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Lambert-Eaton syndrome IgG inhibits

transmitter release via P/QQ Ca** channels

ABSTRACT

Objective: To determine whether immunoglobulin G (IgG) from patients with Lambert-Eaton
myasthenic syndrome (LEMS) decreases action potential-evoked synaptic vesicle exocytosis,
and whether the effect is mediated by P/Q-type voltage-gated calcium channels (VGCCs).

Methods: IgG was obtained from 4 patients with LEMS (3 males, 1 female), including 2 patients
with lung malignancy. Antibodies against P/Q-type VGCCs were detected in all 4 patients, and
against N-type VGCCs in 2. We incubated neuronal cultures with LEMS IgG and determined
the size of the total recycling pool of synaptic vesicles and the rate of action potential-evoked
exocytosis using fluorescence imaging of the amphiphilic dye SynaptoRed C1. Pooled IgG from
healthy volunteers was used as a control. We repeated the experiments on synapses lacking P/Q-
type calcium channels from a Cacnala knockout mouse to determine whether these channels
account for the pathogenic effect of LEMS IgG.

Results: LEMS IgG had no effect on the total recycling pool size but significantly reduced the rate
of action potential-evoked synaptic exocytosis in wild-type neurons when compared with neurons
treated with control IgG. In contrast, LEMS IgG had no effect on the rate of synaptic vesicle
exocytosis in neurons lacking P/Q-type channels.

Conclusions: These data provide direct evidence that LEMS IgG inhibits neurotransmitter release
by acting on P/Q-type VGCCs. Neurology® 2015;84:575-579

GLOSSARY

EPSC = excitatory postsynaptic current; IgG = immunoglobulin G; LEMS = Lambert-Eaton myasthenic syndrome; SRC1 =
SynaptoRed C1; TRP = total recycling pool; VGCC = voltage-gated calcium channel.

Lambert-Eaton myasthenic syndrome (LEMS) is an important cause of skeletal muscle weak-
ness. Antibodies against P/Q-type voltage-gated calcium channels (VGCCs) are found in
90% of patients."? Because P/Q-type VGCCs have an important role in triggering acetylcholine
release at the neuromuscular junction,’ it has been proposed that muscle weakness is causally
related to antibody binding to these channels. Passive transfer experiments show that LEMS
immunoglobulin G (IgG) leads to a reduction in postsynaptic endplate potentials.” However,
endplate potentials are an indirect readout of presynaptic neurotransmitter release. Moreover, it
is not known whether all the effects of LEMS IgG are mediated by a specific effect on P/Q-type
channels. It remains possible that different antibodies act on VGCCs and on neurotransmitter
release. Approximately 30% of patients with LEMS also have antibodies against N-type chan-
nels® but the significance of these antibodies is unknown. LEMS IgG has been shown to reduce
current through HEK cells stably transfected with P/Q-type but not N-type VGCCs.© However,
LEMS IgG has also been reported to decrease N-type currents in small cell lung cancer cells.”

To obtain a direct insight into the mechanism by which neurotransmission is altered, we
examined the effect of LEMS IgG on synaptic vesicle exocytosis in neuronal cultures from rats
and wild-type mice, as well as from mice lacking P/Q-type channels. We measured exocytosis
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[ Figure 1 Fluorescence measurements of evoked vesicular release in rat cultures after incubation in control or LEMS IgG ]
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(A) Experimental protocol showing the sequence of SRC1 incubation, stimulation to load boutons, to evoke exocytosis, and to achieve complete destaining,
and fluorescence imaging. (B, C) Representative SRC1 imaging experiments in cultures treated with control (B) or with LEMS IgG (C). Fluorescence micros-
copy images (top) show gradual decrease of fluorescence at successive time points as indicated during the experiment. Fluorescence time courses in 2 pairs
of representative boutons (arrows) are shown below in relative fluorescence units (RFU). Spontaneous and evoked destaining rates were fitted with mono-
exponential curves. The specific action potential-dependent rate of destaining kap was calculated as kap = key — ksp. Scale bars: 5 um. AP = action
potential; IgG = immunoglobulin G; LEMS = Lambert-Eaton myasthenic syndrome; SRC1 = SynaptoRed C1.
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Figure 2 LEMS IgG reduces evoked exocytosis but not the total recycling pool
size
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Effects of LEMS and control IgG on kap (A) and relative TRP size (B). Left panels show
cumulative distributions of mean kap and TRP size values obtained in individual experiments
(average of 10-50 boutons in each experiment). Data derived with samples obtained from
each of 4 patients with LEMS are shown as thin colored lines. LEMS samples 1-4 are color-
coded as in the legend, and were used in 3, 9, 8, and 6 experiments, respectively. Thick red
line, pooled LEMS IgG data; thick black line, control IgG data. Right panels show the mean
(+SEM) values for the pooled data (LEMS IgG n = 26 experiments, control IgG n = 21
experiments, *p < 0.05). IgG = immunoglobulin G; LEMS = Lambert-Eaton myasthenic syn-
drome; ns = nonsignificant; RFU = relative fluorescence units; TRP = total recycling pool.

