<td>K</td>
<td>2232</td>
<td>3824</td>
<td>2977</td>
</tr>
<tr>
<td>Th</td>
<td>555</td>
<td>498</td>
<td>427</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>116</td>
<td>110</td>
<td>104</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicates the most adequate fitting-curve method and is represented in bold numbers.

(c) ASM results

The five frequencies present in the REDFIT spectra > 99% confidence levels have been applied to the ASM studies. Table 5.16 shows a list of the frequencies used.

Considering that the gamma-ray logged sections in the Arro and Gerbe systems have yielded high SARs (~ 50 cm/kyr) it is unlikely that the Labuerda section 1 can determine eccentricity cycles with confidence due to no more than 2 eccentricity cycles probably represented in the total length of the section Therefore, only the obliquity and precession parameters have been included in the ASM analysis.
ASM analysis of the Labuerda section 1 shows significant SAR within the range 37-91 cm/kyr (Figure 5.34). The most significant SARs range from 41-43 cm/kyr with a null hypothesis significance level of 0.04%. Taking into consideration those frequencies which have higher confidence levels and those which appear in the spectra of more than one investigated parameters, the SAR which most closely reflects the Middle Eocene orbital cycles is 41 cm/kyr (Table 5.16). At a SAR of 41 cm/kyr, the frequencies 0.047 cycles/m (1/21 m) and 0.0645 cycles/m (1/14 m) represent obliquity 52 kyr and 40 kyr, respectively. The frequency 0.1048 cycles/m (1/10 m) is likely to represent precession 23 kyr.

Figure 5.34 ASM results of the Labuerda section 1. ASM analysis includes a total of 5 frequencies identified from spectral analysis. For a list of the frequencies used, refer to Table 5.16. The analysis used a Rayleigh number of $4.29184549 \times 10^{-4}$ and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were determined by using Berger *et al.* (1992) equations at ~45 Ma. A total of 191 SAR ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo interactions. Critical levels were established at 0.52%. ASM analysis has identified significant SAR values ranging from the 37-91 cm/kyr range with the most significant SAR between 41 and 43 cm/kyr. Only obliquity and precession parameters were investigated (O1, O2, P1, P2). The analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.16 Temporal period duration of significant frequencies in the Labuerda section 1.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>CL (%)</th>
<th>Na</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SARs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41 cm/kyr</td>
</tr>
<tr>
<td>0.047</td>
<td>99</td>
<td>3</td>
<td>21.3</td>
<td>51.9</td>
</tr>
<tr>
<td>0.0645</td>
<td>99</td>
<td>1</td>
<td>14.5</td>
<td>37.8</td>
</tr>
<tr>
<td>0.1048</td>
<td>99</td>
<td>1</td>
<td>9.5</td>
<td>23.3</td>
</tr>
<tr>
<td>0.2764</td>
<td>99</td>
<td>2</td>
<td>3.6</td>
<td>8.8</td>
</tr>
<tr>
<td>0.3629</td>
<td>99</td>
<td>1</td>
<td>2.8</td>
<td>6.7</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence level) at different SARs. The SAR that is most closely associated with the orbital periods of the Middle Eocene (~ 45 Ma) is 41 cm/kyr.

* Includes all the frequencies from 0-0.5 cycles/m with confidence levels > 99%.

a Number of spectra containing that specific frequency.

Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%.

Estimated orbital cycles in the Middle Eocene at 45 Ma using Berger et al. (1992) equations are eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

Figure 5.35 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Labuerda section 1. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Labuerda section 1 using sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line have a significance > 90% confidence levels. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analyses, have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.35 Wavelet analysis of the Laubertda section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(d) **Wavelet analysis**

Wavelet analysis shows two main frequency ranges > 90% confidence levels (Figure 5.35). The most spatially persistent frequency range is ~ 0.047-0.065 cycles/m (1/21-1/15 m). This frequency range is significant with a confidence level > 90% in the total-gamma, K and Th throughout the total length of the section. In the sandstone turbidite intensity records, this frequency range is also significant but is spatially discontinuous and present only in the first 25 m and top 35 m of the records. Spectral analysis using REDFIT and ASM has associated this frequency to obliquity.

The frequency at 0.1048 cycles/m (~ 1/10 m) which has been linked to precession is only present in the wavelet spectra of the sandstone turbidite intensity and Th data. This frequency is spatially sporadic in the Th spectrum but is more spatially persistent in the sandstone turbidite intensity data, mainly in the first 30 m and top 40 m of the section.

(e) **Frequency-selective filtering**

The frequency 0.0472 cycles/m (1/21 m) has been filtered using a bandwidth of 0.0194 cycles/m (Figure 5.36). This frequency is present in the total-gamma records with confidence levels > 90% and in the Th and K records with confidence levels > 90% and 99%, respectively. This frequency has been linked to obliquity.

The total-gamma records filtered at the frequency 0.0472 cycles/m show well developed high-amplitude obliquity cycles throughout the stratigraphy. The spatial distribution of this frequency coincides roughly with the distribution of the wavelet analysis in the total-gamma, Th and K records which have shown the persistent significance of this frequency throughout the length of the Labuerda section 1.
The frequency 0.1048 cycles/m shows well developed cycles in the first 70 m of the records. From 70 m to the top of the section, these cycles appear to lose amplitude and disappear.

Figure 5.36 Frequency-selective filtering of the Labuerda section 1. Total-gamma-ray records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.0194 cycles/m. The total-gamma records have been filtered to the frequencies 0.0472 cycles/m and 0.1048 cycles/m. These two frequencies have been associated with obliquity and precession using REDFIT and ASM spectral analysis. The program Analyseries of Paillard et al. (1996) has been used for filtering.
5.3.3.7 Labuerda gamma-ray logged section 2

The Labuerda section 2 comprises fine-grained and overbank sediments from the Banastón III to the Ainsa I submarine fan systems. The off-axial sediments of the Banastón III and IV channelised sandbodies are represented by heterolithic packages at ~ 30 m and ~ 150 m height, respectively. Towards the end of the Labuerda section 2, there are a number of chaotic events represented by muddy debris flows containing distorted sandstone rafts. These events are generally less than 1 m in thickness. The Labuerda section 2 log finishes ~ 20 m below the base of a thick heterolithic package which marks the initiation of the Ainsa I sandbody. This heterolithic package is not accessible due to steep slopes in a narrow stream valley.

The Labuerda section 2 has been gamma-ray logged by two MSc Geology students, Rachel Quarmby and Pierre R. C. Warburton in 2010, as part of their final MSc research project. Since their work did not include geological mapping, detailed sedimentary logs, sandstone turbidite intensity studies, magnetostratigraphy or extended time-series analysis, new work has been undertaken in this area.

Figure 5.37 shows detailed sedimentary logs of the Labuerda section 2 and Figure 5.38 shows the sandstone turbidite intensity variation throughout the section. There is a significant increase in the sand content of the section between 110 m and 150 m height. The Labuerda section 2 is one of the sandiest fine-grained sections logged in the Ainsa Basin with a total sand percentage of 10.3%.
Figure 5.37 Sedimentary logs of the Labuerda section 2. Sedimentary logs include every bed thicker than 5 mm. Electronic versions of these logs to allow for a more detailed visualisation are included in Appendix 3.
Figure 5.38 Sandstone turbidite intensity in the Labuerda section 2. There is a significant increase in the sand content of the section from 110 m to 150 m and towards the top of the log. The total sand percentage for the Labuerda section 2 is 10.3%.
5.3.3.7.1 Cyclostratigraphic studies of the Labuerda section 2

(a) Methods of spectral estimation

The total-gamma spectrum of the Labuerda section 2 has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.39 shows the spectral results obtained from applying each of these methods. Table 5.17 summarises the main frequencies identified within the frequency range 0-0.2 cycles/m. The spectrum created in all cases is similar, although, the MTM is characterised by flat topped frequencies. The MTM significance test does, however, show similar frequencies to the other spectra. There are four frequencies which persistently appear in all the spectra such as 0.012, 0.055, 0.107 and 0.157 cycles/m. For a list of all the frequencies, refer to Table 5.17.

Figure 5.39 Methods of spectral estimation using Labuerda section 2 spectral total-gamma data. The REDFIT spectrum uses 6 WOSA segments and 8 degrees of freedom. MTM method uses 6 tapers. The periodogram spectrum uses a Bartlett window. The maximum entropy method uses numbers of lags M= N/3= 613). Analysis used the programs REDFIT (Schultz and Mudelsee, 2002) and Analyseries (Paillard et al., 1996).
Table 5.17 Methods of spectral estimation in the Labuerda section 2.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.012</td>
<td>83.3</td>
<td>Periodogram modified with a Barlett window</td>
<td>0.002</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>0.028</td>
<td>35.7</td>
<td></td>
<td>0.014</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>0.055</td>
<td>18.2</td>
<td></td>
<td>0.042</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>14.5</td>
<td></td>
<td>0.059</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>0.083</td>
<td>12</td>
<td></td>
<td>0.069</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>0.107</td>
<td>9.3</td>
<td></td>
<td>0.11</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.157</td>
<td>6.4</td>
<td></td>
<td>0.137</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>6.2</td>
</tr>
<tr>
<td>MTM</td>
<td>0.0137</td>
<td>73</td>
<td>Maximum entropy</td>
<td>0.004</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>0.0244</td>
<td>41</td>
<td></td>
<td>0.013</td>
<td>76.9</td>
</tr>
<tr>
<td></td>
<td>0.0293</td>
<td>34.1</td>
<td></td>
<td>0.028</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>23.8</td>
<td></td>
<td>0.044</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>0.054</td>
<td>18.5</td>
<td></td>
<td>0.056</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>0.059</td>
<td>16.9</td>
<td></td>
<td>0.068</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>0.108</td>
<td>9.3</td>
<td></td>
<td>0.079</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>8</td>
<td></td>
<td>0.11</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>0.137</td>
<td>7.3</td>
<td></td>
<td>0.159</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>0.16</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.168</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.184</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.2 cycles/m.

**Frequencies present in the MTM significance test with confidence levels > 90%.

The frequencies which consistently appear in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT analyses of the Labuerda section 2 have been undertaken using 6 WOSA segments. There are several significant frequencies within the 0-0.5 cycles/m range in the time-series analyses of the total-gamma, K, Th and sandstone turbidite intensity datasets (Figure 5.40). The frequency 0.01 cycles/m (1/84 m) is present in the Th spectrum with confidence levels > 95%. The frequency 0.025-0.026 cycles/m (1/38-1/40 m) is present in the Th (> 90% confidence levels) and in the sandstone turbidite intensity spectrum (> 95% confidence levels). The frequency 0.055 cycles/m (1/18 m) also has good confidence levels in the total-gamma and Th time-series > 99% and 95%, respectively. The frequency 0.07 cycles/m (1/14 m) is present in all the analysed
parameters with a confidence level > 95% in all cases. Other significant frequencies are 0.1 cycles/m (1/9 m) which is present in the total-gamma records > 95% confidence levels and the frequency 0.157 cycles/m (1/6 m) present in the total-gamma and K spectra (confidence levels > 90%). A list of all significant frequencies are summarised in Table 5.18. The noise background estimation method used in this analysis was the power regression fitting method (Table 5.19).

Figure 5.40 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 6 WOSA segments, 8 degrees of freedom and a bandwidth of 0.011 cycles/m. REDFIT results plotted using a power regression fitting model. Graphs showing re-scaled power to allow comparison between variables.
Table 5.18 REDFIT time-series analysis results of the Labuerda section 2.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total gamma</td>
<td>0.0549</td>
<td>18.25</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.06922</td>
<td>14.44</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.105</td>
<td>9.52</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.15753</td>
<td>6.34</td>
<td>90</td>
</tr>
<tr>
<td>K</td>
<td>0.0691</td>
<td>14.47</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>12.35</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.1573</td>
<td>6.35</td>
<td>90</td>
</tr>
<tr>
<td>Th</td>
<td>0.0119</td>
<td>84.03</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0262</td>
<td>38.17</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.0548</td>
<td>18.25</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0691</td>
<td>14.47</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2406</td>
<td>4.15</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.2525</td>
<td>3.96</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.3169</td>
<td>3.15</td>
<td>90</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.025</td>
<td>40</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>14.28</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>12.5</td>
<td>90</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 6 WOSA segments and 8 degrees of freedom.
* Frequencies shown are all frequencies between 0-0.5 cycles/m > 90% confidence levels.

Table 5.19 Noise background estimation of the Labuerda section 2.

<table>
<thead>
<tr>
<th>Element</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>3289</td>
<td>10467</td>
<td>2623</td>
</tr>
<tr>
<td>K</td>
<td>3866</td>
<td>5497</td>
<td>1309</td>
</tr>
<tr>
<td>Th</td>
<td>846</td>
<td>776</td>
<td>285</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>2398</td>
<td>2803</td>
<td>818</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicating the most adequate fitting curve method is represented in bold numbers.

(c) ASM studies

ASM analysis of the Labuerda section 2 shows significant SAR values within the 13.5-100 cm/kyr range (Figure 5.41). Within this large range of significant SAR, there are five main groups of SARs which show the lowest null hypothesis significance levels at
0.001% : Group 1 (16-17.5 cm/kyr), Group 2 (28.5-37.5 cm/kyr), Group 3 (50.5-51.5 cm/kyr), Group 4 (63.5-68.5 cm/kyr) and Group 5 (74.5-81.5 cm/kyr). The frequencies 0.055 cycles/m (1/18 m), 0.069 cycles/m (1/14 m) and the frequency range 0.025-0.026 cycles/m (~ 1/40 m) appear in more than one investigated parameters and have confidence levels > 95% in at least one of the parameters. These frequencies are likely to be the most reliable and have been taken into consideration when determining which of the five groups of significant SARs better reflects the Middle Eocene orbital cycles. Examples of the duration of the cycles for each of these SAR groups can be seen in Table 5.20.

In Group 1 (16-17.5 cm/kyr), the significant frequency range 0.025-0.026 cycles/m has a duration of 238-250 kyr which do not approximate any significant orbital cycle. Similarly, Group 3 (50.5-51.5 cm/kyr) and Group 4 (63.5-68.5 cm/kyr) are unlikely to represent the most likely SAR for the Labuerda section 2, since the frequency range 0.025-0.026 cycles/m has an approximate duration of 78 kyr and 60 kyr respectively. These two periods do not approximate any of the known orbital cycles. The SAR which better matches the orbital cycles is 37 cm/kyr in Group 2 and 78 cm/kyr in Group 4.

The Labuerda section 1 which is stratigraphically below the Labuerda section 2, but, also located within the Banastón System, has a SAR of 41 cm/kyr (Table 5.16). Spectral analysis has shown that the SAR has decreased from ~ 50 cm/kyr in the older sections (Tierrantona and Gerbe sections) to ~ 41 cm/kyr in the Labuerda section 1. It is likely that the Labuerda section 2 follows this decreasing trend with a SAR of 37 cm/kyr. Also, further support for a SAR of ~ 37 cm/kyr comes from magnetostratigraphic studies (Chapter 3) which have suggested an average SAR of ~ 34.5 cm/kyr in the Banastón System (see Section 3.5.3, Figure 3.10).
A SAR of 37 cm/kyr suggests that the frequency range 0.025-0.026 cycles/m represents eccentricity; the frequencies 0.054 and 0.0262 cycles/m match the orbital parameters of obliquity 52 and 40 kyr, respectively, and the frequencies 0.105 and 0.157 cycles/m can be linked to the precession cycles 23 and 19 kyr, respectively (Table 5.20).

Figure 5.41 ASM results of the Labuerda section 2. ASM analysis includes a total of 11 frequencies identified from spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 90%. For a list of frequencies refer to Table 5.20. The analysis used a Rayleigh number of 1.08873163x 10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger et al. (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo simulations. Critical levels have been estimated at 0.52%. ASM analysis has identified significant SAR values ranging from 13-100 cm/kyr. Seven orbital parameters including eccentricity, obliquity and precession have been included in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.20 Temporal period duration of significant frequencies in the Labuerda section 2.

<table>
<thead>
<tr>
<th>Spectral frequencies</th>
<th>Period duration (kyr) at different SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr1 (cm/kyr)</td>
</tr>
<tr>
<td>Frequency*<sup>1</sup></td>
<td>CL (%)</td>
</tr>
<tr>
<td>0.012</td>
<td>95</td>
</tr>
<tr>
<td>0.025</td>
<td>95</td>
</tr>
<tr>
<td>0.026</td>
<td>90</td>
</tr>
<tr>
<td>0.055</td>
<td>95</td>
</tr>
<tr>
<td>0.069</td>
<td>95</td>
</tr>
<tr>
<td>0.081</td>
<td>90</td>
</tr>
<tr>
<td>0.105</td>
<td>95</td>
</tr>
<tr>
<td>0.157</td>
<td>90</td>
</tr>
<tr>
<td>0.241</td>
<td>90</td>
</tr>
<tr>
<td>0.252</td>
<td>90</td>
</tr>
<tr>
<td>0.317</td>
<td>90</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence levels) at different SARs. The SAR which most closely matches the orbital periods of the Middle Eocene (~ 45 Ma) is 37 cm/kyr.

* Includes all the frequencies from 0-0.5 cycles/m with confidence levels > 90%.

¹ Number of spectra containing that specific frequency.

Underlined are those frequencies which are contained in more than 1 spectrum with confidence levels > 95%.

The Middle Eocene orbital cycles (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.
(d) Wavelet analysis

Wavelet analysis shows three main frequencies > 90% confidence levels (Figure 5.42). The most spatially persistent frequency is ~ 0.025 cycles/m (1/40 m). This frequency is continuous throughout the records in the sandstone turbidite intensity spectrum. In the K and Th wavelet spectra, it is significant in the first ~ 150 m height of the Labuerda section 2. However, in the total-gamma spectrum this frequency is not significant, although there is an increase in power in the first 150 m of the section as well. REDFIT and ASM spectral analysis has associated this frequency with the short eccentricity. The frequency range ~ 0.055-0.069 cycles/m (~ 1/14-1/18 m) which has been linked to obliquity, is present in the wavelet spectra of the sandstone turbidite intensity, K, Th and total-gamma > 90% confidence levels. But significant regions around this frequency are in general small and discontinuous. In the sandstone turbidite intensity spectrum, this frequency is spatially discontinuous throughout the section. However, in all the other spectra it seems to be more significant in the first 100 m. Finally, the frequency range 0.105-0.157 cycles/m (1/6-1/9 m), linked to precession, is significant in all the records but spatially sporadic.

Figure 5.42 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Labuerda section 2. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Labuerda section 2 using the sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line are significant > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu/research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.42 Wavelet analysis of the Labuerda section 2.
(e) Frequency-selective filtering

The total-gamma records have been filtered to the frequencies 0.025 cycles/m (1/40 m) and 0.0692 cycles/m (1/14 m) using a bandwidth of 0.0115 cycles/m (Figure 5.43). The frequency at 0.025 cycles/m is only significant in the total-gamma ray records with confidence levels > 80%, but, is also present as well in the Th and sandstone turbidite intensity records with confidence levels > 90 and 95%, respectively. Figure 5.44 shows a comparison between sandstone turbidite intensity and total-gamma filtered records using a frequency of 0.025 cycles/m and a bandwidth of 0.0114 cycles/m. Both spectra show a similar number of eccentricity cycles, but, there is some offset at certain intervals throughout the stratigraphy. This offset is probably associated with small disagreements in the outcrop correlations between the gamma-ray logging and the sedimentary logging, which took place in two different field seasons and carried out by different researchers. The 0.025 cycles/m frequency has been linked to eccentricity using results from REDFIT and ASM analysis. The records filtered at this frequency show well-developed high-amplitude cycles mainly in the first 150 m and between 220 m and 310 m stratigraphic height (Figure 5.43). The filtered total-gamma records coincide with the wavelet spatial distribution of this frequency which shows a mostly continuous significant (> 90% confidence levels) spectrum, but, with a central area of decreased wavelet power spectra between 150 m and 210 m.

The total-gamma records filtered at a frequency of 0.0692 cycles/m (1/14 m) has a cyclical appearance throughout the records, but, the amplitude of the cycles is higher in the first 200 m. From 200 m to the top of the section, cycles appear more attenuated with some areas showing some irregularities and loss of cyclicity. This
frequency is present in the total-gamma records with confidence levels > 95% and has been associated with obliquity cycles.

Figure 5.43 Frequency-selective filtering of the Labuerda section 2. Total-gamma-ray records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.0114 cycles/m. The frequency 0.025 cycles/m has been associated with eccentricity and the frequency 0.0692 cycles/m has been linked to obliquity using REDFIT and ASM analysis. Filtering used the program Analyseries (Paillard et al., 1996).
Figure 5.44 Comparison between total-gamma and sandstone turbidite intensity filtered records to the frequency 0.025 cycles/m. Filtered total-gamma and sandstone turbidite intensity records have been normalised to allow comparison between these two parameters. The dashed lines mark the offset in eccentricity maxima between the two records for each of the identified eccentricity cycles. Filtering used the program Analyseries (Paillard et al., 1996).

(f) Orbital tuning

Orbital tuning of the Labuerda section 2 has been performed by comparing the total-gamma records filtered to 0.025 cycles/m, which is the frequency associated with eccentricity (from REDFIT and ASM spectral analysis) to the eccentricity curves for the Middle Eocene using the La2010a orbital solution of Laskar et al. (2011) (Figure 5.45). Nine anchor points were used for tuning the records (Table 5.21).

The change in magnetic polarity from normal to reverse identified in the Labuerda section 2 at ~ 185 m height has been associated with the chron C21n-C20r magnetic reversal. The age of this reversal is estimated to have occurred at 45.72 Ma (Gradstein et al., 2012). The best possible match found, taking into consideration the position of this magnetic reversal in the records, establishes the beginning of the Labuerda section 2 at 46.19 Ma. The top of the Labuerda section 2 is dated at 45.13 Ma, giving a total duration for the section of ~ 924 kyr.
Figure 5.46 shows that tuning the records to eccentricity have strengthened the power of the obliquity peaks (52 and 42 kyr) which are now both present > 99% confidence levels. These peaks indicate that there is some variation in the duration of obliquity cycles is present in the records (e.g., obliquity 52 and 40 kyr). Tuning the records has also strengthen the precessional cycles (26 kyr and possibly 17 kyr). The peak at 26 kyr is now well > 99% confidence level and the peak at 17 kyr is > 95% confidence levels.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Age (Ma)</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.974</td>
<td>46.098</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>71.958</td>
<td>45.994</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>110.55</td>
<td>45.891</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>166.026</td>
<td>45.789</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>209.442</td>
<td>45.618</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>243.813</td>
<td>45.512</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>277.38</td>
<td>45.409</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>314.771</td>
<td>45.323</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>356.976</td>
<td>45.278</td>
<td>Eccentricity minima</td>
</tr>
</tbody>
</table>

Table 5.21 Anchor points for tuning in Labuerda section 2.

The table shows the 9 anchor points used to tune the Labuerda section 2 to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011).
Figure 5.45 Orbital tuning of the Labuerda section 2. The filtered total-gamma records of the Labuerda section 2 (Figure a) have been matched to the eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) orbital solution (Figure b) using 9 anchor points designated with an asterisk (*). The resultant tuned records (Figure c) show the distortion of the original data. The C21n-C20r magnetic reversal dated at 45.72 Ma found at ~ 185 m height in the Labuerda section 2 has also been used as a control point.
Figure 5.46 Spectral analysis using REDFIT tuned to eccentricity. The tuned records show a strengthening of the obliquity 42 kyr and of the precession 26 kyr cycles which are now both $> 99\%$ confidence levels. The precessional peak at 17 kyr has also strengthened and is now $> 95\%$ confidence level.

SARs have been calculated for each of the intervals in between anchor points to ensure the tuned total-gamma records of the Labuerda section 2 have not resulted in unrealistic SARs. The SARs have varied between 24.4 cm/kyr and 54.4 cm/kyr although averaged values are ~ 35 cm/kyr. Table 5.22 shows the variation of SAR across the Labuerda section 2. Figure 5.47 shows graphically the variation in SAR across the Labuerda section 2 and averaged SARs are represented as a linear trend. The 35 cm/kyr averaged SAR is very similar to the most representative SAR of the orbital periods for the Middle Eocene calculated by ASM analysis at 37 cm/kyr (Table 5.20) and from palaeomagnetic studies at ~ 34.5 cm/kyr (Chapter 3).
Figure 5.47 SAR in the Labuerda section 2 calculated from orbital tuning the total-gamma records to eccentricity. The SARs have varied between 24.4 cm/kyr and 54.4 cm/kyr. Averaged values are ~ 35 cm/kyr (linear trend). SARs in Labuerda section 2 have remained relatively stable.

<table>
<thead>
<tr>
<th>Height interval (m)</th>
<th>Age interval (Ma)</th>
<th>SAR (cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-35</td>
<td>46.1964 - 46.098</td>
<td>34.5</td>
</tr>
<tr>
<td>35-72</td>
<td>46.098 - 45.994</td>
<td>34.5</td>
</tr>
<tr>
<td>72-110.5</td>
<td>45.994 - 45.891</td>
<td>37.5</td>
</tr>
<tr>
<td>110.5-166</td>
<td>45.891 - 45.789</td>
<td>54.4</td>
</tr>
<tr>
<td>166-209.4</td>
<td>45.789 - 45.618</td>
<td>24.4</td>
</tr>
<tr>
<td>209.4-243.8</td>
<td>45.618 - 45.512</td>
<td>32.4</td>
</tr>
<tr>
<td>243.8-277.4</td>
<td>45.512 - 45.409</td>
<td>32.5</td>
</tr>
<tr>
<td>277.4-314.8</td>
<td>45.409 - 45.323</td>
<td>44.6</td>
</tr>
<tr>
<td>314.8-357</td>
<td>45.323 - 45.17</td>
<td>26.9</td>
</tr>
<tr>
<td>357-367</td>
<td>45.17 - 45.1336</td>
<td>26.7</td>
</tr>
</tbody>
</table>

The table shows SARs calculated at different time intervals throughout the Labuerda section 2. The averaged SAR is 35 cm/kyr.
5.3.4 The Ainsa System

5.3.4.1 Sedimentology of the Ainsa System

The Ainsa System is ~ 170 m thick and is stratigraphically located between the Banastón and the Morillo deep-marine systems, within the Upper Hecho Group. The Ainsa System has been studied by numerous authors (Mutti et al., 1985; Mutti and Normark, 1987; Clark and Pickering, 1996; Pickering and Corregidor, 2000, 2005; Falivene et al., 2010).

