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The short-term mortality of cirrhotic patients who develop

renal dysfunction remains unacceptably high, and as such

the treatment of this condition is an unmet need. Although

features of kidney injury are well recognized in these

patients, the pathophysiology is complex and not

completely understood. Improved understanding of the

pathophysiological mechanisms involved in renal

dysfunction occurring on a background of cirrhosis is key to

developing effective treatment strategies to improve survival.

Renal dysfunction due to hepatorenal syndrome (HRS) is

characteristic of cirrhosis. Our current understanding is that

HRS is functional in nature and occurs as a consequence of

hemodynamic changes associated with portal hypertension.

However, there is evidence in the literature suggesting that,

histologically, the kidneys are not always normal in the vast

majority of patients who present with renal dysfunction on

the background of cirrhosis. Furthermore, there is emerging

data implicating nonvasomotor mechanisms in the

pathophysiology of renal dysfunction in cirrhosis. This

mini-review aims to present the evidence suggesting that

factors other than hemodynamic dysregulation have an

important role in the development of this major complication

for patients with progressive cirrhosis.

Kidney International (2015) 87, 509–515; doi:10.1038/ki.2014.338;

published online 8 October 2014

KEYWORDS: cirrhosis; hepatorenal syndrome; renal failure

Renal dysfunction is a common manifestation of advanced
cirrhosis that is associated with significant mortality and
morbidity. Although acute renal dysfunction in cirrhosis can
be due to a number of causes such as hypovolemia and
nephrotoxins, hepatorenal syndrome (HRS) is the most
characteristic. However, it is becoming increasingly evident
that renal dysfunction in cirrhosis is a heterogeneous con-
dition, and some patients who were previously diagnosed
with HRS actually have renal dysfunction associated with
infection/inflammation, which is likely to have a different
pathophysiological basis.

An estimated 11% of patients with advanced cirrhosis and
refractory ascites develop HRS.1 This condition is tradi-
tionally ascribed to functional renal failure in patients with
chronic liver disease associated with no significant morpho-
logic changes in renal histology and with largely preserved
tubular function.2,3 This is because kidneys from patients
with HRS have been reported to recover function post liver
transplantation,4 and they have also been successfully used as
renal allografts for kidney transplantation.5 However, only a
small proportion of patients who develop renal dysfunction
in association with cirrhosis suffer from HRS.

Two types of HRS are recognized. Type 1 HRS occurs in
an acute setting, with a rapidly progressive decline in renal
function, which is characterized by a doubling of the initial
creatinine to a level 4226 mmol/l (2.5 mg/dl) in o2 weeks.6

Untreated, type 1 HRS is associated with a mortality rate of
80% at 2 weeks.7 Type 2 HRS follows a more progressive
course with a moderate rise in serum creatinine levels to a
level 4133 mmol/l (1.5 mg/dl).6 Type 2 HRS has a median
survival of 4–6 months.7 In addition to the above definitions
for HRS 1 and 2, in 2007, the International Ascites Club
proposed a revised version of the original criteria, and this is
shown in the table below (Table 1).

As is evident from the above criteria, the diagnosis of
HRS requires a set of stringent criteria that rely on serum
creatinine levels. Evidence suggests that a smaller increase in
serum creatinine, insufficient to make a diagnosis of HRS, is
also associated with a poor prognosis in patients with
cirrhosis.8 It is possible that the severity of renal dysfunction
is underestimated by the measurement of serum creatinine
levels, as it is most commonly measured using a modified
colorimetric Jaffe assay, which is prone to interference from
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bilirubin and other compounds.9,10 In addition, patients with
cirrhosis often have muscle wasting, reduced hepatic creatine
synthesis, and increased renal tubular creatinine secretion.11

As such, smaller increases in serum creatinine reflect much
larger changes in renal function than would be anticipated
from the rises in serum creatinine. For this reason, there has
been a move to redefine HRS to fall in line with the Acute
Kidney Injury Network (AKIN) criteria for acute renal
failure,12 which is more sensitive for the early detection of
smaller increases in serum creatinine.13 Several studies have
been carried out using the AKIN criteria in a cirrhotic
population, but there is a lack of consensus as to whether the
AKIN or classical HRS criteria best predict prognosis in
cirrhotic patients with acute renal dysfunction.14–16

