
www.thelancet.com/lancetgh   Vol 2   November 2014 e654

Articles

Eff ect of antenatal multiple micronutrient supplementation 
on anthropometry and blood pressure in mid-childhood in 
Nepal: follow-up of a double-blind randomised controlled trial
Delan Devakumar, Shiva Shankar Chaube, Jonathan C K Wells, Naomi M Saville, Jon G Ayres, Dharma S Manandhar, Anthony Costello, David Osrin

 Summary
Background In 2002–04, we did a randomised controlled trial in southern Nepal, and reported that children born to 
mothers taking multiple micronutrient supplements during pregnancy had a mean birthweight 77 g greater than 
children born to mothers taking iron and folic acid supplements. Children born to mothers in the study group were a 
mean 204 g heavier at 2·5 years of age and their systolic blood pressure was a mean 2·5 mm Hg lower than children 
born to mothers in the control group. We aimed to follow up the same children to mid-childhood (age 8·5 years) to 
investigate whether these diff erences would be sustained.

Methods For this follow-up study, we identifi ed children from the original trial and measured anthropometry, body 
composition with bioelectrical impedance (with population-specifi c isotope calibration), blood pressure, and renal 
dimensions by ultrasound. We documented socioeconomic status, household food security, and air pollution. Main 
outcomes of the follow-up at 8 years were Z scores for weight-for-age, height-for-age, and body-mass index (BMI)-for-
age according to WHO Child Growth Standards for children aged 5–19 years, and blood pressure. This study is 
registered with the International Standard Randomised Controlled Trial register, number ISRCTN88625934. 

Findings Between Sept 21, 2011, and Dec 7, 2012, we assessed 841 children (422 in the control group and 419 in the 
intervention group). Unadjusted diff erences (intervention minus control) in Z scores were 0·05 for weight-for-age 
(95% CI –0·09 to 0·19), 0·02 in height-for-age (–0·10 to 0·15), and 0·04 in BMI-for-age (–0·09 to 0·18). We recorded 
no diff erence in blood pressure. Adjusted diff erences were similar for all outcomes.

Interpretation We recorded no diff erences in phenotype between children born to mothers who received antenatal 
multiple micronutrient or iron and folate supplements at age 8·5 years. Our fi ndings did not extend to physiological 
diff erences or potential longer-term eff ects.
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Introduction
Data for the developmental origins of health and disease 
suggest that early-life experience can have lasting eff ects 
on growth and physiology. The mechanisms include an 
interplay between environment, genes, and hormones, 
in which epigenetic regulation plays a part. How tractable 
this interplay is to environmental eff ects, how long the 
tractability lasts, and whether it is reversible, remain 
uncertain.1–3

Macronutrients and micronutrients are both important 
for the short-term and long-term health of mothers and 
children, especially in resource-poor settings in which 
women can have many defi ciencies.2,4,5 Many women 
take iron and folic acid before or during pregnancy, and 
a supplement containing 15 vitamins and minerals 
developed by UNICEF, the United Nations University, 
and WHO has been considered for use in pregnancy.6 
We previously did a double-blind randomised controlled 
trial7 with pregnant women in which we compared the 
eff ects of taking this multiple micronutrient supplement 
every day in the second and third trimesters of pregnancy 

with supplements of iron and folic acid. We found an 
increase of 77 g in birthweight (95% CI 24–130) in the 
intervention group, with a corresponding 25% relative 
reduction in low birthweight prevalence.7 Ours was one 
of several trials of this supplement,8–15 and fi ndings of 
meta-analyses of these and similar trials have shown an 
increase in birthweight of between 22 g and 54 g, a 
reduction in low birthweight and small-for-gestational 
age, but no other changes in anthropometry, gestation, 
or mortality.16–20

Children born in our trial were followed up at age 
2·5 years. The multiple micronutrient group were a mean 
204 g (95% CI 27–381) heavier, with small increases in 
body circumferences and a mean systolic blood pressure 
2·5 mm Hg lower (0·5–4·6) than those in the control 
group.21 We have now followed up children at 8 years of 
age, hypothesising that the diff erences in weight and 
blood pressure recorded at 2·5 years would be maintained 
in relative terms into mid-childhood. We repeated the 
anthropometry and blood pressure measurements, and 
also examined body composition.
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Methods
Study design and participants
The study was based in Dhanusha district in the Central 
Terai of Nepal, close to the Indian border. Nepal is one of 
the world’s poorest countries. Gross domestic product is 
US$35·81 billion and per person income is $1160 (at 
purchasing power parity), which places Nepal 103rd in 
terms of wealth.22,23 The Human Development Index is 
0·458, ranked 157th worldwide.23

The trial has been described previously.7 1200 women 
attending Janakpur Zonal Hospital for antenatal care 
were randomly allocated to receive either a multivitamin 
supplement (containing 800 μg vitamin A, 10 mg 
vitamin E, 5 μg vitamin D, 1·4 mg vitamin B1, 1·4 mg 

vitamin B2, 18 mg niacin, 1·9 mg vitamin B6, 2·6 μg 
vitamin B12, 400 μg folic acid, 70 mg vitamin C, 30 mg 
iron, 15 mg zinc, 2 mg copper, 65 μg selenium, and 150 μg 
iodine) or a control supplement of 60 mg iron and 400 μg 
folic acid.6 Supplements were taken every day from 12 to 
20 weeks’ gestation (average 15·9 weeks) until delivery, 
and women were assessed every 2 weeks. Exclusion 
criteria included multiple pregnancies (ie, twins or more), 
fetal abnormalities on obstetric ultrasound, and maternal 
illness that could compromise the outcome of the 
pregnancy. 1069 mothers and infants completed the trial 
and were seen by the study team at birth and at 1 month 
of age. Participants, their families, and research staff  were 
masked to trial allocation.

