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Abstract 

!
The shoulder is of particular relevance for resolving issues of locomotor ancestry 

since, as a group, living hominoids can be defined by the set of functional similarities 

that they share at this anatomical area (such as a scapula located on the back of the 

ribcage, and a shoulder joint adapted to allow extensive abduction). However, there is 

ongoing debate over which selective pressures are responsible for these shared 

morphologies. The current study addresses the question of whether the similarities in 

this anatomical structure in hominoids are a product of common ancestry (homology) 

or rather the product of parallelism (homoplasy) from an ontogenetic and 

phylogenetic perspectives. To this end, 30 measurements were collected on the 

clavicle, scapula and humerus of six hominoid species (Homo sapiens, Pan 

troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus and Hylobates lar) and 

one macaque species (Macaca fascicularis); information on the dental development 

of each individual specimen was collected for the purpose of creating an ontogenetic 

sample for each species; all measurements were collected on surface scans of 

individual bones and analysed in a 3D environment (Geomagic Suite 12.1 and Amira 

3.1), and all statistical analyses (ontogenetic, phylogenetic as well as within- and 

between-species differences) were conducted using R version 2.12.2 (R Core Team 

2011). Overall my results provide a more detailed understanding of ontogenetic 

change in shoulder morphology across hominoid species, and demonstrate (1) a 

relative lack of phenotypic plasticity in other key traits (such as the proximal 

curvature of the clavicle and glenoid-axillary angle of the scapula), and (2) high levels 

of plasticity in key diagnostic traits of hominoid shoulder morphology in humeral 

torsion, the distal curvature of the clavicle, and the orientation of the scapular spine 

and glenoid fossa (all correlated with each other). However these seem to operate 

within phylogenetic constraints and to be modulated by the underlying anatomy of the 

thorax and shoulder girdle. Overall my results support the notion of an arboreal origin 

to the ape lineages and parallel evolution of quadrupedalism in the great apes. 
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– Chapter 1 – 
!

Introduction and literature review 
!
!
1. Introduction 

!
It is generally agreed that living apes are best defined by similarities in upper limb 

and trunk morphology (e.g., Larson 1998; Ward 2007; Crompton et al. 2008). 

Observations of extant hominoid upper limb morphologies have therefore led to 

divided opinions regarding (1) the mode of locomotion of the Last Common Ancestor 

(LCA) of living crown hominoids (Avis 1962; Lewis 1969, 1985; Fleagle 1976; Stern 

1971; Cartmill and Milton 1977; Fleagle et al. 1981), and (2) the mode of locomotion 

of the LCA of panines and hominines (i.e., the mode of locomotion from which 

bipedalism arose) (e.g., Young 2003; Thorpe et al. 2007; Ward 2007; Crompton et al. 

2008; Lovejoy et al. 2009; White et al. 2009; Crompton et al. 2010; Green and 

Alemseged 2012; Churchill et al. 2013). 

!
The shoulder is of particular relevance for resolving issues of locomotor ancestry 

since, as a group, living hominoids can be defined by the set of functional similarities 

that they share at this anatomical area (such as a scapula located on the back of the 

ribcage, and a shoulder joint adapted to allow extensive abduction) (Rose 1993, 1997; 

Larson 1998; Crompton et al. 2008). However, there is ongoing debate over which 

selective pressures are responsible for these shared morphologies of all hominoids: 

quadrumanous climbing (e.g., Fleagle 1976), cautious quadrupedalism and/or 

brachiation (e.g., Cartmill and Milton 1977), orthogrady (e.g., Thorpe and Crompton 

2006; Thorpe et al. 2007; Crompton 2008). With regards to the panine-hominine split, 

on the other hand, the focus is on the origins of bipedalism with the discussion being 

mainly divided between those who envision the pre-human ancestor as a terrestrial 

knuckle-walker, a behaviour frequently used by the African apes (e.g., Washburn 
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1967; Begun 1992c; Hunt 1991a, 1994; Gebo 1996; Richmond and Strait 2000; 

Richmond et al. 2001; Begun 2004), and those who defend that bipedalism evolved 

from a more generalized arboreal, climbing-oriented ancestor, a locomotor repertoire 

used by all living apes (e.g., Stern 1971; Rose 1997; Schmitt 2003; Thorpe et al. 

2007; Hanna and Schmitt 2011). 

!
The difficulty in settling both these arguments comes from the fact that both the 

Miocene and the more recent Plio-Pleistocene fossil records show a pattern of mosaic 

adaptations that are at odds with what we would expect had the shoulder 

morphologies in extant apes been inherited from a common ancestor. In light of this 

apparent paradox, recent studies have suggested that homoplasy has played a central 

role in shaping shoulder morphologies both in stem hominoids and in each of the 

various crown hominoids (e.g., Larson 1996, 1998 2007b, 2009, 2013; Ward 2007). 

However, if current similarities in the hominoid shoulder girdle are the result of 

functional parallelism rather than common ancestry, then it is somewhat curious that 

these species have evolved to be so similar given their divergent locomotor 

behaviours – ranging from predominantly terrestrial and pronograde knuckle-walking 

(mountain gorillas) to bipedalism (humans), to virtually exclusive arboreality and 

generalised orthograde suspension and clambering (orangutans) (e.g., Hunt 1991a, 

2004 Thorpe and Crompton 2006). The study of ontogeny – structural change during 

growth and development – is held to be of particular relevance for identifying 

homologies and homoplasies in extant organisms (e.g., Nelson 1978; Riedl and 

Jefferies 1978; Patterson 1982; Lieberman et al. 1996; Roth 1988; Wagner 1989; 

Lieberman 1999; Lovejoy et al. 1999; Wood 2007). It is generally thought that 

characters that are homologous arise through similar developmental processes, while 

characters that are homoplastic arise through different developmental processes (e.g., 

Collard and O'Higgins 2001); if this is indeed the case, then a detailed comparative 

analysis of anatomical regions in related organisms from an ontogenetic perspective 

will unveil homoplasies. Lending support to this idea are studies such as Macho and 

Dainton’s (1999) and Kivell and Schmitt’s (2009) analysis of the ontogeny of wrist 

morphology in Pan and Gorilla. In both instances the authors conclude that knuckle-
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walking evolved in parallel in both species because wrist ontogenies differ in their 

trajectories (which implies that wrist morphology is homoplastic) in both species (but 

see Williams 2010). More recently, a study conducted by Green and Alemseged 

(2012) on the ontogeny of the hominoid scapula indicates the presence or arboreal/

suspensory behaviours from infancy in apes, and since the authors also find a lack of 

significant differences between the juvenile and adult A. afarensis scapulae, they 

conclude this species was actively engaging in arboreal/climbing behaviours from 

infancy too. Similarly, the current project aims at studying the ontogeny of the 

shoulder morphology (scapula, clavicle, humerus) in extant hominoids in order to 

identify possible homoplasies in this structure, with the intent of contributing towards 

an understanding of the anatomy and locomotor repertoire of LCAs of (1) living 

crown hominoids and (2) panines and hominines. 

!
With this broad evolutionary framework in mind, the central focus of the present 

project is to answer the following questions: how does the shoulder girdle (scapula, 

humerus, clavicle) in hominoid primates (Hylobates, Pongo, Pan, Gorilla, Homo 

sapiens) develop through ontogeny into its adult form? Are the morphological 

similarities between the shoulder girdle of the great ape and human clade a result of 

parallelism or rather of shared ancestry? What can this tell us about the selective 

pressures shaping the shoulder structure throughout evolution? And what, if anything, 

can this say about the shoulder morphology and, ultimately, the mode of locomotion 

of stem apes and stem hominines? 

!
2. The hominoid shoulder: function & anatomy 

!
2.1. Functional relevance: the shoulder & locomotion  

!
The shoulder girdle is an area of particular interest in primate evolution in that it is 

adapted to a variety of locomotor strategies (e.g., Ashton and Oxnard 1964). 

Compared to most other vertebrate groups, primates exhibit an exceptional amount of 

locomotor diversity with at least three forms of locomotion not seen among any other 
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extant mammals – vertical clinging and leaping, brachiation, and habitual striding 

bipedalism (Schmitt 2010). Adaptations to these divergent locomotor strategies in 

primates promote an increased reliance on the hindlimbs to power locomotion, such 

that we may describe primates as ‘hindlimb dominated’; this decoupling of the 

hindlimb and forelimb functions reflects a forelimb used less in weight support and 

more in movements of guidance, grasping and manipulation (Schmitt 2010). Because 

the adoption of habitual bipedalism represents a fundamental adaptive shift away 

from the apes (Ward 2002), some of the most long-standing questions in 

paleoanthropology concern how and why human bipedalism evolved. It is therefore 

not surprising that these shared derived characteristics of the human and great ape 

shoulder can be used to make interpretations about the mode of locomotion of the 

LCA of apes and humans – and the one from which bipedalism arose (e.g., Richmond 

et al 2001; Begun 2004). Because of its functional relevance, the shoulder has 

therefore been one of the most extensively studied regions in comparative primate and 

human anatomy (Larson 2007b). 

!
Because of its anatomical position as the connection point between the forelimb and 

the trunk, the shoulder is a highly relevant structure, serving an important role in both 

stabilizing the forelimb against dislocation, as well as in providing it with sufficient 

mobility (Inman and Abbot 1944; Ashton and Oxnard 1964; Oxnard 1967, 1969; 

Larson 1993; Chan 2006; Veeger and Van Der Helm 2007). This is made possible by 

the reduction (or absence, in humans) of bony constraints allowing a wide range of 

motion at the expense of stability, which is provided instead by the various ligaments 

and muscles (Nordin and Frakel, 2001). The shape and size of its different anatomical 

parts (clavicle, scapula, humerus) reflects, therefore, the extent to which different 

species are adapted to orthograde suspensory behaviours (i.e. use their forelimbs in 

overhead movements) or to pronograde terrestrial behaviours  (i.e. use their forelimbs 

for weight bearing) (e.g., Oxnard 1969; Ashton et al. 1971; Young 2006; Voisin 2006). 

For example, long narrow scapulae, dorsally placed scapulae, and cranially oriented 

glenoid fossae are thought to be functionally adapted to arm-hanging and are 

hypothesised to have evolved to reduce muscular activity and ligamentous and 
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skeletal strain during unimanual suspension (e.g., Hunt 1991b). On the other hand, 

increased levels of humeral torsion are thought to result from the parasagittal use of 

the forelimbs during knuckle-walking (e.g., Larson, 1988). In our own lineage, 

increased reliance on bipedalism has relaxed the selective pressures acting upon the 

shoulder complex, freeing it almost completely from its responsibility as a locomotor 

structure (Larson 2007b). This has resulted in greater anatomical changes in the lower 

limbs than in the upper limbs between apes and humans, who retain many similarities 

in their shoulder structures (such as a dorsally located shoulder joints and great range 

of upper limb mobility) (Aiello and Dean 1990). Great apes are a particularly 

interesting group in this respect because they exhibit remarkable similarities in their 

shoulder structure despite their current divergent locomotor specializations. Indeed, 

because of these similarities, researchers have debated over the last half-century about 

which postural and locomotor adaptation characterises all hominoids, and the mode of 

locomotion characterising their last common ancestor: brachiation (Keith 1923), 

quadrumanous climbing (Fleagle 1976), arm-hanging and vertical climbing (Hunt 

1991a), forelimb suspension (Gebo 1996), knuckle-walking (Richmond and Strait 

2000) and generalised orthogrady (Thorpe et al 2007; see Richmond et al 2001 for a 

comprehensive review of the major hypotheses). Most recently it has been suggested 

that generalised orthograde clambering, where the trunk is upright and both fore- and 

hindlimbs are used in varying degrees to support body mass in suspensory or 

compressive loading regimes (e.g. Hunt, 1991a, Hunt et al 1996; Fleagle, 1999) is the 

locomotor behaviour that characterises the positional behaviour of all hominoids (e.g., 

Hunt 1991a; Thorpe and Crompton 2006; but see Begun et al 2007).  

!
Part of the difficulty in identifying a shared evolved locomotor/postural behaviour in 

apes is the fact there is a disconnect between the behaviours that are exhibited 

frequently and those that place high stresses on the bone. For example, African apes 

spend 50-99% of their locomotor time on the ground (Tuttle and Watts 1985; Hunt, 

1991a,b, 1992; Doran, 1993, 1996; Begun and Kivell 2011), but chimpanzees exhibit 

very clear adaptations for orthograde suspension, such as long narrow scapulae, cone-

shaped rib cages, robust clavicular anchors, anteroposteriorly flattened, mobile 
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abductible humeri, wide manubria, and cranially oriented glenoid fossae, despite it 

being the less frequent activity (Hunt 1991b). Because suspensory postures are more 

stress-inducing or energetically expensive than terrestrial pronograde postures (due to 

the effects of gravity and the discontinuous 3D environments), it is therefore likely 

that adaptations to the former will be more evident in the ape skeleton (Thorpe and 

Crompton 2006). Indeed, Thorpe and Crompton (2006) argue that “positional 

behaviours for which an animal is well-adapted to are expected to require less muscle 

activity, and induce less stress in the skeleton and ligaments, than behaviours for 

which the animal is poorly adapted” (2006:394). This may also help make sense of 

the postcranial anatomy of fossil hominids, and Australopithecus in particular; it is 

possible that australopithecins were more frequently bipedal but that being efficient in 

the trees was selectively more important. In fact, studies have suggested that ape 

anatomical adaptations are directed towards avoidance of falls (Pontzer and 

Wrangham 2004; Thorpe and Crompton 2006) since large animals are less likely to 

survive if they fall from any great height (Cartmill and Milton 1977). 

!
The notion that natural selection shapes anatomy to reduce muscular activity and 

structural stress in relation to the frequency of the behaviour (Basmajian, 1965; 

Cartmill et al., 1987; Hunt, 1991b, 1992) is problematic when trying to infer 

locomotor behaviours based on skeletal morphology, particularly in the fossil record, 

because it obscures 1) the diversity of locomotor strategies used and 2) the frequency 

of use of postural/locomotor behaviours employed by individual species. In this sense, 

interpretations of behaviour based on skeletal morphology will inevitably be biased 

towards those adaptations for behaviours that are the most costly rather than those that 

are the most frequent. Given that being efficient in the trees is selectively more 

important than being efficient on the ground, this may explain why all apes share 

specializations for arboreal locomotion despite their divergent locomotor 

specializations. In this context, differences in shoulder anatomy between apes are 

likely to result from the compromise between the need to be efficient in the trees and 

the need to move around terrestrially: for example, the more terrestrial gorilla has 

higher degrees of humeral torsion, wider scapulae with less cranially directed glenoid 
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fossae, while the exclusively arboreal gibbon has very low humeral torsion with 

obliquely oriented scapulae and cranially directed glenoid fossae. In addition, the lack 

of significant differences in shoulder and forelimb muscle architecture between apes 

may act to compensate for skeletal adaptations and facilitate behaviours for which the 

animal does not appear skeletally adapted to. Indeed, some studies suggest that apes 

are ‘generalists’ in terms of their shoulder and forelimb soft-tissue anatomy and are 

therefore adapted to their entire locomotor repertoire (e.g., Myatt et al 2012). A recent 

study has, for example, shown that time spent performing a particular behaviour does 

not seem to significantly influence shoulder and forelimb soft-tissue anatomy in apes 

(Myatt et al 2012).  

!
2.2. Anatomy of the hominoid shoulder girdle  

!
The primate shoulder (figure 1) is composed of three bones (the scapula, the humerus, 

and the clavicle), more than 20 muscles (the exact number depending on the particular 

species), and four joints (Aiello and Dean 1990). 

 

!
!
Figure 1 – The human shoulder in ventral view. 

!
As mentioned, apes and humans are rather homogenous in their shoulder morphology 

and can be easily distinguished from other primates through the set of functional 

characteristics that they share at this anatomical area: a wide thorax, an elongated 

clavicle, a dorsal position of the scapula that is elongated cranio-caudally, large 
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scapular fossae, a cranial orientation of the glenoid fossa, a wide, round and flat 

glenoid fossa, medial torsion of the humeral head, lack of a supraglenoid tubercle, 

greater and lesser tubercles positioned below the humeral head, a laterally positioned 

acromion process that enhance lever advantage of the deltoid muscle, and high ratio 

between the length of the scapula and the insertion of the trapezius and serratus 

anterior which enhances the action of these two upward rotators (Miller 1932; Ashton 

and Oxnard 1963, 1964; Ashton et al. 1971, 1976; Oxnard, 1963, 1967; Corruccini 

and Ciochon 1976; Aiello and Dean 1990). This anatomical pattern affects the 

movement of the glenohumeral joint, which allows the entire upper limb of humans 

and apes to be capable of a greater range of movement at this joint than any other 

primate group (with the exception of some New World monkeys) (Schultz 1961; 

Aiello and Dean 1990; Potau et al. 2009). Osteological differences between the 

human and ape pectoral girdle and shoulder joint are found primarily in the scapula 

and clavicle which suggest that the human arm is adapted for use in lowered positions 

and is less powerful in raised positions than the ape arm (Aiello and Dean 1990). 

Furthermore, differences between the three large apes reflect the more arboreal 

locomotion of the orangutans on the one hand and the more terrestrial locomotion of 

chimpanzees and gorillas on the other (Aiello and Dean 1990).  

!
Apart from a few exceptions, the arm and shoulder muscles of apes are identical to 

those of humans (Miller 1932), and in all hominoid species, the great range of 

movements allowed at this joint is achieved through a total of four articulations 

occurring at this structure: the sternoclavicular articulation, the acromioclavicular 

articulation, the glenohumeral articulation, and the scapulothoracic articulation 

(Aiello and Dean 1990). These act together in a way that produces mobility greater 

than that afforded by any one individual articulation, allowing the arm to be moved in 

all directions: flexion, extension, abduction, adduction, elevation and circumduction 

(Nordin and Frankel 2001).  

!
!
!
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2.2.1. The scapula 

!
The primate scapula is a large triangular blade-like bone that rests on the thoracic 

cage, gliding over the back of the ribs, and articulating with the upper arm at the 

glenohumeral joint (figure 2) (Aiello and Dean 1990). Given its central role in 

forelimb use, scapular morphology is highly variable between species and its shape is 

largely associated with functional demands of the forelimb (Young 2006). In primates, 

morphological differences between species can be discriminated along a continuum 

from committed terrestrial quadrupedalism (i.e., baboons) to highly arboreal and 

suspensory non-quadrupedalism (i.e., gibbons) (Young 2006). 

!

!  
Figure 2 – The hominoid scapula (human shoulder). Taken from Larson (1998).  

!
This bone consists of a flat or slightly concavo-convex blade, which is divided on its 

dorsal surface by the scapular spine into two fossae (the infra- and supraspinous 

fossae), with a subscapular fossa located on the ventral surface (Aiello and Dean 

1990). The scapular spine is a flat plate of bone extending in a plane roughly 

perpendicular to that of the blade that widens into the acromion, which articulates 

distally with the clavicle (Aiello and Dean 1990). The head of the scapula articulates 

with the proximal humerus at the glenoid fossa; the coracoid process arises superior to 

the glenoid and does not articulate with other skeletal elements (Young 2004). 

Additionally, the scapula is suspended by muscle alone and is able to perform the 
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following movements: abduction, adduction, extension, and flexion (Rockwood 

2009).  

!
It is widely held that many differences among primate species in scapular morphology 

can be functionally related to differing demands on the shoulder associated with 

particular locomotor habits (Oxnard, 1963, 1967; Ashton and Oxnard, 1964; 

Ashton et al., 1965a, b, 1971; 1976; Roberts, 1974). Namely, the ratio of supraspinous 

fossa/infraspinous fossa size in apes is commonly viewed as an indicator of the 

importance of overhead use of the forelimb, with high supraspinous fossa/

infraspinous fossa ratios present in the more suspensory species (Roberts 1974). 

However, many smaller scale studies do not support these observations. For example, 

Taylor’s (1997) comparison of scapular morphology between the more arboreal 

lowland gorillas and the more terrestrial mountain gorillas fails to observe these 

differences. Additionally, the African apes (the most terrestrial of the great apes), have 

higher scapular fossa ratios than the more suspensory orangutan (Larson and Stern, 

2013). In fact orangutans, which are the most suspensory of the great apes, are 

characterized by having a very large infraspinous rather than a large supraspinous 

fossa, a feature likening them to humans (Roberts 1974; Larson and Stern 2013). 

!
The recent discovery Dikika child DIK-1-1 scapula, and its morphological affinities to 

scapulae of orangutans and gorillas rather than chimpanzees has led to renewed 

interest in the comparative analysis of human and extant ape scapular form 

(Alemseged et al. 2006; Green and Alemseged 2012; Larson and Stern 2013). 

!
2.2.2. The humerus 

!
The humerus is a long bone that makes up the upper arm and articulates with the 

scapula at the glenohumeral joint (Aiello and Dean 1990). It consists of three 

sections: the upper extremity, which is made up of a rounded head, a narrow neck 

with two short tuberosities, a body that is cylindrical in its upper portion and more 

prismatic below, and the lower extremity which is made up of two epicondyles 
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(trochlea and capitulum), and three fossae (radial fossa, coronoid fossa, and olecranon 

fossa) (Aiello and Dean 1990). A few important muscles attaching at the humerus are 

the deltoid, which inserts on the deltoid tuberosity of the humerus (located mid-shaft) 

and has several actions including abduction, extension, and rotation of the shoulder; 

the supraspinatus, which inserts on the greater tubercle of the humerus, and assists in 

abduction of the shoulder; and the infraspinatus and teres minor, which insert on the 

greater tubercle, and work to laterally/externally rotate the humerus (Aiello and Dean 

1990). The four muscles (supraspinatus, infraspinatus, teres minor and subscapularis) 

form a musculo-ligamentous girdle called the rotator cuff that stabilizes the very 

mobile but unstable glenohumeral joint, while the other muscles are used as 

counterbalances for the actions of lifting/pulling and pressing/pushing (Aiello and 

Dean 1990). At the shoulder, the head of the humerus articulates with the glenoid 

fossa of the scapula, and more distally, at the elbow, the capitulum articulates with the 

head of the radius, and the trochlea articulates with the olecranon process of the ulna 

(Aiello and Dean 1990). 

!
Humeral torsion, because it is a shared characteristic among hominoids, is one of the 

most functionally relevant aspects of humeral morphology, and is often referred to in 

the context of ape locomotor adaptations (e.g., Evans and Krahl 1945; Krahl and 

Evans 1945; Krahl 1947, 1976; Edelson 1999, 2000; Larson 1996, 1998, 2007a; 

Cowgil 2007). Gibbons have a larger torsion angle than most monkeys, but have 

considerably less humeral head torsion than all other living hominoids (Larson, 1988). 

Larson (1988) suggests that this low degree of humeral torsion reflects a compromise 

between the need to maintain a transverse axis at the elbow joint and the demand for 

extreme positioning of the elbow during arm-swinging due to their specialized mode 

of locomotion (brachiation). In African apes, on the other hand, the higher degrees of 

humeral torsion may be linked to the need for maintaining the elbow joint moving in a 

parasagittal plane for knuckle-walking (Larson 2007b). The fact that among the living 

apes gorillas are the most terrestrial and have the most marked humeral torsion 

supports this association between torsion and quadrupedalism (Larson 1988). Some 

researchers consider this supposed shared trait (shared between African apes and 
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humans) to constitute evidence for knuckle-walking ancestry (e.g., Richmond et al. 

2001; Begun 2004). 

!
2.2.3. The clavicle 

!
The clavicle is a small curved bone that sits anteriorly on the thorax and acts as a strut 

between the shoulder and the pectoral girdle, and is the only part of the pectoral girdle 

that articulates directly with the trunk, holding the arm at the side and transmitting 

forces from the arm to the sternum (figure 3) (Aiello and Dean 1990). The clavicle 

articulates with the scapula above the shoulder at the acromioclavicular joint and with 

the sternum at the sternoclavicular joint; the two muscles inserting on the clavicle are 

the trapezius (posterior superior surface of distal end) and the subclavius muscle 

(inferior surface of middle third of the clavicle), and the four muscles originating at 

the clavicle are the deltoid, the pectoralis major, the sternocleidomastoid, and the 

sternohyoid (Rockwood 2009). 

!
From a comparative point of view, the clavicle is one of the most poorly studied 

bones in the body. Schultz (1930) reported a considerable variation in the nature and 

degree of clavicular curvature in humans and in the different species of ape: gibbon 

clavicles have a single anteriorly convex curve while orangutan clavicles are 

generally straight; chimpanzee and human clavicles have S-shaped curves and gorilla 

clavicles are generally straight except for the lateral, acromial end which is bent to 

various degrees. Additionally, Schultz (1930) observed that the clavicles of 

orangutans are not directed horizontally as in humans, but are oriented at a steep angle 

consistent with the very high position of the orangutan shoulder above the rib cage. 

Lending support to Schultz’ observations, Voisin’s (2006) study of living ape and 

human clavicles, found that in the dorsal plane, clavicle morphology allows to predict 

the position of the scapula in regards to the thorax (figure 3). A clavicle with two  

!
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!
Figure 3 – Adult left clavicle of hominoids and Macaca fascicularis (sternal view). 

!
curvatures like that of the chimpanzee is therefore associated with a dorsal and high 

scapula in regards to the thorax; a clavicle with only a superior curvature, like that of 

the gibbon, is associated with a dorsal and high scapula that needs an 

acromioclavicular joint for added rigidity; and finally, a clavicle with a unique, 

slightly pronounced inferior curvature, as in humans, is associated with a low and 

dorsal scapula (Voisin 2006). 

!
3. Evolution of the hominoid shoulder girdle 

!
3.1. The hominoid shoulder: homology or homoplasy? 

!
It is not immediately clear whether it is homology or homoplasy that best explains 

shared ape postcranial characteristics (e.g., Young 2003), and the growing body of 
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evidence from the fossil record has not yet yielded any conclusive answers. In fact, as 

it stands, the current picture of hominoid postcranial evolution seems to be one of 

recurring homoplasy – as illustrated by the ‘Sivapithecus dilemma’ (Pilbeam et al. 

2001; Young 2003). Indeed, Sivapithecus, an extinct Miocene ape from Pakistan 

(12.5-8.5Mya) poses a dilemma precisely because its postcrania, namely its upper-

arm morphology, is more similar to that of African apes, while its cranial morphology 

is rather Pongo-like. The ‘dilemma’ lies in whether it is the Pongo/Sivapithecus facial 

similarities that are homologous or whether it is the postcranial similarities of living 

apes that are homologous (Young 2003). Although today it is generally accepted that 

Sivapithecus should be placed on the Pongo clade, and that postcranial features tend 

to be more prone to homoplasy, this was not always the case (Begun 2004). Previous 

to the 1990’s, analyses of hominoid postcranial morphology emphasized the marked 

postcranial differences between the hominoids compared to other primates (Oxnard 

1967, 1977; Ashton et al. 1976; Corruccini 1978; Corruccini and Ciochon 1976), and 

therefore, homology was the standard explanation for the postcranial similarities 

between hominoids. Larson (1998), however, challenged this view of hominoids as a 

morphologically cohesive group by studying a number of ape trunk and upper limb 

characters. Larson has since published a number of papers (Larson 1996, 1998, 

2007b, 2009, 2013; Larson et al. 2007) suggesting a scenario in which suspensory 

features are acquired independently in each hominoid lineage – i.e. are homoplastic. If 

this is correct, than this would explain why it has been difficult to find a fossil ape 

which exhibits all the features of the hypothetical suspensory ancestral hominoid 

morphotype and why fossil apes exhibit such a varying mosaic of suspensory and 

non-suspensory features (Young 2003). Indeed, the picture that currently emerges 

from the fossil record is one of morphological diversity, in which climbing and 

suspensory adaptations develop in mosaic fashion over evolutionary time, and that 

occur in different ways and even multiple times in separate hominoid lineages (Ward 

2007; Begun 2007). Indeed the Miocene hominoid fossil record shows evidence of 

multiple instances of independent evolution of specialized suspensory adaptations 

(e.g., Morotopithecus, Oreopithecus, Dryopithecus, or Pongo) (Begun 2007), and the 

presence of knuckle-walking features in the hind limb, humerus, and wrist bones of 
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Sivapithecus (Begun and Kivell 2011), also supports the case of independent 

evolution of knuckle-walking. In particular, it has been suggested that the adaptations 

seen in extant apes may not have occurred as a block, as indicated by the 

morphologies of Nacholapithecus (long forelimbs but narrow torso and pronograde 

quadruped posture) and Pierolapithecus (hylobatid-like torso but short digits) (Rose 

1997; Senut 2003; Ishida et al. 2004; Moya-Sola et al. 2004; Ward 2007), or the more 

recently discovered Australopithecus sediba (ape-like upper thoracic shape but Homo-

like aspects of hand morphology) (Kivell et al. 2011; Schmid et al. 2013). 

!
The picture is equally complicated with regards to the hominins. Larson (2007b, 

2009, 2013) describes how the modern human shoulder configuration consists of a 

highly rotated humerus, a lateral-facing glenoid fossa of the scapula and a long 

clavicle – a morphology that maintains the arms in a forward-facing position for 

manipulation, and that reflects a shoulder well adapted for throwing activities. In 

great apes, on the other hand, the shoulder configuration consists of a highly rotated 

humerus but with a cranially directed glenoid fossa and a short clavicle – a 

morphology that allows for overhead suspensory movements while maintaining the 

forward-facing arms needed for quadrupedalism. Because of relaxations in selective 

pressures related to arboreality, and in light of the extant anatomical configurations, 

we would expect extinct hominins to possess shared features such as high degree of 

humeral torsion in combination with increasingly longer clavicles and more laterally 

positioned glenoid fossae (Larson 2007b). However, contrary to these expectations, 

the hominin fossil record yields a mix of morphologies that challenge these views – 

namely, low degrees of humeral torsion in Homo floresiensis, and a gorilla-like 

scapular morphology in Australopithecus afarensis (Alemseged et al. 2006; Larson 

2007b). In light of this, Larson (2007b, 2009, 2013) proposes that rather than 

undergoing a direct change from the primitive hominid condition to that of modern 

humans, the hominin shoulder passed through unexpected intermediate stages, and 

that the highly derived modern shoulder configuration is actually relatively recent. 

!
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Morphological evidence of other anatomical parts in apes, such as the foot bones 

(Harcourt-Smith and Aiello 2004) and the wrist (Dainton and Macho 1999; Dainton 

2001; Kivell and Schmitt 2009) further lend support to the idea that throughout 

evolution, different ape taxa evolved a variety of anatomical configurations in order to 

deal with similar locomotor challenges. However unparsimonious it may be, it seems 

that even such specialized locomotor adaptations as knuckle-walking and bipedalism 

may have evolved either in parallel or multiple times throughout hominoid evolution 

(Dainton 2001; Harcourt-Smith and Aiello 2004; Ward 2007; Kivell and Schmitt 

2009). This accumulation of evidence suggests that the apparent shared derived 

characters of the shoulder girdle in hominoid apes may have in fact evolved as a result 

of parallelism. In order to test this assumption, one of two things must happen: either 

we find more fossils, or we use extant hominoid shoulder morphologies to identify 

homoplasies (which is the focus of the current project). However, the complex nature 

of shoulder morphology has made comparative analyses using traditional 

morphometric techniques difficult (e.g., Young 2003), and for this reason, questions 

surrounding the evolutionary course of shoulder morphology in the hominoid stock 

remain largely unanswered. The solution, as observed by Young (2003), may then lie 

in a more detailed account of the ontogeny of similarities within shoulder 

morphologies, which may reveal whether the anatomical features of the shoulder 

structure are a product of homology or homoplasy. If this assumption is correct, and 

the shared similarities in shoulder morphology between apes and humans are actually 

homoplasies, then they must arise in the different taxa via differing developmental 

mechanisms; on the contrary, if similarities in the shoulder morphology of apes and 

humans are due to shared ancestry (are homologous), then we expect them to arise via 

comparable developmental trajectories (Begun 1994; Lieberman 1999). 

!
Of the three shoulder elements, the scapula and the humerus has received the most 

attention from an ontogenetic point of view. With regards to humeral torsion, Krahl 

(1945) and Edelson (1999) describe how torsion in humans develops throughout 

ontogeny and how environmental factors such as activity pattern influence the degree 

to which it is expressed. In contrast, Young (2006, 2008) describes how scapular 
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shape in great apes is conserved throughout ontogeny from birth to adulthood and 

therefore strongly driven by phylogenetic/genetic factors rather than functional ones. 

The clavicle, on the other hand, has been largely neglected in the literature (but see 

Voisin 2006). 

!
3.2. Ontogeny of the hominoid shoulder girdle: a means to identifying homoplasies? 

!
Analysing the development of morphological features throughout ontogeny is 

important for understanding the functional significance of morphological variation 

between apes. Bony morphology is thought to reflect, at least to some extent, function 

during development (Pearson and Lieberman 2004). The reason being that bone 

remodels itself according to the loads it is placed under – a concept known as 

“Wolff’s law” (Wolf 1892) – and that bone’s response to mechanical stimuli is very 

marked during the years preceding adulthood (Ruff et al. 2006). For example, the 

degree of phalangeal curvature has been shown to be positively correlated with 

increased arboreality in African apes during ontogeny (Paciulli 1995) and the absence 

of some knuckle-walking features in hominins has been attributed to lack of function 

during development (Richmond et al. 2001). The study of ontogeny is thus of 

particular interest because it provides a chance to understand how adult morphologies 

emerge.  

!
However, biomechanical loadings are not the only factor guiding bone shape; genetic 

and environmental constraints play an equally important role in shaping these 

morphologies (Lockwood and Fleagle 1999), and for this reason, several authors have 

suggested that developmental data can be uniquely informative in perceiving 

homology and homoplasy in a paleoanthropological context (Lieberman 1995, 1999, 

2000; Lovejoy et al. 1999; Leigh 2007). However, gaining an understanding of the 

relations between development and homology/homoplasy requires that we study 

ontogeny in organisms for which phylogenetic relationships are known, a criterion 

that is fortunately met by the hominoid clade (Lieberman 1999; Leigh 2007; Cartmill 

1994). In studies where this condition is met, shared ontogenetic allometries can be 
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accepted as evidence for homology and divergent ontogenetic allometries can be in 

turn accepted as evidence for homoplasy (Leigh 2007). In other words: “things that 

resemble each other (morphological homology) because they result from common 

ancestry (phylogenetic homology) are likely to be similar because they grew through 

the same inherited processes (developmental homology).” (Lieberman 1999:146).  

!
Comparing ontogenies between closely related taxa thus provides insight into the 

function of anatomical features that cannot be gained from adult morphology alone, 

and permits to make inferences about the morphology of the LCA (Kivell and Schmitt 

2009; Zolikofer and Ponce de Leon 2010). Developmental studies have shown, for 

example, that cranial base flexion in humans and non-human primates may be 

analogous rather than homologous because they develop through a different set of 

processes (Lieberman et al. 2001); this may help to evaluate the phylogenetic 

significance of variation in cranial base angulation in hominids such as between 

Australopithecus boisei, which is highly flexed, and A. aethiopicus, which appears to 

be much more extended (Lieberman 2000). Other studies have also shown that the 

same is true of Pan and Pongo’s long premaxillae, which develop through differing 

developmental mechanisms (Begun 1994; Begun and Güleç 1998). However, because 

homoplasy is often the result of compromises between intrinsic factors, such as 

genetic constraints, and extrinsic factors, imposed by the environment (Lockwood and 

Fleagle 1999), it is perhaps not surprising that closely related taxa find similar 

morphological solutions to similar ecological challenges. Indeed, Cartmill (1994) 

argues that ontogeny can only be used to assess homology within the context of prior 

phylogenetic information because similar structures are likely to arise from 

homologous precursors since natural selection can operate only on available variation. 

This is particularly relevant when considering parallelisms (as opposed to 

convergences), which is the case with hominoid morphologies. If, on the one hand, 

the phylogenetic proximity among apes allows a comparison of their ontogeny, on the 

other, it is precisely this phylogenetic proximity that makes it difficult for 

conclusively distinguishing between a homology and a homoplasy. For this reason, 

there exists (1) controversy about the relevance of such developmental data for 
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recognizing homologies and homoplasies in the context of parallelism (Roth 1988; 

Cartmill 1994; Hall 2003), and (2) controversy about what these departures in 

ontogenetic trajectories in closely related species actually mean in terms of the 

evolution of locomotor behaviours (Jungers and Cole 1992; Williams 2010). 

!
3.3. Homoplasies in the context of parallelism 

!
For the purposes of this study, it is important to distinguish, as pointed out by 

Lockwood and Fleagle (1999), between convergence and parallelism: convergence 

being the acquisition of the same/similar biological trait in unrelated lineages (e.g., 

the wings of birds, bats, and insects), and parallelism being the development of a 

similar trait in related species descending from the same ancestor (e.g., the prehensile 

tails of capuchin monkeys and spider monkeys). However, convergent structures may 

be formed by non-homologous elements, prehensile tails of capuchins and atelines for 

example, are formed of homologous bones and muscles, both in the structural and 

developmental sense (Lockwood and Fleagle 1999), therefore, Lieberman (1999:147) 

describes parallelism as “a particularly pernicious form of homoplasy because the 

similarities are, by definition, developmentally homologous,” and Gould (2002) refers 

to parallelisms as the “gray zone” between homologies and convergence. 

Understanding this distinction is particularly relevant when studying the evolution of 

the hominoid shoulder because this structure poses the same difficulties as the ateline/

capuchin tail since the hominoid shoulder structure is made up of homologous 

elements. In fact, comparing any shared morphological features in the ape clade will 

pose a problem because of the phylogenetic proximity between its species, and the 

choice of outgroup will likely bear much influence on the results produced. In this 

context, development alone may not be sufficient to differentiate between homology 

and homoplasy in the shoulder girdle, or we risk erroneously taking interspecific 

variations in development as absolute evidence for independent evolution (Williams 

2010). 

!
!
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3.4. Homoplasies: evidence for independent evolution? 

!
Some studies have demonstrated that “homologous structures may arise from 

developmental processes that are equivalent or non-equivalent” (Hall, 1992:21), and 

that in fact homology and development can often be discordant (Hall 2003; Raff 

1996; Leigh 2007). Indeed Hall (2003; 2007; 2012) points out that structural 

homology, developmental homology and behavioural homology do not always go 

hand in hand. For example, homologous developmental processes can be used to 

generate homoplastic characters and vice versa, and even when the phenotypic 

character is lost, the genes and developmental mechanisms coding for the character 

can be retained (Hall 2007). Effectively, the genotype and phenotype can disassociate 

during the evolution of homologues and homoplastic characters, a process that has 

been called ‘phenogenetic drift ’ or ‘developmental system drift ’ (Budd, 1999; Weiss 

& Fullerton, 2000; True & Haag, 2001; Weiss, 2002). Given this, homology cannot be 

assigned solely on the basis of shared development, and homoplasy cannot be 

assigned solely on the basis of lack of shared development. Jungers and Cole (1992), 

for example, have demonstrated that the locomotor skeletons of lar gibbons 

(Hylobates lar) and siamang gibbons (Hylobates syndactylus) are not ontogenetically 

scaled, yet these authors do not propose that brachiation evolved in parallel in these 

species; instead they suggest that these departures from ontogenetic scaling are due to 

differences in the mechanics of brachiation and other suspensory behaviours (see 

Williams, 2010). Inouye (1992, 1994) also documents differences in metacarpal and 

phalangeal growth trajectories within and between Gorilla and Pan, and concludes 

that these are due to differences in positional behaviour, kinematics or efficiency of 

knuckle-walking in these taxa. Similarly, Williams (2010) proposes that the 

differences in Gorilla and Pan wrist ontogenies do not necessarily suggest that each 

species evolved knuckle-walking independently, as proposed by Dainton and Macho 

(1999) and more recently by Kivell and Schmitt (2009); rather the author suggests 

that it is possible that differences in ontogeny are due instead to differences in 

locomotor and positional behaviour, ecology and the biomechanics of weight-bearing 

(Williams 2010). 
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!
Moreover, there is a fair amount of plasticity in the postcranial skeleton since bones 

change in size and shape throughout life in response to a variety of stimuli (multiple 

genes with multiple effects [pleiotropism], and a large number of non-genetic 

influences [Cheverud 1982; Atchley and Hall 1991; Herring 1993; Lieberman 1992]) 

in order to perform numerous functions, which means that the ontogeny of 

morphological features can be highly mosaic and dissociated from phylogeny 

(Lieberman 1999). This may explain why reconstructing phylogenies from skeletal 

elements may be problematic (Zelditch et al. 1995; Monteiro 2000; Brehm et al. 2001; 

Naylor and Adams 2001; MacLeod and Forey 2002; Rohlf 2002; Hoekstra et al. 2004; 

Lockwood et al. 2004; Lycett and Collard 2005; Michaux et al. 2007; Cardini and 

Elton 2008; González-José et al. 2008; Polly 2001), especially in the case of the 

postcranial skeleton (e.g., Young 2003).  

!
Perhaps a more productive way to think about ‘homology versus homoplasy’ in the 

context of developmental similarities/departures is to think of these processes as part 

of a continuum rather than a dichotomy, as suggested by Hall (2007; 2012):  

!
“[…] When we attempt to separate homology from homoplasy 

mechanistically, we are not dealing with a dichotomy between homoplasy as 

parallelism/convergence and homology as common descent. Nor are we 

dealing with a dichotomy of homoplasy as the interrupted presence of the 

character in a lineage and homology as the continuous presence of the 

character. Rather we are dealing with common descent with modification, and, 

more specifically, with common descent with varying degrees of 

modification.” (Hall 2007: 476) 

!
In other words, the more phylogenetically or temporally distant the last common 

ancestor the more opportunity for modification/loss and for parallelism/convergence 

(i.e., for homoplasy), and the more phylogenetically recent the last common ancestor, 

the greater the likelihood of phenotypic similarity (i.e., for homology). Consequently, 
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any discussion of homology and/or homoplasy in relation to developmental 

mechanisms must be posed within the context of a sound phylogenetic analysis. 

Cartmill (1994) in fact, has argued that ontogeny can only be used to assess homology 

within the context of prior phylogenetic information since similar structures are likely 

to arise from homologous precursors by virtue of the fact that natural selection can 

operate only on available variations. If this condition is satisfied then it is possible to 

work within the general premise that (a) homologies reflect evolutionary changes 

arising from similar developmental processes, (b) parallelisms reflect developmental 

processes that may have diverged, and (c) convergences reflect divergent 

developmental processes (Hall 2003). It thus follows that morphological similarities 

between two bones are most likely, at least partially, homologous in a developmental 

sense if these growth processes are the same (Lieberman 1999).  
!
!
In the case of the hominoid clade, discordances between structure (phenotype) and 

development (ontogeny) are less likely to be an issue because of the taxonomic 

proximity between species. This means that homoplasies (in the strictest sense) in 

structure and development are unlikely to be present or difficult (see impossible) to 

detect since we are dealing with parallelisms and not convergences. Indeed, 

developmental similarities are expected to arise from similar processes, and thus may 

evolve independently in more than one lineage through parallelism (Lieberman 1999). 

In this case, rather than focusing solely on ontogenetic development – which is 

merely a description of the sequence rather than the actual processes by which 

morphologies grow – this project will focus more on understanding whether similarity 

in structures arises via similar development mechanisms, which is generally 

considered a more satisfying approach (Alberch 1985; Liberman 1999). 

!
3.5. Ontogeny of the hominoid shoulder: a valid approach? 

!
It is true that divergences in ontogeny do not necessarily equate independent 

evolution, and that homologous structures do not necessarily develop through 

ontogenetically homologous routes. In the case of the hominoids, where we are 
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dealing with a set of closely related species, some of which even share similar body 

weights, locomotor strategies and ecological niches, conclusions must be drawn with 

especial caution so as to avoid the pitfalls of overly simplistic explanations.  

Nonetheless, provided the subject is approached conservatively, under the guide of a 

strong theoretical background that allows for alternative explanations (such as 

biomechanics and ecology) and with the understanding that the relationships between 

ontogenies and evolutionary pathways are not always clear-cut, comparisons of 

hominoid ontogenetic development remain a promising tool for distinguishing 

between homologies and homoplasies in the context of parallelism.  

Indeed, despite being one of the most extensively studied anatomical areas in 

paleoanthropology, the hominoid shoulder girdle still poses an interesting 

evolutionary problem: how to reconcile the morphologically cohesive extant 

hominoids, with a morphologically diverse Miocene and Plio-Pleistocene fossil 

record? – A dilemma, which has been elegantly demonstrated by Young (2003).  

Indeed, Young’s (2003) cladistic analysis of primate postcranial morphometrics 

showed that (1) the great apes cluster closely together, (2) gibbons and spider 

monkeys cluster together, and most interestingly, (3) the factors driving this cladistic 

configuration are characters of the shoulder area, particularly the humeral head and 

the scapula. Given this evidence, even if we accept Larson’s (2007b, 2009, 2013) 

proposition that the hominoid shoulder girdle is in fact a homoplastic structure in the 

extant apes, the postcranial parallelism model must still explain how these species 

could look so similar in the face of their locomotor diversity (Young 2003). 

It is in light of this apparent paradox, and with the intention of contributing to our 

understanding of the selective pressures driving the evolutionary transformations of 

the hominoid shoulder girdle, that the present project has been designed.  

!
4. Aims 
!
The current project will study the growth and development (ontogeny) of the shoulder 

structure (scapula, humerus and clavicle) in extant hominoids (Pan troglodytes, Pan 

paniscus, Pongo pygmaeus, Gorilla gorilla, Hylobates lar, Homo sapiens), plus an 

outgroup of arboreal quadruped macaques: Macaca fascicularis. It will aim at 
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understanding whether the similarities in this anatomical structure in hominoids are a 

product of common ancestry (homology) or rather the product of parallelism 

(homoplasy). In order to accomplish this, 3D (surface areas, angles, torsion, 

curvatures) and 2D (lengths, heights, widths) measurements of the shoulder elements 

will be compared against variables such as differences in the timing of events in the 

different taxa, as well as differences in developmental trajectories between taxa.  

!
The project is novel in that (1) it will study the shoulder structure from an ontogenetic 

perspective in both apes and humans, (2) it will explore some of the relationships 

between the three skeletal elements of the shoulder in relations to each other, and (3) 

it will use 3D methods of surface imaging rather than relying on landmark data alone. 

The results will be used to make inferences about the possible selective pressures 

acting upon the shoulder girdle during both the evolutionary course of hominoid apes 

as well as our own hominin lineage. The findings will mainly build on previous 

research conducted by Young (2003, 2008) and Larson (1988, 1996, 1998, 2007b) 

regarding similarities in the hominoid postcrania and the evolution of the hominin 

shoulder, respectively. 

!
The current project rests on the following assumption, bearing in mind the caveats 

discussed above: characters that are homologous will arise through similar 

developmental processes, while characters that are homoplastic will arise through 

different developmental processes. In addition, this study also incorporates the use of 

phylogenetic comparative methods in order to complement the ontogenetic analyses 

and resultant observations (see Materials and Methods section for details). Due to the 

importance of humeral torsion as a phylogenetically and functionally diagnostic trait 

in hominoids, I also dedicate one chapter to the bilateral asymmetry of torsion in 

African apes and humans, which puts this trait into a behavioural context. Both these 

topics (bilateral asymmetry and phylogenetic comparisons) address the issue of 

plasticity and behaviour, which are central to the study of ontogeny, and the issue of 

‘homology versus homoplasy’. 
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– Chapter 2 – 
!

Materials and Methods 
!
!
1. Introduction 

!
In order to conduct the present research, 30 measurements were collected on the 

clavicle, scapula and humerus of six hominoid species (Homo sapiens, Pan 

troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus and Hylobates lar) and 

one macaque species (Macaca fascicularis). Information on the dental development 

of each individual specimen was collected for the purpose of creating an ontogenetic 

sample for each species. All measurements were collected on surface scans of 

individual bones and analysed in a 3D environment (Geomagic Suite 12.1 and Amira 

3.1), and all statistical analyses (ontogenetic, phylogenetic as well as within- and 

between-species differences) were conducted using R version 2.12.2 (R Core Team 

2011). 

!
2. Sample 

!
Measurements were collected on left shoulder elements (or right elements when the 

left was not present or damaged) – clavicles, scapulae and humeri – of Macaca 

fascicularis (n=21), Hylobates lar (n=24), Pongo pygmaeus (n=25), Pan paniscus 

(n=23), Pan troglodytes (n=45), Gorilla gorilla (n=42) and Homo sapiens (n=97) of 

all ages (0 to 70 years in humans; 0 to 13+ years in great apes; 0 to 7+ years in 

Macaca and Hylobates). The Macaca sample was included as an outgroup because of 

the arboreal adaptation in this species, and its distant phylogenetic relationship to 

hominoids (see Appendix 1 for a comprehensive list of the sample used in this study). 

The macaque and gibbon samples were collected from the Universität Zürich 

Anthropological Institute and Museum; the orangutans from the Zoologische 
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Staatssammlung München and Natural History Museum, London; the chimpanzee 

and gorilla samples were obtained from the Natural History Museum, London, and 

the Powell-Cotton Museum, Birchington-on-Sea, with a few chimpanzees also 

derived from the Koninklijk Museum voor Midden-Afrika, Tervuren; the bonobo 

sample was collected from the Koninklijk Museum voor Midden-Afrika, Tervuren, 

and finally, the human sample was collected from the Spitalfields Collection housed 

at the Natural History Museum, London, and the Anthropological and Zoological 

Collections of the Bocage Museum, Lisbon. 

!
3. Measurements 

!
3.1. Scans 

!
3D surface scans of the shoulder elements of all specimens were produced using a 

Handyscan 3D EXAscan from Creaform. The scans were processed and stitched 

together using Geomagic Suite 12.1. Measurements were taken using Geomagic 

Suite 12.1 and Amira 3.1 (for 3D measurements) and tpsDigs (for 2D 

measurements). 

!
3.2. Measurement definitions 

!
Ten clavicle measurements, two humerus measurements and 18 scapula 

measurements were taken (figures 4-7), which include lengths, widths, angles, 

torsion, curvatures and surface areas. Lengths, and widths were measured in Amira 

3.1; torsion was measured using a combination of Amira 3.1 and tpsDigs; angles and 

curvatures were measured using a combination of Geomagic Suite 12.1 and tpsDigs; 

surface areas were measured in Geomagic Suite 12.1. 

!
Definitions of each measurement are provided in the following section and in table 1. 

In particular, the protocol for measuring curvatures is novel, and I have therefore 
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dedicated an entire Chapter (Chapter 6) to this measurement and its application for 

analysing clavicular curvatures. 
 

!!
Figure 4 – Left human scapula showing the measurements collected on the scapula. (See also figure 5).  !!!!!!
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Figure 5 – Left human scapula showing the measurements collected. (See also figure 4). 

 

!
Figure 6 – Left human clavicle showing the measurements collected on the clavicle. Top: clavicle in distal (acromial view); 

bottom: clavicle in superior (cranial) view. 
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!!!
Figure 7 – Right human humerus, showing the measurements collected on the humerus. (a): humerus in anterior view; (b) distal 

end of the humerus in anterior view; (c) distal end of the humerus in distal view. !!!!
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Table 1 – Table with the 30 shoulder measurements used in this research 

!
!
!
!

Element Measurement name Measurement description

Clavicle clav_length Maximum length of the clavicle

clav_thick_ap Maximum thickness of the clavicle at midshaft (antero-posterior)

clav_thick_cc Maximum thickness of the clavicle at midshaft (cranio-caudal)

clav_torsion Clavicle torsion

clav_angle_dist_ant Distal angle of the clavicle (anterior view)

clav_angle_dist_sup Distal angle of the clavicle (superior/cranial view)

clav_angle_prox_ant Proximal angle of the clavicle (anterior view)

clav_angle_prox_sup Proximal angle of the clavicle (superior/cranial view)

clav_freecurv_dist Distal angle of the clavicle using 'freecurve' method

 clav_freecurv_prox Proximal angle of the clavicle using 'freecurve' method

Humerus hum_length Maximum length of the humerus

hum_torsion Medial rotation of the humeral head over the humeral shaft

Scapula scap_height Maximum height of scapular body

scap_breadth_spine_glen Maximum breadth of the scapula from the glenoid fossa to where the long axis 

of the scapular spine and the vertebral border meet

glen_angle_latborder Angle of the glenoid fossa to the lateral border of the scapula

glen_angle_medborder Angle of the glenoid fossa to the medial border of the scapula

glen_angle_spine Angle of the glenoid fossa to the spine of the scapula

glenoid_angle_bodyspine Angle of the glenoid fossa to the scapular body below the spine

glen_version Version of the glenoid fossa relative to the body of the scapula

latborder_spine_angle Angle of the scapular spine to the lateral border of the scapula

spine_angle_medborder Angle of the scapular spine to the medial border of the scapula

scap_spine_length Maximum length of the scapular spine from the medial border to the tip 

of the acromion

scap_infra_length Maximum length of the infraspinous fossa

scap_infra_length_90 Maximum length of the infraspinous fosssa (at 90 degree angle from 

spine)

scap_supra_length Maximum length of the supraspinous fossa

scap_supra_length_90 Maximum length of the suprapinous fosssa (at 90 degree angle from 

spine)

scap_infra_surf Surface area of the infraspinous fossa 

scap_supra_surf Surface area of the supraspinous fossa 

scap_breadth_infra Maximum breadth of the scapula's infraspinous fossa (below the spine)

scap_breadth_supra Maximum breadth of the scapula's supraspinous fossa (above the spine)
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3.2.1. Clavicle  

!
clav_length: Maximum length of the clavicle. Measured from the distal (acromial) 

end to the proximal (sternal) end. 

clav_thick_ap: Maximum antero-posterior thickness of the clavicle at midshaft. 

Midshaft was measured at 50% of the maximum length of the clavicle. 

clav_thick_cc: Maximum cranio-caudal thickness of the clavicle at midshaft. 

Midshaft was measured at 50% of the maximum length of the clavicle 

clav_torsion: Torsion of the distal clavicle relative to the proximal clavicle. This was 

measured as the intersection of a line of maximum length passing antero-posteriorly 

through the distal third of the clavicle (before the distal curvature), and a line of 

maximum length of the proximal (sternal) end of the clavicle, bisecting it into two 

equal halves. The obtuse angle is measured.  

clav_angle_dist_ant: Distal angle of the clavicle (2D) in ventral view1.  

clav_angle_dist_sup: Distal angle of the clavicle (2D) in cranial view1. 

clav_angle_prox_ant: Proximal angle of the clavicle (2D) in ventral view1. 

clav_angle_prox_sup: Proximal angle of the clavicle (2D) in cranial view1. 

clav_freecurv_dist: Distal curvature of the clavicle in 3D1. 

clav_freecurv_prox: Proximal curvature of the clavicle in 3D1.  1

!
3.2.2. Humerus  

!
hum_length: Maximum length of the humerus from the head of the humerus to the 

distal epicondyles of the humerus. 

hum_torsion: Humeral torsion. Defined as the obtuse angle formed between the 

orientation of the humeral head and the orientation of the distal condyles of the 

humerus. This angle is measured using the intersection, viewed from the cranial 

perspective, of a line drawn through the centre of the humeral head dividing it into 

anterior and posterior halves, and a line passing through the centre of the capitulum 

!  32

1 See the next section and Chapter 6 for a detailed description on how these measurement protocols.



and trochlea (as defined by Krahl and Evans 1945; Rhodes 2006; Cowgill 2007; see 

Chapters 3, 4 and 5 for further details). 

!
3.2.3. Scapula  

!
scap_height: Maximum scapular height. Measured between the inferior and the 

superior angles of the scapula. 

scap_breadth_spine_glen: Maximum breadth of the scapular body where the spine 

attaches to the body of the scapula. Measured from below the glenoid fossa to the 

medial border of the scapula where the spine meets the medial border. 

glen_angle_latborder: Angulation of the glenoid fossa relative to the lateral border of 

the scapula. I report the acute angle (Haile-Selassie et al. 2010). 

glen_angle_medborder: Angulation of the glenoid fossa relative to the medial border 

of the scapula (measured as the line from the inferior to the superior angle). I report 

the obtuse angle. 

glen_angle_spine: Angulation of the glenoid fossa relative to the scapular spine.  

glenoid_angle_bodyspine: Angulation of the glenoid fossa relative to body of the 

scapula where the scapular spine meets the body.  

glen_version: Angulation of the glenoid fossa relative to the body of the scapula in 

transverse plane. Measured on the posterior side (as defined by Bokor et al. 1999; 

Nyffeler et al. 2003). 

spine_angle_latborder: Angulation of the scapular spine relative to the lateral border 

of the scapula.  

spine_angle_medborder: Angulation of the scapular spine relative to the medial 

border of the scapula (measured as the line from the inferior to the superior angle).  

scap_spine_length: Maximum length of the scapular spine. Measured from the 

medial border of the scapula, where the spine meets the medial border, to the tip of 

the acromion. 

scap_infra_length: Maximum length of the scapula’s infraspious fossa. Measured 

between the inferior angle and the medial border of the scapula where the spine 

meets the medial border. 
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scap_infra_length_90: Maximum length of the scapula’s infraspious fossa measured 

at a 90-degree angle from the scapular spine to the medial border of the scapula. 

scap_supra_length: Maximum length of the scapula’s supraspinous fossa. Measured 

between the superior angle and the medial border of the scapula where the spine 

meets the medial border. 

scap_supra_length_90: Maximum length of the scapula’s supraspinous fossa 

measured at a 90-degree angle from the scapular spine to the lateral border of the 

scapula. 

scap_infra_surf: Maximum surface area of the scapula’s infraspinous fossa. 

scap_supra_surf: Maximum surface area of the scapula’s supraspinous fossa. 

scap_breadth_infra: Maximum breadth of the scapular body at the infraspinous fossa. 