The Ainsa System comprises three sandy successions, designated Ainsa I-Ainsa III. These sandbodies have been interpreted as structurally confined, lower-slope erosional channels or proximal basin-floor channel systems (Pickering and Corregidor, 2005). The facies association in the Ainsa sandbodies suggests repeated episodes of channel incision, sediment bypass and channel deposition and infilling. The sandbodies are characterised by a number of vertical and laterally offset stacked channels forming channel complexes. The channels are typically a few metres deep (up to 30 m) and hundreds of metres wide. They are characterised by basal conglomerates and Type II MTCs representing an initial erosional phase and a sand-rich infill generally composed of thick-bedded sandstones which marks the depositional phase and backfilling of the channel (Pickering and Corregidor, 2000). Sandstones are typically medium-grained, moderately sorted and can be classified as sublitharenites (Das Gupta and Pickering, 2008). The Ainsa fans show an overall westward migration with time, away from the deformation front and also show an aerial expansion within the Ainsa Basin which reflects an increase in sediment supply from the Ainsa I to the Ainsa III systems (Pickering and Corregidor, 2000).
5.3.4.2 Tectonic history during the deposition of the Ainsa System

During the deposition of the Ainsa sandbodies, the confinement of the Ainsa Basin which had already started during the deposition of the Banastón System (Bayliss and Pickering, 2014b) continued to increase. The Mediano Anticline was actively growing during the deposition of the Ainsa System (Fernández et al., 2004) and the growth of the fold propagated from south to north (Fernández et al., 2012). Also, the Añisclo Anticline was in an active growing stage, as evidenced by the increase of sediment thickness between the Ainsa and Morillo deep-marine systems in the San Vicente Syncline (Fernández et al., 2004; Fernández et al., 2012). The growth of the Boltaña Anticline appears to have started soon after, during the Morillo and Guaso depositional systems (Fernández et al., 2012). The growth of these anticlines was associated with a compressional tectonic regime which resulted in the advancement of the Pyrenean deformation front and the incorporation of the Ainsa Basin into this front. The Ainsa System was probably deposited during a transitional stage where the basin evolved from a foredeep basin to a thrust-top basin when it was incorporated into the hanging wall of the Gavarnie-Sierras Exteriores (Muñoz et al., 1998; Dreyer et al., 1999; Fernández et al., 2004; Fernández et al., 2012).

5.3.4.3 Age of the Ainsa System

Magnetostratigraphic work carried out in the Ainsa System (Chapter 3) shows reverse polarity throughout the deposition of this system, corroborating the age model of Scotchman et al. (2014) which suggests that the Ainsa System was deposited during chron C20r. These authors infer the C21n-C20r magnetic reversal at the base of the Ainsa System. However, the magnetostratigraphic study undertaken has shown that
this reversal occurred earlier, during the deposition of the Banastón V sandy succession. The estimated ages from palaeomagnetic studies suggests that the deposition of the Ainsa System occurred within calcareous zone NP15 at approximately 45-44 Ma, between the estimations of Remacha et al. (2003) and those of Pickering and Corregidor (2005).

5.3.4.4 Boltaña gamma-ray logged section

5.3.4.4.1 Geographical Location of the Boltaña section

The Boltaña section is 167 m long and is located ~ 300 m north of Boltaña town. The section can be accessed from the Javierre road which joins the main road N-260 just outside Boltaña town. The section is in an international walking route which joins the villages of Boltaña and San Vicente along the San Martin gully (Plate 5.9).

The section is fragmented into three mini sections: Boltaña 1 (~ 37 m long), Boltaña 2 (~ 11 m long) and Boltaña 3 (~ 119 m long) sections. These three sections are separated ~ 20-50 m apart (Plate 5.10) and can easily be correlated due to the presence of some thick sandstone turbidites which can be used as marker beds. Boltaña 1 is exposed at the stream which crosses the Boltaña town and Boltaña 2 and 3 sections are located immediately below Boltaña castle (Plate 5.9).
Plate 5.9 Aerial photograph of the Boltaña gamma-ray logged section. This plate shows
the three correlated logged sections. Boltaña 1 is well exposed along a stream whilst Boltaña 2
and 3 are located immediately underneath Boltaña Castle. Aerial image from
www.sigpac.mapa.es/fega/visor.
Plate 5.10 Outcrop photographs of the Boltaña gamma-ray logged section. (a) Photograph showing the three correlated logged sections. Boltaña 1 section is only partially exposed in this photograph. There is no access to the top 50 m of the fine-grained sediments located immediately below the Ainsa III sandbody due to very steep slopes. (b) Photograph shows the complete Boltaña 1 logged section well exposed along a stream cut. (c) Photograph showing the laminated nature of the fine-grained sediments with an alternation of darker and lighter bands forming cyclical packages. Human scale.
5.3.4.4.2 Stratigraphic location of the Boltaña section

The Boltaña section comprises the upper part of the Banastón System and most of the Ainsa System. Figure 5.48 shows a cross-section of the area and the position of the gamma-ray log within the stratigraphy. The logged section starts in the interfan deposits between the Banastón V and Banastón VI systems and ends ~ 50 m below the main axial part of the Ainsa III sandbody. The Banastón VI sandbody is off-axis at this location and is represented by a heterolithic package, ~ 15 m in thickness, which is present in the Boltaña 1 section between 15 and 30 m height (Figure 5.49). The sandstone turbidite intensity graph (Figure 5.50) shows clearly this sand-rich package at the same height (15-30 m). The Ainsa I and II sandbodies have completely pinched out at this location and their exact position within the stratigraphy cannot be established. The axial part of these two channelised sandbodies is located ~ 2 km from this location towards the east and the southeast. The Ainsa III sandbody is axial at this location and is well-exposed at the top of the hill where Boltaña castle and the rest of Boltaña town have been built upon (Plate 5.10a). The 50 m of fine-grained sediments immediately below the Ainsa III sandbody have not been logged as very steep slopes have prevented access to these sediments. Figure 5.51 shows the variation in the content of the total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Boltaña section.
Figure 5.48 Geological map, cross-section and vertical stratigraphic column of the Boltaña gamma-ray logged section. (a) Geological map of the Boltaña section. The northeastern part of the map shows an area of tectonic deformation with a large-scale synclinal fold (Buerba Syncline). This syncline is located between the Añisclo and the Boltaña anticlines. The eastern part of the area is completely undeformed and suitable for gamma-ray logging. The green line indicates the position of the cross-section A-A’ which is parallel to the Boltaña gamma-ray section. (b) Cross-section of the Boltaña area showing the position of the gamma-ray logged section in the interfan sediments between the Banastón VI and the Ainsa III sandbodies. The Ainsa I and II sandbodies have completely pinched out at this location and it is not possible to determine their exact position within the stratigraphy. (c) Stratigraphic column showing the thickness of the sediments and the position of the Boltaña gamma-ray logged section. The base of the Boltaña section contains the Banastón VI sandbody which forms a discrete heterolithic package indicating off-axial deposition. The logged section is discontinued ~ 50 m below the Ainsa III sandbody as the area is not accessible due to the steepness of the slopes.
Figure 5.49 Sedimentary logs of the Boltaña section. Sedimentary logs of the Boltaña section include every bed thicker than 0.5 cm and contain information on sediment colour, bioturbation, sedimentary facies and tectonic deformation. Figure 2.5 includes a legend of the symbols used in the sedimentary logs. An electronic version of these logs is available in Appendix 3.
Figure 5.50 Sandstone turbidite intensity in the Boltaña section. There is a general decrease in the number of turbidites throughout the section. The averaged sandstone content of the section is ~ 6%. The last 13 m of the section (from 154 to 167 m height) is covered by thick scree. This poorly exposed section has not been included in the final sedimentary logs or in the sandstone turbidite intensity studies, but, is present in the gamma-ray logs.
Figure 5.51 Total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Boltaña section. Simplified sedimentary logs of the Boltaña section only showing sandstone turbidites ≥ 1.5 cm, for complete logs refer to Figure 5.49. The last 10 m of the outcrop are very weathered and no sedimentary logs are available. Black line is a 4-period moving average.

5.3.4.4.3 Cyclostratigraphic studies of the Boltaña section

(a) Methods of spectral estimation

The total-gamma spectrum of the Boltaña section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.52 shows the spectral results obtained from applying each of these methods and Table 5.23 summarises the main frequencies present within the frequency range 0-0.2 cycles/m. The general spectrum created is
similar using these four methods with spectral peaks present in similar frequency positions. The frequencies 0.089 cycles/m (1/11 m), 0.14-0.16 cycles/m (1/6 m) and 0.189 cycles/m (1/5 m) consistently appear in all of the spectra analysed. The frequency range 0.029-0.031 cycles/m (~1/30 m) is also present in all the spectra with the exception of the MTM spectrum.

Figure 5.52 Methods of spectral estimation using the spectral total-gamma data of the Boltaña section. REDFIT spectral results used 6 WOSA segments, 8 degrees of freedom and a bandwidth of 0.024 cycles/m. MTM method used 4 tapers and ~8 degrees of freedom. The periodogram spectrum was computerised using a Bartlett window. The maximum entropy method used numbers of lags M = N/3 = 280). The analysis was undertaken using the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).
Table 5.23 Methods of spectral estimation in the Boltaña section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.0315</td>
<td>31.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1628</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.189</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodogram</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.083</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.098</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.153</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.191</td>
<td>5.2</td>
</tr>
<tr>
<td>MTM□</td>
<td>0.0085</td>
<td>118</td>
<td></td>
<td></td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td>0.084</td>
<td>11.9</td>
<td></td>
<td></td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>0.095</td>
<td>10.5</td>
<td></td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>7.2</td>
<td></td>
<td></td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>0.153</td>
<td>6.5</td>
<td></td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>5.3</td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum entropy</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.153</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.2 cycles/m.
□ Frequencies from the MTM significance test with confidence levels > 90%.
Frequencies which are consistently present in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT analyses of the Boltaña section using 6 WOSA segments reveal some significant frequencies within the 0-0.5 cycles/m frequency range (Figure 5.53). There is a clear significant frequency at 0.0315 cycles/m (1/31 m) which shows a prominent spectral peak in the total-gamma and K spectra well > 99% confidence level. This spectral frequency is also present > 99% confidence levels in the sandstone turbidite intensity spectrum. The frequency range 0.089-0.0942 cycles/m (1/11-1/10 m) is also present > 99% confidence level in the total-gamma and in the K spectra and > 95% confidence level in the Th spectrum. The frequency 0.147 cycles/m (1/7 m) is present in the total-gamma and in the K spectrum with confidence levels > 90%. Finally, the frequency range 0.18-0.19 cycles/m (1/6 m) is present in the total-gamma and Th spectra > 80% and 90% confidence levels, respectively. A list of all significant frequencies > 80% confidence levels within the frequency range 0-0.5 cycles/m can be
seen in Table 5.24. The confidence levels have been calculated after applying a power regression fitting curve to the background noise (Table 5.25).

Figure 5.53 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 6 WOSA segments; 8 degrees of freedom and a bandwidth of 0.024 cycles/m. REDFIT results are plotted using a power regression fitting model. Graphs have been re-scaled to allow comparison between variables. Analysis used the REDFIT software developed by Schulz and Mudelsee (2002).
Table 5.24 REDFIT time-series analysis results of the Boltaña section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.0315</td>
<td>31.74</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.0892</td>
<td>11.21</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>6.8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.1785</td>
<td>4.6</td>
<td>80</td>
</tr>
<tr>
<td>K</td>
<td>0.0315</td>
<td>31.74</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.0892</td>
<td>11.21</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>6.8</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.2363</td>
<td>4.2</td>
<td>90</td>
</tr>
<tr>
<td>Th</td>
<td>0.0261</td>
<td>38.31</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0942</td>
<td>10.61</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.1883</td>
<td>4.31</td>
<td>90</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0315</td>
<td>31.74</td>
<td>99</td>
</tr>
</tbody>
</table>

REDFIT spectral results used 6 WOSA segments; 8 degrees of freedom and a bandwidth of 0.024 cycles/m. *Frequency range 0-0.5 cycles/m.

Table 5.25 Noise background estimation in the Boltaña section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>2831</td>
<td>1988</td>
<td>1150</td>
</tr>
<tr>
<td>K</td>
<td>1523</td>
<td>1033</td>
<td>588</td>
</tr>
<tr>
<td>Th</td>
<td>158</td>
<td>145</td>
<td>117</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>568</td>
<td>465</td>
<td>210</td>
</tr>
</tbody>
</table>

The table shows the summative squared error for different noise background curve-fitting methods. The best curve-fitting method contains the lowest summative square error and is shown in bold numbers. In the Boltaña section, the best fitting method for all the analysed data is the power regression method.

(c) ASM results

ASM analysis has identified significant SARs ranging from 19.5 to 68.5 cm/kyr (Figure 5.54). The most significant ASM results are the SARs between 26-30.5 cm/kyr with null hypothesis significance levels of 0.001%. Table 5.26 calculates the duration
of each cycle for all the frequencies at a specific SARs. A SAR of 30 cm/kyr very closely represents the duration of orbital cycles for the Middle Eocene using the equations of Berger et al. (1992). At a SAR of 30 cm/kyr, the frequencies 0.026 cycles/m (1/38 m) and 0.0315 cycles/m (1/32 m) represent eccentricity 123 and 95 kyr, respectively. The frequency range 0.089-0.094 cycles/m (1/10-1/11 m) can be linked to the obliquity 40 kyr cycle and the frequencies 0.147 cycles/m (1/7 m)) and 0.1883 cycles/m (1/4 m) represent precession 23 and 19 kyr cycles, respectively.

Figure 5.54 ASM results of the Boltaña section. A total of 7 frequencies identified from the spectral analysis of gamma-ray and sandstone turbidite intensity records and with a confidence level > 90% have been applied to the ASM analysis. For a list of all the frequencies refer to Table 5.26. The analysis used a Rayleigh number of 2.38948 x 10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger et al. (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr have been investigated using 100,000 Monte Carlo interactions. Critical levels were established at 0.52%. ASM analysis has identified significant SAR values ranging from 19.5 to 68.5 cm/kyr. The most significant ASM results are the SAR between 26-30.5 cm/kyr with null hypothesis levels of 0.001%. All 7 orbital parameters including eccentricity, obliquity and precession have been included in the ASM studies. The analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.26 Temporal period duration for significant frequencies in the Boltaña section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)*</th>
<th>C.L (%)</th>
<th>N°</th>
<th>Period (m)</th>
<th>Temporal periods (kyr) for each SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26 cm/k yr</td>
</tr>
<tr>
<td>0.026</td>
<td>95</td>
<td>1</td>
<td>38.3</td>
<td>147</td>
</tr>
<tr>
<td>0.031</td>
<td>99</td>
<td>3</td>
<td>31.7</td>
<td>122</td>
</tr>
<tr>
<td>0.089</td>
<td>99</td>
<td>2</td>
<td>11.2</td>
<td>43.1</td>
</tr>
<tr>
<td>0.094</td>
<td>95</td>
<td>1</td>
<td>10.6</td>
<td>40.8</td>
</tr>
<tr>
<td>0.147</td>
<td>90</td>
<td>2</td>
<td>6.8</td>
<td>26.2</td>
</tr>
<tr>
<td>0.188</td>
<td>90</td>
<td>1</td>
<td>4.3</td>
<td>20.4</td>
</tr>
<tr>
<td>0.236</td>
<td>90</td>
<td>1</td>
<td>4.2</td>
<td>16.3</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence levels) at different SARs. The SAR which is most closely associated with the Middle Eocene orbital periods (~45 Ma) is 30 cm/kyr. Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%. Estimated orbital cycles for the Middle Eocene (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

* include all frequencies within the range 0-0.5 cycles/m with confidence levels > 90%.

□ number of parameters containing the specific frequency in the REDFIT spectrum.
(d) Wavelet analysis

The results from applying wavelet analysis are shown in Figure 5.55. There are a number of significant frequencies identified in the wavelet spectra with confidence levels > 90%. The most spatially persistent frequency is present at 0.03 cycles/m (1/33 m) and is significant in all the spectral data analysed. However, all the wavelet spectra show a decrease in power at this frequency in the 2nd half of the records, from 80 to 160 m height, below the 90% confidence levels. This frequency has been associated with eccentricity combining REDFIT and ASM analysis. The frequency 0.09 cycles/m (~ 1/11 m) has an intermittent spatial distribution and is better represented in the Th spectrum where it appears more continuous. This frequency is also present in the K and sandstone turbidite intensity spectra, but is not significant in the total-gamma spectrum. This frequency has been associated with obliquity. The 0.15 cycles/m (1/6 m) and 0.18 cycles/m (1/5 m) are only present sporadically in the wavelet spectra of all the parameters. These two frequencies have been linked to precession.

Figure 5.55 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Boltaña section. (a) Wavelet power spectrum represents spectral power at different frequencies throughout the Boltaña stratigraphic section. Black contours indicate the 10% significant regions. (b) Global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line (90% confidence level) are significant. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.55 Wavelet analysis of the Boltaña section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering

The two frequencies used for frequency-selective filtering were 0.0315 cycles/m (1/32 m) and 0.089 cycles/m (1/11 m) (Figure 5.56). These two frequencies are present in the REDFIT total-gamma spectrum > 99% confidence levels and have been associated with eccentricity and obliquity, respectively. The bandwidth used for filtering is 0.024 cycles/m which is the same determined by REDFIT analysis.

The filtered records using a frequency of 0.0315 cycles/m show well defined cycles only in the first half of the Boltaña section (0-80 m). These cycles become less defined and disappear in the second half of the filtered records. These results corroborate the wavelet analysis spectral results where this frequency was significant only in the first half of the section. The first half of the total-gamma record filtered at the frequency 0.089 cycles/m shows in general good amplitude obliquity cycles. These cycles become more evident and apparent in the second part of the records. The Boltaña record therefore, appears to be dominated by eccentricity in its first half and by obliquity in its second half.
Figure 5.56 Frequency-selective filtering of the Boltaña section. Total-gamma records filtered to the frequencies 0.0314 and 0.0892 cycles/m. The frequency 0.0314 cycles/m has been associated with eccentricity 95 kyr cycles and the frequency 0.0892 cycles/m has been associated with obliquity 40 kyr cycles. Filtering used the program Analyseries (Paillard et al., 1996).
(f) Orbital tuning

Orbital tuning of the Boltaña section has been performed by comparing the total-gamma records filtered to 0.0315 cycles/m which is the frequency associated with eccentricity to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011). A total of 6 anchor points have been used for tuning the records (Table 5.27). In the total-gamma filtered records, the depth points which constitute the top of each of the filtered cycles have been matched with eccentricity maxima points in the La2010a orbital solution of Laskar et al. (2011). The rest of the depth points in the total-gamma time series have been matched to absolute time by using a simple linear interpolation between the anchor points.

The Boltaña section has a good radiometric age control from biostratigraphic studies (Scotchman et al., 2014) and magnetostratigraphic studies (Chapter 3). Age estimations using biostratigraphic studies suggest that the Ainsa System was deposited between 44.24 and 44.82 Ma (middle Lutetian), during nannofossil zone NP15 and shallow benthic foraminifera zone SBZ13- SBZ14 (Scotchman, et al., 2014). Magnetostratigraphic studies show reverse polarity throughout the Boltaña section, likely to be within chron C20r. The C21n-C20r polarity reversal (45.72 Ma) has been identified at ~ 185 m height in the Labuerda section 2, approximately 165 m from the top of the section. This polarity reversal probably occurred during the deposition of the Banastón V succession. The Labuerda section 2 finishes in the Banastón VI System, no more than 50 m below the Ainsa I sandbody. The Boltaña section starts in the interfan deposits of the Banastón V and VI, ~ 15 m below the Banastón VI sandbody. It is not possible however, to estimate with accuracy the stratigraphic thickness which separates the Labuerda 2 and the Boltaña sections. Looking at the composite stratigraphy of the Ainsa Basin (Figure 5.1), the stratigraphic separation between these
two sections cannot be more than ~50 m. Therefore, it can be estimated that the Boltaña section is approximately 165-215 m above the C21n-C20r reversal at 45.72 Ma. SARs during the deposition of the Banastón and Ainsa systems from ASM studies (Figure 5.41, Figure 5.54) have been estimated to be between ~37 and 30 cm/kyr, respectively. Thus, the beginning of the Boltaña section is likely to have occurred between ~45.27-45 Ma.

Comparison between the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011) and the total-gamma, filtered records, shows a similar curve pattern (Figure 5.57). The well-developed eccentricity cycles of the first half of the Boltaña records and the loss of cycle definition in the top 60 m can be matched to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011) between ~45.3 and 44.7 Ma (Figure 5.57). Several attempts have been undertaken to match the selected anchor points to the eccentricity maxima/minima points of the eccentricity curves of the orbital solution of Laskar et al. (2011) around this time interval. The best possible match between these two records (Figure 5.58) suggests the Boltaña section was deposited between 45.29 and 44.56 Ma which is close to the initial estimation from stratigraphic study. The Boltaña section is ~730 kyr in duration.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Age (Ma)</th>
<th>Matched cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>45.226</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>47.4</td>
<td>45.120</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>79.4</td>
<td>45.015</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>104.8</td>
<td>44.9</td>
<td>Eccentricity minima</td>
</tr>
<tr>
<td>130.2</td>
<td>44.795</td>
<td>Eccentricity maxima</td>
</tr>
<tr>
<td>157.8</td>
<td>44.619</td>
<td>Eccentricity minima</td>
</tr>
</tbody>
</table>

The table shows the 6 anchor points used to tune the Boltaña section to eccentricity.
Figure 5.57 Orbital tuning of the Boltaña section. Filtered total-gamma records of the Boltaña section (Figure a) have been matched to eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) (Figure b) using 6 anchor points designated with an asterisk (*). The resulted tuned records (Figure c) show the distortion of the original data.
Figure 5.58 Spectral analysis using REDFIT of the Boltaña section tuned to eccentricity. The tuned records show eccentricity (119 kyr) and obliquity (38 kyr) cycles > 99% confidence levels and have a similar strength to the spectral peaks from non-tuned records. Tuning the records has strengthened a precession cycle (20 kyr) with a confidence level at 95% which was not significant in the original records.

SARs have been calculated from each of the intervals between anchor points to ensure the tuned records have not resulted in unrealistic SARs (Table 5.28). The SARs have varied between 14.6 cm/kyr and 30.5 cm/kyr although averaged values are ~ 24 cm/kyr. Figure 5.59 shows the variation of SAR across the Boltaña section and the averaged SAR of the section represented as a linear trend. The averaged value is similar to the one calculated using ASM analysis which yields an estimated averaged SAR of 26-30.5 cm/kyr.
Table 5.28 SARs in the Boltaña section calculated from tuning the records.

<table>
<thead>
<tr>
<th>Height interval (m)</th>
<th>Age interval (Ma)</th>
<th>SAR (cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-19</td>
<td>45.2964 - 45.226</td>
<td>27 cm/kyr</td>
</tr>
<tr>
<td>47.4-19</td>
<td>45.226 - 45.12</td>
<td>26.8 cm/kyr</td>
</tr>
<tr>
<td>79.4-47.4</td>
<td>45.12 - 45.015</td>
<td>30.5 cm/kyr</td>
</tr>
<tr>
<td>104.8-79.4</td>
<td>45.015 - 44.9</td>
<td>24.28 cm/kyr</td>
</tr>
<tr>
<td>130.2-104.8</td>
<td>44.9 - 44.795</td>
<td>24.2 cm/kyr</td>
</tr>
<tr>
<td>157.8-130.2</td>
<td>44.795 - 44.619</td>
<td>14.7 cm/kyr</td>
</tr>
<tr>
<td>167-157.8</td>
<td>44.619 - 44.56</td>
<td>14.6 cm/kyr</td>
</tr>
</tbody>
</table>

The table shows SAR calculated at different time intervals throughout the Boltaña section. SAR change from 14 to 30 cm/kyr and have averaged values of 24 cm/kyr.

Figure 5.59 SAR in the Boltaña section calculated from orbital tuning the total-gamma records to eccentricity. Averaged SARs are ~ 24 cm/kyr and represented by a linear trend (dashed line). SARs in the Boltaña section have remained relatively stable, although the top of the section shows a decrease in the SAR.
5.3.4.5 Forcaz gamma-ray section

5.3.4.5.1 Geographical location of the Forcaz section

Forcaz section is 185 m long and is located ~ 1.9 km south of Labuerda town and ~ 2.4 km north of Ainsa town. The section can be accessed from the main road A-138 which joins the towns of Ainsa and Labuerda, and is located along the Forcaz stream, ~ 100 m to the west of the Labuerda sandstone quarry (Plate 5.11).

