DEVELOPMENT OF AN IN-VITRO MODEL OF

HUMAN PROSTATE

By

Bernadette Daly-Burns B.Sc.

A Thesis Submitted For The Degree Of Masters Of Philosophy To

The Faculty Of Medicine

University College London

Institute of Urology and Nephrology

Research Laboratories

University College London
ABSTRACT

The mechanisms controlling the growth and development of Benign Prostate Hyperplasia (BPH), the most common non-malignant disorder found in men over the age of 70, are poorly understood. There is a shortage of relevant “in vitro” models suitable for studying this disease. The aim of this project was to develop a representative “in vitro” model system for the study of BPH.

Epithelial and fibroblast cell lines (Pre2.8 and S2.13 respectively) were derived from the same biopsy of BPH and immortalised using the temperature sensitive SV40 large-T antigen construct. At 33°C the cells grow progressively under the influence of the SV40 large T-antigen, but at 39°C the conformation of the protein changes and the protein is no longer functional, so the cells stop dividing and are able to differentiate. When monolayer cultures were switched from 33°C to 37°C or 39°C, changes in morphology, cell size distribution and a reduction in cell proliferation were observed. Both cell lines expressed the 5α-reductase type I enzyme, but did not express androgen receptor (AR) and did not secrete PSA and PAP, hence they are likely to be undifferentiated cells. Pre2.8 epithelial cells have a basal cell phenotype at 33°C and undergo limited differentiation at 37°C and 39°C. DNA profiling was used to confirm the origin of the cells. The cell lines were shown to be Mycoplasma-free. Both cell lines showed amplification of DNA on chromosome 20q, a region known to be associated with cell immortalisation.

In order to develop a representative model of BPH, Pre2.8 and S2.13 cells were mixed in 3-dimensional matrigel cultures and optimised in order to obtain the most suitable culture conditions to produce prostate-specific characteristics. The three-dimensional culture system consisted of epithelial cells surrounded by a layer of stromal cells and in some cases with the formation of acinus like structures. The 3-D model showed some prostate-specific characteristics, for instance the epithelial cells expressed the androgen receptor. The epithelial cells differentiated towards a luminal phenotype, expressing K8 and 18.

In conclusion, a matched pair of epithelial and stromal BPH cell lines has been established which show some typical characteristics of prostate cells and have been
grown in a three-dimensional culture. The model may be useful for studying the cell interactions that control the growth of benign prostate Hyperplasia.
This thesis is dedicated to the wonderful men in my life, my husband

Michael and son Ciaran.

Thank you for all your support and patience during this long period of time.
ACKNOWLEDGEMENTS

I am indebted to my supervisor Prof. John Masters for the training, encouragement and support he has provided during my MPhil studies at the Institute of Urology.

Special thanks to Dr David Hudson, my second supervisor for his invaluable training and support throughout the duration of the project. To other colleagues involved in this area of research, Dr. Pat Fry, Ms Tahirah Alam, Dr Rodger Tatoud, Dr Istvan Laczko and Dr Qin Wang thank you for all your technical input, advice, expertise, help and support. To all other work colleagues who have come and gone. Thank you for your support and patience during those stressful moments.

I would like to thank Dr. Mike O’Hare for transducing the primary cultures with the temperature sensitive SV40 construct.

Finally, I would like to thank my family and friends for their encouragement and support. Michael thank you for acting as father and house husband at weekends, while I was working on my MPhil. Completion of this thesis would not have been possible without your understanding, encouragement and unquestioning support.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 The Prostate 2

1.1.1 Development And Hormone Control 2

1.1.2 Anatomy 3

1.1.3 Morphology And Histology 5

1.1.4 Cell Types 6

1.1.5 Biochemistry 9

1.2 Benign Prostatic Hyperplasia (BPH) 10

1.2.1 Etiology Of BPH 11

1.2.2 Clinical Presentation 12

1.2.3 Treatment 14

1.3 In Vitro Models 17

1.3.1 Primary Culture Systems 17

1.4 Immortalisation And Characterisation Of Prostate Continuous Cell Lines 21

1.4.1 Immortalised Epithelial Cell Lines 22

1.4.2 Immortalised Stromal Cell Lines 26

1.5 3-Dimensional Culture Systems 28

1.6 Immortalisation And Conditional Immortalisation 29

1.7 Rationale For This Study (and key issues to be aware of) 34

CHAPTER 2: MATERIALS AND METHODS 35

2.1 COSHH Regulations 36

2.2 Cell Culture 36

2.3 Cell Line Authentication and Purity 38

2.3.1 Cross-Contamination 38

2.3.2 Mycoplasma Testing 40

2.3.3 Mycoplasma Testing Of Cell Lines 40

2.4 Cell Line Maintenance 45

2.4.1 Cell Line Passaging 47
CHAPTER 3: RESULTS: DERIVATION AND AUTHENTICATION AND PURITY

3.1 Introduction
3.2 Derivation Of Pre2.8 Epithelial And S2.13 Stromal Cell Lines
 3.2.1 Prostate Tissue
 3.2.2 Primary Culture
 3.2.3 Transduction
 3.2.4 Development Of Epithelial Cell Line (Pre2.8)
 3.2.5 Development Of Stromal Cell Line (S2.13)
3.3 Morphology Of Living Cells
 3.3.1 Pre2.8 Cells
 3.3.2 S2.13 Cells
3.4 Presence Of SV40 Large T-Antigen
3.5 DNA Profiling
3.6 Mycoplasma Screening

CHAPTER 4: RESULTS: CHARACTERISATION

4.1 Cytogenetics
 4.1.1 Pre2.8 Cells
 4.1.2 S2.13 Cells
4.13 Figure Legend For Figure 4.1, 4.2, 4.3 And 4.5
4.2 Cell Proliferation
 4.2.1 Flow Cytometry
 4.2.2 Ki-67 Expression
 4.2.3 Summary
4.3 Growth Rates
 4.3.1 Pre2.8 Growth Assays Using Cell Counts
 4.3.1.1 Mean Population for Pre2.8 Cells
 4.3.2 S2.13 Growth Assays Using Cell Counts
 4.3.2.1 Mean Population for S2.13 Cells
4.3.3 Comparison Of The Growth Patterns Of Immortalised (1542-NPTX) And Conditionally Immortalised (Pre2.8) Prostate Epithelial Cell Lines 114

4.3.4 Comparison Of The Growth Patterns Of Immortalised (1542-FT) And Conditionally Immortalised (S2.13) 114

4.4 Cell Size Distribution 117
4.4.1 Beckman Coulter Counter 117
4.4.2 Graticule And Inverted Microscope 119
4.4.2.1 Pre2.8 Cells 119
4.4.2.2 S2.13 Cells 121

4.5 Colony Forming Efficiency On Plastic And In Soft Agar 123
4.5.1 Colony Forming Efficiency For Pre2.8 Cells On Plastic 123
4.5.2 Anchorage-Independent Growth 123

CHAPTER 5: DIFFERENTIATION OF MONOLAYER CULTURES 124

5.1 Introduction 125
5.2 Stromal Cell Markers 125
5.3 Epithelial Cell Markers 125
5.4 Androgen Expression And Prostate Specific Characteristics Of Pre2.8 And S2.13 Cells 127

CHAPTER 6: RESULTS: 3-DIMENSIONAL CULTURES 135

6.1 Introduction 136
6.2 Comparison Of Growth Of Pre2.8 And S2.13 Cells In Various Tissue Culture Media 137
6.2.1 Growth Of Pre2.8 Cells In Serum-Free PrEGM And RPMI-1640 Medium In The Presence And Absence Of Serum 137
6.2.2 Proliferation Of Pre2.8 Cells In Various Media 139
6.2.3 Proliferation Of S2.13 Cells In Various Media 140
6.3 Effect Of Stromal Cells And Conditioned Medium On The Growth Of Pre2.8 Cells In 3-Dimensional Culture 142
6.3.1 Stromal Cell Marker Expression Of 3-Dimensional Cultures 143
6.3.2 Keratin Expression Of Pre2.8 Cells In 3-Dimensional Culture 143
6.4 Expression Of Prostate-Specific Characteristics By Pre2.8 Cells In 3-Dimensional Culture 146
6.4.1 Androgen Receptor (AR) 146
6.4.2 PSA 147
6.4.3 PAP 147
6.5 Mibolerone 148
6.6 Cell Proliferation 148
6.7 Summary 167

CHAPTER 7: DISCUSSION 167

7.1 Discussion 170
7.1.1 Derivation and Authentication and Purity 170
7.1.2 Cytogenetic Analysis 172
7.1.3 Differentiation 175
7.1.4 Androgen Receptor 179
7.1.5 3-Dimensional Cultures 181

8.0 REFERENCE LIST 187
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Anatomy of Prostate</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Zonal Anatomy Of The Prostate</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Morphology Of BPH Tissue</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic Diagram Of The SV40 Genome</td>
<td>31</td>
</tr>
<tr>
<td>1.5</td>
<td>Schematic Diagram of the temperature-sensitive SV40 construct, ZipneoSVU19tsA58</td>
<td>33</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic Diagram Of A Haemocytometer Chamber</td>
<td>48</td>
</tr>
<tr>
<td>2.2</td>
<td>Optimisation of MTT Assay for Pre2.8 Cells</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>Example Of Flow Cytometric Data</td>
<td>64</td>
</tr>
<tr>
<td>2.4</td>
<td>Example Of Flow Cytometric Data</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Flow Cytometric Data Distribution</td>
<td>66</td>
</tr>
<tr>
<td>2.6</td>
<td>Example Of A Successful DNA Profile Using Propidium Iodide</td>
<td>67</td>
</tr>
<tr>
<td>2.7</td>
<td>Cell Cycle Distribution Using Propidium Iodide With And Without Markings</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Derivation Of Pre2.8 Cells</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Derivation Of S2.13 Cells</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Morphology Of Pre2.8 Cells</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Morphology Of S2.13 Cells</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Pre2.8 And S2.13 Large T Antigen Expression</td>
<td>89</td>
</tr>
<tr>
<td>3.7</td>
<td>Coriell PCR Results For Pre2.8 Cells</td>
<td>92</td>
</tr>
<tr>
<td>3.8</td>
<td>Drexler PCR (Round I And II) Results For Pre2.8 Cells</td>
<td>92</td>
</tr>
<tr>
<td>3.9</td>
<td>Coriell Results For S2.13 Cells</td>
<td>93</td>
</tr>
<tr>
<td>3.10</td>
<td>Drexler PCR (Round I And II) Results For S2.13 Cells</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>Karyotype Of Pre2.8 Cells</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Karyotype Of S2.12 Cells</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>FISH Analysis Of Pre2.8 Cells</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>FISH Analysis Of S2.13 Cells</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage Of Cells In G2/S Phases Of Proliferation In Pre2.8 Cells</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage Of Ki-67 Positive Pre2.8 Cells</td>
<td>104</td>
</tr>
<tr>
<td>4.7</td>
<td>Ki-67 Expression In Pre2.8 Epithelial Cells @ 33°C, 37°C & 39°C</td>
<td>105</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.8</td>
<td>Growth Curve Of Pre2.8 Prostate Epithelial Cells</td>
<td>108</td>
</tr>
<tr>
<td>4.9</td>
<td>Extrapolation Of Mean Population-Doubling Figures For Pre2.8 Cells</td>
<td>109</td>
</tr>
<tr>
<td>4.10</td>
<td>Extrapolation Of Mean Population-Doubling Figures For S2.13 Stromal Cells</td>
<td>111</td>
</tr>
<tr>
<td>4.11</td>
<td>Cell Count Growth Curve Of S2.13 Stromal Cells</td>
<td>113</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison Of Pre2.8 Cells With 1542-NPTX At Day 3</td>
<td>115</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison Of Pre2.8 Cells With 1542-NPTX At Day 10</td>
<td>115</td>
</tr>
<tr>
<td>4.14</td>
<td>Comparison Of S2.13 Cells With 1542-FT @ Day 5</td>
<td>116</td>
</tr>
<tr>
<td>4.15</td>
<td>Comparison Of S2.13 Cells With 1542-FT @ Day 6</td>
<td>116</td>
</tr>
<tr>
<td>4.16</td>
<td>Pre2.8 Cell Size In Suspension</td>
<td>118</td>
</tr>
<tr>
<td>4.17</td>
<td>Dot Blot Of Pre2.8 Cell Size Distribution</td>
<td>118</td>
</tr>
<tr>
<td>4.18</td>
<td>Pre2.8 Cell Size Distribution (Day 7)</td>
<td>120</td>
</tr>
<tr>
<td>4.19</td>
<td>Comparison Of Pre2.8 Whole Cell And Nucleus Size At 33°C, 37°C And 39°C</td>
<td>120</td>
</tr>
<tr>
<td>4.20</td>
<td>S2.13 Cell Size Distribution</td>
<td>122</td>
</tr>
<tr>
<td>4.21</td>
<td>Comparison Of S2.13 Whole Cell And Nucleus Size At 33°C, 37°C And 39°C</td>
<td>122</td>
</tr>
<tr>
<td>5.1</td>
<td>Vimentin And Fibroblast Expression In S2.13 Cells</td>
<td>128</td>
</tr>
<tr>
<td>5.2</td>
<td>K14 K17 Expression In Pre2.8 Cells</td>
<td>129</td>
</tr>
<tr>
<td>5.3</td>
<td>K14 K19 Expression In Pre2.8 Cells</td>
<td>130</td>
</tr>
<tr>
<td>5.4</td>
<td>K19 K8 Expression In Pre2.8 Cells</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>K14 K8 Expression In Pre2.8 Cells</td>
<td>132</td>
</tr>
<tr>
<td>5.6</td>
<td>K14 K18 Expression In Pre2.8 Epithelial Cells</td>
<td>133</td>
</tr>
<tr>
<td>5.7</td>
<td>5a-Reductase Expression</td>
<td>134</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison Of Pre2.8 Cell Morphology In PrEGM And RPMI/FCS Media</td>
<td>138</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison Of Pre2.8 Cell Proliferation In Different Media At 33°C</td>
<td>139</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison Of S2.13 Cell Proliferation In Different Media At 33°C</td>
<td>141</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Comparison of S2.13 Cell Proliferation in Different Media At 37°C</td>
<td>141</td>
</tr>
<tr>
<td>6.5</td>
<td>Spheroid Development of 3-D Cultures</td>
<td>151</td>
</tr>
<tr>
<td>6.6</td>
<td>Effects of Mibolerone on Spheroid Development</td>
<td>152</td>
</tr>
<tr>
<td>6.7</td>
<td>Vimentin and SMA Expression in 3-D Cultures At 37°C</td>
<td>153</td>
</tr>
<tr>
<td>6.8</td>
<td>K14 and K17 Expression in Pre2.8/S2.13 Matrigel Cultures At 37°C</td>
<td>154</td>
</tr>
<tr>
<td>6.9</td>
<td>K14 and K17 Expression in 3-D Cultures At 37°C</td>
<td>155</td>
</tr>
<tr>
<td>6.10</td>
<td>K19 Expression in Pre2.8/S2.13 Matrigel Cultures At 37°C</td>
<td>156</td>
</tr>
<tr>
<td>6.11</td>
<td>K8 Expression in Pre2.8/S2.13 Matrigel Cultures At 37°C</td>
<td>157</td>
</tr>
<tr>
<td>6.12</td>
<td>K8 Immunocytochemistry</td>
<td>158</td>
</tr>
<tr>
<td>6.13</td>
<td>K14 and K8 Expression in Pre2.8/S2.13 Matrigel Cultures Without Mibolerone</td>
<td>159</td>
</tr>
<tr>
<td>6.14</td>
<td>K14 and K8 expression in Pre2.8/S2.13 Matrigel Cultures with Mibolerone</td>
<td>160</td>
</tr>
<tr>
<td>6.15</td>
<td>Keratin 5 and Keratin 18 RNA Expression in 3-D Cultures</td>
<td>161</td>
</tr>
<tr>
<td>6.16</td>
<td>Androgen Receptor Expression in 3-D Cultures At 33°C and 37°C, in the Presence and Absence of Mibolerone</td>
<td>162</td>
</tr>
<tr>
<td>6.17</td>
<td>PSA Expression in 3-D Cultures At 33°C and 37°C in the Presence and Absence of Mibolerone</td>
<td>163</td>
</tr>
<tr>
<td>6.18</td>
<td>PAP Expression in 3-D Cultures At 33°C and 37°C in the Presence and Absence of Mibolerone</td>
<td>164</td>
</tr>
<tr>
<td>6.19</td>
<td>AR and PSA RNA Expression in 3-D Cultures</td>
<td>165</td>
</tr>
<tr>
<td>6.20</td>
<td>Proliferation in 3-D Cultures</td>
<td>166</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Characteristics Of Prostate Epithelial Cells</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Characteristics Of Prostate Stromal Cells</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Characteristics of Immortalised Normal Prostate Cell Lines</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>Details Of Cell Lines Used In Study</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Cell Culture Medium</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Experimental Lay Out For MTT Optimisation</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Primary Antibodies For Immunocytochemistry And Dilutions Used In This Study</td>
<td>59</td>
</tr>
<tr>
<td>2.5</td>
<td>3-D Experimental Variations</td>
<td>70</td>
</tr>
<tr>
<td>2.6</td>
<td>Primer Sequences And Their PCR Conditions</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>PCR-Based STR Profiling</td>
<td>90</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage Of Cells In G1 And G2/S Phases Of Proliferation In Pre2.8 Cells</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage Of Ki-67 Positive Pre2.8 Cells</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Proliferation Of Pre2.8 Cells, Showing The Mean And Standard Error Of Cell Numbers Derived From Three Independent Experiments</td>
<td>106</td>
</tr>
<tr>
<td>4.4</td>
<td>Proliferation Of S2.13 Cells, Showing The Mean And Standard Error Of Cell Numbers Derived From Three Independent Experiments</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Colony Forming Efficiency For Pre2.8 Cells At 33°C</td>
<td>123</td>
</tr>
<tr>
<td>5.1</td>
<td>Differentiation Pattern Of Pre2.8 Epithelial And S2.13 Stromal Cells</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>Morphology Of 3-D Cultures</td>
<td>148</td>
</tr>
<tr>
<td>6.2</td>
<td>Immunohistochemistry Of 3-D Structures At 33°C, 37°C And 39°C</td>
<td>149</td>
</tr>
<tr>
<td>6.3</td>
<td>PSA Level In Co-Culture Supernatant</td>
<td>149</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary Of RT-PCR Results</td>
<td>150</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

°C: Degree Centigrade
5α-R: 5α-reductase
AR: Androgen Receptor
BOO: Bladder Outlet Obstruction
BPE: Bovine Pituitary Extract
BPH: Benign Prostatic Hyperplasia
CaCl₂: Calcium Chloride
CFE: Colony Forming Efficiency
CO₂: Carbon Dioxide
DHT: Dihydrotestosterone
DMEM: Dulbecco’s Modification of Eagle’s Medium
DNA: Deoxyribonucleic Acid
dNTP: Deoxyribonucleotide Triphosphate
DRE: Digital Rectal Examination
FACS: Fluorescence Activated Cell Sorter
FBS: Foetal Bovine Serum
GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase
G418: Neomycin
GC: Growth Curve
HPV: Human Papilloma Virus
IPSS: International Prostate Symptom Score
MPD: Mean Population Doubling
K: Keratins
Kb: Kilobase
KGF: Keratinocyte-SFM Medium
Ltag: Large T Antigen
LUTS: Lower Urinary Tract Symptoms
M: Molar
MgCl₂: Magnesium Chloride
ml: Millilitre
MPD: Mean Population Doubling
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>NE</td>
<td>Neuroendocrine</td>
</tr>
<tr>
<td>PBS</td>
<td>1x Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PK</td>
<td>Protease K</td>
</tr>
<tr>
<td>PrEGM</td>
<td>Prostate Epithelial Growth Medium</td>
</tr>
<tr>
<td>PSA</td>
<td>Prostate Specific Antigen</td>
</tr>
<tr>
<td>PSAP</td>
<td>Prostatic Acid Phosphatase</td>
</tr>
<tr>
<td>PSMA</td>
<td>Prostate Specific Membrane Antigen</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality Of Life</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription –polymerase chain reaction</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>SMA</td>
<td>Smooth Muscle α-Actin</td>
</tr>
<tr>
<td>SMC</td>
<td>Smooth Muscle Cell</td>
</tr>
<tr>
<td>STR</td>
<td>Short Tandem Repeat</td>
</tr>
<tr>
<td>TA</td>
<td>Transit Amplifying</td>
</tr>
<tr>
<td>TURP</td>
<td>Transurethral Resection of the Prostate</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION
1.1 THE PROSTATE

The prostate gland is part of the male reproductive system, producing secretions that contribute to the ejaculate. The prostate acts a bit like a junction box. It allows the tubes that transport sperm from each testicle and the tubes that drain from the seminal vesicles to meet and then empty their contents into the urethra. Some men develop problems urinating due to an enlarged prostate. The urethra has to pass through the prostate before reaching the penis. It is only in recent years that research into understanding the diseases, cancer and benign prostate hyperplasia (BPH) of the prostate has developed. This is partly due to the lack of in vitro models of these diseases, particularly BPH. The value of such models lies in their ability to increase understanding of the biology and development of these conditions. Relying on a continuous supply of human prostate tissue for research can be limiting, due to the difficulty in obtaining human tissue and also the limited lifespan of primary cells. If the optimum prostate model was developed it could have the potential to investigate therapeutic agents for the prevention or treatment of these diseases. This thesis concentrates on developing an in vitro model for BPH, in the hope to overcome the limitations (e.g. lack of cell differentiation) of current in vitro models.

1.1.1 Development And Hormone Control

The gland begins to develop at about the twelfth week of gestation. At birth the prostate weighs approximately 4g and at puberty enlarges to approximately 20g. It continues to grow throughout adult life by 1 to 2% per year, eventually causing the symptoms of benign prostatic hyperplasia (BPH) in approximately 25% of men (McConnell, 1998). Between weeks 10 and 12 of gestation, epithelial buds begin to grow out from the urogenital sinus to form the prostatic acini and ducts. These epithelial buds grow and branch into the surrounding mesenchyme until approximately week 16 of gestation (Kellokumpu-Lehtinen and Pelliniemi, 1988).

The development of the human urogenital tract during embryogenesis is initially similar in both sexes. The urogenital tract comprises the Wolffian (mesonephric) duct and the Mullerian (paramesonephric) duct and includes the urogenital sinus and testis.

Sexual differentiation and development rely on the availability of androgens, specifically testosterone and dihydrotestosterone (Coffey and Isaacs, 1981). Testosterone is converted to a more active form dihydrotestosterone (DHT) by the
intracellular enzyme 5α-reductase (5α-R). 5α-R has two main isoforms, types 1 and 2, both of which are expressed in the human prostate (Andersson and Russell, 1990) (Jenkins et al., 1992a; Thigpen et al., 1993). When testosterone from testicular or adrenal sources reaches the prostate it can bind directly to the androgen receptor or be converted to DHT. DHT can then bind to the same androgen receptor, but with greater affinity than testosterone.

Testosterone is synthesised in the Leydig cells of the foetal testis (Wilson and Siiteri, 1973) and mediates the development of the Wolffian duct into the epididymis, seminal vesicles and the vas deferens (George and Wilson, 1986; Warwick R and Williams PL eds, 2002). DHT is required for the development of the prostate and external male genitalia. Loss of function mutations in 5α-R2 results in pseudohermaphroditism, with incomplete development of the urogenital sinus and external genitalia. Such mutations also inhibit prostate growth, but do not affect the development of the Wolffian duct (Andersson et al., 1991; Goldstein and Wilson, 1975; Imperato-McGinley et al., 1974).

1.1.2 Anatomy
The prostate is a small gland that lies immediately below the bladder (see figure 1.1). Its shape has been described as an inverted pyramid. The prostatic urethra runs from the bladder neck proximally to the membranous urethra distally. An angulation of approximately 35 degrees occurs midway along the prostatic urethra. This is called the verumontanum, and is an embryological remnant located where the ejaculatory ducts enter just below the urethral crest. The internal sphincter, which prevents retrograde ejaculation, surrounds the proximal urethra at the bladder neck. Ejaculatory contents are synthesised and stored in the seminal vesicles, which are connected to the urethra by the ejaculatory duct and are situated behind the bladder.

Currently, the most widely accepted anatomical model of the prostate is that proposed by (McNeal, 1968). He divided the prostate gland into 4 zones, the transition zone, the central zone, the peripheral zone and the anterior fibromuscular stroma (see figure 1.2). The transition zone is the smallest portion (5 to 10%) of the glandular tissue and surrounds the urethra above the verumontanum. The central zone makes up approximately 25% of the glandular prostate. It is a cone shaped region between the base of the prostate and the verumontanum, surrounding the ejaculatory ducts, making up much of the base of the prostate. The peripheral zone is the largest part (65 to 70%)
of the glandular prostate and extends towards the anterior in a horseshoe shape. The anterior fibromuscular stroma makes up one third of the prostate volume.

Figure 1.1: Anatomy Of Prostate

[Sagittal View Of The Male Pelvis. The growth of the prostate is controlled by testosterone, the male sex hormone. Most testosterone is made by the testis, travels into the bloodstream and finds its way to the prostate. The testis (not shown in diagram) are situated anterior to the rectum, with one to the right and left, just behind the penis.

Figure 1.2: Zonal Anatomy Of The Prostate

[Zonal anatomy of the prostate in Antero-Posterior (AP) and sagittal planes (SP) showing central zone (CZ), peripheral zone (PZ) and transition zone (TZ).]
1.1.3 Morphology And Histology

The human prostate consists of a complex array of secretory ducts and acini surrounded by stroma (see figure 1.3). The epithelium consists of two layers, the luminal and basal layers. Luminal cells are tall and columnar, and overlay flattened, elongated basal cells that rest on a basement membrane. The supporting stroma includes smooth muscle cells, fibroblasts, myofibroblasts, blood vessels, nerve terminals and lymphatics (Aumuller, 1983). The stromal cells are embedded in a loose collagenous extracellular matrix, providing mechanical support.

(McNeal, 1968) described zonal differences between the acini. The central zone contains large irregular shaped acini folding into luminal ridges. The luminal epithelial cells contain large, pale nuclei positioned in an irregular fashion within a granulated cytoplasm. The stroma of the central zone contains long tightly packed smooth muscle cells aligning the contours of the acini. The peripheral zone acini are small and round with no obvious projections. The basal cells contain a small, dark nucleus in a clear cytoplasm. The stroma contains loose, randomly arranged smooth muscle cells. The acini of the transition zone are similar to those in the peripheral zone.

The transition zone is the site of development of BPH, while the majority of cancers develop in the peripheral zone. Although the peripheral and transition zones are similar histologically, BPH does not develop in the peripheral zone.
Figure 1.3: Morphology Of BPH Tissue

Low power magnification showing H&E staining of a Benign Prostatic Hyperplasia nodule. A indicates the acinus, M indicates the fibromuscular connective tissue/stroma.

1.1.4 Cell Types

Epithelial Cells

Prostate epithelium contains 3 distinct cell populations; the secretory luminal, the proliferative basal and the neuroendocrine (NE) cells. These cell populations can be distinguished by their proliferative capacity, hormonal sensitivity and cytokeratin expression (table 1.1).
Table 1.1: Characteristics Of Prostate Epithelial Cells

<table>
<thead>
<tr>
<th>Markers</th>
<th>Basal cells</th>
<th>Luminal cells</th>
<th>Neuroendocrine cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokeratin</td>
<td>K5/K14</td>
<td>K8/K18</td>
<td>Mixed basal and luminal (complex - K5/K8)</td>
</tr>
<tr>
<td>Proliferation</td>
<td>Ki-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secretion</td>
<td>PSA, PAP</td>
<td></td>
<td>Chromogranin A</td>
</tr>
<tr>
<td>Hormone Receptor</td>
<td>AR</td>
<td></td>
<td>Serotonin, calcitonin</td>
</tr>
<tr>
<td>Other</td>
<td>Bcl-2, CD44, p63</td>
<td>CD57</td>
<td>CD56</td>
</tr>
</tbody>
</table>

The proliferation-associated antigens Ki-67 (Gerdes et al., 1984; Hudson et al., 2001a), PCNA and MIB-1 (Cattoretti et al., 1992) have been used to measure the proliferative capacity of epithelial cells. These markers, together with DNA cell cycle distribution indicate that the basal cells are the main proliferative compartment (Bonkhoff et al., 1994; Dermer, 1978; Merchant et al., 1983). Co-expression of proliferation markers with the neuroendocrine marker chromogranin A has not been observed (Bonkhoff et al., 1991). Less than 20% of Ki-67 positive cells are in the luminal layer and most of these are in an intermediate position between the basal and luminal layers, while the remaining 80% are in the basal layer (Hudson et al., 2001a).

The luminal cells express prostate specific antigen (PSA), prostatic acid phosphatase (PSAP), prostate specific membrane antigen (PSMA) (Lilja and Abrahamsson, 1988), and androgen receptor (Masai et al., 1990). The basal cells are believed to be androgen independent, although there is evidence that the basal cells express nuclear receptors for estrogens and progesterone (Ruizeveld de Winter et al., 1991) (Wernert et al., 1988). NE cells express the secretory granules of the peptide chromogranin A (Xue et al., 1998) and serotonin, a neurotransmitter and hormone, (Capella et al., 1981; di Sant'Agnese et al., 1985; Fetissof et al., 1983). Some NE cells contain calcitonin (Abrahamsson et al., 1986; di Sant'Agnese and Mesy Jensen, 1984; di Sant'Agnese et al., 1989; Fetissof et al., 1986).
Cytokeratins are a family of 20 polypeptides that form the intermediate filaments of epithelial cells. These cell markers have been fundamental in establishing the differentiation pattern of epithelial cells. In the prostate the luminal cells express keratins (K) 8 and 18, while the basal cells express K5 and K14. An intermediate basal cell population expresses K5 with low levels of K8 (Peehl et al., 1994; Purkis et al., 1990; Xue et al., 1998). Basal cells may also express K17 (Hudson et al., 2001b; Troyanovsky et al., 1989). Keratin 19 can be expressed by luminal and basal cells (Hudson et al., 2001b; Peehl et al., 1996).

The bcl-2 proto-oncogene is expressed by the basal cells of the prostate (Hockenbery et al., 1991; McDonnell et al., 1992). The basal cells express the surface membrane marker CD44, distinguishing them from the luminal cells, which express CD57 (Terpe et al., 1994; Liu et al., 1997). The p63 gene is expressed in normal prostate basal cells only. It is thought that this gene is involved in prostate development (Signoretti et al., 2000).

Stromal Cells

The prostate stroma contains smooth muscle cells, fibroblasts, and an intermediate type called myofibroblasts (Zhang et al., 1997). Smooth muscle cells make up the largest part of prostate stroma (Shapiro et al., 1992).

Like epithelial cells, stroma can be differentially characterised using staining for intermediate filaments, including desmin, vimentin and myosin (see table 1.2). Desmin forms an interconnecting network across muscle cells. Smooth muscle α-actin (SMA) is the major constituent of the microfilaments involved in smooth muscle contraction (Darnell, 1986). Vimentin is expressed in all stromal cells and can be used to differentiate epithelial cells from stromal cells.

Further characterisation is achieved using SMA (Skalli et al., 1986), myosin and desmin, which are expressed in smooth muscle cells but not in fibroblasts (Peehl and Sellers, 1997; Zhang et al., 1997). SMA stains twice as many smooth muscle cells as desmin, indicating that desmin underestimates the number of smooth muscle cells (Peehl and Sellers, 1997; Shapiro et al., 1992). SMA is also expressed in myofibroblasts. This means that desmin negative smooth muscle cells are actually myofibroblasts.
The cell adhesion molecule CD44 is expressed in some stromal cells (Fry et al., 2000a) and androgen receptor (AR) is expressed in approximately 50% of stromal cells (Janssen et al., 1994).

Table 1.2: Characteristics Of Prostate Stromal Cells

<table>
<thead>
<tr>
<th>Markers</th>
<th>Smooth muscle</th>
<th>Myofibroblast</th>
<th>Fibroblast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromal cell markers</td>
<td>Vimentin, SMA, SM-Myosin</td>
<td>Vimentin, SMA</td>
<td>Vimentin</td>
</tr>
<tr>
<td>(intermediate filaments)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone</td>
<td>AR, ER</td>
<td>AR, ER</td>
<td>AR, ER</td>
</tr>
<tr>
<td>Others</td>
<td>CD44</td>
<td>CD44</td>
<td>CD44</td>
</tr>
</tbody>
</table>

1.1.5 Biochemistry

Luminal epithelial cells secrete prostate specific antigen (PSA) (Sinha et al., 1987) and prostate acid phosphatase (PSAP) (Lin et al., 1992) PSA and PSAP production are under the control of androgens via the androgen receptor.

PSA is a 34 kilodalton, 240-amino acid glycoprotein and is a member of the human kallikrein (hGK-1) family (Henttu and Vihko, 1989; Riegman et al., 1989). PSA is a serine protease (Watt et al., 1986) that acts like the digestive enzymes chymotrypsin and trypsin. PSA is secreted into the seminal fluid where it plays a role in semen liquefication.

PSAP is a 100 kilo-Dalton dimer (Ostrowski and Kuciel, 1994) and is the major phosphotyrosyl (p-tyr) protein phosphatase in prostate epithelial cells (Lin et al., 1992; Ostrowski and Kuciel, 1994). It is thought that PSAP is also involved in liquefaction of semen and maintenance of sperm motility.

Other secretory products of the prostate include the trace elements selenium, zinc and cadmium. The prostate has a higher concentration of zinc than any other human tissue. Zinc and selenium are important in reproduction in males and females (Zhang et al., 1997; Bedwal and Bahuguna, 1994). Zinc deficiency leads to depletion of testosterone and inhibition of spermatogenesis. It is thought that zinc extends the life span of the ejaculated spermatozoa.
Selenium is found in sperm mitochondria (Hansen and Deguchi, 1996) and its deficiency may be associated with male infertility. It is suggested that selenium may be important in prostate cancer prevention (Wynder et al., 1994).

Citrate is produced, accumulated and secreted by the mitochondria of the prostate epithelial cells. A much higher level of citrate is found in the prostate compared to other tissues in the body, probably because there is limited citrate oxidation via the Krebs cycle in the prostate (Costello and Franklin, 1997). It is thought that the high levels of zinc in prostate mitochondria inhibit citrate oxidation and hence it is an inefficient energy metabolite (Costello and Franklin, 1981). A continuous supply of aspartate and glucose is required for citrate production. Aspartate is converted to oxaloacetate (OAA), which is converted to acetyl-CoA (AcCoA) (CoA meaning coenzyme acetylation) while producing citrate. The end products of glucose metabolism are lactate and citrate, due to the conversion of glucose to pyruvate and AcCoA. It is thought that testosterone and prolactin regulate this cycle (Costello and Franklin, 1994; Costello et al., 1996; Franklin and Costello, 1990).

1.2 BENIGN PROSTATIC HYPERPLASIA (BPH)

Benign prostatic hyperplasia (BPH) develops in the majority of men as they age. BPH occurs in the transition zone (McNeal, 1978). Symptoms seldom develop before the age of 30, but the incidence increases rapidly after the age of 50. Most older men have microscopic BPH (Bartsch et al., 1979), 50% will go on to develop macroscopic BPH (enlarged prostate) and 50% of these will develop clinical symptoms (Birkhoff et al., 1976; Lytton et al., 1968). BPH seldom reduces life expectancy, but it has a major impact on quality of life.