Measured between the lateral and medial borders of the scapula below the spine. 

scap_breadth_supra: Maximum breadth of the scapular body at the supraspinous 

fossa. Measured between the lateral and medial orders of the scapula above the spine. 

!
3.3. Protocols for measuring surface areas, curvatures, torsion and angles 

!
3.3.1. 3D curvatures 

!
Curvatures were measured on the distal and proximal clavicle. The procedure for 

measuring curvatures was devised for the purposes of this study. Curvatures were 

measured using the curve fitting options ‘Draw Curve’ and ‘Free Curve’ in Geomagic 

12.1 (figure 8). The two polylines are fitted such that they represent two arches of a 

circle, and their curvatures (k) are measured (in mm) as a function of the circle’s 

radius (R): 
k = 1 / R 

!
Details on how these measurement were collected and full protocol description can be 

found in Chapter 6. 

!
!
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3.3.2. Angles  

!
Angles were measured on the humerus to determine torsion, on the clavicle to 

determine both torsion and 2D proximal and distal angles of the clavicle, and on the 

scapula, to determine the angulations of the scapular spine and glenoid fossa relative 

to each other and to the scapular borders. In all cases, the angles were measured by 

drawing lines through the segments of interest – for example, a line drawn through 

the centre of the humeral head dividing it into anterior and posterior halves, and a 

line passing through the centre of the capitulum and trochlea, for measuring humeral 

torsion –, and measuring the angle at the intersection of those lines. These lines are 

first drawn in a 3D environment (either Geomagic Suite 12.1 or Amira 3.1); the bone 

is then oriented in the plane of interest and the image is transferred to tpsDigs as a 

2D image. The angles are estimated in tpsDigs using the ‘Measure Angle’ function, 

as the intersection of these lines. More details about how these measurements are 

obtained for individual bones can be found in Chapters 3 and 4. 

!
!

!  35



!  !
Figure 8 – 3D surface scan of an adult human left clavicle (ventral view) with the fitted distal (a), and proximal (b) profile 

curves. The profile curves are obtained from the reference polyline using the ‘Edit Curve’ function in Geomagic 12.1 (see figure 

10). The profile curves represent arches of a circle; using the ‘Analyse Curve’ function in Geomagic Suite 12.1, the curvature 

measurements for both curves are calculated as a function of each circle’s radius (in mm). 

!
!
!
!
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3.3.3. Surface areas 

!
Surface areas of the supraspinatus and infraspinatus foassae of the scapula were 

measured in Geomagic 12.1. These areas were delineated using an automated function 

(‘Extract Curve’ function), which detects object contours and extracts curvatures 

based on these contours. In order to standardize the procedure across scapulae (figure 

9a), the ‘curvature sensitivity’ setting was set to 80, the ‘separator sensitivity’ set to 

10, and the ‘minimum area’ set to 100mm2. These settings were found to correctly 

identify the relevant borders and isolate the two areas of interest across specimens, 

and produced reproducible results (see table 2). Once the contours are identified 

(figure 9b), the curves are extracted using the ‘Compute Curve’ and ‘Extract Curve’ 

functions (figure 9c). The curves are then converted to boundaries (using the ‘Convert 

to Boundaries’ function) (figure 9d), which allow to select the isolated areas via the 

‘Select Bounded Component’ tool (figure 9e,f), and compute the surface area using 

the ‘Compute Area’ measuring tool. 

!

!  
Figure 9 - 3D surface scan of a right Hylobates lar scapula showing the procedure to calculate surface areas of the supraspinous 

and infraspinous fossae. See text for detailed description. 
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!
3.4. Error 

!
Intraobserver error was estimated following Tim White’s procedure for estimating 

error (White et al. 2011) – it reports the percentage difference between repeated 

measurements in relation to 10 averaged repeat measurements (table 2). For every 

measurement, intraobserver error is approximately 2 to 10 times smaller than the 

average differences between specimens.  

!
4. Ontogeny 

!
In order to quantify ontogenetic changes in the development of the shoulder, all 

individual specimens were either of known age (in the case of humans) or were aged 

using relative dental ages (all hominoids and Macaca fascicularis). Hence, my sample 

only includes individual non-human primates for which radiographic information on 

the dentition is available. These were either generously provided by Prof. Christopher 

Dean (UCL), Dr. Julia Boughner (University of Saskatchewan) and Dr. Wendy Dirks 

(Newcastle University), or collected for the purpose of this study in the case of the 

orangutans (at the Zoologische Staatssammlung München & Staatssammlung für 

Anthropologie und Palaeoanatomie München, and at the Natural History Museum, 

London). 

!
4.1. Dentition  

!
For the purpose of this study, the goal was not to establish precise ages in years, 

which would require combining imaging data with histological data for each 

individual specimen, but rather to rank the individuals according to growth stages, 

from birth to adulthood, in order to obtain an ontogenetic series. For this reason,  

!
!
!
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Table 2 – Error table. The percentage differences for repeat measurements reports the mean differences between repeated 

measurements in relation the 10 averaged repeat measurements. The percentage difference for the total sample measures the 

average differences between adult human individuals.

!

Measurement Sample N
Mean difference 

(%)
Standard 
deviation

clav_length Total 42 8.894 21.482
Remeasurements 10 0.127 0.206

clav_thick_ap Total 42 16.911 1.783

Remeasurements 10 6.790 0.295

clav_thick_cc Total 42 16.163 1.599

Remeasurements 10 3.475 0.482

clav_torsion Total 42 23.734 28.196

Remeasurements 10 16.575 1.406

clav_dist_ant Total 42 3.402 5.392

Remeasurements 10 1.281 1.491

clav_dist_sup Total 42 4.324 4.533

Remeasurements 10 0.971 0.665

clav_prox_ant Total 42 2.776 4.355

Remeasurements 10 1.233 1.633

clav_prox_sup Total 42 2.512 4.233

Remeasurements 10 0.957 1.576

clav_freecurv_dist Total 42 24.817 0.006

Remeasurements 10 3.007 0.001

clav_freecurv_prox Total 42 17.684 0.001

Remeasurements 10 1.758 0.000

hum_length Total 42 4.755 12.032

Remeasurements 10 0.063 0.153

hum_torsion Total 42 3.805 4.463

Remeasurements 10 1.030 1.625

scap_height Total 42 7.816 7.379

Remeasurements 10 0.093 0.164

scap_breadth_spine_glen Total 42 6.306 4.527

Remeasurements 10 0.783 0.535

glen_angle_latborder Total 42 3.279 3.278

Remeasurements 10 0.657 0.661

glen_angle_medborder Total 42 31.744 2.328

Remeasurements 10 10.612 0.587

glen_angle_spine Total 42 3.445 2.336

Remeasurements 10 1.235 0.716

glenoid_angle_bodyspine Total 42 3.376 2.395

Remeasurements 10 3.962 2.370
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Table 2 cont’d – Error table. The percentage differences for repeat measurements reports the mean differences between repeated 

measurements in relation the 10 averaged repeat measurements. The percentage difference for the total sample measures the 

average differences between adult human individuals. 

!
Dean and Wood’s (1981) atlas method is considered to be an adequate indicator of 

relative ages applicable to all apes, and sufficiently detailed for obtaining an 

ontogenetic series for each ape taxon (figure 10). This method allows splitting the 

sample into equal time spans, rather than the great jumps of unequal time represented 

by eruption stages alone, for a more accurate representation of ontogenetic change 

(Dean and Wood 1981; Boughner and Dean 2008). 

!

Measurement Sample N Mean difference (%) Standard deviation

glen_version Total 42 4.269 2.490

Remeasurements 10 2.676 2.165

latborder_spine_angle Total 42 10.250 3.024

Remeasurements 10 2.013 0.414

spine_angle_medbord
er

Total 42 2.872 2.127

Remeasurements 10 0.420 0.230

scap_spine_length Total 42 7.175 6.298

Remeasurements 10 0.222 0.266

scap_infra_length Total 42 7.834 5.873

Remeasurements 10 0.476 0.276

scap_infra_length_90 Total 42 8.121 6.062

Remeasurements 10 2.024 2.998

scap_supra_length Total 42 10.207 3.503

Remeasurements 10 1.072 0.374

scap_supra_length_90 Total 42 13.294 4.364

Remeasurements 10 1.559 0.449

scap_infra_surf Total 42 16.275 814.359

Remeasurements 10 0.461 64.646

scap_supra_surf Total 42 17.077 336.361

Remeasurements 10 2.196 84.189

scap_breadth_infra Total 42 11.483 5.537

Remeasurements 10 3.498 1.269

scap_breadth_supra Total 42 6.823 4.465
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The atlas method was developed by Dean and Wood (1981) as part of a study 

focusing on the cranial base of fossil hominids from East and South Africa, and 

involved the construction of a growth series of the three genera of apes (Pongo, Pan 

and Gorilla) to build a chart, or ‘atlas’. This was devised by tracing the developing 

teeth from one quadrant of the upper jaw and one quadrant of the lower jaw for 

juvenile specimens collected at the Natural History Museum in London and the 

Powell-Cotton Museum in Kent. This chart can be used to assign specimens a relative 

dental developmental age ranging from 0 – 11 years. Dean and Wood’s (1981) ‘atlas 

method’ for assigning Approximate Relative Dental Aging scores (ARDA) was used 

on my bonobo, chimpanzee, gorilla, and orangutan samples. The great ape dentition 

was scored by identifying stages of dental formation, from X-ray images of the 

mandibular dentition, for each specimen. Because this information is non-existent for 

gibbons, I also created an atlas for the gibbon dentition based on Dean and Wood’s 

(1981) method and protocol. The gibbon atlas was created in collaboration with Prof. 

Christopher Dean (UCL) and Dr. Wendy Dirks (Newcastle University) and is 

described in detail below. The macaque dentition was scored using Swindler’s (1985) 

chart of Macaca dental development. The human samples consist of individuals of 

known age (Molleson et al. 1993; Cardoso 2005). In humans, studies have shown that 

methods based on mineralization stages of dental formation, and radiographic images 

produce estimated ages within 0.52 (+ 0.62) years for deciduous teeth and 0.57 (+ 

0.42) years for permanent teeth, of the chronological age (Liversidge and Molleson 

1999; Liversidge 2005). I consider this sufficient evidence that the human and primate 

samples can be adequately compared to each other despite the differences in aging 

methods. 

!
The Pan trogoldytes, and Gorilla gorilla and Pongo pygmaeus X-rays are from Dean 

and Wood’s (1981) study and were collected from specimens at the Natural History 

Museum in London and the Powell-Cotton Museum in Kent. The Pan paniscus X-

rays belong to Dr. Julia Boughner (Boughner and Dean 2008; Boughner et al. 2012) 

and were collected at the Koninklijk Museum voor Midden-Afrika, Tervuren. The 

Macaca fascicularis and Hylobates lar X-rays belong to Dr. Wendy Dirks (Newcastle 
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University) the Department of Anthropology at New York University and the 

Universität Zürich Anthropological Institute and Museum (Dirks 1998, 2003; Dirks 

and Bowman 2007). Additional I collected extra Pongo X-rays at the Zoologische 

Staatssammlung München & Staatssammlung für Anthropologie und Palaeoanatomie 

München, and at the Natural History Museum, London.  

!

!  

!
Figure 10 – Atlas of great ape dental development (from Dean and Wood, 1981). 
!
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4.1.1. Atlas of gibbon dental development 

!
Because an atlas of dental development does not presently exist for gibbons, one was 

created for the purpose of this study. This was done in collaboration with Prof. 

Christopher Dean (UCL) and Dr. Wendy Dirks (Newcastle University), both of whom 

generously provided the X-rays and histological sections, and helped design the 

protocol for the atlas. The goal was to provide a chronological time scale for the 

developing dentition of Hylobates lar (based on Dean and Wood's [1981] atlas 

method). We used a combination of cross-sectional radiographic data of 18 juvenile 

gibbon mandibles and histological sections of three lower molars (M1, M2 and M3), 

one lower premolar (P4) and one lower canine from individuals with histologically 

derived ages at death (AS1627, from the Zurich collection, NYU008 and NYU029 

from the Department of Anthropology at New York University [Dirks 1998]). The P3 

was too damaged to be included in the study, and the incisors (I1, I2) were left out 

because, unlike the molars, premolars and canines, they develop very quickly after 

birth and therefore are the least informative teeth in the mandible. In the future 

however, these can be added to the atlas to refine some of the earlier stages of dental 

formation.  

!
The Hylobates lar X-rays as well as the histological information were obtained at the 

Universität Zürich Anthropological Institute and Museum and the Department of 

Anthropology at New York University by Dr. Wendy Dirks during the course of her 

PhD in 1996. Based on the X-rays, 8 separate stages of tooth mineralization were 

identified for all teeth. Growth increments in the crown and root of histological 

sections of each tooth were used to determine the age for each of these 8 stages. When 

information on all teeth is combined, 11 separate stages of mandibular dental 

formation were identified across all 18 X-rays, which provided a time-scale of 

postnatal dental development spanning from 0.42 yrs to > 8 yrs.  

!
!
!
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4.1.1.1. Protocol 

!
In order to create the atlas, the first step involved inspecting the 18 X-rays to 

determine what stages of tooth mineralization could be easily and realistically 

observed for each tooth across specimens. From these observations, 10 stages of tooth 

formation with 8 stages of tooth mineralization were established: empty crypt, crown 

initiation, crown initiation + ¼, crown initiation + ½, crown initiation + ¾, crown 

completion, root initiation + ¼, root initiation + ½, root initiation + ¾, and root 

completion (with apex closed). The first two stages: empty crypt and crown initiation 

were however, not used to age the specimens (figure 11). 

!
The next step involved identifying the corresponding stages in the histological 

sections of three lower molars (M1, M2 and M3), one lower premolar (P4) and one 

lower canine from individuals with histologically derived ages at death (AS1627, 

NYU008 and NYU029) (see Dirks [1998] for details on how age at death was 

derived). Transmitted polarized light microscopy was used to analyze the thin sections 

using an Olympus BX51 microscope mounted with a QImaging Micropublisher 3.3 

RTV camera. Images from the microscope were transmitted to a Macintosh computer 

equipped with image processing software, Improvision Openlab 5.0.2. Finally, 

individual images taken at the same magnification were standardized to the same 

enlargement size and merged together using Adobe Creative Suite 5 (Dirks 1998) 

(figure 12). The crown and root sections for each tooth were then divided into 

quarters and the Striae of Retzius – daily incremental growth lines – between these 

quarters were manually counted when it was possible; when this was not possible, 

formation time was determined by measuring along an enamel prism from the enamel 

dentine junction (EDJ) to the enamel surface and dividing by the average daily 

enamel secretion rate, calculated from the distances between adjacent cross striations 

(figure 13). This allowed obtaining an age in days for each of the 8 stages/quarters of 

tooth mineralization, for each tooth – from which an age in years was then derived 

(table 3). 

!
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Finally, the corresponding age (in years) was assigned to each tooth (M1, M2 and M3, 

P4, C) for each X-ray. The ages of all teeth with incomplete development were 

averaged and an Approximate Relative Dental Age (ARDA) was assigned to each 

mandible/specimen. Based on the 18 X-rays, 11 stages of mandibular dentition 

formation spanning from birth to adulthood could be easily identified and aged using 

this method. I therefore used this information to design the final atlas: containing 11 

stages with a corresponding age in years (figure 14). This in turn allows for assigning 

approximate relative dental ages (ARDA) to individual lar gibbon specimens in the 

absence of known age at death and/or histological information, in a way that is 

comparable to Dean and Wood's (1981) great ape atlas (figure 15). Future work 

should include histological data for the remaining mandibular dentition (I1, I2, P3) thus 

increasing the resolution of the method. 

!

!  !
Figure 11 – Dental development in gibbons with descriptions of the stages of tooth development/ mineralization that can be 

identified based on the X-ray images. 
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!

!  !
Figure 12 – Tooth section of the lower left canine (NYU11). Left: composite image of the histological tooth section merged in 

Photoshop CS5; right: drawing of the tooth section showing direction of the Striae of Retzius on the enamel (crown), and dentine 

(root). The red arrows indicate the stages of tooth mineralization that were used in this study. 
!
!
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!  

!
Figure 13 – Tooth section of the lower left P4  (NYU0029). The image shows the buccal cusp at the base of the crown. The red 

arrows indicate the Striae of Retzius – daily increment lines – that were counted between each stage.  
!
!
!
!
!
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Table 3 – Table with age in days (and years) for each tooth mineralization stage, for each tooth. 

!
!
!
!
!
!
!
!
!
!
!
!

Tooth Specimen

!
Crown initiation 

+ ¼ 

!
Crown initiation 

+ ½ 

!
Crown initiation 

+ ¾ 

!
Crown 

completion 

Canine NYU11 272 (0.74 yrs) 688 (1.87 yrs) 1016 (2.77 yrs) 1268 (3.46 yrs)

Premolar (P4) NYU0029 538 (1.46 yrs) 686 (1.88 yrs) 815 (2.22 yrs) 967 (2.65 yrs)

Molar (M1) AS1627 83 (0.23 yrs) 193 (0.53 yrs) 211 (0.58 yrs) 399 (1.08 yrs)

Molar (M2) NYU0029 (crown) 432 (1.17 yrs) 528 (1.45 yrs) 730 (2 yrs) 890 (2.44 yrs)

NYU008 and 
AS1627 (root)

Molar (M3)
NYU0029 and AS 
1627

922 (2.53 yrs) 982 (2.68 yrs) 1126 (3.07 yrs) 1170 (3.20 yrs)

Tooth Specimen

!
Root initiation  

+ ¼ 
 

!
Root initiation + 

½ 

!
Root initiation + 

¾ 
Root completion 

Canine NYU11 1555 (4.25 yrs) 1789 (4.90 yrs) 2728 (7.46 yrs) 3320 (9.09 yrs)

Premolar (P4) NYU0029 1138 (3.12 yrs) 1206 (3.30 yrs) 1290 (3.52 yrs) 1362 (3.72 yrs)

Molar (M1) AS1627 512 (1.40 yrs) 640 (1.74 yrs) 720 (1.93 yrs) 834 (2.27 yrs)

Molar (M2) NYU0029 (crown) 938 (2.57 yrs) 1050 (2.88 yrs) 1150 (3.15 yrs) 1262 (3.46 yrs)

NYU008 and 
AS1627 (root)

Molar (M3)
NYU0029 and AS 
1627

1250 (3.41 yrs) 2146 (5.88 yrs) - -
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!
!
!
!

!  
Figure 14 – Atlas of the developing lar gibbon dentition with Approximate Relative Dental Ages (ARDAs) attributed to each 

stage (deciduous teeth in white and permanent teeth in grey). 11 stages of mandibular tooth formation were identified based on 

the X-rays. Ages for each stage are based on the averaged ages of individual developing/incomplete teeth. 
!
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!  !
Figure 15 – X-ray of the mandibular dentition of AS1639 exemplifying how the atlas can be used. Based on the atlas, this 

specimen is at Stage 5 in its dental development, and therefore estimated to be about 2.86 years old. 
!
5. Analysis 

!
All statistical analyses (ontogenetic, phylogenetic, as well as within- and between-

species differences) were conducted using R version 2.12.2 (R Core Development 

Team, 2011). The present study is innovative in that it uses growth curves to compare 

ontogenetic trajectories in the growth of the shoulder girdle between hominoid 

species. Additionally, this study is also innovative in its use of a new 

phylogenetically-integrated method – ‘Independent Evolution’ – to quantify 

evolutionary change along branches of a phylogenetic tree (Smaers and Vinicius 

2009; Smaers et al. 2012).  

!
5.1. Ontogeny: the use of Gompertz growth curves 

!
Gompertz growth curves were fitted to the data using a self-starting three parameter 

Gompertz function in R version 2.12.2 (2011). The Gompertz function is a sigmoid 
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function developed for time series, and therefore temporally describes growth through 

successive phases of rapid, decaying, and asymptotic growth (Horton et al. 1998). I 

used a self-starting parameter rather than pre-defining a starting value (at x = 0) 

because in many of the samples the number of very young individuals close to birth 

was too small to provide a realistic estimate of the value at x = 0. The SSgompertz 

function estimates three parameters: the asymptotic value (Asym), the value at x=0 

(b2), and a numeric parameter relating to the rate of growth (b3), for each distribution.  

!
Usage in R: SSgompertz(x, Asym, b2, b3) 
!
Arguments:  

	  
x : a numeric vector of values at which to evaluate the model (i.e. the data) 
Asym : a numeric parameter representing the asymptote 
b2 : a numeric parameter related to the value of the function at x = 0 
b3 : a numeric parameter related to the scale of the x axis 

!
 Equation:  y(x)=Asym*exp (-b2*b3X)  

!
Studies have shown that the overall process of skeletal maturation proceeds along a 

trajectory adequately predicted by this function (Horton et al. 2008), and therefore it 

is one of the most commonly used functions in studies of human growth and 

development as well as skeletal growth in mammals (Laird 1967; Jolicoeur 1985; 

Jolicoeur et al. 1988; German and Meyers 1989; Fiorello and German 1997; 

Humphrey 1998, 1999; Calzada et al. 1997; Read and Tolley 1997; Ramos et al. 

2000; Koppe et al. 2000; Farmer and German 2004; Galatius 2005, 2010; Gonzalez 

et al. 2010; Valverde et al. 2010; Galatius and Goldin 2011; Galatius et al. 2011, 

2012).  

!
Because the atlas method for aging specimens according to dental formation does not 

permit aging individuals past M3 root completion, the same dental stage is attributed 

to all dentally adult individuals. In order to better fit a Gompertz model through the 
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samples and allow a comparison with humans (for which adult ages are known), 

adult individual points (for non-human primates) I attributed random ages up to a 

maximum of 40 years (figure 16 & table 4).  

!

!  !
Figure 16 – Gompertz curve of glenoid fossa height in Pan troglodytes: with actual ARDA scores (left), and ‘extended’ adult 

scores ARDA scores (right).  The Gompertz model cannot be fitted to this distribution (see table 4). 

!
Table 4 – Gompertz parameter for Pan troglodytes glenoid fossa height growth models showing estimated value at growth 

completion (log) (Asymptote), estimated value at birth (b2), estimated rate of growth (b3), and the Residual Standard Error. 

!
5.2. Phylogeny: ‘Independent evolution’ and PGLS regressions 

!
The study of shoulder morphology benefits greatly from being studied within a 

phylogenetic framework because much debate exists over whether the shared 

similarities in shoulder anatomy in hominoids are a product of shared ancestry or 

rather have evolved more recently in parallel. In order to discern clade-specific 

patterns in the hominoid shoulder girdle morphology, I use a phylogenetically-

integrated approach that quantifies evolutionary changes along individual branches of 

an independently-derived (molecular-based) phylogeny. This method, ‘Independent 

Evolution’, developed by Dr. Smaers (Smaers and Vinicius 2009; Smaers et al. 2012, 

2013), highlights processes of phenotypic change occurring across individual 

Species Asymptote Gompertz b2 Gompertz b3

P. troglodytes 7.607 (+ 5.793) 1.123 (+ 0.747) 0.968 (+ 0.025) 

P. troglodytes extended ages 3.523 (+ 0.037) 0.382 (+ 0.023) 0.851 (+ 0.013) 
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branches of a phylogeny and therefore has the potential to identify processes such as 

convergence and mosaic evolution within the skeleton (figure 17). This approach 

moves away from direct species comparisons by (1) utilizing independently estimated 

(molecular) phylogenies to identify which morphological signals dominate the 

evolution of an anatomical module (e.g., humeral torsion) and (2) by inferring the 

timing and rate of evolutionary changes along individual lineages. By quantifying 

evolutionary changes along individual branches of the tree of life, this approach 

allows robust inferences of instances of independent evolution and provides a useful 

framework to help interpret fossil morphology. The primate phylogeny was taken 

from the 10k Trees Project (version 3) (Arnold and Nunn 2010). Fossil primates, 

when they are used, are placed onto the phylogeny according to published information 

(this is discussed and described in detailed in Chapter 5). 

!
The appeal of incorporating phylogenetic information into morphological 

comparisons is especially evident when considering taxonomic groups and/or 

anatomical areas where homoplasies may be prevalent – which is the case with the 

hominoid shoulder. Indeed, the lack of congruence between phylogenetic trees based 

on molecular data and those based on morphological data has been a major topic of 

discussion over the last two decades (Begun 2007; Cannon and Manos 2001; Caumul 

and Polly 2005; Collard and O'Higgins 2002; Collard and Wood 2000; Collard and 

Wood 2001; Collard and Wood 2007; David and Laurin 1996; Frost et al. 2003; 

Klingenberg and Gidaszewski 2010; Leinonen et al. 2006; Neustupa and Skaloud 

2007; Singleton 2002; Young 2008). Reconstructing trees from morphology assumes 

a clear association between morphological and evolutionary diversity, an assumption 

that is highly problematic when considering homoplasies, and in cases of mosaic 

evolution. Moreover, the lack of congruence between morphometric evolution and 

genetic differentiation results from the process of adaptation itself (Brehm et al. 2001; 

Cardini and Elton 2008; González-José et al. 2008; Hoekstra et al. 2004; Lockwood et 

al. 2004; Lycett and Collard 2005; MacLeod and Forey 2002; Michaux et al. 2007; 

Monteiro 2000; Naylor and Adams 2001; Polly 2001; Rohlf 2002; Zelditch et al. 

1995); since understanding processes of adaptation is the primary goal of comparative 
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biology, rather than ‘removing’, ‘controlling’ or ‘accounting’ for a phylogenetic 

signal, a better alternative is to ‘map’ the morphological traits onto the phylogeny 

itself, thereby highlighting processes of adaption (including homoplasies) occurring 

across the branches of a phylogeny.  

!
Phylogenetic Generalized Least Squares (PGLS) with likelihood-fitted Lambda are 

also performed using the package ‘Caper’ (Orme et al. 2012) in R version 2.12.2 

(2011). Fort these analyses I use a sample of 6 hominoid species (species mean values 

of adult specimens only): Homo sapiens (n=42), Gorilla gorilla (n=12), Pan 

troglodytes (n=12), Pan paniscus (n=8), Pongo pygmaeus (n=7), Hylobates lar 

(n=10).  

!  
Figure 17 – Example of rates of evolution for a particular trait plotted along individual branches of an independently-derived 

(molecular-based) phylogeny, and estimated ancestral values plotted at the ancestral nodes and tips (red: decreases in the trait; 

green: increases in the trait; thickness of branch corresponds to extent of increase/decrease; size of black circles corresponds to 

size of the variable). The variable in this case is humeral torsion. Fossils are placed onto the tree according to published 

information (Kivell et al, 2011; Begun et al, 1997, 2012). 
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6. Behavioural data 

!
For this study it is important to consider not only the differences in locomotion 

between hominoid species but the influence of body size on locomotion, and more 

importantly the influence of changing body size during ontogeny on locomotion.  

!
Indeed, research has demonstrated that differences in body size influence locomotion, 

both in adult individuals, as well as throughout ontogeny (Bell 1971; Jarman 1974; 

Kleiber 1975; Chivers and Hladik 1984; Milton 1984; Fleagle 1985; Harvey et al, 

1987; Doran 1997). For example, it is well established that larger animals are more 

terrestrial than smaller animals and when in an arboreal habitat, larger animals tend to 

either use larger substrates or perform different locomotor activities than smaller 

animals (Napier, 1967; Cartmill, 1974; Cartmill & Milton, 1977; Fleagle, 1985; 

Fleagle & Mittermeier, 1980; Crompton, 1984; Cant, 1992; Doran, 1993a; Hunt, 

1994; Gebo & Chapman, 1995; McGraw, 1996). Perhaps with the exception of Pongo 

(see for example Thorpe et al 2009), hominoid primates show these same trends, for 

example the larger mountain gorilla is more terrestrial than the common chimpanzees 

(Schaller, 1963; Tuttle & Watts, 1985; Doran, 1996), and the female western lowland 

gorilla is more arboreal than its male counterpart (Remis 1995). Studies have also 

confirmed that there are changes in locomotion in primates and African ape primates 

during ontogeny (Rawlins, 1976; Rose, 1977; Crompton, 1983; Tuttle & Watts, 1985; 

Schaller, 1963; Goodall, 1968; Fossey, 1979). Doran (1997), for example, finds that 

mountain gorillas undergo dramatic changes in locomotor behaviour during ontogeny, 

with the frequency of quadrupedalism increasing and the frequency of climbing, 

suspensory behaviour and bipedalism all decreasing through ontogeny. The same 

author also finds that chimpanzees and gorillas of similar sizes (although widely 

disparate ages) perform very similar locomotor activities (Doran 1997), and an earlier 

study by the same author (Doran 1992a) demonstrates that the trends in positional 

behavioural development in chimpanzees and bonobos are similar, providing strong 

evidence for a link between locomotion and body size. 
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6.1. Pan troglodytes 

!
Chimpanzees and humans likely diverged 10-5 million years ago, about 2 million 

years after the divergence of gorillas (12-7 Mya) (Wilkinson et al. 2011). Individuals 

of this species weigh between 47-60kg (Jungers and Susman 1984) and are 

moderately dimorphic (M/F = 1.27) (Leigh and Shea 1995). Studies have determined 

that Pan troglodytes reaches locomotor independence at around 5 years of age. Based 

on Doran’s (1997) observations of chimpanzees in the wild from Tai Forest, Ivory 

Coast, the locomotor development in this species is as described in table 5. It is 

possible however, that body size differences within a species can also be correlated 

with differences in locomotor behaviour (Doran 1993a,b), and some studies have 

indicated that females spend more time resting above ground than do males, and when 

they are in the trees, both sexes differ in their locomotor and postural activities, height 

and substrate preference, and in the type of activity performed on some substrates 

(Doran 1993a,b).  

!
Table 5 – Locomotor activities by age groups in chimpanzees (taken from Doran 1997). 

!

!
Age Classes 

(months and years)

!
Locomotion

!
Infant 1 

(0-6 months) 

!
Dependent on mothers until 5 months, then engage in climbing, one/

two-handed arm-hanging, aided bipedalism

!
Infant 2 

(6-23 months) 

!
More frequent suspensory behaviour than at any other time in life 

Climbing and arm swinging; some palmigrade quadrupedalism

!
Infant 3 

(2-5 years) 

!
Shift to quadrupedalism: adept knuckle-walkers at this stage. 
Decrease in climbing, suspensory behaviour and bipedalism

Juveniles 
(5 to 11 years)

Proficient knuckle-walkers
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6.2. Pan paniscus 

!
Bonobos are thought to have split from the common chimpanzee lineage between 1 

and 2 million years ago (Caswell et al. 2008). It is possible that the formation of the 

Congo River between 1.5 to 2 million years ago led to this speciation since bonobos 

live south of the river, whereas common chimpanzees live north of the river (Caswell 

et al. 2008). Bonobos are morphologically very similar to common chimpanzees, with 

a few key differences in their anatomy, social systems and sexual behaviours 

(Zihlman and Cramer 1978; Kano 1992; deWaal et al 1997; Boesch et al 2002; Hare 

et al 2012). The crania and mandibles of bonobos are quite distinct from those of 

chimpanzees, and they exhibit lower levels of craniodental sexual dimorphism than 

chimpanzees (Cramer 1977; Zihlman and Cramer 1978). Their body mass however, 

can be greater or equal to that of chimpanzees (adult body mass between 25kg to over 

50kg [Rahm 1967; Napier and Napier 1967]). Bonobos also have a more slender build 

than chimpanzees, with longer thighbones, heavier thigh muscles and longer feet 

(Myers Thompson 2002). The shoulder anatomy is the same for bonobos and 

common chimpanzees, but Pan paniscus scapulae are relatively narrower than those 

of Pan troglodytes (Shea 1986), and their clavicles are relatively much shorter  

with a more extensive articular surface for the head of the humerus (McHenry and 

Corruccini 1983). 

!
With regards to their locomotor ontogeny, both bonobos and chimpanzees follow the 

same general trends in locomotor behavior, as observed by Doran (1992, 1993a) and 

the same table of locomotor ontogeny may therefore be used for bonobos. However, a 

few differences do exist. Studies have shown that for all age classes bonobos are more 

arboreal than Pan troglodytes and that pygmy chimpanzee juveniles are more 

suspensory than their common chimpanzee counterparts (Doran 1992,1993a).  

!
6.3. Gorilla gorilla 
!
Chimpanzees and gorillas likely diverged between 12-7 Mya (Wilkinson et al. 2011). 

The species used in the present project is the western lowland gorilla (Gorilla gorilla 
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gorilla). The average body size for an adult male gorilla is 170 kg, and 70kg for a 

female (Jungers and Susman 1984), which means they are extremely dimorphic in 

their body mass. Sexual body mass dimorphism in gorillas is largely a consequence of 

differences in the duration of growth: male and female gorilla growth curves diverge 

at approximately 6-7 postnatal years, and while female growth ceases at 

approximately 9.5-10 years of age, males continue growth beyond this age, until 

about 12 years of age (Leigh and Shea 1996). Interestingly, despite their large size, 

lowland gorillas are like chimpanzees in terms of substrate use and positional 

behaviour, and more distinct from the ecologically specialized mountain gorillas than 

commonly believed (Remis 1995). However, due to their larger size gorilla males are 

at the upper body size limits which allow the use of arboreal substrates, so their 

behaviours are more cautious than those of females and other apes. Remis (1995) in 

fact shows that females use suspensory postures more frequently than males. Unlike 

for mountain gorillas, there is no data on locomotor development throughout growth 

for the lowland gorilla. 

!
6.4. Pongo pygmaeus 

!
Orangutans split from the African ape clade around 25-14 million years ago 

(Wilkinson et al. 2011). Currently, it is thought that Bornean and Sumatran orangutans 

constitute two distinct species (Pongo pygmaeus in Borneo and Pongo abelii in 

Sumatra), which are thought to have diverged about 1.1 million years ago – however, 

the level of variation does not approach that witnessed within other hominoid genera 

such as Pan (Campbell et al. 2007). The current project will only include Bornean 

orangutans.  

!
Orangutans are the largest habitually arboreal mammal (Cant, 1987a; Thorpe and 

Crompton, 2006; Thorpe et al 2009), and they possess postcranial traits that are 

adapted for their complex arboreal environment, including long forelimbs with hook-

like hands, short hindlimbs with hand-like feet, and highly flexible hip and shoulder 

joints (Fleagle, 1988; MacLatchy, 1996; Delgado and van Schaik, 2000; Manduell et 
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al 2011). The literature on orangutan locomotion is vast and studies suggested that 

while they exhibit a large repertoire of locomotor behaviour, they are predominantly 

characterized by orthograde suspensory locomotion: whereby the body is orthograde 

with the head superior, and various combinations of all four appendages are used to 

grasp supports in different ways, with suspension by the forelimbs from above (Cant, 

1987b; Thorpe and Crompton, 2005, 2006; Thorpe et al., 2007a,b, 2009). Being one 

of the largest hominoid species, males can range in body weight from 34 kg to 90kg, 

and females can range in weight from 32kg to 45kg (Eckhardt, 1975).  

Orangutans are one of the most sexually dimorphic species of mammals with   

adult males reaching on average 2.0 to 2.3 times the size of adult females (Leigh and 

Shea 1995). Orangutans males appear to have indeterminate growth, meaning that 

they carry on growing throughout their lives in both body mass (Leigh and Shea 

1995) and cranial size (Balolia et al. 2013). The species is also exceptional in that 

there are two morphologically distinct types of adult males: one is large and fully 

developed with secondary sexual characteristics including large cheek flanges, and 

the second type which is smaller and does not have developed secondary sexual 

characteristics (Utami Atmoko and van Hoff 2004).  

!
Given the extensive sexual and age-related dimorphism in orangutans (adult males 

weighing approximately twice as much as adult females and perhaps three times as 

much as adolescents), (Rodman, 1984), the relative congruence found in the 

locomotor behaviour of different age-sex categories is rather surprising (Thorpe and 

Crompton 2005). However, observations on feeding in northern Sumatra have shown 

that positional behaviour during feeding does vary between males and females, with 

males using larger branches than females and greater frequency of above branch 

postures (sitting and standing) than females, who employ suspensory under-branch 

postures more often (Cant 1987). Sugardjito and van Hooff (1986) also report 

significant differences in locomotor repertoire and in use of different canopy levels 

during travel for adult males, adult females, and adolescents. 

!
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There have currently been no studies focusing on the ontogeny of locomotor 

development in orangutans, similar to those performed on gorillas and chimpanzees. 

The data in table 7 have been derived from a study on the development of ecological 

independence in immature Sumatran orangutans, which includes some references to 

locomotor behaviour/independence.  
!
Table 7 – Locomotor activities by age groups in orangutans (taken from van Adrichem et al. 2006). 

!
6.5. Hylobates lar 

!
There are 4 genera and 12 species of gibbons, all small arboreal apes that inhabit the 

rain forests of eastern and southeastern Asia (Campbell et al. 2007). MtDNA studies 

suggested that the split of great apes and gibbons occurred 15–20 million years ago, 

with the four gibbon genera originated 7-8 million years ago (Schrago and Russo 

2003; Raaum et al. 2005; Matsui et al. 2009; Matsudaira and Ishida 2010; Thinh et al. 

2010). Lar gibbons, weighing on average 4.4 to 7.6 kg, have the broadest north to 

south distribution and diverged into subspecies at about 1–0.5 million years ago 

(Thinh et al. 2010). Gibbons are much smaller than any other hominoids and therefore 

are commonly referred to as lesser apes. As a group they are very similar in skeletal 

anatomy and more readily differentiated based on pelage and vocalizations (Campbell 

!
Age Classes  

(years) 

!
Locomotion

!
0 - 2 years 

!
Mostly clinging to mother 

!
2 - 3 years 

!
Large drop in proportion of time spent clinging to mother and increase 

in the proportion of time spent moving. Move more independently  

!
6 - 8 years 

!
Nutritional and locomotor independence but daily contact with mother 

(ecologically dependent) !
11 years

Independent travel alone
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et al. 2007). They are almost exclusively arboreal, and use a specialized mode of 

locomotion called brachiation; therefore, they exhibit a suite of morphological 

adaptations that are unique to them: extremely long forearms, highly mobile shoulder 

joints and long hook-like hands (Campbell et al. 2007). Gibbons are also unique in 

that they are sexually monomorphic: both sexes are the same size, with long saber-

like canines (Campbell et al. 2007). 

!
Gibbons (and siamangs) are skilled brachiators and 50–80% of their travelling time is 

spent using this specialised mode of locomotion (Fleagle, 1974, 1976; Andrews & 

Groves, 1976; Carpenter, 1976; Hollihn, 1984; Preuschoft & Demes, 1984; Tuttle, 

1986; Takahashi, 1990). Brachiation is the ‘bimanual progression along or between 

overhead structures for a distance of several metres without the intermittent use of 

other types of positional behaviour and without support by the hind limbs or tail’ 

Hollihn (1984), and according to this definition, the hylobatids are the only true 

brachiators. The highly suspensory mode of locomotion of gibbons has contributed to 

some specialized anatomical features of the shoulder (i.e., well-developed scapular 

spine, long forearms relative to both humerus and body size, axially elongated 

scapulae and curvature of the clavicle) (Aiello and Dean 1990; Voisin 2006). The 

shoulder flexors, extensors, rotator muscles, elbow flexors and wrist flexors and 

especially the elbow flexors of gibbons are more powerful, compared with those of 

non-specialized brachiators (Michilsens et al 2009). However, within gibbons there 

appears to be no quantitative differences between gibbon species in both forelimb 

anatomy and muscle dimensions (Michilsens et al 2009).  

!
There are currently no data on ontogeny of locomotion for lar gibbons, or for any 

other hylobatid. 

!
6.6. Homo sapiens 

!
Homo sapiens, anatomically modern humans, originated in Africa about 200,000 

years ago, and are the only living species in the Homo genus and the only habitual 
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bipedal primates in Hominidae. Homo sapiens are the only habitually bipedal primate, 

with numerous morphological adaptations that resulted from this mode of locomotion. 

We are a sexually dimorphic species, with males possessing on average larger body 

masses: 86.6kg, versus 74.4kg in females (United States averages from 1999-2002; 

Ogden et al, 2004). However, we lack canine dimorphism, which implies a social 

structure with greater levels of male-male cooperation (e.g., Plavcan and Van Schaick, 

1997; Plavcan, 2000). 

!
Differences between non-human apes and human pectoral girdles are mainly found on 

the scapula and clavicle and suggest that the human arm is adapted for use in a 

lowered position and less powerful in a raised position (i.e., the glenoid fossa faces 

laterally, not cranially, and the clavicle lacks the cranial twist of the apes) (Aiello and 

Dean 1990). 

!
Table 8 – Locomotor activities by age groups in modern humans (taken from Rose and Gamble 1994; Payne and Isaacs 2005). 

!
!
!
!

!
Age Classes  

(months and years) 

!
Locomotion

!
12 weeks 

!
Control of head !

4 months 
!

Can lift head upright and hold trunk on extended arms  !
6 months 

Independent sitting 

!
8 – 10 months 

Crawling/Begin to walk by holding onto things

10 – 17 months Independent walking pattern

2 – 6 years Gradual changes occur within each gait parameter, enabling child to 
progressively assume a more adult-like style of walking

7 years Adult-like walking pattern
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6.7. Macaca fascicularis (outgroup) 

!
The fossil record indicates that macaques diverged from other papionids about 7 

million years ago in Northern Africa and invaded Eurasia at about 5.5 million years 

ago via the Near East before branching into several phyletic lineages (Campbell et al. 

2007). 

!
Long tailed or crab eating macaques (Macaca fascicularis) have the highest degree of 

arboreality of all macaque species and are found in southeast Asia from Burma to the  

Philippines and southward through Indochina, Malaysia, and Indonesia. In Thailand, 

this species occurs in evergreen, bamboo, and deciduous forests. They are sexually 

dimorphic in size, with males weighing on average 4.8 to 7 kg and females weighing 

3 to 4 kg, or approximately 69% of the average male weight (Wolfheim 1983). 

!
The shoulder anatomy of macaques is quite different from that of great apes in several 

key aspects: the scapula is elongated mesio-distally instead of cranio-caudally, the 

glenoid faces laterally, not cranially, the clavicle is short and the humerus has low 

degrees of torsion (averaging 123 degrees according to Krahl 1945, and lower than 

any hominoid), and has lesser and greater tubercles that rise above the head (Aiello 

and Dean 1990). In many respects this is a quadrupedal morphology. However, when 

compared to Papio, a closely related clade of terrestrial quadrupeds, the scapular 

morphology of the less terrestrial macaque has a scapular configuration similar to 

more acrobatic primates capable of running, hopping, arm-swinging and suspension 

(Kimes et al. 1981). Even within two closely related species of macaques, the more 

terrestrial Macaca nemestrina, and the predominantly arboreal Macaca fascicularis, 

differences in shoulder morphology have been reported, namely related to the length 

of the scapula and length of the clavicle (Rodman 1979). 

!
There is no detailed information about ontogeny of locomotion in Macaca 

fascicularis. 
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– Chapter 3 – 
!

The ontogeny of humeral torsion in hominoid primates 
!
!
1. Introduction 

!
Hominoid primates share a number of features of shoulder morphology (e.g., dorsally 

placed scapulae, elevated humeral torsion, and cranially directed glenoid fossae), that 

have generally been associated with use of the upper limb in overhead postural and 

locomotor activities (Miller 1933; Ashton and Oxnard 1963, 1964; Oxnard 1963, 

1967; Ashton et al. 1971, 1976; Roberts 1974; Andrews and Groves, 1976; Larson, 

1988). In particular, high degree of humeral torsion (i.e., the medial displacement of 

the head of the humerus in relation to the shaft and distal epiphyses) has been 

interpreted as an accommodation to the dorsal repositioning of the scapula on a 

transversely widened rib cage – an upper body configuration that is characteristic of 

living hominoids (Larson 1998; Young 2003). Indeed, hominoids have the most 

dorsally positioned scapula among anthropoid primates (Corruccini and Ciochon 

1976; Larson 1988; Chan 2007a,b), and the humeral head is therefore more medially 

oriented to articulate with a laterally oriented glenoid cavity (Larson 1996). In 

quadrupedal monkeys, on the other hand, the humeral head faces posteriorly to 

articulate with a ventrally oriented glenoid fossa (Larson 1996; Rein et al. 2011). 

These modifications in hominoid shoulder morphology have been associated with 

increased mobility at the glenohumeral joint, and the degree of humeral torsion is 

therefore viewed as a significant diagnostic characteristic in the interpretation of 

locomotor abilities in fossil primates (Begun 1992a, b, 1994; Larson, 1996).  

!
Humeral torsion has been extensively studied in primate skeletons and is particularly 

well documented in humans (Martin 1933; Inman and Abbott 1944; Evans and Krahl 

1945; Krahl and Evans 1945; Krahl 1947; Napier et al. 1959; Krahl 1976; Sarmiento 
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1985; Larson 1988, 1996, 1998, 2007a,b, 2009; Larson et al. 2007). It was previously 

considered to be a static, phylogenetic trait that varied slightly between sexes, sides, 

and populations (Krahl 1945; Krahl and Evans 1945; Edelson 1999, 2000) because 

variation within and between human groups in very young individuals suggests that 

there is a genetic component to this feature (Cowgill 2007). However, recent analysis 

of humeri from multiple human populations indicates that increases in upper limb 

activity prior to skeletal maturity lead to differences in humeral torsion values, and 

that this trait is therefore also a correlate of function (Krahl 1976; Cowgill 2007). 

Specifically, studies have established that torsion develops over time in the proximal 

epiphysis of the humerus (where 80% of humeral growth takes place [(Pritchett 

1991]) as a result of repetitive rotational stresses, which lead to the deformation of the 

epiphyseal cartilage, thus resulting in reduced torsion (Mair et al. 2004; Murachovsky 

et al. 2010; Thomas et al. 2012; Wyland et al. 2012) (figure 1). Although the exact 

timing of the cessation of humeral torsion development is unknown (Cowgill 2007), it 

is thought to occur at the time of epiphyseal fusion, which occurs between the ages of 

16 and 20 years in humans (Edelson 2000).  

!
Because it appears to have both a phylogenetic base (primary rotation of the humerus 

happens in utero) and a functional base (secondary torsion of the humerus occurs 

during ontogeny and correlates with activity patterns) (Krahl and Evans 1945), 

humeral torsion has thus been of particular interest in discussions of hominoid, and in 

particular great ape, locomotor ancestry (Larson 1988, 1996, 1998; Larson 2007a,b; 

Larson et al. 2007). Indeed, along with the fusion of the os centrale, a synapomorphy 

of African apes and humans to the exclusion of Asian apes and most other primates 

(Corruccini 1978; Kivell and Begun 2007), the high degrees of humeral torsion in 

African apes and humans is considered by some to be a shared derived character and 

evidence for a knuckle-walking stage in human evolution – because it permits the 

arms to more effectively move in a parasagittal plane (Washburn 1967; Richmond and 

Strait 2000; Richmond et al. 2001; Begun 2004). Others, however, consider that 

humeral torsion in humans is an independently acquired characteristic that reflects 

upper limbs used for manipulation and the need to maintain the hands in front of the 
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body (Larson 1988, 1998; Larson 2007b); in gorillas and chimpanzees, high degrees 

of humeral torsion would have evolved, perhaps also independently, as a means to 

maintain the arms in a sagittal plain as a requirement for knuckle-walking (Larson, 

1998, 2007a,b). Indeed, in her studies of humeral torsion in anthropoid humeri, 

Larson (1996, 1998; Larson et al. 2007) found that the degree of torsion in A. 

afarensis, A. africanus, Homo floresiensis and Homo erectus is lower than the degree 

of torsion found in either extant African apes or modern humans and according to the 

author, these results suggest that modern humans and African apes evolved their 

similar high degree of humeral torsion independently, and thus do not support the 

proposal that early hominids evolved from a knuckle-walking ancestor.  

!
However, studies have shown that there is significant variation in the degree of 

humeral torsion between modern human populations (Edelson 1999; Cowgill 2007). 

Furthermore, the small sample sizes obtained from the fossil record do not allow us to 

form a clear picture of variation in this trait, and the incomplete elements from which 

these measurements of humeral torsion are derived are prone to have a significant 

margin of error rendering comparisons with modern human samples difficult 

(Richmond et al. 2001; Begun 2007). Therefore, the present chapter aims at tackling 

the issue of homoplasy versus homology in humeral torsion using a different method 

which takes into account variation within and across species and age classes: 

ontogeny. The present research thus investigates whether humeral torsion is a shared 

derived character or on the contrary, an independently acquired trait in the different 

hominoid lineages by comparing the ontogenies of humeral torsion in hominoid 

primates (Hylobates lar, Pongo pygmaeus, Pan troglodytes, Pan paniscus, Gorilla 

gorilla, Homo sapiens) and Macaca fascicularis, the assumption being that 

homologous characters will arise through similar developmental processes, while 

characters that are homoplastic will arise through different developmental processes 

(e.g., Gould 1977; Wray 1994; Hall 1999, 2007; Lieberman 1997, 2000; Lockwood 

1999; Lockwood and Fleagle 1999). 

!
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The present project constitutes the first comprehensive comparison of humeral torsion 

across hominoid species from an ontogenetic perspective.  

!
2. Materials and Methods  

!
2.1. Sample  
!
Humeral torsion was measured on left humeri (or right humeri when the left was not 

present or damaged) of Macaca fascicularis (n=20), Hylobates lar (n=24), Pongo 

pygmaeus (n=22), Pan paniscus (n=22), Pan troglodytes (n=43), Gorilla gorilla 

(n=39) and Homo sapiens (n=97) of all ages (0 to 70 years in humans; 0 to 13+ years 

in apes; 0 to 7+ in Macaca). A standard three-parameter Gompertz model was fitted to 

the distributions using the self-starting function SSgompertz in R version 2.12.2 

(2011). The Gompertz function estimates three parameters: the asymptotic value 

(Asym), the value at x=0 (b2), and a numeric parameter relating to the rate of growth 

(b3), for each distribution. Additionally, analysis of variance (ANOVA) tests were 

employed to test for differences between age categories (based on dental age) across 

species. Boxplots were also employed to visualize the data by species and age 

category. Age categories were based on dental age and were defined as: ‘infants’, 

represented by individuals prior to M1 eruption (7 years for humans, 3.5 years for 

great apes, and 1.75 for macaques and gibbons), ‘juveniles’, represented by 

individuals prior to M3 eruption (18 years for humans, 11 for great apes, 7 years for 

macaques and 8 years for gibbons), and ‘adults’, represented by individuals with 

erupted M3s (Smith 1989). Further details on how the measurements were collected, 

on how individual specimens were aged, and on the Gompertz function, can be found 

in the Materials and Methods Chapter. 

!
2.2. Measurement 

!
The humeral torsion angle is the obtuse angle formed between the orientation of the 

humeral head and the orientation of the distal condyles of the humerus (figure 18). 

This angle is measured using the intersection, viewed from the cranial perspective, of 
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a line drawn through the centre of the humeral head dividing it into anterior and 

posterior halves, and a line passing through the centre of the capitulum and trochlea 

(as defined by Krahl and Evans 1945; Rhodes 2006; Cowgill 2007; see figure 18 

legend for details). Because these are not present or are only partially fused in the 

juvenile population, the distal axis in immature, unfused humeri was defined as the 

transverse axis of the distal metaphyseal surface, bisecting the axis into two equal 

halves (as defined by Cowgill 2007) (figure 18b). With regards to the proximal axis, a 

similar issue arises since the humeral head is unfused in immature individuals. In this 

case, the proximal metaphyseal surface was used and the axis was defined as the line 

passing through the maximum diameter of the metaphyseal surface, and bisecting it 

into two even segments (as defined by Cowgill, 2007) (figure 18a). Discrepancies  
!

!  
Figure 18 – Above: mmature gorilla right humerus in (a) anterior, (b) cranial, (c,) anterior, and (d) distal view, showing the 

proximal and distal axes used for measuring humeral torsion. The distal axis is formed by line passing through the maximum 

diameter of the metaphyseal surface, and bisecting it into two even segments (c) and (d). Below: adult gorilla right humerus in 

(a) anterior, (b) cranial, (c) anterior, and (d) distal view, showing the proximal and distal axes used for measuring humeral 

torsion. The distal axis is formed by a line passing through the centre of the distal-most points of the trochlea and capitulum (c) 

and (d). 
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between the two methods of defining the proximal axis and distal axis were measured 

on juvenile specimens who still retained clear lines of fusion (this was only the case in 

very few specimens). Differences between the two methods produced measurement 

error that ranged from 3% to 5% of the total measurement, falling below the average 

torsion differences between individual specimens at 5–9% (measurement error was 

calculated using White et al’s [2011] procedure for estimating error on osteological 

material; see table 9). Intraobserver error was also calculated for both fused and 

unfused humeri of all species; intraobserver error did not exceed 4.6% in any sample, 

which is consistently below the average differences (in percent) between individual 

specimens (which exceeded 5.8% in all samples) (table 9).  

!
Table 9 – Table of error measurements and total differences between individuals in the primate samples. The percentage 

difference for the total sample measures the mean differences between each measurement to the average humeral torsion value 

for each species. The percentage difference for repeat measurements reports the mean differences between repeated 

measurements in relation the three averaged repeat measurements (for mature and immature specimens). The average differences 

between individuals are greater than the differences between repeat measurements in each sample. 

!

Sample Species N
Mean differences 

(%)
Standard 
deviation

Remeasurements H. sapiens 3 0.573 0.529

Mature individuals (fused humeri) P. troglodytes 3 1.917 1.483

P. paniscus 3 3.822 2.452

G. gorilla 3 0.654 0.728

P. pygmaeus 3 4.602 3.234

H. lar 3 0.778 0.599

M.fascicularis 3 2.187 1.047

Remeasurements H. sapiens 3 1.453 1.449

Immature individuals (unfused humeri) P. troglodytes 3 2.740 2.466

P. paniscus 3 0.497 0.309

G. gorilla 3 0.163 0.091

P. pygmaeus 3 0.893 0.419

H. lar 3 3.622 2.873

M.fascicularis 3 4.123 2.218

Total samples H. sapiens 97 7.559 9.808

Average differences between individuals P. troglodytes 45 6.774 8.008

P. paniscus 23 5.805 6.623

G. gorilla 42 8.024 7.85

P. pygmaeus 24 6.923 7.712

H. lar 24 8.536 6.959

M.fascicularis 21 6.375 5.138
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Discrepancies between the present study and the literature exist, as shown in table 10, 

however, for the most part, the variation in torsion measurements across studies is 

smaller than the variation within species in the adults of the present study (table 11). 

Indeed, adult humeral torsion values are very variable, with gorilla values for example 

ranging from 145 to 175 degrees. The same is true for the other species in the sample, 

with standard deviations ranging from 6.93 (in Macaca) to 12.2 (for Pongo). 

Additionally, the literature for humeral torsion in adult humans is vast and studies 

report humeral torsion values from as low as 115 to as high as 175 degrees (Leal and 

Checcia 2006).  

!
Table 10 – Table showing mean humeral torsion values (adults) in the present study compared to those reported in the literature. 

Maximum differences between studies are reported in the last column. 

!
Table 11 – Table of mean torsion, minimum torsion and maximum torsion values found in the present study (adults). 

Differences between minimum and maximum torsion values are reported. This illustrates the spread of the distribution in 

torsion values in the present study and shows that within-species differences in torsion in the current study are on average 

bigger than the differences in torsion between studies. 

!
!
!
!
!

Species Present study Krahl (1976) Larson (1996) Rein et al (2011) Max Diff (°)

Homo sapiens 168.5 (n=42) 164 145 (n=40) 168.1 (n=20) 23.5

Pan troglodytes 152.6 (n=12) 146 143 (n=40) 132.9 (n=20) 19.7

Pan paniscus 151.5 (n=8) - - - -

Gorilla gorilla 160.2 (n=12) 161 145 (n=40) 133.7 (n=20) 26.5

Pongo pygmaeus 136 (n=13) 140 107 (n=31) 115.3 (n=20) 23.1

Hylobates lar 111.9 (n=10) 134 107 (n=31) 115.3 (n=20) 22.1

Macaca fascicularis 101.4 (n=10) 123 95 (n=27) 94.3 (n=10) 21.8

Species Mean torsion (°) Min torsion (°) Max torsion (°) Max-Min torsion (°)

Homo sapiens 168.5 149.18 180 30.82

Pan troglodytes 152.6 137.29 168.48 31.19

Pan paniscus 151.5 137.74 161.37 23.63

Gorilla gorilla 160.2 143.31 175.03 31.72

Pongo pygmaeus 136 106.17 156.7 50.53

Hylobates lar 111.9 103.28 119.14 15.86

Macaca fascicularis 101.4 98.08 101.65 3.57
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3. Results 

!
3.1 Humeral torsion differences between adults 

!
Boxplots of adult humeral torsion values show an increase in torsion from macaques 

to humans, with the African apes (gorillas, chimpanzees and bonobos) and humans 

showing the highest levels of torsion among the hominoids (figure 19). ANOVAs 

further show that there are significant differences between all species at the p<0.05 

level (F=116, df=6, p<0.000). TukeyHSD post-hoc tests reveal that these differences 

exist between all species except between the non-human African apes, and between 

gibbons and macaques (p>0.05) (table 12).  

!

!  