The section is fragmented into two subsections: Forcaz 1 (~ 105 m thick) and Forcaz 2 (~ 80 m thick) which are located ~ 100 m apart. Forcaz 1 is well exposed in a stream cut which joins the main Forcaz stream to the west, whilst Forcaz 2 forms a small hill. A small heterolithic package composed of medium-bedded turbidite allows the correlation between these two sections. Plate 5.11 also shows the position of the A6 core (Chapter 4). Plate 5.12 shows some of the outcrop photographs of the Forcaz section.
Plate 5.11 Aerial photograph of the gamma-ray logged Forcaz section. The photograph shows the two correlated sections Forcaz 1 and Forcaz 2. The location of the Well A6 (Chapter 4) is also shown. Aerial image from www.sigpac.mapa.es/fega/visor.
Plate 5.12 Outcrop photographs of the Forcaz gamma-ray logged section. (a) Panorama photograph showing the location of the Forcaz section in between the Ainsa II sandbody which has been extensively quarried at this locality and the Morillo I sandbody which forms a prominent, densely-vegetated ridge to the northeast of the Forcaz section. This area is characterised by a very good exposure of fine-grained sediments forming weathered hills incised by seasonal streams. (b) Outcrop photograph of the Forcaz section 1 showing the well exposed outcrop along the stream. (c) Outcrop photograph showing large-scale slumps present ~ 50 m above the top of the Forcaz section. These slumps have been studied in detail in the top 40 m of the A6 core and mark the initiation of the Morillo System. (d) Close-up photograph of a ~ 3 cm nummulite packstone associated with the slumped sediments in the area where the A6 core was drilled. These re-deposited fossiliferous beds are common towards the top of the A6 core and have also been observed in some beds of the Forcaz 2 log and have been interpreted as tempestites (Chapter 4). (e) Close-up photograph of a coarse-grained fossiliferous sandstone bed containing numerous bioclasts including nummulites, bivalves, crinoids and echinoids.
5.3.4.5.2 Stratigraphic location

The Forcaz section comprises the fine-grained overbank and interfan deposits between the Ainsa II and Morillo I sandbodies. Figure 5.60 shows a geological map, a cross-section and a stratigraphic column with the position of the Forcaz section. The Ainsa III sandbody is off-axis at this location and is represented by a ~ 15 m thick heterolithic package which is present at ~ 30 m height in the Forcaz section. The sedimentary logs (Figure 5.61) and the sandstone turbidite intensity graph (Figure 5.62) show this sandy-rich package. Although, there is some tectonic deformation in the area with a thrust affecting the Ainsa II System (Figure 5.60), the Forcaz section is completely undeformed. The base of the Morillo I System is off-axis at this location and is represented by a thin heterolithic package of ~ 15 m thick. This heterolithic package can be seen in the southeastern corner of Figure 5.60. It is estimated that the base of the Morillo I sandbody is ~ 130 m above the top of the Forcaz section and ~ 50 m above the top of the A6 core. There is an overlap between the sediments of the A6 core and the Forcaz section. The lowest 50 m of the A6 core contains a high concentration of sandstone turbidites interpreted as the off-axial Ainsa III sandbody (Chapter 4). This sandy interval in the core is likely to correlate with the heterolithic package present at ~ 30 m height in the Forcaz section. Therefore, it can be inferred that the Forcaz section is mostly contained within the sediments of the Well A6 core.

The sandstone turbidite intensity graph (Figure 5.62) shows that the Forcaz section contains the lowest sandstone percentage of all the gamma-ray logged sections. The Boltaña section which is also located within the Ainsa System shows relatively low sandstone turbidite intensity values when compared with other interfan systems. Therefore, it appears that the interfan and overbank sediments of the Ainsa System are
less sandy than the rest of the Ainsa deep-marine systems. Figure 5.63 shows the K, Th and U values of the Forcaz section.

Figure 5.60 Geological map, cross-section and vertical stratigraphic column of the Forcaz section. (a) Geological map of the area surrounding the Forcaz gamma-ray section. The western part of the map shows an area of tectonic deformation in the proximities of the A-138 road. A thrust has caused deformation of the Ainsa 1 sandbody and shearing of the underlying fine-grained sediments exposed at the road cut. There is also another thrust at ~ 70 m depth of the A6 core but it is likely to be located just above the top of the Forcaz section. It has not been possible to trace this thrust across the geological map. The green line indicates the position of the cross-section A-A’. (b) Cross-section A-A’ showing the position of the Forcaz gamma-ray logged section in the interfan sediments of the Ainsa II and Morillo I sandbodies. The Ainsa III sandbody is off-axial at this location and is represented by a small heterolithic package (~ 15 m thick) present at 30-45 m height in the Forcaz section. (c) Stratigraphic column of the Forcaz area showing the position of the Forcaz section and the Well A6 core.
Figure 5.61 Sedimentary logs of the Forcaz section. Sedimentary logs of the Forcaz section including every bed thicker than 0.5 cm. Figure 2.5 includes a legend of the symbols used in the sedimentary logs. An electronic version of these sedimentary logs for detailed visualization is available in Appendix 3.
Figure 5.62 Sandstone turbidite intensity in the Forcaz section. The averaged sandstone percentage for the whole section is ~3.6%. The sandstone turbidite intensity of the Forcaz section together with the Boltaña section which is also located within the Ainsa System constitutes the lowest sandstone content of all the fine-grained deposits in the Ainsa Basin.
Figure 5.63 Simplified sedimentary logs of the Forcaz section plotted against total-gamma (cpm), K (%), Th (ppm) and U (ppm), Th/U and Th/K. Black line is a 4-period moving average. Simplified logs only show sandstone turbidites ≥ 1.5 cm, for complete logs refer to Figure 5.61 and Appendix 3.

5.3.4.5.3 Cyclostratigraphic studies of the Forcaz section

(a) Methods of spectral estimation

The total-gamma spectrum of the Forcaz section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.64 shows the spectral results obtained from applying these four methods. All the spectra generated show a similar shape, although smoother results are achieved with the REDFIT method. Table 5.29 summarises the
main frequencies present within the frequency range 0-0.2 cycles/m. The frequency 0.024-0.028 cycles/m (1/35-1/41 m), 0.084-0.094 cycles/m (1/10-1/11 m) and 0.188 cycles/m (1/5 m) consistently appear in all of the spectra analysed.

Figure 5.64 Methods of spectral estimation using Forcaz spectral total-gamma data.
REDFIT spectrum uses 6 WOSA segments, 8 degrees of freedom and a bandwidth of 0.023 cycles/m. The MTM method uses 4 tapers and ~8 degrees of freedom. The periodogram spectrum uses a Barlett window. The maximum entropy method uses numbers of lags M = N/3 = 309). Analysis used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).
Table 5.29 Methods of spectral estimation in the Forcaz section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.0283</td>
<td>35.3</td>
<td>Periodogram</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.056</td>
<td>17.9</td>
<td></td>
<td>0.024</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>0.094</td>
<td>10.6</td>
<td></td>
<td>0.044</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>0.151</td>
<td>6.6</td>
<td></td>
<td>0.063</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>0.1889</td>
<td>5.3</td>
<td></td>
<td>0.084</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.103</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.117</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.164</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.187</td>
<td>5.3</td>
</tr>
<tr>
<td>MTM</td>
<td>0.0079</td>
<td>127</td>
<td>Maximum entropy</td>
<td>0.011</td>
<td>90.9</td>
</tr>
<tr>
<td></td>
<td>0.024</td>
<td>41.7</td>
<td></td>
<td>0.024</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>23.3</td>
<td></td>
<td>0.045</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>0.063</td>
<td>15.9</td>
<td></td>
<td>0.062</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>0.084</td>
<td>11.9</td>
<td></td>
<td>0.085</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
<td></td>
<td>0.099</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>0.117</td>
<td>8.5</td>
<td></td>
<td>0.117</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>6.7</td>
<td></td>
<td>0.186</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>0.186</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.5 cycles/m.

** Frequencies present in the MTM significance test with confidence levels > 80%.
The frequencies that consistently appear in all the spectra are represented in bold numbers.

(b) REDFIT time-series

REDFIT analyses of the Forcaz section using 6 WOSA segments reveal some
significant frequencies within the 0-0.5 cycles/m range (Figure 5.65). The analysis has
used a power regression method to estimate the background noise. The summative
error in the total-gamma spectrum is very similar when applying the AR1 fitting-curve
method of Mann and Lees (1996) or the power regression method. The latter method
was the one chosen as it was most adequate for the other datasets (Table 5.30). There
are two main frequency ranges which are represented with good confidence levels in
all the parameters analysed. The frequency range 0.024-0.028 cycles/m (1/42-1/35 m)
is more significant in the total-gamma (> 99% confidence levels) and in the K and
sandstone turbidite intensity spectra (> 95% confidence levels), but is less significant
in the Th data (only > 80% confidence levels). The second most prominent frequency
range is the 0.08-0.099 cycles/m (1/10-1/12 m) which is present in all the analysed spectra with confidence levels > 95% and 99%. The sandstone turbidite intensity spectrum shows other significant frequencies at 0.137 cycles/m (1/7 m), 0.199 cycles/m (1/5 m) and 0.227 cycles/m (1/4 m), all > 95% confidence levels. A summary of all the significant frequencies can be seen in Table 5.31.

Figure 5.65 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 6 WOSA segments, 8 degrees of freedom and a bandwidth of 0.023 cycles/m. REDFIT results plotted using a power regression fitting model. Spectra have been re-scaled to allow comparison between variables. Analysis used the REDFIT software developed by Schulz and Mudelsee (2002).
Table 5.30 Noise background estimation of the Forcaz section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>1464</td>
<td>2462</td>
<td>1475</td>
</tr>
<tr>
<td>K</td>
<td>796</td>
<td>1082</td>
<td>325</td>
</tr>
<tr>
<td>Th</td>
<td>175</td>
<td>167</td>
<td>139</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>190</td>
<td>167</td>
<td>150</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicates the most adequate fitting curve method (bold numbers).

Table 5.31 REDFIT time-series analysis of the Forcaz section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequencies (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.0283</td>
<td>34.27</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.0566</td>
<td>17.64</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.094</td>
<td>10.58</td>
<td>99</td>
</tr>
<tr>
<td>K</td>
<td>0.0236</td>
<td>42.28</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>19.22</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0945</td>
<td>10.57</td>
<td>95</td>
</tr>
<tr>
<td>Th</td>
<td>0.0283</td>
<td>34.33</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.0567</td>
<td>17.64</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0993</td>
<td>10.07</td>
<td>95</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0284</td>
<td>34.16</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0805</td>
<td>12.42</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.1374</td>
<td>7.28</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.1611</td>
<td>4.21</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.199</td>
<td>4.02</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.2275</td>
<td>4.4</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.3602</td>
<td>2.77</td>
<td>95</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 6 WOSA segments and ~ 8 degrees of freedom.
*Frequencies shown are between the frequency range 0-0.5 cycles/m.

(c) ASM studies

The ASM analysis identifies significant SARs ranging from 12 to 93 cm/kyr (Figure 5.66). The most significant ASM results are within the SAR ranges 22.5-24 cm/kyr.
and the SAR 33.5 cm/kyr which have a null hypothesis level of 0.001%. Table 5.32 calculates the cycle duration for each frequency at different SARs. Using the equations of Berger et al. (1992), the SAR which most closely matches the orbital cycles for the Middle Eocene is 33.5 cm/kyr. At a SAR of 33.5 cm/kyr, the frequencies 0.0236 cycles/m and 0.0283 cycles/m can be linked to eccentricity 123 and 95 kyr respectively. The frequency 0.052 cycles/m and the cycles range 0.08-0.094 cycles/m can be matched to obliquity 52 kyr and obliquity 40 kyr, respectively. The frequencies 0.1374 and 0.199 cycles/m are probably associated with the precession cycles 23 and 19 kyr, respectively.

Figure 5.66 ASM results of the Forcaz section. A total of 11 frequencies identified from the spectral analysis of the spectral gamma-ray and the sandstone turbidite intensity records with confidence levels > 95% have been applied to the ASM analysis. For a list of the frequencies refer to Table 5.32. The analysis used a Rayleigh number of 2.152852×10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger et al. (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo simulations. Critical levels were established at 0.52%. ASM analysis has identified significant SAR ranging from 12 to 93 cm/kyr. The most significant ASM results are the SAR between 22.5-24 cm/kyr and at 33.5 cm/kyr which have a null hypothesis level of 0.001%. All 7 orbital parameters including eccentricity, obliquity and precession have been included in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.32 Temporal period duration of significant frequencies in the Forcaz section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>C.L (%)</th>
<th>N</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SARs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.5 cm/ kyr</td>
</tr>
<tr>
<td>0.0236</td>
<td>95</td>
<td>1</td>
<td>42.4</td>
<td>188.3</td>
</tr>
<tr>
<td>0.0283</td>
<td>99</td>
<td>3</td>
<td>34.3</td>
<td>157</td>
</tr>
<tr>
<td>0.052</td>
<td>95</td>
<td>1</td>
<td>19.2</td>
<td>84.5</td>
</tr>
<tr>
<td>0.0566</td>
<td>99</td>
<td>2</td>
<td>17.7</td>
<td>78.5</td>
</tr>
<tr>
<td>0.0805</td>
<td>95</td>
<td>1</td>
<td>12.4</td>
<td>54.2</td>
</tr>
<tr>
<td>0.094</td>
<td>99</td>
<td>2</td>
<td>10.6</td>
<td>47.3</td>
</tr>
<tr>
<td>0.099</td>
<td>95</td>
<td>1</td>
<td>10.1</td>
<td>44.9</td>
</tr>
<tr>
<td>0.1374</td>
<td>95</td>
<td>1</td>
<td>7.3</td>
<td>32.3</td>
</tr>
<tr>
<td>0.199</td>
<td>99</td>
<td>5</td>
<td>22.3</td>
<td>21.8</td>
</tr>
<tr>
<td>0.2275</td>
<td>95</td>
<td>1</td>
<td>4.4</td>
<td>19.5</td>
</tr>
<tr>
<td>0.3602</td>
<td>95</td>
<td>1</td>
<td>2.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 95% confidence levels) at different SARs. The SAR which most closely matches the orbital periods for the Middle Eocene appear highlighted in bold numbers. Underlined are all the frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%. Estimated orbital cycles for the Middle Eocene (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr. ♠ include all frequencies within the range 0-0.5 cycles/m with confidence levels > 90%. □ number of parameters containing that specific frequency in the REDFIT spectrum.
(d) Wavelet analysis

Results from the wavelet analysis include a number of significant frequencies which approximate those frequencies identified using the REDFIT spectral estimation method (Figure 5.67). The most spatially persistent frequency is present at 0.024-0.028 cycles/m (1/42-1/34 m). This frequency has been associated with eccentricity combining REDFIT and ASM analysis and is significant > 90% confidence levels in all the analysed records. This frequency is present > 90% confidence levels throughout the stratigraphy in the K, Th and total-gamma wavelet spectra. Although, this frequency is significant in the sandstone turbidite intensity records, the wavelet spectrum shows an interval of 60 m, between 90 m and 150 m height, where this frequency is not significant. The frequency 0.08-0.09 cycles/m (~ 1/10-1/11 m) which has been associated with obliquity, has an intermittent spatial distribution in the wavelet spectrum and appears only at specific intervals in the stratigraphic records of all the analysed data. The frequencies 0.13 cycles/m (1/7 m) and 0.2 cycles/m (1/5 m), both linked to precessional cycles, have also an intermittent spatial distribution in the wavelet spectra of all the analysed records.

Figure 5.67 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data of the Forcaz section. (a) The wavelet power spectrum shows spectral power at different frequencies throughout the Forcaz stratigraphic section. Black contours mark the 10% significant regions. (b) The global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line are significant > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analyses, have been labelled (E- eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.67 Wavelet analysis of the Forcz section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering

The total-gamma records of the Forcaz section have been filtered to 0.028 cycles/m and to 0.094 cycles/m using a Gaussian band-pass filter with a bandwidth of 0.023 cycles/m (Figure 5.68). These two frequencies have been associated with eccentricity and obliquity, respectively, and are both present in the REDFIT total-gamma spectrum with confidence levels > 99%.

The filtered records of the Forcaz section using a frequency of 0.028 cycles/m show eccentricity cycles throughout the stratigraphy. These cycles appear better defined and of larger amplitude between 0-40 m and 100-140 m height. The filtered records at a frequency of 0.094 cycles/m show well developed cycles throughout the records. These cycles appear less evident in those areas where eccentricity cycles are more dominant.
Figure 5.68 Frequency-selective filtering of the Forcaz section. The total-gamma records have been interpolated and detrended before being filtered. A band-pass Gaussian filter with a bandwidth of 0.023 cycles/m has been used for filtering. The total-gamma records have been filtered to the frequency 0.028 cycles/m which has been associated with eccentricity 95 kyr cycles and to the frequency 0.094 cycles/m which has been associated with obliquity 40 kyr using REDFIT and ASM spectral analysis. Filtering used the program Analyseries (Paillard et al., 1996).
(f) Spectral analysis comparison of the Forcaz section and the Well A6 core

The cross-section and stratigraphic section in the Forcaz area (Figure 5.60) suggests there is a large degree of overlapping between the Forcaz section and the A6 core. Spectral studies of these two sections should therefore show similar results.

REDFIT analysis of the XRF and stable carbon isotope records of the A6 core identified five recurrent frequencies at 0.032 cycles/m, 0.08 cycles/m, 0.095 cycles/m, 0.15 cycles/m and 0.196 cycles/m (Table 4.5). ASM analysis of the turbidite and bioturbation intensity data suggested that the most likely SAR of the A6 core sediments was 28.5 cm/kyr. At this SAR, the frequency 0.032 cycles/m represents eccentricity 110 kyr, the frequencies 0.08 and 0.095 cycles/m represent obliquity 40 kyr and the frequencies 0.15 and 0.196 cycles/m represents precession 23 kyr and precession 19 kyr, respectively.

In the Forcaz section, the SAR which most closely matched the orbital cycles for the Middle Eocene was 33.5 cm/kyr which is in close proximity to the one suggested for the deposition of the A6 sediments at 28.5 cm/kyr. REDFIT analysis recognised five main frequencies: 0.023 and 0.028 cycles/m linked to eccentricity 123 kyr and 95 kyr respectively, the frequency 0.052 cycles/m and the cycle range 0.08-0.094 cycles/m matched to obliquity 52 kyr and obliquity 40 kyr, respectively. The frequencies 0.14 and 0.199 cycles/m are associated with the precession cycles 23 and 19 kyr. Table 5.33 shows a summary of the spectral results of the Forcaz and the A6 core records.
Table 5.33 Forcaz section and A6 core spectral results comparison.

<table>
<thead>
<tr>
<th>Section</th>
<th>SAR (cm/kyr)</th>
<th>Frequencies identified by spectral analysis (cycles/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eccentricity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 kyr</td>
</tr>
<tr>
<td>Forcaz</td>
<td>33.5</td>
<td>0.023</td>
</tr>
<tr>
<td>A6 core</td>
<td>28.5</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Main frequencies identified in the Forcaz gamma-ray logged section and A6 core using REDFIT analysis (Table 5.30 and Table 4.5, respectively).

(g) Orbital tuning

Orbital tuning of the Forcaz section has been performed by comparing the total-gamma records filtered to the frequency 0.0283 cycles/m which has been associated with eccentricity to the eccentricity curves of the Middle Eocene using the La2010a orbital solution of Laskar et al. (2011). Eight anchor points have been used for tuning the records (Table 5.34).

The Forcaz section has a good radiometric age control from biostratigraphic studies (Scotchman et al., 2014) and magnetostratigraphic studies (Chapter 3). Age estimations using biostratigraphic studies suggest the Ainsa System was deposited between 43.9 and 44.9 Ma (middle Lutetian), during nannofossil zone NP15 and shallow benthic foraminifera zone SBZ13 - SBZ14 (Scotchman et al., 2014). Magnetostratigraphic studies show reverse polarity throughout the Forcaz section, likely to be chron C20r (44.72-43.43 Ma) (Gradstein et al., 2012). The sediments of the Forcaz section post-date those of the Boltaña section. The top of the Boltaña section was located within the interfan deposits of the Ainsa II and Ainsa III sandbodies. Thickness estimations from sedimentary logging suggest that the top of
the Boltaña section is located ~ 50 m below the AIII sandbody (Figure 5.60). The Ainsa III sandbody in the Forcaz section is represented by a 15 m heterolithic package located at 30-45 m height (Figure 5.61). Therefore, it is reasonable to assume that the beginning of the Forcaz section coincides approximately with the end of the Boltaña section. Orbital tuning of the Boltaña section suggested that the sediments were deposited between 45.29 and 44.56 Ma. The base of the Forcaz section should, therefore, have accumulated close to ~ 44.56 Ma. Several attempts have been undertaken to match the selected anchor points to different eccentricity cycles around this time interval. The best curve match and the best response in the time-series analysis are shown in Figure 5.69. This figure shows that the interval between 60-90 m height has undergone more deformation to match the total-gamma filtered records to the eccentricity cycles of the orbital solution, whilst the rest of the data remained mostly unchanged. Although, there is no significant strengthening of the spectral peaks after tuning, the three main orbital parameters (eccentricity, obliquity and precession) are present with confidence levels > 99% (Figure 5.70). Tuning the Forcaz total-gamma data to other eccentricity cycles reduces the confidence levels of the obliquity and/or precession cycles significantly. Therefore, the Forcaz section has been more likely deposited between 44.63 and 44.02 Ma with a total duration of ~615 kyr.
Figure 5.69 Orbital tuning of the Forcaz section. Filtered total-gamma records of the Forcaz section (Figure a) have been matched to eccentricity cycles of the La2010a orbital solution of Laskar et al. (2011) (Figure b) using 8 anchor points designated with an asterisk (*). The resultant tuned records (Figure c) show that the original data has undergone more distortion in the interval between 60 and 90 m height.
The tuned total-gamma records of the Forcaz section show three well defined cycles at 100 kyr, 44 kyr and 23 kyr with confidence levels > 99%. No significant strengthening of the spectral peaks has occurred after orbital tuning, although the original data already showed three well-defined spectral peaks with confidence levels > 99%. Trying to tune the Forcaz total-gamma filtered records to any other eccentricity cycles reduces significantly the confidence levels in the obliquity and/or precession cycles.

The table shows the 8 anchor points employed to tune the Forcaz section to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011).
The table shows SAR calculated at different time intervals throughout the Forcaz section length. Average sedimentation rate is 29.4 cm/kyr. This SAR is very similar to the one calculated in the A6 core sediments at 28.5 cm/kyr.

SARs in the Forcaz section have been calculated for each interval between anchor points to ensure that the tuned total-gamma records of the Forcaz section have not resulted in unrealistic SARs. Calculating the SAR for each stratigraphic interval also allows the identification of periods where significant variations in the SAR have occurred (Table 5.35). The SARs have varied between 16.3 cm/kyr and 50.5 cm/kyr although averaged values are ~ 29.4 cm/kyr. Figure 5.71 shows the variation of SAR across the Forcaz section and the averaged SAR of the section is represented as a linear trend. The averaged SAR value is close to the SAR calculated using ASM analysis at 33 cm/kyr and to the SAR calculated in the A6 core at 28.5 cm/kyr.

Table 5.35 SAR in the Forcaz section calculated from tuning the records.

<table>
<thead>
<tr>
<th>Height interval (m)</th>
<th>Age interval (Ma)</th>
<th>SAR (cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9.2</td>
<td>44.6372-44.619</td>
<td>50.5 cm/kyr</td>
</tr>
<tr>
<td>9.2-26.6</td>
<td>44.619-44.585</td>
<td>51.1 cm/kyr</td>
</tr>
<tr>
<td>26.6-50.4</td>
<td>44.585-44.488</td>
<td>24.5 cm/kyr</td>
</tr>
<tr>
<td>50.4-67.4</td>
<td>44.488-44.384</td>
<td>16.3 cm/kyr</td>
</tr>
<tr>
<td>67.4-114.8</td>
<td>44.384-44.28</td>
<td>44.6 cm/kyr</td>
</tr>
<tr>
<td>114.8-143.6</td>
<td>44.28-44.181</td>
<td>29.1 cm/kyr</td>
</tr>
<tr>
<td>143.6-161</td>
<td>44.181-44.099</td>
<td>21.2 cm/kyr</td>
</tr>
<tr>
<td>161-174.8</td>
<td>44.099-44.053</td>
<td>32.1 cm/kyr</td>
</tr>
<tr>
<td>174.8-185</td>
<td>44.053-44.0236</td>
<td>34.8 cm/kyr</td>
</tr>
</tbody>
</table>

The table shows SAR calculated at different time intervals throughout the Forcaz section length. Average sedimentation rate is 29.4 cm/kyr. This SAR is very similar to the one calculated in the A6 core sediments at 28.5 cm/kyr.
Figure 5.71 SARs in the Forcaz section calculated from orbital tuning the total-gamma records to eccentricity. The SARs have varied between 16.8 and 50.5 cm/kyr. The averaged SAR of the Forcaz section is represented as a linear trend. The averaged SAR 29.4 cm/kyr is slightly lower than the value estimated from ASM analysis at 33 cm/kyr, but, is very close to the one estimated for the A6 core at 28.5 cm/kyr.
5.3.5 The Morillo System

5.3.5.1 Sedimentology of the Morillo System

The Morillo System is ~ 260 m thick and is stratigraphically located between the Ainsa and the Guaso deep-marine systems. Some studies have focused on the sedimentology and environment of deposition of the Morillo System (Labourdette et al., 2008; Moody et al., 2012; Pohl and McCann, 2013; Bayliss and Pickering, 2014a). The Morillo System comprises three sandbodies, designated Morillo I-III. These sandbodies have been interpreted as structurally-confined, mid-slope canyon to lower-slope submarine fans channel systems (Bayliss and Pickering, 2014a).

