Polymorphisms in Nitric Oxide Regulatory Enzymes and
Effects on Vascular Function

Lisa Clare Jones

A thesis submitted in fulfillment of the requirements of the University of London for the
Degree of Doctor of Philosophy

October 2003

Centre for Clinical Pharmacology
Department of Medicine
University College London
Abstract

Nitric oxide (NO) is an important signalling molecule of the central nervous system (CNS), immune system and vascular endothelium. In the vascular system NO acts as a vasodilator as well as having anti-thrombotic and atheroprotective functions. The development of cardiovascular disease (CVD) is a complex multifactorial process known to have a heritable component. The aim of this study therefore was to investigate the role of three candidate genes involved in regulation of NO synthesis and susceptibility to CVD.

This study investigated the association between cardiovascular risk factors and polymorphisms in the p22phox subunit of NADPH oxidase, GTPCH1 and DDAH2. This study showed the previously identified C242T polymorphism in p22phox was associated with endothelium-dependent vasodilation in healthy subjects. Individuals homozygous for the T allele exhibited increased endothelium-dependent vasodilation compared to C allele carriers. Single strand conformational polymorphism analysis (SSCP) identified four polymorphisms within the GCH1 gene, three in the promoter (-577G/A, -741T/C and -796G/A) and one in intron 1 (599C/G). Genotyping of 2390 healthy men revealed an association between the -796 and -577 polymorphisms and circulating levels of neopterin. An association was also found between -796 genotype and endothelial function in a second cohort of 246 healthy subjects. SSCP of the DDAH2 gene identified six polymorphisms. Five in the promoter region at position -1415G/A, -1151C/A, -1020C/G, -871 6G/7G and -449C/G and the sixth at position 618C/T within intron 4. No significant associations were identified between DDAH2
genotype and ADMA, SDMA ADMA/SDMA ratio or other cardiovascular disease risk factors in healthy subjects, renal failure patients or diabetics.

In conclusion, this study has identified common polymorphisms in enzymes affecting NO synthesis or inactivation. Polymorphisms in the p22phox gene and GTPCH1 gene were associated with risk factors for cardiovascular disease including endothelium-dependent vasodilation and plasma neopterin (a marker of BH_4).
Acknowledgements

Firstly, I would like to thank my supervisors Dr. Aroon Hingorani and Professor Patrick Vallance for giving me the opportunity to carry out this Ph.D, and for all their support and advice throughout my studies.

I am very grateful for all the help and advice given to me by members of the Department of Clinical Pharmacology, in particular Dr. James Leiper and Dr. Lucy Tran for help with making the DDAH2 constructs and Miss Rachel Jackson for the measurement of methylarginines by HPLC. I am also grateful to Dr. Noor Jeerooburkhan for help with the SSCP and Miss Jackie Cooper and Miss Shona Livingstone for help with the statistical analysis. I would also like to thank Professor Steve Humphries (Centre for Cardiovascular Genetics, UCL), Professor Rainer Boger (Department of Clinical Pharmacology, University of Hamburg), Professor John Deanfield and Dr. Paul Leeson (Vascular Physiology Unit, Great Ormond Street Hospital), Dr. Jenny Cross (Centre for Clinical Pharmacology, UCL), Dr. Carmine Zoccali (IBIM-CNR, Italy), Dr. Helen Colhoun (Department of Epidemiology, UCL) and Dr. Makrina Savvidou (Harris Birthright Research Centre for Fetal Medicine, King's College Hospital) for access to all the patient cohorts.

Many thanks go to my family and friends with whom I have shared my disappointments and successes over the past four years. A huge thankyou especially goes to my partner Nicholas for all his love and encouragement throughout. Finally, I would like to dedicate this thesis to my Grandpa, who sadly did not see its completion.
Publications

Presentations

Poster presentation: 2nd International Conference of Biology, Chemistry and Therapeutic Applications of Nitric Oxide. Prague, Czech Republic, June 2002.

Abbreviations

6-FAM 6-carboxyfluorescein
7,8-NH2-TP 7,8-dihydroneopterin triphosphate
ACH Acetylcholine
ADMA Asymmetric dimethylarginine
ANOVA Analysis of variance
AP-1 Activating protein 1
ApoE Apolipoprotein E
At-RA All-trans retinoic acid
BH2 dihydroleptopin
BH4 Tetrahydrobiopterin
BK Bradykinin
BMI Body mass index
Ca2+ Calcium
CAC Coronary artery calcification
CAD Coronary artery disease
CaM Calmodulin
C/EBP CCAAT box/enhancer binding protein
CGD Chronic granulomatous disease
CHD Coronary heart disease
CREED Cardiovascular risk extended evaluation dialysis study
CRP C-reactive protein
CVD Cardiovascular disease
dATP deoxyadenosine triphosphate
DBP Diastolic blood pressure
dCTP deoxycytidine triphosphate
DDAH Dimethylarginine dimethylaminohydrolase
ddATP di-deoxyadenosine triphosphate
ddCTP di-deoxycytidine triphosphate
ddGTP di-deoxyguanosine triphosphate
ddTTP di-deoxythymidine triphosphate
dGTP deoxyguanosine triphosphate
DNA Deoxyribose nucleic acid
DRD Dopa-responsive dystonia
dTTP deoxythymidine triphosphate
EDHF Endothelium derived hyperpolarizing factor
EDRF Endothelium derived relaxant factor
EDTA Ethylenediaminetetraacetic acid
EGM Endothelial cell growth media
eNOS endothelial nitric oxide synthase
FAD Flavine adenine dinucleotide
FH Familial hypercholesterolaemia
FMD Flow-mediated dilatation
FMN Flavine mononucleotide
GRE glucocorticoid response element
GTN Glyceryl trinitrate
GTPCH1: GTPcyclohydrolase 1
H2O2: Hydrogen peroxide
Hb: Haemoglobin
HCL: Hydrochloric acid
HDL: High density lipoprotein
HNF: Hepatic nuclear factor
HPLC: High performance liquid chromatography
HUVEC: Human umbilical vein endothelial cell
IFNγ: Interferon γ
IHD: Ischeamic heart disease
iNOS: inducible nitric oxide synthase
Km: Michaelis constant
LDL: Low density lipoprotein
LNMMMA: Ng-monomethyl-L-arginine
LSS: Laminar shear stress
MgCl2: Magnesium chloride
MHC: Major histocompatability complex
MI: Myocardial infarction
mRNA: Messanger ribose nucleic acid
NA: Noradrenaline
NADPH: Nicotinamide adenine dinucleotide phosphate
NCBI: National center for biotechnology information
NFκB: Nuclear factor κB
NGF: Nerve growth factor
nNOS: neuronal nitric oxide synthase
NO: Nitric oxide
NO2−: Nitrite
NO3−: Nitrate
NOS: Nitric oxide synthase
O2−: Superoxide
ONOO−: Peroxynitrite
OxLDL: Oxidized low density lipoprotein
PBS: Phosphate buffered saline
PCR: Polymerase chain reaction
PRMT: Protein arginine methyltransferase
PTPS: 6-pyruvoyl tetrahydriopterin synthase
ROS: Reactive oxygen species
SBP: Systolic blood pressure
SD: Standard deviation
SDMA: Symmetric dimethylarginine
sGC: Soluble guanylate cyclase
SNP: Single nucleotide polymorphism
SOD: Superoxide dismutase
SR: Sepiapterin reductase
SRF: Serum response factor
SSCP: Single strand conformation polymorphism
SSRE: Shear stress response element
TBE: Tris borate/EDTA
TE: Tris-EDTA
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylethylenediamine</td>
</tr>
<tr>
<td>USF</td>
<td>Upstream stimulating factor</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>VSMC</td>
<td>Vascular smooth muscle cell</td>
</tr>
</tbody>
</table>
Table of Contents

Title ...1
Abstract ..2
Acknowledgements ..4
Publications...5
Abbreviations...6
Table of contents ...7
List of tables and figures...13
CHAPTER 1: INTRODUCTION ..20

1.1 Cardiovascular diseases and endothelial function ..21
 1.1.1 Background ...21
 1.1.2 Maintenance of a healthy vasculature-role of the endothelium ..23
 1.1.3 Heritability of vascular disease ...27
 1.1.3.1 Evidence for a heritable basis for atherosclerosis ..29
 1.1.4 Candidate genes for CVD ..30

1.2 The L-Arginine— »NO system ...34
 1.2.1 Discovery of Nitric Oxide ...34
 1.2.2 Different isoforms of NO exist ...34
 1.2.3 Physiological actions of eNOS ...37

1.3 Decreased NO availability, endothelial dysfunction and cardiovascular disease38
 1.3.1 Decreased NOS expression or activity-studies of the eNOS gene (NOS 3)39
 1.3.2 Decreased L-arginine availability ...40
 1.3.3 Limited availability of BH4 for NOS enzyme activity ..41
 1.3.3.1 Multiple functions of BH4-essential NOS cofactor ...42
 1.3.3.2 Synthesis of BH4 ..43
 1.3.4 Inhibitors of nitric oxide synthase ...45
 1.3.4.1 Reduced DDAH expression or activity could account for elevated ADMA47
 1.3.5 Inactivation of NO by superoxide (O₂⁻) ..48
 1.3.5.1 NADPH oxidase is a major source of ROS in the vasculature ...49

1.4 Hypothesis ...51
1.5 Aims ...52

CHAPTER 2: MATERIALS AND METHODS ..53

2.1 Materials ...54
 2.1.1 General reagents ...54
 2.1.2 Enzymes used for PCR and restriction digests ...54
 2.1.3 Oligonucleotides ...55
 2.1.4 DNA ladders for agarose gel electrophoresis and genescan ...55
 2.1.5 Gel loading buffers ...55
 2.1.6 Cell culture reagents ..56
 2.1.7 Kits ..56

2.2 Methods ..59
 2.2.1 Extraction of DNA from whole blood samples ..59
 2.2.1.1 Salting out method ..59
 2.2.1.2 DNA purification kit method (QiAmp blood minikit) ...60
 2.2.2 DNA amplification by PCR ..60
 2.2.3 Agarose gel electrophoresis ...61
 2.2.4 Single-strand conformation polymorphism analysis (SSCP) ..61
 2.2.4.1 Radioactive SSCP ..61
 2.2.4.2 Non-radioactive SSCP (PhastSystem) ..62
 2.2.5 DNA sequencing ...63
 2.2.5.1 Template preparation ..63
 2.2.5.2 Sequencing reaction ..63
 2.2.5.3 Gel loading and electrophoresis of sequencing products ...64
 2.2.6 Genotyping ..65
 2.2.6.1 Genotyping by PCR-RFLP analysis ...65
 2.2.6.2 Genotyping by Genescan analysis ..65
CHAPTER 3: ASSOCIATION STUDIES OF THE NADPH OXIDASE p22PHOX C242T POLYMORPHISM AND ENDOTHELIAL FUNCTION

3.1 Aim

3.2 Background

3.2.1 NADPH oxidase generates O2− in both phagocytic and non-phagocytic cells

3.2.2 Vasculature NADPH oxidase is distinct from phagocytic NADPH oxidase

3.2.3 Common Genetic variation in p22phox

3.3 Subjects and Methods

3.3.1 Subjects

3.3.2 DNA extraction

3.3.3 Genotyping by PCR-RFLP analysis

3.3.4 Data analysis

3.4 Results

3.4.1 Genotype and allele frequencies of the p22phox (CYBA) C242T polymorphism

3.4.2 p22phox genotype and CVD risk factors in the Cambridge Young Adults cohort

3.4.3 Relationship between p22phox genotype and vascular function in the Cambridge Young Adults cohort

3.4.4 p22phox genotype and cardiovascular risk factors in the EBCT cohort

3.4.5 Relationship between p22phox genotype and vascular function in the EBCT cohort

3.5 Discussion

CHAPTER 4: IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN GTP-CYCLOHYDROLASE I GENE (GCH1)

4.1 Aim

4.2 Background

4.3 Subjects and Methods

4.3.1 Subjects

4.3.2 Oligonucleotide design and amplification of genomic DNA

4.3.3 Screening for polymorphisms by SSCP analysis

4.3.4 DNA sequencing to define the nature of variants detected by SSCP

4.3.5 Search of the National Center for Biotechnology Information (NCBI) SNP database for GCH1 polymorphisms

4.3.6 Search of the Matlnspector promoter database for putative GCH1 transcription factor binding sites

4.4 Results

4.4.1 Polymorphisms identified in GCH1

4.4.2 Analysis of the GCH1 promoter and comparison of polymorphisms in the NCBI SNP database and those identified by SSCP

4.5 Discussion

4.5.1 GCH1 promoter polymorphisms

4.5.2 Polymorphisms within GCH1 exons

4.5.3 Future work
CHAPTER 5: GCH1 POLYMORPHISMS AND THEIR FUNCTIONAL IMPACT ON PTERIN METABOLISM AND ENDOTHELIAL FUNCTION

5.1 Aims .. 129
5.2 Background ... 129
5.3 Subjects and Methods ... 132
 5.3.1 Subjects investigated for association between GCH1 genotype and neopterin 132
 5.3.2 Subjects investigated for association between GCH1 genotype and endothelial function 133
 5.3.3 Measurement of plasma neopterin in the NPHSII cohort ... 134
 5.3.4 Genotyping studies .. 135
 5.3.5 Statistical Analysis .. 135
5.4 Results .. 136
 5.4.1 Genotype and allele frequency of GCH1 polymorphisms 136
 5.4.2 Baseline demographics of NPHSII study participants 138
 5.4.3 Distribution and determinants of plasma neopterin .. 139
 5.4.4 Relationship between GCH1 genotype and plasma neopterin in the NPHSII cohort 140
 5.4.5 GCH1 polymorphism, and CVD risk .. 142
 5.4.6 Baseline demographics of Cambridge Young Adults Study participants 143
 5.4.7 Relationship between GCH1 genotype and endothelial function 144
5.5 Discussion .. 146

CHAPTER 6: IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN DIMETHYLARGININE DIMETHYLAMINOHYDROLASE GENE (DDAH2) .. 149

6.1 Aim .. 150
6.2 Background .. 150
6.3 Subjects and Methods ... 154
 6.3.1 Subjects .. 154
 6.3.2 Oligonucleotide design and amplification of genomic DNA 154
 6.3.3 Screening for polymorphisms by SSCP analysis .. 157
 6.3.4 DNA sequencing to define the nature of variants detected by SSCP 157
 6.3.5 Search of the National Center for Biotechnology Information (NCBI) SNP database for DDAH2 polymorphisms 157
 6.3.6 Search of the MatInspector promoter database for putative DDAH2 transcription factor binding sites .. 158
 6.3.7 Identification of restriction enzyme sequences and genotyping of DDAH2 Polymorphisms ... 158
6.4 Results ... 160
 6.4.1 Polymorphisms in DDAH2 .. 160
 6.4.2 Analysis of the DDAH2 promoter and comparison of polymorphisms in the National Center for Biotechnology Information (NCBI) SNP database with those identified by SSCP .. 170
 6.4.3 Genotype and allele frequencies of DDAH2 polymorphisms 174
6.5 Discussion .. 178
 6.5.1 DDAH2 promoter polymorphisms .. 178
 6.5.2 Polymorphisms within DDAH2 coding exons ... 182