Figure 19 – Boxplot of adult humeral torsion values in adult hominoid species and Macaca fascicularis. Means are 

significantly different between species except between African ape species (excluding humans) and between gibbons 

and macaques (p<0.05) within a 95% confidence interval. Boxes represent the upper and lower quartile ranges, the 

black lines, the means, and the whiskers, the highest and lowest values within 1.5 times the interquartile range of the 

upper and lower quartiles; the circles represent outliers.  !
!
!
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3.2. Ontogeny of humeral torsion: differences between age categories 

!
First, the samples were divided into age categories (infant, juvenile, adult). 

ANOVA results show significant differences between all age classes in the 

human, gorilla and chimpanzee (P. troglodytes) samples at the p<0.05 level (H. 

sapiens: F=62.254, df=2, p<0.000; G. gorilla: F=6.9697, df=2, p=0,002; P. 

troglodytes: F=17.597, df=2, p<0.000). TukeyHSD post-hoc tests show that 

these differences exist between all age classes in the human sample, and 

between infants and juveniles, but not between juveniles and adults, for the 

gorilla and chimpanzee samples (figure 20, table 13).  

!
Table 12 – Tukey's HSD post-hoc test for the ANOVA test of between species differences (adult specimens). 

Significant values  (within a 95% confidence interval) marked in bold (diff: difference between means; lwr/upr: lower 

and upper bounds of the mean within a 95% CI). 

!
!

Species diff lwr upr p-adj

G. gorilla (12) H. sapiens (42) 8.306 1.365 15.247 0.009

G. gorilla (12) H. lar (10) -48.283 -58.492 -38.074 0.000

G. gorilla (12) M. fascicularis (9) -58.824 -69.033 -48.615 0.000

G. gorilla (12) P. paniscus (8) -8.761 -19.834 2.313 0.218

G. gorilla (12) P. troglodytes (12) -7.623 -17.212 1.967 0.214

G. gorilla (12) P. pygmaeus (13) -25.461 -37.113 -13.810 0.000

H. sapiens (42) H. lar (10) -56.589 -66.133 -47.045 0.000

H. sapiens (42) M. fascicularis (9) -67.130 -76.674 -57.586 0.000

H. sapiens (42) P. paniscus (8) -17.067 -27.530 -6.603 0.000

H. sapiens (42) P. troglodytes (12) -15.928 -24.807 -7.050 0.000

H. sapiens (42) P. pygmaeus (13) -33.767 -44.841 -22.694 0.000

H. lar (10) M. fascicularis (9) -10.541 -22.671 1.589 0.133

H. lar (10) P. paniscus (8) 39.523 26.656 52.389 0.000

H. lar (10) P. troglodytes (12) 40.661 29.047 52.275 0.000

H. lar (10) P. pygmaeus (13) 22.822 9.455 36.189 0.000

M. fascicularis (9) P. paniscus (8) 50.064 37.197 62.930 0.000

M. fascicularis (9) P. troglodytes (12) 51.202 39.588 62.816 0.000

M. fascicularis (9) P. pygmaeus (13) 33.363 19.996 46.730 0.000

P. paniscus (8) P. troglodytes (12) 1.138 -11.242 13.519 1.000

P. paniscus (8) P. pygmaeus (13) -16.700 -30.738 -2.662 0.009

P. troglodytes (12) P. pygmaeus (13) -17.839 -30.739 -4.939 0.001
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In contrast, ANOVAs show no statistically significant differences between age 

categories in the other apes (Asian apes and bonobos), suggesting that in these species 

torsion levels remain constant throughout growth, or that ontogenetic changes are not 

adequately captured by the present data and categorisation. In macaques, a t-test 

shows significant changes between the juveniles and the adults (p<0.000), with adults 

appearing to have lower torsion values than juveniles. There are no infant specimens 

for this sample. 

!  
Figure 20 – Boxplot of humeral torsion values in hominoid species and Macaca fascicularis by age categories: infant (birth to 

M1 eruption), juvenile (M1 eruption to M3 eruption), adult (post M3 eruption). Asterisks mark significant differences between 

adjacent age categories within 95% confidence interval (p<0.05). Boxes represent the upper and lower quartile ranges, the black 

lines, the means, and the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower 

quartiles. The circles represent outliers. 
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!
3.3. Ontogeny of humeral torsion: fitting the Gompertz model 

!
The Gompertz model fits all species’ distributions (on logged and non-logged values), 

except for the Asian apes’ (figure 21 & 22; table 14). 

!
Table 13 – Tukey's HSD post-hoc test for the ANOVA test of differences between age categories within species. 

Significant values  (within a 95% confidence interval) marked in bold (diff: difference between means; lwr/upr: lower 

and upper bounds of the mean within a 95% CI). 

!

!  
Figure 21 – Gompertz curves of humeral torsion development in hominoid species and Macaca fascicularis on non-logged 

values.  

Species Age Categories diff lwr upr p-adj

P. troglodytes Infant (5) Juvenile (25) 27.465 16.135 38.796 0.000

Infant (5) Adult (12) 24.714 12.403 37.025 0.000

 Juvenile (25) Adult (12) -2.751 -10.874 5.371 0.690

G. gorilla Infant (9) Juvenile (18) 18.899 5.989 31.808 0.003

Infant (9) Adult (12) 17.381 3.437 31.324 0.012

 Juvenile (18) Adult (12) -1.518 -13.303 10.266 0.947

H. sapiens Infant (27) Juvenile (28) 23.792 16.495 31.088 0.000

Infant (27) Adult (42) 30.767 24.094 37.44 0.000

 Juvenile (28) Adult (42) 6.975 0.375 13.576 0.036
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!

!  
Figure 22 – Gompertz curves of humeral torsion development in hominoid species and Macaca fascicularis on logged values 

(loge).  !
The growth curves indicate that humeral torsion in humans reaches full adult value 

just after M3 eruption (Smith, 1989); African apes attain their adult values before M3 

eruption, except in bonobos, whose torsion seems to develop later, around M3 

eruption; macaques finish developing torsion around M3 eruption (~8 years) (figure 

23). 
!
However, because humans mature more slowly than their ape relatives – about half as 

fast, with adulthood occurring around 11 years in apes, and around 18 in humans 

(Smith and Tompkins, 1995) –, in order to better understand how humans compare to 

!
!
!
!
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Table 14 – Gompertz parameters showing estimated value at growth completion (log) (Asymptote), estimated value at birth (b2), 

estimated rate of growth (b3), and the Residual Standard Error.  

!
the African apes, the human growth curve was scaled to match the ape growth curves (figure 

24). Doing so highlights the differences between the human and the chimpanzee and gorilla 

curves, with the bonobos appearing slightly derived in comparison. Here, chimpanzees, 

gorillas increase torsion at a similar rate, with chimpanzees and gorillas reaching their final 

values slightly earlier (before M3 eruption) than humans (after M3 eruption). Bonobos on the 

other hand seem to increase torsion much more slowly, and reach their final values around 

M3 eruption – although the lack of young individuals in the sample may be partially 

responsible for this pattern (figure 24). 

!
ANOVA tests performed between species at each age category (infant, juvenile, adult) further 

show a lack of significant differences between any of the species at infancy (F=2.7602, df=4, 

p=0.06), but significant differences between the juveniles (F=42.272, df=5, p<0.000) and 

adults (F=69.013, df=5, p<0.000) of each species within 95% confidence interval (see also 

table 15). These results indicate that hominoids exhibit similar torsion levels at birth 

(between ~110° and 135°), with differences arising as a product of growth, after M1 eruption. 

!
!
!

Measurement Species Asymptote Gompertz Gompertz RSE DF

Humeral torsion (°) Homo sapiens 168.156 (+2.415) 0.417 (+0.081) 0.842 (+0.036) 10.89 50

Pan troglodytes 155.253 (+2.165) 0.319 (+0.078) 0.562 (+0.137) 9.688 39

Gorilla gorilla 164.074 (+3.697) 0.237 (+0.055) 0.664 (+0.138) 11.80 36

Pan paniscus 153.601 (+6.035) 0.127 (+0.060) 0.888 (+0.117) 10.34 19

Hylobates lar - - - - - -

 Pongo pygmaeus - - - - - -

Humeral torsion Homo sapiens 5.124 (+0.015) 0.080 (+0.013) 0.850 (+0.035) 0.07 50

Pan troglodytes 5.045 (+0.015) 0.063 (+0.013) 0.575 (+0.126) 0.06 37

Gorilla gorilla 5.098 (+0.025) 0.047 (+0.010) 0.681 (+0.134) 0.08 36

Pan paniscus 5.034 (+0.044) 0.026 (+0.012) 0.894 (+0.114) 0.07 19

Hylobates lar - - - - - -

 Pongo pygmaeus - - - - - -
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!
!
!
!
!
!

!  

Figure 23 – Gompertz curves of humeral torsion development in hominoid species and Macaca fascicularis on non-logged 

values, with M1 and M3 eruption indicated for great apes (grey) and humans (red). The Macaca fascicularis growth curve 

follows the opposite pattern from the hominoid growth curves. !
!
!
!
!
!
!
!

!  77



!
!
!
!
!
!

!  
Figure 24 – Gompertz curves of humeral torsion development in hominoid species on non-logged values, with M3 eruption 

indicated for apes humans (red). The human x axis was ‘scaled’ to aproximate the African ape life histories (African apes attain 

adulthood around 11 years of age; humans at around 18 years of age). 
!
!
!
!
!
!
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3.4. Humeral torsion and growth completion 

!
Torsion values were then converted to percentages representing levels of growth 

completion – 100% growth completion was calculated as the average adult value for 

each species. Gompertz growth curves were then derived from these percentages 

(figure 25). Overall, results suggest that humeral torsion at birth is 40%-60% 

complete in all species except macaques and bonobos. In the latter, torsion is ~70% 

complete at birth, and in macaques, it is 0% complete. In macaques, torsion is 

estimated to be underdeveloped at birth compared to the other species, but develops 

rapidly and attains its final value around adulthood (~8 yrs) (figure 25). However, 

values at birth are likely underestimated due to the absence of very young individuals 

in the sample. Moreover, there is a remarkable similarity between the chimpanzee and 

gorilla patterns, as seen by the largely overlapping curves, with growth being 

completed between M1 and M3 eruption (figure 25). Humans on the other hand show 

a much slower growth rate in torsion development, likely due to their slower life 

histories, with growth being completed around M3 eruption (figure 25). Curiously, the 

bonobos also develop more slowly, thus deviating slightly but noticeably from the 

pattern seen in chimpanzees and gorillas – but with no significant differences between 

bonobos and chimpanzees in torsion (table 12). When the human growth curve is 

scaled to the African ape curves (figure 25), this pattern becomes even more evident – 

with torsion development in chimpanzees and gorillas finishing well before M3 

eruption, unlike humans, who continue developing torsion for relatively longer period 

of time. The bonobos again appear to slightly deviate from this pattern with torsion 

developing at a much slower pace, and with values at birth being at ~70% of their 

final adult values (figure 25). 

!
!
!
!
!!
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Table 15 – Tukey's HSD post-hoc test for the ANOVA test of differences between species, within age categories. 

Significant values  (within a 95% confidence interval) marked in bold (diff: difference between means; lwr/upr: lower 

and upper bounds of the mean within a 95% CI). 

!

Age Class Species diff lwr upr p-adj

Juveniles G. gorilla (18) H. lar (10) -49.479 -64.222 -34.736 0.000

G. gorilla (18) M. fascicularis (13) -50.884 -64.162 -37.606 0.000

G. gorilla (18) P. paniscus (10) -16.089 -29.773 -2.405 0.012

G. gorilla (18) P. troglodytes (25) -6.389 -17.115 4.336 0.507

G. gorilla (18) P. pygmaeus (4) -31.600 -53.236 -9.964 0.001

H. lar (10) M. fascicularis (13) -1.405 -17.526 14.717 1.000

H. lar (10) P. paniscus (10) 33.391 16.933 49.848 0.000

H. lar (10) P. troglodytes (25) 43.090 28.996 57.183 0.000

H. lar (10) P. pygmaeus (4) 17.879 -5.610 41.368 0.237

M.fascicularis (13) P. paniscus (10) 34.795 19.636 49.955 0.000

M.fascicularis (13) P. troglodytes (25) 44.494 31.941 57.048 0.000

M.fascicularis (13) P. pygmaeus (4) 19.284 -3.315 41.882 0.138

P. paniscus (4) P. troglodytes (25) 9.699 -3.283 22.681 0.256

P. paniscus (4) P. pygmaeus (4) -15.511 -38.351 7.328 0.358

 P. troglodytes (5) P. pygmaeus (4) -25.211 -46.410 -4.011 0.011

Adults G. gorilla (12) H. lar (10) -48.283 -60.058 -36.509 0.000

G. gorilla (12) M. fascicularis (9) -60.507 -72.633 -48.381 0.000

G. gorilla (12) P. paniscus (8) -9.381 -21.156 2.393 0.193

G. gorilla (12) P. troglodytes (12) -7.623 -18.849 3.604 0.355

G. gorilla (12) P. pygmaeus (8) -24.193 -35.201 -13.184 0.000

H. lar (10) M. fascicularis (9) -12.224 -24.859 0.411 0.063

H. lar (10) P. paniscus (8) 38.902 26.604 51.200 0.000

H. lar (10) P. troglodytes (25) 40.661 28.886 52.435 0.000

H. lar (10) P. pygmaeus (8) 24.090 12.524 35.657 0.000

M.fascicularis (9) P. paniscus (8) 51.126 38.491 63.761 0.000

M.fascicularis (9) P. troglodytes (12) 52.885 40.759 65.011 0.000

M.fascicularis (9) P. pygmaeus (8) 36.314 24.390 48.239 0.000

P. paniscus (8) P. troglodytes (12) 1.759 -10.016 13.533 0.998

P. paniscus (8) P. pygmaeus (8) -14.812 -26.378 -3.245 0.005

 P. troglodytes (12) P. pygmaeus (8) -16.570 -27.579 -5.562 0.001
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Figure 25 – Gompertz curves of humeral torsion development in hominoid species with M3 eruption indicated for apes humans 

(red). The values were converted to percentages represented growth completion. The human x axis was ‘scaled’ to approximate 

the African ape life histories (African apes attain adulthood around 11 years of age; humans at around 18 years of age). 
!
4. Discussion 

!
4.1. Humeral torsion in hominoid primates: evolution and developmental mechanism 

!
The present study shows that, like in humans, humeral torsion develops through 

ontogeny in at least Pan, Gorilla and Macaca fascicularis, and is thus the first study 

to establish this. My results show that torsion ceases its development around 

adulthood (M3 completion/eruption) at the time of epiphyseal fusion (Krahl and 

Evans, 1945; Schultz 1956; Krahl 1947, 1976; Edelson, 1999) (figures 21 & 22); 

moreover, results suggest that there may be no differences in torsion values between 

species at birth, but significant differences between species in adulthood (table 12 & 
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13), suggesting that differences in torsion arise through ontogeny via diverging 

developmental trajectories in the different lineages.  

!
Overall, my results show three major trends in the development of torsion in 

hominoids and Macaca fascicularis: (1) African apes and humans increase their 

humeral torsion values throughout growth, (2) Asian apes maintain low levels of 

torsion throughout growth, and (3) macaques reduce their humeral torsion throughout 

growth (figure 21 & 22). These results support the notion that there is a phylogenetic 

component to humeral torsion, because these three trends match the phylogenetic 

distances between species: Macaca < Asian apes < African apes < humans (Evans and 

Krahl 1945; Krahl 1976). On the other hand, because this trait develops throughout 

ontogeny with no apparent differences between species at birth, and because there is 

evidence of individual variation within populations (figure 21 & 22), results also 

support the notion that there is a functional element associated with torsion that is 

likely related to locomotor and/or postural behaviours, with some of the more 

orthograde suspensory species having lower torsion than the more terrestrial 

pronograde species: gibbons < chimpanzees < gorillas and humans. Additionally, 

there may also be some relationship with size and life-history, since the larger, slower 

growing species develop higher torsion, and the smaller, faster growing species 

maintain low torsion: macaques and gibbons < gorillas and humans. The results thus 

suggest that size, phylogenetic distance and locomotion may all contribute to humeral 

torsion: at the onset, the amount of torsion in hominoids seems to be genetically 

determined, with changes in torsion arising subsequently, as a product of changes in 

body size and divergent locomotor habits between species and between individuals.  
!
It is known that in humans, differences in torsion arise via the opposite actions of the 

medial and lateral rotators on the head of the humerus, which varies between 

individuals and groups, prior to epiphyseal fusion (Krahl and Evans 1945; Edelson 

2000; Cowgill 2007). Although the natural tendency is for humeral torsion to increase 

throughout ontogeny (Cowgill 2007), in athletes and more active populations, 

increased activity of the medial rotators (subscapularis, pectoralis major, latissimus 

dorsi, and teres major) in relation to the lateral rotators (infraspinatus and teres 
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minor), limits the development of torsion, thus resulting in relatively lower torsion in 

these individuals (Cowgil 2007), and in fact, Krahl (1947) reports a correlation 

between the strengths of these muscles and the degree of torsion in the corresponding 

humeri. This explains why professional athletes such as baseball or tennis players 

have relatively lower torsion on the playing arm compared to the non-playing arm 

(Pieper 1998; Crockett et al. 2002; Osbahr et al. 2002; Whiteley et al. 2008, 2010; 

Taylor et al. 2009; Myers et al. 2009; Schwab and Blanch 2009), why females tend to 

possess higher torsion than males (Krahl and Evans 1945), and why individuals with 

brachial plexus injuries in which the medial rotators are unopposed by the lateral 

rotators, have posteriorly oriented humeral heads (i.e., very low torsion) (Codine et al. 

1997; Waters et al. 1998; Van Der Sluijs et al. 2002; Pöyhiä et al. 2005; Cowgill, 

2007).  

!
Interestingly, the types of activities that produce these imbalances between medial and 

lateral rotators and, as a result decreased torsion, are overhead movements, in 

particular, throwing movements (Pieper 1998; Crockett et al. 2002; Osbahr et al. 

2002; Reagan et al. 2002; Rhodes and Knüsel 2005; Sabick et al. 2005; Rhodes 2006; 

Whiteley et al. 2008, 2010; Taylor et al. 2009; Myers et al. 2009; Schwab and Blanch 

2009; Rhodes and Churchill 2009; Roach et al. 2012). It is possible then, that the 

same mechanism that explains within-species differences in human torsion, also 

explains between-species differences in hominoid torsion, since the species that use 

the most overhead movements, the gibbons and orangutans, are the ones who exhibit 

the lowest torsion among hominoids. The fact that chimpanzees have less torsion 

compared to the more terrestrial gorillas (figure 19), and that lowland gorillas have 

less torsion than the more terrestrial mountain gorillas (Inouye 2003), also supports 

this notion. Moreover, evidence from orangutans shows that captive, predominately 

quadrupedal individuals have substantially higher torsion than their wild counterparts, 

a difference which is attributed to locomotor behavioural differences during growth 

(Sarmiento 1985). If this is true, then the observation that torsion remains constant 

throughout growth in the Asian apes while increasing in African apes and humans, 

could be explained by the presence of relatively more powerful medial rotators, 
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compared to lateral rotators, in Asian apes, which would act to maintain a posteriorly 

oriented humeral head throughout growth – by stopping the otherwise natural 

progression towards higher torsion. Larson (1988), for example, notes that in gibbons 

the subscapularis acts as a powerful medial rotator, and EMG results show this muscle 

is more active in gibbons than in chimpanzees who also engage in suspensory 

activities. Similarly, Oishi et al. (2008, 2009) find that the force-generating capacity 

of the subscapularis (a medial rotator) is significantly larger in orangutans, than in 

chimpanzees, while Zihlman et al (2011) find no differences between rotator cuff 

muscles between gorillas and orangutans, but marked differences in the size of the 

latissimus dorsi (a medial rotator), between these species, with the latissiumus dorsi in 

orangutans comprising more than 50% of the major trunk muscles. Larson (1988) 

hypothesizes that the greater recruitment of the subscapularis in gibbons is necessary 

to overcome the effects of a lateral-facing elbow caused by low torsion, but perhaps 

an alternative explanation is that the recruitment of the subscapularis (along with the 

other medial rotators) in gibbons acts to maintain the low degree of torsion by 

stopping the medial rotation of the humeral head, which in turn keeps the elbow in a 

more lateral-facing position. It is possible that the same occurs in Pongo, albeit to a 

lesser degree because orangutans are not committed brachiators, although still almost 

exclusively arboreal, with substantial involvement of overhead movements 

(MacKinnon 1974; Cant 1987; Delgado and Van Schaik 2000; Thorpe and Crompton, 

2005, 2006). The faster life histories of gibbons compared to African apes and 

humans may also be in part responsible for the lower degrees of torsion in this 

species, because this means the humeral head in gibbons is exposed to rotational 

forces for less time prior to fusion. However, this does not explain the presence of 

relatively low humeral torsion in Pongo, whose life histories are similar to that of 

African apes (Wich et al. 2004; Kelley and Schwartz 2010), supporting the notion that 

low torsion is actively maintained throughout growth in these species. This 

explanation would also account for the slower torsion development seen in the present 

bonobo sample – although there are no significant differences in torsion between 

chimpanzees and bonobos at any stage (also reported by Inouye, 2003), bonobos do 

engage in higher frequencies of suspensory and arm-swinging behaviour than 
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chimpanzees throughout life (Doran 1992; Doran 1993), which may be responsible 

for slower rates of torsion increase (figure 21-23). In contrast, chimpanzees and 

gorillas are adult-like in their locomotion pattern (mostly quadrupdedal) by 4 years of 

age (Doran 1997), which coincides with M1 eruption in great apes (Kelley and 

Schwartz 2010), and is also when torsion appear to start stabilizing (figure 21-23). 

!
The idea that lateral-facing elbows are suited to suspensory behaviours and 

brachiation has indeed been proposed by Larson (1988); the author describes how all 

apes engage in a characteristic form of arm-swinging in which the body undergoes 

180 degrees of rotation around the supporting hand. This results in extreme rotation of 

the forelimb at the end of the support phase whereby the humerus is laterally rotated 

at the shoulder in such a way that the cubital fossa (the inner elbow) faces superiorly 

(Avis 1962; Larson 1988). The chimpanzees, who have relatively high humeral 

torsion, must then hypersupinate the foream to achieve the full range of rotation 

around the supporting arm, while gibbons, who have relatively low torsion and thus 

more laterally-facing elbows, do not (Larson 1988). Although chimpanzees engage in 

brachiation, the adaptation seems particularly relevant for the gibbons, who spend 50–

80% of their travelling time brachiating (Fleagle 1974; Fleagle 1976; Andrews and 

Groves, 1976; Carpenter, 1976; Hollihn 1984; Preuschoft and Demes 1984; Tuttle 

1986; Takahashi 1990), and for the orangutans, who spend about 40% of their time 

engaging in suspensory locomotion and 25% engaging in vertical climbing (Thorpe 

and Crompton 2006). The idea that the elbow joint is under selection due to the use of 

suspensory behaviours is further supported by other lines of evidence which show that 

in gibbons and orangutans the elbow appears to be more powerful than in other 

hominoids, the elbow flexors especially are more powerful compared with those of 

non-specialized brachiators suggesting that elbow muscles are particularly important 

for a brachiating/suspensory lifestyle (Usherwood et al. 2003; Oishi et al. 2008, 2009; 

Michilsens et al. 2009).  

!
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Figure 26 – Schematic representation of the suggested scenario for the evolution of torsion in the hominoid clade. Low torsion in 

the suspensory gibbon and Pongo lineages suggests a common ancestor that had low torsion and suspensory locomotion/frequent 

overhead behaviours; high torsion in African apes and humans suggests a common ancestor with less suspensory locomotion/

frequent overhead behaviours. 

!
Overall, it seems that elbow positioning may indeed be an important adaptation for 

brachiation and more generally, suspension, in hominoids as suggested by Larson 

(1988), and that low humeral torsion, rather than simply being an accommodation to 

the dorsal repositioning of the scapula (Larson, 1988, 1993, 1996), may in fact be a 

consequence of the need to maintain the elbows in a lateral set necessary to a 

orthograde suspensory lifestyle in the hominoid clade (figure 26 & 27). Low torsion 

would thus be conserved throughout ontogeny in the more orthograde suspensory 

hominoids via the greater action of the medial rotators of the shoulder, thus stopping 

the natural medial rotation of the humeral head. In the absence of such frequencies of 

overheard movements, torsion would then be free to complete its medial rotation until 

fusion – and indeed humans, who are committed bipeds with long life histories, often 

reach full torsion levels of 180° (Krahl and Evans 1945; Krahl 1976; Edelson 1999; 

figure 19 present study). Additionally, because evidence suggests that the natural 

tendency is for torsion to increase with growth (and thus for the elbows to move 

inwards/medially), it is possible that high torsion, rather than being an adaptation for 
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quadrupedal locomotion and knuckle-walking in African apes, is rather a consequence 

of the decreased importance of orthograde suspensory behaviours or more generally, 

frequent overhead movements, in these lineages. The slower development of torsion 

in bonobos compared to the less suspensory chimpanzees (present study), the higher 

degrees of torsion in captive orangutans (Sarmiento 1985), and the lower degrees of 

torsion of lowland gorillas compared to the more terrestrial mountain gorillas (Inouye 

2003), may support this suggestion. 

!

!  

Figure 27 – Cranial view of humeral torsion angles in the left humerus of hominoids and Macaca fascicularis illustrating the 

orientation of the elbow joint in relation to orientation of the proximal humeral head (shown in the same orientation for all 

species). The gibbon and orangutan elbow joint is more laterally oriented than the other hominoid species. !
Because low torsion is assumed to be the primitive condition in hominoid apes, high 

torsion has typically been viewed as the functionally significant condition (Larson, 

1988; Gebo 1998), ascribed to the possible knuckle-walking ancestry of African apes 

and humans (Richmond et al. 2001; Begun 2004; Begun et al. 2007; Venkataraman et 

al. 2013). However, the underlying ontogenetic patterns leading to humeral torsion in 

the different hominoid lineages challenge this notion by suggesting that low torsion 

may be actively maintained via a developmental mechanism in hominoids. By 

viewing this trait under this ontogenetic framework, differences in torsion between 

species and between individuals can be explained without the need for recurring 

homoplasies or speculations about the origins of knuckle-walking. Under this 

perspective, elevated torsion would simply result from a reduced level of muscular 

activity resulting in a higher constraint on the development of humeral torsion due to 

decreases in frequency of orthograde suspensory/climbing behaviours, and thus would 

not be associated to the emergence of knuckle-walking locomotion per se as is 

currently proposed (Larson 1996, 1988; Richmond et al. 2001; Begun 2004; Larson et 
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al. 2007). The low torsion in fossil hominins would also be explained under this 

framework, by the likely more active lifestyles in Homo erectus and Neanderthals, 

and/or the importance of suspension and climbing in australopithecins, as has in fact 

been recently suggested (Green and Alemseged 2012; Venkataraman et al. 2013). 

!
I should note however, that even though humeral torsion seems to be a 

developmentally plastic trait, it is likely to be genetically constrained up to a certain 

extent, since human athletes who engage in repetitive overhead movements 

throughout life (such as baseball pitchers for example), do not reach low levels of 

torsion in the range of Pongo or Hylobates (e.g., Crockett et al. 2002; Reagan et al. 

2002; Whiteley et al. 2010), nor do captive quadrupedal orangutans develop torsion 

levels comparable to those of African apes (Sarmiento 1985). Further evidence on 

torsion differences between wild and captive apes would be useful to understand the 

extent of plasticity in this trait in non-human hominoids; information on the ratios of 

medial-to-lateral rotator muscle strength in non-hominoids and their relationship to 

torsion would also help confirm my suggestions. Additionally, information on the 

degree of humeral head torsion in human swimmers and gymnasts, and populations 

who engage in regular climbing activities such as the Twa from Uganda (Venkatraman 

et al. 2013), would be useful to understand whether overhead movements aside from 

throwing also produce relatively low torsion. 

!
4.2. Ontogenetic patterns reveal clade-specific patterns in primate humeral head 

torsion 

!
In macaques, on the other hand, whose scapulae are laterally positioned on a deep and 

narrow thorax, the low degrees of torsion allow for the elbows to face forward 

(cranially), thus permitting the arms to move in a parasagittal plane (Sarmiento 1985; 

Chan 2007; Rein et al. 2011). Therefore, while in the quadrupedal hominoids, it is 

high torsion that allows for the arms to move in a parasagittal plane, in the 

quadrupedal Macaca, it is low torsion that allow for this to happen. This explains the 

differences in the ontogenetic trajectories of humeral torsion between African apes 
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and Macaca – due to differences in scapular position between these clades, humeral 

head rotation follows opposite directionalities in these species in order to achieve 

similar forearm positioning (figure 28). On the other hand, the inverse also appears to 

be true – i.e. that relatively higher torsion in monkeys is related to suspension while in 

hominoids it is related to quadrupedalism –, as the highly suspensory atelines have 

relatively higher torsion than the quadrupedal ceboids and cercopithecoids (Larson 

1996), with torsion levels that are in fact comparable to those seen in the highly 

suspensory hylobatids (ranging 105° to 123° in atelines according to Larson, 1988 

and Gebo, 1996) (figure 29). Indeed, Ateles is said to converge on the hominoid 

pattern, especially on the hylobatid pattern, in many features of shoulder morphology 

including in degree of humeral torsion (Larson 1998; Young 2003). 

!

!  
Figure 28 – Macaca fascicularis (left) and Gorilla (right) skeletons showing the proximal and distal axes of the humerus (red). 

Note the low torsion in Macaca and the high torsion in Gorilla despite the use of quadrupedal locomotion; this likely results 

from differences in shoulder configuration between clades (laterally facing scapula in Macaca, and dorsally oriented scapula in 

Gorilla and hominoids). !
This explains why Macaca and Hylobates both have relatively low torsion values 

even though they have completely different locomotor repertoires, as low torsion 

appears to serve opposite purposes in both species and clades. As a result, predicting 

the locomotion of extant species based on humeral torsion across clades may be 

problematic, as is the case in Rein et al’s (2011) study of skeletal correlates of 

quadrupedalism and climbing in the anthropoid forelimb. In this sense, it may be 

more suitable to build clade-specific predictive models for locomotor types when 
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using humeral torsion. This has important implications for predicting locomotion 

from humeral torsion in fossil primates, especially in cases where information about 

scapular positioning is unavailable, or when phylogenetic position is contentious. This 

is particularly relevant for stem hominoids because these are expected to possess a 

combination of ‘ape-like’ and ‘monkey-like’ traits, as has been found in the forelimb 

of Miocene primates such as such as Proconsul, Afropithecus, Equatorius, 

Sivapithecus and Pliopithecus vindobonensis (e.g., Zapfe 1958,1960; Pilbeam and 

Simons 1971; Corruccini et al. 1976; Rose 1989, 1994, 1997; Ward 1998, 2007; 

Pilbeam et al. 1990; Begun 1992a, b, 2010; Moyà-Solà and Köhler 1996; Larson 

1998; Ward et al. 1999; MaClatchy et al. 2000; Nakatsukasa et al. 2003; Moyà-Solà et 

al. 2004, 2009; Ishida et al. 2004; Dunsworth 2006; Nakatsukasa et al. 2007; Suwa et 

al. 2007; Kunimatsu et al. 2007). Moreover, given the humeral torsion patterns 

described in the present study (with increasingly higher torsion developing in the 

most recently diverged hominoid species and decreasing torsion in Macaca) (figure 

21 & 22), I would expect stem hominoids to possess relatively low degrees of torsion, 

as is the case for Proconsul and Pliopithecus (Larson 1996). However, because of 

their phylogenetic position at the stem of the hominoid lineage and given the inverse 

relationship between torsion and quadrupedalism in the two clades – with low torsion 

relating to suspension in hominoids and to quadrupedalism in cercopithecines –, it is 

difficult to make predictions about Proconsul and Pliopithecus locomotion based on 

humeral torsion alone. Indeed, Rein et al’s (2011) predictive models yield 

contradictory information regarding the degree of quadrupedalism in Proconsul and 

Pliopithecus, namely, the predictive model based on torsion suggests that Pliopithecus 

was less quadrupedal than Proconsul, while the predictive model based on the 

olecranon process suggests this species was highly quadrupedal like Proconsul.  

!
Further studies on the ontogeny of humeral torsion in cercopithecines and platyrrhines 

should explore whether differences in the development of this trait also exist between 

species with divergent locomotor types in these clades, in particular, between the 

brachiating atelines and the quadrupedal cercopithecoids. 

!
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Figure 29 – Predicted mean torsion values (based on proximal landmarks of the humerus, see Larson 1996 for details)  (light 

shaded symbols) plus 95% confidence intervals for those predicted values (black bars), and actual mean values for humeral 

torsion for each species (dark shaded symbols); taken from Larson (1996). This shows the inverted relationship between torsion 

and suspensory behaviour in the hominoid and monkey clades: more suspensory apes have relatively lower torsion (i.e. 

Hylobates lar), while more suspensory monkeys (i.e. Ateles) have relatively higher torsion. !
4.3. Growth and development of humeral torsion: homology or homoplasy? 

!
The variation in the developmental timing and expression of humeral torsion between 

hominoid species in this study indicates divergent ontogenetic trajectories in torsion 

within the hominoid clade that match the phylogenetic distances between species 

with, on the one hand, the Asian apes maintaining relatively low degrees of torsion 

throughout ontogeny and, on the other hand, the African apes and humans increasing 

their humeral torsion throughout ontogeny. However, the absence of significant 

differences in torsion values at birth between hominoid species suggests a common 

origin to this trait, with differences in torsion arising subsequently, as a product of 

changes in body size and divergent locomotor habits between species and between 

individuals. Differences between the Macaca and hominoid torsion ontogenies further 

highlight divergent evolutionary patterns of torsion development between these 

clades, likely related to anatomical differences in shoulder configuration. 
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Unfortunately, it is not possible to estimate whether torsion in Macaca infants is 

comparable to that of infant hominoids since the youngest individuals in the sample 

are ~2,5 years, but the ontogenetic patterns leading to torsion differences within the 

hominoid clade, suggest that there is a common developmental mechanism underlying 

these differences in these species.  

!
Given this scenario of torsion development whereby the more recently diverged and 

terrestrial species (African apes) have relatively higher torsion than the more distantly 

diverged suspensory ones (Asian apes), and assuming my interpretations about the 

developmental mechanisms driving humeral torsion are correct, my results are 

compatible with the notion that the relatively high levels of torsion of African apes 

and humans is a homology. On the other hand, because my results also support that 

humeral torsion is a highly developmentally plastic trait, and because more closely 

related hominoid species also share similar modes of locomotion, these results are 

equally compatible with the notion that the relatively high degrees of torsion in 

African apes and humans are the result of parallel evolution, arising as a consequence 

of decreased orthograde suspensory behaviours/increased terrestrial quadrupedalism, 

in the various hominoid lineages (extant and extinct). 

!
Indeed, since Pongo and Hylobates are the first two lineages to diverge, and because 

both are almost exclusively arboreal with relatively low degrees of torsion, my own 

results on humeral torsion are compatible with the notion that the ancestral hominoid 

morphotype was a suspensory ape, and that the high levels of torsion in African apes 

and humans are homologous, arising once, in the LCA of African apes and humans, 

due to the decreased importance of orthograde suspensory/climbing behaviours, in 

combination with increased body size and longer life history (figure 30). Because the 

vast majority of the features supporting a climbing hypothesis are also consistent with 

the knuckle-walking hypothesis (Thorpe and Crompton 2006; Thorpe et al. 2007; 

Crompton and Thorpe 2007; Crompton et al. 2008), these results are compatible with 

the notion that knuckle-walking evolved once, from a climbing ancestor, as a means 

for an ape to travel terrestrially while maintaining climbing adaptations (Tuttle and 
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Basmajian 1974; Richmond et al. 2001). In fact, because quadrupedal knuckle or fist 

walking is a behaviour found in all the large apes (Young 2003), Young (2003) argues 

that it is an efficient solution for animals that need to retain arboreal suspensory 

capabilities. This scenario would thus place knuckle walking as the mode of 

locomotion from which human bipedalism arose. 

!
However, the problem with this scenario is that it does not explain the low levels of 

torsion in early hominins, which is the main reason why the high levels of torsion in 

African apes and humans are hypothesized to have evolved in parallel (Larson, 1996, 

1998, 2007a,b). Moreover, because of Hylobates’ small body size and highly derived 

brachiating specializations, this species’ morphology is likely to be secondarily 

derived since its divergence from a more generalized suspensory ancestor (Cartmill 

1985; Young 2003), and therefore, postcranially, this species may make a poor 

representative of the hominoid ancestral morphotype even though it is the first 

hominoid to diverge (Groves 1972; Ruvolo 1997; Roos and Geissmann 2001). My 

own results also suggest that distinguishing the Asian apes and the African apes on the 

basis of torsion is misleading, since within the Asian apes, gibbons and orangutans 

show significant differences in adult humeral torsion, with gibbons exhibiting very 

low levels of torsion comparable to those of Macaca fascicularis, and with Pongo 

showing significant differences in adult torsion with African apes (and humans), with 

intermediate levels of torsion between that of gibbons and that of African apes. What 

the Asian apes do seem to have in common is the fact that torsion remains essentially 

stable throughout ontogeny, unlike in African apes who increase torsion throughout 

growth (and who do not significantly differ in their adult humeral torsion levels, table 

12). These results indicate that the way by which torsion develops is similar within 

the Asian apes and also within the African apes, but this can be attributed to the high 

levels of developmental plasticity in torsion and the similar modes of locomotion in 

these species rather than to a homologous origin. It is thus equally possible that low 

torsion in gibbons and Pongo results from parallel evolution of suspensory behaviours 

as suggested by Larson (1998), and that that the high levels of torsion of African apes 

and humans are also the result of parallelism – a scenario which would explain the 
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low levels of torsion in early hominins and which is consistent with the suggestion 

that knuckle-walking may have evolved independently in the various hominoid 

lineages (Kivell and Schmitt 2009; Begun and Kivell 2011; contra Richmond and 

Strait 2000, Richmond et a. 2001). The Miocene hominoid fossil record supports 

multiple instances of independent evolution of specialized suspensory adaptations (e. 

g., Morotopithecus, Oreopithecus, Dryopithecus, or Pongo) (Begun, 2007), and the 

presence of knuckle-walking features in the hind limb, humerus, and wrist bones of 

Sivapithecus (Begun and Kivell, 2011), also supports the case of independent 

evolution of knuckle-walking. 

!
These results thus support that the mechanism by which torsion is achieved appears to 

be homologous to all hominoids, as indicated by the clade specific differences that 

seem to exist between Macaca fascicularis and the hominoids, and that activity after 

birth dictates the amount of torsion levels in adulthood, within phylogenetic 

constraints, but these results cannot support either the independent or homologous 

evolution of this trait in African apes and humans, and whichever the scenario, it is 

unlikely that humeral torsion can be used as direct evidence in support of one over the 

other. 

!  
Figure 30 – Phylogenetic relationships between hominoid species and Macaca fascicularis (not scaled), illustrating how degrees 

of torsion match phylogenetic relationships, size and locomotor types. Note the increased torsion in the more recently diverged, 

large-bodied, quadrupedal species. !!
!  94



5. Conclusion 

!
The present study aimed to determine whether humeral torsion in hominoid primates 

is a shared derived character or, on the contrary, an independently acquired trait in the 

different hominoid lineages by studying its ontogenetic development. This study was 

based on the assumption that homologous characters arise through similar 

developmental processes, while characters that are homoplastic arise through different 

developmental processes, and it thus takes into account variation within and across 

species and age classes.  

!
My results show that humeral torsion in non-human hominoid primates develops 

throughout ontogeny and ceases around adulthood, and is the first study to establish 

this. This study shows that differences in the timing and expression of torsion between 

species appear with growth and match remarkably well with on the one hand (a) 

species locomotor repertoire, phylogenetic relationships, size and life history, and on 

the other hand, (b) changing locomotor patterns through life in the different species. 

Bonobos for example seem to develop torsion more slowly throughout life, compared 

to chimpanzees and gorillas, which is congruent with their more suspensory lifestyles 

(Doran 1992, 1993, 1997). Chimpanzees and gorillas, on the other hand, adopt fully 

adult locomotor patterns by the age of 4 years (Doran 1997), which coincides with 

M1 emergence, and cessation of torsion development. Additionally, Asian apes, who 

are committed orhograde suspensory apes maintain low torsion throughout growth, 

which supports the notion that lateral-facing elbows are important for highly arboreal 

lifestyles (Larson 1988), while humans, whose upper limbs are free from locomotor 

contraints, are the only hominoid species that reach the full range of humeral head 

rotation at 180 degrees. 

!
Perhaps one of the most interesting results, however, is the find that macaques 

develop torsion in an entirely opposite way to that of hominoids: by reducing torsion 

throughout growth rather than increasing it. I suggest that humeral head rotation 

follows opposite directionalities in these species in order to achieve similar forearm 
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positioning due to differences in scapular positioning. Although I cannot confirm this, 

I suspect that torsion levels at birth in this species should be in the range of that of 

infant hominoids, as is predicted by the Gompertz models. If this is true, this suggests 

a deeper evolutionary inheritance to this trait, with differences in torsion arising as a 

result of divergent shoulder configurations between monkey and hominoid clades, 

most likely due to thoracic expansion and dorsal repositioning of the scapula in 

hominoids (Larson 1996; Chan 2007a,b; Kagaya 2008, 2010). Most crucially, these 

divergent patterns between Macaca and hominoids indicate opposite relationships 

between torsion and locomotion in these clades, with relatively high torsion in 

hominoids relating to terrestrial quadrupedalism, and relatively low torsion relating to 

orthograde uspensory behaviours, while in New World and Old World monkeys it is 

relatively low torsion that relates to terrestrial quadrupedalism and relatively high 

torsion that related to orthograde suspensory behaviours. This has important 

implications for the interpretation of locomotion from fossil postcranial remains, and 

particularly so for stem hominoid fossils who are expected to present a mosaic of 

shoulder characteristics that are both ape-like and monkey-like. I propose that 

predictive models for locomotor types based on humeral torsion should be clade-

specific, and interpretations should preferentially not be made without additional 

information about scapular positioning and/or thoracic shape. 

!
Finally, I propose that it is low torsion, rather than high torsion that is the functionally 

significant condition in hominoids, and that this trait is related to suspension/climbing 

behaviours, or more generally, to any locomotor behaviours involving frequent use of 

the arms in overhead movements/postures. For this reason my results can neither 

support nor reject the independent or shared derivation of knuckle-walking in 

hominoids, and instead suggest that high torsion in African apes and humans arises as 

a by-product of decreased frequencies of orthograde suspensory/climbing activities 

and by consequence, the greater importance of terrestrial quadrupedal locomotion – 

but not knuckle-walking specifically – in African apes and humans.  

!
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In sum, this study shows (1) that there is no evidence for interspecific differences in 

torsion in hominoids at birth, (2) that there are interspecific differences in torsion in 

adult hominoids, but (3) also large amounts of intraspecific variation in torsion in all 

hominoid species throughout growth. Therefore, these results suggest that humeral 

torsion is a highly plastic trait that reflects individual behaviour, but operating within 

phylogenetic constraints. This phylogenetic component is most likely determined by 

selection for specific patterns of locomotor and postural behaviour – which given the 

lack of inter-specific differences at birth, appears to have acted primarily on post-natal 

development –, but modulated by the underlying anatomy of the thorax and shoulder 

girdle. Future work should include an increased sample of very young individuals and 

a broader intraspecific sample. 
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– Chapter 4 – 
!

The evolution of humeral torsion in hominoids – a phylogenetically 

integrated, comparative analysis of humeral torsion in hominoid 

primates 

!
!

1. Introduction 

!
The evolution of biological traits is better understood when framed within a 

phylogenetic perspective because a phylogenetic framework is essential in 1) 

assessing evolutionary trends, 2) inferring changes in rates of evolution, and 3) 

ascertaining whether observed similarities result from common descent or were 

acquired independently (Revell et al. 2008; Sakamoto and Ruta 2012). Therefore, 

phylogenetic methods for statistical analysis of morphological data, which address the 

issue of non-independence of data points (Blomberg and Garland 2002; Blomberg et 

al. 2003; Garland Jr et al. 2005; Revell et al. 2008), have become widely accepted in 

recent years (O'Meara et al. 2006; Smaers and Vinicius 2009; Jombart et al. 2010; 

Ivanović et al. 2012; Revell 2012; Sakamoto and Ruta 2012; Smaers et al. 2011, 

2012). Furthermore, improvements in computing, namely the development of 

multifunctional packages designed for R (R Development Core Team 2011), such as 

‘ape’ (Analysis of Phylogenetics and Evolution [Paradis et al. 2004]), 

‘geiger’ (Harmon et al. 2008), ‘adephylo’ (Jombart et al. 2010),  ‘phangorn’ (Schliep 

2011), and ‘phytools’ (Revell 2012), have facilitated and popularized the application 

of phylogenetic methods. 

!
The appeal of incorporating phylogenetic information into morphological 

comparisons is especially evident when considering taxonomic groups and/or 

anatomical areas where homoplasies are prevalent. Indeed, the lack of congruence in 

many cases between phylogenies inferred from molecular data versus phylogenies 
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inferred from morphological data, and/or between those inferred using phenetic 

versus cladistic approaches, has been a major topic of discussion over the last two 

decades (David and Laurin 1996; Collard and Wood 2000; Collard and Wood 2001; 

Cannon and Manos 2001; Collard and O'Higgins 2002; Singleton 2002; Frost et al. 

2003; Caumul and Polly 2005; Leinonen et al. 2006; Begun 2007; Collard and Wood 

2007; Neustupa and Skaloud 2007; Young 2008; Klingenberg and Gidaszewski 2010). 

Reconstructing trees from morphology assumes a clear association between 

morphological and evolutionary diversification, an assumption that is highly 

problematic when considering homoplasies, and in cases of mosaic evolution. 

Moreover, the lack of congruence between morphometric evolution and genetic 

differentiation results from the process of adaptation itself (Zelditch et al. 1995; 

Monteiro 2000; Brehm et al. 2001; Naylor and Adams 2001; MacLeod and Forey 

2002; Rohlf 2002; Hoekstra et al. 2004; Lockwood et al. 2004; Lycett and Collard 

2005; Michaux et al. 2007; Cardini and Elton 2008; González-José et al. 2008; Polly 

2001). Since understanding processes of adaptation is the primary goal of 

comparative biology, rather than ‘removing’, ‘controlling’ or ‘accounting’ for a 

phylogenetic signal, a better alternative is to ‘map’ the morphological traits onto the 

phylogeny itself, thereby highlighting processes of adaption (including homoplasies) 

occurring across the branches of a phylogeny.  

!
The study of shoulder morphology and, in particular, humeral torsion benefits greatly 

from being studied within a phylogenetic framework because much debate exists over 

whether the shared similarities in shoulder anatomy in hominoids are a product of 

shared ancestry or rather have evolved more recently in parallel (Washburn 1967; 

Richmond and Strait 2000; Richmond et al. 2001; Begun 2004; Larson 1996, 1998, 

2007, 2009, 2013; Larson et al. 2007). This is especially true in the case of African 

apes and humans, who share a number of similarities in shoulder morphology such as 

dorsally placed scapulae, elevated humeral torsion, and S-shaped clavicles (Miller 

1933; Ashton and Oxnard 1963,1964; Oxnard 1963, 1967; Ashton et al. 1971, 1976; 

Roberts 1974; Larson 1988). Additionally, the fact that African apes share similar 

locomotor repertoires (i.e. knuckle-walking), has led to the suggestion that knuckle-
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walking is the locomotor habit from which bipedalism arose (Washburn 1967; 

Richmond and Strait 2000; Richmond et al. 2001; Begun 2004). The discovery of 

Miocene and Plio-pleistocene fossils, which exhibit a mix of ancestral and derived 

traits has, however, cast some doubt over this suggestion of shared ancestry (Larson 

1996, 2007, 2009, 2013; Larson et al. 2007). For example, Sivapithecus is most likely 

an ancestor of Pongo but exhibits a postcranial anatomy reminiscent of that of African 

apes, and the australopithecine scapula morphology is more similar to that of Gorilla, 

even though australopithecines are more closely related to humans and chimpanzees 

(Young 2003; Alemseged et al. 2006; Begun and Kivell 2011). 

!
The degree of humeral torsion in extant and extinct hominoids has been at the centre 

of this debate for over a decade, because it is thought that this trait caries both a 

phylogenetic signal and a locomotor signal (Krahl and Evans 1945) – with relatively 

higher degrees of torsion in the more closely related African apes and humans being 

generally associated with movement of the arms in a parasagittal plane (such as in 

knuckle-walking and manipulation) (Washburn 1967; Richmond and Strait 2000; 

Richmond et al. 2001; Begun 2004). However, the presence of elevated humeral 

torsion in extant great apes is directly at odds with the low degrees of torsion found in 

the Miocene and Plio-pleistocene hominid fossil record, leading to the suggestion that 

the high degrees of torsion shared, for example, between the great apes and humans 

arose in parallel in the individual lineages due to their independently acquired 

locomotor requirements (Larson 1996, 2007, 2009, 2013; Larson et al. 2007). Under 

this scenario, knuckle-walking would have arisen independently in gorillas and 

chimpanzees, and thus would not be the locomotor behaviour from which bipedalism 

arose. These conflicting interpretations regarding the varying degrees of humeral 

torsion in extant and extinct hominoids reveal its potential in reconstructing 

locomotor ancestry in the homoinoid clade. 

!
The high degrees of intra-specific variation in humeral torsion in hominoids (see 

Chapter 3) however, confound its use as a diagnostic character of both phylogenetic 

relationships and locomotor habits; this is because humeral torsion is a highly plastic 
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trait, which has been shown to vary widely across human groups (athletes versus non-

athletes), populations, sexes and sides (Krahl and Evans 1945; Edelson 1999; Pieper 

1998; Crockett et al. 2002; Osbahr et al. 2002; Cowgill 2007). For example, in the 

great apes, the average within-species range of variation is comparable to the range of 

species means, showing that within-species differences can be substantially more 

elevated than between-species differences (table 16; figure 31). Moreover, torsion has 

been shown to increase with age in hominoids and therefore is highly 

developmentally plastic (Chapter 3). This is problematic not only when performing 

cross-species comparisons, but also highlights the problem with establishing effective 

comparisons between extant species and single fossil values (many times estimated on 

incomplete and/or immature fossils). 

!
Table 16 – Table of mean torsion, minimum torsion and maximum torsion values found in the present study (adults). 

Differences between minimum and maximum torsion values are reported. This illustrates the spread of the distribution in 

torsion values in the present study. 

!
In order to understand whether torsion is more likely to have evolved as a result of 

shared ancestry (homology) or functional convergence (homoplasy) in the hominoid 

clade, the present study analyses humeral torsion within a phylogenetic framework 

and taking into account intraspecific variation. I use the method of ‘Independent 

Evolution’ (IE) (Smaers and Vinicius 2009; Smaers et al. 2012, 2013), which is a 

variable-rates method for estimating rates of evolution across individual branches of a 

phylogenetic tree, and a re-sampling technique (Smaers, unpublished), that takes into 

account the adult variation within each sample. I also incorporate fossil torsion 

values, allowing for the uncertainty associated with these single torsion measurements 

by attributing standard deviations and deriving distributions from which values are 

computationally re-sampled. 

Species Mean torsion (°) Min torsion (°) Max torsion (°) Max-Min torsion (°)

Homo sapiens 168.5 149.18 180 30.82

Pan troglodytes 152.6 137.29 168.48 31.19

Pan paniscus 151.5 137.74 161.37 23.63

Gorilla gorilla 160.2 143.31 175.03 31.72

Pongo pygmaeus 136 106.17 156.7 50.53

Hylobates lar 111.9 103.28 119.14 15.86

Macaca fascicularis 101.4 98.08 101.65 3.57
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Figure 31 – Absolute frequency distribution of humeral torsion in hominoid primates (solid black line: H. sapiens; dotted line: G. 

gorilla; long dashed line: P. troglodytes; small dashed line: P. paniscus; gray solid line: P. pygmaeus; gray dashed line: H. lar) 

and Macaca fascicularis (solid blue line). Asterisks show hominin fossil values. The figure illustrates how hominin fossil values 

fall outside the range of variation for my human sample, and most fall outside the range of variation of my African ape sample. 
!
2. Materials and Methods 

!
2.1. Independent evolution 

!
I use a phylogenetically-integrated approach that quantifies evolutionary changes 

along individual branches of an independently-derived (molecular-based) phylogeny. 

This method, ‘Independent Evolution’ (Smaers and Vinicius 2009; Smaers et al. 2012, 

2013), highlights processes of phenotypic change occurring across individual 

branches of a phylogeny and therefore has the potential to identify processes such as 

convergence and mosaic evolution within the skeleton. This approach moves away 
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from direct species comparisons by (1) utilizing independently estimated (molecular) 

phylogenies to identify which morphological signals dominate the evolution of an 

anatomical module and (2) by inferring the timing and rate of evolutionary changes 

along individual lineages. By quantifying evolutionary changes along individual 

branches of the tree of life, this approach allows robust inferences of instances of 

independent evolution and provides a useful framework to help interpret fossil 

morphology. I apply this method to a phylogeny of 44 primate species, which includes 

extant New World Monkeys (n=7), extant Old World Monkeys (n=15) and extant 

hominoids (n=8). I also include 14 fossil species (Homo neanderthalensis, Homo 

heidelbergensis, Homo floresiensis, Homo erectus, Paranthropus boisei, 

Australopithecus africanus, Australopithecus afarensis, Australopithecus sediba, 

Dryopithecus fontani, Proconsul heseloni, Rhinocolobus turkanaensis, Paracolobus 

chemeroni, Cercopithecoides williamsi, Pliopithecus sp.). The extant primate 

phylogeny is taken from the 10k Trees Project (version 3) (Arnold and Nunn 2010). 

Fossil species are placed onto the phylogeny following the best solution given the 

divergence dates of the molecular phylogeny. My own data on humeral torsion is used 

for the hominoid species and Macaca fascicularis. For all other species (NWMs and 

OWMs), torsion measurements are taken from the literature: from Larson (1996) and 

Rein (2011). Fossil torsion values are taken from Larson (1996, 2007), Rhodes and 

Churchill (2009), Churchill et al. (2013), and Lordkipanidze et al. (2007). 

!
2.2. Re-sampling  

!
In order to incorporate uncertainty due to intra-specific variation into the analysis, the 

ancestral values are estimated using IE in combination with a new re-sampling 

approach developed by Dr. Smaers (unpublished). This approach consists of two 

steps: (1) defining a sample of values for each species; (2) running analyses across all 

different combinations of values across species. For the first step, the standard 

deviation of torsion was computed for those species for which different values per 

species were available (18 out of 30 extant species). This standard deviation averaged 

9 ± 2 (figure 32). For some species, however, values for only one specimen were 
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available. To define an equal sample of values for each species, 1000 values were 

drawn from a normal distribution with a mean equal to the species average 

measurement and a standard deviation of 9 ± 2. At the end of this first step, each 

species is allocated 1000 values for torsion (with an average value of the average 

torsion measurement from the literature and a standard deviation of 9). Secondlly, in 

order to include intraspecific variation, analyses were repeated for all possible 

combinations of values across species. For example in the case of 2 species X and Y 

with values A and B for X and C and D for Y, the analysis is repeated using values A 

and C, A and D, B and C, B and D. Because an exhaustive sampling (such as in this 

example) is not feasible for larger samples, a separate sampling was performed that 

draws 10,000 different combinations from all possible combinations. Final results are 

based on this set of 10,000 results. The ancestral values for each node and associated 

estimated mean rates of evolution were thus obtained (using IE) by running 10,000 

iterations across individual samples. 

!
This approach produces two types of results crucial to the comparative phylogenetic 

analysis of torsion: 1) graphs showing the estimated mean ancestral values with 

associated estimated mean rates of evolution, and 2) graphs showing the estimated 

standard deviation associated to the estimated mean ancestral values and rates of 

evolution. These last graphs allow identifying the branches and nodes where the most 

uncertainty (attributed to intraspecific variation) exists.  

!
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!
Figure 32 – A mean standard deviation of 9 was applied to all species. This mean standard deviation was calculated based on 18 

extant species distributions. The standard deviation of this mean standard deviation was also calculated (+ 2). The re-sampling 

code in IE ran 1000 iterations between samples, creating distributions of 1000 values with standard deviations 9 + 2 for each 

sample/species. For each iteration, the code first randomly selects a standard deviation to be applied to each species sample 

within this 9 +2 parameter, and then selects values in each sample within this distribution. The process is repeated in each 

iteration. 

!
2.3. Measurements  

!
The humeral torsion angle is formed between the orientation of the humeral head and 

the orientation of the distal condyles of the humerus (see Materials and Methods 

Chapter and Chapter 3 for further details). This angle is measured using the 

intersection, viewed from the cranial perspective, of a line drawn through the centre 

of the humeral head dividing it into anterior and posterior halves, and a line passing 

through the centre of the capitulum and trochlea (as defined by Evans and Krahl 

1945; Kate 1968; Rhodes 2006; Shah et al. 2006; Cowgill 2007; see Chapter 3, figure 

18 legend for details). Discrepancies between the present study and the literature exist 

(table 10 & 11, Chapter 3), and are likely due to differences in methodology, in 

particular with choice of references for the proximal and distal axes. However, for the 

most part, the variation in torsion measurements across studies is smaller than the 

variation within species in the adults of the present study (table 10 & 11, Chapter 3). 

Indeed, adult humeral torsion values are very variable, with gorilla values for example 
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ranging from 145 to 175 degrees. The same is true for the other species in the sample, 

with standard deviations ranging from 6.93 (in Macaca) to 12.2 (for Pongo). 