using a fluorescent amphiphilic dye, which
partitions into cell membranes and becomes
trapped in synaptic vesicles. The rate of fluo-
rescence loss from synaptic boutons upon
stimulation provides a sensitive and specific
readout of vesicle exocytosis.®

METHODS Standard protocol approvals, registrations,
and patient consents. LEMS sample collection was approved
by the Oxfordshire Regional Ethical Committee A (07/Q1604/
28). Each patient provided written informed consent. Animal ex-
periments were performed in accordance with the UK Animals
(Scientific Procedures) Act 1986.

IgG samples were obtained from 4 patients with LEMS
(3 males, 1 female; table e-1 on the Newurology® Web site at

Neurology.org), and compared with pooled IgG from healthy
human controls. Two LEMS patients had lung malignancy and
all had antibodies that immunoprecipitated P/Q-type VGCCs
(range of titers: 128-10,755 pM, considered positive if >50
pM; table e-1). Two samples additionally immunoprecipitated
N-type VGCCs.

Cell culture and imaging solutions. Hippocampal neurons

= mice and their

were isolated from PO-P2 rat pups or Cacnala”
wild-type littermates, and cultured in Neurobasal-based
medium.® Experiments were performed at room temperature
15 to 19 days after plating. The imaging solution contained (in
mM) 125 NaCl, 2.5 KCI, 2 MgCl,, 2 CaCl,, 30 glucose, and 25
HEPES (pH 7.4), supplemented with 10 wM 2,3-dihydroxy-6-
nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione and 50 pM
DL-2-amino-5-phosphonopentanoic acid to block glutamate

receptors.

Incubation with LEMS IgG. Neuronal cultures were incu-
bated with LEMS or pooled healthy control IgG (1 mg/mL) at
37°C for 16 to 20 hours before imaging. Experiments were per-
formed blinded to the disease status of each IgG sample.

Fluorescence imaging of synaptic vesicle release in
wild-type neurons. Recycling synaptic vesicles were labeled
with the fluorescent dye SynaptoRed C1 (SRC1, 200 wM) using
saturating stimulation (4 trains of 120 action potentials at 30 Hz)
delivered via platinum bath electrodes. After dye washout, the
SRC1 fluorescence decay was monitored, initially at rest for
10 minutes, and then during 0.5-Hz field stimulation for
15 minutes. This was followed by 1,000 stimuli at 10 Hz to
evoke exocytosis of all recycling vesicles. Images were acquired
every 40 seconds with a QuantEM 512SC EM CCD camera
(Photometrics, Tucson, AZ) (figure 1A).

Images were analyzed using Image] (NIH). Fluorescence was
assessed by taking the integrated intensity of individual presynap-
tic boutons (approximately 1- to 2-pum diameter). The nonspe-
cific residual fluorescence was measured after depleting all labeled
recycling vesicles.® The total recycling pool (TRP) size was calcu-
lated by subtracting the residual fluorescence from the initial
bouton fluorescence immediately after SRC1 washout. In each
bouton, the spontaneous destaining rate in the absence of stim-
ulation (ksp) and the evoked rate during low-frequency 0.5-Hz
stimulation (kg) were calculated by fitting mono-exponential
functions to the fluorescence time course. The rate of action
potential-evoked fluorescence loss, k4p, which is proportional
to the rate of evoked vesicle exocytosis, was calculated as kyp =
kgy — ksp. Data are given as mean = SEM and analyzed with
Student 2-tailed 7 test.

RESULTS Pretreatment of neuronal cultures with
LEMS IgG led to a decrease in action potential—
evoked synaptic vesicle exocytosis, as estimated from
the rate of destaining of the amphiphilic fluorescent
dye SRCI (figures 1 and 2). Both the action potential-
specific  SRCI  destaining rate kyp (which is
proportional to the average release probability of
release-ready vesicles p, [reference 8]) and the overall
SRC1 destaining rate during 0.5-Hz action potential
stimulation (k) were reduced by approximately 23%
in LEMS IgG-treated cultures, compared with
neurons treated with control IgG (figures 2A and
e-1A). LEMS IgG samples from all 4 patients

resulted in a lower rate of exocytosis than the pooled
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Figure 3

>

Cumulative probability

98]