Although the classical diagnostic criteria for HRS now
includes patients with HRS secondary to infection (but not
septic shock), it is likely that patients with renal dysfunction
or HRS associated with infection are distinct from patients
with ‘classical HRS’ (HRS not associated with infection).17

A recent study by Barreto et al.17 describing outcomes
in patients diagnosed with HRS associated with infection
showed that in approximately two-thirds of patients this
condition is not reversible with standard of care for HRS
using terlipressin and albumin, indicating a different
pathophysiological underlying mechanism of disease.12 In
addition, patients with renal dysfunction associated with
infection have been shown to have higher levels of urinary
biomarkers of tubular damage compared with patients with
classical HRS.13 It therefore stands to reason that different
pathophysiological mechanisms may be responsible for
the development of renal dysfunction in the patients with
classical HRS compared with patients with renal dysfunction
associated with infection.18

‘TRADITIONAL’ VIEW OF HRS

In 1970, Epstein et al.19 demonstrated using renal angio-
graphy that in cirrhotic patients with renal failure, the main
pathophysiological feature is marked vasoconstriction of the
renal vasculature associated with a redistribution of blood
flow away from the renal cortex. The hypothesis is that
vasoconstriction of the renal circulation, which occurs in
HRS, develops as a result of the hemodynamic dysregulation
associated with portal hypertension. In this setting, the

increase in shear stress in the splanchnic vascular bed leads to
overproduction of nitric oxide and other potent vasodilators,
thus resulting in splanchnic vasodilatation.20 The conse-
quence of this is a decrease in effective arterial volume, which
leads to severe renal vasoconstriction via activation of the
renin–angiotension–aldosterone system, causing renal hypo-
perfusion.13,21 Impaired cardiac function in patients with
decompensated cirrhosis leads to further arterial underfilling,
decreased mean arterial pressure, and further impairment of
renal blood flow and function.22 In addition, activation of the
sympathetic nervous system through a hepatorenal reflex arc
also contributes to the pathophysiology of HRS.23 There is an
altered autoregulation of renal blood flow in patients with
HRS (Figure 1).24

The evidence in the literature implicating the above
factors in the pathophysiology of HRS is strong, as increasing
the mean arterial pressure in patients with HRS by using
splanchnic vasoconstrictors and albumin improves renal
function.25,26 Furthermore, a recent pilot study showed that
patients with diuretic-refractory ascites, who have the highest
risk of developing HRS, have lower renal plasma flow and
higher right main kidney and arcuate artery resistive indices
compared with patients without ascites.27 However, this
study only involved 10 patients and was therefore under-
powered for any statistical inferences to be made. Clearly,
there is a need to investigate whether these findings are
reproducible in a larger cohort.

Table 1 | Diagnostic criteria for hepatorenal syndrome in
cirrhosis (Adapted from Salerno et al.6)

Cirrhosis with ascites
Serum creatinine 4133mmol/l (1.5 mg/dl)
No improvement of serum creatinine (decrease to a level of p133mmol/l)
after at least 2 days with diuretic withdrawal and volume expansion with
albumin
Absence of shock
No current or recent treatment with nephrotoxic drugs
Absence of parenchymal kidney disease, as indicated by proteinuria
4500 mg/day, microhematuria (450 red blood cells per high power field),
and/or abnormal renal ultrasonography

Cirrhosis

Obstruction to portal flow

Portal hypertension

Decreased effective circulatory volume

Activation of vasoconstrictor system

Renal
vasoconstriction

HRS IHRS II

Cirrhotic
cardiomyopathy

Abnormal renal
autoregulation

Systemic and splanchnic
arterial vasodilatation

Figure 1 | The vasodilatation hypothesis of hepatorenal
syndrome. (Adapted from Wong et al.13). In cirrhosis, portal
hypertension leads to splanchnic and systemic vasodilatation, which
results in a decrease in effective arterial volume. This in turn leads to
the activation of vasoconstrictor systems leading to a reduction in
renal blood flow. An impairment of cardiac function (cirrhotic
cardiomyopathy) and abnormal renal blood flow autoregulation
further contributes to renal hypoperfusion, resulting in HRS.
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Despite the evidence summarized above, attempts to
restore the circulatory dysfunction associated with HRS
using splanchnic vasoconstrictors and volume expanders do
not reverse the syndrome in up to 40% of patients.28,29

Therefore, it is likely that other pathophysiological mech-
anisms have a role in the pathogenesis of renal dysfunction in
cirrhosis.