Additionally, the literature for humeral torsion in adult humans is vast and studies 

report humeral torsion values from as low as 115 to as high as 175 degrees (Leal and 

Checcia 2006) (see Chapter 3 for details).  

!
3. Results 

!
IE was applied to two separate primate phylogenies: one including only extant species 

(30 species) and one also containing 14 primate fossils (Homo neanderthalensis, 

Homo heidelbergensis, Homo floresiensis, Homo erectus, Paranthropus boisei, 

Australopithecus africanus, Australopithecus afarensis, Australopithecus sediba, 

Dryopithecus fontani, Proconsul heseloni, Rhinocolobus turkanaensis, Paracolobus 

chemeroni, Cercopithecoides williamsi, Pliopithecus sp.). My results show that when 

only extant species are included, humeral torsion is estimated to be largely a 

homology in great apes (figure 33), with an increase in torsion estimated to occur in 

the branch leading to the great apes after the split with the gibbon lineage, and 

additional slight increases in torsion further occurring on individual African ape and 

human lineages.  

!
However, when fossils are included in the analysis, humeral torsion is estimated to be 

a homoplasy, with major increases in torsion estimated to occur on the individual 

branches leading to the Pongo, Pan, Gorilla and H. sapiens lineages (figure 34). In 

both analyses however, the estimated ancestral values for the hominoid clade and the 

immediate ancestors of all hominoid species are almost identical (for example, the 

ancestral hominoid values in both models vary within 1-3o: 116.3o in the ‘extant only’ 

analysis, and 115o in the fossil analysis), attesting to the stability of these results 

(figures 33 & 34; See Appendix 2 for table with all the ancestral estimates). 

Additionally, my results indicate instances of parallelism in the low levels of torsion 

between Dryopithecus and Proconsul as well as P. boisei, A. sediba and H. 
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floresiensis – although there are high degrees of uncertainty associated to the 

estimates in the latter three species (figure 37). 

!
Because some of the fossil specimens are problematic in terms of their humeral 

torsion estimates, I tested the reliability and stability of the results by removing two of 

the most problematic fossils: Homo erectus (KNM-WT 15000) and Homo floresiensis 

(LB1/50). Homo floresiensis presents a suite of characters, both cranially and 

postcranially, that appear to be derived and unlike any other hominin species (Brown 

et al. 2004), to the point that for many years it was debated whether this was a 

pathological specimen (Argue et al. 2006, 2009; Falk et al. 2007; Hershkovitz et al. 

2007; Baab et al. 2013). The low degrees of torsion in this specimen are but one of 

many shoulder traits that make this specimen unique (Larson et al. 2007, 2009), and 

therefore there is a real possibility that the inclusion of Homo floresiensis in the 

analysis is introducing some bias. Furthermore, Homo erectus (KNM-WT 15000) is 

also a problematic fossil, because humeral torsion in this specimen is measured on a 

juvenile individual (~8years old), with unfused proximal and distal humeral 

epiphyses, and therefore torsion levels are expected to be low (Leakey and Walker 

1989; Walker and Leakey 1993; Lordkipanidze et al. 2007; Larson 2007). However, 

my results show that including and excluding the two most problematic specimens 

does not affect the outcome of the analysis, and humeral torsion is, in all cases, 

(where fossils are incorporated into the analysis) estimated to be homoplastic within 

hominins (figure 35). Additionally, in both analyses (where fossils are included) the 

estimated ancestral values for the hominoid clade and the immediate ancestors of all 

hominoid species are again almost identical (for example, the ancestral hominoid 

values in both models, again, vary within 1-3o: 115o when all fossils are considered, 

and 114.4o when H. erectus are removed), attesting to the stability of these results 

(figures 34 & 35). 

!
!
!
!
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Figure 33 – Phylogenetic tree of extant primates only, with estimated mean ancestral nodes and tips (black circles with estimated 

nodal values indicated for the hominoids), and estimated mean rates of evolution (coloured branches). The thickness of the 

circles corresponds to the amount of torsion; the thickness of the branches represents the amount of change from one ancestral 

node to the next (green: increases in torsion; red: decreases in torsion; threshold: 1.1 SD away from the mean - chosen to 

maximize visual clarity and used consistently across all analyses). See Appendix 2 for detailed list of ancestral node estimates.  

!
!
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Figure 34 – Phylogenetic tree of extant and extinct primate species, showing estimated mean ancestral nodes and tips (black 

circles with estimated nodal values indicated for the hominoids), and estimated mean rates of evolution (coloured branches). The 

thickness of the circles corresponds to the amount of torsion; the thickness of the branches represents the amount of change from 

one ancestral node to the next (green: increases in torsion; red: decreases in torsion; threshold: 1.1 SD away from the mean - 

chosen to maximize visual clarity and used consistently across all analyses). See Appendix 2 for detailed list of ancestral node 

estimates.  !
!
!
  

!
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Figure 35 – Phylogenetic tree of extant and extinct primate species (without H. floresiensis or H. erectus), showing estimated 

mean ancestral nodes and tips (black circles with estimated nodal values indicated for the hominoids), and estimated mean rates 

of evolution (coloured branches). The thickness of the circles corresponds to the amount of torsion; the thickness of the branches 

represents the amount of change from one ancestral node to the next (green: increases in torsion; red: decreases in torsion; 

threshold: 1.1 SD away from the mean - chosen to maximize visual clarity and used consistently across all analyses). See 

Appendix 2 for detailed list of ancestral node estimates. 

!
!
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Additionally, when looking at the graphs of standard deviations for the estimated 

ancestral nodal and branch values (for both the ‘extant only’ analysis and the analyses 

that include the fossils), the estimated values for the hominoids tend to be quite stable 

(with low SD) (figures 36 & 37). In contrast, OWM and hominin estimates tend to 

have greater associated SD and therefore greater uncertainty associated to them 

(figures 36 & 37). In particular, A. sediba, P. boisei and H. floresiensis seem to have 

higher degrees of uncertainty associated to them than all other fossil hominins 

(figures 37 & 38). Additionally, when fossils are included, the estimates for Pongo 

become less reliable, with greater SD values associated to its estimates (figures 37 & 

38).  

!
4. Discussion 

!
4.1. The inclusion of fossil data and intra-specific variation in phylogenetic analyses 

!
The present study enables phylogenetic analyses to implement phylogenetic trait 

plasticity, intra-specific variation and measurement uncertainty derived from 

incomplete fossil specimens, into the phylogenetic analysis. The study is also 

innovative in that it allows us to quantify and visualise the amount and degree of 

uncertainty in the estimated values for individual nodes and branches, thus providing 

us with a sense of the reliability of the results (figures 36-38). Overall, my results 

show very clearly that including fossils into the analysis substantially changes the 

predictions regarding the evolution of humeral torsion in hominoids: from a 

homology, when considering extant species only, to a homoplasy, when fossils are 

included (figures 33 & 34). This highlights an important issue: that shared derived 

features in extant hominoids can be a poor indicator of common inheritance of those 

features, particularly when dealing with highly plastic traits, and that the inclusion of 

fossil data in phylogenetic analyses can highlight otherwise hidden evolutionary 

patterns (Smaers et al. 2012). Interestingly however, in both analyses (with and 

without fossils), the estimated nodal values for the hominoid ancestor and those for 

the immediate ancestors of each hominoid species are essentially identical (within 
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1-3o) – for example, the estimate for the ancestral hominoid torsion value is virtually 

the same in both analyses (115o with fossils; 116.3o without fossils) even though I 

have  

!

"  
Figure 36 – Phylogenetic tree of extant primates only, with standard deviations associated to the estimated ancestral nodes and 

tips (black circles), and to the estimated mean rates of evolution (coloured branches). The thickness of the circles corresponds to 

the size of the standard deviation associated to the estimated nodal value; the thickness of the branches represents the size of the 

standard deviation associated to the estimated rate of evolution between nodes (green: branches with absolute rates of evolution 

above 0.095 with SD values between 5 and 14). The graphs indicate instances where ancestral estimates are heavily influenced 

by intraspecies variability. Rates here refer to changes in the standard deviation of rates across simulations. See Appendix 2, 

figure 1, table 1.  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Figure 37 – Phylogenetic tree of extant and extinct primate species, showing standard deviations associated to the estimated 

ancestral nodes and tips (black circles), and to the estimated mean rates of evolution (coloured branches). The thickness of the 

circles corresponds to the size of the standard deviation associated to the estimated nodal value; the thickness of the branches 

represents the size of the standard deviation associated to the estimated rate of evolution between nodes (green: branches with 

absolute rates of evolution above 0.120 with SD values between 9 and 13). The graphs indicate instances where ancestral 

estimates are heavily influenced by intraspecies variability. Rates here refer to changes in the standard deviation of rates across 

simulations. See Appendix 2, figure 2 and table 2.  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!  
Figure 38 – Phylogenetic tree of extant and extinct primate species showing standard deviations associated to the estimated 

ancestral nodes and tips (black circles), and to the estimated mean rates of evolution (coloured branches). The thickness of the 

circles corresponds to the size of the standard deviation associated to the estimated nodal value; the thickness of the branches 

represents the size of the standard deviation associated to the estimated rate of evolution between nodes (green: branches with 

absolute rates of evolution above 0.103 with SD values between 7 and 11). The graphs indicate instances where ancestral 

estimates are heavily influenced by intraspecies variability. Rates here refer to changes in the standard deviation of rates across 

simulations. See Appendix 2, figure 3 and table 3.  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included 10 fossil species to the analysis, all with relatively low torsion (figure 34) –, 

which attests to the stability of the results (figures 34 & 35). What the inclusion of 

fossil data does do is push back the timing and rate at which torsion increases in the 

different hominoid branches, and by consequence suggests that the elevated levels of 

humeral torsion in the extant apes are a homoplasy, while early fossil hominins retain 

the ancestral torsion levels of the LCA of hominoids (figure 34). This indicates that 

estimating ancestral states based only on extant data doesn’t necessarily produce 

unrealistic results, but that without the fossil data, specific information regarding the 

detailed evolutionary processes shaping these traits within the hominoid clade is lost. 

These results corroborate Smaers et al’s (2012) observation that fossil specimens can 

add valuable information to reconstructions of phylogenetic relationships and 

macroevolutionary patterns by providing primary data on the tempo of evolution (by 

introducing chronological depth into a sample). On the other hand, my results show 

that the inclusion of fossils into the analysis can increase the uncertainty of the 

ancestral estimates (ancestral values and rates of evolution) within the hominoid clade 

(figures 36-38). This is appears to be the case for the hominins, in particular A. 

sediba, P. boisei and H. floresiensis.  

!
Overall this study shows that phenotypic plasticity and phylogenetic significance are 

not necessarily mutually exclusive concepts, since the incorporation of phylogenetic 

trait plasticity largely corroborates our understanding of the evolution of humeral 

torsion based on single fossil values (e.g., Larson 1996). Furthermore, this study also 

agrees with Smaers’ et al (2012) finding that exclusion of fossil taxa may yield 

misleading reconstructions of the evolutionary patterns and mechanisms leading to 

the diversity observed in the modern taxa. 

!
I caution however, that creating a distribution based on the standard deviations of 

intra-specific variation in the extant species assumes that the fossil values are 

representative of the sample mean and thus risks shifting the distribution into values 

that were never part of the extinct species variation. Future work should therefore 

focus on addressing this issue. On the other hand, because all of the early hominin 
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fossils show considerably lower torsion than later hominins and modern humans, it is 

not unreasonable to assume that they are indeed representative of the species mean. 

!
4.2. The evolutionary significance of humeral torsion in hominoid primates 

!
Overall, this study suggests that high humeral torsion in hominoids is a homoplastic 

trait independently derived in extant great apes and modern humans and low humeral 

torsion largely a retained ancestral trait in early hominins (figure 34). On the whole, 

this confirms Larson’s (Larson 2007, 2009, 2013; Larson et al. 2007) suggestion that 

the elevated levels of humeral torsion in African apes and humans are not a product of 

shared ancestry but have evolved more recently in parallel, as a result of the need to 

maintain the arms in parasagittal plane due to independently acquired locomotor 

requirements (such as in knuckle-walking and manipulation). These results further 

indicate that the high levels of developmental plasticity in humeral torsion do not 

necessarily confound interpretations of the overall evolutionary significance of the 

low levels of early hominin humeral torsion as suggested by Richmond et al (2001). 

Richmond et al (2001) specifically question (1) the accuracy with which torsion can 

be determined from the preserved morphology (see Larson 1996) – and suggest that 

fossil hominin humeri may be more African-apelike, or more orangutan-like, than 

their torsion estimates suggest –, as well as (2) the functional/phylogenetic 

significance of early hominin humeral torsion given that torsion is developmentally 

plastic. These results go some way towards answering these concerns by showing that 

despite considerable amounts of overlap between extant and extinct species’ 

estimates, humeral torsion in early hominins is sufficiently distinct from that of extant 

great apes and humans, and therefore humeral torsion is best explained as a 

parallelism between the great apes and humans, and a symplesiomorphic character in 

early hominin species.  

!
These results are thus compatible, on the one hand, with the suggestion (1) that 

quadrupedalism, and more specifically knuckle-walking (in chimpanzees and gorillas) 

evolved in parallel in the great ape lineages, possibly as a result of increased climatic 
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and ecological instability during the Miocene (Hill 1995; Kivell and Schmitt 2009; 

Begun and Kivell 2011), and on the other hand, (2) that the very high degree of 

torsion of modern humans is a recently derived condition, resulting from the need to 

maintain the shoulders in sagittal plain for manipulation (as suggested by Larson 

2007). These results are thus consistent with other lines of evidence, which also 

support the idea that knuckle-walking may have arisen in parallel in the African ape 

lineages (Larson 1998; Dainton et al. 2001; Dainton and Macho 1999; Orr 2005). In 

particular, Kivell and Schmitt’s (2009) study on the ontogeny of the wrist in 

chimpanzees and gorillas suggests that knuckle-walking is not the same 

biomechanical phenomenon in both species – an idea which is also supported by 

existing African ape locomotor data (Jenkins and Fleagle 1975; Tuttle and Watts 

1985; Doran 1992, 1993a,b, 1997; Doran and Hunt 1996; Remis 1995; Inouye 1994; 

Wunderlich and Jungers 2009) –, and thus likely arose via different pathways in both 

lineages. The Miocene hominoid fossil record certainly makes the case for multiple 

instances of independent evolution of specialized suspensory adaptations (e.g., 

Morotopithecus, Oreopithecus, Dryopithecus, or Pongo) (Begun 2007), and the 

presence of knuckle-walking features in the hind limb, humerus, and wrist bones of 

Sivapithecus (Begun and Kivell 2011), similarly supports the case of independent 

evolution of knuckle-walking. However, Pongo’s high levels of torsion, which also 

converges on this pattern, suggest that humeral torsion in great apes is perhaps not 

indicative of knuckle-walking per se, but of more generalized terrestrial behaviours, 

which include Pongo’s characteristic ‘fist-walking’ (Tuttle 1967). Evidence from 

orangutans shows that captive, predominately quadrupedal individuals have 

substantially higher torsion than their wild counterparts (Sarmiento 1985). This is in 

line with the idea that knuckle-walking may be an effective means for apes to travel 

terrestrially while maintaining climbing adaptations (Tuttle and Basmajian 1974; 

Richmond et al. 2001), and for this reason, may have evolved multiple times in 

different ape lineages. More importantly, however, these results suggest that humeral 

torsion is not diagnostic of knuckle-walking specifically, but rather of more general 

quadrupedal postures in apes, and thus the high degrees of torsion in modern humans 

should not be taken as evidence for a knuckle-walking stage in human evolution.  
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My results also strongly support the notion that the high levels of humeral torsion in 

modern humans – a pattern that converges on the African ape form – evolved, in fact, 

very recently (figure 34) (Larson 2007). These high levels of torsion in modern 

humans are likely associated both (1) to a reconfiguration of the shoulder anatomy in 

Homo sapiens (Larson 2007), and (2) to reduced levels of activity (namely, use of the 

limbs in locomotion) in this lineage, compared to all other of hominoid/hominin 

species (Krahl and Evans 1945; Krahl 1976; Edelson 1999). These results are in line 

with Larson’s (2007) suggestion that a dorsally placed scapula with a lateral facing 

glenoid fossa, as seen in modern humans, requires torsion to be relatively elevated in 

order to maintain a sagittal functioning of the elbow joint.  

!
Interestingly, these results also show instances of parallelism in torsion between 

Dryopithecus and Proconsul, with both species showing very low levels of torsion 

(figure 34). Given my interpretations about the functional significance of humeral 

torsion in hominoids (Chapter 3), these results are consistent with the presence of 

suspensory/climbing behaviours in both species. While this is most likely the case for 

Dryopithecus (Begun 1992), it contradicts our current understanding of Proconsul as 

an arboreal quadruped (Cartmill and Milton 1977; Begun et al. 1994; Rose 1994; 

Larson and Stern 2006). However, my own ontogenetic analyses indicate that humeral 

torsion has an inverse relationship to suspension and quadrupedalism in the hominoid 

and monkey clades due to the lateral placement of the scapula in monkeys and the 

dorsal placement in hominoids (Chapter 3). Therefore, while in the quadrupedal 

hominoids, it is high torsion that allows for the arms to move in a parasagittal plane, 

in the quadrupedal Macaca, it is low torsion that allow for this to happen. On the 

other hand, the inverse also appears to be true – i.e. that relatively higher torsion in 

monkeys is related to suspension while in hominoids it is related to quadrupedalism –, 

as the highly suspensory atelines have relatively higher torsion than the quadrupedal 

ceboids and cercopithecoids (Larson 1996). As a result, the convergence in torsion 

between Dryopithecus and Proconsul in the current analysis may in fact be associated 

to opposite locomotor strategies in both species: suspension/climbing in Dryopithecus 
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and arboreal quadrupedalism in Proconsul. Given these results, and our current 

knowledge of stem hominoids’ morphology, it is not possible to ascertain whether the 

low levels of torsion estimated for the LCA of hominoids in my analyses (115o – 

116.3o; figures 33 & 34) are more consistent with a suspensory/climbing or rather an 

arboreal quadrupedal common ancestor, although they support an arboreal/semi-

arboreal ancestry for apes. This agrees with the notion that postcranial specializations 

in individual living ape lineages arose after the divergence from either a suspensory 

ancestor (Cartmill 1985; Young 2003), or more generally, from an ancestor engaging 

in upright (orthograde) truncal postures (Thorpe and Crompton 2006; Thorpe et al. 

2007; Crompton and Thorpe 2007; Crompton et al. 2008); whichever the scenario, 

this highlights the importance of considering clade-specific patterns as well as 

information about scapular positioning and/or thoracic shape when making inferences 

about locomotion based on humeral torsion.  

!
Conversely, the present results suggest that low torsion is likely a symplesiomophic 

trait in early hominins. Indeed, my analyses reconstruct the LCA of hominoids to have 

had low torsion (115o – 116.3o; figures 33 & 34), a condition that would have been 

retained in the early hominins. Although the low torsion in these early fossil hominins 

is consistent with the notion that they were either predominantly or partially arboreal 

(e.g., Green and Alemseged 2012; Larson 2007; Larson 2009; Larson 2013; 

Venkataraman et al. 2013), their mosaic shoulder configuration, which exhibits a mix 

of primitive and derived features (primitive: short clavicle, cranially directed glenoid, 

low to modest humeral torsion; derived: dorsal scapula) has been the source of 

continuing debate, with some researchers viewing the primitive features as 

phylogenetic ‘baggage’ retained in the absence of selective pressures against them 

(Day 1978; Lovejoy 1978, 1988 ; Ohman 1986; Latimer and Lovejoy 1989; Latimer 

1991), and others considering the persistence of features as an indication of 

continuing function (e.g., Stern 2000; Larson 2007). However, a recent analysis of 

scapular morphology in A. afarensis (Green and Alemseged 2012) provides support 

for the hypothesis that its locomotor repertoire included a substantial amount of 

climbing, and recent evidence based on the shoulder anatomy of A. sediba (cranially 
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oriented glenoid fossa and scapular spine, short clavicle, low humeral torsion) also 

suggests the presence of continued climbing behaviours (Churchill et al. 2013). Based 

on my own findings on the ontogenetic development of torison (Chapter 3) the low 

levels of torsion in early hominins may also be diagnostic of a life spent (or partially 

spent) in the trees, because low torsion is actively maintained throughout ontogeny in 

more suspensory species via the greater action of the medial rotators of the shoulder; 

this stops the natural medial rotation of the humeral head and consequently keeps the 

lateral set to the elbows necessary for a suspensory/climbing lifestyle (Larson 1988). 

These results are in line with our current understanding of African paleoclimate from 

the last 6-8Myr after the divergence from the LCA (Cerling et al. 2011), which places 

the LCA in a wooded environment, with hominin habitats becoming progressively 

less wooded after the divergence from the LCA (Reed 1997; Behrensmeyer et al. 

1997; Potts 1998; Bobe et al. 2002; Demenocal 2004). This is also in line with recent 

behavioural data collected on modern human populations who engage in frequent 

climbing (Venkatraman et al. 2013), which hypothesises the existence of strong 

ecological incentives for climbing in Au. afarensis, such as foraging, resting and 

sleeping, or escape, all of which are linked with climbing and use of trees by 

savannah-living primates (Washburn and Devore 1961; Tuttle 1981; Susman et al. 

1984; Venkatraman et al. 2013). 

!
Interestingly, relatively low levels of torsion seem to persist with the emergence of 

Homo (H. erectus, H. heidelbergensis, Neanderthals), albeit to a lesser degree (with 

lower values than modern humans, but higher values than the australopithecines), 

which my results predict is a symplesiomorphic trait with the early hominins (figure 

34). This is intriguing given the marked differences in size, anatomy, habitat and 

locomotor repertoire between early hominins and early Homo. It is clear that 

relatively low torsion in these species cannot be attributed to the continued 

exploitation of arboreal substrates, but more likely results from the more active 

lifestyles in these species, when compared to modern humans, associated with the 

advent of more sophisticated hunting and tool technologies – including throwing in 

Neanderthals (Gjerdrum et al. 2003; Rhodes and Churchill 2009). This notion is 
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supported by modern human evidence, which indicates that higher levels of upper 

limb activity, including throwing, lead to a significant reduction in humeral head 

torsion values (Pieper 1998; Crockett et al. 2002; Osbahr et al. 2002; Whiteley et al. 

2008, 2010; Taylor et al. 2009; Myers et al. 2009; Schwab and Blanch 2009). Larson 

(2007), however, suggests that relatively low torsion in these species cannot be 

attributed to activity alone, since the amount of reduction in torsion that has been 

associated to range of external rotation at the shoulder in humans is relatively small 

(10o – 15o), and is therefore unlikely to explain the very low torsion values observed 

in early Homo (~126o in H. erectus and ~138o in Neanderthals, versus ~168o in 

humans; figure 34). It is possible that differences in the morphology and positioning 

of other shoulder elements such as the orientation and length of the clavicle and 

position of the scapula on the thorax may play an important role in torsion reduction. 

Indeed, Larson (2007) suggests that there is a shift in the anatomical configuration of 

the shoulder with the emergence of the genus Homo, with the scapula changing from 

being positioned high on the thorax with a cranially oriented glenoid fossa (such as in 

australopithecines), to being positioned lower on the thorax with more laterally facing 

glenoid fossae. According to the author, this reconfiguration requires torsion to stay 

low in order to allow for the sagittal functioning of the elbow joint necessary for 

manipulation (Larson 2007). Conversely, the shift to a dorsally positioned scapula 

with a laterally facing glenoid fossa and an elongated clavicle, as seen in modern 

humans, requires torsion to be relatively elevated in order to maintain this same 

sagittal functioning of the elbow joint (Larson 2007) – a pattern that, for this reason, 

converges on the African ape’s. Larson’s (2007) observation that differences in the 

positioning of the scapula on the hominin thorax influences humeral torsion levels is 

interesting given my own interpretations about the effect of scapular positioning on 

torsion differences between the monkey and hominoid clades (Chapter 3). This 

suggests that slight differences in scapular positioning and glenoid fossa orientation 

between species, within the hominoid clade, may similarly be (at least partially) 

responsible for the parallel evolution in torsion between great apes and humans. This 

certainly emphasizes the importance of considering the shoulder girdle as a whole 

when making inferences about locomotion based on humeral torsion. 
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!
It is important to note, however, that these analyses indicate a level of uncertainty 

associated to the estimates of P. boisei, A. sediba and H. floresiensis (figure 37). 

These are also the species that are estimated to show some degree of parallelism in 

their decreased torsion levels (figure 34). It is likely that with better samples this 

uncertainty would be resolved, and/or that these parallelisms would disappear. The 

uncertainty associated to Pongo when the fossils are included likely reflects the large 

range of variation present within this species (as well as their large amounts of sexual 

dimorphism) and its overlap with many of the fossil values, (figure 31). Increasing the 

sample size for this species should clarify this pattern. 

!
5. Conclusion 

!
In the present study, I applied a phylogenetically-integrated approach that quantifies 

evolutionary changes along individual branches of a phylogeny, to look at the 

evolutionary processes shaping humeral torsion in the hominoid clade, in combination 

with a re-sampling technique that takes into account the adult variation within each 

sample. Incorporating intra-specific variation into the analyses allowed taking into 

account the developmental plasticity of humeral torsion, which have long hampered 

interpretations of the functional/phylogenetic significance of early hominin humeral 

torsion (e.g., Richmond et al. 2001). Overall, my results suggest that despite the large 

amounts of intraspecific variation, levels of humeral torsion in early hominins are 

sufficiently distinct from that of extant great apes and humans, and therefore this trait 

is best explained as a symplesiomorphic character in early hominin species, and a 

parallelism between the great apes and humans. This shows that phenotypic plasticity 

and phylogenetic significance are not necessarily mutually exclusive concepts, since 

the incorporation of phylogenetic trait plasticity largely corroborates our 

understanding of the evolution of humeral torsion based on single fossil values.  

!
My results also show that the inclusion of fossil data substantially changes the results 

from a homology in great apes and humans (when only extant species are considered) 
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to homoplasy in these species (when fossils are included), which highlights the 

importance of incorporating fossil data into phylogenetic analyses. This emphasizes 

an important issue: that shared morphological features in extant hominoids can be a 

poor indicator of common inheritance of those features, and that the inclusion of 

fossil data in phylogenetic analyses highlights otherwise hidden evolutionary patterns. 

!
In evolutionary terms, these results support the notion of parallel evolution of 

terrestrial quadrupedalism in the great apes, and specifically, the parallel evolution of 

knuckle-walking in the Gorilla and Pan stem lineages. Conversely, my results 

estimate that the low levels of torsion in early hominins are a symplesiomorphic trait 

in the species and are retained from the LCA of hominoids. These results thus support 

the notion of an arboreal origin to the great ape lineages – a scenario that does not 

require a knuckle-walking stage in human evolution (Stern 1975; Rose 1991; Thorpe 

et al. 2007; Kivell and Schmitt 2009). However, because high levels of torsion are 

also found in Pongo, who are not knuckle-walkers, my results also support that 

torsion should not be discussed in the context of knuckle-walking specifically (Kivell 

and Schmitt 2009). My results also support that the high levels of torsion seen in 

modern humans are recently derived, possibly as a result of a reconfiguration of the 

shoulder girdle anatomy in this lineage (Larson 2007). 

!
Finally, functionally, these results suggest that although the mechanism by which 

torsion arises is the same across the different hominoid lineages, and although there is 

convergence in this trait between great apes and humans, its functional significance 

differs between lineages: (1) in great apes high torsion is associated to the locomotor 

requirements related to terrestrial quadrupedalism, while in humans it arises via the 

relaxed selection on the upper limbs as locomotor structures; (2) the low levels of 

torsion in australopithecines are likely related to the retention of suspensory/climbing 

behaviours, while in H. erectus, H. heidelbergensis and Neanderthals they are likely 

explained by the more active lifestyles in these species and confirm my own  

observations (Chapter 3) on torsion being influenced by the positioning of the scapula 

on the thorax, both across primate clades and within the hominoid clade.
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– Chapter 5 – 
!

Bilateral asymmetry of humeral torsion and length in 

African apes and humans 

!
!
1. Introduction 

!
Approximately 90% of modern humans display a preference for right-hand use 

(McGrew and Marchant 1996), a trait that is generally considered unique to this 

species (Porac and Coren 1981; Raymond and Pontier 2004). Interest in the evolution 

of handedness is rooted in its implications for brain hemispheric specialization and, 

more specifically, for the evolution of language and complex tool production 

(Corballis 2003; Hopkins et al. 2007), with a potential co-evolutionary link between 

the two (Sherwood et al. 2007; Hopkins and Nir 2010; Stout and Chaminade 2012; 

but see Hopkins and Cantalupo 2004). In humans, habitual lateralization of 

behaviours, possibly associated to this cerebral lateralization, has been shown to 

produce skeletal asymmetries, and a number of osteological studies have established 

an association between lateralized mechanical loads and bone remodelling (e.g. Ruff 

and Hayes 1983; Steele 2000a,b; Lazenby 2002; Stock and Pfeiffer 2004). In 

particular, upper limb asymmetries have been well documented in the skeleton of 

Homo sapiens with numerous studies showing how asymmetric loads influence upper 

limb morphology in human populations and professional athletes (Roy et al. 1994; 

Trinkaus et al. 1994; Kontulainen et al. 2002; Lazenby et al. 2002, 2008; Rhodes and 

Knüsel 2005; Shaw and Stock 2009a,b; Shaw 2011). Bilateral asymmetries in the 

upper limbs of great apes are, however, less well documented, even though these are 

potentially informative about the origins of functional lateralization in humans and 

non-human primates. Indeed, the question of whether non-human primates exhibit 

individual or population-level functional laterality remains unclear and controversial: 

behavioural studies, for example, suggest that handedness in great apes can in some 
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instances reach exclusive use of one arm (e.g., right arm: Humle and Matsuzawa 

2009; Meguerditchian et al. 2010; Llorente et al. 2011; left arm: Parnell 2001; 

Lonsdorf and Hopkins 2005), but this pattern seems to be strongly dependent on 

factors such as age, sex, task complexity, setting and posture (e.g. Byrne and Byrne 

1991; McGrew and Marchant 1997; Byrne 2004; Hopkins and Cantalupo 2005; 

Lonsdorf and Hopkins 2005; Marchant and McGrew 2007; Pouydebat et al. 2010; 

Hopkins et al. 2011), and overall, these species do not exhibit the overwhelming right-

hand bias across a wide range of everyday tasks so evident in humans (McGrew and 

Marchant  1997, 2001; Cashmore et al. 2008). 

!
Studies on upper limb asymmetries in great apes seem to agree that behavioural 

lateralization is present in these species, but to a lesser extent than in humans and with 

no strong right-side directionality. Specifically, Drapeau (2008) finds that humans are 

more asymmetric than African apes in the development of musculoskeletal markers of 

both fore- and hindlimb, reflecting the relatively greater asymmetry in limb use in 

humans and the more symmetric use in apes, and suggests that this reflects 

comparatively more moderate handedness in apes during manipulative activities. 

Schultz (1937) also finds that there is no tendency for the right arm to be longer in 

apes, and finds that the degree of length asymmetry in apes is half that of humans, 

while Sarringhaus et al (2005) actually find left-side biases in total subperiosteal area 

of humeral diaphyses in the common chimpanzees (but right-side biases in the same 

measurement for the second metacarpal), which they relate to behavioural laterality 

linked to precision and power. Additionally, Morbeck et al (1994), describe greater 

bone mineralization in the right humeri in Gombe chimpanzee skeletons, but no clear 

association between these asymmetries and hand preferences, while Carlson (2006) 

finds that overall forelimb muscle mass is statistically biased to the left, but that only 

the manual digital muscles retain a statistically significant bias when muscle groups 

are considered individually. 

!
In humans, upper limb asymmetries are well documented for external measurements 

such as lengths and diaphyseal breadths as well as cross-sectional properties (Ruff 
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1987; Ruff et al. 1993; Stock and Pfeiffer 2001; Auerbach and Ruff 2006; Shaw and 

Stock 2011), and these have been used to infer behavioural lateralizations in past 

populations (Churchill and Formicolla 1997; Pearson et al 2006; Shaw et al. 2012). 

Notably, humeral length and humeral torsion have both been found to show bilateral 

asymmetries in human samples. A number of studies show that humans tend to exhibit 

longer right humeri than left (Schultz 1937; Latimer and Lowrance 1965; Steele and 

Mays 1995; Sladek et al. 2007) and that this asymmetry increases throughout 

ontogeny (Stirland 1993; Blackburn 2011). For example, Steele and Mays’ (1995) 

study of upper limb lengths of the mediaeval Wharram Percy cemetery population 

finds a pattern of bilateral asymmetry in adult humeral length that is very similar to 

that for reported handedness in the modern British population, with 81% showing 

longer right humeri. However, because humans show relatively little bilateral 

asymmetry in humeral lengths compared to other features, such as cross-sectional 

geometry (Trinkaus et al. 1994; Auerbach and Ruff 2006), some uncertainty exists 

about whether these occur as a consequence of mechanical stimuli or of intrinsic 

genetic/hormonal factors, and therefore whether they can be linked to behavioural 

lateralization at all (Jolicoeur 1963; Stirland 1993; Trinkaus et al. 1994; Steele and 

Mays 1995). The presence of length asymmetries in human foetuses (Pande and Singh 

1971; Bareggi et al. 1994), suggests that this may be the case, but ultrasound evidence 

also indicates that 85% of human foetuses at 10 weeks of gestational age move their 

right arm more than their left arm (Hepper et al. 1998; Steele 2000b), raising the 

possibility that, although partly congenital, asymmetries in humeral length may be 

further enhanced by preferential use of the right arm, which may commence early in 

development and continue throughout growth (Stirland 1993). It is unclear, however, 

whether this pattern is unique to humans or whether it is shared with African apes. If 

asymmetries in humeral length favouring the right side do indeed exist in 

chimpanzees and gorillas, which do not exhibit a clear population-level right 

handedness (McGrew and Marchant 2001; Cashmore et al. 2008), it would support 

that length asymmetries are mostly independent of function lateralization in African 

apes and humans, and that this pattern in humans is part of a general ape trend. 

!
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Adult humeral torsion values in humans develop during growth in the proximal 

epiphysis (where 80% of humeral growth takes place [Pritchett 1991]) as a result of 

repetitive rotational stresses, which lead to the deformation of the epiphyseal 

cartilage, thus resulting in reduced torsion values (Mair et al. 2004; Murachovsky et 

al. 2010; Wyland et al. 2012; Thomas et al. 2012). Although the exact timing of the 

cessation of humeral torsion development is unknown (Cowgill 2007), it is thought to 

occur at the time of epiphyseal fusion, between the ages of 16 and 20 (Krahl 1947; 

Edelson 2000). While the natural process is for humeral torsion to increase throughout 

ontogeny, increased activity of the medial rotators (subscapularis, pectoralis major, 

latissimus dorsi, and teres major) relative to that of the lateral rotators (infraspinatus 

and teres minor), limits the development of torsion, thus resulting in relatively lower 

torsion in these individuals (Cowgill 2007) – Krahl (1947) for example reports a 

correlation between the relative strengths of these muscles and the degree of torsion in 

the corresponding humeri. This may explain why professional athletes such as 

baseball or tennis players have relatively lower torsion on the playing arm compared 

to the non-playing arm (Pieper 1998; Crockett et al. 2002; Osbahr et al. 2002; 

Whiteley et al. 2008, 2010; Taylor et al. 2009; Myers et al. 2009; Schwab and Blanch 

2009), and why individuals with brachial plexus injuries in which the medial rotators 

are unopposed by the lateral rotators, have posteriorly oriented humeral heads (i.e., 

very low torsion) (Codine et al. 1997; Waters et al. 1998; Van Der Sluijs et al. 2002; 

Pöyhiä et al. 2005; Cowgill, 2007). Conversely, no statistically significant differences 

were found between right and left arms in non-athlete control groups (Pieper, 1998; 

Crockett et al., 2002). Furthermore, anthropological studies have reported lower 

degrees of torsion in physically active populations, such as Melanesians and 

Australian Aborigines (Martin 1933) and that males possess relatively lower torsion 

than females (Krahl and Evans 1945; Edelson 1999). Given these observations, it 

seems reasonable to assume that increased activity (i.e., more vigorous use of) one 

arm relative to the other during ontogeny, will lead to decreased torsion in the 

dominant arm relative to the non-dominant arm. An earlier study has shown the 

presence positive correlation between bilateral asymmetry and age in humans when 

adults are included in the regression, but the relationship disappeared when adults 
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were removed from the analysis (Cowgill 2007). The author suggests that this is due 

to relatively smaller available sample sizes for the sub-adults (Cowgill, 2007). 

!
Although asymmetries of humeral measurements (including length and torsion) have 

been used to investigate activity patterns in archaeological samples, such as the 

emergence of projectile weaponry in Neanderthal and archaic Homo sapiens 

(Gjerdrum et al. 2003; Rhodes and Churchill 2009), little work has been published 

directly comparing the bilateral asymmetry of the humerus between humans and our 

closest ape relatives. The purpose of the present article is thus to report the magnitude 

and directionality of asymmetries in humeral length and torsion in humans and two 

species of African apes (Gorilla gorilla and Pan troglodytes), in order to test the 

expectations that: (a) African apes lack population-level directionality in either 

measurement in line with the reported absence of strong population-level behavioural 

lateralization; (b) humans show strong right-side directionality in both measurements 

in line with previous studies and reported degrees of population-level lateralization 

(McGrew and Marchant 2001; Cashmore et al. 2008); (c) there are no sex differences 

in asymmetry for either measurement, with the possible exception of gorillas, where 

high levels of sexual body size dimorphism are associated with sex differences in 

locomotor patterns (Doran 1993; Remis 1995). 

!
2. Materials and Methods 

!
2.1 Sample 

!
Measurements were collected for 40 adult Pan troglodytes (14 males, 26 females) and 

40 adult Gorilla gorilla (20 males, 20 females) from the Powell-Cotton museum (UK). 

All individuals are wild-shot specimens from central Africa with erupted M3s. The 

human sample consists of 40 adults (20 males and 20 females, between 19 and 70 

years old) from modern cemeteries in Lisbon (dating 1880 to 1975). 

!
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Humeral torsion and maximum length of the humerus were measured on left and right 

humeri for each individual. Measurements were taken from 3D surface scans 

collected with a Handyscan 3D EXAscan (by Creaform). The surface scans were 

collated and cleaned using Geomagic Suite 12.1, and the measurements were taken 

using Amira. 

!
2.2. Measurements 

!
The humeral torsion angle is the obtuse angle formed between the orientation of the 

humeral head and the orientation of the distal condyles of the humerus (figure 39a, b, 

c, d). This angle is measured using the intersection, viewed from the cranial 

perspective, of a line drawn through the centre of the humeral head dividing it into 

anterior and posterior halves, and a line passing through the centre of the capitulum 

and trochlea (as defined by Krahl and Evans 1945; Rhodes 2006; Cowgill 2007; see 

figure legend for details).  

!
Humeral lengths were measured as the maximum distance between the humeral head 

and the distal condyles (figure 39e). 

Figure 39 – Adult gorilla right humerus (3D) in anterior (a) and cranial (b) view showing the proximal and distal axes used for 

measuring humeral torsion; the distal axis is formed by a line passing through the centre of the distal-most points of the trochlea 

and capitulum (c) and (d). This was preferred to a line passing through the epicondyles because these were frequently damaged 

in the human collections. Figure 39e illustrates the line of maximum humeral length. 
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2.3. Reporting asymmetry scores 

!
Asymmetries in humeral torsion and humeral length were calculated using a 

published method for reporting asymmetries in the postcranial skeleton (Steele and 

Mays 1995; Auerbach and Ruff 2006; Auerbach and Raxter 2008). For each 

individual the differences between the torsion/length of right and left elements of a 

pair were calculated and standardized by the mean torsion/length of left and right 

elements. Two measurements of asymmetry were obtained; both are reported as 

percentages: 

!
• Directional asymmetry (DA): which indicates whether the asymmetry 

favours the right or the left side, was calculated by subtracting the left (L) 

measurement from the right (R), and dividing it by the average of left and 

right measurements: 

!
DA% = (R-L)/ [(R+L)/2] x 100  

!
• Absolute asymmetry (AA): which indicates the magnitude of the asymmetry 

ignoring directionality, was also reported. It resembles the DA calculation 

except that it uses the unsigned values of the difference between left and right 

measurements: 

!
AA% = (|R-L|)/[(R+L)/2] x 100  

!
Because of the nature of humeral torsion development, lower relative torsion on a 

humerus has been linked to higher relative activity levels; therefore, a negative %DA 

score indicates a right arm bias. The opposite is true of humeral length, however, 

where longer relative length of the right humerus has been linked to right biases; thus 

it is a positive %DA score that indicates a right arm bias. %AA and %DA values close 

to zero indicate symmetry. 

!
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2.4. Calculating Bilateral Asymmetry 

!
Statistical analyses were performed using R version 2.12.2 (2011). Paired t-tests were 

conducted on torsion/length values for each sample. Humeral torsion values in the 

three samples were plotted against humeral lengths using Reduced Major Axis (RMA) 

linear regressions (using the package ‘Smatr’, [Warton et al 2011]). Unlike linear 

measurements, symmetry values, which were expressed in percentages (%AA and 

%DA), failed to conform to a normal distribution based on frequency distributions. 

Nonparametric tests were therefore applied to these scores: Kruskal-Wallis tests – as a 

nonparametric equivalent of ANOVA – as well as Mann-Whitney U-tests – a 

nonparametric equivalent of the two-sample t-test – with Hochberg post-hoc 

corrections were applied to test for significant differences of %AA and %DA scores 

between species and between sexes (at 95% confidence interval). Additionally, a chi-

square test for equivalency was employed to test whether frequencies of right/left 

directional asymmetries are higher than expected (i.e. significantly different from a 

50%-50% distribution). %AA and %DA values which scored 3 times above the 

interquartile range of the rest of the scores (i.e. extreme outliers) were excluded from 

the analyses (Wilcox 2001). This resulted in two values being removed from each 

analysis.  

!
Since slight side biases (i.e. deviations from zero) may not be biologically significant 

(Auerbach and Ruff 2006; Auerbach and Raxter 2008; Cashmore 2009), I also test 

whether %DA and %AA scores are significantly different from 0% using a one-

sample Wilcoxon Signed Rank Test – the nonparametric equivalent of the one-sample 

t-test. Significant deviations from 0% in %DA are interpreted as evidence for 

population-level lateralization. Significant deviations from 0% in %AA in the absence 

of significant deviations from 0% in %DA are interpreted as evidence for individual-

level lateralization where the distribution of %DA is non-normal (as is the case in the 

present study).  

!
!
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2.5. Repeatability of measurements 

!
To assess the repeatability of asymmetry scores, the average percentage difference 

between three repeated measurements was calculated using White et al’s (2011) 

procedure for estimating error on osteological material (table 17). Results indicate 

that in all cases the average difference between repeated measurements is small 

compared with the average difference between right and left sides (1.8-6.5 times 

smaller for humeral torsion and 15 to 108 times smaller for humeral length). 

!
3. Results 

!
3.1 Humeral Length 

!
Gorillas and chimpanzees are evenly distributed in left and right humeral lengths 

(gorilla: 24 longer right/16 longer left; chimpanzee: 17 longer right/23 longer left). 

Humans, in contrast, show a distinct population bias towards longer right humeri, 

with only 6 out of 40 individuals displaying relatively longer left humeri. Paired t- 

!
Table 17 – Comparison of asymmetry values with measurement error for humeral torsion and length. The percentage difference 

for the total sample measures the mean difference between right and left sides of a pair of elements in relation to the averaged 

left and right measurements (length and torsion). The percentage difference for repeat measurements reports the mean difference 

between repeated measurements in relation to the three averaged repeat measurements (length and torsion). 

!

Measurement Species Sample N Mean 
difference (%)

Standard 
deviation

Humeral Torsion G. gorilla Total 40 3.30 2.530
Remeasurements 3 0.82 0.427

P. troglodytes Total 40 3.16 2.217
Remeasurements 3 1.69 0.885

Homo sapiens Total 40 4.67 4.413
Remeasurements 3 0.72 0.522

Humeral Length G. gorilla Total 40 0.60 0.519
Remeasurements 3 0.04 0.074

P. troglodytes Total 40 0.65 0.655
Remeasurements 3 0.01 0.018

H. sapiens Total 40 1.08 0.775
Remeasurements 3 0.01 0.016
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tests, with sexes pooled, reveal that the right humerus is significantly longer than the 

left humerus in the human sample, but not in the apes (table 18). When the sexes are 

considered separately, both male and female humans have significantly longer right 

humeri than left (table 19). Chi-square tests also show that the proportion of longer 

right humeri is significant in humans, and female gorillas (chi-square scores: p=0.000, 

male humans; p=0.014, female humans; p=0.000, total humans; p=0.014, female 

gorillas) (see also table 19). One-sample Wilcoxon Signed Rank tests further show 

that %AA is significantly different from 0% in all three samples, but that only humans 

have %DA scores which deviate significantly from 0% (table 20). Additionally, 

humans are significantly different from the apes in both absolute and directional 

length asymmetries (Kruskal-Wallis for between species differences: p=0.005, 

absolute asymmetry; p=0.000, directional asymmetry) (see also table 21). 

Furthermore, humans show some evidence for sex differences in length directional 

asymmetry (p=0.052), which may reach reach statistical significance with larger 

sample sizes (table 22). Absolute asymmetry (%AA), however, was found to differ 

significantly between male and female humans (table 22) – females being more 

lateralized than males (table 23) – though in both cases the asymmetry favours the 

right (table 23). The same pattern was not found within the apes, whose levels of 

directional and absolute asymmetry did not significantly differ between sexes (table 

23). Finally, only humans showed right-side directionality in length asymmetry 

(tables 18, 19 & 24; see also figure 2). 

!
Table 18 – Pairwise t-test of left and right humeral torsion and humeral length values in humans, chimpanzees and gorillas, with 

sexes pooled.  

!

Measurement Species
Mean (Left / 

Right)
P-value t N

Humeral torsion Gorilla gorilla 158.0 / 159.7 0.154 -1.455 39
Pan troglodytes 149.1 / 148.2 0.419 -1.101 39
Homo sapiens 165.7 / 162.0 0.024 2.077 40

Humeral length Gorilla gorilla 407.0 / 406.0 0.086 1.754 40
Pan troglodytes 299.1 / 299.0 0.631 0.483 40
Homo sapiens 300.8 / 304.2 0.000 -5.530 40
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Table 19 – Pairwise t-test of left and right humeral torsion and humeral length values in humans, chimpanzees and gorillas, by 

sex. Italicised indicates significantly biased directional asymmetry values based on a chi-square test (p < 0.05). 

!
3.2. Humeral torsion 

!
In both African ape species, 20 individuals present lower torsion on the right humerus 

and 20 lower torsion on the left humerus while in the humans, 25 individuals have 

lower torsion on the right humerus and 15 lower torsion on the left humerus. Paired t-

tests (with sexes pooled) reveal that right torsion is significantly lower than left 

torsion in humans but not in the apes (table 18). When the sexes are considered 

separately, this pattern is no longer observed in humans, and in gorillas, the females 

but not the males show significant differences between right and left torsion, with 

females presenting lower torsion on the left than on the right (table 19 & 24). 

However, χ 2 tests show that the proportion of lower right or left torsion is not 

significant in any sample (p>0.05). Mann-Whitney U tests further show that %AA is 

significantly different from 0% in all three species, but that only humans have %DA 

scores that deviate significantly from 0% (table 20). However, Kruskal-Wallis tests 

show no significant differences in absolute or directional asymmetry between species 

(Kruskal-Wallis for between species differences: p=0.577, absolute asymmetry; 

p=0.105, directional asymmetry). Additionally, absolute asymmetry was not found to 

be sexually dimorphic for any of the three species, but directional asymmetry was 

found to differ significantly between male and female gorillas (table 23), with the data 

Measurement Species Sex
Mean (Left / 

Right)
P-value t N

Humeral torsion Gorilla gorilla M 159.3 / 159.0 0.843 0.200 20
F 156.9 / 160.3 0.022 -2.510 19

Pan troglodytes M 150.0 / 150.5 0.804 -0.254 14
F 148.5 / 147.0 0.273 1.123 25

Homo sapiens M 167.6 / 163.5 0.093 1.762 20
F 163.5 / 160.6 0.144 1.517 20

Humeral length Gorilla gorilla M 437.8 / 437.2 0.354 0.949 19
F 379.8 / 379.2 0.317 1.027 20

Pan troglodytes M 298.7 / 298.7 0.943 0.072 14
F 299.5 / 299.2 0.628 0.490 26

Homo sapiens M 315.0/317.0 0.001 -3.993 19
F 288.0 / 291.7 0.000 -5.389 20
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suggesting less torsion in the right humeri of males and left humeri of females (table 

23). Although the differences between sexes are not significant in chimpanzees, male 

and female %DA scores are biased in opposite directions (males have less humeral 

torsion on the left and females less humeral torsion on the right) (table 23). Results 

also show that in all three species, torsion asymmetries are more pronounced than 

length asymmetries (figure 40), and RMA regressions show no relationship between 

the two measurements in either sample (figure 41). 

!
Table 20 – One sample Wilcoxon Signed Rank Test probability of AA and DA values being 0% (symmetry) (at 95% CI). V 

corresponds to the Wilcoxon signed rank statistic (the sum of ranks assigned to the differences with positive sign). 

!
!
Table 21 – Mann-Whitney U-tests, with Hochberg post-hoc correction, of absolute and directional asymmetry of lengths between 

samples. 

!!!!!
!

Measurement Species P-value V N

Humeral Torsion AA Asymmetry Gorilla gorilla 0.000 780 39

Pan troglodytes 0.000 780 39

Homo sapiens 0.000 780 40

DA Asymmetry Gorilla gorilla 0.361 456 39

Pan troglodytes 0.503 341 39

Homo sapiens 0.031 251 40

Humeral Length AA Asymmetry Gorilla gorilla 0.000 780 39

Pan troglodytes 0.000 820 40

Homo sapiens 0.000 741 39

DA Asymmetry Gorilla gorilla 0.176 292 39

Pan troglodytes 0.899 420 40

Homo sapiens 0.000 675 39

 Absolute Asymmetry (%) Directional Asymmetry (%)  

 Species P-value W P-adjust. P-value W P-adjust. N

Chimp - Gorilla 0.868 797.5 0.868 0.398 693.5 0.399 c(40), g(39)

Gorilla - Human 0.005 477.5 0.013 0.000 275.0 0.000 g(39), h(39)

Human - chimp 0.006 504.5 0.013  0.000 342.0 0.000  h(39), c(40)
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Table 22 – Mann-Whitney U tests testing for differences between males and females in absolute and directional asymmetry of 

humeral torsion (outliers removed) and humeral length for all three samples. 

!
Table 23 – Table of mean absolute asymmetry (AA) and mean directional asymmetry (DA) of humeral torsion (outliers removed) 

and humeral length in the gorilla, chimpanzee and human samples. For directional asymmetry values, negative DA scores in 

torsion and positive DA scores in length indicate right side biases.  

!

Measurement Score Species P-value W N

Humeral torsion Absolute Asymmetry Gorilla gorilla 0.684 205 M (20), F (19)

Pan troglodytes 0.377 144 M (14), F (25)

 Homo sapiens 0.841 192 M (20), F (20)

Directional Asymmetry Gorilla gorilla 0.047 119 M (20), F (19)

Pan troglodytes 0.289 212 M (14), F (25)

 Homo sapiens 0.798 190 M (20), F (20)

Humeral length Absolute Asymmetry Gorilla gorilla 0.569 169 M (19), F (20)

Pan troglodytes 0.138 129 M (14), F (26)

 Homo sapiens 0.022 102 M (19), F (20)

Directional Asymmetry Gorilla gorilla 0.727 203 M (19), F (20)

Pan troglodytes 0.856 189 M (14), F (26)

 Homo sapiens 0.052 114 M (19), F (20)

Measurement Species  Absolute Asymmetry (%) Directional Asymmetry (%)

Total Males Females  Total Males Females

Humeral torsion G. gorilla 3.314 3.391 3.235 0.905 -0.283 2.157

P.trog. 3.170 2.725 3.423 -0.521 0.164 -0.905

H. sapiens  4.669 4.838 4.499  -2.213 -2.567 -1.858

Humeral length G. gorilla 0.602 0.570 0.632 -0.171 -0.174 -0.167

P.trog. 0.648 0.438 0.760 -0.066 -0.008 -0.100

H. sapiens 1.076 0.767 1.387  0.937 0.658 1.219
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4. Discussion 

!
4.1. Length asymmetries versus torsion asymmetries 

!
Overall, results suggest that humans are unique in presenting population-level right 

side directionality in both humeral torsion and humeral length (tables 18 & 20).  

!  
Figure 40 – Box-plots of directional asymmetries (%DA) for humeral torsion (a) and humeral length (b) in humans, chimpanzees 

and gorillas. Shaded boxes: males; open boxes: females. Significant difference (95% CI) between gorilla sexes marked with 

asterisk (at p=0.052 humans show evidence for sex differences in length DA%). Boxes represent the upper and lower quartile 

ranges, the black lines, the means, and the whiskers, the highest and lowest values within 1.5 times the interquartile range of the 

upper and lower quartiles. The circles represent outliers within 3 times the interquartile range of the upper and lower quartiles. 

!  
Figure 41 – RMA linear regressions of left and right humeral torsion against left and right humeral length, respectively, in 

gorillas (N=40), chimpanzees (N=40) and humans (N=40). 
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!
However, length asymmetries (%AA) are less pronounced than torsion asymmetries 

in all three species  (~2.6-4.5% for torsion versus ~0.3-1.4% for length; see table 23 

& figure 40). Indeed, torsion asymmetry scores (%AA) in the present study are 

comparable to the highest scoring variable in Auerbach and Ruff’s (2006) study of 

780 Holocene adult humans (mid-shaft diaphyseal diameter in limb long bones), 

while length asymmetry scores for humans are almost identical in both studies (mean 

%AA scores for present study: 1.1%; Auerbach and Ruff 2006: 1.5%). These authors 

hypothesize that the more constrained ranges of asymmetry in length reflect a greater 

genetic control over this variable – the assumption being that, because genetic 

constraint results in equal expression of bilateral traits, more plastic traits exhibit 

greater magnitudes of asymmetry than traits that are more genetically constrained. If 

this is correct, these results also suppose that torsion is more sensitive to 

environmental plasticity, and lengths more genetically constrained. This seems to be 

in line with previous studies, which suggest that lengths are less sensitive to 

mechanical stimuli than other traits (Steele and Mays 1995; Steele 2000b; Auerbach 

and Ruff 2006).  

!
However, while the strength and shape of cross-sectional morphology has been 

associated with bone responses to loading regimes throughout life (Ruff 1990; Ruff et 

al. 1993; Stock and Pfeiffer 2001; Matsumura 2002, 2010; Lieberman et al. 2003; 

Shaw and Stock 2009a,b; Marchi 2007, 2008), humeral torsion does not continue to 

develop past fusion of the proximal epiphysis (Krahl 1976). I postulate that it is the 

degree of sensitivity of the epiphyseal cartilage to biomechanical stimuli, as well as 

its speed of response and the timing of epiphyseal growth during formative 

adolescence (90% of epiphyseal growth occurs between 11 and 20 years of age in 

humans [Osbahr et al. 2002]), that are responsible for these asymmetries. 

Furthermore, these results also show that there is no correspondence between length 

asymmetries and torsion asymmetries, not even in humans who are right-side 

dominant for both measurements (figure 40). This indicates a lack of correlation 

between asymmetry in bone lengths and asymmetry in humeral torsion, suggesting a 
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decoupling between limb variables in response to mechanical stimuli, in line with 

previous studies (Ruff 2003; Auerbach and Ruff 2006). Nevertheless, if differences in 

degree of genetic constraint were the only factor, a correlation would still be 

expected, albeit reflecting an allometric rather than isometric relationship between 

variables. The observation that no such relationship exists suggests otherwise. 

!
4.2. Humeral length asymmetries in humans and African apes 

!
Only humans show a population-level bias towards longer right humeri (tables 18 & 

24), and the present results show that humans are significantly different from the apes 

in magnitude (%AA) and directionality (%DA) of this asymmetry (table 21). These 

results are in line with Schultz (1937) who found no tendency for the right arm to be 

longer in apes, and that the degree of length asymmetry in apes is half that of humans. 

Interestingly, and in contrast to the current results, subperiosteal area of humeral 

diaphysis has been found to be left-biased in a sample of common chimpanzees 

(Sarringhaus et al. 2005), suggesting sample-specific differences in lateralization and/

or that variation in humeral length and subperiosteal area are the consequence of 

different mechanisms. I also report significant differences in absolute asymmetry (and 

near-significance in directionality) in length between human males and females, with 

females being more asymmetric than males (table 23). These results are also in 

agreement with previous studies, which show that females are more likely than males 

to have longer bones in the right forelimb (Steele 2000a,b; Auerbach and Ruff 2006). 

Although I cannot exclude the possibility that behavioural differences between sexes 

are in part responsible for this pattern (Ruff 1987; Weiss 2009), the fact that similar 

asymmetries are found across human populations, and that the same pattern is not 

observed for humeral torsion, suggests otherwise. Some researchers have 

hypothesized that subtle asymmetries in length may be linked to bilateral differences 

in blood oxygen levels, potentially leading to unequal bone growth (Steele 2000a,b). 