There are only two definitive risk factors known, advancing age and the presence of androgens. The average weight of an adult human prostate with normal histology is 20g ± 6. This will slowly increase to approximately 33g ± 16 with the development of BPH in the ageing man. Only 4% of prostates with BPH will increase to 100g by the seventh decade (Berry et al., 1984). BPH does not develop in men who have been castrated before puberty (Boyle, 1990). It is thought that the change in the ratio between testosterone and estrogen may drive the growth of BPH.
Although the causes of BPH are not clear it is thought that inherited and environmental factors are involved in BPH. The incidence is lower in Asia than in Europe, but is increasing in Japan, perhaps due to the adoption of a diet containing more animal fat (Chyou et al., 1993a). Family history is also associated with BPH (Sanda et al., 1994). Diet may influence pathogenesis, but there is little supporting evidence. A high fat diet increases the levels of the hormone prolactin, which may increase the risk of BPH because of its effect on the proliferation of prostatic epithelium. An intake of greater than 25oz (equivalent to 708g or 0.74litres or 6 units) of alcohol per month may reduce the incidence of BPH (Chyou et al., 1993b).

1.2.1 Etiology Of BPH

There are three main hypotheses to explain the pathogenesis of BPH. These hypotheses are based on (1) hormones (2) stromal-epithelial interaction and (3) stem cells.

The hormonal theory

The hormonal theory is based on the fact that a testicular function is required for BPH development (Isaacs and Coffey, 1989b), as BPH does not occur in men castrated prior to puberty. Androgen withdrawal in non-castrated adults leads to a reversible decrease in prostate size (Bosch et al., 1989), also indicating a role for androgen in the development and maintenance of BPH.

One theory suggests that the main factor responsible for the development of BPH is an age associated increase in DHT levels (Salm et al., 2000). This theory was based on data suggesting that DHT levels are higher in BPH tissue than in normal tissue. However, this was proven to be incorrect because some of the tissue specimens were obtained from cadavers and hormone levels change during the period taken to collect the samples. Comparison of previous results with results obtained from BPH and normal tissue, collected immediately showed that there was no difference between DHT levels in BPH tissue and normal tissue (Isaacs et al., 1983).

Another theory suggests that synergism between oestrogen and androgen may play a role in BPH pathogenesis. BPH was induced in dogs by treatment with oestrogen androstane-3,17-diol (a DHT derivative) but not with oestrogen alone (Walsh and Wilson, 1976; Bartsch et al., 1987). BPH induced with oestradiol and oestrogen androstane-3,17-diol is more severe than with androgen alone (Walsh and Wilson,
It was also shown that BPH tissue contains less oestrogen receptors than normal tissue (Isaacs et al., 1983). Alterations in the ratio of androgen to oestrogen may be associated with abnormal prostate growth (Griffiths et al., 1991).

Stromal-Epithelial Interaction Theory

The stromal-epithelial interaction theory was initially suggested by Rischemer in 1925. He suggested that BPH was a stromal nodule that induced migration of epithelial cells resulting in the formation of new acini. In 1978 McNeal suggested that the primary lesion of BPH was a glandular budding and branching mechanism that gave rise to new acini in the transition zone. He suggested that this mechanism was a reawakening of the embryonic potential of prostatic stroma to induce epithelial growth during adulthood (McNeal, 1978).

Mouse embryonic mesenchyme can induce bladder epithelial cells to form prostate-like glandular structures (Cunha et al., 1983) in the presence of a functioning testis. The mechanism of "reawakening" is unknown, but could involve growth factors (Lawson, 1997) (Griffiths et al., 1998) or the basement membrane (Mawhinney et al., 1974).

Stem Cell Theory

Stem cells are cells that have the ability to self-renew and proliferate. Transit amplifying (TA) cells originate from stem cells and proliferate for a limited number of cell divisions. TA cells divide to form luminal non-proliferative cells. Clonal expansion of TA cells eventually results in the prostate growing to its maximal normal size. The stem cell theory suggests an imbalance between the growth of new cells and the maturation and death of older cells (Isaacs and Coffey, 1989a).

In the normal prostate, proliferation and cell death are in equilibrium. Some alteration in this equilibrium may cause BPH. Two possibilities have been suggested: either an abnormal increase in stem cell numbers or an abnormal increase in the number of TA cells would produce an enlarged prostate.

1.2.2 Clinical Presentation

Symptoms

Patients with BPH can present with lower urinary tract symptoms (LUTS). LUTS are very common and can be influenced by many factors (including malignancy, infection,
inflammation, neurological, mechanical and drugs), and so it is important to confirm the underlying cause (Blaivas, 1996).

LUTS symptoms are due to obstruction and/or irritation. Obstructive symptoms include hesitancy, poor stream and incomplete emptying, while irritative symptoms include nocturia, frequency and urgency. The symptoms are influenced by the increase in the size of the prostate and dysfunction of the bladder muscle (Blaivas, 1996; Madsen and Bruskewitz, 1995a).

Diagnosis

A detailed medical history including patient quality of life (QOL) must be taken. The quality of life can be examined by completing a symptom score sheet. The most common is the International Prostate Symptom Score (IPSS). Each score determines whether a patient has mild (0-7), moderate (8-19) or severe (20-35) symptoms (Barry et al., 1992).

Physical examination

A digital rectal examination (DRE) can be carried out to examine the prostate and help distinguish between BPH, prostatitis and prostate cancer. A neurologic examination would help rule out neurological disorders as a cause of LUTS (McConnell et al., 1994a; Ziada et al., 1999).

Urine Analysis

In order to rule out urinary tract infection and hematuria, urine analysis using a dipstick test or by examination of spun sediment can be done (Madsen and Bruskewitz, 1995b).

PSA levels

PSA analysis has advantages and disadvantages. It is not specific in distinguishing between BPH and prostate cancer, but it is the most sensitive and simple test available. When PSA and DRE results are combined it becomes a more reliable (Tchetgen and Oesterling, 1995). Serum PSA levels greater than 4.0 mg/ml may be indicative of BPH or cancer (McConnell JD, 1994).
Urine Flow Rate
This test is a measure of the maximum flow rate (Qmax) and the rate of flow. This test requires a fluid volume of at least 150ml in order to be accurate. A flow rate of less than 15ml per second is significant for bladder outlet obstruction (BOO) (McConnell et al., 1994a; Garraway et al., 1993; Chancellor et al., 1991).

Residual Volume
Residual volume is the volume of fluid left in the bladder after void is complete. Greater than 150ml is a significant residual volume (McConnell et al., 1994b).

Urodynamics /Pressure flow rate
Urodynamics can be carried out if there is no definitive diagnosis. This is a measurement of the pressure in the bladder during voiding. It is carried out by passing a pressure transducer into the rectum and one into the bladder to record the change in pressure as the bladder fills and as the bladder voids into the flow meter. Patients who have pressure flow obstruction due to BPH generally respond better to surgery than those who have no obstruction (Griffiths, 1996; McConnell et al., 1994b).

1.2.3 Treatment
Surgery is no longer the only option for the treatment of BPH. Initially LUTS must be confirmed as the cause of BPH. Once a diagnosis of BPH is confirmed a decision must be made between the patient and the urologist as to what treatment would be preferred. The choice of treatment is watchful waiting, medical therapies or surgery. In order to make this decision IPSS, quality of life, flow-rate and residual volume must be taken into consideration (Ziada et al., 1999; Lepor H, 2002; Altwein JE, 2002).

Watchful Waiting
If the patient has mild symptoms and there are no apparent complications then watchful waiting is often the preferred option. The doctor and patient decide not to treat the symptoms immediately. Instead they wait and see if symptoms improve or deteriorate over time. Follow-ups are carried out after 6-12 months. Improved symptoms are seen in approximately 25% of cases, 50% stay the same and 25% deteriorate (Lepor, 2002).
Medical Treatment

Medical treatment is carried out for mild or moderate symptoms. There are two classes of drug, alpha-blockers and 5-α reductase inhibitors (Lepor, 2002).

The effect of α-Blockers is to relax smooth muscle in the bladder neck and in the prostate. Smooth muscle contraction in the prostate is mediated by the alpha-1 adrenoceptor (α1-AR) (Hieble et al., 1985; Lepor et al., 1988). α-Blockers target the symptoms and their effectiveness seems to be independent of prostate size and obstruction. The first α1-blocker was Phenoxybenzamine, which had many side effects. Currently the drugs in use are Praxosin, Indoramin, Infuzosin, Doxazosin and Terazosin, all of which have fewer side effects. More recently an α1A blocker has been produced, which has even fewer side effects due to α1-blockade in the brain and cardiovascular system.

The efficacy of α1-blockers is dose dependent. It is claimed that there is a 20-50% improvement of IPSS and therefore an improved QOL. Flow-rate is improved by 20-30% (2-3ml/sec). A quick response (48 hrs) is observed after treatment and effectiveness can be maintained for 3-4 years, after which the symptoms become resistant to the drug.

The most common side effects are tiredness, dizziness and headaches. Less common side effects are asthenia, palpitations and gastrointestinal disturbances (nausea, vomiting, constipation and diarrhoea). There is also a risk of postural hypertension (lowering of blood pressure).

The conversion of testosterone to dihydrotestosterone (DHT) is blocked by 5α-R inhibitors and result in reduced prostate size. 5α-R inhibitors aim to treat the disease, unlike α-blockers which treat the symptoms. There are two 5α-R isozymes (type I and II) (Jenkins et al., 1992b). The most frequently prescribed drug is Finasteride, which selectively inhibits 5α-R type II (Vermeulen et al., 1989).

Finasteride is thought to be most effective if the prostate is greater than 40ml in size. It is claimed to reduce prostate size by 20-30%. It improves IPSS by 15% and flow rates by 1.3-1.6 mL/sec and therefore QOL is improved. 5α-R inhibitors take 6 months to
achieve maximum effect, which can be maintained for 6 years, after which the disease becomes resistant to the drug. The incidence of subsequent acute urinary retention is reduced (Polat et al., 1997).

Side effects include ejaculatory disorders and impotence. PSA levels tend to be reduced by half over a 12-month period (Guess et al., 1993). This should be taken into consideration in order not to miss the possible onset of prostate cancer.

Studies comparing terazosin, finasteride and placebo showed that although finasteride caused the prostate to shrink, its effectiveness at increasing urinary flow was little better than placebo and less than terazosin. 5α-R inhibitors do not seem to be as effective at relieving symptoms as α-blockers. The drugs of choice are α-Blockers unless there is substantial prostatic enlargement. In this case treatment with finasteride may be beneficial.

Phytotherapeutic agents are chemicals derived from plant extracts that have been used for the treatment of BPH. These herbal remedies have not been sufficiently evaluated in clinical trials and the mode of action of these agents is not fully understood (Gerber, 2002; Dreikorn, 2002; Lowe, 2001).

Surgical treatment

Removal of BPH tissue using open surgery is carried out by an incision through either the abdominal wall or the perineum. It is based on the presence of a cleavage plane between the BPH tissue and the unaffected prostate tissue. BPH tissue should be easily removed using an index finger along the cleavage plane. Open surgery is very successful giving a 98% symptom improvement (Ziada et al., 1999). The main disadvantages of this procedure are bleeding and the hospitalisation period (5-10 days) required for the patient to recover from open surgery. Open surgery is usually reserved for cases with particularly large prostates or if large bladder stones are present (Tubaro et al., 2001; Servadio, 1992).

Transurethral Resection of the Prostate (TURP) has largely replaced open surgery, especially if the tissue is estimated to weigh 50g or less. A resectoscope is used to remove the BPH tissue (Holtgrewe, 1998). It has many advantages over open surgery. Hospitalisation time is reduced to 1 or 2 days (Chang et al., 1998). Bleeding is
minimised. Symptom score improvements of 80-100% and mortality risk improvement of 2% can be achieved (Ziada et al., 1999). Associated bladder conditions such as stones can easily be observed and dealt with using this technique.

New approaches are being developed in an attempt to replace TURP in order to reduce side effects. Transurethral vaporization (TVP), laser therapy, transurethral microwave therapy (TUMT), transurethral needle ablation (TUNA) and high-intensity focused ultrasound (HIFU) are other techniques that can be used to treat BPH, but none of these have replaced TURP (Ziada et al., 1999).

1.3 IN-VITRO MODELS

1.3.1 Primary Culture Systems

Primary cultures proliferate initially for up to 50 population doublings, depending on the type of cell population, and usually then undergo crisis, stop dividing and die (Hayflick, 1965). This process is called replicative senescence. In culture, cancer cells can escape senescence due to genetic changes in key genes, a process called spontaneous transformation. Normal cells can escape senescence if they are immortalised with a transforming virus, or if transfected with a plasmid containing a transforming viral gene. There are two main ways of establishing primary cultures: explant culture and enzymatic dissociation.

Explant culture is carried out by cutting tissue into approximately 1 mm3 fragments and then placing the explants in tissue culture flasks in a suitable culture medium. Stromal and epithelial cells can grow out of the explants.

Human prostatic epithelial cells and fibroblasts from the prostates of 15 cadaveric kidney donors (aged under 40 years) and 2 fetuses (35 weeks gestation) were established using explant cultures (Cussenot et al., 1994a). Primary prostate stromal cell cultures have also been obtained using explant cultures established from BPH and prostate cancer tissue (Kooistra et al., 1995a; Planz et al., 1999).

Enzymatic dissociation is achieved by collagenase digestion, of the intercellular collagen matrix (Freshney, 1987). The standard enzymatic procedure involves chopping the tissue into small fragments, dissociating in medium containing collagenase and
trypsin and incubating with constant stirring at 37°C for a few hours or overnight. The resulting suspension can then be successively sieved through a wire mesh with decreasing pore size in order to obtain single cells (Sensibar et al., 1999a; Peehl and Stamey, 1986a; Peehl et al., 1988a; Brothman et al., 1992a; Peehl and Sellers, 1997; Fry et al., 2000b; Hudson et al., 2000a; Hayflick, 1965; Zhang et al., 1997). Variations to this method include the concentration and type of proteolytic enzymes, number of enzymatic treatments, incubation times and whether the final cell extract is sieved.

In a study of rat prostate, cells were isolated using trypsin and then collagenase for epithelial cell isolation. A higher concentration of trypsin without collagenase digestion was used for stromal cell isolation (Taketa et al., 1990a). The stromal cells digested with trypsin could only attach to tissue culture dishes pretreated with 10% FCS or fibronectin. Although these findings were made with rat prostates, the information obtained was then applied to human prostate cultures. Primary human prostate stromal cultures (PNX and BH101) were produced from normal and BPH tissue using mechanical dissociation followed by collagenase and hyaluronidase treatment (Tatoud et al., 1995). Prostatic stromal cells were isolated by collagenase digestion of BPH tissue with constant stirring at 37°C for 2-4 hours, then rinsing tissue pieces in PBS and repeating collagenase treatment for 16-18 hours (Kassen et al., 1996a).

In some cases a mixture of the two methods has been used. After mechanical dissociation fragments were digested with a collagenase solution and then small fragments were seeded onto tissue culture plates and cell outgrowths appeared (Robinson et al., 1998a; Janssen et al., 2000).

It is easier to establish stromal cells than epithelial cells in culture. Stromal cells tend to outgrow epithelial cells when grown in a basic medium such as RPMI-1640 supplemented with 10-20% FCS (Kooistra et al., 1995a; Tatoud et al., 1995). Stromal cells were isolated from explant cultures (Planz et al., 1999) in equal volumes of DU145 cell conditioned medium and RPMI-1640 supplemented with 10% FBS, insulin, transferrin and selenium (ITS). Primary stromal cell cultures were isolated in DMEM:F12 medium and 20% FCS (Fry et al., 2000b). A pure population of stromal cells is usually achieved by the second or third passage.
A human prostatic smooth muscle cell (SMC) primary culture system was developed (Zhang et al., 1997). The culture medium was modified to preferentially stimulate smooth muscle growth over myofibroblasts or fibroblasts. It was found that SMC growth was stimulated by growth factors such as insulin, dexamethasone, prostate cancer conditioned medium and horse serum (it is thought that FBS tends to stimulate fibroblasts while horse serum stimulates SMC growth). The hormones found to stimulate SMC growth were DHT and hydrocortisone. Estradiol influenced SMC differentiation, but not growth. These growth factors and hormones were used to supplement MCDB-131 medium for the maintenance of SMCs in culture. It was proposed that TGFβ is a key regulator of growth and differentiation in prostate stromal cells (Peehl and Sellers, 1997).

Pure cultures of prostate epithelial cells can be readily established in serum-free culture medium, as the absence of serum inhibits the growth of the stromal cells (Peehl and Stamey, 1986b; Peehl et al., 1988b; Brothman et al., 1992b). In a study of the growth promoting effect of BPE on rat prostate epithelial cells, McKeehan identified some of the growth factors and hormones needed to support prostate epithelial cell growth in the absence of serum. A serum-free growth medium was developed called WAJC404, supplemented with 130pM cholera toxin, 833nM insulin, 1.6mM EGF, 43nM prolactin, 1μM dexamethasone and 25μg/ml bovine pituitary extract (BPE) (McKeehan et al., 1984).

In the study of rat prostate, Taketa et al, found that dexamethasone inhibited the proliferation of epithelial cells at concentrations above 30nM. Maximum stromal cell growth was seen on addition of 2mg/ml of BSA (in addition to cholera toxin and BPE). Higher concentrations of BSA had an inhibitory effect on growth of stromal cells. Epithelial cell cultures were maintained in a modified WAJC404 medium (without dexamethasone or ovine prolactin). Stromal cells were maintained in MEM medium supplemented with 2mg/ml BSA, cholera toxin and BPE (Taketa et al., 1990b).

In order to improve epithelial cell growth a low calcium culture medium was developed which was supplemented with specific growth factors. Epithelial cells were maintained in low serum and low calcium DMEM medium, while fibroblasts were cultured in RPMI-1640 medium supplemented with serum. Two layers developed in the epithelial cultures. The cells survived four to five passages before becoming senescent. The
phenotype of the two layers could be distinguished by their cytokeratin patterns. The upper layer displayed a luminal cell pattern. Fibroblasts took longer than epithelial cells to become established in culture, but once established they grew faster and achieved up to 10 passages. Cultured cells from the transition, peripheral and central zone showed the same growth pattern and had the same phenotype (Cussenot et al., 1994b).

In an investigation of prostate stem cells, a lineage analysis was carried out on basal and secretory luminal cells by monitoring spontaneous differentiation in primary prostate cultures. Primary epithelial cultures were maintained in WAJC404 medium (McKeehan et al., 1984). The results were similar to those of Cussenot et al. (1994) where the initial monolayer expressed luminal and basal cytokeratins and was AR and PSA positive. Multilayer cultures have also been established (Robinson et al., 1998b). The upper layer consisting of highly differentiated cells contained secretory vacuoles with increased luminal cytokeratin expression.

A comparison of serum-free media for the growth of epithelial primary cultures was made (Fry et al., 2000c). PrEGM, a commercially available serum-free medium, was the only medium that permitted the long-term cultivation of epithelial cells. The epithelial cells could be passaged with 0.25% trypsin in 0.5mM/L versene by harvesting adherent cells (allowing cells to lift off the bottom of the dish). Normally epithelial cells are grown in a serum free medium but in order for these cells to re-attach to the base of the tissue culture flask, 5% FCS was added to medium for 48 hours.

Primary prostate epithelial cell cultures were grown clonally to identify prostate stem cells. Single cells were obtained by further digestion with trypsin/versene in saline buffer and growth of cells on a mouse 3T3 fibroblast feeder layer on collagen. Two types of colonies were distinguishable. Three-dimensional cultures were also developed using cells from individual colonies in matrigel using stromal cell conditioned PrEGM medium containing mibolerone. Mibolerone is a synthetic androgen and unlike 5α-DHT (5α-dihydrotestosterone) is not metabolised. The results of these investigations suggest that Type II colonies, consisting of undifferentiated rapidly dividing cells, may be the progeny of prostate stem cells. The smaller Type I colonies may be the progeny of differentiated transit-amplifying populations (Hudson et al., 2000b).
Another method used to isolate stromal or epithelial cells is the Percoll gradient. A 5-10% (increasing density) discontinuous Percoll gradient (Pharmacia) was used to separate different cell types by density after centrifugation (Kassen et al., 1996b). Stromal cells separated at the 5% interface, while the epithelial cells were between the 5 and 10% interfaces. Stromal cells were collected and cultured in phenol red-free RPMI-1640 and 10% FBS. Using this procedure, Kassen found that bFGF and BPE induced a concentration dependent proliferation of prostatic smooth muscle cells. DHT had a weak stimulatory effect on smooth muscle growth and in the presence of bFGF, and at low concentrations DHT was able to further stimulate smooth muscle growth. TGFβ had an inhibitory effect on stromal cells.

The same method was later used to isolate stromal cells from normal and BPH patients of varying ages (Sensibar et al., 1999b). Less cell proliferation was observed in cultures from older patients.

1.4 IMMORTALISATION AND CHARACTERISATION OF PROSTATE CONTINUOUS CELL LINES

Primary cultures have a limited lifespan and therefore immortalised cell lines with an unlimited lifespan have advantages. Immortalised cell lines provide a uniform, standardized and reproducible source for study. These cells retain many properties of normal cells. Spontaneous immortalisation seldom occurs for normal human cells (Macieira-Coelho and Azzarone, 1988) and therefore viral transformation (immortalisation) is used. Primary cells are infected with a transforming virus and have an extended lifespan. The cells eventually reach a state called crisis, a period of balanced cell growth and cell death. Some cells survive crisis and gain additional genetic changes and consequently become immortal.

DNA tumour viruses such as SV40, adenovirus EIA and EIB, human papilloma virus (HPV) 16 and 18 have been used. It is also possible to immortalise cells by expressing cellular oncogenes such as myc, fos, pRb and p53 (Stamps et al., 1992b).

One of the main disadvantages of immortalisation is the loss of differentiated cell characteristics. The cells are driven by the viral gene or oncogene to divide and additional morphological and chromosomal changes develop (Steinberg and Defendi, 1979; Taylor-Papadimitriou et al., 1982). Virally immortalised cells often become
neoplastically transformed, likely to be due to genetic alterations. However, such cell lines have been exploited to study the neoplastic process.

Continuous cell lines (whether immortalised or derived directly from cancers) must be characterised and authenticated (table 1.1 and 1.2). Various immortalised normal prostate cell lines (table 1.3) have been developed.

Prostatic cells characterized as basal cells may express K5, K15, K14, K17 and K19 but are negative for K8 and K18 while more differentiated luminal-like cells can express K8, K18, K17 and K19 but are negative for K15 and K14. K17 and K19 can be expressed by basal and luminal cells. Smooth muscle cells are positive for vimentin, SM-actin, SM-myosin and SM-desmin. Myofibroblasts are positive for vimentin, SM-actin, SM-myosin and negative for SM-desmin. Fibroblasts are positive for vimentin and negative for SM-actin, SM-myosin and SM-desmin. The luminal epithelial and stromal cells can be positive for AR. Prostate specific characteristics include luminal epithelial cell expression of PSA, PSMA and PSAP (table 1.1 and 1.2).

The proportion of proliferating cells can be determined using Ki67 staining (table 1.1 and 1.2). During transformation chromosomal alterations occur and karyotypic analysis can be used to identify large chromosomal alterations and to determine if a normal Y-chromosome is present (Stacey et al., 1990).

Neoplastic characteristics include the loss of anchorage dependence allowing growth in semi-solid agar and the development of xenografts in nude mice. The presence of the transforming gene can be detected (e.g. expression of SV40 large T-antigen).

1.4.1 Immortalised Epithelial Cell Lines

Two prostate epithelial cell lines from neonates, NP-2s and NP-2e, were established by immortalisation with HPV16 (Lechner et al., 1978). The cells have a typical epithelial phenotype with a "cobblestone" appearance. They have a normal human male karyotype, are non-tumorigenic and express 5α-R. Both cell lines became senescent after 30–35 population doublings. In order to extend the lifespan of NP-2s cells they were transformed with the SV40 virus (Kaighn, 1980). The transformed epithelial cell lines T1, T2 and T5 consisted of small cells with a tendency to overlap and had altered morphological, ultrastructural, chromosomal and growth characteristics compared to
NP-2s cells. The morphology of T2 was similar to PC-3, a prostate cancer cell line. All 3 cell lines became anchorage independent over time and had reduced serum requirements, although each line had a different response to growth factors. Kaighn later stated that these cell lines were not tumorigenic and were not immortalised (Kaighn et al., 1989). Further attempts to immortalise NP-2s cells used a plasmid, pRSV-9, containing the SV40 early region genes (Kaighn et al., 1989). Transformed cell lines 267B1, 272E1 and 272E4 were characterised as luminal epithelial cells, expressing PSA and PSAP markers. This pattern was similar to that seen in NP-2s cells, except for the fibroblast markers. The cell lines 267B1, 272E1 and 272E4 had ultrastructural features of epithelial cells, were pseudodiploid and non-tumorigenic. TGF-β and EGF stimulated growth in clonal assays. In conclusion, these 3 cell lines are immortalised non-tumorigenic human epithelial cell lines. However, these cell lines have been transformed twice and therefore a lot of chromosomal abnormalities are likely to have occurred. The 3 cell lines are differentiated epithelial cells and are therefore of no use for the study of epithelial cell differentiation.

Primary cultures of normal prostatic luminal cells were established from a 35-year old male donor (Cussenot et al., 1991). Liposomal transfection with a plasmid, pMK16, containing the SV40 genome with a defective replication origin gene (SV40 ori-) resulted in an immortal cell line. The cell line, PNT1, expressed KL1, a luminal marker, SM cell markers and was weakly positive for PSA and PAP. The PNT1 cell line was used to develop a new cell culture model for studying the progression of non-malignant to malignant prostate cells (Degeorges A et al., 1995). Three cell lines, PNT1A and PNT1B from one patient, and PNT2 from another were. All the lines were positive for SV40 T-antigen, cytokeratin 8 and 18 and negative for cytokeratin 14. PNT2 was positive for cytokeratin 19 and negative for vimentin, while PNT1A and PNT1B were negative for cytokeratin 19 and positive for vimentin. All cell lines were non-tumorigenic. The population doubling times for PNT2, PNT1A and PNT1B were 36, 30 and 28 hours respectively. Their serum dependency was high, medium and low respectively and their EGF response was positive, positive and negative respectively. A fibroblastic cell line did not survive crisis. PNT2, PNT1A and PNT1B cell lines have no added advantage as a prostate epithelial cell line compared to 267B1, 272E1 and 272E4 cell lines, previously described. PNT2 may be useful for studying intermediate epithelial cells due to its expression of K19.
Human papilloma virus (HPV) type 18 DNA was used to transform cells isolated from the peripheral zone of a normal prostate (Weijerman et al., 1994). The resulting cell line PZ-HPV-7 had a typical epithelial morphology with small cuboidal cells in a cobblestone pattern. The cells were positive for cytokeratin 8 and 5 and negative for PSA. Karyotyping revealed a diploid pattern at passage 30, which became close to tetraploid at passage 99. Following xenotransplantation into nude mice, small growths made up of squamous cells developed. The majority of prostate cancers develop in the peripheral zone so this cell line may be useful for comparative studies of normal peripheral zone cells with peripheral zone cancer cells. To my knowledge there is no other normal prostate cell line specifically from the peripheral zone.

Another cell line was developed by immortalisation of cells isolated from BPH tissue with a construct containing the SV40 large-T antigen gene (Hayward et al., 1995). A single clone, BPH-1, grew as a monolayer culture and had a typical epithelial cobblestone appearance. These cells express markers of intermediate epithelial cells. Karyotyping demonstrated that the cells are aneuploid with a structurally normal Y chromosome. DNA cell cycle distribution for BPH-1 cells is 51% (G0/G1), 26% (G2,M) and 23% (S phase). The cells are not tumorigenic in nude mice. Androgen receptor, PSA and PSAP are not detected by biochemical assays or RT-PCR. Immunocytochemical analysis shows weak staining for AR, while PSA and PSAP are undetectable. Cells proliferate in serum-free medium. Previously described normal prostate cell lines were luminal epithelial cells. BPH-1, an intermediate epithelial cell line may be useful for the study of epithelial cell differentiation, although a basal cell line would be most advantageous. This cell line has been useful for the study of expression and effect of growth factors on prostate epithelial cells. EGF, TGFα, FGF1, αFGF and FGF-7 (KGF) increase and FGF2 (bFGF), TGFβ1 and TGFβ2 inhibit BPH-1 cell proliferation. Testosterone has no effect on proliferation rate.

Human prostate epithelial cells derived from a patient undergoing cystectomy for bladder cancer were transformed with a hybrid virus composed of adenovirus 12 and SV40, resulting in the cell line PWR-1E (Webber et al., 1996). Another cell line, RWPE-1, was established from non-neoplastic adult human prostatic epithelial cells immortalised with HPV 18 (Bello et al., 1997). The parental epithelial cells could not be maintained in culture beyond 5 passages. RWPE-1 was further transformed by the oncogene v-Ki-ras to establish a tumorigenic cell line, RWPE-2. RWPE-1 is positive for
cytokeratin 8 and 18, and weakly positive for 5 and 14. Mibolerone is a synthetic androgen and unlike 5α-DHT (5α-dihydrotestosterone) is not metabolised. It was used to stimulate growth and PSA and AR expression. Cell growth was also stimulated by bEGF and bFGF, while it was inhibited by TGFβ. The non-tumorigenic cell line RWPE-1 was also transformed with N-methyl-N-nitrosourea (MNU). Four cell lines were established called WPE1-NA22, WPE1-NB14, WPE1-NB11 and WPE1-NB26, in order of increasing malignancy (Webber et al., 2001). RWPE-1 has similar advantages to the BPH-1 cell line, as it also appears to be an intermediate epithelial cell line and may be useful for studying prostate epithelial cell differentiation. In addition this cell line has the added advantage of successfully being transformed from normal epithelial cells to malignant epithelial cells. They could be used for comparative studies of normal and malignant prostate epithelial cells.

BRF-55T is a human prostatic epithelial cell line developed from BPH tissue (Iype et al., 1998). Primary cultures were initiated from cellular outgrowths of explanted tissue, and immortalised with a pRSV-T plasmid. The cells are positive for cytokeratin 8 and 18, PSA and AR markers. H-ras, K-ras and p53 are expressed. The cells are thought to be pre-malignant as they have some capacity for anchorage-independent growth.

Primary cell cultures obtained from radical prostatectomy specimens were immortalised with a recombinant retrovirus encoding the E6 and E7 genes of HPV-16 (Bright et al., 1997b). 1532N, 1535N and 1542N cells have doubling population times of 32h, 41h and 48h respectively. The cells have a low serum requirement and are androgen insensitive. The cells do not form tumors in athymic mice and do not form colonies in semi-solid agar. This cell line does not appear to have any advantages over other immortalised epithelial cell lines, discussed above.

Although all of the above mentioned prostate epithelial cell lines retain some of their normal prostate characteristics, such as PSA and AR expression they all tend to be differentiated luminal epithelial cells. In order to study prostate epithelial cell differentiation it would be ideal to have a prostate basal cell line that has the ability to differentiate into luminal cells that should be able to express prostate specific characteristics. To my knowledge there is no such prostate cell line. The aim of this thesis was to develop such a prostate cell line using a temperature sensitive model.
1.4.2 Immortalised Stromal Cell Lines

Relatively few immortalised human prostatic stromal cell lines have been established.

DuK50, a human prostate stromal cell line was stained positive for vimentin and fibronectin with weak smooth muscle alpha-actin staining (Roberson et al., 1995). Staining was negative for desmin antibody, epithelial cytokeratins and prostate-specific antigen, which ruled out contamination with prostatic epithelial cells. This staining pattern was suggestive of myofibroblasts. This cell line has a diploid karyotype and is non-tumorigenic in nude mice and does not form colonies in semi solid agar. Cell proliferation was stimulated by androgens.

A stromal cell line, WPMY-1 (Webber et al., 1999) was derived from the same prostate tissue specimen as the epithelial cell line, RWPE-1 (Bello et al., 1997). Immortalisation was carried out with the SV40 large-T antigen, using the pRSVT plasmid. The cells have an elongated, spindle-shape morphology and are characterised as myofibroblasts. WPMY-1 has a hyperdiploid karyotype with chromosome numbers of 58-68. These cells are stimulated in a dose-dependent manner with Mibolerone, EGF, bFGF, PDGF-BB and PDGF-AA. A dose dependent inhibition was observed with TGFβ, in the presence and absence of serum, although it is thought that TGFβ stimulates stromal growth. WPMY-1 cells did not form tumors in nude mice, but they did form colonies in soft agar. A differential of 0.7% CFE with 10% donor calf serum (DCS) compared to 4.6% with 10% FCS shows that the serum type is an important factor when setting up cell culture experiments.

These two cell lines have been useful for studying expression and effect of growth factors on prostate stromal cells. As with prostate epithelial cells it would be useful to have a stromal cell line where stromal cell differentiation could be switched on. Although the main aim of this thesis was to develop a prostate epithelial model, a temperature sensitive prostate stromal cell line was developed along side the temperature sensitive epithelial cell line.
Table 1.3: Characteristics of Immortalised Normal Prostate Cell Lines

<table>
<thead>
<tr>
<th>Epithelial Cell Line Name</th>
<th>Reference</th>
<th>Immortalising Genes</th>
<th>Derivation</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-2s and NP-2e</td>
<td>(Lechner et al., 1978)</td>
<td>HPV 16, E6 & E7</td>
<td>Normal neonatal</td>
<td>Non-t, anc-d, epit. 5αR⁺ Non-t, anc-d, Imm, non-t, lum, PSA⁺⁺, PAP⁺⁺</td>
</tr>
<tr>
<td>NP2-T1, T2, T5, 267B1, 272E1, 272E4</td>
<td>(Kaighn, 1980)</td>
<td>SV40 virus SV40 ori⁻</td>
<td>Normal adult</td>
<td>Luminal epit PSA⁺⁺, PAP⁺⁺ Imm, non-t, luminal</td>
</tr>
<tr>
<td>PNT1</td>
<td>(Cussenot et al., 1991)</td>
<td>SV40 ori⁻ defective gene SV40 large T and small t antigens</td>
<td>Normal adult</td>
<td>Imm, non-t, epit PSA⁺</td>
</tr>
<tr>
<td>PNT1A, PNT1B, PNT2</td>
<td>(Degeorges et al., 1995)</td>
<td>HPV type 18</td>
<td>Normal adult</td>
<td>Non-t, anc-d, I-luminal</td>
</tr>
<tr>
<td>PZ-HPV-7</td>
<td>(Weijerman et al., 1994)</td>
<td>HPV type 18</td>
<td>Normal adult</td>
<td>Imm, non-t, epid PSA⁺</td>
</tr>
<tr>
<td>BPH-1</td>
<td>(Hayward et al., 1995)</td>
<td>SV40 large T antigen</td>
<td>BPH</td>
<td>Non-t, anc-d, I-luminal, PSA⁺⁺, AR⁺</td>
</tr>
<tr>
<td>PWR-1E</td>
<td>(Webber et al., 1996)</td>
<td>Adenovirus 12 and SV40 Hybrid</td>
<td>Non-neoplastic</td>
<td>Imm, epit</td>
</tr>
<tr>
<td>RWPE-1</td>
<td>(Bello et al., 1997)</td>
<td>HPV type 18</td>
<td>Normal</td>
<td>Non-t, anc-d, I-luminal, PSA⁺⁺, AR⁺</td>
</tr>
<tr>
<td>BRF-55T</td>
<td>(Iype et al., 1998)</td>
<td>SV40 large T antigen</td>
<td>BPH</td>
<td>Pre-mal luminal PSA⁺⁺, AR⁺</td>
</tr>
<tr>
<td>1532N, 1535N, 1542N</td>
<td>(Bright et al., 1997b)</td>
<td>E6 & E7 genes of HPV-16</td>
<td>Normal</td>
<td>Non-t, anc-d, epid.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stromal Cell Line Name</th>
<th>Reference</th>
<th>Immortalising Gene</th>
<th>Derivation</th>
<th>Cell Characterisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DuK50</td>
<td>(Roberson et al., 1995)</td>
<td>Normal</td>
<td>Non-t, anc-d, SM, AR⁺</td>
<td></td>
</tr>
<tr>
<td>WPMY-1</td>
<td>(Webber et al., 1999)</td>
<td>SV40 large-T</td>
<td>Non-neoplastic</td>
<td>Non-t, anc-id, myofib, AR⁺</td>
</tr>
</tbody>
</table>

Non-tumorigenic (non-t); anchorage dependent (anc-d); anchorage independent (anc-id); epithelial (epit); luminal (lum); intermediate luminal (I-luminal); weak positive (w⁺); pre malignant (pre-mal); smooth muscle cells (SM); myofibroblast (myofib)
1.5 3-DIMENSIONAL CULTURE SYSTEMS

In order to overcome the limitations of monolayer culture systems, co-cultures and 3-dimensional cultures of prostate epithelial and stromal cells have been developed.