NEW CONCEPTS ON THE PATHOPHYSIOLOGY OF RENAL
DYSFUNCTION IN CIRRHOSIS
Evidence that renal dysfunction is associated with
infection/inflammation and is not just a vasomotor
nephropathy

Renal dysfunction is a defining feature of acute on chronic
liver failure (ACLF), and it occurs in B35% of patients with
ACLF.30 ACLF is defined as ‘an acute deterioration of preex-
isting, chronic liver disease, usually relating to a precipitating
event and associated with increased mortality at 3 months
due to multisystem organ failure’.31 Dysregulated inflam-
mation and infection, considered a hallmark of ACLF, has
also been implicated in renal dysfunction.32–34 At present, it is
not clear as to which of these patients have the classical HRS
and which of these patients have renal dysfunction secondary
to inflammation.

Thabut et al.32 found the presence of a systemic inflam-
matory response syndrome (SIRS) in B40% of cirrhotic
patients with functional renal failure (including HRS with
or without infection). In these patients, the in-hospital
mortality rate was 68%, which was significantly higher than
in patients without SIRS. They concluded that the presence of
SIRS is an independent prognostic factor in patients with
cirrhosis and acute functional renal failure, and treating SIRS
could potentially lead to a reduction in mortality.32 Further
evidence that SIRS has an important role in renal dysfunction
is derived from studies that have shown that the use of anti-
inflammatory agents such as pentoxifylline improves renal
function or significantly decreases the risk of developing
renal failure in patients with alcoholic hepatitis.35,36 The
therapeutic effect of pentoxifylline in this setting may be
partly owing to its hemorrheologic and beneficial effects on
the microcirculation, thus leading to an improvement in
renal blood flow.37 It seems plausible that the mechanism
responsible for the development of renal dysfunction in these
patients with alcoholic hepatitis differs from the ‘classical’
HRS, as the presence of alcoholic hepatitis has a negative
effect on survival in patients with renal dysfunction treated
with terlipressin.38

Renal dysfunction may also occur following a gastro-
intestinal bleed.39 Infection/inflammation may also have a
role in this. It is well recognized that most cases of acute
kidney injury following a gastrointestinal bleed occur as a
consequence of acute tubular necrosis following hypo-
volemia. However, there is evidence that following a
gastrointestinal bleed there is a transient increase in plasma
endotoxin levels,40 and endotoxemia has a critical role in the
development of acute renal dysfunction in cirrhosis.41

The mechanism of the inflammatory basis of renal
dysfunction in cirrhotic patients is currently unknown, but
one hypothesis is that in cirrhosis gut bacterial translocation
is increased, which primes the kidneys to the effect of a
superimposed inflammatory insult such as an infection. This
hypothesis is supported by studies of selective gut decontam-
ination using prophylactic administration of norfloxacin,
which reported both reduced incidence of renal dysfunction
and improved survival.42 Reducing the direct effects of
bacterial products on the renal tubules may modulate this
effect of gut decontamination.

The kidneys of some cirrhotic patients with presumed
HRS show histologic evidence of acute kidney injury.
However, it is likely that the patients described may have
renal dysfunction that is associated with infection and/
inflammation. A study by Mandal et al.43 reported light and
electron microscopy changes in five patients diagnosed with
HRS. They observed evidence of acute tubular necrosis on
light microscopy, whereas electron microscopy demonstrated
necrosis of the proximal tubules. It is important to state that,
in this study, the samples were obtained postmortem, and
thus the changes observed may reflect terminal changes.
Kanel et al.39 further described the presence of an unusual
renal lesion consisting of the reflux of the proximal
convoluted tubular epithelium into Bowman’s space in
B70% of patients diagnosed with renal dysfunction on
the background of cirrhosis. However, the authors felt that
this lesion was unlikely to be responsible for renal failure
observed in these patients.44 More recently, Shah et al.45

reported evidence of tubular injury on periodic methenamine
and silver staining of five renal biopsy specimens derived
from patients with ACLF and renal failure, i.e., renal
dysfunction associated with inflammation. In addition to
the human studies, histological examination of the kidneys
in an animal model of ACLF revealed glomerular mesangial
hypercellularity in the early stages of the syndrome.
Furthermore, in the later stages, there was evidence of
hydropic degeneration of the proximal and distal tubules.46