The follow-up study was approved by the UCL research 
ethics board (reference 2744/001) and the Nepal Health 
Research Council (reference 51/2011). Parents or 
guardians of children gave signed informed consent in 
their local language.

Procedures
We tried to fi nd children from the original trial with 
location data from previous follow-up. We travelled 
anywhere in Dhanusha and adjoining districts, and also 
assessed 14 children who had moved to Kathmandu or 
the town of Hetauda.

A questionnaire was developed in Maithili, Nepali, and 
English, back-translated to ensure equivalence, piloted in 
the local population, and adapted before use. Modules 
covered socioeconomic status, food security, and parental 
recall of diarrhoeal and respiratory illnesses in the past 
week and year. We assessed food security with the 
Household Food Insecurity Access Scale (HFIAS)24 and 
the Household Dietary Diversity Score (HDDS),25 which 
have been used in other research in the specialty.26 We 
used the HFIAS to work out the level of food insecurity 
experienced by a household during the past 30 days, in 
terms of anxiety about food access, quality, and quantity 
of food. We used the HDDS to examine the breadth of 
the child’s diet in the preceding week.

For anthropometric measurements, we followed 
guidelines by UCL Institute of Child Health (based on 
an anthropometric standardisation reference manual)27 
and WHO.28 We attempted to minimise biological 
variation by taking measurements at a similar time of 
day. We did duplicate measures of standing height with 
a Leicester stadiometer (Invicta Plastics, UK), accurate to 
1 mm. The child’s footwear and hair accessories were 
removed and they were positioned with their head and 
back touching the stadiometer, with knees extended and 
feet together, heels touching the base of the stadiometer, 
and head in the Frankfort plane. For sitting height, the 
child was seated on a custom-made stool with the base of 
the spine touching the stadiometer and head in the 
Frankfort plane.

Weight and body composition were measured with a 
Tanita BC-418 scale (Tanita, Japan) accurate to 0·1 kg.  Figure: Study profi le

1985 women screened for eligibility

785 did not meet inclusion criteria

1200 randomly assigned

600 allocated to intervention group600 allocated to control group

23 lost to follow-up
12 could not be found
11 moved beyond study

10 discontinued trial
2 lost to miscarriage
7 withdrew from trial
1 clinical problems

24 lost to follow-up
16 could not be found

8 moved beyond study
12 discontinued trial

5 lost to miscarriage
7 withdrew from trial

567 delivered
15 stillbirth
17 neonatal death

564 delivered
18 stillbirth
12 neonatal death

535 potential for follow-up534 potential for follow-up

106 lost to follow-up
6 post-neonatal deaths

4 deaths at <1 year
2 deaths at >1 year

98 lost to follow-up
1 refused consent

10 post-neonatal deaths
6 deaths at <1 year
4 deaths at >1 year

425 completed questionnaires 423 completed questionnaires

3 unable to come for
anthropometric 
measurements
1 moved to India
1 could not come in time
1 did not want to come

422 completed anthropometric
measurements

4 unable to come for
anthropometric 
measurements
1 moved to India
1 could not come in time
2 did not want to come

419 completed anthropometric
measurements



Articles

www.thelancet.com/lancetgh   Vol 2   November 2014 e656

Children were given a standard set of clothes (underwear, 
vest, and sarong) weighing 200 g, which they wore instead 
of their own. Before assessment, the child was asked to 
pass urine. Body composition was estimated with a 
bioelectrical impedance analysis, with a population-
specifi c calibration study that used isotope dilution. 
Bioelectrical impedance analysis uses a calibration 
equation to convert electrical impedance to an estimate of 
total body water, and to in turn generate an estimate of 
lean mass, relying on the assumption that lean mass and 
fat mass have diff erent and consistent impedance to 
current. We did isotope calibration by measuring total 
body water with 0·06 mg/kg deuterium oxide with 
100 children aged 7–9 years. We converted total body 
water to lean mass by use of age-specifi c and sex-specifi c 
hydration values.29 We selectively sampled children of 
diff erent weights to produce as accurate a prediction 
equation as possible: lean mass (kg)=1·95 + (0·68 × height 
[cm]² / impedance [Ω]) + (0·21 × weight [kg]) – (0·36 × male 
sex); R²=0·93, root mean squared error=0·95 kg.

We measured body circumferences in duplicate with 
Seca 201 tapes (Seca, Germany) accurate to 1 mm with 
the child standing in the anatomical position. Maximum 
horizontal head circumference was measured around 
the forehead and occiput, under the hair if needed, in the 
Frankfort plane. Chest circumference was measured at 
the nipple line at the end of normal expiration. To 
measure the waist circumference, the child was asked to 
bend from one side to the other and the points of fl exure 
were marked. We placed the measuring tape around the 
abdomen at these points and read when the child was 
relaxed at the end of normal expiration. Hip 
circumference was measured at the widest girth, mid-
upper arm circumference midway between the olecranon 
process, and the tip of the acromion and upper leg 
circumference midway between the greater trochanter 
and the lateral femoral epicondyle. We calibrated 
instruments every 2 weeks.