Bayne and colleagues set up co-cultures in which epithelial and stromal cells derived from BPH were grown on opposite sides of microporous membranes (Bayne et al., 1998). Although there was no direct interaction between stromal and epithelial cells, this culture system maintained many prostate characteristics, including response to androgens, secretion of PSA by epithelial cells and expression of 5α reductase types I and II. This co-culture model was used to study cellular interactions between BPH stromal and epithelial cells (Habib et al., 2000).

Although these co-cultures express prostate specific characteristics, they lack the architectural structure and cell-cell contacts of the stromal and epithelial cells in vivo. These culture systems also lack contact with a basement membrane (Drubin and Nelson, 1996). Basement membranes are thin extracellular matrices underlying epithelial cells in tissue and are important for normal development (Kleinman et al., 1987b).

3-Dimensional in-vitro models have been developed to enable direct stromal and epithelial cell interaction. Matrigel culture systems provide a substitute for basement membrane components. Matrigel is extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumour that is rich in extracellular matrix proteins. Approximately 60% of Matrigel consists of laminin, an essential component of the basement membrane (Malinda and Kleinman, 1996; Kleinman et al., 1987a). The remaining 40% of Matrigel is made up of collagen-IV, heparin sulphate proteoglycans, and nidogen. Matrigel also contains varying concentrations of growth factors.

Matrigel cultures of RWPE-1 (normal epithelial cell line) and RWPE-2 (tumorigenic epithelial cell line derived from RWPE-1) were used in a study of acinar differentiation (Webber et al., 1997). The normal prostate cells underwent acinar morphogenesis, but the tumorigenic cells had lost this ability.

Using rat prostatic epithelial cells, 3-dimensional collagen gel cultures were successfully constructed which provided a useful means for investigating prostatic disease and hormone and growth factor influences on prostate cells. Epithelial cells
formed acinus-like structures in these models (Ma et al., 1997). Hall et al. used this 3-D collagen co-culture model to study the interaction of human benign (PNT1) and tumour (PC3) prostate cells with primary benign and tumor epithelial and stromal cells. Differences were observed between tumour and normal cells, in particular the formation and acinus-like structures. There was stronger expression of luminal markers by the immortalised cell lines and stronger basal expression by the primary cells. PSMA was present in all cultures, while PSA was positive in all cultures except the PC3 cell line (Hall et al., 2002).

1.6 IMMORTALISATION AND CONDITIONAL IMMORTALISATION
Polyoma viruses can cause infections in humans, often in the kidney, and can induce cancer in animals. Because these viruses have a simple structure and contain a small genome they are used in genetic engineering. One of the first polyoma viruses to be studied was the simian virus 40 (SV-40) (Carbone, 2001; Barton S, 2002; Watson et al., 1992). Other viral genes that have been used to immortalize cells are adenovirus E1a (Seigel GM, 1996), human papilloma virus (HPV) E6 and E7 (Peters et al., 1996; Le Poole et al., 1997) and Epstein Barr Virus (EBV) (Zeidler et al., 1996). Most of these genes probably act by blocking the inhibition of cell cycle progression by inhibiting the activity of genes such as CCIP-1/WAF-1/21, Rb, p53 and p16, therefore giving cells an increased life span and allowing further mutations if desired. These viruses are relatively easy to maintain and work well in the laboratory, although health and safety rules should be adhered to when working with any of these viruses.

SV40 was first isolated from monkey kidney cells, hence its name (Carbone, 2001; Barton S, 2002; Watson et al., 1992). A Hind II restriction enzyme map of SV40 was produced in 1971 and it was shown that DNA replication always began at the same Hind II site and continued in two directions (Nathans and Danna, 1972; Danna and Nathans, 1971; Danna and Nathans, 1972; Bryan and Reddel, 1994).

The SV40 genome is a double-stranded circular DNA of 5243bp (figure 1.4). The genome is divided into two regions, the early and late genes. These regions are expressed respectively before and after DNA replication begins. The origin of DNA replication (ori) and the early and late promoters are situated between the coding sequence of the early and late gene regions (Saenz-Robles et al., 2001).
The early region encodes three proteins, large T antigen (LTAg), small t antigen (stAg) and 17K T antigen (17KT) that are 708, 174 and 135 amino acids respectively. The LTAg, a 90kDa protein, has a number of functions, including DNA binding, nuclear localisation, ATPase activity and helicase activity. It binds to ATP, replication protein A and DNA polymerase α for initiation of DNA synthesis (Domreiter et al., 1990; Smale and Tjian, 1986). LTAg recognises the viral replication of origin (ori) in the presence of ATP and acts as a DNA helicase by opening the double helix. The LT Ag also interacts with the protein products of the retinoblastoma (Rb) and p53 tumour suppressor genes. Rb and p53, cell cycle regulatory genes are inactivated during immortalisation, probably by blocking the inhibition of cell proliferation caused by tumour suppressor genes. The product of the SV40 LT gene, the T antigen binds the P53 and Rb proteins and allows an extended proliferative life span of these cells, i.e. immortalisation. This action also restricts the DNA surveillance activity of genes like p53 (Finlay et al., 1989). Small t antigen, a 17kDa protein, is not essential for productive infection in cells. It is involved in activating protein phosphatase 2A, which stimulates cell proliferation through a protein kinase pathway. The role of the 17KT antigen in transformation is not fully understood (Saenz-Robles et al., 2001; Ali and DeCaprio, 2001; Pipas and Levine, 2001; Rundell and Parakati, 2001).

The late region of the SV40 gene encodes the viral coat proteins (VP1, VP2 and VP3). Immortalisation can be carried out using both early and late genes, although the late gene region is not required (Saenz-Robles et al., 2001; Ali and DeCaprio, 2001; Pipas and Levine, 2001; Rundell and Parakati, 2001).
The SV40 genome is divided into an early and late gene region. The early region consists of small and large T antigen proteins that are involved in DNA replication. The late region encodes for 3 viral coat proteins. The number of nucleotides synthesised start and end at the origin of replication (ori). The green arrow indicates the direction of DNA synthesis. Contains a single EcoRI site, 1700bps away from the DNA replication site. Schematic diagram of the SV40 genome – information taken from text books (Brock and Madigan, 2002; Barton S, 2002).

DNA replication on the SV40 viral genome is initiated by the large T-antigen protein, which specifically recognises the viral origin of replication in the presence of ATP (Dean et al., 1987b). The T-antigen, a product of the viral A gene, acts as a DNA helicase, opening the double helix as it moves along, forming a replication bubble. The host cell components of the replication machinery assemble in the replication bubble and two replication forks are formed, which move away from the origin in the opposite direction (Parsons et al., 1990; Wessel et al., 1992; Dodson et al., 1987; Dean et al., 1987a; Pipas and Levine, 2001).

The most important step for achieving immortalisation is the inactivation of p53 and Rb cell cycle regulatory genes (Stamps et al., 1992a; Ozer et al., 1996). Other DNA tumour viruses also bind to these tumour suppressor genes and are sometimes used to immortalise cells. Adenovirus 5, E1B and HPV and E6 bind to p53 and adenovirus E1A
and HPV E7 bind to Rb causing inactivation of these cell cycle regulatory genes. SV40 appears to be the most common DNA tumour virus used for immortalisation of cells.

The differentiated characteristics of cells, such as AR and PSA expression in prostate epithelial cells, tend to be lost in immortalised cells. The loss may be due to cells proliferating and not differentiating in culture (Parker et al., 1999), and this limitation might be overcome using temperature sensitive cell lines.

Temperature-sensitive mutants in LTAg (tsA mutants) were used to show that T antigen function is necessary to initiate and maintain immortalisation in cells. Several temperature sensitive mutants of the SV40 A gene have been established (Chou et al., 1974; Tegtmeyer, 1972; Tevethia and Tevethia, 1977; Tevethia and Ripper, 1977). The temperature sensitive SV40 large T antigen behaves as wildtype LTAg at permissive temperatures (33°C), initiating DNA replication. LTAg becomes conformationally inactive at non-permissive temperatures (39°C) and can no longer initiate DNA replication due to the temperature sensitive A58 mutation inserted into the SV40 virus at 3504bp (Stamps et al., 1994). The cell line should proliferate at 33°C and this proliferation should be switched off at 39°C, allowing cell differentiation to occur. Using this technology it may be possible to maintain cell proliferation at the permissive temperatures and switch to cell differentiation at a non-permissive temperature and hence retain tissue specific characteristics.

This thesis describes the characterisation of two immortalised cell lines grown from BPH tissue, a stromal (S2.13) and epithelial (Pre2.8) cell line, derived from the same individual. The cells were immortalised by transfecting primary stromal and epithelial cells with the temperature sensitive immortalizing oncogene, Simian Virus 40 large T-antigen carrying both the tsA58 and U19 mutations (SV40U19tsA59). The BglI-HpaI fragment of the early region of SV40 large T-antigen was inserted into the single BamHI restriction site of the pZipNeoSV(X)1 shuttle vector, which replaces a region of the wildtype gene. The temperature sensitive mutants are on nucleotides 4364, 4345 (U19) and 3504 (tsA58). The infected cells were selected with the antibiotic G418 (Cepko et al., 1984; Jat and Sharp, 1989; Stamps et al., 1994) (figure 1.5).
Figure 1.5: Schematic Diagram of the temperature-sensitive SV40 construct, ZipneoSVU19tsA58

The U19tsA58 LT virus was constructed by using the pZipNeoSV (X)1 backbone and encodes a full-length LT cDNA from U19tsA58 and confers resistance to G418. The U19tsA58 LT is a combination of the two mutants, U19, which encodes a LT that does not bind specifically to SV40-origin DNA sequences, and tsA58, which encodes a thermolabile LT antigen that is wild type at 33.5°C but inactive at 39.5°C (O'Hare et al., 2001).
1.7 RATIONALE FOR THIS STUDY

Until recently very little research has been carried out to study the human prostate and associated diseases. Primary cultures will only survive for a limited time and hence their usefulness as human prostate models is limited. For long-term studies immortalised cell lines are required, but there is a lack of representative in vitro models of the human prostate, particularly BPH. In this study immortalised epithelial and stromal cells, obtained from the same BPH patient, were immortalised using the temperature sensitive SV40 large T antigen (O'Hare et al., 2001). Temperature sensitive cell lines were established to try and overcome some of the problems associated with immortalisation procedures, i.e. loss of prostate specific characteristics. Because the T-antigen is switched off at 39°C, cell proliferation is switched off and cell differentiation may proceed and express prostate specific characteristics, such as PSA, PSMA and AR.

The first aim in this study was to authenticate and characterise this immortalised BPH epithelial cell line (Pre2.8) and determine to what extent they can express prostate specific characteristics. A comparison at 33°C, 39°C and 37°C, as an intermediate temperature was necessary to determine that these cells were temperature sensitive and that they do differentiate at 39°C. The cell lines were never passaged beyond 10 passages to insure stability. A new vial of the same passage number was used after every 10 passages.

Stromal-epithelial interactions, is an important factor in prostate development and is one of the hypothesised theories (McNeal, 1978) for the development of BPH. Epithelial cells alone may not be sufficient to induce differentiation. They may require the presence of stromal cells.

The aim of the second part of this project was to recombine epithelial and stromal cells to produce a BPH model that mimics in vivo conditions. Initially the immortalised BPH stromal cell line (S2.13) should be authenticated and characterised. Once an appropriate co-culture method for recombining prostate epithelial and stromal cells has been established, characterisation at 33°C, 39°C and 37°C must again be carried out in order to determine its prostate specific capabilities.
CHAPTER 2

MATERIALS AND METHODS
2.1 COSHH REGULATIONS
The COSHH (Control Of Substances Hazardous To Health) regulations require that before the start of any research project, the risks involved must be assessed and a code of practice drawn up by which the work may be carried out with the minimum amount of risk. All experiments were carried out following COSHH regulations, ensuring that the Departmental Code of Practice (containing Health and Safety regulations) was adhered to.

Immortalisation of cell lines, Pre2.8 and S2.13 was carried out by Pref M O’Hare, Dept of Surgery, Middlesex Hospital. Transformation with SV40 viral genes were carried out in Safety Level 3 tissue culture labs. Cell lines were not transferred to our laboratory until they were safe to work with, in a Safety Level 2 tissue culture laboratory. All GMO (genetic modified organisms) regulations were adhered to and GMO risk assessment forms were completed for all new lines generated.

2.2 CELL CULTURE
Cell culture is the growth and maintenance of cells, which have been established from pieces of tissue, in the laboratory. Various cell lines that were established from human prostate and one mouse cell line were used in this study and are detailed in table 2.1.
Table 2.1: Details Of Cell Lines Used In Study

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Derivation</th>
<th>Culture medium</th>
<th>Routine Temp</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNCaP</td>
<td>Lymph node metastasis of prostate cancer</td>
<td>RPMI-1640 +10%FCS</td>
<td>37°C</td>
<td>(Horoszewicz et al., 1980)</td>
</tr>
<tr>
<td>DU145</td>
<td>CNS metastasis of prostate cancer</td>
<td>RPMI-1640 + 10%FCS</td>
<td>37°C</td>
<td>(Stone et al., 1978)</td>
</tr>
<tr>
<td>Pre2.8</td>
<td>SV40 large T antigen conditionally immortalised normal human epithelial cell line.</td>
<td>PrEGM</td>
<td>33°C</td>
<td>This thesis</td>
</tr>
<tr>
<td>S2.13</td>
<td>SV40 large T antigen conditionally immortalised normal human epithelial cell line</td>
<td>DMEM + 10%FCS</td>
<td>33°C</td>
<td>This thesis</td>
</tr>
<tr>
<td>1542-NPTX</td>
<td>Normal prostate epithelial cells immortalised with the E6 and E7 transforming proteins of human papilloma virus</td>
<td>Keratinocyte-SFM + 5%FCS</td>
<td>37°C</td>
<td>(Bright et al., 1997a)</td>
</tr>
<tr>
<td>1542-FT</td>
<td>Normal prostate stromal cells immortalised with E6 and E7 transforming proteins of human papilloma virus</td>
<td>RPMI-1640 +10%FCS</td>
<td>37°C</td>
<td>(Bright et al., 1997a)</td>
</tr>
<tr>
<td>3T3</td>
<td>The NIH/3T3, a continuous cell line of highly contact-inhibited fibroblast cells was established from NIH Swiss mouse embryo</td>
<td>DMEM + 10%FCS</td>
<td>37°C</td>
<td>(Todaro and Green, 1962)</td>
</tr>
<tr>
<td>MDA-MB-435</td>
<td>Metastatic human breast cancer cell line</td>
<td>RPMI-1640 +10%FCS</td>
<td>37°C</td>
<td>(Glinsky et al., 1996)</td>
</tr>
<tr>
<td>PC3</td>
<td>Epithelial cell line from a human prostatic adenocarcinoma metastatic to bone.</td>
<td>RPMI-1640 +10%FCS</td>
<td>37°C</td>
<td>(Kaighn et al., 1979)</td>
</tr>
</tbody>
</table>
2.3 CELL LINE AUTHENTICATION AND PURITY

When a new cell line has been derived it is important to authenticate its origin and also to characterise the cell line in order to determine its functionality, purity and stability. The main problems associated with continuous cell lines are cross-contamination, microbial contamination and changes in phenotype.

2.3.1 Cross-Contamination

Cross-contamination between cell lines, particularly with HeLa cells has been the cause of misrepresented scientific data since the 1960s (King et al., 1994; Gartler, 1967; Nelson-Rees et al., 1981). Short tandem repeat (STR) profiling (Masters et al., 2001) was used to confirm origin of the cell lines used in this study (Table 2.1).

Procedure

DNA was extracted from a confluent 80cm² flask of each cell line, using phenol/chloroform extraction procedures. DNA samples (1g/ml) were sent to the analytical centre, LGC (Queens Road, Teddington, Middlesex TW11 0LW) for DNA profiling.

DNA Extraction from Cultured Cells

A confluent 80cm² flask was trypsinised and washed with 1x phosphate-buffered saline (PBS). Cells were lysed in 10ml lysis buffer, containing 100μl Protease K (final conc. 1mg/ml of PK), mixed well and incubated at 37°C, overnight. Sample was transferred to a 15ml polypropylene tube. Phenol was equilibrated in 10mM Tris-HCl (pH 8.0) and 0.1% Hydroxyquinoline (yellow colour) was added. Chloroform was prepared adding 1ml Iso-Amyl alcohol to 24ml of chloroform and mixing. A solution with equal volumes of phenol and chloroform was prepared by mixing together. 5ml of phenol/chloroform (1:1) was added to sample, mixed well and centrifuged at 4°C, at 9000 rpm for 20 min. Supernatant was transferred to a new tube. Extraction was repeated once with phenol/chloroform and centrifuged for 10 minutes and once with chloroform and centrifuged for 10 minutes. 10 μl of RNase (10mg/ml) was added to the sample and incubated for 1h at 37°C. DNA precipitation was carried out by adding equal volumes of isopropanol to the sample tube and then gently mixing, by inverting tube up and down. Precipitated DNA was lifted out using a blunted pasteur pipette and washed in 1ml of 70% ethanol and air dried. DNA was dissolved in 0.5 -1.0 ml of sterile water, depending on viscosity of DNA sample.
Lysis buffer
150 mM NaCl, 10 mM Tris (pH 8.0), 10 mM EDTA (pH 8.0), 0.5% SDS

Proteinase K
10mg/ml stock solution in sterile water and stored at -20°C.

RNase
10mg/ml solution in sterile water, boiled for 10 minutes, allowed to cool to room temperature and stored at -20°C.

Measurement of DNA concentration
DNA concentrations were measured by UV spectrophotometry using a DU650 series spectrophotometer (Beckman Ltd., UK). 5μl of DNA was diluted to 500μl with sterile water (1/100) and added to a clean cuvette. The spectrophotometer was blanked with water using a clean cuvette. The yield of DNA was calculated by measuring the optical density (OD) at 260nm and at 280nm and the DNA concentration was calculated as follows:

\[
\text{OD}_{260} \times 50\mu g/ml \times \text{dilution factor} = \text{DNA concentration } \mu g/ml
\]

An absorbance of 1 unit at 260nm corresponds to 50μg/ml of DNA. The ratio of the readings at 260nm and 280nm provides an estimate of the purity of DNA with respect to contaminants that absorb in the UV spectrum, such as protein. The 260nm/280nm ratio of pure DNA in water is approximately 1.8.

STR Profiling
The DNA was analysed using two sets of primers: Second Generation Multiplex (UK Forensic Science Service) (Thomson et al., 1999) and Powerplex 1 (Promega) (Lins et al., 1998) by LGC to investigate the presence of cell line cross-contamination. STRs used had tetranucleotide repeat sequences. Multiplex PCR reactions were carried out using fluorescent dye-linked primers. PCR products for each cell line were separated and analysed using a Perkin-Elmer-ABI Prism 377 Genetic Analyser and Genescan and Genotyper analysis software. The amplified product is measured according to its fluorescence and is then converted to a representative peak on a graph. These peaks are assigned allele values corresponding to the number of repeat units. Cell lines originating
from the same source should have 80% similarity for DNA profile, i.e. the same size peaks on a graph.

2.3.2 Mycoplasma Testing
Contamination of cell culture by microorganisms remains one of the major problems in routine tissue culture. One of the most problematic contaminants is mycoplasma, an organism that resides on or within individual cells presenting no overt signs of contamination like fungus or yeast.

Mycoplasma is one of the smallest living cells known. They are generally spherical in shape with a diameter varying from 0.3 to 0.8μm. Filament forms also exist with diameters of 0.1 to 0.3μm and lengths of up to 150μm. They have no cell wall and are therefore insensitive to cell wall-active antimicrobial agents. They have a small amount of genetic material and have limited biosynthetic capabilities, although they are cholesterol dependent. Their growth requires an enriched medium and they exist symbiotically with growing cells. There are more than 100 species, of which approximately 85% of all cell line infections can be attributed to 5 species (M. orale, M. arginini, M. hyorhinis, M. fermentans and Acholeplasma laidlawii).

Mycoplasma contamination can lead to misleading data, wasting valuable time and resources. DNA, RNA and protein synthesis can be altered and changes in enzyme patterns. Selection of mutant mammalian cells can be interfered with and the host cell's plasma membrane can be modified.

2.3.3 Mycoplasma Testing Of Cell Lines
Different companies and research scientists have established various kits and techniques to carry out mycoplasma testing. After investigating the possible use of various methods we concluded that the PCR based techniques were most efficient and reliable for our requirements. One technique was not sufficient to detect all types of mycoplasma contamination therefore two different PCR methods were used. The use of two different PCR methods also helps to overcome the disadvantages associated with PCR analysis. PCR is a very sensitive technique and in order to rule out any false positives it is always necessary to include a negative control. Cross contamination can be avoided by preparing template DNA in a separate room to where reagents are aliquoted. Amplified DNA should also be kept in a separate room. It is always an advantage to test your PCR
samples in duplicate as false positives and cross contamination is less likely to be repeated in both samples. A reagent only sample at beginning of your sample preparation and at the end of your sample preparation should indicate any contamination that occurred throughout your preparations. Pipette tips should be changed after every reaction tube. Nested PCRs are particularly sensitive and susceptible to cross contamination due to the involvement of a second amplification round, although the second round uses a separate set of primers. In addition to two different types of PCR methods being used to test for the presence of Mycoplasma contamination in cell lines, a Stratagene PCR was used to identify the type of Mycoplasma present. To my knowledge no other procedure can easily identify Mycoplasma type. A detailed description of PCR analysis can be found later in this chapter.

The supernatant from a confluent flask of cells (table 1.3) was used to extract DNA. This supernatant could be stored at 4°C for up 1 month. A “Coriell PCR” was used to check for the presence of mycoplasma and results were confirmed using a “Drexler Multiplex, Nested PCR”. The “Stratagene PCR” was used to determine the type of mycoplasma contamination. When a cell line is contaminated, ideally it should be thrown away, but alternatively this contamination can be treated with antibiotics to eliminate mycoplasma infection and re-tested for mycoplasma contamination after antibiotic treatment.

Procedure

Cell cultures were grown in antibiotic free medium, for at least 2 passages, until confluent. The supernatant was removed and stored at 4°C, until ready to use. DNA was extracted using “Strata-Clean” resin. Briefly, 100µl of supernatant was transferred to a 1.5ml tube, incubated at 95°C for 10 minutes and quickly spun to bring supernatant down from sides of tube. The Strata-Clean resin was vortexed for 30 seconds to resuspend resin and 10µl of resin was added to sample tube, well mixed and quickly spun to pellet resin. The final preparation was diluted 1:10 times and this was used as the DNA template for the PCR reaction.

2.3.3.1 Coriell PCR

Two highly conserved r-RNA sequences are used as primers. The expected size fragment, after amplification is approximately 500bps. (Toji et al., 1998)
Primer Sequences:
Primer A - 5' GGC GAA TGG GTG AGT AAC ACG 3'
Primer B - 5' CGG ATA ACG CTT GCG ACC TAT G 3'

PCR Reaction
A 25μl PCR reaction was prepared in a 200 μl tube by adding;
1x Reaction Buffer, 1.5mM MgCl₂, 200μM of each dNTP, 0.6U Taq Polymerase,
0.2μM of each Coriell primer, dH₂O up to 25μl and 10μl DNA template.

Perkin Elmer Thermocycler conditions for Coriell PCR

1 Cycle
95°C - 5 min
55°C - 1 min 45 sec

3 Cycles
72°C - 3 min
94°C - 45 sec
55°C - 1 min 45 sec

40 Cycles
72°C - 3 min
94°C - 45 sec
55°C - 45 sec

1 Cycle
72°C - 10 min
27°C - 10 min and Hold @ 4°C

2.3.3.2 Drexler Multiplex, Nested PCR
A number of different primer sequences were chosen from the 16S r-RNA gene region.
These oligonucleotide sequences do not cross-react with non-mycoplasma contaminants
or with eukaryotic DNA from the cell lines. The 5 most common mycoplasma species +
20 additional species can be detected. The expected size fragment for Round I is 500 –
520bp. The expected size fragment for Round II is 310 – 330bp. (Hopert et al., 1993b;
Hopert et al., 1993a)

Primer Sequence
Outer primers: *Myc0 9 (A, B, C, D, E and F)*

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGC CTG AGT AGT ACG TTC GC</td>
<td></td>
</tr>
<tr>
<td>CGC CTG AGT AGT ACG TAC GC</td>
<td></td>
</tr>
<tr>
<td>TGC CTG AGT AGT ACA TTC GC</td>
<td></td>
</tr>
<tr>
<td>CGC CTG GGT AGT ACA TTC GC</td>
<td></td>
</tr>
</tbody>
</table>
CGC CTG AGT AGT ATG CTC GC
TGC CTG GGT AGT ACA TTC GC
Myco 3 (A, B and C)

GCG GTG TGT ACA AGA CCC GA
GCG GTG TGT ACA AAA CCC GA
GCG GTG TGT ACA AAC CCC GA

Inner primers: Myco 8 (A and B)

TGG TGC ATG GTT GTC GTC AG
TGG TGC ACG GTT GTC GTC AG
Myco 5 (A, B, C, D, E, F and G)

GAA CGT ATT CAC CGC AGC ATA
GAA CGT ATT CAC CGT AGC GTA
GAA CGT ATT CAC CGC AGC GTA
GAA CGT ATT CAC CGC AAC ATG
GAA CGT ATT CAC CGC AGT ATA
GAA CGT ATT CAC CGC GAC ATA
GAA CGT ATT GAC CGC GAC ATG

Reaction mix

For Round 1 of the Nested PCR, a 25μl reaction was prepared in a 200μl tube by adding:

1x Buffer (inc. 1.5mM MgCl₂), 1.5mM MgCl₂, 200μM of each d NTP, 90nm of each primer (outer & inner Drexler primers), 1.25U Taq Polymerase, dH₂O up to 50μl per reaction and 10μl of DNA template.

For Round 2 of Nested PCR, a 25μl reaction was prepared in a 200μl tube by adding:

1x Buffer (inc. 1.5mM MgCl₂), 1.5mM MgCl₂, 200μM of each d NTP, 90nm of each primer (outer & inner Drexler primers), 1.25U Taq Polymerase, dH₂O up to 50μl per reaction and 10μl of the first round product.

Perkin Elmer Thermocycler conditions:

1 Cycle 90°C – 10 min
30 Cycles 94°C – 30 sec
 60°C – 30 sec
 72°C – 60 sec
1 Cycle 72°C – 10min and Hold @ 40°C
2.3.3.3 **Stratagene PCR** *Catalogue Number: 302007*

The Stratagene PCR kit is used to determine the type of Mycoplasma found.

A different fingerprint pattern distinguishes between the 5 most common causes of contamination, as follows:

- **M. orale** 600bp
- **M. hyorhinis** 700bp, 620bp, 280bp
- **M. fermentans** 630bp
- **M. arginine** 600bp, 230bp
- **Acholeplasma laidlawii** 280bp, 100bp

Internal Control 420bp

Kit pos control 600bp, 230bp

House control (KK47) 600bp, 230bp

If an unrecognised fingerprint is obtained, the cell line may be infected with a strain that has not been characterised yet or with an organism other than Mycoplasma. An internal control and a positive control are provided with the kit.

Reaction mix

A 50µl PCR reaction was set up by adding the following:

1X buffer, 1.5mM MgCl₂, 0.2mM of each dNTP, 1U of Taq DNA polymerase, ddH₂O up to 50µl volume and 10µl of DNA template.

Thermocycler conditions for Stratagene PCR

1 Cycle 95°C - 5 min
 55°C - 1 min 45 sec

3 Cycle’s 72°C - 3 min
 94°C - 45 sec
 55°C - 1 min 45 sec

40 Cycle’s 72°C - 3 min
 94°C - 45 sec
 55°C - 45 sec

1 Cycle 72°C - 10 min
 27°C - 10 min and Hold @ 4°C
Thermocycler Type
The same thermocycler, a Perkin Elmer 2800 was used for all PCR optimisations and sample testing. By consistently using the same type of thermocycler, for all PCR reactions, the need for further optimisation required when using different PCR machines was avoided.

2.4 CELL LINE MAINTENANCE
Complete medium was stored at 4°C. The cell lines were media-changed 2 or 3 times per week. Cultures were examined under an inverted light microscope to check for bacterial or fungal contamination. The medium additives were thawed at 37°C, added to 500ml of medium and mixed. See table 2.2 for details of medium used and additives required for the different types of medium. The medium was aspirated and replaced with the appropriate volume, carefully pipetted into the flask or plate. The cell cultures were returned to a 5% CO₂ incubator with the lid loosened (vented lids were not used due to extra expense) one half turn in order to allow gas exchange. Only one cell line was allowed at a time in the flow cabinet, in order to avoid the risk of cross-contamination.
<table>
<thead>
<tr>
<th>Medium Type</th>
<th>Additives (nutrients)</th>
<th>Additive Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrEGM (500mL)</td>
<td>Bovine Pituitary Extract (BPE)</td>
<td>2ml</td>
</tr>
<tr>
<td>Prostate Epithelial cell medium</td>
<td>Insulin</td>
<td>0.5ml</td>
</tr>
<tr>
<td>Supplier: Cambrex (BioWhittaker)</td>
<td>human-Epidermal Growth Factor (h-EGF)</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Transferrin</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Retinoic Acid</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Gentamicin sulfate amphotericin-B (GA)</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Epinephrine</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Hydrocortisone (HC)</td>
<td>0.5ml</td>
</tr>
<tr>
<td></td>
<td>Triiodothyronine (T3)</td>
<td>0.5ml</td>
</tr>
<tr>
<td>RPMI-1640 w/o L- Glutamine (500mL) For mammalian cells</td>
<td>8% Foetal Calf Serum (FCS)</td>
<td>40ml</td>
</tr>
<tr>
<td>Supplier: Invitrogen (Gibco BRL, Life Technologies)</td>
<td>2mM of L-Glutamine</td>
<td>5ml</td>
</tr>
<tr>
<td>DMEM (500mL)</td>
<td>8% Foetal Calf Serum (FCS)</td>
<td>40ml</td>
</tr>
<tr>
<td>Dulbecco Modified Eagle medium for mammalian cells</td>
<td>2mM of L-Glutamine</td>
<td>5ml</td>
</tr>
<tr>
<td>Supplier: Invitrogen (Gibco BRL, Life Technologies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratinocyte-SFM (500mL)</td>
<td>1.5 ml Bovine Pituitary Extract (BPE)</td>
<td></td>
</tr>
<tr>
<td>Supplier: Invitrogen (Gibco BRL, Life Technologies)</td>
<td>2.5µg Epidermal growth factor (EGF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% Foetal Calf Serum (FCS)</td>
<td></td>
</tr>
<tr>
<td>Opti-MEM 1</td>
<td>No additives</td>
<td></td>
</tr>
<tr>
<td>Reduced serum medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier: Invitrogen (Gibco BRL, Life Technologies)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.1 Cell Line Passaging

The cell lines were passaged when necessary. The cultures were washed with 1x PBS and detached using a trypsin-versene (T/V) (contains 0.5g/L trypsin 1:250 and 0.2g/L versene in a buffered saline solution) treatment. 1-2ml of 1x T/V was carefully added, spread across the monolayer and removed by aspiration. The culture vessel was transferred to an incubator for a period of a few minutes to allow cells to detach. The cells were resuspended in the required volume of fresh medium.

Pre2.8 cells were treated differently because they grow in serum-free medium. 2-5ml of T/V was carefully pipetted onto cells and spread across the monolayer and flasks transferred to a 33°C incubator for up to 15 minutes to allow the cells to detach. The cells were suspended in 20ml of PrEGM medium (diluting trypsin/versene) and centrifuged at 1000 x g. The supernatant (containing T/V) was removed. Therefore inactivation of trypsin was not required. Cells were resuspended in the required volume of fresh PrEGM medium.

A single cell suspension was obtained by pipetting the cell suspension up and down approximately 5 times. For routine maintenance, the cell lines were split at appropriate ratios, depending on their growth rate. Pre2.8 cells are slow growing and density dependent and therefore they were split at an approximate ratio of 1:3. S2.13 cells are fast growing and were therefore split at a ratio of 1:20. New culture vessels were labelled with cell line name, passage number and date. Cell cultures were inspected daily.

2.4.2 Haemocytometer Cell Counting

The haemocytometer (improved Neubauer) must be clean and free of grease. If necessary, the surface of the counting chamber and the coverslip can be cleaned using a 70% alcohol-soaked tissue. When the coverslip has been correctly attached on top of the counting chamber, a rainbow effect ("Newton's rings") should be seen on either side of the central chamber.

After a single cell suspension was obtained, an equal volume (e.g. 0.2ml) of this suspension was added to 0.4% trypan blue (e.g. 0.2ml) and sample was thoroughly mixed. Trypan blue is a viability stain and is excluded by viable cells. This relates to cell semipermeability. Trypan blue enables exclusion of dead cells from the count.
Using the tip of a pipette a small volume from the mixture was transferred to the edge of the coverslip and drawn under the coverslip by capillary action. Inaccuracies in cell distribution will occur if the chamber is overfilled or underfilled. Both sides of the chamber were loaded. The grid lines of the haemocytometer chamber were focused and viable cells were counted at low power (10X objective), using a light phase microscope. For fewer numbers of viable cells all 9 large squares were counted and for larger numbers of cells, counting the 4 large corner squares was sufficient (figure 2.1). For routine subculture 100-300 cells per mm² should be counted. The more cells that are counted the more accurate the count will be. This was repeated for both sides of the haemocytometer.

Figure 2.1: Schematic Diagram Of A Haemocytometer Chamber

The chamber is divided into 9 large squares and each large square is divided into 16 small squares. There are 2 chambers on a haemocytometer.

Calculation of cell numbers

The formula is:

\[
\text{Number of cells counted} \div \text{number of large squares counted} \times 2 \times 10^4
\]

This gives the number of cells/ml of the cell suspension.

This is derived from the following:

The area of each square is 1mm and the depth of the counting chamber is 0.1mm.

Therefore, the volume of each large square is 0.1mm³ i.e. 10⁻⁴ ml

The cell suspension is diluted at a ratio of 1:1 in trypan blue therefore, the cell count must be multiplied by 2 to allow for this (Cell Number = mean x 2 x 10⁴). The desired cell concentrations can then be calculated and the assay set up.
2.5 MEASUREMENT OF CELL GROWTH RATES

Growth curves for Pre2.8 cells were obtained using two procedures, an MTT assay and cell counts, while growth curves for S2.13 cells were carried out using cell counts only.

