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ABSTRACT

Diffusion MRI microstructure imaging provides a unique noninvasive probe into tissue mi-
crostructure. The technique relies on mathematical models, relating microscopic tissue features
to the MR signal. The assumption of Gaussian diffusion oversimplifies the behaviour of water
in complex media. Multi-compartment models fit the signal better and enable the estimation
of more specific indices, such as axon diameter and density. A previous model comparison
framework used data from fixed rat brains to show that three compartment models, designed
for intra/extra-axonal diffusion, best explain multi-b-value datasets.

The purpose of this PhD work is to translate this analysis to in vivo human brain white mat-
ter. It updates the framework methodology by enriching the acquisition protocol, extending
the model base and improving the model fitting.

In the first part of this thesis, the original fixed rat study is taken in vivo by using a live hu-
man subject on a clinical scanner. A preliminary analysis cannot differentiate the models well.
The acquisition protocol is then extended to include a richer angular resolution of diffusion-
sampling gradient directions. Compared with ex vivo data, simpler three-compartment models
emerge. Changes in diffusion behaviour and acquisition protocol are likely to have influenced
the results.

The second part considers models that explicitly seek to explain fibre dispersion, another
potentially specific biomarker of neurological diseases. This study finds that models that cap-
ture fibre dispersion are preferred, showing the importance of modelling dispersion even in
apparently coherent fibres.

In the third part, we improve the methodology. First, during the data pre-processing we nar-
row the region of interest. Second, the model fitting takes into account the varying echo time
and compartmental tissue relaxation; we also test the benefit to model performance of differ-
ent compartmental diffusivities. Next, we evaluate the inter- and intra-subject reproducibility
of ranking.

In the fourth part, high-gradient Connectom-Skyra data are used to assess the generalisability
of earlier results derived from a standard Achieva scanner. Results showed a reproducibility
of major trends in the model ranking. In particular, dispersion models explain low gradient
strength data best, but cannot capture Connectom signal that remains at very high b-values.

The fifth part uses cross-validation and bootstrapping as complementary means to model
ranking. Both methods support the previous ranking; however, the leave-one-shell-out cross-

validation supports less difference between the models than bootstrapping.
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GENERAL INTRODUCTION



MOTIVATION

In medicine, treating a disease requires good knowledge of the changes in the physiology
and pathology of the organs involved. Because of its complexity and importance, the brain
(arguably) poses the biggest challenge of all organs: to understand its intricate structure on
both scales, at the cell-level and as an entire network.

The brain white matter provides connexion between the more peripheral and task-processing
cortical centres of grey matter and other parts of the cortex or body muscles. In many brain
pathologies, changes in the microstructure integrity or packing of these fibres, known as axons,
occur as the disease progresses. For example, in Multiple Sclerosis, the degeneration of white
matter is one observed finding; other neuro-inflammatory diseases, such as encephalopathy
or brain ischaemia, are associated with oedema, which indirectly affects the white matter
structure. Identifying these changes with medical imaging, however, is not straightforward
considering the very small scale involved: a typical imaging area unit contains around half a
million axons.

Diffusion Magnetic Resonance Imaging (MRI) measures the water dispersion in biological
tissue and can therefore be used to probe the microstructure. Though useful in other tissue
types, this technique is most often applied in the brain, especially where parallel fibres restrict
water mobility; it thus provides putative measures of white matter integrity and connectiv-
ity. The earliest technique of diffusion MRI, the Diffusion-Weighted (DW) MRI, measures the
displacement of water molecules at a scale of a micrometer. From this we learn the restric-
tion that would have provided the pattern of particle dispersion observed. More complicated
models can provide more information. The simplest of these is the Diffusion Tensor and, at
present, the most widely used. Its assumption of Gaussian diffusion oversimplifies the dif-
fusive behaviour of water in complex media and is known to break down for relatively large
diffusion weights (b-values) which can provide higher tissue contrast. This has been addressed
by constructing more complex models which provide more specific biomarkers, such as axon
diameter, packing density, or dispersion. From these we can learn about the state of tissue
integrity.

Modelling approximates the medium which produces the signal and, because of inherent
noise, it is guaranteed to be imperfect. A good model tuning should nevertheless balance the
danger of over-fitting with the ability to capture most of the signal features. Many models relat-
ing microscopic tissue features to the Magnetic Resonance (MR) signal were recently collected
and compared with fixed rat brain data [Panagiotaki et al., 2012]. This work compared the
models using the BIC, ranking them in order of how well they explain data acquired from the

fixed White Matter (WM) of rat CC. The study concluded that three compartment models with
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1.1 PROBLEM STATEMENT

non-zero axon diameter, an anisotropic extracellular compartment, and an isotropic restriction
model perform best. However, the results do not directly inform in vivo human imaging ex-
periments because: a) the tissue sample is from a small animal; b) the tissue is fixed, which
affects water diffusion significantly [Shepherd et al., 2009] and, therefore, different models
may perform better; and c) the experiment used an animal scanner that can achieve higher

gradient strengths than human imaging systems.

1.1 PROBLEM STATEMENT

Given so many candidate models for diffusion MRI brain signal, which describes best the signal from the
white matter of the in-vivo human brain?

We are interested not simply in the quality of how well the model fits the data, but also
in how robust the model performance and intrinsic parameters are to variations in the data;
i.e. how stable the estimated model parameters are to variations in the data noise, how stable
the model comparisons are across intra-subject scans, and inter-subject scan/rescan sessions.
Considering the amount of experimentation done on fixed and animal tissue, as a proxy for
live human tissue, it is also informative to know how different the results are from previous

work.

1.2 PROJECT AIMS

* To apply the original model comparison framework [Panagiotaki et al., 2012] to live

human data, and evaluate the effects of transition from fixed rat brain;

* to explore other parametric/geometric models which can potentially describe better the

signal from and structure of the live human tissue;

* to improve the methodology by adjusting and optimising the data acquisition, improving

the model fitting, and expanding and comparing different model selection techniques.

1.3 CONTRIBUTIONS MADE

In Experiment 1, we apply the original model comparison framework of [Panagiotaki et al.,
2012] to in vivo human data to avoid, and evaluate, the effects of the fixation process. We col-
lect data acquired in vivo on the human brain corpus callosum, where fibres bundles are very
homogenous and coherently oriented. The multi-compartment geometric models are ranked
using standard model selection criteria. Results show that the data acquired cannot differenti-

ate the models well.
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1.3 CONTRIBUTIONS MADE

In Experiment 2 we explore enriching the acquisition protocol with more diffusion-sensitising
gradient directions. This is motivated by the fact that the previous experiment sampled signal
from the tissue in only three directions. Additionally, the gradient strengths it could sample
were much lower than in the original protocol and, because the scanning is performed on a
live human, the scanning time is relatively restricted. This experiment indicated that enhanc-
ing gradient angular resolution does indeed help in differentiating between the models.

In Experiment 3, we collect data over two non-stop 4h sessions, using the protocol with the
higher angular resolution. Specifically, we use a rich, multi-shell HARDI protocol, to probe a
wide range of gradient orientations, diffusion times, gradient pulse times, and gradient mag-
nitudes. As with fixed rat tissue, three compartment models explain the data best. However, a
clearer hierarchical structure and simpler models emerge.

We enhance the taxonomy with more models in Experiment 4. These models explicitly seek
to explain fibre dispersion in the brain. We drew some models from earlier work in the field;
others were adapted from combinations of existing model compartments. This class of models
ranked higher than the previous models, and can potentially provide more specific biomarkers
of disease. The results demonstrated the importance of modelling dispersion, even in appar-
ently coherent fibres. (With this dataset we organised a challenge, as part of the MICCAI'15
CDMRI workshop, which sought other potentially better candidate models. The other contes-
tants trained their models to three-quarters of our dataset and the model performance was
evaluated on the missing quarter.)

We introduce a few methodological enhancements in Experiment 5. First, we fit the models
voxel-wise over more homogeneous regions of the genu, midbody and splenium, rather than
data averaged across the whole of the corpus callosum, to reduce artificially inflated dispersion.
Second, we account explicitly for variable TE among measurements. Third, we study models
with compartmentally different T, and diffusivity.

In Experiment 6 we test the inter- and intra-subject model ranking reproducibility. We ac-
quire data with the long 8h protocol across the same subject (the "inter-subject” reproducibil-
ity), but we reduce the scanning for use across four other healthy subjects. Broadly, the ranking
between model groups remains the same, while there are variations within each group.

In Experiment 7 we collect data from the Connectom scanner and repeat the model compar-
ison exercise. Here we explore the generalisability of earlier model comparison results, which
use standard human scanners with 6omT/m gradients, to the wider measurement space of
human data accessible with the Connectom scanner, affording up to 30omT/m gradients.

Experiment 8 compares the techniques for model selection, in this case for diffusion MRI data.
While the method of choice has mainly been the BIC and Akaike Information Criterion (AIC)

criteria, we include bootstrapping and cross-validation as alternative methods.
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THE BRAIN; THE PHENOMENA OF DIFFUSION

2.1 DISEASES AFFECTING THE BRAIN

In many diseases, a change in the integrity or packing of the cells is a good indicator of disease
progression. For example, in cancerous cells the nucleus grows in size very fast, and cytoplasm
reduces, affecting the density and hence pressure on fluids to permeate across membranes. In
the brain, some neuro-inflammatory diseases, such as encephalopathy or brain ischaemia, are
associated with brain oedema (swelling): accumulating fluid which affects the function of
other cells. In others, such as Multiple Sclerosis, the degeneration of information-transmitting

brain fibres, the neurons, is one observed phenomenon.

2.2 ANATOMY OF NEURONAL FIBRES

In a living organism, the neurons process and transmit information; they make about 10% of
the whole central nervous system. As shown in fig.2.1, most neurons have three main parts:
the axon, the cell body (soma), and the dendrites. The long tail of the neuron, the axon, is
wrapped in lipid-rich myelin, giving it and the whole brain the white colour; functionally the
myelin magnifies the conduction of the axonal electrical signal by a factor of 10 to 100 [Trapp

and Kidd, 2004].

Cell Body (Soma)

Axon Oligodendrocyte

Node of Ranvier . ,\Q/,

Myelin Sheath
;——\/'l.
TS
Figure adapted from: Anatomy & Physiology, OpenStax College Synapse

Figure 2.1: A sketch of the neuron, showing its three main parts: the soma, the axon, and the dendrites.

Cell Membrane

Dendyrites

4

Loosely speaking, the axon lies in the white matter part of the brain, the cell body in the grey.
The myelin sheath is rich in fat (about 42%), in addition to protein (18%) and water. The axon
thickness in the brain varies from 0.3 to 10 pm. This is roughly proportional to the amount
of myelin it is wrapped in, so as to optimise the conduction of the signals passing through.
However, the real mechanism as to how the axon regulates the level of myelin is not yet known

Nave and Salzer [2006].
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MAGNETIC RESONANCE IMAGING

3.1 THE PHYSICS OF THE HYDROGEN ATOM

Diffusion-Weighted Imaging (DWI) tracks water hydrogen protons, which are charged particles.
In general, as a charged body moves, it changes the magnetic field surrounding it; vice-versa,
a changing magnetic field will induce a charge movement that can involve rotational or trans-
lational motion. (The exact relationship in space and time of these two fields is described by
Maxwell’s Equations.) The proton, while moving about chaotically, also spins on its own axis,
much like the earth spins on its axis while going around the Sun. Under the influence of a
strong external magnetic field, the proton aligns itself with the field.”

A Quantum Mechanics treatment of the proton considers the spin to be in one of two
energy states, “up" or “down", and accepting energy in photons (packets/quanta) with energy
hwy to transition from a lower energy state into a higher one, where Planck’s constant h =
6.626x10734 J s and wy is the photon’s frequency. A simpler Classical Physics interpretation
can be used because of the number of protons present in the voxel [Liang and Lauterbur, 2000].
As an example to illustrate this, the smallest unit of image, the voxel, contains® about 24x1023
hydrogen nuclei and, though only about 1 in 200 million hydrogen nuclei/protons would not
have a homologous spin with the opposite orientation, there would still be 3well in excess of

10'5 excess spins in one orientation than the opposite, thus resulting in a net magnetisation.

3.2 NUCLEAR MAGNETIC RESONANCE

The convention is that the direction of the main magnetic field, used to initially align the
protons, is that of z-axis (the vertical axis in fig.3.1). Usually, any quantity in this direction is

given the adjective longitudinal; perpendicular to that is called transverse. When the magneti-

This behaviour is similar to that of a spinning top/gyroscope. If, and importantly while the top is spinning perfectly
straight (say, with the vertical) it is tipped, such that the gravity and the normal reaction force of the surface it stands
on are no longer on the same line, a torque (a moment of the forces) will act on the top, and it will then start to go

round, or precess, about the vertical axis.
The voxel is of size (2mm)3, or 8x10~3ml. This volume would be filled by about 8g of water, and with water’s Molar

Mass of 18gr/mol, this is about 2.25 mol of water/hydrogen molecules, or 2.25mol x 2 H-atoms x Avogadro’s constant

= 24.3 x10%3 hydrogen atoms.
Boltzman’s Equation: Nspin—up /Nspin—down _ oAE/KT yhere Boltzmann’s Constant K = 1.4 X 10*23]K*],

and (Einstein+Larmour’s) E = hwo = hyBy, where Planck’s constant h = 1 x 10734]s, the gyroscopic ratio
v =267.5%x10°rad s - T~ Thus, for By = 3T, Nspin—down /Nyspin—up _ 74 108, meaning that only 1
in every 200 million protons does not have a homologue with an opposite spin. Further, using the result given in the

footnote above, a voxel would contain about 10'> excess spins aligned with the external field.
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3.2 NUCLEAR MAGNETIC RESONANCE

sation vector is fully aligned with the z-direction, we say that the system is fully magnetised.
Conversely, when this vector is completely tipped to the transverse plane the system is said to

have reached saturation.

Tz 4z z ’Iz
1

N\
\
|
N

A A

Figure 3.1: Spin magnetisation before/during/after an RF pulse. The first plot from the left shows the
total magnetisation of the spins aligned in the By field; the circle below shows the vector
on the transverse plane which we measure. The second plot shows the spins tipped by the
RF pulse to align with the transverse/horizontal axis; the spins are in-phase. The third and
fourth plots illustrate the start and continuation of the de-phasing of the spins: transverse

magnetisation decreases, longitudinal magnetisation increases.

The tissue-specific response of the individual nuclei/protons’ magnetisation is termed relax-
ation. There are two main parameters that quantify this: Ty and T, relaxation times.

Tq (longitudinal or spin-lattice relaxation) time measures how fast the original longitudinal
component is recovered: after energy is transmitted at Larmour RF, the spin vector turns by
90°; later, as energy diffuses through the structure/lattice, the vector returns to its original

position, and its magnitude is given by:

M, () = My - [1 _exp <T1t>} (3.1)

T, (transverse or spin-spin relaxation) time concerns de-phasing of the different spins. While
on the transverse plane, the net vector will also shrink in size. This comes from the loss
of the synchronisation of the spins which were initially in-step. In T,, By is assumed to be
homogeneous, and the interaction of the particles is assumed to be of a purely random nature,

and its magnitude dependence on time is:

Myy(t) =Mp - [1 —exp <;2t)] (3-2)

The reality is that the (Bo) field will not be homogeneous, so another T, time, the T; is intro-
duced, which also accounts for these inhomogeneities. T; is faster than T, decay. The signal

affected by T decay is called the Free Induction Decay (FID) signal.
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3.3 SPIN-ECHO SEQUENCE 30
3.3 SPIN-ECHO SEQUENCE

In the work we will be using the basic Nuclear Magnetic Resonance (NMR) sequence of SE.
Figure 3.2 illustrates the SE experiment. The first half is similar to the process in fig.3.1: the go°
pulse flips the spins onto the transverse plane, which then start to precess at slightly different
phases, thus also losing their spatial coherence and total magnetisation. The second RF pulse is
what reverses this process, and thus recovers some of the signal back, the spin-echo, at time TE.
Though in some experiments this 180" pulse can be repeated to achieve multiple spin echoes,

usually, the SE sequence is repeated again after time Repetition Time (TR) (TR being the time

CL D00

wwwwwwww

between two go° pulses).

"‘ Echo Time (TE)

100 %

T, decay

Spin Echo

Magnetisation

T, decay

Dephasing Rephasing

90° 180°
RF pulse RF pulse

Figure 3.2: The SE sequence. The first go° excitation pulse flips the spins on the plane perpendicular to
the By field. With time, phase differences reduce in the resultant magnetisation, as shown
by the circles on the stop panel; the T, also causes a reduction in the magnetisation. At time
TE/2, the second refocusing 180" RF pulse flips the spins, leaving the faster (precessing) spins

behind the slow ones. At time TE the spins are in phase with each-other; this is spin-echo.

Different kinds of tissue have different characteristic T,, e.g. white matter in the brain has
much shorter T, than the CsF. This provides a natural means of contrasting between different
tissue types. In this type of imaging, a balance needs to be struck between low TE, which

produces good signal, and high TE which increases the contrast.
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3.4 IMAGE FORMATION

3.4 IMAGE FORMATION

The hydrogen proton NMR signal is used in MRI to construct body images. Hydrogen is mostly
present in body water or fat*. There are three steps to localise the signal from which part of the
body it came from. This is done by applying RF pulses in turn, to gradients in three directions,
to select the slice and encode frequency and phase [Smith, 1985]; the diffusion-weighting will

be discussed in the next chapter.

SLICE SELECTION  To encode a slice, a gradient is applied in the z-direction at the same

time as the sinc-shaped RF pulse, giving spins of different z-coordinate a different frequency.

IMAGE ENCODING  Applying a uniform magnetic field By will give all particles the same

Larmour frequency:

wo =7vBo

where y = 267.5 x 10° TS‘le. This is the basic law in MRI, and a more detailed derivation is
given in sections A.1 and A.2 of the Appendix.
Adding a gradient G, in the By-direction, will set all the spins at their respective Larmour

frequency
w(x) = wo +xG(x)

The resonance frequency is proportional to the position of the spin and, further, the plane
perpendicular to the gradient will have a signal proportional to its number of spins.

For phase encoding, the aim is to give the transverse magnetisation vector of different spins
a different phase angle. The same is applied as for frequency, up to the point where along x
direction spins have different Larmour frequencies. But when this phase-gradient is stopped,
the spins would be left with only the By magnetic field, hence an w¢ frequency but, crucially,

also with a characteristic phase.

K-sPACE  If the image to be constructed has, for example, 64 points in the phase encoding
direction, its gradient will require 64 different magnitudes (which will produce 64 FID curves).
The same applies to the frequency encoding. The raw coil signals F(ky, ky) are Fourier trans-
forms of the x-y location image function f(x,y), frequency encoding in the (say) x-direction
and phase encoding in the y-direction.® Inverse Fourier transformation then produces a MR

image of spin location.

Some background information on this chapter and the next are taken from http://wwuw.cis.rit.edu/htbooks/mri/
Here, Fourier Transform techniques are used to translate the information from the dense time domain to the frequency

one. The importance of the sinc-shape, as opposed to a simple sinusoidal, is to make the slice selection possible; sinc

in the time domain translates via Fourier Transform to a hat function in the frequency domain.
Single-shot Echo-Planar Imaging (EPI) is used to acquire the full k-matrix in one ‘shot” Mansfield and Pykett [1978].
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DIFFUSION MRI

4.1 DIFFUSION PHYSICS: THE FIRST STUDIES

In 1822 Fourier [1878] gave a mathematical framework for the laws of heat dissipation, observ-
ing that between two neighbouring solid particles, “the most heated molecule communicates
to the less heated a quantity of heat expressed by the product of the instant duration, of the
small difference of the temperatures, and of a certain function of the distance of the molecules"
Philibert [2005].

Coming from a more practical angle, in the autumn of 1826, Robert Brown [1828] set about
investigating the “mode of action of the pollen in the process of impregnation". Through his
modest microscope, he reported the behaviour of pollen grains suspended in water as giving
a pattern of motion which “arose neither from currents in the fluid, nor from its gradual
evaporation, but belonged to the particle itself".

To reinforce Brown’s point that the particles had an innate ability to diffuse out and into
other media, in 1845, the Glaswegian chemist Thomas Graham, famous" for his work on the
diffusion of gases, described the gaseous particles, “when brought into contact, do not arrange
themselves according to their density, the heaviest undermost, and the lighter uppermost, but
they spontaneously diffuse, mutually and equally, through each other, and so remain in the
intimate state of mixture for any length of time".

In 1855, the Zurich-based physiologist Adolf Fick connected the conduction of heat in solids
with the diffusion of particles, thus adopting Fourier’s mathematical formulation of heat dis-
sipation as the standard model for general diffusion. He expressed his phenomenological
relation between change of concentration ¢ in time t, diffusivity D, and spatial variation x via:

0 0’
He verified these results on the diffusion of salt in water, and reiterated another point made
by Graham, which was that the diffusivity increased as the temperature increased.

Einstein later derived the relationship for n-dimensional space between diffusivity D and
the mean squared displacement, < R(t)? >:

D_=< R(t)% >
2nt
This also provided a relationship between the microscopic scale, through the ‘mean squared

displacement’, and the macroscopic scale, through Fick’s diffusivity.

Incidentally, Graham is the discoverer of dialysis, the method of separating particles of various dimensions, hence

different rates of diffusion, through a semi-permeable membrane.
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4.2 DIFFUSION IN THE BRAIN

Diffusion through Cells Molecular Diffusion

« Hindrance
oo Restriction

oo Barrier

Figure adapted from: Denis Le Bihan, ‘Diffusion MRI: what water tells us about the
brain’, EMBO Molecular Medicine (2014) -- with publisher’s permission

Figure 4.1: The types of diffusion in brain tissue. While water molecules individually perform a random
walk, as shown on the right, the cells’ boundaries can alter the shape of this diffusion, as

shown on the left.

4.2 DIFFUSION IN THE BRAIN

The phenomenon of diffusion has emerged as a powerful tool for probing the microstructure
of the brain. Moseley et al. [1990] showed the potential of this emerging DWI technique in
clinical practice by detecting ischaemic stroke earlier than with other techniques (T; and T,
weighted imaging). Later, Le Bihan et al. [1986] showed that MRI of water diffusion can be used
to image brain tumours. This is made possible by the scale of restriction that the tissue barrier
imposes on the water diffusion.

Water diffusion can provide information about the underlying structure. At least within the
DWI community, the different types or ‘scales” of diffusion, also shown in fig.4.2, are termed
as free, hindered, and restricted. As the names suggest, within a fibre, a water particle can be
thought of as being free to diffuse along the fibre, but restricted to move across it; between the

fibres the movement is rather tortuous, so this is termed ‘hindered” diffusion.

4.3 THE START OF DIFFUSION IMAGING

It was Hahn [1950] who recognised that (water/hydrogen proton) spin echoes were affected
by water diffusion and, later, Carr and Purcell [1954] proposed a direct way to measure this
diffusion, by adding diffusion-sensitising gradients to Hahn’s SE sequence. However, it is the
next adaptation, the PGSE sequence used by Stejskal and Tanner [1965], which is now most
often used in diffusion imaging. (It was also in this period Stejskal [1965] that we saw the first

use of a tensor to map the dispersion pattern of particles.)
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4.4 DIFFUSION SENSITISATION

Diffusion-weighted
MRI image

Magnetic field
_gradient Figure adapted from: Denis Le Bihan, ‘Diffusion MRI: what water tells us about
_— the brain’, EMBO Molecular Medicine (2014) -- (with publisher’s permission)

Figure 4.2: The restricted and hindered diffusion can give different apparent patterns: the restriction

slows mobility, but diffusion free of boundaries is comparably faster.
4.4 DIFFUSION SENSITISATION

Compared with the SE sequence of Carr and Purcell [1954], the PGSE sequence does not apply
the gradients throughout the diffusion encoding, but in pulses, so effectively distinguishing
between diffusion and its encoding. The gradients can be applied in any of three directions,
X, y or z, so as to obtain images in those directions. The gradients, placed either side of the
180° pulse (see fig.4.3), are applied in the same direction, and are of equal magnitude |G| and
duration 6 (desired to be as short as possible).