Left biceps, triceps, subscapular and supra-iliac 
skinfold thicknesses were measured in triplicate with a 
Harpenden calliper (Assist Creative Resource, UK), 
accurate to 0·2 mm and calibrated against a Vernier 
calliper. We used an Omron M6 electronic blood 
pressure monitor (Omron Healthcare, Japan) with a 
paediatric cuff , or adult cuff  if needed. Measurements 
followed Great Ormond Street Hospital for Children 
guidelines.30 Blood pressure was recorded after the 
child had been seated for at least 1 min with legs 
uncrossed. The child was told to relax with head back 
and right arm on the armrest at the level of the 
sternum. Two readings were taken, with the cuff  
defl ated fully and 1 min between them, and the lowest 
value was recorded.

Measurements of kidney size were made to examine 
a potential mediator of blood pressure diff erence. 
Ultrasound measurements were made by a clinician 
trained in ultrasonography with an Aloka SDD-500 

(Aloka, Japan) with a 2–8 MHz convex probe (Aloka, 
Japan), accurate to 1 mm. We recorded maximum renal 
length and anteroposterior dimensions, after 
visualising sinus and parenchyma using predefi ned 
landmarks.

Air pollution is a potential environmental confounder 
that has been associated with abnormal growth, either 

8 year follow-up Lost to follow-up

Control group 
(n=422)

Intervention 
group (n=419)

Before end of 
trial* (n=69)

After end of 
trial† (n=290)

Residence

Urban 199 (47%) 197 (47%) 47 (68%) 184 (64%)

Rural 223 (53%) 222 (53%) 22 (32%) 106 (37%)

District

Dhanusha 348 (83%) 336 (80%) 59 (86%) 245 (85%)

Mahotari 74 (18%) 79 (19%) 10 (15%) 43 (15%)

Siraha 0 2 (1%) 0 1 (0%)

Sarlahi 0 2 (1%) 0 1 (0%)

Mother’s age at enrolment

<20 years 126 (30%) 130 (31%) 20 (29%) 85 (29%)

20–29 years 273 (65%) 272 (65%) 44 (64%) 196 (68%)

≥30 years 23 (6%) 17 (4%) 5 (7%) 9 (3%)

Maternal education

None 206 (49%) 210 (50%) 27 (39%) 101 (35%)

Primary 37 (9%) 33 (8%) 16 (23%) 37 (13%)

Secondary or higher 179 (42%) 176 (42%) 26 (38%) 152 (52%)

Mean (SD) maternal height mean (cm) 151·0 (6) 150·4 (5) 150·4 (5) 151·0 (6)

Ethnic origin

Terai Brahmin or Chhetri 62 (15%) 65 (16%) 13 (19%) 62 (21%)

Terai Middle Madeshi 296 (70%) 276 (66%) 38 (55%) 176 (61%)

Terai Janjati or Dalit 10 (2%) 14 (3%) 2 (3%) 3 (1%)

Hill Brahmin or Chhetri 24 (6%) 23 (6%) 6 (9%) 19 (7%)

Terai Muslim 23 (6%) 29 (7%) 8 (12%) 17 (6%)

Janjati (hill) 7 (2%) 11 (3%) 2 (3%) 12 (4%)

Other 0 (0%) 1 (0%) 0 (0%) 1 (0%)

Main household livelihood

No work 49 (12%) 46 (11%) 1 (2%) 34 (12%)

Farming 72 (17%) 72 (16%) 7 (10%) 34 (12%)

Salaried 153 (36%) 178 (43%) 34 (49%) 148 (51%)

Small business 82 (19%) 76 (18%) 19 (28%) 46 (16%)

Waged labour 53 (13%) 43 (10%) 5 (7%) 18 (6%)

Student 7 (2%) 3 (1%) 3 (4%) 4 (1%)

Out of country 6 (1%) 5 (1%) 0 (0%) 6 (2%)

Land ownership

0 47 (11%) 44 (11%) 8 (12%) 30 (10%)

<30 dhur (about 500 m²) 290 (69%) 294 (70%) 45 (65%) 196 (68%)

>30 dhur 85 (21%) 81 (19%) 16 (23%) 64 (22%)

Appliance score

Motor vehicle, TV, or refrigerator 217 (51%) 214 (51%) 36 (53%)‡ 146 (50%)

Sewing machine, cassette player, 
camera, fan, bullock cart, wall clock, 
radio, iron, or bicycle

147 (35%) 138 (33%) 21 (31%) 95 (33%)

None of the above 58 (14%) 67 (16%) 11 (16%) 49 (17%)

(Table 1 continues on next page)
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directly through, for example, lung damage, or indirectly 
through an increase in morbidity.31 Personal exposure to 
air pollution was estimated with both gravimetric and 
photometric sampling of respirable particle mass.32,33 
Briefl y, sampling was done in the microenvironments in 
which children resided (eg, bedroom, kitchen during 
and outside cooking hours, outdoors, school, and 
verandah) three times per year. With time activity data 
from the questionnaire, we calculated a 24 h time-
weighted-average. Estimates were restricted to children 
living in the plains.

Each child was given a T-shirt, refreshments, and a 
voucher to be seen by a paediatrician outside the research 
team, with costs of minor acute treatments covered as a 
gesture of thanks. Guardians were compensated for 
travel costs.