CHAPTER 7: INFLUENCE OF DDAH2 POLYMORPHISMS ON PROMOTER FUNCTION .. 183

7.1 Aims .. 184
7.2 Background .. 184
7.3 Materials and Methods .. 189
 7.3.1 Identification of DDAH2 transcripts in HUVEC ... 189
 7.3.2 Cloning of human DDAH2 promoter/reporter constructs containing allelic variants 190
 7.3.2.1 Site-directed mutagenesis ... 190
 7.3.2.2 TOPO TA cloning of allele-specific PCR products 192
 7.3.2.3 Cloning allele-specific constructs into pGL3basic vector 192
 7.3.2.4 Transformation of DH5α competent cells .. 193
 7.3.3 Luciferase reporter gene assay ... 195
 7.3.3.1 Cell culture and transfection ... 195
 7.3.3.2 Cell lysis and luciferase assay ... 195
 7.3.3.3 Statistical analysis .. 195
7.4 Results ... 196
 7.4.1 Identification of DDAH2 transcripts in HUVEC ... 196
 7.4.2 Effect of DDAH2 polymorphisms on promoter activity 197
CHAPTER 8: DDAH2 POLYMORPHISMS AND CIRCULATING METHYLARGININE CONCENTRATION

8.1 Aims

8.2 Background

8.3 Subjects and Methods

8.3.1 Subjects investigated for association between DDAH2 polymorphisms and ADMA, SDMA and ADMA/SDMA ratio

8.3.2 Genotyping DDAH2 polymorphisms

8.3.3 Measurement of plasma ADMA and SDMA by HPLC analysis

8.3.4 Statistical Analysis

8.4 Results

8.4.1 Genotype and allele frequencies of DDAH2 polymorphisms in study cohorts

8.4.2 Relationship between DDAH2 genotype, ADMA and SDMA concentration and ADMA/SDMA ratio in the German population screen

8.4.3 Relationship between DDAH2 genotype, ADMA and SDMA concentration and ADMA/SDMA ratio in the London Renal Failure Cohort

8.4.4 Relationship between DDAH2 genotype and ADMA, SDMA and ADMA/SDMA ratio in the CREED cohort

8.5 Discussion

CHAPTER 9: DDAH2 POLYMORPHISMS, ENDOTHELIAL FUNCTION AND PLASMA NITROGEN OXIDES (NOx)

9.1 Aims

9.2 Background

9.3 Subjects and Methods

9.3.1 Subjects investigated for association between DDAH2 polymorphisms, plasma NOx and blood pressure

9.3.2 Subjects investigated for association between DDAH2 polymorphisms and endothelial function

9.3.3 Genotyping DDAH2 polymorphisms

9.3.4 Measurement of plasma nitrite and nitrate (NOx)

9.3.5 Statistical Analysis

9.4 Results

9.4.1 Genotype and allele frequencies of DDAH2 polymorphisms in each study cohort

9.4.2 Relationship between DDAH2 genotype and plasma NOx in the NPHSII cohort

9.4.3 Relationship between DDAH2 genotype and endothelial function in the Cambridge Young Adults Study

9.4.4 Relationship between DDAH2 genotype and endothelial function in women with normal pregnancies

9.4.5 Relationship between DDAH2 genotype and endothelial function in the EBCT cohort

9.5 Discussion

9.5.1 DDAH2 genotype and plasma concentrations of NOx in the NPHSII cohort

9.5.2 DDAH2 genotype and endothelial function

CHAPTER 10: GENERAL CONCLUSIONS

Appendix I Hardy-Weinberg Principle

Appendix II Linkage disequilibrium

Appendix III The difference in vascular responses between genotypes for Diabetics and non-diabetics and smokers and non-smokers

References
Tables and Figures

CHAPTER 1: INTRODUCTION

Table 1.1 Monogenic diseases.
Table 1.2 Examples of some of the genes investigated for association with CVD.
Figure 1.1 Schematic illustration of an atherosclerotic plaque within an artery.
Figure 1.2 Diagrammatic representation of the vascular endothelium and underlying smooth muscle cells.
Figure 1.3 Diagrammatic representation of endothelial nitric oxide synthase (eNOS).
Figure 1.4 Regulation of NO synthesis.
Figure 1.5 Synthesis of BH₄.
Figure 1.6 Synthesis and metabolism of ADMA.
Figure 1.7 NADPH oxidase enzyme complex.

CHAPTER 2: MATERIALS AND METHODS

Table 2.1 Restriction endonucleases used for PCR-RFLP analysis.
Table 2.2 Number of men recruited from each of the 9 UK clinics for the NPHSII study cohort.
Table 2.3 Demographic characteristics of the NPHSII study cohort.
Table 2.4 Demographic characteristics of the German population screen cohort.
Table 2.5 Demographic characteristics of the Cambridge Young Adults Study.
Table 2.6 Demographic characteristics of the London Renal Failure cohort.
Table 2.7 Demographic characteristics of the Italian Renal Failure cohort (CREED).
Table 2.8 Demographic characteristics of the Diabetic patients and controls.
Table 2.9 Demographic characteristics of the pregnancy cohort.
CHAPTER 3: ASSOCIATION STUDIES OF THE NADPH OXIDASE p22PHOX C242T POLYMORPHISM AND ENDOTHELIAL FUNCTION

Table 3.1 Genotype and allele frequencies of the p22phox C242T polymorphism.

Table 3.2 Phenotypic characteristics of the Cambridge Young Adults cohort according to p22phox C242T genotype.

Table 3.3 Phenotypic characteristics of individuals from the EBCT study according to p22phox C242T genotype.

Table 3.4 Results of multiple regression analysis of endothelial function according to p22phox genotype in diabetics, non-diabetics, smokers and non-smokers.

Figure 3.1 FMD according to p22phox genotype in the Cambridge Young Adults Study.

Figure 3.2 % change in brachial artery diameter in response to GTN (endothelium-independent response) according to p22phox genotype in the Cambridge Young Adults Study.

Figure 3.3 p22phox genotype and vascular function in the EBCT study cohort.

Figure 3.4 Endothelial dysfunction as a manifestation of depleted NO caused by ROS generation.

CHAPTER 4: IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN GTP-CYCOHYDROLASE 1 GENE (GCH1)

Table 4.1 Oligonucleotides designed to amplify the GCH1 promoter.

Table 4.2 Oligonucleotides designed to amplify GCH1 exons.

Table 4.3 Human GCH1 promoter polymorphisms identified in the NCBI SNP database.

Figure 4.1 Synthesis of BH4 and its regulation by GFRP.

Figure 4.2 GCH1 gene structure.

Figure 4.3 DNA sequence (of the reverse strand) confirming a G→A substitution at position −796 in the GCH1 promoter.

Figure 4.4 DNA sequence (of the reverse strand) confirming a T→C substitution at position −741 in the GCH1 promoter.
Figure 4.5 DNA sequence electropherogram confirming a G→A substitution at position -577 in the GCH1 promoter.

Figure 4.6 SSCP gel image (Phastsystem) and DNA sequence of GCH1 Exon 1b PCR.

Figure 4.7 Nucleotide sequence of the human GCH1 promoter region.

CHAPTER 5: GCH1 POLYMORPHISMS AND THEIR FUNCTIONAL IMPACT ON PTERIN METABOLISM AND ENDOTHELIAL FUNCTION

Table 5.1 Genotype and allele frequencies of GCH1 polymorphisms in the NPHSII cohort (top panel) and the Cambridge Young Adults Study cohort (bottom panel).

Table 5.2a Demographic details of subjects in the NPHSII cohort according to GCH1 -577G/A genotype.

Table 5.2b Demographic details of subjects in the NPHSII cohort according to GCH1 -796G/A genotype.

Table 5.3 Correlation of neopterin with risk factors for cardiovascular disease in the NPHSII cohort by stepwise multiple regression.

Table 5.4 Neopterin and neopterin/creatinine according to GCH1 -577G/A (top panel) and -796G/A genotype (bottom panel).

Table 5.5 GCH1 genotype and IHD risk in the NPHSII cohort.

Table 5.6a Demographic characteristics of the Cambridge Young Adults Study cohort according to GCH1 -577G/A genotype.

Table 5.6b Demographic characteristics of the Cambridge Young Adults Study cohort according to GCH1 -796G/A genotype.

Table 5.7 Endothelial function according to GCH1 -577G/A (top panel) and -796G/A (bottom panel) genotype in the Cambridge Young Adults Study cohort.

CHAPTER 6: IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN DIMETHYLARGININE DIMETHYLAMINOHYDROLASE GENE (DDAH2)

Table 6.1 Oligonucleotides used for PCR amplification of the human DDAH2 gene.

Table 6.2 DDAH2 polymorphisms – restriction enzymes and digestion products.
Table 6.3 Human DDAH2 promoter polymorphisms identified in the NCBI SNP database.

Table 6.4 Genotype and allele frequencies of DDAH2 polymorphisms in the NPHSII cohort (top panel) and the German Population Screen cohort (bottom panel).

Table 6.5 Pairwise linkage disequilibrium coefficients (Δ) for DDAH2 polymorphisms.

Figure 6.1 DDAH2 gene structure and polymorphisms identified by SSCP.

Figure 6.2a SSCP gel of DDAH2 promoter 3 PCR.

Figure 6.2b SSCP gel of DDAH2 exon 1 PCR.

Figure 6.2c SSCP gel of DDAH2 Exon 2 PCR.

Figure 6.2d SSCP gel of DDAH2 Exon 4+5 PCR.

Figure 6.3a DNA sequence confirming a G→A substitution at position –1415 in DDAH2 promoter 2 PCR.

Figure 6.3b DNA sequence confirming a C→A substitution at position –1151 in the DDAH2 promoter 3 PCR.

Figure 6.3c DNA sequence confirming a C→G substitution at position –1020 in DDAH2 exon1.

Figure 6.3d DNA sequence electropherogram confirming the presence of an extra G at position –871 in the DDAH2 promoter.

Figure 6.3e DNA sequence electropherogram confirming the presence of a C→G polymorphism within the DDAH2 exon2 PCR.

Figure 6.3f DNA sequence electropherogram confirming the presence of a C→T polymorphism within the exon 4+5 PCR product.

Figure 6.4 DNA sequence of the DDAH2 5’ untranslated region.

Figure 6.5 Restriction digest gel images.

Figure 6.6 Genescan trace produced upon genotyping the DDAH2 –871 6G/7G bi-allelic length variation.
CHAPTER 7: INFLUENCE OF DDAH2 POLYMORPHISMS ON PROMOTER FUNCTION

Table 7.1 Allele-specific and vector oligonucleotides used for site directed mutagenesis to generate DDAH2 promoter constructs.

Figure 7.1 Diagrammatic representation of the vector pGL3basic.

Figure 7.2 Bioluminescent reactions of the firefly and Renilla luciferases.

Figure 7.3 A diagrammatic representation of the steps involved in cloning DDAH2 promoter/reporter constructs containing allelic variants.

Figure 7.4 DDAH2 transcripts identified in HUVEC.

Figure 7.5 Effect of different promoter variants on DDAH2 expression.

Figure 7.6 Promoter activity of 6G constructs compared to 7G constructs.

Figure 7.7 Effect of at-RA treatment on DDAH2 promoter activity.

CHAPTER 8: DDAH2 POLYMORPHISMS AND CIRCULATING METHYLATEDARGININE CONCENTRATION

Table 8.1 Summary of cohorts genotyped for association between DDAH2 polymorphisms and various risk factors for CVD.

Table 8.2 Allele frequencies, χ^2 and P values of each DDAH2 polymorphism.

Table 8.3a Demographic characteristics of the German Population Screen cohort according to -1020C/G genotype.

Table 8.3b Demographic characteristics of the German Population Screen cohort according to -1151 A/C genotype.

Table 8.3c Demographic characteristics of the German Population Screen cohort according to -871 6G/7G genotype.

Table 8.4a Demographic characteristics of the London Renal Failure Cohort according to -1020C/G genotype.

Table 8.4b Demographic characteristics of the London Renal Failure Cohort according to -1151 A/C genotype.

Table 8.4c Demographic characteristics of the London Renal Failure Cohort according to -871 6G/7G genotype.
Table 8.5a Demographic characteristics of the CREED cohort according to -1151A/C genotype.

Table 8.5b Demographic characteristics of the CREED cohort according to -8716G/7G genotype.

Figure 8.1a ADMA and SDMA concentrations and ADMA/SDMA ratio according to -1020C/G genotype in the German Population Screen.

Figure 8.1b ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1151A/C genotype in the German Population Screen.

Figure 8.1c ADMA and SDMA concentration, and ADMA/SDMA ratio according to -8716G/7G genotype in the German Population Screen.

Figure 8.2a ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1020C/G genotype in the London Renal Failure cohort.

Figure 8.2b ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1151A/C genotype in the London Renal Failure cohort.

Figure 8.2c ADMA and SDMA concentration, and ADMA/SDMA ratio according to -8716G/7G genotype in the London Renal Failure cohort.

Figure 8.3a ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1151A/C genotype in the CREED cohort.

Figure 8.3b ADMA and SDMA concentrations, and ADMA/SDMA ratio according to -8716G/7G genotype in the CREED cohort.

CHAPTER 9: *DDAH2* POLYMORPHISMS, ENDOTHELIAL FUNCTION AND PLASMA NITROGEN OXIDES (NO$_x$)

Table 9.1 Summary of cohorts genotyped for association between *DDAH2* polymorphisms and various risk factors for CVD.

Table 9.2 Allele frequencies, χ^2 and P values for each *DDAH2* polymorphism.

Table 9.3a Plasma NO$_x$, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to -449G/C genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics.

Table 9.3b Plasma NO$_x$, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to -1020C/G genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics.
Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to −1151 A/C genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics.

Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to −449G/C (top), −1020C/G (middle) and −1151 A/C (bottom) genotype for the combined Chesterfield and North Mymms NPHSII clinics.

Endothelium-dependent and independent FMD and other CVD risk factors according to −1020C/G genotype in the Cambridge Young Adults Study cohort.

Endothelium-dependent and independent FMD and other CVD risk factors according to −1151A/C genotype in the Cambridge Young Adults Study cohort.

Endothelium-dependent and independent FMD and other CVD risk factors according to −871 6G/7G genotype in the Cambridge Young Adults Study cohort.

Endothelium-dependent FMD and other CVD risk factors according to −1020C/G genotype in the Pregnancy cohort.

Endothelium-dependent FMD and other CVD risk factors according to −1151 A/C genotype in the Pregnancy cohort.

Endothelium-dependent FMD and other CVD risk factors according to −871 6G/7G genotype in the Pregnancy cohort.

Demographic characteristics of the EBCT cohort according to −1151A/C genotype.

Demographic characteristics of the EBCT cohort according to −1020C/G genotype.

Distribution of −1151A/C and −1020C/G alleles according to diabetic status.

Endothelium-dependent and independent vascular responses according to −1151A/C genotype in the EBCT cohort.