While the two gradients (before and after the 180° pulse) produce no net phase offset on
stationary spins, for those spins which have diffused (i.e. changed location) during time A
there will be a net phase remaining. So, if a spin is initially at position r and after some time
has diffused to ¥, then the phase change associated to this spin has changed * by q-x , where

wavevector q =ydg and displacement x =r — ¥. Therefore, the signal at the spin-echo would be:

(4) = 5(0) | p(x] exp(~iq - x)dx (4.1)

where S(0) is the signal obtained in the absence of diffusion-sensitising gradients , p(x; D, t)
is the conditional probability that a spin arriving at ¥ originated from r during this diffusion
time; it is this p which we will try to capture via various models [Alexander, 2006]. For exam-
ple, one simple model for probability p(x; D, t) can follow an isotropic zero-mean Gaussian

(Normal) Distribution

G(x;D,t) =

-1
X‘D><> (4.2)

1
J@Djrt) F (_ 4t

This comes from wave mechanics jargon where a wave’s position function-vector is W(x,t) = W exp[i(k-x+ wt)],
where w is the temporal frequency (so wt is the temporal phase) and k is termed wavevector and its magnitude k

wavenumber (a sort of “spatial frequency” to give a spatial phase k - x).
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4.5 ONE APPROXIMATION; AND ONE ASSUMPTION

where D is either the scalar fluid diffusivity D or the 3x3 matrix DT. We will be discussing

other models in the next chapter.

TE
<€ >

90° s 180° Spin Echo

Figure 4.3: The PGSE sequence [Stejskal and Tanner, 1965]. The first RF pulse tips all the spins by go°, and
the second 180° RF ‘refocusing’ pulse reverses the phases of those spins. Differently to Hahn
[1950], the gradients are not applied throughout TE, but are split into two, so as to distinguish
between diffusion A and its encoding & (which is desired as short as possible). At time TE the

spin echo forms.

4.5 ONE APPROXIMATION; AND ONE ASSUMPTION

The derivation of equation 4.1 assumes that the pulse duration 5 is very short compared with
diffusion time A, so that the spins do not diffuse during the application of the pulse. This is
known as the Short Gradient Pulse (SGP) approximation. However, this is very hard to achieve
in practice, especially with standard clinical scanners; the assumption is often violated in order
to achieve b-values high enough to give adequate diffusion contrast. This inability to keep &
« A implies the need for careful modelling interpretation of the process, as the true particle
displacement may in fact be underestimated [Mitra, 1995].

The Gaussian Phase Distribution (GPD) assumption [Murday and Cotts, 1968] models analyt-
ically the effects of finite 5. When p in equation 4.1 is Gaussian and the pulses are rectangular,
then the phases of the spins due to the magnetic field gradients are Gaussian-distributed.

Relevant to this section, we will introduce one variable which will be abundant for the rest of
this thesis. Generally in PGSE diffusion imaging, the experimental tuneables, gradient strength
|G 1, diffusion time A and gradient pulse 5, are often combined and reported as a “diffusion

weighting" factor:

b =v?|G[*5? <A — i) (4-3)
where v ~ 42MHz/T is the proton’s gyromagnetic ratio. As explained in Stejskal and Tanner
[1965], for the PGSE experiment, unhindered Gaussian diffusion would attenuate the spin-echo

signal by a factor of exp(—bD), where D is the diffusivity.
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5.1 THE DIFFUSION TENSOR

Magnetic resonance (MR) microstructure imaging uses mathematical models to relate MR sig-
nals in each image voxel to microscopic tissue features, and thus estimate and map histological
features. Diffusion MRI measures water diffusion in biological tissue, which can be used to
probe the microstructure.

In brain imaging, the standard model for water dispersion in tissue is the DT [Basser et al.,
1994], which assumes a trivariate Gaussian dispersion pattern (there is more on tensors in
the Appendix A.3). This assumption of Gaussian diffusion oversimplifies the diffusive be-
haviour of water in complex media, and is known experimentally to break down for relatively
large b-values. DT derived indices, such as mean diffusivity or fractional anisotropy, can correlate
with major tissue damage, e.g. in ischaemic brain injury [Sotak, 2002] or Multiple Sclerosis
[Castriota-Scanderbeg et al., 2002], but lack sensitivity and specificity to subtle pathological
changes. Indices of such changes may include axon radius, density, orientation, dispersion and
permeability, which potentially give much greater insight into tissue architecture and pathol-
ogy. In diffusion MRI, the standard DT model has two key limitations: first it is too simple to
explain the data over a wide range of b-values and orientations; second, it lacks specificity to

particular tissue features.

5.2 MULTICOMPARTMENT MODELS

To address the limitations of the DT, a variety of alternative biophysical diffusion MRI models
have emerged over the last decade to address these limitations; we give their mathematical
formulation in Appendix A.4. These models underpin the emerging generation of microstruc-
ture imaging techniques that are now starting to replace DT-imaging in a range of biological

and clinical studies into tissue microstructure variation.

5.2.1 Straight Fibres

Stanisz et al. [1997] pioneered the multi-compartment representation of separate diffusive pro-
cesses in nervous tissue. As shown in fig.5.1, the model had three geometric compartments:
ellipsoids for restricted intra-axonal water, anisotropically hindered extracellular water (with
diffusivity and relaxation constants different to the intracellular space) and isotropically re-

stricted glial cell water. Permeability was included via exchange terms from each of the three
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5.2 MULTICOMPARTMENT MODELS

compartments (effectively, as an extra diffusion coefficient). They justified the need for more
than one compartment by conducting an experiment that demonstrated the breakdown of
mono-exponential signal decay (of the DW model) as diffusion time A was varied. They then
used an analytical model, instead of Monte-Carlo simulations, to generate data that calibrates
the model for each medium separately. Next, they fitted the model to signal from ex-vivo
bovine optic nerve fibre to deduce volume size and diffusivity, and concluded that three was

the minimum number of compartments to adequately model the tissue.

Electromicrographs Multi-compartment Tissue Model

9

[ Ws

Figure adapted from: Greg Stanisz et al., ‘An
analytical model of restricted diffusion in bovine optic
nerve’, MRM 1997 -- (with publisher’s permission)
Figure 5.1: The Stanisz et al. [1997] compartments in the model for bovine optic nerve are shown on the

right. The motivation for such choice of geometry is shown on the left: electro-micrograph

shots of tissue in the parallel (left) and perpendicular (middle) to the axis defined by the orbit

and optic chiasm.

The Ball-Stick, a ‘simple partial volume model’, [Behrens et al., 2003] is the simplest two-
compartment model designed to capture the fibre structure. To describe voxel signal there are
two compartments. The first, the Stick compartment, models restricted diffusion inside and
around the axons; in theory, it can accommodate any distribution of fibre orientations, but, in
this study, the fibre bundle is simplified to be coherent and straight. The second compartment,
the Ball, captures any free-water in the voxel; this includes diffusion across the fibres, which

is radially symmetric. The model assumes no inter-compartmental diffusion exchange.

Hindered

Figure adapted from: Yaniv Assaf et al.,
‘New Modeling and Experimental Framework to
Characterize Hindered and Restricted Water
Diffusion in Brain White Matter’, MRM 2004 --
(with publisher’s permission)

Restricted

Figure 5.2: The CHARMED model for brain white matter. The two types of diffusion are ‘hindered’ outside
the cylinders, represented via a diffusion tensor, and ‘restricted” inside the cylinders, which

is decomposed into parallel and perpendicular diffusivities.
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Electromicrographs Distributions from both samples  Model (Cylinder) Distributions

Optic'Nerve |
.
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d Axon Diameter (m) Axon Diameter (um)
Figure adapted from: Yaniv Assaf et al., ‘AxCaliber: A method for measuring axon diameter
distributions from diffusion MRI’, MRM 2008 -- (with publisher’s permission)

Figure 5.3: The AxCaliber model aims to capture the distribution of fibre thickness. In this applica-
tion, the model-derived axon-thickness distributions (shown on the right) show a good repro-
ducibility of the measured distribution of axon diameters (in the middle) derived from both

the optic nerve (top-left) and the sciatic nerve (bottom-left).

The Composite Hindered and Restricted Model of Diffusion (CHARMED) by Assaf et al. [2004]
is designed to capture diffusion explicitly inside and outside the axons. It replaces Behrens’
intracellular stick with cylindrical impermeable fibres, and replaces the extracellular Ball with
a full DT. As shown in fig.5.2, initially the model used fixed diameter distribution to estimate
fibre orientation and volume fraction. Later work on AxCaliber [Assaf et al., 2008] addition-
ally estimates the parameters of the gamma distribution (see fig.5.3). The first study [Assaf
et al., 2004] used simulations and excised spinal cord data to validate the technique but, sub-
sequently, Assaf and Basser [2005] applied the technique on healthy human subjects, using
a single TE of 133 ms, a diffusion-sensitising gradient of 4gomT/m, and a multi-shell gradi-
ent sampling protocol which sought to address the decreasing Signal-to-Noise Ratio (SNR) as
b-values increased up to 10,000 s /mm?2.

ActiveAx [Alexander et al., 2010; Dyrby et al., 2013] combines elements of Stanisz’s model
and AxCaliber to obtain the simplest model called the Minimal Model of White Matter Diffu-
sion (MMWMD) that adequately fits data while providing estimates of axon density and diame-
ter. The four compartment model includes a single axon diameter and cylindrically-symmetric
extracellular diffusion, which makes it parsimonious enough to obtain orientationally-invariant
parameter estimates. The initial ActiveAx application by [Alexander et al., 2010] used a previ-
ously optimised protocol [Alexander, 2008] to collect a four-HARDI-shell dataset from in vivo
healthy subjects to validate the technique. Figure 5.4 shows that it can recover known distri-
butions of white matter indices obtained from histology. E.g. axon diameters are estimated as

lower in the genu and splenium than in the midbody; the opposite applies to the axon density.

5.2.2  Dispersed Fibres

The simple models above do not account for fibre direction inhomogeneity which is abundant

in the brain even at a sub-voxel level [Jeurissen et al., 2010; Zhang et al., 2011, 2012]. A wide
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Figure 5.4: The top row shows voxel-wise indices from the ActiveAx model: axon thickness and density.

The second row shows how well the model captures the underlying signal in three CC regions.

family of multiple fibre reconstruction algorithms [Seunarine and Alexander, 2009; Tournier
et al., 2011] aim to recover multiple fibre orientations or the fibre orientation distribution, but
these are not directly relevant here as they do not separate different tissue compartments.
However, various compartment models incorporate the idea. Hosey et al. [2005] and Behrens
et al. [2007] extend the Ball-Stick model to multiple Sticks, capturing multiple fibre popula-
tions with distinct orientation. Similarly, Assaf and Basser [2005] extend Assaf et al. [2004] to
multiple intracellular compartments. The DIAMOND model [Scherrer et al., 2013] also em-
ploys discrete fibre populations and the number of fibres within each voxel is determined via
a model selection framework based on the generalization error. Jeurissen et al. [2010] com-
bine the constrained spherical deconvolution model of the fibre orientation distribution from
Tournier et al. [2007] with additional grey matter and CSF compartments.

Zhang et al. [2011] extend the MMWMD to relax the assumption of straight parallel fibres to a
Watson distribution of orientations. This is particularly important in regions where the fibres
as not as coherently aligned with each other as, say, in the corpus callosum, and which can
lead to inaccurate axon diameter estimation; see also fig.5.5 for an illustration of these differ-
ences. This point was also made in the study by Nilsson et al. [2012]. Through Monte Carlo

simulations of water diffusion it showed that axonal undulations, abundant in structures such
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Maximum angle between [ and i

5° 10° 15° 30° 45° 60° 75°
K 4 2.5% 9.5% 20% 56% 80% 91% 97%
8 5.5% 20% 39% 84% 97% 99% 100%
16 11% 37% 65% 98% 100% 100% 100%

32 21% 61% 88% 100% 100% 100% 100%
64 38% 85% 99% 100% 100% 100% 100%
128 62% 98% 100% 100% 100% 100% 100%

Figure and table adapted from: Hui Zhang et al.,

"Axon diameter mapping in the presence of orientation

despersion with diffusion MRI’, Neurolmage 2011 --
(with publisher’s permission)

Figure 5.5: Modelling dispersed cylinders. On the right, the figure illustrates the potential for over-
estimation of axon indices, such as diameter, if the fibres are not coherently oriented. On
the left, the table gives an intuitive indication of the (Watson) dispersion parameter «: each
percentage gives the probability that an orientation i sampled from a k-specific distribution

and the mean orientation [i are within the given angle.

as the spinal cord and optic nerve, can distort the diffusion MRI signal and model estimates,
as shown in fig.5.6.

The dispersed cylinders of Zhang et al. [2011] led to the simpler Neurite Orientation Dis-
persion and Density Imaging (NODDI) model [Zhang et al., 2012], which further assumes zero
axon diameter (Watson distributed Sticks rather than Cylinders). To make the technique sim-
ple and practical for clinical practice, the optimisation produced a two-HARDI-shell scanning
based on the original four-shell protocol (and showed that reducing the protocol further, to
one shell, sacrificed the specificity of the neurite density). The method was evaluated on in
vivo human brain, and the results produced sensible estimates for axon dispersion and den-
sity, potentially disentangling the two contributing factors to the DT fractional anisotropy index.
Later work [Tariq et al., 2014] incorporates dispersion anisotropy by replacing the Watson
distribution with a Bingham distribution.

Concurrently with NODDI, Sotiropoulos et al. [2012] extended the Ball-Stick model to Ball-
Rackets also using a Bingham distribution of Sticks, as in fact proposed earlier in Kaden et al.
[2007]. The Ball-Rackets study uses simulations to evaluate the model accuracy (see fig.5.7)
and fixed macaque brain data; the scanning acquisition uses a single 120-direction HARDI shell
of b-value 8,000s/mm? on which to validate the model, and then compare the results with

five other non-parametric techniques.

5.3 HIGHER GRADIENTS, HIGHER DIFFUSION CONTRAST

Higher gradients make possible faster diffusion encoding, giving shorter diffusion times A,

hence shorter TE, and higher SNR. They also provide a higher-contrast pattern of the water
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Distortions in Diffusion Tensor Estimates

[ —s— microscopic | 0.8]
1.1 | =—€— Mesoscopic ||
0.7}
™)
£ ! 06!
™
E oy
a 05
2 o9
Stretch Compression 04
0.8 < >
] 0.3k . .3
1 1.05 1.1 1.15 1.2 1.25 1 1.05 1.1 1.15 1.2 1.25
A A
\J \d
— A

Scale of Axonal Undulation

Figure adapted from: Markus Nilsson et al., “The importance of axonal undulation in diffusion MR
measurements: a Monte Carlo simulation study.’, NMR Biomed. (2011) -- with publisher’s permission

Figure 5.6: The Monte Carlo simulation of water diffusion showed that both the signal and, hence, the

model parameters fitted to the data are distorted by the undulation.

diffusion; in a PGSE experiment, the b-weighting is proportional to the square of the gradient
strength. (Increasing the field strength, on the other hand, affects the measured T, [Cox and
Gowland, 2010] and SNR, but it does not affect the diffusion contrast.) While there are limi-
tations on human imaging systems, which ordinarily reach up to 40 or 6omT/m gradients,
animal systems can ramp up to 1,00omT/m.

By applying gradients of up to 282 mT/m only across the corpus callosum fibres, Barazany
et al. [2009] uses AxCaliber to recover in the in vivo rat corpus callosum a gamma distribution
of axon diameters that correlates well with findings from histology. Recovering these tissue
anatomical trends supports the technique, but a secondary issue is that the mean AxCaliber
diameters are slightly higher than histological estimates and the Cylinders/axonal volume
fraction is only estimated at one-fifth of the total volume. The authors attribute the mismatch
between axon diameters to the fixing of the tissue during histology, and different compartmen-
tal Ty and T, weighting for the low intra-axonal volume fraction. The study by Panagiotaki
et al. [2012] also collects data using an animal imaging system. The experiment applies to
fixed rat brains a wide range of b-values, using up to goomT/m gradient strength. This data is
then used for comparing models similar to, among others, CHARMED and MMWMD; it addition-
ally finds that models with a single axon diameter distribution, rather than a two-parameter

gamma distribution, provide a more stable fitting.
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Figure adapted from: Stamatios N. Sotiropoulos et al., ‘Ball and Rackets: Inferring fiber fanning
from diffusion-weighted MRI’, Neurolmage (2012) -- with publisher’s permission

Figure 5.7: Dispersed sticks via a Bingham distribution; the top row corresponds to the most anisotropic
distribution (maximum fanning); the bottom row corresponds to an isotropic distribution
(equivalent to the Watson distribution). On the left, in red, are the sub-voxel grids used to

simulate the fanning; on the right are the simulated distributions at various noise levels.

Using ex-vivo monkey brain data, Dyrby et al. [2013] illustrate the benefits of stronger gra-
dients, which provide higher water diffusion sensitivity. In particular, the study showed that
higher gradients provide higher sensitivity of axon diameter distributions in white matter,
especially at the lower end (less than ~ 2.5um), using fixed post-mortem tissue and a small-
bore animal imaging system. The study increases the gradients applied from 60, which are
approximately the maximum achieved in standard clinical scanners, to 300 mT/m.

The recent development of human MR systems with 30omT/m gradients, in particular the
Connectom scanner [Setsompop et al., 2013], is a major step towards the long-term translation
of microstructure imaging techniques to widespread clinical practice. The first experiments
verifying those findings on live human subjects are now beginning to emerge [McNab et al,,
2013; Duval et al., 2014; Huang et al., 2014]. McNab et al. [2013] provides three initial appli-
cations, two in diffusion tractography and another on axon diameter estimation in the in-vivo
healthy human brain. The latter application, which is most relevant to this work, revealed the

feasibility and challenges of extracting microstructural information from the living tissue.

5.4 COMPARING DIFFUSION-MRI MODELS

The wide-ranging set of available models relating the diffusion signal to microstructural tis-

sue features raises the question about which are most appropriate in different situations. A

oooo}
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Figure adapted from: Tim B. Dyrby et al., ‘Contrast and Stability of the Axon Diameter Index from
Microstructure Imaging with Diffusion MRL’, MRM (2012) — with publisher’s unrestricted permission

Figure 5.8: Shown on the left is the distribution of estimated axon diameters in fixed monkey brain,
illustrating the benefit of higher gradients: 60 vs. 300 mT/m (top row and second row, respec-
tively). While both gradients recover the CC trend of axonal thinkness, the higher gradients
give a better contrast. By using simulations, the histograms on the right investigate the poten-

tial of estimating axon diameters, identifying 2.5-10 um as a feasible range.

series of studies have aimed to identify the combination of compartments that best explain
the diffusion MRI signal from WM over the accessible range of the measurement space. When
aiming to describe diffusion MRI signal, many earlier studies have considered alternative hy-
potheses/models. For example, the study by Stanisz et al. [1997], mentioned in sub-section
5.2.1, compares two- and three-compartment models, favouring the latter, because the two-
compartment model failed to capture adequately the non-restricted signal. Alexander et al.
[2010] also compares two competing models for the fixed monkey data it used, explaining the
preference of the fitting for a fourth Dot compartment in terms of the type of tissue used (i.e.
the “trapped” water). Ball-Sticks [Behrens et al., 2007], CHARMED [Assaf and Basser, 2005], and
DIAMOND [Scherrer et al., 2013] have also had to make choices about the number of fibres
supported by the data.

The first and most comprehensive model comparison framework was given by Panagio-
taki et al. [2012]. The study provided a taxonomy of simple multi-compartment models for
non-dispersive fibres, by collecting and enriching earlier models. It then compared the par-
simonious performance of the models on data from fixed rats through a standard model
comparison criterion, the BIC (see the next chapter for more), which balances the ability to
explain data with model complexity. Richardson et al. [2013] repeated the study using non-
fixed tissue in ‘viable’ in vivo state showing consistency of model ranking but inconsistency of
parameter estimates with fixed tissue. Each study concludes that, to capture the broad trends

in the signal, three compartments are required.
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MODEL SELECTION

Model selection criteria aim to balance the model complexity with goodness-of-fit, to identify
the simplest model that explains some data. A model that is too simple will under-fit the
data and produce high bias (low accuracy); a model too complex will over-fit the data and
produce high variance (low precision). All model selection techniques we introduce below
aim at producing estimators which have low bias® and low variance. In practice, this is very
hard to achieve, and such methods more commonly ‘balance” bias with variance.

We start with methods which are based on the Kullback-Leibler (K-L) information, and then
proceed to cross-validation and bootstrapping, and discuss briefly Model Averaging (which

we will not be using in this work, but it will be later referred to).

6.1 BAYESIAN APPROACH TO MODEL COMPARISON

For a given model, the Bayes” theorem expresses its posterior odds (given the dataset) as
proportional to the prior belief about the model (which is assumed to have generated the
given dataset) and the likelihood (the probability of obtaining the data, given the model). This
theorem forms the basis for comparing two competing models; specifically, the Bayes factor
[Jeffreys, 1961] measures the ratio between two models’ likelihoods; roughly, a factor above 3
is good evidence in favour of one model.

Computing the Bayes factor involves cumbersome integrals, but its approximation can be
achieved through Laplace approximations, Markov chain Monte Carlo methods, or the BIC [Jef-
freys, 1961, Wasserman, 2000; Burnham and Anderson, 2002].

Schwarz et al. [1978] defined the BIC as:
BIC = —2log(L(|data)) + Klog(N) (6.1)

for a model of K parameters § which maximise the likelihood of obtaining the given N inde-
pendent and identically distributed measurements. The lower the score, the more predictive the
model is.

An advantage of the BIC/Bayes” factors (over traditional model comparison methods, such
as likelihood ratio tests) is that they can be applied to non-nested models [Burnham and

Anderson, 2002] (p.88).

For an estimator 6, the bias measures the deviation of its expectation from its true value 9, i.e. E[6] - 0, where E is

the expectation; the variance measures the estimator’s variability, i.e. E[(E 6] —6)2].
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6.2 INFORMATION-THEORETIC APPROACHES

FROM K-L INFORMATION TO AIC Kullback and Leibler [1951] introduced the notion
of information lost*> every time we approximate the reality through a model. If information,

denoted by I, measures how far the 6-parameterised model g is from reality f, then

I(f,g) = Jf(x) In (9&%)) dx (6.2)

The aim then is to minimise this difference; in the model comparison language, the model

with lower I is the better model.
Using the K-L information, Akaike [1974] produced a new index to minimise I in equation

6.2; this simple formulation combined parameter estimation with model comparison, and is:
AIC = —-2In(L)+2K (6.3)

AIC assumes that the models are nested, and that the selected “best" model is the ideal/true
model [Burnham and Anderson, 2002] (p.293). However, these assumption can be relaxed
[Ripley, 2004]. One other assumption is that the fitting is by maximum likelihood methods
(ibid).

Unlike AIC, BIC does take into account the size N of the dataset; on the other hand, BIC
assumes that this “true" model is fixed as the dataset is increased, unlike in the case for AIC
[Burnham and Anderson, 2002](p.301). In general, the AIC is less conservative in penalising
complexity. This can be seen from the coefficient of the parameter variable K, a.k.a. the com-
plexity penalising term. In eq. 6.1, the coefficient increases logarithmically in the number of

measurements, but is fixed at 2 in the case of eq.6.3; more on this in section 6.4.

LOG-LIKELIHOOD WHEN THE ERRORS ARE NORMALLY DISTRIBUTED:  When fitting mod-
els through a least-squares procedure, assuming that the errors €; across measurements i are

normally distributed and independent, the error of prediction for measurement 1 is:

1
€il0) = —e
9leild) = 7=

which means that, over all n measurements, the likelihood (of the parameters of the model,

(%)

N—=

given the data) will be:

L(0]x) = (\/zlm)n el (5

Maximising the likelihood is equivalent to maximising the logarithm of the likelihood; this

is equivalent to minimising the negative of the function:

InL(0O]x) = —% In(27) —% In(0?) —% (%)2 (6.4)

i=1

2 This measure is a generalisation of Shannon [2001] entropy, and similar to Boltzmann [1877] entropy H, related to

probability P = eH.
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which, when we know o, the first two terms become constants and, the log-likelihood then is:

1 & /€i)\2
InL(olx) ~ —3 X (%) (6.5)

but when we do not know o, and use its Maximum Likelihood Estimation (MLE),

n
)’
i=1

then the non-constant term left is:

6‘:

S1=

1

n 32
InL(6lx) ~ —% In(62) = —% ln< (es) > (6.6)

n
1
6.3 OTHER TECHNIQUES

NON-PARAMETRIC BOOTSTRAPPING  This technique for finding the variance of model
parameters was introduced by Efron [1979]. For want of more distinct subjects” datasets, boot-
strapping [Efron, 1979] sub-samples the original dataset repeatedly. Bootstrapping is said to
provide ‘optimistic” estimators, meaning the technique does not adequately punish over-fitting,

because each dataset is used to both train and test the model.