Cumulative probability

0.8 1

0.6 1

0.4 1

0.2 1

0.8 -

0.6 -

0.4 -

0.2

/ N

P/Q-type channels are required for inhibition of vesicular release by
LEMS IgG

1.2 4

zZ—

% 0.8 -

& an

Control WT T 0e

—e LEMS WT %04 -
Control KO =< I

LEMS KO 0.2 1

: : ; . 0 -

0.5 1 15 2 & L 0 0
k., x 103, s \\$ %$ 0\\1: "osl~
AP ) L Q° &N

S &S KL
P VY
ns ns
35, | [ ]
A 3
g 21
@ 15 1
o
o 14
[
0.5 -
: : . 0 A
2 4 6 & o O
TRP size, RFU c}\$ 96\&{‘@%%
N E S
& VF YV

Effects of LEMS and control IgG on kap (A) and relative TRP size (B) in WT and Cacnala*/~
(KO) neurons. Left panels show cumulative distributions of mean kap and TRP size values
obtained in individual experiments. Right panels show the mean (=SEM) values for the pooled
data. Data are from 602 boutons in 15 experiments (WT, control, black line), 138 boutons in
5 experiments (WT, LEMS, gray), 303 boutons in 15 experiments (KO, control, red), and 175
boutons in 6 experiments (KO, LEMS, pink). **p < 0.01. IgG = immunoglobulin G; KO =
knockout; LEMS = Lambert-Eaton myasthenic syndrome; ns = nonsignificant; RFU = rela-
tive fluorescence units; TRP = total recycling pool; WT = wild-type.
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control sample (range 16%—-39%; table e-2). LEMS
IgG SRC1
destaining rate kgp by approximately 24% (figure

also reduced the spontaneous
e-1B, table e-2). This is consistent with our recent
finding that spontaneous exocytosis in the absence
of action potentials is in part triggered by stochastic
opening of presynaptic VGCCs.? In contrast, LEMS
IgG did not affect the relative TRP size as estimated
from the magnitude of the initial SRC1 fluorescence
(figure 2B, table e-2). This implies that the effect of
LEMS IgG on transmitter release is mainly mediated
by a reduction of vesicular release probability p,, as a
direct consequence of inhibition of presynaptic
VGCC function.

We repeated the experiment in cultures from

-

Cacnala™'~ mice and their wild-type littermates.

We first verified that P/Q-type channels were lost
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in Cacnala™'~

neurons by estimating the contribu-
tion of different VGCCs to neurotransmitter release,
as measured by the amplitude of evoked excitatory
postsynaptic currents (EPSCs). The P/Q-type specific
blocker w-Agatoxin IVA attenuated the EPSC ampli-
tude by approximately 70% in wild-type neurons, but
did not affect EPSCs in Cacnala™'~ neurons (figure
e-2), consistent with data obtained in another

/—

Cacnala™™ strain.’® Synaptic transmission in

Cacnala™'~ neurons was dependent on N-type
VGCCs with a contribution from R-type VGCCs.
We then tested the effect of LEMS IgG that immu-
noprecipitated both P/Q- and N-type VGCCs, and
control IgG, on the rate of action potential-evoked

vesicle and

/—

synaptic exocytosis

in  wild-type
Cacnala™'™ neurons (figure e-3). In wild-type cul-
tures, the rate of action potential-evoked exocytosis
was decreased by approximately 60% by LEMS IgG
when compared with control IgG, qualitatively con-
sistent with the data obtained in rat cultures. In strik-
ing contrast, there was no significant effect of LEMS

'~ cultures

IgG on synaptic vesicle release in Cacnala™
(figure 3A). Consistent with the data from rat cul-
tures, TRP was not affected by LEMS IgG in either
wild-type or Cacnala™~ cultures (figure 3B). The
LEMS IgG tested here thus required P/Q-type chan-

nels to exert an effect on exocytosis.

DISCUSSION The present study demonstrates a
direct effect of LEMS IgG on vesicular exocytosis
via P/Q-type channels. Although a presynaptic
mechanism of action of LEMS IgG has long been
assumed, the available evidence to date has been
indirect. Our presynaptic imaging data directly
show that LEMS IgG decreases action potential-
dependent synaptic vesicle release in rat and wild-
type mouse neurons. We used a well-characterized
model of neurotransmission, in which VGCCs have
a similar role as at the neuromuscular junction.
We therefore infer that LEMS IgG impairs
neuromuscular transmission by reducing the rate of
acetylcholine release as a direct consequence of
binding to P/Q-type channels.

LEMS IgG had no effect on synaptic vesicle exo-
cytosis when P/Q-type channels were deleted geneti-
cally despite the presence of antibodies against N-type
VGCCs. We thus found no evidence for an effect of
LEMS IgG on synaptic function mediated by N-type
VGCCs. However, a more systematic study focusing
on samples with high titers of N-type IgG is required
to clarify the pathophysiologic role of antibodies
directed against this channel subtype.
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