Endothelium-dependent and independent vascular responses according to −1020C/G genotype in the EBCT cohort.
CHAPTER 1

INTRODUCTION
1.1 Cardiovascular diseases and endothelial function

1.1.1 Background

Atherosclerosis leads to stroke, coronary heart disease (CHD) and peripheral vascular disease and is a major cause of death and morbidity. In the developed world it accounts for over four million deaths every year in Europe (British Heart Foundation, www.dphpc.ox.ac.uk), and as a disease it is assuming greater importance in the developing world (Perret et al., 2000). Atherosclerosis is characterized by the development of atherosclerotic plaques in large and medium sized arteries. Early plaques are evident by the second decade of life (McGill et al., 2000) and their development is initiated and accelerated by damage to the endothelium. Atherosclerotic plaques consist of a core rich in cholesterol and other lipids, which are surrounded by smooth muscle cells and fibrous tissue (Figure 1.1). The formation of plaques is preceded initially by damage to the endothelium mediated by factors such as increased blood pressure, products of cigarette smoke, high levels of cholesterol, circulating oxidized low density lipoprotein (oxLDL) cholesterol and inflammatory cytokines (Ross et al., 1993). This leads to the adhesion of leukocytes to the vessel wall, their migration into the sub-endothelial space and the uptake of cholesterol rich lipid particles by macrophages (Libby, 2000). Proliferation of the underlying smooth muscle cells triggered by the release of growth factors eventually leads to a decrease in the size of the vessel lumen. Plaque fissure or rupture results in the exposure of plaque contents to the circulating blood, thrombus formation and occlusion of the vessel, which is responsible for myocardial infarction and some forms of stroke. The risk of developing vascular disease is highly increased in the presence of renal failure (Foley, 1998a;
Foley, 1998b) and diabetes (Ginsberg, 2000; Haffner et al., 1999), however onset cannot always be solely attributed to environmental factors. The genetic makeup of an individual is now being recognized as having a vital role in vascular disease risk (Boerwinkle et al., 1996). The past 20 years have seen huge developments in the field of genetics and molecular biology, in particular the advance of the human genome project (International Human Genome Sequencing Consortium, 2001), which has made possible the identification, isolation and characterization of a multitude of genes implicated in medical disorders including cardiovascular disease (CVD).

Figure 1.1. Schematic illustration of an atherosclerotic plaque within an artery. The lumen of the vessel is narrowed by the presence of the plaque, which contains cholesterol and other lipids. Rupture of the fibrous cap results in thrombus formation leading ultimately to occlusion of the vessel.
1.1.2 Maintenance of a healthy vasculature - role of the endothelium

The endothelium consists of a monolayer of cells lining all blood vessels. It serves as a permeability barrier between the circulating blood and the vessel wall. However, its role is not simply that of an inert barrier. Receptors on the endothelial cell surface act as sensors of the biochemical and physical environment of the blood, responding to chemical signals such as serotonin, bradykinin, and shear stress, which prompts this single layer of cells to release anti-adhesive, anti-thrombotic, vasoconstrictor and vasorelaxant mediators, thereby ensuring a state of vascular homeostasis.

The involvement of the endothelium in the process of atherosclerotic disease had been suggested as early as the 1800s (Virchow, 1856), but the mechanisms involved have only recently been identified. The essential role of the endothelium for vascular relaxation was first discovered by Furchgott and Zawadski in a series of experiments in which they demonstrated that removal of the endothelium completely inhibited relaxation of rabbit thoracic aorta to acetylcholine (Furchgott and Zawadski, 1980). This observation led to the discovery of a highly potent vasodilator originally named endothelium-derived relaxant factor (EDRF). EDRF was subsequently identified as nitric oxide (NO) (Ignarro et al., 1987), which is capable of exerting many atheroprotective, anti-thrombotic and anti-inflammatory actions upon the vasculature and is discussed in more detail in section 1.2. The endothelium also releases other vasodilator molecules, for example prostacyclin and endothelium-derived hyperpolarizing factor (EDHF) as well as vasoconstrictors such as endothelin and angiotensin II (Figure 1.2). Production of these mediators is stimulated by physical factors (e.g. increased flow at the endothelial surface) as well as the binding of agonists including acetylcholine (ACh).
and bradykinin (Bk) to receptors on the endothelial cell surface. However, in the presence of a dysfunctional endothelium some of these agonists (e.g. ACh) are also capable of inducing vasoconstriction by binding to receptors on underlying vascular smooth muscle cells (VSMC).

Atherosclerotic plaques form predominantly at the sites of arterial branch points where there is disturbed laminar flow (Cornhill et al., 1976). This led to the theory that external forces upon endothelial cells such as shear stress (generated by the flow of blood over the endothelium) play a part in regulating endothelial cell function. Subsequent studies revealed that a number of genes expressed by the endothelium (including the gene encoding the enzyme for NO synthesis), are upregulated by shear stress (Resnick et al., 1995), suggesting that the hemodynamic forces generated by blood flow can indeed direct endothelial function.

Vascular homeostasis is therefore maintained through the balanced production of a range of vasoactive substances. Dysfunction of the endothelium caused by elevated blood cholesterol, hyperglycemia and hypertension are known to increase endothelial cell permeability, the expression of adhesion molecules and restrict the release of vasodilators such as NO. This ultimately manifests in the development of atherosclerosis and vascular disease.

Endothelial function in humans in vivo is often measured using one of two techniques-venous occlusion plethysmography which measures endothelial function in small resistance vessels and flow mediated dilatation (FMD) which measures endothelial function in the brachial artery, a conduit vessel. Venous occlusion plethysmography
measures the change in blood flow in the forearm in response to endothelium-dependent agonists. A cuff is placed on the upper arm and periodically inflated to prevent venous return. A strain-gauge placed around the forearm measures the change in forearm circumference in millimetres per minute which is proportional to arterial blood inflow during the period of occlusion (Benjamin et al., 1995). Insertion of a needle into the brachial artery allows administration of endothelium-dependent vasodilators such as ACh or Bk, and endothelium-independent control dilators such as GTN. FMD measures brachial artery diameter in response to increased blood flow. A cuff placed around the forearm is inflated to suprasystolic pressure to make the arm ischemic. When the cuff is deflated, the flow of blood into the ischemic arm and the resulting shear stress produced in the brachial artery causes NO release and dilatation. This dilatation is endothelium-dependent and can be measured using an ultrasound device (Celermajer et al., 1992). Endothelial dysfunction determined by venous occlusion plethysmography or FMD correlates with coronary endothelial dysfunction and is indicative of vascular disease (Vita et al., 1990). Endothelial dysfunction also correlates with cardiovascular risk factors as assessed by the Framingham risk score (Chan et al., 2001) and predicts cardiovascular outcome (Suwaidi et al., 2000; Schachinger et al., 2000).
Figure 1.2. Diagrammatic representation of the vascular endothelium and underlying smooth muscle cells. A. The endothelium produces substances such as nitric oxide, which has anti-atherogenic and vasorelaxant properties essential for maintaining a healthy vasculature. B. In the presence of risk factors for CVD such as hypercholesterolaemia, hypertension and diabetes there is increased endothelial cell adhesiveness and permeability. Nitric oxide availability is decreased and consequently its anti-atherogenic and relaxant properties are attenuated.
1.1.3 Heritability of vascular disease

Common complex diseases such as atherosclerosis, hypertension, diabetes, and cancer are believed to be caused through the interaction of an individual's genes and the environment. Such diseases tend to be of late onset, have no clear pattern of inheritance and as a result the causative genes and risk factors have been difficult to identify. However, rare monogenic forms of these diseases such as autosomal dominant Familial hypercholesterolaemia (FH), autosomal dominant hypertension due to Liddle's syndrome, familial breast cancer and monogenic forms of type II diabetes have helped us to understand the pathophysiological basis of the complex disease state.

Table 1.1 gives three examples of monogenic diseases resulting in elevated LDL or blood pressure, which are risk factors for CVD development. FH is caused by mutations in the low-density lipoprotein receptor (LDLR) gene (Hobbs et al., 1992), and is one of the most common autosomal inherited disorders, with 1 out of every 500 individuals affected (Smilde et al., 2001). Individuals who carry the mutant gene are characterized by elevated LDL cholesterol, due to the fact that it cannot be removed from the circulation. To date more than 500 mutations have been reported in the LDL receptor gene, resulting in a decrease in the number of receptors (in the case of heterozygote individuals) or a complete absence of receptors (homozygote individuals) on the liver cell surface. This directly results in elevated circulating LDL leading to vascular disease.
Table 1.1 Monogenic diseases. Three examples of monogenic diseases, which result in the development of premature CVD, and their respective mutant genes are shown. The study of such disorders and the identification of the causative genes, has helped improve our understanding of the more complex cardiovascular diseases.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Mutant Gene</th>
<th>Inheritance</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial hypercholesterolaemia (FH)</td>
<td>LDLR</td>
<td>AD</td>
<td>↑ LDL</td>
</tr>
<tr>
<td>Liddle's syndrome</td>
<td>ENaC</td>
<td>AD</td>
<td>↑ blood pressure</td>
</tr>
<tr>
<td>Glucocorticoid-remedial aldosteronism (GRA)</td>
<td>Aldosterone synthase</td>
<td>AD</td>
<td>↑ blood pressure</td>
</tr>
</tbody>
</table>

Advances in molecular biology have also enabled the identification of a vast number of candidate genes implicated in the development of common forms of atherosclerosis. CVD is therefore thought to be polygenic (caused by several genes) with a major contribution coming from environmental factors e.g. smoking. The Apolipoprotein E gene (ApoE) is another gene known to be involved in the development of vascular disease (Eichner et al., 2002). This gene encodes a protein, which acts as a ligand expressed on the surface of LDL particles, via which, LDL particles are cleared from the circulation by binding to the LDL receptor. Three variants of this gene are known to exist-E2, E3 and E4. The E2 isoform has the lowest affinity for the LDL-receptor and E4 the highest affinity. Individuals homozygous for the E2 isoform are predisposed to develop elevated cholesterol and triglyceride levels leading to premature atherosclerosis but, unlike FH, disease progression is also influenced strongly by environmental factors such as diet, obesity and diabetes. ApoE genotype is therefore classed as a risk factor for CVD.
1.1.3.1 Evidence for a heritable basis for atherosclerosis

Studies of the offspring of patients with premature cardiovascular disease show that structural and functional changes are present in arteries even before the onset of disease and such individuals may be at increased risk of developing atherosclerosis (Gaeta et al., 2000). Impaired endothelium dependent flow mediated dilatation (FMD) has been reported in individuals with a positive family history of coronary artery disease (CAD), and was most pronounced in those individuals who both themselves and also their affected first degree relative were free from conventional risk factors such as smoking and diabetes (Clarkson et al., 1997; Gaeta et al., 2000). Some of the most convincing evidence for a genetic contribution to common forms of cardiovascular diseases comes from studies of twins. In a follow-up study of 21,000 twins Marenberg et al in 1994 and Zdravkovic et al in 2002 found that in twin pairs, the risk of a CHD event in the second twin of a monozygotic pair (who share 100% of their genes) was 2-fold higher than that for a second twin of a dizygotic pair, (who share only 50% of their genes). This evidence suggests that both atherosclerosis and the endothelial dysfunction that may underlie it are at least in part heritable disorders. Screening of populations at high risk of developing CVD is an important strategy for preventing disease onset and progression, and genetic association studies have been used extensively to try and locate and identify genes that could influence susceptibility to vascular diseases.
1.1.4 Candidate genes for CVD

The process of atherosclerosis development, plaque formation and eventual rupture involves many proteins and pathways. Each protein is encoded by its own gene, and variation in the coding sequence of these genes due to polymorphisms or mutation may result in individual differences in protein expression or function and predisposition to disease. Both polymorphisms and mutations refer to alteration in the nucleotide sequence of a gene such as base substitutions or insertion/deletion of a nucleotide. Rare mutations usually occurring in less than 1% of the population are well known causes of monogenic disorders such as cystic fibrosis or sickle cell disease. Conventionally, polymorphisms are classed as more common sequence changes occurring throughout the genome. Common polymorphisms may be silent but some may increase the risk of developing common disorders such as atherosclerosis. Additional polymorphisms or environmental factors may modulate this risk. Both polymorphisms and mutations may result in a change in the protein sequence with the consequence of altered protein function or, if the change lies within the promoter, a change in gene expression. Changes in protein function may be the result of nucleotide alterations such as missense mutations (causing a change in amino acid), nonsense mutations (resulting in a stop codon and therefore premature termination of translation) or frameshift mutations (causing a change in the reading frame). It has been reported that approximately 1.42 million single nucleotide polymorphisms (SNP) exist throughout the human genome, with on average one SNP every 1300bp (The International SNP Map Working Group, 2001). Single nucleotide polymorphisms may lie within the coding regions of genes (c-SNPs), within promoters (p-SNPs) or in introns. Although, many c-SNPs may be ‘silent’ (fail to alter the amino acid sequence of the protein), others alter amino acid
sequence and, consequently, protein activity. P-SNPs may influence protein function through regulation of protein expression. In each case, it is envisaged that carriage of the variant is entirely compatible with health, but in the presence of adverse environmental factors or additional risk alleles in other genes, disease develops.

Like all multi-factorial diseases, the identification of a causative gene (or genes) is proving to be a difficult task for CVD. Association analysis of polymorphisms in candidate genes has led to the study of hundreds of possible genes including those encoding cytokines, adhesion molecules, growth factors and coagulation-fibrinolysis mediators. In addition, genes encoding enzymes involved in the regulation of blood pressure such as the renin-angiotensin system, lipid metabolism and also the nitric oxide system have been included in this search. A few of these genes and their polymorphisms, which have been investigated for association with risk of CVD are shown in table 1.2. A recent study in which 4152 Japanese individuals were genotyped for 112 polymorphisms in 71 candidate genes for myocardial infarction (MI), identified the 1019C/T polymorphism in the connexin 37 gene and the p22phox 242C/T polymorphism to be associated with increased risk of MI in men, and the -688 4G/5G plasminogen activator inhibitor (PAI) polymorphism and -1171 5A/6A stromelysin 1 polymorphism to be associated with increased risk of MI in women (Yamada et al., 2002). The endothelial nitric oxide synthase gene (NOS 3) has also been the focus of several association studies for CVD. In particular, the -786T/C and Glu298Asp polymorphisms have been associated with increased risk of vascular disease (Nakayama et al., 1999; Hingorani et al., 1999; Miyamoto et al., 1998; Yoshimura et al., 1998). Such large-scale association studies between candidate genes and CVD have been aided by the completion of the first draft of the human genome sequence (International
Human Genome Sequencing Consortium, 2001) and subsequent generation of a comprehensive single nucleotide polymorphism (SNP) database. Improved high throughput genotyping techniques have also revolutionized the speed at which association studies can be performed with hundreds of individuals genotyped for multiple polymorphisms each day.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene symbol</th>
<th>Polymorphism</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric oxide system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric oxide synthase 3</td>
<td>NOS 3</td>
<td>894G→T</td>
<td>Glu298Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-786T→C</td>
<td></td>
</tr>
<tr>
<td>Renin-Angiotensin system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin</td>
<td>AGT</td>
<td>803T→C</td>
<td>Met235Thr</td>
</tr>
<tr>
<td>Angiotensin receptor 1</td>
<td>AGTR1</td>
<td>1166A→C</td>
<td></td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apolipoprotein E</td>
<td>ApoE</td>
<td>388T→C</td>
<td>Cys112Arg</td>
</tr>
<tr>
<td>Low density lipoprotein Receptor</td>
<td>LDLR</td>
<td>IVS12+2T→C</td>
<td></td>
</tr>
<tr>
<td>Cytokines & adhesion molecules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleukin 1-beta</td>
<td>IL1B</td>
<td>-581C→T</td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor receptor superfamily</td>
<td>CD40L</td>
<td>420C→G</td>
<td>Trp140Cys</td>
</tr>
<tr>
<td>Intercellular adhesion molecule 1</td>
<td>ICAM1</td>
<td>167A→T</td>
<td>Lys29Met</td>
</tr>
<tr>
<td>Coagulation factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasminogen activator inhibitor 1</td>
<td>PAI 1 (SERPINE1)</td>
<td>-1965 del G</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>FGA</td>
<td>116T→A</td>
<td>Val20Asp</td>
</tr>
</tbody>
</table>

Table 1.2. Examples of some of the genes investigated for association with CVD. The corresponding gene symbols and polymorphisms are shown, and where appropriate the amino acid change.
1.2 The L-Arginine→NO system

1.2.1 Discovery of Nitric Oxide

In 1980 Furchgott and Zawadzki observed that the endothelium was necessary for vascular relaxation induced by acetylcholine (Furchgott and Zawadski, 1980). If the endothelium was removed this relaxation was abolished. They postulated that this endothelium-dependent relaxation was mediated by an unstable diffusible factor, with a biological half-life of only a few seconds. It was subsequently named endothelium-derived relaxant factor (EDRF). In 1986 it was proposed that EDRF was in fact nitric oxide (NO) (Ignarro et al., 1987). This hypothesis was later confirmed when several investigators showed that vascular endothelial cells synthesize NO, and that administration of exogenous NO reproduced the biological effects of EDRF (Palmer et al., 1987; Ignarro et al., 1987; Radomski et al., 1987a).