CROSS-VALIDATION  This method [Stone, 1974] is less prone to over-fitting than AIC/BIC:
the model is trained on a part of the dataset, and the prediction error is evaluated on the
missing data. When there is over-fitting, the model will fit the training data well, but then fail
on the testing set.

However, selecting the size of the training/testing datasets can be tricky; the method is not
completely immune to over- and under-fitting: decreasing the test set means higher variance.
For example, to favour (i.e. increase) the test set, the original dataset can be split in half, i.e.
use half of the dataset for training and the other half for testing. Though this may provide low
variance on the estimators, it is rather wasteful of the data, and results in large bias. At the
other end is the computationally intensive Leave-One-Out Cross-Validation (LOO-CV), which
produces n datasets (of n-1 elements) on which to train the data, where n is the number of

elements in the original dataset; this reduces the bias but increases the variance [Efron, 1983].

64 COMPARING THE METHODS

When the number of measurements is large, LOO-CV is not that different from, and is said to be
asymptotic to, AIC and bootstrapping [Stone, 1977]. In common with AIC and bootstrapping,
it is not efficient in penalising redundant model complexity. Shao [1993] shows that this is
indeed the case for linear models, so increasing the data infinitely would not give certainty to

the best predictive model (this can be seen in the AIC formulation vs. BIC, in eqns.6.3 and 6.1).
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6.5 MODEL AVERAGING

The recommendation is that coarser dataset splitting can be more efficient for model selection,
that is leaving more than one element out for fitting. But, even then, to exhaustively try all
combinations would mean fitting to () datasets, where k is the number of elements left out
of the original dataset. Often it is recommended [Kohavi, 1995; Diamantidis et al., 2000] to
split the dataset randomly into 10 or 20 folds.

Both bootstrapping and cross-validation are used widely in error prediction and model se-
lection, with some authors preferring one above the other. E.g. Kohavi [1995] justifies through
examples why k-fold cross-validation is a better method for accuracy prediction and model
selection than LOO-CV and bootstrapping. On the other hand, through a simple experiment
with a small (14-element) dataset, Efron and Gong [1983] show that 10-fold cross-validation
is also a low-bias high variance method, and that bootstrapping with preferential sampling of
the elements provides better balance between bias and variance. Further, Efron and Tibshirani
[1997] generally regard cross-validation as a low-bias high-variance method, and improves to

.632+ the previous .632 method3 to address this*.

6.5 MODEL AVERAGING

We saw above that every technique for model comparison above has its benefits and drawbacks
- largely dictated by how they balance bias with variance.

Model Selection can seem to be conservative in often assuming that one model from the
set of candidate models is the true model, and then do parameter estimation. Other methods
have sought to address this by combining homologous estimators in each model. In this linear
combination, each element is weighted by the confidence in each model.

In bootstrap smoothing, or bagging [Efron and Tibshirani, 1996; Breiman, 1996], the standard
errors are averaged across all the bootstrap datasets so as to ensure low variance. In AIC model
averaging, the parameters are weighted by the normalised AIC score [Burnham and Anderson,

2002].

In the .632 method, 0.632*n is the expected number of distinct original dataset elements appearing on the unseen/test-
ing set. When sampling with replacement, the probability of not selecting any data element after n times is (1-1/n)™,
with a limit 1/e /2 0.368 as n becomes large. Therefore, 0.632 is the accuracy weight for the models trained on the

seen data but tested on the unseen data.
The .632+ essentially assigns weights to the error prediction on each, seen and unseen, observation. This weight, the

relative over-fitting rate factor R, ranges from no over-fitting factor o to no-information factor 1.
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INTRODUCTION

The following three experiments repeat the work of Panagiotaki et al. [2012].This study pro-
vides the taxonomy of models, which are then compared with fixed rat brain, using model
selection criterion BIC. The difference here comes from the type of data used: we scan in vivo
the human brain. This also means changes in the acquisition protocol.

In Experiment 1, similar to Panagiotaki et al. [2012], we acquire rich signal by probing the
corpus callosum tissue fibres in three directions, once along and twice across the fibre, with
many combinations of diffusion and gradient times and gradient magnitudes so as to fit the
models to as wide a fraction of the measurement space as possible. The models are compared
using BIC, and confirmed with the AIC (for their definition, see eqns. 6.3 and 6.1).

In Experiment 2, we examine the effect of increased angular sampling. We see that a multi-
shell HARDI protocol is necessary to capture the complexity of the models.

In Experiment 3, we repeat Experiment 1, but this time using a richer, 45-direction multi-
shell HARDI protocol. We add to the model comparison framework two new methods. The first
is bootstrapping, which constructs datasets from the original one by sampling with replace-
ment. The testing is then done on the training dataset. The second method is via four-fold
cross-validation. This involves splitting the original datasets into four quarters, and keeping
each quarter in turn for testing while training the models on the rest of the data. They both
confirmed the ranking obtained by AIC/BIC, which was consistent throughout the datasets.
The main finding from all three experiments was that, compared with the fixed tissue study

[Panagiotaki et al., 2012], simpler three-compartment models emerge.

The work in Experiment 1 has previously been published as:

Ferizi U, Panagiotaki E, Schneider T, Wheeler-Kingshott CAM, Alexander DC: White Matter
Models of In Vivo Diffusion MRI Human Brain Data: A Statistical Ranking. Proceeding of the 16th
Conference on Medical Image Understanding and Analysis (MIUA), 2012

The work in Experiment 3 has previously been published as:
Ferizi U, Schneider T, Panagiotaki E, Nedjati-Gilani G, Zhang H, Wheeler-Kingshott CAM,
Alexander DC: A ranking of diffusion MRI compartment models with in vivo human brain data.

Magn Reson Med, 2013
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EXPERIMENT 1: FROM EX VIVO RATS TO IN VIVO HUMAN BRAIN

In this experiment we follow as closely as possible the experiment design used in Panagiotaki
et al. [2012]. Any model extracted from this kind of work will ultimately be used for human
brain diseases, so we will use in vivo data. This means having to adapt the scanning protocol
to the lower gradient strengths available on the clinical MR scanners. Below is a description
of this protocol and an outline of the preprocessing done to obtain a set of measurements for
model fitting. We also make use of averaging across the most representative CC white matter
voxels so as to enhance the signal SNR. Then follow details of the fitting procedure and the

techniques used for model selection and ranking.

8.1 METHODS

DATA ACQUISITION:  Using a 3T Philips scanner we scan a 3o0-year old healthy man, using
single-shot EPI with cardiac gating. Three gradient-encoding directions are used: one along the
corpus callosum main fibre direction and two in its perpendicular plane. The images consist
of eight 4mm-thick sagittal slices, an image size of 64x64 and in-plane resolution of 2mm x

2mm.

fibre

Figure 8.1: This picture shows the scanned volume (boxed)

A PGSE sequence is used to probe:
¢ gradient strengths |G| = 30, 40, 50, 60 mT/m;
* pulse widths & = {5, 15, 25} ms;
e g diffusion times A = {20, 30, 40, ..., 100} ms.

This produced a total of 63 diffusion weightings, excluding any combinations where 6>A,

with maximum weight b=8,300s/mm?. Because of the varying echo time TE, in addition to
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8.1 METHODS

every diffusion-weighted acquisition, a corresponding non-diffusion-weighted (b=0) image
was obtained. Also, a separate HARDI acquisition with the same image resolution was per-
formed, having 32-gradient encoding directions and b=711s/mm?. The total acquisition time

was 2.5hrs.

Voxels at 2 ° Voxels at 5 ° Voxels at 10 °

Figure 8.2: The voxels remaining after filtering. The signal of these voxels is then averaged to produce a

single signal vector.

DATA PREPROCESSING: To find the best, most representative voxels in the CC, the DT was
first fitted to the HARDI data. This is done to find the principal direction and identify those
voxels with most coherent fibres. Then, we took voxels with an Fractional Anisotropy (FA)
above a threshold, and principal eigenvector direction within a small angle of tolerance from
the assumed fibre direction. These voxels were then averaged to give a single data set to
which the model could be fitted. We set the FA threshold at 0.5 and repeated the experiment
with three different angular thresholds, 2°, 5° and 10°, to establish the effect of orientation
dispersion. The signal at each DW was normalised by the corresponding b=o0 measurement
with the same echo time, to remove the T, effects before the fitting. The signal at the noise
floor, approximately any normalised signal below 0.1, is deleted from the dataset, and thus

disregarded during the fitting. At the lowest TE, 22ms, the voxel-wise SNR was about 20.

MODEL DESCRIPTION:  The compartments in Fig.8.3 are used to build the taxonomy of
Panagiotaki et al. [2012]. The signal for a model with two or more types of compartments can

be expressed as:

S=So{ Y Sk +freSre+ (1—fre— Y )Sec ) (8.1)

where fi is the weight of the intracellular signal compartment S'¢, f,. is the weight of the
isotropically restricted signal compartment S;¢, Sec is the extracellular signal compartment,
and k is the compartment index.

In this collection of models, the extracellular compartment, “hindered" in 3D, can be: a Ten-
sor (full DT), a Zeppelin (cylindrically symmetric DT) or a Ball (isotropic DT). The intracellular
compartment, “restricted” in 2D but free in the other direction (anisotropic restriction), can
be: a Stick (a spatially oriented line), a Cylinder (a Stick with non-zero radius) or GDRcylin-

ders (Cylinders with a Gamma distribution of radii; the distribution is characterised by shape
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8.1 METHODS

parameter k and scale parameter 0, where k0 is the distribution’s mean, and k62 gives its
variance).

There are two special-case models. The first is the one-compartment Tensor, which is simply
an ordinary DT. The second is a two-compartment model, the Bizeppelin, which combines two
cylindrically symmetric Tensors (a 3D bi-exponential model).

In three-compartment models, the isotropically restricted third compartment can be: a Sphere
(where diffusion is restricted to within a sphere of non-zero radius), a Dot (similar to a Sphere,
but with a zero radius), Astrosticks (Sticks isotropically distributed in 3D), or Astrocylinders

(Cylinders of a single non-zero radius isotropically distributed in 3D).

Intracellular Extracellular Other
Stick Ball - Astrosticks
CYIinder\ Zeppelin _

GDRCylinders

Figure 8.3: The taxonomy’s model compartments, designed to capture intracellular diffusion (left), ex-
tracellular diffusion (middle) and diffusion in other media (right). Note that diffusion in the
extracellular compartments is not restricted by the boundary, as in e.g. the Sphere, but rather

hindered. (The figure is adapted from Panagiotaki [2011].)

The collection of models is shown by the network diagram of fig.8.4. Complexity between
the families increases left-right, and within each family, there are two strands of three com-
partment models spun out of the main two-compartment parent: Dot/Sphere models on the

one hand, and Astrosticks/Astrocylinders on the other.

MODEL FITTING: 32 models of this taxonomy were fitted to the signal, using the open
software tool Camino [Cook et al., 2006]. The fitting uses the Levenberg-Marquardt algorithm

with an offset-Gaussian noise model, minimising the objective function:

N (S— S_2+()-2)2
LSE=min |y — Y (8.2)

o2

i=1
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8.2 RESULTS

45. TensorStickSphere
18. TensorStickDot
9. TensorStick

42. ZeppelinStickSphere 46. TensorCylinderSphere
15. ZeppelinStickDot 19. TensorCylinderDot
6. ZeppelinStick 10. TensorCylinder
39. BallStickSphere 43. ZeppelinCylinderSphere 47. TensorGDRCylindersSphere
12. BallStickDot 16. ZeppelinCylinderDot 20. TensorGDRCylindersDot
3. BallStick 7. ZeppelinCylinder 11. TensorGDRCylinders
40. BallCylinderSphere 17. ZeppelinGDRCylindersDot
13. BallCylinderDot 44. ZeppelinGDRCylindersSphere
4. BallCylinder 8. ZeppelinGDRCylinders

41. BallGDRCylindersSphere
14. BallGDRCylindersDot
5. BallGDRCylinders

Figure 8.4: The models constructed from the compartments in Fig.8.3. The arrows show the relations
between the models, increasing in complexity left-right. The models not shown are the one-

compartment Tensor and two-compartment Bizeppelin.

where N is the number of measurements, S; is the i-th measured signal, and S; its prediction
from the model. 0=0.05 is the noise standard deviation, which we estimate a priori from the
b=0 signals. This objective function accounts for bias introduced by the Rician noise inherent
in the data in a simplistic way [Jones and Basser, 2004] that is more numerically stable than a
full Rician log-likelihood objective function.

We fitted in two stages: after an initial run of 1,000 random starting points, we extract the
parameters that produced the minimum objective function. We then execute another 1,000
runs from starting points at small random perturbations from the first minimum. This ensures

that local minima are avoided, and the best fit parameters are obtained.

MODEL SELECTION: To compare the models, we use AIC and BIC, as defined in section 6.2.
As the noise level o is found from the images, thus known a priori in the model fit, the first
term of BIC (eq.6.1) and AIC (eq.6.3) equates to Least Squares Error (LSE) (eq.8.2), as shown via

eq.6.5 (AIC criterion then becomes equivalent to Mallows [1973] Cy,.)

8.2 RESULTS

Table 8.1 shows the ranking of the models. The BIC and AIC order and the quality-of-fit score
LSE are given for each of the three datasets of three allowances for deviation from the main
fibre direction, 2°, 5° and 10°. Most models fit the data similarly well, as seen in the LSE score.

An exception is the single compartment model, DT, which is the worst. The most complex
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8.2 RESULTS

2 ° deviation 5 ° deviation 10 ° deviation
g - - - - -t i
H - - -
< c ©° e © e ©
S Models ¢ &  LsE € < 1sE 2 ¥ ISE
m < m < m <
6 Ball.Stick.Ast 1 1 149.05] 1 1 94.54 1 1 74.41
6 Ball.Stick.Dot 2 6 15164 ] 2 6 96.44 2 6 76.61
7 Ball.Stick.Acl 3 2 149055 2 94296 2 7373
7 Ball.Cylin.Acl 4 3 1490613 3 9423 |4 3 7352
7 Ball.Cylin.Ast 5 4 149.06 | 4 4 94.28 5 4 73.61
7 Zepp.Stick.Ast 6 5 149076 5 9448 | 3 5 73.48
5 Ball.Stick 7 21 16238 7 21 10682 9 21 87.00
7 Zepp.Stick.Dot 8 10 15164 | 8 10 9597 7 10 74.83
7 Ball.Cylin.Dot 9 11 1516519 11 96.16 8 11 7579
7 Ball.Stick.Sph 10 12 15186110 12 9641 |10 12 76.51
8 Zepp.Stick.Acl 1M1 7 149.08 (13 7 9424 [13 7 7299
8 Zepp.CylinAcl |12 8 149.09|11 8 9419 [12 8 7289
8 Zepp.Cylin.Ast 13 9 14914112 9 9423 |11 9 7289
6 Ball.Cylin 14 24 16238 |15 24 106.60 |17 24 86.33
6 Zepp.Stick 15 25 1623914 25 10580 (|15 25 8544
8 Zepp.Cylin.Dot 16 14 15164 16 14 9572 |14 14 74.21
8 Ball.Cylin.Sph 17 15 15176 |18 15 96.16 (18 15 7579
8 Zepp.Stick.Sph 18 16 151.77 |17 16 9592 [16 16 74.62
9 Tens.Stick.Ast 19 13 14909119 13 9446 (19 13 7343
9 Tens.Stick.Dot 20 17 15096 (23 17 96.27 |23 17 76.30
7 Zepp.Cylin 21 27 162.39(20 27 1055720 27 84.85
7 Bizepp. 22 28 16239 (21 28 1058022 28 8544
9 Zepp.Cylin.Sph |23 20 1534822 20 9572 (21 20 74.20
10 Tens.Cylin.Acl 24 18 149.09 126 18 9421 |25 18 7297
10 Tens.Stick.Acl 25 19 14914 (25 19 94.16 |24 19 7279
8 Tens.Stick 26 30 16241(24 30 1052127 30 84.68
10 Tens.Cylin.Dot 27 22 15172128 22 9565 |28 22 7417
10 Tens.Stick.Sph 28 23 152.30(29 23 9586 |29 23 74.58
9 Tens.Cylin 29 31 16256 (30 31 105.09|30 31 84.48
10 Tens.Cylin.Ast 30 29 1576427 29 9540 |26 29 73.18
11 Tens.Cylin.Sph 31 26 1522931 26 9569 |31 26 74.17
7 Tensor 32 32 616.71 |32 32 4771232 32 44985

Table 8.1: A ranking of the models for the 2°/5°/10° fibre deviation allowances. Adjacent are the
raw scores for their respective Objective Function Residue (LSE). The Ball-Stick-Astrosticks
does best across both BIC and AIC, the DT worst. (Abbrev.: Tens.=Tensor; Zepp.=Zeppelin;
Cylin.=Cylinder; Ast.=Astrosticks; Acl.=Astrocylinders; Sph.=Sphere).

model, Tensor-Cylinder-Astrocylinders, gives small LSE, but its complexity is penalised under
AIC, and even more under BIC.

Ball, Zeppelin and Tensor models fit the data equally well, but the simpler Ball is penalised
less by BIC. This is similarly the case for Stick being penalised less compared with Cylinder,
and Sphere compared with Dot.

The fitting error LSE decreases markedly as the orientation threshold increases from 2° to
10°. The increased number of voxels being averaged smoothes the signal at the expense of
noise in the data, and so the models fit increasingly better. Figure 8.5 illustrates the quality
of fit of three selected models from the ranking, including the best and worst models. The
model signal is obtained by synthesing signal with the parameters fitted to the 2° threshold
data set. The plots reveal the limitations of the over-simplified single-compartment DT model

in capturing both signal along and across the fibre. The DT model cannot capture the shape of
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8.3 DISCUSSION
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Figure 8.5: These plots illustrate the quality of fit of three models to the data. The model signal is shown
as solid line against the signal shown in markers. It is clear that Ball-Stick fits better than DT
the signal across the fibre. Even though Ball-Stick-Astrosticks fits the signal along the fibre
better than Ball-Stick, the noise floor signal is disregarded in the fitting.

the perpendicular signal decay because it does not model restriction. The three-compartment
model, Ball-Stick-Astrosticks, has a slight advantage compared with the two-compartment
Ball-Stick fitting both the parallel and perpendicular direction signal. (However, this part of

the normalised signal at the noise floor has no weight in the model fitting.)

8.3 DISCUSSION

This experiment was a first step in the translation of the model comparison framework of
Panagiotaki et al. [2012] from ex vivo rat to in vivo human data. We hoped that a long 2.5h
protocol would provide data of sufficient richness, and hence provide a reasonable fit of the
models.

The increasing fibre incoherence threshold (2°, 5° and 10°) did predictably increase the
amount of voxels filtered through which, in turn, raised the SNR of the dataset; this is re-
flected in the LSE score. However, this made no noticeable difference to the model ranking or
differentiation of the models.

The ranking was not very informative as it could not discriminate well between Ball, Zep-
pelin and Tensor models. One potential and obvious problem could lie with the data used.
The previous framework of Panagiotaki et al. [2012] made full use of the strength of animal
scanner gradients of up to 1000 mT/m, and an unmatchable length of scanning time of 65h. In
the following experiment we look for ways of improving the current in vivo human imaging

protocol.
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EXPERIMENT 2: MORE DIFFUSION-SENSITISING DIRECTIONS?

This modest experiment was performed in order to explore the necessity for enriching the
protocol of the previous Experiment 1, in chapter 8, with more gradient directions. In addition
to the data acquired for that study, we acquired two more HARDI shells; the difference here is
that we include the Diffusion Tensor Imaging (DTI)/HARDI measurements in the model fitting
analysis. We observe the effect on the model fitting after adding incrementally to the original
dataset one half of each HARDI shell. We restrict the number of models used here; from the
previous ranking, we chose only three models which had a similar quality of fit but different
enough on the complexity spectrum.

We describe below the datasets, and afterwards give the results obtained from the fitting of

the models.

9.1 METHODS

The acquisition is an extension to that described in section 8.1. Briefly, in that experiment we
had DW measurements contain 12 shells with by, qx=8,300 s/ mm?2, probing the tissue in three
mutually orthogonal directions, and a 32-direction HARDI shell with b=711 s/mm?. Addition-
ally, this scanning includes another 32-direction HARDI shell, with b=2855 s/ mm?.

We construct seven datasets to which the models are fit:

® 0 —0 has the original 2° dataset of DW images, as described in Experiment 1; its prepro-
cessing involved retaining only voxels with principal direction orientation within 2° of

the perpendicular to the sagittal slice;

e 0— 16 comprises dataset 0 — 0 and half of the first b=711 s/mm? HARDI shell (directions

uniformly distributed on the sphere);
e 16— 0 as above, but to 0 — 0 adds instead half of the second HARDI shell;
® 16— 16 contains 0 — 0 and half of the both HARDI shells;
e 16 — 32 contains 0 — 0, half of the first HARDI shell and the full second HARDI shell;
e 32— 16 contains 0 — 0, the full first HARDI shell and half of the second HARDI shell;

¢ 32—16 contains 0 — 0 and whole HARDI shells.
MODEL FITTING: Here we choose only three models: Ball-Stick-Astrosticks, Bizeppelin

and Tensor-Cylinder-Astrocylinders. They were fitted to the data 1000 times, as in the previous

experiment, minimising for the objective function LSE of eq.8.2.
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9.2 RESULTS
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Figure 9.1: The effect on the model fitting of increased angular resolution. The three-direction 2° dataset.

The Ball-Stick-Astrosticks model fits the data well; DT fits poorly.

9.2 RESULTS

Figure 9.1 shows the difference between the models in fitting to the data with ever-increasing
angular resolution. The first observation is that, for this range of datasets, the models with an
anisotropic extracellular compartment, that is Bizeppelin and Tensor-Cylinder-Astrocylinders,
show similar behaviour: the initial increase in the fitting error almost reaches a plateau when
both halves of the HARDI shells are added. While the fitting error increases as the number
of measurements also increases, the rate of change with respect to the number of measure-
ments is considerably reduced beyond this point. The picture is slightly different for Ball-Stick-
Astrosticks. Its fitting error has an upward trend as more gradient directions are added. One

would expect that this increase would also slow down if even more directions were added.

9.3 DISCUSSION

The point of this experiment was to show a reason for the insufficiency of Experiment 1 in
distinguishing between the models. The results from Table 8.1 appeared to cluster most of the
models together, even though they were geometrically very different. As an example, we saw
an almost identical quality of fit for Tensor-Cylinder-Astrocylinders and Ball-Stick-Astrosticks,
followed by Bizeppelin; however, they were ranked at number 1, 24 and 22, respectively, by the
BIC criterion. Therefore, for a better comparison of models, it is necessary to amend the origi-
nal experiment design; we showed that including more gradient directions to the acquisition
protocol is potentially beneficial to the testing of the models. We do this in the next chapter,

Experiment 3.
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EXPERIMENT 3: INCREASING ANGULAR RESOLUTION

This study is motivated by Experiment 2. There we saw that, in order to differentiate better
between the models, a higher angular resolution of diffusion-sensitising gradients in the signal
sampling was beneficial.

We additionally improve the dataset by stretching as much as possible the scanning time,
so as to make the protocol richer for even the most complex models. Specifically, this protocol
uses a rich, massively multi-shell HARDI protocol, to probe a wide range of gradient orienta-
tions, diffusion times, gradient pulse times, and gradient magnitudes. The model comparison
framework is extended by using bootstrapping and cross-validation, to provide additional in-
sight into the stability and accuracy of the model ranking. Additionally, we acquire the data
twice, to check not only for inter-subject reproducibility of the results, but also for the impact
of splitting the scanning into multiple sessions.