2.5.1 MTT Assay - Growth Curves

The MTT assay is a relatively rapid colorimetric assay using a dye that is reduced only by viable cells. The dye, a tetrazolium salt (MTT, (3-4,5-dimethylthiazol-2-yl)-2,-diphenyltetrazolium bromide), is reduced by mitochondrial dehydrogenase to purple formazan crystals. The crystals are dissolved in dimethyl sulphoxide (DMSO) and the intensity measured colorimetrically to give an estimate of the relative number of viable cells.

The appropriate number of cells was added in a volume of 150µl of medium to the selected wells of a 96-well plate. 150µl of medium without cells was added to column 1 in order to provide a "blank" for background subtraction.

A stock of MTT reagent at a concentration of 5mg/ml in medium was prepared and filter-sterilised using a 0.22µm filter. The stock was stored at 4°C in the dark for no more than 3 weeks.

The final MTT concentration (0.5mg/ml, 1.0mg/ml or 5.0mg/ml) was optimised for each cell line used. The medium was removed from each well, being careful not to dislodge the cells, 100µl of 0.5-5.0mg/ml MTT reagent was added and the plate was incubated at 37°C for 3 hours. Supernatant was gently removed and plate was blotted on tissue paper to ensure that all solution was removed. 100µl of DMSO was then added and incubated on a tilting platform at room temperature for 30 minutes to allow the precipitate to dissolve. The plates were read at 540nm (filter 6) on an ELISA reader (TiterTek Multiskan MCC/340). Results were saved onto a disc and "Macro-transposed" (computer program to subtract blank results from sample results) and a graph of optical density (OD) versus cell seeding number was obtained (table 2.3 and figure 2.2).

The experimental conditions were optimised for each cell line, including cell number and MTT concentration. The columns (8 wells) of a 96-well plate were seeded with 1250, 2500, 5000, 10000, 15000, 20000, 30000, 40000, 50000 and 60000 cells in a volume of 150µl of medium per well and grown for 2 days (table 2.3). MTT
concentrations of 0.5mg/ml, 1.0mg/ml and 5.0mg/ml were prepared. 50µl of medium was removed from each well and replaced with 100µl of 0.5mg/ml MTT for the first 2 rows of the 96-well plate. 100µl of 1.0mg/ml MTT was added to the row 3, 4 and 100µl of the 5.0mg/ml MTT was added to the last 3 rows of the 96-well plate (table 2.3).

Table 2.3: Experimental Lay Out For MTT Optimisation

<table>
<thead>
<tr>
<th>MTT conc. (mg/ml)</th>
<th>Pre2.8 cell number per well</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>0.5</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>1.0</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>1.0</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>5.0</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>5.0</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
<tr>
<td>5.0</td>
<td>0 1250 2500 5000 10000 15000 20000 30000 40000 50000 60000</td>
</tr>
</tbody>
</table>

Figure 2.2: Optimisation of MTT Assay for Pre2.8 Cells

Optimisation of cell number and MTT concentration for the MTT assay with Pre2.8 cells. MTT results were obtained at 540nm on an ELISA reader and sample results were subtracted from blank results. A graph of optical density versus cell seeding number was obtained. The best results were obtained with 0.5mg/ml and 1mg/ml of MTT solution. Results from 5mg/ml had very large standard errors and there was no linearity. 1mg/ml of MTT solution was chosen as the optimum concentration for an MTT assay with Pre2.8 cells. Optical densities were linear between 2500 and 40,000 cells with MTT concentrations of 0.5mg/ml and 1mg/ml. 10,000 Pre2.8 cells were chosen as an optimum seeding concentration for Pre2.8 MTT assays.
The plates were then processed as described above. This optimisation assay was repeated twice and the mean and standard deviation was calculated for each concentration of MTT solution. A graph of optical density versus cell number seeded for each MTT concentration was obtained using Microsoft Excel. The optimum seeding number for Pre2.8 cells and the optimum MTT concentration were determined (figure 2.2).

The best results were obtained with 0.5mg/ml and 1mg/ml of MTT solution. Results from 5mg/ml had very large standard errors and there was no OD linearity. 1mg/ml of MTT solution was chosen as the optimum concentration for an MTT assay with Pre2.8 cells. Optical densities were linear between 2500 and 40,000 cells with MTT concentrations of 0.5mg/ml and 1mg/ml. 10,000 Pre2.8 cells were chosen as an optimum seeding concentration for Pre2.8 MTT assays. The OD for 10,000 cells was estimated taking into account the length of time it takes for the number of cells seeded to be regenerated (a certain number of cells seeded will die). Calculation: If 10,000 cells are seeded and it is expected that after 2 days, approximately the same number of cells (10,000) is present, then the ELISA OD reading can be estimated using the MTT assay. The mean OD for 10,000 cells from both plates was obtained (0.123 +0.084 = 0.207) (0.207/2=0.104). The OD for 10,000 cells is approximately 0.104nm.

Optimised Assay
In order to construct a growth curve using the MTT assay, 10,000 Pre2.8 cells were seeded in quadruplicate. Separate plates were incubated at 33°C, 39°C and 37°C. The cells were harvested at days 3, 5, 7, 10, 12, 14 and 18, using 1.0mg/ml MTT reagent for colour development. The mean colour intensity was calculated for the four replicates at each time point. The experiment was repeated 4 times. The mean and standard deviation were calculated for each assay.
2.5.2 Cell Counts – Growth Curves
Cell counts were used to obtain a growth curve for Pre2.8 and S2.13 cells. Triplicate T25 flasks were seeded with 100,000 Pre2.8 cells or 200,000 S2.13 or FT cells and incubated at 33°C, 39°C and 37°C. The medium was changed three times weekly and the cells were harvested after 3, 5, 7, 10, 12, 14 and 17 days incubation. The experiment was repeated three times. Viable cells (trypan blue exclusion) were counted on an inverted phase microscope using a haemocytometer. The mean cell number was calculated for each set of triplicate samples and the mean, standard deviation and standard error was calculated.

2.5.3 Statistics
In general there are 2 types of statistics: (i) descriptive or (ii) inferential. No conclusions are drawn from descriptive statistics. They simply reduce the acquired information to a manageable size and present a summary of the data. Inferential statistics draw conclusions from the data, e.g. the conclusion that there is a significant difference in some measurable response between two drugs. The mean and standard deviation was calculated using Microsoft Excel software and from these results the standard error was calculated using a standard formula.

Average
An “average” is a general term used to describe a value of a variable that is typical or representative of the data. Common types of average are arithmetic mean, median and mode. Excel returns the average (arithmetic mean) of the numbers. The arithmetic mean is the sum of all the observations divided by the number of observations (an average number is obtained by adding two or more amounts together and dividing the total by the number of amounts).

Standard deviation
Excel estimates standard deviation based on a sample. The standard deviation is a statistical measure of how widely values are dispersed from the average value (the arithmetic mean). It is calculated as the square root of the variance (a measure of the spread or variation of a group of numbers in a sample, equal to the square of the standard deviation). The more widely the values are spread out, the larger the standard deviation. For example, say we have two separate lists of exam results from a class of
30 students; one ranges from 31% to 98%, the other from 82% to 93%, then the standard deviation would be larger for the results of the first exam.

Standard Error

Standard error is a measure of variability, calculated by dividing the standard deviation of the sample in a frequency distribution by the square root of the number of values in the sample. It is a measure of the variability that a constant would be expected to show during sampling.

\[
SE = \frac{SD}{\sqrt{n}}
\]
2.6 CELL SIZE DISTRIBUTION

Cell size distribution for Pre2.8 and S2.13 prostate cells were measured using a Graticule under a light phase microscope and using a Beckman "Z2 Coulter Counter and size analyzer".

2.6.1 Graticule And Light Phase Microscope

Flattened cells growing on a petri dish were measured using a 1mm grid graticule, showing markings of 0.01mm on a slide. This grid is equated to similar unlabelled markings on a microscope eyepiece grid (graticule) at the different magnifications on the Light Phase Microscope.

Procedure

Semi-confluent plates of Pre2.8 and S2.13 cells, incubated at 33°C, 37°C and 39°C at day seven in culture were used for measurement. The grid on the eyepiece graticule was used as a guide for a straight line. The diameter of the cell was measured by making a note of the number of markings for each cell and its nucleus, along this line. This was repeated until a minimum of 100 cells for each cell line was measured. The number of markings was then converted to mm using the measurements worked out for that particular magnification. These figures were entered onto a Microsoft Excel worksheet and the mean and standard deviation was calculated for each group. A graph of "cell number versus size" was obtained from these measurements.

2.6.2 Beckman Z2 Coulter Counter And Size Analyzer

Cells are in suspension when size is measured using a Coulter Counter. Unlike older counters the Beckman Z2 does not require calibration. It has an analogue display and the lower threshold can be set manually on the read-out, usually at 7μm, while the upper is normally set at 30μm or infinity. After completing a trial run with Pre2.8 cells grown at 33°C, a size range was set between C1 and C2 (e.g. 10μm and 30μm) in order to avoid counting debris. This range can be altered depending on cell type. A digital display unit displays the total number of cells counted within this size range, the number of cells counted per ml, the mean, median, mode and standard deviation of cell size.

Beckman Coulter Counter

Particles suspended in a weak electrolyte solution are drawn through a small aperture separating two electrodes between which an electric current flows. The voltage applied
across the aperture creates a “sensing zone”. As each particle passes through the aperture (or “sensing zone”) it displaces its own volume of conducting liquid, momentarily increasing the impedance (resistance of an electric circuit to the flow of current) of the aperture. This change in impedance produces a tiny but proportional current flow into an amplifier that converts the current fluctuation into a voltage pulse large enough to measure accurately. The amplitude of this pulse is directly proportional to the volume of the particle that produced it. Scaling these pulse heights in volume units enables a size distribution to be acquired and displayed. In addition, if a metering device is used to draw a known volume of the particle suspension through the aperture, a count of the number of pulses will yield the concentration of particles in the sample.

Procedure
A single cell suspension was obtained using 0.5ml of trypsin for Pre2.8 cells grown at 33°C, 37°C and 39°C, and for S2.13 cells grown at 33°C. Cells were resuspended in 9.5ml of medium. A suitable dilution of this cell suspension was prepared in an isotonic (having the same or equal osmotic pressure - usually used with regards to describing solution on either side of a membrane.) electrolyte (e.g. PBSA). An electrolyte is a substance that, when dissolved in water, gives a solution that can conduct electricity. A minimum of 100,000 cells was sufficient for the Coulter counter. A graph of “cell number versus size” was obtained from results produced by the Coulter counter.

2.7 ANCHORAGE INDEPENDENT GROWTH IN AGAR
Anchorage independent growth is a suspension cloning procedure. Pre2.8 and S2.13 prostate cells were tested for their ability to grow in semi-solid agar, an indication of neoplastic transformation (Honjo et al., 2001; Menter et al., 2000). A breast cancer cell line, MDA-MB-435 (Glinsky et al., 1996) was used as a positive control. The assay was carried out in 6-well plates. Semi-solid agar was prepared at a concentration of 0.75% (base agar) and 0.28% (top agar) in RPMI-1640 medium.

Base Agar
Agar, 1.5% (DNA grade) was melted in a microwave and then cooled to 40°C in a waterbath. Appropriate medium was warmed to 40°C in a waterbath and allowed to equilibrate for at least 30 minutes. Equal volumes of the two solutions were mixed to give 0.75% Agar in medium, 1.5ml was added per 35mm petri dish and allowed to set.
The plates could be stored at 4°C for up to 1 week. It is best to remove the base agar plates from 4°C 30 minutes before adding top agar.

Top Agar and Cell Preparation

Agar, 0.5% (DNA grade agar) was melted in a microwave and cooled to 40°C in a waterbath. Medium was warmed to the same temperature. A single cell suspension of Pre2.8, S2.13 and MDA-MB-435 was obtained from semi-confluent T80 flasks. Cell concentrations of 1.25x10⁴, 2.5x10⁴, 5.0x10⁴ and 1.0x10⁵ were prepared in triplicate, for each cell line and 0.1ml was added per 15ml conical tube. Equal volumes of medium and 0.5% agar was added to each 15ml conical tube and contents were gently mixed. 1.5ml of each sample was added per base agar plate. The assays were incubated at 37°C for 10-13 days. Colony formation was examined under a light microscope.

2.8 COLONY FORMING ASSAYS

The colony forming efficiencies (CFE), a monolayer cloning procedure, of Pre2.8 cells were measured at 33°C and 39°C. A single cell suspension of Pre2.8 cells was prepared and resuspended in 10ml of PrEGM medium. From this suspension 10,000, 15,000 and 20,000 cells were added, in triplicate to 5cm petri dishes and incubated at 33°C and 39°C for at least 14 days. Each experiment was repeated a minimum of 3 times. The cultures were fixed with 70% IMS for 5 minutes and stained with 10% Giemsa for 30 minutes. Colonies containing greater than 50 cells per colony were counted under a dissecting microscope. The average of each triplicate set was determined and the percentage colony forming efficiency (%CFE) was calculated.

2.9 IMMUNOHISTOCHEMISTRY

2.9.1 Cultures On Coverslips

Preparation of coverslips for growing cells for immunocytochemical staining, 3ml of 7X detergent was added to 1 litre of deionised water, mixed and added to a microwave bowl. Coverslips were added to the boiling solution and microwaved for 10 minutes. They were then cooled and rinsed in 10 changes of water, the first 3 times with tap water and the last 7 with deionised water. Finally, the coverslips were rinsed once with 95% ethanol, dried and sterilised by autoclaving.
To grow cells on the coverslips, the desired numbers of coverslips were placed into individual wells of a 24-well plate. A single cell suspension of the selected cell line was prepared and added to each well. To fix the cells, the medium was carefully aspirated and the monolayers washed twice with PBS. The cells were then fixed in ice-cold methanol and acetone (1:1 ratio) for 10 minutes, on ice. For storage, 1ml of a 0.1% sodium azide solution was added and the fixed cells were stored at 4°C until use. The preservative solution was prepared by dissolving 0.1g of BSA and 0.1g of sodium azide in 100ml of PBS. This reagent was stored at 4°C.

2.9.2 Cutting Paraffin Sections For Immunohistochemistry
The paraffin blocks were placed faced-down on ice for half an hour and 7-10μm sections cut on a microtome and collected on Vectabond coated slides. The slides were incubated at 60°C for 20 minutes to remove water and soften the wax to aid adherence to the glass. The slides were stored at room temperature until use.

When required, the tissue sections were de-waxed twice in xylene for 3 minutes. They were then rehydrated by incubating twice in 100% alcohol for 1 minute, followed by 2 incubations in 70% alcohol for 1 minute. The sections were then washed twice for 1 minute in distilled water and stored in water. The tissue sections were circled with a Dako resin pen to delineate the area for immunocytochemistry.

Antigen retrieval of paraffin embedded tissue sections was required for most of the antibodies used. The retrieval, using a chemical reaction was carried out using a Vector™ Antigen Unmasking Solution. The specific chemical identity of the chemical in this product is withheld as a trade secret. The protocol for laboratory made citrate buffer, for antigen retrieval is a final concentration of 0.01M sodium citrate made in distilled water to pH 6.0 with concentrated HCl.

2.9.3 Antigen Unmasking Solution
Based on a citric acid formula, this solution can reveal antigens in formalin-fixed, paraffin-embedded tissue sections when used in combination with a high temperature treatment procedure. The Antigen Unmasking Solution is supplied as a concentrated stock at pH 6.0. Rehydrated slides were placed in glass racks and carefully lowered into boiling retrieval solution and microwaved at full power for 15 minutes. The slides were then washed twice for 5 minutes in PBS and stored in 1x PBS until the next step.
2.9.4 Monoclonal Antibodies

Antibodies are immunoglobulins (Ig) produced by the body’s immune system. Each antibody is produced by lymphocytes as a result of exposure to specific chemical substances called antigens, usually on the outside of an invading organism. They are proteins of molecular weight 150,000 - 900,000 kd, consisting of two heavy chains and two light chains. The structure of their antigen binding sites has great variation, which enables different antibodies to bind to structurally different epitopes. There are 5 classes (isotypes) of immunoglobulin: IgM, IgG, IgA, IgD and IgE, plus 4 subtypes of IgG (IgG1-4), and 2 of IgA (IgA1, IgA2).

Cesar Milstein and co-workers developed monoclonal antibodies for use in the laboratory (Kohler et al. 1975). They overcame the problem that lymphocytes cannot be grown independently in the laboratory. Briefly, an animal (e.g. a mouse) is exposed to a foreign substance, which after a few days results in the production of a mixture of antibodies in response to the antigens responsible. White cells are then extracted from the animal and are fused with cells taken from a cancerous tumour (for rapid growth), usually an immortal myeloma cell line. The hybrids are then cloned. Each clone is then tested to see if they are producing antibodies for the particular target substance. Since the cells in the clone are genetically identical, all the cells produce the same antibody, which builds up in the nutrient medium surrounding the cells. This is purified, resulting in a product containing molecules of a single antibody.

Due the specificity of their binding properties, monoclonal antibodies may have a wide variety of possible uses. We have used monoclonal antibodies in our studies (table 2.4), for immunocytochemistry and for flow cytometry procedures.
Table 2.4: Primary Antibodies For Immunocytochemistry And Dilutions Used In This Study

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Clone</th>
<th>Species</th>
<th>Source</th>
<th>Working Dilution</th>
<th>Ig Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen receptor (AR)</td>
<td>F.39.4.1</td>
<td>Mouse</td>
<td>Biogenex</td>
<td>1/200 (DAB)</td>
<td>IgG1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/100</td>
<td></td>
</tr>
<tr>
<td>Prostate specific antigen (PSA)</td>
<td>ER-PR8</td>
<td>Mouse</td>
<td>Dako M0750</td>
<td>1/30 (DAB)</td>
<td>IgG1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>Prostatic acid Phosphatase (PAP)</td>
<td>PASE-4LJ</td>
<td>Mouse</td>
<td>Dako</td>
<td>1/100 (DAB)</td>
<td>IgG1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/50</td>
<td>Kappa</td>
</tr>
<tr>
<td>Cytokeratin 8 (K8)</td>
<td>35βH11</td>
<td>Mouse</td>
<td>Dako</td>
<td>1/100 (DAB)</td>
<td>IgM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/200 (Fluores)</td>
<td></td>
</tr>
<tr>
<td>Cytokeratin 14 (K14)</td>
<td>LL002</td>
<td>Mouse</td>
<td>Gift, EB Lane</td>
<td>1/20 (Fluores)</td>
<td>IgG3</td>
</tr>
<tr>
<td>Cytokeratin 17 (K17)</td>
<td>E-3</td>
<td>Mouse</td>
<td>Sigma</td>
<td>1/100 (Fluores)</td>
<td>IgG2b</td>
</tr>
<tr>
<td>Cytokeratin 19 (K19)</td>
<td>Rck108</td>
<td>Mouse</td>
<td>Gift, EB Lane</td>
<td>1/50 (Fluores)</td>
<td>IgG1</td>
</tr>
<tr>
<td>Cytokeratin 18 (K18)</td>
<td>LE61</td>
<td>Mouse</td>
<td>Gift, EB Lane</td>
<td>1/10 (Fluores)</td>
<td>IgG1</td>
</tr>
<tr>
<td>Smooth muscle actin (SMA)</td>
<td>1A4</td>
<td>Mouse</td>
<td>Sigma</td>
<td>1/100 (DAB)</td>
<td>IgG2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/200 (Fluores)</td>
<td></td>
</tr>
<tr>
<td>Vimentin</td>
<td>VIM-13.2</td>
<td>Mouse</td>
<td>Vim 13.1 -</td>
<td>1/200 (Fluores)</td>
<td>IgM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sigma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblast</td>
<td>A002</td>
<td>Rabbit</td>
<td>Gift, M O’Hare</td>
<td>(Fluores)</td>
<td>IgM</td>
</tr>
<tr>
<td>Ki67</td>
<td>Anti-Ki67</td>
<td>Rabbit</td>
<td>Dako</td>
<td>1/100 (Fluores)</td>
<td>IgG2A</td>
</tr>
</tbody>
</table>

Abbreviations: Fluores - fluorescence; Ig - Immunoglobulin

2.9.5 Immunocytochemistry Using The Vectastain Elite ABC Kit

The Vectastain Elite ABC kit, based on the avidin biotin method of immunostaining was used. Briefly, this method employs unlabelled primary antibody, followed by biotinylated secondary antibody and an Avidin and Biotinylated horseradish peroxidase macromolecular complex.

Fresh 0.3% hydrogen peroxide in 70% methanol was prepared for each experiment. 300μl of hydrogen peroxide was added to 100ml of 70% methanol in PBS and kept at 4°C. This solution was used to saturate endogenous peroxidase, in order to avoid non-specific background staining. The peroxide solution was added to each coverslip or slide, and incubated for 30mins at room temperature, followed by two washes in 1x
PBS for 5 mins each. Normal horse serum (NHS) was used to block non-specific antibody binding and was added for 20 minutes at room temperature. Then primary antibody (mouse anti-human Ab) diluted in NHS was added at a volume of 50 μl of antibody to each coverslip or 100-200 μl to each slide and incubated for 1-2 hrs at room temperature, followed by three 5 minute washes in PBS.

Biotinylated secondary antibody was diluted and 50 μl added per coverslip, or 100-200 μl added per slide and incubated for 30 minutes at room temperature. Vectastain ABC reagent was prepared 30 mins before use. One drop was added to each coverslip and 2 drops to each slide and then incubated for 30 minutes, followed by three washes in PBS for 5 minutes each.

The coverslips or slides were incubated in ABC reagent for 30 mins at room temperature, followed by two washes in PBS for 5 minutes each. Peroxidase substrate (3,3′-diaminobenzidine tetrahydrochloride) was prepared following DAB kit instructions and 50 μl was added to each coverslip or 100-200 μl was added to each slide. Once the preparation was stained, the DAB was pipetted from the coverslips or slides and placed in a universal containing 12% (w/v) sodium hypochlorite solution for disposal. The coverslips or slides were carefully washed in tap water, as there is some evidence that DAB is carcinogenic.

The preparations were counterstained with Mayer’s haematoxylin for about 30 seconds and then carefully washed with tap water, and then dehydrated by immersing twice in 70% alcohol for 5 mins each, twice in 100% alcohol for 5 mins each and twice for 5 minutes in xylene. Coverslips were mounted cell side down on a slide with a drop of DPX and slides were mounted with a coverslip with DPX.

Immunofluorescent staining

Paraffin-embedded sections were dewaxed and rehydrated and cells on coverslips were fixed before staining. PBS containing 10% foetal calf serum (FCS)/foetal bovine serum (FBS) is required for blocking of non-specific antibody binding and also for antibody dilution. Serum used should contain sufficient immunoglobulins to competitively inhibit the binding of antibodies (being tested) to cells, via interactions not involving the specific recognition of an epitope by the antigen binding region of the antibody (being tested), referred to as non-specific or background staining. Each section or coverslip
was covered with a suitable volume (50μl-300μl) for 30 minutes. Primary antibody was
diluted in serum solution. 50μl was added per coverslip and 50-200μl was added per
tissue section and incubated at 4°C overnight, followed by two washes in PBS for 5
minutes each. The secondary antibody was diluted and applied to sections or coverslips
and incubated in the dark for 45 minutes, followed by two washes in PBS for 5 minutes
each. Hoechst (25mg/ml) nuclear stain was applied and incubated in the dark at room
temperature for 5 minutes, followed by two washes in PBS for 5 minutes each. The
slides were mounted in Gelvatol and stored in the dark at 4°C until ready to examine
under the fluorescence microscope.

Hoechst nuclear stain
Hoechst 33258, chemically known as bisbenzimide is a DNA intercalator that excites in
the near UV (350 nm) and emits in the blue region (450 nm). Hoechst 33258 binds to
the AT rich regions of double stranded DNA. It is a membrane-permeable fluorescent
DNA stain, only when cells are fixed and it has low cytotoxicity.

Gelvatol Mounting Medium
Gelvatol is a product of the “Monsanto Indian Orchard” plant. Mounting solution was
prepared by mixing 6g of Glycerol and 2.4g of Gelvatol in 6ml of distilled water in a
50ml tube. The mixture was incubated at room temperature for 30 minutes and then
12.5ml of a 200mM Tris (pH 8.5) buffer was added and heated at 50°C for 10 minutes.
This process was repeated 4 times and the solution was placed on a rotating platform
overnight at room temperature. The solution was then centrifuged at 400rpm, the
supernatant removed, and stored at 4°C until required.

2.10 FlUORESCENCE MICROSCOPY AND DATA CAPTURE
Fluorescence describes light emission that continues only during the absorption of the
excitation light by a chromophore or other conjugated molecule that is capable of
emitting secondary fluorescence. A fluorescence microscope uses high-energy, short-
wavelength light (usually ultraviolet) to excite electrons within certain molecules inside
a specimen, causing those electrons to shift to higher orbits. When they fall back to their
original energy levels, they emit lower-energy, longer-wavelength light (usually in the
visible spectrum), which forms the image.
Ultraviolet Light Action

A fluorescence microscope uses a mercury or xenon lamp to produce ultraviolet. The light comes into the microscope and hits a dichroic mirror, a mirror that reflects one range of wavelengths and allows another range to pass through. The dichroic mirror reflects the ultraviolet light to the specimen. The ultraviolet light excites fluorescence within molecules in the specimen. The objective lens collects the fluorescent-wavelength light produced. This fluorescent light passes through the dichroic mirror and a barrier filter (that eliminates wavelengths other than fluorescent), going it to the eyepiece to form the image.

Fluorescence-microscopy techniques are useful for seeing structures and measuring physiological and biochemical events in living cells. Antibodies that are specific to various biological molecules can be chemically bound to fluorescent molecules and used to stain specific structures within cells.

Fading or bleaching of fluorescence in specimens during exposure limits the time available to examine stained samples and hence limits its usefulness. To minimize the effects of photobleaching, fluorescence microscopy combined with phase contrast illumination was used for this work. This was achieved by locating the specific area of interest in a specimen using the non-destructive contrast enhancing technique (phase) then, without relocating the specimen the microscope was switched to fluorescence mode. Adobe Photoshop 5.0 was the software used to transform the captured image into the fluorescent photograph.

2.11 CYTOGENETICS

The normal karyotype of humans consists of 23 pairs of chromosomes. During the development of cancer and immortalisation of normal cells, chromosomal changes can occur. Identification of chromosome patterns can be carried out using fluorescent staining methods. A standard map of the banding pattern of each chromosome was established for the human chromosome from the prometaphase stage of mitosis.

The cytogenetics was carried out by Dr R McLeod, DSMZ, Braunschweig, Germany. Cytogenetic harvesting, slide preparation, trypsin G-banding (GTG) and fluorescence in-situ hybridisation (FISH) were performed as described previously (MacLeod et al., 2000). FISH was performed according to manufacturers’ protocols using single-locus
and whole-chromosome ('painting') probes, including Octachrome paints obtained from Cambio (Cambridge, UK), AGS (Heidelberg, Germany), Vysis (Bergishe Gladbach, Germany), Q-Biogene (Illkirch, France), and Roche Molecular Biochemicals (Mannheim, Germany).

Preparations were counterstained with 4' 6-diamidino-2-phenylindole (DAPI) (Camon, Wiesbaden, Germany). Probe signals were detected directly (Octachrome) or indirectly using anti-digoxigenin-FITC (Q-Biogene) or avidin-Texas-Red (AGS). Octachrome FISH enables panoptic analysis of all 24 chromosomes on a single slide using 8 triplet probe combinations. For more detailed analysis based on G-banding and Octachrome analysis, FISH was performed using optimised single locus and painting probe combinations.

2.12 FLOW CYTOMETRY AND FLUORESCENT ACTIVATED CELL SORTING (FACS) ANALYSIS

Flow cytometry is a generic term, while FACS (Fluorescence Activated Cell Sorter) is a trademark of the Becton-Dickinson Corporation. Flow cytometry uses fluorescent probes which bind to specific cell associated molecules, allowing measurements of various phenotypic, biochemical and molecular characteristics of individual cells (or particles) suspended in a fluid stream. As the cells flow past a focused laser beam of appropriate wavelength, the probes fluoresce and the emitted light is collected and directed to appropriate detectors. These detectors, in turn, translate these light signals into electronic signals, proportional to the amount of light collected. Information regarding the relative size and granularity of a cell, for example, is also obtained as these characteristics influence the deflection (or scattering) of laser light as the cell passes through the laser beam. Flow cytometers have the ability to evaluate cells at an extremely rapid rate (e.g. up to 20,000 events per second).

Flow cytometric data can be displayed using either a linear or a logarithmic scale. The simplest type of experiment involves an immunofluorescent marker to look for a positive sub-population of cells. For example, when lymphocytes are stained with an inappropriate antibody (figure 2.2A), there is no cell expression and when lymphocytes are stained with an appropriate marker, for example CD3-FITC (figure 2.2B) the percentage of cells expressing the specific marker can easily be determined by subjectively applying a marker (M1).
Distinguishing between non-expression and expression of antibodies for the same cell. Graph A shows distribution when a particular cell does not express an antibody. Graph B shows distribution when it expresses a particular antibody. Figures were taken from FACS Laboratory (Cancer Research) website.

Cytometry becomes more complicated when the level of fluorescence is required (figure 2.3). It may be necessary to determine the level of expression of two different populations of cells in a particular group of cells.
One of the problems associated with FACS is achieving a single cell suspension, which could potentially cause inaccurate readings (figure 2.4B top & bottom). Good cell preparations are necessary for accurate results. When large clumps are present the flow cytometer will stop counting until the block is cleared, which is achieved by flushing the system. Smaller clumps, such as two cells stuck together will pass through the capillary but the flow cytometer has the ability to exclude these cell doublets (figure 2.4A). A single cell will have a smaller width than a cell doublet passing through the beam consecutively (figure 2.4B).
Figure 2.5: Flow Cytometric Data Distribution

Effect of graph distribution when cell doublets are present when put through the flow cytometer. A, shows gating of cell doublets from single cells in order to achieve accurate readings. B top, shows cell distribution when cell doublets are not gated out, compared to B bottom, showing the distribution when only single cells are counted. Figures were taken from FACS Laboratory (Cancer Research) website.

FACS and Cell Cycle Distribution

The measurement of the DNA content of cells was one of the first major applications of flow cytometry. The DNA content of the cell provides information about the cell cycle and ploidy (the basic number of chromosomes can vary within an organism) of the cell. Ideally all cells in the G1 phase should take up the same amount of dye and all fluoresce in a single channel, but there can be minor conformational variations in the DNA leading to slightly different amounts of dye being taken up. This is quantified by using the coefficient of variation (CV) of the G1 peak. It is assumed that by measuring fluorescence from a DNA-binding fluorochrome, it is the same as DNA content. Although propidium iodide is probably the most commonly used dye to quantitatively assess DNA content, there are several different dyes that are available which bind stoichiometrically to DNA. Using a DNA binding dye such as propidium iodide a successful DNA profile, or cell cycle distribution can be achieved (figure 2.5).
Once a single cell population has been obtained an estimate of the percentage of cells in G1, S phase and G2/M can be determined. This can be determined by subjectively applied markings (figure 2.6A) or by using a program that will mathematically construct a DNA histogram and thus give a more accurate measurement of the percentage of cells in each phase. The method used in this study was by subjectively applying markings (M1, M2, and M3) equivalent to cell cycle stages (G1, S, and G2/M).

Figure 2.7: Cell Cycle Distribution Using Propidium Iodide With And Without Markings

A, shows the gating of peaks in order to distinguish between G1, S and G2/M. B, shows example of cell cycle distribution pattern and percentages, without markings. Figures were taken from FACS Laboratory (Cancer Research) website.
2.13 CELL CYCLE DISTRIBUTION
For studies of the cell cycle distribution, T80 flasks of Pre2.8 cells were cultured at 33°C, 37°C and 39°C for 7 and 10 days. The cells were harvested and a single cell suspension was obtained, counted and washed in cold PBS. After centrifuging at 1500 x g for 5 minutes, the cells were resuspended in 800μl of PBS at -20°C and, while vortexing, 800μl of 70% ethanol (-20°C) was added. The cells were then stored at 4°C.

Prior to analysis, the cells were centrifuged at 2500 x g for 5 minutes and resuspended in 800μl of PBS. 100μl of 1mg/ml of RNase and 100μl of 400μg/ml propidium iodide were added and the cells were incubated at room temperature for 30 minutes.

For studies of keratin distribution, Pre2.8 cells were incubated at 33°C, 37°C and 39°C for 4 days. The cells were harvested, single cell suspensions obtained and cell counts carried out. The cells were then centrifuged and resuspended in 100μl of PBS containing 10% serum, before fixation in 4% paraformaldehyde on ice for 10 minutes. The cells were centrifuged at 1200 x g for 5 minutes, resuspended in 100μl saponin buffer (from Quillaja bark, it permeabilises cells) and incubated on ice for 10 minutes. Non-specific staining was blocked by incubating the cells in 50μl of L15 medium containing 10% serum for 30 minutes and then 50μl of primary antibody (see table 2.4) was added and incubated on ice for 45 minutes. The cells were washed in 100μl of saponin buffer three times. 50μl of secondary antibody (see table 2.4) in saponin buffer was added and the cells were incubated on ice, in the dark for 30 minutes. 50μl of saponin buffer was added to cells to produce a final volume of 100μl. The cells were washed twice in saponin buffer and twice in PBS and resuspended in 100μl of saponin buffer and stored at 4°C for a maximum of 48 hours.

2.14 3-DIMENSIONAL CULTURES
For Matrigel cultures, pipette tips and 24-well plates were cooled to -20°C for 1hr before use. 200μl of Matrigel, diluted 1:1 with culture medium was added per well and allowed to set at 39°C for 30mins. Epithelial and stromal cell suspensions were placed on top of the Matrigel. Cultures were incubated at 33°C, 39°C and 37°C for different periods. The medium was changed three times a week and the cultures were monitored routinely using an inverted phase microscope.
For fixation, the cultures were washed twice with PBS and fixed with 4% formaldehyde for 30 minutes at room temperature, followed by 2 washes with PBS. For processing, the gels were wrapped in single ply tissue paper and placed in an embedding cassette and stored in 70% ethanol overnight. The following day, the gels were dehydrated and then embedded in increasing percentages of molten paraffin. Paraffin blocks were allowed to solidify and 7-10 μm sections were cut on a microtome. Haematoxylin and eosin (H&E) staining (Hine, 1981) was carried out on a sample section from each paraffin block. Immunohistochemistry was used to study prostate specific markers, cytokeratins and proliferation markers (table 2.4). Normal prostate tissue sections were used as positive controls. Sections from fixed 3-D paraffin blocks were used as negative controls (primary antibody was omitted from these sections, leaving staining with only secondary antibody).

Ethical approval was obtained for all tissue used in these experiments and the correct process for obtaining tissue samples were adhered to. These experiments were covered under study number 98/0082: "development of conditionally immortalized cell lines from human prostate tissue", which was approved by Joint UCL/UCLH committees on the ethics of human research.

In pilot studies, Matrigel and monolayer cultures were set up using mixtures of 100,000 Pre2.8 cells and 25,000 S2.13 cells in equal volumes of PrEGM and DMEM (8% FCS + 1% Glutamine) and incubated at 33°C, 39°C and 37°C for 18 – 20 days. Mibolerone, a synthethetic androgen was added to half the cultures at a final concentration of 10^{-8} or 10^{-9} M in 0.0001% ethanol. Frozen stocks of Mibolerone were prepared in 100% ETOH to a final concentration of 10^{-8}M. Unlike dihydrotestosterone (DHT), mibolerone in not metabolised, i.e. there are no enzymes in the cells to break it down. It works like DHT, binding AR and secreting PSA and PAP in the same way. Mibolerone simply mimics the effect of natural androgens.