Such innate factors would also help explain why, according to some research, human 

foetuses already exhibit heavier muscle and bone weights as well as greater lengths on 

the right arm in utero (Pande and Singh, 1971; Bareggi et al. 1994). Other studies, 
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however, have failed to confirm these patterns or even found the opposite to be the 

case, and more research will be needed to establish whether consistent biases already 

exist at foetal stages (Steele 2000a,b). Asymmetries in humeral length may be due to 

innate factors in non-human apes as well, but it is relevant to note nonetheless that 

unlike in humans, humeral length asymmetries are not significantly biased in any 

direction in the apes, making humans unique in exhibiting strong population-level 

right-side directionality in humeral lengths (with only 6 out of 40 individuals in the 

current sample presenting longer left humeri). These results suggest that this pattern 

in humeral length is unique to Homo sapiens and thus may have arisen after the Pan-

hominin split possibly as a result of selective pressures for increased lateralization and 

towards right-side dominance. 

!
4.3. Humeral torsion asymmetries in humans and African apes 

!
These results indicate that humans are unique among the three species in showing 

significant right-side biases in directional asymmetry for humeral torsion (table 18, 20 

& 24). However, chi-square tests show that the distribution of %DA frequencies is 

non-significant in either species (table 19), and that there are no significant 

differences in directionality (%DA) between species (table 21), suggesting that the 

relationship between humeral torsion and handedness is not straightforward, at least 

when considering modern populations and non-athletes. Interestingly, unlike for 

lengths, the magnitude (%AA) of torsion asymmetries is not significantly different 

between samples. The present study indicates that the amount of torsion asymmetry 

within individual chimpanzees and gorillas is statistically significant (table 20), and 

that it occurs in magnitudes not significantly different from those in individual 

humans, which suggests that African ape locomotion may produce forelimb 

lateralization. Although ape quadrupedal locomotion is considered to be largely 

symmetrical (Hildebrand 1967; Vilensky and Larson 1989), chimpanzees exhibit a 

tendency to angulate their torsos during quadrupedal gaits, either to the left or right 

(Larson and Stern 1987), and studies on both captive and wild chimpanzees have 

identified gait lateralization at the individual level (but not at the group-level) 
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(Marchant and McGrew 1996; Hopkins et al. 1997; Morcillo et al. 2006; Arcadi and 

Wallauer 2011). However, whether gorillas also exhibit similar lateralization is 

unknown, as are the effects that asymmetrical gait patterns might have on skeletal 

asymmetries (Carlson 2006).  

!
The suggestion that locomotion, not just manipulatory activities, induces lateralization 

is interesting in the context of upper limb versus forearm asymmetries. Some studies 

suggest that upper limb asymmetries reflect only the more vigorous and power-based 

activities related to locomotion, and that forearm asymmetries (particularly, the hand) 

reflect the more fine tuned manual activities that we normally associate with 

handedness (Cashmore and Zakrewski 2011). Sarringhaus et al (2005), for example, 

find opposite directionalities in asymmetries of chimpanzees for total subperiosteal 

area of humeral diaphyses and second metacarpals (left for humerus and right for 

metacarpal). The possibility that there may exist opposite directionality between the 

proximal and distal segments of the upper limb, as suggested by Sarringhaus et al 

(2005), is interesting in light of Hunt’s (1994) observations of chimpanzee feeding 

behaviours (individuals often hang from one arm for support, while using the opposite 

hand for manipulation). It is possible then, that biases in torsion asymmetry in apes 

reflect a preference for the support arm, rather than for the arm performing the 

manipulative task, but further studies on the effects of locomotion on torsional 

asymmetries in apes are needed to explore this. In humans, a contra-lateral 

relationship has also been described between clavicle lengths and humeral lengths 

(Auerbach and Raxter 2008; Mays et al 1999; Fatah et al 2012) and more recently, 

Cashmore and Zakrzewski (2011) also found differences in the expression of 

asymmetry between musculoskeletal markers in human hand bones and the humerus. 

If indeed different biomechanical factors influence proximal and distal upper limb 

segment morphologies, then the relationship between humeral torsion and handedness 

at the individual level may be less straightforward than previously hypothesized, and 

hand bone asymmetries may be better suited to address questions on handedness 

specifically. It is possible that, in humans, only repetitive strenuous activities, such as 

throwing, induce pronounced population-level asymmetries in humeral torsion that 
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actually correspond to population-level handedness patterns, as has been shown for 

athletes and physically active populations (Martin 1933; Edelson 1999; Osbahr et al. 

2002). More studies on the directionality of asymmetries in the entire upper limb of 

apes and humans (particularly the hand) are needed, as are studies on the relationship 

between torsion, handedness and locomotion.  

!
Furthermore, the magnitude and directionality of torsion asymmetries in male and 

female apes have opposite patterns (table 23), with significant differences between the 

male and female gorillas (table 23). Moreover, it is the female gorillas, and not the 

males who show significant differences between left and right torsion (table 19), 

being left lateralized for this trait (table 23). While differences in humeral torsion 

between male and female humans have been previously reported (Edelson 1999), 

there are no reported differences in directional asymmetry between sexes in humans, 

making this a unique ape trend. The possibility that males and females show different 

degrees and patterns of lateralization is intriguing, but consistent with other lines of 

evidence, such as behavioural observations that indicate the presence of locomotor 

differences between male and female gorillas (Doran 1993; Remis 2005). It has been 

suggested for example, that female gorillas use suspensory postures more frequently 

than males (Doran 1993), and that captive apes are left lateralized for infant cradling 

(Manning and Chamberlain 1991), which is possibly linked to brain hemispheric 

specialization and the processing of emotional cues by the right hemisphere (Manning 

et al. 1994). This is particularly interesting in light of the recent suggestion that 

anthropoid primate males and females have followed different hemisphere-specific 

evolutionary trends in the evolution of the prefrontal cortex (Smaers et al. 2012). It is 

possible, on the other hand, that differences in thoracic shape and scapular position, 

rather than behaviour, are responsible for this dimorphism (Larson 2007), but further 

studies are needed to explore this possibility. Due to the lack of significant differences 

in directional asymmetry in the current data for the gorilla males and for 

chimpanzees, as well as the lack of significance in left/right torsion frequencies in 

either sample, these interpretations must for now remain tentative, but future studies 

should explore the possibility of sexual differences in lateralization. 
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5. Conclusion 

!
Overall, humans are unique in presenting a population-level right bias for both 

humeral length and torsion, consistent with population-level right-handedness, while 

the African apes show no significant directionality in either measurement. 

Additionally, length asymmetries are less pronounced than torsion asymmetries, 

which are elevated and comparable in magnitude, both across the current species 

sample and to other comparatively more environmentally plastic variables reported in 

the literature. These differences in asymmetry magnitude between length and torsion 

in all species support previous suggestions that lengths are more genetically 

constrained than other skeletal variables. Furthermore, divergent ape and human 

patterns in length asymmetry suggest that this may reflect, on the one hand, a need to 

maintain upper limbs of equal length and strength in apes due to locomotor 

constraints, and, on the other hand, the consequence of pronounced lateralization, 

related to population-level right handedness, in humans. For humeral torsion, species-

level magnitudes of asymmetry were found to be comparable between humans and 

African apes, which suggests the presence of pronounced behavioural lateralization in 

the latter (in locomotion and/or other activities) as well as in the former, albeit at the 

individual rather than the species level.The current results, showing that species-level 

lateralization exists in humans but not apes, are in line with suggestions from 

behavioural studies that hand preference (laterality within subjects within tasks) and 

hand specialization (laterality within subjects across tasks) exist in non-human apes, 

but not population-level handedness (laterality across subjects and across tasks) 

(Marchant and McGrew 1991, 1996; McGrew and Marchant 1996). These results also 

indicate, however, that the relationship between humeral torsion/length and 

handedness specifically, is not straightforward, but rather the consequence of both 

developmental processes and patterns of behavioural lateralization. 

!
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– Chapter 6 – 
!

A novel 3D protocol for analysing clavicle curvature: shedding light on the 

phylogeny, ontogeny, and functional morphology of the hominoid clavicle. 

!
!
1. Introduction 

!
Hominoids possess particularly mobile shoulder joints compared to most other 

primates (Avis 1962; Lewis 1971, 1974, 1985; Temerin and Cant 1983; Cant 1986; 

but see Chan 2007a,b). This mobility, which is achieved by a combination of 

glenohumeral and pectoral girdle movements (Chan 2008), is thought to be 

particularly crucial for large bodied animals like great apes to profit from a complex 

3D arboreal environment in locomotion and feeding (Kagaya et al. 2010). The 

clavicle plays a central role in this mobility because it maintains a fixed distance 

between the acromion and the manubrium, like a ‘spoke’ (figure 42 & 43), thus 

ensuring that relative movement between these structures is arcuate (Jenkins 1974) – 

an arcuate excursion moves the shoulder through a greater range of positions, 

especially with regards to adduction-abduction, than would be possible if excursion 

were confined to a single (sagittal) plane as is the case in mammals with reduced or 

absent clavicles, such as ungulates and carnivores (Jenkins 1974; Ljunggren 1979) – 

indeed, excision of the clavicle in rats, for example, is accompanied by increased 

mobility of the shoulder girdle in the sagittal plane but loss of circular movement 

(Jenkins 1974). In mammals and, in particular, arboreal mammals, long clavicles are 

found together with a short mesiodistal and a long cranio-caudal scapular diameter, 

and with a relatively large transversal thoracic diameter, permitting a large range of 

movements in a three-dimensional environment (Oxnard 1973; Jenkins 1974; 

Ljunggren 1979). Accordingly, extant apes and humans, unlike other extant primates, 

possess a bent and elongated clavicle relative to their thoracic cage (Gebo 1996; 

Larson 1998; Schmitt and Lemelin 2002; Kagaya et al. 2010), which maintains the 
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scapula dorsally positioned and allows a wide range of shoulder movements (Chan 

2007b; Kagaya et al. 2010) (figure 44). 

 

!
Figure 42 – Anatomy of the adult left human clavicle (in cranial and ventral views) showing muscle origins (red) and muscle 

insertions (blue). The medial two-thirds of the clavicle are approximately circular/triangular in cross section, a shape consistent 

with axial pressure or pull; its lateral third has a relatively flat cranial and caudal surface, a shape compatible with pull from 

muscles and ligaments (Ljunggren, 1979).  

 

!
Figure 43 – The adult human shoulder at rest (gray) and in (a) retraction/protraction (red), (b) elevation/depression (red), 

illustrating the role of the clavicle as a ‘strut’: the clavicle allows the shoulder complex to move in an arcuate fashion (black 

circular arrows). 

!
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More importantly, the clavicle is an important shoulder joint stabilizer, particularly 

during overhead movements (Voisin 2006), because it acts as a compression-resistant 

‘strut’ during weight-bearing and pulling movements, and keeps the shoulder complex 

distant from the rib cage during quadrupedal walking and suspension (Preuschoft et 

al. 2010). This stability results in part from the fact that the clavicle limits the amount 

of shoulder joint excursion; in humans, for example, removal of the clavicle results in 

negligible functional disturbances and increased range of motion, but leads to 

instability during weight support and pushing above head level because these 

movements cause pressure/tension in the longitudinal axis of the clavicle (Inman and 

Abbott 1944; Inman and Saunders 1946; Ljunggren 1979). This suggests that more 

than mobility, the clavicle is crucial in providing stability to the shoulder complex 

during elevation of the arm/shoulder (Inman and Abbott 1944; Inman and Saunders 

1946).  

!
Figure 44 – Schematic representation (in cranial view) of the thorax (black circle), scapula (blue), and clavicle (red) in a 

quadrupedal mammal (left) versus a hominoid (right); In hominoids the long clavicle allows for a dorsally positioned scapula and 

a lateral facing glenohumeral joint (arrow), which facilitate a wide range of shoulder movements (namely circular movements), 

while in quadrupedal mammals, where the clavicle is reduced or absent, the glenohumeral joint faces more ventrally (arrow) 

limiting shoulder movement to the sagittal plane (A-C joint: acromioclavicular joint; S-C joint: sternoclavicular joint) (redrawn 

from Ljunggren, 1979). !
However, the fundamental and most important function of the clavicle is related to the 

existence of its curvatures, as these are responsible for providing the necessary range 

of movement characteristic of the hominoid shoulder complex (Inman and Abbott 
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1944; Inman and Saunders 1946). The distal curvature is of particular importance 

because it permits the clavicle to act as a ‘crankshaft’, which allows the final half of 

scapular rotation to take place (Inman and Saunders 1946). In humans, loss of this 

distal curvature prohibits the full range of scapular rotation and interferes with 

complete shoulder elevation, causing increased shearing forces and consequently 

degenerative changes at the acromioclavicular joint (Inman and Saunders 1946; 

Ljunggren 1979). The proximal curvature in hominoids, on the other hand, allows for 

the scapula to be dorsally positioned all the while preventing obstruction of the 

thoracic inlet – which serves as the passage for several vital structures such as 

arteries, veins, lymph nodes and the brachial plexus (Jenkins et al. 1978; Chan 2008). 

In humans, excessive exaggeration of this curvature interferes with the axis of 

clavicular rotation, resulting in displacement of its sternal extremity and pain at the 

sternoclavicular joint (Inman and Saunders 1946).  

!
Despite playing a central role in predicting and determining the range of motion at the 

shoulder girdle in hominoids, the clavicle’s complex anatomy with its twisted S-shape 

appearance has made it a particularly challenging bone to analyse, and for this reason, 

it has remained seldom studied in a comparative context. Perhaps the most 

comprehensive cross-comparative analysis of clavicular curvatures in primates is 

offered by Voisin (2006); using traditional 2D methods, the author finds that the 

primate clavicles in his sample can be divided into three groups based on ventro-

cranial curvatures, which according to the author are associated with scapular 

positioning, and into four groups based on cranio-caudal curvatures, which are 

thought to relate information about the parameters of arm elevation in primates 

(Voisin 2006).  

!
Clavicle curvatures have typically been quantified via the assessment of the bone’s 

proximal and distal curvatures when projected on two perpendicular planes, cranial 

and dorsal (Olivier 1951; Voisin 2006; Bachoura et al 2013). Olivier’s method (1951) 

for example, estimates the middle arc of the curvatures as the proportion between the 

length of the chord and the height of the curvature, which is also the method used in 

!  147



Voisin’s (2006) study. The emergence of novel 3D methods in recent years, however, 

has prompted renewed interest in clavicle morphology, particularly in the medical 

field, with studies proposing a number of protocols for quantifying the curvatures of 

the clavicle in 3D, as an alternative to forcing its curvatures into two-dimensional 

planes which may not be as biologically relevant (Daruwalla et al. 2010; Fatah et al. 

2012; Bachoura et al. 2013; Mathieu et al. 2013). Bachoura et al (2013), for example, 

estimate proximal and distal clavicle curvatures as the angles (in degrees) between the 

medial, middle and lateral segments of the clavicle in both axial and coronal planes 

using a 3D environment, while Fatah et al (2012) use a protocol for defining multiple 

segments based on clavicular contours, and then measure clavicular curvatures as the 

angles (in degrees) between these various segments. Both these studies were based on 

human clavicles. 

!
In this chapter, I propose a new and more streamlined 3D protocol – which I refer to 

as ‘freecurve’ (based on the Geomagic Suite 12.1 function ‘Free Curve’) – for 

analysing clavicle curvatures across primate species. This protocol is devised as an 

alternative to forcing the clavicle into 2D planes, and thus yields two curvature 

measurements (distal and proximal), rather than the four measurements produced with 

the more traditional 2D methods (proximal cranial, proximal ventral, distal cranial, 

and distal ventral). The aim is to provide a simple and reproducible 3D protocol for 

assessing clavicular curvatures that can be applied to clavicles across species. This 

method should also be able to quantify curvature in fossil clavicles, which may be 

difficult to place in the 2D planes due to being damaged and/or incomplete. I also 

measure curvatures using a more traditional 2D approach in order to compare 

methods and to test whether/how methodological choices impact functional 

interpretations. Additionally, I analyse clavicular curvatures within both an 

ontogenetic and a phylogenetic framework, in order to address the absence to date of 

any such data and to understand how clavicular curvatures develop with growth; I 

also look at the relationship between these curvatures and 11 functionally significant 

variables of the other elements of the shoulder girdle (scapula and humerus) across 

hominoid species. The 11 measurements are: clavicle length, clavicle thickness 
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(antero-posterior and cranio-caudal), clavicle torsion, humeral torsion, angulation of 

the glenoid fossa relative to the lateral border of the scapula, orientation of the glenoid 

fossa relative to the medial border of the scapula, orientation of the scapular spine 

relative to the glenoid fossa, glenoid version, angulation of the spine relative to the 

lateral border of the scapula, angulation of the spine relative to the medial border of 

the scapula, and geometric mean of the shoulder (table 24; see Materials and Methods 

chapter for details). These measurements were chosen because they relate information 

about orientation of the scapular spine and the glenoid fossa (angles of the glenoid 

fossa and spine relative to the scapular body and humeral torsion), which have 

functional implications for genohumeral joint mobility and range of motion (e.g., 

Larson and Stern 1986; Larson et al. 1991; Inouye and Shea 1997; Haile-Selassie et 

al. 2010; Green and Alemseged 2012) as well as overall size/shape of the clavicle 

(thickness, length and torsion of the clavicle). This should ultimately contribute 

towards a better understanding of the clavicle’s functional morphology in extant and 

possibly extinct hominoid species.  

!
 Table 24 – Table with the 12 shoulder variables plotted against clavicle curvatures. 

Element Measurement name Measurement description

Clavicle clav_length Maximum length of the clavicle
clav_thick_ap Maximum thickness of the clavicle at midshaft (antero-posterior)
clav_thick_cc Maximum thickness of the clavicle at midshaft (cranio-caudal)
clav_torsion Clavicle torsion
clav_angle_dist_ant Distal angle of the clavicle (anterior/ventral view)
clav_angle_dist_sup Distal angle of the clavicle (superior/cranial view)
clav_angle_prox_ant Proximal angle of the clavicle (anterior/ventral view)
clav_angle_prox_sup Proximal angle of the clavicle (superior/cranial view)
clav_freecurv_dist Distal angle of the clavicle using 'freecurve' method

 clav_freecurv_prox Proximal angle of the clavicle using 'freecurve' method
Humerus hum_length Maximum length of the humerus

hum_torsion Medial rotation of the humeral head over the humeral shaft
Scapula scap_height Maximum height of scapular body

scap_breadth_spine_glen Maximum breadth of the scapula from the glenoid fossa to where the long axis 
of the scapular spine and the vertebral border meet

glen_angle_latborder Angle of the glenoid fossa to the lateral border of the scapula
glen_angle_medborder Angle of the glenoid fossa to the medial border of the scapula
glen_angle_spine Angle of the glenoid fossa to the spine of the scapula
glenoid_angle_bodyspine Angle of the glenoid fossa to the scapular body below the spine

glen_version Angulation of the glenoid fossa relative to the body of the scapula in 
transverse plane. Measured on the posterior side. 

latborder_spine_angle Angle of the scapular spine to the lateral border of the scapula
spine_angle_medborder Angle of the scapular spine to the medial border of the scapula
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2. Materials and Methods 

!
2.1. ‘Freecurve’ method for quantifying 3D curves 

!
The ‘freecurve’ protocol was devised as an alternative to forcing the clavicle into 2D 

planes, which may not capture the true biological significance of its curvatures. 

Instead, here I estimate these curvatures by fitting two polylines (proximal and distal) 

through four homologous landmarks on the ventral surface of the clavicle (the distal 

polyline is fitted through two landmarks, and the proximal polyline, through three 

landmarks), using the curve fitting options ‘Draw Curve’ and ‘Free Curve’ in 

Geomagic 12.1. The two polylines are fitted such that they represent arches of two 

circles, and their curvatures (k) are measured (in mm) as a function of each circle’s 

radius (R): 

  k = 1 / R 

!
Because smaller circles have smaller radii, they bend more sharply and thus have a 

higher curvature (values closer to 1); conversely, larger circles have bigger radii and 

thus less curvature (values closer to 0 mm). 

!
These fitted curves are therefore less constrained from adhering to particular pre-

defined planes of view (figure 45), and are allowed to move freely between 

landmarks, across the ventral aspect of the clavicle (hence the name ‘freecurve’). 

Using this protocol, two curvature measurements are produced (distal and proximal), 

rather than the four measurements produced with the more traditional 2D methods.  

!

!  150



!  
Figure 45 – 3D surface scans of an adult human left clavicle (sternal view) showing the distal (a) and proximal (b) ‘freecurves’. 

The figure illustrates how, using this protocol, the curvatures are less constrained from adhering to 2D planes. The curvatures are 

measured (in mm) as a function of the circle’s radius, rather than angles expressed in degrees. 
!
2.2. Procedure 

!
Using Geomagic Suite 12.1, the clavicle is oriented into cranial view, then, using a 

cylinder of best fit, the clavicle is divided into 3 slices of equal lengths (figure 46). 

Using the ‘Draw Curve’ function – which allows placing free-form lines on three-

dimensional object surfaces –, the distal and proximal curvatures are captured by 

placing two lines (distal and proximal) between these slices on the ventral portion of 

the clavicle: (1) the distal line is placed on the distal third of the clavicle, between the 

ventral-most point of the acromial facet (figure 47a, landmark 1), and the point of 

intersection between the distal-most slice and the ventral-most point on the dividing 

plane between the distal and the central slices (figure 47a, landmark 2); (2) the 

proximal line is placed on the proximal two thirds of the clavicle, between the 

intersection of the distal-most dividing plane with the ventral-most portion of the 

clavicle (figure 47a, landmark 2), and the protuberance on the proximal ventral 

clavicle, between the attachments for the sternocleidomastoid muscle and the 

pectoralis major muscle (figure 47a, landmark 3); in order for this measurement to be 

consistent across species and specimens, the centre of this proximal line is also fixed 
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to a landmark where the proximal dividing plane intersects with the ventral-most 

portion of the clavicle (figure 47a, 4). 

!
Once the lines are fitted onto the surface of the clavicle, they are converted into ‘Free 

Curves’ using the function by this name in Geomagic Suite 12.1. This converts the 

free-form lines into reference polylines from which a line-arc can be derived (figure 

48a, blue line) – with the polyline endpoints corresponding to polygonal mesh points 

on the surface object (Attene et al. 2006; Botsch et al. 2007; Varady 2008). This 

function first computes a sequence of marker points that correspond to the endpoints 

of consecutive segments (figure 48, green points), from which a curve approximating 

the underlying segmented data points is then extracted (figure 48, orange lines). I 

selected an ‘Adaptive’ Control Point Layout (the default setting), which allows the 

software to optimize the number of control points to obtain this segmentation (Varady 

2008). This reference polyline is then edited using the ‘Edit Curve’ function, the 

segmentation sensitivity is set to 0, and all remaining reference points (figure 48b, 

green points) are manually removed from the polyline, which allows to produce one 

continuous line – rather than several segmented lines – describing the curvatures 

(figure 48c, orange line). 

!
The curvature values obtained are invariably positive, except in a few cases, where I 

manually assigned a negative value to the measurement to indicate that the curvature 

bends in the opposite direction than is expected. The proximal curvature is always 

expected to bend ventrally, and the distal curve to bend dorsally (figure 49), but in 

some instances this was not the case – this was particularly true in the gibbons, where 

the distal curvature bent ventrally rather than dorsally in some specimens. 

!
!
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!
Figure 46 – 3D surface model of an adult human left clavicle (cranial view) with cylinder of best fit (a), and fitted equidistant 

dividing planes (b), in Geomagic Suite 12.1. 
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!
Figure 47 – 3D surface model of an adult human left clavicle (ventral view) with the fitted distal (a), and proximal (b) polylines 

(using the ‘Draw Curve’ function in Geomagic Suite 12.1). The attachments for the deltoid (d), pectoralis major (pm) and 

sternocleidomastoid (scm) muscles are indicated in red; the two black circles around the clavicle body represent the proximal and 

distal dividing planes. The landmarks used to draw the polylines are: the ventral-most point of the acromial facet (1), the 

intersection of the distal dividing plane with the ventral portion of the clavicle (2), the protuberance on the proximal ventral 

clavicle, between the attachments for the sternocleidomastoid muscle and the pectoralis major muscle (3), the intersections of the 

proximal dividing plane with the ventral portion clavicle (4). 
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Figure 48 – Isolated reference polyline (blue line), and profile curve (orange line) fitted to the segmented reference polyline 

using the ‘Edit Curve’ function in Geomagic 12.1. The segmented reference polyline (a) contains multiple reference points 

(bright green) through which the profile curve is fitted. The segmentation sensitivity is then set to 0 (b) which reduces the 

number of reference points through which the profile curve is fitted; the remaining reference points are then manually removed 

(c), and the final profile curve is fitted to the distal-most and proximal most reference points (dark green), which correspond to 

the landmarks. !
2.3. Traditional 2D curve measurements: clavicle angles 

!
Clavicle curvatures have typically been measured via the assessment of the bone’s 

proximal and distal curvatures when projected on two perpendicular planes, cranial 

and ventral (Olivier 1951; Voisin 2006; Bachoura et al. 2013). Therefore, here I also 

report clavicle angles calculated in this way by orienting the clavicle in both cranial 

and ventral views using a 3D environment (Geomagic Suite 12.1), and estimating the 

distal and proximal angles of the clavicle in both planes as the intersection of 

proximal, middle and distal lines in 2D (tpdDigs) (figures 50 & 51). 

!
Using Geomagic Suite 12.1, the clavicle is first oriented into the cranial plane. Using 

a cylinder of best fit, the clavicle is divided into 10 dividing planes of equal length 

(figure 50) and the image is transferred to tpsDigs as a 2D image, where a series of 9 

points are placed at the centre of the clavicle on each intersecting line (figure 51). The 

proximal and distal angles are then measured using the points of maximum angulation 

of the clavicle, by drawing three lines (proximal, middle and distal). The lines are 

selected in order to minimise the value of the angles that they define (in other words, 

to measure the maximum angulation). The angles are measured in 2D in tpsDigs at 

the intersection of these lines (figure 51). These steps are repeated with the clavicle in 
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ventral view. In the end, four angles (in degrees) are obtained: proximal cranial, distal 

cranial, proximal ventral, and distal ventral. 

!
The angle measurements obtained are invariably < 180°, since a measurement of 

180° corresponds to a flat angle/curvature. However, values above 180° were 

attributed to those few angles that bent in the opposite direction than expected (i.e., to 

proximal angles that bent dorsally or cranially, and to distal angles that bent ventrally 

or caudally). 

 

!
Figure 50 – 3D surface scan of an adult human left clavicle (cranial view) with cylinder of best fit (a), and fitted equidistant 

dividing planes (b), in Geomagic Suite 12.  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!
Figure 51 – 2D image of an adult human left clavicle, in cranial view (a) and ventral view (b), in tpsDigs; nine points (red) are 

placed at the centre of the clavicle, on the intersecting planes (black transverse lines). The distal and proximal angles of the 

clavicle are measured (in both planes) as the points of maximum angulation of the clavicle, at the intersection of the proximal, 

middle and distal lines (thick black lines connected to the red dots). These three lines are drawn from the distal-most (1) to the 

superior-most points (2) (distal line), from the superior-most (2) to the inferior-most points (3) (middle line), and from the 

inferior-most (3) to the proximal-most points (4) (proximal line). 

!
2.4. Sample 

!
Clavicle angles (2D) and curvatures (3D) were measured on left clavicles (right 

clavicles when the left was not present or damaged) of Macaca fascicularis (n=20), 

Hylobates lar (n=24), Pongo pygmaeus (n=25), Pan paniscus (n=23), Pan troglodytes 

(n=45), Gorilla gorilla (n=42) and Homo sapiens (n=97) of all ages (0 to 70 years in 
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humans; 0 to 13+ years in apes; 0 to 7+ years in Macaca). A standard three-parameter 

Gompertz model was fitted to the distributions using the self-starting function 

SSgompertz in R version 2.12.2 (2011). The Gompertz function estimates three 

parameters: the asymptotic value (Asym), the value of x at birth (b2), and a numeric 

parameter relating to the rate of growth (b3), for each distribution. We also performed 

regular PGLS regressions with likelihood-fitted Lambda using the package Caper in R 

(Orme et al, 2011) of adult hominoid clavicle angles/curvatures against 12 shoulder 

variables of the humerus, scapula and clavicle (which reflect scapular positioning, 

glenoid fossal orientation as well as overall size and shape of the clavicle; see 

Materials and Methods section for measurement descriptions), in order to understand 

the relationship between clavicle angles/curvatures and other functionally significant 

aspects of shoulder morphology across hominoid species. Additionally, analysis of 

variance (ANOVA) tests were employed to test for differences in proximal and distal 

clavicle angles between species, and between age categories within and across 

species. Boxplots were also employed to visualize the data by species and age 

categories. Age categories were defined as: ‘infants’, represented by individuals prior 

to M1 eruption (7 years for humans, 3.5 years for great apes, and 1.75 for macaques 

and gibbons), ‘juveniles’, represented by individuals prior to M3 eruption (18 years 

for humans, 11 for great apes, 7 years for macaques and 8 years for gibbons), and 

‘adults’, represented by individuals with erupted M3s (Smith 1989). Further details on 

how the measurements were collected, on how individual specimens were aged, and 

on the Gompertz function, can be found in the Materials and Methods Chapter. 

!
2.5. Error  

!
Intraobserver errors for clavicle curvatures were conducted on human clavicles and 

estimated following Tim White’s procedure for estimating error (White et al. 2011) – 

it reports the percentage difference between repeated measurements in relation to 10 

averaged repeat measurements (table 1). For every measurement, intraobserver error 

is approximately 2 to 10 times smaller than the average differences between 

specimens.  
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Table 25 – Error table. The percentage differences for repeat measurements reports the proportional deviation between individual 

repeat measurements and the mean of all repeat measurements. The percentage difference for the total sample the proportional 

average deviation between individual measurements and the sample mean.  

!
3. Results 

!
3.1. Ontogeny 

!
Gompertz growth curves generally did not fit the 2D distributions, but fit the 

‘freecurve’ distributions, except in the case of the orangutans and macaques – the lack 

of very young individuals in these samples does not allow for the Gompertz curve to 

be fitted (figures 52 & 53; table 26). In the instances where the growth curves can be 

fitted, the Gompertz models indicate that the curvatures of the clavicle are more 

curved at birth and gradually flatten out with growth, reaching adult values after M3 

eruption, around the time clavicle length reaches its adult values (figure 55).  

!
Additionally, throughout growth, the 2D distal angles are consistently more acute 

across species than the proximal angle, except in gibbons, where the pattern seems to 

be inverted (i.e., the proximal angle is consistently more acute) (figures 52 & 53). 

Using the ‘freecurve’ method, both proximal and distal curvatures in gibbons show 

considerable overlap, unlike in the rest of the species, where the two ends of the 

clavicle show distinct and non-overlapping degrees of curvatures (figure 54).  

!

Measurement Sample N Mean difference (%) Standard deviation
clav_dist_ant Total 25 3.402 5.392
 Remeasurements 10 1.281 1.491
clav_prox_ant Total 25 2.776 4.355
 Remeasurements 10 1.233 1.633
clav_dist_sup Total 25 4.324 4.533
 Remeasurements 10 0.971 0.665
clav_prox_sup Total 25 2.512 4.233
 Remeasurements 10 0.957 1.576
clav_freecurv_dist Total 25 24.817 0.006
 Remeasurements 10 3.007 0.001
clav_freecurv_prox Total 25 17.684 0.001
 Remeasurements 10 1.758 0.0001
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When the samples are split into age categories, ANOVAs show some differences exist 

between age categories within species for the 2D angle measurements (p>0.05; see 

figure 56-59 & table 27), and clear differences between age classes (in particular 

between infants and juveniles/adults) across all species except M. fascicularis 

(p>0.05) for the ‘freecurves’ (figures 60 & 61 & table 27). These results suggest that 

overall, the clavicle in hominoids undergoes changes in angulation/curvature after 

infancy and that these are better captured by the ‘freecurves’ than the 2D angles. 

Curvatures generally tend to become flatter during infancy and the juvenile period, 

stabilizing into adult values after M3 eruption.  

!
3.2. Linear regressions and PGLS 

!
According to previous studies of the hominoid clavicle, the clavicle’s curvature are 

thought to be associated with scapular positioning and shoulder joint mobility for 

overhead movements (e.g., Voisin 2006). Therefore, each clavicle curvature (3D) and 

angulation (2D) measurements were individually plotted against 12 other shoulder 

variables of the clavicle plus size of the shoulder (geometric mean), humerus and 

scapula, using Phylogenetic Generalized Least Squares (PGLS) regressions.  

!
Results indicate that the proximal and distal curvatures/angles of the clavicle in both 

2D and in 3D views correlate with different and non-overlapping variables, with the 

exception of clavicular thickness (cranio-caudal) and the orientation of the glenoid 

fossa relative to the scapular spine (table 28). In cranial view, the proximal angle (2D) 

of the clavicle is only significantly correlated with the size of the shoulder 

(geo_mean) (p<0.05) (table 28; figure 63), while the distal angle (2D) is significantly 

correlated with 3 out of these 12 variables (p<0.05): the distal ‘freecurve’ of the 

clavicle, humeral torsion, the angulation of the glenoid fossa relative to the scapular 

spine (table 28; figure 64). 

!
!
!

!  160



!
!

!
Figure 52 – Ontogeny of the distal (gray) and proximal (black) 2D angles (log) of the clavicle in ventral view (rda: relative dental 

ages).  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!!!!

!
Figure 53 – Ontogeny of the distal (gray) and proximal (black) 2D angles (log) of the clavicle in cranial view (rda: relative dental 

ages). !
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!!
Figure 54 – Ontogeny of the distal (gray) and proximal (black) ‘freecurves’ (log) of the clavicle (rda: relative dental ages). !!!!!!!!!!!
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Table 26 – Gompertz parameter for the clavicle angle (2D)/curvature (3D) measurements showing estimated value at growth 

completion (log) (Asymptote), estimated value at x=0 (b2), estimated rate of growth (b3), and the Residual Standard Error.

Species  Measurement Asymptote Gompertz b2 Gompertz b3 RSE DF

Homo sapiens freecurve prox -4.655 (+0.060) 0.335 (+0.038) 0.731 (+0.053) 0.284 85

freecurve dist -3.610 (+0.050) 0.538 (+0.065) 0.828 (+0.035) 0.341 85

Pan troglodytes freecurve prox -4.517 (+0.078) 0.250 (+0.030) 0.872 (+0.028) 0.183 39

freecurve dist -3.303 (+0.082) 0.334 (+0.060) 0.815 (+0.046) 0.235 39

Pan paniscus freecurve prox -4.247 (+0.082) 0.144 (+0.030) 0.883 (+0.054) 0.145 19

freecurve dist -3.232 (+0.094) 0.601 (+0.122) 0.782 (+0.054) 0.234 19

Gorilla gorilla freecurve prox -4.797 (+0.086) 0.377 (+0.060) 0.650 (+0.080) 0.329 36

freecurve dist -3.616 (+0.091) 0.311 (+0.055) 0.799 (+0.059) 0.284 36

Pongo pygmaeus freecurve prox - - - - -

freecurve dist - - - - -

Hylobates lar freecurve prox -4.326 (+0.044) 0.406 (+0.102) 0.434 (+0.098) 0.167 20

 freecurve dist -4.082 (+0.240) 0.292 (+0.201) 0.713 (+0.278) 0.587 13

M. fascicularis freecurve prox - - - - -

freecurve dist - - - - -
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Figure 55 – Ontogeny of the distal (gray) and proximal (black) clavicle curvatures (log) and clavicle lengths (log), using 

‘freecurves’ (rda: relative dental ages). The dashed line represents the asymptote and shows that clavicular curvatures stop 

developing around the same time as clavicular length.  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!
Figure 55 cont’d – Ontogeny of the distal (gray) and proximal (black) clavicle curvatures (log) and clavicle lengths (log), using 

‘freecurves’ (rda: relative dental ages). The dashed line represents the asymptote and shows that clavicular curvatures stop 

developing around the same time as clavicular length.  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!
Figure 56 – Boxplot of distal ventral 2D clavicle angles (in degrees) in hominoids and Macaca fascicularis by age categories. 

Significant differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show 

there are no significant differences between age categories for H. lar (p = 0.05, df = 2, F value = 3.5825), P. pygmaeus (p = 0.05, 

df = 2, F value = 0.7541), P. paniscus (p = 0.178, df = 2, F value = 1.8805), P. troglodytes (p = 0.913, df = 2, F value = 0.0898), 

G. gorilla (p = 0.331, df = 2, F value = 1.141); there are significant differences between age categories for H. sapiens (p = 0.02, 

df = 2, F value = 31.8855). A t-test shows significant differences between age categories in M. fascicularis (p =0.005). 
!
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!
Figure 57 – Boxplot of proximal ventral 2D clavicle angles (in degrees) in hominoids and Macaca fascicularis by age categories. 

Significant differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show 

there are no significant differences between age categories for H. lar (p = 0.169, df = 2, F value = 1.9371), P. pygmaeus (p = 

0.072, df = 2, F value = 3.5451), P. troglodytes (p = 0.295, df = 2, F value = 1.2597); there are significant differences between 

age categories for P. paniscus (p = 0.003, df = 2, F value = 7.7496), G. gorilla (p = 0.006, df = 2, F value = 5.6803), H. sapiens 

(p = 0.000, df = 2, F value = 12.122). A t-test shows no significant differences between age categories in M. fascicularis (p 

=0.678). 
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Figure 58 – Boxplot of distal cranial 2D clavicle angles (in degrees) in hominoids and Macaca fascicularis by age categories. 

Significant differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show 

there are no significant differences between age categories for H. lar (p = 0.474, df = 2, F value = 0.770), P. pygmaeus (p = 

0.337, df = 2, F value = 1.2319), P. paniscus (p = 0.636, df = 2, F value = 0.4617), P. troglodytes (p = 0.656, df = 2, F value = 

0.4254), G. gorilla (p = 0.347, df = 2, F value = 1.0861); there are significant differences between age categories for H. sapiens 

(p = 0.030, df = 2, F value = 3.6597). A t-test shows no significant differences between age categories in M. fascicularis (p 

=0.260). 
!
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Figure 59 – Boxplot of proximal cranial 2D clavicle angles (in degrees) in hominoids and Macaca fascicularis by age categories. 

Significant differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show 

there are no significant differences between age categories for P. pygmaeus (p = 0.307, df = 2, F value = 1.3446), P. paniscus (p = 

0.122, df = 2, F value = 2.3408), G. gorilla (p = 0.857, df = 2, F value = 0.155); there are significant differences between age 

categories for H. lar (p = 0.009, df = 2, F value = 5.9746), P. troglodytes  (p = 0.013, df = 2, F value = 4.748), H. sapiens (p = 

0.004, df = 2, F value = 5.9501). A t-test shows no significant differences between age categories in M. fascicularis (p =0.482). 
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Figure 60 – Boxplot of distal ‘freecurves’ (in mm) in hominoids and Macaca fascicularis by age categories. Significant 

differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show there are 

significant differences between age categories for H. lar (p = 0.000, df = 2, F value = 35.408), P. pygmaeus (p = 0.000, df = 2, F 

value = 51.769), P. paniscus (p = 0.001, df = 2, F value = 9.2769), P. troglodytes  (p = 0.000, df = 2, F value = 26.410), G. gorilla 

(p = 0.000, df = 2, F value = 25.637), H. sapiens (p = 0.000, df = 2, F value = 47.212). A t-test shows no significant differences 

between age categories in M. fascicularis (p =0.688). 
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Figure 61 – Boxplot of proximal ‘freecurves’ (in mm) in hominoids and Macaca fascicularis by age categories. Significant 

differences between age categories are marked with asterisks (p<0.001 ***; p<0.01 **; p<0.05 *). ANOVAs show there are 

significant differences between age categories for P. pygmaeus (p = 0.000, df = 2, F value = 78.94), P. paniscus (p = 0.001, df = 

2, F value = 22.605), P. troglodytes  (p = 0.000, df = 2, F value = 20.346), G. gorilla (p = 0.000, df = 2, F value = 13.04), H. 

sapiens (p = 0.000, df = 2, F value = 99.229); there are significant differences between age categories for H. lar (p = 0.491, df = 

2, F value = 0/7365), A t-test shows no significant differences between age categories in M. fascicularis (p =0.897). 
!
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Table 27 – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species, with adjusted p-

values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

!!!

Measurement Species Age Categories diff lwr upr p-adj

clav_angle_prox_ant P. paniscus Infant (4) Juvenile (10) -8.693 -14.831 -2.554 0.005

Infant (4) Adult (8) -9.103 -15.456 -2.749 0.005

 Juvenile (10) Adult (8) -0.410 -5.331 4.511 0.976

G. gorilla Infant (9) Juvenile (18) 3.554 -0.221 7.330 0.068
Infant (9) Adult (12) 5.603 1.525 9.682 0.005

 Juvenile (18) Adult (12) 2.049 -1.398 5.496 0.325

H. sapiens Infant (27) Juvenile (24) 6.029 1.129 10.929 0.012

Infant (27) Adult (41) 8.971 4.620 13.322 0.000

  Juvenile (24) Adult (41) 2.942 -1.465 7.349 0.255

clav_angle_prox_sup H. lar Infant (4) Juvenile (10) 9.079 -1.152 19.310 0.088

Infant (4) Adult (10) 13.972 3.741 24.203 0.007

 Juvenile (10) Adult (10) 4.893 -2.841 12.627 0.270

Pan Infant (5) Juvenile (25) 9.445 1.712 17.178 0.014

Infant (5) Adult (12) 9.645 1.243 18.047 0.021

 Juvenile (25) Adult (12) 0.200 -5.343 5.744 0.996

H. sapiens Infant (27) Juvenile (24) 2.940 -1.318 7.197 0.232
Infant (27) Adult (41) -2.569 -6.349 1.212 0.243

  Juvenile (24) Adult (41) -5.508 -9.337 -1.680 0.003

clav_angle_dist_ant H. lar Infant (4) Juvenile (10) 4.103 -8.245 16.451 0.684

Infant (4) Adult (10) 11.647 -0.701 23.995 0.067
 Juvenile (10) Adult (10) 7.544 -1.790 16.878 0.128

H. sapiens Infant (27) Juvenile (24) 2.287 -2.822 7.396 0.537
Infant (27) Adult (41) 5.207 0.670 9.743 0.020

  Juvenile (24) Adult (41) 2.920 -1.675 7.515 0.289
clav_angle_dist_sup H. sapiens Infant (27) Juvenile (24) 5.341 0.633 10.049 0.022

Infant (27) Adult (41) 2.672 -1.509 6.852 0.285

  Juvenile (24) Adult (41) -2.669 -6.904 1.565 0.294

clav_freecurv_prox H. lar Infant (4) Juvenile (10) -0.013 -0.017 -0.008 0.000
Infant (4) Adult (10) -0.015 -0.020 -0.010 0.000

 Juvenile (10) Adult (10) -0.002 -0.006 0.001 0.300
P. pygmaeus Infant (1) Juvenile (3) -0.015 -0.020 -0.010 0.000

Infant (1) Adult (8) -0.018 -0.023 -0.013 0.000

 Juvenile (3) Adult (8) -0.003 -0.006 0.000 0.071
P. paniscus Infant (4) Juvenile (10) -0.004 -0.009 0.000 0.054

Infant (4) Adult (8) -0.008 -0.012 -0.003 0.001

 Juvenile (10) Adult (8) -0.003 -0.007 0.000 0.068
P. troglodytes Infant (5) Juvenile (25) -0.010 -0.015 -0.006 0.000

Infant (5) Adult (12) -0.015 -0.021 -0.010 0.000

 Juvenile (25) Adult (12) -0.005 -0.008 -0.002 0.003

G. gorilla Infant (9) Juvenile (18) -0.013 -0.018 -0.008 0.000

Infant (9) Adult (12) -0.015 -0.021 -0.010 0.000

 Juvenile (18) Adult (12) -0.002 -0.007 0.003 0.507
H. sapiens Infant (27) Juvenile (24) -0.013 -0.016 -0.009 0.000

Infant (27) Adult (41) -0.013 -0.016 -0.009 0.000

  Juvenile (24) Adult (41) 0.000 -0.003 0.004 0.997
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Table 27 cont’d – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species, with 

adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

In ventral view, the proximal angle (2D) is significantly correlated with the angulation of the 

spine relative to the lateral border of the scapula and the angulation of the glenoid fossa 

relative to the scapular spine (p<0.05) (table 28; figure 62), while the distal angle (2D) is 

significantly correlated with 5 of the 12 shoulder measurements plus shoulder size (geometric 

mean): clavicle thickness (antero-posterior and cranio-caudal), the angulation of the glenoid 

fossa relative to the scapular spine, and glenoid fossa version (p<0.05) (table 28; figure 65). 

!
With regards to the ‘freecurves’, the proximal ‘freecurve’ is significantly correlated with 

clavicle length and clavicle thickness (cranio-caudal) (p<0.05) (table 28; figure 66), while the 

distal ‘freecurve’ is significantly correlated with the distal angle (2D) in cranial view, and the 

angulation of the glenoid fossa relative to the scapular spine (p<0.05) (table 28; figure 67). 

!
A multiple linear regression analysis does show however that substantial collinearity exists 

between each angle (2D) and curvature (3D) measurements, as well as between angle (2D) 

and curvature (3D) measurements and other shoulder variables – with non-significant p-

values for each regression (p>0.05) when more than one variable is added to the multivariate 

model. 

!
!

Measurement Species Age diff lwr upr p-adj Measurement

clav_freecurv_prox P. pygmaeus Infant (1) Juvenile (3) -0.063 -0.078 -0.047 0.000

Infant (1) Adult (8) -0.060 -0.074 -0.046 0.000

 Juvenile (3) Adult (8) 0.003 -0.006 0.012 0.639

P. paniscus Infant (4) Juvenile -0.049 -0.073 -0.024 0.000

Infant (4) Adult (8) -0.066 -0.091 -0.041 0.000

 Juvenile (10) Adult (8) -0.018 -0.037 0.002 0.080

P. troglodytes Infant (5) Juvenile -0.032 -0.048 -0.016 0.000

Infant (5) Adult (12) -0.045 -0.063 -0.028 0.000

 Juvenile (25) Adult (12) -0.013 -0.025 -0.002 0.020

G. gorilla Infant (9) Juvenile -0.022 -0.036 -0.008 0.002

Infant (9) Adult (12) -0.032 -0.047 -0.016 0.000

 Juvenile (18) Adult (12) -0.010 -0.023 0.003 0.167

H. sapiens Infant (27) Juvenile -0.054 -0.065 -0.042 0.000

Infant (27) Adult (41) -0.057 -0.067 -0.047 0.000

  Juvenile (24) Adult (41) -0.003 -0.014 0.008 0.787
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Table 28 – Table of R square values and lambda values (parentheses) from the PGLS regressions of clavicle angles/curvatures against each 

other and 12 shoulder variables (of the clavicle, scapula and humerus). Significant PGLS results marked with asterisks (p<0.001 ***; 

p<0.01 **; p<0.05 *).

!
!
!

  2D angles 3D curvature

Cranial Ventral ‘Freecurves’

Element Measurement Proximal Distal Proximal Distal Proximal Distal

Clavicle clav_length 0.427 (0) 0.083 (1) 0.092 (0) 0.645 (1) 0.698 * (1) 0.014 (1)

clav_thick_ap 0.650 (0) 0.204 (1) 0.018 (0) 0.751 * (1) 0.456 (1) 0.024 (1)

clav_thick_cc 0.511 (0) 0.079 (1) 0.067 (0) 0.754 * (1) 0.740 * (1) 0.022 (1)

clav_torsion 0.010 (0) 0.000 (1) 0.133 (0) 0.097 (1) 0.322 (1) 0.140 (1)

clav_angle_dist_ant 0.323 (0) 0.479 (1) 0.005 (0) - 0.271 (1) 0.346 (1)

clav_angle_dist_sup 0.038 (0) - 0.056 (0) 0.479 (1) 0.051 (1) 0.906 ** 

clav_angle_prox_ant 0.087 (0) 0.053 (1) - 0.005 (1) 0.133 (1) 0.004 (1)

clav_angle_prox_sup - 0.012 (1) 0.087 (0) 0.318 (1) 0.302 (1) 0.014 (1)

clav_freecurv_dist 0.022 (0) 0.906 ** 0.001 (0) 0.661 (0) 0.054 (1) -

 clav_freecurv_prox 0.251 (0) 0.051 (1) 0.170 (0) 0.271 (1) - 0.054 (1)

Humerus hum_torsion 0.202 (0) 0.830 * (0) 0.020 (0) 0.591 (1) 0.001 (1) 0.884 (0)

Scapula glen_angle_latborder 0.002 (0) 0.047 (1) 0.575 (1) 0.038 (1) 0.001 (1) 0.335 (1)

glen_angle_medborder 0.046 (0) 0.003 (1) 0.576 (0) 0.000 (1) 0.004 (1) 0.127 (1)

glen_angle_spine 0.162 (0) 0.836 * (1) 0.032 (0) 0.804 * (1) 0.016 (1) 0.842 ** 

glen_version 0.420 (0) 0.258 (1) 0.073 (0) 0.906 ** 0.140 (1) 0.420 (1)

latborder_spine_angle 0.058 (0) 0.024 (1) 0.689 * (1) 0.135 (1) 0.0845 (1) 0.302 (1)

spine_angle_medborder 0.000 (0) 0.011 (1) 0.731 * (0) 0.003 (1) 0.040 (1) 0.108 (1)

Size geo_mean 0.849 ** (1) 0.1578 (1) 0.016 (0) 0.668 * (1) 0.365 (1) 0.014 (1)
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!
!
!
!
 

!
Figure 62 – PGLS regression of the proximal ventral angle of the curvature against significantly correlated shoulder variables 

(see table 28). 
 

!
Figure 63 – PGLS regression of the proximal cranial angle of the curvature against significantly correlated variables (see table 

28). 
!
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!
!
!
 

!
Figure 64 – PGLS regression of the distal cranial angle of the curvature against significantly correlated variables (see table 28). 
!
!

!
!
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!
Figure 65 – PGLS regression of the distal ventral angle of the curvature against significantly correlated variables (see table 28). 
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!
 

!
Figure 66 – PGLS regression of the proximal freecurve against significantly correlated variables (see table 28). 

 

!
Figure 67 – PGLS regression of the distal freecurve against significantly correlated variables (see table 28). 
!
3.3 Between-species differences in hominoids 

!
Pairwise t-tests indicate that in both the 2D planes and in 3D, the distal and proximal 

curvatures do not significantly correlate with each other (p>0.05), suggesting relative 

independence between the proximal and distal morphologies of the clavicle across 

species (table 29). These results also show that the distal end of the clavicle (both in 

cranial and ventral planes, as well as in the 3D plane) is significantly more curved 
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than the proximal end (p<0.05), which is generally flatter across all species, with the 

exception of gibbons, which do not show significant differences between proximal 

and distal curvatures when using the ‘freecurve’ methodology (p=0.33) (table 29).  
!
Table 29 – Pairwise t-tests of within species differences in proximal/distal angles (2D) and curvatures (3D). 

!
Moreover, ANOVAs testing for across-species differences also show that in all cases, 

for all curvatures/angles, there are significant differences between species (proximal 

ventral 2D angle: p=0.000, df=6, F=15.932; proximal cranial 2D angle: p=0.000, 

df=6, F=41.175; distal ventral 2D angle: p=0.000, df=6, F=27.742; distal cranial 2D 

angle: p=0.000, df=6, F=33.902; proximal freecurve: p=0.000, df=6, F=21.080; distal 

freecurve: p=0.000, df=6, F=35.192; see table 30 for post-hoc tests). Interestingly, 

boxplots of adult curvatures (3D)/angles (2D) across species show that the proximal 

‘freecurves’ are generally more constrained than the distal ‘freecurves’, which appear 

to be more variable across species (figure 68). However this pattern is not observed 

Measurement Species P-value t df

Cranial view (2D) Homo sapiens 0.000 6.190 40

Pan troglodytes 0.000 13.487 14

Pan paniscus 0.000 8.550 10

Gorilla gorilla 0.000 14.254 14

Pongo pygmaeus 0.018 2.833 10

Hylobates lar 0.003 -4.124 9

 Macaca fascicularis 0.000 14.174 8

Ventral view (2D) Homo sapiens 0.000 15.906 40

Pan troglodytes 0.000 5.209 14

Pan paniscus 0.026 2.609 10

Gorilla gorilla 0.000 8.616 14

Pongo pygmaeus 0.000 6.830 10

Hylobates lar 0.000 -8.054 9

 Macaca fascicularis 0.000 11.121 8

Freecurves (3D) Homo sapiens 0.000 -11.792 40

Pan troglodytes 0.000 -13.547 14

Pan paniscus 0.000 -11.460 10

Gorilla gorilla 0.000 -6.175 14

Pongo pygmaeus 0.000 -11.249 10

Hylobates lar 0.332 1.026 9

 Macaca fascicularis 0.000 -11.657 8
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when looking at the 2D curvatures, which show similar ranges of variation across 

species. 

!
Additionally, the distal angles of the clavicle in 2D appear to be flatter in the more 

suspensory gibbons and orangutans, and more acute in the more terrestrial hominoids 

and in the macaques (figure 68). This pattern is less evident when considering the 

distal ‘freecurves’, which instead appear to separate the macaques, with more curved 

distal clavicles, from the hominoids, which exhibit comparatively flatter distal 

clavicles. The same is not observed in the proximal curvature of the clavicle across 

measurements (both 2D and 3D), with no discernible between-species pattern in 

clavicle curvature. 

!
4. Discussion 

!
4.1. ‘Freecurves’ versus traditional 2D angles: methodological considerations 

!
Overall, the ‘freecurve’ methodology seems to yield a clearer ontogenetic signal with 

clearer distinctions between proximal and distal curvatures and between age groups, 

and a substantially more conservative phylogenetic relationship with other shoulder 

variables across species – with only two variables being phylogenetically significant  

(figures 52-54 table 26). Because the ‘freecurve’ protocol combines information on 

clavicular curvatures from both planes, it provides a more holistic approach to the 

analysis of the clavicle’s curves, and therefore the results obtained using this 

methodology are likely more biologically relevant and better suited to tracking 

ontogeny. Conversely, the comparatively reduced number of correlations of the 

‘freecurve’ curvatures with other variables suggests that the 2D curves may be better 

at tracking function.  

!

!  181



!  
Figure 68 – Boxplot of clavicle angles (2D)/curvatures (3D) in adult hominoids and Macaca fascicularis. Boxes represent the 

upper and lower quartile ranges, the black lines, the means, and the whiskers, the highest and lowest values within 1.5 times the 

interquartile range of the upper and lower quartiles; the circles represent outliers within 3 times the interquartile range of the 

upper and lower quartiles.  !!
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Table 30 – Table of ANOVA TukeyHSD post-hoc results of between species differences in angles (2D) and curvatures (3D), with 

adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

!