The richness of our dataset allows us to assess the model fitting stability through bootstrap-
ping on the dataset.

This chapter starts by describing the acquisition protocol for the data, and the preprocessing
done to the measurements. Then follow the details of the fitting procedure, the technique used

for comparing the models and, lastly, an evaluation of the robustness of the ranking.

10.1 METHODS

DATA ACQUISITION:  The central aim in this acquisition is to cover as large a portion of
the measurement space as possible, while retaining a usable signal-to-noise level. The full
protocol, henceforth often referred to as the Achieva+ protocol, has 32 shells of 45-directions
each. To enhance overall angular resolution, the set of directions in each shell is a unique
random rotation of the 45-direction Camino [Cook et al., 2006] point set (i.e. vector directions,
or points, isotropically spread on a sphere, following optimisation for DW imaging). As shown

in Table 10.1, each shell has a unique combination of:
e gradient strength |G| = {55, 60} mT/m;
e pulse width 6 = {6, 10, 15, 22} ms;
* pulse duration A = {30, 50, 70, 9o} ms.

Within each shell there are three interwoven b=o acquisitions. The b-values thus range from
218 to 10,308 s/mm?, with effective diffusion time (A-5/3) in the range 28 to 82 ms. We use
a PGSE sequence on a 3T Philips scanner, with cardiac gating and repetition time TR = 4s. The

Sensitivity Encoding (SENSE) factor was 1.10. The echo time TE varies between shells depending
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10.1 METHODS

Achieva+ Protocol
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Table 10.1: The scanning protocol used. This Achieva+ protocol required two sessions of 4.5h acquisition.

on the values of § and A and is kept to a minimum to maximise signal. There are nine 4 mm
thick sagittal slices, acquired with a reduced Field-of-View (FOV) using a ZOnally-magnified
Oblique Multi-slice (ZOOM)-EPI technique with outer volume supression [Wilm et al., 2007]. The
FOV is centred on the mid-sagittal slice of the CC, where we assume that coherently oriented
CC fibres are perpendicular to the image plane. The image size is 64x64 and the in-plane
resolution 2x2 mm?.

The study was approved by the local ethics committee, and written informed consent was
obtained from the participant. We acquire the full protocol in a 31-year-old healthy subject in
two different ways.

The first full data set is acquired in two separate non-stop sessions, each lasting about 4h
3omin; we refer to this as the 2x4h data set. We used the dynamic stabilisation facility provided
by the scanner, which is designed for long scans to correct for field drifts during the image
acquisition. We visually inspected the images and did not observe any obvious shifts from
gradient heating. The SNR of b = 0 images varied from about 30 at TE;,in=51ms to 5 for
TEmax=127ms.

We check for intra-subject reproducibility, we then repeat the protocol in eight sessions, each

lasting 1h 15min; we call this the 8x1h data set.

PREPROCESSING / VOXEL SELECTION:  We carefully registered the sagittal slices, making
in-plane corrections usually in the order of 1 to 3 voxels. The quality of registration is con-
firmed visually for each individual image. All non-diffusion-weighted images are registered
to the first unweighted image of the b=1,202 s/ mm? shell; the corresponding transformations
are then applied to the fifteen DW images that follow each b=0 acquisition, as ordered in the
scanning protocol. In this b=1,202s/mm? reference shell, we manually segment the subject’s
image of corpus callosum, and then fit the DT to select a set of voxels with coherently ori-
ented fibres. In particular, all voxels with FA>0.6 and principal eigenvector within n=2° of
the assumed fibre direction (perpendicular to the image plane, i.e. left-right in the brain) are
retained. In the 2x4h data set, there are 24 voxels that satisfy the imposed criteria, all belong-

ing to the 2 slices closest to the mid-sagittal plane. A similar procedure with n=5° leaves 66
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10.1 METHODS

voxels, and n=10° which leaves 99 voxels. In the 8x1h data set, 60, 101 and 166 voxels remain,

respectively, sampling the corpus callosum rather more evenly; the same thresholding proce-

dure leads to a slightly different set of voxels because of noise, misalignments, etc. To account

for different TE affecting different shells, the signal in each shell is normalised by the average

of the three unweighted measurements (b=0) with the same TE.

32 HARDI shells (of 45 directions each)
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Figure 10.1: The acquired signal for the 2x4h 2° data set. The legend gives b-value (5 | A | |G|) in units

of s/mm?(ms|ms/mT/m); Q1-Q4 on the right define the four quarters of the full protocol
used in the four-fold cross-validation. G is the applied gradient vector and n is the fibre
direction; the x-axis gives the absolute value of the cosine of the angle between the applied
gradient and fibre direction: to the left, the gradient is perpendicular to the fibres; to the

right, parallel; the shells” b-value increases going down from the top.

As before, we create a single data set for each n=2°, 5° and 10° by averaging over the

voxels selected above. Figure 10.1 shows the signal from the 2x4h data set with n=2° and

confirms the rich coverage of the measurement space the protocol provides. The datasets

contain 1,356=32*(3+45) measurements each.
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10.2 RESULTS AND DISCUSSION

MODEL FITTING AND SELECTION:  The fitting is as described in the section 8.1. Each
model is fitted 250 times, and the final parameters are those that produce the minimum objec-
tive function LSE (Eq.8.2).

The criterion BIC (eq.6.1) is chosen to compare the models.

BOOTSTRAPPING:  We use classical bootstrap [Efron, 1979] to analyse the stability of the
BIC ranking. Each bootstrap data set comes from a random selection in each shell of the same
number of data points, with replacement. For each 2x4h and 8x1h data set, we construct 100
bootstrap datasets. We then obtain 100 BIC rankings after fitting the models 50 times to each
data set and picking the best parameter estimates. We construct positional variance diagrams,
which give the number of times (i.e. bootstrap data sets) out of 100 that each model appears

in each position in the ranking.

CROSS-VALIDATION: PREDICTING UNSEEN DATA:  Cross-validation provides a comple-
mentary model selection to confirm the findings from the BIC. We use four-fold cross-validation
and divide the data set into four quarters. Each quarter is constructed by dividing all the
shells of each & into two groups of low A (30 and 50 ms) and high A (70 and 9o ms). Then,
we randomly assign one from each group to each quarter; shells with |G| = {55, 60} mT/m go
together.

The cross-validation then proceeds as follows: we divide the data into four quarters, by
randomly assigning low and high As into four groups. Then, we choose signal coming from
three-quarters of the dataset to fit our models to and, from the parameter estimates drawn
from these quarters, synthesise signal for the missing part. Next, we evaluate the sum of
squared differences LSE compared to that unseen quarter. This provides an alternative model

selection routine, to confirm and validate the ranking by BIC.

10.2 RESULTS AND DISCUSSION

Table 10.2 gives the complete model rankings and some parameter estimates across differ-
ent data sets, 2x4h and 8x1h, and different n. Several distinct groups of models emerge:
i) three-compartment models with anisotropic extracellular compartment (Zeppelin/Tensor)
and Dot/Sphere third compartment, which produce the best fit (and lowest BIC); ii) three-
compartment models with anisotropic extracellular compartment and Astrostick/Astrocylin-
der third compartment, which are consistently worse than Dot/Sphere equivalents, but better
than all other models; iii) three-compartment models with isotropic extracellular compartment
and all two-compartment models. The performance boundaries between the groups are very
clear. The DT comes below group (iii). The CC voxels selected for averaging are different in
each data set, producing some variation. In particular, the axon radius index (shown in the

appendix) is higher in the 8x1h data set, which we expect because it has a greater contribu-
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Figure 10.2: The model signal, shown as dotted line, is superimposed on raw data, marked with red /blue
colours; for clarity, only 6 representative models are chosen, and only 4 shells are shown

across the sampled range of b-values.

tion from the midbody where axons are larger. However, the estimates obtained from multiple
sessions (8x1h data) are broadly in line with those of the 2-session data (2x4h data).

As 1 increases, the LSE would go down because the number of voxels being averaged in-
creases, which increases the SNR. We see a slight increase in the radius estimate and decrease
in axial diffusivity as dispersion increases, but the effects are minor.

The parameter estimates show strong consistency within the groups but more variation
between groups. In group (i), the intracellular volume fraction is unexpectedly low and about
half of the extracellular volume fraction. One possible explanation is a significant free water
contribution [Assaf et al., 2008; Barazany et al., 2009] which we do not model explicitly, and so
gets absorbed in the extracellular component. Significant within-voxel fibre dispersion [Zhang

et al., 2011, 2012; Nilsson et al., 2012] could also cause this observation, as group (ii), which to
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some extent model fibre dispersion, show higher intracellular and third compartment volume

fractions.
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Bizeppelin 1079 954 941 11222 1265 1223|063 060 059054 054 054|147 142 139141 135 132
BallGDRCylindersDot 1135 940 894 11162 1063 1002 |0.66 0.67 0681071 072 0.70|1.77 172 1681166 165 163 19.4 199 202

BallGDRCylindersAstrosticks | 1139 965 929 11206 1124 1072 (0.56 0.57 0.58 ' 0.64 0.64 062|199 192 1881186 1.85 183 163 166 17.2

20.2 202 202
184 191 191

BallGDRCylindersSphere 1142 947 902 ' 1169 1071 1010 | 0.66 0.67 068071 072 0.70|1.77 171 1681166 165 163 | 194 198 2021202 202 20.2
BallCylinderAstrosticks 1151 983 948 '1232 1143 1101 |0.53 0.54 0.54'0.58 059 056|201 193 189'186 185 1.83| 126 126 128!132 135 134
ZeppelinStick 1177 1016 997 '1249 1305 1254 | 0.40 0.41 040'041 040 040|149 143 140'141 136 133
TensorStick 1179 1019 1004 | 1229 1286 1250 | 0.40 0.41 040,041 040 040|149 143 140 141 136 133
BallCylinderDot 1179 995 951 1222 1113 1063 | 0.60 0.60 0.61,064 065 0.63|1.75 169 166,165 164 162 134 134 136,139 143 143
ZeppelinCylinder 1184 1022 1001 , 1242 1269 1232 |0.41 0.42 043,047 051 048|149 143 140,141 136 133 | 48 56 67,85 98 93
TensorCylinder 1186 1025 1008 , 1223 1253 1229 | 041 0.42 0.43,046 050 048|149 143 140,141 136 133 | 47 55 66,84 97 92
BallCylinderSphere 1186 1002 958 , 1229 1120 1070 | 0.60 0.60 0.61,064 065 0.63|1.75 169 166,165 164 162 13.4 134 136,139 143 143
ZeppelinGDRCylinders 1191 1029 1008 , 1249 1276 1239 | 041 0.42 0.43,047 051 049|149 143 140,141 136 133 | 47 55 67,86 100 94
TensorGDRCylinders 1193 1033 1016 11230 1261 1237 | 0.41 0.42 043,046 050 048|149 143 140,141 136 133 | 46 54 66 .84 98 94
BallCylinderAstrocylinders 1231 1064 1036 11319 1239 1197 | 0.50 0.50 0.51 1055 054 052|195 188 1831179 180 177 11.0 11.0 1121118 120 11.8
BallGDRCylindersAstrocyl. 1240 1073 104511328 1249 1206 | 0.50 0.50 0.51+0.55 0.54 052|195 187 1831178 180 177 | 111 111 1131120 121 119
BallGDRCylinders 1362 1190 1153 11396 1357 1319 |0.65 0.66 0.67'0.71 0.73 0.70 | 1.44 138 1361137 133 130 148 148 153'16.3 17.0 16.7
BallStickAstrocylinders 1387 1225 1217 ' 1568 1504 1429 | 0.41 0.41 041'042 041 040|193 185 181'180 185 179
BallStickAstrosticks 1388 1228 1227 ' 1613 1580 1483 | 0.41 041 041!043 041 040|186 178 1.72'164 166 162
BallCylinder 1389 1220 1184 ! 1428 1386 1353 | 0.61 062 062!066 067 0.65|143 138 135!136 132 129| 11.3 11.2 113 118 121 119
BallStickSphere 1507 1330 1312 ;1638 1567 1489 | 0.43 043 043 044 043 041|161 155 153 154 158 153
BallStickDot 1536 1360 1351 , 1719 1710 1594 | 0.44 0.44 043,045 044 043|149 144 140,136 134 133
BallStick 1584 1415 1404 , 1743 1761 1662 | 0.48 0.48 047,048 048 047|135 129 126,126 122 1.19
DT 2123 2001 1984 , 2208 2206 2247 |0.85 0.84 084,085 084 083|154 148 145,146 140 138

Table 10.2: Various model parameters from different data sets, 2x4h and 8x1h, with different angular
thresholds, 2°, 5° and 10°. Regarding the BIC, Raftery [1996] regard the preference for one
model against another as ‘weak’” when their BIC difference is o-2, ‘positive” for 2-6, ‘strong’ for

6-10, and as ‘very strong’ for anything above 10.

Table 10.2 gives a more complete set of parameter estimates for the 2° data set of 2x4h. In
hindered compartments, the axial diffusivities in groups (i) and (ii) are consistently around
2x10~m? /s, and the radial diffusivities are around 0.7x10~7m? /s, in agreement with previ-
ous reports [Beaulieu, 2002]. The two radial diffusivities of Tensor models are close, making
Tensor and Zeppelin models similar, as we might expect for coherently oriented fibres in the

CC, causing the BIC generally to prefer the simpler Zeppelin models.



10.2 RESULTS AND DISCUSSION

Looking to the left of table 10.2, within the groups, as expected, the quality-of-fit LSE consis-
tently reduces as the complexity increases, and the BIC ranking rewards simpler compartments,
but there is little to choose between the models in group (i).

Cylinder models in group (i) consistently provide axon diameter index values of around 5
um, which is consistent with axon diameter estimates from the CC in Assaf et al. [2008] and
Dyrby et al. [2013]. Other models show more erratic estimates of radius which arise because
the models fit the data less well, and so use the parameter to explain effects they do not capture.
The GDR Cylinder models’ shape parameter k often hits the upper bound constrained in the
fitting to 10. At this value of k, the Gamma distribution is close to Gaussian shape and is highly
peaked about the mean, making the GDR Cylinder model very similar to the Cylinder model.
BIC thus prefers the simpler Cylinder model. The Sphere and Astrocylinder radius estimate
is usually around o.1 pm, which makes them very similar to the simpler Dot and Astrosticks
models, respectively, which the BIC generally prefers.

Fig.10.2 illustrates the fit of some of the models to the data. The models are fitted to a total of
32 shells, but we select only four to illustrate visually where the models over/under-estimate
the signal. While the fitting is not perfect even for the best model of the ranking, the figure
reflects clearly the model ranking in the signal prediction.

Fig.10.3 shows on the right the positional variance diagrams of model ranking over 100
bootstrap samples from both the 2x4h and 8x1h n=2° data sets. The group structure of the
ranking is very consistent over the bootstraps, although we see some variance of model posi-
tions within the groups; the ranking is also consistent between the 2x4h and 8x1h data sets,
though some difference is expected, arising from minor imperfections in the registration of
images in such large data sets. The group structure is also similar for the n=5° and 10° data
sets (results not shown). Differences in the number of voxels averaged in these datasets has
little effect on the rankings. To the left of Fig.10.3 we show results from cross-validation. The
same group structure emerges with, on average, group (i) performing best, followed by group
(if), and more erratic performance in group (iii). Little distinguishes models within group (i)

or group (ii).
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748 0.96 12 TensorGDRCylindersSphere 0.29 10.0 4.14 0.62 1.91 0.73 0.63 88.9 0.8 10.8 0.09 0.20
909 0.97 7 ZeppelinStickAstrosticks 0.33 0.42 2.06 0.67 88.8 0.6 0.25
895 0.96 9 TensorStickAstrosticks 0.33 0.43 2.06 0.73 0.58 88.9 0.7 11.2 0.25
909 0.97 8 ZeppelinCylinderAstrosticks 0.33 3.96 0.42 2.06 0.67 88.9 0.7 0.25
909 0.97 8 ZeppelinStickAstrocylinders 0.33 0.42 2.06 0.67 88.8 0.6 0.25 0.20
909 0.97 8 ZeppelinCylinderAstrocylinders 0.33 0.20 0.42 2.06 0.67 88.9 0.7 0.25 0.20
895 0.96 10 TensorCylinderAstrosticks 0.33 3.78 0.42 2.06 0.73 0.58 88.9 0.7 1.2 0.25
895 0.96 10 TensorStickAstrocylinders 0.33 0.43 2.06 0.73 0.58 88.9 0.7 11.3 0.25 0.25
895 0.96 10 TensorCylinderAstrocylinders 0.33 0.25 0.43 2.06 0.73 0.58 88.9 0.7 11.2 0.25 0.25
909 0.97 9 z inGDRCylind 0.33 5.2 3.82 0.42 2.06 0.67 88.9 0.7 0.25
909 0.97 9 DRCylindersAstr 0.33 1.4 0.63 0.42 2.06 0.67 88.9 0.9 0.25 0.63
895 0.96 1 TensorGDRCylindersAstrosticks 0.33 10.0 3.60 0.42 2.06 0.73 0.58 88.9 0.7 11.2 0.25
895 0.96 11 TensorGDRCylindersAstrocylinders 0.33 1.8 0.20 0.43 2.06 0.73 0.58 88.9 0.7 11.2 0.25 0.20
1028 0.97 7 Bizeppelin 0.63 0.37 1.47 1.47 88.8 0.9
1076 0.99 8 BallGDRCylindersDot 0.66 11 19.42 0.27 1.77 88.8 0.7 0.07
1080 0.99 8 BallGDRCylindersAstrosticks 0.56 1.1 16.33 0.20 1.99 88.9 0.7 0.24
1076 0.99 9 BallGDRCylindersSphere 0.66 1.1 19.42 0.27 1.77 88.8 0.7 0.07 1.00
1099 0.99 7 BallCylinderAstrosticks 0.53 12.60 0.22 2.01 88.9 0.6 0.24
1133 0.95 6 ZeppelinStick 0.40 0.60 1.49 0.72 88.9 0.8
1120 0.95 8 TensorStick 0.40 0.60 1.49 0.76 0.66 88.9 0.8 9.6
1128 1.00 7 BallCylinderDot 0.60 13.42 0.33 1.75 88.8 0.7 0.07
1132 0.95 7 ZeppelinCylinder 0.41 4.83 0.59 1.49 0.72 88.9 0.8
1120 0.95 9 TensorCylinder 0.41 4.71 0.59 1.49 0.76 0.66 88.9 0.8 9.6
1128 1.00 8 BallCylinderSphere 0.60 13.42 0.33 1.75 88.8 0.7 0.07 0.24
1132 0.95 8 ZeppelinGDRCylinders 0.41 10.0 4.67 0.59 1.49 0.72 88.9 0.8
1120 0.95 10 TensorGDRCylinders 0.41 10.0 4.57 0.59 1.49 0.76 0.66 88.9 0.8 9.7
1180 0.99 7 BallCylinderAstrocylinders 0.50 11.04 0.24 1.95 88.9 0.6 0.27 11.04
1181 0.99 8 BallGDRCylindersAstrocylinders 0.50 10.0 11.12 0.24 1.95 88.9 0.6 0.27 11.12
1311 0.98 7 BallGDRCylinders 0.65 1.1 14.82 0.35 1.44 88.7 0.8
1335 1.00 7 BallStickAstrocylinders 0.41 0.31 1.93 89.0 0.6 0.28 10.38
1344 1.00 6 BallStickAstrosticks 0.41 0.36 1.86 89.0 0.7 0.23
1345 0.98 6 BallCylinder 0.61 11.26 0.39 1.43 88.8 0.7
1455 1.00 7 BallStickSphere 0.43 0.46 1.61 88.9 0.7 0.10 17.90
1492 0.99 6 BallStickDot 0.44 0.52 1.49 88.9 0.8 0.04
1548 0.98 5 BallStick 0.48 0.52 1.35 88.9 0.8
2071 0.89 7 DT 0.85 1.54 0.19 0.23 88.8 0.9 13.9

Table 10.3: Parameter estimates obtained after fitting models to the 2x4h 2° data set. The models are

ordered top-down by the BIC score. For GDR-Cylinder models, we report the mean of the

radius distribution. Angles Theta/Phi/Alpha give the spatial orientation.
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10.2 RESULTS AND DISCUSSION
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Figure 10.3: Right: Positional variance diagrams over 100 bootstraps from the 2x4h (left matrix) and 8x1h

(right) 2° data sets. The frequency of x-axis ranking is given by the shade of grey; e.g. the

Tensor comes out last in all 100 bootstrap samples of 8x1h. Left:The accuracy of predicting

unseen quarters of the protocol using parameters fitted to data from the remaining three-

quarters. Each point is the LSE between the synthesised and measured signal. The ranking

is by the BIC score of the 2x4h data set. Dotted lines across the plots indicate the group

structure of the ranking



SUMMARY

The first experiment follows up on a similar study by Panagiotaki et al. [2012], but using in
vivo human data rather than fixed rat tissue. It concluded that the data acquisition protocol
used was insufficient to discriminate between the models. Experiment 2 tested, and confirmed
as positive, the effect of increased gradient angular resolution on the model performance.

In Experiment 3, we enriched the acquisition protocol: we sampled a wide range of b-values
and diffusion times achievable on a clinical system and also used a much higher angular
resolution sampling than Panagiotaki et al. [2012]. Additionally, we extended the analysis to
determine ranking stability with respect to noise, protocol and model selection technique.

The overall ranking obtained is similar to previous observations from fixed tissue [Pana-
giotaki et al., 2012], with a few differences. Though there are minor differences due to inter-
sessional variability and subsequent image registration, the similarity between 2x4h and 8xih
data sets is important because it means we can construct data sets for this kind of experiment
from multiple short sessions, which are much more comfortable for the participant. The ad-
ditional steps in the analysis reveal a group structure to the model ranking and suggest that
the models in group (i) perform similarly well in explaining the full range of PGSE signals
acquirable from the human brain on current clinical systems.

The experiments here uses only data from the corpus callosum, which is relatively homoge-
neous, with little fibre dispersion, crossing or CSF contamination. However, these effects may
still influence the measurement to some extent. So, it is useful to explore finer regions of the
corpus callosum.

Moreover, the greater angular threshold increases fibre dispersion, which is reflected in
the fitting and parameter estimates, and which none of the models we test here is designed
to capture. The intention here was to start with the simplest geometry before performing a
similar analysis in more complex regions. Even in the corpus callosum, more sophisticated
models may outperform the limited set we study here. Models which explicitly cater for fibre
features such as dispersion/crossing Zhang et al. [2011, 2012]; Sotiropoulos et al. [2012], CSF
pool as in Barazany et al. [2009]; Zhang et al. [2011], will be the focus of the next chapters.

In the next part we compare parametric diffusion MRI models which explicitly seek to ex-
plain fibre dispersion in nervous tissue. These models aim at providing more specific biomark-

ers of disease by disentangling these structural contributions to the signal.
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Part IV

MODEL ADVANCES



INTRODUCTION

The previous three experiments applied the model comparison framework to the in vivo data.
One limitation pointed out in the Summary of chapter 11 is that the models assume that,
within each voxel, the neuronal fibres are straight and coherent. This reasonable assumption
can become problematic in the regions where fibres cross/bend/fan or in the estimation of
tissue characteristics, e.g. overestimating axon diameter indices [Zhang et al., 2011].

A recent class of parametric models has emerged to describe data better by additionally ac-
counting for fibre directional incoherence, which is abundant in the brain, even at a sub-voxel
level. Ball-and-Sticks [Behrens et al., 2003] can have more-than-one intracellular diffusion com-
partment. Zhang et al. [2012] constructed NODDI to describe fibres with an explicit orientation
dispersion index derived from a Watson distribution (an isotropic distribution on the sphere;
to be defined in the next experiment) and tested the model with in vivo human whole-brain
data. Sotiropoulos et al. [2012] design Ball-and-Rackets to describe fibre fanning through a
Bingham distribution (an anisotropic distribution on the sphere) by extending the Ball-and-
Sticks model [Behrens et al., 2003]. The Bingham distribution extends the Watson distribution
to account for asymmetric/anisotropic dispersion. This model is then applied to post-mortem
macaque monkey brain data.