Similarly, another animal study, involving a rat model of
cirrhosis treated with lipopolysaccharide (which is clinically
similar to a patient with renal dysfunction associated with
infection), showed evidence of tubular vacuolar degeneration
in the proximal tubules, and this was associated with
sloughing of the tubular cells. There was also an increased
expression of caspase-3 expression signifying tubular cell
apoptosis.47 It is recognized that apoptosis of tubular cells
by inflammatory cytokines occurs in renal dysfunction
associated with endotoxemia.48 A similar pathophysiology
may underlie infection/inflammation-associated renal dysfunc-
tion in cirrhotic patients. These observations suggest that
immunologic mechanisms are important in mediating the
renal injury and that hemodynamic factors do not operate in
isolation.

Further evidence supporting the hypothesis that renal
dysfunction in cirrhotic patients is more than just functional
renal failure and that tubular injury occurs is derived from
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studies that have shown that markers of tubular injury are
elevated in some patients with renal dysfunction in cirrhosis.
Rector et al.49 observed an increase in urinary beta-2-
microglobulin, which is an index of tubular function in
cirrhotic patients with presumed HRS compared with
controls. Neutrophil gelatinase–associated lipocalin is a
protein expressed by the renal tubules, which is upregulated
after renal tubular injury. Patients diagnosed with HRS were
shown to have significantly higher plasma and urinary
neutrophil gelatinase–associated lipocalin levels compared
with stable cirrhotic patients.50 In addition, neutrophil
gelatinase–associated lipocalin was identified as a predictor
of mortality in patients with HRS. It is likely that these
investigators were indeed describing patients with renal
dysfunction that is associated with infection/inflammation
rather than patients with HRS. Figure 2 highlights the main
features distinguishing between ‘classical HRS’ and renal
dysfunction associated with infection/inflammation.

A common misconception is that the kidneys are morpho-
logically normal in HRS; thus, they function normally when
transplanted into patients without liver disease and recover
post liver transplantation. However, up to 21% of patients
with presumed HRS have ongoing renal dysfunction at
30 days post liver transplantation.51 Similarly, up to 42%
of patients have persistent renal failure following liver
transplantation, suggesting that there might be underlying
intrinsic renal parenchymal damage.52 Interestingly, patients
with renal dysfunction with liver disease secondary to excess
alcohol consumption are less likely to recover renal function.
This ties in with our current thinking that there is an
inflammatory basis to the tubular damage in some patients
with renal dysfunction, as patients with alcoholic hepatitis
and renal dysfunction have been shown to have increased
serum TNF-a levels.53 In further support of the notion that
tubular damage does occur in renal dysfunction observed in
some cirrhotic patients, Gonwa et al.54 also demonstrated

that this group of patients has a significantly higher incidence
of progressing to end-stage renal failure after liver trans-
plantation compared with cirrhotic patients without renal
dysfunction (10% vs. 0.8%; Po0.005).

On the basis of the emerging new concepts on the
pathophysiology of HRS, a recent report from the Interna-
tional Ascites Club suggests that many other factors can
impair the glomerular filtration rate (GFR) in cirrhotic
patients with renal dysfunction beyond the control of renal
blood flow, such as endothelial dysfunction following an
infectious stimuli.55

Possible nonvasomotor mechanisms of renal dysfunction in
cirrhotic patients

There is a paucity of data on the possible mechanisms by
which renal tubular damage occurs in patients with renal
dysfunction in cirrhosis, in particular that associated with
superimposed infection/inflammation. A brief overview of
possible mechanisms is described below:

Upregulation of inflammatory mediators potentiating renal

injury. The presence of the SIRS significantly correlates
with the development of renal dysfunction in cirrhotic
patients.32,56 The proinflammatory cytokines generated as a
consequence of SIRS may contribute by causing direct renal
injury. Although a range of proinflammatory cytokines,
chemokines, circulating immune complexes, and adhesion
molecules have a role in mediating renal dysfunction,57 to
our knowledge, only the two mediators described below have
been directly implicated. It should be noted that these two
mediators have mainly been described in animal models.
Therefore, there is a need to further validate their importance
in humans.