The Morillo System sediments were sourced from a mid-slope canyon which cut across the Mediano Anticline and was located in the area surrounding the Coscojuela-de-Sobrarbe village. The canyon fill contains thick MTDs which comprise of mainly distorted mudstones and pebbly mudstones which represent the collapse of the shelf and mid-slope areas. These MTDs/MTCs also contain conglomerate deposits with abundant limestone boulders. These boulders probably reflect erosional down-cutting and canyon excavation of the flanks of the Mediano Anticline (Bayliss and Pickering, 2014a). The canyon infill thins and onlaps against the Mediano Anticline showing that this structure was a significant topographic high during the deposition of the Morillo System.

The Morillo sandbodies are characterised by an erosional base overlain by an MTD (typically Type II MTDs). The channel fills are a mixture of sediment gravity-flow deposits (including turbidites) and MTDs/MTCs, but they differ in that the Morillo I sandbody is sand-dominated, whilst the Morillo II and III sandbodies are MTC-dominated (Bayliss and Pickering, 2014a).
The Morillo System records an increase in structural confinement, reflected in a progressive decrease in channel width and a change from lateral offset-stacking between the Morillo I and II sandbodies to aggradational stacking between Morillo II and III (Bayliss and Pickering, 2014a). The abundance of MTDs/MTCs in the Morillo II and III sandbody fills also reflects an increase in depositional confinement with an increase in mass wasting deposits associated with an increase in slope gradients. This increase in structural confinement has been associated with the growth of the basin anticlines (Mediano, Añisclo and Boltaña) which narrowed the Ainsa Basin and caused a fall in relative base-level.

5.3.5.2 Tectonic history during the deposition of the Morillo System

During the deposition of the Morillo System, the Ainsa Basin was incorporated into the advancing Pyrenean deformation front. The emplacement of the Gavarnie thrust sheet, coeval with the deposition of the Upper Hecho Group, resulted in the development of the Mediano and the Boltaña anticlines and marked the evolution of the Ainsa Basin from a transitional foredeep basin to a thrust-top basin which was incorporated into the hanging wall of the Gavarnie-Sierras Exteriores (Muñoz et al., 1998; Dreyer et al., 1999; Fernández et al., 2004; Fernández et al., 2012). The Morillo System was probably deposited during a period characterised by tectonically-controlled shortening of the Ainsa Basin. The incorporation of the basin on the hangingwall of the Gavarnie-Sierras Exteriores Thrust as southwards propagation of the deformation front continued, also led to a significant swallowing of the basin with thrust-related uplift equalling or exceeding previous subsidence rates (Bayliss and Pickering, 2014a).
The growth of the Mediano Anticline during the deposition of the Morillo System resulted in sediment gravity flows being deflected southwards around this seafloor growth structure and entering the basin from a more southeastern point across the Mediano Anticline than in previous systems (Bayliss and Pickering, 2014a).

5.3.5.3 Age of the Morillo System

The Morillo System was deposited between 43.2 and 44.24 Ma (late Lutetian); during nannofossil zone NP15-NP16 and shallow benthic foraminifera zone SBZ14-SBZ15 (Scotchman et al., 2014). These estimated ages are in agreement with studies from Mochales et al. (2012) who estimated the end of the Morillo System at 43.2 Ma. The Morillo System lacks any magnetostratigraphic age control, since this study (Chapter 3) only sampled from the Gerbe to the Ainsa systems. Due to previous disagreements between biostratigraphic and magnetostratigraphic work in older Hecho Group successions, orbital tuning of the gamma-ray logged sections in the Morillo and younger deep-marine systems has not been attempted.

5.3.5.4 Morillo-reservoir gamma-ray logged section

5.3.5.4.1 Geographical location of the Morillo-reservoir section

The Morillo-reservoir section is 122 m long and is located ~ 400 m southwest of the Morillo-de-Tou town and to the west of the Mediano Reservoir. The section can only be accessed when the water level in the reservoir is low, usually in summer and early autumn. The section is well exposed along a narrow stream valley which can be accessed from the Sarrato stream (Plate 5.13).
The Morillo-reservoir section contains few small-scaled slumps which rarely exceed 50 cm in thickness (Plate 5.14a). The section also contains some tectonic deformation with small-scale reverse faults which do not exceed tens of cm in displacement (Plate 5.14c). Sandstone turbidites in this area appear channelised and contain significant lateral changes in thickness (Plate 5.14d). Many of the thin sandstone turbidites show ripples and have a lenticular shape.

Plate 5.13 Aerial photograph of the area surrounding the Morillo-reservoir gamma-ray logged section. The section can be accessed easily from the Sarrato stream in proximity to the Morillo-de-Tou town but only when the water-level of the Mediano Reservoir is low. Aerial image from www.sigpac.mapa.es/feqa/visor.
Plate 5.14 Outcrop photographs of the Morillo-reservoir gamma-ray logged section.
Plate 5.14 (previous page) Outcrop photographs of the Morillo-reservoir gamma-ray logged section. (a) Outcrop photograph of the Morillo-reservoir logged section at 45 m height. The section contains some small-scaled slumps which rarely exceed ~ 50 cm in thickness. Above the sediment slide, in the photograph a sandstone turbidite has infilled the topography created by the slump causing significant lateral changes in thickness. Sandstone turbidites have erosive bases and fining-upwards profiles. (b) Outcrop photograph showing the laminated character of the fine-grained sediments of the Morillo-reservoir section with an alternation of darker and lighter bands. Locally, orangey bands are present indicating a diagenetic origin. Sandstone turbidites are typically cm in size and on many occasions show planar laminations and ripples. (c) Outcrop photograph showing small reverse faults present at the beginning of the Morillo-reservoir section at ~ 35 m height. This reverse fault has a displacement of ~ 30 cm. (d) Photograph of channelised sand-prone deposits exposed at the Sarrato stream immediately above slumped fine-grained deposits. These deposits are ~ 50 m stratigraphically higher than the Morillo-reservoir section and are located within the Morillo III sandbody.

5.3.5.4.2 Stratigraphic location of the Morillo-reservoir section

The Morillo-reservoir section is located within the Morillo System. The heterolithic package located at the base of the section (5-20 m height) has been interpreted as the off-axial Morillo II sandbody (Figure 5.72). This package is ~ 15 m thick and can easily be distinguished in the sedimentary log (Figure 5.73) and in the sandstone turbidite intensity graph (Figure 5.74). The rest of the section comprises fine-grained interfan deposits between the Morillo II and the Morillo III sandy-successions. The base of the heterolithic package, forming the Morillo III off-axis fan sediments, is not accessible due to steep slopes. Figure 5.75 shows a simplified sedimentary log of the Morillo-reservoir section plotted against total-gamma, K, Th, U, Th/K and Th/U data.
Figure 5.72 Geological map, cross-section and vertical stratigraphic column of the Morillo-reservoir and the Morillo-Bruello gamma-ray logged section. (a) Geological map of the area between the villages of Morillo-de-Tou and Bruello showing the position of the Morillo-reservoir and the Morillo-Bruello gamma-ray logged sections (see Section 5.3.6.4). The green line represents the cross-section A-A’ running parallel to both gamma-ray logged sections and perpendicular to the main outcrop strike to facilitate the measurement of true stratigraphic thicknesses. (b) Cross-section A-A’ showing the position of the Morillo-reservoir gamma-ray logged section within the interfan sediments of the Morillo II and Morillo III sandbodies and the position of the Morillo-Bruello section immediately above the Guaso I sandbody. (c) Stratigraphic thickness column based on the calculation of true thicknesses from the A-A’ cross-section.
Figure 5.73 Detailed sedimentary log of the Morillo-reservoir section. Sedimentary logs include every bed thicker than 5 mm. There is a weathered, poorly-exposed area between 19-23 m height. An electronic version of this log to allow for a more detailed study is included in Appendix 3. Symbol key used for the sedimentary logs is available in Figure 2.5.
Figure 5.74 Sandstone turbidite intensity of the Morillo-reservoir section. There is a general decrease in the number of sandstone turbidites throughout the section. The area between 19 and 23 m height is poorly exposed with a thick layer of scree covering the outcrop, affecting the sedimentary logging of these sediments. The prominent heterolithic package at the beginning of the section (5-20 m height) has been interpreted as the off-axial Morillo II sandy succession. The averaged sandstone content for the whole section is ~ 6.3%.
5.3.5.4.3 Cyclostratigraphic studies of the Morillo-reservoir section

(a) Methods of spectral estimation

The spectrum of the total-gamma data has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window (Figure 5.76). The spectrum created with the REDFIT and the maximum entropy method is very similar, whilst the MTM method shows more similarities with the periodogram modified spectrum. Most of the frequencies, however, are common to all the spectra. Among those, the frequencies 0.05 cycles/m (1/20 m), 0.076 cycles/m (1/13 m), 0.122 cycles/m (1/8 m) and 0.147 cycles/m (1/6 m) consistently appear in the spectra of all the methods. Table 5.36 summarises the main frequencies present within the frequency range 0-0.2 cycles/m.
Figure 5.76 Methods of spectral estimation of the Morillo-reservoir total-gamma data. REDFIT spectrum using 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.024 cycles/m. The MTM method uses 6 tapers and ~12 degrees of freedom. The periodogram spectrum uses a Bartlett window. The maximum entropy method uses numbers of lags M = N/3 = 200). The analysis has used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).

Table 5.36 Methods of spectral estimation in the Morillo-reservoir section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.051</td>
<td>19.6</td>
<td>Periodogram</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>13.2</td>
<td>modified with a</td>
<td>0.046</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>0.122</td>
<td>8.2</td>
<td>Bartlett window</td>
<td>0.08</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0.147</td>
<td>6.8</td>
<td></td>
<td>0.124</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>0.173</td>
<td>5.8</td>
<td></td>
<td>0.15</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>0.193</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTM*</td>
<td>0.01</td>
<td>100</td>
<td>Maximum entropy</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.043</td>
<td>23.3</td>
<td></td>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>12.3</td>
<td></td>
<td>0.078</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>0.122</td>
<td>8.19</td>
<td></td>
<td>0.122</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>0.156</td>
<td>6.4</td>
<td></td>
<td>0.15</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.174</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>5</td>
</tr>
</tbody>
</table>

* Frequencies from the 0-0.2 cycles/m range.

* Frequencies present in the MTM significance test with confidence levels > 80%.

Frequencies consistently present in all the spectra are represented in bold numbers.
(b) Spectral results using REDFIT

The REDFIT analysis of the Morillo-reservoir section has been undertaken using 4 WOSA segments (Figure 5.77). The preferred noise background estimation model is the power regression (Table 5.37) which has been applied to all the REDFIT spectra. There are six significant frequencies within the 0-0.5 cycles/m range which are well represented in the time-series analyses of the total-gamma, K, Th and sandstone turbidite intensity datasets. These frequencies are ~ 0.05 cycles/m (1/20 m), ~ 0.076 cycles/m (1/13 m), 0.17-0.19 cycles/m (1/4 m), 0.28-0.30 cycles/m (1/3 m) and 0.37 cycles/m (1/2 m). There are other significant frequencies, but, they only appear in one of the parameters investigated or have a relatively lower level of confidence and have not been discussed further in the text. Table 5.38 summarises all the frequencies present in the 0-0.5 cycles/m frequency range.

The frequency range 0.045-0.05 cycles/m (1/20-1/22 m) is present in the total-gamma and K with confidence levels > 95% and in the sandstone turbidite intensity spectrum as well > 99% confidence levels. A similar frequency at 0.04 cycles/m (1/24 m) is also present in the Th spectrum but with lower confidence levels (> 90%). The frequency 0.076 cycles/m (1/13 m) is present in the total-gamma and K spectra in both cases, well > 99% confidence level and in the Th spectrum > 90% confidence level. The frequency 0.173 cycles/m (1/4.6 m) is present in the total gamma (> 95% confidence levels) and K spectra (> 80% confidence levels). The frequency 0.197 cycles/m (1/4 m) is present in the Th and total-gamma spectra with a confidence level of 95% and 90%, respectively. The frequency range 0.259-0.28 cycles/m (1/3 m) is best represented in the total-gamma and K data. The 0.37 cycles/m (1/2 m) frequency is also present in all the four investigated parameters. This frequency forms a very
significant peak in the sandstone turbidite intensity spectrum well > 99% confidence levels.

Figure 5.77 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.024 cycles/m. The noise background fitting method is a power regression model. The spectra have been re-scaled power to allow comparison between variables. Analysis used the REDFIT software developed by Schulz and Mudelsee (2002).

Table 5.37 Noise background estimation of the Morillo-reservoir section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>310</td>
<td>297</td>
<td>251</td>
</tr>
<tr>
<td>K</td>
<td>483</td>
<td>681</td>
<td>360</td>
</tr>
<tr>
<td>Th</td>
<td>201</td>
<td>191</td>
<td>168</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>354</td>
<td>344</td>
<td>313</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicates the most adequate fitting curve method and is represented in bold numbers.
Table 5.38 REDFIT time-series analysis of the Morillo-reservoir section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.0508</td>
<td>19.68</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0762</td>
<td>13.12</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.1219</td>
<td>8.2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.1474</td>
<td>6.78</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.1727</td>
<td>4.79</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.1931</td>
<td>4.18</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.2591</td>
<td>3.86</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2997</td>
<td>3.34</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.3455</td>
<td>2.89</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.3760</td>
<td>2.66</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.4065</td>
<td>2.46</td>
<td>90</td>
</tr>
<tr>
<td>K</td>
<td>0.0455</td>
<td>21.98</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.0759</td>
<td>13.17</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.1771</td>
<td>4.64</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.2176</td>
<td>4.59</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.2581</td>
<td>3.87</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2834</td>
<td>3.53</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.3745</td>
<td>2.67</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.4403</td>
<td>2.27</td>
<td>90</td>
</tr>
<tr>
<td>Th</td>
<td>0.0405</td>
<td>24.7</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.0809</td>
<td>12.36</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.1974</td>
<td>4.06</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2935</td>
<td>3.4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.3239</td>
<td>3.08</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.3795</td>
<td>2.63</td>
<td>90</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0504</td>
<td>19.84</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.1109</td>
<td>9.01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.1411</td>
<td>7.08</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.3024</td>
<td>3.3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.373</td>
<td>2.68</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.4032</td>
<td>2.48</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.4637</td>
<td>2.16</td>
<td>80</td>
</tr>
</tbody>
</table>

*REDFIT spectral results using 4 WOSA segments and 6 degrees of freedom.

*Frequencies identified between the frequency range 0-0.5 cycles/m with confidence levels > 80%.

(c) ASM results

ASM analysis of the Morillo-reservoir has investigated 9 frequencies present in the REDFIT spectrum with confidence levels > 95% (Figure 5.78). Two main groups of significant SARs were identified in the ASM analysis. The first group of significant SARs ranges from 12 to 19 cm/kyr and the second group ranges from 20.5 to 31 cm/kyr. The most significant SAR is found at 14.5 cm/kyr with a null hypothesis
significance level of 0.07%. The SAR between 25-26 cm/kyr also has low significant levels at 0.031%. A slow SAR of ~ 14.5 cm/kyr implies the Morillo System was deposited over a large time interval and this causes conflict with previous estimations of the timing of deposition for the Guaso System and the Sobrarbe deltaics which would have occurred at a much later stage (~ 0.5-1.5 Ma) than most age-model estimations suggest (e.g., Bentham and Burkin, 1996; Dreyer et al., 1999; Mochales et al., 2012; Scotchman et al., 2014). Therefore, it is more reasonable to consider a SAR of ~ 25 cm/kyr as the most likely SAR for the Morillo-reservoir section. At this SAR, the frequencies 0.045 cycles/m represents eccentricity 95 kyr, the frequency 0.076 cycles/m represents obliquity 52 kyr and the 0.17-0.19 cycles/m represents precession 23 and 19 kyr, respectively (Table 5.39).

Figure 5.78 ASM results of the Morillo-reservoir section. The ASM analysis includes 9 frequencies identified from spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 95%. The analysis used a Rayleigh number of 3.22580645 x 10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger et al. (1992) equations. A total of 191 SAR ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo interactions. Critical significance levels were established at 0.52%. All 7 orbital parameters were included in the ASM studies. ASM analysis has identified 2 groups of significant SARs. The first group of significant SARs ranges 12 to 19 cm/kyr and the second group ranges from 20.5 to 31 cm/kyr. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.39 Temporal period duration of significant frequencies in the Morillo-reservoir section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)*</th>
<th>C.L (%)</th>
<th>N □</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SAR (cm/kyr)</th>
<th>Group 1 (SAR between 12-19 cm/kyr)</th>
<th>Group 2 (SAR 20-31 cm/kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 cm/kyr</td>
<td>13.5 cm/kyr</td>
</tr>
<tr>
<td>0.045</td>
<td>95</td>
<td>1</td>
<td>22</td>
<td>169.1</td>
<td>162.8</td>
<td>157</td>
</tr>
<tr>
<td>0.051</td>
<td>99</td>
<td>2</td>
<td>19.7</td>
<td>151.4</td>
<td>144.8</td>
<td>140.6</td>
</tr>
<tr>
<td>0.076</td>
<td>99</td>
<td>3</td>
<td>13.2</td>
<td>101.2</td>
<td>97.5</td>
<td>94</td>
</tr>
<tr>
<td>0.173</td>
<td>95</td>
<td>2</td>
<td>4.8</td>
<td>44.5</td>
<td>42.8</td>
<td>41.3</td>
</tr>
<tr>
<td>0.197</td>
<td>95</td>
<td>2</td>
<td>4.1</td>
<td>39</td>
<td>37.5</td>
<td>36.2</td>
</tr>
<tr>
<td>0.259</td>
<td>95</td>
<td>2</td>
<td>3.9</td>
<td>29.7</td>
<td>28.6</td>
<td>27.6</td>
</tr>
<tr>
<td>0.283</td>
<td>95</td>
<td>1</td>
<td>3.6</td>
<td>27.1</td>
<td>26.1</td>
<td>24.2</td>
</tr>
<tr>
<td>0.345</td>
<td>95</td>
<td>1</td>
<td>2.9</td>
<td>22.3</td>
<td>21.5</td>
<td>20.7</td>
</tr>
<tr>
<td>0.373</td>
<td>99</td>
<td>3</td>
<td>2.7</td>
<td>20.6</td>
<td>19.9</td>
<td>19.1</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 95% confidence levels (CL) at different SARs. The SAR which most closely matches the orbital periods for the Middle Eocene is highlighted in bold numbers. Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%.

Estimated orbital cycles for the Middle Eocene (~ 45 Ma) using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

* Frequencies within the range 0-0.5 cycles/m with confidence levels > 95%.
□ number of parameters containing that specific frequency in the REDFIT spectrum.

(d) Wavelet results

Results of the wavelet analysis include three main frequency ranges > 90% confidence levels (Figure 5.79). The frequency range 0.045-0.05 cycles/m (1/19-1/22 m) is present in the sandstone turbidite intensity and Th spectra, but, is not significant in the K and the total-gamma spectra, although, the K shows an increase in power at approximately this frequency. Spectral analysis using REDFIT and ASM has associated this frequency with eccentricity 95 kyr.
The most spatially persistent frequency 0.076 cycles/m (1/13 m) is present in all of the stratigraphic records and is persistently significant in the first 50 m of the Morillo-reservoir section and at the top 20 m of the records. Spectral analysis using REDFIT and ASM has associated this frequency with obliquity 40 kyr.

The frequency range ~ 0.17-0.19 cycles/m (~ 1/5 m) which has been linked to precession is identified in the K, Th and total-gamma spectra > 90% confidence levels. In general, however, significant regions at this frequency are both small and discontinuous, and in some of the spectra such as Th, very sporadic.

Figure 5.79 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data of the Morillo-reservoir section. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Morillo-Reservoir stratigraphic section using sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) The global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line have a significance level > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.79 Wavelet analysis of the Morillo-reservoir section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering results

Two frequencies, 0.0508 and 0.076 cycles/m have been filtered using a bandwidth of 0.0245 cycles/m determined by REDFIT spectral analysis (Figure 5.80). Both frequencies are present in the total-gamma records with confidence levels > 95%. REDFIT and ASM analysis has identified these frequencies as eccentricity and obliquity, respectively.

The total-gamma records filtered at the frequency 0.0508 cycles/m (1/19 m) shows well developed high-amplitude cycles mainly in the lower 50 m of the records and in the top 30 m. In the central part of the records, cycles have also been identified but the amplitude of these cycles appears attenuated.

The total-gamma records filtered at the frequency 0.076 cycles/m (1/13 m) show well develop cycles throughout the section, but, the amplitude of these cycles is higher in the first 50 m of the Morillo-reservoir section. In the wavelet spectrum, this frequency showed an increase in the spectral power during this same interval in all the analysed data.
Figure 5.80 Frequency-selective filtering of the Morillo-reservoir section. Total-gamma-ray records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.024 cycles/m. Total-gamma records have been filtered to the frequency 0.05 cycles/m and 0.0762 cycles/m. These two frequencies have been linked respectively to eccentricity and obliquity using REDFIT and ASM spectral analysis. The program Analyseries (Paillard et al., 1996) was used for frequency-selective filtering.
5.3.5.5 Sieste gamma-ray logged section

5.3.5.5.1 Geographical location of the Sieste section

The Sieste section is 40 m long and located ~ 1.3 km south of Margudgued town and ~ 1 km southeast of the village of Sieste (Plate 5.15). The Sieste section is exposed along a small tributary of the Sieste River which can be accessed from the road A-2205 between the villages of Margudgued and Guaso. The oldest 20 m of the section are very clean and well-exposed along a stream (Plate 5.16a) and the remaining 20 m form a small hill capped by a heterolithic package. These heterolithics cannot be accessed due to very steep slopes and the gamma-ray log was discontinued ~ 30 m below them (Plate 5.16b).

Plate 5.15 Aerial photograph of the area surrounding the Sieste gamma-ray logged section. The Sieste section is 40 m long and is well-exposed along a small stream in the proximities of the Sieste River. The section can be easily accessed from the road A-2205 between the villages of Guaso and Margudgued. Aerial image from www.sigpac.mapa.es/fega/visor.
Plate 5.16 Outcrop photographs of the Sieste section. (a) Photograph showing the beginning of the Sieste section well-exposed along a tributary stream of the Sieste River. The outcrop shows the laminated character of the fine-grained sediments with an alternation of lighter and darker bands. (b) The top of the Sieste section forms a small hill capped by a thin heterolithic package interpreted to be the off-axial Guaso I sandbody. (c) Close-up outcrop photograph exposed at the Sieste River showing load structures in disorganised sandstone turbidite beds (Facies B1.2). (d) Close-up photograph showing the erosive base of a sandstone turbidite with well-developed flutes and grooves. (e) Close-up photograph showing intensely bioturbated intervals (probably Arenicolite burrows) within the fine-grained sediments of the Sieste section.
5.3.5.5.2 Stratigraphic location of the Sieste section

The Sieste section is located within the Morillo System and comprises the lower part of the fine-grained interfan deposits between the Morillo III and Guaso I sandbodies (Figure 5.81). The Morillo III Fan is represented by a mixed channel fill characterised by thin turbidite sandstone sequences and thick intervals of chaotic MTDs/MTCs. The Guaso I sandbody is very thin and off-axis at this location and constitutes a heterolithic package containing thick-bedded medium to coarse-grained sandstone turbidites. The Sieste gamma-ray log was discontinued ~ 60 m below this heterolithic package.

Figure 5.82 shows the sedimentary logs of the Sieste section. This section is in general, characterised by thin to very-thin sandstone turbidites and thick intervals of siltstone-mudstones couplets. Figure 5.83 shows that the sandstone turbidite intensity of the Sieste section has remained relatively constant throughout the section. At about 20 m above the base of this section, there is a thin (2 m thick) heterolithic package of sediments characterised by thicker sandstone turbidites. Figure 5.84 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the Sieste section. These values have also remained relatively stable throughout the Sieste section.
Figure 5.81 Geological map, cross-section and vertical stratigraphic column of the Sieste gamma-ray logged section. (a) Geological map of the area around the Sieste River in the proximities of the villages of Guaso and Margudgued showing the location of the Sieste gamma-ray logged section. The green line indicates the position of the cross-section A-A’ which is parallel to the Sieste gamma-ray logged section and perpendicular to the main outcrop strike to facilitate the calculation of true stratigraphic thicknesses. (b) A-A’ cross-section of the Sieste area showing the position of the gamma-ray logged section in the interfan sediments between the Morillo III and Guaso I sandy successions. (c) Vertical stratigraphic column showing the position of the Sieste gamma-ray logged section.
Figure 5.82 Detailed sedimentary log of the Sieste section. Sedimentary log includes every bed thicker than 5 mm. Figure 2.5 summarises the symbol key used in the sedimentary log. An electronic version of this log is available in Appendix 3.
Figure 5.83 Sandstone turbidite intensity in the Sieste section. The thin heterolithic package between 18 and 20 m height can be seen in Plate 5.16b. The averaged sandstone content for the whole section is ~ 6.4%.

Figure 5.84 Simplified sedimentary logs of the Sieste section plotted against total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data. Black line is a 4-period moving average. Simplified logs only show sandy turbidites ≥ 1.5 cm, for complete sedimentary logs refer to Figure 5.82 and Appendix 3.
5.3.5.3 Cyclostratigraphic studies of the Sieste section

(a) Methods of spectral estimation

The total-gamma spectrum of the Sieste section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.85 shows the spectral results obtained from applying each of these methods and Table 5.40 summarises the main frequencies present within the range 0-0.2 cycles/m. The MTM, the maximum entropy and the periodogram show very similar spectra which appear relatively flat with only a few well-defined spectral peaks. The REDFIT spectrum, however, appears noisier and contains spectral peaks at certain frequencies which are not identified in other spectra.