In Experiment 4 we incorporate into our taxonomy models similar to NODDI, Ball-and-
Rackets, and others which have been constructed from combinations of existing compartments
that aim to capture both intracellular and extracellular diffusion. To test these models we use
the previous rich data set acquired in vivo on the CC of a human brain, and then compare the
models via the Bayesian Information Criteria. We test this ranking via bootstrapping on the

data sets, and cross-validate across unseen parts of the protocol, as in the previous chapter.

The work in this part has previously been published as:

Ferizi U, Schneider T, Tariq M, Wheeler-Kingshott CAM, Zhang H, Alexander DC: The
Importance of Being Dispersed: A Ranking of Diffusion MRI Models for Fibre Dispersion Using
In Vivo Human Brain Data. Lecture Notes in Computer Science, Springer Berlin Heidelberg,

Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2013, vol. 8149,
pp-74-81

In addition, using the above data set we organised a challenge, as part of CDMRI workshop
at MICCAI'13 conference. Participants were invited to train their models on three-quarters of
the data, and they were tested on the missing quarter. The best six entries presented their work

at the workshop challenge. There is more information on this in the Appendix chapter B.

69



EXPERIMENT 4: ADDING DISPERSION MODELS

In this experiment we update the taxonomy with various models for not-necessarily-linear
intracellular diffusion, represented via multiple sticks, which may be discrete or described via
a probabilistic distribution. Other than the models being different, this experiment follows
closely the format of Experiment 3: the models are fitted to the same in vivo human data, then
compared via BIC and, again, both bootstrapping and four-fold cross-validation are used to

validate the ranking.

Intracellular Extracellular Other

One Stick Dot

Two Sticks Zeppelin

Bingham Sticks

Tensor

Figure 13.1: The elements of each compartment class designed to capture diffusion through a particular
tissue medium: intracellular, extracellular, and the CSF. A model consists of a combination

of three compartments, one from each class.

13.1 METHODS

After a description of the models, there follows the data acquisition and the pre-processing
done to obtain a set of measurements for fitting the models. Last is the fitting procedure and

the criterion applied to compare the models.

EXTRACELLULAR COMPARTMENTS:  The compartments used to capture signal outside the
axons and the isotropically restricted compartments are the Tensor, the Zeppelin and the Ball,
as described in section 8.1. We follow Szafer et al. [1995] to express the Zeppelin with tortuosity,

where the ratio of the radial vs. axial diffusivities is equal to the ratio of the volume fractions
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13.1 METHODS

of the Zeppelin vs. all-bar-CSF/Dot compartments. (The isotropically restricted compartment

CsF uses Ball with a fixed diffusivity of 3x10~7 mm?/s.)

INTRACELLULAR COMPARTMENTS:  Sticks are used to represent the axonal diffusion, via
either a discrete set of Sticks [Behrens et al., 2003] (we pick two) or an underlying Bing-
ham/Watson fibre orientation distribution [Zhang et al., 2011; Sotiropoulos et al., 2012]. The

Bingham distribution is

1

f(nlky, k2, 1y, 12) = [1Fy (Ef ,k1,k2)] " Texpliq (g 1) + k2 (py -n)? (13.1)

N W

where k71 and «k, are the concentration parameters, such that k; > k; > o; the mutually
orthogonal vectors p; and p; indicate the orientation axes of fibre dispersion. This is similar
to a bivariate Gaussian distribution with elliptical contours on the sphere. The denominator,
1F1, is a confluent hypergeometric function of first kind [Mardia and Jupp, 2000]. The Watson
distribution is a special case of the Bingham distribution, where there is only one k and p

(k2 = 0); this corresponds to circular contours on the sphere.

DATA ACQUISITION AND PRE-PROCESSING  Here we use the 2x4h data set from Exper-
iment 3 (Section 10.1). Briefly, the protocol combines many pulse times 6, diffusion times A
and gradient strengths |G| to produce 32 shells with a by qx=10,308 s/ mm?.

The pre-processing produced three sets of voxels with varying deviation form the main fibre
direction: n=2° left 24 voxels, n=5° left 66 voxels, and 10° left 99 voxels. The voxels are located
across the genu and mid-body.

The signal is then normalised by the b=o images with the same TE. A single data set is
created by averaging the voxels selected above. Figure 10.1 shows the signal from the 2° data

set, containing 1,536=32*(3+45) measurements.

MODEL FITTING AND SELECTION:  The fitting is as in the Methods 8.1 of Experiment 1.
Each model is fitted 250 times, and the final parameters are those that produce the minimum
objective function LSE (eq.8.2).

The criterion BIC (eq.6.1) is then used to compare the models.

BOOTSTRAPPING AND CROSS-VALIDATION As in Methods 10.1 of Experiment 3, we con-
struct 100 bootstrap data sets by sampling with replacement in each shell the same number of
data points. In the four-fold cross-validation we divide the data set into four quarters, training
the models on three-quarters of the original data and testing the models on the missing/un-

seen data.
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13.2 RESULTS

13.2 RESULTS

Table 13.1 ranks some of the models and lists main parameter estimates across all three data

sets (with n=2°, 5° and 10°); a more extensive Table C.1, in the Appendix, lists all the models

and parameters. Included here are the best model of the previous chapter’s ranking of para-

metric models with no-dispersion, and a similar model with CSF instead of Dot. Four groups

can be distinguished:

i) all combinations that include an anisotropic extracellular compartment and a Bingham /Wat-

son intracellular compartment;

ii) models similar to (i) but instead using two-Sticks for their intracellular compartment,

excluding models that use tortuosity or those without a spherically restricted compartment;

iii) all models incorporating an isotropic extracellular compartment with a Bingham /Watson

intracellular compartment; and

iv) all exceptions to two-Sticks models in (ii).

The models that include a Bingham/Watson distribution outperform two-Sticks ones not

simply because of their good quality of fit to the data but also because of their reduced com-

plexity.
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MODELS Stick1/Watson/Bing Ball/Zep/Ten. Stick2
481 1.00 10 Zepp.Bing.CSF. 0.56 2.0 694 217 74 89 1] 029 05 0.15
511 1.00 7 ZepT.Wat.CSF. 059 2.0 5.77 89 1 0.28 0.6 0.13
512 098 10 Zepp.Bing.Dot 0.50 2.1 1033 410 71 89 1] 045 0.9 0.04
526 098 11 Tens.Bing. 0.65 2.2 718 272 67 89 1]035 12 09 55
550 098 8 ZepT.Bing. 062 22 647 184 74 89 1] 038 038
614 097 12 Tens.St.St.Dot 0.23 2.0 86 4 0.56 0.8 0.7 20]0.14 75 14 | 0.07
635 1.00 12 Tens.St.St.CSF. 022 1.5 86 5 041 05 03 25/017 74 18]0.21
703 1.01 8 Ball.Bing. 072 22 6.05 141 75 88 1] 0.28
703 1.01 9 Ball.Bing.CSF. 0.72 22 6.05 141 74 89 1] 0.28 0.00
761 096 7 Zepp.St.Dot 029 1.9 89 1 0.62 0.7 0.09
801 1.00 10 |Tens.Cylinder+CSF| 0.29 1.3 89 1 047 0.3 03 12 0.24
814 098 9 ZepT.St.St.Dot 0.33 1.8 86 2 050 1.1 0.12 69 12]0.05
824 096 M Tens.St.St. 028 1.7 84 5 052 09 0.7 29|020 70 17
852 099 9 ZepT.St.St.CSF. | 0.35 1.5 86 2 039 0.9 0.13 66 13]0.12
870 097 8 ZepT.St.St. 032 1.6 84 4 050 1.0 0.18 71 13
1135 099 8 Ball.St.St. 028 1.5 80 6 0.46 025 75 10

Table 13.1: Parameter estimates obtained after fitting models to the 2° data set; only a few models

are shown, with the full list given in Table C.1. The models are ordered top-down by the
BIC score. Here, we also include the estimates (shown in bold) from the best model of the
previous chapter’s ranking of parametric models with no-dispersion. Angles Theta/Phi/Al-
pha/Psi give spatial orientation; the number of model parameters includes the parameter Sy,
which is the unweighted signal at b=o. [Note: Zepp=Zeppelin; ZepT=Zeppelin with tortuos-
ity;Tens=Tensor; St=Stick; Bing=Bingham; Wat=Watson].
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Normalised Signal
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Figure 13.2: A comparison of raw vs. predicted/synthesised signal from six representative models. The

models are ordered in decreasing ranking left-right, top-bottom.

Within group (i), CSF models perform best for n=2° but, as 1 increases, Dot models are

best. In this group, models using tortuosity produce similar estimates to those of the uncon-

strained Zeppelin, suggesting that meaningful constraints on the model parameters, such as

the tortuosity assumption, can be used to simplify the problem at little cost to fitting quality.

Across angular thresholds, the axial diffusivity is about 2x10~7 mm? /s, and the radial dif-

fusivity is around one-quarter of this in models with CSF, but one-half in others; this is to be

expected as the CSF compartment has a fixed diffusivity of 3x10~7 mm? /s and higher volume

fraction than Dot.

As 1 increases from 2° to 5°, all models reflect the signal improvement from averaging across

more voxels (24 vs. 66, resp.) through decreasing BIC and increasing fibre incoherence k; how-

ever, at 10° (with 99 voxels averaged), the fitting improves slightly, but k reflects the increased

fibre coherence through decreasing k.
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Figure 13.3: LEFT: Positional variance diagrams over 100 bootstraps from the 2° data sets. The frequency
of x-axis ranking is given by the shade of grey. RIGHT: The accuracy of predicting unseen
quarters of the protocol using parameters fitted to data from the remaining three-quarters.

The ranking is as in Table C.1.

Figure 13.2 shows the fit of some representative models to the data, to illustrate the differ-
ence between the actual signal and that generated from the model.

Figure 13.3 shows on the left the positional variance diagram for the BIC ranking through
classical bootstrap. The ordering of the original ranking remains faithful through these ranking
histograms, and group structure remains unchanged, though there are minor variations within
each group. On the right of fig.13.3, the relative performance of each model in reproducing
unseen parts of the data set is shown. While broadly speaking the trends in both techniques
agree, cross-validation is less discriminatory within the groups. This technique also reveals
other subgroups within groups, e.g. within the top models of group (i), three-compartment
models with CSF do better than those with Dot (i.e. the stationary water compartment), or than

other two-compartment models.

13.3 DISCUSSION

This experiment has shown the potential advantage of dispersion models in describing data

even in a homogeneous region of the brain such the CC. In such structure, where a multitude

(LSE of predicted signal from the original)
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of function specific fibre tracts bundle together, there is inhomogeneity that can produce a
dispersion pattern, which is something that these models may reflect.

Because modelling the fibre population through a single-mode Bingham distribution out-
performed two-Sticks, the result suggests that the signal arises from small fluctuations in a
single fibre orientation rather than a small population of fibres with totally different orienta-
tion. On the other hand, even though two Stick models significantly outperform the single
Stick models, this does not necessarily make the two-fibre model correct.

The ranking also identified the CSF compartment to be better than Dot. This is expected, as
the Dot compartment is designed for stationary water, which would be more appropriate with
fixed tissue studies such as that of Panagiotaki et al. [2012], Dyrby et al. [2013], and Richardson
et al. [2013].

The bootstrapping on the data sets revealed a ranking order very similar to the original
one in Table 13.1. The cross-validation confirmed this ranking, but produced a more stratified
group structure, and closer model-similarity within subgroups. This is not unexpected, as
bootstrap sampling from such a large data set produces data sets very similar to the original
one, hence the ranking is not expected to differ greatly. Four-fold cross-validation data sets,
however, are relatively more heterogeneous, as each time we leave out a quarter of the original
data set; hence the model ranking stability is somewhat different.

One obvious limitation that arises from our methodology is that averaging voxels across
parts of the CC, as well as minor misalignments during image registration, may introduce
and/or exaggerate the dispersion. Smaller, ideally voxel-based, analyses would be more ap-
propriate and improve accuracy.

Another limitation in this methodology is that, because of the TE range used in this work, the
“normalisation” of the signal in the previous experiments has the disadvantage of making TE-
dependent the otherwise constant thermal noise. Though we expect the effect and differences
to be minor on the performance of the models relative to one another, accounting for the
TE-decay would improve the accuracy on parameter estimation.

The last limitation to list is that the results presented here were obtained from just one
subject. It is important to note, therefore, that it is uncertain whether the same results would

be obtained in another participant, or from another scanning session.
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SUMMARY

In this part we experimented with different models; a class of promising dispersion models
were fitted to the multi-shell data, and they were found to capture the signal better than
previous models for straight and coherent fibres.

The implication of this is that, even in the most coherent structures of the brain, such as
the cc, fibre dispersion differs significantly from a delta function. In particular, our analysis
showed that the single mode orientation distributions (Watson/Bingham) outperform two dis-
crete orientations (two-Sticks). As in the previous experiments, an anisotropic extracellular
compartment benefits the fitting, as does the addition of an isotropically restricted compart-
ment.

We also identified limitations in the methodology: one is that the analysis is confined to a
single data set; the other is that this data set is constructed in a way which may inadvertently
distort the dispersion models. In the next chapters we will explore ways of correcting for these,

and other improvements to the methodology.
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Part V

METHODOLOGICAL IMPROVEMENTS



INTRODUCTION

In translating the model comparison framework to in-vivo human data, the earlier experiments
identified areas of methodology that needed further investigation.

In all of the following experiments we will be using a smaller ROI on which the data will be
tested. This is important, especially for models which are designed to capture dispersion and
which can be over-sensitive to averaging across the CC. Testing the models voxel-by-voxel will
help us see how consistent the model selection is within regions, and help reduce artificially
inflated dispersion.

In Experiment 5, we improve the model fitting, by accounting explicitly for the TE decay.
Usually, most applications of diffusion MRI models of white matter do not fit relaxation T,
because the acquisition is usually of a single TE. However, our experiment samples multiple TE
values and accounting for TE means that we also need to include the T, decay explicitly in our
models. Here, we are able to investigate this parameter precisely because our data contains
a wide TE range, making T, estimation feasible. Work done with multi-spin-echo imaging
on living tissue has identified various, usually two or three, T2-specific compartments. The
longest, greater than about 1000ms, is attributed to the CSF compartment and the shortest,
around 10-20ms to the myelin; the one in between being cellular. Some studies in non-human
tissue distinguish between intra- and extra-cellular compartments [Menon et al., 1992; Peled
et al., 1999], while others in the normal live human brain [MacKay et al., 1994, 2006] , and
therefore more relevant to this study, identify only one peak for the cellular compartment, at
around 70-goms.

On the DW-signal modelling side, we will also fit for compartmentally different diffusivi-
ties. The simplification of equal intracellular and extracellular diffusivities is applied in some
current white matter models such as ActiveAx [Alexander et al., 2010] or NODDI [Zhang et al.,
2012]. The analysis here will show how sensitive the models are to this assumption.

In Experiment 6, we explore another area to be addressed: the inter- and intra-subject repro-
ducibility of model ranking and parameter estimates. Our experiment so far has been confined
to one healthy subject, and one acquisition (over two sessions). Therefore, we need to ensure
that the results are not affected by spurious imaging effects or particularities of scanning. We
include experiments that compare the sensitivity of parameter estimates across similar cor-
responding regions, across repeated scanning and other healthy subjects, which provides a

complementary evaluation of the models.
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EXPERIMENT 5: ACCOUNTING FOR TE AND T,

In this experiment, as a first enhancement, we will:

e fit the models voxel-wise over the more homogeneous regions of genu, midbody and

splenium, rather than across the whole of the CC;
¢ investigate how the parameters vary within the defined ROI, as well as across the CC;

¢ account explicitly for the variable echo time TE among measurements, by also fitting to

the data compartmentally different T;
e fit for compartmentally different diffusivities.

As before, after describing the Methods, we describe the results.

16.1 METHODS

DATA ACQUISITION  The data used here comes from Experiment 3 and 4 (section 10.1).
This protocol contains 32 shells with a b 1, ¢ x=10,308 s/ mm?.

In contrast with earlier experiments, here we do not normalise the signal, that is we use
the raw signal. Nor do we average across voxels, but perform the analysis on a voxel-by-
voxel basis, and report the variance across the four ROI voxels. We define three ROI, in the
genu, midbody and splenium of the mid-sagittal slice. Each of these regions consist of four
voxels. To select the voxels, we first fit the Ball-Stick-CSF model to the whole CC data and then
select the four voxels within each area with the highest Stick volume fraction, and with the
Stick direction most closely aligned with the mid-sagittal perpendicular. This ensures that the

voxels have least CSF contamination and are well embedded in white matter.

COMPARTMENT MODELS  All the models considered are a combination of three compart-
ments. The full set of candidate models for each compartment leads to a very large set of
three-compartment models. The focus here is on a small subset of models, as identified in the
previous chapters, that emerged as strong candidates. In particular, we consider only isotropic
free diffusion for the third compartment, modelling CSF contribution, since we consider only in
vivo data. For the intracellular compartments, we consider only Cylinder, Bingham-Sticks, and
one/two Sticks. Similarly, we use only Ball and full Tensor for the extracellular compartment.
In the model comparison we include NODDI [Zhang et al., 2012] and MMWNMD [Alexander et al.,
2010]. Briefly, their extracellular compartment is a cylindrically symmetric tensor/DT, with the

radial and axial diffusivity related, as in the tortuosity model of Szafer et al. [1995], with the
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16.1 METHODS

axial diffusivity itself fixed. In the two other similar models NODDI+ and MMWMD+, we instead

fit for the axial and radial diffusivities.

Intracellular Extracellular Other

Cylinder

One Stick
ne Stic CSE

Two Sticks

Tensor

Bingham Sticks

Figure 16.1: The elements of each compartment class designed to capture diffusion through a particular
tissue medium: intracellular, extracellular, and the CSF. A model consists of a combination

of three compartments, one from each class.

T, EFFECT  Varying TE means that we need to model T, effects. The total signal model

would then become:

TE TE TE
S=So0(fiexp(—=)Si+feexp(—=5)Se +fcexp(—=)Sc (16.1)
T3 T TS

where fi, fe and f. are the weights of the intracellular, extracellular, and third signal com-
partment Sintra, Sextra and S¢, respectively; the values of compartmental T, are indexed

similarly; S is the b=o signal (and TE-dependent too).

UNEQUAL DIFFUSIVITIES Much previous work [Alexander et al., 2010; Alexander, 2008;
Ferizi et al., 2013a,b; Panagiotaki et al., 2012; Zhang et al., 2011, 2012] assumes equal intrinsic
diffusivity (i.e. excluding the effects of restriction) of the water in the intracellular and extracel-
lular compartments. For each of our compartment models, we evaluate performance with and
without this constraint. To highlight the difference in later results, the models with separate

intra/extracellular diffusivities have “-diff" appended to their name.

MODEL FITTING  Model fitting has three stages:

1. Estimate voxel-wise the compartmental T, from unweighted signals with varying TE.

First, we find the T, of CSF from a ROI in the ventricle.

2. A preliminary analysis inside homogeneous WM regions of the CC (see Results 16.2)

showed that the b=o signal decays mono-exponentially with TE. Therefore, we assumed
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16.2 RESULTS

that the intracellular and extracellular T, are equal; hereafter, we refer to “T; of wMm". A

bi-exponential model fits WM T, Sp and f to the b=o data.

3. Fit other parameters to all data (i.e. with fixed CsF diffusivity, CSF volume fraction, Sg

signal and each compartmental T, of CSF and wWMm).

Each time we fit a model, we repeat the first two steps 10 times, and the best estimates
are fed into the last step. This last step, i.e. fitting to the DW signal, is performed 20 times,
with the starting point perturbed from initial estimates (taken from wider literature, including
Alexander [2008] and Dyrby et al. [2013]): the volume fractions were equally split across each
compartment, the axial diffusivity is 2 um? /s, radial diffusivity is 1 um?/s; the radius is
initialised at 2 um (with an upper limit of 20 pm). The CsF diffusivity was fixed throughout
the experiments to 3 pum?/s, and all other compartmental diffusivities have this value as an

upper bound.

DATASETS We considered various ROIs and subsets of measurements to construct different
datasets for fitting and model comparison.

The following four ROI were defined on the Achieva+ acquisition:

* ACH-genu includes four voxels in the centre of the mid-sagittal volume, with no evi-

dence of CSF partial volume;
* ACH-midbody similarly includes four mid-sagittal midbody voxels;
¢ ACH-splenium includes four mid-sagittal splenium voxels;

* ACH-CSF includes four mid-sagittal ventricular CSF voxels (used for estimating its T,).

MODEL RANKING For model comparison, instead of the earlier BIC, we return to AIC, as
defined in eq.6.3. While the two are not very different in their output, AIC is more often used in
cases such as this, where the parameter estimation is through a maximum-likelihood method.
The maximum likelihood estimation of model parameters means that maximising the posterior
distribution in the parameter space is equivalent to maximising the likelihood (the priors can

be regarded as uninformative in a Bayesian approach).

16.2 RESULTS

T, EFFECTs:  Figure 16.2 shows the distribution of log-signal at b=o versus echo time TE
for white matter. In both white matter and CSF the data show no significant and meaningful
departure from the mono-exponential model assumption, so for each scanner we concluded
that, at least for this dataset, the intracellular and extracellular T, are the same. In the genu
of the CC, T, averaged about 59ms. T, was higher in the midbody, at 62ms, and splenium at

75ms.
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16.2 RESULTS

As expected, the T, was just-over 1,000 ms on ACH-CSF data. These estimates are in the
order of previous estimates [MacKay et al., 1994; Whittall et al., 1997] of about 71 for genu,

and over-1000 for CSE.

MODEL RANKING:  Figure 16.3 shows the performance of the models fitted to the three
datasets. On top of the ranking of ACH-genu data are the models containing Tensor and/or
Bingham. Combinations of Ball with Stick/s rank last. In ACH-splenium the models rank
similarly. It is clear that there is more intra-voxel AIC similarity in the more homogeneous
regions of genu and splenium. In the midbody, ACH-midbody, AIC cannot distinguish well
between the models.

Figure 16.4 illustrates the fit of four of the best models to the raw ACH-genu signal (Ap-
pendix fig.D.1 shows the plots for midbody and splenium). We select only one of the four
ROI voxels, after ensuring inter-voxel similarity of plots. From earlier model ranking we pick,
from the models with the best ranking performance, two Tensor and two Ball models, as fol-
lows: Tensor-Cylinder-CSF-diff, Tensor-Stick-CSF, Ball-Bingham-CSF-diff, and Ball-Stick-CSF-
diff. The model signal is shown as solid line, whereas the raw data is shown with markers.
We can see that while all four models capture the low b-value data well, Ball-Stick-CSF-diff
is visibly worse than other models at capturing the higher (than about 5,000 s/mm?) b-value
shells.

PARAMETER STABILITY  Table 16.1 gives the parameter estimates of the models after being
fitted to signal from ACH-genu. Beside each mean estimate across the five voxels, we provide
(in small superscript) the standard deviations of these estimates as a percentage of the mean.
Across all models with ACH-genu, except Tensor and Stick combinations, the parameters
reflect higher intracellular volume fractions, especially in Ball models. The joint intra/extra-
cellular diffusivity is slightly higher in Bingham models than in Cylinder ones. In models
with separate intra/extracellular diffusivities, Ball diffusivity is lower than Bingham/Sticks
diffusivity, but otherwise in the other models. The Bingham distribution is more dispersed in
Ball versus Tensor models because the model has to compensate for the lack of extracellular
anisotropy.

Appendix table D.3 concerns the other regions of the CC, with datasets ACH-midbody and
ACH-splenium. Compared with ACH-genu, the more heterogenous ACH-midbody dataset
produces more dispersion (lower k) and CSF volume, which can be expected in such a thin
region prone to CSF contamination. The Tensor-Cylinder models provide higher axon thick-
ness, which follows the expected “low/genu-high/midbody-lowest/splenium" axon-thickness
trend in the CC [Aboitiz et al., 1992], unlike the lower estimates provided by the two Ball-
Cylinder models. With the exception of most separately-fitted intracellular diffusivities, all

other diffusivity estimates are higher compared with ACH-genu.
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16.3 DISCUSSION

Overall, ACH-splenium produces similar parameter trends to ACH-genu. An obvious dif-
ference arises from radii estimation which are slightly under those of ACH-genu; this is con-

sistent with known CC trends (as mentioned above).
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Figure 16.2: A T, map of the CC (centre, in colour). The bottom (left-right) the subplots relate to ACH-
genu, ACH-CSF, ACH-midbody, and ACH-splenium. Each of the two subplots shows on
the left a voxel’s b = 0 signal decay with TE. There are 6 b=o signals for each of the 16 TEs,
and they are marked in blue; the gradient of the fitted red line gives the negative inverse
of the T, value for each compartment. For this dataset, the distribution of points in white
matter (genu/midbody/splenium) did not suggest two separate rates of T, decay, therefore

the intra/extracellular T, are fixed to be the same.