A comparison was made of different media (PrEGM, PrEGM/DMEM and S2.13 supernatant) using reduced growth factor Matrigel. Incubation was carried out at the permissive (33°C) and semi-permissive (37°C) temperatures for 23 days. Matrigel cultures were paraffin embedded and 7μm sections were cut. Immunohistochemistry was carried out (table 2.4).
To prepare the supernatant from S2.13 cells, PrEGM medium was added to an 80cm2 flask, containing S2.13 cells and incubated for 3 days at 33°C. The medium was collected, designated as S2.13 supernatant and stored at 4°C for no longer than 1 week.

Few S2.13 cells survived in the 3-dimensional culture pilot studies. Therefore different proportions of S2.13 cells were tested. In addition, mouse 3T3 cells were co-cultured with Pre2.8 cells. For comparison each cell line was cultured in Matrigel alone. Cultures were set-up following the procedures described above and incubated at 37°C for 3 weeks (table 2.5).

Table 2.5: 3-D Experimental Variations

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Ratio</th>
<th>Cell concentration</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre2.8/S2.13</td>
<td>4:1</td>
<td>1x105/2.5x104</td>
<td>Equal volumes of PrEGM/DMEM</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>1x105/1x105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>1x105/4x105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>1x105/8x105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>1x105/10x105</td>
<td></td>
</tr>
<tr>
<td>Pre2.8/3T3</td>
<td>1:1</td>
<td>1x105/1x105</td>
<td>Equal volumes of PrEGM/DMEM</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>1x105/4x105</td>
<td></td>
</tr>
<tr>
<td>Pre2.8 only</td>
<td></td>
<td>1x105</td>
<td>PrEGM only</td>
</tr>
<tr>
<td>S2.13 only</td>
<td></td>
<td>1x105</td>
<td>DMEM only</td>
</tr>
<tr>
<td></td>
<td>4x105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10x105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3T3 only</td>
<td></td>
<td>1x105</td>
<td>DMEM only</td>
</tr>
<tr>
<td></td>
<td>4x105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.15 RT-PCR

RT-PCR can provide a semi-quantitative measure of gene expression at the mRNA level. This technique involves an enzyme, reverse transcriptase that has the ability to synthesise complementary DNA (cDNA) from mRNA. The cDNA is then used as a template for PCR analysis. PCR selectively amplifies a region of DNA, using oligonucleotide primers synthesised from a selected sense and an antisense DNA sequence. Codes of practice (for example, wearing gloves) should be carried out to ensure that RNases are not introduced during RNA extraction procedures.
2.15.1 RNA Extraction

Ribonucleases (RNases) are very stable and active enzymes that do not require cofactors to function. Since RNases are difficult to inactivate and even minute amounts are sufficient to destroy RNA, it is important that all materials are RNase free.

RNA was extracted from the Matrigel cultures using the silica-gel-based RNeasy Mini kit (Qiagen Ltd., UK). MatriSperse Cell Recovery solution was used to remove cells from Matrigel matrix for mRNA isolation. The MatriSperse solution depolymerizes Matrigel at 2-8°C without enzymatic digestion. Manufacturer instructions were followed except for two minor modifications. 0.5ml of MatriSperse was added per well instead of the 2ml suggested, and 1ml of MatriSperse solution was added per dish for rinsing.

The RNeasy mini kit was used to isolate up to 100μg of total RNA. A high-salt buffer system enables RNA at least 200 bases long to bind to a silica-gel membrane. The protocols provided by the manufacturer, Qiagen were followed.

RNeasy Mini kit

Cells were harvested by trypsinisation and then lysed in the presence of a denaturing guanidine isothiocyanate (GITC) and β-mercaptoethanol containing buffer (RLT buffer) (350μl added to maximum 5×10⁶ cells) that inactivates RNases to ensure isolation of intact RNA. The RLT buffer is highly denaturing and immediately inactivates RNases to ensure isolation of intact RNA. Complete lysis or disruption of plasma membranes of cells and organelles is required to release all the RNA contained in the sample (incomplete disruption results in significantly reduced yields).

The cell lysate was homogenized using a “QIA shredder” spin column (manufactured by Qiagen). Homogenization is necessary to reduce the viscosity of the cell lysates produced by disruption. Homogenisation shears the high molecular weight genomic DNA and other high-molecular-weight cellular components to create a homogeneous lysate, so that a pure solution of RNA can be extracted. Incomplete homogenization results in inefficient binding of RNA to the RNeasy membrane and therefore significantly reduces yield. The lysate (maximum volume of 700μl) was loaded onto a “QIAshredder” spin column in a 2ml collection tube. The column was centrifuged for 2
minutes at 13,000rpm in a microcentrifugue and the homogenized lysate was collected. One volume of 70% Ethanol was added to the homogenate, mixed and added to the RNeasy mini spin column (on a 2ml collection tube) and spun at 10,000 rpm for 15 seconds.

The RNeasy mini column was transferred to a new tube and washed twice with 500µl of RPE buffer (solution containing ethanol) to remove sheared genomic DNA and protein contaminants by centrifuging at 10,000 rpm for 15 seconds. The column was then transferred to a dry 1.5ml tube and 30µl of RNase-free water was added and the column was centrifuged at 10,000 rpm for 1 minute. RNA samples were stored at -20°C until ready to use.

2.15.2 Measurement of RNA concentration

RNA concentrations were measured by UV spectrophotometry using a DU650 series spectrophotometer (Beckman Coulter Ltd., UK). 4µl of eluted RNA was diluted with sterile water to 400µl (1/100) and added to a clean cuvette. The spectrophotometer was blanked with water using a clean cuvette. The yield of RNA was calculated by measuring the optical density (OD) at 260nm and at 280nm and the RNA concentration was calculated as follows:

\[\text{OD}_{260} \times 40\mu g/ml \times \text{dilution factor} = \text{RNA concentration} \mu g/ml \]

An absorbance of 1 unit at 260nm corresponds to 40µg/ml of RNA. This relation is valid only for measurements in water. The ratio of the readings at 260nm and 280nm provides an estimate of the purity of RNA with respect to contaminants that absorb in the UV spectrum, such as protein. The 260nm/280nm ratio of pure RNA in water is approximately 2.0.

2.15.3 Reverse Transcription

1µg of RNA was reverse transcribed into cDNA in a 20µl reaction volume. 1µl Oligo (dT)12-18 (500µg/ml) and 1µg RNA were made up to 12µl with distilled water. This mixture was heat-inactivated at 70°C for 10 minutes, rapidly chilled on ice and spun down. 4µl of 5x first strand buffer, 2µl of 0.1M DTT and 1µl of 10mM dNTP mix were added and gently mixed and incubated at 42°C for 2 minutes. 1µl of 200units of Superscript II was added and mixed gently and incubated for 50 minutes at 42°C. The
reaction was terminated by heat-inactivation at 70° C for 15 minutes. The cDNA was stored at -20°C.

2.15.4 PCR
The polymerase chain reaction (PCR) is an in vitro technique, which allows the exponential amplification of a specific region of deoxyribose nucleic acid (DNA) by repeating a 3 step process of denaturation, annealing and synthesis.

2.15.4.1 Primer Design
A poorly designed primer can result in little or no product due to non-specific amplification and/or primer-dimer formation. Several variables must be taken into account when designing PCR Primers. Among the most critical are primer length, specificity, complementary primer sequences, G/C content and polypyrimidine (T, C) or polypurine (A, G) stretches and 3'-end sequence. It is important to take time at the beginning to optimise PCR conditions to ensure efficient amplification of PCR product. See table 9 for sequences of primers used in this study.

Specificity, temperature and time of annealing are partially dependent on primer length. In general, oligonucleotides between 18 and 24 bases are sequence specific if the annealing temperature is optimal. The optimal annealing temperature tends to be at least 50°C. The annealing temperature tends to be 5°C below melting temperature, therefore an optimal primer melting temperature (T_m) tends to be 55°C. The easiest way to find the best annealing temperature is by using a gradient thermal cycler.

Primers should have a unique sequence within the template DNA that is to be amplified. A primer designed with a highly repetitive sequence may result in a smear when amplifying genomic DNA.

Primers need to be designed with no intra-primer homology beyond 3 base pairs. If a primer has a region of self-homology partially double-stranded structures can occur which will interfere with annealing to the template. Inter-primer homology may cause partial homology in the middle regions of two primers that can interfere with hybridization. If the homology occurs at the 3' end of either primer, primer-dimer formation may occur which could prevent the formation of the desired product due to competition.
Primers should have between 45% and 55% GC content. The primer sequence should be chosen so that there are no G or C stretches that can cause non-specific annealing. A and T stretches should also be avoided as they could open up stretches of the primer-template which can lower the efficiency of amplification. The addition of a G-C complex at the 3' end of a primer will ensure correct binding at the 3' end due to the stronger hydrogen bonding of G/C residues.

2.15.4.2 PCR analysis

For PCR analysis, primers that had previously been optimised in our laboratory were used. All primers were synthesised by Invitrogen (GibcoBRL, UK) and supplied as lyophilised samples. Each primer was reconstituted in sterile water to a stock concentration of 100μM. 2μl of cDNA from a 20μl reverse transcriptase reaction was added per 10μl PCR reaction. PCR amplification was carried out on a Perkin Elmer-Gene Amp 2400 thermal cycler (Perkin Elmer Ltd., UK).

A typical PCR reaction mixture contained 1x PCR reaction buffer, 1.5mM magnesium chloride, 0.2mM dNTP, 5U Red Hot Taq polymerase, 50% Glycerol, antisense primer, sense primer, distilled water and cDNA. All “thermal cycling” conditions started with a denaturation step at 94°C for 10 minutes and a final annealing step at 72°C for 5 minutes (table 9). β-Actin is present in all eukaryotic cells and was used as a PCR loading control, to confirm that RNA was present in equal concentrations in all samples.
<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence 5'→3'</th>
<th>Cycling conditions</th>
<th>Cycle No</th>
<th>PCR product</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR S</td>
<td>CGAAATGGGCCCCTGGATGGATAG</td>
<td>94°C for 30 sec 65°C for 30sec 72°C for 40sec</td>
<td>40</td>
<td>524bp</td>
</tr>
<tr>
<td>AR A</td>
<td>AGTCGGGCTGGTTTGTGCTGTGTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA S</td>
<td>ACTGCATCAGGAACAAAAGCGTGGA</td>
<td>94°C for 30 sec 65°C for 30sec 72°C for 40sec</td>
<td>40</td>
<td>362bp</td>
</tr>
<tr>
<td>PSA A</td>
<td>CGCACACACGTATTGGAAGAATAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin 5 S</td>
<td>GGGGTGTGTCGCCCTAGGTGG</td>
<td>94°C for 30 sec 60°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>350bp</td>
</tr>
<tr>
<td>Keratin 5 A</td>
<td>ACTGCGGCACGGGAGACC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin 14 S</td>
<td>GAGCCGCATTCTGAACGAG</td>
<td>94°C for 30 sec 60°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>525bp</td>
</tr>
<tr>
<td>Keratin 14 A</td>
<td>GTGCACATCCATGACCTTTTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin 8 S</td>
<td>CAGCAGAAAGACGCTGAAGGCGG</td>
<td>94°C for 30 sec 60°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>538bp</td>
</tr>
<tr>
<td>Keratin 8 A</td>
<td>TCTCAGTCTTTGTGCGCCGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratin 18 S</td>
<td>GACCGTGGAGGTAGATGCCCC</td>
<td>94°C for 30 sec 60°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>544bp</td>
</tr>
<tr>
<td>Keratin 18 A</td>
<td>CACTATCCGGCCGGTGTTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5α-R2 A</td>
<td>CCACCCATCAGGGGTATTTC</td>
<td>96°C for 90 sec 52°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>350bp</td>
</tr>
<tr>
<td>5α-R2 S</td>
<td>CCTTGTACGTCGCGAAGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5α-R1 A</td>
<td>GTTGCTGCTAGTATCAGCGG</td>
<td>96°C for 90 sec 52°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>170bp</td>
</tr>
<tr>
<td>5α-R1 S</td>
<td>TGCTGATGACTGGTACACGAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Actin s</td>
<td>GCGAGCCGGAAAATCGTGGTG</td>
<td>94°C for 30 sec 60°C for 60sec 72°C for 90sec</td>
<td>35</td>
<td>266bp</td>
</tr>
<tr>
<td>β-Actin a</td>
<td>CGTGGGACGATGGGCGGCG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH A</td>
<td>CCACCCATGGCAAATTCATGGCA</td>
<td>94°C for 45sec 65°C for 45sec 72°C for 60sec</td>
<td>25</td>
<td>597bp</td>
</tr>
<tr>
<td>GAPDH S</td>
<td>TCTAGACGGCAGGTCAGGTCACC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.15.5 Gel Electrophoresis

Agarose gel electrophoresis was used to visualise PCR products. For PCR products, the amplified DNA was run on a 2% agarose gel in a horizontal gel tank (Hybaid, UK), using 1x TAE buffer. The required amount of agarose was dissolved in 1x TAE buffer in a microwave oven, cooled to 60°C, supplemented with 1μg/ml ethidium bromide, poured onto a gel plate and allowed to set at room temperature. DNA loading buffer (5x dilution in 1x TAE buffer) was added to the DNA samples prior to loading. The gels were loaded and run at 150volts for 1 hour and then viewed on a UV transilluminator. Images were captured using a Gel Documentation System (Quantity One software, Biorad Ltd., UK) and printed on thermal paper (Mitsubishi P91 thermal printer). Each gel was loaded with appropriate controls and with electrophoresis size markers, either φX174 DNA digested with Hae III marker or a 1kb DNA marker. The fragment size of these markers (in base pairs) were as follows:

φX174 DNA marker: 1353, 1078, 872, 603, 310, 281, 271, 234, 194, 118, 72
1kb DNA marker: 12216, 11198, 10180, 9162, 8144, 7126, 6108, 5090, 4072, 3054, 2036, 1636, 1018, 517, 506, 396, 344, 298, 220, 201, 154, 134, 75
2.16 APPENDIX: MATERIALS AND SOURCES

<table>
<thead>
<tr>
<th>Company</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griffith & Nielsen</td>
<td>10ml, 25ml, 50ml pipettes</td>
</tr>
<tr>
<td></td>
<td>2.5ml Pasteur pipette</td>
</tr>
<tr>
<td></td>
<td>30ml Universal tubes</td>
</tr>
<tr>
<td></td>
<td>5ml bijous tubes</td>
</tr>
<tr>
<td>Radleys</td>
<td>CLP 10μl, 200μl, 1000μl tips</td>
</tr>
<tr>
<td></td>
<td>CLP aerosol barrier 10μl, 200μl, 1000μl tips</td>
</tr>
<tr>
<td>VWRI (Merck)</td>
<td>200μl, 500μl, 1.5ml tubes</td>
</tr>
<tr>
<td></td>
<td>50ml polypropylene tubes</td>
</tr>
<tr>
<td></td>
<td>15ml polypropylene tubes</td>
</tr>
<tr>
<td></td>
<td>0.22μm sterile filters</td>
</tr>
<tr>
<td></td>
<td>Nunc 60mm dishes</td>
</tr>
<tr>
<td></td>
<td>Nunc 25cm² flasks</td>
</tr>
<tr>
<td></td>
<td>Nunc 80cm² flasks</td>
</tr>
<tr>
<td>VWRI (Merck)</td>
<td>Nunc 6-well plates</td>
</tr>
<tr>
<td></td>
<td>Nunc 24-well plates</td>
</tr>
<tr>
<td></td>
<td>Nunc 96-well plates</td>
</tr>
<tr>
<td></td>
<td>Agarose</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde</td>
</tr>
<tr>
<td></td>
<td>Absolute Ethanol</td>
</tr>
<tr>
<td></td>
<td>Methanol (Analytical grade)</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
</tr>
<tr>
<td></td>
<td>Giemsa’s stain</td>
</tr>
<tr>
<td></td>
<td>DPX mounting medium</td>
</tr>
<tr>
<td></td>
<td>Formamide</td>
</tr>
<tr>
<td></td>
<td>Glacial acetic acid</td>
</tr>
<tr>
<td></td>
<td>Harris’ haemotoxylin</td>
</tr>
<tr>
<td></td>
<td>0.4% Trypan Blue</td>
</tr>
</tbody>
</table>
Xylene
Sodium hydroxide
Chloros, a solution of sodium hypochloride

Invitrogen (Gibco BRL, Life Technologies)
DMEM medium
RPMI-1640 medium
10X Phosphate buffered saline (PBS)
Opti-MEM 1 medium
Keratinocyte-SFM medium + supplements
L-Glutamine (0.2M sterile solution)
10X Trypsin (2.5%)
Versene
100mm dNTPs
Superscript II (RT-PCR system)
Oligo dT (12-18 primer) (kit)
1kb DNA marker
φX174 DNA digested with Hae III marker

BioWhittaker
Clonetics prostate epithelial cell growth medium
(PrEGM medium + supplements)

Imperial Laboratories
Foetal calf serum (Heat Inactivated)

Andover, Hants, UK

AB Gene (Advanced Biotechnologies)
Red Hot Taq DNA polymerase
10x PCR reagent buffer
Magnesium chloride

Unichem
Hibiset

Sigma
MTT (3-4,5-dimethylthiazol-2-yl-2-diphenyltetrazolium bromide)
5α-Dihydrotestosterone
Collagenase Type 1A (C9891)
EDTA
Ethidium Bromide
Mineral oil for PCR
Formaldehyde
Propidium iodide
Sodium Azide
Sodium chloride
Saponin buffer
DMSO
Glycerol
Hydrogen Peroxide
Hoechst Stain

Vector Laboratories
Vectastain Elite ABC kit / DAB substances
Antigen Unmasking Solution
Haematoxylin Counterstain
Vectashield Mounting Medium for Fluorescence (DAPI)
Vectabond Reagent

Marathon Laboratory Supplies
Basement membrane matrigel

Dako
Dako Resin Pen

Becton Dickinson
MatriSpere Cell Release Solution

Qiagen
RNeasy Mini Kit
QIAshredder

National Diagnostics
Histoclear
Stratech Scientific

Matrigel

Matri Sphere Cell Recovery Solution

Gelvatol

DPX
CHAPTER 3

RESULTS

DERIVATION AND AUTHENTICATION

AND PURITY
3.1 INTRODUCTION

Two new BPH cell lines, Pre2.8 epithelial and S2.13 stromal cells have been established using a construct containing a temperature sensitive SV40 large T antigen gene. This mutant viral gene produces a protein that is conformationally normal at permissive temperatures (33°C) and is conformationally inactivated at non-permissive temperatures (39°C) (Stamps et al., 1994). Consequently the cells should replicate under the influence of the LTAg at the permissive temperature, but at the non-permissive temperature, stop dividing and differentiate. This chapter describes the derivation of the cell lines. The presence of the viral gene was confirmed using immunocytochemistry.

Authentication is essential when a new cell line is established. It must be demonstrated that the cell line has been derived from the individual claimed. The cell line may be authenticated using DNA profiling (Masters et al., 2001), a method that measures the sizes of a number of alleles containing short tandem repeat (STR) sequences. The number of times the sequence is repeated varies from person to person. The STR profile of the two cell lines was compared with that of the patient from whom the cells were derived and shown to be identical.

Contamination of cell lines with microorganisms is a potential problem with tissue culture. Unlike bacteria, yeasts, fungi and moulds, mycoplasma can not be readily detected under the microscope. Mycoplasma exists parasitically with growing cells, mostly in parasite form, growing on the cell membrane and exerting a pathological effect on the host cell. These infections can alter DNA, RNA and protein synthesis, change enzyme patterns, interfere with the selection of mutant mammalian cells and modify the host cell’s plasma membrane. Hence it is important to ensure that cell lines are free of mycoplasma. PCR was used to confirm the absence of mycoplasma.
3.2 DERIVATION OF PRE2.8 EPITHELIAL AND S2.13 STROMAL CELL LINES

3.2.1 Prostate Tissue

Human prostate tissue was obtained from a 71 year-old male with symptoms of BPH, undergoing transurethral resection of the prostate (TURP). A diagnosis of BPH was subsequently confirmed by histopathology. The biopsy was transferred to a 30ml Universal plastic container containing RPMI-1640 medium supplemented with 20mM HEPES, 5% fetal calf serum (FCS), 1% penicillin - streptomycin, 1% fungizone (Amphotericin B) and 1% L-glutamine. Some of the original biopsy was frozen for future analysis, such as DNA STR profiling. Remaining tissue was used to establish immortal cell cultures.

Ethical approval was obtained for all tissue used in these experiments and the correct process for obtaining tissue samples were adhered to. These experiments were covered under study number 98/0082: “development of conditionally immortalized cell lines from human prostate tissue”, which was approved by t Joint UCL/UCLH committees on the ethics of human research.

3.2.2 Primary Culture

The tissue was minced into small fragments less than 1mm³ using crossed scalpel blades, rinsed twice in PBS and incubated in serum-free L-15 medium with 0.3% collagenase type 1A for 3.5h on a rotating platform. The partly digested tissue was filtered through 70 and 40μm filters and the filtrate was centrifuged. The cells were plated in prostate epithelial growth medium (PrEGM) medium in 25cm² flasks and grown at 37.5°C with 5% CO₂. Primary cell cultures were transferred to safety level III for retroviral transduction, which was carried out by Professor Michael O’Hare, Department of Surgery, Middlesex Hospital. GMO (genetic modified organisms) risk assessments for this work were completed by personnell within the Department of Surgery. Potentially immortalised cell cultures established and returned to our department, by Professor M O’Hare were no longer under safety level III risk. They were rendered safe to work with and were transferred to the safety level II tissue culture laboratory.
3.2.3 Transduction
Semi-confluent proliferating cultures (labelled LWE0) were exposed to filtered (0.4μm) supernatants from the retroviral packaging line, Clone8/8PB (a clone of the virus-producing cell line that was selected with 0.5mg/ml G418). The retroviral construct consisted of a defective SV40 oncogene, pZipSVtsa58 plasmid (figure 1.5). Infection was carried out for 18h with 8μg/ml polybrene and cells were grown to confluency. Infected cells were selected with 0.5mg/ml G418. Infection and selection was carried out at 33.5°C. Successful growth of epithelial-type cells was obtained.

3.2.4 Development Of Epithelial Cell Line (Pre2.8)
A semi-confluent monolayer of epithelial-like cells was obtained approximately 3 weeks after G418 had been withdrawn. These cells (passage 1) were split into two tissue culture flasks (25cm²) and grown at 33°C. When these cells were semi-confluent, one flask of cells was frozen (briefly, PBS wash, trypsin, aspirate off, 10% DMSO in medium, frozen on dry ice) and the remaining cells were passaged as passage 2 (p2) at 1:2, 1:4 and 1:8 dilutions in PrEGM medium at 33°C. As these cells became confluent, growth slowed and many of the cells developed a squamous phenotype (large flat cells with a tendency to lift off the substrate).

In addition to the passaging on plastic, passage 1 cultures were also split at a 1:200 dilution on irradiated mouse 3T3 cells, as clone 1 passage 0 (cllp0). The mouse 3T3 cells are used as a feeder layer, providing growth factors and extracellular matrix support for clonal growth of epithelial cells. See figure 3.1 for summary of derivation of Pre2.8 cells.

3.2.5 Development Of Stromal Cell Line (S2.13)
The cells grown on 3T3 feeder layers had both epithelial and stromal phenotypes. Surplus cells from cllp0 were replated as cllp1 at dilutions of 1:2 and 1:4 without feeders in PrEGM medium. After approximately 2 months the C1lp1 cells had grown enough to freeze the 1:2 dilution flask. Cells from the 1: 4 dilution flask were differentially trypsinised to rapidly detach the stromal cells, leaving the epithelial cells attached to the dish. The stromal cells were replated as p2 in DMEM/FCS, in 12.5cm² flasks. See figure 3.2 for summary of derivation of S2.13 cells.
Figure 3.1: Derivation Of Pre2.8 Cells

LWE0 (primary cells) - Clone48PB (a clone of the virus producing cells)

1:200 diln on irradiated mouse 3T3 cells

clone1 passage 1 (P1)

passaged at low density

P2

1 month

P3

passaged with irradiated 3T3 cells in 75cm² dishes @ 1:100, 1:200

P4

1:200 split on 3T3 cells

P5

1:400 split

P6

semi confluent after ~3 weeks; cells looked good; passaged at low density

P7

passaged at low density

P8

50 cells/plate was ring-cloned; 8 discrete clones passaged onto irradiated 3T3 cells in 75cm² flasks. Grew well; re-fed with PrEGM containing 0.25 ug/ml G418 (removal of residual feeders)

ring-clones were passaged at 1:10, in 25cm² flasks

passaged of ring clones

P2 renamed

Pre2.2, 2.3, 2.4, 2.5, 2.7, 2.8

passaged into 75cm² flasks after 1 month

Pre2.2, 2.3, 2.4, 2.5, 2.7, 2.8

passaged into 180cm² flasks after 1 month

Pre2.2, 2.3, 2.4, 2.5, 2.7, 2.8

all p4 flasks were frozen (10% DMSO on dry ice) after 1 month; Pre2.8 chosen as best growing of the epithelial ring clones and passaged on in 75cm² flask.

Pre2.8 cells were transferred to our department. My work started from here.
Figure 3.2: Derivation Of S2.13 Cells

LWEO (primary cells) - Clone8/8PB (a clone of the virus producing cells)

\[\text{1:200 diln on irradiated mouse 3T3 cells} \]
\[\text{surplus cells replated at 1:2 & 1:4 without feeders} \]

\[\text{clonel passage 0 (cllp0)} \]

\[\text{clonel passage 1 (cllp1)} \]

\[\text{1:2 flask frozen; 1:4 flask differentially trypsinised and replated in DMEM in 12.5cm² flasks, after 2 month} \]
\[\text{split @ 1:2, 1:4, 1:8 dilution after 2-3 weeks} \]
\[\text{passed into 25cm² flasks @ 1:2 dln} \]
\[\text{confluent after 1 month; completely stromal; fairly heterogeneous morphology; no "hill-valleys"; patches of chunky fibroblasts; split into 75cm² flask at 1:3 dln} \]
\[\text{passed at onto 180cm² flasks in DMEM medium} \]
\[\text{"chunky " fibroblasts still not confluent after 18 days; passed at @ 1:2 dln} \]
\[\text{cells growing faster, confluent after 15 days; split @ 1:3} \]
\[\text{split onto 180cm² flask at 1:3 after 1 month} \]
\[\text{passed onto 75cm² flask at 1:5 dln, after 1 month} \]
\[\text{confluent after 9 days; cloned in 96-well plates at 5/2/1/0.5 cells/well at 10% and 5% O₂, at 33.5°C. Stromal cells grow better at low O₂} \]
\[\text{5% O₂ clones picked onto 24-well plates in 5% O₂ and DMEM/FCS at 33.5°C} \]
\[\text{7 clones picked onto 25cm² flasks in normal O₂} \]
\[\text{passed onto 75cm² flasks after 11 days} \]
\[\text{Clone 2.11 and 2.13 clones passed onto 75cm² flasks in DMEM, after 12days; remaining clones were frozen} \]
\[\text{Clone 2.13 passed on at 1:20 in 75cm² flasks; remaining clones were frozen} \]
\[\text{S2.13 chosen as typical, regular fibroblast cells; split at 1:20 after 10 days} \]
\[\text{All further passages were carried out at a 1:40 dln} \]
3.3 MORPHOLOGY OF LIVING CELLS

3.3.1 Pre2.8 Cells

Pre2.8 prostate epithelial cells were grown as a monolayer on plastic at 33°C, 37°C and 39°C. PrEGM medium (table 2.1 and 2.2) was used for growing prostate epithelial cells (Fry et al., 2000b). The epithelial cells, Pre2.8, attach slowly to the surface of culture plates and are relatively slow growing cells. At 33°C and 37°C the cells are small, tightly compact and irregular in shape with a cobblestone appearance (figure 3.4). When cells are transferred to 39°C the morphology alters. The cells become irregular in shape, no longer grow as tightly compact cells, and increase in size.

Figure 3.4 Morphology Of Pre2.8 Cells

Day 6 Pre2.8 epithelial cells growing on plastic tissue culture flasks, at seeding densities of 200,000 cells/T25 flask, at 33°C, 37°C and 39°C.

Phase contrast microscopy; Original magnification: (A) x200 and (B) x400
3.3.2 S2.13 Cells

S2.13 prostate stromal cells were grown as a monolayer on glass coverslips at 33°C, 37°C and 39°C. RPMI/FCS (table 2.1 and 2.2) was used for growing prostate stromal cells. The stromal cells, S2.13, rapidly attach to the surface of culture plates and are fast growing cells relative to Pre2.8. They are slightly elongated in appearance, which is more pronounced at 37°C and 39°C than at 33°C and are loosely associated until they become confluent (figure 3.5).

Figure 3.5: Morphology Of S2.13 Cells

Day 4 S2.13 stromal cells grown on coverslips, at seeding densities of 40,000 cells/coverslip, at 33°C, 37°C and 39°C. Original magnification (A) x200 and (B) x400
3.4 PRESENCE OF SV40 LARGE T-ANTIGEN

Immunocytochemistry for Large T antigen (LTag) was carried out to confirm the presence of SV40 large T-antigen. Using DAB, Large T-antigen shows brown nuclear staining. Pre2.8 and S2.13 cells expressed SV40 large T antigen at 33°C (figure 3.6).

Figure 3.6: Pre2.8 And S2.13 Large T Antigen Expression

SV40 expression of Pre2.8 at 33°C (A) and S2.13 cells at 33°C (B). Immunocytochemistry shows positive staining of LTag (brown). Original magnification of A and B was x200

3.5 DNA PROFILING

DNA profiling was carried out on Pre2.8 and S2.13 cells and the tissue of origin by the LGC (Laboratory Government Chemist, Teddington, Middlesex) to confirm the origin of these cells from the individual who provided the BPH tissue.

DNA profiling was carried out by amplification of STR (short tandem repeats) regions using the Second Generation Multiplex (SGMPlus) System (United Kingdom Forensic Science Service). The number of repeats at each locus was determined by electrophoresis of the PCR products and analysed using Perkin Elmer Genescan and Genotyper computer software. STR profiling consisted of a number of primers for the loci, D18S51, D21S11, D8S1179, HUMFIBRA (FGA), HUMTHO1, HUMVWFA31/A and the sex chromosome marker amelogenin, HUMAMGX/Y (see table for description of markers).

The same STR profile was found for Pre2.8 and S2.13 cells, which was identical to DNA of the patient they were derived from (table 3.1). The three samples were heterozygous for D18S51 and D21S11, and homozygous for HUMAMGX/Y, D8S1179, HUMFIBRA (FGA), HUMTHO1 and HUMVWFA31/A loci.
<table>
<thead>
<tr>
<th>Source</th>
<th>Amg_1</th>
<th>Amg_2</th>
<th>D18_1</th>
<th>D18_2</th>
<th>D21_1</th>
<th>D21_2</th>
<th>D8_1</th>
<th>FGA_1</th>
<th>TH_1</th>
<th>VW_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA from Pre2.8 Cell Line</td>
<td>X</td>
<td>Y</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>30</td>
<td>13</td>
<td>20</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>DNA from S2.13 Cell Line</td>
<td>X</td>
<td>Y</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>30</td>
<td>13</td>
<td>20</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>DNA from original Patient Tissue</td>
<td>X</td>
<td>Y</td>
<td>12</td>
<td>14</td>
<td>29</td>
<td>30</td>
<td>13</td>
<td>20</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
3.6 MYCOPLASMA SCREENING

Pre2.8 and S2.13 cells were negative for mycoplasma using both the Coriell PCR and the Drexler nested PCR. See figures 3.7, 3.8, 3.9 and 3.10 for results. Reagent only controls were negative and the expected size bands were present for positive controls (in-house control, KK47) in all PCR analyses, 500bps for Coriell PCR, 500-520bp for round 1 Drexler PCR and 310-330bp for round 2 Drexler PCR. The Drexler nested PCR sometimes produces two bands in round II, a 500bp – 520bp band being the outer primer product of round I and a 310bp – 330bp band being the inner primer product of the second PCR round. PCR results are shown in figure. All samples were carried out in duplicate.

The mycoplasma contaminating the positive control, KK47 is one of the 5 most common mycoplasma associated with cell line infections, Acholeplasma laidlawii. This was determined using the Stratagene multiplex PCR kit, producing a 280bp and a 100bp PCR fragment. The Stratagene kit was used to determine mycoplasma species when positive samples were detected using the Coriell and Drexler PCR screening procedures.
Duplicate Pre2.8 and control DNA PCR products run on a 3% agarose gel, after amplification with Coriell PCR primers (fig. 3.7) and Drexler nested PCR primers (fig. 3.8). Product size determined against a known DNA marker (M), phiX174 Hae III. In-house positive (Pos), KK47 and reagent only controls were used. The in-house positive control is a mycoplasma contaminated, human bladder-cancer cell line, KK47 which was previously used in our laboratory. The letters representing each lane are M (marker), P (positive control), Pre (Pre2.8 cells) and RO (reagent only). Although the positive controls in figure 3.7 are a bit faint the test is repeated with the Drexler nested PCR, producing strong positive bands and confirming a negative result for the test samples. NOTE: Pre2.8 test samples and controls shown in figure 3.7 and figure 3.8 are from the same gel. These large gels also contained other test samples from different cell lines. They were removed in order to avoid any confusion.
Duplicate S2.13 and control DNA PCR products run on a 3% agarose gel, after amplification with Coriell PCR primers (fig. 3.9) and Drexler nested PCR primers (fig. 3.10). Product size was determined against a known DNA marker (M), phiX174 Hae III and a 50bp marker (fragments every 50bps). In-house positive (Pos), KK47 and reagent only controls were used. The in-house positive control is a mycoplasma contaminated, human bladder-cancer cell line, KK47 which was previously used in our laboratory. The letters representing each lane are M (marker), P (positive control), S2 (S2.13 cells) and RO (reagent only). The band observed for reagent only in fig. 3.10 was seen in the first round of the nested PCR (samples were negative) but not in the second round. NOTE: S2.13 test samples and controls shown in figure 3.9 and figure 3.10 are from the same gel. These large gels also contained other test samples from different cell lines. They were removed in order to avoid any confusion.
CHAPTER 4

RESULTS

CHARACTERISATION
4.1 CYTOGENETICS

Cytogenetic analysis was carried out by Dr Rod McLeod (DSMZ, Braunschweig, Germany) using slide preparation trypsin G-banding (GTG) and fluorescence in situ hybridisation (FISH). Dr Rod McLeod provided all of the Cytogenetic results and photography. Pre2.8 (passage 50) and S2.13 (passage 14) cells displayed significant cell-to-cell variation and some cells carried numerical and occasional structural rearrangements additional to those described in the consensus karyotypes, described below.

4.1.1 Pre2.8 Cells

46<2n>X, -Y, +5, i(8)(q10)x1-2, der(9) (9qter→p11::4q25→q33::8p10→pter),
der(14)ins(14;20)(p12;q1), der(15)t(10;15)(q25;p11),
der(20)dup
ins(20;14)(q11q13;p12), der(21)(qter→p11::4q11→q25:)

4.1.2 S2.13 Cells

93-97<4n>XXYY/XXYYY, +Y, der(2)t(2;16)(p25;p12), +3, der(3)(3qter→p11::ish20
(wcp20+) ::19q10→qter::19q10→qter::hsr::10q24→qter),
der(3)t(3;10)(p24.2;q24.2),
der(3)t(3;17)(q27;q23.), +4, +5, -8, der(8)(8pter→q24::hsr::5q23→qter), +9, +14, +14,
+15, +17, +18, der(19)(19pter→q11::hsr), +20, i(20)(p10) + mar.