We entered data into a Base Open Offi  ce database 
(Apache Software foundation) and Microsoft Excel 
(version 14·3·2). Data fi les containing personal details 
were password protected. No analyses or shared data 
included the names of participants or families. 
Questionnaires were stored in a locked offi  ce with a 
security guard.

Statistical analysis
The study was powered at 81% to detect a diff erence of 
0·2 Z scores between allocation groups with 400 children 
in each, at 5% signifi cance level. This corresponded to 
the 0·2 Z score weight diff erence recorded in the trial 
and the previous follow-up, and would be roughly 800 g 
at 8 years of age. Analysis was done in Excel (version 
14.3.2), Prism (version 6.0a), and Stata (version 12.1). We 
made Bland-Altman plots for all repeat measures to look 
at reproducibility34 and outliers identifi ed. We calculated 
intra-observer and inter-observer technical error of 
measurement (TEM)35 and coeffi  cient of reliability 
(R)28,36,37 and relative TEM (TEM%) allowed the 
comparison of variables.38

The WHO Child Growth Standards for children aged 
5–19 were applied to generate Z scores for weight, height, 
and BMI for age.39 We assessed distributions for 
normality. The primary analysis compared allocation 
groups with t tests and univariable regression models by 
intention to treat.

Although allocation was balanced, we adjusted for 
potential confounders to increase precision. We 
constructed a causal diagram based on a priori 
assumptions and putative associations between variables 
(appendix). Based on this diagram, multivariable linear 
regression models included covariates describing air 
pollution (24 h time-weighted-average), dietary diversity 
(HDDS score), food security (HFIAS score), maternal 
education (no education, primary school, or secondary 
and above) and height, household asset score, and 
residence (urban or rural). Adjustment for maternal 
height was not deemed essential, but was included in the 
model to augment information about diet and 
socioeconomic status. We included covariates for 
maternal education and residence to off set the potential 
eff ects of diff erential loss to follow-up.40 Model 
assumptions were tested for linearity by plotting 
residuals against each covariate, for normality by 
examining a kernel density plot of residuals, for multi-
co-linearity by calculating variance infl ation factor, and 
for heteroskedasticity with the Breusch-Pagan test and 
plotting residuals against predicted values. The 
multivariable models seemed linear, had normally 
distributed residuals, and showed no evidence of 

8 year follow-up Lost to follow-up

Control group 
(n=422)

Intervention 
group (n=419)

Before end of 
trial* (n=69)

After end of 
trial† (n=290)

(Continued from previous page)

Parity

0 185 (44%) 182 (43%) 33 (48%) 140 (48%)

1-2 183 (43%) 202 (48%) 28 (41%) 124 (43%)

≥3 54 (13%) 35 (8%) 8 (12%) 26 (9%)

Preterm (<37 weeks’ gestation by 
ultrasound assessment)

29 (7%) 28 (7%) ‡ 41 (14%)

Delivery site

Hospital 218 (51·7) 252 (60·1) ‡ 176 (60·7)

Home 194 (46·0) 165 (39·4) ‡ 100 (34·5)

On the way 10 (2·4) 2 (0·5) ‡ 14 (4·8)

Child sex and weight

Girl 210 (50%) 196 (47%) ‡ 152 (54%)‡

Boy 212 (50%) 223 (53%) ‡ 132 (46%) 

Mean (SD) birthweight (kg) 2·74 (0·41) 2·81 (0·43) ‡ 2·75 (0·50)

Data are frequency (%) unless otherwise stated. *14 women withdrew from the trial, one dropped out with a clinical 
problem, 19 moved beyond study area, 28 were untraceable, and seven had miscarriages. †Four refused to attend, 
two moved beyond study area, two not assessable within follow-up, 204 untraceable, 33 stillbirths, 29 neonatal 
deaths, and 16 post-neonatal deaths. ‡Incomplete data at delivery.

 Table 1: Characteristics of children retained at 8 years and of those lost to follow-up

See Online for appendix

Number 
of children

Frequency 
≤2 SD (%)

Mean Z score (95% CI)

Control group Intervention group

Birth*

Weight-for-age 1044 186 (18%) –1·28 (–1·35 to –1·19) –1·08 (–1·17 to 1·00)

Height-for-age 1016 91 (9%) –0·41 (–0·52 to –0·30) –0·34 (–0·45 to –0·24)

BMI-for-age 1002 348 (35%) –1·63 (–1·74 to –1·52) –1·42 (–1·53 to –1·31)

2·5 years

Weight-for-age 915 340 (37%) –1·76 (–1·85 to –1·67) –1·62 (–1·72 to –1·53)

Height-for-age 915 537 (59%) –2·29 (–2·39 to –2·19) –2·20 (–2·31 to –2·10)

BMI-for-age 915 54 (6%) –0·40 (–0·50 to –0·30) –0·29 (–0·39 to –0·18)

8·5 years

Weight-for-age 841 444 (53%) –2·08 (–2·18 to –1·98) –2·03 (–2·13 to –1·93)

Height-for-age 841 242 (29%) –1·51 (–1·59 to –1·42) –1·48 (–1·57 to –1·39)

BMI-for-age 841 293 (35%) –1·67 (–1·76 to –1·58) –1·63 (–1·72 to –1·53)

BMI=body-mass index. *Excluding birth data ≤4.5 and >3 Z scores. 