16.3 DISCUSSION

As mentioned in the Introduction, accounting for varying data TE and fitting for T, makes
the model fitting more correct. As can be seen from eq.16.1, we expect that fitting for T,
would have the greatest impact on the relative CSF vs. WM volume fractions. In particular,
a much higher (than wMm) CSF T, decay would affect its volume fraction and, in turn, WM
compartmental volume fractions. Therefore, the T, is particularly important when fitting to
data from regions with partial volume contamination.

In estimating the T,, there are multiple minima within the range of the fitting runs. This
arises as a result of the estimation of T, alongside Sy and volume fraction of CSF: slight per-

turbations in the values of the latter two cause the T, to vary by up to 5ms either side of the
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Figure 16.3: Model ranking for the three main Achieva+ datasets: ACH-genu, ACH-midbody and ACH-
splenium. A similar trend persists across genu and splenium rankings: combinations of

Tensor with Cylinder or Bingham are best, whereas those of Ball with Sticks are worst.

mean. The T, reported in the tables of parameter estimates is the one which, along with other
estimates produces the minimum objective function for the whole dataset (and not just the
b=0 signal). We will report more on the stability of the T, in section 23.2.

We regard the results from the genu as more reliable than those from the splenium or mid-
body. The reason for this is that the genu ROI is best embedded in white matter, surrounded by
at least two other extra-ROI voxels of white matter, the splenium ROI is less well “padded”, with
around one voxel separating it from CSF, whereas the midbody ROI is as thick as the midbody
itself and is highly susceptible to CSF contamination. Additionally, the limited imaging FOV is
purposely positioned so that the genu is at it centre. So, all subsequent image distortions ap-
peared more pronounced away from the FOV centre and, therefore, image artefact corrections
worked less well on the splenium and the midbody than the genu. Another possible source
of distortions can be the presence of arteries that supply blood to the CC, one of which is the
splenial artery (‘posterior pericallosal artery’). Though our scanning was cardiac gated, it is
possible that artery pulsations distort one part of the CC more than another. While the results
from the midbody and splenium can still be informative, the greater stability of location and
homogeneity of the genu ROI through 8h of scanning time render the genu the primary object
of study for the ccC.

As regards parameters, the apparent volume fraction ‘anomaly’, i.e. lower intracellular than
extracellular volume fractions, has been observed previously, and been given various inter-
pretations: Assaf et al. [2002, 2004] assume “that the majority of the ‘slowly diffusing’ spins
are undergoing restricted diffusion within the neuronal fibers". Assuming that the intracellu-
lar space occupies about 70-80% of the total volume, previous bi-tensor model fits [Niendorf
et al., 1996; Clark and Le Bihan, 2000], however, attribute the higher volume fraction to ‘fast-

diffusing’ spins.
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Figure 16.4: Plots illustrating the quality of fit for four selected models fitted to ACH-genu. We select

one voxel from the genu ROI, whose raw signal is shown with markers and the model signal

shown as solid line. Though the models are fitted to all the data, for clarity, plots show only a

few selected high and low b-value shells of |G|=6omT/m. The four A-specific shells increase

in value from top-bottom.
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Table 16.1: Parameter estimates from model fitting to each full dataset ACH-genu. The volume frac-
tion of CSF is zero, and the estimated ROI mean T, is 59ms. Not shown is the “fanning"
parameter, k; from Bingham, which is lower than (at about half of) k; making Bingham
isotropically dispersed, like Watson. (Appendix fig.D.3 has estimates for ACH-midbody and
ACH-splenium.)
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EXPERIMENT 6: INTER- AND INTRA-SUBJECT REPRODUCIBILITY

To explore the generalisability of our earlier analysis, with regard to model ranking and param-
eter estimation, we will examine the intra- and inter-subject reproducibility. The inter-subject
investigation will be done through scanning other healthy subjects via a reduced protocol; one
of these healthy subjects is the main subject of the data used so far. By comparing the results
from these acquisitions we can assess the intra-subject reproducibility. In addition, we will see
the results from a dataset acquired on the same protocol as the main dataset; we have seen

this acquisition in Experiment 3 (Chapter 10), referred to as the “8x1h".

Achieva- Protocol

___68ms_ _ _ _ _ . o __S%3ms_ _ _ _ .
v A TE |G| b v A TE 1G] b
— (s (ms)_ (mTm) _(s/mm) _ o — _(m3) _(ms) _(mTm) (simm?)_
1 20 54 60 286 7 20 64 60 682
> 40 68 60 616 & 40 73 60 1553
3 60 8 60 945 o 60 93 60 2424
4 80 108 60 1275 10 80 13 60 3294
5 100 128 60 1605 1 100 133 60 4165
6 120 148 60 1935 12120 153 60 5036

Table 17.1: The reduced 1h scanning protocol, as applied to four different subjects.

17.1 METHODS

THE Achieva+ PROTOCOL (OVER 8 SESSIONS): The protocol used here is as in Exper-
iment 3 (Section 10.1), containing 32 shells with a by qx=10,308 s/ mm?. However, rather
than covering the protocol over two sessions, here we will use the dataset acquired over eight
sessions, to check for reproducibility of the model ranking.

The following three ROI were defined on this 8-session Achieva+ acquisition:

¢ ACH-8-genu includes four voxels in the centre of the mid-sagittal volume, with no

evidence of CSF partial volume;
¢ ACH-8-midbody similarly includes four mid-sagittal midbody voxels;

¢ ACH-8-splenium includes four mid-sagittal splenium voxels;
THE Achieva— ProTOCOL:  This protocol aimed to cover a subset of the previous mea-

surement space in just 1h, through combinations of & = {8, 13}ms, A = {20, 40, 60, 80, 100,

120}ms, and |G| = {6o}mT/m, with a maximum b-value of ~5,000 s/ mm?. TE varied from 54
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17.2 RESULTS

to 153ms. There were ten 4mm-thick mid-sagittal slices, with 2mm x 2mm in-plane resolution.
Each shell had 45 directions, with five preceding and nine interwoven b=o0 acquisitions, giv-
ing 708 measurements in total. On this reduced 1h protocol, we scanned two males and two
females, aged 25-33 yrs.

These four datasets come from the Achieva— acquisitions of the four different healthy sub-

jects. We choose only the genu region, as it is the thickest and least susceptible to artefacts.

ACH-subject-1 is the signal from four mid-sagittal genu voxels from the first subject;

ACH-subject-2 is the signal from four mid-sagittal genu voxels from the second subject;

ACH-subject-3 is the signal from four mid-sagittal genu voxels from the third subject;

ACH-subject-4 is the signal from four mid-sagittal genu voxels from the fourth subject;

17.2 RESULTS

T, EFFECTS: Figure 17.1 shows the T, estimation across the CC of the 8xth Achieva+
dataset. There is a similar trend as with the 2x4h dataset, shown in fig.16.2, but here the genu
T, is higher, at about 73ms.

Figure 17.2 shows the genu T, estimation in the four different subjects, scanned with the
reduced protocol. The average T, of the first two subjects (with the least corrupted datasets)
were similar, ~54 and 59ms, respectively, in turn being similar to the estimate from ACH-
genu and ACHS8-genu. The T, extracted from the other two subjects were severely affected
by motion artefacts; the wide distribution of T, values across the four neighbouring voxels
reflects this (compared with the first two subjects, whose T, distribution are reasonably tight

about the mean).

MODEL RANKING  Figure 17.3 gives the ranking of the models to ACH8-genu, ACHS-
midbody and ACHS8-splenium datasets. Bingham models here are best, but the picture changes
a little from fig.16.3; e.g. Tensor with Sticks and Cylinder are no longer top-ranking in the
genu data, whereas in the midbody, Bingham models appear increasingly better compared
with other models.

Figure 17.4 shows the reproducibility of the ranking obtained above using a reduced scan-
ning protocol on four different healthy subjects. The ranking of models in the first healthy
subject is the same as that obtained from ACH-genu and ACHS8-genu. This provides another
intra-subject ranking confirmation, as all three datasets correspond to the same person. The
data from the second healthy subject produces similar trends: Tensor models are best, es-
pecially those with different compartmental diffusivities. As mentioned above, the last two
datasets had severe motion artefacts which may have compromised the data, hence there is no

clear ranking of the models.

88



17.2 RESULTS

g0
—~~ .
Cé 70
N
. 60
[_4
50
40
30 v v v
ACHS8-genu ACHS8-midbody ACH8-splenium
* avoxel’s signal * avoxels signal * avoxel’s signal
— linear fit — linear fit —— linear fit
8 1 8 1 8 1
7 7 7
e : 2 ¢ 6\‘%\‘%\‘ < M,
ER S £ i Mg | f Byt
"‘*ﬁv\ ¥ ¥ ; i\\
5 ja 3 5 5 5 o
4 4 4 4
:?10 60 80 100 120 140 160 %iO 60 80 100 120 140 160 élO 60 80 100 120 140 160 %4(] 60 80 100 120 140 160
TE (ms) TE (ms) TE (ms) TE (ms)

Figure 17.1: Similarly to fig.16.2, this figure shows the T, map across the CC for the “2x8h" protocol. The
T, estimates are visibly higher than in the 2-session scanning of fig.16.2, by up to 14ms in

the genu.

PARAMETER STABILITY The estimates from ACH8-genu, as given in table 17.2, show rea-
sonable agreement with the estimates from ACH-genu in table 16.1. As can be seen from
Appendix Table D.4, noticeable differences start to appear when using data from the region
of midbody, between ACH-midbody and ACH8-midbody, especially in the axial diffusivity.
Considerable changes appear in the Tensor volume fraction in the splenium, but Ball com-
partment estimates are more resilient. These increasing changes are expected as, relative to
the genu, the midbody and splenium are more affected by motion artefacts and CSF partial

volume. The CSF volume estimate was, on average, 5-10% of the total volume fraction.

ACH-subject-1 ACH-subject-2 ACH-subject-3 ACH-subject-4
100 100 100 100 %
90 90 90 % 90 %
2 %0 T 50 2 50 2 %0
= = = * =
70 70 70 % 70 *
* % %
60 % 60 60 60
* % % * K %
50 1 2 3 4 50 1 2 3 4 0 1 2 3 4 50 1 2 3 4
voxels voxels voxels voxels

Figure 17.2: The T, map across the four different subjects. The wider distribution of estimates in the last

two subjects comes as a result of larger motion artefacts.
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Figure 17.3: Model ranking for the main 8xihr Achieva+ dataset (fig.16.3 concerns the 2x4hr dataset).

Overall, a similar trend persists across all dataset rankings: combinations of Tensor with

Cylinder or Bingham are best, whereas those of Ball with Cylinder and Sticks are worst.
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Figure 17.4: Model ranking across four healthy subjects using a reduced protocol. The trends obtained

from 16.3 are repeated well across all subjects.

17.3 DISCUSSION

This experiment showed that splitting the 8h scanning protocol into multiple sessions repro-
duced the T, pattern across the CC: there was a lower estimate in the genu than the splenium
and midbody. The estimate itself was higher in the eight-session dataset; e.g. by 14ms in the
genu. Though these T, estimates are indicative of the white matter tissue values, our exper-
iment was not designed for this purpose: limitations include the long acquisition time com-
bined with the relatively large voxel size (2mm x 2mm x 4mm), which in turn increases the
possibility to incur motion artefacts, hence more CSF contamination, and more instability in
the estimation of T,. (We discuss these more in sections 16.3 and 23.2.)

The ranking pattern is largely reproduced across scans (8h protocol over 2 sessions, and
the same protocol over 8 sessions) and protocols (including scans over a reduced 1h protocol),

with some differences. The Bingham models are best for the two large 8h datasets, but models
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Table 17.2: Parameter estimates from model fitting to the full dataset ACH8-genu. While the CSF vol-
ume is almost zero, the estimated ROI T, is 73ms. (Estimates for ACH8-midbody and ACHS-

splenium are in the Appendix, fig.D.4.)

with two-Sticks come out on top on the reduced datasets for the four subjects. Cylinder and
Bingham models seem to benefit most from datasets of a broader b-values range.

As with the ACH-genu dataset, in ACH8-genu the Bingham distribution of fibres appeared
isotropic (with the second dispersion concentration parameter close to zero). This suggests
that a Watson distribution (equivalent to an isotropic Bingham distribution) may be sufficient
for capturing fibre dispersion, at least in the genu.

While the parameters were also largely reproducible, the Bingham distribution reflected a
higher dispersion of fibres in the multiple session scanning (higher « in fig.16.1 than fig.17.2).
Indeed, even in the scans of four healthy subjects, the Bingham captures the greater hetero-

geneity introduced by motion artefacts (higher « in fig.D.1 than fig.D.2).



SUMMARY

In these two experiments, we investigated the compartmental T,. From our acquired data,
we could not justify different T, in each intra/extracellular compartment, but found that a
separate T, for CSF is necessary. The estimate of T, varies across the CC, being lower in the
genu than in the splenium, and highest in the midbody.

As explained in chapter 16.3, the best representative of white matter in our datasets is
the genu, being relatively large and least affected by registration artefacts. The analysis on
the genu ROI reveals that, broadly, models with an intracellular Bingham distribution, or an
anisotropic extracellular Tensor, rank highest, whereas those with isotropic extracellular Ball
and intracellular Sticks rank lowest. The ranking from splenium provided similar results, but
midbody data was less discriminatory of model performance.

Beyond the model ranking, we investigated the stability of the parameters. The analysis
provides more realistic volume fraction estimates when the Tensor models’ intra/extracellular
diffusivities are fixed to be the same. Relaxing this assumption confounds the description and
assignment of intracellular and extracellular compartment volume fractions and diffusivities.
The results from splenium show more variability in Cylinder radius estimation.

Beyond the model ranking, we also investigated the inter- and intra-subject reproducibility
of the ranking and parameters. There is good reproducibility of ranking across different scans
of the same person, but the results are more robust for the area of genu, whose ROI is less
affected by CSF partial volume and motion artefacts. The same applies to the parameters: the
reproducibility of the parameters is heavily affected by artefacts, especially in two of the four

subjects scanned with the reduced protocol.
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HIGHER GRADIENTS



19

To restate our aim, we are interested in finding a model which can infer the most information

INTRODUCTION

about the microstructure from the tissue signal. We have aimed at maximising the richness
of the dataset by sampling densely across the experimental tuneables. To this end, recent
improvements in the scanner technology give the potential of learning more about the models,
and hence the tissue.

In the work we have done so far, we have used the most recent and modern scanners
intended for clinical use. However, as mentioned at the very start of this work, standard clin-
ical scanners, using gradient strengths of 40-60 mT/m, cannot ordinarily afford the gradient
strengths found in scanners for fixed tissue or animals that use gradients reaching 300-1,000
mT/m. In diffusion weighted imaging, higher gradients provide higher contrast in the diffu-
sion/dispersion of water molecules; this is very beneficial to the model fitting, and invaluable
to this kind of work.

The recent development of human MR systems with 30omT/m gradients, in particular the
MGH-UCLA Connectom scanner [Setsompop et al., 2013], aims at mapping through diffusion
tractography the structural connections in the live human brain. But this also provides an op-
portunity for, and is a major step towards, the long-term translation of microstructure imaging
techniques.

We also use this scanner to acquire a similarly rich dataset to the one obtained in the pre-
vious experiments. Over 8h of scanning, we collect a rich dataset with which to test all the
models, and compare the results with those inferred from data acquired with more standard

clinical scanners.
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EXPERIMENT 7: CONNECTOM-SKYRA DATA

Here we explore the generalisability of earlier model comparison results, which use standard
human scanners with 6omT/m gradients, to the wider measurement space of human data
accessible with the Connectom scanner. We construct a multi-shell HARDI protocol for the
Connectom scanner with a wide range of b-values and diffusion times. It is similar in spirit
and size to that acquired of Experiment 3 (Section 10.1 and Ferizi et al. [2013a]) but exploits the
wider measurement space afforded by the 30omT/m gradients. We concentrate on the set of
models used in previous work [Ferizi et al., 2013a,b; Panagiotaki et al., 2012] and Experiments
3/4/5/6 that perform consistently well and compare model rankings between the Connectom

datasets and data from Experiments 5 and 6 [Ferizi et al., 2013a] using the AIC.

20.1 METHODS

We describe below the acquisition protocols, which are also summarised in table 20.1. Ethical

approval and written consent were obtained prior to scanning for all subjects.

THE Connectom PrROTOCOL:  This acquisition used the Massachusetts General Hospital
Magnetom Skyra Connectom (Siemens Healthcare) scanner, which has a novel AS302 gra-
dient system with a custom-built 64-channel coil, capable of |G| =300 mT/m and a slew rate
of 200 T/m/s. A PGSE [Tanner and Stejskal, 1968] sequence was used, with GeneRalized Auto-
calibrating Partially Parallel Acquisitions (GRAPPA) parallel imaging, an acceleration factor of
2, cardiac gating and TR=1s. The protocol contains 48 HARDI shells, each with go directions (45
unique pairs of opposite directions), and ten interwoven b=0 acquisitions, for a total of 100

measurements per-shell. Each shell has a unique combination of:
¢ gradient strength |G| = {60, 100, 200, 300} mT/m;
* pulse width 6 = {3, 8} ms;
* pulse duration A = {20, 40, 60, 80, 100, 120} ms.

The maximum b-value, therefore, is 46,000 s/ mm?. Each shell uses the minimum TE possible
for the combination of 6 and A; TE thus ranges from 49 to 152ms.

For this protocol, the same healthy subject as in the Achieva+ acquisition was scanned over
two gh non-stop sessions. The imaged volume comprises twenty 4mm-thick whole-brain sagit-
tal slices covering the CC left-right. The image size was 550 x 550 and the in-plane resolution
is 2mm x 2mm. The SNR of b=o images is about 35 at TE=g9ms and 6 at TE =152ms. The four

shells with 5 = 8ms and A = 6oms were corrupted so these were omitted from the analysis.
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20.1 METHODS

Connectom Protocol

—__038ms_ _ _ _ _ . e __0%8ms _ _ _ _ _
w A TE |G| b v A TE 16| b

— () (me)_ (mTm) _(shmmd) o _(ms) _(m) _(mTm) (shm)_
1 237 49 60 50 25 21 58 60 300
2 17 49 100 100 26 20 58 100 800
3 20 49 200 500 27 20 58 200 3200
4 20 49 300 1100 22 19 58 300 6700
5 44 67 60 100 20 39 72 60 600
6 40 67 100 250 0 40 72 100 1700
7 40 67 200 1000 31 40 72 200 6850
& 37 67 300 2100 32 38 72 300 14550
s 66 87 60 150 ~ 60 92 60 950
10 63 87 100 400 8 61 92 100 2650
1 59 87 200 1500 T 60 92 200 10500
12 56 87 300 3200 S 57 92 300 22350
13 87 107 60 200 37 82 112 60 1300
1479 107 100 500 s 80 112 100 3550
15 81 107 200 2050 50 80 112 200 14150
16 75 107 300 4300 4 76 112 300 30200
17109 127 60 250 4 100 132 60 1600
18 102 127 100 650 42 100 132 100 4450
19 100 127 200 2550 43 100 132 200 17850
20 94 127 300 5400 4 95 132 300 38050
21 130 147 60 300 45 121 152 60 1950
22 117 147 100 750 % 119 152 100 5350
23 119 147 200 3050 47 120 152 200 21500
24 113 147 300 6500 4 114 152 300 45900

Table 20.1: The Connectom scanning protocol, which required two gh sessions. Four corrupted shells,

shown as Omitted, were excluded from the analysis.

DATA PREPROCESSING  All images were corrected for eddy current distortions and co-
registered using FSL Flirt [Jenkinson et al., 2002] and Eddy module (www.fmrib.ox.ac.uk/fsl/eddy).
Across the CC of all datasets, and after ensuring our selection was away from partial volume
effects and well-embedded in WM, a neighbourhood of five voxels', was selected from the

middle of the genu, midbody and splenium.

DATASETs  Four similar regions of interest from the Connectom acquisition were defined:
® CON-genu has four mid-sagittal genu voxels;
* CON-midbody has four mid-sagittal midbody voxels;
® CON-splenium has four mid-sagittal splenium voxels;

® CON-csf has four mid-sagittal ventricular CSF voxels.

We also consider several subsets of the CON-genu data to explore the influence of measure-

ments with different gradient strengths:

* CON-genu-G60 retains only shells with |G|=6omT/m, with b ax ~ 2,000s/ mm?;

1 To do this, we used the Stick volume fraction and direction from the Ball-Stick model fitting.
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A = 20ms

A = 120ms

20.2 RESULTS

® CON-genu-G100 retains only shells with |G|=100omT/m, with by qx ~ 5,000s/ mm?;
* CON-genu-G200 retains only shells with |G|=200mT/m, with by qx ~22,000s/ mmZ;

* CON-genu-G300 retains only shells with |G|=300mT/m, with by qx ~ 46,000s/ mm?2.

20.2 RESULTS

Figure 20.1 shows the diffusion-weighted images with gradient in the direction perpendicular

to the fibres of the CC. We see that signal persists even at the highest diffusion weighting.
Figure 20.2 shows the CON-genu dataset, split into the four gradient strengths used, to-

gether containing 4,411 measurements. The measurements provide good coverage of the signal

range. Anisotropy is apparent even at the highest b-value.

T, EFFECTS:  Figure 20.3 shows the b=o0 log-signal against TE for genu, midbody, splenium
and CSFE. All plots indicate an approximately mono-exponential model. As in Experiment 6,
we here assume that the intracellular and extracellular T, are equal. In CON-genu, voxel-wise
T, averaged about 57ms. There was some variation across CC, with T, in CON-midbody, at ~
67ms, and lower for CON-splenium, at ~ 6oms. The T, estimate from CON-csf data averaged

about 6ooms.
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Figure 20.1: Images of the CC showing the signal for gradient direction perpendicular to the fibres, at
each |G|, for each pulse time 5, but only for the smallest and largest diffusion times A. The
grey scale is adjusted in each case so as to give a reasonable contrast between the CC and the

background. Signal still persists even at b ~ 46,000s/mm?.
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Normalised Signal
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Figure 20.2: The CON-genu dataset, consisting of averaged signal from four voxels in the middle of the
genu; the models, however, are fitted to raw data. For clarity, the signal is split across each
gradient strength. The legend gives the b-value in units of s/ mm? and, in the last plot, also
diffusion and pulse times (5 | A), which are the same across the four plots, in units of ms.
G is the applied gradient vector and n is the fibre direction; the x-axis gives the cosine of
the angle between the applied gradient and fibre direction: near o to the left, the gradient is
perpendicular to the fibres; as it approaches 1 to the right, the gradient direction becomes

parallel with the fibre.

MODEL RANKING:  Figure 20.4 shows the performance of the models fitted to various
datasets. As in Experiment 5 (see Results 16.2), we find that the best models from CON-genu
are the Tensor and/or Bingham models, and last are the combinations of Ball with Stick/s.

Compared with ACH-genu (fig.16.3) results, this performance is reproduced in the CON-
genu ranking. The differences norrow in the CON-midbody and CON-splenium data. This
is expected, as the region is more susceptible to motion artefacts and CSF partial volume.

Figure 20.6 shows that the models become more distinct as gradients increase. The ranking
obtained from the first dataset CON-genu-60 is less informative than the ranking obtained
from other |G|-specific datasets, CON-genu-100 / -200 / -300.