Table 5.40 only shows a frequency range 0.4-0.05 cycles/m (1/18-1/25 m) which consistently appears in all of the spectra analysed. It is possible that the shortness of the Sieste section may have affected the reproductivity of the spectral results using different methodologies. Eccentricity cycles are not expected to be represented in this short section and the confidence levels of the obliquity cycles may have also been affected. The REDFIT method results in a noisier spectrum which will result in a decrease of the confidence levels, whilst the other methodologies result in the flattening of the spectral peaks which will also result in a reduction of the confidence levels.
Figure 5.85 Methods of spectral estimation of the Sieste total-gamma data. REDFIT spectrum used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.065 cycles/m. The MTM method used 3 tapers and ~ 6 degrees of freedom. The periodogram spectrum uses a Bartlett window and the maximum entropy method uses numbers of lags $M = N/3 = 67$). The REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard *et al.* (1996) were used in the spectral analysis.

Table 5.40 Methods of spectral estimation of the Sieste section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.054
0.136
0.204
0.339</td>
<td>18.6
7.4
4.9
2.9</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.04
0.115
0.175
0.275
0.35</td>
<td>25
8.7
5.7
3.6
2.9</td>
</tr>
<tr>
<td>MTMc</td>
<td>0.04
0.112
0.171
0.347</td>
<td>25.6
8.93
5.85
2.9</td>
<td>Maximum entropy</td>
<td>0.05
0.105</td>
<td>20
9.5</td>
</tr>
</tbody>
</table>

$*$ Frequencies within the range 0-0.4 cycles/m.
c Frequencies present in the MTM significance test with confidence levels > 90%.
(b) Spectral results using REDFIT

The Sieste section is too short to contain frequencies which can be associated with eccentricity cycles, but obliquity and precession cycles may well be reflected in the spectra. Significant frequencies identified in this section have been interpreted in association with other gamma-ray sections in the Morillo System such as the Morillo-reservoir section (see Section 5.3.5.4).

REDFIT analyses of the Sieste section have been undertaken using 4 WOSA segments (Figure 5.86). Results have been plotted using a power regression fitting model with the exception of the sandstone turbidite intensity data which has a better noise-background fit using the AR1 method of Mann and Lees (1996) (Table 5.41). The most significant frequency which appears to be represented in most of the investigated parameters is 0.14 cycles/m (1/7 m). This frequency has good confidence levels in the total-gamma and sandstone turbidite intensity (> 95%) and in the K spectrum (> 90%). The frequency range 0.20-0.23 cycles/m (1/4 m) is also present with good confidence levels (> 95%) in the total-gamma and sandstone turbidite intensity. Also, the frequency range at 0.34-0.36 cycles/m (1/2.7 m) has confidence levels > 99% and 95% in the total-gamma and Th data, respectively. Finally, the frequency 0.054 cycles/m (1/18 m) is only present in the total-gamma spectrum with a confidence level > 90%. This frequency is very similar to the frequency 0.05 cycles/m found in the stratigraphically lower Morillo-reservoir section, and interpreted to represent eccentricity cycles (see Section 5.3.5.4). Although the Sieste section is too short to represent this frequency with confidence, the presence of this frequency in other sections within the Morillo System may indicate that the SARs have remained relatively stable throughout the deposition of this system. Other frequencies within the frequency range 0-0.5 cycles/m are shown in Table 5.42.
Figure 5.86 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data of the Sieste section using REDFIT. The REDFIT spectral results used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.065 cycles/m. REDFIT results plotted using a power regression fitting model with the exception of the sandstone turbidite intensity data that uses the AR1 method of Mann and Lees (1996). Spectra have been re-scaled to allow the comparison between different variables. Analysis used the software REDFIT developed by Schulz and Mudelsee (2002).

Table 5.41 Noise background estimation of the Sieste section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>43</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>K</td>
<td>63</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Th</td>
<td>100</td>
<td>105</td>
<td>93</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>57</td>
<td>58</td>
<td>61</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicates the most adequate fitting-curve method and is represented in bold numbers.
Table 5.42 REDFIT time-series analysis results of the Sieste section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequencies (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.054</td>
<td>18.52</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.1359</td>
<td>7.36</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2038</td>
<td>4.9</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.3397</td>
<td>2.94</td>
<td>99</td>
</tr>
<tr>
<td>K</td>
<td>0.1339</td>
<td>7.47</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.2678</td>
<td>3.73</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.4018</td>
<td>2.49</td>
<td>95</td>
</tr>
<tr>
<td>Th</td>
<td>0.03164</td>
<td>31.6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.3639</td>
<td>2.75</td>
<td>99</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.1406</td>
<td>7.11</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.2343</td>
<td>4.27</td>
<td>95</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.065 cycles/m.
*Frequencies within the 0-0.5 cycles/m range with confidence levels > 80%.

(c) ASM results

A total of 9 frequencies were applied to the ASM studies (Figure 5.87). These frequencies were present in the REDFIT spectrum with confidence levels > 90%. The orbital parameters investigated were obliquity and precession, whilst eccentricity was excluded due to the shortness of the Sieste section.

Significant SARs range from 12 to 23 cm/kyr. The most significant ASM results are the SAR between 13-13.5 cm/kyr with null hypothesis significance levels of 0.003%. Other significant SARs are present between 14.5 and 16.5 cm/kyr with null hypothesis significance levels of 0.01% and between 18.5 and 19 cm/kyr with null hypothesis significance levels of 0.026% (Table 5.43). A SAR of 19 cm/kyr very closely represents the duration of orbital cycles for the Middle Eocene. At a SAR of 19 cm/kyr, the frequency range 0.135-0.141 cycles/m (1/7 m) represent obliquity 40 kyr and the frequencies 0.2343 cycles/m (1/4 m) and 0.2678 cycles/m (1/3 m) represent...
precession 22 kyr and 19 kyr, respectively (Table 5.43). The frequency 0.054 cycles/m (1/18 m) is likely to represent eccentricity 95 kyr and this frequency is very similar to the frequency 0.054 cm/kyr linked to eccentricity in the Morillo-reservoir section.

Figure 5.87 ASM results of the Sieste section. ASM analysis includes a total of 9 frequencies identified from spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 90%. For a list of all significant frequencies refer to Table 5.43. The analysis used a Rayleigh number of 0.001 and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger *et al.* (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo simulations. Critical significance levels were established at 0.52%. Only the orbital parameters obliquity and precession have been included in the ASM studies. ASM analysis has identified significant SAR values ranging from 12-23 cm/kyr. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.43 Temporal period duration of significant frequencies in the Sieste section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>C.L (%)</th>
<th>N</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SARs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>13 cm/kyr</td>
<td>13.5 cm/kyr</td>
<td>14.5 cm/kyr</td>
</tr>
<tr>
<td>0.054</td>
<td>90</td>
<td>1</td>
<td>18</td>
<td>142.4</td>
<td>137.2</td>
</tr>
<tr>
<td>0.135</td>
<td>95</td>
<td>2</td>
<td>7.4</td>
<td>56.9</td>
<td>54.9</td>
</tr>
<tr>
<td>0.1406</td>
<td>95</td>
<td>1</td>
<td>7.1</td>
<td>54.7</td>
<td>52.7</td>
</tr>
<tr>
<td>0.2038</td>
<td>95</td>
<td>1</td>
<td>4.9</td>
<td>37.7</td>
<td>36.3</td>
</tr>
<tr>
<td>0.2343</td>
<td>95</td>
<td>1</td>
<td>4.3</td>
<td>32.8</td>
<td>31.6</td>
</tr>
<tr>
<td>0.2678</td>
<td>99</td>
<td>1</td>
<td>3.7</td>
<td>28.7</td>
<td>27.7</td>
</tr>
<tr>
<td>0.3397</td>
<td>99</td>
<td>1</td>
<td>2.9</td>
<td>22.6</td>
<td>21.8</td>
</tr>
<tr>
<td>0.3639</td>
<td>99</td>
<td>1</td>
<td>2.7</td>
<td>21.1</td>
<td>20.4</td>
</tr>
<tr>
<td>0.4018</td>
<td>95</td>
<td>1</td>
<td>2.4</td>
<td>19.1</td>
<td>18.4</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence levels) at different SARs. The SAR which most closely matches the orbital periods of the Middle Eocene (~ 45 Ma) is 19 cm/kyr.
* Frequencies within the range 0-0.5 cycles/m present in the total-gamma, K, Th and sandstone turbidite intensity spectra with confidence levels > 90%.
□ N the number of spectra containing that specific frequency.
Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%.
Estimated orbital cycles in the Middle Eocene at 45 Ma using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

(d) Wavelet analysis

Results of the wavelet analysis include two significant frequency ranges > 90% confidence levels (Figure 5.88). The most spatially persistent frequency range is 0.12-0.14 cycles/m (1/7-1/8 m). This frequency is significant with confidence levels > 90% in the total-gamma, K and sandstone turbidite intensity wavelet spectrum. In the sandstone turbidite intensity wavelet spectrum, this frequency range appears more significant in the middle section, whilst in the other records it is more consistent throughout the Sieste stratigraphic section. Spectral analysis using REDFIT and ASM has associated this frequency with obliquity.
The frequency range 0.23-0.26 cycles/m (1/3 - 1/4 m) which has been linked to precession, is present in the wavelet spectra of the sandstone turbidite intensity, K and total-gamma records. This frequency range is spatially discontinuous and present in small significant regions. The Th spectrum does not contain any significant regions throughout the records.

Figure 5.88 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Sieste section. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Sieste section using sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) The global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line have a significance > 90% confidence levels. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.88 Wavelet analysis of the Sieste section.

Turbidite intensity data

K data

Total gamma data

Th data

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering

The frequencies 0.054 and 0.1359 cycles/m have been filtered using a bandwidth of 0.0658 cycles/m (Figure 5.89). These frequencies are associated with eccentricity and obliquity, respectively, and are present in the total-gamma records with confidence levels > 90%.

The total-gamma records filtered to the frequency 0.054 cycle/m (1/18 m) show a well-developed high amplitude cycle at the beginning of the section. The rest of the records, however, do not show clear cyclicity. Although this frequency has been linked to eccentricity, the Sieste section is too short to determine eccentricity cycles with confidence. As a result, the Sieste section has not been orbitally tuned and the timing of deposition for these sediments can only be estimated from biostratigraphic studies and from SAR estimates using the duration of obliquity and precession cycles.

The total-gamma records filtered at a frequency 0.1359 cycles/m (1/7 m) show poorly defined obliquity cycles throughout the section. The amplitude of the cycles is, in general low and the cycles appear irregularly spaced.
Figure 5.89 Frequency-selective filtering of the Sieste section. The total-gamma records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.0658 cycles/m. Total-gamma records have been filtered to the frequencies 0.054 and 0.1359 cycles/m. These frequencies have been respectively associated with eccentricity, obliquity and precession using REDFIT and ASM analysis. Filtering has used the program Analyseries (Paillard et al., 1996).
5.3.6 The Guaso System

5.3.6.1 Sedimentology of the Guaso System

The Guaso System is the youngest of all the deep-marine systems of the Ainsa Basin and stratigraphically, this system is located immediately above the Morillo System. The Guaso System is underlain by several hundreds of metres of very thin- and thin-bedded fine-grained sediments which constitute the interfan deposits between the Morillo III and the Guaso I sandbodies. Overlying the Guaso System is an upper basin slope and delta system of the Sobrarbe Formation and the subsequent fluvial deposits of the Escanilla Formation (Dreyer et al., 1999). The Guaso System outcrops at the core of the south-verging Buil Syncline and there are well-exposed outcrop sections in the proximities of the Sieste, Guaso and El Grado towns and along the Eña River. Nannofossil and foraminifera identification suggests that the Guaso System was deposited in fully marine conditions at upper bathyal depths, several hundred metres below wave-base (Sutcliffe and Pickering, 2009).

The sedimentology of the Guaso System has been described in detail by Sutcliffe and Pickering (2009). The Guaso System can be divided into two major clastic depositional units: the Guaso I and Guaso II submarine fans. Each of these units is mainly composed of a sandbody with a general fining upward profile. The sandbodies comprise thick-bedded, medium to coarse-grained, amalgamated sandstones and locally, they contain multi-event Type I MTDs (Sutcliffe and Pickering, 2009). The petrography of the Guaso sandstones show they are texturally and compositionally immature. They are classified as feldspathic litharenites and have a poor to moderate sorting (Das Gupta and Pickering, 2008).
The Guaso System has been interpreted as a low-gradient clastic system including base-of-slope deposition (Sutcliffe and Pickering, 2009). These authors based their conclusions on the laterally extensive geometry of the Guaso I and II sandbodies with multiple shallow channels and the paucity of coarse-grained Type II MTCs. The Guaso System is characterised by lateral structural confinement. This confinement is demonstrated by significant changes in the sandbody thickness. The axial part of the Guaso System is thicker at the Buil Syncline and the sediments thin and onlap onto the basin marginal slopes of the Boltaña and Mediano topographic highs. Sutcliffe and Pickering (2009) interpreted the Guaso System as a low-gradient clastic system. These authors also observed that the Guaso II sandbody is, in general, coarser grained than the Guaso I and they suggested delta progradation during the deposition of the Guaso II sandbody.

5.3.6.2 Tectonic history during the deposition of the Guaso System

The deposition of the Guaso System coincides with the latest stages of the emplacement of the Pyrenean lower thrust sheets including the propagation of the Gavarnie Thrust. This resulted in the thickening of the Pyrenean axial zone and resulted in the compartmentation of the southern foreland piggy-back basins. The continuous emplacement of the Gavarnie basement thrust resulted in regional uplift and resulted in the shallowing of the Ainsa Basin. As the Mediano and Boltaña anticlines continued to grow, the basin became narrower and resulted in the structural confinement of the Guaso sandbodies (Sutcliffe and Pickering, 2009).

The Guaso System was fed from a more southern sediment source than the Morillo System or any other previous deep-marine system of the Ainsa Basin.
Sediment gravity flows were deflected around the Mediano Anticline which at this time formed a prominent topographic high and entered the basin from a structurally confined frontal ramp area (Sutcliffe and Pickering, 2009).

5.3.6.3 Age of the Guaso System

Biostratigraphic studies suggest that the beginning of the Guaso System occurred at ~43.23 Ma (Scotchman et al., 2014). The top of the Guaso System represents the end of deep-marine deposition and the beginning of the deposition of deltaics and fluvial deposits of the Sobrarbe and Escanilla formations. The termination of the deep-marine sedimentation has been estimated between 41.6 to 42.3 Ma in SBZ15 and at the top of chron C20n (Bentham and Burbank, 1996; Dreyer et al., 1999; Mochales et al., 2012).

Scotchman et al. (2014) suggest that the top of the Guaso System was a dark-shale anoxic horizon which was dated using biostratigraphy at 42.55 Ma. This horizon was recognised as well by Mochales et al. (2012) and dated it at 42.4 Ma using magnetostratigraphy.
5.3.6.4 Morillo-Bruello gamma-ray logged section

5.3.6.4.1 Geographical location of the Morillo-Bruello section

The Morillo-Bruello section is 108 m long and is located ~ 1.5 km west of Morillo-de-Tou town and ~ 1.3 km south of the village of Bruello. The section can be accessed from the path which joins Morillo-de-Tou and Bruello towns, and is well exposed along the Sarrato stream (Plate 5.17). Plate 5.18 shows outcrop photographs of the Morillo-Bruello section.

The section is composed of two main subsections: Morillo-Bruello section 1 (~ 44 m thick) and Morillo-Bruello section 2 (~ 63 m thick). These two subsections are separated by a distance of ~ 20 m. The whole outcrop is generally well-exposed, with no slumps or tectonic activity noted. Morillo-Bruello 1 forms a small hill capped by a heterolithic package and Morillo-Bruello 2 is well-exposed along the Sarrato stream. The heterolithic package exposed at the top of Morillo-Bruello section 1 is also exposed along the Sarrato stream allowing the correlation between these two subsections.
Plate 5.17 Aerial photograph of the Morillo-Bruello gamma-ray logged section. The Morillo-Bruello section is exposed along the Sarrato stream and is located between the villages of Morillo-de-Tou and Bruello. The section is 108 m long and comprises two subsections, Morillo-Bruello section 1 and 2 which are separated by ~ 20 m. Aerial image from www.sigpac.mapa.es/fega/visor.

Plate 5.18 (next page) Outcrop photographs of the Morillo-Bruello section. (a) Photograph of the Morillo-Bruello section 1, which forms a small hill with a heterolithic package at the top (vegetated area). (b) Photograph of the Morillo-Bruello section 2. The heterolithic package seen at the top of Morillo-Bruello section 1 is now well-exposed at the Sarrato stream allowing for lateral correlation of these two logs. (c) Outcrop photograph showing lenticular sandstone turbidites with well-developed ripples. (d) Close-up outcrop photograph showing the laminated nature of the Morillo-Bruello sediments. Dark bands appear heavily bioturbated. Note as well the presence of some orange-coloured bands which alternate with the dark bands. Sandstone turbidites are very thin and mm-sized.
5.3.6.4.2 Stratigraphic location of the Morillo-Bruello section

The Morillo-Bruello section is located within the Guaso System and this section mainly represents the fine-grained interfan sediments between the Guaso I and II sandbodies. The beginning of the section is found immediately above the Guaso I submarine fan which forms a thick sandbody at this location. The Guaso II sandbody has completely pinched out and the axial part of these channelised deposits can be found ~ 6 km towards the northwest. The heterolithic package present at ~ 45 m height in the Morillo-Bruello section could represent the off-axial Guaso II sandbody, but, this heterolithic package is small and discontinuous and could not be mapped laterally, making any association with the Guaso II sandbody uncertain. Figure 5.72 shows the geological map, cross-section and vertical stratigraphic column of the Morillo-Bruello section.

Figure 5.90 shows the sedimentary logs of the Morillo-Bruello section separated in Morillo-Bruello 1 and 2 subsections. Figure 5.91 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the section. Figure 5.92 shows the sandstone turbidite intensity variation of the section. The sandstone turbidite intensity appears to vary cyclically with cycles showing a periodicity of ~ 20 m throughout the section.
Figure 5.90 Detailed sedimentary logs of the Morillo-Bruello section. Morillo-Bruello section is composed of two main logs: Morillo-Bruello section 1 and 2. Sedimentary logs include every bed thicker than 5 mm. Figure 2.5 shows symbol key used in these logs. An electronic version of the sedimentary logs to allow for a more detailed study are included in Appendix 3.
Figure 5.91 Total-gamma, K, Th, U, Th/K and Th/U data plotted against simplified sedimentary logs of the Morillo-Bruello section. Sedimentary log only showing sandy turbidites ≥ 1.5 cm, for complete log refer to Figure 5.90 and Appendix 3. Black line is a 4-weight moving average.
Figure 5.92 Sandstone turbidite intensity in the Morillo-Bruello section. The thin heterolithic package at 44 m allows correlation between the Morillo-Bruello log 1 and 2. The graph shows some cyclic packaging in the sandstone turbidites with a periodicity of ~ 20 m. The averaged sandstone content for the Morillo-Bruello section is ~ 6.3%.

5.3.6.4.3 Cyclostratigraphic studies of the Morillo-Bruello section

(a) Methods of spectral estimation

The total-gamma spectrum of the Morillo-Bruello section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.93 shows the spectral results obtained from applying each of these methods. Table 5.44 summarises the main frequencies present within the range 0-0.2 cycles/m. The spectrum created using the four methods is very similar with spectral peaks found at similar frequencies. There are
three frequencies 0.15 cycles/m (1/6 m), 0.18 cycles/m (1/5 m) and 0.31 cycles/m (1/3 m) which consistently appear in all of the spectra analysed. The frequencies 0.08 cycles/m (1/12 m) and 0.42 cycles/m (1/2 m) are also present in all the spectra with the exception of the MTM spectrum.

![Spectral Estimation Methods](image)

Figure 5.93 Methods of spectral estimation using the spectral total-gamma data of the Morillo-Bruello section. REDFIT spectrum uses 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.028 cycles/m. The MTM method uses 3 tapers and ~ 6 degrees of freedom. The periodogram spectrum uses a Bartlett window. The maximum entropy method uses numbers of lags $M = N/3 = 180$). Analysis used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard *et al.* (1996).
Table 5.44 Methods of spectral estimation in the Morillo-Bruello section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.08</td>
<td>12.5</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.04</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>6.7</td>
<td></td>
<td>0.08</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>5.6</td>
<td></td>
<td>0.09</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>3.2</td>
<td></td>
<td>0.12</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>2.4</td>
<td></td>
<td>0.16</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
<td>2.1</td>
</tr>
<tr>
<td>MTM</td>
<td>0.12</td>
<td>8.3</td>
<td>Maximum entropy</td>
<td>0.02</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.155</td>
<td>6.45</td>
<td></td>
<td>0.04</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>0.19</td>
<td>5.3</td>
<td></td>
<td>0.08</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0.27</td>
<td>3.7</td>
<td></td>
<td>0.09</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>2.9</td>
<td></td>
<td>0.12</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.27</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.5 cycles/m.

* Frequencies present in the MTM significance test with confidence levels > 80%.

Similar frequencies present in all the spectra are represented in bold numbers.

(b) REDFIT spectral results

REDFIT analyses of the Morillo-Bruello section have been undertaken using 4 WOSA segments. All the analyses have used a power regression background estimation method to approximate the noise background (Table 5.45). The total-gamma spectrum has very similar summative square errors using the power regression or the AR1 method of Mann and Lees (1996), although the power regression method fits better the noise background spectrum in all the other analysed spectra. Figure 5.94 shows several significant frequencies within the 0-0.5 cycles/m range in the time-series analyses of the total-gamma, K, Th and sandstone turbidite intensity datasets, although, the time-series analyses of the Morillo-Bruello section are characterised by generally low power spectral peaks and noisy spectra. The frequency 0.08 cycles/m (1/12 m) is present in
all the analysed parameters. In the total-gamma, K and Th spectra, the frequency has confidence levels > 95%, but in the sandstone turbidite intensity data the frequency is only present > 80% confidence levels. The frequency 0.18 cycles/m (1/5 m) is present in the total-gamma, Th and sandstone turbidite intensity time-series, although the confidence levels are in general low, > 80% in the Th and sandstone turbidite intensity spectra and > 90% in the total-gamma spectrum. A number of other frequencies are also present in the total-gamma and turbidite intensities: 0.38 cycles/m (1/2 m) (> 95% confidence level) and the frequency 0.42 cycles/m (1/2 m) (> 95% confidence level).

A list of all the frequencies can be seen in Table 5.46.

Figure 5.94 Time-series analysis of spectral gamma-ray and sandstone turbidite intensity data of the Morillo-Bruello section using REDFIT. REDFIT spectral results used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.028 cycles/m. REDFIT results plotted using a power regression fitting model. Spectra have been re-scaled to allow comparison between variables. Analysis used the program REDFIT developed by Schulz and Mudelsee (2002).
Table 5.45 Noise background estimation of the Morillo-Bruello section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>732</td>
<td>2562</td>
<td>770</td>
</tr>
<tr>
<td>K</td>
<td>957</td>
<td>2117</td>
<td>527</td>
</tr>
<tr>
<td>Th</td>
<td>1123</td>
<td>1415</td>
<td>358</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>193</td>
<td>185</td>
<td>143</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicates the most adequate fitting curve method (bold numbers).

Table 5.46 REDFIT time-series analysis of the Morillo-Bruello section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.081</td>
<td>12.34</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.1504</td>
<td>6.64</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.1794</td>
<td>4.57</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.3067</td>
<td>3.26</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.4224</td>
<td>2.36</td>
<td>95</td>
</tr>
<tr>
<td>K</td>
<td>0.0811</td>
<td>12.33</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.10436</td>
<td>9.58</td>
<td>90</td>
</tr>
<tr>
<td>Th</td>
<td>0.0811</td>
<td>12.33</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>0.1795</td>
<td>4.57</td>
<td>80</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.0814</td>
<td>12.28</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.1802</td>
<td>4.55</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.3837</td>
<td>2.6</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.4476</td>
<td>2.23</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>0.4942</td>
<td>2</td>
<td>80</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 4 WOSA segments and 6 degrees of freedom.
*Frequencies between 0-0.5 cycles/m > 80% confidence levels.

(c) ASM results

The ASM analysis has used 7 frequencies which were identified with confidence levels > 90% in the REDFIT analyses (Figure 5.95). ASM analysis of the Morillo-Bruello section shows significant SAR within the range 9.5-14 cm/kyr. The most significant
SAR is found at 10.5 cm/kyr with a null hypothesis significance level of 0.004%.

Taking into consideration the frequencies which have higher confidence levels and those which appear in the spectra of more than one investigated parameters, the two SARs which most closely reflect the Middle Eocene orbital cycles are 10.5 cm/kyr and 12.5 cm/kyr (Table 5.47). At these SARs, the frequency 0.08-0.104 cycles/m represents eccentricity 95-123 kyr. The frequency range 0.1794-0.25 cycles/m can be linked to obliquity 40 and 52 kyr. The frequency 0.38 cycles/m represents precession 23 kyr and the frequency range 0.42-0.44 cycles/m represents precession 19 kyr.

Figure 5.95 ASM results of the Morillo-Bruello section. ASM analyses include a total of 7 frequencies identified from spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 90%. For a list of frequencies refer to Table 5.47. The analysis used a Rayleigh number of $3.69685767 \times 10^{-4}$ and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger *et al.* (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo interactions. Critical significance levels were established at 0.52 %. ASM analysis has identified significant SAR values ranging from 9.5-14 cm/kyr. The 7 orbital parameters including eccentricity, obliquity and precession have been included in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.47 Temporal period duration of significant frequencies in the Morillo-Bruello section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>C.L (%)</th>
<th>N</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.5 cm/kyr</td>
<td>10 cm/kyr</td>
</tr>
<tr>
<td>0.081</td>
<td>90</td>
<td>4</td>
<td>12.3</td>
<td>130</td>
</tr>
<tr>
<td>0.1044</td>
<td>90</td>
<td>1</td>
<td>9.6</td>
<td>100.9</td>
</tr>
<tr>
<td>0.1794</td>
<td>90</td>
<td>3</td>
<td>4.6</td>
<td>58.7</td>
</tr>
<tr>
<td>0.25</td>
<td>90</td>
<td>1</td>
<td>4</td>
<td>42.1</td>
</tr>
<tr>
<td>0.3837</td>
<td>95</td>
<td>1</td>
<td>2.6</td>
<td>27.4</td>
</tr>
<tr>
<td>0.4224</td>
<td>95</td>
<td>1</td>
<td>2.4</td>
<td>25</td>
</tr>
<tr>
<td>0.4476</td>
<td>95</td>
<td>1</td>
<td>2.2</td>
<td>23.5</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence levels) at different SARs. The SAR which most closely matches the orbital periods of the Middle Eocene (~ 45 Ma) is 10.5 and 12.5 cm/kyr.