Measurement Species diff lwr upr p-adj

clav angle prox ant H. sapiens (41) - G. gorilla (15) 4.717 0.075 9.358 0.044

H. lar (10) - G. gorilla (15) -6.047 -12.844 0.751 0.115

M. fascicularis (9)- G. gorilla (15) 2.027 -4.771 8.824 0.972

P. paniscus (11) - G. gorilla (15) -11.743 -19.115 -4.370 0.000

P. troglogytes (15) - G. gorilla (15) -9.202 -15.587 -2.817 0.001

P. pygmaeus (14) - G. gorilla (15) -2.979 -11.222 5.264 0.931

H. lar (10) - H. sapiens (41) -10.763 -17.133 -4.394 0.000

M. fascicularis (9) - H. sapiens (41) -2.690 -9.060 3.679 0.864

P. paniscus (11) - H. sapiens (41) -16.459 -23.440 -9.479 0.000

P. troglogytes (15)  - H. sapiens (41) -13.919 -19.846 -7.991 0.000

P. pygmaeus - H. sapiens (41) -7.696 -15.590 0.198 0.061

M. fascicularis (9) - H. lar (10) 8.073 -0.003 16.149 0.050

P. paniscus (11) - H. lar (10) -5.696 -14.262 2.870 0.421

P. troglogytes (15) - H. lar (10) -3.155 -10.888 4.577 0.882

P. pygmaeus - H. lar (10) 3.067 -6.259 12.393 0.955

P. paniscus (11) - M. fascicularis (9) -13.769 -22.335 -5.203 0.000

P. troglogytes (15) - M. fascicularis (9) -11.228 -18.961 -3.496 0.001

P. pygmaeus - M. fascicularis (9) -5.006 -14.332 4.320 0.674

P. troglogytes (15) - P. paniscus (11) 2.541 -5.702 10.784 0.967

P. pygmaeus - P. paniscus (11) 8.763 -0.990 18.517 0.108

 P. pygmaeus - P. troglogytes (15) 6.223 -2.807 15.252 0.377

clav angle prox sup H. sapiens (41) - G. gorilla (15) -21.713 -26.157 -17.269 0.000

H. lar (10) - G. gorilla (15) -18.351 -24.859 -11.844 0.000

M. fascicularis (9)- G. gorilla (15) -4.964 -11.472 1.543 0.257

P. paniscus (11) - G. gorilla (15) -13.953 -21.012 -6.895 0.000

P. troglogytes (15) - G. gorilla (15) -12.625 -18.738 -6.512 0.000

P. pygmaeus (14) - G. gorilla (15) -9.875 -17.767 -1.983 0.005

H. lar (10) - H. sapiens (41) 3.362 -2.736 9.459 0.645

M. fascicularis (9) - H. sapiens (41) 16.749 10.651 22.846 0.000

P. paniscus (11) - H. sapiens (41) 7.760 1.077 14.442 0.012

P. troglogytes (15)  - H. sapiens (41) 9.088 3.413 14.763 0.000

P. pygmaeus - H. sapiens (41) 11.838 4.281 19.395 0.000

M. fascicularis (9) - H. lar (10) 13.387 5.655 21.119 0.000

P. paniscus (11) - H. lar (10) 4.398 -3.803 12.599 0.675

P. troglogytes (15) - H. lar (10) 5.726 -1.677 13.129 0.242

P. pygmaeus - H. lar (10) 8.476 -0.452 17.405 0.074

P. paniscus (11) - M. fascicularis (9) -8.989 -17.190 -0.788 0.022

P. troglogytes (15) - M. fascicularis (9) -7.661 -15.064 -0.258 0.038

P. pygmaeus - M. fascicularis (9) -4.911 -13.839 4.018 0.648
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Table 30 cont’d – Table of ANOVA TukeyHSD post-hoc results of between species differences in angles (2D) and curvatures 

(3D), with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between 

means (diff). 
Measurement Species diff lwr upr p-adj

P. troglogytes (15) - P. paniscus (11) 1.328 -6.563 9.220 0.999

P. pygmaeus - P. paniscus (11) 4.078 -5.259 13.416 0.844

 P. pygmaeus - P. troglogytes (15) 2.750 -5.895 11.395 0.962

clav angle dist ant H. sapiens (41) - G. gorilla (15) 8.352 3.325 13.380 0.000

H. lar (10) - G. gorilla (15) 26.609 19.246 33.971 0.000

M. fascicularis (9)- G. gorilla (15) -4.314 -11.677 3.048 0.576

P. paniscus (11) - G. gorilla (15) 2.540 -5.445 10.526 0.962

P. troglogytes (15) - G. gorilla (15) 0.012 -6.904 6.928 1.000

P. pygmaeus (14) - G. gorilla (15) 0.698 -8.230 9.627 1.000

H. lar (10) - H. sapiens (41) 18.257 11.358 25.156 0.000

M. fascicularis (9) - H. sapiens (41) -12.666 -19.565 -5.767 0.000

P. paniscus (11) - H. sapiens (41) -5.812 -13.372 1.749 0.249

P. troglogytes (15)  - H. sapiens (41) -8.340 -14.761 -1.920 0.003

P. pygmaeus - H. sapiens (41) -7.654 -16.204 0.896 0.111

M. fascicularis (9) - H. lar (10) -30.923 -39.671 -22.175 0.000

P. paniscus (11) - H. lar (10) -24.068 -33.347 -14.790 0.000

P. troglogytes (15) - H. lar (10) -26.597 -34.973 -18.221 0.000

P. pygmaeus - H. lar (10) -25.910 -36.012 -15.809 0.000

P. paniscus (11) - M. fascicularis (9) 6.855 -2.424 16.133 0.293

P. troglogytes (15) - M. fascicularis (9) 4.326 -4.050 12.702 0.712

P. pygmaeus - M. fascicularis (9) 5.013 -5.089 15.114 0.749

P. troglogytes (15) - P. paniscus (11) -2.529 -11.457 6.400 0.979

P. pygmaeus - P. paniscus (11) -1.842 -12.406 8.722 0.998

 P. pygmaeus - P. troglogytes (15) 0.687 -9.094 10.467 1.000

clav angle dist sup H. sapiens (41) - G. gorilla (15) -3.228 -8.517 2.061 0.528

H. lar (10) - G. gorilla (15) 25.335 17.589 33.080 0.000

M. fascicularis (9)- G. gorilla (15) -6.722 -14.468 1.023 0.134

P. paniscus (11) - G. gorilla (15) -6.997 -15.398 1.404 0.169

P. troglogytes (15) - G. gorilla (15) -9.229 -16.505 -1.954 0.004

P. pygmaeus (14) - G. gorilla (15) 11.778 2.385 21.170 0.005

H. lar (10) - H. sapiens (41) 28.563 21.305 35.820 0.000

M. fascicularis (9) - H. sapiens (41) -3.494 -10.752 3.763 0.775

P. paniscus (11) - H. sapiens (41) -3.769 -11.723 4.185 0.787

P. troglogytes (15)  - H. sapiens (41) -6.001 -12.755 0.753 0.116

P. pygmaeus - H. sapiens (41) 15.005 6.010 24.000 0.000

M. fascicularis (9) - H. lar (10) -32.057 -41.260 -22.854 0.000

P. paniscus (11) - H. lar (10) -32.332 -42.093 -22.570 0.000

P. troglogytes (15) - H. lar (10) -34.564 -43.375 -25.753 0.000

P. pygmaeus - H. lar (10) -13.557 -24.184 -2.931 0.004
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Table 30 cont’d – Table of ANOVA TukeyHSD post-hoc results of between species differences in angles (2D) and curvatures 

(3D), with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between 

means (diff). 

Measurement Species diff lwr upr p-adj

P. paniscus (11) - M. fascicularis (9) -0.275 -10.036 9.487 1.000

P. troglogytes (15) - M. fascicularis (9) -2.507 -11.318 6.304 0.978

P. pygmaeus - M. fascicularis (9) 18.500 7.873 29.126 0.000

P. troglogytes (15) - P. paniscus (11) -2.233 -11.625 7.160 0.991

P. pygmaeus - P. paniscus (11) 18.774 7.661 29.888 0.000

 P. pygmaeus - P. troglogytes (15) 21.007 10.717 31.296 0.000

clav freecurv prox H. sapiens (41) - G. gorilla (15) 0.001 -0.001 0.003 0.434

H. lar (10) - G. gorilla (15) 0.005 0.002 0.008 0.000

M. fascicularis (9)- G. gorilla (15) 0.004 0.001 0.007 0.000

P. paniscus (11) - G. gorilla (15) 0.007 0.004 0.010 0.000

P. troglogytes (15) - G. gorilla (15) 0.004 0.001 0.007 0.000

P. pygmaeus (14) - G. gorilla (15) -0.005 -0.008 -0.001 0.001

H. lar (10) - H. sapiens (41) 0.004 0.001 0.006 0.002

M. fascicularis (9) - H. sapiens (41) 0.003 0.000 0.005 0.017

P. paniscus (11) - H. sapiens (41) 0.006 0.003 0.009 0.000

P. troglogytes (15)  - H. sapiens (41) 0.003 0.000 0.005 0.014

P. pygmaeus - H. sapiens (41) -0.006 -0.009 -0.003 0.000

M. fascicularis (9) - H. lar (10) -0.001 -0.004 0.003 0.998

P. paniscus (11) - H. lar (10) 0.002 -0.001 0.006 0.453

P. troglogytes (15) - H. lar (10) -0.001 -0.004 0.002 0.991

P. pygmaeus - H. lar (10) -0.009 -0.013 -0.006 0.000

P. paniscus (11) - M. fascicularis (9) 0.003 -0.001 0.006 0.182

P. troglogytes (15) - M. fascicularis (9) 0.000 -0.003 0.003 1.000

P. pygmaeus - M. fascicularis (9) -0.009 -0.013 -0.005 0.000

P. troglogytes (15) - P. paniscus (11) -0.003 -0.006 0.000 0.109

P. pygmaeus - P. paniscus (11) -0.012 -0.016 -0.008 0.000

 P. pygmaeus - P. troglogytes (15) -0.009 -0.012 -0.005 0.000

clav freecurv dist H. sapiens (41) - G. gorilla (15) 0.001 -0.007 0.010 0.999

H. lar (10) - G. gorilla (15) -0.022 -0.034 -0.009 0.000

M. fascicularis (9)- G. gorilla (15) 0.045 0.032 0.058 0.000

P. paniscus (11) - G. gorilla (15) 0.013 -0.001 0.027 0.070

P. troglogytes (15) - G. gorilla (15) 0.010 -0.002 0.021 0.206

P. pygmaeus (14) - G. gorilla (15) -0.010 -0.025 0.005 0.455

H. lar (10) - H. sapiens (41) -0.023 -0.035 -0.011 0.000

M. fascicularis (9) - H. sapiens (41) 0.044 0.032 0.056 0.000

P. paniscus (11) - H. sapiens (41) 0.012 -0.001 0.025 0.095

P. troglogytes (15)  - H. sapiens (41) 0.008 -0.003 0.019 0.276

P. pygmaeus - H. sapiens (41) -0.011 -0.026 0.004 0.261

M. fascicularis (9) - H. lar (10) 0.067 0.052 0.082 0.000
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Table 30 cont’d – Table of ANOVA TukeyHSD post-hoc results of between species differences in angles (2D) and curvatures 

(3D), with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between 

means (diff).  

!
First of all, the ‘freecurve’ methodology is better suited than the 2D measurements for 

fitting the Gompertz distributions (figures 53-54). This protocol also produces a 

clearer distinction between the ontogenetic development of the distal and proximal 

curvatures, as opposed to the 2D protocol, which shows a greater amount of overlap 

between curvatures (figures 53-54). This is also the case when the sample is split into 

age categories: the ‘freecurves’ show the clearest pattern and the most differences 

between age categories within species for both proximal and distal curvatures, 

whereas the pattern is unclear for the 2D measurements, with only very few  

significant differences between age categories within species (p>0.05; figures 56-61). 

This is an important observation, since the overall lack of a clear ontogenetic pattern 

in the traditional 2D measurements alone would suggest that clavicle curvatures are 

generally not developmentally plastic, but rather genetically conserved in hominoids 

and macaques (which is in fact the traditionally accepted view, based on angle 

measurements of the human neonate clavicle [Corrigan 1960]). The observation that 

this is not the case when using the ‘freecurve’ protocol leads to the opposite 

conclusion: that the curvatures of the clavicle do seem to develop throughout growth, 

in tandem with clavicular length (figure 62). It is likely that dissecting the curvatures 

into 2D planes fails to capture ontogenetic changes, which isn’t the case with the 

‘freecurve’ protocol that combines information from both planes of view. 

!

Measurement Species diff lwr upr p-adj

clav freecurv dist P. paniscus (11) - H. lar (10) 0.035 0.019 0.051 0.000

P. troglogytes (15) - H. lar (10) 0.031 0.017 0.046 0.000

P. pygmaeus - H. lar (10) 0.012 -0.006 0.029 0.399

P. paniscus (11) - M. fascicularis (9) -0.032 -0.048 -0.016 0.000

P. troglogytes (15) - M. fascicularis (9) -0.036 -0.050 -0.021 0.000

P. pygmaeus - M. fascicularis (9) -0.055 -0.072 -0.038 0.000

P. troglogytes (15) - P. paniscus (11) -0.004 -0.019 0.012 0.992

P. pygmaeus - P. paniscus (11) -0.023 -0.041 -0.005 0.004

 P. pygmaeus - P. troglogytes (15) -0.019 -0.036 -0.003 0.013
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Secondly, and perhaps more relevantly, the ‘freecurve’ protocol yields more 

conservative results with regards to the phylogenetic regressions, with both curvatures 

being correlated with only two shoulder variables each (table 28). In contrast, the 2D 

angles correlate with more shoulder variables across all four angles allowing for a 

wider variety, and thus more complex, functional interpretations. This is also an 

important observation since the differences in these PGLS correlations will not only 

lead to important differences in the functional interpretations of clavicle morphology 

in extant hominoids, but will also significantly impact the predictive models that can 

be built using these phylogenetic correlations. For example, according to the 

‘freecurve’ PGLS results, clavicular length and cranio-caudal thickness are good 

predictors of proximal curvature in hominoids, while only one variable can 

adequately predict the distal curvature. This is not the case with the 2D curvatures, 

where a number of shoulder variables, including size, are estimated to be good 

predictors for both curvatures in both cranial and ventral views.  

!
Differences in the PGLS regressions between protocols may also result from 

differences in the nature of the measurements collected (angles versus curvatures). 

This may explain why we do not see differences in the range of variation between 

proximal and distal curvatures in the 2D angles, but we do see them with the 

‘freecurve’ measurements (figure 68). When the results of the PGLS regressions for 

the 3D ‘freecurve’ measurements are compared to those obtained with the 2D angle 

measurements, we notice that the distal ‘freecurve’ correlates with the orientation of 

the glenoid fossa relative to the scapula spine, which is also true for the proximal and 

distal 2D angles in cranial view. The proximal ‘freecurve’ correlates with clavicle 

thickness (cranio-caudal) and length, which is also true for the proximal ventral 2D 

angle (table 28). However, all other PGLS correlations obtained with the 2D angles 

disappear with the ‘freecurve’ measurements, suggesting that this protocol is more 

conservative than the traditional method. 

!
Lastly, with regards to between-species differences in adult individuals, the 

‘freecurve’ distal measurements produce less extreme distinctions between hominoid 
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species. Indeed, in 2D there is a rather substantial distinction between the suspensory 

gibbons (and orangutans to a lesser extent) and the rest of the primates in the distal 

angle, and a more subtle distinction between Macaca and the hominoids – with the 

gibbons possessing significantly flatter distal clavicles (p<0.05) and Macaca 

possessing more curved distal clavicles compared to the rest of the primates albeit not 

significantly different in all cases (figure 68 & table 29). When using the ‘freecurve’ 

method, on the other hand, the differences between Macaca and hominoids are 

exacerbated relative to the differences between the suspensory Asian apes and the 

terrestrial African apes and humans, which are instead attenuated, with significant 

differences between Macaca fascicularis and the rest of the primates (p<0.05) (figure 

68 & table 29). However, there are also significant differences in proximal and distal 

angles (2D)/curvatures (3D) between species within the great apes. These results 

suggest that there is a clade-specific pattern in hominoid distal curvature that is 

distinct from that of monkeys, with further between-species differences within 

hominoids that seem to distinguish broadly between locomotor types. Additionally, 

the proximal ‘freecurves’ indicate less range of variation in curvature across species 

compared to the distal ‘freecurves’, which is not observable when looking at the 2D 

measurements (figure 68). This is also a significant observation since based on the 

‘freecurves’ we can conclude that the proximal curvature is more genetically 

conserved than the distal curvature, which is information that is lost when considering 

the 2D measurements. These differences in results between protocols likely emanate 

from the fact that the ‘freecurve’ methodology captures information on curvature from 

both planes combined, thus the boxplot of between-species differences in distal 

‘freecurves’ essentially summarizes the information obtained from the two 2D distal 

curvatures (figure 68). As a result, this boxplot shows more pronounced differences 

between clades (Macaca and hominoids) and less pronounced differences between 

hominoid species (suspensory apes and quadrupedal apes).  

!
It is important to note, however, that whether one protocol should be favoured over 

the other should depend on 1) how well the protocol reflects the biological 

significance of the clavicle’s curvatures, and 2) whether it can be applied across 
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different (primate) species. I suggest that because the ‘freecurve’ protocol combines 

information on clavicular curvatures from both planes, rather than deconstructing the 

anatomy of the clavicle and forcing it to adhere to two-dimensional planes of view, it 

allows for a more biologically relevant and holistic framework for the analysis of 

clavicular curvatures. Additionally, while the flatter cranio-caudal anatomical 

configuration of the human clavicle permits it to be placed into two perpendicular 

planes fairly easily, this is not the case for the other hominoid species whose clavicles 

have a more ‘twisted’ appearance (see for example the gorilla, gibbon or macaque 

clavicle, figure 69). Thus, while it may not be an issue for humans, forcing the non-

human hominoid clavicles to adhere to two perpendicular 2D planes may fail to 

reflect the three-dimensionality of these curves, which are likely functionally relevant. 

In fact, these results indicate that the only significant correlation between clavicle 

‘freecurves’ and 2D angles across hominoid species occurs between the distal 

‘freecurve’ and the distal cranial angle (2D) (table 2), suggesting that most of the 

curvature in the distal clavicle in hominoids occurs in cranial view. Conversely, the 

lack of relationship between the proximal ‘freecurve’ and the proximal 2D angles of 

the hominoid clavicle, suggests that the proximal curvature is more complex and 

doesn’t necessarily adhere to one particular 2D plane, even though it can essentially 

be forced into both a cranial and a ventral plane. Moreover, because, unlike the 

‘freecurve’ protocol, the traditional 2D planes do not reflect homologous anatomical 

landmarks/structures across hominoid and primate species, I therefore suggest that 

this approach should be favoured, at least in some cross-comparative contexts, over 

the traditional 2D quantification of clavicular curvatures. 

!
On the other hand, the more traditional 2D method allows isolating specific aspects of 

clavicular curvature thus facilitating functional interpretations, as shown by the PGLS 

regressions and boxplots (tables 28). The 2D angle measurements correlate with more 

variables than the ‘freecurve’ measurements (table 28) and different planes of view 

highlight different between species differences in proximal and distal curvature thus 

allowing to pint-point which aspects of clavicle morphology best distinguish between 

species. Thus, there are both advantages and disadvantages to using either method, 
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and these should be chosen in function of the question being addressed. Overall it 

appears that the ‘freecurve’ methodology is better suited to capture ontogenetic 

changes, while the 2D method is better suited for analysing more detailed aspects of 

function. 

 

!
Figure 69 – Adult left clavicles in hominoids and Macaca fascicularis (sternal view), showing the twisted S-shape appearance of 

the clavicle in the various species.. 
!
4.2. Ontogeny of the clavicle’s curvatures 

!
The application of Gompertz growth curves to the ‘freecurve’ measurements reveals 

that clavicular curvatures in hominoids develop throughout ontogeny, with both 

proximal and distal curvatures becoming increasingly flatter with growth (figure 55). 

This finding contradicts the traditional view that the clavicle is ‘ontogenetically 

stable’, changing little from the neonate stage into its adult form (Corrigan 1960). 

These results are likely due to differences in how curvature is measured since the lack 
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of a clear ontogenetic pattern in the traditional 2D measurements in the present study 

would also suggest that clavicle curvatures are not developmentally plastic, but rather 

genetically conserved in hominoids and macaques (figure 52 & 53). The ‘freecurve’ 

results indicate that the curvatures of the clavicle are more curved at birth and 

gradually flatten out with growth, reaching adult values after M3 eruption (figure 55). 

These results also show that infants are significantly different from the juveniles and 

the adults specimens across species (figures 56-61), suggesting that overall, the 

clavicle in hominoids undergoes changes in curvature after infancy (7 years for 

humans, 3.5 years for great apes, and 1.75 for macaques and gibbons), becoming 

flatter during juvenility, at which point it attains near-adult values form. This suggests 

that the clavicle is developmentally plastic, with the majority of change occurring 

before the juvenile stage. These changes in clavicular curvature during ontogeny are 

likely to reflect differences in the infant thoracic shape; Corrigan (1959), for example, 

found that in humans, the neonate clavicle is positioned slightly higher and more 

anteriorly due to the elevated position of the shoulder and the rotundity of the thorax 

in neonates. Indeed, the relatively large sagittal diameter of the thorax in newborn 

humans results in a more ventrally directed glenoid cavity compared to that in the 

adult – which may be why, functionally, it is more appropriate to crawl before 

walking (Ljunggren 1979). On the other hand, clavicular curvatures remain 

proportionally stable relative to each other throughout growth (figure 55), implying 

that these curvatures are ontogenetically stable all the while the clavicle is still 

developing. This stability in clavicular curvatures is in fact quite remarkable since the 

clavicle is the first bone to ossify and the last bone to fuse, with the lateral epiphyses 

appearing and uniting around 17-19 years and the medial epiphyses fusing during the 

mid to late 20’s in humans (Todd and D'Errico 1928; Scheuer and Black 2000; 

Langley‐Shirley and Jantz 2010). This is consistent with the observation that the 

‘sagittal diameter-length index’ in human clavicles is maintained throughout life 

(Terry 1932; Corrigan 1960), suggesting that there are elements of the clavicle that 

are structurally conserved throughout ontogeny.  

!
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The idea that the clavicle is ontogenetically conserved is therefore not entirely 

falsified here; it is likely that because of its role in both 1) protecting the thoracic inlet 

and the important soft-tissue structures passing through it, and in 2) stabilizing the 

shoulder joint during pulling and weight-bearing, it is important for the clavicle’s 

curvatures to be partially conserved in shape and proportion relative to the thorax and 

the other shoulder elements. Interestingly, among the hominoids, gibbons appear to be 

derived in their development of clavicular curvature, having similar degrees of 

curvature on both the proximal and distal ends of the clavicle throughout growth, 

unlike the rest of the hominoids whose distal curvature is substantially more curved 

from birth (figure 55). This is also evident when considering the boxplots of adult 

distal curvature, particularly in 2D, which show that the distal angles of the clavicle 

are visibly flatter in the more suspensory gibbons (and to a lesser extent in 

orangutans), and more acute in the more terrestrial hominoids and particularly in the 

macaques (figure 68). This may be due to the fact that gibbons are unique among apes 

in having a rather flat distal clavicle, which is thought to be associated with the 

demands of brachiation and the need for increased rigidity of the shoulder girdle 

(Voisin 2006). This flat distal joint allows for the formation of a coracoclavicular 

joint, which is unique to this species, and which limits shoulder movement outside the 

vertical plane (Voisin 2006). Conversely, the more curved distal clavicles in more 

terrestrial primates are thought to provide increased mobility at the shoulder joint by 

allowing a greater range of scapular rotation (Voisin 2006).  

!
4.3. Phylogenetic and functional significance of the clavicle’s curvatures:  

!
These results indicate that the two protocols used in this study produce significant 

differences in the PGLS regressions, with the ‘freecurve’ methodology yielding more 

conservative results (i.e. correlating with less variables), likely because this method 

incorporates information on clavicular curvature from both planes. The more 

traditional 2D curvature measurements, on the other hand, because they deconstruct 

clavicular curvature into two distinct planes, produce more complex results with both 

the distal and proximal 2D angles correlating with a greater variety of shoulder 
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variables (table 28). Interestingly, the 2D angles and the 3D ‘freecurves’ correlate 

largely with different and non-overlapping variables suggesting that the two methods 

impact functional interpretations of clavicular curvature (table 28). 

!
Indeed, using the ‘freecurve’ protocol, the significant correlations are between the 

proximal curvature, clavicular length and midshaft clavicular thickness (cranio-

caudal) (table 28); the distal curvature significantly correlates with the angulation of 

the scapular spine relative to the glenoid fossa, as well as the distal cranial 2D angle, 

(table 28). These results show that across hominoids, the flatter the proximal 

curvature is, the thicker and longer the clavicle, and conversely, the more curved the 

proximal curvature is, the thinner and shorter the clavicle (table 28 & figure 66). This 

is in line with previous observations that the length and thickness of the clavicle are 

genetically (and ontogenetically) conserved (Terry 1932; Corrigan 1959), and the 

present results seem to suggest that this may also be the case for the proximal 

curvature. According to these results, orangutans have the longest, thickest and flattest 

clavicles among hominoids, while it is shorter, thinner and more curved in gibbons, 

chimpanzees and humans, with gorillas being intermediate between the two (figure 

66). The inverse relationship between the degree of curvature and clavicular thickness 

supports the observation that increased sinuosity of the clavicle increases its 

flexibility and mobility, but also its weakness and likelihood of breakage (Harrington 

Jr et al. 1993; Mays et al. 1999; Voisin 2006). Voisin (2006) suggests that a marked 

proximal curvature of the clavicle is advantageous for powerful and rapid arm 

elevation such as seen in gibbons, chimpanzees and humans because it increases the 

action of the pectoralis major muscle (an important arm flexor) by acting as a 

crankshaft which in turn allows the glenoid fossa of the scapula to rotate cranially (the 

greater the curvature, the more pronounced the crankshaft effect) (Stern et al. 1980; 

Jungers and Stern 1981; Gagey 1985; Voisin 2006). On the other hand, primates like 

the gorilla and other terrestrial primates who are less frequently tree-dwelling than 

chimpanzees, have a less pronounced proximal curvature, and in fact, a pronounced 

proximal curvature is not advantageous for terrestrial quadrupeds because it increases 

the risk of clavicle fracture (Olivier 1953; Hill 1966, 1970, 1974; Voisin 2006). The 
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pronounced curvature of the human clavicle, for example, increases the crankshaft 

effect but also increases the weakness of this bone in flexion and torsion (Harrington 

Jr et al. 1993; Mays et al. 1999; Voisin 2006). It is therefore not surprising that the 

clavicle is one of the most commonly fractured bones in humans (Andermahr et al. 

2007), with 70-80% of fractures occurring on the middle third of the shaft (Harrington 

Jr et al. 1993; Andermahr et al. 2007; Haque et al. 2011). Chimpanzees, on the other 

hand, who also frequently walk on the ground, have a less pronounced proximal 

curvature and thus a stronger clavicle than humans (Voisin 2006). Interestingly, 

Pongo shows a pattern that is very derived relative to the rest of the hominoids (very 

long, thin and flat). In particular, the orangutan clavicle is long when compared to that 

of African apes and humans, and according to other studies this is still the case when 

the clavicle is scaled to trunk length (e.g., Schultz 1968). Schultz (1930) suggests that 

the lengthened clavicle in this species results from the unusually high position of the 

shoulders, which are situated high above the suprasternal notch of the neck, and the 

need to bridge the long gap between the sternum and acromial process of the scapula 

as a result of dorsally placed scapular on a particularly dorsoventrally flattened upper 

thoracic cage (Kagaya et al. 2008; Kagaya et al. 2010). 

!
Because of its role in protecting the thoracic inlet as well as its role as a crankshaft for 

shoulder elevation, it is possible that selective pressures acting on the hominoid 

shoulder joint stabilize the architecture of the proximal curvature of the clavicle 

relative to its length and thickness in hominoids and perhaps primates in general. This 

idea is supported by the more constrained ranges of variation found in adult proximal 

curvature compared to the distal curvature (‘freecurve’), which suggest that the 

proximal curvature is more genetically conserved than the distal curvature in 

hominoids and Macaca (figure 68). Indeed, the present results suggest that the distal 

curvature (’freecurve’) is not associated to length and thickness, but rather to a more 

functional trait: the angle of the scapular spine relative to the glenoid fossa – with 

flatter curvatures being associated with more cranially oriented spines relative to the 

glenoid fossa (such as in Hylobates), and more curved clavicles associated to more 

laterally oriented spines (African apes and humans) (table 28; figure 67) – suggesting 
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that this curvature is more functionally significant (more cranially directed spines 

being associated to more suspensory lifestyles and more laterally oriented spines 

associated to more quadrupedal postures). These results are also largely in line with 

previous observations that the distal angle of the clavicle is more variable between 

primate species because it is associated with range of motion and mode of 

locomotion: according to Voisin (2006), the distal curvature in apes is essential in 

allowing a greater range of movements of the shoulder compared to other primates, 

and is particularly important for the pendulum movement in gibbons. Indeed, gibbons 

are unique among hominoids in having a virtually absent distal curvature, and 

therefore the presence of a coracoclavicular joint (Voisin 2006). With this joint, the 

scapula-clavicle complex becomes more rigid and thus more efficient for brachiation 

because it increases force diffusion and limits movement outside the vertical plane of 

the supporting hand (Voisin 2006). In quadrupedal primates and great apes on the 

other hand, a pronounced distal curvature is necessary because it allows a greater 

range of movements of the shoulder as the scapula-clavicle complex does not need to 

be very rigid (Voisin 2006).  

!
These results thus seem to suggest that, on the one hand, the proximal curvature is 

phylogenetically conserved – perhaps because of its role in shoulder joint stability and 

in protecting the thoracic inlet –, while on the other hand, the distal curvature is more 

functionally driven – because of its association with locomotion and arm elevation. 

This in turn suggests the existence of a relative independence between distal and 

proximal clavicle curvatures in primates. This idea is further supported by the PGLS 

results, which indicate that the proximal and distal curvatures of the clavicle do not 

significantly correlate with each other (both in 2D and in 3D) and that they correlate 

with non-overlapping shoulder variables (table 28). This implies that different forces 

act on either end of the clavicle to shape its morphology – likely due to the different 

functions of these curvatures. The combination of these two morphologies (distal and 

proximal) thus influences force diffusion at the shoulder joint and by consequence, 

locomotion, in each primate species (Voisin 2006). The present results further show a 

lack of integration between clavicle curvatures and the other shoulder elements, thus 
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suggesting a relative independence between the evolution of clavicle morphology and 

the rest of the shoulder complex. This is in line with Larson’s (2007) observations on 

the evolution of the hominin shoulder girdle, where she describes the mosaic patterns 

of shoulder morphologies in various hominin species. In particular, the elongation of 

the clavicle seems to take place relatively late in the hominin lineage (after Homo 

erectus), well after the scapula has taken its more modern configuration (being 

positioned low on the thorax and with laterally facing glenoid fossae). 

!
The more traditional 2D curvature measurements, on the other hand, produce slightly 

more complex results, with both the distal and proximal 2D angles correlating with a 

greater variety of shoulder variables, particularly with relation to the glenoid fossa, 

the orientation of the scapular spine, and the overall size of the shoulder girdle 

(geometric mean) (table 28). Specifically, the results of the PGLS regressions show 

that in cranial view, the proximal curvature is associated with increased size of the 

shoulder (geometric mean), with flatter curvatures associated with larger shoulder 

sizes, and more curved clavicles to smaller shoulder sizes (table 28 & figure 63). On 

the other hand, the distal curvature is associated with the distal ‘freecurve’, humeral 

torsion, and the angle of the scapular spine relative to the glenoid fossa (figure 64). 

The present results show that flatter distal clavicles in this plane are associated with 

decreased humeral torsion, and more cranially oriented scapular spines relative to the 

glenoid fossa and larger shoulder size. These results suggest that in this plane, the 

proximal curvature mainly shows a relationship with shoulder size – with the 

exception of humans who share exceptional similarities with gibbons in the degree of 

proximal curvature despite their differences in size –, while the distal curvature 

mainly shows a relationship with humeral torsion and the orientation of the scapular 

spine. The latter is likely associated with the angle of pull of the deltoid muscle 

relative to the position of the glenoid fossa – more terrestrial African apes tend to 

have more lateral facing glenoid fossae and scapular spines, while the more 

suspensory gibbons, and to a lesser degree orangutans, possess more cranially facing 

glenoid fossae and spines (Alemseged et al. 2006). The orientation of both structures 

in Asian apes produces smaller glenoid-to-scapular spine angles than those of African 
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apes and humans. These results thus indicate that in this plane of view, a curved distal 

end, which has been associated to shoulder mobility, is found in African apes and 

humans, while a flatter distal curvature, which is thought to be associated with 

shoulder rigidity, is typical of gibbons and to a lesser extent, orangutans (Voisin 

2006). The observation that the increased distal curvature in African apes and humans 

is associated with increased humeral torsion, is also in line with the presence of 

increased shoulder mobility in these species likely leading to greater rotational 

stresses on the head of the humerus. Additionally, the exceptional similarities between 

humans and gibbons in the degree of proximal curvature may relate to the demands 

for powerful and rapid arm elevation in these species: the greater the curvature, the 

more pronounced the crankshaft effect (Voisin 2006), as well as the absence of 

weight-bearing under compression postures. 

!
In ventral view, the PGLS results show that the distal curvature is associated with 

clavicle thickness (cranio-caudal and antero-posterior), glenoid version, the angle of 

the scapular spine relative to the glenoid fossa and size of the shoulder (geometric 

mean) (table 28 & figure 65). The present results indicate that the more curved the 

distal clavicle is in this plane, the thicker it is (both cranio-caudally and antero-

posteriorly), the more ventrally the glenoid fossa is rotated (version), the more 

cranially oriented the spine is relative to the glenoid fossa, and the smaller the overall 

size of the shoulder. The proximal curvature, on the other hand, is associated with the 

angulation of the scapular spine relative to the lateral and medial borders of the 

scapula – the more curved the proximal curvature, the more cranially oriented the 

spine is relative to the lateral border of the scapula (figures 62). This is the case in 

Pan and gibbons whose scapular spine and lateral border are largely parallel to each 

other and with a cranially facing glenoid fossa, which is a condition found in 

suspensory species (Churchill et al. 2013). Conversely, Pongo, Gorilla and humans 

have larger spine-to-lateral border angles and therefore more laterally facing scapular 

spines, typical of more terrestrial species (Churchill et al. 2013).  

!
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In combination, these results on the 2D angles suggest that the proximal ventral angle 

is more functionally informative than the proximal cranial angle which only correlates 

with overall shoulder size, while the distal angle (in both planes) relays more 

functionally relevant information, being correlated to many aspects of glenoid and 

scapular spine orientation that match with aspects of shoulder mobility/rigidity and 

locomotor patterns among hominoids. In particular, the orientation of the scapular 

spine relative to the glenoid fossa seems to be especially important since 3 of the 4 

angles show a relationship with this variable. Interestingly, none of the measurements 

(including the ‘freecurve’ measurements) show a relationship with clavicular torsion, 

which is slightly unexpected given the twisted appearance of the clavicle, or the 

orientation of the glenoid fossa relative to the scapular borders, which is also slightly 

unexpected given the emphasis on the importance of the ‘bar-glenoid’ angle in the 

literature (e.g., Inouye and Shea 1997; Haile-Selassie et al. 2010). 

!
These 2D results also suggest that while in cranial view, it is the increased flatness of 

the curvature that is associated with increased shoulder size (geometric mean), in 

ventral view it is rather its increased curvature that is associated with this variable. 

This indicates that this curvature follows opposite patterns between planes: the more 

sinuous it is in ventral view, the flatter it is in cranial view, and vice versa – the former 

being more typical in gibbons, and the latter more typical of African apes. This would 

also explain the lack of correlation between the proximal ‘freecurve’ and the proximal 

2D angles (table 28). The present results further show that in either plane, the 

proximal and distal curvatures do not significantly correlate with each other, and both 

the distal and the proximal curvatures are associated with different and non-

overlapping shoulder variables, supporting the idea of relative independence between 

both ends of the clavicle. Additionally the clavicle’s curvatures show phylogenetic 

correlations with other elements of the shoulder, particularly the scapular spine and 

glenoid fossa, which suggest a degree of integration with these shoulder structures, 

particularly when the clavicle’s curvatures are dissected into two planes of view. 

These results are in line with Voisin’s (2006) observations about clavicle curvature 

and scapular position. Namely, the author suggests that clavicular curvatures in 
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ventral view provide information about the position of the scapula relative to the 

thorax in primates, and that is cranial view these relate information regarding the 

parameters of arm elevation.  

!
Overall, these results suggest that even though some of this information is captured by 

the ‘freecurve’ methodology, dissecting the clavicle into two perpendicular 2D planes 

provides slightly more detailed functional information about clavicle morphology in a 

phylogenetic context. Thus, while the ‘freecurve’ method may be better suited for 

capturing ontogenetic development, the more traditional 2D method appears to be 

better suited for capturing functional information. 

!
5. Conclusion 

!
The aim of this study was to propose a new and more streamlined 3D protocol 

(‘freecurve’) for analysing clavicle curvatures across primate species, as an alternative 

to forcing the clavicle into 2D planes. Overall, the ‘freecurve’ methodology yields a 

clearer ontogenetic signal with clearer distinctions between proximal and distal 

curvatures and between age groups, but the traditional 2D method allows for clearer 

functional interpretations. These differences in results between protocols likely 

emanate from the fact that the ‘freecurve’ methodology captures information on 

curvature from both planes combined, therefore exacerbating some of the differences 

between species/curves/variables while attenuating others.  

!
With regards to the ontogenetic development of the clavicle’s curvatures, the present 

findings suggest that the clavicle is both partially developmentally plastic and 

partially ontogenetically conserved, contradicting the traditional view that the clavicle 

is ontogenetically stable (Corrigan 1959). While on the one hand there are visible 

changes in clavicular curvature prior to M1 eruption across hominoids, on the other 

hand, clavicular curvatures remain proportionally stable relative to each other and to 

clavicular length throughout growth, with adult curvatures being established around 

the time the clavicle ceases growing in length. This suggests that the clavicle’s 
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curvatures are genetically constrained to a certain extent, and suggests that there are 

elements of the clavicle that are structurally conserved throughout ontogeny.  

!
With regards to the phylogenetic analyses, the present findings suggest that the 

clavicle’s curvatures do significantly correlate with aspects of scapular morphology, 

in particular the orientation of the scapular spine relative to the glenoid fossa, as well 

as to the size of the clavicle (namely cranio-caudal thickness) and overall shoulder 

girdle size. Moreover, results indicate that the proximal curvature is more often 

associated with elements of size (clavicle thickness, length and shoulder size), and 

that the distal curvature is more often associated to functionally relevant variables. 

These results seem to indicate that, on the one hand, the proximal curvature is 

phylogenetically conserved – perhaps because of its role in shoulder joint stability and 

in protecting the thoracic inlet –, while on the other hand, the distal curvature is more 

variable and plastic – perhaps because of its association with locomotion and arm 

elevation. This idea is supported by the more constrained ranges of variation found in 

adult proximal curvature compared to the distal curvature. The lack of correlation 

between proximal and distal curvatures further suggests the existence of a relative 

independence between distal and proximal clavicle curvatures in primates. 

!
Because of its role in protecting the thoracic inlet as well as its role as a crankshaft for 

shoulder elevation, it is possible that selective pressures acting on the hominoid 

shoulder joint stabilize the architecture of the proximal curvature of the clavicle 

relative to its length and thickness (both ontogenetically and phylogenetically) in 

hominoids and perhaps primates in general. Conversely, the distal curvature shows 

first and foremost, a clade-specific pattern in hominoid distal curvature that is distinct 

from that of monkeys, with further between-species differences within hominoids 

distinguishing between locomotor types (suspensory Asian apes versus terrestrial 

African apes and humans). These results are also largely in line with previous 

observations that the distal angle of the clavicle is more variable because it is 

associated with range of motion and mode of locomotion: with flatter curvatures (as 

seen in Asian apes) increasing shoulder rigidity and stability for suspension and 
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brachiation, while increased curvatures (as seen in the more terrestrial African apes 

and humans) allow for a greater range of movement at the shoulder joint compared to 

other primates. 

!
Overall, these results advance our understanding of clavicle morphology in extant 

hominoids and provide a simple and reproducible 3D protocol for analysing 3D 

curvatures that can be applied to clavicles across species, which should be particularly 

useful when tracking ontogenetic development of the clavicle, even though the more 

traditional 2D methods capture more detailed functional information. This method 

should additionally be useful for quantifying curvatures in fossil specimens, whose 

incomplete clavicles may be difficult, if not impossible, to place in 2D planes.

!  201



– Chapter 7 – 
!

Developmental changes in the hominoid scapular angles: does the human pattern 

really diverge from the apes’?  

!
!

1. Introduction 

!
Of the three shoulder elements, the primate scapula is by far the most variable in 

shape and, because it is suspended almost entirely by muscles, much of this variation 

corresponds closely with locomotor habits, often irrespective of phylogeny (Schultz 

1930; Inman and Abbot 1944; Ashton and Oxnard 1964; Oxnard 1967, 1969; Roberts 

1974; Larson 1993; Young 2008; Green and Alemseged 2012), with many studies 

linking variation in primate scapular form to musculoskeletal, behavioural, locomotor, 

and/or ecological variables (Ashton and Oxnard 1963; Oxnard 1967, 1969, 1977; 

Roberts 1974; Ashton et al. 1976; Larson and Stern 1986, 1989, 1987, 1992; Shea 

1986; Larson et al. 1991; Larson 1993, 1995; Taylor 1995, 1997; Young 2008). Within 

hominoids, even though there are remarkable similarities in scapular morphology 

(cranio-caudally elongated scapular blades, with large scapular fossae, and cranial 

oriented glenoid fossae that are wide, round and flat [Schultz 1930; Miller 1933; 

Ashton and Oxnard 1963, 1964; Ashton et al. 1965, 1971, 1976; Oxnard 1963, 1967]), 

mostly as a result of scapular repositioning onto the dorsum (Miller 1933; Erikson 

1963; Le Gros 1959; Roberts and Davidson 1975; Schultz 1969; Cartmill and Milton 

1977; Cartmill 1985; Aiello and Dean 1990; Gebo 1996), there are also important 

differences between species that directly reflect the type and frequency of locomotor 

behaviours, with the more suspensory species exhibiting more cranio-caudally 

elongated scapular bodies and more cranially directed glenoid cavities and spines, 

while the more terrestrial species exhibit mesio-laterally broader scapulae and more 

laterally facing glenoid cavities and spines (a configuration which is particularly 

evident in humans) (e.g., Schultz 1930; Larson and Stern 1986; Aiello and Dean 

1990; Larson 1995).  
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!
Although a variety of metrics have been used in cross comparative studies of scapular 

morphology (e.g., Roberts 1974; Young 2006, 2008; Shea 1986; Larson 1995; Green 

and Alemseged 2012), some authors have suggested that it is potentially more 

informative to explore geometric relationships within the bone’s primary 

infrastructure – i.e., the relative spatial orientations of its glenoid plane (glenohumeral 

joint), axillary border (rotator cuff), spine (trapezius, infraspinatus, and 

supraspinatus), and vertebral border (rhomboids and serratus anterior) (e.g., Hailie-

Selassie 2010) – and in fact, one of the most diagnostic features in hominoid scapular 

morphology is the orientation of the glenoid fossa and the scapular spine relative to 

the scapular body, which are associated with frequent use of overhead movements in 

suspensory species (e.g., Stern Jr and Susman 1983; Inouye and Shea 1997). Indeed, 

the orientation of the glenoid cavity of the scapula which may be an adaptation to 

more effectively distribute strain over the joint capsule during climbing and reaching 

when the upper limb is loaded (Hunt 1991), has been granted great importance in 

assessing locomotor behaviour in hominoid primates (Ashton and Oxnard 1964; 

Roberts 1974; Jenkins et al. 1978), and studies have utilised this measurement to 

make inferences about fossil hominid locomotion (Inouye and Shea 1997; Morwood 

et al. 2005; Larson et al. 2007b; Haile-Selassie et al. 2010; Green and Alemseged 

2012; Churchill et al. 2013). The orientation of the scapular spine is also thought to be 

associated with the degree of arm elevation in apes because functionally, the obliquity 

of the spine is of aid to the trapezius and deltoid in initiating abduction movements of 

the shoulder and arm (Miller 1933; Schultz 1969). Additionally, the orientation of the 

spine is thought to be the principal determinant of dorsal scapular fossa shape, which 

influences the size and direction of pull of the infraspinatus and supraspinatus 

muscles and consequently, the proportion of the supraspinous-to-infraspinous muscle 

sizes (Larson et al. 1991). In particular, a narrow infraspinous region with an 

obliquely oriented scapular spine is thought to be a more effective configuration for 

the infraspinatus’ role in stabilizing the shoulder joint during suspensory activities 

(Larson and Stern 1986; Larson 1995). In contrast, an enlarged infraspinous fossa 

allows the muscle to pass broadly behind the humeral head, which facilitates joint 
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stability when the arm is loaded from below as individuals engage more regularly in 

knuckle-walking activities (Larson 1995; Green and Alemseged 2012).  

!
Because of this rather clear association between form and function in scapular 

morphology, it is assumed that forelimb function and ontogenetic shifts in locomotor 

behaviour have a significant influence in the development of scapular shape (Schultz 

1930, 1956; Oxnard 1967; Shea 1986; Taylor 1995; Inouye and Shea 1997; Green and 

Alemseged 2012; but see Young 2006, 2008; Green 2013). Such ontogenetic studies 

are important because they provide context for interpreting the locomotor habits of 

extinct hominids, which is of particular interest in the case of australopithecines, 

where some debate still exists over the importance of climbing and arboreality in their 

locomotor repertoire (e.g., Ward 2002; Larson 2007, 2013; Green and Alemseged 

2012; Venkataraman et al. 2013). Namely, a recent study conducted by Green and 

Alemseged (2012) on the ontogeny of the hominoid scapula indicates that humans 

deviate from the ape pattern in showing ontogenetic changes in the angle of the 

glenoid cavity and scapular spine relative to the scapular body, while in apes this 

angle is stable throughout ontogeny. Green and Alemseged (2012) conclude that this 

indicates the presence of arboreal/suspensory behaviours from infancy in apes, and 

since the authors also find a lack of significant differences between the juvenile and 

adult A. afarensis scapulae (with cranially directed glenoid fossae and scapular 

spines), they conclude that this distinctly apelike shoulder joint configuration in A. 

afarensis throughout ontogeny, indicates that this species was actively engaging in 

arboreal/climbing behaviours from infancy too (Green and Alemseged 2012).  

!
However, Green and Alemseged’s (2012) conclusions seem contradictory since 

behavioural data suggests the presence of substantial shifts in locomotion throughout 

ontogeny in great apes but not in humans (e.g., Rose and Gamble 1994; Payne and 

Isaacs 2005; Doran 1992, 1997; Doran et al. 1996; Taylor 1997; van Adrichem et al. 

2006). Indeed, Green and Alemseged’s (2012) results suggest that there are 

ontogenetic changes in scapular shape in humans, who effectively are obligate bipeds 

from the first year of life (Burnett and Johnson 1971a, 1971b; Hensinger 1986; 
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Stanitski et al. 2000; Ruff 2003), and conversely suggest that there are no ontogenetic 

shifts in the scapulae of apes, whose locomotor habits do change rather substantially 

throughout growth (Doran 1992, 1997; Doran et al. 1996 Taylor 1997; van Adrichem 

et al. 2006). The authors then use these results to support that the lack of significant 

differences between infant and adult scapulae in A. afarensis is evidence of arboreal/

climbing behaviours from infancy in this species. However, it could also be argued 

that the lack of ontogenetic changes in the scapula of A. afarensis is evidence of a 

phylogenetic retention, and not necessarily reflective of actual locomotion during life 

– especially when considering the rest of the postcranial morphology in this species, 

particularly the lower limbs (e.g., DeSilva et al. 2013). If this is the case, then the 

association between ontogenetic changes in scapular morphology and its link to 

activity needs to be clarified. 

!
Part of the issue is that the degree of developmental plasticity in these scapular traits 

(scapular spine and glenoid fossa orientation) is unknown, and dividing the data into 

age categories does not allow to observe the amount of relative change occurring 

throughout growth in the various species; nor does it allow to compare these changes 

with changes in other, more developmentally plastic measurements – namely lengths 

and widths. It is possible that there are indeed slight changes in glenoid fossa and 

scapular spine orientation in the great apes, which are not necessarily observable 

when dividing the data into categories. For this reason, this chapter attempts to 

address this issue by tracking the ontogenetic development of the geometric 

relationships within the hominoid scapula’s primary structures – i.e., the relative 

spatial orientations of the glenoid fossa (glenohumeral joint function), lateral/axillary 

border (rotator cuff), scapular spine (trapezius, infraspinatus, and supraspinatus), and 

medial/vertebral border (rhomboids and serratus anterior) – using growth curves 

rather than age categories. The aim is to see whether ontogenetic change (and how 

much of it) exits in the orientation of these structures in the hominoid species, and 

whether humans differ from the apes in the ontogenetic development of these 

structures as observed by Green and Alemseged (2012) when using growth curves. I 

also compare the ontogenies of these structures with the ontogenies of other scapular 
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metrics that are expected to have a more straightforward relationship to age and 

growth, such as lengths and widths of the scapula. These analyses should inform on 

the amount of developmental plasticity occurring in these geometric properties of the 

scapula within the hominoid clade, as well as inform on between-species differences 

in scapular development, within the hominoid clade. 

!
2. Materials and Methods 

!
2.1. Sample and analysis 

!
For the purpose of this chapter, I used 6 measurements of the scapula relating to the 

angles of the glenoid fossa and scapular spine relative to the scapular borders, as well 

as 9 measurements (including 4 ratios) relating to the size of the scapula (table 31). 

These measurements were collected on left scapulae of 6 hominoid species: Hylobates 

lar (n=24), Pongo pygmaeus (n=25), Pan paniscus (n=23), Pan troglodytes (n=45), 

Gorilla gorilla (n=42) and Homo sapiens (n=97) of all ages (0 to 70 years in humans; 

0 to 13+ years in great apes; 0 to 7+ years in Macaca and Hylobates). A standard 

three-parameter Gompertz model was fitted to the distributions using the self-starting 

function SSgompertz in R version 2.12.2 (2011). The Gompertz function estimates 

three parameters: the asymptotic value (Asym), the value at x = 0 (b2), and a numeric 

parameter relating to the rate of growth (b3), for each distribution. Additionally, 

boxplots and ANOVAs were performed by dividing the data into age categories 

according to M1 and M3 eruption – with infants being represented by individuals 

prior to M1 eruption (7 years for humans, 3.5 years for great apes, and 1.75 for 

macaques and gibbons), juveniles represented by individuals prior to M3 eruption (18 

years for humans, 11 for great apes, 7 years for macaques and 8 years for gibbons), 

and adults represented by individuals with erupted M3s (Smith 1989). Further details 

on how the measurements were collected, on how individual specimens were aged, 

and on the Gompertz function, can be found in the Materials and Methods Chapter 2. 

!
!
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2.2. Measurements 

!
Because of their functional implications for glenohumeral mobility and locomotion, 

the present study quantifies the angulation of the glenoid fossa and scapular spine 

relative to the scapular borders, as well as the orientation of the glenoid fossa relative 

to a plane perpendicular to the scapular body (glenoid version) (see table 31 and 

Materials and Methods Chapter). Apart from the latter, these angles have all been 

reported in the most recent literature concerning scapular morphology in extant 

hominoids and fossil hominins (Haile-Selassie et al. 2010; Green and Alemseged 

2012; Churchill et al. 2013; Green 2013). 

!
2.2.1. Glenoid fossa orientation 

!
Of all measurements, the relationship of the glenoid fossa relative to the lateral border 

of the scapula has perhaps received the most attention in the primate literature. 

Indeed, the ‘bar-glenoid’ angle is thought to indicate arboreal propensities in both 

extant and extinct hominoid primates (Inouye and Shea 1997). This measurement is 

first described by Stern and Susman (1983) and measures the angle between the line 

of the ‘ventral bar’ – a stress-bearing beam medial of the lateral or axillary border of 

the scapula – and a line connecting the superior and inferior limits of the glenoid 

fossa. The authors quantified the orientation of the glenoid fossa in this way (i.e., 

through the ventral bar rather than the lateral or axillary border of the scapula) 

because they describe greater amounts of variability in the lateral/axillary border. 

According to the authors, low ‘bar-glenoid’ angles are indicative of a more cranially 

directed glenoid fossa, an adaptation to use of the upper limb in elevated positions 

advantageous for climbing, while high angles indicate a more lateral facing glenoid 

fossa typical of more terrestrial primates (Stern and Susman 1983). A subsequent 

study by Inouye and Shea (1997) however suggests that this measurement is 

allometrically scaled in humans – with smaller angles (more cranially directed 

glenoids) present in smaller individuals and larger angles (more laterally facing 

glenoids) in larger individuals – thus casting doubt on the validity of this 
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measurement for functional/locomotor interpretations. More recently though, Green 

and Alemseged’s (2012) study dispels these concerns by showing that the a small 

bodied Homo floresiensis has a very high bar-glenoid angle, more so than the average 

human, and that larger australopithecine specimens Sts 7 and Stw 162 have lower bar-

glenoid angles than the smaller bodied Lucy (AL 211-1). Furthermore, Haile-Selassie 

et al’s (2010) study shows that the bar–glenoid and lateral/axillary border–glenoid 

angles are highly correlated, suggesting that either measurement adequately describes 

the relationship of the glenoid angle relative to the border of the scapula.  

!
In the present study, I describe the angulation of the glenoid fossa relative to the 

lateral/axillary border of the scapula because the ‘ventral bar’ is not present or easily 

distinguishable in very young individuals. 

!
2.2.2.  Scapular spine orientation 

!
The orientation of the scapular spine is thought to be a principal determinant of dorsal 

scapular fossa shape (Larson et al. 1991) and by consequence a determinant of the 

size and orientation of the supraspinatus and infraspinatus muscles and their relative 

sizes to each other (Larson 1995; Green and Alemseged 2012; Larson and Stern Jr 

2013; Bello-Hellegouarch et al. 2013). Indeed, Larson and Stern (1986) note that the 

orientation of the scapular spine in apes has a significant impact on the line of action 

of infraspinatus in its role of resisting transarticular tensile stress at the shoulder 

during suspension; chimpanzees are thus able to recruit all parts of infraspinatus to 

stabilize the shoulder during suspension due to their very oblique scapular spine 

(Larson and Stern 1986, 2013). Its orientation is also thought to be crucial for arm-

raising movements because scapular rotation during arm-raising movements is 

achieved via the combined action of the cranial trapezius (which attaches to the 

scapular spine) and caudal serratus anterior (which attaches to the medial/vertebral 

border of the scapula) (Inman and Abbott 1944; Ashton and Oxnard 1964). However, 

subsequent EMG analyses (Tuttle and Basmajian 1977; Larson et al. 1991) show that 

the cranial trapezius is relatively unimportant in arm-raising in large-bodied 
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hominoids and its recruitment is more directly linked to head-turning motions (Larson 

et al. 1991), indicating that the orientation of the scapular spine cannot be directly 

related to the importance of arm-raising. Larson and Stern (1986) instead use the 

orientation of the base of the scapular spine as they suggest it might be related to 

suspensory behaviours because it has a significant impact on the line of action of the 

infraspinatus (Larson 1995). Anapol and Fleagle (1988) measure the ‘spino-axillary 

border angle’ (scapular spine to lateral/axillary border) in primates and find no strong 

functional signal in this variable and propose that the spino-axillary border angle is 

mainly useful as a taxonomic indicator (see also Ashton et al. 1965 and Larson 1995).  

In recent literature, the angle of scapular spine to the borders of the scapula has been 

measured in both ways: either from the base of the spine (Green and Alemseged 

2012) or from the spine itself (Churchill et al. 2013). Churchill et al (2013) measure 

this angle relative to both the lateral/axillary border of the scapula and the medial/

vertebral border of the scapula and suggest that angles based on the latter axis are 

better indicators of glenoid fossa and spinal orientation than are angles based on the 

more commonly used lateral/axillary border because the long axis of the scapula is 

defined by the superior and inferior angles of the body which lies parallel to the 

vertebral column in humans, thus providing an indication of the anatomical 

orientation of the bone (Churchill et al. 2013). In both Haile-Selassie et al’s (2010) 

and Churchill et al’s (2013) papers, the glenoid fossa’s orientation is measured 

relative to the lateral/axillary border and the medial/vertebral border of the scapula; 

additionally, both structures’ orientation relative to each other are also reported. 

!
The present study also quantifies these angles (spine to lateral/axillary border, spine to 

medial/vertebral border, and spine to glenoid fossa). The orientation of the scapular 

spine is measured from the spine itself rather than from its base (see table 31 and 

Materials and Methods Chapter). I also report results for the ratio between 

supraspinous and infraspinous scapular dimensions (lengths, breadths, surface areas) 

since changes in scapular spine orientation are thought to affect this relationship. 

!
!
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2.2.3. Glenoid version 

!
Glenoid version is defined by the orientation of the glenoid cavity in relation to a 

plane perpendicular to the scapular body and is thought to play an important role in 

the stability and loading of the glenohumeral joint, with abnormalities in this angle in 

humans being related to glenohumeral instability and shoulder joint pathologies 

(Nyffeler et al. 2003). In humans, an increase in anterior version has been found to 

result in anterior translation of the humeral head and in excessive loading of the 

anterior part of the glenoid, while posterior version is associated with posterior 

displacement and posterior loading of the glenoid (Nyffeler et al. 2003). Both are 

associated to greater incidence of rotator cuff injuries in humans (Tètreault et al. 

2004). 

!
Table  31 – Table of the measurements used in this chapter. 

!
Although this angle has been quantified in the human literature and its relationship to 

shoulder instability both anterior (Cyprien et al. 1983; Randelli and Gambrioli 1986; 

Saha 1971) and posterior (Brewer et al. 1986) extensively studied in human samples 

(see Bokor et al. 1999), this angle has to date not been reported for non-human 

Measurement name Measurement description

glen_angle_medborder Angle of the glenoid fossa relative to the medial border of the scapula

spine_angle_medborder Angle of the scapular spine relative to the medial border of the scapula

glen_angle_latborder Angle of the glenoid fossa relative to the lateral border of the scapula

glen_angle_spine Angle of the glenoid fossa relative to the spine of the scapula

latborder_spine_angle Angle of the scapular spine relative to the lateral border of the scapula

glen_version Angle of the glenoid fossa relative to the body of the scapula, in cranial view

scap_height Maximum height of the scapular body

scap_breadth_spine_glen Maximum breadth of the scapula from the glenoid fossa to where the long axis 

of the scapular spine and the vertebral border meet

scap_spine_length Maximum length of the scapular spine from the medial border to the tip of the 
acromion

ratio_scap_infra_supra_length Ratio of the maximum length of the infraspinous fossa to the supraspinous fossa 

of the scapula

ratio_scap_infra_supra_length_90 Ratio of the maximum length of the infraspinous fossa to the supraspinous fossa 

of the scapula (at 90 degree angle from spine)

ratio_scap_infra_supra_breadth Ratio of the maximum breadth of the scapula's infraspinous fossa (below the 

spine) to the scapula's supraspinous fossa (above the spine)

ratio_scap_infra_supra_surf Ratio of the surface area of the infraspinous fossa to the infraspinous fossa of the 

Scapula

!  210



primates. In this study I also report the glenoid version angle as described by Bokor et 

al (1999) and Nyffeler et al (2003) (see table 31 & Materials and Methods Chapter). 