Figure 20.5 shows the fit of four models to CON-genu signal (Appendix fig.E.1 shows
similar plots for the midbody and splenium). As with fig.16.4 of Experiment 5, we pick two
Tensor and two Ball models: Ball-Bingham-CSF-diff, Tensor-Cylinder-CSF-diff, Tensor-Stick-
CSF and Ball-Stick-CSE-diff. The model signal is shown as solid line, and the raw data is
shown with markers. The plots reveal that the higher b-value shells of CON-genu data enable
a greater differentiation between the models than observed in fig.16.4: Bingham models cannot
capture the largest b-value shells, but they capture better than Cylinder the less-restricted

signal.
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Figure 20.3: As in fig.16.2, here we show the T, map of the CC (centre, in colour) for the Connectom
data. There are 40 b=o signals for each of the 12 TEs, marked with blue stars. To the right are

all four ROI voxels’ T, values, starred in red.

PARAMETER STABILITY Table 20.2 shows the mean CON-genu parameter estimates and,
in small superscript, their standard deviations gives as the percentage of the mean. The CsF
volume fraction is constantly around zero, whereas T calculation shows some variability. The
parameters reflect higher intracellular volume fractions, except for Tensor and Stick combina-
tions. The single axial diffusivity is higher in Bingham than in Cylinder models. In models
with separate intra/extracellular diffusivities, Ball diffusivity is lower than Bingham/Sticks
diffusivity, but the opposite applies to the other models. There is more dispersion in Ball
versus Tensor models as the model compensates for of the extracellular isotropy.

Among the best fitting models, separate compartmental diffusivities make little difference
to Tensor-Bingham combinations, but a considerable improvement to Tensor-Cylinder and
Ball-Bingham models. As in other datasets, separating compartmental diffusivities generally
makes the volume fractions closer. Thus, although the separate diffusivity models explain the
data better, the parameter estimates, at least the volume fractions, are less consistent with what
we might expect.

For the same reasons stated in Discussion 16.3, the genu ROI is a more reliable region than
the corresponding ones in the splenium and midbody. So, we leave to Appendix table E.1
parameter estimates for the splenium and midbody. Nevertheless, some parameters in CON-

splenium, such as compartmental volume fractions, show slight similarity with those of CON-
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Figure 20.4: Model ranking for each dataset. Overall, a similar trend persists across all dataset rankings:
combinations of Tensor with Cylinder or Bingham are best, whereas those of Ball with Cylin-

der and Sticks are worst.

genu. The diffusivities are more different, especially Tensor radial diffusivities. An unexpected
result arises from radii estimation, which are highest in the splenium; however, there is a high
variance of the estimate across the ROI voxels. These values are inconsistent with known cc
trends.

The more heterogenous CON-midbody dataset produces more dispersion and CSF volume
than CON-genu. The Cylinder radii estimates are slightly higher than for genu, which is
expected. With the exception of most separately-fitted intracellular diffusivities, all other dif-
fusivity estimates are higher compared with CON-genu. As with ACH-midbody data, this
region produces the opposite trend of high-extracellular/low-intracellular diffusivities for Ball
models.

Table E.2 shows the dependence of parameter estimates to increasing gradients of the
Connectom data. As mentioned earlier, due to differences in the protocol, the model pa-
rameters drawn from CON-genu-60 do not provide immediate similarity to the estimates to
ACH-genu. In the higher gradient datasets of CON-genu-200 and CON-genu-300 the stabil-
ity of the T, estimates decreased, so we fixed the wM T, for these datasets to 57ms. Cylinder
models aside, as gradients increase, all Ball compartment volume fractions increase, while the

Tensors becomes more anisotropic.

20.3 DISCUSSIONS

Since both scanners used in the study are of same B, field strength, 3T, we would expect the T,
in all datasets CON-genu, ACH-genu, ACH8-genu and ACH-subject-1 to be approximately
the same; they respectively averaged 59, 57, 73, and 54ms. The highest estimate of 73ms could
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Figure 20.5: Plots illustrating the quality of fit for four selected models fitted to CON-genu. Only one
voxel is selected from the genu ROI, whose raw signal is shown with markers and the model
signal shown as solid line. For clarity, the plots show only a few selected high/low b-value
shells, of |G|=300mT/m. The six A-specific shells increase in value from top-bottom. Bing-

ham fails with the largest b-value signal, but is better for less restricted signal.

be attributed to the multi-sessional method of image acquisition, whereas the other estimates
are acceptably similar, within 4% deviation from their mean.

The CON-genu-60 ranking, in fig.20.6, is less informative when compared with the ranking
from ACH-genu in fig.16.3 and ACH8-genu in fig. 17.3. One possible explanation can be that,
though the gradients are similar, the data of ACH-genu and ACHS8-genu contain a wider
measurement space of b-values, respectively ~ 10,000s/ mm? vs. 2,000s/mm? of CON-genu-
60, including longer pulse durations 5.

The model fit illustrations to CON-genu data, in fig.20.5, showed that models with a Bing-
ham compartment fail to include the largest b-value shells in their modelling. This result may
suggest that the dispersion is microscopic rather than macroscopic [Nilsson et al., 2012], i.e.
the signal arises from small fluctuations/undulations in a single fibre orientation rather than
a small population of fibres with totally different orientation. Another possible explanation is
that the Bingham distribution tails off too slowly, i.e. the true distribution has a stronger peak

around the mean.
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Table 20.2: Main parameter estimates from fitting to CON-genu data.
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SUMMARY

In this work we sampled a wide measurement space of human data accessible with the
Connectom scanner and its 30omT/m gradients with the aim of determining whether similar
compartment models for WM explain these unique data as more accessible data from standard
systems with 6omT/m.

As in Experiment 5 (chapter 16), we investigated the compartmental T,. Here too, we found
more support for a single intra/extracellular T, though separate from a much higher T, for
CsF. The T, estimate was highest in the midbody and splenium, and smallest in the genu.

In the genu, we saw that Tensor combined with Cylinders and Sticks are better with separate
intra/extracellular diffusivities; this does not apply to Tensor with Bingham models. In partic-
ular, dispersion models generally explain data best, as LSE scores show in table 20.2, but they
cannot capture Connectom signal that remains at very high b-values, as shown in fig.20.5.

As regards the parameter estimates, we obtain more realistic volume fractions when Tensor
intra/extracelullar diffusivities are equal. From top models, Ball-Bingham-CSF-diff estimates
a higher intracellular diffusivity, which could be plausible if, intracellularly, there would be
less obstruction inside the axon than in the outside hindered space.

Between Achieva+ and Connectom datasets, the parameters were generally more repro-
ducible in the genu. As expected, the estimation of radii is consistently lower with the Con-
nectom data. This suggests that the higher gradient strengths of CON-genu help ameliorate

the overestimation of axon diameter index, consistent with Dyrby et al. [2013].
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Part VII

STABILITY OF RANKING; AND AN ALTERNATIVE MODEL
SELECTION



INTRODUCTION

All the multi-compartment diffusion MRI models we use are non-linear. This necessitates the
use of computational methods to search for their best parameters. By ‘best’” we mean those pa-
rameters which minimise the objective function (the error). The optimisation routine searches
the parameter space of models until the desired precision is achieved. The models, however,
vary in their scale of non-linearity, and so the required computation in finding this solution is
not the same in each case. As explained in the Model Fitting of Experiment 5, we repeat our op-
timisation procedure 100 times, each time perturbing randomly the starting estimates. In the
next chapter we will start by seeing, for each model, the probability of hitting the minimum
in the 100 fitting runs.

Though we do not have ground truth measurements and do not possess many datasets
against which to check our model fitting, there are techniques, such as bootstrapping and
cross-validation, which investigate the variance and accuracy/bias inherent in the model for a
particular dataset. Both methods are used widely in error-prediction and model selection, with
some authors preferring one above the other; e.g. Kohavi [1995] identifies cross-validation as
a better method for model selection; Efron and Tibshirani [1997] regard cross-validation as a
low-bias high-variance method, and recommends bootstrapping instead (specifically, the .632+
method). We use elements from both methods, testing the models to variations in seen and
unseen parts of the dataset. This provides a complementary evaluation of the models.

The clinical application of the models we are testing will make use of the parameters as
proxy biomarkers for disease development. In using the AIC/BIC criteria we have aimed to
evaluate the parsimony of the models in terms of their quality of fit to the data against model
complexity. The techniques of bootstrapping and cross-validation test how robust the models
are to variations in the dataset, and in predicting unseen data. However, the models need to
be applicable across the brain, giving sensible indices, such as fibre density or thickness. So
we examine the parameter maps of the models beyond the genu, across the whole mid-sagittal

CC.
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EXPERIMENT 8: STABILITY OF PARAMETERS

We first look at the stability of T, estimation in the ACH-genu and CON-genu datasets. As a
reminder, T, is estimated in one step with Sy and CSF volume fraction, and then we estimate
the other model parameters. While CSF volume is close to zero in our selected genu ROI, a
marginal variation in Sy estimation does cause fluctuations in the T, estimation. In the end,
for any particular model, our best solution contains the combination of all parameters which
produce the minimum objective function (so two different models may not necessarily produce
the same T, and Sy).

Assuming that ‘ground truth’ solution will be found within 100 model fitting runs, we refit
the models 100 times to the diffusion-weighted ACH-genu and CON-genu datasets, and find
the minimum number of runs needed to gives us a 99% confidence level that we have found
the solution.

Next, we look at the stability of the models to noise variations in the dataset. This involves
the construction of training and testing datasets for bootstrapping and cross-validation. We
evaluate the relative accuracy of each model in predicting seen and unseen data.

The last part in this chapter involves mapping of the intracellular volume fraction for two of
the best models, and two other simpler ones which are already used in previous studies, over
the whole mid-sagittal slice of the CC. This will be an indicator of the scale of applicability of
the models in the parts of the brain beyond the genu.

23.1 METHODS

DATA:  For this experiment we use the ACH-genu and CON-genu datasets; the first is
described in more detail in Experiment 5 (Section 16.1), the second in Experiment 7 (Section

20.1).

MODELS:  The selection of models and inherent assumptions about T, diffusivity and fit-

ting are as in the previous three experiments.

MODEL RANKING, AND ITS STABILITY:  We use bootstrapping [Efron, 1979] and cross-
validation [Stone, 1974] as complementary methods for model comparison and to further
investigate the stability of the model ranking. We apply them only on the genu data sets.
When bootstrapping, we sample with replacement in the original dataset the same number of
measurements; we refer to this as the “seen" dataset. The distinct samples left out from the

original dataset comprise the “unseen" dataset. The above sampling creates 50 seen and 50
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23.2 RESULTS AND DISCUSSION

unseen datasets for each of the five voxels in the genu, giving a total of 250 datasets to which
we fit, and 250 datasets with which we test, the models. We then measure the model accuracy
on the “seen" and the “unseen" datasets. The original .632 method uses a weighted average of
the fitting error to the ‘seen’ data set, used to estimate the parameters, and the “unseen" data,
left out during fitting, which provides a compromise between bias and variance. We instead
look at these linear components separately.

We use leave-one-out cross-validation at the level of HARDI shells, i.e. at each iteration, we
leave out a complete HARDI shell, fit the model to the remaining data, and use the fitted
parameters to estimate all measurements in the missing shell. The final score is the average

fitting error over all shells - 32 for the ACH-genu data and 44 for the CON-genu data.

23.2 RESULTS AND DISCUSSION

Figure 23.1 contains the distributions of T, estimates across both ACH-genu and CON-genu
datasets; the distributions are cumulative over the four ROI voxels, however, as Appendix fig.F.1
shows, each voxel does exhibit a similar spread. There is a multiplicity of T, peaks, which are
within the range of white matter T, [MacKay et al., 1994, Whittall et al., 1997]. Because the
minor instability in Sy estimation affects the T, estimation, our dataset does not make possible
distinguishing meaningful components within wMm T,. Hence the assumption of a single WM
T,. In addition, our optimisation has produced approximately the mean of these distributions,

59ms for ACH-genu and 57ms for CON-genu.
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Figure 23.1: Distributions of T, estimates, from all the models and voxels, for each dataset.

Appendix table F.1 shows the sensitivity of two models, NODDI+ and MMWMD+, to perturba-
tions in T,. Prior to fitting the models, we fix T, to the mean of the genu region, 57 ms in the
case of ACH-genu and 59 ms in the case of CON-genu, perturbing afterwards by 2 ms either
side of this mean. The trends in both data sets are noticeable: as T, increases, the intracellular
volume fraction increases, because the T, decay takes some weight off the extracellular com-
partment; this also explains the increase in the MMWMD+ radius estimate. The axial and radial

diffusivities, and dispersion index, on the other hand, are not as sensitive.

107



23.2 RESULTS AND DISCUSSION

Figure 23.2 shows the number of fitting runs needed to capture the best solution in 100
fitting runs, with a 99% confidence. In particular, ACH-genu data reveals that the more com-
plex Tensor models require more fitting iterations than simpler Ball models, which is what
we expected. The subplot on the right, on the richer CON-genu data, reveals that the broader
coverage of the measurement space helps simpler models vs. more complex conterparts, e.g.
Tensor-Stick-CSF vs. Tensor-Stick-CSF-diff, or the Cylinder equivalent; NODDI and MMWMD are

relatively unaffected.
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Figure 23.2: The number of runs required to find with high confidence each model’s best solution

achieved in 100 fitting runs.

Figures 23.3 and fig.23.4 shows how the ranking of models varies over bootstrap iterations
and cross-validation folds. For both techniques at each iteration, we compute both the AIC of
each model from the ‘seen’ data and the LSE from the ‘unseen’ data. Thus we obtain two model
rankings from each iteration of each procedure. The positional variance diagrams on the right
show a histogram for each model of the position in the ranking over all iterations. The top
right figure is the traditional bootstrap result (from the ‘seen” data) whereas the bottom left is
the traditional cross-validation result (from the ‘“unseen’ data), but we include the other two
figures for extra information. (We note that removing the AIC penalisation for complexity in
the top diagrams, which does not have a great effect, would leave the two components that
add linearly to make the .632 bootstrap result. The .632 method was proposed by Efron and
Tibshirani [1997], and used for diffusion model comparison by Scherrer et al. [2013]; it aims to
strike a compromise between the under-estimation of variation from the LSE of seen data and
the over-estimation from that of unseen data in cross validation.)

The bootstrap and cross-validation results broadly reflect the group structure observed in in
Experiment 5 (Results 16.2) and Experiment 7 (Results 20.2), approximately divided into three

groups: top-ranking models of Ball-Bingham-CFS-diff, Tensor-Bingham-CFS, Tensor-Bingham-
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23.2 RESULTS AND DISCUSSION

CFs-diff, Tensor-Cylinder-CFS-diff; the lowest-ranking combinations of Ball with Stick/s; all
the models in between. The leave-one-shell-out strategy in our cross-validation creates much
greater variation in the model ranking than the random selection of measurements in the
bootstrapping experiment that does not consider the shell structure of the acquisition scheme.
This shows that the full distribution of b-values is much more influential on the choice of
model than the choice of gradient directions.

Using bootstrap datasets, table 23.1 shows the stability of the parameter estimates. The pa-
rameter standard deviations, shown as superscript to the mean estimates across the datasets,
suggest a greater stability for simpler models. In particular, with the standard scanner data
of ACH-genu, models combinations of Tensor with Bingham exhibit more sensitivity (i.e. less
stability) in the estimation of extracellular Tensor diffusivities and the degree of intracellular
Bingham dispersion k; however, the intracellular Bingham volume fraction and diffusivity are
relatively more stable. In Tensor with Cylinder models, it is the Cylinder diameter which is
less stable. The sensitivity in the dispersion index k of Tensor and Bingham models is also
reflected with the CON-genu data. While other models show greater stability, compared with
ACH-genu results, model Tensor-Bingham-CSF-diff shows increased sensitivity in compart-
mental volume fractions and diffusivities too. Across both datasets, the mean estimates are
similar to but vary slightly from the parameter estimates obtained from the whole datasets,
as in tables 16.1 and 20.2. Again, the bigger differences arise from the more complex mod-
els, such as Tensor-Bingham-CSF-diff and Tensor-Bingham-CSF-diff. This could be attributed
to the richness of the bootstrap datasets which, though with the same number of measure-
ments as the original dataset, have as distinct elements only about two-thirds of the original
measurement space.

Figure 23.5 illustrates the spatial stability of one parameter estimate, the intracellular volume
fraction, over the CC. We pick the two most complex models, Tensor-Cylinder-CSF_diff and
Tensor-Bingham-CSF_diff, and their simpler counterparts, MMWMD and NODDI. While more
complex models may fit the data better at the voxel level, the known volume fraction trends
are more recoverable across the CC in the simpler models.

Lastly, Appendix figures F.2 and F.3 give estimates for the case of models fitted to each TE-
specific data subset of CON-genu. Such subset contains four shells, using one combination of
5 and A, with |G| = {60, 100, 200, 300} mT/m. Usually, as with CHARMED, NODDI or AxCaliber,
one chooses the combination of  and A which gives the best SNR or that is optimised for
the experiment. It is not clear what this somewhat speculative investigation informs us about
the downward diffusivity pattern in most models in fig. F.2. Previous work has looked at the
dependence of intra- and extracellular diffusivity on diffusion time A [Novikov et al., 2012; Xu
et al., 2014], or the ‘fast’ and ‘slow’ pools [Pyatigorskaya et al., 2013]. Though our experiment
is not designed to test any of the above, it does inform us that simpler models are more
stable across these diffusion regimes, as can be seen through the performance of fibre volume

fraction in fig.F.3.
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Figure 23.3: In cross-validation plots on the left, each HARDI shell of ACH-genu is left aside at a time; in

bootstrapping, for the plots on the right, we construct 50 datasets for each of the four voxels

in the ROL The AIC group performance of fig.16.3 is reflected in both diagrams, but there is

greater uncertainty when predicting unseen shells in the cross-validation.
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Figure 23.4: Similar to fig.23.3, but here using the CON-genu. As with the previous histogram, the boot-
strapping repeats more faithfully on the unseen data the ranking obtained from the "seen’

data (which is also similar to the whole dataset ranking in fig.20.4).
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23.2 RESULTS AND DISCUSSION

Table 23.1: The stability of parameter estimates across bootstrap datasets. We report the mean estimate

and to their right, as superscript, the standard deviations (as a percentage of the mean).
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Figure 23.5: Intracellular volume fraction maps of four representative models fitted to the whole CC

Connectom data.
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SUMMARY

A way of evaluating the sensitivity and robustness of parameter estimation is by variations
or perturbations in the data. Lacking multiple distinct subjects’ datasets, bootstrapping [Efron,
1979] and cross-validation [Stone, 1974] sub-sample the original dataset repeatedly to inves-
tigate model stability. Both methods aim at balancing bias with variance. These complemen-
tary methods for model comparison largely confirmed the model ranking revealed by the
AIC criterion; the results, however were weaker in the k-fold cross-validation, blurring the the
distinction between the models in predicting unseen data.

The whole brain maps of the intracellular volume fraction revealed that, though some mod-
els may capture the voxel better signal than some others, they do worse at capturing trends
beyond the genu ROI we have concentrated on. This will need further investigation, as the
fig.23.5 (and the signal plots of fig.E.1 in Experiment 7) suggested that the current models still

lack features that enable capturing characteristics across the whole signal spectrum.
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CONCLUSIONS
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This is the main question posed at the start: Given so many candidate models for diffusion MRI

THIS WORK

brain signal, which describes best the signal from the WM of the in vivo human brain?

By using very rich data, sampled for unusually long times, and uniquely strong scanning
power, this work has provided a comparison of parametric diffusion MRI models from which
we draw some important conclusions. In addition, as with every experiment, several assump-
tions and limitations need to be born in mind.

The precursor to this work, the study by Panagiotaki et al. [2012], provided us with the initial
taxonomy of models and model comparison framework. In our first attempt to translate this
study to in vivo human data, during Experiment 1, we sampled linearly/evenly across a wide
range of b-values and diffusion times on the clinical system, aiming at a sampling space dense
enough with measurements for the time available. However, the ranking produced could not
distinguish between the three-compartment models. The reasons for the difference could have
arisen because of the differences in the type of tissue scanned, which affects water diffusion
significantly [Shepherd et al., 2009], or in the imaging protocol, as the previous experiment
used a fixed animal on which higher gradient strengths and longer scanning times can be
used.

Experiment 2 showed us that increasing the number of measurements, in this case through
increasing gradient angular resolution from only three directions, does help in distinguishing
the models. *

Experiment 3, with data gathered over 8h, used a much richer imaging sequence, to sample
many gradient orientations, diffusion times, gradient pulse times, and gradient magnitudes.
In common with the ex vivo tissue by Panagiotaki et al. [2012] three compartment models are
best. With in vivo data we obtained a clearer ranking structure.

Experiment 4 showed us that models for fibre dispersion outperformed other models. The
results demonstrated the potential benefit of modelling dispersion even in apparently straight
and coherent fibres.

However, in using dispersion models, one limitation of Experiment 4 was that averaging
voxels across diverse parts of the CC may have exaggerated the dispersion. So Experiment 5
introduced a few improvements to the pipeline by fitting the models voxel-wise, over regions

of genu, midbody and splenium, to avoid phantom dispersion in the analysis?. In addition, we

In hindsight, leaving aside the precise weight of repeated measurements vs. increased angular resolution, measure-
ments with a richer angular resolution would increase even more model specificity in regions where voxel fibres lack

coherence and have a more complex structure.
Another potential improvement to Experiment 4, so as to avoid introduced phantom dispersion, would have been to

re-align (in each voxel, before they were all averaged, and assuming one population of fibres) the deviated principal
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THIS WORK

also accounted explicitly for the variable echo time in the measurements, as this improved the
noise modelling: normalising by the b=o image can affect the noise in the measurements, mak-
ing them exponentially dependent on echo time. We also studied compartmentally different
T, and diffusivity. While we saw that a separate T, for the CSF compartment was necessary,
we found no support from our data for separate intra/extracellular relaxation rates. As for the
different intra/extracellular diffusivities, we saw a variable effect, from a vast improvement
in models with extracellular isotropic Ball and intracellular Stick, to hardly any difference in
models combining extracellular anisotropic Tensor with intracellular Bingham.

Experiment 6 demonstrated that the results of the model ranking were broadly reproduced
across different scanning sessions as well as other healthy subjects. However, the other healthy
subjects may have benefited by pre-optimising more carefully the scanning protocol as, at
present, it is still long at 2h and prone to motion artefacts, as witnessed in this study.

The data in Experiment 7, collected from the Connectom scanner with gradients of up to
3oomT/m gradients, confirmed this ranking, and produced model parameters which were
comparable to those acquired with standard scanners. However, this richer dataset also re-
vealed greater differences between the models, and some limitations, e.g. of dispersion Bing-
ham models in capturing the very highest b-value signal.

The bootstrapping and cross-validation techniques in Experiment 8 complemented the AIC
and BIC tests for comparing models. While the ranking between model groups remains largely
as before, with minor variations, the unseen k-fold cross-validation reveals that the distinction
between the models is less clear than what is provided by other techniques.

The methodology applied here can be readily applied to the whole brain. However, there
would be some limitations. One immediate drawback comes from the slightly coarser-than-
usual resolution of 2mm x 2mm x 4mm used here in the CC, chosen to enhance SNR. Away
from the CC and towards the grey matter, thinner fibre bundles would require a finer image
resolution, which would lower the SNR; this would particularly affect the high b-value shells
and their contrast enhancing ability; the simpler models would then have an advantage. On the
other hand, we would expect that models which explicitly capture fibre dispersion would ben-
efit in regions of crossing or fanning fibres. Accounting specifically for wMm and CsF T, makes
this methodology particularly applicable to other areas of the brain with CSF contamination,

and increase the model specificity.

eigenvector from the mid-sagittal perpendicular. Experiment 5, however, goes a step further, in giving us voxel-wise

specificity, alas at the expense of SNR.
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FUTURE WORK

Researching for the best model has a goal: to provide a non-invasive histological tool that
helps diagnose and monitor human diseases. Before this model can be tested on patients,
further improvements can be made on the methodology of acquisition, pre-processing and
post-processing of the data.