1.2.2 Different isoforms of NO exist

NO is synthesized by the enzyme nitric oxide synthase (NOS), of which three isoforms have been identified; neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS), named after the tissues in which the genes were first cloned and characterized (Fostermann et al., 1994). All three isoforms have since been found in a variety of different tissues, and undergo complex regulation. The binding of calmodulin (CaM) was found to be pre-requisite for all isoforms of NOS activity, and is regulated by intracellular calcium (Ca²⁺) levels. The requirement for Ca²⁺ differs between the three isoforms. nNOS and eNOS require
greater concentrations of intracellular Ca\(^{2+}\) for activity, whereas it has been suggested that CaM is very tightly bound to the iNOS enzyme and therefore only low levels of Ca\(^{2+}\) are needed for activation. nNOS and eNOS were formerly considered to be constitutive enzymes, but their expression is now known to be subject to up or down regulation for example during pregnancy and exercise (Dotsch, 2001; Tatchum-Talom et al., 2000). eNOS released by the endothelium induces vascular relaxation and inhibits many processes involved in atherosclerosis development, whereas nNOS is the major isoform found in the brain where it acts as a neurotransmitter (Dawson et al., 1996). iNOS is expressed in cells such as macrophages and vascular smooth muscle cells (VMSC) after exposure to cytokines and lipopolysaccharide (Chester, 1998), and through its potent cytotoxic actions is one mechanism by which macrophages kill invading pathogens (Bogdan et al., 2000).

The three nitric oxide synthases are similar in structure, each comprising a reductase and an oxygenase domain. The active enzyme is in the form of a dimer as illustrated for eNOS in figure 1.3. Each reductase domain has recognition sites for the cofactors nicotinamide adenine dinucleotide phosphate (NADPH), flavine adenine dinucleotide (FAD), flavine mononucleotide (FMN) and CaM. Electrons are shuttled form NADPH to FAD and then FMN and ultimately to the iron protoporphyrin IX (haem) within the oxygenase domain, which harbors the catalytic active site for the reaction L-arginine+O\(_2\)→NO+citrulline. The oxygenase domain also binds tetrahydrobiopterin (BH\(_4\)), which is thought to have multiple roles in NOS function (section 1.3.3).
Figure 1.3. Diagrammatic representation of endothelial nitric oxide synthase (eNOS). The protein comprises a homodimer in its active state. Each monomer has an oxygenase domain (highlighted in red) and a reductase domain (highlighted in blue). Electrons are passed from NADPH to FAD and FMN within the reductase domain and then to haem within the oxygenase domain. The oxygenase domain binds BH₄, which could be involved in stabilization of the NOS dimer.

The corresponding three human NOS genes have each been characterized (Marsden et al., 1992; Charles et al., 1993; Hall et al., 1994). The genes encoding nNOS and eNOS (termed NOS 1 and NOS 3) are located on chromosomes 12q24.2 and 7q35-36 respectively, and the gene encoding iNOS (NOS 2) is located on chromosome 17cen-q11.2. Each isoform exhibits an 80-90% homology between species, which is indicative of their high evolutionary conservation, and each isoform bears a 50-60% homology to each other within a species, suggesting a common ancestral NOS gene.
(Alderton et al., 2001). The eNOS and iNOS genes are similar in structure, each composed of 26 exons. The iNOS gene is 37kb and encodes a protein of 1153 amino acids (131kDa), while the eNOS gene is smaller-21-22kb but encodes a protein 1203 amino acids (133kDa). In contrast the nNOS gene is much larger comprising 29 exons and has a complex structural organization over a distance of more than 200kb resulting in a protein of 1434 amino acids (161kDa). It is highly regulated by alternate splicing, which could be important for tissue specific NOS activity (Brenman et al., 1997). Splice variants have also been detected for iNOS, but not eNOS.

1.2.3 Physiological actions of eNOS

Endothelial NO is the most potent vasodilator known. It is synthesized from L-arginine and molecular oxygen with citrulline as the co-product (Moncada et al., 1993). Endothelial NO exerts its effects by diffusing into sub-adjacent vascular smooth muscle cells, where it activates soluble guanylate cyclase (sGC), which in turn stimulates the conversion of guanosine triphosphate to cyclic GMP (Rapoport et al., 1983). Increased levels of cyclic GMP lead to vascular smooth muscle cell relaxation and consequently vasodilation (Rapoport et al., 1983; Murad, 1986; Murad, 1990.). Other intrinsic properties of NO include: inhibition of platelet aggregation (Radomski et al., 1987b), inhibition of smooth muscle cell growth and migration (Nakiki et al., 1990; Sarkar et al., 1996) and anti-inflammatory properties such as inhibition of endothelial adhesion molecule expression and leukocyte adhesion (Bath et al., 1991; Bath et al., 1993). Thus physiological levels of NO are considered to confer atheroprotective and thromboresistant properties to the endothelium.
1.3 Decreased NO availability, endothelial dysfunction and cardiovascular disease

The onset of atherosclerosis is preceded by attenuation in functions of the endothelium, caused by environmental influences, genetic factors or both. The underlying causes of endothelial dysfunction are as yet not fully understood, however it is likely, given the key anti-atherogenic and anti-thrombotic properties of NO, that a reduction in its synthesis or action is an important part of this process. Studies of normal NO synthesis and regulation are providing a number of possible mechanisms to account for decreased availability of NO that underlies vascular disease. Some of the factors and pathways that might be involved are illustrated in figure 1.4. Decreased NO bioavailability that predate/predicts atherosclerotic events might result from reduced eNOS expression, increased ADMA (inhibitor of NOS), decreased BH$_4$ (co-factor for NOS) or increased inactivation of NO by reactive oxygen species. The evidence for these will be discussed in detail.

![Figure 1.4 Regulation of NO synthesis.](image)

Figure 1.4 Regulation of NO synthesis. NO is synthesized by the enzyme NOS which requires BH$_4$ as a cofactor and is inhibited by asymmetric dimethylarginine (ADMA). NO has vasodilator and antiatherogenic properties but can be inactivated by oxidation to ONOO$^-$.
1.3.1 Decreased NOS expression or activity-studies of the eNOS gene (NOS 3)

The human eNOS gene, NOS 3, located on chromosome 7q35-36, comprises 26 exons and spans a distance of 21kb (Marsden et al., 1993). The 5' regulatory region exhibits a structure that is consistent with a constitutively expressed gene- it is TATA-less and harbours consensus sequences for transcription factors Sp1 and GATA. Decreased expression or activity of NOS3 would be expected to result in decreased NO synthesis predisposing to endothelial dysfunction and vascular disease. It is not surprising therefore that the NOS 3 gene has been the focus of intensive research to identify any polymorphisms or mutations, which could affect NO synthesis through differences in expression or activity. To date more than 100 polymorphisms have been identified in the NOS 3 gene (NCBI SNP database, http://www.ncbi.nlm.nih.gov/SNP/), and at least four of these investigated as risk factors for atherosclerosis (Bonnardeaux et al., 1995; Wang et al., 1996; Yoshimura et al., 1998; Nakayama et al., 1999).

Decreased expression of NOS 3 leading to reduced NO synthesis has been demonstrated in human atherosclerotic arteries (Oemar et al., 1998). To date more than 15 polymorphisms in the NOS3 promoter have been described (NCBI SNP database, http://www.ncbi.nlm.nih.gov/SNP/) that might influence transcription. The −786T/C, −922A/G and −1468T/A polymorphisms were found to be associated with coronary spasm (Nakayama et al., 1999). In addition the −786T/C polymorphism has been associated with increased risk of CAD (Rossi et al., 2003) and influenced promoter activity in a luciferase/reporter assay system (Nakayama et al., 1999).
Polymorphisms within the coding region of the NOS 3 gene could alter NOS enzymatic activity. One of the most studied eNOS polymorphisms (894G→T) within exon 7, is the only polymorphism identified that encodes an amino acid change—Glu298Asp (Glutamate to Aspartate at position 298). Individuals carrying the Asp variant have been reported as having an increased risk of developing IHD (Hingorani et al., 1999; Miyamoto et al., 1998; Yoshimura et al., 1998). These observations are supported by a recent meta-analysis in which data was available in 9867 cases and 13161 controls from 26 previous studies. The authors concluded that individuals homozygous for the 298Asp allele had a moderately increased risk of IHD (Casas et al, unpublished data reproduced with permission of authors). Expression studies have revealed that the Asp variant maybe more susceptible to proteolytic cleavage (Tesauro et al., 2000), and carriers of the Asp298 allele have been shown to have reduced endothelium-dependent vasodilation of the brachial artery during pregnancy (Savvidou et al., 2001).

1.3.2 Decreased L-arginine availability

Despite the fact that its concentration in cells/blood is greater than the K_m (1-4μM) of NOS for arginine (Charles et al., 1996; Bredt and Snyder, 1990), the availability of arginine may, in some circumstances become one of the rate limiting factors for the synthesis of NO. This observation has become known as the “arginine paradox”. Several human in vivo studies have demonstrated that endothelial function can be improved by administration of arginine to both healthy (Bode-Boger et al., 1994; Mehta et al., 1996; Imaizumi et al., 1992) and atherosclerotic coronary arteries (Boger et al., 1998a; Tousoulis et al., 1998), but to date the reason for this phenomenon is still unexplained. Three possible theories have been put forward, the first suggests that
cellular arginine concentrations available to the NOS enzyme are somehow limited, for example if arginine is sequestered within storage pools inaccessible to NOS (McDonald et al., 1997). The second theory proposes that binding of arginine to the active site of NOS may be hindered by the presence of an inhibitor (Vallance et al., 1992), and the third that the transport of arginine into the cell via specific transporters may be downregulated (Kaye et al., 2002). The large oral dose of L-arginine that is required to improve endothelial function, has, however limited its use as a potential therapeutic agent.

1.3.3 Limited availability of BH$_4$ for NOS enzyme activity

It has been hypothesized that a deficiency in BH$_4$, either caused by a reduction in its synthesis or increased oxidative inactivation could lead to reduced NO availability and endothelial dysfunction. When BH$_4$ is limiting, NOS generates O$_2^-$ rather than NO from oxygen and NADPH (Pou et al., 1992), but the reason why has continued to elude scientists possibly because the precise role of BH$_4$ in the synthesis of NO is still unclear (Vasquez-Vivar et al., 1999; Wever et al., 1997; Xia et al., 1998). Administration of low dose BH$_4$ to smokers, hypertensives, hypercholesterolemics and diabetics – all states in which endothelium-dependent vasodilation is attenuated can reinstate normal endothelial function, whereas BH$_4$ has no effect on healthy vessels at the same dose (Ueda et al., 2000; Stroes et al., 1997; Pieper, 1997). This observation is consistent with the theory that BH$_4$ availability may be limited in diseased vessels. Insufficient BH$_4$ availability maybe caused by reduced synthesis or oxidative inactivation. GTPcyclohydrolase 1 is the first and rate-limiting enzyme in the synthesis pathway of BH$_4$ (Duch and Smith, 1991). However, to date, no studies have investigated any
differences in expression of GTPCH-1 between atherosclerotic and non-atherosclerotic vessels. However, agents that improve endothelial function such as HMG-CoA reductase inhibitors (statins) also upregulate GTPCH-1 mRNA (Hattori et al., 2003). Oxidative inactivation of BH$_4$ is supported by studies in which endothelial function can be improved by vitamin C and folic acid supplementation and by the observation that in diseased tissues the BH$_4$/BH$_2$ ratio is reduced (Heller et al., 1999; Heitzer et al., 1996; Stroes et al., 2000). The beneficial effects of these anti-oxidants maybe due to direct scavenging of oxygen-derived free radicals. However it has also been proposed that vitamin C and folic acid may increase availability of BH$_4$, increase the affinity of BH$_4$ for eNOS or could facilitate the 1-electron oxidation of BH$_4$ to the BH$_4$ radical (Baker et al., 2001; Stroes et al., 2000).

1.3.3.1 Multiple functions of BH$_4$-essential NOS cofactor

The NOS enzymes depend on the cofactor BH$_4$, which binds to the haem-containing domain of the enzyme and forms part of the dimer interface. Its position within the NOS enzyme has led to the hypothesis that BH$_4$ is involved in stabilization of the NOS dimer (Klatt et al., 1995; Ghosh et al., 1996). However, the amount of BH$_4$ required for each isoform of NOS has been reported to differ, the iNOS isoform relying on more BH$_4$ for activity compared to eNOS and nNOS (reviewed in Stuehr et al., 1999). Other studies have proposed functions such as: promoting coupling of NADPH oxidation to NO synthesis (Vasques-Vivar et al., 1999), allosteric binding effects (Giovanelli et al., 1991; Klatt et al., 1994; Alderton et al., 1998) and modification of the haem environment (Wang et al., 1993; Wang et al., 1995). BH$_4$ is also an essential cofactor for the phenylalanine, tryptophan and tyrosine hydroxylases. These enzymes are
essential for the synthesis of hormones and neurotransmitters such as dopamine, noradrenaline, adrenaline and serotonin.

1.3.3.2 Synthesis of BH₄

Reduced synthesis of BH₄ could be one reason for decreased NOS activity leading to endothelial dysfunction, but this has not been systematically investigated. The pathway of synthesis of BH₄ is illustrated in figure 1.5. The initial step is the conversion of GTP to dihydronopterin triphosphate by GTP cyclohydrolase 1 (GTPCH-1), which is the first and rate-limiting enzyme in this pathway (Duch and Smith, 1991). In man, but not rodents, a proportion of the dihydronopterin triphosphate is converted to neopterin, which serves as a marker of pterin pathway activity. The majority of dihydronopterin triphosphate is converted to 6-pyruvoyl tetrahydropterin by 6-pyruvoyl tetrahydropterin synthase (PTPS) and finally to BH₄ by sepiapterin reductase (SR). Mutations in GTPCH-1 and PTPS result in decreased BH₄ leading to hyperphenylalanaemia and a neurological disorder L-DOPA responsive dystonia (DRD) (Thony et al., 1997). However, the effects of polymorphisms or mutations in GTPCH-1 on endothelial function and risk of vascular disease have not yet been studied.
Figure 1.5. Synthesis of BH₄. BH₄ is synthesized from GTP via GTPCH-1 (the rate limiting enzyme), 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase. In man, but not rodents, a proportion of the dihydroneopterin triphosphate is converted to neopterin, which serves as a marker of pterin pathway activity.