 Table 2: Anthropometric indices at birth, 2·5 years, and 8·5 years, by allocation
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co-linearity. Outcomes were usually heteroskedastic and 
robust standard errors were used.41

For the main outcomes, we investigated the direct 
eff ects of antenatal multiple micronutrient 
supplementation, not mediated by birth size. We 
included anthropometric data at birth in multivariable 
regression models developed as above.

We excluded 34 children with major or chronic illness 
and looked at the eff ect of antenatal supplementation on 
girls and boys separately. Illnesses were self-reported and 
classifi ed by a member of the research team trained in 
paediatrics.

We examined conditional growth to see if growth in a 
given time diff ered from the growth expected on the basis 
of previous measurements. The indicative variable was 

calculated as the standardised residual on the basis of 
previous Z scores using the WHO reference ranges.39,42 A 
positive value represented growth faster than expected 
and a negative value, slower. Conditional growth was 
calculated for two timepoints—2·5 years and 8·5 years. 
We regressed current size on previous measures with the 
method described by Adair and colleagues.43 Conditional 
height took into account previous height and weight, 
whereas conditional relative weight accounted for these 
and current height.

Role of the funding source
The funder played no part in the study design, data 
collection, analysis, interpretation of results, writing the 
report, or the decision to submit for publication. The 

Control group Intervention 
group

Unadjusted diff erence 
(95% CI)

Adjusted diff erence* 
(95% CI)

Adjusted diff erence restricted 
to children without major or 
chronic illness (95% CI)

Weight (kg)

Weight 20·04 (3·31) 20·14 (3·35) 0·10 (–0·35 to 0·55) 0·30 (–0·08 to 0·67) 0·25 (–0·12 to 0·63)

Lean mass 17·34 (2·44) 17·30 (2·49) –0·05 (–0·43 to 0·34) 0·10 (–0·23 to 0·43) 0·08 (–0·25 to 0·42)

Fat mass 3·01 (1·6) 2·94 (1·58) –0·07 (–0·32 to 0·18) 0·02 (–0·21 to 0·25) 0·05 (–0·18 to 0·27)

Height (cm)

Standing 120·72 (5·91) 120·73 (6·06) 0·00 (–0·81 to 0·81) 0·35 (–0·31 to 1·01) 0·27 (–0·38 to 0·93)

Trunk length 64·14 (2·94) 64·16 (2·96) 0·02 (–0·38 to 0·42) 0·14 (–0·20 to 0·48) 0·07 (–0·28 to 0·41)

Anthropometric scores

Weight-for-age –2·08 (1·01) –2·03 (1·06) 0·05 (–0·09 to 0·19) 0·09 (–0·03 to 0·22) 0·07 (–0·06 to 0·19)

Height-for-age –1·51 (0·92) –1·48 (0·96) 0·02 (–0·10 to 0·15) 0·06 (–0·05 to 0·17) 0·05 (–0·06 to 0·16)

BMI-for-age –1·67 (0·96) –1·63 (0·98) 0·04 (–0·09 to 0·18) 0·07 (–0·06 to 0·20) 0·05 (–0·08 to 0·17)

Skinfold thickness (mm)

Triceps 7·39 (2·56) 7·36 (2·41) –0·03 (–0·37 to 0·31) 0·07 (–0·24 to 0·38) 0·10 (–0·20 to 0·37)

Biceps 3·95 (1·34) 3·95 (1·40) –0·01 (–0·19 to 0·12) 0·06 (–0·11 to 0·23) 0·08 (–0·10 to 0·25)

Subscapular 4·91 (1·29) 4·93 (1·51) 0·01 (–0·18 to 0·20) 0·06 (–0·12 to 0·24) 0·07 (–0·11 to 0·26)

Supra–iliac 5·76 (2·54) 5·57 (2·35) –0·19 (–0·52 to 0·14) –0·11 (–0·42 to 0·21) –0·06 (–0·36 to 0·25)

Body circumference (cm)

Head 49·19 (1·48) 49·37 (1·47) 0·18 (–0·02 to 0·38) 0·19 (0·02 to 0·37) 0·15 (–0·02 to 0·32)

Chest 55·59 (3·39) 55·74 (3·64) 0·15 (–0·33 to 0·63) 0·28 (–0·14 to 0·71) 0·27 (–0·16 to 0·70)

Waist 49·01 (3·76) 49·20 (3·96) 0·19 (–0·33 to 0·71) 0·29 (–0·19 to 0·77) 0·23 (–0·25 to 0·71)

Hip 57·30 (4·00) 57·36 (4·11) 0·07 (–0·48 to 0·61) 0·33 (–0·14 to 0·81) 0·26 (–0·22 to 0·73)

Upper leg 31·11 (2·91) 31·21 (2·91) 0·10 (–0·30 to 0·49) 0·26 (–0·09 to 0·61) 0·21 (–0·14 to 0·56)

Mid–upper arm 15·94 (1·40) 15·99 (1·38) 0·04 (–0·15 to 0·23) 0·11 (–0·06 to 0·27) 0·10 (–0·07 to 0·26)

Renal dimension (cm)

Right length 7·90 (0·55) 7·89 (0·57) –0·01 (–0·08 to 0·07) 0·00 (–0·07 to 0·07) –0·01 (–0·08 to 0·06)

Right anteroposterior 
distance

2·98 (0·26) 3·00 (0·28) 0·02 (–0·01 to 0·06) 0·02 (–0·01 to 0·06) 0·02 (–0·02 to 0·06)

Left length 8·25 (0·57) 8·22 (0·58) –0·03 (–0·11 to 0·05) –0·03 (–0·10 to 0·05) –0·05 (–0·12 to 0·03)