*Frequencies present in the total-gamma, K, Th and sandstone turbidite intensity spectra with confidence levels > 90%.

○ N the number of spectra containing that specific frequency.

Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 90%.

Estimated orbital cycles in the Middle Eocene at 45 Ma using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.
(d) Wavelet analysis

The results from the wavelet analysis include a number of significant frequencies > 90% confidence levels (Figure 5.96). The most spatially persistent frequency, present in all the analysed records with a confidence level > 90% is the frequency range 0.08-0.01 cycles/m (1/9-1/12 m). This frequency range is present in all of the stratigraphic records and is persistently significant in the first half of the Morillo-Bruello section, mainly from 15 to 55 m height. In the second half of the records, the wavelet spectrum shows an increase in power around this frequency but not sufficiently high to be significant. Spectral analysis using REDFIT and ASM has associated this frequency to short eccentricity.

The frequency range 0.18-0.25 cycles/m (1/5-1/6 m) which has been linked to obliquity, is identified in the sandstone turbidite intensity, K and total-gamma > 90% confidence level. The significant regions associated with this frequency are in general small and discontinuous. Similarly, the frequency range 0.38-0.44 cycles/m (1/2 m), which has been linked to precession, is spatially sporadic in the sandstone turbidite intensity, K and total-gamma and is absent in the Th spectrum.

Figure 5.96 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Morillo-Bruello section. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Morillo-Bruello section using sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) The global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line have a significance > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis used the online tool http://paos.colorado.edu.research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.96 Wavelet analysis of the Morillo-Bruello section

Turbidite intensity data

- Wavelet Power Spectrum
- Global Wavelet

K data

- Wavelet Power Spectrum
- Global Wavelet

Total gamma data

- Wavelet Power Spectrum
- Global Wavelet

Th data

- Wavelet Power Spectrum
- Global Wavelet

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering

Two frequencies, 0.08 and 0.18 cycles/m have been filtered using a bandwidth of 0.028 cycles/m (Figure 5.97). The frequency 0.08 cycles/m is present in the total-gamma records with a confidence level > 99% and the frequency 0.018 cycles/m is present with confidence levels > 90%.

The total-gamma records filtered at the frequency of 0.08 cycle/m (1/12 m) shows well developed cycles mainly in the first half of the records. This corroborates the spatial distribution of this frequency in the wavelet spectrum which was significant > 90% confidence levels only in the first half of the records. In the second part of the section, there are also regular cycles but they appear attenuated and have a much lower amplitude.

The total-gamma records filtered at the frequency of 0.18 cycle/m (1/5 m) shows well developed cycles from 0-55 m height, but, then the cycles appear to lose amplitude towards the end of the section. In the wavelet spectrum, this frequency was only very sporadically significant in the central part of the Morillo-Bruello section.
Figure 5.97 Frequency-selective filtering of the Morillo-Bruello section. Total-gamma records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.028 cycles/m. Total-gamma records have been filtered to the frequency 0.008 cycles/m, which has been associated with the short eccentricity and to the frequency 0.018 cycles/m which has been associated with obliquity cycles. Filtering has used the program Analyseries (Paillard et al., 1996).
5.3.6.5 Guaso gamma-ray logged section

5.3.6.5.1 Geographical location of the Guaso section

The Guaso gamma-ray logged section is 40 m long and is located ~ 400 m southwest of Guaso village and ~ 2 km southeast of the village of Sieste. The Guaso section can be accessed from the road A-2205 between the Margudgued and Guaso towns and is well exposed along a small stream (Plate 5.19). The Guaso section is small, but completely undeformed and well exposed. Immediately above the section there is a large interval of chaotic deposits, interpreted as sediment slides and slumps.

Plate 5.19 Aerial photograph of the area surrounding the Guaso gamma-ray logged section. The Guaso section is well exposed along a small stream. Access to the section can be gained from the road A-2205 between Margudgued and Guaso towns. Aerial image from www.sigpac.mapa.es/fega/visor.
5.3.6.5.2 Stratigraphic location of the Guaso section

The Guaso section is located within the Guaso System and comprises the youngest sediments of all the gamma-ray sections logged. The section is located just a few metres above the Guaso II sandbody and represents a fining upward succession associated with the abandonment of the Guaso II coarse-grained submarine fan (Figure 5.98). The stratigraphy above the Guaso II sandbody is characterised by large-scale slumps and numerous debris flows containing folded rafted sands. Although, two main sandbodies have been recognised within the Guaso System, Guaso I and II, other sandbodies which appear thinner and more localised are also present within this system (Figure 5.98).

Figure 5.99 shows sedimentary logs of the Guaso section. This section is characterised by intervals of orangey coloured bands associated with bioturbated siltstone and mudstone couplets. Figure 5.100 shows the variation in the content of the K, Th, U, Th/K and Th/U throughout the Guaso section. Intervals of high-frequency sandstone turbidites are associated with low total-gamma and K counts (Figure 5.100). Sandstone turbidite intensity graph (Figure 5.101) shows some cyclical packaging of the sandstone turbidites and the presence of thin heterolithic packages comprising thicker sandstone turbidites.
Figure 5.98 Geological map, cross-section and vertical stratigraphic column of the Guaso section. (a) Geological map of the area around Guaso town showing the location of the Guaso gamma-ray logged section. The green line indicates the position of the cross-section A-A’ which is perpendicular to the main outcrop strike. (b) Cross-section of the Guaso area showing the position of the gamma-ray logged section in the interfan sediments immediately above the Guaso II sandbody. (c) Stratigraphic column showing the position of the Guaso section.
Figure 5.99 Detailed sedimentary log of the Guaso section. Sedimentary logs include every bed thicker than 5 mm. Figure 2.5 shows the symbol key used in the sedimentary logs. Electronic versions are included in Appendix 3.
Figure 5.100 Simplified sedimentary logs of the Guaso section plotted against total-gamma (cpm), K (%), Th (ppm), U (ppm), Th/K and Th/U data. The black line is a 4-period moving average. Simplified logs only show sandy turbidites ≥ 1.5 cm, for complete logs refer to Figure 5.99 and Appendix 3.
Figure 5.101 Sandstone turbidite intensity in the Guaso section. The averaged sandstone content for the section is ~ 7%.

5.3.6.5.3 Cyclostratigraphic studies of the Guaso section

(a) Methods of spectral estimation

The total-gamma spectrum of the Guaso section has been estimated using four different methods: the REDFIT, the MTM, the maximum entropy and the periodogram modified with a Bartlett window. Figure 5.102 shows the spectral results obtained from applying each of these methods and Table 5.48 summarises the main frequencies present from 0-0.5 cycles/m. All the spectra created are similar using the four spectral estimation methods, although frequencies in the MTM method appear flattened and poorly defined. The MTM significance test does, however, show very similar frequencies to the other spectra. The frequencies 0.046 cycles/m (1/21 m), 0.234 cycles/m (1/4 m) and 0.359 cycles/m (~ 1/3 m) are common in all the spectra.
Figure 5.102 Methods of spectral estimation using the spectral total-gamma data of the Guaso section. REDFIT spectrum using 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.0756 cycles/m. The MTM method uses 3 tapers and ~ 6 degrees of freedom. The periodogram spectrum uses a Bartlett window. The maximum entropy method uses numbers of lags \(M = N/3 = 67 \). The spectral analysis used the REDFIT software developed by Schultz and Mudelsee (2002) and the Analyseries software package developed by Paillard et al. (1996).

Table 5.48 Methods of spectral estimation in the Guaso section.

<table>
<thead>
<tr>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
<th>Spectral Method</th>
<th>Frequency (cycles/m)*</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDFIT</td>
<td>0.046 0.156 0.234 0.359</td>
<td>21.7 6.4 4.3 2.8</td>
<td>Periodogram modified with a Bartlett window</td>
<td>0.04 0.135 0.205 0.335</td>
<td>25 7.4 4.9 3</td>
</tr>
<tr>
<td>MTM(^{\circ})</td>
<td>0.039 0.205 0.332</td>
<td>25.6 4.9 3</td>
<td>Maximum entropy</td>
<td>0.035 0.115 0.155 0.245 0.34</td>
<td>28.6 8.7 6.5 4.1 2.9</td>
</tr>
</tbody>
</table>

* Frequencies from 0-0.5 cycles/m.
\(^{\circ}\) Frequencies present in the MTM significance test with confidence levels > 80%. Frequencies which appear consistently in all the spectra are represented in bold numbers.
(b) REDFIT spectral results

The Guaso section is too short to show eccentricity cycles with confidence. Therefore, the only orbital periods investigated in the Guaso section are obliquity and precession. In order to support the reliability of the results from this short section, the significant frequencies identified in the Guaso section have been interpreted in association to the other gamma-ray logged section in the Guaso System (e.g., the Morillo-Bruello section).

REDFIT analyses of the Guaso section have been undertaken using 4 WOSA segments. The noise background fitting method used is the AR1 model of Mann and Lees (1996) with the exception of the Th spectrum, where the background noise has been approximated with a power regression method (Table 5.49). There are two main significant frequency ranges identified between 0-0.5 cycles/m which are present in the time-series analyses of the total-gamma, K, Th and sandstone turbidite intensity datasets: 0.14-0.17 cycles/m (1/5-1/7 m) and 0.32-0.36 cycles/m (1/3 m) (Figure 5.103). The frequency range 0.14-0.17 cycles/m is better represented in the K spectrum with a confidence > 99%, but, this frequency range is also significant in all the other parameters. The frequency range 0.32-0.36 cycles/m is present in the total-gamma and K spectra with confidence levels > 90% and 95%, respectively. These two frequency ranges are similar to the frequencies 0.15 and 0.38 cycles/m identified in the Morillo-Bruello section. Table 5.50 summarises all frequencies identified with the REDFIT method.
Figure 5.103 Time-series analysis of spectral gamma ray and sandstone turbidite intensity data using REDFIT. REDFIT spectral results used 4 WOSA segments, 6 degrees of freedom and a bandwidth of 0.0756 cycles/m. REDFIT results plotted using an AR1 noise background fitting model with the exception of the Th spectrum. Graphs showing re-scaled power to allow comparison between variables. Analysis used the REDFIT software developed by Schulz and Mudelsee (2002).

Table 5.49 Noise background estimation of the Guaso 40 m section.

<table>
<thead>
<tr>
<th>Data</th>
<th>AR1 (Mann and Lees, 1996)</th>
<th>Quadratic curve</th>
<th>Power regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>45</td>
<td>374</td>
<td>187</td>
</tr>
<tr>
<td>K</td>
<td>70</td>
<td>182</td>
<td>122</td>
</tr>
<tr>
<td>Th</td>
<td>83</td>
<td>69</td>
<td>50</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>39</td>
<td>42</td>
<td>53</td>
</tr>
</tbody>
</table>

Summative square errors using the AR1 model of Mann and Lees (1996), a quadratic curve and a power regression method. The method with the least summative square error indicating the most adequate fitting curve method is represented in bold numbers.
Table 5.50 REDFIT time-series analysis results of the Guaso section.

<table>
<thead>
<tr>
<th>Data</th>
<th>Frequency (cycle/m)</th>
<th>Period (m)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-gamma</td>
<td>0.1563 0.3594</td>
<td>6.4 2.78</td>
<td>80 90</td>
</tr>
<tr>
<td>K</td>
<td>0.15625 0.3281</td>
<td>6.4 3.05</td>
<td>99 95</td>
</tr>
<tr>
<td>Th</td>
<td>0.1406</td>
<td>7.11</td>
<td>95</td>
</tr>
<tr>
<td>Sandstone turbidite intensity</td>
<td>0.1719 0.4219</td>
<td>4.81 2.37</td>
<td>90 90</td>
</tr>
</tbody>
</table>

REDFIT spectral results using 4 WOSA, 6 degrees of freedom and a bandwidth of 0.0756 cycles/m. The frequencies shown are all frequencies between 0-0.5 cycles/m > 80% confidence levels.

(c) ASM results

A total of 6 frequencies containing confidence levels > 90% have been applied to the ASM studies (Figure 5.104). ASM analysis of the Guaso section has investigated only obliquity and precession orbital cycles due to the shortness of the section.

Significant SARs range from 12 to 16 cm/kyr. The most significant ASM results are the SAR between 13.5-14.5 cm/kyr with null hypothesis significance levels of 0.002%. Table 5.51 investigates how closely these significant SARs relate to the orbital cycles in the Middle Eocene. At a SAR of 14 cm/kyr, the frequencies 0.14-0.156 cycles/m (1/6-1/7 m) represents obliquity 52 kyr and the frequency 0.1712 cycles/m (1/4.8 m) represents obliquity 40 kyr. The frequency range 0.32-0.36 cycles/m (1/3 m) probably represents precession.
Figure 5.104 ASM results of the Guaso section. ASM analyses include a total of 6 frequencies identified from spectral analysis of the spectral gamma-ray and sandstone turbidite intensity data with a confidence level > 80%. For a list of frequencies refer to Table 5.51. The analysis used a Rayleigh number of 9.900990099 x 10^{-4} and a Nyquist frequency of 2.4 cycles/m. Orbital parameters were established at ~ 45 Ma using Berger *et al.* (1992) equations. A total of 191 SARs ranging from 5-100 cm/kyr with an increment of 0.5 cm/kyr were investigated using 100,000 Monte Carlo interactions. Critical significance levels were established at 0.52%. ASM analysis has identified significant SAR values ranging from 12-16 cm/kyr. Only 4 orbital parameters (obliquity and precession) were investigated in the ASM studies. Analysis used the ASM software developed by Meyers and Sageman (2007).
Table 5.51 Temporal period duration of significant frequencies in the Guaso section.

<table>
<thead>
<tr>
<th>Frequency (cycles/m)</th>
<th>C.L. (%)</th>
<th>N</th>
<th>Period (m)</th>
<th>Period duration (kyr) at different SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.5 cm/kyr</td>
</tr>
<tr>
<td>0.1406</td>
<td>95</td>
<td>2</td>
<td>7.1</td>
<td>56.9</td>
</tr>
<tr>
<td>0.1563</td>
<td>99</td>
<td>1</td>
<td>6.4</td>
<td>51.2</td>
</tr>
<tr>
<td>0.1712</td>
<td>90</td>
<td>1</td>
<td>4.8</td>
<td>46.7</td>
</tr>
<tr>
<td>0.3281</td>
<td>95</td>
<td>1</td>
<td>3</td>
<td>24.4</td>
</tr>
<tr>
<td>0.3594</td>
<td>90</td>
<td>1</td>
<td>2.8</td>
<td>22.3</td>
</tr>
<tr>
<td>0.4219</td>
<td>90</td>
<td>1</td>
<td>2.4</td>
<td>19</td>
</tr>
</tbody>
</table>

The table shows calculated cycle duration for each significant frequency (> 90% confidence levels) at different SARs. The SAR which most closely matches the orbital periods of the Middle Eocene (~ 45 Ma) is 14 cm/kyr.

* Frequencies present in the total-gamma, K, Th and sandstone turbidite intensity spectra with confidence levels > 90%.

□ N is the number of spectra containing that specific frequency.

Underlined are frequencies which are contained in more than 1 spectrum with at least 1 confidence level > 95%.

Estimated orbital cycles in the Middle Eocene at 45 Ma using Berger et al. (1992) equations are: eccentricity 123.8 and 94.8 kyr, obliquity 52.3 and 40 kyr and precession 22.6 and 18.8 kyr.

(d) Wavelet analysis

Results from the wavelet analysis include two main frequency ranges > 90% confidence levels. Figure 5.105 shows the wavelet power spectra of the sandstone turbidite intensity, K, Th and total-gamma data. The most spatially persistent frequency range is 0.14-0.17 cycles/m (1/5-1/7 m). This frequency range is significant with a confidence level > 90% in all the analysed wavelet spectra although the significant regions vary for each of them. Non-significant regions have in general an increase in power at this frequency range. The wavelet spectrum is mostly continuous throughout the records at this frequency range in the total-gamma data and Th wavelet spectra, but, in the sandstone turbidite intensity spectrum is only significant in the first
half of the records. Spectral analysis using REDFIT and ASM has associated this frequency to obliquity.

The frequency range 0.32-0.42 cycles/m (1/2-1/3 m) which has been linked to precession, is also significant in all the wavelet spectra analysed but is spatially more sporadic and discontinuous.

Figure 5.105 (next page) Wavelet analysis of the sandstone turbidite intensity, K, total-gamma and Th data in the Guaso section. (a) The wavelet power spectrum calculates spectral power at different frequencies throughout the Guaso section using sandstone turbidite intensity, K, Th and total-gamma records. Black contours mark the 10% significant regions. (b) The global wavelet shows the scale-averaged wavelet power across the studied frequency bands. Values to the right of the dashed line have a significance > 90% confidence level. Significant spectral peaks which have been associated with Milankovitch frequencies using REDFIT and ASM analysis have been labelled (E-eccentricity, O-obliquity, and P-precession). Analysis has used the online tool http://paos.colorado.edu/research/wavelets based on the algorithms of Torrence and Compo (1998).
Figure 5.105 Wavelet analysis of the Guaso section.

Turbidite intensity data

- Wavelet Power Spectrum
- Global Wavelet

K data

- Wavelet Power Spectrum
- Global Wavelet

Total gamma data

- Wavelet Power Spectrum
- Global Wavelet

Th data

- Wavelet Power Spectrum
- Global Wavelet

http://paos.colorado.edu/research/wavelets/
(e) Frequency-selective filtering

The frequencies 0.1563 and 0.3594 cycles/m have been filtered using a bandwidth of 0.0756 cycles/m derived from REDFIT spectral analysis (Figure 5.106). These two frequencies are present in the total-gamma records with confidence levels > 80% and 90%, respectively.

The total-gamma records filtered at a frequency of 0.1563 cycles/m (1/6 m) show well-developed high-amplitude cycles throughout the section. These cycles can be easily distinguishable looking at the total-gamma ray detrended data. This frequency has been linked to obliquity. The total-gamma records filtered at the frequency 0.3594 cycles/m (1/2 m) show well defined precession cycles throughout the records. These cycles show a good match with the total-gamma records.
Figure 5.106 Frequency-selective filtering of the Guaso section. The total-gamma records have been interpolated and detrended prior to analysis. Filtering has been undertaken using a band-pass Gaussian filter and a bandwidth of 0.0756 cycles/m. The total-gamma records have been filtered to the frequencies 0.1563 and 0.3594 cycles/m. The frequency 0.1563 has been associated with obliquity and the frequency 0.3594 cycles/m to precession using REDFIT and ASM spectral analysis. Obliquity cycles in the Guaso section are well-developed throughout the stratigraphy and can be very easily distinguishable looking at the total-gamma ray data. There is a relatively good match between the filtered records, the total-gamma ray data with good amplitude precession cycles throughout the records. The shortness of the Guaso section prevents the recognition of eccentricity cycles with confidence. Filtering has used the program Analyseries (Paillard et al., 1996).
5.3.7 SAR variation across the Ainsa Basin stratigraphy

The deep-marine sediments of the Ainsa Basin record a progressive decrease in the rates of sediment accumulation (Figure 5.107). ASM studies suggest that the SARs have varied from 50 cm/kyr in the older sediments of the Arro System to ~ 13 cm/kyr in the younger sediments of the Guaso System. The fastest SARs of the Arro System coincides with a period of intense tectonic deformation and rapid basin subsidence deepening which resulted in slope instabilities and failures during the deposition of the Arro System (Millington and Clark, 1995). The system stabilised during the deposition of the Gerbe and Banastón systems and the SAR progressively decreased to ~ 37 cm/kyr. During the deposition of the Ainsa and Morillo systems the basin was incorporated into the hanging wall of the Gavarnie Thrust and undergone a transitional stage from a foredeep basin to a thrust-top basin (e.g., Muñoz et al., 1998; Dreyer et al., 1999; Fernández et al., 2004, 2012). Advancement of the Gavarnie Thrust caused the active growth of the Mediano, Añisclo and Boltaña anticlines and resulted in a general uplift and narrowing of the basin (e.g., Fernández et al., 2004, 2012; Bayliss and Pickering, 2014a, 2014b). The deposition of these systems are characterised by tectonic confinement and SARs are in the order of 25-30 cm/kyr. As the basin continued to fill the SAR reduced even further to ~ 13 cm/kyr during the deposition of the Guaso System.

5.3.8 Interfan duration in the Ainsa Basin

The interfan duration can be calculated by using the stratigraphic thicknesses of the interfan deposits and the SAR identified from ASM studies. Table 5.52 summarises the duration of each interfan succession. Interfan deposits have accumulated over time.
intervals that vary greatly from 130 kyr to 779 kyr with averaged values of 364±204 kyr. The 364 kyr averaged interfan duration approximates the periodicity of the 400 kyr long eccentricity. However, the large standard deviation values suggest that there is no regular periodicity in the deposition of these interfan deposits. Figure 5.108 shows how the duration of the interfan deposits have varied throughout the stratigraphy. Older systems such as the Gerbe and Banastón are in general characterised by shorter interfan duration than the younger systems (Morillo and Guaso). The timing of the interfan deposits can be fitted with a polynomial curve (Figure 5.109a). This figure reflects how the basin has been filled in time.

This study estimates a total thickness of the interfan deposits from the Gerbe to the Guaso system of ~ 1.7 km and a total duration of 5.8 Myr (Figure 5.109). Average SARs of the interfan sediments is ~ 30 cm/kyr. This average SAR does not take into consideration the duration of the deposition of the coarse-grained sandbodies SARs which are expected to have been much higher than for the interfan deposits (Heard et al., 2008). SARs for the Upper Hecho Group are estimated to be at 40 cm/kyr Pickering and Bayliss (2009) and ~ 43 cm/kyr by Scotchman et al. (2012).
Figure 5.107 SARs across the Upper Hecho Group in the Ainsa Basin. There is a progressive decrease of the SAR from the Gerbe System ~ 47 cm/kyr to ~ 13 cm/kyr in the Guaso System.
Table 5.52 Interfan duration of the Upper Hecho Group of the Ainsa Basin.

<table>
<thead>
<tr>
<th>Turbidite system</th>
<th>Thickness of interfan deposits</th>
<th>SAR*</th>
<th>Estimated interfan duration</th>
<th>System duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta-GII</td>
<td>27.6 m</td>
<td>12.5-14 cm/kyr</td>
<td>209±17 kyr</td>
<td>Guaso 676 ±137 kyr</td>
</tr>
<tr>
<td>GI-GII</td>
<td>70.5 m</td>
<td>12.5-19 cm/kyr</td>
<td>467±136 kyr</td>
<td></td>
</tr>
<tr>
<td>M III – GI</td>
<td>124.1 m</td>
<td>19-25 cm/kyr</td>
<td>574±110 kyr</td>
<td>Morillo 1912 ±119 kyr</td>
</tr>
<tr>
<td>M II – MIII</td>
<td>194.7 m</td>
<td>25 cm/kyr</td>
<td>779 kyr</td>
<td></td>
</tr>
<tr>
<td>M I – MII</td>
<td>147.8 m</td>
<td>25-28 cm/kyr</td>
<td>559±45 kyr</td>
<td></td>
</tr>
<tr>
<td>A III – MI</td>
<td>206.5 m</td>
<td>28-33.5 cm/kyr</td>
<td>677±96 kyr</td>
<td>Ainsa 1340±97 kyr</td>
</tr>
<tr>
<td>AII – AIII</td>
<td>54.4 m</td>
<td>30-33.5 cm/kyr</td>
<td>172±13 kyr</td>
<td></td>
</tr>
<tr>
<td>A I – AII</td>
<td>147.4 m</td>
<td>30 cm/kyr</td>
<td>491 kyr</td>
<td></td>
</tr>
<tr>
<td>BVI-AI</td>
<td>77 m</td>
<td>30-37 cm/kyr</td>
<td>232±34 kyr</td>
<td>Banastón 1316±62 kyr</td>
</tr>
<tr>
<td>BV-BVI</td>
<td>104 m</td>
<td>30-37 cm/kyr</td>
<td>314±46 kyr</td>
<td></td>
</tr>
<tr>
<td>BIV-BV</td>
<td>92.6 m</td>
<td>37 cm/kyr</td>
<td>250 kyr</td>
<td></td>
</tr>
<tr>
<td>BIII-BIV</td>
<td>87 m</td>
<td>37-41 cm/kyr</td>
<td>223±16 kyr</td>
<td></td>
</tr>
<tr>
<td>BII-BIII</td>
<td>65 m</td>
<td>37-41 cm/kyr</td>
<td>167±12 kyr</td>
<td></td>
</tr>
<tr>
<td>BI-BII</td>
<td>57 m</td>
<td>41-47 cm/kyr</td>
<td>130±12 kyr</td>
<td></td>
</tr>
<tr>
<td>GeII-BI</td>
<td>78.3 m</td>
<td>47 cm/kyr</td>
<td>166 kyr</td>
<td>Gerbe 588±18 kyr</td>
</tr>
<tr>
<td>Gel-GeII</td>
<td>204.7 m</td>
<td>50-47 cm/kyr</td>
<td>422±18 kyr</td>
<td></td>
</tr>
</tbody>
</table>

*SARs calculated from ASM analysis of outcrop spectral gamma-ray sections across the basin.