!
3. Results 

!
3.1. Gompertz growth curves 

!
Standard three-parameter Gompertz growth models were fitted to the species’ 

distributions of angle measurements (log values) (figure 70). Overall, the model 

provided a good fit for the spine_angle_medborder, glen_angle_medborder, 

glen_angle_spine and glen_version measurements across species, but was a less 

adequate fit for the glen_angle_latborder and larborder_spine_angle measurements 

(figure 70). These results suggest that the model can be fitted to most distributions, 

even though the variation across time in these angle measurements is very small. In 

fact, the results show that there are very low degrees of within-species variation 

across species across measurements, with the exception of the glen_angle_medborder 

measurement and the latborder_spine_angle measurement as can be observed from 

the graphs (figure 70).  

!
Overall, my results indicate that the Gompertz models do not fit the human 

distributions better than the ape distributions; in fact the model could not be fitted at 

all to the glen_angle_latborder and latborder_spine_angle distributions in humans but 

fit some of the ape distributions. 

!
In contrast, when the Gompertz model is fitted to measurements that have a more 

straightforward relationship to size (such a lengths, heights, widths, breadths), the 

Gompertz models fit all distributions across all samples, with the exception of Pongo, 

whose single neonate value prevents the model from adequately predicting the 

Gompertz parameters across all analyses (figure 77, table 34). These results show that 

these measurements change significantly throughout ontogeny, as the scapula grows 

into its adult dimensions. These results therefore indicate that sample size is unlikely 
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to be an issue for scapular angle measurements, since the model adequately fits all of 

the size measurements.  

!
The Gompertz distributions did not fit the scapular ratio data for any measurement, 

for any species (figure 83). 

!

!  
           Figure 70 – Gompertz growth curves fitted to the sample distributions for all hominoid species (angle measurements). 
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!  
           Figure 70 cont’d – Gompertz growth curves fitted to the sample distributions for all hominoid species (angle measurements). !!!!!!!!
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Table 32 – Gompertz parameter for the 6 scapular angle measurements showing estimated value at growth completion  

(log) Asymptote estimated value at x=0 (b2), estimated rate of growth (b3), and the Residual Standard Error.  
Measurement Species Asymptote Gompertz b2 Gompertz b3 RSE D
spine_angle_medborder H. sapiens 4.652 (+ 0.011) 0.036 (+ 0.007) 0.843 (+ 0.072) 0.050 37

P. troglodytes 4.936 (+ 0.011) 0.011 (+ 0.003) 0.863 (+ 0.070) 0.026 39

G. gorilla 4.813 (+ 0.008) 0.012 (+ 0.003) 0.771 (+ 0.108) 0.025 36

P. paniscus 4.971 (+ 0.030) 0.012 (+ 0.006) 0.919 (+ 0.115) 0.037 19

H. lar 4.940 (+ 0.009) 0.148 (+ 0.151) 0.063 (+ 0.121) 0.040 20

 P.pygmaeus - - - - -

glen_angle_medborder H. sapiens 2.390 (+ 0.095) 0.395 (+ 0.113) 0.915 (+ 0.041) 0.443 77

P. troglodytes 3.470 (+ 0.045) 0.121 (+ 0.064) 0.554 (+ 0.317) 0.204 37

G. gorilla 3.216 (+ 0.040) 0.193 (+ 0.097) 0.313 (+ 0.267) 0.215 36

P. paniscus 3.800 (+ 0.101) 0.120 (+ 0.039) 0.891 (+ 0.081) 0.169 19

H. lar 3.581 (+ 0.030) 0.260 (+ 0.113) 0.308 (+ 0.157) 0.114 19

 P.pygmaeus - - - - -

glen_angle_latborder H. sapiens - - - - -

P. troglodytes - - - - -

G. gorilla 4.797 (+ 0.009) -0.028 (+ 0.017) 0.058 (+ 0.140) 0.050 36

P. paniscus 4.759 (+ 0.018) -0.012 (+ 0.010) 0.801 (+ 0.243) 0.045 19

H. lar - - - - -! P.pygmaeus - - - - -

glen_angle_spine H. sapiens 4.569 (+ 0.017) 0.007 (+ 0.004) 0.950 (+ 0.069) 0.052 89
P. troglodytes - - - - -
G. gorilla 4.574 (+ 0.008) -0.052 (+ 0.029) 0.010 (+ 0.052) 0.047 36
P. paniscus 4.594 (+ 0.027) -0.020 (+ 0.008) 0.892 (+ 0.095) 0.045 19
H. lar 4.315 (+ 0.018) 0.027 (+ 0.049) 0.334 (+ 0.681) 0.072 20

 P.pygmaeus - - - - -
latborder_spine_angle H. sapiens - - - - -

P. troglodytes 2.503 (+ 0.030) -0.127 (+ 0.108) 0.093 (+ 0.423) 0.180 37
G. gorilla - - - - -
P. paniscus - - - - -
H. lar - - - - -
P.pygmaeus - - - - -

glen_version H. sapiens 4.414 (+ 0.041) -0.019 (+ 0.008) 0.970 (+ 0.031) 0.053 88
P. troglodytes 4.461 (+ 0.007) -0.033 (+ 0.020) 0.050 (+ 0.209) 0.045 37
G. gorilla 4.442 (+ 0.422) -0.024 (+ 0.092) 0.946 (+ 0.293) 0.050 36
P. paniscus 4.457 (+ 0.022) -0.023 (+ 0.017) 0.705 (+ 0.327) 0.047 19
H. lar 4.366 (+ 0.025) -0.035 (+ 0.015) 0.615 (+ 0.273) 0.062 20

 P.pygmaeus - - - - -
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 Figure 71 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories marked 

 with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the highest and 

 lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 times the i

 nterquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for most 

 species (H. lar: p-value=0.007, F=6.067, df=2; P. pygmaeus: p-values=0.414, F=0.963, df=2; P. paniscus: p-value=0.012, F=5.636, df=2; P. 

 troglodytes: p-value=0.006, F=5.899, df=2; G. gorilla: p-value=0.022, F=4.238, df=2; H. sapiens:  p-value=0.000, F=28.273, df=2). 

!
!
!
!
!
!
!
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!
Figure 72 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories 

marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the 

highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 

times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for 

most species (H. lar: p-value=0.003, F=7.648, df=2; P. pygmaeus: p-values=0.183, F=2.014, df=2; P. paniscus: p-value=0.024, F=4.533, 

df=2; P. troglodytes: p-value=0.043, F=3.424, df=2; G. gorilla: p-value=0.033, F=3.763, df=2; H. sapiens:  p-value=0.000, F=29.775, 

df=2). !
!
!

!
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!
 

Figure 73 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories 

marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the 

highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 

times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for 

most species (H. lar: p-value=0.350, F=1.102, df=2; P. pygmaeus: p-values=0.751, F=0.294, df=2; P. paniscus: p-value=0.744, F=0.305, 

df=2; P. troglodytes: p-value=0.019, F=4.357, df=2; G. gorilla: p-value=0.320, F=1.175, df=2; H. sapiens:  p-value=0.000, F=10.817, 

df=2). !!
!

!
!
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!
 

Figure 74 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories 

marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the 

highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 

times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for 

all species (H. lar: p-value=0.227, F=1.594, df=2; P. pygmaeus: p-values=0.402, F=0.995, df=2; P. paniscus: p-value=0.290, F=1.316, 

df=2; P. troglodytes: p-value=0.151, F=1.976, df=2; G. gorilla: p-value=0.227, F=1.539, df=2; H. sapiens:  p-value=0.204, F=1.611, df=2). !!
!

!
!
!
!
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!
 

Figure 75 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories 

marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the 

highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 

times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for 

most species (H. lar: p-value=0.027, F=4.484, df=2; P. pygmaeus: p-values=0.793, F=0.238, df=2; P. paniscus: p-value=0.856, F=0.157, 

df=2; P. troglodytes: p-value=0.658, F=0.421, df=2; G. gorilla: p-value=0.548, F=0.611, df=2; H. sapiens:  p-value=0.000, F=28.265, 

df=2). !
!
!
!
!
!
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!
 

Figure 76 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent categories 

marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and the whiskers, the 

highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles represent outliers within 3 

times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant differences between age categories for 

most species (H. lar: p-value=0.182, F=1.823, df=2; P. pygmaeus: p-values=0.144, F=2.353, df=2; P. paniscus: p-value=0.209, F=1.699, 

df=2; P. troglodytes: p-value=0.748, F=0.291, df=2; G. gorilla: p-value=0.127, F=2.187, df=2; H. sapiens:  p-value=0.000, F=7.482, df=2). !
!
!
!
!
!
!
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!
Table 33 – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (angle measurements), with 

adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

!

Measurement Species Age Categories diff lwr upr p-adj

spine_angle_medborder H. lar Infant Juvenile 12.661 3.234 22.087 0.008

 Juvenile Adult -1.471 -8.597 5.655 0.862

P. pygmaeus Infant Juvenile 10.550 -10.815 31.915 0.400

 Juvenile Adult -3.325 -15.027 8.377 0.724

P. paniscus Infant Juvenile 0.839 -6.022 7.700 0.948

 Juvenile Adult 6.524 1.023 12.024 0.019

P. troglodytes Infant Juvenile 4.105 -0.247 8.457 0.068

 Juvenile Adult 2.495 -0.624 5.615 0.139

G. gorilla Infant Juvenile 3.201 -0.103 6.505 0.059

 Juvenile Adult 0.879 -2.138 3.895 0.758

H. sapiens Infant Juvenile 9.713 5.570 13.856 0.000

  Juvenile Adult 1.765 -1.990 5.520 0.504

glen_angle_medborder H. lar Infant Juvenile 14.411 4.246 24.575 0.005

 Juvenile Adult 0.370 -7.313 8.053 0.992

P. pygmaeus Infant Juvenile 11.618 -4.943 28.178 0.183

 Juvenile Adult -0.556 -9.627 8.515 0.985

P. paniscus Infant Juvenile 3.540 -5.484 12.563 0.588

 Juvenile Adult 6.549 -0.686 13.784 0.080

P. troglodytes Infant Juvenile 6.784 -0.482 14.051 0.071

 Juvenile Adult 1.562 -3.647 6.771 0.747

G. gorilla Infant Juvenile 5.572 0.230 10.915 0.039

 Juvenile Adult 0.024 -4.853 4.901 1.000

H. sapiens Infant Juvenile 9.169 5.363 12.975 0.000

  Juvenile Adult 1.648 -1.801 5.098 0.493

glen_angle_latborder H. lar Infant Juvenile -1.809 -9.232 5.615 0.814

 Juvenile Adult -2.271 -7.882 3.340 0.573

P. pygmaeus Infant Juvenile -5.363 -24.931 14.206 0.740

 Juvenile Adult 0.513 -10.205 11.230 0.991

P. paniscus Infant Juvenile -2.067 -10.308 6.174 0.802

 Juvenile Adult -0.483 -7.090 6.124 0.981

 Juvenile Adult 4.431 0.055 8.807 0.047

G. gorilla Infant Juvenile -3.741 -9.920 2.439 0.313

 Juvenile Adult 2.115 -3.526 7.757 0.634

H. sapiens Infant Juvenile -7.130 -11.140 -3.120 0.000

  Juvenile Adult 1.117 -2.517 4.751 0.745

!  221



Table 33  cont’d– Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (angle measurements), 

with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

!  222

Measurement Species Age Categories diff lwr upr p-adj

glen_angle_spine H. lar Infant Juvenile -0.581 -8.066 6.905 0.979

 Juvenile Adult 3.854 -1.804 9.512 0.222

P. pygmaeus Infant Juvenile -3.000 -26.290 20.290 0.934

 Juvenile Adult -5.320 -18.076 7.436 0.511

P. paniscus Infant Juvenile -2.237 -10.158 5.685 0.756

 Juvenile Adult -2.762 -9.114 3.589 0.523

P. troglodytes Infant Juvenile -4.685 -10.440 1.071 0.130

 Juvenile Adult 0.536 -3.590 4.662 0.946

G. gorilla Infant Juvenile -3.618 -8.662 1.426 0.200

 Juvenile Adult 1.095 -3.510 5.699 0.831

H. sapiens Infant Juvenile -0.559 -3.871 2.753 0.915

  Juvenile Adult 2.118 -0.884 5.120 0.218

glen_version H. lar Infant Juvenile -4.736 -12.798 3.326 0.320

 Juvenile Adult -1.345 -7.438 4.749 0.844

P. pygmaeus Infant Juvenile 9.295 -2.461 21.051 0.126

 Juvenile Adult -1.635 -8.074 4.804 0.771

P. paniscus Infant Juvenile -4.503 -10.721 1.716 0.184

 Juvenile Adult 1.073 -3.913 6.058 0.849

P. troglodytes Infant Juvenile -1.513 -6.441 3.415 0.737

 Juvenile Adult 0.045 -3.488 3.578 0.999

G. gorilla Infant Juvenile -2.661 -7.217 1.894 0.338

 Juvenile Adult -1.536 -5.694 2.623 0.642

H. sapiens Infant Juvenile -1.925 -4.941 1.090 0.286

  Juvenile Adult -2.441 -5.174 0.292 0.090

atborder_spine_angle H. lar Infant Juvenile -3.318 -6.143 -0.492 0.020

 Juvenile Adult 1.307 -0.829 3.443 0.292

P. pygmaeus Infant Juvenile -1.885 -13.518 9.748 0.898

 Juvenile Adult 1.518 -4.854 7.889 0.795

P. paniscus Infant Juvenile 0.595 -4.294 5.484 0.949

 Juvenile Adult -0.844 -4.764 3.076 0.849

P. troglodytes Infant Juvenile -0.746 -3.655 2.163 0.807

 Juvenile Adult 0.685 -1.400 2.770 0.705

G. gorilla Infant Juvenile -0.921 -3.371 1.530 0.632

 Juvenile Adult -0.219 -2.455 2.018 0.969

H. sapiens Infant Juvenile -7.803 -11.217 -4.388 0.000

  Juvenile Adult -1.720 -4.815 1.374 0.386



!
!

 

!
           Figure 77  – Gompertz growth curves fitted to the sample distributions for all hominoid species (size measurements). !
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   Figure 77 cont’d – Gompertz growth curves fitted to the sample distributions for all hominoid species (size measurements). 

!
!
!
!
!
!
!
!
!
!
!
!
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 Table 34 - Gompertz parameter for the 5 scapular size measurements showing estimated value at growth completion (mm) (Asymptote),  

 estimated value at x=0 (b2), estimated rate of growth (b3), and the Residual Standard Error.  

!!
!

!
!
!
!

Measurement Species Asymptote Gompertz b2 Gompertz b3 RSE df

scap_height H. sapiens 4.995 (+0.015) 0.262 (+0.008) 0.872 (+0.008) 0.091 88

P. troglodytes 5.084 (+0.034) 0.284 (+0.014) 0.847 (+0.012) 0.091 39

G. gorilla 5.276 (+0.032) 0.315 (+0.014) 0.770 (+0.016) 0.103 36

P. paniscus 5.011 (+0.066) 0.278 (+0.030) 0.852 (+0.027) 0.138 19

H. lar 4.094 (+0.022) 0.343 (+0.036) 0.568 (+0.042) 0.078 20

 P. pygmaeus - - - - -

scap_breadth_spine_gl H. sapiens 4.565 (+0.013) 0.259 (+0.008) 0.875 (+0.007) 0.079 89

P. troglodytes 4.680 (+0.031) 0.285 (+0.014) 0.840 (+0.012) 0.084 39

G. gorilla 4.923 (+0.029) 0.288 (+0.013) 0.779 (+0.016) 0.093 36

P. paniscus 4.609 (+0.063) 0.284 (+0.035) 0.838 (+0.032) 0.140 19

H. lar 4.200 (+0.024) 0.383 (+0.043) 0.531 (+0.045) 0.086 20

 P. pygmaeus - - - - -

scap_spine_length H. sapiens 4.855 (+0.018) 0.280 (+0.010) 0.874 (+0.009) 0.108 88

P. troglodytes 4.960 (+0.034) 0.280 (+0.014) 0.847 (+0.012) 0.089 39

G. gorilla 5.205 (+0.033) 0.310 (+0.013) 0.796 (+0.014) 0.103 36

P. paniscus 4.917 (+0.071) 0.279 (+0.034) 0.846 (+0.032) 0.151 19

H. lar 4.430 (+0.025) 0.382 (+0.042) 0.535 (+0.044) 0.089 20

 P. pygmaeus - - - - -

scap_glen_width H. sapiens 3.194 (+0.017) 0.384 (+0.015) 0.886 (+0.008) 0.100 89

P. troglodytes 3.168 (+0.031) 0.429 (+0.023) 0.837 (+0.013) 0.085 39

G. gorilla 3.387 (+0.029) 0.514 (+0.024) 0.751 (+0.016) 0.097 36

P. paniscus 3.127 (+0.058) 0.400 (+0.049) 0.842 (+0.030) 0.124 19

H. lar 2.321 (+0.028) 0.707 (+0.148) 0.412 (+0.075) 0.105 20

 P. pygmaeus - - - - -

scap_glen_height H. sapiens 3.502 (+0.016) 0.339 (+0.013) 0.873 (+0.009)  0.097 89

P. troglodytes 3.523 (+0.038) 0.382 (+0.023) 0.852 (+0.014) 0.098 39

G. gorilla 3.759 (+0.034) 0.368 (+0.021) 0.780 (+0.020) 0.109 36

P. paniscus 3.373 (+0.056) 0.362 (+0.041) 0.847 (+0.028) 0.118 19

H. lar 2.605 (+0.026) 0.801 (+0.142) 0.379 (+0.061) 0.099 20

 P. pygmaeus - - - - -
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Figure 78 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate significant differences 

between age categories for most species (H. lar: p-value=0.000, F=53.31, df=2; P. pygmaeus: p-values=0.000, F=17.084, df=2; P. 

paniscus: p-value=0.000, F=27.443, df=2; P. troglodytes: p-value=0.000, F=119.26, df=2; G. gorilla: p-value=0.000, F=100.47, 

df=2; H. sapiens: p-value=0.000, F=248.59, df=2). !
!
!
!
!
!
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Figure 79 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate significant differences 

between age categories for most species (H. lar: p-value=0.000, F=80.135, df=2; P. pygmaeus: p-values=0.003, F=11.163, df=2; 

P. paniscus: p-value=0.000, F=22.591, df=2; P. troglodytes: p-value=0.000, F=131.32, df=2; G. gorilla: p-value=0.000, 

F=125.26, df=2; H. sapiens: p-value=0.000, F=282.4, df=2). !
!

!
!
!
!
!
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Figure 80 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate significant differences 

between age categories for most species (H. lar: p-value=0.000, F=88.901, df=2; P. pygmaeus: p-values=0.000, F=20.637, df=2; 

P. paniscus: p-value=0.000, F=25.861, df=2; P. troglodytes: p-value=0.000, F=105.26, df=2; G. gorilla: p-value=0.000, F=119.77, 

df=2; H. sapiens: p-value=0.000, F=232.51, df=2). !
!

!
!
!
!
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Figure 81 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate significant differences 

between age categories for most species (H. lar: p-value=0.000, F=32.668, df=2; P. pygmaeus: p-values=0.000, F=20.085, df=2; 

P. paniscus: p-value=0.000, F=20.294, df=2; P. troglodytes: p-value=0.000, F=10.294, df=2; G. gorilla: p-value=0.000, 

F=109.05, df=2; H. sapiens: p-value=0.000, F=109.05, df=2). !
!

!
!
!
!
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Figure 82 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate significant differences 

between age categories for most species (H. lar: p-value=0.000, F=31.387, df=2; P. pygmaeus: p-values=0.000, F=20.146, df=2; 

P. paniscus: p-value=0.000, F=21.606, df=2; P. troglodytes: p-value=0.000, F=106.1, df=2; G. gorilla: p-value=0.000, F=63.971, 

df=2; H. sapiens: p-value=0.000, F=214.34, df=2). !
!

!
!
!
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Table 35 – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (size 

measurements), with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference 

between means (diff). 

!
!!

Measurement Species Age Categories diff lwr upr p-adj

scap_height H. lar Infant Juvenile 24.442 15.857 33.026 0.000

 Juvenile Adult 10.713 4.224 17.203 0.001

P. pygmaeus Infant Juvenile 65.070 18.680 111.460 0.008

 Juvenile Adult 24.975 -0.434 50.383 0.054

P. paniscus Infant Juvenile 36.098 8.785 63.410 0.009

 Juvenile Adult 42.875 20.976 64.774 0.000

P. trog. Infant Juvenile 46.887 31.742 62.032 0.000

 Juvenile Adult 50.596 39.739 61.453 0.000

G. gorilla Infant Juvenile 70.406 50.316 90.497 0.000

 Juvenile Adult 55.423 37.084 73.763 0.000

H. sapiens Infant Juvenile 62.436 52.338 72.535 0.000

  Juvenile Adult 21.547 12.375 30.718 0.000

scap_breadth_spine_glen H. lar Infant Juvenile 26.319 18.979 33.659 0.000

 Juvenile Adult 10.545 4.997 16.093 0.000

P. pygmaeus Infant Juvenile 38.003 -8.988 84.993 0.116

 Juvenile Adult 28.872 3.134 54.610 0.029

P. paniscus Infant Juvenile 25.262 6.123 44.401 0.009

 Juvenile Adult 25.661 10.316 41.007 0.001

P. trog. Infant Juvenile 31.625 22.385 40.864 0.000

 Juvenile Adult 31.473 24.850 38.097 0.000

G. gorilla Infant Juvenile 46.577 34.775 58.380 0.000

 Juvenile Adult 35.969 25.195 46.743 0.000

H. sapiens Infant Juvenile 37.716 31.970 43.461 0.000

  Juvenile Adult 13.778 8.571 18.986 0.000

scap_spine_length H. lar Infant Juvenile 34.219 24.957 43.480 0.000

 Juvenile Adult 14.763 7.762 21.764 0.000

P. pygmaeus Infant Juvenile 66.841 28.700 104.981 0.002

 Juvenile Adult 16.894 -3.997 37.784 0.116

P. paniscus Infant Juvenile 32.880 7.001 58.758 0.012

 Juvenile Adult 39.650 18.901 60.399 0.000

P. trog. Infant Juvenile 41.848 27.964 55.732 0.000

 Juvenile Adult 42.746 32.793 52.699 0.000

G. gorilla Infant Juvenile 61.070 44.014 78.127 0.000

 Juvenile Adult 55.345 39.774 70.915 0.000

H. sapiens Infant Juvenile 54.130 44.993 63.267 0.000

  Juvenile Adult 19.447 11.149 27.745 0.000
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Table 35 cont’d – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (size 

measurements), with adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference 

between means (diff). 

!!!!!!!!!!!!

Measurement Species Age Categories diff lwr upr p-adj

scap_glen_width H. lar Infant Juvenile 4.062 2.614 5.510 0.000

 Juvenile Adult 0.414 -0.681 1.509 0.614

P. pygmaeus Infant Juvenile 13.249 6.048 20.449 0.001

 Juvenile Adult 2.491 -1.453 6.434 0.242

P. paniscus Infant Juvenile 5.269 1.097 9.441 0.012

 Juvenile Adult 5.266 1.921 8.610 0.002

P. trog. Infant Juvenile 6.911 4.591 9.230 0.000

 Juvenile Adult 6.670 5.007 8.333 0.000

G. gorilla Infant Juvenile 10.854 7.991 13.717 0.000

 Juvenile Adult 7.827 5.214 10.440 0.000

H. sapiens Infant Juvenile 9.365 7.597 11.134 0.000

  Juvenile Adult 3.812 2.209 5.415 0.000

scap_glen_height H. lar Infant Juvenile 5.192 3.161 7.224 0.000

 Juvenile Adult 1.118 -0.417 2.654 0.183

P. pygmaeus Infant Juvenile 16.546 5.309 27.782 0.006

 Juvenile Adult 6.930 0.775 13.084 0.028

P. paniscus Infant Juvenile 6.120 0.775 11.465 0.023

 Juvenile Adult 7.543 3.257 11.828 0.001

P. trog. Infant Juvenile 8.802 5.558 12.047 0.000

 Juvenile Adult 10.586 8.260 12.911 0.000

G. gorilla Infant Juvenile 14.131 9.236 19.025 0.000

scap_glen_height  G. gorilla Juvenile Adult 10.334 5.866 14.802 0.000

H. sapiens Infant Juvenile 13.009 10.765 15.253 0.000

  Juvenile Adult 4.486 2.452 6.520 0.000
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Figure 83 – Gompertz growth curves fitted to the sample distributions for all hominoid species (ratios). The ratios are obtained 

by dividing the infraspinous measurement by the supraspinous measurement in all instances. High ratios indicate relatively 

smaller supraspinous measurements relative to the infraspinous measurements, while small ratios indicate larger supraspinous 

measurments relative to the infraspinous measurements. 
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Figure 84 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant 

differences between age categories for most species (H. lar: p-value=0.031, F=4.127, df=2; P. pygmaeus: p-values=0.011, 

F=7.281, df=2; P. paniscus: p-value=0.748, F=0.294, df=2; P. troglodytes: p-value=0.729, F=0.318, df=2; G. gorilla: p-

value=0.318, F=1.183, df=2; H. sapiens: p-value=0.719, F=0.330, df=2). !
!
!
!
!
!
!
!
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Figure 85 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant 

differences between age categories for most species (H. lar: p-value=0.055, F=3.317, df=2; P. pygmaeus: p-values=0.028, 

F=5.141, df=2; P. paniscus: p-value=0.849, F=0.164, df=2; P. troglodytes: p-value=0.206, F=1.639, df=2; G. gorilla: p-

value=0.005, F=6.193, df=2; H. sapiens: p-value=0.093, F=2.438, df=2). !
!
!
!
!
!
!
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Figure 86 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant 

differences between age categories for most species (H. lar: p-value=0843, F=0.171, df=2; P. pygmaeus: p-values=0.753, 

F=0.291, df=2; P. paniscus: p-value=0.623, F=0.485, df=2; P. troglodytes: p-value=0.758, F=0.278, df=2; G. gorilla: p-

value=0.111, F=2.345, df=2; H. sapiens: p-value=0.000, F=15.869, df=2). !
!
!
!
!
!
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Figure 87 – Boxplots of infant, juvenile and adult hominoid specimens. Significant difference (95% CI) between adjacent 

categories marked with asterisk (p<0.05). Boxes represent the upper and lower quartile ranges, the black lines, the means, and 

the whiskers, the highest and lowest values within 1.5 times the interquartile range of the upper and lower quartiles. The circles 

represent outliers within 3 times the interquartile range of the upper and lower quartiles. ANOVAs indicate a lack of significant 

differences between age categories for most species (H. lar: p-value=0.05, F=3.65, df=2; P. pygmaeus: p-values=0.631, F=0.482, 

df=2; P. paniscus: p-value=0.522, F=0.671, df=2; P. troglodytes: p-value=0.0286, F=3.899, df=2; G. gorilla: p-value=0.203, 

F=1.669, df=2; H. sapiens: p-value=0.136, F=2.038, df=2). !!!!
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Table 36 – Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (ratios), with 

adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 

Measurement Species Age Categories diff lwr upr p-adj

ratio_scap_supra_infra_lengths H. lar Infant Juvenile -0.75
1

-1.46
1

-0.04
1

0.037

 Juvenile Adult 0.004 -0.53
3

0.541 1.000

P. pygmaeus Infant Juvenile -2.25
4

-3.89
4

-0.61
5

0.009

 Juvenile Adult 0.632 -0.26
6

1.529 0.181

P. paniscus Infant Juvenile 0.018 -0.21
3

0.249 0.978

 Juvenile Adult 0.045 -0.14
0

0.231 0.810

P.trog. Infant Juvenile 0.005 -0.12
5

0.135 0.996

 Juvenile Adult 0.029 -0.06
4

0.122 0.735

G. gorilla Infant Juvenile 0.016 -0.07
8

0.110 0.911

 Juvenile Adult 0.043 -0.04
3

0.129 0.444

H. sapiens Infant Juvenile -0.05
6

-0.26
0

0.148 0.790

  Juvenile Adult -0.00
2

-0.18
8

0.183 0.999

ratio_scap_supra_infra_lengths
_90

H. lar Infant Juvenile -0.51
9

-1.08
3

0.044 0.074

 Juvenile Adult -0.02
5

-0.45
0

0.401 0.988

P. pygmaeus Infant Juvenile -3.38
2

-6.29
5

-0.46
9

0.024

 Juvenile Adult 0.888 -0.70
7

2.483 0.321

P. paniscus Infant Juvenile -0.04
3

-0.26
0

0.174 0.872

 Juvenile Adult -0.00
6

-0.18
0

0.168 0.996

P.trog. Infant Juvenile 0.036 -0.22
3

0.296 0.938

 Juvenile Adult 0.126 -0.06
0

0.312 0.237

G. gorilla Infant Juvenile -0.14
3

-0.26
5

-0.02
1

0.018

 Juvenile Adult -0.03
9

-0.15
0

0.073 0.676

H. sapiens Infant Juvenile -0.13
6

-0.40
6

0.135 0.459

  Juvenile Adult -0.08
9

-0.33
5

0.156 0.662

ratio_infra_supra_surf H. lar Infant Juvenile -0.03
2

-0.24
7

0.182

 Juvenile Adult -0.01
7

-0.17
9

0.145

P. pygmaeus Infant Juvenile -0.26
8

-1.30
1

0.765

 Juvenile Adult 0.000 -0.56
6

0.565

P. paniscus Infant Juvenile 0.129 -0.21
3

0.471

 Juvenile Adult -0.01
4

-0.28
8

0.261

P. 
troglodytes

Infant Juvenile -0.06
4

-0.28
2

0.154

 Juvenile Adult -0.00
3

-0.16
0

0.153

G. gorilla Infant Juvenile -0.11
3

-0.26
8

0.041

 Juvenile Adult -0.02
7

-0.16
8

0.114

H. sapiens Infant Juvenile -0.39
3

-0.61
8

-0.16
8

  Juvenile Adult -0.07
0

-0.27
5

0.134
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Table 36 cont’d– Table of ANOVA TukeyHSD post-hoc results of differences between age categories within species (ratios), with 

adjusted p-values (p-adj) upper and lower bounds of the 95% confidence interval (lwr, upr), and difference between means (diff). 
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Measurement Species Age 
Categories diff lwr upr p-adj

ratio_scap_infra_supra_breadths H. lar Infant Juvenile -0.157 -0.305 -0.008

 Juvenile Adult 0.050 -0.050 0.151

P. pygmaeus Infant Juvenile -0.010 -0.195 0.175

 Juvenile Adult 0.035 -0.066 0.137

P. paniscus Infant Juvenile 0.020 -0.039 0.078

 Juvenile Adult 0.008 -0.039 0.055

P. troglodytes Infant Juvenile -0.028 -0.076 0.020

 Juvenile Adult 0.038 0.003 0.072

G. gorilla Infant Juvenile -0.021 -0.061 0.019

 Juvenile Adult 0.025 -0.011 0.062

H. sapiens Infant Juvenile -0.031 -0.068 0.006

  Juvenile Adult 0.012 -0.022 0.045

  Juvenile Adult 0.012 -0.022 0.045

ratio_infra_supra_surf H. lar Infant Juvenile -0.032 -0.247 0.182

 Juvenile Adult -0.017 -0.179 0.145

P. pygmaeus Infant Juvenile -0.268 -1.301 0.765

 Juvenile Adult 0.000 -0.566 0.565

P. paniscus Infant Juvenile 0.129 -0.213 0.471

 Juvenile Adult -0.014 -0.288 0.261

P. troglodytes Infant Juvenile -0.064 -0.282 0.154

 Juvenile Adult -0.003 -0.160 0.153

G. gorilla Infant Juvenile -0.113 -0.268 0.041

 Juvenile Adult -0.027 -0.168 0.114

H. sapiens Infant Juvenile -0.393 -0.618 -0.168

  Juvenile Adult -0.070 -0.275 0.134

ratio_scap_infra_supra_breadths H. lar Infant Juvenile -0.157 -0.305 -0.008

 Juvenile Adult 0.050 -0.050 0.151

P. pygmaeus Infant Juvenile -0.010 -0.195 0.175

 Juvenile Adult 0.035 -0.066 0.137

P. paniscus Infant Juvenile 0.020 -0.039 0.078

 Juvenile Adult 0.008 -0.039 0.055

P. troglodytes Infant Juvenile -0.028 -0.076 0.020

 Juvenile Adult 0.038 0.003 0.072
G. gorilla Infant Juvenile -0.021 -0.061 0.019

 Juvenile Adult 0.025 -0.011 0.062

H. sapiens Infant Juvenile -0.031 -0.068 0.006

  Juvenile Adult 0.012 -0.022 0.045



!
3.2. Boxplots  

!
When the scapular angle data is split into age categories, ANOVA results show that 

there are significant differences between age categories (p<0.05) across species for 

the spine_angle_medborder and for the glen_angle_medborder measurements (with 

the exception of Pongo, likely because of very small sample size) (figures 71-76). 

However, post-hoc tests indicate that only humans show significant differences 

(p<0.05) between age categories for 4 out of the 6 measurements: 

spine_angle_medborder, spine_angle_medborder, glen_angle_latborder and 

latborder_spine_angle tests (figures 71-76; table 33). There are also significant 

differences between infant and juvenile gibbons for 3 of these 6 measurements: 

spine_angle_medborder, spine_angle_medborder, and latborder_spine_angle. The 

bonobos show significant differences between infant and juvenile specimens in the 

spine_angle_medborder measurement (figures 71; table 33) and gorillas show 

differences between infants and juveniles for the glen_angle_medborder measurement 

(figure 72; table 33). There are no significant differences between age categories for 

any species in the glen_angle_spine and glen_version measurements (figures 74 & 76; 

table 33). 

!
Overall these results suggest that humans do deviate from the ape pattern in that 

infants are consistently significantly different from the juveniles and adults for most 

measurements (all but the glen_angle_spine according to the ANOVA results), with 

the possible exception of gibbons, unlike the apes whose juvenile and adult values 

remain largely unchanged across measurements. These results also suggest that the 

more developmentally plastic angle measurements of the scapula across hominoids 

are the spine_angle_medborder and the glen_angle_medborder (figures 71 & 72). 

!
For the size measurements, results show the presence of significant differences 

(p<0.05) between all age categories across species (figures 78-82; table 35). For the 

ratio measurements, results show the presence of significant differences in only a few 

cases (figures 84-87; table 36). In humans, there are only significant differences 
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(p<0.05) between infant and juvenile specimens for the surface areas measurements 

(figure 86; table 36) but not lengths or breath (figure 84, 85, 87; table 36). 

!
4. Discussion 

!
4.1. Scapular angles: growth curves versus age categories  

!
The results of this study show that there are discrepancies in results between both 

types of analyses for the angle measurements. Indeed while the Gompertz growth 

curves suggest the presence of ontogenetic changes in 4 out of the 6 angle 

measurements (spine_angle_medborder, glen_angle_medborder, glen_angle_spine 

and glen_version) across species (except for Pongo whose single neonate value 

prevents the curve from being fitted), dividing the data into age categories suggests, 

on the contrary, that there is little to no evidence of ontogenetic change in these 

measurements across species – except for the spine_angle_medborder and the 

glen_angle_medborder). Humans appear to be unique in showing significant changes 

between age caterogies for 4 of the 6 measurements (spine_angle_medborder, 

glen_angle_medborder, glen_angle_latborder, and latborder_spine_angle), as well as 

gibbons who show significant changes between age caterogies for 3 of the 6 

measurements (spine_angle_medborder, glen_angle_medborder, and 

latborder_spine_angle) (figures 71-76; table 33).  

!
This has important implications for functional interpretations, since depending on the 

type of analysis that is utilised, results lead to opposite conclusions about the presence 

or absence of ontogenetic changes in functionally relevant aspects of scapular 

morphology. For example, the present results indicate that the angle of the glenoid 

fossa’s orientation relative to the lateral border (glen_angle_latborder) does not 

change throughout ontogeny in apes but does change in humans when the data is 

divided into age categories (figure 73), as is also shown by Green and Alemseged 

(2012) (but see Green 2013). However, according to the present growth curves, 

changes in ontogeny in humans seem to be negligible (unable to fit a Gompertz curve) 
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while there seem to be changes in the bonobo and gorilla samples (figure 70). While 

the former analysis would lead to the conclusion that this trait is ontogenetically 

conserved in apes and that humans are unique in deviating from this pattern, the 

growth curves indicate otherwise – i.e., that humans do not show marked ontogenetic 

changes in this trait and are not unique relative to the apes. Similarly, dividing the 

data into age categories suggests that there are no changes in the angulation of the 

glenoid fossa relative to the scapular spine (glen_angle_spine) in any of the species 

(figure 74), but the Gompertz growth curves do indicate the presence of ontogenetic 

changes in most species apart from P. troglodytes, and Pongo (figure 70) in this 

measurement. The same is true for the glenoid version measurement (glen_version) 

where there are no significant differences between age categories in any species 

(figure 76), while the Gompertz curves suggest that changes exist across all species 

(except Pongo) (figure 77). 

!
Overall, these results suggest that dividing the data into age categories highlights 

differences between specific age sets (namely the infants from the juveniles and 

adults), and distinguishes the humans from the apes in showing substantial 

ontogenetic changes between infancy and juvenility for most measurements. 

However, these differences are no longer observable for some of these measurements 

when growth curves are fitted to the distributions. Conversely, the Gompertz model 

does in many instances fit the ape distributions, but when the data is split into age 

categories, results indicate a lack of significant differences between age categories in 

apes in most instances. Overall, this suggests that dividing the data into age categories 

obscures some of the ontogenetic patterns that seem to be present in the apes, but 

enhances differences between developmental stages in humans, and leads to 

contrasting conclusion – namely that humans are unique in relation to the apes (when 

considering age categories) or that they follow the ape pattern in the development of 

these scapular traits (when considering the growth curves). It is possible that because 

of the longer life histories in humans, infant humans are skeletally more immature 

comparatively to the apes – human infants have downward-facing glenoid fossae in 

infants for example (figure 88) –, and thus produce more noticeable ontogenetic 
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differences when the data is divided into age categories, and in fact there are no 

instances where there are significant differences between juveniles and adults in the 

human sample (figures 71-76). This does not however, affect the plotting of the 

growth curves since these merely track the growth trajectories in these measurements 

and not the amount of change between ages. In this sense, both analyses can actually 

be considered complimentary to each other, since the lack of significant differences 

between age categories in apes species does not necessarily equate a complete lack of 

ontogenetic change in these scapular traits, but merely that these changes might not be 

substantial, or at least not as substantial as those seen for some measurements in 

humans.  

!
Figure 88 – 3D surface scan of left human infant (a), juvenile (b) and adult (c) scapulae, showing the downward rotation of the 

glenoid fossa in the infant human scapula. The glenoid fossa then becomes more cranially oriented with growth.  

!
Interestingly, both analyses do however seem to agree that the angulation of the 

glenoid fossa and scapular spine relative to the medial border shows a clearer 

ontogentic signal than when the same structures are measured relative to the lateral 

border, with the Gompertz curves showing a clearer fit across species for the 

glen_angle_medborder and spine_angle_medborder (figures 70-72) than the 

glen_angle_latborder and latborder_spine_angle (figures 70, 73, 75). This is an 
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important observation especially since Green and Alemseged’s (2012) conclusions 

about A. afarensis’ locomotor repertoire rest on the observation that the glenoid 

fossa’s angle in this species, just like in apes, remains unchanged throughout 

ontogeny. Based on their results, the authors thus conclude that the apelike shoulder 

joint configuration in A. afarensis throughout ontogeny indicates the presence of 

arboreal/climbing behaviours from infancy (Green and Alemseged 2012). Similarly, 

Green’s (2013) study also finds a lack of ontogenetic change in scapular spine 

orientation in apes, with the exception of humans whose spines become more 

obliquely oriented throughout growth. However the current results show that this is 

only true when these angles are measured relative to the lateral border, because when 

they are measured from the medial border, my results suggest that in most cases the 

glenoid fossa and the scapular spine become more cranially oriented throughout 

ontogeny in apes as well as in humans. These results thus cast some doubt on Green 

and Alemseged’s (2012) interpretations based on glenoid fossa orientation and rather 

indicate that just as in humans, apes also develop more cranially oriented glenoid 

fossae with age, perhaps as a result of increased size and arm use in humans and 

changing locomotor strategies throughout life in apes (Doran 1997; Doran 1992; 

Doran 1993a; Doran 1993b; Doran and Hunt 1996). Churchill et al (2013) suggest 

that angles based on the medial border are better indicators of glenoid fossa and spinal 

orientation than are angles based on the more commonly used lateral border because 

the long axis of the scapula is defined by the superior and inferior angles of the body 

which lies parallel to the vertebral column in humans, thus providing an indication of 

the anatomical orientation of the bone. If this is true, then glenoid fossa and scapular 

spine orientation are more adequately described relative to the medial border rather 

than the lateral border, and therefore the changes in ontogeny observed when using 

these angles are a more adequate measure of ontogenetic change in these variables. 

Consequently, interpretations about A. afarensis locomotor repertoire based on cranial 

orientation of the glenoid fossa could lead to different/opposite conclusions if 

measured instead from the medial border. 

!
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Differences between the types of analyses are also observed with regards to the ratio 

measurements. The inability to fit a Gompertz curve to these distributions suggests 

the proportion of the relationship of the supraspinous to the infraspinous size remains 

stable throughout ontogeny (figures 83), but ANOVAs suggest there are some 

instances where differences between age categories can be observed, but that this 

depends on the measurement used to quantify this ratio (figure 84-87; table 35). 

!
Fitting Gompertz curves to measurements of the scapula that have a more 

straightforward relationship to size, such as lengths, widths and breadths (figures 77; 

table 34), further indicate that sample size is unlikely to be an issue for fitting the 

scapular angle measurements, since the model adequately fits all of the size 

measurements (except Pongo) (figures 77; table 34). Furthermore the size 

measurements of the scapula exhibit, as expected, a clearer ontogenetic signal with 

comparatively (to the angle measurements) more variation throughout growth (figures 

77; table 34). Results also indicate the presence of significant differences between age 

categories across species across measurements (figures 78-82), in agreement with the 

growth curve data. These results show just how comparatively developmentally 

constrained the angle measurements are – which would partially explain the lack of 

significant differences when the samples are split into age categories. Interestingly, 

this is not the case for the latborder_spine_angle and the glen_angle_medborder 

measurements, which show substantial amounts of instraspecific variation (figure 70). 

!
In sum, the Gompertz growth curves highlight the fact that these geometric properties 

of the scapula (glenoid fossa and scapular spine orientation) are generally 

developmentally plastic across species, even if the changes are very subtle, and that 

therefore dividing the data into age categories might not capture these subtle changes 

in most instances (except in humans where changes between infants and juveniles/

adults appear more substantial). 

!
!
!
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4.2. Scapular angles: ontogeny and implications for locomotion 

!
The present results based on growth curves indicate that there are clearer ontogenetic 

changes in the orientation of the glenoid fossa and scapular spine relative to the 

medial border of the scapula across species compared to the lateral border (figure 70). 

These results suggest that the angles of both these structures relative to the lateral 

border may be more developmentally constrained, while their orientation relative to 

the medial border more developmentally plastic. This evidence suggests that 

measuring these angles this way may be more functionally relevant because the 

orientation of the medial border, unlike the lateral border, actually provides an 

indication of the anatomical orientation of the bone (Churchill et al. 2013). If this is 

the case the present study shows evidence of developmental changes in most species 

throughout ontogeny with the orientation of both the glenoid and spine becoming 

more obliquely oriented with age (although this is less clear when dividing the sample 

into age categories; figures 70-72). Evidence that there are ontogenetic changes in 

these two traits across hominoid species supports the existence of developmental 

plasticity in these structures in response to locomotor changes during an organism’s 

lifetime (Ward 2002; Green 2013). Indeed, more cranially oriented glenoid fossae are 

thought to be more advantageous for orthograde suspensory locomotion because in 

this configuration the joint distributes strain more evenly (Hunt 1991; Green 2013). 

Similarly, a more oblique scapular spine is linked to the mechanical advantage of the 

trapezius and deltoid muscles and is thus more developed in taxa exhibiting greater 

amounts of orthograde suspensory activity (Taylor 1997; Green 2013). Although this 

is in line with evidence for changing locomotor strategies in apes (Doran 1997; Doran 

1992; Doran 1993a; Doran 1993b; Doran and Hunt 1996), particularly in the more 

suspensory Pan and gibbons (Oxnard 1963, 1967; and Ashton and Oxnard 1964; 

Green 2013), the relationship between these specific morphological changes in these 

structures and locomotor changes across hominoid species is not entirely 

straightforward. For example, African apes become increasingly more quadrupedal 

and terrestrial with age (Doran 1997), in which case it would be expected that their 

glenoid fossae and scapular spines became less obliquely oriented with more laterally 
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oriented glenoid fossa with increasing age. The same is true of humans, who are 

essentially committed bipeds from the first year of life (Burnett and Johnson 1971a, 

1971b; Hensinger 1986; Stanitski et al. 2000; Ruff 2003), in which case changes in 

these structures are not expected, at least not with relation to behaviour and 

locomotion in this species. It is possible on the other hand that the changing 

orientation of these structures relative to the medial border of the scapula are a 

product of changing body sizes and consequently increased muscle sizes 

independently of specific behaviours and locomotor types. If this is the case, then the 

relationship between ontogenetic changes in scapular morphology – at least with 

regards to the present geometric properties – are more complex than previously 

thought. Indeed, EMG analyses (Tuttle and Basmajian 1977; Larson et al. 1991) have 

shown that the cranial trapezius (attaching to the scapular spine) is relatively 

unimportant in arm-raising movements in large-bodied hominoids and its recruitment 

is more directly linked to head-turning motions (Larson et al. 1991). Because of the 

trapezius’ role in head turning and head stabilisation movements, it is possible that the 

increasingly more oblique orientation of the scapular spine is instead a response to the 

greater need for head stabilisation movements in the face of increased body size, in 

both apes and humans. On the other hand, although African apes do become 

increasingly terrestrial with age, it is possible that the need to maintain suspensory 

adaptations in the shoulder is the principal selective pressure shaping these aspects of 

scapular morphology. In order words, it may be more important for African apes to 

have scapulae well adapted to suspensory locomotion even though they may engage 

in this type of locomotion less frequently, because it is a more physically demanding 

locomotor strategy. If this is the case, then it would be advantageous for these species 

to possess increasingly more cranially oriented spines and glenoid fossae with age for 

dealing with the demands of suspensory locomotion. Indeed, according to Doran’s 

(1997) observations, adult chimpanzees spend less that 20% of their time engaging in 

arboreal activities, yet they possess a narrow scapula remarkably adapted to 

suspensory behaviour, which maximize the range of rotation so that during arm-

hanging the glenoid fossa approaches a point more directly over the centre of gravity 

(Hunt 1991).  

!  247



!
In addition, it is also possible that other aspects of shoulder morphology may 

influence changes in the orientation of the glenoid fossa and scapular spine (i.e., 

thorax shape and clavicle length/position). For example, Corrigan (1959) finds that in 

humans, the neonate clavicle is positioned slightly higher and more anteriorly due to 

the elevated position of the shoulder and the rotundity of the thorax in neonates. The 

author finds that the relatively large sagittal diameter of the thorax in newborn 

humans results in a more ventrally directed glenoid cavity compared to that in adults 

– which may be why, functionally, it is more appropriate to crawl before walking 

(Ljunggren 1979). Similarly, the same may be true of apes – i.e., that the cranial 

rotation of the glenoid fossa is a by-product of changes in scapular position on the 

thorax with age. Unfortunately the issue of scapular position and mobility is not 

entirely well understood as is the complex relationship between clavicle, thorax and 

scapula and its variation among primates of diverse locomotor behaviours (Chan 

2007a,b). The boxplots and ANOVAs however, only show the presence of significant 

changes between age categories in humans, gibbons and bonobos (for scapular spine 

orientation) (figure 71) and humans, gibbons and gorillas (for glenoid fossa 

orientaion) (figure 72). In these instances where significant changes can be observed, 

the differences are between the infant and the juvenile stages suggesting that changes 

in spine and glenoid fossa orientation, where they exist, undergo the greatest amount 

of change during the transition between infancy to juvenility, consistent with the idea 

that thoracic shape changes may have an effect on the orientation of these structures. 

However, the boxplots do not show any differences between age categories in P. 

troglodytes for either measurement, which is curious given their size and locomotor 

repertoire (figures 71-72). 

!
Interestingly, these measurements exhibit varying degrees of intraspecific variation: 

the angle of the spine relative to the lateral border shows more variation than when 

the spine is measured relative to the medial border, which seems to be more 

constrained (figure 70). Conversely, the angle of the glenoid fossa relative to the 

lateral border shows less intraspecific variation than when this angle is measured 
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relative to the medial border (figures 70). Overall, this seems to indicate that although 

both the scapular spine and the glenoid fossa show a clearer ontogenetic signal when 

measured relative to the medial border, the spine’s orientation in relation to this axis is 

less variable across individuals than is the orientation of the glenoid fossa in relation 

to this same axis. Conversely, there doesn’t appear to be much developmental 

plasticity in the orientation of the glenoid and spine relative to the lateral border, 

which suggests that these angles are rather developmentally constrained, possibly for 

biomechanical reasons; however, results suggest a tighter constraint on the glenoid 

fossa’s orientation. These results suggest that these angles may not be as useful for 

functional interpretations. 

!
The Gompertz curves also indicate the presence of ontogenetic changes in glenoid 

version (glen_version) and in the angle of the glenoid fossa relative to the scapular 

spine (glen_angle_spine) (figure 70) across species, although the boxplots do not 

indicate that these differences are substantial between age stages in any sample, not 

even in humans (figure 76-77). In fact, these are the only two measurements that do 

not show differences between infant and juvenile humans. These results suggest that 

although there are slight ontogenetic changes in these angles across species, they are 

overall quite developmentally conserved, which is all the more evident when 

considering the amount of intraspecific variation across samples for both 

measurements – as can be seen in the Gompertz graphs (figure 70). Perhaps because 

the relationship of the glenoid fossa to the scapular spine is biomechanically 

important (because it determines the angle of pull of the trapezius and deltoid), there 

is a need for this angle to remain relatively stable throughout growth across 

hominoids. Similarly, because glenoid version, which relates to the anterior (ventral) 

or posterior (dorsal) displacement of the glenoid fossa relative to the scapular body, is 

important for glenohumeral stability, it also appears to be rather conserved throughout 

ontogeny. In humans marked anteversion and retroversion of the glenoid fossa in the 

plane has been associated to anterior/posterior translation of he humerus and rotator 

cuff injuries (Nyffeler et al 2006). Given the physical demands of suspensory/arboreal 
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behaviours, it is not surprising that this angle should be more developmentally 

constrained. 

!
Lastly, infraspinous-to-supraspinous scapular ratios show that these proportions 

remain rather constant throughout ontogeny in all species, regardless of how the 

dimensions are measured (figure 83). Although I was unable to fit a Gompertz growth 

curve to the distributions, results seem to show a possible decrease in infra- to 

supraspinous surface area in humans, which is evident when the data is split into age 

categories (figure 86) with the supraspinous fossa becoming relatively larger in 

relation to the infraspinous fossa. However this does not appear to be true of apes. 

Additionally, these results show that humans deviate from the apes, except for Pongo, 

in having comparatively smaller supraspinous fossa relative to their infraspinous 

fossae. This is line with recent evidence, which also describe similarities between 

Homo and Pongo in these proportions (Young 2008; Larson and Stern 2013; Bello-

Hellegouarch et al. 2013). Namely, Bello-Hellebouarch et al (2013) suggest that the 

resemblance between Pongo and Homo offers evidence that the last common ancestor 

of the human–chimpanzee clade likely showed an overall suspensory shoulder girdle 

pattern (see also: Crompton et al. 2008; 2010; Kivell and Schmitt 2009; McHenry 

1986; Oxnard 1984; Thorpe et al. 2007) instead of a knuckle-walker structure, as has 

been suggested (Begun 1992; Corruccini and McHenry 2001; Orr 2005; Richmond 

and Strait 2000; Richmond et al. 2001; Williams 2010). Larson and Stern (2013) 

however, caution that even though there are osteological similarities in these ratios 

between these two species, soft tissue data (EMG data and data on muscle mass and 

physiological cross sectional area [PCSA]), shows that orangutans do not have 

particularly small supraspinatus muscles or particularly large infraspinatus muscles, 

contrary to what would be expected given the high scapular infra- to supraspinous 

fossa ratios.  

!
The present results also indicate that breadth measurements are substantially more 

conserved than surface areas and height dimensions in all instances, suggesting that 

the scapula’s morphology in this dimension is more constrained (figure 83). These 
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results are interesting, especially in light of the suggestion that scapular spine 

orientation determines the shape and size of the infra- and supraspinous fossae, in 

which case changes in these ratios would be expected to follow changes in spine 

orientation. It is possible that differences in how the orientation of the scapula is 

measured may be responsible: in the present study the orientation of the spine was 

measured from the spine itself, whereas Larson and Stern (1986) and Larson (1995) 

instead measure the position of the base of the spine, which forms the boundary 

between the supra- and infraspinous fossae. It is possible that while the spine itself 

progressively moves more cranially, the base of the spine remains stable, which 

would be congruent with the general lack of ontogenetic change in scapular infra- and 

supraspinous fossa proportions. Future work should investigate whether this is indeed 

the case. Notwithstanding, these results seem to indicate that the relative sizes of 

scapular fossae in hominoids are overall developmentally stable and do not seem to 

accompany changes in locomotor strategies (i.e., shifts between more suspensory 

infants to more terrestrial adults in P. troglodytes and G. gorilla). It is important to 

note however, that recent analyses have demonstrated that a substantial amount of 

information about soft tissues is lost in osteological analyses (Bello-Hellegouarch et 

al. 2013) and that relative scapular fossa size is not in fact a good predictor of either 

the relative masses or cross-sectional areas of the rotator cuff muscles in apes, and 

relative fossa size gives a false impression of the importance of individual rotator cuff 

muscles to locomotor differences among apes (Larson and Stern 2013). 

!
5. Conclusions 

!
This study investigated the ontogeny of scapular angle measurements in hominoids 

and whether humans deviate from the ape pattern, as has been recently suggested 

(Green and Alemseged 2012). This study also explored whether differences between 

methods influence such functional interpretations. This topic was chosen because it 

bears important implications for the interpretation of functional and locomotor 

interpretations in fossil hominins (Green and Alemseged 2012).  

!
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My results show that the angulation of the glenoid fossa and scapular spine seem to 

show some developmental plasticity – becoming progressively more cranially 

oriented with growth – when these angles are measured relative to the medial border. 

This has important implication for the interpretation of fossil specimens, for which the 

orientation of the glenoid fossa is typically measured relative to the lateral border of 

the scapula. My own results suggest that this angle may be more developmentally 

constrained, and thus less functionally informative, at least in ontogenetic contexts; 

functional interpretation based on this latter measurement may thus mislead us to 

conclude that the orientation of the glenoid and spine are not developmentally plastic 

in apes. 

!
This study also highlights how differences in analyses lead to different and even 

contradictory functional interpretations about the ontogenetic development of these 

scapular traits. Differences between the Gompertz growth curves and boxplots/

ANOVAs may however be useful in combination, since the lack of significant 

differences between age categories does not necessarily mean a complete lack of 

developmental plasticity, but rather that the changes are not substantial enough that 

they are captured when dividing the data into blocks. This is especially relevant in the 

case of traits that may be more constrained/less plastic due to their biomechanical/

functional properties, such as might be the case with regards to the geometric 

properties of the scapula’s angles. 

!
These results also do not support that humans are derived relatively to the apes, but 

rather support the relatively immaturity of the infant human scapula compared to that 

of apes – namely humans seem to possess a downward facing glenoid fossa at birth, 

which may simply reflect a lack of ossification of the glenoid fossa in these very 

young individuals, thus giving the false impression that glenoid orientation changes 

more substantially in this species compared to apes. 

!
Overall, this study highlights the importance of ontogeny for making interpretations 

about locomotion and function in extant and extinct fossils. Namely, some of my 
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results contradict Green and Alemseged’s (2012) observation of a lack of ontogenetic 

changes in glenoid fossa and scapular spine orientation in apes. Green’s (2013) more 

recent study also somewhat contradicts his earlier finding, by showing the presence of 

ontogenetic differences in glenoid fossa orientation in Gorilla, Pongo and Macaca (as 

well as humans) when using a different age categorisation, which highlights the 

importance of analytical and methodological choices in the study of ontogeny, namely 

in how age is quantified.  

!
However, Green and Alemseged’s (2012) highlight a more important question about 

what the relationship between ontogeny and locomotion is, since in essence, they 

associate the presence of ontogenetic changes in morphology to a lack of ontogenetic 

changes in locomotion (Homo sapiens), while associating the absence of ontogenetic 

changes in morphology to the presence of locomotor shifts throughout growth (great 

apes and A. afarensis); they then take the lack of ontogenetic changes in the 

australopithecine scapula as evidence of this species’ active engagement in arboreal 

locomotion. This seems contradictory and highlights how much we still need to 

understand about the link between ontogeny and function. My own results also 

suggest that ontogenetic changes (or lack thereof) in scapular properties does not fall 

in line with ontogenetic shifts in locomotion in hominoids – for example, an 

increasingly more cranial scapular spine is not in line with increased terrestrial 

quadrupedalism in apes – which also suggests that the link between ontogeny and 

locomotion is complex and needs further understanding.
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– Chapter 8 – 
!

Conclusions: what can the shoulder tell us about the mode of locomotion of the 

LCA of all hominoids? 