Left anteroposterior 
distance

3·29 (0·32) 3·30 (0·32) 0·02 (–0·03 to 0·06) 0·02 (–0·03 to 0·06) 0·01 (–0·03 to 0·06)

Blood pressure (mm Hg)

Systolic 98·06 (7·14) 98·08 (8·10) 0·02 (–1·02 to 1·05) –0·06 (–1·10 to 0·98) –0·20 (–1·23 to 0·83)

Diastolic 61·16 (7·36) 61·29 (8·27) 0·13 (–0·93 to 1·19) 0·19 (–0·87 to 1·25) 0·15 (–0·92 to 1·22)

Data are mean (SD) unless otherwise stated. *Multivariable regression models included variables describing air pollution, dietary diversity, food security, maternal education 
and height, household asset score, and residence, by use of robust standard errors. Age and sex were included if not intrinsic to Z score.

 Table 3: Child anthropometric indices by allocation, showing mean values, unadjusted, and adjusted diff erences at 8·5 years



Articles

e659 www.thelancet.com/lancetgh   Vol 2   November 2014

corresponding author had full access to all the data in the 
study and had fi nal responsibility for the decision to 
submit for publication. 

Results
We visited 852 families between Sept 21, 2011, and Dec 7, 
2012. One guardian declined consent and three 
completed questionnaires only. Retention rates were 81% 
for the control group and 80% for the intervention group. 
The fi gure shows the trial profi le. Mean ages at follow up 
were 8·44 years in the intervention group and 8·47 in the 
control group. Since the previous follow-up, one child 
had died in the intervention group and two in the control 
group. Neonatal mortality had been non-signifi cantly 
greater in the intervention group,7 but mortality rates 
were similar over the entire follow-up period (appendix). 
Other than for fever (in 81% of children in the past year; 
appendix), illness rates were low and similar in 
intervention and control groups. Children lost to follow-
up were similar for most indicators to those retained in 
the study (table 1). They were more likely to be urban 
residents (p<0·0001) and their mothers to have some 
education (p<0·0001).

Intraobserver TEM% was less than 0·25% (most values 
<0·1%) and TEM values were less than 0·6 mm, with the 
exception of skinfold thickness, which was 1–2% (TEM 
≤0·1 mm), and renal anteroposterior dimensions at 
about 5% (TEM <2 mm). With the exception of head, 
waist, and chest circumferences, interobserver variability 
was low, with R values of 0·93 or higher. Controlling for 
the eff ect of observer made little diff erence and did not 
change the inferences.

We took anthropometric measurements for 841 children. 
At 8·5 years of age, roughly 50% of children had low 
weight-for-age, and a third had low height-for-age and low 
BMI-for-age (table 2). Weight-for-age scores fell 
consistently with age, but height-for-age showed some 
recovery after age 2·5 years. The mean fat mass proportion 
was 14·2%. Some children were overweight (BMI-for-age 
>1 SD): 0·5% of girls and 2·3% of boys. We recorded no 
diff erence between allocation groups in the main 
anthropometric outcomes at 8·5 years (table 3). We 
recorded no diff erence in systolic and diastolic blood 
pressure between the groups.

Multivariable regression models tended to increase the 
eff ect size, but the results did not reach statistical 
signifi cance. The only outcome that did was head 
circumference (table 3). Table 4 shows stratifi cation by 
sex; we recorded no diff erences and no evidence of 
interaction (p=0·24).

We noted no diff erence between allocation groups in 
direct eff ects of antenatal multiple micronutrient 
supplementation, not mediated by birth-size, on Z score: 
0·04 (95% CI –0·08 to 0·17) for weight-for-age, 0·06 
(–0·06 to 0·17) for height-for-age, and 0·05 (–0·08 to 0·18) 
for BMI-for-age. The appendix shows conditional relative 
growth results. Generally, there was a tendency for 
positive eff ect sizes up to 2·5 years and negative eff ect 
sizes up to 8·5 years on both weight-for-age and height-
for-age, but these did not reach statistical signifi cance.

Overall, the population was food secure and children 
had a diverse diet. In the intervention group, 9% of 
households were food insecure and in the control group 
8%. For households in which there was some food 
insecurity in terms of access, the median HFIAS score 
was six of 27 in the control group and eight of 27 in the 
intervention group. The median dietary diversity score 
was nine of 12 during 7 days in both intervention and 
control groups. The mean air pollution 24 h time-
weighted average (particle mass <4 μm) was 167·2 μg/L 
(SD 25·2) in the control group and 168·5 μg/L (26·6) in 
the intervention group.