The chromosome structures of both cell lines carry relatively few changes, although both are dominated by rearrangements leading to amplification of chromosome 20.

GTG karyotypes representing typical metaphase chromosome spreads from Pre2.8 and S2.13 are presented in figures 4.1 and 4.2 respectively.

Pre2.8 cells displayed a near diploid karyotype with mostly straightforward numerical and structural rearrangements, including loss of the chromosome Y and formation of an isochromosome for the long arm of chromosome 8, i(8q). In addition, however, genomic amplification of part of chromosome 20 had been generated via a pair of apparently related rearrangements. GTG staining properties (figure 4.1) show material derived from the long arm of chromosome 20 inserted into the short-arm (p12) region of one chromosome 14, together with partial duplication of one chromosome 20 homolog (figure 4.3). Demarkating this duplication was a short piece of material from chromosome 14 (figure 23 inset) shown to be derived from p12, by silver staining and specifically detects the rDNA repeat clusters present at the p12 regions of the
acrocentric chromosomes. These findings imply that both der(14) and der(20) changes had participated in a complex non-reciprocal exchange resulting in a net increase of material derived from chromosome 20q. A second complex change involved redistribution of material covering 4q among two markers, der(9) and der(21).

The karyotype of S2.13 was hypertetraploid and in addition to numerical and several minor structural changes included three highly complex marker chromosomes bearing sizeable homogeneous staining regions (HSR), add(3)(p11), add(8)(q24) and add(19)(q11) (figure 4.2 arrows). The HSR in these markers appeared dissimilar in G-banded preparations and FISH analysis and showed all three to derive from distinct intercalary (inserted between) gains of material, in each case from chromosome 4, 19 and 20 (figure 4.4), terminating in two of these markers with segments deriving from chromosome 5q and 10q. FISH analysis showed that the most intense signals were those detected by the chromosome 20 probe. Comparison of FISH images (figures 4.3 and 4.4) revealed decidedly greater amplification in S2.13 than in Pre2.8 cells.

Summary

Cytogenetics of Pre2.8 and S2.13 cell lines exhibited multiple rearrangements, although amplification of material from chromosome 20 was the most striking change in both cell lines. Genetic instability is common in cell lines due to immortalisation procedures, but genetic instability is also associated with tumorigenesis. The amplification of material within HSR in tumor cell lines can imply selective amplification targeting genes, particularly oncogenes. Mechanisms underlying HSR formation is poorly understood, but may implicate unstable repeat DNA sequences susceptible to slippage (Macleod et al., 2000). Other research groups have associated isochromosome formation in chromosome 8 (i(8)) and alterations in chromosome 20q, particularly gain of chromosome 20 have been associated with many cancer types including prostate, bladder, melanoma, colon, pancreas and breast (Brothman et al., 1990; Richter et al., 1998; Bastian et al., 1998; Korn et al., 1999; Mahlamaki et al., 1997). It may be useful to repeat this analysis at a later passage level in order to show cell stability and to determine if passaging produces further chromosomal alterations.
4.1.3 Figure Legend For Figure 4.1, 4.2, 4.3 and 4.4

Cytogenetic analysis showing amplification of chromosome 20. Dr Rod McLeod (DSMZ, Braunschweig, Germany) provided all of the Cytogenetic analysis and photography.

Karyograms illustrating dominant clones present in Pre2.8 (figure 4.1, 4.3) and S213 (figures 4.2 and 4.4) cell lines where rearrangements leading to amplification of chr.20 are indicated by large arrows.

The main colour figures show FISH analysis with probes for chr. 20 (red fluorescence) together with chr.14 (green fluorescence) in figure 4.3 and chr. 19 (green fluorescence) in figure 4.4, however the inset in figure 4.3 shows chr. 20 hybridised with green fluorescence.

The markers are indicated as follows: in Pre2.8 cells (figure 4.3), ders(14) / (20) (red and yellow arrows, respectively); and in S2.13 cells (figure 4.4), ders(3) / (8) / (19) (red, yellow and green arrows, respectively).

Interestingly both Pre2.8 and S2.13 utilise intercalary chromosomal material (co-amplification) to facilitate amplification of chr. 20 rDNA (shown black, inset figure 4.3) and material derived from chr. 19 (green fluorescence in figure 4.4) together with material from chr. 4 (data not presented).

FISH analysis and immunodetections were performed according to manufacturers’ protocols and slides counterstained using DAPI. Monochrome FISH images were captured, merged and enhanced using Vysis Quips imaging system (Applied Imaging, Sunderland UK) configured to a Zeiss Axioplan microscope equipped with a Ludl filterwheel using narrow bandpass filters.
4.2 CELL PROLIFERATION

Analysis of cell cycle distribution was carried out for Pre2.8 cells initially using propidium iodide staining and Flow Cytometry analysis to determine the percentage of cells at G1, S (proliferating cells) and G2/M phases. In order to clarify flow cytometry results, immunocytochemistry for Ki-67, proliferation-associated antigen was carried out and quantified to determine percentage of cells proliferating at 33°C, 37°C and 39°C.

4.2.1 Flow Cytometry

Consistent results were not obtained for repeated FACS analysis of PI stained cells at 33°C, 37°C and 39°C. Experiments were repeated 3 times and once by a second party. 10,000 events (cells) were analysed for the initial experiment, while 20,000 events were analysed for remaining experiments (including the example shown in table 4.1 and figure 4.5). This inconsistency may be due to loss of larger, differentiated cells not getting through the capillary tube or to inaccurate gating caused by greater amounts of granularity at 39°C. It was difficult to accurately gate between G1, S and G2/M phases. An example given (table 4.1 and figure 4.5) shows that there was no clear variation in percentage of Pre2.8 proliferating cells at the three temperatures. In this example cell population was gated for G1-phase and G2 and S phases together.

4.2.2 Ki-67 Expression

Pre2.8 cells were grown on coverslips at a seeding density of 1x10^5 cells per well at 33°C, 37°C and 39°C and stained with Ki-67 antibody after 4 days in culture. Total number and Ki-67 positive cells were counted from 3-4 coverslips at 33°C and 37°C, while 5-7 coverslips were counted at 39°C due to fewer cells per coverslip at this temperature. The average of these cells were calculated. This assay was repeated 3 times, the average and standard error calculated (table 4.2) and a histogram (figure 4.6) of percentage Ki-67 positive Pre2.8 cells obtained (photograph in figure 4.7).

There is a 60% decrease in growth when Pre2.8 cells are transferred from 33°C (93% proliferating cells) to 37°C (26% proliferating cells) and a further 10% decrease at 39°C (15% proliferating cells).
4.2.3 Summary

Results from PI stained cells using flow cytometry were unreliable with this cell line in comparison to counting of Ki-67 stained Pre2.8 cells. Proliferation is being switched off at 37°C and to a greater extent at 39°C.

It would be of interest to compare the substantial Pre2.8 proliferating population with the original tissue and with S2.13 cells, at a later stage (were mainly concentrating on characterisation of Pre2.8 cells in the time allowed for this thesis).

Table 4.1: Percentage Of Cells In G1 And G2/S Phases Of Proliferation In Pre2.8 Cells

<table>
<thead>
<tr>
<th>Cell Proliferation</th>
<th>33°C</th>
<th>37°C</th>
<th>39°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 Phase</td>
<td>59%</td>
<td>77%</td>
<td>55%</td>
</tr>
<tr>
<td>G2/S Phase</td>
<td>25%</td>
<td>18%</td>
<td>35%</td>
</tr>
</tbody>
</table>

One example of Pre2.8 cells from 33°C, 37°C and 39°C which were fixed and stained with propidium iodide (PI) and analysed on a Fluorescent Activated Cell Sorter (FACS) for percentage of cell proliferation, S-phase of the cell cycle.

Table 4.2: Percentage Of Ki-67 Positive Pre2.8 Cells

<table>
<thead>
<tr>
<th>Cell Population</th>
<th>33°C</th>
<th>37°C</th>
<th>39°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-67 positive</td>
<td>420</td>
<td>174</td>
<td>58</td>
</tr>
<tr>
<td>Ki-67 negative</td>
<td>38</td>
<td>468</td>
<td>296</td>
</tr>
<tr>
<td>Total number</td>
<td>458</td>
<td>641</td>
<td>354</td>
</tr>
<tr>
<td>% Ki-67 positive (±SE)</td>
<td>93±2</td>
<td>26±2</td>
<td>15±2</td>
</tr>
</tbody>
</table>

Ki-67 immunocytochemistry of Pre2.8 cells, grown on coverslips at 33°C, 37°C and 39°C. Three separate assays were carried out and each assay consisted counts on 3-4 coverslips at 33°C and 37°C, and 5-7 coverslips at 39°C. Mean and standard error (SE) for each cell population, and percentage Ki-67 positive cells with standard error (SE) are displayed in table.
One example of Pre2.8 cells from 33°C, 37°C and 39°C which were fixed and stained with propidium iodide (PI) and analysed on a Fluorescence Activated Cell Sorter (FACS) for percentage of cell proliferation, S-phase of the cell cycle. No error bars are present, as this is just one example and not an average of a number of experiments.

Histogram showing percentage of Ki-67 positive Pre2.8 cells with standard error (SE). Immunocytochemistry of Ki-67 antibody was carried out on Pre2.8 cells, grown on coverslips at 33°C, 37°C and 39°C. Three separate assays were carried out and each assay consisted counts on 3-4 coverslips at 33°C and 37°C, and 5-7 coverslips at 39°C. Mean and standard error (SE) for each cell population, and percentage Ki-67 positive cells with standard error (SE) are displayed in table.
Figure 4.7: Ki-67 Expression In Pre2.8 Epithelial Cells At 33°C, 37°C And 39°C

Immunoperoxidase stain of Pre2.8 cells at 33°C (A), 37°C (B) and 39°C (C) showing positive staining of the proliferative marker Ki67. Experiments were setup on coverslips with a seeding density of 1×10^5 cells per well for each temperature and harvested for Ki67 staining at day 4. Negative (secondary antibody only) control (D) was setup using a coverslip from 33°C.

Ki67 stain – DAB/peroxidase (brown); Nuclear stain –Hoechst (blue)

Magnification: original magnification x20
4.3 GROWTH RATES
Growth curves were constructed by plating 100,000 cells per 25cm² flask in triplicate. Cell numbers were estimated at 2-3 day intervals up to 17 days using a haemocytometer (table 4.3 and figure 4.8).

4.3.1 Pre2.8 Growth Assays Using Cell Counts
Pre2.8 cells grow at a similar rate at 33°C and 37°C for the first 11 days. At 37°C cell numbers plateau after 11 days, while at 33°C cell number continues to increase exponentially. At 39°C, proliferation continued over the 17-day culture period at a slow rate.

Table 4.3: Proliferation Of Pre2.8 Cells, Showing The Mean And Standard Error Of Cell Numbers Derived From Three Independent Experiments

<table>
<thead>
<tr>
<th>Days in Culture</th>
<th>Cell Number x 10⁵ (±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33°C</td>
</tr>
<tr>
<td>3</td>
<td>1.04 ± 0.09</td>
</tr>
<tr>
<td>5</td>
<td>2.56 ± 0.48</td>
</tr>
<tr>
<td>7</td>
<td>7.85 ± 3.02</td>
</tr>
<tr>
<td>10</td>
<td>21.72 ± 4.86</td>
</tr>
<tr>
<td>12</td>
<td>32.08 ± 4.01</td>
</tr>
<tr>
<td>14</td>
<td>38.98 ± 7.12</td>
</tr>
<tr>
<td>17</td>
<td>52.37 ± 3.27</td>
</tr>
</tbody>
</table>

4.3.1.1 Mean Population-Doubling Time for Pre2.8
The mean population doubling for Pre2.8 cells, derived from growth curves using a logarithmic scale was 36 and 24 hours, at 33°C and 37°C respectively. Cells do not grow exponentially at 39°C. Figure 4.9, below shows extrapolation of data from the exponential phase of a log curve of Pre2.8 cells.
Pre2.8 cell counts for 3 separate growth assays, at 33°C, 37°C and 39°C. Cells were set up in triplicate at a density of 100,000 cells per 25cm². The mean and standard error were calculated and a growth curve was obtained.
Log plot of the increase in cell concentration (y-axis) versus days in culture (x-axis), following subculture from cultures counted on regular intervals. The population-doubling time (PDT) was extrapolated from the straightest area of the exponential phase. A straight line was drawn from a particular cell count, on the y-axis in the log phase, to the plotted line. Then another straight line was drawn from a point that was double the first cell count on the y-axis to the plotted line. These two lines were then continued from the plot towards the x-axis in a straight line. The distance between these two points on the x-axis represents the length of time for one cell population to double. This was carried out at 33°C, 37°C and 39°C.
4.3.2 S2.13 Growth Assays Using Cell Counts
Growth curves were constructed by plating 200,000 cells per 25cm² dish in triplicate and cells were counted at 2-day intervals up to 10 days. Assays grown at 33°C and 37°C were repeated 3 times and replicated twice at 39°C, and the mean and standard errors obtained (table 4.4). A graph of cell count versus days in culture was obtained (figure 4.10). At 33°C cells grow slowly until approximately day 6 and then start growing at an exponential rate. S2.13 cells also go through a lag phase at 37°C, until day 6 and then grow at an exponential rate, but they have fewer cell numbers than at 33°C. Cells grown at 39°C were dead by day 5.

Table 4.4: Proliferation Of S2.13 Cells, Showing The Mean And Standard Error Of Cell Numbers Derived From Three Independent Experiments

<table>
<thead>
<tr>
<th>Days in Culture</th>
<th>Cell Number x 10⁵ (±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33°C</td>
</tr>
<tr>
<td>2</td>
<td>1.71 ± 0.22</td>
</tr>
<tr>
<td>4</td>
<td>3.04 ± 0.88</td>
</tr>
<tr>
<td>5</td>
<td>4.79 ± 0.69</td>
</tr>
<tr>
<td>8</td>
<td>12.66 ± 03.54</td>
</tr>
<tr>
<td>10</td>
<td>21.0 ± 5.0</td>
</tr>
</tbody>
</table>

4.3.2.1 Mean Population-Doubling Time for S2.13 Cells
The mean population doubling for S2.13 cells from the exponential phase of cell count assays, using a logarithmic scale is 48 and 36 hours, at 33°C and 37°C respectively. Cells do not grow exponentially at 39°C. Figure 4.11, below shows extrapolation of data from the exponential phase of a log curve of S2.13 cells.
S2.13 cell counts for 3 separate growth assays, at 33°C, 37°C and 39°C. Cells were set-up in triplicate at a density of 200,000 cells per 25cm². The mean and standard error were calculated and a growth curve was obtained.
Log plot of the increase in cell concentration (y-axis) versus days in culture (x-axis), following subculture from cultures counted on regular intervals. The population-doubling time (PDT) was extrapolated from the straightest area of the exponential phase. A straight line was drawn from a particular cell count, on the y-axis in the log phase, to the plotted line. Then another straight line was drawn from a point that was double the first cell count on the y-axis to the plotted line. These two lines were then continued from the plot towards the x-axis in a straight line. The distance between these two points on the x-axis represents the length of time for one cell population to double. This was carried out at 33°C, 37°C and 39°C.
4.3.3 Comparison Of The Growth Patterns Of Immortalised (1542-NPTX) And Conditionally Immortalised (Pre2.8) Prostate Epithelial Cell Lines

The growth patterns of the conditionally immortalised prostate epithelial cell line Pre2.8 was compared with those of the immortalised cell line 1542-NPTX, in order to confirm the differences in response to temperature shift.

Cells were plated at a density of 10,000 per well in 96-well plates, and MTT assays were used to estimate growth after 3 and 10 days in culture. The results are shown in figures 4.12 and 4.13.

After 3 days growth, the 1542-NPTX cells had grown fastest at 39°C and slowest at 33°C. In contrast, the Pre2.8 cells had grown fastest at 37°C, but there were few surviving cells at 39°C.

After 10 days growth, 1542-NPTX cell number at 39°C was similar to that at 3 days, indicating that the high temperature had inhibited cell growth in the longer term. At 37°C, the optical density was 3-4 times that seen at 3 days, indicating exponential growth at this temperature. In contrast and as expected, the greatest increase in growth of Pre2.8 cells was seen at the permissive temperature, 33°C.

4.3.5 Comparison of the growth patterns of immortalised (1542-FT) and conditionally immortalised (S2.13) prostate stromal cell lines

Cells were plated at 200,000 cells per 25cm² flask and grown for 5 and 9 days at 33°C, 37°C and 39°C in triplicate. The results are shown in figures 4.14 and 4.15, and are similar to those obtained with the epithelial cells. 1542-FT cells grew best at 37°C, while S2.13 cells grew best at 33°C after 5 and 9 days in culture.
Pre2.8 and 1542-NPTX cells were seeded at a density of 10,000 cells per well and harvested after 3 days for analysis using the MTT assay. The mean and standard error of optical density for 3 experiments were calculated and a histogram with each cell line at 33°C, 37°C and 39°C was obtained.

Pre2.8 and 1542-NPTX cells were seeded at a density of 10,000 cells per well and harvested after 10 days for analysis using the MTT assay. The mean and standard error of optical density for 3 experiments were calculated and a histogram with each cell line at 33°C, 37°C and 39°C was obtained.
S2.13 cells and 1542-FT cells were seeded at a density of 200,000 cells per 25cm² flask and harvested after 5 days for analysis using cell counts. The mean and standard error of cell counts for 3 experiments were calculated and a histogram with each cell line at 33°C, 37°C and 39°C was obtained.

S2.13 cells and 1542-FT cells were seeded at a density of 200,000 cells per 25cm² flask and harvested after 10 days for analysis using cell counts. The mean and standard error of cell counts for 3 experiments were calculated and a histogram with each cell line at 33°C, 37°C and 39°C was obtained.
4.4 CELL SIZE DISTRIBUTION

Cell size was determined using a Coulter Counter to measure Pre2.8 cells in suspension. These results were compared to cell size of Pre2.8 and S2.13 cells growing on plastic, using a graticule eyepiece on an inverted microscope.

4.4.1 Beckman Coulter Counter

A size comparison of Pre2.8 cells at 33°C, 37°C and 39°C was carried out using a Coulter Counter. The mean size for 14,767, 14,140 and 8,991 cells measured is 13.25μm, 16.23μm and 16.57μm at 33°C, 37°C and 39°C respectively (figure 4.16). The histogram (figure 4.16) of cell size (μm) shows a significant 22% and 25% increase in cell size (13.25μm to 16.23μm and 16.57μm) when Pre2.8 cells are transferred from 33°C to 37°C and 39°C respectively. No significant difference was seen when cells were transferred to 37°C compared to 39°C. The cell size difference between 37°C and 39°C appeared to be greater by observation under the inverted microscope (figure 3.4). It may be possible that some of the larger cells at 39°C are not able to pass through the Coulter Counter’s capillary tube, therefore producing an inaccurate mean cell size value. Alternatively it is possible that highly differentiated cells may not survive trypsinisation as whole cells. This would also account for lack of increase in Pre2.8 cell size at 39°C, using the coulter counter.

The cell size distribution of these cells clearly shows a shift. The majority of cells grown at 33°C are between 10μm and 13μm, which are at the smaller end of the scale (10μm to 21μm). When Pre2.8 cells are transferred to 37°C and 39°C this large peak is not seen. The majority of these cells are distributed between a scale of 13μm and 17μm (figure 4.17).
Using a Cell Coulter Counter the mean and standard error for cell size (µm) was calculated for 14,767 Pre2.8 cells in suspension, at 33°C, 37°C and 39°C. A significant increase in cell size of 22% and 25% (13.25µm to 16.23µm and 16.57µm) was observed when Pre2.8 cells were transferred from 33°C to 37°C and 39°C respectively. Unexpectedly no significant difference was observed when cells were transferred to 37°C compared to 39°C.

Using a Cell Coulter Counter the cell cycle distribution (cell number versus cell size in µm) was determined for Pre2.8 cells in suspension, at 33°C, 37°C and 39°C.
4.4.2 Graticule And Inverted Microscope

At x200 magnification on the light phase microscope one marking on the graticule eyepiece was equivalent to 5.71μm on the coverslip graticule. The diameter of 100 viable cells and their nuclei were measured from monolayer cultures on a tissue culture plate at 33°C, 37°C and 39°C.

S2.13 stromal cells are much larger than Pre2.8 epithelial cells, 55μm compared to 40μm at 33°C, 64μm compared to 43μm at 37°C and 88μm compared to 52μm at 39°C (see histograms, figure 4.19 and 4.21 for Pre2.8 and S2.13 respectively). Similar comparisons were observed for nucleus size, although the mean nucleus size was approximately half the size of the mean cell size.

4.4.2.1 Pre2.8 Cells

A distribution of cell number versus cell size was determined (figure 4.17). There is a shift in size distribution for Pre2.8 cells. The majority of cells at 33°C and 37°C range between 31μm and 70μm in size while at 39°C cells range between 31μm and 100μm in size.

A histogram of the mean and standard error for 100 Pre2.8 cell and nucleus diameter was determined (figure 4.18). There is a 7% and 12% increase in cell size (40μm to 43μm and 52μm) when Pre2.8 cells are transferred from 33°C to 37°C and 39°C respectively. A 12% and 30% increase in nucleus size of these cells, increasing from 17μm to 19μm and 22μm when transferred from 33°C to 37°C and 39°C respectively.
Comparison of whole cell (WC) size distribution for Pre2.8 cells after 7 days grown at 33°C, 37°C and 39°C. Flattened cells were measured using a Graticule under an inverted microscope. The mean and standard error of 100 cells was calculated.

Comparison of whole cell (WC) size and nuclei size (N) for Pre2.8 cells after 7 days grown at 33°C, 37°C and 39°C. Flattened whole cells and their nucleus were measured using a Graticule under an inverted microscope. The mean and standard error of 100 cells was calculated. There is a greater increase in Pre2.8 nuclei size (12% and 30%) than Pre2.8 whole cell size (7% and 12%) from 33°C to 37°C and 37°C to 39°C respectively.
4.4.2.2 S2.13 Cells

A graph of cell size distribution (figure 4.20) shows a size shift when S2.13 cells are transferred from 33°C to 37°C and 39°C. Cells range in size from approximately 30μm to 100μm at 33°C and 37°C and 35μm to 120μm for S2.13 cells.

A histogram of mean and standard error of S2.13 cell and nucleus diameter size shows a 16% and 60% increase when cells are transferred from 33°C to 37°C and 39°C respectively (figure 4.21). The average cell size increases from 55μm to 64μm and 88μm. There is no change in nucleus size from 33°C to 37°C, while a 37% increase is observed when cells are transferred from 33°C to 39°C (25μm to 34μm).
Comparison of whole cell (WC) size distribution for S2.13 cells after 7 days grown at 33°C, 37°C and 39°C. Flattened cells were measured using a Graticule under an inverted microscope. The mean and standard error of 100 cells was calculated.

Comparison of whole cell (WC) size and nuclei size (N) for Pre2.8 cells after 7 days grown at 33°C, 37°C and 39°C. Flattened whole cells and their nucleus were measured using a Graticule under an inverted microscope. The mean and standard error of 100 cells was calculated.
4.5 COLONY FORMING EFFICIENCY ON PLASTIC AND IN SOFT AGAR

4.5.1 Colony Forming Efficiency For Pre2.8 Cells On Plastic
Colony forming assays were set up for Pre2.8 cells at a density of 5,000, 10,000, 15,000 and 20,000 cells in triplicate at 33°C and 39°C. The colonies were fixed after 14 days culture (previously optimised protocol for commonly used cell lines within our laboratory) and then counted under a dissecting microscope. In order to avoid counting secondary colonies, only colonies with greater than 50 cells/colony were counted. The results of 5 independent assays are shown in table 4.5. No colonies developed at 39°C. At 33°C, colonies did not develop at a seeding of 5,000 cells, although some cells survived. At a plating density of 20,000 per 5cm dish, the colonies had begun to merge by 14 days and could not be counted. The mean colony forming efficiency was 2.5% and 3.1% for 10,000 and 15,000 cells respectively.

Table 4.5: Colony Forming Efficiency For Pre2.8 Cells At 33°C

<table>
<thead>
<tr>
<th>10,000</th>
<th>15,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.78%±0.10</td>
<td>2.70%±0.29</td>
</tr>
<tr>
<td>0.22%±0.18</td>
<td>3.80%±0.50</td>
</tr>
<tr>
<td>5.90%±0.43</td>
<td>2.78%±0.22</td>
</tr>
<tr>
<td>0.26%±0.17</td>
<td>3.28%±0.39</td>
</tr>
<tr>
<td>3.09%±0.10</td>
<td></td>
</tr>
<tr>
<td>2.45%±0.20</td>
<td>3.14%±0.35</td>
</tr>
</tbody>
</table>

4.5.2 Anchorage-Independent Growth
The ability of Pre2.8 cells (passage 50) to grow in an anchorage-independent manner was compared with a breast cancer cell line, MDA-MB-435 (Glinsky et al., 1996) and a prostate cancer cell line, PC3 (Kaighn et al. 1979). Cancer cells are known to possess anchorage-independent growth. PC3 cells show anchorage-independent growth in monolayer and soft agar suspension and produce subcutaneous tumors in nude mice (Kaighn et al. 1979). It has previously been shown, in our laboratory that MDA-MA-435 and PC3 cell lines produce colonies in semi-solid agar, i.e. anchorage-independent growth, hence they were chosen as good positive controls for these experiments. MDA-MA-435 and PC3 cells were suspended in semi-solid agar in triplicate at 33°C and 37°C at a range of densities. Colony formation was observed after 15 days. Pre2.8 and S2.13 cells did not produce colonies in semi-solid agar, while the MDA-MB-435 and PC3 cancer cell lines had colony-forming ability in agar (data not shown).
CHAPTER 5

RESULTS

DIFFERENTIATION OF MONOLAYER CULTURES
5.1 INTRODUCTION
Pre2.8 and S2.13 cell lines, immortalised using a temperature sensitive SV40 T-antigen construct, were successfully authenticated and characterised (described in chapter 4 and 5). These cell lines should proliferate at 33°C and stop dividing at 37°C or 39°C. The aim of this section is to determine to what extent the cells differentiate when proliferation ceases.

Immunofluorescent and immunocytochemical analyses were carried out to characterise the Pre2.8 and S2.13 cells. Pre2.8 cells were grown on coverslips at 33°C, 37°C and 39°C for 7 days. S2.13 cells were grown at 33°C and 37°C only, as the cells died within 7 days at 39°C. Fluorescent staining was examined using a Hg-arc Zeiss Axiophot fluorescent microscope and extent and intensity of staining was estimated by eye.

5.2 Stromal Cell Markers
Antibodies to vimentin, smooth muscle actin (SMA) and a fibroblast cell surface marker (AS02) were used to identify stromal cell subtypes (table 5.1 and figure 5.1).

Pre2.8 cells were negative for these markers at all temperatures. S2.13 cells were positive for vimentin and anti-fibroblast antibody (figure 5.1) and negative for SMA. This staining pattern is characteristic of fibroblast cells. There was no background present for SMA or vimentin antibodies. Faint background was seen for fibroblast (AS02) antibody.

5.3 Epithelial Cell Markers
Cytokeratin expression was used to confirm epithelial cell origin and to look for basal cell (K14 and K17), intermediate cell (K19) and luminal cell differentiation (K8 and K18) cells at 33°C, 37°C and 39°C.

The prostate cancer cell line LNCaP stained for K8 and K18, was weakly positive for K19 and negative for K14 and K17. S2.13 cells were negative for K14 at 33°C and 37°C, while results were inconclusive for K17 (table 5.1). Positive staining was found for K17 which is unexpected as keratins are epithelial cell markers and not stromal.

Nearly all Pre2.8 cells were positive for K14 at all three temperatures. Although all Pre2.8 cells appear to express K17 (figure 5.2), there is a clear intensity difference. At
33°C most cells are only faintly positive whereas at 37°C and 39°C most of the cells express K17 strongly. The number of cells expressing both K14 and K17 (yellow in colour) (figure 5.2) has clearly increased at 37°C and 39°C compared to 33°C. In areas where K17 is most intense, K14 is less intense. The intensity of K14 staining decreased at the two higher temperatures.

K19, an intermediate epithelial marker shows occasional staining at 37°C and 39°C only (figure 5.3). K14⁺ K19⁻ staining was observed at 33°C compared to K14⁺ K19⁺ found at 37°C and 39°C (figure 5.3). There were small patches of strong K19⁻ K14⁺ expression in densely populated Pre2.8 cells at 37°C and 39°C (most obvious at 37°C), indicative of further differentiation at the higher temperatures. K19 and K8 antibodies were sparsely expressed in different cells, when double stained at 37°C compared to extremely sparse co-expression (yellow cells) at 39°C (figure 5.4). All cells at 33°C were negative for K19 with some K8 staining.

The luminal cell markers K8 and K18 were expressed in fewer Pre2.8 epithelial cells at 33°C than at 37°C and 39°C. In double stains for K19 and K8 (figure 5.4) an increase in K8 expression was observed at 37°C and 39°C compared to 33°C. A similar pattern was seen with K14 and K8 (figure 5.5). There appear to be fewer K14⁺ cells expressing K18 (figure 5.6) than K8 at 33°C and 37°C. Co-expression of K14 and K8 is apparent at 33°C, while K8⁺ cells are K14⁻ at 37°C.

Pre2.8 cells have a basal phenotype at 33°C and differentiate into intermediate epithelial cells at 37°C.
5.4 Androgen Expression And Prostate Specific Characteristics Of Pre2.8 And S2.13 Cells

In order to determine if the cells express prostate specific characteristics immunocytochemical staining was carried out for AR, PSA and PAP and results observed under the Nikon Diaphot inverted microscope (table 5.1). Both isoforms of 5α-reductase (type 1 and 2) were examined by RT-PCR.

There was no expression of 5α-R2 (figure 5.7), AR, PSA or PSAP in Pre2.8 or S2.13 cells at any temperature (table 5.1). LNCaP cells were positive for AR, PSA and PSAP antibodies by immunocytochemistry and BPH tissue was positive for 5α-R2, producing a 350bp RT-PCR product (figure 5.7). 5α-R type 1 was expressed in Pre2.8 and S2.13 cells at 33°C, 37°C and 39°C, producing a 170bp fragment (figure 5.7). GAPDH was positive for all Pre2.8 and S2.13 PCR samples, producing a 597bp product.

![Table 5.1: Differentiation Pattern Of Pre2.8 Epithelial And S2.13 Stromal Cells](image)

<table>
<thead>
<tr>
<th>Markers</th>
<th>Positive Control</th>
<th>Neg Control</th>
<th>Pre2.8 33°C</th>
<th>Pre2.8 37°C</th>
<th>Pre2.8 39°C</th>
<th>S2.13 33°C</th>
<th>S2.13 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>K14</td>
<td>-</td>
<td>nt</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K17</td>
<td>-</td>
<td>nt</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>inc</td>
<td>inc</td>
</tr>
<tr>
<td>K19</td>
<td>-</td>
<td>nt</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K8</td>
<td>+++</td>
<td>nt</td>
<td>+</td>
<td>+/+</td>
<td>+/+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>K18</td>
<td>+++</td>
<td>nt</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>SMA</td>
<td>nt</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vimentin</td>
<td>nt</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Fibroblast (AS02)</td>
<td>nt</td>
<td>+++</td>
<td>Faint background</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>AR</td>
<td>+++</td>
<td>nt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PSA</td>
<td>+++</td>
<td>nt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PAP</td>
<td>+++</td>
<td>nt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: (nt) not tested; (-) negative expression. Positive staining is expressed as +, ++ or +++ which refers to an estimated amount of staining or quantity of positive stained cells (occasional, moderate or nearly all).

LNCaP and 3T3 cells were only used as positive controls to show that antibodies were active and working correctly. Since LNCaP and 3T3 cells were not being investigated it was not necessary to test them for variation in marker expression at temperatures other than their routine culture temperature.
Immunofluorescence (A and B) and immunocytochemistry (C) staining of S2.13 stromal cells (passage 14) that were grown on glass coverslips at 33°C. Nuclei were stained with Hoechst (blue) in A and B. Cells were stained with (A) vimentin (green), (B) ASO2 anti-fibroblast antibody (red) or (C) ASO2 anti-fibroblast antibody (brown). Original magnification was x40 (fluorescence microscope – objective lens).
Immunofluorescence staining of Pre2.8 epithelial cells (between passage 48 and 58) grown on glass coverslips at 33°C, 37°C and 39°C. Nuclear Hoechst (blue) staining is shown with K14 and K17 alone, but is not shown with K14/K17 together. Keratin 14 is stained with FITC (green). Keratin 17 is stained with Rhodamine (red). When epithelial cells are double stained with K14 and K17 the colour tends to be yellow (mixture of FITC and Rhodamine). Original magnification was x40 (fluorescence microscope – objective lens).
Figure 5.3: K14 K19 Expression In Pre2.8 Cells

Immunofluorescence staining of Pre2.8 epithelial cells (between passage 48 and 58) grown on glass coverslips at 33°C, 37°C and 39°C. Nuclear Hoechst (blue) staining is shown with K14 and K19 alone, but is not shown with K14/K19 together. Keratin 14 is stained with FITC (green). Keratin 19 is stained with Rhodamine (red). When epithelial cells are double stained with K14 and K19 the colour tends to be yellow (mixture of FITC and Rhodamine). Original magnification was x20 (fluorescence microscope – objective lens).
Figure 5.4: K19 K8 Expression In Pre2.8 Cells

Immunofluorescence staining of Pre2.8 epithelial cells (between passage 48 and 58) grown on glass coverslips at 33°C, 37°C and 39°C. Nuclear Hoechst (blue) staining is shown with K8 and K19 alone, but is not shown with K8/K19 together. Keratin 8 is stained with FITC (green) and Keratin 19 with Rhodamine (red). When epithelial cells are double stained with K8 and K19 the colour tends to be yellow (mixture of FITC and Rhodamine). LNCaP (metastatic prostate cells) luminal cells were used as a positive control for K8 expression. Original magnification was x40 (fluorescence microscope – objective lens).
Immunofluorescence staining of Pre2.8 epithelial cells (between passage 48 and 58) grown on glass coverslips at 33°C, 37°C and 39°C. LNCaP (metastatic prostate cells) luminal cells were used as a positive control for K8 expression. Nuclear Hoechst (blue) staining is shown with K14 and K8 alone, but is not shown with K14/K8 together. Keratin 14 is stained with FITC (green). Keratin 8 is stained with Rhodamine (red). When epithelial cells are co-stained with K14 and K8 the colour tends to be yellow (mixture of FITC and Rhodamine). Original magnification was x40 (fluorescence microscope – objective lens).
Immunofluorescence staining of Pre2.8 epithelial cells (between passage 48 and 58) grown on glass coverslips at 33°C and 37°C. LNCaP (metastatic prostate cells) luminal cells were used as a positive control for K18 expression and as a negative control for K14. Nuclear Hoechst (blue) staining is shown with K14 and K18 alone, but is not shown with K14/K18 together. Keratin 14 is stained with FITC (green). Keratin 18 is stained with Rhodamine (red). Original magnification at 33°C and with LNCaP cells was x40. Original magnification at 37°C was x20 (fluorescence microscope – objective lens).
Pre2.8 (between passage 48 and 58) and S2.13 cells (passage 14) were grown in monolayer cultures at 33°C, 37°C and 39°C. Reverse transcribed cDNA was amplified using 5α-Reductase type 1 primers (A), type 2 primers (B) and GAPDH primers (C). The expected PCR product was 170bp, 350bp and 597bp for 5α-R1, 5α-R2 and GAPDH respectively. Abbreviations: reagent only sample (RO), DNA marker (M), benign prostate hyperplasia (BPH).
CHAPTER 6

RESULTS

3-DIMENSIONAL CULTURES
6.1 INTRODUCTION
The aim of the studies described in Chapter 6 was to investigate the capacity of the Pre2.8 and S2.13 cell lines to form 3-dimensional (3-D) structures in vitro and in vivo, and to determine to what extent these structures reflect the morphology and differentiation of prostate tissue.