For a good model comparison, it is necessary to acquire the most representative and high
quality data that can be had; as in the present study, this often involves extremely long scans.
With the benefit of hindsight, the next scanning acquisition should use a smaller voxel size.
Finer resolution would come at the expense of SNR, but this can be improved by taking more
signal averages. To make such scanning “do-able", the protocol can be split into three or four
sessions, dedicating one-quarter of the session time to some “core" part of the protocol, which
can be used to test or measure inter-session scan variability. The dataset would also benefit
from a whole brain acquisition, instead of the current time-saving limited field of view, as well
as acquiring more inter-leaved By images (1 for every 5 DW images vs. 1 for every 10); both
these changes would improve image registration and, hence, the quality of the data. (Such
adjustments are already in place on the acquisitions with the Connectom scanner; it, however,
suffers from severe eddy current distortions, which undoubtedly will be addressed in the
near future.) A whole-brain dataset would also offer more usability to the data, and offer
more anatomical variety. Future work should involve disseminating some of our data to other
researchers: we have in the past organised a challenge, for MICCAI 2013, using data from this
thesis, and will be organising another for ISBI 2015.

Validating the applicability and appropriateness of models on different types of tissue re-
quires wide sampling of the data, from different sources. Histological samples from electron
microscopy or histochemistry staining (as in the study of Assaf et al. [2008] to compare axon
diameter measurements), provides one method of validation. The presence of ground truth
data against which the performance of the models can be judged can also be provided by syn-
thetic simulations. This simulated data set could be generated for a range of substrates which
reflect the brain white matter, and generate data for a broader protocol (to achieve a sort of
signal-sampling super-resolution). Comparing this with the in vivo data can provide some
comparison and an indication of sensitivity and specificity. Another complementary data set
could come from emerging phantoms [Hubbard et al., 2014; Zhou et al., 2012], or fixed brain
data, which can afford longer scanning times and stronger gradients.

Model selection can benefit from data acquired with other (than PGSE) pulse schemes such
as oscillating-gradient spin-echo sequences [Callaghan and Stepisnik, 1995; Does et al., 2003],

which can be optimised to provide increased sensitivity, e.g. to axon diameters [Drobnjak
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et al., 2010], double-pulsed gradient spin-echo sequences [Komlosh et al., 2007], which promise
deeper microstructural features (such as anisotropy in grey matter), or twice-refocused spin-
echo sequences which can address specific experimental requirements, such as reducing eddy
current artefacts [Reese et al., 2003] and, again, potentially provide added sensitivity to specific
parameters such as Clayden et al. [2009].

Further, and broadening the initial question "which model is best?", we need to consider not
just how well the models fit the signal, but also how sensible and sensitive the model parame-
ters are. For now, many models appear to do well in some aspects while not so well in others
(e.g. the Ball-Stick does provide sensible estimates, and of very little computational cost, but
it ranks last in describing the signal). One possibility is to combine all these candidate models
into a single framework, through model averaging [Burnham and Anderson, 2002]. This would
extend the applicability to areas outside the CC. This approach would need careful justification
and interpretation as it is unclear what overlap there is between the models (for example, do
Stick volume fraction and Cylinder volume fraction represent the same biophysical feature?).

The model selection framework can be extended to include other models. Added complexity
(e.g. two or more completely free tensors) could benefit even existing models, which have yet to
capture the whole signal. Indeed, the richness of the data may support other non-parametric
g-space models [Callaghan et al., 1990; Callaghan, 1991] such as Diffusion Spectrum Imaging
[Wedeen et al., 2005] or Diffusion Kurtosis Imaging [Jensen et al., 2005]). The model comparison
will need adjustment, since for this class it is not clear how to penalise for complexity in the
AIC and BIC (e.g. spherical deconvolution [Anderson and Ding, 2002; Tournier et al., 2004] has
many parameters kept under subject by a regularisation term). To circumvent this problem,
one possible fix would be to use cross-validation or bootstrapping.

Once appropriate models have been identified, experiment design techniques [Alexander,
2008; Caruyer et al., 2013] can determine more economical protocols to replace the current
impractical length of the scanning.

The (lengthy) protocol we use here is designed specifically for model selection, rather than
large-scale application. In general, reduced data sets will favour the simpler models; larger
data sets will support the more complex models. Here we sampled as wide a coverage as pos-
sible of the measurement space to get the best idea of what kind of model explains the entire
measurement space. Most of the current models in our analysis are not yet appropriate for ex-
isting sparse data sets such as off-the-shelf single shell HARDI data, which only support simple
models. Rather, these results inform the choice of protocol for future in vivo microstructure
imaging once we identify the right model.

The work presented on this thesis has been on the very homogeneous part of the cC. Fu-
ture research, applying these methods and insights elsewhere in the brain, could extend and
deepen our knowledge of other white matter structures. Apart from neurological applications,
this work can also provide insights for application into other tissue types and diseases, such

as cancer.
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APPENDIX



TO PART IV (BACKGROUND)

A.1 RATE OF CHANGE OF MAGNETIC MOMENT

(OR ROTATING COORDINATE FRAMES CALCULUS)  Suppose we have two coordinate sys-
tems, one rotating at angular velocity Q against another that is inertial. Suppose also that their
unit vectors are, r; = (r! r213)t and fj = (f1 £2 £3)t,

If P is a rotation matrix (so PPT =1), and r = Pf, then the (i, j)-th member of P is P4 = nifj.

Then, by the chain rule, (and commutativity of differentiation and transposition)

LA d oy (e o o
= at'= q (P77) = (dtP)P +P<dtP)

d T d /o1 d /o1 T
P|P =P P P— (P
:><dt> d() <dt(>>
0 —-03 0?2
d /o1
_ 3 1
=P (P ) Q 0 -Q
-2 o 0
with Q', 02,03 being any three scalars, such that, if Q=(Q'0203) and f = (f' 2 £3)t any
vector, then P% (P f=Qxf

With m; = Pm¢ we get m¢ = PTm, and, by chain differentiation,

d d T _i T Td
T (P mf)_dt (PT) my+ P ¢ (mo)
d d /ot _ o4 (pT Td
:Pdt( mg) = Pdt (P m‘>_Pdt (P )mT+PP dt (my)
d d
éPa(mf):mer—i—a(mr)
or
d 0
am = am—i—.(). X m (A.1)

The left-hand side, dtm gives the rate of change of vector m with respect to the inertial
frame, aatm with regard to the rotating frame. Q can be thought of as the angular velocity
vector, with regard to the inertial frame.

If the frame of reference is taken to be the proton’s spinning coordinate system, so %m =o,
i.e. no change of magnitude, the rate of change of the magnetic moment is proportional to the

applied torque. This net moment of force comes from the proton’s magnetic and gravity force.
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A.2 LARMOUR FREQUENCY

A.2 LARMOUR FREQUENCY

(The following is largely drawn from a classic Physics textbook [Goldstein].) We assume that
all particles are homogenous, i.e. have the same e/m = charge to mass ratio. If the charged
particles move, this will constitute an electric current distribution. This current has its magnetic
moment, say M, which can interact with a magnetic field, say B. Then, the rate of change of

total angular momentum will equal the applied torque %L =M x B.

With current density(j) = %@m x density(p) x velocity(v) and position(r), the mag-
netic moment is defined, in Gaussian units, as M = zic JrxjlaV = 55 [rx (pv)dV =
M= 2L

This means that =L = L x -%_B; and referring to eq.A.1, this is the equation of motion

of vector L, of constant magnitude, %L = o, rotating in space about the direction of B with

e

angular velocity Q = —5——

B. Therefore, the uniform field Q causes the charged body to

precess uniformly with angular velocity Q, known as the Larmour frequency.

A.3 TENSORS

(The following is also drawn from [Goldstein].) The Angular Momentum L and Angular Ve-
locity w of a spinning body are connected by a linear transformation T, such that L = Tw, or
T= % The right-hand side of this equation expresses a vector dividing by a vector, which is
a quantity called tensor (much as in arithmetic, where dividing within the group of integers
introduces Real numbers, or taking the square root of negative numbers produces Imaginary

numbers).

A TENSOR DEFINITION:  Ina 3-dimensional space, a tensor T of rank N (has 3N components

T

i1j2..jn and) transforms under an orthogonal transformation of coordinates A according to

Tiiaise = D @iy Gigjy Gigis -+ Tiajs..
j123

THE MATRIX RELATION  When in the field of orthogonal transformations (a subgroup of
which are Rotations), a tensor is practically the same as the square matrix formed from its
components. The tensor is defined only in terms of its transformation properties under orthogonal
coordinate transformations, and the tensor remains unchanged under any choice of coordinate system.
But there is no restriction on the type of transformation that can be applied to a matrix. Examples
include:

Scalar = Tensor of Rank o, transforming very simply as T = aT

Vector = Tensor of Rank 1, transforming as T = Z aij T

j
Matrix = Tensor of Rank 2, transforming as Ti] i, = Z aiyj; Aizis Hhia

j1.2
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A.4 COMPARTMENT MODELS

A.4 COMPARTMENT MODELS

THE DIFFUSION TENSOR is a symmetric matrix consisting of six free parameters. It is
referred to as a fensor because, as the matrix undergoes only orthogonal transformations (i.e.
rotations of coordinate axes), its shape does not depend on the coordinate system, regardless
of what coordinate system you choose to look at it from.

With DT as a model, the signal can be expressed as S = Sg exp(—bdq'Dq) where
D:dHnnT—i—dJ_InJ_lnI—l—dJ_sz_an (A.2)

is the Diffusion Tensor diagonalised, with {u, v, w} being the eigenvectors, and {d” ,diq1,d; 2}
the eigenvalues, and q is the wavevector. These parameters produce two very important and

frame-invariant indices: Mean Diffusivity MD = %(d“ +d 1 +dy2) and Fractional Anisotropy

1
FA = (3/2+(d)—MD)? + (d11 —~MD)2 + (d1, ~ MD)/(d} + 3, +d3 )
SUB-CASES  of the DT, using eq.A.2, are the Zeppelin, which is a cylindrically symmetric DT,
i.e. where d,, = d,,, the Ball, which is an isotropic DT, i.e. where d = d,, = d,,, and the

Stick, which is a zero-radius (one-dimensional) anisotropic tensor, with D = dnnt.

THE CYLINDER signal expression is a linear combination of the restricted A, and hindered
An components (weighted by their respective volume fractions). A, is a product of the par-
allel A, and perpendicular/radial A, , both being functions of applied diffusion gradient
of magnitude G (with radial component G and axial G, relative to the Cylinder axis) and
times A and & [Alexander, 2009]. The axial signal A, (G ,A, ) = exp(—(A— 6/3)y26262d”),

I
whereas the radial signal A, (G, A, ) is [Murday and Cotts, 1968; Vangelderen et al., 1994]:

2 —dja s —djaZ A —djoZ, (A=5) —djo, (A+5)
oo | 20262 i 2d) 0,0 — 2+ 2e” MO 4 2eT AIHME — e AU —e 4%
P YEL dZo6, (RZoZ —1)

m=1 I

where R is the Cylinder radius, d and d, are the apparent diffusion coefficients, and om R is
the m-th zero of the derivative of the Bessel function of the first kind, order one.

GDRcylinders, instead of a single index R, has its Cylinder radii follow a gamma distribution
[Assaf et al., 2008] with shape parameter k and scale parameter 6, such that k0 gives the
mean whereas k02 gives the variance of of the distribution.

Astrocylinders model the signal from cylinders with uniform n-vector orientation distribution
p(n)=1/4m, where the above Cylinder signal A, is integrated over all n directions so that
Ag = [Ar;p(n)dn [Panagiotaki et al., 2012]. Analogously, by using Stick signal instead of
Cylinder, one can obtain the signal for AstroSticks.

The Sphere signal is similar to A, (G, A, §) above, with the Dot compartment as a special

case where R = 0.
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MICCAI 2013 - CDMRI'13 CHALLENGE

B.1 DESCRIPTION

As part of the CDMRI workshop, at MICCAI, we organised a model fitting challenge, in which
groups were invited to find the best diffusion model to describe the very rich dataset of Fig.B.1.
Challenge participants have access to three-quarters of the whole dataset; the winning model
was the one that predicted the remaining "‘unseen’ quarter most closely, the shells being shown

as boxed in the figure.
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Figure B.1: The signal for training the models.

B.2 CHALLENGE ENTRIES

These were the selected entrants:

e Mohammed Alipoor, University of Chalmers, Sweden: Weighted LS estimation of 4th order
diffusion tensors
This proposes a new tensor model and a weighted-least-squares scheme, penalising noisy

measurements. Requires at least 15 non-colinear dAMRI measurements.

® Benoit Scherrer, University of Harvard, USA: DIAMOND: a novel diffusion model that char-

acterizes the distribution of anisotropic micro-structural environments with DWI.
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B.3 RESULTS

Voxel signal is composed of large scale of compartments, of a continuous distribution of

spin packets. Here, there is one isotropic, one anisotropic compartments; 10 parameters.

* Xinghua Zhu, Unversity of Utah, USA, and University of Hong Kong, China: Predicting
Diffusion Weighted MR Signal with Gaussian Process Regression.
This model uses a nonparametric Gaussian process regression to estimate the hidden
DW signal.

¢ Lin Mu, University of Zhejiang, China: A Multicomponent Model For Diffusion Parameters.
The model adopts a three-compartment model that consists of 5 tensors, 5 sticks and a
constant. 56 parameters.

e Uran Ferizi, UCL, UK: A diffusion MRI model for fibre dispersion.
The 3-compartment model includes a Bingham distribution for fibres, an anisotropic
compartment for the extracellular space and a CSF compartment. 10 parameters.

¢ Torben Schneider, UCL, UK: A log-normal distribution of axonal diameters.

Cylindrically restricted intracellular diffusion across a log-normal distribution of diam-
eters, an anisotropic compartment for the extracellular space and a constant term. 9

parameters.

B.3 RESULTS

While all models performed well, the one with least error was that provided by M.Alipoor of
Chalmers. It was interesting that, even though the model of L.Mu of Zhajiang was relatively
very complex, it provided the second best score; this showed the ability of the rich data to

handle such model complexity.

YME MICCAI
20135
J OR oP O NAGOYA
U P f O A » 0 N JAPAN
D DN
ODELLING
CHALLENG
This challenge is part of the Workshop on Computational Diffusion MRI, and it IMPORTANT DATES
aims to identify the mathematical model for diffusion MRI that best describes
the signal from in-vivo Human Brain White Matter. April 2,4“'_' 2013: o
Dissemination of training data
The challenge looks only at the simplest situation, one representative voxel June 24th, 2013:
from the Corpus Callosum, where the fibres are approximately straight and Short paper submission
parallel. We provide a broad set of measurements that covers the set of July 2nd, 2013:
b-values and diffusion times as widely as possible. Challenge participants have Notiﬁcatic;n of Acceptance
access to three-quarters of the whole dataset; the winning model is the one .
that predicts the remaining 'unseen' quarter most closely. September, 2013:
On-site MICCAI Challenge

Figure B.2: A cut-out from the challenge website.
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TO PART IV (MODEL ADVANCES)

g ~ w 2| « w e ~ 0 S la w 22l v 2| « v e
g vl vl vl vl <rI vl vl vl QI ql QI vl <rI vl ql vl <rI vl
I & & Jd| K8 & J | & & Q|18 & &8 & & & & &
Nr Models BIC Intra.1 Vol.Fr. CSF/Dot Vol.Fr. Axial Diff. Radial Diff. Kappa

10| Zepp.Bing.CSF. 513 380 359| 056 059 060 015 011 009| 20 19 19| 05 06 07 6.9 71 6.5
9 | ZepT.Bing.CSF. 516 377 35| 059 059 060 013 011 009| 20 19 19| 06 0.7 07 7.0 71 6.5
12| Tens.Bing.CSF. 516 383 362| 056 059 060 015 011 009| 20 19 19| 06 0.7 038 8.1 8.0 7.3
10| Tens.Wat.CSF. 519 392 369| 055 059 060 016 012 010| 20 19 19| 05 0.7 07 54 55 53
8 | Zepp.Wat.CSF. 531 401 373| 056 059 060 015 011 009| 20 19 19| 05 06 07 5.6 5.6 54
7 | ZepT.Wat.CSF. 533 398 369| 059 060 060 013 011 009| 20 19 19| 06 06 0.7 5.8 5.6 5.4
9 ZepT.Bing.Dot 542 367 342| 053 052 052| 003 0.04 004| 21 20 20| 09 09 09 94 104 9.3
10| Zepp.Bing.Dot 544 366 340| 050 048 048 004 005 005 21 20 20| 09 08 08 103 120 1.0
12| Tens.Bing.Dot 548 371 345| 051 049 048 004 005 005 21 20 20| 1.0 09 09 10.7 125 115
10 Tens.Wat.Dot 557 385 355| 049 047 047 004 005 005 21 20 20| 10 09 09 8.1 8.7 8.2
9 Zepp.Bing. 569 398 370| 064 065 0.64 22 21 20| 10 10 10 6.6 6.7 6.2
7 ZepT.Wat.Dot 559 390 357 | 053 052 052| 003 004 004 21 20 20| 10 09 09 74 7.7 7.2
8 Zepp.Wat.Dot 561 389 356| 050 048 048| 004 005 005 21 20 20| 09 0.8 038 8.0 8.6 8.2
1 Tens.Bing. 561 399 372| 065 065 0.65 22 21 21112 11 11 72 7.4 6.8
9 Tens.Wat. 575 418 384 | 064 065 0.65 22 21 21| 11 11 1.0 5.5 5.5 5.3
8 ZepT.Bing. 576 416 385| 0.62 0.62 0.62 22 21 21| 08 08 038 6.5 6.5 6.0
7 Zepp.Wat. 576 419 383 | 0.64 065 0.65 22 21 21| 10 10 10 56 55 5.3
6 ZepT.Wat. 593 437 398| 062 0.63 0.63 22 21 21| 08 08 08 54 53 5.1
12| Tens.St.St.Dot 652 464 439| 023 022 021 007 007 008| 20 19 19| 08 0.8 038

10| Zepp.St.St.Dot 658 464 437 | 023 022 021 007 0.07 008| 20 19 19| 08 0.7 07

12| Tens.St.St.CSF. 674 562 557 | 022 024 023| 021 018 017 15 15 14| 05 05 05

10| Zepp.St.St.CSF. 692 570 565| 023 025 024| 021 018 017)| 15 14 14| 04 04 05

8 Ball.Bing. 729 590 583| 072 0.71 0.71 22 21 241 6.0 6.2 5.9
9 Ball.Bing.Dot 732 593 586 | 072 0.71 071 000 0.00 000| 22 21 21 6.0 6.2 5.9
9 Ball.Bing.CSF. 732 593 586| 072 071 071 000 0.00 000 22 21 21 6.0 6.2 5.9
6 Ball.Wat. 745 610 596 | 0.72 0.72 0.71 22 21 21 52 5.3 5.2
7 Ball.Wat.CSF. 748 613 599 | 072 072 071 000 0.00 000| 22 21 21 52 5.3 5.2
7 Ball.Wat.Dot 748 613 599| 072 072 071 000 0.00 000 22 21 21 52 5.3 52
7 Zepp.St.Dot 784 597 570| 029 030 0.29| 009 0.09 0.09| 19 19 18| 07 0.7 07

10| Tens.Cyl.CSF. 832 735 739| 029 031 031 024 0.22 0.21 13 13 13| 03 04 04

9 | ZepT.St.St.Dot 843 652 640| 033 033 032 005 005 005| 18 17 17| 11 11 11

1 Tens.St.St. 859 687 666| 028 028 0.27 1.7 16 16| 09 09 09

9 Zepp.St.St. 874 695 674| 029 0.28 0.27 16 16 16| 08 08 038

9 | ZepT.St.St.CSF. 881 718 712| 035 035 034| 012 0.10 008| 15 15 14| 09 09 09

8 ZepT.St.St. 895 713 696 | 032 0.31 0.30 16 16 15| 10 1.0 1.0

8 Ball.St.St. 1,161 978 965| 0.28 0.27 0.27 15 15 15

9 Ball.St.St.Dot 1,162 977 965| 024 026 0.25| 0.02 0.02 0.02| 16 15 15

9 Ball.St.St.CSF. 1,164 981 969 | 028 027 0.26| 0.00 000 0.00| 15 15 15

Table C.1: Various model parameters from different data sets of angular thresholds of 2°, 5° and 10°.

The models are ordered top-down by the BIC score of 2° data set. [Note: Zepp=Zeppelin;

ZepT=Zeppelin with tortuosity;Tens=Tensor; St=Stick; Bing=Bingham; Wat=Watson].
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TO PART V (METHODOLOGICAL IMPROVEMENTS)
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Figure D.1: As in Fig.16.4, the four selected models are fitted to ACH-midbody and ACH-splenium.
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ACH-subject-1

ACH-subject-2

TO PART V (METHODOLOGICAL IMPROVEMENTS)
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Table D.1: Variation of parameter estimates across subjects 1 and 2. The mean T, on ACH-subject-1 was

54ms, and 59ms on the ACH-subject-2; the CSF volume fraction is at 2% and 1% respectively.
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ACH-subject-3

ACH-subject-4

TO PART V (METHODOLOGICAL IMPROVEMENTS)
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Table D.2: Variation of parameter estimates across subjects 3 and 4. These datasets contain considerably

more motion artefacts. Notably, the Bingham distribution reflects much higher dispersion,
and the Cylinder much higher thickness, than for the first two subjects in Fig.D.1. The ACH-
subject-3 mean T, is 64ms, ACH-subject-2 T, is 59ms; the CSF volume fraction is 10% and

2% respectively.
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Table D.3: Similar to Tab.16.1, but using datasets ACH-midbody and ACH-splenium.
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ACHS8-midbody

ACHS8-splenium

TO PART V (METHODOLOGICAL IMPROVEMENTS)
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Table D.4: Similar to Tab.17.2, but using datasets ACH8-midbody and ACH8-splenium.
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Table E.1: Similar to Tab.20.2, but using datasets CON-midbody and CON-splenium.
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Figure E.1: As in Fig.20.5, on top are the models fitted to CON-midbody and, below, to CON-splenium.
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Table E.2: Variation of parameter estimates for the two lowest gradient strengths, 60 and 100 mT/m. The

T, is fixed at 56ms, the mean from CON-genu data.
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Table E.3: Variation of parameter estimates as gradient strength increases to 200 and 300 mT/m.

135



TO PART VII (STABILITY OF PARAMETERS)

ACHS8—-genu ACHS8—genu ACH8—-genu ACH8—-genu
(voxel-1) (voxel-2) (voxel-3) (voxel—4)
1000 i i 1000 i i 1000 i i 1000 i i
800 800 800 800
600 600 600 600
400 400 400 400
200 200 200 200
0 i 0 il 0 _ . I,
50 60 70 50 60 70 50 60 70 50 60 70
T2 (ms) T2 (ms) T2 (ms) T2 (ms)
ACH-genu ACH-genu ACH-genu ACH-genu
(voxel-1) (voxel-2) (voxel-3) (voxel—4)
1000 1000 1000 1000
800 800 800 800
600 600 600 600
400 400 400 400
200 200 200 200
0 Ll 0 Ll 0 | I I .
60 70 60 70 60 70 50 60 70
T2 (ms) T2 (ms) T2 (ms) T2 (ms)
CON-genu CON-genu CON-genu CON-genu
(voxel-1) (voxel-2) (voxel-3) (voxel—4)
1000 1000 1000 1000
800 800 800 800
600 600 600 600
400 400 400 400
200 200 200 200
ol 1ul) dullh, oLl Lult dullh, 0 | \ L.
60 70 60 70 60 70 60 70
T2 (ms) T2 (ms) T2 (ms) T2 (ms)

Figure E.1: Distributions of T, estimates, from all the models, for each dataset, ACH8-genu, ACH-genu

and CON-genu, and each of the four voxels of the ROL.
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NODDI+ L 112 068 204 8 L 032 204 058
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i
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MMWMD+ | 816 063 1.79 330 036 179 0.6

NODDI+ 7.52 064 208 12 0.36 208 0.74
MMWMD+

7.12 0.67 210 12 0.32 210 0.69

Table F.1: Dependence on T, for two models” parameter estimates. We fit NODDI+ and MMWMD+ to

the full dataset of ACH-genu, on top, and CON-genu, fixing the T, to the mean obtained in

the ROI, and 2ms either side of this mean. The estimates for T, ™€®™ are similar to those of

Fig.16.1 and Fig.20.2, with slight variation as here we fix the T, throughout the ROI voxels, and

select the best model fit out of 20 runs (vs. the previous 100).
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Figure F.2: The estimation of axial diffusivity across TE-specific datasets.
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Intracellular Volume Fraction
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Figure F.3: The estimation of intracellular volume fraction across TE-specific datasets.
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