Adapted from Brahms Diagnostica.
1.3.4 Inhibitors of nitric oxide synthase

Endogenous asymmetric methylarginines might have a profound effect on NO synthesis by inhibiting the NOS enzyme. Protein methylation occurs via a group of enzymes known as protein arginine methyltransferases (PRMT) and the breakdown of these proteins results in the release of free methylarginines including .NO-monomethyl-L-arginine (L-NMMA), asymmetric dimethyl-L-arginine (ADMA) and symmetric dimethylarginine (SDMA) (Kakimoto et al., 1970), which are cleared from the body via the kidneys. In addition L-NMMA and ADMA (but not SDMA) are also metabolized by dimethylarginine dimethylaminohydrolase (DDAH). It is interesting to note that SDMA, which is not metabolized by DDAH is also not capable of inhibiting the NOS enzyme (Figure 1.6). L-NMMA and ADMA are analogues of L-arginine and are elevated in various disease states in which vascular disease is a clinical manifestation such as hypertension (Goonasekera et al., 1997; Fujiwara et al., 2000), renal failure (Vallance et al., 1989; Vallance et al., 1992; Rees et al., 1989), preeclampsia (Pettersson et al., 1998) and peripheral arterial occlusive disease (Boger et al., 1997). Normalization of ADMA levels in renal failure patients by dialysis has been shown to associated with improved endothelium-dependent vasodilation (Cross et al., 2001). In a recent study, administration of ADMA to twelve healthy volunteers reduced heart rate and cardiac output, and increased blood pressure and systemic vascular resistance (Achan et al., 2003). Increased circulating levels of ADMA may therefore be a contributing factor of endothelial dysfunction. Sufficient concentrations of these methylarginines to “out compete” arginine for NOS has been put forward as an explanation for the arginine paradox (section 1.3.2).
Figure 1.6 Synthesis and metabolism of ADMA. The methylarginines ADMA and SDMA are synthesized from the proteolysis of arginine methylated proteins, which involves protein arginine methyltransferases (PRMT). ADMA is a competitive inhibitor of NOS. Both ADMA and SDMA are eliminated from the body via the kidneys, however ADMA is also metabolized by DDAH.

L-NMMA has been utilized as a tool for research into the role of NO and endothelial relaxation for the past 10-15 years, however circulating concentrations of ADMA (0.5μM-1μM) are up to 10 times higher than L-NMMA in healthy individuals, and for this reason ADMA has attracted most interest as a possible endogenous inhibitor of NOS. The underlying cause of elevated ADMA in patients at risk of vascular disease development in unknown, but at present two potential mechanisms have been proposed:

1. Upregulation of PRMTs resulting in increased protein methylation and subsequent breakdown would lead to elevated circulating methylarginines. Studies have shown that release of ADMA by endothelial cells is upregulated by
LDL cholesterol and this may be due to enhanced PRMT gene expression (Boger et al., 2000).

(2) Failure of ADMA to be cleared from the body. In addition to being excreted via the kidneys, ADMA is also metabolized by the enzymes dimethylarginine dimethylaminohydrolases (DDAH I + II). A decrease in metabolism or excretion would lead to an increase in circulating ADMA and inhibition of NO synthesis (MacAllister et al., 1996; Ito et al., 1999).

1.3.4.1 Reduced DDAH expression or activity could account for elevated ADMA

The observation that ADMA but not SDMA levels are elevated in patients at risk of developing CVD suggests that down-regulation or dysfunction of DDAH could be implicated in the pathogenesis of disease. DDAH has two isoforms named DDAH1 and DDAH2 (Leiper et al., 1999). Both enzymes are found in a variety of tissues, but the DDAH1 isoform is found predominantly in tissues expressing nNOS such as the brain, whereas DDAH2 is found in tissues expressing eNOS such as the heart and placenta (Tran et al., 2000). This may suggest isoform specific regulation of NOS enzymes, with DDAH2 possibly being the major functional variant within the vasculature.

The DDAH2 gene is located on chromosome 6 within the major histocompatibility complex (MHC) class III region (Ribas et al., 1999). This region contains a number of genes, which are involved in autoimmune diseases such as insulin dependent diabetes mellitus, ankylosing spondylitis and celiac disease (Thomson et al., 1988; Benjamin et al., 1990; McManus et al., 1996). The DDAH2 gene comprises 8 exons that span a
distance of 3kb and encodes a protein of 35kDa. To date a detailed analysis of the
DDAH2 gene has not been attempted, but it is possible that polymorphisms or mutations
could alter expression or activity resulting in elevated ADMA.

1.3.5 Inactivation of NO by superoxide (O$_2^-$)

The production of reactive oxygen species (ROS) such as superoxide (O$_2^-$), hydrogen
peroxide (H$_2$O$_2$), and peroxynitrite (ONOO$^-$) in the vasculature, have long been
suspected as being implicated in the development of vascular disease. O$_2^-$ levels are
elevated in hypertension, heart failure, hypercholesterolemia, diabetes, preeclampsia
and renal failure and could prove to be a common cause of endothelial dysfunction
among these patients (Mehta et al., 1994; Keith et al., 1998; Ohara et al., 1993;
Langenstroer et al., 1992; Sikkema et al., 2001; Canaud et al., 1999). The precise
source of increased O$_2^-$ in individuals at risk of CVD is unknown, but a number of
enzymes expressed in the vasculature, are potential sources. These include xanthine
oxidase, cyclooxygenase, NADH/NADPH oxidase (Griendling et al., 2000) and the
mitochondrial electron transport chain. Decreased inactivation by antioxidant enzymes
such as superoxide dismutases (SOD) of which there are three isoforms (Noor et al.,
2002) may also contribute to increased O$_2^-$ effects. It has been shown that endothelial
function can be markedly improved after administration of anti-oxidants in individuals
where endothelial function was previously impaired (Heller et al., 1999; Heitzer et al.,
1996) and in cholesterol fed rabbits (Mugge et al., 1991), suggesting that O$_2^-$ may inhibit
the vasodilator properties of NO. Inactivation of NO may be caused by the rapid
reaction of NO with O$_2^-$ to produce ONOO$^-$ (Goldstein and Czapski, 1995), which can
itself act as a potent oxidant (Beckman and Crow, 1993). In addition to oxidative
inactivation of NO, ROS species may also inactivate cofactors for NOS such as BH₄ (discussed in section 1.3.3). ROS species not only function as molecules able to inactivate many important proteins, but are known to be involved in many intracellular signaling pathways, which lead to regulation of gene transcription, smooth muscle cell proliferation and induction of adhesion molecule expression (Konishi et al., 1997; Fei et al., 2000; Weber et al., 1994). These diverse properties have made ROS, in particular O₂⁻, prime suspects in the development of vascular disease.

1.3.5.1 NADPH oxidase is a major source of ROS in the vasculature

One of the main sources of ROS are the NADH/NADPH oxidases. Phagocytes use this enzyme system to produce bursts of O₂⁻ to kill invading pathogens, and it was subsequently found that endothelial cells and fibroblasts express their own NADH/NADPH oxidases, which are a major source of ROS in blood vessels. NADPH oxidase (in both phagocytic and non-phagocytic cells) is composed of five subunits: Gp91phox (the catalytic subunit), p22phox, p47phox, p67phox and p40phox (Figure 1.7), however the catalytic Gp91phox is both genetically and structurally different between phagocytic and non-phagocytic cells. Animal and human in vitro studies have demonstrated that production of ROS can be increased upon activation of NADPH oxidase (Gorlach et al., 2000; Heinloth et al., 2000). ROS generation is also enhanced through mechanical stress, inflammatory mediators such as TNF-α, angiotensin II and coagulation factors, possibly by induction of NADPH oxidase (Hishikawa et al., 1997; De Keulenaer et al., 1998; Bhunia et al., 1998; Griendling et al., 1994; Zhang et al., 1999; Patterson et al., 1999). The genes encoding each of the NADPH oxidase subunits are also attracting interest, as polymorphisms or mutations could have effects upon ROS
production and consequences for vascular disease. Currently eleven variants have been identified within the p22phox gene (CYB A) and most of these are associated with chronic granulomatous disease (Dinauer et al., 1990; Dinauer et al., 1991; de Boer et al., 1992; Yamada et al., 2000; Stasia et al., 2002). The C242T polymorphism which results in a histidine to tyrosine substitution at position 72 of the protein, has been the focus of most interest to date in relation to CVD (Parkos et al., 1988). This polymorphism has been associated with atherosclerosis, coronary artery disease (CAD) and cerebrovascular disease (Guzik et al., 2000a; Cahilly et al., 2000; Ito et al., 2000).

Figure 1.7 NADPH oxidase enzyme complex. The NADPH oxidase enzyme is composed of a membrane-spanning catalytic subunit called gp91phox, which is genetically and structurally different between phagocytic and non-phagocytic cell types. The gp91phox subunit interacts with p22phox to form the stable complex flavocytochrome b558. Upon stimulation, the cytosolic components p47phox, p67phox and p40phox translocate to the flavocytochrome b558 complex to form the active enzyme.
1.4 Hypothesis

NO is a potent anti-atherogenic molecule produced in the endothelium by eNOS. A decrease in expression or activity of NO has been suggested as a causative agent in the development of vascular disease, which has a heritable basis. NOS requires the essential cofactor BH₄ which is synthesized from GTP via GTPCH-1 (which is the rate-limiting enzyme for this process). Reduced availability of BH₄ has been shown to result in increased production of O₂⁻ from eNOS, which can cause vascular damage. NOS can be inhibited by the endogenous L-arginine analogue ADMA. Plasma ADMA accumulates in hypercholesteroleemics, hypertensives and in renal failure possibly resulting in endothelial dysfunction. The increase in ADMA may be attributed to a decrease in DDAH activity.

Based on the above, the central hypothesis explored in the studies of this thesis, is that common genetic variation (polymorphism) in the genes encoding enzymes regulating ADMA, BH₄ and O₂⁻ availability in the endothelium, influence NO availability and endothelial function and through this, might alter susceptibility to cardiovascular disease.
1.5 Aims

The aims of the work reported in this thesis were to:

1. identify common polymorphisms in the \textit{GCH1} and \textit{DDAH2} genes that might influence expression or activity.

2. relate any polymorphisms found to indices of gene expression or activity.

3. investigate associations between these polymorphisms and previously identified polymorphisms in the p22phox gene (\textit{CYBA}) and NO synthesis and vascular function in healthy individuals and disease groups.
CHAPTER 2

MATERIALS AND METHODS
2.1 Materials

2.1.1 General reagents

All general purpose chemicals and reagents were supplied by Sigma Aldrich Company Ltd (Poole, Dorset, UK), BDH (Merck, Dorset, UK) or Invitrogen (Paisley, UK) unless otherwise stated.

2.1.2 Enzymes used for PCR and restriction digests

DNA polymerase was obtained from Invitrogen, (Paisley, UK). Restriction endonucleases were supplied by New England Biolabs (Hertfordshire, UK) and are listed in table 2.1.

<table>
<thead>
<tr>
<th>Restriction enzyme</th>
<th>Recognition sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BsmFl</td>
<td>5' GGGAC(N)\textsubscript{10}↓ 3'</td>
</tr>
<tr>
<td>BsrDl</td>
<td>5' GCAATGNN↓ 3'</td>
</tr>
<tr>
<td>BstU1</td>
<td>5' CG↓CG 3'</td>
</tr>
<tr>
<td>MwoI</td>
<td>5' GCN\textsubscript{6}NN↓NNGC 3'</td>
</tr>
<tr>
<td>RsaI</td>
<td>5' GT↓AC 3'</td>
</tr>
</tbody>
</table>

Table 2.1 Restriction endonucleases used for PCR-RFLP analysis. ↓ indicates the cutting site of each enzyme.
2.1.3 Oligonucleotides

Oligonucleotides were purchased from Sigma Aldrich Company Ltd (Poole, Dorset, UK).
All oligonucleotides were synthesized at 0.2μM scale and desalted.

2.1.4 DNA ladders for agarose gel electrophoresis and genescan

100bp, 1kb and 1kb plus DNA ladders for sizing PCR products on agarose gels were obtained from Invitrogen (Paisley, UK). Genescan TAMRA-350 DNA ladder for sizing fluorescent-labeled PCR products was from Perkin Elmer, Applied Biosystems (Warrington, UK).

2.1.5 Gel loading buffers

Agarose gel loading buffer (6x concentrated) was purchased from Sigma Aldrich Company Ltd (Poole, Dorset, UK).

Polyacrylamide gel loading buffer (for SSCP) was made up as follows: 96% formamide, 2.5% bromophenol blue, 2.5% xylene cyanol, 0.5M EDTA.

Polyacrylamide gel loading buffer (for DNA sequencing) was made up as follows: 83% deionised formamide, 4.2mM EDTA (pH 8.0), 5% blue dextran.
TE buffer (for re-suspending DNA) was made up as follows: 0.01M Tris, 1mM EDTA (Ethylenediaminetetraacetic acid) adjusted to Ph 7.6 with concentrated hydrochloric acid (HCL).

2.1.6 Cell culture reagents

E.coli strain DH5α for cloning experiments was purchased from Invitrogen (Paisley, UK). Human umbilical vein endothelial cells (HUVEC) for transfection studies were from PromoCell (Heidelberg, Germany). HUVEC were cultured in EGM media (Biowhittaker, Cambrex Bioscience, Wokingham Ltd).

2.1.7 Kits

A list of kits (and their contents) used during this study are summarized below:

DNA miniprep kit (Qiagen, Boundary Court, UK):
Spin columns, 2ml collection tubes, buffers; P1, P2, N3, PB, PE, EB, RNaseA.

DNA midiprep kit (Qiagen, Boundary Court, UK):
Qiagen tips 100, QiaFilter cartridges, buffers; P1, P2, P3, QBT, QC, QF, RNaseA.
dRhodamine sequencing kit (*Perkin Elmer, Warrington, UK*):

Terminator ready reaction mix: A-Dye terminator labeled with dichloro[R6G], C-Dye terminator labeled with dichloro[TAMRA], G-Dye terminator labeled with dichloro[R110], T-Dye terminator labeled with dichloro[ROX], AmpliTaq FS, MgCl₂, Tris-HCl buffer.

Dual light luciferase reporter assay kit (*Promega, Madison, UK*):

Luciferase assay buffer II, Luciferase assay substrate, Stop and Glow® buffer, Stop and Glow substrate, Stop and Glow substrate solvent, 5x passive lysis buffer.

Neopterin ELItest® competitive enzyme immunoassay kit (*B.R.A.H.M.S diagnostica GMBH*):

96 well microtitre plate coated with anti-neopterin antibodies, uncoated plate, neopterin/alkaline phosphatase conjugate, enzyme conjugate buffer, substrate (4-nitrophenylphosphate), substrate buffer, stop solution (2M sodium hydroxide), wash solution, human serum neopterin standards, control sera.