Toll-like receptor 4. The first, recently described inflam-
matory mediator is the toll-like receptor 4 (TLR4). Receptors
from this family have an important role in the innate
immune system recognizing molecules derived from

Renal dysfunction on the background of cirrhosis

Chronic kidney disease
independent of underlying cirrhosis or

associated with it

Associated with
circulatory dysfunction in cirrhosis

• Good response to fluids
• Tubular markers of
 renal injury are usually
 absent
• The kidneys are 
 histologically normal

• Moderate response to
 terlipressin/albumin
• Tubular markers of renal
 injury may be present
• The kidneys are likely to
 be histologically normal

• Poor response to terlipressin/
 albumin
• Tubular markers of renal injury
 are highly likely to be present
• The kidneys are likely to be
 histologically abnormal

Associated with infection/
inflammation and possible

kidney injury

Hepatorenal
syndrome

Hypovolemia

Figure 2 | Renal dysfunction in cirrhosis. A Figure depicting our current understanding on the main features distinguishing between the
hypovolemia, hepatorenal syndrome, and renal dysfunction associated with inflammation and infection.
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microbes. Activation of TLR4 leads to the production of
proinflammatory mediators. Renal TLR4 (mRNA and
protein) expression is regulated in an animal model of
HRS.58 More recently, using an animal model of cirrhosis,
Shah et al.47 demonstrated increased TLR4 expression in the
proximal renal tubules. The upregulation of this receptor is
most likely because of increased gut bacterial translocation. A
subsequent inflammatory insult in this animal model led to a
further increase in proximal tubule TLR4 expression, which
corresponded with evidence of tubular injury on histology, as
well as deterioration in renal function. Treatment with
norfloxacin, a selective gut decontaminant, resulted in an
attenuation of renal TLR4 expression and improvement in
renal histology and renal function tests, suggesting that renal
dysfunction in this model is partly mediated by pro-
inflammatory cytokines consequent on increased bacterial
translocation. A similar upregulation of tubular TLR4
expression was also observed in cirrhotic patients with
renal dysfunction associated with infection/inflammation
and, to a lesser degree, in those with HRS, supporting the
hypothesis that renal dysfunction in cirrhosis is more than
just a vasomotor disorder.45

Interleukin 17A. IL-17A is a proinflammatory cytokine
released by T cells that have a role in host immune defense
and inflammation. Intestinal Paneth cells have been shown to
synthesize IL-17A and respond to inflammatory stimuli by
overproducing IL-17A. This mechanism has recently been
implicated in liver-related acute kidney injury.59 Takahashi
and colleagues, using a mouse model of hepatic ischemia/
reperfusion injury (which also develops significant renal
dysfunction), demonstrated increased intestinal Paneth cell
degranulation and increased IL-17A levels in the portal vein
and small intestine.60 Both an IL-17A–neutralizing antibody
and genetic deletion of IL-17A were found to be protective
against hepatic ischemia/reperfusion and kidney injuries.
In addition, depletion of Paneth cells attenuated not only
hepatic ischemia/reperfusion injury but also renal dysfunc-
tion in this model,59 suggesting that Paneth cell–derived
IL-17A may also have a role in the pathophysiology of renal
dysfunction in cirrhotic patients.

Other important nonvasomotor mechanisms in renal
dysfunction in cirrhosis

Bile cast nephropathy. Patients with liver dysfunction
who develop renal dysfunction have increased serum concen-
trations of bilirubin and bile acids. On the basis of animal
and human studies, it has been proposed that elevated levels
of bilirubin and bile acids may have a direct toxic effect on
the tubules61–63 and lead to renal impairment. In a recently
published study, the authors looked at the prevalence and
characteristics of renal bile casts in a cohort of jaundiced
patients. They found that B85% of patients in this study
who were diagnosed with HRS had evidence of renal tubular
bile casts. Furthermore, patients with bile casts were found to
have higher serum creatinine levels, although this did not
reach statistical significance. The authors concluded that bile