Figure 5.108 Interfan thickness duration in the Upper Hecho Group. There is a general increase in the interfan duration throughout the stratigraphy. The line is a 2-weight moving average.
Figure 5.109 Accumulative time and thickness of the interfan successions. (a) The figure shows the accumulative time of the interfan deposits. The interfan timing across the deep-marine stratigraphy of the Ainsa Basin can be fitted to a polynomial curve. (b) The figure shows the accumulative thickness of the interfan successions from the Gerbe to the Guaso systems.
5.3.9 Conversion of a depth-stratigraphy to an age-stratigraphy

Orbital tuning of the gamma-ray logged sections to the eccentricity curves allows the conversion of a depth-stratigraphy to an age-stratigraphy. This conversion has only been attempted in the Gerbe, Banastón, Ainsa and the lower part of the Morillo System where there is a good chronostratigraphic control from magnetostratigraphy. An age-stratigraphy allows the estimation of the age of initiation of the Ainsa Basin deep-marine systems and of individual sandbodies. The Gerbe System is estimated to have been initiated at 47.73 Ma, the Banastón System at 46.97 Ma and the Ainsa System at 45.16 Ma.

Table 5.53 Time of initiation of the sandbodies of the Ainsa Basin.

<table>
<thead>
<tr>
<th>Sandbody</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerbe I</td>
<td>47.73</td>
</tr>
<tr>
<td>Gerbe II</td>
<td>47.18</td>
</tr>
<tr>
<td>Banastón I</td>
<td>46.97</td>
</tr>
<tr>
<td>Banastón II</td>
<td>46.7</td>
</tr>
<tr>
<td>Banastón III</td>
<td>46.2</td>
</tr>
<tr>
<td>Banastón IV</td>
<td>45.9</td>
</tr>
<tr>
<td>Banastón V</td>
<td>45.65</td>
</tr>
<tr>
<td>Banastón VI</td>
<td>45.38</td>
</tr>
<tr>
<td>Ainsa I</td>
<td>45.16</td>
</tr>
<tr>
<td>Ainsa II</td>
<td>44.83</td>
</tr>
<tr>
<td>Ainsa III</td>
<td>44.58</td>
</tr>
</tbody>
</table>
Figure 5.110 Chronostratigraphy of the Ainsa Basin. Orbital tuning of the Gerbe, Labuerda section 2, Boltaña and Forcaz sections to eccentricity curve of the Middle Eocene has allowed to transform the depth-stratigraphy to an age-stratigraphy. Eccentricity curves from the La2010a orbital solution of Laskar et al. (2011).
5.3.10 Conclusions

This chapter has presented sedimentological and spectral work from 10 fine-grained successions of interfan and overbank deposits located throughout most of the entire deep-marine stratigraphy of the Ainsa Basin. The Fosado and the Los Molinos systems have not been studied due to the high degree of tectonic deformation in the sediments. The location of each of the gamma-ray logged sections within the stratigraphy has been determined by detail geological mapping over large areas of the basin and by building cross-sectional profiles.

Spectral work carried out in these fine-grained successions have used a variety of cyclostratigraphic techniques to determine the presence of cyclical components within the spectral gamma-ray data collected with a portable spectrometer and sandstone turbidite intensity studies undertaken using detailed sedimentary logging. Spectral estimation methods have included REDFIT, MTM, maximum entropy and the modified periodogram. Confidence levels have been obtained after applying appropriate noise background fitting models. The association of certain frequencies to orbital parameters has been achieved by testing a large range of SAR using ASM analysis. Additional techniques to determine the spatial distribution of the cyclical components have included wavelet analysis and frequency-selective filtering.

These cyclostratigraphic techniques have demonstrated that the fine-grained successions in the Ainsa Basin have a strong climatic signal. Short sections, such as Sieste, Guaso and the Morillo-Bruello have in general lower confidence levels and noisier spectra, and the presence of Milankovitch cyclicity in these records is more difficult to prove. Eccentricity and obliquity cycles appear dominant in most of the records and precession cycles are not always present.
The Gerbe, Banastón and Ainsa systems have a good chronostratigraphic control from magnetostratigraphy (Chapter 3). Gamma-ray logged sections in these systems (Gerbe, Labuerda 2, Boltaña and Forcaz sections) have been orbitally tuned to the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011). Using the total-gamma records filtered to the frequency identified with eccentricity, the records have been tuned using eccentricity maxima and/or minima as control points. Any polarity reversals identified have also been used as control points. Orbital tuning to the right part of the historical eccentricity curves has been achieved by establishing careful stratigraphic correlations between different gamma-ray sections and by taking into consideration SARs derived from spectral studies. Orbital tuning has resulted in a strengthening of the orbital cycles, especially the precession cycle. The resulting tuned records have good confidence levels, > 95%, and the period of the identified cycles have a similar duration to the predicted values for the orbital parameters during the Middle Eocene using Berger et al. (1992) equations. Tuning the records has permitted to convert a depth-stratigraphy of the Ainsa Basin to an age-stratigraphy for the lower part of the Upper Hecho Group and to establish the time of initiation of different sandbodies.

ASM analysis has permitted to calculate SAR for each of the gamma-ray logged sections. SAR appears to have decreased steadily throughout the stratigraphy. The Arro and Gerbe systems have the fastest SARs (~ 50 cm/kyr) which progressively decrease to ~ 13 cm/kyr in the Guaso System. The average SAR in the interfan deposits is ~ 30 cm/kyr.

The interfan thicknesses between the coarse-grained sandbodies can be estimated using SAR calculated from ASM studies and the thickness of the interfan successions calculated from cross-section profiles. The delivery of coarse-grained
sediments in the basin appears to have occurred at irregular intervals and it cannot be entirely explained by climatic forcing. The drivers for these coarse-grained sediments are discussed in detail in Chapter 6.
Chapter 6

Tectonic *versus* climatic controls in the delivery of sediments to the Ainsa Basin

6.1 Introduction

The deep-marine stratigraphy of the Ainsa Basin is composed of a cyclic alternation of coarse-grained sandstone packages (referred to as sandbodies and interpreted as submarine fans) and fine-grained packages of fan and interfan sediments (Van Lunsen, 1970; Mansurbeg *et al.*, 2009, Caja *et al.*, 2010). Pickering and Corregidor (2005), and Pickering and Bayliss (2009) recognised 25 coarse-grained sandbodies typically 40–70 m thick separated by hundreds of metres of thin-bedded, laminated siltstones and marlstones. These fine-grained sediments constitute both interfan and fan lateral-margin facies. The presence of these sediment packages shows a very marked variation in the sediment supply to the basin with alternating periods of coarse-grained supply being switched on and off.

The principal processes which can drive the high-frequency modulation of sediment flux to the deep-marine environment include high-frequency climatic, extra-basinal tectonics, autocyclic and/or eustatic sea-level changes. Chapter 3 and 5 have shown that there is a strong climatic signal in the fine-grained sediments at Milankovitch periodicities. The coarse-grained sandbodies, however, do not seem to follow a regular pattern, and their initiation appears irregularly spaced (Chapter 5).
Clearly, a variety of controlling factors must have influenced the deposition of the deep-marine systems of the Ainsa Basin at different timescales.

This chapter integrates work from previous chapters and discusses the mechanism/s which may have controlled the sedimentary successions observed in the Ainsa Basin. The chapter is divided in two main sections. The first section explores different controlling factors which have driven the cyclic delivery of the fine-grained sediments and the second section discusses the possible mechanisms which may have contributed to the irregular deposition of the coarse-grained sandbodies.

6.2 Controls on the deposition of fine-grained deep-marine sediments in the Ainsa Basin

Cyclostratigraphic analysis of total-gamma, K and Th records from outcrop spectral gamma-ray data undertaken in many interfan and overbank successions throughout the entire deep-marine stratigraphy of the Upper Hecho Group in the Ainsa Basin have shown that there is a strong climatic signal in the fine-grained sediments (Chapter 5). Milankovitch short eccentricity and obliquity cycles appear dominant in most of the records with precession cycles not always being present. Time-series analysis of sandstone turbidite intensity records in these fine-grained successions yield similar frequencies than those identified from the study of spectral gamma-ray data. These interfan and overbank successions, therefore, record a high-frequency variable supply of coarse and fine-grained sediments to the deep-marine basin at Milankovitch scales.

Geochemical analysis undertaken in one of the interfan sections (Well A6 core) has helped to gain a better understanding of the cyclical associations between different
geochemical proxies in the fine-grained sediments (Chapter 4). Elemental XRF data has shown a partitioning of certain chemical elements between the sandstone turbidites and the finer fractions (siltstones and mudstones). Detrital elements such as Si, Zr and Ti are concentrated in the thin sandstone turbidites whilst the surrounding siltstones and hemipelagic unstructured mudstones are low in all these components and have a higher content of clay minerals. The detrital elements are believed to derive from fluvial sources which entered the deep-marine environment as hyperpycnal flows. Cyclostratigraphic studies of the sandstone turbidite intensity show a strong cyclicity at Milankovitch frequencies. This cyclicity is also identified in the detrital elements associated with the sandstone turbidites. The variation in the supply of sandstone turbidites has also had an effect on the delivery and preservation of terrestrial carbon which is reflected in a cyclic variation of the stable carbon isotope records. Variations in the detrital flux have also affected the degree of bioturbation which shows an inverse relationship with the intensity of the sandstone turbidite records and the precipitation of diagenetic minerals. Similarly, elements which act as proxies for oxygenation levels at the sediment interface, such as Mn, appear to have varied with the same cyclical behaviour as the sandstone turbidites.

Among the processes which can create cyclicity in the sedimentary record are high-frequency climatic cycles (linked with changes in chemical and physical weathering and erosion) and/or eustatic sea-level changes. Tectonics and autocyclicity are also considered here as they can produce semi-cyclical sedimentary processes.
6.2.1 Climate control on the deposition of the fine-grained sediments

Palaeogeographic reconstructions place the Pyrenees at ~ 35°N during the Eocene (Hay et al., 1999), a latitude which is known to be sensitive to astronomically-induced climate changes, with some studies inferring that orbital changes can influence annual precipitation and evaporation at such latitudes (e.g., Berger, 1978a; Kutzbach and Otto-Bliesner, 1982). An increase in the coarser sediment supply may be associated with astronomically-induced warmer and wetter periods during which chemical weathering and erosion in the source area, and discharge of eroded sediments, is increased (Schmitz, 1987; Peterson et al., 2000). Such processes could have acted as the principal driver on the intermittent supply of the coarser-grained sedimentary packages observed in the interfan successions of the deep-marine Ainsa Basin.

Sloan and Huber (2001) used realistic combinations of orbital parameters to model climate variability during the Eocene. Their results show that changes in insolation over precessional cycles can account for the changes in surface temperature, upwelling intensity, location and amount of continental run-off. For continental run-off, these authors calculated a 12% variance in the Pyrenees. Periods of enhanced storminess and precipitation may be linked to increase riverine run-off and higher detrital mixed and suspended load input into the deep-basin. Other studies also have shown that precessional cycles may have an important control on precipitation and river run-off (e.g., Kutzbach, 1981; Olsen, 1994; Mallinson et al., 2003; Tachikawa et al., 2011). Any changes in river run-off linked to climate change would not only affect the amount and rate of accumulation of the clastic input to the Ainsa Basin, but, would also influence the sediment chemistry through weathering patterns and grain-size distributions.
Schneider et al. (1997) interpreted reductions in the K/Al values to reflect enrichments of kaolinite relative to K-feldspar as a result of increased weathering intensity. They associated low K/Al ratios with warm, humid periods which resulted in the formation of kaolinite-rich sediments. Yarincik et al. (2000) also used the same proxy to infer changes in climate to account for differences in the amount of detrital illite and kaolinite. They argued that illite is a common weathering product of arid climates where physical weathering dominates, whilst kaolinite is a common chemical weathering product of tropical and humid climates. The K/Al ratios in sediments in the A6 core do not follow the same profile as sandstone turbidite intensity and, therefore, these ratios appear not to be associated to grain-size changes. The cyclicity observed in K/Al ratios, however, may record periodic changes from warmer and more humid conditions (with increase the chemical weathering) to drier and cooler periods with a decrease in kaolinite formation.

6.2.2 Tectonic control on the deposition of the fine-grained sediments

High-frequency tectonic pulses which mimic Milankovitch periodicities have been described in the literature (Beekman et al., 1995; Vakarelov et al., 2006), but none have been demonstrated to operate with such regularity over a 10^5 yr time frame. Tectonic processes are usually more erratic (irregular) and of variable duration. Thus, the good correlation between the predicted frequencies for Milankovitch cycles during the Eocene (Berger et al., 1992), also the frequencies in the geochemical proxies and spectral gamma-ray data makes it unlikely that tectonic processes were the principal driver of the sedimentary packages within the fine-grained successions.
6.2.3 Autocyclicity control on the deposition of the fine-grained sediments

Autocyclic processes in the deep-marine environment can cause cyclic arrangements of siliciclastic successions without any astronomical influence (cf. Lancien et al., 2004; Dennielou et al., 2006; Kane and Hodgson, 2011). The cyclic packaging identified in the fine-grained successions within the Ainsa Basin could therefore be explained entirely by autocyclic processes. However, the geochemical and mineralogical data with the presence of basin-wide dm-scale dark-coloured mudstone bands observed in the fine-grained turbidites (Sutcliffe and Pickering, 2009) suggests that extrabasinal processes were operating to influence environmental change within the basin.

6.2.4 Eustatic control on the deposition of the fine-grained sediments

The Middle Eocene, when the Ainsa Basin sediments accumulated, was a time period which witnessed a progressive cooling and deterioration of global climate and marks the transition from the warm and ice-free world of the Early Eocene (~ 55 Ma) to the icehouse conditions of the Oligocene (~ 34 Ma) (Miller et al., 1987; Zachos et al., 2001a, 2008; Coxall et al., 2005; Liu et al., 2009). Whether the change towards cooling conditions observed during the Eocene was sufficient to cause glaciation remains controversial (see Section 1.5.2). However, there are other mechanisms such as thermal expansion and groundwater and lake storage, which can cause high-frequency sea-level changes at the same frequency as glacio-eustasy, although they generally cause lower amplitude sea-level changes (Miller et al., 2011) (Figure 6.1).
Figure 6.1 Mechanisms of sea-level change. The figure shows different mechanisms which causes changes sea-levels at a variety of amplitudes and time-scales. From Miller (2005) and Miller et al. (2011).

Thermal expansion and contraction of seawater causes eustatic sea-level change (Church, 1991; Mellor and Ezer, 1995; Rahmstorf, 2007). Warm climatic periods may result in a small but significant water expansion and corresponding sea-level rise, whilst colder climatic periods may be associated with lowered sea level. Thermal expansion sensitivity in long-climate model simulations has led to estimates of 0.2-0.6 m/°C (Meehl et al., 2007). Such studies suggest that during much warmer climatic periods, for example during the Eocene, would have been associated with higher mean sea-surface temperatures when compared to the Present and, therefore, the role of thermal expansion and contraction of seawater may have resulted in significant sea-level changes. McKay et al. (2011) have estimated a ~ 8.5 m sea-level rise associated with thermal expansion during the last interglacial. Also, Schulz and Schäfer-Neth (1997) linked the 20 kyr sedimentary cycles during the Mesozoic greenhouse period to small-scale global sea-level fluctuations caused by thermal expansion and contraction of seawater controlled by precession cycles.
Jacobs and Sahagian (1993) argue that climate-induced changes in lake and groundwater storage with Milankovitch periodicities has the potential to produce small fluctuations in sea levels. They modelled the effects of precession on the volume storage in lake and groundwater systems and estimated that it could account for as much as 4-8 m of global sea-level change. Although it cannot be discounted changing volume of mountain glaciers as a contributory cause of global sea-level variation, the ice stored in present day mountain glaciers corresponds to ~ 0.4 m of sea-level change (Huss and Farinotti, 2012) and it is unlikely that this mechanism may have been significant during the Eocene.

Many researchers have linked changes in the geochemistry of deep-marine sediments with fluctuations in sea levels. Sageman et al. (2003) found that increased concentrations of heavy mineral grains containing Ti supplied by rivers and transferred to distal basin sites by sediment gravity-flows (such as turbidity currents) provide a proxy for sea-level fall and progradation of siliciclastic systems. Yarincik et al. (2000) also found that continental derived material with higher concentrations of Ti, Zr and Si could be linked to low sea-level stands. Periods of overall lowered sea level would have been associated with greater subaerial exposure of the continental shelf and increased delivery by reworking of marine biogenic material containing elements including Ca. High K/Al ratios are known to be associated with periods of increased detrital supply which link cold and dry periods to sea-level lows (Yarincik et al., 2000). In the A6 core, the cyclicity observed in elemental ratios such as K/Al, Ti/Al and Ca/Al may, therefore, record sea-level fluctuations at a Milankovitch timescale.
6.3 Depositional models for the fine-grained sediments

The variation in the coarser-grained supply, sedimentary geochemistry and cyclicity of the fine-grained successions can be explained by two alternative and equally plausible depositional models. Model A suggests that climate-triggered river floods have been the main factor controlling sandstone turbidite deposition in the deep-marine fine-grained successions of the Ainsa Basin. Model B advocates for high-frequency sea-level variations as the main controlling factor in causing a cyclical variation of coarse grained supply during the deposition of the fine-grained successions.

6.3.1 Model A: Sediment supply driven by climatic change

Periods of enhanced precipitation would have resulted in chemical and physical weathering and an increased in river run-off. High riverine discharge would have triggered high sediment flux entering the marine environment as hyperpycnal flows. Where river discharge underwent considerable density stratification, hypopycnal and hyperpycnal flows resulted (cf. McLeod et al., 1999; Kneller and Buckee, 2000). During periods of high fluvial effluent discharge, the generation of hyperpycnal and hypopycnal flows probably resulted in the deposition of sandstone turbidites and hemipelagites, whilst during periods of low river discharge, hypopycnal flows only resulted in the deposition of clay-rich hemipelagites in deep basinal sites. Sandy turbulent floods could have originated as hyperpycnal flows and carried detrital minerals such as Fe, Ti and Zr and terrestrial organic matter that also eroded and entrained material along its flow path to the shelf and down slope into the deeper basin. During periods of low riverine discharge, hyperpycnal flows would have been considerably reduced, with hypopycnal flows as the dominant process, therefore,
sedimentation consisted mainly of mudstones and siltstones. In this model, riverine run-off would have been mainly controlled by precessional cycles with the amplitude of these cycles being modulated by eccentricity.

A climatically-driven variation of sediment supply associated with high-frequency climatic changes has been observed in other studies of Eocene sections in the Pyrenees, e.g., from the Montañana Group, Tremp Basin (e.g., De Boer et al., 1991; Weltje et al., 1996; Nijman, 1998).

The rivers and deltas of the Tremp Basin are the main source of sediment supply to the Ainsa Basin. Cyclic sedimentary successions have been recognised in these fluvio-deltaic sediments (De Boer et al., 1991). It is reasonable to assume that the same mechanisms that have controlled the deposition of the Tremp Basin may have had an impact on the sedimentation of the Ainsa Basin. De Boer et al. (1991) proposed that regular variations of sediment supply could explain the sediment packaging in these successions. Petrographic analysis and numerical-statistical modelling of sandstone compositions in these fluvio-deltaic successions by Weltje et al. (1996) support this interpretation. De Boer et al. (1991) suggested that orbitally-induced climate fluctuations of precipitation are the more obvious explanation of the observed vertical alternations. Astronomically-induced warmer and wetter periods caused an increase in the chemical weathering and erosion in the source area and resulted in an increase in the discharge of coarse-grained eroded sediments (Schmitz, 1987; Frostick and Reid, 1989; De Boer et al., 1991; Peterson et al., 2000), whilst during astronomical induced dry periods, the discharge of eroded sediments was suspended.

Recent work in fan-fringe and basin plain deep-marine deposits of the Western Pyrenees of a similar age as the deposits of the Ainsa Basin (Lower-Middle Eocene)
show orbitally-forced fluctuations in seasonal rainfall, riverine runoff and terrigenous input to the deep-marine environment (Payros and Martinez-Braceras, 2014). This study supports the argument that orbitally-induced climatic variations in the Pyrenees may have been the first control on coarse-grained sediment flux in the fine-grained successions.

6.3.2 Model B: Sediment supply driven by sea-level change

Sea-level fall and lowstand conditions may have favoured river and delta progradation to create shelf-edge deltas. The frequency and magnitude of turbidity currents are generally higher during sea-level lows because the greater subaerial exposure of the shelf causes rivers to transport their sediments directly into the heads of submarine canyons, including shelf-edge deltas (Jorry et al., 2008; Toucanne et al., 2009). Plink-Bjorklund and Steel (2004) argue that sea-level lows can facilitate the direct connection between fluvial and deeper water channels and facilitate hyperpycnal flows down the basin slope.

Sediments in the interfan and off-axis overbank deposits are generally fine-grained and thin- to very thin-bedded, even for the coarser-grained sediment packages and sea-level changes would have low-amplitude, for example those caused by thermal expansion/contraction and changes in the terrestrial hydrological cycle, e.g., lake storage/release, are sufficient to cause the variations in the coarser sediment supply observed in the fine-grained sediments.

Various studies, however, support sea-level changes in the Pyrenees during the Middle Eocene. Payros et al. (2009) analysed the Ypresian/Lutetian boundary interval across the Pyrenean orogen and compared it with other sections across Europe. These
authors concluded that a glacio-eustasy signal controlled the sedimentary evolution of all the sedimentary sections identified. Also, Gomez-Paccard et al. (2011) documented composite sequences (tens to hundreds of metres thick) in the Eocene Montserrat alluvial fan/fan-delta complex of the southeast Ebro Basin (upper Lutetian to lower Priabonian), which they interpreted as likely due to the 400 kyr long eccentricity cycles, possibly controlled by climatically induced sea-level fluctuations. The sedimentary and tectonic evolution of the Jaca and the Ainsa basins has also been explained as likely due to by global climate-controlled sea-level fluctuations (Mutti et al., 1985; Pickering and Corregidor, 2005; Das Gupta and Pickering, 2008, Pickering and Bayliss, 2009; Huyghe et al., 2012). Huyghe et al. (2012) described cyclic Lutetian–Bartonian carbonates of the Jaca Basin, west of the Ainsa Basin explaining them as due to high-amplitude, high-frequency (< 100 kyr) glacio-eustatic sea-level changes. These high-amplitude events resulted in an increase of erosion and river destabilisation which caused terrigenous nutrient input variations in the receiving basin.

6.4 Controls on deposition of the coarse-grained deep-marine sediments of the Ainsa Basin

The main driver on the deposition of the 25 sandbodies identified in the Ainsa Basin has been subject to recent controversy, with some researchers advocating for a tectonic origin (Mutti et al., 1983-84; Muñoz et al., 1994, 1998; Arbués et al., 1998; Pickering and Corregidor, 2005; Hoffman et al., 2009; Pyles et al., 2013) and others for a climatic origin (Das Gupta and Pickering, 2008; Pickering and Bayliss, 2009; Sutcliffe and Pickering, 2009).
There is, however, a general consensus that the first-order control on the creation of accommodation space in the Ainsa Basin was tectonic (Muñoz et al., 1994, 1998; Arbués et al., 1998; Fernandez et al., 2004, 2012; Pickering and Bayliss, 2009). Basin subsidence was driven by the advancement of thrust sheets in the Southern Pyrenean Zone causing a rapid basin deepening and transition from a shallow-marine to a deep-marine basin (Dreyer et al., 1999; Muñoz et al., 1998, Fernández et al., 2004) with depths in the order of 400-800 m (Pickering and Corregidor, 2005). The tectonic influence in the basin can be recognised in a long-term 4-5 Myr tectonic driver which caused the development of angular unconformities which can be traced from the shelf to the deep-marine environment (Muñoz et al., 1998; Arbués et al., 1998; Remacha et al., 2003; Pickering and Bayliss, 2009). These unconformities divide the stratigraphy of the Ainsa Basin into two distinct successions, the older unit (Lower Hecho Group) being structurally more deformed than the overlying unit (Upper Hecho Group) (e.g., Pickering and Corregidor, 2005). Pickering and Bayliss (2009) suggest that intrabasinal tectonics controlled the deposition of the eight deep-marine systems in a process described as seesaw tectonics (Figure 6.2). This process was caused by the differential growth of the basin-bounding Mediano and Boltaña anticlines. The growth of these anticlines as thrust-propagation folds was controlled by the partitioned movement of their underlying thrusts (Pickering and Corregidor, 2005; Pickering and Bayliss, 2009). Growth of the Mediano Anticline caused a westward lateral offset stacking patterns of the sand-prone channelised fans. Subsequent growth of the Boltaña Anticline, re-located the depositional axis back towards the east. The pulsating growth of these anticlines caused successive cycles of westward and eastward movement of the systems’ depositional axis. As the anticlines grew, the basin also became narrower and resulted in the depositional confinement of the submarine fans.

Figure 6.2 Intrabasinal tectonic control on the deposition of the Ainsa systems. The figure shows how the deposition of the 8 deep-marine systems of the Ainsa Basin has been controlled by the differential growth of the Mediano and Boltaña anticlines in a process of see-saw tectonics. Modified after Pickering and Bayliss (2009).

The submarine fan model developed by Pickering and Corregidor (2005) shows that the typical facies distribution and stratigraphy observed in the submarine fans of the Ainsa Basin can be better explained by a change in base level. An initial lowering of the sea-level could have triggered the deposition of MTDs/MTCs, triggering a lowstand fan initiation. As sea-level started to rise, sediment supply to the fan decreased and eventually resulted in fan abandonment. A change in base level in the Ainsa Basin could have been caused by basinal tectonics or by eustasy. Pickering and Corregidor (2005) have demonstrated by using foraminifera analysis that fully marine
conditions remained throughout the sedimentation of the deep marine systems of the Ainsa Basin and therefore any global changes of sea-level were reflected in the basin.