Phastgel silverstain kit (*Amersham, UK*):

Formaldehyde 37%, fixing solution (0.7% benzene sulphonic acid, 24% ethanol), staining solution (0.2% silver nitrate, 0.7% benzene sulphonic acid), sodium carbonate 2.5%, stopper/preserver solution (1% acetic acid, 5% sodium acetate, 10% glycerol), sodium thiosulphate 2%.
QIAamp® DNA Blood mini kit (Qiagen, Boundary Court, UK):
Spin columns, 2ml collection tubes, Buffers; AL, AW1, AW2, AE, Proteinase K.

QIAquick gel extraction kit (Qiagen, Boundary Court, UK):
Spin columns, 2ml collection tubes, buffers: QC, PE, EB

QIAquick PCR purification kit (Qiagen, Boundary Court, UK):
Spin columns, 2ml collection tubes, buffers; PB, PE, EB.

TOPO TA cloning kit (Invitrogen, UK):
PCR®2.1-TOPO: 10ng/μl plasmid (in 50% glycerol, 50Mm Tris-HCL, 1Mm EDTA, 1Mm DTT, 0.1% Triton X-100, 100μg/ml BSA, phenol red), salt solution (1.2M NaCl), sterile water.
2.2 Methods

2.2.1 Extraction of DNA from whole blood samples

Two methods of DNA extraction were used during this study.

2.2.1.1 Salting out method

This method was originally described by Miller et al, 1988. Cell lysis was achieved by the addition of 10ml reagent A (109.54g sucrose dissolved in 10ml of 1M Tris pH7.5, 5ml of 1M MgCl₂ and 10ml Triton-X-100, made up to 1L with deionised water) followed by mixing and then centrifugation. The supernatant was discarded and the pellet re-suspended in a further 10ml of reagent A. This step was repeated to obtain a clean pellet. 2 ml of reagent B (2.34g NaCl and 1ml Tris-HCl (1M), 0.4ml Na-EDTA (0.5M), 90ml deionised water and 10ml of 10% SDS) was added to the pellet to complete nuclear lysis followed by 1ml of 5M sodium perchlorate for deproteinisation. Separation of protein was performed by the addition of 2ml chloroform and the samples mixed thoroughly. After centrifugation the upper aqueous phase containing the DNA was transferred to a fresh propylene tube and the lower phase containing protein discarded. 100ml of ice-cold ethanol was added to the samples for DNA precipitation. The DNA was removed by inserting and swirling a sterile pasteur pipette into the solution (the DNA adheres to the outside of the pipette) and washing the pipette in 70% ethanol to remove salt and organic molecules. DNA was re-suspended in TE buffer.
2.2.1.2 DNA purification kit method (*QiAmp blood minikit*)

Cell lysis was achieved by adding proteinase K to 200μl of whole blood. The lysate was then pipetted into a 1.5ml tube containing a silica-gel membrane. During centrifugation DNA adsorbs to the membrane whilst protein and other contaminants pass through. The membrane was then washed with a series of salt solutions to remove all traces of contaminants. The genomic DNA was eluted off the membrane with elution buffer (10mM Tris-Cl; 0.5Mm EDTA; pH9.0). An average of 6μg of DNA is purified using this protocol.

All DNA samples were stored at -20°C.

2.2.2 DNA amplification by PCR

All PCR reactions were performed in 30μl volumes containing, 2μl DNA, 10x buffer (500mM KCl, 100mM Tris (pH8.3), 0.01% Gelatin, 2mM each dNTP (dATP dGTP dTTP and dCTP), 10pmol of each oligonucleotide and 0.1U *Taq* DNA polymerase. The MgCl₂ concentration and annealing temperature were optimised for each oligonucleotide pair. Reactions were performed in 96-well microtitre plates (Abgene, Epsom, Surrey, UK). Cycling conditions were 95°C for 5min, followed by 35 cycles of 95°C for 30sec, annealing temperature for 30sec, 72°C for 1 minute and a final extension at 72°C for 10 mins on a (Techne-Genius, 96 well PCR machine). For each set of PCR reactions a negative control was carried out (by using sterile dH₂O in place of DNA) to test for DNA contamination.
2.2.3 Agarose gel electrophoresis

Molecular biology grade agarose (Invitrogen) was dissolved in 1xTBE (Invitrogen) to prepare gels of between 1 and 2% depending on the application. Ethidium bromide (0.5μg/ml) was added to the gel before allowing it to set. Samples were mixed 5:1 with 6x gel loading buffer to give a final concentration of 1x gel loading buffer. In addition a DNA ladder was loaded as a size marker. Samples were electrophoresed in 1xTBE running buffer at a constant voltage of 100V. After electrophoresis gels were visualized in a UV transilluminator (Syngene, UK).

2.2.4 Single-strand conformation polymorphism analysis (SSCP)

2.2.4.1 Radioactive SSCP

PCR was carried out in 30μl reaction volumes as described in section 2.2.2 with one modification- 90% dCTP was substituted with 0.2 mM α-32P dCTP. 7.5% acrylamide gels were prepared by mixing 7.5ml 10xTBE, 11.25ml 49% acrylamide:Bis, 3ml 0.5M EDTA, 7.5ml glycerol and dH2O up to a final volume of 75ml. 115μl of 25% APS and 115μl of TEMED were added prior to gel pouring into glass plates measuring 40cmx30cmx0.4mm. Gels were allowed to set at room temperature for a minimum of 2 hours. 3μl of radiolabelled PCR product was mixed with 6μl of loading buffer and denatured at 95°C for 3mins. Gels were run for 21 hours at 300 Volts. After electrophoresis gels were dried at 80°C for 30 minutes on a BioRad 583 gel dryer, and exposed to film (Hyperfilm MP,
Amersham, UK) for 1-2 days at -70°C. The films were developed by silver nitrate staining. Staining was stopped by acetic acid and background staining reduced with formaldehyde and sodium carbonate. Finally, films were washed with dH₂O.

2.2.4.2 Non-radioactive SSCP (PhastSystem)

Genomic DNA was amplified by PCR as described in section 2.2.2 with no radioactive label. PCR products were mixed with an equal volume of gel loading buffer, denatured at 95°C and immediately placed on ice to stabilize the structure of the single strands. The samples were loaded onto 12% or 20% ready prepared acrylamide gels and run at 4°C for approximately 700 average voltage hours (avh) on a PhastSystem electrophoresis apparatus (Amersham, UK) capable of running 2 gels simultaneously (total number of samples 16). The gels were visualised by silver staining with the PhastSystem silver stain kit as described by the manufacturers (Amersham, UK). Briefly the gels were fixed in a solution containing 0.7% benzene sulphonic acid and stained with 0.2% silver nitrate. The reaction was stopped with a stopper/preserver solution comprising 1% acetic acid, 5% sodium acetate and 10% glycerol. Sodium thiosulphate (2%) was used to reduce the background on the gels. Silver staining allows the detection of as little as 20-50pg/band of DNA.
2.2.5 DNA sequencing

2.2.5.1 Template preparation

The genomic region to be sequenced was amplified by PCR as described in section 2.2.2 and the PCR product used as a template. A total of 4 PCR reactions were carried out for each sample and combined to ensure adequate template was obtained after purification. All PCR products were purified using spin columns (Qiagen, UK) to remove excess primers and oligonucleotides. Briefly this process involved adding the PCR products to a tube containing a silica-membrane. The DNA adsorbs to the membrane under high salt concentrations, whilst contaminants pass through. The membrane was then washed with a low salt buffer to eliminate impurities such as unbound oligonucleotides (up to 40bp in length), and the DNA eluted with Tris buffer. This method allows the purification of up to 10µg of DNA.

2.2.5.2 Sequencing reaction

Sequencing was performed in 20µl reaction volumes containing 8µl dRhodamine dye terminator mix (Applied Biosystems, Warrington, UK), 3.2pmol of primer and 1µl of purified PCR product. Both forward and reverse reactions were performed on each PCR template to accurately verify sequencing in both directions. Cycling conditions used were: 25 cycles of 95°C for 30sec, 55°C for 18sec, 60°C for 4mins on a (Techne-Genius, 96 well PCR machine). Sequencing products were precipitated with 95% ethanol and 3M sodium
acetate pH5.2 to remove any unincorporated nucleotides and primers and left to dry at room temperature. Samples were stored at -20°C until loading.

2.2.5.3 Gel loading and electrophoresis of sequencing products

5% polyacrylamide gels were prepared for DNA sequencing as follows: 18g urea, 27ml dH2O, 5.2ml 40% acrylamide (Anachem Ltd, Bedfordshire, UK) and 0.5g amberlite resin to de-ionise the solution were mixed thoroughly until all urea was dissolved and then filtered through 0.2μm sterile filter units. 5ml of 10xTBE was then filtered into the mix and the gel solution de-gassed for 5 minutes. 250μl of 10% ammonium persulphate and 35μl of TEMED were added immediately prior to gel pouring. The gels were cast in 36cm plates with 0.2mm thick spacers and left to set at room temperature for at least 2 hours. Four μl of loading buffer was added to each sequencing product and the samples denatured by heating at 95°C for approximately 3 minutes to separate the single strands. Denatured samples were placed immediately on ice and loaded without delay. Gels were run for 7 hours on an ABI377 DNA sequencer (Applied Biosystems, Warrington, UK) and data collected on an Apple Macintosh computer.
2.2.6 Genotyping

2.2.6.1 Genotyping by PCR-RFLP analysis

The genomic region of interest was amplified by PCR as described in section 2.2.2. Restriction sites either created or abolished by the presence of a polymorphism were identified by Webcutter software (http://www.firstmarket.com/cutter/cut2.html). Restriction digests were undertaken in 15μl reaction volumes comprising 10μl of PCR product, 2 units of restriction enzyme, dH₂O and 1x appropriate buffer supplied by the manufacturers (final concentration). Digestion was carried out in 96 well plates by incubation for 16 hours at the optimum temperature for each particular enzyme on a Techne Genius 96 well PCR machine.

2.2.6.2 Genotyping by Genescan analysis

PCR was carried out as described in section 2.2.2. The forward reading oligonucleotide was labeled with the fluorescent dye 6-FAM (6-carboxyfluorescein). All PCR products were purified by spin column to remove any surplus oligonucleotides, which could interfere with the results. Samples were stored at −20°C until required.

4% polyacrylamide gels were prepared and cast in the same manner as for DNA sequencing (section 2.2.5.3), the gel mix comprising 18g urea, 25ml dH₂O, 5ml 40% acrylamide (Anachem Ltd, Bedfordshire, UK) and 0.5g amberlite resin to de-ionise the solution. Prior
to gel loading the samples were diluted 1 in 20 with sterile dH₂O to reduce fluorescence
produced by the labelled oligonucleotides. Four μl of loading buffer was added to 1μl of
diluted sample and the samples denatured at 95°C for 3 minutes. Gels were
electrophoresed in 1xTBE running buffer for 2.5 hours at on an ABI 377 DNA sequencer
(Perkin Elmer, Warrington, UK). The data was collected on an Apple Macintosh computer
using Genescan software.

2.2.7 Search of the National Center for Biotechnology Information (NCBI) SNP
database for polymorphisms

The NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/) was established in 1988 and
is a resource of freely available molecular biology information compiled by genome
sequencing consortiums worldwide. The database was searched by entering the genomic
DNA accession number or gene symbol of interest and viewing the sequence in graphical
format. All previously identified polymorphisms are listed and information regarding the
flanking sequence, location, heterozygosity and identification numbers are shown. This
information was used to compare polymorphisms in the database with polymorphisms
identified by SSCP during this study.
2.2.8 Search of the MatInspector database for putative transcription factor binding sites

Genomatix software (http://www.genomatix.de/free_login.html) comprises tools and databases for the analysis of genomic sequences. The MatInspector database was used during this study to identify transcription factor binding sites within the promoter sequences of the GCH1 and DDAH2 genes. The software scans the sequence against a library of matrix descriptions for transcription factor binding sites to find sequence matches. All potential transcription factor binding sites are listed including the core binding sequence and its matrix similarity (a measure of how conserved each base in the core binding sequence is compared to the matrix).

2.2.9 Measurement of plasma nitrite and nitrate (NO_x)

Plasma NOx was measured using a modification of the Griess reaction as described previously (Jeerooburkhan et al., 2001). All plasma samples were filtered through Ultrafree microcentrifuge filter units (Biomax-5, Millipore) prior to analysis to remove any proteins such as haemoglobin (Hb) which may interfere with the reaction. Plasma nitrate (NO_3^-) was reduced to nitrite (NO_2^-) by nitrate reductase and quantified by the addition of 1% sulphanilamide in 5% phosphoric acid and 0.1% N-(-naphthyl)ethylenediamine. All measurements were carried out in duplicate and the mean value of each sample taken as the reading. 40µl of plasma was added to 10µl of phosphate buffered saline (PBS) in a 96 well microtitre plate (Beckton Dickinson). To each sample well was added 1µM nicotinamide
adenine dinucleotide phosphate dehydrogenase (NADPH), followed by a master mix containing 500µM glucose-6-phosphate, 80U/L nitrate reductase and 160U/L glucose-6-phosphate dehydrogenase. The plates were then incubated in the dark for 1 hour at room temperature. 1% sulphanilamide in 5% phosphoric acid was then added to each well along with an equal volume of 0.1% N-(naphthyl)ethylenediamine and the plates incubated for 15 minutes at room temperature. To quantify NO₂⁻ produced, the absorbance was measured by UV visible spectroscopy on a Spectra Max 250, using SOFTmax Pro software (Molecular devices, Menlo Park, CA, USA).

2.2.10 Measurement of plasma neopterin

Neopterin was measured using the ELItest® competitive enzyme immunoassay kit (B.R.A.H.M.S diagnostica GMBH). Briefly, plasma samples were analysed in 96 well microtitre plates, which were coated with polyclonal sheep anti-neopterin antibody. Standards were made by adding 150µl of enzyme conjugate (consisting of neopterin-alkaline phosphatase conjugate) and 50µl neopterin standards (2-250nmol/L). Reactions were carried out by adding 50µl of patient plasma and 150µl enzyme conjugate to the pre-coated wells. The neopterin in the patient samples competes with the neopterin-enzyme conjugate for the active site of the sheep polyclonal antibodies. 100µl of 4-nitrophenylphosphate was added to the samples and standards which catalyses the removal of the phosphate from 4-nitrophenylphosphate resulting in a yellow colour (4-nitrophenole) forming in the reaction wells. Results were obtained by measuring the OD₄₅₀nm on a spectrophotometer using Softmax Pro software.
2.2.11 Luciferase reporter gene assay

2.2.11.1 Cell culture and transfection

HUVEC (Promocell, Germany) were cultured as monolayers in EGM media supplied by Biowhittaker at 37°C, 5% CO₂. Cells were seeded ~18 hours prior to transfection at a density of 5x10⁴ cells/well into 12 well culture plates and were deemed suitable for transfection when approximately 70% confluent. Solution A containing Lipofectin (Invitrogen, Paisley, UK) (5.125μl for each well transfected) and Optimem 1 (Invitrogen, Paisley, UK) (82μl for each well to transfected) was mixed and left to warm to room temperature for 45 minutes. Solution B was made by mixing 0.6μg/well of plasmid construct, ~3ng/well renilla expression vector and 82μl/well optimem 1. A transfection mix was prepared by adding 87.125μl of solution A to solution B and left at room temperature for 15 minutes. Cells were washed with Optimem 1 to discard traces of growth media, which could interfere with transfection, and 330μl of Optimem 1 was added to each well. 168 μl of transfection mix was then added to each well and the cells incubated at 37°C, 5%CO₂ for four hours. After incubation the spent media/transfection mix was discarded and 1ml of EGM media added to each well. Cells were cultured for a further 48 hours.
2.2.11.2 Cell lysis and luciferase assay

Cell lysis and luciferase measurements were performed using the dual light luciferase reporter assay kit (Promega, Madison, USA). Cells were lysed by the passive lysis method. 250μl of passive lysis buffer was added to each well and mixed for 20 minutes to ensure complete lysis. Cell lysates were transferred to 1.5ml Eppendorf tubes and stored at -20°C until required, but for no longer than 48 hours. For luciferase measurement 20μl of cell lysate was transferred to a 96 well opti-plate (Packard Bioscience, Netherlands) and placed in a Tropix TR717 dual injection microplate luminometer (Applied Biosystems). The luminometer was programmed to inject 50μl of LAR1 followed by 50μl of Stop and Glow. For each experiment transfections were performed in triplicate for each construct and luciferase activity was normalised to renilla activity.
2.2.12 Populations collected for vascular phenotyping/disease studies

DNA from seven populations was collected for genotype/phenotype studies. Each of these cohorts had been developed with differing/complementary phenotypic measures.