cast nephropathy is an important pathologic entity that may
account for renal impairment in many patients with liver
dysfunction. In addition, they suggested that the current
paradigm of renal dysfunction in cirrhotic patients is
incomplete without incorporating the contribution from
renal bile casts.64 These findings may explain why bilirubin
has been highlighted as an independent predictive factor of
response to terlipressin therapy in cirrhotic patients with
renal dysfunction. Terlipressin was effective in only 13% of
patients with serum bilirubin levels 410 mg/dl (171 mmol/l)
compared with 67% of patients with lower serum bilirubin
levels. It may well be that the predominant mechanism for
the development of renal dysfunction in patients with high
serum bilirubin values is bilirubin-induced tubular epithelial
injury rather than vasomotor nephropathy.28

To further corroborate the above findings, another study
involving a bile duct–ligated mouse model (a model of liver
injury, as well as cholestasis) demonstrated that a signifi-
cantly higher serum bile acid level in this model was
associated with biochemical evidence of renal failure, as well
as histological evidence of tubular epithelial injury.65 Clearly,
there is a need for additional studies looking at the renal
effects of elevated bile acids and bilirubin levels in a cohort
of patients diagnosed with renal dysfunction in cirrhosis.
However, it is likely that studies of this nature in humans will
be limited by a lack of histological samples, as renal biopsies
are not often performed in cirrhotic patients with renal
dysfunction.

Elevated intra-abdominal pressure. Intra-abdominal hy-
pertension is defined as an intra-abdominal pressure (IAP) of
412 mm Hg. As up to 11% of patients with refractory ascites
develop HRS, an association between increased IAP and
the development of HRS has been postulated. In 1987, Cade
et al.66 studied the effect of increased intra-abdominal
pressure in 11 patients with HRS. They showed that a
reduction in IAP to below 17 cm H2O was associated with an
improvement in GFR, renal blood flow, and urine flow.
Furthermore, insertion of a peritoneovenous shunt that
maintains a low IAP also led to an improvement in GFR and
renal blood flow. In another study carried out on 19 patients
with HRS, a reduction of mean IAP from 22 mm Hg to
9 mm Hg was associated with a significant increase in
creatinine clearance in the context of fluid substitution
guided by assessment of the global end-diastolic volume.67

Chang et al.68 further described the mechanism by which an
elevated IAP contributes to the development of HRS using a
mouse model of cirrhosis and increased IAP. In their study,
they observed that an increase in IAP above 10 mm Hg in this
model was associated with a significant increase in serum
creatinine. In addition, the renal biopsy specimen of the
animals with IAP measurements above 10 mm Hg showed
evidence of constrictive renal tubular lumen, inflammatory
infiltrates in the interstitium, as well as formed casts and
hyperemia in the renal interstitium. The interesting findings
from this study need to be further validated in other models.
Although the results from these studies suggest an association
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between raised IAP and HRS, one cannot automatically
equate this with causality, especially in view of the fact that
there is evidence in the literature suggesting that an abrupt
drop in IAP following large volume paracentesis, without the
use of plasma expanders, may actually precipitate HRS via
hemodynamic changes.69,70 More recently, data in cirrhotic
patients showed that the post-paracentesis circulatory
dysfunction, which sometimes results in renal dysfunction,
is associated with activation of the circulating monocytes,
arguing strongly that the renal dysfunction in this scenario is
more than just a vasomotor dysfunction.71

CONCLUSION

During the past century, important progress has been made
in the pathogenesis and treatment of renal dysfunction in
cirrhosis, but it is clear that the journey into understanding
the pathophysiology of this condition is far from complete.
First, there is an urgent need to clarify the controversies
surrounding the definition of renal dysfunction in cirrhosis.

In this review, we have summarized new and evolving
concepts on the pathophysiology of renal dysfunction in
cirrhosis separating HRS from renal dysfunction that is
consequent upon infection/inflammation. In our opinion,
the available evidence highlights the fact that the condition is
complex, and its pathophysiology is likely to involve both
vasomotor and nonvasomotor mechanisms. It is also likely
that the predominant mechanism may differ depending on
the clinical scenario.
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