Primary cultures of prostate epithelial cells develop 3-D structures in Matrigel in the presence of S2.13-conditioned medium, with evidence of prostate morphology and differentiation (Hudson et al., 2000b). Consequently Matrigel was chosen for this study. Matrigel consists of approximately 60% laminin and other essential components of the basement membrane such as collagen-IV, heparin sulphate proteoglycans, nidogen and varying concentrations of growth factors (Malinda and Kleinman, 1996). Pre2.8 cells were routinely grown in a commercially available serum-free prostate epithelial medium, PrEGM. It has previously been determined that this culture medium supports the growth of prostate epithelial cells (Fry et al., 2000c). S2.13 cells were routinely grown in DMEM (Life Technologies) supplemented with 10% foetal calf serum (FCS). Stromal cells tend not to grow in the absence of serum (Peehl and Stamey, 1986b; Peehl et al., 1988a).

In this chapter attempts to optimise growth conditions for co-cultures of Pre2.8 and S2.13 cells are described. 3-D structures were compared for varying culture conditions. The role of the stroma in the development of 3-D culture by Pre2.8 was investigated. The morphology of the 3-D cultures was studied using immunofluorescence staining for cytokeratins, immunocytochemistry staining for stromal cell markers and prostate-specific differentiation was studied at both protein and mRNA levels. The influence of androgen on the development of 3-D structures by Pre2.8 cells was also studied.
6.2 COMPARISON OF GROWTH OF PRE2.8 AND S2.13 CELLS IN VARIOUS TISSUE CULTURE MEDIA

Before setting up co-cultures of Pre2.8 and S2.13 cells, it was necessary to find a medium that both cell types could happily grow in.

6.2.1 Growth Of Pre2.8 Cells In Serum-Free PrEGM And RPMI-1640 Medium In The Presence And Absence Of Serum

PrEGM is an expensive specialised serum-free epithelial growth medium, whereas RPMI-1640 is a cheap, general-purpose growth medium. To try to reduce costs, the growth of Pre2.8 cells in PrEGM medium was compared to growth in serum-free RPMI and RPMI containing 8% FCS serum (RPMI/FCS) at 33°C, 37°C and 39°C. Comparisons were made of the morphology and cell number after 4 days culture.

Pre2.8 cells died within a few days in serum-free RPMI medium at 37°C and 39°C. At 33°C the epithelial cells were alive after 14 days in serum-free medium, but did not survive passaging. The Pre2.8 cells survived in RPMI/FCS medium at 33°C and 37°C, while at 39°C cells proliferated for about 6 days, but then stopped dividing and were dead by day 20.

The morphology of Pre2.8 cells changed when grown in RPMI/FCS, particularly at 37°C and 39°C (figure 6.1). Some cells were elongated at 33°C and this appearance was more frequent at higher temperatures. At 37°C and 39°C the cells tend to grow as discrete colonies in RPMI/FCS, in contrast to their more scattered appearance in PrEGM.
Figure 6.1: Comparison Of Pre2.8 Cell Morphology In PrEGM And RPMI/FCS Media

Monolayer cultures of Pre2.8 epithelial cells grown in PrEGM or RPMI/FCS medium for 10 days at 33°C, 37°C and 39°C. Original magnification x20
6.2.2 Proliferation Of Pre2.8 Cells In Various Media

Pre2.8 cells were grown in 4 media: PrEGM, RPMI/FCS, KGM (Keratinocyte-SFM medium), DMEM/FCS and mixtures of these media for 4 days at 33°C. The growth rates were compared using the MTT assay. All assays were repeated 3 times.

RPMI/FCS and DMEM/FCS medium alone and a mixture containing equal volumes of both resulted in the highest growth rates (figure 6.2). PrEGM and KGM, alone or in combination resulted in the lowest growth rates (figure 6.2). Equal volumes of DMEM/FCS (routine S2.13 growth medium) and PrEGM (routine Pre2.8 growth medium) produced approximately half the maximum rate of proliferation achieved with RPMI/FCS alone or DMEM/FCS with RPMI/FCS (figure 6.2).

Figure 6.2: Comparison Of Pre2.8 Cell Proliferation In Different Media At 33°C

The average and standard error of 3 replicate experiments to compare the growth of Pre2.8 cells with different media combinations. Abbreviations: D/P – DMEM/PrEGM; R/P – RPMI/PrEGM; D/R – DMEM/ RPMI; K/P – KGM/ PrEGM; K/R – KGM/ RPMI; K/D – KGM/ DMEM
6.2.3 Proliferation Of S2.13 Cells In Various Media

The growth of S2.13 cells was compared in RPMI/FCS, DMEM/FCS (routine S2.13 growth medium), PrEGM (routine Pre2.8 growth medium), DMEM/FCS with PrEGM, RPMI/FCS with PrEGM or RPMI/FCS with KGM (Keratinocyte-SFM medium) medium. The cells were plated at a density of 500,000/T25 flask and grown at 33°C and 37°C. Because S2.13 cells metabolise MTT poorly, comparisons were made using cell counts (figures 6.3 and 6.4). All assays were repeated 3 times.

The highest cell numbers were obtained with a combination of DMEM/FCS with PrEGM and RPMI/FCS with KGM medium at 33°C (figure 6.3). Similar results were obtained at 33°C and 37°C (figure 6.3 and 6.4, respectively).

Conclusion

Pre2.8 and S2.13 grew best in RPMI and DMEM, but RPMI-1640 altered the morphology of Pre2.8 cells. Equal volumes of PrEGM (routine growth medium for Pre2.8 cells) and DMEM (routine growth medium for S2.13 cells) produced similar rates of proliferation for Pre2.8 and S2.13 cells in monolayer cultures, and therefore this mixture was selected for further study.
The average and standard error of 3 replicate experiments for comparison of S2.13 cell growth with different media combinations, after 7 days in culture at 33°C (top histogram) and 37°C (bottom histogram).
6.3 EFFECT OF STROMAL CELLS AND CONDITIONED MEDIUM ON THE GROWTH OF PRE2.8 CELLS IN 3-DIMENSIONAL CULTURE

A comparison of the growth of Pre2.8 cells in matrigel (3-D) cultures with equal volumes of PrEGM and DMEM/FCS or PrEGM only was carried out when mixed with S2.13 cells, 3T3 mouse fibroblasts or S2.13 conditioned medium.

Because S2.13 stromal cells grow approximately 4 times faster than Pre2.8 epithelial cells in monolayer culture, initially a Pre2.8/S2.13 ratio of 4:1 was used. Pre2.8 epithelial and S2.13 stromal cells were mixed at a ratio of 4:1 and grown in Matrigel at 33°C, 37°C and 39°C. The morphology of the 3-D cultures was examined under the light phase inverted microscope for up to 20 days of culture (figure 6.5).

Three main types of 3-D structures were observed at each temperature (figure 6.5). At 33°C the cells formed a lattice, consisting of dark clumps of cells connected by fainter tube-like structures. At 37°C cells accumulated together in fewer, larger interconnected organoids. At 39°C the cells formed many small organoids. The co-cultures tended to form lattices in PrEGM alone, and mixtures of small and large organoids in the presence of serum.

The replacement of S2.13 cells with conditioned medium (S2.13 supernatant – cells grown in PrEGM medium) at 33°C and 37°C (table 6.1) (figure 6.6) produced lattices. 3-D structures did not develop when S2.13 cells were grown alone in Matrigel. Very small organoids were seen when Pre2.8 cells only were grown in Matrigel at 33°C and 37°C (figure 6.6). These structures were compared to larger interconnected organoids seen when Pre2.8 and S2.13 cells (ratio of 4:1) were grown in Matrigel in equal volumes of PrEGM and DMEM/FCS (figure 6.6). Similar results were obtained for each of these conditions in the presence and absence of mibolerone. The addition of mibolerone at either 10^{-8} or 10^{-9}M tended to favour the production of small and large organoids (table 6.1, figure 6.6).

The development of 3-D structures was not improved by increasing the concentration of S2.13 cells. When larger numbers of cells (ratios of 1:8 and 1:10) were present the matrigel contracted into a ball.
When 400,000 mouse 3T3 fibroblasts were grown alone in matrigel (3-D) cultures or as a mixture with 100,000 Pre2.8 cells in matrigel cultures, the matrigel contracted into a ball. A ratio of 1:1 for Pre2.8/3T3 cells in matrigel produced 3-D structures similar to Pre2.8/S2.13 matrigel cultures.

Most stromal cells died in Pre2.8/S2.13 matrigel cultures with PrEGM only medium and with equal volumes of PrEGM and DMEM/FCS. Epithelial cell markers (e.g. figures 6.8) stain nearly all cells present in sections of the organoids, except for a few unstained cells (Hoechst⁴) around the edge of each organoid that are likely to be stromal cells.

6.3.1 Stromal Cell Marker Expression Of 3-Dimensional Cultures
Pre2.8/S2.13, Pre2.8/3T3, S2.13 only and 3T3 only cells grown in matrigel were positive for vimentin and negative for smooth muscle actin (SMA) (table 6.2 and figure 6.7). Pre2.8 only cells were vimentin negative. Prostate tissue sections, NPro2 were vimentin and SMA positive and no background was observed in negative controls. Stromal cells were distributed in an unorganised manner throughout the matrigel.

6.3.2 Keratin Expression Of Pre2.8 Cells In 3-Dimensional Culture
Pre2.8 epithelial and S2.13 stromal cells were mixed at a ratio of 4:1 and grown in Matrigel at 33°C, 37°C and 39°C. 3-Dimensional structures obtained after 20 days in culture were formalin fixed and 7-10μm sections were prepared. Sections were used for immunohistochemistry. All experiments were repeated at least three times. The stained sections were used to study the morphology and degree of differentiation of the 3D structures. RNA was extracted from 3-D structures at 37°C and synthesised into cDNA by reverse transcriptase for PCR analysis of basal and luminal keratin expression.

Pre2.8/S2.13 matrigel cultures had the same cytokeratin pattern at 33°C, 37°C and 39°C (table 6.2). Limited immunocytochemistry could be carried out on 39°C sections due to the small size of spheroids. All secondary antibody controls were negative (table 6.2). Sections of BPH tissue were used for positive controls.

K14/K17 expression
The basal (outer) layer of the organoids was positive for K14 and K17 at 33°C and 37°C (figure 6.8) using double immunofluorescence. K17 was more intensely positive in the...
central (luminal) areas of the organoids (figure 6.8). Almost all the cells stained for K17 throughout the organoids.

Pre2.8/3T3 and Pre2.8 only matrigel cultures were positive for K14 and K17 immunofluorescent double staining at 37°C (table 6.2 and figure 6.9). Architecture was similar to Pre2.8/S2.13 organoids, with an outer basal layer and an inner luminal layer.

S2.13 and 3T3 cells grown alone were negative for K14 and K17 (not included in figures). Prostate tissue sections were positive and there was no background present in negative controls (table 6.2 and figure 6.9).

RT-PCR was carried out to confirm the expression of a basal cell marker at the RNA level. Pre2.8/S2.13 co-cultures (1:1 and 1:4) and Pre2.8 only (1x10^5 cells) RNA was positive for K5, producing a 350bp fragment as predicted (table 6.4 and figure 6.15). S2.13 alone (1x10^5 and 4x10^5 cells) and LNCaP and DU145 cell lines were negative for K5, as expected. The reagent only samples were negative. The level of RNA expression for K5 was not affected by increasing concentrations of S2.13 stromal cells.

K19 expression
There was limited K19+ stained cells, approximately 1% (figure 6.10).

K8 expression
The percentage of K8 positive cells was difficult to estimate due to difficulty in obtaining satisfactory K8 staining. Immunofluorescent of K8 showed that approximately 10% of the cells are intensely K8 (figure 6.11). Using immunocytochemistry, K8 staining was positive at 33°C and 37°C, although there was faint background staining in the negative control (table 6.2) (figure 6.12). Highly structured organoids at 37°C clearly shows an inner luminal layer with an unstained outer layer, likely to be basal cells (magnification, figure 6.12).

K14/K8 expression
Co-staining of K14 and K8 produced similar results at 33°C, 37°C and 39°C (figures 6.13 and 6.14). These two keratins did not co-stain in the absence of mibolerone, although in the presence of mibolerone K8 was weakly positive in association with K14.
(figures 6.13 and 6.14). The difference in K14/K8 co-staining in the presence of mibolerone is particularly clear in cells at 39°C (compare figures 6.13 and 6.14).

K18 Expression

K18 (a luminal epithelial cell marker) immunocytochemistry was negative for all samples including normal prostate tissue sections (NPro2). No conclusion could be made from these results. RT-PCR was carried out to determine K18 expression in Matrigel cultures, Pre2.8/S2.13 (1:1 and 1:4), S2.13 only (1\times10^5 and 4\times10^5 cells) and Pre2.8 only (1\times10^5 cells) matrigel cultures (table 6.4 and figure 6.15). A 544bp size fragment was expected. LNCaP cells were positive for K18, but all organoids (Pre2.8/S2.13, S2.13 only and Pre2.8 only) and the DU145 cell line were negative. Reagent only samples were negative.
6.4 EXPRESSION OF PROSTATE-SPECIFIC CHARACTERISTICS BY PRE2.8 CELLS IN 3-DIMENSIONAL CULTURE

Ideally a model of BPH should express nuclear AR and cytoplasmic PSA and PAP in luminal epithelial cells, with secretion of PSA into the medium. Pre2.8 epithelial and S2.13 stromal cells were mixed at a ratio of 4:1 and grown in Matrigel at 33°C, 37°C and 39°C. 3-Dimensional structures obtained after 24 days in culture were formalin fixed and 7-10μm sections were prepared. Sections of the 33°C and 37°C co-cultures were used for immunohistochemistry. Immunohistochemistry could not be carried out on the organoids grown at 39°C, due to their small size. All experiments were repeated at least three times.

RT-PCR was carried out to look for AR and PSA RNA expression in Pre2.8/S2.13 (1:1 and 1:4), S2.13 only (1x10^5 and 4x10^5 cells) and Pre2.8 only (1x10^5 cells) matrigel cultures. The expected size fragments on an electrophoresis gel are 526bp (AR) and 362bp (PSA). β-Actin PCR was carried out on all samples to provide PCR amplification and loading controls. The metastatic prostate cell line, LNCaP was used as a positive control for AR and PSA. DU145, a metastatic cell line was included as a negative control for AR and PSA, but it turned out to be weakly positive for both. Reagent only (no template RNA) was used as a PCR contamination control.

6.4.1 Androgen Receptor (AR)

Pre2.8/S2.13 Matrigel sections were positive for AR at 33°C and 37°C in the absence and presence of mibolerone (table 6.2) (figure 6.16). The staining pattern for AR was nuclear and cytoplasmic and it was expressed in all the cells. S2.13 cells alone were unsuccessful and Pre2.8 only sections were negative. Benign prostate sections, NPro2 were positive for AR in the nucleus and there was no background staining in the secondary antibody negative control (figure 6.16).

AR expression was also tested by RT-PCR. The expected size fragment for AR primers is 526bp. The correct size band was found for Pre2.8/S2.13 co-culture, S2.13 only samples and LNCaP positive control (table 6.4 and figure 6.19). Pre2.8 only samples were negative. DU145 had a very faint band at 526bp. Reagent only samples were negative. The level of RNA expression for AR was increased with an increased stromal cell concentration from 100,000 cells seeded to 400,000 cells. This increase in RNA
expression was seen in S2.13/Pre2.8 co-cultures and in S2.13 only matrigel cultures. Equal RNA concentrations were observed for β-actin (table 6.4 and figure 6.19).

6.4.2 PSA

Similar nuclear and cytoplasmic expression was observed for PSA and AR in co-cultures grown at 33°C and 37°C in the absence and presence of mibolerone (table 6.2) (figure 6.17). The prostate tissue section, NPro2 showed PSA staining in the luminal epithelial cells and no background staining was present in negative controls (figure 6.17). A distinct PSA negative area was present in the centre of the organoids, where PSA secretion might be expected. PSA staining was observed in Pre2.8/S2.13 co-cultures, but it consisted of cytoplasmic and nuclear staining (table 6.2).

RT-PCR results for PSA were inconclusive (table 6.4 and figure 6.19). The expected size band for these PSA primers is 362bp. The LNCaP positive control and DU145 produced a band at the correct size, 362bp, but all other samples produced a 500bp fragment. Reagent only controls were negative.

Supernatants from Matrigel and monolayer cultures set-up with Pre2.8 and S2.13 cells grown in PrEGM/DMEM medium with and without mibolerone were tested for PSA. Samples from three different time points at 33°C, 37°C and 39°C were tested (table 6.3). All samples were negative for PSA, while controls (supernatants from the cell line LNCaP) were positive. Supernatant taken from Pre2.8/S2.13, S2.13 only and Pre2.8 only matrigel cultures were negative for PSA expression. If PSA is expressed in these cultures, it is not being secreted into the medium.

6.4.3 PAP

PAP was negative for all Pre2.8/S2.13 co-cultures and other cultures grown at 33°C and 37°C, in the presence or absence of mibolerone. Prostate tissue sections were positive for PAP antibody (table 6.2) (figure 6.18).
6.5 MIBOLERONE
Similar results were obtained in the presence and absence of mibolerone (figures 6.6, 6.13 and 6.14). The effect of mibolerone was studied under the various conditions described in the previous three sections (table 6.2) (figures 6.6, 6.13 and 6.14). The addition of mibolerone at either 10^{-8} or 10^{-9}M tended to favour the production of small and large organoids (table 6.2, figure 6.6) and possibly encourage co-expression of K14 and K8 (table 6.2, figures 6.13 and 6.13).

6.6 CELL PROLIFERATION
The presence of cell proliferation was examined by Ki-67 immunofluorescence. Ki-67 expression was observed in the NPro2 positive control, Pre2.8/S2.13 (4:1 cell ratio), Pre2.8/3T3 (1:1 cell ratio), S2.13 only (100,000 cells seeded) and Pre2.8 only (400,000 cells seeded) matrigel cultures (table 6.2 and figure 6.20). Proliferation appears more concentrated in 3T3/Pre2.8 compared to Pre2.8/S2.13 co-cultures.

Table 6.1: Morphology Of 3-D Cultures

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Medium</th>
<th>Temp</th>
<th>Mibolerone</th>
<th>3-D Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre2.8/S2.13</td>
<td>PrEGM only</td>
<td>33°C</td>
<td>-</td>
<td>Lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37°C</td>
<td>+</td>
<td>Small organoids</td>
</tr>
<tr>
<td>Pre2.8/S2.13</td>
<td>PrEGM + DMEM/FCS</td>
<td>33°C</td>
<td>-</td>
<td>Small and large organoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37°C</td>
<td>+</td>
<td>Small organoids</td>
</tr>
<tr>
<td>Pre2.8 only</td>
<td>S2.13 conditioned medium (PrEGM). S2.13 supernatant – cells grown in PrEGM medium.</td>
<td>33°C</td>
<td>-</td>
<td>Lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37°C</td>
<td>+</td>
<td>Small organoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33°C</td>
<td>-</td>
<td>Lattice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37°C</td>
<td>+</td>
<td>Small organoids</td>
</tr>
</tbody>
</table>
Table 6.2: Immunohistochemistry Of 3-D Structures At 33°C, 37°C And 39°C

<table>
<thead>
<tr>
<th>Temp</th>
<th>Sample</th>
<th>Mib</th>
<th>AR</th>
<th>PSA</th>
<th>PAP</th>
<th>K14</th>
<th>K17</th>
<th>K19</th>
<th>K8</th>
<th>K18</th>
<th>SMA</th>
<th>Vim</th>
<th>Ki67</th>
</tr>
</thead>
<tbody>
<tr>
<td>33°C</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n+c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>n+c</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>37°C</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n+c</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>n+c</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>3T3/Pre2.8</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>nt</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Pre2.8 only</td>
<td>-</td>
<td>b/g</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>-</td>
<td>nt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2.13 only</td>
<td>-</td>
<td>nt</td>
<td>nt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nt</td>
<td>-</td>
<td>nt</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3T3 only</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nt</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>39°C</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td></td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Control</td>
<td>Background</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benign prostate (NPro2)</td>
<td>+ (n)</td>
<td>+ (c)</td>
<td>+ (c)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AR (androgen receptor); PSA (prostate specific androgen); PAP (prostatic acid phosphatase); K (keratin antibody); SMA (smooth muscle actin); Vim (vimentin); Ki67 (proliferation marker); + (positive); - (negative); n+c (nuclear and cytoplasmic cell staining); nt (not tested); b/g (background staining)

Table 6.3: PSA Level In Co-Culture Supernatant

<table>
<thead>
<tr>
<th>Temp</th>
<th>Culture type</th>
<th>Sample</th>
<th>Mibolerone</th>
<th>PSA in culture supernatant</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d11</td>
<td>d18</td>
</tr>
<tr>
<td>33oC</td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37oC</td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39oC</td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3-D</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>monolayer</td>
<td>Pre2.8/S2.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Pos control</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 6.4: Summary Of RT-PCR Results

<table>
<thead>
<tr>
<th>RNA origin (culture set-up at 37°C)</th>
<th>PSA</th>
<th>AR</th>
<th>K5 (Basal)</th>
<th>K18 (luminal)</th>
<th>β-Actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>362bp</td>
<td>526bp</td>
<td>350bp</td>
<td>544bp</td>
<td></td>
</tr>
<tr>
<td>Pre2.8/S2.13 (Culture ratio of 1:1)</td>
<td>pos (500bp)</td>
<td>w pos</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>Pre2.8/S2.13 (Culture ratio of 1:4)</td>
<td>pos (500bp)</td>
<td>pos</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>S2.13 only (100,000)</td>
<td>pos (500bp)</td>
<td>w pos</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>S2.13 only (400,000)</td>
<td>pos (500bp)</td>
<td>pos</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>Pre2.8 only (100,000)</td>
<td>pos (500bp)</td>
<td>neg</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>LNCaP positive control</td>
<td>pos (362bp)</td>
<td>pos</td>
<td>neg</td>
<td>pos</td>
<td>pos</td>
</tr>
<tr>
<td>DU145</td>
<td>vw pos (362bp)</td>
<td>vw pos</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>Reagent Only control</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>Reverse Transcriptase control</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
</tbody>
</table>

Abbreviations: pos – positive; wpos – weak positive; vw pos – very weak positive; neg - negative
Comparison of organoid (spheroid) development for Pre2.8/S2.13 matrigel (in PrEGM and DMEM/FCS medium) co-cultures at 33°C, 37°C and 39°C, after 20 days in culture. Three main types of 3-D structures were observed; a lattice formation at 33°C, large interconnecting organoids at 37°C and small organoids at 39°C. Original magnification x40 (objective lense).
Comparison of organoid (spheroid) development for Pre2.8/S2.13 or Pre2.8 cells only, in matrigel co-cultures at 33°C, 37°C and 39°C, after 20 days in culture. Different culture conditions with and without mibolerone at 33°C and 37°C; 1) Pre2.8 and S2.13 cells in PrEGM medium only; 2) Pre2.8 and S2.13 cells in equal volumes of PrEGM and DMEM/FCS; 3) Pre2.8 cells only in S2.13 conditional PrEGM medium. Original magnification is x40 (objective lense).
Paraffin sections of day 24 matrigel cultures (in PrEGM and DMEM/FCS medium) at 37°C with varying cell types, S2.13/Pre2.8, 3T3/Pre2.8, S2.13 only and Pre2.8 only cells. Normal prostate tissue (NPro2) sections were used as positive controls: Fluorescence: Vimentin (red); Smooth muscle actin (green); Hoechst (blue). Original Magnification is x40 (fluorescent microscope – objective lens).
Paraffin sections of Pre2.8/S2.13 matrigel co-cultures (in PrEGM and DMEM/FCS medium) after 3 weeks at 37°C, in the presence of mibolerone, a synthetic DHT. Fluorescence: K14 (green); K17 (red); Hoechst (blue). Original Magnification is x20 (fluorescent microscope – objective lense).
Paraffin sections of 24-day old matrigel cultures (in PrEGM and DMEM/FCS medium) at 37°C with varying cell types, S2.13/Pre2.8, 3T3/Pre2.8 and Pre2.8 only cells. Normal prostate tissue (NPro2) sections were used as positive controls. Fluorescence: K14 (green); K17 (red) and Hoechst (blue). Original magnification was x40 (fluorescent microscope – objective lense).
Figure 6.10: K19 Expression In Pre2.8/S2.13 Matrigel Cultures At 37°C

Paraffin section of Pre2.8/S2.13 matrigel co-culture (in PrEGM and DMEM/FCS medium) after 3 weeks at 37°C, in the presence of mibolerone, a synthetic androgen. Immunofluorescence was carried out with nuclear Hoechst (blue) and keratin 19 (green). Original magnification was x20 (fluorescent microscope – objective lens).
Figure 6.11: K8 Expression In Pre2.8/S2.13 Matrigel Cultures At 37°C

Paraffin section of Pre2.8/S2.13 matrigel co-culture (in PrEGM and DMEM/FCS medium) after 3 weeks at 37°C, in the presence of mibolerone, a synthetic androgen. Immunofluorescence was carried out with nuclear Hoechst (blue) and keratin 8 (red). Original magnification was x20 (fluorescent microscope – objective lense).
Paraffin sections from 3-D matrigel co-cultures after 3 weeks at 33°C and 37°C, in the presence of mibolerone, a synthetic DHT. Cultures were set up either with Pre2.8/S2.13 cells in PrEGM medium only, Pre2.8 cells only in S2.13 supernatant or Pre2.8/S2.13 in equal volumes of PrEGM and DMEM/FCS. DAB staining: K8 (brown); hematoxylin (blue). Original Magnification is x40 (objective lens).
Figure 6.13: K14 And K8 Expression In Pre2.8/S2.13 Matrigel Cultures Without Mibolerone

Paraffin sections of Pre2.8 and S2.13 matrigel co-cultures (in PrEGM and DMEM/FCS medium) after 3 weeks at 33°C, 37°C and 39°C, without mibolerone, a synthetic androgen. Fluorescence: K14 (green); K8 (red); Hoechst (blue). Original Magnification is X40 (fluorescent microscope – objective lense).
Figure 6.14: K14 and K8 expression in Pre2.8/S2.13 Matrigel Cultures with Mibolerone

Paraffin sections of Pre2.8 and S2.13 matrigel co-cultures (in PrEGM and DMEM/FCS medium) after 3 weeks at 33°C, 37°C and 39°C, in the presence of mibolerone, a synthetic androgen. Fluorescence: K14 (green); K8 (red); Hoechst (blue). Original Magnification x40 (fluorescent microscope – objective lense).
Figure 6.15: Keratin 5 and Keratin 18 RNA Expression In 3-D Cultures

Pre2.8 and S2.13 cells were set up in matrigel cultures together and alone. Reverse transcribed cDNA was amplified using K5 primers (A) and K18 primers (B). The expected PCR product for K5 is 350bp and for K18 is 544bp.
Paraffin sections of day 24, S2.13/Pre2.8 matrigel cultures at 33°C and 37°C. Cultures were set up in the presence and absence mibolerone. Normal prostate tissue (NPro2) sections were used as positive controls. Spheroid sections were used as negative controls (i.e. no primary antibody). DAB staining: AR (brown); Hoechst (blue). Original Magnification is x40 (objective lense).
Paraffin sections of day 24, S2.13/Pre2.8 matrigel cultures at 33°C and 37°C. Cultures were set up in the presence and absence mibolerone. Normal prostate tissue (NPro2) sections were used as positive controls. Spheroid sections were used as negative controls (i.e. no primary antibody). DAB staining: PSA (brown); Hoechst (blue). Original Magnification is x40 (objective lense).
Paraffin sections of day 24, S2.13/Pre2.8 matrigel cultures at 33°C and 37°C. Cultures were set up in the presence and absence mibolerone. Normal prostate tissue (NPro2) sections were used as positive controls. Spheroid sections were used as negative controls (i.e. no primary antibody). DAB staining: PAP (brown); Hoechst (blue). Original Magnification is x40 (objective lense).
Pre2.8 and S2.13 cells were set up in matrigel cultures together and alone. Reverse transcribed cDNA was amplified using; A) ARAs and ARDa primers, located on exon 1 and exon 4 of AR, respectively and B) PSA. The expected PCR product for AR is 524bp and for PSA is 362bp. C) Equal loading and integrity of the RNA was confirmed by amplification of β-actin mRNA.
Paraffin sections of day 24 matrigel cultures (in PrEGM and DMEM/FCS medium) at 37°C with varying cell types, S2.13/Pre2.8, 3T3/Pre2.8, S2.13 only and Pre2.8 only cells. Normal prostate tissue (NPro2) sections were used as positive controls. Fluorescence: Ki-67 is green and Hoechst is blue. Original Magnification is x40 (fluorescent microscope – objective lense).
6.7 SUMMARY

In order to develop an in vitro prostate model using normal prostate cell lines, the capacity of Pre2.8 and S2.13 cell lines to form 3-dimensional (3-D) structures in vitro was investigated. The model was based on matrigel cultures using primary prostate cells that produced prostate morphology and differentiation (Hudson et al., 2000b). Initial investigations determined the optimum culture medium for use with both cell lines in matrigel cultures. Conditions were optimised to achieve organoid (spheroid) development most likely to produce morphology and differentiation. During optimisation the role of stroma in matrigel cultures for achieving prostate like characteristics were investigated. The morphology and cell differentiation status of prostate (Pre2.8 and S2.13 BPH cell lines) matrigel (3-D) cultures were investigated using immunofluorescence staining for cytokeratins, immunocytochemistry staining for stromal cell markers and prostate-specific differentiation was studied at both protein and mRNA levels. The influence of androgen (mibolerone, a synthetic androgen) on the development of 3-D structures by Pre2.8 cells was also studied.

3-D structures developed from Pre2.8 cells in Matrigel in equal volumes of PrEGM and DMEM/FCS. The addition of 4% serum resulted in the development of larger organoids. 3-D cultures set-up with Pre2.8 cells grown in PrEGM alone or with conditioned medium developed lattice-like structures. Although larger structures were observed with Pre2.8/S2.13 co-cultures in PrEGM, the cells did not appear to be organised into basal and luminal layers.

Increasing S2.13 cell concentration was not advantageous because the Matrigel contracted and no 3-D structures developed. An alternative cell line, 3T3 mouse fibroblasts, did not improve the ability of Pre2.8 cells to grow in Matrigel. In conclusion, there is no evidence that either the conditioned medium or the addition of the S2.13 stromal cells had a significant influence on the morphology or differentiation of the Pre2.8 cells in 3-D culture.

The structures formed by Pre2.8 cells in Matrigel showed a limited degree of differentiation. They have the potential to form a basal (K14+ K17+) layer surrounding an intermediate or early luminal epithelial layer (K14– K17+ K19– K8+). K14– K17+ and K8+ cells also tend to be scattered in a disorganised fashion throughout the Matrigel.
RT-PCR shows K5 (early basal cell marker) expression but no K18 (late luminal marker), showing limited differentiation occurring.

Although there was some multilayering, little differentiation towards a luminal phenotype was observed. However, positive staining for AR and PSA was observed in the nuclei and cytoplasm. AR is expressed in all cells, from 3-D cultures by immunocytochemistry while RNA expression of AR is found in Pre2.8/S2.13 co-culture and S2.13 only Matrigel cultures, but not in Pre2.8 only Matrigel cultures. PSA was found in the nucleus as well as in the cytoplasm, of 3-D cultures by immunocytochemistry. RT-PCR showed that this PSA expression may be non-specific because a different size band was amplified for 3-D cultures compared to PSA expression in LNCaP positive control, showing that correct primers were used. The particular PSA primer oligonucleotide used for this PCR appears to be annealing to a larger sequence (not expected) that does not have complete homology to the primer sequence (non-specific). AR is expressed in stromal but not epithelial cells in this 3-D model. There is clearly no PSAP expression.

The presence of mibolerone in 3-D cultures appears to inhibit lattice formation and increase organoid formation (figure 6.6), although no difference was observed for cell differentiation or prostate specific characteristics.

In conclusion, a 3-dimensional in vitro model using BPH stromal and epithelial cells from the same patient has been investigated. There are limitations to this model and further optimisation of culture conditions is required. An alternative model such as a collagen sponge may support a greater degree of differentiation.
CHAPTER 7

DISCUSSION
7.1 DISCUSSION
The aim of this project was to establish conditionally immortalised epithelial and stromal cell lines from human prostate tissue that could be used to study prostate differentiation in vitro and in vivo. This study describes the establishment and characterisation of the epithelial cell line Pre2.8 and the stromal cell line S2.13 in monolayer culture. In order to study prostate stromal and epithelial cell interactions S2.13 and Pre2.8 cells were developed into a 3-dimensional model.

7.1.1 Derivation and Authentication and Purity
Two temperature sensitive cell lines, Pre2.8 epithelial and S2.13 stromal cells have been established from BPH tissue, from the same patient. The authenticity of these cell lines was confirmed by showing that the cell lines had the same DNA profile as tissue from the patient from whom the sample was obtained. This finding rules out the possibility of cross-contamination with other cells (Masters et al., 2001). Mycoplasma contamination was ruled out using PCR analysis (Hopert et al., 1993a; Hopert et al., 1993b). Both cell lines were grown for more than 200 population doublings, indicating that they are immortal. The presence of SV40 large T-antigen was confirmed using immunocytochemistry.

Pre2.8 cells were routinely grown in a commercially available serum-free prostate epithelial medium, PrEGM. It has previously been determined that this culture medium supports the growth of prostate epithelial cells (Fry et al., 2000c). Primary cultures from 10 patients became vacuolated and did not survive past 3 weeks in WAJC 404 (McKeehan et al., 1984). Cells from primary cultures of 6 patients grown in mammary epithelial growth medium (MEGM, BioWhittaker UK Ltd) or a combination of MEGM with WAJC 404 or its supplements became squamous after 4-6 weeks and began to detach from the flask. In contrast, cells from 12 patients grown in PrEGM became neither vacuolated nor squamous. Pre2.8 cells grow routinely in PrEGM medium and can be passaged following trypsinisation as long as the cells are centrifuged and washed to remove the trypsin.

S2.13 cells were routinely grown in DMEM (Life Technologies) supplemented with 10% foetal calf serum (FCS). Stromal cells tend not to grow in the absence of serum (Peehl and Stamey, 1986b; Peehl et al., 1988a). Smooth muscle cell (SMC) differentiation can be induced by basic fibroblast growth factor (bFGF) and bovine
pituitary extract (BPE) (Kassen et al., 1996a). Primary smooth muscle cultures gradually lose SMC-specific proteins after 10 passages and develop a myofibroblast phenotype (Zhang et al., 1997). It was thought that horse serum suppresses proliferation of fibroblasts and myofibroblasts. Therefore Zhang et al developed a SMC growth medium, containing horse serum instead of FCS, insulin, dexamethasone and conditioned medium from CRL-5813 and LNCaP tumor cells. Prostatic tumor cells secrete growth factors that stimulate SMC proliferation (Carney et al., 1985; Kooistra et al., 1995b).