2.2.12.1 Healthy Subjects

A) Prospective cohort study-NPHSII

Subjects were selected from the NPHSII cohort for analysis. This cohort comprises approximately 3000 healthy men recruited from 9 primary care practices in the UK (Table 2.2). The study was originally setup to test the hypothesis that prior to myocardial infarction there is a hypercoagulable state within the body (Meade et al., 1986). Demographic characteristics of the study cohort are summarized in table 2.3. The men were aged between 50 and 61 years and were healthy at the time of recruitment. All subjects were reviewed annually and asked to avoid heavy meals, refrain from smoking and vigorous exercise from the midnight before the examination. Smoking status, blood pressure, BMI, serum cholesterol, triglycerides, fibrinogen, factor VII coagulant activity (FVIIc % standard) and HDL cholesterol were measured at the time of recruitment and during follow-up visits over the following 9 years. Serum cholesterol and triglyceride levels were measured by automated enzymatic methods (Sigma, UK and Wako Chemicals, Alpha Laboratories, UK). Venous blood was taken at time of recruitment and the plasma
separated and stored at -80°C. All IHD events have been recorded over the time of the study.

<table>
<thead>
<tr>
<th>Clinic</th>
<th>Number of men recruited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aston Clinton</td>
<td>111</td>
</tr>
<tr>
<td>Camberley</td>
<td>416</td>
</tr>
<tr>
<td>Carnoustie</td>
<td>408</td>
</tr>
<tr>
<td>Chesterfield</td>
<td>261</td>
</tr>
<tr>
<td>Halesworth</td>
<td>435</td>
</tr>
<tr>
<td>Harefield</td>
<td>291</td>
</tr>
<tr>
<td>North Mymms</td>
<td>291</td>
</tr>
<tr>
<td>Parkstone</td>
<td>413</td>
</tr>
<tr>
<td>St. Andrews</td>
<td>386</td>
</tr>
</tbody>
</table>

Table 2.2. Number of men recruited from each of the 9 UK clinics for the NPHSII study cohort.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2965</td>
</tr>
<tr>
<td>Age (years)</td>
<td>56.1 (3.5)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.5 (3.5)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>138.1 (19.2)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>84.5 (11.4)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.7 (1.02)</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.79 (0.95)</td>
</tr>
<tr>
<td>FVIIc (% standard)</td>
<td>109.1 (28.9)</td>
</tr>
<tr>
<td>Fibrinogen (µmol/l)</td>
<td>0.08 (0.02)</td>
</tr>
<tr>
<td>ApoA1 (mmol/l)</td>
<td>1.63 (0.32)</td>
</tr>
</tbody>
</table>

Table 2.3. Demographic characteristics of the NPHSII study cohort.
B) German population screen

Blood was collected from 128 healthy German individuals by Professor Rainer Boger (Department of Clinical Pharmacology, University of Hamburg). ADMA and SDMA measurements were collected by HPLC. Measurements of age, height, weight, blood pressure, heart rate, triglycerides and cholesterol were recorded and entered into an excel database. Of the 128 individuals studied, 3 were hypercholesterolemic, 2 were hypertensive, and no individuals were recorded as diabetic. Demographic characteristics of this cohort are summarized in table 2.4

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>128</td>
</tr>
<tr>
<td>Age (years)</td>
<td>36.03 (11.16)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>177.0 (9.05)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75.85 (12.71)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>127.9 (12.96)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>79.30 (7.31)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>73.14 (8.10)</td>
</tr>
<tr>
<td>ADMA (µmol/l)</td>
<td>0.78 (0.40)</td>
</tr>
<tr>
<td>SDMA (µmol/l)</td>
<td>0.59 (0.29)</td>
</tr>
</tbody>
</table>

Table 2.4 Demographic characteristics of the German population screen cohort.
This cohort was originally recruited by Dr. John Deanfield (University College London) to investigate associations between eNOS genotype and vascular function (Leeson et al., 2002). Healthy individuals born in the Cambridge Maternity Hospital between 1969 and 1975 (in whom early growth measures had been recorded) were invited to attend a clinic for cardiovascular risk profile evaluation. A total of 264 subjects aged 20-28 years were recruited. Blood was collected by venepuncture and personal and family medical history (including details of heart disease and risk factors) assessed by questionnaire. In each subject a fasting venous blood sample was analysed for insulin, glucose, total cholesterol, HDL, LDL and triglycerides. Individuals were classed as smokers if one or more cigarette was smoked per day for the previous six months. Blood pressure, weight (to +/-0.1kg) and height (+/-0.1mm) were also recorded. Measurement of endothelial dependent and independent vascular responses of the brachial artery were performed using high resolution ultrasound imaging (Acuson 128XP/10. 7MHz probe and automated vessel diameter measurement) as described in section 2.2.13.2. All FMD measurements were carried out by Dr. Paul Leeson. Phenotypic characteristics of this cohort are shown in table 2.5.
### Characteristic	Mean (SD)
N | 264
Age (years) | 23.49 (1.837)
Height (cm) | 168.4 (10.42)
Weight (kg) | 68.42 (12.54)
SBP (mmHg) | 127.3 (13.98)
DBP (mmHg) | 70.34 (8.75)
Total cholesterol (mmol/l) | 4.58 (1.01)
LDL cholesterol (mmol/l) | 2.84 (0.91)
HDL cholesterol (mmol/l) | 1.2 (0.3)

Table 2.5 Demographic characteristics of the Cambridge Young Adults Study.

2.2.12.2 Renal Failure patients

A) London renal failure patients

A cohort of individuals comprising 130 renal failure patients of different ethnicity, 53% males and 47% females, were recruited from the Middlesex Hospital, London by Dr. Jenny Cross. Endothelial function was assessed in vivo by the measurement of conduit artery in response to increased blood flow (flow mediated dilatation; FMD) (section 2.2.13.2). Systolic and diastolic blood pressure measurements were taken using a sphygmomanometer. ADMA and SDMA measurements were made by Miss Rachel Jackson (University College London), using reverse phase high-pressure liquid chromatography (HPLC) as described by Vallance et al., 1992. Demographic characteristics of the study cohort are summarised in table 2.6.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>130</td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.4 (17.59)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>144.8 (32.02)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>85.16 (52.83)</td>
</tr>
<tr>
<td>FMD (% change)</td>
<td>4.64 (4.45)</td>
</tr>
<tr>
<td>ADMA (µmol/l)</td>
<td>1.57 (1.16)</td>
</tr>
<tr>
<td>SDMA (µmol/l)</td>
<td>3.71 (2.05)</td>
</tr>
</tbody>
</table>

Table 2.6 Demographic characteristics of the London Renal Failure cohort.

B) Italian renal failure patients (CREED)

DNA from 277 renal failure patients was kindly donated by Dr Carmine Zoccali (IBIM-CNR, Italy). Subjects were originally recruited for the CREED (Cardiovascular Risk Extended Evaluation in Dialysis) study, in which a total of 278 dialysis patients were followed up over a 4 year period to determine risk markers for CVD among patients with advanced renal disease (Malatino et al., 1999). Demographic characteristics of the study cohort are summarised in table 2.7. Measures of cardiovascular risk factors such as ADMA, SDMA, fibrinogen, homocysteine, cholesterol, C-reactive protein and age were recorded as well as time of death (all cause and CVD related).
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>277</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.02 (15.38)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>132.2 (22.64)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>74.36 (12.16)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.39 (1.46)</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.06 (0.3)</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>3.41 (1.26)</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>2.0 (1.02)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.89 (4.37)</td>
</tr>
<tr>
<td>Fibrinogen (μmol/l)</td>
<td>13.39 (6.16)</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>3.26 (2.04)</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>3.71 (2.18)</td>
</tr>
</tbody>
</table>

Table 2.7 Demographic characteristics of the Italian Renal Failure cohort (CREED).

2.2.12.3 Diabetic patients and controls (EBCT cohort)

A cohort of 385 individuals comprising 188 type I diabetic patients and 197 control subjects was collected by Dr. H Colhoun (University College London) initially to measure the effect of diabetes on coronary artery calcification (CAC) (Colhoun et al., 2000). Diabetic patients were recruited from five London hospitals and defined by age of onset ≤25 years. Control subjects were drawn from two London general practices and were included regardless of heart disease. All participants gave informed written consent. The health status of all subjects was assessed by questionnaire, which noted alcohol consumption, smoking status and amount of exercise taken weekly. Blood pressure was
measured in triplicate and the mean of the second and third reading used. CAC was measured by electron beam computerised tomography (EBCT), using an Ultrafast CT scanner (IMATRON C-150XL). In vivo vascular function studies were performed by venous occlusion plethysmography as described previously (Chan et al., 2003) (section 2.2.13.1). Briefly, forearm blood flow was measured in response to intra-brachial artery infusion of acetylcholine (ACh) at doses 25, 50 and 100 nmol/min each dose for 3 minutes, bradykinin (BK) at doses 10, 30 and 100 pmol/min each dose for 3 minutes, glyceryl trinitrate (GTN) at doses 4, 8 and 16 nmol/min each dose for 5 minutes, NG-monomethyl-L-Arginine (LNMMA) at doses 1, 2 and 4 µmol/min each dose for 5 minutes and noradrenaline (NA) at doses 60, 120 and 240 pmol/min each dose for 5 minutes. Total cholesterol, HDL, LDL, triglycerides and C-reactive protein (CRP) were also recorded.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total cohort Mean (SD)</th>
<th>Diabetics Mean (SD)</th>
<th>Non-Diabetics Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>385 (3.9)</td>
<td>197 (3.9)</td>
<td>188 (3.9)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>37.9 (14.24)</td>
<td>124.9 (13.47)</td>
<td>117.5 (14.1)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>73.4 (9.2)</td>
<td>73.92 (8.6)</td>
<td>72.79 (9.75)</td>
</tr>
<tr>
<td>CHL (mmol/l)</td>
<td>5.42 (1.16)</td>
<td>5.34 (1.09)</td>
<td>5.5 (1.22)</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.77 (0.44)</td>
<td>1.84 (0.47)</td>
<td>1.7 (0.41)</td>
</tr>
</tbody>
</table>

Table 2.8 Demographic characteristics of the Diabetic patients and controls. The mean (SD) of CVD risk factors are shown for the total cohort, diabetics and non-diabetics.
2.2.12.4 Pregnant Females

139 unrelated Caucasian women with normal singleton pregnancies were previously recruited from the Harris Birthright Centre antenatal clinic by Dr Makrina Savvidou (Kings College London) to study the association of the Glu298Asp eNOS polymorphism with FMD during pregnancy (Savvidou et al., 2001). All were healthy and had no history of cardiovascular disease. Age, smoking status, blood pressure, FMD, gestational age, parity and heart rate were recorded. Demographic characteristics of this study cohort are summarised in table 2.9.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>139</td>
</tr>
<tr>
<td>Age (years)</td>
<td>33 (30-35)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.94 (21.11-25.21)</td>
</tr>
<tr>
<td>Smokers</td>
<td>24%</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>115.4 (10.17)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>68.8 (10.33)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.11 (0.80)</td>
</tr>
<tr>
<td>FMD (% max)</td>
<td>9.33 (3.29)</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>12.4 (12.3-12.9)</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>75 (9.0)</td>
</tr>
</tbody>
</table>

Table 2.9 Demographic characteristics of the pregnancy cohort.
2.2.13 Measures of vascular function

2.2.13.1 Venous occlusion plethysmography

Forearm blood flow was measured by venous occlusion plethysmography as described previously (Benjamin et al., 1995). All studies were carried out by the individual who recruited the patient cohort. Briefly, the subject lay supine in a quiet temperature controlled laboratory and the brachial artery of the non-dominant arm was cannulated with a 27-gauge needle inserted under local anaesthesia (2mL of 1% lidocaine). A strain-gauge (mercury in silastic) was placed around the forearm to measure the change in forearm circumference in millimetres per minute, which is proportional to arterial blood inflow. Resting blood flow was allowed to normalise for 30 minutes following needle insertion prior to the infusion of vasoactive drugs. Drugs (ACh, BK, LNMMA, NA and GTN) or normal saline (sodium chloride 0.9% wt/vol) were infused continuously at 0.5mL/min. During periods of recording, the hands were excluded from the circulation by inflating wrist cuffs to 200 mmHg. The needle was removed at the end of each study period.

2.2.13.2 Flow mediated dilatation (FMD)

Measurement of endothelial dependent and independent vascular responses of the brachial artery were performed using high resolution ultrasound imaging. All studies were carried out by the individual who recruited the patient cohort. Each subject lay supine in a quiet temperature controlled laboratory and, after ten minutes brachial artery diameter and blood
flow were recorded at baseline. A pneumatic cuff was then inflated to suprasystolic pressure on the forearm for four and a half minutes. Deflation of the cuff resulted in reactive hypereamia causing increased flow through the brachial artery stimulating endothelium dependent flow mediated dilation (FMD). The change in brachial artery diameter was measured one minute after cuff deflation (maximal response). Measurements were then repeated after a ten minute rest, and between three and four minutes after a single sublingual spray of glyceryl trinitrate (GTN) to measure endothelium-independent response.

2.2.14 Statistical analysis

All statistical analyses were carried out using Graphpad Prism software (version 3.0), or STATA. Phenotypic measures are described by the mean and standard deviation (SD). Observed numbers of each genotype were compared with those expected under the assumption of Hardy-Weinberg equilibrium by χ² analysis (see appendix I). Allele frequencies were deduced from genotype frequencies. Pairwise linkage disequilibrium coefficients between polymorphisms were estimated by log linear analysis (Chakravarti et al., 1984) (Appendix II). Allelic associations were tested by One-Way Analysis of Variance (ANOVA) or student t test where appropriate. A P value of <0.05 was taken to be statistically significant. The Bonferroni test was used where necessary to correct for multiple comparisons.
CHAPTER 3

ASSOCIATION STUDIES OF THE NADPH OXIDASE

p22PHOX C242T POLYMORPHISM AND ENDOTHELIAL FUNCTION
3.1 Aim

To investigate the association between the p22phox (CYBA) C242T polymorphism and endothelial function in healthy subjects.