However, some studies have suggested that submarine fan initiation and MTD/MTC accumulation triggering can also result from high riverine discharge without a variation in sea levels (Ducassou et al., 2009). The fan development model of Pickering and Corregidor (2005) could also be explained by climatic change with periods of intense precipitation and high effluent discharge linked to fan initiation and growth.

In addition to these three allogenic factors (basin tectonics, sea-level change and climatic change), autocyclic processes can also act as possible drivers of the coarse-grained sediment to the basin. This includes, for instance, channel infill caused by the accumulation of sediment gravity-flow deposits, including sediment slide and slump material and other sediments which can plug the channel and result in channel avulsion and migration to the next adjacent topography low inter-channel area (Prins et al., 2000). These four processes will be now discussed in turn.

6.4.1 Eustatic control of the deposition of the Ainsa Basin sandbodies

The most accepted dominant factor controlling deposition of turbidites and submarine-fan development in large deep-marine fan systems like the Amazon, the Mississippi, the Bengal and the Indus Fan are changes in sea-level (McHargue and Webb, 1986; Pickering et al., 1986a; Kolla and Coumes, 1987; Kolla and Macurda, 1988; Manley and Flood, 1988; Bouma et al., 1989; Feeley et al., 1990; Weimer, 1990; McHargue, 1991; Kolla and Perlmutter, 1993; Kenyon et al., 1995; Weber et al., 1997; von Rad and Tahir, 1997). During sea-level fall, deltas may prograde to the shelf break.
releasing large volumes of sediment on the slope or in to canyon heads, increasing sediment flux to the deep-sea (Damuth, et al., 1988; Bouma et al., 1989; Nelson et al., 1992; Kenyon et al., 1995; Normark et al., 1997; Prins et al., 2000; Ducassou et al., 2009). The progressive exposure during low sea-level stands, typically corresponds to slope instability and MTC triggering. Thick intervals of slumps and debris flows are typically found at the base of a deep-marine fan system (Ducassou et al., 2009). The new submarine channel system typically develops on top or on the side of these MTDs/MTCs (Ducassou et al., 2009). During sea-level rise, deltas retrograded and delta-front sediments were deposited on the alluvial plain and the innermost part of a broadened shelf. Sediments were therefore trapped in the continental shelf, reducing the sediment supply to the deep-marine environment (Prins et al., 2000). There are different global sea-level curves produced for the Middle Eocene (e.g., Haq et al., 1987; Miller et al., 2005; Komintz et al., 2008; Cramer et al., 2009). The comparison of these global sea-level curves with the stratigraphy of the Ainsa Basin does not show any significant association since the resolution of these curves are probably too low to be compared with the basin stratigraphy (Figure 6.3). However, it can be observed that most of the curves show a general decrease in sea-levels of ~ 50 m from the Gerbe System towards the Guaso System indicating a general shallowing profile. Higher frequency sea-level variations in the order of ~ 20 m are identified in these sea-level curves.

Therefore, orbitally forced periods of sea-level lows could regulate the influx of coarse clastic sediments to the basin and result in the deposition of deep-marine sand-prone submarine fans. Pickering and Bayliss (2009) suggested that the deposition of the 25 coarse-grained sand-rich submarine fans of the Ainsa Basin was controlled by glacio-eustatic changes linked to the ~ 400 kyr Milankovitch eccentricity frequency.
Although the presence of glaciation during the Middle Eocene remains controversial, there is growing evidence that supports the presence of ephemeral ice-sheets which resulted in moderate (20-40 m) high-frequency global sea-level changes during this time period (Haq et al., 1987; Miller et al., 2005; Komintz et al., 2008). Many studies have linked ice-sheet initiation and expansion to periods of reduced insolation during the 400 kyr eccentricity minima (Zachos et al., 2001b; Pälike et al., 2006a, b; Liebrand et al., 2011).

Figure 6.3 Comparison of the stratigraphy of the Ainsa Basin with global sea levels. The stratigraphy of the Ainsa Basin has been compared with global sea-level curves of Haq et al., 1987; Miller et al., 2005; Komintz et al., 2008, and Cramer et al., 2009). The Haq et al. (1987) global sea-level curve has been plotted separately as the amplitude of this sea-level curve based on stratigraphic records clearly differs from those estimated using other methods (e.g., backstripping).
However, results from this study suggest that the timing of deposition for each of the Ainsa deep-marine sandbodies (submarine fans) appear to have occurred at irregular intervals and therefore it cannot be entirely attributed to climatic forcing. The suggestion made by Pickering and Bayliss (2009) of a eustatic origin for the 25 sandbodies can, therefore, be rejected (cf. the tectonostratigraphic cycles of Pickering and Corregisor, 2005). Nevertheless, climatic forcing cannot be completely ruled out as a possible and/or contributory mechanism for the initiation of some of the submarine fans. Figure 6.4 shows the orbitally-tuned stratigraphy of the Ainsa Basin and the eccentricity curves of the La2010a orbital solution of Laskar et al. (2010). Periods of eccentricity minima are signalled. Some of the sandbodies including the BIII, BVI, AIII and MII and some of the heterolithic packages appear to coincide with periods of 400 kyr eccentricity minima. Although this association can be purely coincidental, this mechanism cannot be completely rejected.
Figure 6.4 Comparison of the stratigraphy of the Ainsa Basin with eccentricity curves. The stratigraphy of the Ainsa Basin has been compared with the eccentricity curves of the La2010a orbital solution of Laskar et al. (2011).

6.4.2 Climatic control on the deposition of the Ainsa Basin sandbodies

Although lowstand fans are more common, some authors have found that in many submarine fans, deep-marine sediment supply was still significant during transgressions or high-sea-level stands (Piper and Normark, 1983; Kuehl et al., 1989; Flood et al., 1991; Kolla and Perlmutter, 1993; Weber et al., 1997; Covault et al., 2007; Ducassou et al., 2009; Covault and Graham, 2010) and, therefore, in these cases...
submarine-fan deposition continued independently of sea-level change. High fluvial discharge associated with climate change seems to have been a significant control on sediment supply in many submarine fans (Nakajima and Itaki, 2007; Covault and Graham, 2010; Covault et al., 2010; Jorry et al., 2011; Toucanne et al., 2012). It has been proposed that periods of high fluvial discharge can result in the progradation of deltas to the shelf-edge and to the deep-marine environment (Burgess and Hovius 1998, Carvajal et al., 2009). During wetter periods, an increased water discharge caused the erosion of alluvial fans and older deposits (Blum and Tornqvist, 2000) resulting in an increased of sediment flux to the shelf margin. Ducassou et al. (2009) found that in the Nile deep-marine system, periods of increased turbidity-current activity and the accumulation of MTDs/MTCs occurred during major flooding periods. During arid periods, fluvial discharge decreased (Blum and Tornqvist, 2000) and sediments were temporarily stored within the drainage basin (alluvial fans and fluvial deposits).

Burgess and Hovius (1998) proposed that sediment supply and not sea-level change, is the limiting factor on deep-marine sedimentation and argued that in the absence of significant sea-level fluctuations, for instance, during greenhouse conditions, fan growth can continue if rivers and deltas have sufficient sediment loads allowing sediment to be transported to the shelf edge. Milliman and Syvitski (1992) suggest that rivers in active margins are more susceptible to periodic floods and can discharge large amounts of sediments to the deep-sea even during high-stands. Basin geomorphological factors can facilitate the translation of sediment from fluvial and deltaic environments to the deep-marine with small drainage basins and the presence of narrow shelves facilitating this process (Milliman and Syvitski, 1992; Covault and Graham, 2010). The relatively small size (~ 30 km across) of the Ainsa Basin and the
presence of a narrow shelf typical of active margins (Milliman and Syvitski, 1992) may have facilitated that submarine fans were fed directly from the land with cycles or fan initiation and abandonment that may reflect orbitally induced climate changes (Weltje and de Boer, 1993). However, the resolution of these studies does not allow to estimate the frequency of these climatic-driven pulsating events.

Payros and Martinez-Braceras (2014) suggest that periods of enhanced seasonal rainfall, resulting in higher riverine runoff and sediment influx into the deep-marine basin were associated with precession cycles although they appear to have been enhanced during eccentricity maxima. This study could suggest that submarine fan development could follow the eccentricity cycles and have a periodicity of ~ 95 kyr, 123 kyr and 400 kyr. What seems likely is that these climatic events are likely to be more regular and periodic than the timing of fan initiation estimated from this study and therefore, it can be concluded that this mechanism is unlikely to have contributed to the deposition of the 25 submarine fans of the Ainsa Basin. Although it cannot be ruled out that some submarine fans may have been initiated by punctuated episodes of intense rainfall and flash floods which resulted in an increase of coarse-grained supply to the deep-marine environment.

6.4.3 Autocyclic control on the deposition of the Ainsa Basin sandbodies

The internal architecture of lobes and submarine fans can be controlled by intrinsic (autocyclic) factors. These factors control the redistribution of sediments within a sedimentary system and can occur independently of any external influence. Autogenic processes include channel migration and avulsion, lobe switching and lateral compensational stacking patterns (Parsons et al., 2002; Nicholas and Quine, 2007;
Deptuck et al., 2008; Prélat et al., 2010; Clarke et al., 2010). These processes occur because there is a tendency of gravity-sediment flows to occupy topographic lows and smooth topographic relief (Mutti and Sonnino, 1981; Straub et al., 2009; Ganti et al., 2011). MTDs/MTCs, for example, may cause sufficient sea-floor topography to develop which can affect the location and distribution of subsequent sand-flows by causing local ponding of deep-water sands in topographic lows forming compensational stacking patterns and channel migrations (Martinsen and Bakken, 1990; Ross et al., 1994; Pickering and Corregidor, 2005).

Autocyclic processes are known to produce repeating depositional cycles. Although some of these processes are intrinsic to the depositional system, they are commonly aperiodic (Cecil, 2013). The cyclic but irregular nature of autogenic processes could be a possible mechanism for the irregular timing of the coarse-grained deposition of the Ainsa Basin.

However, Pickering and Corregidor (2005) argue against an autocyclic control for the deposition of the Ainsa Basin sandbodies as the deposition and architecture of these sandbodies could not be explained by lateral switching and compensational stacking processes. The two main arguments discussed by these authors are:

(i) the westward shift of these sandbodies towards the foreland, away from the deformation front, have been attributed to the differential growth of basin bounding anticlines caused by the irregular motion of the underlying thrusts.

(ii) the switching on and off of coarse-grained sediment with thick intervals of interfan fine-grained deposits in between sandbodies imply that an external forcing must have controlled the influx of coarse-grained sediment to the basin.
Despite these arguments, autocyclic processes may still have played an important role in controlling the distribution of sediment at smaller temporal and spatial scales. Pickering and Corregidor (2005) recognised within the internal architecture of each submarine fan several cycles of erosional channel incision, sediment bypass and channel infill (backfill) which they attributed to autocycliclicity.

6.4.4 Tectonic control on the deposition of the Ainsa Basin sandbodies

The irregular timing in the deposition of the 25 sandbodies could be explained by tectonic processes. Basin tectonics can steepen the depositional profile and cause relative sea-level variation of probably low to moderate amplitude (Mutti et al., 2003). Periods of active thrusting could result in the creation of relief in the hinterland and would therefore result in an increased supply of coarse clastic sediment, whilst, during tectonic quiescence, fine-grained deposition would dominate (De Boer et al., 1991). Tectonic pulses of coarse-grained sediment have been demonstrated in Pleistocene successions (Larsen and Steel, 1978; Dunne and Hempton, 1984; Guillocheau, 2010). Different studies on tectonic modelling have shown that faulting activity can be intermittent and produce semi-cyclic sedimentation patterns at similar time-scales as climatic processes (tens of thousands of years) (Peper et al., 1992; Peper and de Boer, 1995; Beekman et al., 1995; Lee and Schwarcz, 1996; Nicol et al., 1997, 2005; Morley et al., 2000; Walsh et al., 2002; Mouslopoulou et al., 2009). Many studies suggest that fault displacements accumulate at relatively uniform rates over time-periods between 20 kyr and 300 kyr whilst very high-frequency fault displacements (< 20 kyr) are highly variable (Nicol et al., 1997, 2005; Mouslopoulou et al., 2009).
The timing between the sandbodies of the Ainsa Basin has been estimated between 130 kyr and 779 kyr with an average value of 364±204 kyr. The frequencies of submarine fan initiation occur at very similar time-scales as those expected from climatic fluctuations (e.g., eccentricity 100 kyr and 400 kyr cycles) although they appear to be aperiodic. In tectonic terms, however, the timing between sandbodies seems to be relatively uniform and suggests a moderate regular tectonic activity (in the order of hundreds of kyr). The timing between sandbodies is shorter in the older systems (Gerbe and Banastón) than in the younger systems suggesting a higher frequency of fault displacement during the initial stages of basin deepening. The magnetostratigraphy study by Holl and Anastasio (1993) showed an intermittent growth of the Mediano Anticline with rapid tectonic pulses (< 1.5 Myr intervals) which have been associated with the episodic movement of the Cotiella-Montsec thrust sheet. This study has shown that a tectonic control on the sediments of the Ainsa Basin may have acted at a higher frequency in the basin than the 4-5 Myr tectonic driver identified in the formation of the tectonostratigraphic units (Muñoz et al., 1998; Arbués et al., 1998; Remacha et al., 2003; Pickering and Bayliss, 2009; cf. Pickering and Corregidor, 2005). Holl and Anastasio (1993) identified three main rapid growth episodes of the Mediano Anticline (Figure 6.5). The first episode occurred during chron C22r and is probably linked to the initiation of the deep-marine sedimentation of the Lower Hecho Group (Fosado, Los Molinos and Arro systems) and the intense tectonic deformation which occurred in the basin with the emplacement of the Sobrarbe/Arro Fold System. The second episode of rapid growth occurred during chron C21n which this study (Chapter 3) has associated with the deposition of the Banastón System (probably during deposition of the BI-BIV sandbodies). The third rapid episode of anticline growth occurred at the top of C20r during the initiation of
the Morillo System (during deposition of the MI and MII sandbodies). These episodes of anticline growth would have resulted in relative lowering of the base level which may have triggered MTD/MTC deposition and submarine fan development. The increase in growth rates can be associated with significant episodes of tectonic shortening and strain rates in the area. Many studies have shown that an increase in the strain rates can produce faster fault recurrent intervals (Nicol et al., 1997, 2005; Walsh et al., 2002; Mouslopoulou et al., 2009).

Figure 6.5 Mediano Anticline growing rates. The Mediano Anticline has undergone three main periods of rapid growing during the deposition of the Hecho Group turbidites in the Ainsa Basin. Modified after Holl and Anastasio (1993).

Clevis et al. (2003) used numerical modelling to study the effects of regular pulsating tectonic activity on basin drainage morphology. These authors simulated tectonic pulses of 200 kyr duration followed by periods of tectonic quiescence of the
same time duration. Their results showed a stratigraphic pattern of periodic stratigraphic alternation of prograding and retrograding alluvial fan gravels (Figure 6.6a). Periods of tectonic activity were associated with alluvial fan and coastline retreats and tectonically-quiescent periods were associated with the cessation of flexural subsidence, progradation of the alluvial fans and increased delivery of gravels to the basin. These authors suggested that coastal retreat during periods of tectonic uplift occurred because delta catchment yields were insufficient to fill the accommodation space created by flexural subsidence in response to tectonic loading (Clevis et al., 2003).

![Figure 6.6 Numerical simulations of gravel delivery to basins.](image)

The pulses of tectonic uplift recognised in the Mediano Anticline (Holl and Anastasio, 1993) could have resulted in a semi-periodic intermittent delivery of coarse-grained sediment to the Ainsa Basin. The lag-time recognised by Clevis et al. (2003)
between tectonic uplift and delivery of coarse-grained material in the order of tens to hundreds of thousands of years suggests that the deposition of the sandbodies are more likely to have occurred between periods of significant Mediano Anticline growth activity. The numerical model of Clevis et al. (2003) also shows that higher fault displacement rates reveal higher average SARs during the decrease of thrust activity. This could explain the high SARs observed during the deposition of the Arro and the Gerbe systems after the significant growth period of the Mediano Anticline during chron C22r (Figure 6.5).

In the Pyrenees, Peper and de Boer (1995) studied the Tremp-Ager Basin using a numerical model to explain the changes in the sediment supply which resulted in the deposition of cyclical sequences in the Eocene deltaic parasequences. This model suggested that both climatic forces and regular tectonic pulses could have been responsible for the cycles of coarse-grained sediments observed in the deltaics, although they lack a chronostratigraphic framework to establish the regularity of these cyclic successions.

Since the Ainsa Basin appears to have been subjected to a strong climatic influence reflected in the regular packaging of the coarser-grained turbidite packages observed during the deposition of the fine-grained successions, it is likely that this climatic influence was superimposed on the tectonic influence caused by the pulsating growth of the Mediano Anticline. Clevis et al. (2003) repeated the experiment shown in Figure 6.6a, but added small-scale (~ 20 m) sea-level variations controlled by 100 kyr Milankovitch eccentricity. The combination of tectonic and climatic variables resulted in a complex stratigraphic pattern (Figure 6.6b). Although major progradation events associated with the tectonic pulses could still be recognised, the tectonic signal was clearly obscured by the high-frequency climatic sea-level fluctuations. The results
of this numerical model are comparable temporally with the stratigraphic framework of the Ainsa Basin, although is more likely that the tectonic growth pulses of the Mediano Anticline were more irregular than the designed pulses of this numerical model. The initiation of the Ainsa fan systems could have resulted following major pulses of tectonic growth whilst some individual submarine fans, MTDs and smaller heterolithic packages may have been associated with small-scaled climatic variations controlled by orbital cycles. Cyclic climatic processes responsible for the sediment packaging of the fine-grained successions are likely to have been obscured by the regular activity of aperiodic tectonic processes resulting in the irregular deposition of the 25 Ainsa Basin sandbodies.

6.5 Conclusions

The interfan and overbank off-axis deposits of the Ainsa Basin contain a strong Milankovitch cyclicity. Orbital parameters most likely paced the regular delivery of the fine-grained sediment mainly by river- and delta-derived hyperpycnal turbidity currents. Two depositional models can explain the regular variation of coarser-grained supply within these fine-grained successions. High-frequency small fluctuations of global sea level which during the Eocene could result from thermal expansion/contraction of the ocean waters and/or variations groundwater storage and lake level) caused river progradation during sea-level lows and the delivery of larger amounts of detrital material to the shelf-edge. The second depositional model suggests that warm and humid periods forced by Milankovitch cycles could have resulted in increased chemical weathering and river run-off, which would have triggered a high sediment flux to the seafloor through large-volume turbidity currents.
The pacing of the coarse-grained submarine fans, however, cannot be entirely explained by climatic forces. The variable duration of each submarine fan succession cannot support the hypothesis that the 400 kyr eccentricity cycles paced the delivery of coarse-grained material to the basin. Some submarine fans coincide with periods of eccentricity minima and it is possible that some of these sandbodies may have been modulated by eustatic changes influenced by Milankovitch parameters. Similarly high sediment discharge from rivers and deltas during monsoonal pulses and flash floods driven by orbital forcing, during periods of eccentricity maxima may have contributed to the deposition of some of the sandbodies and heterolithic packages. However, this cannot explain the irregular timing of the 25 sandbodies. Autocyclic processes are likely to have caused internal reorganisation of sediment within fan architecture with many cycles of channel incision, sediment bypass and infill identified in each submarine fan succession. Although these processes alone cannot explain the sedimentary and stratigraphic architecture of the sandbodies in the basin.

The most likely mechanism which may have acted as a first control on the timing of coarse-grained delivery to the Ainsa Basin and submarine fan initiation appears to be basin tectonics. The pulsating growth activity of the Mediano Anticline is likely to have caused episodic lowering of sea level which may have triggered the influx of coarse-grained sediments and the initiation of sand-prone submarine fan development. This tectonic processes overshadowed the regular variation of sediment supply observed in the finer-grained successions. Regular activity of moderate displacement faults can explain the semi-cyclical deposition of these sandbodies.
6.6 Limitations of this study

The major limitations of this study are associated to the poor chronostratigraphic control of the younger gamma-ray sections in the Morillo and Guaso systems. Magnetostratigraphy was only undertaken across half of the total deep-marine stratigraphy sampling the Gerbe, Banastón and Ainsa systems. The age discrepancies, ~1 Myr, between the biostratigraphy model of Scotchman et al. (2014) and this study, prevents the inference of depositional ages for the younger Morillo and Guaso systems. As a consequence, orbital tuning of the younger gamma-ray sections has not been possible and the upper part of the Ainsa Basin deep-marine stratigraphy has not been converted into an age-stratigraphy model. The study of the Morillo and Guaso systems is also affected by the shortness of some of the gamma-ray sections in these systems. The Guaso and Sieste sections are only 40 m thick preventing the determination of eccentricity cycles with accuracy, which may have affected the confidence in the determination of SAR across these systems.

The use of geochemical analysis has been restricted to one of the interfan successions (Well A6) located within the Ainsa deep-marine system. The rest of the deep-marine stratigraphy has not been sampled for stable carbon isotopes or for mineralogical or elemental analysis, as a result the interpretation of different palaeo-proxies is constrained to a relatively narrow time interval.

6.7 Wider applications

This study has explored the influence of astronomical forcing on climate and on the chemistry of deep-marine sediments. High-resolution palaeo-climatic changes has
been discussed using a multi-geochemical approach. Results from this study can be used to model other modern and ancient deep-marine basins worldwide.

Results from this study can have a wide applicability to the hydrocarbon industry. Understanding the processes which have contributed to calibrate the sedimentary flux (discharge) from non-marine to marine environments can help to place the development of submarine fans in a temporal and spatial context of sedimentary basin evolution. Interpretations on the evolution of sedimentary basins are commonly based on large-scale regional seismic-reflection and kilometre-spaced well data sets which often lack the spatial resolution to understand the fine-scale architecture of submarine fan systems. An integration of seismic and outcrop studies can help to develop sequence-stratigraphic and hydrocarbon reservoir models in exploration and development areas. However, in order to establish stratigraphic and depositional comparisons of ancient basins such as the Ainsa Basin as analogues which allow us to understand sediment distribution patterns, reservoir architecture and processes of fan construction for other basins around the world, it is necessary to have a sufficiently precise chronostratigraphic framework of the depositional units within the basins.

6.8 Further work
Further research could help our understanding on the controls of sedimentary-basin evolution in the Ainsa Basin as follows:

(a) Continue the magnetostratigraphy study to the younger deep-marine stratigraphy (Morillo and Guaso systems) to establish a chronostratigraphic framework for the sediment of the Ainsa Basin and to help to refine the sediment ages at a finer scale by
orbitally tuning the successions to the orbital curves of the Eocene. A combination of magnetostratigraphic and biostratigraphic studies based on nannofossil and larger foraminifera identification across these two younger systems can help develop a more robust age-model for these younger systems.

(b) Stable carbon isotope studies undertaken in a ~ 150 m interfan succession of fine-grained sediments in the Ainsa System has recorded a dominant precession signal. Extending this study to other parts of the Ainsa Basin would be useful to identify high-resolution palaeo-environmental change and understand the variation of terrestrial and marine carbon in the deep-marine sediments. Longer stable carbon-isotope records could also be compared with isotopic records from other basins in the world to help to develop more accurate global climatic reconstructions.

(c) This study has shown that fine-grained sediments show a regular cyclicity from high-resolution SGR logging and from geochemical XRF studies. However, the spectral gamma-ray log response to the sediment and geochemical rock signatures is not well understood since it not only reflects environmental change but also accounts for outcrop geometry effects and post-depositional alteration (e.g., outcrop weathering). An integration of different analytical techniques at outcrop level such as spectral gamma-ray logging, elemental XRF and whole rock geochemistry can allow to compare log data with point elemental and mineralogical composition of discrete samples and help to understand better the forcing mechanisms responsible for the depositional cycles in the fine-grained successions.

(d) The cyclicity observed in the K/Al ratio has been explained as cycllical changes in the weathering of the sediments with important implications in climatic cycles of warm and humid periods alternating with cold and dry periods. Clay mineralogy studies can
improve our understanding on palaeo-environmental change in the basin by
recognising the presence of weathering cycles of kaolinite/illite in the fine-grained sediments.
References

Program, Scientific Results, College Station, TX (Ocean Drilling Program), 155, 353-366.

International Association of Sedimentologists International Congress of Sedimentology, 213-223.

Šimiček, D., Bábek, O. and Leichmann, J. (2012) Outcrop gamma-ray logging of siliciclastic turbidites: Separating the detrital provenance signal from facies in the

APPENDICES

Table of appendices

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Geological maps of the gamma-ray logged sections</td>
<td>576-582</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Geological maps of the Arro Thrust System summary</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td>Individual geological maps of the Arro Thrust System</td>
<td>584-590</td>
</tr>
<tr>
<td></td>
<td>Electronic version of the Ainsa geological map</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td>Electronic version of the Ainsa Basin geological sketch</td>
<td>CD</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Electronic versions of the sedimentary logs</td>
<td>CD</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Magnetostratigraphy data table</td>
<td>CD</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>XRF A6 core and spectral gamma-ray data documents</td>
<td>CD</td>
</tr>
</tbody>
</table>
Labuerda map

[Image of a geological map with various labels and symbols, including sandstone, heterolithics, fine-grained, MTDs, syncline, dip and strike, NE-NO exposure, paleocurrent, and geological contact uncertain.]
Guaso map