The morphologies of both cell lines change when the cells are transferred from 33°C to 39°C, indicating that these cell lines are temperature sensitive. In monolayer cultures at 33°C and 37°C, Pre2.8 epithelial cells are slow growing and have a typical cobblestone appearance, while S2.13 cells are fast growing and have a slightly elongated appearance. Fibroblasts tend to be more obviously elongated in appearance. At 39°C, Pre2.8 cells lose their tightly compact appearance and appear to increase in size. S2.13 cells become more loosely associated and more elongated in appearance at 37°C and 39°C.

Confirmation of the change in cell size of Pre2.8 cells following transfer from 33°C to 39°C was carried out initially using a Coulter Counter, showing a change in cell size from 13.25μm at 33°C to 16.25μm at 37°C and 16.57μm at 39°C. The similarity in cell size found at 37°C and 39°C did not agree with the observations made under the inverted microscope where some cells at 39°C appeared to be larger than at 37°C. Cell size was repeated with adherent cells. The mean size was 40μm at 33°C, 43μm at 37°C and 52μm at 39°C. These findings suggest that the cells become more flattened as the temperature is raised. S2.13 cells were much larger than Pre2.8 cells. A shift in cell size was also seen in these cells, from 55μm to 64μm and 88μm when transferred from 33°C to 37°C and 39°C respectively.

The effect of temperature on the proliferation of Pre2.8 cells was measured to ensure that the immortalisation remained conditional. Pre2.8 cells grow exponentially at 33°C for 17 days, while at 37°C cell growth plateaus much earlier, by day 12. No exponential growth was achieved at 39°C. One important observation is the long lag phase, 2-3 days
before Pre2.8 cells start to divide exponentially. S2.13 cells show a similar pattern. The proliferation rates of these temperature sensitive cell lines are clearly affected when the conformation of the SV40 LTAg is changed at 39°C and 37°C. The growth of conditionally immortalised cell lines was also compared to the growth of cell lines immortalised with wild type HPV. Pre2.8 cells grow faster than the HPV-immortalised 1542-NPTX cells at 33°C, while 1542-NPTX cells grew better at 39°C. Similarly, S2.13 cells did not grow at 39°C, while HPV immortalised 1542-NPFT cells grew well at this temperature.

Colony forming efficiencies provide an indication of stem and transit-amplifying cell fractions within a population (Hudson et al., 2000b). This method also tends to be the preferred method for analysing differences in cell proliferation (colony size) and survival (colony number) within a population. No colonies developed from Pre2.8 cells at 39°C, or when less than 5000 cells were plated at 33°C. Pre2.8 cells grow as a tightly compact monolayer and do not grow well when isolated. The long lag phase may inhibit the survival capacity of these cells under these conditions. Alternatively, these cells may produce autocrine growth factors and need a minimum cell density in order to proliferate.

7.1.2 Cytogenetic Analysis

The karyotype of Pre2.8 and S2.13 cells was analysed by Dr Rod McLeod (DSMZ, Braunschweig, Germany). Using a combination of multicolour fluorescence in situ hybridisation and single locus analysis using bacterial artificial chromosome clones, chromosome rearrangements were studied. Strikingly, both cell lines show amplification of chromosome 20q. In S2.13, chromosome 20 was highly involved in the more complex chromosomal changes and showed the most intense signals.

Pre2.8 cells have a near diploid karyotype with loss of chromosome Y and formation of an isochromosome i(8q), where redistribution of material covered 4q. The long arm of chromosome 20 is inserted into the short arm (p12) of one chromosome 14 and partial duplication of one chromosome 20-homolog.

S2.13 cells have a hypertetraploid karyotype, with many numerical and minor structural changes. Markers of three homogeneous staining regions (HSR) were derived from chromosome 4, 19 and 20.
Although cell lines are prone to genetic instability it is known that many genetic events are likely to be involved in prostate tumorigenesis. It is difficult to distinguish between chromosomal abnormalities occurring due to immortalisation and genetic abnormalities that were present in the primary tissue. Up-regulation of chromosome 20 has been associated with immortalisation and the ability of cells to escape senescence (Cuthill, 1999) (Jarrard and Waldman, 1999).

Some of these findings, particularly alterations of chromosome 20q and the formation of an isochromosome in chromosome 8, i(8) have been observed by other research groups. Gain of chromosome 20 has been associated with many cancer types including prostate, bladder, melanoma, colon, pancreas and breast (Brothman et al., 1990; Richter et al., 1998; Bastian et al., 1998; Korn et al., 1999; Mahlamaki et al., 1997). More specifically amplification of chromosome 20q13 was observed in breast cancer (Tanner et al., 1994) and in other tumor types (Ohyashiki et al., 1992; Mohapatra et al., 1995; Schlegel et al., 1995; Bockmuh et al., 1997). A novel androgen-induced gene, PMEPA1 that encodes a polypeptide with a type 1b transmembrane domain was cloned and characterised (Xu et al., 2000). Database searches showed sequence homology of this gene to genomic clones, RPS-1059C7 and 718J7, which were mapped to chromosome 20 q13.2- q13.33. Using comparative genomic hybridisation, chromosome alterations were found to be possibly associated with clinically defined CaP stage (Wolter et al., 2002). This group found losses at chromosome 13 (q21.1-21.3), 8p21.2, 6q and 16q, and gains at chromosome 17q, 20 (q13.2-13.3) and 9q.

Prostate cancer can be sporadic, familial or hereditary. Sporadic cancers are most widely studied. In a study comparing androgen-sensitive prostate (AS) cancers with androgen-insensitive prostate (AI) cancers, early stage CaP was associated with loss of 8p. Progression of metastatic AI CaP is associated with loss of chromosomes 2q, 5q, 10q, 11q, 13q, 16q, 17q, 20q (Cher et al., 1994). A study of differential gene expression between cell lines, LNCaP (AS) and LNCaP-r (AI) found 3 genes associated with development of AI CaP. An upregulation of the fibronectin (FN) gene, mapped to 2q was found while downregulation of the breast basic conserved gene-1 (BBC1), mapped to 16q and ubiquitin enzyme variant-1 (UEV-1), mapped to 20q was observed.

A hereditary CaP study was carried out to look for the existence of familial clustering and increased hereditary risk (Berry et al., 2000). They carried out a genome wide
search on 162 North American families and found linkage to chromosome 20q13, which they designated as HPC20. Various confirmation studies were unsuccessful in finding confirmation of linkage to these CaP susceptibility loci. No linkage was found for HPC1, CAPB and HPCX in a study of 64 South West European families, although linkage was associated to the PCAP locus (Cussenot and Valeri, 2001) which was originally identified from a study of French and German families. Epidemiology may be an important factor in linkage studies of familial and hereditary CaP. A confirmation study of 20q13 was carried out using 172 families affected by CaP, who were participating in the University of Michigan Prostate Cancer Genetics Project (PCGP) (Bock et al., 2001). No significant evidence for CaP susceptibility for linkage to 20q13 was found, with the exception of black families. Differences between family size, age of CaP diagnosis and ethnic composition could be factors allowing for the lack of 20q13 linkage.

Cytogenetic and array comparative genomic hybridisation and expression analysis was carried out on prostate cancer xenograft (WISH-PC14), derived from a locally advanced tumor (Bar-Shira et al., 2002). Abnormalities were predominantly found on chromosome 8, 20 and X and overexpressed genes were located to chromosome 20q13.

An association of loss of chromosome 8p and gain of chromosome 8q sequences, suggests the formation of isochromosomes, i(8q) in advanced prostate tumors (Macoska et al., 2000). This group found trisomy for chromosome 20 and rearrangements involving chromosomes 3, 4, 8, 9, 10, 16, 17, 18, 19, 21, and 22. They concentrated their studies on numerical and structural alterations of chromosome 8 in two normal prostate epithelium cell lines and three human prostate tumor cell lines. They found loss of 8p in prostate tumor cell lines and two tumor cell lines demonstrated an i(8q) chromosome, as well as rearrangement of chromosome 8 material with either chromosome 20 or 21 for one of the tumor cell lines. Gain of chromosome 8q from q11.2 to q24, although not in the form of an i(8q) was found in one of the normal epithelial cell lines. These authors have shown evidence to support the theory that chromosomal loss of 8p in primary human prostate tumors may not result from simple deletion of all or part of the short arm, but involves 8p loss. This may result from complex structural rearrangements of chromosome 8, which sometimes results in gain of 8q material and this may occur during tumorigenesis.
These studies indicate that chromosomes 20 and 8 alterations may be associated with CaP. The presence of CaP chromosomal alterations, associated with our BPH cell lines, Pre2.8 and S2.13 is unexpected since, BPH is not believed to be a pre-cancerous condition. One explanation is that these genetic changes enable prostate cells to extend their lifespan and have been selected during the immortalisation of the cell lines. Pre2.8 and S2.13 cells do not form colonies in semi-solid agar cultures. It may be useful to repeat this analysis at a later passage level in order to show cell stability and to determine if passaging produces further chromosomal alterations and to see if chromosome 20 and 8 alterations are consistent with with passaging.

7.1.3 Differentiation

The aim of this project was to establish a prostate epithelial and stromal cell model for the study of prostate differentiation in vitro. Most continuous cell lines appear to be relatively undifferentiated cells with the capacity to proliferate, but tend not to differentiate in vitro. We attempted to overcome this limitation by using a temperature sensitive switch for SV40 T-antigen that drives cell proliferation (Jat and Sharp, 1989; Stamps et al., 1994). Immortalised temperature sensitive cells are expected to proliferate at permissive temperatures (33°C), while at non-permissive temperatures (39°C) proliferation should be switched off and cell differentiation is anticipated.

We observed a substantial proliferating population for Pre2.8 cells at 33°C (93% proliferating cells), which substantially decreased when cells were transferred to 37°C (26% proliferating cells) and 39°C (15% proliferating cells), another indication that the temperature sensitive switch was working correctly. It would be interesting to determine if this substantial proliferating population was also observed in the original tissue. It would also be interesting to obtain S2.13 proliferation data for comparison.

To my knowledge there are no other immortalised temperature sensitive prostate cell lines and there is a limited number of immortalised temperature sensitive cell lines established from other human tissues. Most temperature sensitive cell lines have been produced from mouse and rat tissues. Human mammary epithelial cells were immortalised using the temperature sensitive SV40 T-antigen and used to investigate the role of the T-antigen gene and its site of integration in human epithelial cell immortalisation (Stamps et al., 1994). Immortalisation of freshly isolated normal adult human mammary fibroblasts and endothelial cells was unsuccessful using functional
telomerase (hTERT) alone or by using the temperature sensitive (ts) mutant (U19tsA58) of the SV40 LT antigen alone. A combination of hTERT and tsLT-ag generated conditionally immortalised human cells in a reproducible manner (O'Hare et al., 2001). An early optic-nerve progenitor cell model, tsU19-9 was established from postnatal day 2 rats using the ts SV40 LT-antigen. At 33°C these nestin (neuronal precursor marker) expressing cells had a flat epithelial morphology. These cells underwent morphological and antigenic differentiation to cells characteristic of the oligodendrocyte lineage at 39°C (Cohen et al., 1999). Three temperature sensitive human “ovarian surface” cell lines have been established (Leung et al., 2001). This is the area where epithelial ovarian carcinomas develop. At 34°C most cells expressing the epithelial keratin markers varied between cell lines from 20-97%. Collagen type 3, a mesenchymal marker was present in 24-43% of cells. When cell lines were switched to 39°C, proliferation was inactivated and keratin expression was increased to 85-100% in all cell lines, while collagen type 3 expression increased significantly in 2 cell lines.

One hundred neural stem and progenitor cell lines were immortalised, using ts SV40 large T-antigen (A58/U19) from primary hippocampal and cerebellar progenitor cells from embryonic day (E) 16.5 to 17.5 C57BL/10SnJ murine fetuses. From these cell lines a clonal neural stem cell line (MK31) gave rise to 3 of the major CNS cellular elements (neurons, astrocytes and oligodendrocytes). At 33°C single neural stem cells exhibited self-renewal, clonal expansion and both symmetric and asymmetric modes of cell division. When these cells were switched to 39°C they stopped proliferation and successfully differentiated into neuronal, oligodendroglial and astroglial cell lineages, under the influence of specific sets of cytokines (Gokhan et al., 1998). As part of a study on signal transduction pathways leading to neuronal differentiation a hippocampal stem cell line, HiB5 was established from the CNS of the rat, E16 hippocampus using the ts SV40 LT-antigen gene (Renfranz et al., 1991). HiB5 cells have stem cell markers such as nestin and intermediate filament and differentiate into neuronal cells in vivo when implanted into rat brain. They proliferate in response to serum or retinoic acid at 33°C and differentiate into a non-proliferating, neuronal phenotype in response to PDGF (platelet-derived growth factor) at 39°C (Chung et al., 2000; Kwon, 1979).

Masuo Obinata has described a different approach to the establishment of temperature sensitive cell lines (Yanai N and Obinata M, 2001). He hopes that someday all distinct cell types in the body, of which there are 200 known so far, could be separated from
each other to produce a cell bank. He suggests that all cell types could be readily available for analysis in order to answer fundamental questions about the development of different cell types into tissues or organs. A database containing this information could then be established. It would first be necessary to immortalise these cells. In order to overcome the loss of original cell differentiation function they used the tsSV40 LT-antigen, but not directly into each cell type. Instead they produced transgenic mice harbouring the tsSV40 LT-antigen gene derived from tsA58 virus. BamHI DNA fragment of whole tsSV40 LT-antigen DNA, along with the major histocompatibility complex H-2Kb promoter was injected into fertilised eggs of C57BL/6 mice (Yanai et al., 1991). These transgenic mice were called H2T-transgenic mice. Various tissue cell lines have been established from these H2T-transgenic mice and also from ts transgenic rats (Yanai N and Obinata M, 2001). Most of these cell lines grow at 33°C but cell proliferation is arrested at 39°C, allowing the differentiation functions of these cell lines to be successfully maintained. Some examples of established H2T-transgenic cell lines from different organs of H2T mice are hepatocyte cells (Yanai et al., 1991), renal cells (Hosoyamada et al., 1996), colonic epithelial (Tabuchi et al., 2000), tracheal epithelial cells (Sugiyama et al., 1998) and bone marrow stromal cells (Kameoka et al., 1995).

Cell lines have been invaluable as experimental tools for the study of neural and sensory function, particularly in inner ear research. In order to push forward and increase the value of such cell lines, the tsSV40 LT-antigen was used to create temperature sensitive cell lines from different tissues and developmental stages of the inner ear. Sensory cells of the inner ear were immortalised using the H2Kbts58 transgenic mouse (Immortomouse)(Holley and Lawlor, 1997). Using this Immortomouse, different cell lines representing different developmental stages can be more readily compared because the immortalising gene is incorporated and expressed in exactly the same way. Alarid et al. targeted the T-antigen gene with promoters that were activated at different stages of development to create committed and uncommitted pituitary cell lines. Most of these cell lines have retained their original phenotype (Alarid et al., 1996). These conditionally immortal cell lines differentiate in an ordered manner in terms of gene expression. This provides the potential to study the different effects of various signalling molecules.

Temperature sensitive transgenic mice have been successfully used to establish cell lines that maintain their original phenotype and differentiation can easily be switched.
on. This approach may not be beneficial for human prostate research since the mouse prostate is very different from the adult human prostate.

BPH is predominantly a stromal disease (McNeal, 1978) (Rohr and Bartsch, 1980). There are three types of stromal cells in prostate tissue, fibroblasts (vimentin, fibroblast-AS02), myofibroblasts (vimentin, SMA) and smooth muscle cells (vimentin, SMA, SM-myosin). S2.13 cells are fibroblast cells, expressing vimentin and fibroblast antibody only.

Epithelial cells are responsible for the protective and secretory function of many organs. The function of the prostate is not clear, but it is involved in secretion of PSA and PSAP. Epithelial cells are good models for differentiation and studying stem cells. Stem cells are thought to be located in the basal layer in the adult prostate (Bonkhoff and Remberger, 1996; Robinson et al., 1998b). Prostate epithelium is the site of malignancy. Cytokeratin antibodies have been widely used to determine epithelial cell phenotype and differentiation status. There are two main cell types in prostate epithelium tissue, the basal (K5, K14, K17) and luminal (K8, K18) cells. Pre2.8 cells have stronger K8 and K18 staining at 37°C and 39°C, indicating a more differentiated phenotype at the higher temperatures.

Although there is no definitive evidence for the existence of an intermediate epithelial cell it is now generally accepted. Co-expression of basal and luminal markers in an intermediate phenotype was identified with some cells expressing K14, K5, p63, K17, K19, K8, K18 and GSTpi (Bonkhoff et al., 1994; Bonkhoff and Remberger, 1996; Hudson et al., 2000a; Xue et al., 1998). Keratin 19 expression frequently occurred in basal and in luminal cells of normal, malignant and BPH (Hudson et al., 2001a; Peehl et al., 1996). Hudson et al (2001) suggests that K19 expressing cells represents a population of basal cells in the process of differentiation into luminal cells. They proposed a hypothetical differentiation pathway for human prostate epithelial cells based on patterns of keratin staining. Basal stem cells (K5 and K14 only) give rise to an intermediate transit amplifying population, expressing K19. These cells differentiate into luminal cells with transient co-expression of K19, K8 and K18 before complete differentiation into cells expressing K8 and K18 only. K19 is switched on in Pre2.8, at low levels at 37°C and 39°C, suggesting the presence of an intermediate transit amplifying population.
Evidence contradicting the proposal that K19 is an intermediate epithelial marker and that basal cells are the site for stem cells was found by another group (Wang et al., 2001). They studied the urogenital sinus epithelium, the progenitor of the prostate epithelium precursor, to look for expression of epithelial subtypes. They used cytokeratin markers and other differentiation markers (p63 and GSTpi) and compared its differentiation profile with developing and adult prostate. They suggested that the embryonic urogenital sinus epithelium should be rich in prostatic stem cells, i.e. contain a differentiation marker profile similar to that of prostatic stem cells. Wang et al found a cell population in the foetal urogenital sinus epithelium that only contained the full marker compliment (K14, K5, p63, K19, K8, K18 and GSTpi). They also found a population of cells in the adult prostate with this marker profile. They suggested that the small population of basal/luminal expressing cells are prostate stem cells since they are also found in urogenital sinus epithelium. Otherwise any other proposed stem cell population should be expressed in urogenital sinus epithelium. Their hypothetical cell differentiation model suggests that cells co-expressing K14, K5, p63, K19, K8, K18 and GSTpi give rise to definitive basal cells (K14, K5, p63, K19 and GSTpi positive only) and luminal cells (K8, K18 positive only). On the basis of this theory, Pre2.8 cells may contain stem cells since they express a small population of K14, K17, K19, K8 and K18 positive cells at 37°C and 39°C. This is unlikely otherwise K19 would also be expressed at 33°C. Further investigations need to be carried out in order to clarify the various hypothesis for prostate epithelial cell differentiation. Pre2.8 cells are potentially a good prostate model for this work and for studying proliferation and differentiation.

7.1.4 Androgen Expression
The prostate is an androgen-dependent organ. Testes are the main source of androgen. They synthesise and secrete testosterone into the blood. Testosterone is not the primary androgen responsible for maintenance of the prostate. It is converted to dihydrotestosterone (DHT) by 5α-reductase (5α-R) enzymes (Bartsch et al., 2000). DHT binds with greater affinity than testosterone to the androgen receptor (AR) and this complex is transported to the nucleus. AR is activated and causes upregulation of androgen-sensitive genes to regulate prostate cell growth, differentiation and secretion of various proteins such as PSA and PAP. The androgen receptor remains in the cytoplasm until ligand binding occurs and the dissociation of Heat Shock Proteins
(HSPs) is thought to allow conformational change in the AR and mediate translocation to the nucleus (Gnanapragasam et al., 2000).

There are two 5α-R isoenzymes, type 1 and type 2 and possess approximately 50% sequence homology between them. Type 1 5α-R enzyme is predominantly found in tissues other than the prostate, particularly the skin and liver, while Type 2 is mainly associated with the prostate and both forms are found in serum (Steers, 2001). 5α-R was identified in stromal and epithelial cells in CaP and BPH. Using polyclonal antibodies against 5α-R type 1 and type 2 Bonkhoff et al. showed that 5α-R1 was predominantly expressed in nuclei of secretory luminal cells and 5α-R2 was predominantly expressed in cytoplasm of basal cells. In general 5α-R1 was more abundant than 5α-R2 in stromal and epithelial cells (Bonkhoff and Remberger, 1996; Habib FK et al., 1998).

Mutations in 5α-R2 suggest that this enzyme plays a central role in normal prostate development (Andersson et al., 1991). A non-functional 5α-R2 or AR can cause Pseudohermaphroditism, a condition in men who have small prostates and do not develop BPH. This knowledge led to the production of 5α-R targeting drugs such as Finasteride. Finasteride inhibits 5α-R2 (by 80%-90%) but not 5α-R1, leading to a reduction in prostate volume (Steers, 2001).

Pre2.8 epithelial and S2.13 stromal cells have lost their androgen receptor expression in monolayer cultures. Both cell lines are negative for 5α-R2, AR, PSA and PAP, and are positive for 5α-R1. A reduction of the enzyme 5α-R2 in stromal and basal cells will prevent conversion of testosterone to DHT and hence AR will not be activated to produce PSA and PAP. Pre2.8 do not fully differentiate into luminal cells at 37°C or 39°C, hence secretion of PSA and PAP would not be expected. Using RT-PCR, Habib et al showed that primary cultures expressed both isoforms of 5α-R. Expression of mRNA persisted for 6 passages of primary BPH fibroblast cells, after which expression stopped (Habib FK et al., 1998). It appears that temperature sensitive SV40 LT-antigen immortalisation is not sufficient for these BPH cell lines to maintain all of their original characteristics. The loss of androgen expression and secretory function is likely to be due to monolayer culture conditions or due to the absence of appropriate inductive stromal signals. It would therefore be interesting to examine androgen expression in cultures where Pre2.8 epithelial cells are combined with S2.13 stromal cells. Expression
of PSA and PAP proteins is dependent on the correct cell morphology and architectural organisation being present (Hayward et al., 1992). Matrigel cultures may assist in maintaining the correct architectural organisation.

There are a few immortalised epithelial cell lines and two stromal cell lines that have partially maintained normal prostate function. In general these epithelial cell lines are fully differentiated luminal cells, unlike Pre2.8 cells which are basal epithelial cells at 33°C. NP-2s stromal and NP-2e epithelial cell lines express 5α-R enzymes (Lechner et al., 1978). NP-2e cell line was further transformed to produce 267B1, 272E1 and 272E4 epithelial cells, which showed weak immunostaining for PSA and PAP. These three cell lines were luminal cells (K8+ and K18+) with a mixture of stromal cells (vimentin+ and actin+). The PNT1 luminal epithelial cells line (K8+, K18+ and K14+) were weakly positive for PSA and PAP (Cussenot et al., 1991). BPH-1 luminal cells (K8+, K18+, K19+ and K14+) showed faint AR and PAP immunostaining but could not be confirmed by RT-PCR or Northern blotting (Hayward et al., 1995). PSA was negative by immunostaining. Although Hayward et al suggested 5α-R activity in BPH-1 cells, they have no evidence. They based their result on the presence of DHT, which implies the presence of 5α-R activity. The supernatant of this cell line contained testosterone.

RWPE-1 epithelial cells showed AR and PSA expression in response to mibolerone (Webber et al., 1996). RWPE-1 expressed cytokeratins K8, K18, K5 and K14, although K5 and K14 data was not shown. Therefore it is not conclusive whether these cells are fully differentiated or intermediate epithelial cells. BRF-55T luminal epithelial cells (K8+ and K18+) express AR and PSA, although these cells may be pre malignant cells (Iype et al., 1998).

S2.13 cells are fibroblasts unlike Duk50 (Roberson et al., 1995), a smooth muscle cell line and WPMY-1 (Webber et al., 1999), a myofibroblast cell line, both of which express AR. Smooth muscle cells make up most of the stromal tissue and contain a high proportion of androgen receptors in vivo (Planz et al., 1998). This may account for these two cell lines expressing AR and not S2.13 cells.

7.1.5 3-Dimensional Cultures

Stromal-epithelial cell interactions (Timms et al., 1995; Bayne et al., 1998; Liu et al., 1997) and production of basement (Smola et al., 1998) are the principal processes involved in development of normal prostate function and differentiation. In order to
translate these processes into an in vitro model while overcoming the limitations for using primary cells and immortalised monolayer cell cultures, we set up 3-dimensional cultures combining Pre2.8 epithelial and S2.13 stromal cells in matrigel. Laminin plays a major role in extra cellular matrix (ECM) (basement membrane) interactions (Malinda and Kleinman, 1996). Laminin makes up 60% of matrigel, which also consists of collagen 5, other matrix proteins and several growth factors and proteases. Prostate epithelia in matrigel cultures have been shown to form acini capable of secreting prostate specific (Webber et al., 1997).

Temperature sensitive Pre2.8 epithelial and S2.13 stromal cells grew fastest in medium containing 10% serum. Pre2.8 cells in monolayer cultures changed their morphology when grown in RPMI containing 10% serum compared to growth in PrEGM medium. This could suggest that serum contains growth factors, in addition to those present in PrEGM that may be important in prostate epithelial cell proliferation and differentiation.

Three main types of cell clustering developed, lattice formation at 33°C, large interconnecting organoids at 37°C and small organoids at 39°C. The large interconnecting structures most resemble spheroids obtained by Hudson et al from primary type 2 epithelial colonies in matrigel cultures, containing 3T3 conditioned medium (Hudson et al., 2000a). We did not observe side branching in these organoids. Pre2.8 epithelial cells grown in matrigel with S2.13 conditioned medium produced a lattice, showing no resemblance to structures produced by type 2 epithelial colonies. Immortalised epithelial cells in comparison to primary cells appear to have lost a key factor in epithelial cell morphology. Pre2.8, S2.13 matrigel cultures, in PrEGM medium only, produce very small organoids compared to large interconnecting organoids in PrEGM/DMEM-FCS. These results confirm the presence of important growth factors in serum. The presence of mibolerone tended to reduce organoid development to very small structures, with sparse large interconnecting organoids.

Paraffin sections of organoids showed great organisational variation. In general organoids grown at 39°C did not grow large enough to develop acinus structures with distinct basal, luminal or stromal layers. Organoids at 33°C and particularly at 37°C showed greatest potential for prostate like architecture. Early experiments were set up with complete growth factor matrigel, while later experiments were set up with growth factor reduced matrigel. In general earlier experiments produced organised structures
containing acini surrounded by layers of intermediate epithelia (K14' K17'), which was surrounded by basal cells (K14+ K17+) that was surrounded by non-epithelial cells, likely to be stromal cells. This organisation appeared to be similar to organised structures observed with type 2 epithelial colonies (Hudson et al., 2000a). Experiments using reduced GF matrigel produced mostly unorganised structures without acini. Unorganised structures expressed both cytokeratins 14 and 17, but K17 was scattered without any organisation. Cytokeratin 8 staining had high background therefore was difficult to determine its location, although in organised spheroids layers of K8+ appeared to be surrounded by a layer of K8' cells, likely to be basal cells. Cytokeratin 18 was negative by RT-PCR. Growth factors removed from reduced GF matrigel may be critical for correct prostate morphology and differentiation. Hudson et al used complete growth factor matrigel. Stromal cell markers (vimentin +, SMA*) were only tested in organoids from GF reduced matrigel. Fibroblasts were distributed without any organisation.

Although limited differentiation occurred in Pre2.8/S2.13 matrigel cultures, they do appear to differentiate (K14' K17') further than in monolayer cultures. In addition, matrigel cultures permit AR expression, confirmed by immunocytochemistry and RT-PCR analysis. AR staining was found in the cytoplasm and the nucleus. Androgen receptor remains in the cytoplasm until ligand binding occurs and the dissociation of heat shock proteins (HSPs) is thought to allow conformational change in the AR and mediate translocation to the nucleus (Gnanapragasam et al., 2000). Previously, AR expression in primary cultures was observed in the cytoplasm and nuclei (Cussenot et al., 1994b; Robinson et al., 1998a). Cussenot et al suggested that AR expression in the cytoplasm and nuclei is due to partial blockage of this receptor in a non-bound state. Robinson et al suggest that nuclear localisation of the androgen receptor is dependent, in part, on the occupancy of the receptor. Studies on AR in vivo support a ligand-activated transport mechanism, i.e endogenous AR is nuclear in the presence of androgen, and unliganded AR is perinuclear in the cytoplasm (Kemppainen et al., 1992; Georget et al., 1997).

PSA expression observed in the nucleus and cytoplasm was not confirmed by RT-PCR, since the incorrect size band was obtained. PSA positive cells were distributed throughout organoid sections except for distinct PSA negative clusters, consistently situated in the centre of cell clusters. This adds further confusion to these results since it
is expected that PSA would be expressed in the centre of structures where the lumen is expected. This does fit with the unorganised distribution of cytokeratin 8 expressing cells. PSAP was negative by immunocytochemistry and RT-PCR. These results were consistent with type 2 epithelial colonies in matrigel cultures. Type 2 epithelial colonies are thought to contain stem cells.

PNT2-C2, a normal epithelial cell line grown alone in matrigel cultures successfully formed spheroids of cells, but do not form acini, containing a lumen (Lang et al., 2001). These cells maintain their monolayer phenotype. In contrast Webber et al grew RWPE-1 epithelial cells in matrigel and these cells formed spheroids that contained acini that secreted PSA (Webber et al., 1997). Lang et al suggest that formation of acinus-like structures in matrigel is dependent on the differentiation state of the epithelial cells.

Temperature sensitive Pre2.8 and S2.13 cells are thought to stop proliferation and start differentiation at 37°C and 39°C. S2.13 stromal cells express the Ki-67 proliferation marker at 37°C, indicating that the SV40 large T antigen is not being completely inactivated. This may be a limiting factor for normal growth and morphology of epithelial cells in this model.

Urogenital sinus mesenchyme (UGM) induces epithelial differentiation and proliferation and, in turn prostate epithelial cells induce smooth muscle differentiation in UGM (Wong YC et al., 1992). Cunha suggests that once the UGM differentiates into smooth muscle in adulthood, it is the smooth muscle cell that becomes the crucial interactive element in the epithelial microenvironment. S2.13 fibroblast cells do not survive well in these matrigel cultures. Smooth muscle cells make up most of stromal tissue. SM cells contain a high proportion of androgen receptors. These cells are in close proximity to epithelial cells therefore, it is suggested that the stromal, epithelial interaction theory is more likely to be a smooth muscle, epithelial interaction (Planz et al., 1998). Co-culture of epithelial cells with fibroblast cells in matrigel may not be the optimum combination for induction of epithelial cell differentiation and function.

Matrigel is clearly a contributing factor in achieving normal epithelial cell differentiation and function, due to induced expression of AR. The expression of AR in 3-dimensional cultures indicates the presence of 5α-R2 activity. In a study of testosterone metabolism in BPH and CaP (Delos et al., 1998), it was confirmed that 5α-
R2 was predominantly expressed in prostate tissue and primary prostate cultures (Jenkins et al., 1992b). Delos et al observed that 5α-R1 was the isoform preferentially expressed in epithelial cell cultures (freshly isolated and long term). 5α-R2 was preferentially expressed in epithelial matrigel cultures, indicating that matrigel was responsible for changes in enzyme isoform activity. Our results are consistent with Delos et al's findings. In monolayer cultures 5α-R1, not 5α-R2 was observed in both S2.13 and Pre2.8 cells, while 5α-R2 is likely to be expressed in Pre2.8, S2.13 matrigel cultures. Androgen receptor is expressed in luminal cells, not basal cells and in 50% of stromal cells of tissues. Further confirmation of the importance of stromal, epithelial and ECM interactions for normal prostate metabolism, is the expression of AR in matrigel cultures with S2.13 cells alone, but not with Pre2.8 cells alone. When S2.13 and Pre2.8 cells are co-cultured in matrigel AR is expressed. As previously mentioned it is thought that androgens act on smooth muscle cells to maintain epithelial differentiation and in a paracrine manner epithelial cells maintain the differentiated state of smooth muscle cells (Cunha et al., 1997).

To date there are three animal models (Timms et al., 1995; Hayward et al., 1999; Hayward et al., 1997) and one human model (Lang et al., 2001) co-culturing stromal and epithelial prostate cells in matrigel. Lang et al compared epithelial cells alone in matrigel containing serum-free medium, then cultures containing serum and finally the addition of stromal cells. All culture conditions had similar phenotypes except that the addition of stromal cells produced AR expression, which indicates greater differentiation. Epithelial and stromal cells in matrigel cultures, in medium containing serum, oestrogen and DHT produce compact spheroids that are regular in shape and contain a lumen surrounded by one or two epithelial cell layers. The basal layer was not intact. We did not find any significant effect with the addition of mibolerone, but we did not test the effect of oestrogen. In general Lang et al showed that the outer layer of organised spheroids expressed cytokeratin 1, 5, 10 and 14 and the inner layer expressed cytokeratin 18. PSA and PAP was expressed with all culture conditions. Epithelial cell types showed no obvious difference in spheroid formation or morphology for CD44+ basal cells compared to whole population epithelial cells. A population of CD44+ epithelial cells did not grow within matrigel, indicating that basal cells are a contributing factor in epithelial cell growth. Lang et al showed that stroma co-cultured on inserts produced greater spheroid formation compared to stroma mixed with epithelial cells in matrigel or stroma laid on top of matrigel. From these results 3-
dimensional culture set-up may be an important factor. S2.13 stromal cells were directly mixed with Pre2.8 epithelial cells in equal volumes of PrEGM and DMEM-FCS and placed on top of solid matrigel in 24-well culture plates. Lang et al's results suggest that this is not the optimum culture set-up.

Co-cultures of Pre2.8 epithelial and S2.13 stromal cells in matrigel cultures requires further optimisation to achieve terminal epithelial differentiation and production of prostate secretions. The matrigel model established by Lang et al, although very useful is limited because they are primary cells and have a limited lifespan. A continuous supply of primary tissue for these experiments is not achievable. Pre2.8 epithelial and S2.13 stromal are immortalised cell lines, thus providing a continuous supply of cells. Another advantage for the use of Pre2.8 and S2.13 cell lines is that they are temperature sensitive. If it is true that non-basal epithelial cells do not grow in matrigel (Lang et al., 2001), Pre2.8 basal/intermediate epithelial cells are the ideal epithelial population for setting up matrigel cultures. In addition to this it is possible that Pre2.8 cells contain a stem cell population makes them a useful cell line for studying prostate stem cell differentiation. As mentioned above it is likely that S2.13 fibroblasts are not the ideal cells for establishing a prostate model. Replacing S2.13 cells with a smooth muscle cell line would be preferable.
8.0 REFERENCE LIST

Altwein JE. BPH a diagnosis & treatment, Ch 4. 2002. Altwein JE.

O'Hare, M.J., Bond, J., Clarke, C., Takeuchi, Y., Atherton, A.J., Berry, C., Moody, J.,
immortalization of freshly isolated human mammary fibroblasts and endothelial cells.

Cytogenetic and clinical findings of myelodysplastic syndromes with a poor prognosis.
An experience with 97 cases. 70, 94-99.

Ozer, H.L., Banga, S.S., Dasgupta, T., Houghton, J., Hubbard, K., Jha, K.K., Kim, S.H.,

virus 40 core origin orchestrate the binding, melting, and DNA helicase activities of T
antigen. J. Virol. 64, 509-518.

phenotypic modulation of human prostatic epithelial cells by growth inhibitory factors.
Cell Tissue Res. 277, 11-18.

and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract,
and hydrocortisone. Prostate 8, 51-61.

207

Tevethia, M.J. and Tevethia, S.S. (1977). Biology of simian virus 40 (SV40) transplantation antigen (TrAg) III. Involvement of SV40 gene A in the expression of TrAg in permissive cells. Virology 81, 212-223.