Discussion
At follow-up at 8·5 years, we recorded no diff erences in 
anthropometric outcomes (with or without adjustment 
for birth size), conditional relative growth, or blood 
pressure between groups whose mothers were allocated 
antenatally to either multiple micronutrient or iron and 
folic acid supplements. Only head circumference diff ered 

Control 
group

Inter-
vention 
group

Unadjusted 
diff erence 
(95% CI)

Multivariable 
regression* 
(95% CI)

Multivariable 
regression restricted 
to children without 
major or chronic 
illness (95%CI)

Weight (kg)

Girls 19·55
(2·96)

19·71
(3·15)

0·16
(–0·44 to 0·75)

0·51
(–0·03 to 1·04)

0·51
(–0·03 to 1·06)

Boys 20·53
(3·57)

20·53
(3·49)

–0·00
(–0·67 to 0·66)

0·101
(–0·43 to 0·63)

0·01
(–0·51 to 0·53)

Height, standing (cm)

Girls 120·40
(5·92)

119·98
(5·93)

–0·42
(–1·57 to 0·74)

0·33
(–0·65 to 1·32)

0·44
(–0·51 to 1·39)

Boys 121·05
(5·89)

121·38
(6·12)

0·33
(–0·80 to 1·47)

0·36
(–0·55 to 1·27)

0·14
(–0·78 to 1·06)

Weight-for-age Z score

Girls –2·14
(0·92)

–2·02
(1·02)

0·12
(–0·07 to 0·31)

0·17
(–0·01 to 0·35)

0·17
(–0·01 to 0·35)

Boys –2·02
(1·09)

–2·04
(1·09)

–0·02
(–0·23 to 0·18)

0·03
(–0·15 to 0·21)

–0·02
(–0·19 to 0·16)

Height-for-age Z score

Girls –1·55
(0·91)

–1·53
(0·93)

0·02
(–0·16 to 0·20)

0·06
(–0·11 to 0·23)

0·08
(–0·08 to 0·24)

Boys –1·47
(0·93)

–1·44
(0·98)

0·03
(–0·15 to 0·21)

0·06
(–0·10 to 0·22)

0·02
(–0·14 to 0·18)

BMI-for-age Z score

Girls –1·73
(0·87)

–1·58
(0·97)

0·15
(–0·03 to 0·33)

0·18
(0·00 to 0·36)

0·16
(–0·02 to 0·34)

Boys –1·61
(1·04)

–1·67
(0·99)

–0·06
(–0·25 to 0·13)

–0·02
(–0·20 to 0·16)

–0·05
(–0·23 to 0·13)

Data are mean (SD) unless otherwise stated. *Multivariable regression models included variables describing air 
pollution, dietary diversity, food security, maternal education and height, household asset score and residence, by use 
of robust standard errors. Age was included if not intrinsic to Z score.

 Table 4: Child anthropometry by allocation group and child sex at 8·5 years
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in multivariable analysis, to a similar degree as at 
2·5 years, but we are cautious about interpreting this 
fi nding as one outcome among many.

We can be confi dent of the fi ndings because TEM and 
TEM% values were below consensual norms (TEM <3 mm 
for height and <2 mm for body circumferences and TEM% 
<1% [<5% for skinfold thicknesses]).44,45 Because of 
balanced allocation, the primary analysis was unadjusted. 
We developed adjusted models from a conceptual diagram 
with uncertain assumptions because of the complexity of 
childhood growth as an outcome. We used causal diagram 
analysis to make these assumptions explicit, and attempted 
to adjust for important variables, without overadjustment. 
The references used to calculate anthropometric Z scores 
diff ered from those used for children younger than 5 years 
in the trial and previous follow-up.39 This might have led to 
inconsistencies, but the WHO reference ranges for older 
children are based on statistical extrapolation from the 
younger ranges and were designed for compatibility.

We assume that the previous follow-up fi ndings showed 
a true diff erence between intervention and control groups 
in early life (the trial was of high quality and the results in 
keeping with similar trials). Our interpretation of the 
fi ndings is that either the diff erences between groups had 
disappeared by mid-childhood or that they were not 
manifest in our indicators. Five other trials of antenatal 
UNIMMAP supplements have followed up cohorts into 
childhood (panel). Three groups have assessed child 
growth,47–50 three have done cognitive tests,56–58 and one has 
assessed mortality.46 Overall, results of follow-up studies 
have not shown a lasting diff erence in anthropometry in 
children born to mothers taking antenatal multiple 
micronutrient supplements. In Burkina Faso, Roberfroid 
and colleagues49 recorded increased length-for-age and 
weight-for-age after 1 year, but the diff erence had 
disappeared by 2·5 years. In China, Wang and colleagues50 
found no diff erence in wasting, stunting, and underweight 
at 30 months of age. In Bangladesh, Khan and 
colleagues47,48 reported no diff erence in weight or body 
composition at 54 months of age, but reported lower 
linear growth in children born to mothers in the iron and 
folic acid control group.

If the eff ects of antenatal micronutrient supplementation 
are transient, they might have been vitiated by childhood 
in a challenging environment. What this means 
mechanistically is unclear. Periconceptual and intrauterine 
development, followed by a time in early childhood of 
unknown duration, provide an opportunity for epigenetic 
pattern setting, most commonly via methylation at the 
CpG dinucleotide site.3 Presumably, either methylation is 
reversible or any changes happened too late to modify 
growth trajectory if epigenetic mechanisms caused the 
initial diff erences.