!
The present study looked at the ontogeny, phylogeny and functional anatomy of the 

hominoid shoulder girdle. The main focus of the project dealt with aspects of 

ontogenetic change in the shoulder elements for the purpose of determining whether 

shared similarities in the shoulder joint of hominoids are more likely to be a product 

of homology (shared ancestry) or homoplasy (parallel evolution). Phylogenetic 

analyses were also conducted in the case of humeral torsion and clavicular curvatures 

– in the former, because humeral torsion is often discussed in the context of 

locomotor ancestry, and in the latter because clavicular curvatures have rarely been 

studied in a cross comparative context. I also included a chapter on the bilateral 

asymmetry of the humerus in order to address questions about the link between bone 

morphology/plasticity and individual behaviour.  

!
1. Summary of results 

!
1.1. Ontogeny: what can it tell us about morphology and function? 

!
First and foremost, this study investigates whether the anatomical similarities in 

extant hominoid shoulder structures arise through similar developmental processes in 

order to assess whether they have arisen through shared ancestry or through parallel 

evolution. The project is particularly innovative in that it utilises Approximate 

Relative Dental Ages (ARDAs) based on X-ray images and histological sections of 

mandibular dentition (as per Dean and Wood’s [1981] atlas method) to obtain an 

ontogenetic series for all non-human hominoid samples, as well as in the application 

of Gompertz growth curves to these samples in order to compare growth between 

elements within species, and within elements between species.  

!
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Overall my results provide a more detailed understanding of ontogenetic change in 

shoulder morphology across hominoid species, and demonstrate (1) high levels of 

plasticity in key diagnostic traits of hominoid shoulder morphology (such as humeral 

torsion and the distal curvature of the clavicle), and (2) a relative lack of phenotypic 

plasticity in other key traits (such as the proximal curvature of the clavicle and 

glenoid-axillary angle of the scapula). Specifically, my results show that humeral 

torsion in non-human hominoid primates develops throughout ontogeny and ceases 

around adulthood, and is the first study to establish this. This study shows that 

differences in the timing and expression of torsion between species appear with 

growth and match remarkably well with on the one hand (a) species locomotor 

repertoire, phylogenetic relationships, size and life history, and on the other hand, (b) 

changing locomotor patterns through life in the different species. The study also finds 

that macaques develop torsion in an entirely opposite way to that of hominoids: by 

reducing torsion throughout growth rather than increasing it, in order to achieve 

similar forearm positioning due to differences in scapular positioning. Most crucially, 

these divergent patterns between Macaca and hominoids indicate opposite 

relationships between torsion and locomotion in these clades, with relatively high 

torsion in hominoids relating to pronogrady/quadrupedalism, and relatively low 

torsion relating to orthograde suspensory behaviours, while in New World and Old 

World monkeys it is relatively low torsion that relates to pronogrady/quadrupedalism 

and relatively high torsion that relates to orthograde suspensory behaviours. This has 

important implications for the interpretation of locomotion from fossil postcranial 

remains, and particularly so for stem hominoid fossils who are expected to present a 

mosaic of shoulder characteristics that are both ape-like and monkey-like. However, 

because I propose that it is low torsion, rather than high torsion, that is the 

functionally significant condition in hominoids, and that this trait is related to 

suspension/climbing behaviours, my results can neither support or reject the 

independent or shared derivation of knuckle-walking in hominoids, and instead 

suggest that high torsion in African apes and humans arises as a by-product of 

decreased frequencies of orthograde suspensory/climbing activities and by 
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consequence, the greater importance of pronograde/quadrupedal locomotion – but not 

knuckle-walking specifically.  

!
With regards to the clavicle’s curvatures, the present findings suggest that the clavicle 

is both partially developmentally plastic and partially ontogenetically conserved, 

contradicting the traditional view that the clavicle is ontogenetically stable. While on 

the one hand there are visible changes in clavicular curvature across hominoids, on 

the other hand, clavicular curvatures remain proportionally stable relative to each 

other and to clavicular length throughout growth, with adult curvatures being 

established around the time the clavicle ceases growing in length. This suggests that 

the clavicle’s curvatures are genetically constrained to a certain extent, and suggests 

that there are elements of the clavicle that are structurally conserved throughout 

ontogeny.  

!
Finally, with regards the scapula, my results show that the angulation of the glenoid 

fossa and scapular spine are developmentally plastic to a certain extent – becoming 

slightly more cranially oriented with growth – when these angles are measured 

relative to the medial border, which contradicts recent suggestions that the orientation 

of these structures is completely developmentally stable in apes but not humans. This 

has important implication for the interpretation of fossil specimens, for which the 

orientation of the glenoid fossa is typically measured relative to the lateral border of 

the scapula. My own results suggest that the glenoid fossa and scapular spine’s 

orientation relative to the lateral border may be more developmentally constrained, 

and thus less functionally informative, at least in ontogenetic contexts. Functional 

interpretation based on this latter measurement may thus mislead us to conclude that 

the orientation of the glenoid and spine are not developmentally plastic at all in apes. 

However, relative to other traits such as the distal curvature of the clavicle and 

humeral torsion, the glenoid-axillary angle of the scapula is much less 

developmentally plastic with less intra-specific variation.  

!
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1.2. Phylogeny: the application of Phylogenetic Comparative Methods for assessing 

postcranial evolution 

!
I used Phylogenetic Comparative Methods (PCMs) to discern clade-specific patterns 

in the evolution of hominoid clavicle morphology and humeral torsion. In particular, I 

used the new method of ‘Independent Evolution’ (IE; Smaers and Vinicius, 2009; 

Smaers et al, 2012, 2013), to map phenotypic change in humeral torsion across 

individual branches of a phylogeny with the aim of identifying processes such as 

convergence and mosaic evolution within the skeleton. I also used Phylogenetic 

Generalized Least Squares (PGLS) regressions in the analysis of clavicular anatomy. 
!
Results of these phylogenetic analyses suggest that despite the large amounts of intra-

specific variation, levels of humeral torsion in early hominins are sufficiently distinct 

from that of extant great apes and humans, and therefore this trait can be explained as 

a symplesiomorphic character in early hominin species – retained from the LCA of 

hominoids –, and a parallelism between the great apes and humans – thus supporting 

the notion of parallel evolution of terrestrial quadrupedalism in the great apes, and 

specifically, the parallel evolution of knuckle-walking in the Gorilla and Pan stem 

lineages. However, because high levels of torsion are also found in Pongo, who are 

not knuckle-walkers, my results also support that torsion should not be discussed in 

the context of knuckle-walking specifically (Kivell and Schmitt 2009). My results 

also support that the high levels of torsion seen in modern humans are recently 

derived, possibly as a result of a reconfiguration of the shoulder girdle anatomy in this 

lineage (Larson 2007). Overall these result show that phenotypic plasticity and 

phylogenetic significance are not necessarily mutually exclusive concepts, since the 

incorporation of phylogenetic trait plasticity largely corroborates our understanding of 

the evolution of humeral torsion based on single fossil values.  

!
With regards to the clavicle, my results suggest that the clavicle’s curvatures 

significantly correlate with aspects of scapular morphology, in particular the 

orientation of the scapular spine relative to the glenoid fossa, as well as to the size of 
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the clavicle and shoulder. Moreover, results indicate that the proximal curvature is 

more often associated with elements of size, and that the distal curvature is more often 

associated to functional aspects of shoulder morphology related to mobility and 

stability. These results seem to indicate that, on the one hand, the proximal curvature 

is phylogenetically conserved – perhaps because of its role in shoulder joint stability 

and in protecting the thoracic inlet –, while on the other hand, the distal curvature is 

more variable and plastic – perhaps because of its association with locomotion and 

arm elevation. The lack of correlation between proximal and distal curvatures further 

suggests the existence of a relative independence between distal and proximal clavicle 

curvatures in primates. 

!
1.3. Functional Morphology of the hominoid shoulder: insights from ontogeny and 

phylogenetic analyses 

!
In combination, my methodological approaches contribute significantly to our 

understanding of the functional morphology of the hominoid shoulder as a whole, and 

provide information that can be used to interpret extinct hominoid and hominid 

morphologies. Methodologically, the project is innovative in its quantification of 

shoulder traits by using 3D surface scans and 3D imaging software to measure surface 

areas, torsion, angles and curvatures. For example, I propose a new protocol for 

quantifying clavicular curvatures in 3D in my thesis – this is an important 

development since the clavicle has traditionally been a poorly studied bone in cross-

comparative studies. Specifically, this study also sheds light on the functional and 

evolutionary significance of humeral torsion by proposing that it is low torsion, rather 

than high torsion, that is the functionally significant condition in hominoids, and that 

this trait is related to orthograde suspension/climbing behaviours, or more generally, 

to any locomotor behaviours involving frequent use of the arms in overhead 

movements/postures. The study also sheds light on the function of clavicular 

curvature, by showing the more plastic nature of the distal curvature, which matches 

hominoid species’ locomotor repertoires. Importantly, the study also highlights how 

differences in the quantification of glenoid fossa and scapular spine orientation impact 
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functional and evolutionary interpretations by showing that the relationship of these 

structures to the lateral border is more developmentally constrained than their 

relationship to the medial border, which is more mechanically informative.  

!
Additionally, information on bilateral asymmetry patterns in torsion and length of the 

humerus in humans and African apes shows that humans are unique in presenting a 

population-level right bias for both humeral length and torsion, consistent with 

population-level right-handedness, while the African apes show no significant 

directionality in either measurement. However, my results do show that absolute 

torsion asymmetries in apes occur in the same magnitude as in humans, suggesting 

the existence of functional lateralization at the individual level. These results thus 

suggest a link exists between behaviour and morphology discernible both at the 

individual and population levels, in both humans and African apes. 

!
2. The locomotion of the LCA: what does the ontogeny of the hominoid shoulder 

tell us? 

!
Overall, by distinguishing between those traits that are relatively more static in their 

development (like the orientation of the glenoid fossa) and those that are 

developmentally much more plastic (such as humeral torsion and possibly the distal 

curvature of the clavicle), this study is able to offer insight into those shoulder traits 

that are potentially more phylogenetically informative and thus more useful in 

distinguishing between homologies and homoplasies. For example, as above-

mentioned, this study indicates that key functional aspects of scapular and clavicular 

morphology tend to be developmentally more stable (or more constrained on terms of 

their developmental plasticity); this is the case for the orientation of the glenoid fossa, 

which is associated with use of overhead arm movements (e.g., Stern Jr and Susman 

1983; Inouye and Shea 1997), and the proximal clavicular curvature, which allows for 

the scapula to be dorsally positioned (Jenkins et al. 1978; Chan 2008). The fact that 

all hominoids apart from humans exhibit dorsally placed scapulae with long curved 

clavicles and cranially directed genoid fossae, coupled with the fact that these traits 
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are more developmentally conserved across hominoid species, suggests that these are 

likely to be inherited through common descent and thus homologous to all hominoids. 

The fact that australopithecines also exhibit cranially oriented fossae from infancy 

(Alemseged et al 2006; Green and Alemseged 2012) supports this suggestion. 

Consequently, these observations are in line with the behavioural observation that 

generalised orthograde clambering is the locomotor behaviour that characterises the 

positional behaviour of all hominoids (e.g., Hunt 1991; Thorpe and Crompton 2006; 

but see Begun et al 2007). This is in line with Crompton et al’s (2008) suggestion that 

the mode of locomotion of the LCA of hominoids was likely primarily orthograde 

clambering, with hand-assisted bipedality and quadrupedalism on large branches, but 

not specifically suspensory locomotion (Crompton et al 2008).  

!
However, these results highlight homologies in those structures necessary for those 

locomotor/postural behaviours that are more costly – i.e., those that place high 

stresses on the bone – and not necessarily the ones that are the most frequently used. 

For example, African apes spend 50-99% of their locomotor time on the ground 

(Tuttle and Watts 1985; Hunt, 1991, 1992; Doran, 1993,1996; Begun and Kivell 

2011), but this is not reflected in their shoulder morphology. In fact, chimpanzees 

exhibit very clear adaptations for orthograde suspension, such as long narrow 

scapulae, robust clavicular anchors, anteroposteriorly flattened, and cranially oriented 

glenoid fossae, despite it being the less frequent activity (Hunt 1991). The fact that 

hominoids show relative developmental stability in shoulder features related to 

facilitating overhead movements and maintaining a dorsally placed scapula, suggests 

that these are selectively and behaviourally important traits (otherwise they would not 

have been conserved through phylogenetic history), but not necessarily the ones 

needed the most frequently. This is an important observation, especially when 

attempting to make sense of extinct morphologies. For example, it is possible that 

australopithecines were more frequently bipedal but that being efficient in the trees 

was selectively more important. In this sense, the retention of traits associated to 

arboreality in this genus is neither evidence of ‘phylogenetic baggage’ nor evidence of 

a life mainly spent in the trees, but they simply reflect selection for maintaining those 
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structures associated to the more costly behaviours. In fact, studies have suggested 

that anatomical adaptations in apes are directed towards avoidance of falls (Pontzer 

and Wrangham 2004; Thorpe and Crompton 2006) since large animals are less likely 

to survive if they fall from any great height (Cartmill and Milton 1977). However, 

natural selection tends to shape anatomy to reduce muscular activity and structural 

stress in relation to the frequency of the behaviour (Basmajian, 1965; Cartmill et al., 

1987; Hunt, 1991b, 1992) such that “positional behaviours for which an animal is 

well-adapted to are expected to require less muscle activity, and induce less stress in 

the skeleton and ligaments, than behaviours for which the animal is poorly 

adapted” (Thorpe and Crompton 2006:394). Given that being efficient in the trees is 

selectively more important than being efficient on the ground – because suspensory 

postures are more energetically expensive than terrestrial pronograde postures due to 

the effects of gravity and the discontinuous 3D environments – it is therefore likely 

that adaptations to the former will be more evident in the ape skeleton (Thorpe and 

Crompton 2006). In this sense, the fact that shoulder traits adapted to orthograde 

suspensory postures are developmentally and structurally homologous in hominoids 

indicates that this behaviour is the most selectively important for this clade, but this is 

not necessarily a reflection of the postural/locomotor behaviours that are most 

frequently used among hominoid species. In any case, this certainly suggests a 

common inheritance of these features from a LCA who must have been, at least 

partially, engaging in orthograde suspensory behaviours. 

!
In contrast, my results demonstrate that humeral torsion is very much 

developmentally plastic with large degrees of intraspecific variation in hominoids, 

thus making it a good variable for inferring actual frequency of locomotion but not for 

distinguishing between behavioural homologies and homoplasies. Even though 

humeral torsion has often been used in the context of discussing the evolution of 

knuckle-walking as either a homology or homoplasy (Washburn 1967; Richmond and 

Strait 2000; Richmond et al. 2001; Begun 2004), my results show that torsion levels 

differentiate among hominoid species throughout growth due to the relative action of 

the medial and lateral rotators and according to differences in scapular positioning, 
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and thus reflect locomotor differences between species that develop during life. This 

indicates that mechanistically, this trait is homologous to all hominoid species, even 

though structurally this appears not to be the case. In fact, it is precisely this shared 

developmental mechanism that allows us to use this trait to look at differences in 

levels of activity between individuals of the same species (as in the case of Pongo; see 

Sarmiento 1985) and to look at differences in activity between limbs within 

individuals (Pieper 1998; Crockett et al. 2002; Osbahr et al. 2002; Whiteley et al. 

2008, 2010; Taylor et al. 2009; Myers et al. 2009; Schwab and Blanch 2009). This 

suggests that on its own, humeral torsion is a poor indicator of shared behavioural 

ancestry and should not be used to make inferences about the locomotion of the LCA 

of hominoids – at least not on its own and in the absence of fossil evidence to provide 

a wider context. Indeed, when phylogenetic and fossil information is incorporated, my 

results suggest that despite the large amounts of intraspecific variation, levels of 

humeral torsion in early hominins are sufficiently distinct from that of extant great 

apes and humans that it supports the notion of parallel evolution of terrestrial 

quadrupedalism in the great apes, and specifically, the parallel evolution of knuckle-

walking in the Gorilla and Pan stem lineages. However, because high levels of 

torsion are also found in Pongo, who are not knuckle-walkers, my results also support 

that torsion should not be discussed in the context of knuckle-walking specifically 

(Kivell and Schmitt 2009).  

!
In sum, results of this study suggest that whereas on the one hand developmentally 

stable traits are useful in distinguishing homologies from homoplasies but not in 

determining frequency of behaviour during life, on the other hand, developmentally 

plastic traits are more likely to reflect actual frequency of behaviours during life and 

because of this are less useful in distinguishing homologies from homoplasies. In 

combination, both types of traits can help make sense of the morphological variations 

in shoulder anatomy between hominoid species: all hominoids are adapted to a life in 

the trees but depending on their greater or lesser frequencies of terrestrial pronograde 

locomotion, species’ morphologies will be either more specialised for those arboreal 

behaviours (i.e., gibbons), or more ‘compromised’ in their anatomy (i.e. African apes) 
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to allow for successfully exploiting a variety of niches. Indeed, Pontzer and 

Wrangham (2004) suggest that chimpanzees and gorillas acquired their terrestrial 

knuckle-walking behaviours as a response to canopy fragmentation to access their 

typically ground-based fallback foods (Thorpe et al 2009). Recent evidence also 

suggests the same may be the case for Pongo who travel terrestrially more often than 

has been previously thought (Loken et al 2013; Ancrenaz et a; 2014). Loken et al 

(2013) suggest that this may be related to energy-efficiency since travelling on the 

ground is a more cost-efficient choice for the large bodied orangutan given the 

distribution of support structures and food resources. Moreover, the fossil relative 

taxa of Pongo are also thought to have used more ground locomotion than the extant 

Pongo (Begun and Kivell 2011; Harrison and Chivers 2006) which has in turn led to 

the suggestion that ancestral orangutans may have been able to cover larger distances 

on the ground (Von Koenigswald; 1982; Wich et al 2009). Overall, this suggests that 

knuckle-walking in African apes and fist-walking in orangutans may be a 

energetically-efficient and common locomotion choice for large bodied suspensory 

animals to move around terrestrially – this locomotor flexibility allows the large 

bodied hominoids to exploit a variety of niches and adapt to habitat changes and food 

availability. 

!
3. Homology versus homoplasy: is plasticity an issue?  

!
This study operated on the premise that (a) homologies reflect evolutionary changes 

arising from similar developmental processes, (b) parallelisms reflect developmental 

processes that may have diverged, and (c) convergences reflect divergent 

developmental processes (Hall 2003). However, because this study looked at 

development within the hominoid clade, convergences were not observed, and 

therefore results showed either the effect of homology or parallelism. 

!
My results suggest that while developmentally stable traits are likely to be useful in 

distinguishing homologies from homoplasies (parallelism), developmentally plastic 

traits and those traits with large degrees of intra-specific variation are less useful in 
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this context because they are more likely to reflect actual frequency of locomotion 

and activity during life rather that reflect shared ancestry. Indeed, there is a fair 

amount of plasticity in the postcranial skeleton in general since bones change in size 

and shape throughout life in response to a variety of stimuli (multiple genes with 

multiple effects [pleiotropism], and a large number of non-genetic influences 

[Cheverud 1982; Atchley and Hall 1991; Herring 1993; Lieberman 1992]) which 

means that the ontogeny of morphological features can be highly mosaic and 

dissociated from phylogeny (Lieberman 1999). For example, Lieberman (1996) 

suggests that it is unlikely that measurements of bone thickness are ever good 

characters for phylogenetic analyses because phylogenetically irrelevant stimuli can 

elicit similar morphological responses. This may explain why reconstructing 

phylogenies from skeletal elements tends to be problematic (Zelditch et al. 1995; 

Monteiro 2000; Brehm et al. 2001; Naylor and Adams 2001; MacLeod and Forey 

2002; Rohlf 2002; Hoekstra et al. 2004; Lockwood et al. 2004; Lycett and Collard 

2005; Michaux et al. 2007; Cardini and Elton 2008; González-José et al. 2008; Polly 

2001), especially in the case of the postcranial skeleton (e.g., Young 2003).  

!
This suggests that developmental plasticity in traits may be a problem for assessing 

homologies because these traits are less likely to carry a phylogenetic signal. Harvati 

and Weaver (2006), for example, tested the reliability of morphological evidence from 

three regions of the cranium – face, temporal bone and vault – in tracking population 

history by comparing morphological distances among recent human groups and found 

that both the vault and the temporal bone shape preserved a stronger phylogenetic 

signal while facial shape seemed to be affected both by climatic factors and 

population history. However, studies based on the analysis of multiple primate species 

(e.g., Wood and Lieberman 200) and on human populations (e.g., Cramon-Taubadel 

2009, 2014) found that even those regions of the cranium that are more plastic like, 

for example, those subject to masticatory-induced stress, were indeed significantly 

more variable than non-masticatory regions but were no less reliable for 

reconstructing primate phylogenetic relationships when subjected to parsimony 

analysis or inferring human population history. The same may be true of the 
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postcrania, which has typically been assumed to reflect postural and locomotor 

adaptations rather than phylogenetic relationships (Arias-Martorell et al., 2012; 

Lockwood, 1999; Pilbeam, 1996; Young, 2005) and it is now clear that many aspects 

of postcranial anatomy may reflect phylogenetic information to the same extent as the 

cranium (e.g. Betti et al., 2012, 2013; Lycett & von Cramon-Taubadel, 2013; Young, 

2005). Our own results based on torsion suggest that despite the large amounts of 

intra-specific variation, levels of humeral torsion in early hominins are sufficiently 

distinct from that of extant great apes and humans that this trait can be explained as a 

symplesiomorphic character in hominins and a parallelism between the great apes and 

humans. This suggests that phenotypic plasticity and phylogenetic significance are not 

necessarily mutually exclusive, since the incorporation of phylogenetic trait plasticity 

largely corroborates our understanding of the evolution of humeral torsion based on 

single fossil values.  

!
In this sense, trait plasticity and developmental plasticity are only problematic when 

trying to reconstruct phylogenies from morphological traits in the absence of a priori 

phylogenetic information. This illustrates the strength and advantage of using the 

current method – ‘Independent Evolution’ (IE) (Smaers and Vinicius 2009; Smaers et 

al. 2012, 2013) – because rather than ‘removing’, ‘controlling’ or ‘accounting’ for a 

phylogenetic signal, morphological traits are ‘mapped’ onto the existing phylogeny 

itself, thereby highlighting processes of adaption (including homoplasies) occurring 

across the branches of a phylogeny. Furthermore, it is possible to account for intra-

specific variation and single fossil values by using a re-sampling technique and by 

reporting Standard Deviations associated with the estimated rates and ancestral 

values. This means that homologies, as well as homoplasies, can be identified 

regardless of trait plasticity. In fact, I would argue that this type of analysis is 

particularly interesting for analysing highly plastic traits, as highly conserved traits 

are expected to simply follow the known phylogenetic relationships. But how much 

plasticity is too much plasticity? As demonstrated in the humeral torsion analyses, 

there are varying degrees of uncertainty on different branches of the phylogeny (for 

example, Pongo is such a case), meaning that the reliability of the estimates varies 

!  265



according to the degree of trait plasticity and levels of intra-specific variation. 

Although this may be problematic when attempting to reconstruct ancestral traits at 

specific nodes (depending on the degree of uncertainty associated with these 

estimates), this method allows for identifying clade-wide patterns in the evolution of 

developmentally plastic traits. The extent to which these traits are informative will 

largely depend on the amount of plasticity exhibited in particular traits, but results of 

this study show that even highly plastic postcranial traits like humeral torsion can be 

analysed in this context.  

!
But how do we reconcile developmental plasticity and ontogeny in the context of 

identifying homologies versus homoplasies? This study shows that once phylogenetic 

relationships are known, developmental plasticity is useful to assess whether traits 

develop via homologous developmental processes or via divergent developmental 

processes because it sheds light on the developmental mechanisms and not just the 

developmental sequences by which morphologies grow – which is generally 

considered to be a better measure of homology (Lieberman, 1999). However, because 

homoplasies are often the result of compromises between intrinsic factors, such as 

genetic constraints, and extrinsic factors, imposed by the environment (Lockwood and 

Fleagle 1999), closely related taxa will tend to find similar morphological solutions to 

similar ecological challenges. This is particularly relevant when considering 

parallelisms, as is the case with hominoid morphologies, and for this reason, 

Lieberman (1999:147) describes parallelisms as “a particularly pernicious form of 

homoplasy because the similarities are, by definition, developmentally homologous”. 

This is precisely the case with our own results: although in adults, humeral torsion 

levels appear to be structurally homoplastic, when looking at its development, this 

trait appears to be developmentally homologous (since the levels of torsion are largely 

similar at birth in all species and differentiate throughout life). It therefore appears 

unlikely that there truly exist developmentally homoplastic traits within closely 

related taxa as is the case with hominoids, but rather traits essentially exhibit varying 

degrees of homology. For this reason it may be more productive to think about 

‘homology versus homoplasy’ processes as part of a continuum rather than a 
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dichotomy, as suggested by Hall (2007; 2012), because the more phylogenetically 

recent the last common ancestor, the greater the likelihood of phenotypic similarity. 

Given this, it is unlikely that any one morphological trait will be useful in addressing 

questions about homology/homoplasy and locomotor ancestry in the hominoid clade. 

The strength and originality of the current project is that it used a variety of shoulder 

metrics that have all been analysed 1) from an ontogenetic perspective, 2) within a 

phylogenetic context, and 3) in a cross comparative framework, thus demonstrating 

that while the more developmentally stable traits provide evidence for selection for 

costly behaviours (which can be shared or not), the more developmentally plastic 

traits are informative of actual frequency of behaviour and underlying developmental 

mechanisms (which can be shared or not) – a distinction which had not previously 

been established. In combination, both types of traits can help make sense of the 

morphological variations in shoulder anatomy between hominoid species. 

!
4. Conclusions and future directions 

!
Overall, studying the underlying ontogenetic patterns in key functional aspects of 

shoulder morphology in hominoids reveals essential information about the evolution 

of orthograde suspensory versus pronograde terrestrial locomotion in this clade, and 

makes sense of the majority of intra and inter-specific variation seen in these traits in 

hominoids by revealing the mechanisms behind such variation. This corroborates the 

notion that ontogeny is an important component in studies of comparative anatomy 

and should continue to be further incorporated into the study of functional 

morphology. Overall, this study highlights the importance of ontogeny for making 

interpretations about locomotion and function in extant and extinct fossils, because it 

gives insight into how these functional structures develop. With the use of growth 

curves it is possible therefore to discern, in greater detail, varying degrees of (1) 

developmental plasticity, (2) instraspecific variation across time, and (3) inter-specific 

variation in growth and development in these traits. Using this method versus dividing 

the data into age categories can however lead to divergent and even contradictory 

functional (and evolutionary) interpretations. These differences in results highlight the 

!  267



importance of analytical and methodological choices in the study of ontogeny, namely 

in how age is quantified. Importantly, this study suggests that the lack of significant 

differences between age categories does not necessarily equate a complete lack of 

ontogenetic changes in these traits, but merely that these changes might not be very 

substantial. This may be particularly relevant for traits that are more developmentally 

conserved (such as scapular spine and glenoid orientation) than other more plastic 

traits (such as humeral torsion). Future work could compare the present results with 

those derived from alternative schemes of age categorisation, such as dental maturity 

scores (e.g., Kuykendall, 1996), and should continue to integrate as much data of 

specimens of known age into dental aging techniques as possible in order to maximise 

the information that can be drawn from ontogenetic analyses. 

!
In sum, this study contributes to existing discussions regarding the extent to which 

similarities in hominoid upper limb morphology have evolved independently or 

reflect an ancestral morphotype, as well as discussions regarding the mode of 

locomotion of the last common ancestor (LCA) of apes and humans. The functional 

implications resulting from the ontogenetic, phylogenetic and asymmetry analyses 

should therefore have important implications for the interpretation of fossil 

specimens. Future work should continue to explore the use of growth curves in the 

study of ontogeny, and the incorporation of Phylogenetic Comparative Methods in the 

study of hominoid postcranial evolution. 

!
Moreover, it is likely that no one morphological trait is sufficient to address the issue 

of homology versus homoplasy or questions about locomotor ancestry in the 

hominoid clade, and this study highlights the importance of placing structures in the 

context of whole anatomical areas. Future studies considering the whole shoulder/or 

whole joints will be instrumental in better understanding form-function relationships 

in complex joints such as the shoulder. Particularly, if these can incorporate in vivo 

behavioural data on how joints move as a unit. 

!
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This study also highlights the importance of analytical and methodological choices in 

the study of ontogeny. Further studies should focus on determining how age 

categorisations affect conclusions about ontogeny and development. Namely, future 

studies should explore how much ontogenetic change constitutes ‘significant’ change, 

and when these ontogenetic changes between species are sufficient for us to determine 

whether traits are developmentally homologous or not. Finally, the acquisition and 

integration of more and more detailed behavioural data from the field will be 

instrumental in reliably testing hypothesis of form-function relationships in the 

context of evolutionary adaptation.
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– Appendix 1 – 
Table of specimens. 

!

Species Specimen Collection RDA Sex Side
Macaca fascicularis AS 1678 Zurich 2.50 M L
Macaca fascicularis PAL 41 Zurich 2.50 M L
Macaca fascicularis PAL 36 Zurich 3.50 M L
Macaca fascicularis PAL 38 Zurich 3.50 F L
Macaca fascicularis PAL 40 Zurich 3.50 M L
Macaca fascicularis PAL 33 Zurich 4.00 M L
Macaca fascicularis PAL 18 Zurich 5.00 M L
Macaca fascicularis PAL 31 Zurich 5.00 M L
Macaca fascicularis PAL 30 Zurich 6.50 F L
Macaca fascicularis PAL 32 Zurich 6.50 M L
Macaca fascicularis PAL 39 Zurich 6.50 M L
Macaca fascicularis 8851 Zurich 7.00 F L
Macaca fascicularis 9308 Zurich 7.00 F L
Macaca fascicularis 9325 Zurich 7.00 F L
Macaca fascicularis 9553 Zurich 7.00 F L
Macaca fascicularis 10125 Zurich 7.00 M L
Macaca fascicularis 10136 Zurich 7.00 M L
Macaca fascicularis 10139 Zurich 7.00 M L
Macaca fascicularis 10140 Zurich 7.00 M L
Macaca fascicularis 10574 Zurich 7.00 M L
Macaca fascicularis 13483 Zurich 7.00 F L
Hylobates lar 1575 Zurich 0.52 F L
Hylobates lar 1634 Zurich 0.52 F R
Hylobates lar 1633 Zurich 1.22 F L
Hylobates lar 1655 Zurich 1.42 M L
Hylobates lar 1628 Zurich 1.86 F L
Hylobates lar 1629 Zurich 2.74 F L
Hylobates lar 1631 Zurich 3.00 M L
Hylobates lar 1639 Zurich 3.00 F L
Hylobates lar 10220 Zurich 3.00 M L
Hylobates lar 1630 Zurich 4.08 M L
Hylobates lar 1619 Zurich 6.00 M L
Hylobates lar 1627 Zurich 6.00 M R
Hylobates lar 1632 Zurich 7.00 F L
Hylobates lar 7566 Zurich 7.00 - L
Hylobates lar 1580 Zurich 8.00 F L
Hylobates lar 1581 Zurich 8.00 F L
Hylobates lar 1582 Zurich 8.00 F L
Hylobates lar 1583 Zurich 8.00 F L
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Table of specimens cont’d. 

Species Specimen Collection RDA Sex Side

Hylobates lar 1608 Zurich 8.00 M L
Hylobates lar 1609 Zurich 8.00 M L
Hylobates lar 1610 Zurich 8.00 M L
Hylobates lar 1611 Zurich 8.00 F L
Hylobates lar 1612 Zurich 8.00 M L
Hylobates lar 1616 Zurich 8.00 M L
Pongo pygmaeus 2004.953 NHM 0.10 - L
Pongo pygmaeus 1901/1 Munich 7.00 - L
Pongo pygmaeus 1907/379 Munich 7.50 M R
Pongo pygmaeus 1907/483 Munich 11.00 F R
Pongo pygmaeus 1907/486 Munich 11.00 M R
Pongo pygmaeus 1907/607 Munich - - L
Pongo pygmaeus 1907/614 Munich 11.00 M R
Pongo pygmaeus 1907/621 Munich - - L
Pongo pygmaeus 1907/625 Munich - F L
Pongo pygmaeus 1907/626 Munich - F L
Pongo pygmaeus 1907/628 Munich - - L
Pongo pygmaeus 1907/629a Munich - F L
Pongo pygmaeus 1907/633b Munich 11.00 F L
Pongo pygmaeus 1907/634 Munich - M L
Pongo pygmaeus 1907/636 Munich 11.00 F R
Pongo pygmaeus 1907/643 Munich - - L
Pongo pygmaeus 1907/644 Munich - - L
Pongo pygmaeus 1907/646 Munich 7.00 F R
Pongo pygmaeus 1907/648 Munich - - L
Pongo pygmaeus 1907/649 Munich 11.00 - R
Pongo pygmaeus 1907/652a Munich - - R
Pongo pygmaeus 1907/660 Munich 11.00 F L
Pongo pygmaeus 1909/841 Munich 11.00 M R
Pongo pygmaeus 1914/1551 Munich 6.50 M R
Pongo pygmaeus No Number Munich - F L
Pan paniscus 29003 Tervuren 1.00 - R
Pan paniscus 11293 Tervuren 1.50 M L
Pan paniscus 12087 Tervuren 3.00 M L
Pan paniscus 23464 Tervuren 3.00 - R
Pan paniscus 22336 Tervuren 3.50 - R
Pan paniscus 29028 Tervuren 5.50 M L
Pan paniscus 29058 Tervuren 5.50 M R
Pan paniscus 29056 Tervuren 6.00 M R
Pan paniscus 11528 Tervuren 6.50 F L
Pan paniscus 22908 Tervuren 7.00 - L
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Table of specimens cont’d. 

!

Species Specimen Collection RDA Sex Side
Pan paniscus 5374 Tervuren 8.00 - R
Pan paniscus 29053 Tervuren 8.50 M R
Pan paniscus 23509 Tervuren 10.00 M L
Pan paniscus 29047 Tervuren 10.00 M R
Pan paniscus 29060 Tervuren 11.00 F L
Pan paniscus 13201 Tervuren 11.00 F R
Pan paniscus 15295 Tervuren 11.00 F R
Pan paniscus 27696 Tervuren 11.00 M R
Pan paniscus 27699 Tervuren 11.00 M L
Pan paniscus 29052 Tervuren 11.00 M R
Pan paniscus 15293 Tervuren 11.00 F L
Pan paniscus 15296 Tervuren 11.00 F L
Pan paniscus 15294 Tervuren - M R
Pan troglodytes CAM202 PCM 0.10 - L
Pan troglodytes M475 (2ND SERIES) PCM 0.75 F L
Pan troglodytes 1948.438 NHM 1.50 M L
Pan troglodytes M152 PCM 1.50 M L
Pan troglodytes M465 PCM 1.50 F L
Pan troglodytes 29076 Tervuren 4.00 M R
Pan troglodytes 1846.10.23.11 NHM 4.00 - L
Pan troglodytes M358 PCM 5.00 M L
Pan troglodytes M507 PCM 5.00 F L
Pan troglodytes 559 Tervuren 5.50 F L
Pan troglodytes M675 PCM 5.50 M L
Pan troglodytes 29072 Tervuren 6.00 M L
Pan troglodytes CAM118 PCM 6.00 M L
Pan troglodytes M881 PCM 6.00 F L
Pan troglodytes M94 PCM 6.00 M L
Pan troglodytes M145 PCM 6.50 F L
Pan troglodytes M363 PCM 6.50 M L
Pan troglodytes M454 PCM 6.50 F L
Pan troglodytes M746 PCM 6.50 M L
Pan troglodytes M801 PCM 6.50 M L
Pan troglodytes M805 PCM 6.50 F R
Pan troglodytes M636 PCM 7.00 M L
Pan troglodytes M170 PCM 7.50 M L
Pan troglodytes M274 PCM 7.50 F L
Pan troglodytes M382 PCM 7.50 F L
Pan troglodytes M455 PCM 7.50 M L
Pan troglodytes M371 PCM 8.00 F L
Pan troglodytes M52 PCM 8.00 M L
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Table of specimens cont’d. 

!

Species Specimen Collection RDA Sex Side
Pan troglodytes 458 Tervuren 9.00 F L
Pan troglodytes 29077 Tervuren 9.00 M L
Pan troglodytes M506 (3RD SERIES) PCM 11.00 F L
Pan troglodytes M676 PCM 11.00 F L
Pan troglodytes M677 PCM 11.00 F L
Pan troglodytes M706 PCM 11.00 F L
Pan troglodytes M720 PCM 11.00 F L
Pan troglodytes M724 PCM 11.00 M L
Pan troglodytes M707 PCM 11.00 M L
Pan troglodytes M712 PCM 11.00 M R
Pan troglodytes M440 PCM 11.00 M L
Pan troglodytes M272 PCM 11.00 M L
Pan troglodytes CAM II 62 PCM 11.00 M R
Pan troglodytes M506 (2ND SERIES) PCM 11.00 F R
Pan troglodytes 1976.436 NHM - F L
Pan troglodytes 1976.437 NHM - F L
Pan troglodytes 1981.749 NHM - F L
Gorilla gorilla M476 PCM 0.10 M L
Gorilla gorilla 1948.437 NHM 0.75 F L
Gorilla gorilla 22.12.19.3 NHM 0.75 - L
Gorilla gorilla FC129 PCM 0.75 M R
Gorilla gorilla M887 PCM 0.75 F L
Gorilla gorilla M756 PCM 1.00 M L
Gorilla gorilla M117 PCM 2.50 F L
Gorilla gorilla M409 PCM 3.00 F L
Gorilla gorilla M99 PCM 3.00 M L
Gorilla gorilla M333 PCM 3.50 F L
Gorilla gorilla M471 PCM 3.50 M L
Gorilla gorilla M880 PCM 3.50 F L
Gorilla gorilla M463 PCM 4.50 M R
Gorilla gorilla M855 PCM 4.50 F L
Gorilla gorilla 1861.7.29.27 NHM 5.50 F L
Gorilla gorilla M160 PCM 5.50 F L
Gorilla gorilla M847 (series 1) PCM 5.50 F L
Gorilla gorilla M667 PCM 6.50 F L
Gorilla gorilla M691 PCM 6.50 F L
Gorilla gorilla M841 PCM 6.50 F L
Gorilla gorilla MER.II.1 PCM 6.50 F L
Gorilla gorilla M180 PCM 7.00 F L
Gorilla gorilla M674 PCM 7.00 M L
Gorilla gorilla M689 PCM 7.00 M L
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Species Specimen Collection RDA Sex Side
Gorilla gorilla M875 PCM 7.00 F L
Gorilla gorilla M387 PCM 7.50 F L
Gorilla gorilla FC114 PCM 8.50 F L
Gorilla gorilla M342 PCM 11.00 M L
Gorilla gorilla M505 PCM 11.00 M L
Gorilla gorilla M89 PCM 11.00 M L
Gorilla gorilla M464 PCM 11.00 M L
Gorilla gorilla M717 PCM 11.00 M L
Gorilla gorilla M696 PCM 11.00 F R
Gorilla gorilla M340 PCM 11.00 M L
Gorilla gorilla M799 PCM 11.00 F R
Gorilla gorilla M138 PCM 11.00 F R
Gorilla gorilla M150 PCM 11.00 F L
Gorilla gorilla M136 PCM 11.00 F R
Gorilla gorilla M174 PCM 11.00 F L
Gorilla gorilla 1864.12.1.3 NHM - - L
Gorilla gorilla 1916.11.1.1 NHM - F L
Gorilla gorilla 1962.6.25.1 NHM - M L
Homo sapiens 2147 NHM 0.00 M L
Homo sapiens 2242 NHM 0.00 M R
Homo sapiens 2277 NHM 0.00 M R
Homo sapiens 2834 NHM 0.00 M L
Homo sapiens 81 Lisbon 1.00 M L
Homo sapiens 2282 NHM 1.00 F L
Homo sapiens 2582 NHM 1.00 M R
Homo sapiens 2724 NHM 1.00 F L
Homo sapiens 2737 NHM 1.00 F L
Homo sapiens 2792 NHM 1.00 M L
Homo sapiens 466 Lisbon 2.00 M R
Homo sapiens 2206 NHM 2.00 M R
Homo sapiens 2420 NHM 2.00 M L
Homo sapiens 2431 NHM 2.00 M R
Homo sapiens 2455 NHM 2.00 F L
Homo sapiens 2735 NHM 2.00 M L
Homo sapiens 2365 NHM 3.00 M R
Homo sapiens 2456 NHM 3.00 F L
Homo sapiens 2815 NHM 3.00 F L
Homo sapiens 371 Lisbon 4.00 M L
Homo sapiens 522 Lisbon 4.00 M R
Homo sapiens 1399 Lisbon 4.00 M L
Homo sapiens 2621 NHM 4.00 M L
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Species Specimen Collection RDA Sex Side
Homo sapiens 2625 NHM 4.00 M R
Homo sapiens 2845 NHM 4.00 M R
Homo sapiens 338 Lisbon 5.00 F L
Homo sapiens 389 Lisbon 6.00 M L
Homo sapiens 385 Lisbon 7.00 M R
Homo sapiens 2264 NHM 7.00 M L
Homo sapiens 1200 Lisbon 9.00 F R
Homo sapiens 2139 NHM 10.00 M R
Homo sapiens 365 Lisbon 11.00 F R
Homo sapiens 516 Lisbon 11.00 F L
Homo sapiens 1579 Lisbon 11.00 M L
Homo sapiens 1582 Lisbon 11.00 F L
Homo sapiens 1584 Lisbon 11.00 M L
Homo sapiens 291 Lisbon 13.00 M L
Homo sapiens 2721 NHM 13.00 F L
Homo sapiens 83 Lisbon 14.00 F L
Homo sapiens 1564 Lisbon 14.00 M L
Homo sapiens 1577 Lisbon 14.00 M R
Homo sapiens 204 Lisbon 15.00 F L
Homo sapiens 336 Lisbon 15.00 M L
Homo sapiens 380 Lisbon 15.00 M L
Homo sapiens 452 Lisbon 15.00 F L
Homo sapiens 258 Lisbon 16.00 M L
Homo sapiens 1566 Lisbon 16.00 F R
Homo sapiens 1568 Lisbon 17.00 M L
Homo sapiens 1570 Lisbon 17.00 M L
Homo sapiens 2752 NHM 17.00 F L
Homo sapiens 8 Lisbon 18.00 F L
Homo sapiens 1403 Lisbon 18.00 F L
Homo sapiens 1418 Lisbon 18.00 F L
Homo sapiens 1587 Lisbon 18.00 M L
Homo sapiens 1588 Lisbon 18.00 F L
Homo sapiens 39 Lisbon 19.00 F L
Homo sapiens 1565 Lisbon 19.00 F L
Homo sapiens 2605 NHM 19.00 F L
Homo sapiens 177 Lisbon 23.00 F L
Homo sapiens 495 Lisbon 25.00 M L
Homo sapiens 2720 NHM 25.00 M L
Homo sapiens 276 Lisbon 27.00 F L
Homo sapiens 2872 NHM 27.00 F L
Homo sapiens 2459 NHM 29.00 F L
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Species Specimen Collection RDA Sex Side
Homo sapiens 305 Lisbon 30.00 M L
Homo sapiens 505 Lisbon 32.00 F L
Homo sapiens 1423 Lisbon 32.00 F L
Homo sapiens 154 Lisbon 35.00 M L
Homo sapiens 238 Lisbon 35.00 M L
Homo sapiens 2728 NHM 37.00 M R
Homo sapiens 2173 NHM 40.00 M L
Homo sapiens 308 Lisbon 43.00 M L
Homo sapiens 404 Lisbon 43.00 F L
Homo sapiens 181 Lisbon 44.00 F L
Homo sapiens 1547 Lisbon 44.00 M L
Homo sapiens 2368 NHM 45.00 F L
Homo sapiens 334 Lisbon 51.00 F L
Homo sapiens 317 Lisbon 52.00 M L
Homo sapiens 2544 NHM 52.00 F L
Homo sapiens 343 Lisbon 53.00 F L
Homo sapiens 2240 NHM 53.00 F R
Homo sapiens 2541 NHM 53.00 M L
Homo sapiens 2750 NHM 53.00 F L
Homo sapiens 477 Lisbon 54.00 M L
Homo sapiens 2189 NHM 55.00 F L
Homo sapiens 2369 NHM 55.00 F L
Homo sapiens 2622 NHM 55.00 M L
Homo sapiens 2424 NHM 56.00 M L
Homo sapiens 2162 NHM 58.00 M L
Homo sapiens 2748 NHM 60.00 F R
Homo sapiens 2808 NHM 60.00 M L
Homo sapiens 138 Lisbon 61.00 F L
Homo sapiens 455 Lisbon 62.00 F L
Homo sapiens 201 Lisbon 63.00 M R
Homo sapiens 310 Lisbon 63.00 M L
Homo sapiens 2632 NHM 63.00 M L
Homo sapiens 2753 NHM 66.00 M L
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– Appendix 2 – 

!
Node labels, with associated estimated humeral torsion node values (estimated using 

IE). See Chapter 4 for details. 

!
!

!  

!
Figure 1 – Phylogenetic tree with extant primate species only. 

!
!
!
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Table 1 – Table of mean estimated ancestral node values and standard deviation (SD) 

for humeral torsion for extant primates. Node labels correspond to node numbers in 

Figure 1 (node_anc: ancestral node number; node_desc: descendant node number; 

value_anc: estimated ancestral value; values_desc: estimated descendant value). 

node_anc node_desc value_anc SD value_desc SD
31 32 110.220 1.696 111.500 1.721
32 33 111.500 1.721 109.280 2.75
33 34 109.280 2.75 107.470 4.873
34 35 107.470 4.873 97.870 6.599
35 36 97.870 6.599 96.390 7.843
36 2 96.390 7.843 90.310 9.442
36 1 96.390 7.843 91.640 10.94
35 37 97.870 6.599 89.780 6.117
37 4 89.780 6.117 83.990 4.545
37 3 89.780 6.117 87.530 8.348
34 38 107.470 4.873 106.980 5.561
38 39 106.980 5.561 105.190 6.909
39 40 105.190 6.909 99.570 8.423
40 20 99.570 8.423 89.370 14.52
40 23 99.570 8.423 95.940 7.733
39 41 105.190 6.909 101.580 8.426
41 21 101.580 8.426 93.280 8.509
41 24 101.580 8.426 98.220 11.666
38 22 106.980 5.561 101.180 5.331
33 42 109.280 2.75 107.420 3.495
42 43 107.420 3.495 101.160 6.749
43 25 101.160 6.749 96.310 12.068
43 27 101.160 6.749 96.450 7.144
42 44 107.420 3.495 106.350 4.077
44 45 106.350 4.077 105.840 4.589
45 26 105.840 4.589 103.110 10.427
45 46 105.840 4.589 102.550 5.811
46 29 102.550 5.811 91.940 6.683
46 30 102.550 5.811 103.140 8.686
44 28 106.350 4.077 96.890 7.62
32 47 111.500 1.721 116.430 3.266
47 48 116.430 3.266 111.930 4.692
48 15 111.930 4.692 111.840 6.632
48 19 111.930 4.692 103.310 7.602
47 49 116.430 3.266 134.260 7.611
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Table 1 – cont’d. 

!

node_anc node_desc value_anc SD value_desc SD
49 50 134.260 7.611 143.830 7.656
50 51 143.830 7.656 152.310 9.839
51 12 152.310 9.839 157.400 12.771
51 13 152.310 9.839 159.990 10.495
50 52 143.830 7.656 146.450 8.313
52 14 146.450 8.313 168.340 8.833
52 53 146.450 8.313 146.390 8.535
53 16 146.390 8.535 151.490 10.435
53 17 146.390 8.535 152.740 10.432
49 18 134.260 7.611 135.920 8.81
31 54 110.220 1.696 104.460 2.141
54 55 104.460 2.141 104.460 2.65
55 56 104.460 2.65 99.010 4.821
56 5 99.010 4.821 98.530 6.854
56 6 99.010 4.821 98.900 11.787
55 57 104.460 2.65 107.600 5.109
57 7 107.600 5.109 116.740 6.28
57 8 107.600 5.109 106.160 8.771
54 58 104.460 2.141 103.980 2.656
58 59 103.980 2.656 102.610 3.962
59 9 102.610 3.962 103.150 8.199
59 10 102.610 3.962 100.330 7.551
58 11 103.980 2.656 106.510 8.566
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Figure 2 – Phylogenetic tree with primate fossils included. 

!
!
!
!
!
!
!
!
!
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Table 2 – Table of mean estimated ancestral node values and standard deviation (SD) 

for humeral torsion for extant primates. Node labels correspond to node numbers in 

Figure 2 (node_anc: ancestral node number; node_desc: descendant node number; 

value_anc: estimated ancestral value; values_desc: estimated descendant value). 

!
!

node_anc node_desc value_anc SD value_desc SD

45 46 112.230 1.557 112.740 1.618
46 47 112.740 1.618 113.150 1.646
46 44 112.740 1.618 108.990 9.805
47 48 113.150 1.646 109.960 2.765
48 49 109.960 2.765 106.040 4.294
49 50 106.040 4.294 98.280 6.681
50 51 98.280 6.681 95.700 7.309
51 2 95.700 7.309 90.260 6.247
51 1 95.700 7.309 91.160 12.037
50 52 98.280 6.681 91.590 8.27
52 4 91.590 8.27 83.780 12.837
52 3 91.590 8.27 87.390 8.047
49 53 106.040 4.294 105.060 4.847
53 54 105.060 4.847 102.770 5.863
54 55 102.770 5.863 96.610 6.622
55 20 96.610 6.622 89.770 4.049
55 23 96.610 6.622 95.160 9.587
54 56 102.770 5.863 100.810 7.203
56 21 100.810 7.203 93.430 8.188
56 24 100.810 7.203 98.140 9.025
53 22 105.060 4.847 101.270 9.52
48 57 109.960 2.765 109.250 3.515
57 58 109.250 3.515 106.640 4.863
58 59 106.640 4.863 106.310 5.4
59 60 106.310 5.4 105.930 5.701
59 43 106.310 5.4 94.440 10.717
60 61 105.930 5.701 104.420 6.702
60 42 105.930 5.701 102.490 13.182
61 25 104.420 6.702 95.850 7.439
61 41 104.420 6.702 104.380 10.468
58 27 106.640 4.863 96.200 6.377
57 62 109.250 3.515 106.980 4.185
62 63 106.980 4.185 106.200 4.326
63 26 106.200 4.326 102.850 8.162
63 64 106.200 4.326 103.320 3.936
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!

node_anc node_desc value_anc SD value_desc SD
64 29 103.320 3.936 91.940 6.624
64 30 103.320 3.936 103.130 4.066
62 28 106.980 4.185 96.210 11.485
47 65 113.150 1.646 113.220 1.655
65 66 113.220 1.655 114.960 1.889
65 40 113.220 1.655 92.510 9.748
66 67 114.960 1.889 108.770 4.242
67 15 108.770 4.242 111.990 11.073
67 19 108.770 4.242 103.650 7.518
66 68 114.960 1.889 115.950 2.177
68 69 115.950 2.177 115.960 2.183
69 70 115.960 2.183 125.900 4.29
69 39 115.960 2.183 102.300 7.716
70 71 125.900 4.29 154.480 6.941
71 12 154.480 6.941 158.310 7.619
71 13 154.480 6.941 160.160 9.549
70 72 125.900 4.29 125.880 4.287
72 73 125.880 4.287 125.890 4.304
73 74 125.890 4.304 130.630 3.262
73 38 125.890 4.304 123.950 11.534
74 75 130.630 3.262 132.150 3.881
74 37 130.630 3.262 127.910 7.671
75 76 132.150 3.881 132.380 4.081
75 36 132.150 3.881 111.040 9.626
76 77 132.380 4.081 132.470 4.384
76 35 132.380 4.081 116.290 11.44
77 78 132.470 4.384 134.770 7.718
77 79 132.470 4.384 126.990 8.261
79 33 126.990 8.261 126.310 8.748
79 34 126.990 8.261 109.510 11.419
78 80 134.770 7.718 138.900 10.375
78 32 134.770 7.718 141.590 9.459
80 14 138.900 10.375 168.820 9.234
80 31 138.900 10.375 138.220 11.654
72 81 125.880 4.287 146.580 8.804
81 16 146.580 8.804 151.990 11.114
81 17 146.580 8.804 153.020 10.235
68 18 115.950 2.177 136.450 11.65
45 82 112.230 1.557 106.100 1.816
82 83 106.100 1.816 105.750 2.419
83 84 105.750 2.419 99.280 4.946
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node_anc node_desc value_anc SD value_desc SD
84 5 99.280 4.946 98.680 10.579
84 6 99.280 4.946 98.570 11.435
83 85 105.750 2.419 108.060 5.44
85 7 108.060 5.44 116.190 10.348
85 8 108.060 5.44 106.280 11.224
82 86 106.100 1.816 105.400 2.857
86 87 105.400 2.857 103.470 5.188
87 9 103.470 5.188 102.770 12.264
87 10 103.470 5.188 100.330 9.02
86 11 105.400 2.857 106.420 8.221
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!
Figure 3 – Phylogenetic tree with primate fossils included, except Homo erectus and 

Homo floresiensis. 

!
!
!
!
!
!
!
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Table 3 – Table of mean estimated ancestral node values and standard deviation (SD) 

for humeral torsion for extant primates. Node labels correspond to node numbers in 

Figure 3 (node_anc: ancestral node number; node_desc: descendant node number; 

value_anc: estimated ancestral value; values_desc: estimated descendant value). 

!
!

node_anc node_desc value_anc SD value_desc SD
43 44 111.930 1.451 112.430 1.504
44 45 112.430 1.504 112.800 1.506
44 42 112.430 1.504 108.760 10.988
45 46 112.800 1.506 110.260 2.743
46 47 110.260 2.743 105.650 3.887
47 48 105.650 3.887 97.660 6.264
48 49 97.660 6.264 95.680 7.51
49 2 95.680 7.51 89.800 8.902
49 1 95.680 7.51 91.550 9.579
48 50 97.660 6.264 90.630 6.908
50 4 90.630 6.908 84.000 8.76
50 3 90.630 6.908 87.490 8.14
47 51 105.650 3.887 104.980 4.268
51 52 104.980 4.268 102.810 5.021
52 53 102.810 5.021 97.700 6.168
53 20 97.700 6.168 90.320 8.846
53 23 97.700 6.168 95.530 6.996
52 54 102.810 5.021 100.820 6.282
54 21 100.820 6.282 93.810 10.993
54 24 100.820 6.282 97.730 5.549
51 22 104.980 4.268 101.660 8.667
46 55 110.260 2.743 110.110 3.708
55 56 110.110 3.708 106.630 3.904
56 57 106.630 3.904 106.540 4.089
57 58 106.540 4.089 106.260 4.354
57 41 106.540 4.089 94.310 10.372
58 59 106.260 4.354 104.910 5.503
58 40 106.260 4.354 102.460 8.373
59 25 104.910 5.503 96.390 7.954
59 39 104.910 5.503 104.270 7.595
56 27 106.630 3.904 96.260 4.367
55 60 110.110 3.708 108.210 5.714
60 61 108.210 5.714 107.540 6.35
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node_anc node_desc value_anc SD value_desc SD
61 26 107.540 6.35 103.000 8.17
61 62 107.540 6.35 103.700 9.042
62 29 103.700 9.042 92.340 5.988
62 30 103.700 9.042 102.570 12.085
60 28 108.210 5.714 96.710 8.114
45 63 112.800 1.506 112.870 1.509
63 64 112.870 1.509 114.370 1.669
63 38 112.870 1.509 92.050 7.774
64 65 114.370 1.669 108.930 4.152
65 15 108.930 4.152 112.160 9.623
65 19 108.930 4.152 103.340 10.026
64 66 114.370 1.669 115.390 2.124
66 67 115.390 2.124 115.410 2.139
67 68 115.410 2.139 125.690 4.493
67 37 115.410 2.139 102.180 8.922
68 69 125.690 4.493 154.490 7.232
69 12 154.490 7.232 157.880 10.344
69 13 154.490 7.232 160.440 5.788
68 70 125.690 4.493 125.680 4.488
70 71 125.680 4.488 125.670 4.494
71 72 125.670 4.494 131.690 3.152
71 36 125.670 4.494 123.510 9.825
72 73 131.690 3.152 133.600 3.054
72 35 131.690 3.152 127.820 11.99
73 74 133.600 3.054 133.750 3.172
73 34 133.600 3.054 111.120 7.382
74 75 133.750 3.172 137.920 4.982
74 33 133.750 3.172 117.240 13.178
75 76 137.920 4.982 139.460 6.148
75 32 137.920 4.982 142.210 10.014
76 14 139.460 6.148 168.400 9.824
76 31 139.460 6.148 138.410 7.379
70 77 125.680 4.488 147.310 7.236
77 16 147.310 7.236 151.540 7.698
77 17 147.310 7.236 153.290 10.429
66 18 115.390 2.124 136.140 10.132
43 78 111.930 1.451 105.660 1.675
78 79 105.660 1.675 105.480 2.428
79 80 105.480 2.428 98.950 3.969
80 5 98.950 3.969 98.410 10.095
80 6 98.950 3.969 98.430 6.627
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!

node_anc node_desc value_anc SD value_desc SD
79 81 105.480 2.428 107.920 5.418
81 7 107.920 5.418 116.170 10.41
81 8 107.920 5.418 106.420 10.319
78 82 105.660 1.675 104.770 2.341
82 83 104.770 2.341 103.020 3.13
83 9 103.020 3.13 102.830 6.342
83 10 103.020 3.13 100.140 3.997
82 11 104.770 2.341 106.160 8.805
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