The second possibility is that long-term eff ects were 
present but undetected. Multivariable models showed a 
diff erence in mean weight of 295 g, similar to the 
diff erence at 2·5 years of age, but a much smaller 

proportion of the weight of a child aged 8 years. To be able 
to detect a diff erence of this magnitude would require a 
sample roughly ten times as large, and we are unable to 
say whether or not it was true. A true diff erence of 300 g 
would have been equivalent to roughly 1·5% of the cohort 
mean weight. This amount of diff erence could have 
clinical implications, especially in a population such as 
ours in which many children were undernourished. 
Perhaps anthropometric diff erences will emerge at 
subsequent follow-up, and the present ages of cohorts 
across all the trials are insuffi  cient to see an eff ect. 
Children have low growth rates between the age of 7 and 

Panel: Research in context

Systematic review
We did a systematic review of follow-up studies of antenatal 
multiple micronutrient supplementation in low-income and 
middle-income countries. We searched for randomised 
controlled trials, with no date restrictions, published in 
English in Medline, Embase, and PsychINFO with the search 
terms “micronutrient”, “multiple micronutrient”, or 
“UNIMMAP” and “pregnancy”, “antenatal”, or “prenatal”. This 
search yielded 136 records from which we identifi ed 
12 relevant trials of multiple micronutrients. We found ten 
follow-up studies from these trials. One study looked only at 
mortality and found no diff erence in overall mortality up to 
2 years of age.46 Three trials had follow-up studies 
investigating long-term anthropometry and cardiovascular 
outcomes. 47–51 Additionally, two trials of similar antenatal 
multiple micronutrient combinations to the UNICEF, WHO, 
United Nations University international multiple 
micronutrient preparation (UNIMMAP) were followed up for 
anthropometry and cardiovascular outcomes.52–55 Overall, 
results of follow-up studies showed no diff erence in 
anthropometry in children born to mothers who took 
multiple micronutrients antenatally compared with those 
born to mothers who took iron and folic acid. In Bangladesh,51 
use of multiple micronutrients was associated with a small 
increase in diastolic blood pressure at 4·5 years of age 
0·87 mm Hg (95% CI 0·18–1·56) compared with a control 
sample that received 30 mg iron and 400 μg folate. There 
was no diff erence in systolic blood pressure. In the follow-up 
from Sarlahi, Nepal, there was no diff erence in any of the 
cardiovascular outcomes measured.54

Interpretation
Overall, fi ndings of studies have shown an increase in 
birthweight but no consistent lasting eff ects on 
anthropometry or cardiovascular outcomes. Our study had 
the greatest increase in birthweight and, by contrast with the 
others, was the only one to show to show an increase in 
weight at 2 years combined with a lower systolic blood 
pressure. Although our results do not rule out future 
improvements, combined with those from other trials, they 
do not suggest a long-term benefi t on anthropometry and 
cardiovascular outcomes.
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9 years and the groups might diverge again in adolescence. 
There is some evidence for this divergence from a study 
in baboons, in which an eff ect of changing weaning diet 
was manifest in females only in adolescence.59

If weight is too crude a marker of long-term change, 
body composition can be more useful. However, neither 
bioelectrical impedance analysis nor skinfold thickness 
showed a diff erence between allocation groups, which 
suggests no global diff erence in either lean or fat mass or 
distribution.

We recorded an increased eff ect of antenatal micro-
nutrient supplementation at birth in girls, and a 
diff erential eff ect might be biologically plausible (eg, 
through sex-specifi c DNA methylation),60–62 but we found 
no interaction of child sex and anthropometric indices at 
follow-up. Other trials have been inconclusive. Friis and 
colleagues63 reported a marginally signifi cant interaction 
with length, Stewart and colleagues52 recorded a non-
signifi cant diff erence in height-for-age Z scores in which 
boys were taller than girls, and Roberfroid and coworkers 
found no interaction.64

Malnutrition was high. Estimates for the Terai from the 
2011 Nepal Demographic and Health Survey suggest that 
37% of children under 5 were stunted, 11% wasted, and 
30% underweight.65 We found a 23% higher estimate of 
low BMI as an index of underweight. The fact that our 
children were older raises concerns about further 
deterioration in nutritional status beyond the age of 
5 years. Although growth failure is greatest in early life, 
there seems to be some scope for catch-up in height.

Weight-for-age and levels of obesity in terms of BMI 
were low, but fat percentage was relatively high. When 
we applied reference equations for UK children,66 the 
children in our cohort had high fat mass (Z score for fat 
mass –1·66 and –1·92 for lean mass). This fi nding is in 
keeping with the so-called thin–fat phenotype common 
in the region.67,68 The eff ect was determined by relatively 
high fat mass in boys, with no obvious diff erence in girls. 
We noted no diff erence between the trial groups in 
morbidity rates. On the basis of parental recall, the data 
were potentially prone to bias and we were unable to 
corroborate them reliably with medical records. However, 
we would expect recall bias to have been similar in both 
trial groups. The 2·5 mm Hg diff erence in blood 
pressure seen at 2·5 years was not sustained at 8·5 years, 
and there was no diff erence in kidney dimensions.69

Generalisation of the fi ndings might be restricted by 
non-representative recruitment to the original trial or 
diff erential loss to follow-up. Women who chose to 
participate might have diff ered systematically from those 
who did not. Although we adjusted internally for 
socioeconomic status, rural participants might have been 
from more affl  uent groups who could aff ord to travel to 
the urban hospital for antenatal care.

So far, meta-analyses have not resulted in a 
recommendation on the basis of benefi ts other than 
increased birthweight.16–20 Our supplements began at a 

minimum 12 weeks’ gestation and we await the results of 
trials investigating periconceptional supplementation. 
Neither transgenerational nor current environmental 
infl uences are likely to be redressed over the course of 
two trimesters of micronutrient supplementation, but 
the birthweight advantage might have longer-term health 
eff ects. For example, the slower growth of children born 
in the intervention group compared with children in the 
control group might be associated with physiological 
diff erences that might aff ect later non-communicable 
disease.43 Further research will undoubtedly add to our 
understanding of gene–environment interactions, but 
needs to be augmented by cohort follow-up.
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