3.2 Background

The possible role of ROS in the development of vascular diseases such as atherosclerosis has attracted widespread interest over recent years. ROS mediate oxidation of LDL particles, which accumulate causing damage to the endothelium, and contribute to atherosclerotic plaque development (Witztum et al., 1991). In addition ROS have been implicated in the promotion of smooth muscle cell growth, migration and apoptosis (Griendling et al., 2000) all of which occur during the atherogenic process. The reactions between ROS and NO may also have implications for vascular disease development. For example, NO reacts rapidly with O_2^- to produce ONOO$^-$, which can lead to protein and DNA damage, but perhaps most importantly results in ‘quenching’ of the vasodilator and numerous athero-protective functions of NO, leading, potentially to endothelial dysfunction (Beckman et al., 1990). Several studies have indicated that O_2^- is indeed elevated in disease states such as hypertension, heart failure, hypercholesterolemia, diabetes, preeclampsia and renal failure, and could be contributing to the endothelial dysfunction seen in these disorders (Mehta et al., 1994; Keith et al., 1998; Ohara et al., 1993; Langenstroer et al., 1992; Sikkema et al., 2001; Canaud et al., 1999). Diverse sources for the increased O_2^- in the vessel wall have been proposed including enzymes such as the NADPH oxidases,
xanthine oxidase, cyclooxygenase or, under some circumstances, NOS. Decreased inactivation of O_2^- for example by SOD might also contribute (Kodja et al., 1999; Fukai et al., 2002). O_2^- production by the NADPH oxidase enzyme in the vasculature has attracted a vast amount of interest to date, and is the main focus of this chapter.

3.2.1 NADPH oxidase generates O_2^- in both phagocytic and non-phagocytic cells

Release of O_2^- by cells of the immune system (primarily macrophages) is part of an innate defense mechanism against bacterial pathogens. The production of O_2^- is mediated by the enzyme NADPH oxidase which utilizes either NADH or NADPH as an electron donor to reduce molecular oxygen (O_2) to O_2^- in the reaction: $\text{NAD(P)H} + 2O_2 \rightarrow \text{NAD(P)}^+ + 2O_2^-$. A functional NADPH oxidase in non-phagocytic cells was proposed when patients with the X-linked form of the immunodeficiency syndrome-chronic granulomatos disease (CGD, which is caused by a dysfunctional or absent gp91phox subunit of the NADPH oxidase), were found to have normal O_2^- production in fibroblasts (Meier et al., 1993). Subsequently mRNA and protein for NADPH oxidase subunits have been identified in a variety of cell types including human and animal endothelial cells and vascular smooth muscle cells (Van Heerebeek et al., 2002), leading to the theory that NADPH oxidase may represent a major source of O_2^- in the human vasculature. This theory is supported by evidence that the vascular wall is a site of O_2^- generation (Barbacanne et al., 2000), and the finding of an association between O_2^- generated from NADPH oxidase in the vascular wall and risk factors for atherosclerosis (Guzik et al., 2000a). In addition, a number of studies have recently demonstrated evidence for increased NADPH oxidase subunit expression in
diseased vessels. For example Morawietz et al., 2001 demonstrated a 10 fold increase in expression of gp91phox mRNA in aortic rings of spontaneously hypertensive rats which correlated with a 3 fold increase in production of O_2^- (although this might also reflect the recruitment of macrophages in diseased vessels). p22phox mRNA expression was shown to be elevated in aortic VSMC of hypertensive rats (Fukui et al., 1997), and also in human atherosclerotic coronary arteries compared to non-atherosclerotic arteries (Azumi et al., 1999). Also, studies of smooth muscle cells from genetically modified mice (p47phox$^+$) demonstrated reduced O_2^- production and proliferation compared to wild type mice. Smooth muscle cells from mice lacking the gp91phox subunit (gp91phox$^-$) however were indistinguishable from smooth muscle cells from wild type mice. Comparison of aortic atherosclerotic lesions of ApoE knockout mice (ApoE$^-$, a model of atherosclerosis) with ApoE and p47phox double knockout mice (ApoE$^+$/p47phox$^-$) demonstrated reduced lesion size in the ApoE$^+$/p47phox$^-$ mice, suggesting a role for NADPH oxidase in the development of atherosclerosis (Barry-Lane et al., 2001).

3.2.2 Vasculature NADPH oxidase is distinct from phagocytic NADPH oxidase

Both phagocytic and vascular NADPH oxidases are transmembrane proteins comprising five subunits-gp91phox, p22phox, p47phox, p67phox and p40phox (Chapter 1.3.5.1). The gp91phox and p22phox subunits associate with each other to form the active flavocytochrome b$_{558}$, whereas the three other phox proteins are cytosolic and associate with the flavocytochrome b$_{558}$ to modulate its function. In contrast to the phagocytic NADPH oxidase, which releases O_2^- almost instantaneously, the vascular enzyme releases O_2^- more
slowly and it has been estimated that its capacity is one third that of the phagocytic enzyme (Griendling et al., 1998).

Recent research indicates that in non-phagocytic cells the gp91phox subunit of phagocytic NADPH oxidase is replaced by homologous proteins designated Nox1, Nox3, Nox4 and Nox5, depending on the cell type in which it is expressed. These differences account for the reduced enzyme activities in phagocytic versus non-phagocytic cells. Nox1 mRNA has been detected in colon, prostate, uterus and vascular smooth muscle cells (Suh et al., 1999; Kikuchi et al., 2000), Nox3 is expressed by fetal kidney tissue, and Nox4 and 5 by renal epithelial cells (Geiszt et al., 2000; Shiose et al., 2001). The phagocytic NADPH oxidase contains the prototype gp91phox (also termed Nox2). Differential expression of gp91phox isoforms was first demonstrated by Sorescu et al., 2002. They reported gp91phox (Nox2) expression predominantly in the adventitia and intima of non-atherosclerotic arteries and in the plaque core of atherosclerotic arteries where macrophages are most active. In contrast the expression of the Nox4 isoform was complementary to that of gp91phox (Nox2), being mainly expressed in the media of non-atherosclerotic arteries and again where gp91phox (Nox2) was absent in atherosclerotic arteries. Only one isoform of p22phox has been reported, and its expression correlates with regions of \mathbf{O}_2^- production. Thus differences in the expression pattern of gp91phox (Nox2) isoforms maybe relevant in the progression of atherosclerosis. However, as yet no genetic analysis of the Nox subunits expressed in the vasculature has been reported other than gp91phox mutations causing the X-linked form of CGD (OMIM database, www.ncbi.nlm.nih.gov). In contrast the gene encoding p22phox (CYBA) has been studied in detail and, in addition to mutations causing an autosomal
recessive form of CGD, several polymorphisms have also been identified (Parkos et al., 1988; Dinauer et al., 1991; de Boer et al., 1992).

3.2.3 Common Genetic variation in p22phox

Conjugation of the p22phox subunit with any of the Nox isoform subunits is essential for NADPH oxidase enzyme activity, and p22phox expression has been shown to correlate primarily with regions of elevated O_2^\cdot production (Sorescu et al., 2002). Polymorphisms in one or more of the NADPH oxidase subunits could either up or down regulate the generation of O_2^\cdot and prove to be an important risk factor for vascular disease development. Several mutations in the p22phox gene (CYBA) are known to cause autosomal recessive CGD (Dinauer et al., 1991; de Boer et al., 1992), but vascular function has not been systematically investigated in these individuals. To date two polymorphisms (C242T and A640G) have been described in the CYBA gene and investigated for association with atherogenesis (Guzik et al., 2000a; Cahilly et al., 2000; Cai et al., 1999; Gardemann et al., 1999). The CYBA C242T polymorphism, which results in a His72\rightarrowTyr substitution that lies in a potential heme-binding site within exon 4 of the protein (Parkos et al., 1988), has been the main focus of study. Several conflicting reports have been published as to the significance of this variant for vascular O_2^\cdot production. For example, Guzik et al., 2000 demonstrated that the 242T allele was associated with reduced NADPH oxidase activity in human blood vessels from patients with CAD. Carriage of the T allele was also associated with augmented FMD of the brachial artery in 93 patients, 30% of whom had evidence of CAD (Schachinger et al., 2001), suggesting that the 242T allele may exert a protective
effect upon the vasculature by down-regulating O_2^- production. This data is supported by a case-control study in which the 242T allele was present at higher frequency in control subjects than individuals with CAD in a Japanese population (Inoue et al., 1998). In contrast, Cahilly et al., 2000, reported the 242T allele was associated with increased progression of CAD and decreased regression of disease upon treatment compared to CC homozygotes in a study of 313 individuals from the Lipoprotein and Coronary Artery Study. The C242T polymorphism was not associated with the occurrence or severity of CAD in a cohort of 689 Australian Caucasians, however in a small subset of 44 males the T allele was found to be more common amongst those with CAD (Cai et al., 1999). However, functional genetic studies in patients might be confounded by the presence of disease and/or drug treatment. The aim of this study therefore, was to genotype two cohorts (one comprising healthy individuals and one comprising 199 diabetics and 201 controls) for the p22phox C242T polymorphism, and investigate the hypothesis that endothelium-dependent vaso-reactivity in healthy subjects would be dependent on genotype for the C242T polymorphism of p22phox.
3.3 Subjects and Methods

3.3.1 Subjects

Two subject groups were investigated for association between p22phox genotype and vascular function during this study:

Cambridge Young Adults Study:
Individuals from the Cambridge Young Adults Study were selected for association studies between genotype and endothelium dependent and independent vascular response (Chapter 2.2.12.1). Briefly, this cohort comprises 264 healthy individuals (127 males, 137 females) born in the Cambridge Maternity Hospital between 1969 and 1975. A fasting venous blood sample was obtained from each participant and measures of various CVD risk factors such as cholesterol, blood pressure and glucose were recorded (detailed in Chapter 2.2.12.1). Subjects were classed as smokers (if 1 or more cigarette was smoked per day for the past 6 months), previous smokers or non-smokers. Demographic characteristics of the study participants are outlined in table 2.5. Brachial artery diameter was measured in response to endothelium dependent (FMD) and independent (sublingual GTN) stimulus using high-resolution ultrasound imaging.

EBCT cohort:
Individuals from the EBCT cohort were investigated for associations between genotype and endothelial function. Briefly, this cohort consists of 385 individuals comprising 188 type 1
diabetic patients and 197 control subjects (Chapter 2.2.12.3). Blood samples were collected from participants after an overnight fast and measures of total cholesterol, HDL cholesterol and triglycerides were recorded. Vascular function was assessed in vivo by forearm venous occlusion plethysmography (Chapter 2.2.13.1), which involves measuring forearm blood flow in response to intrabrachial infusion of the endothelium-dependent dilators acetylcholine (ACh) at doses 25, 50 and 100 nmol/min and bradykinin (BK) at doses 10, 30 and 100 pmol/min, each dose for 3 min, and the endothelium-independent dilator glyceryl trinitrate (GTN) at doses 4, 8 and 16 nmol/min, each dose for 5 min. Nω-monomethyl-L-arginine (L-NMMA) at doses 1, 2 and 4 μmol/min, each dose for 5 min, and noradrenaline (NA) at doses 60, 120 and 240 pmol/min, each dose for 5 min, were infused as endothelium-dependent and independent constrictors respectively.

3.3.2 DNA extraction

DNA was extracted from whole blood samples using the salting-out method as described in Chapter 2.2.1.1.

3.3.3 Genotyping by PCR-RFLP analysis

Exon 4 of the p22phox (CYBA) gene was amplified by PCR as described in Chapter 2.2.2 with forward (5' TGCTTGTGGGTAAACCAAGCCGGTG 3') and reverse (5' AACACTGAGGTAAGTGCCGGGT G 3') oligonucleotides described by Inoue et al., 1998. The optimum annealing temperature and MgCl₂ concentration for the reaction were 60°C
and 2mM respectively, and amplification resulted in a band of 348bp containing the p22phox C242T polymorphic site. The C→T base substitution of the p22phox C242T polymorphism resulted in the creation of an Rsal restriction enzyme site. Genotyping was therefore carried out as described in Chapter 2.2.6.1 using restriction enzyme Rsal to distinguish between allelic variants. Digests were carried out overnight at 37°C. Upon digestion the 348bp PCR product was cleaved into fragments of 188bp and 160bp in the presence of the T allele. Products were electrophoresed on 1.5% agarose gels stained with ethidium bromide.

3.3.4 Data analysis

Genotype frequencies were compared to those expected under Hardy-Weinberg equilibrium by χ^2 analysis. Allelic associations were tested by One-Way Analysis of Variance (ANOVA) or Student t-test where appropriate. Multiple logistic regression was applied to analyse the relationship between genotype and endothelial function, and a linear regression model was used to look at the effect of risk factors on endothelial function using absolute FMD with resting vessel size as an independent factor. A p value of $<$0.05 was taken to be statistically significant.
3.4 Results

3.4.1 Genotype and allele frequencies of the p22phox (CYBA) C242T polymorphism

Genotype and allele frequencies are summarized in table 3.1. A total of 249 out of 264 individuals were genotyped successfully from the Cambridge Young Adults Study, and 332 out of 385 from the EBCT study. PCR failed to amplify the remaining samples due to poor quality DNA. Genotype frequencies did not differ from those expected under Hardy-Weinberg equilibrium.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Genotype N(%)</th>
<th>Allele %</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>119 (48.0)</td>
<td>69.0</td>
<td>0.00</td>
<td>0.88</td>
</tr>
<tr>
<td>CT</td>
<td>107 (43.0)</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>23 (9.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>151 (46.0)</td>
<td>68.0</td>
<td>0.30</td>
<td>0.58</td>
</tr>
<tr>
<td>CT</td>
<td>149 (44.0)</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>32 (10.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>76 (45.0)</td>
<td>67.0</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>CT</td>
<td>75 (44.0)</td>
<td>33.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>19 (11.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>75 (46.0)</td>
<td>69.0</td>
<td>0.80</td>
<td>0.37</td>
</tr>
<tr>
<td>CT</td>
<td>74 (46.0)</td>
<td>31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>13 (8.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1 Genotype and allele frequencies of the p22phox C242T polymorphism. Genotype frequencies did not differ from those expected by the Hardy-Weinberg equation calculated by Chi-squared analysis.
3.4.2 p22phox genotype and CVD risk factors in the Cambridge Young Adults cohort

Conventional cardiovascular risk factors and other demographic details are shown in table 3.2 according to p22phox genotype. TT homozygotes had significantly higher HDL cholesterol compared to C allele carriers (*P=0.03, students t-test, table 3.2), but no significant association was observed between genotype and other cardiovascular risk factors.

<table>
<thead>
<tr>
<th>p22phox C242T</th>
<th>CC+CT Mean (SD)</th>
<th>TT Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=226</td>
<td>N=23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>23.4 (1.89)</td>
<td>23.83 (1.86)</td>
<td>P=0.32</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>68.7 (12.6)</td>
<td>67.9 (12.94)</td>
<td>P=0.98</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>127 (13.57)</td>
<td>126 (17.26)</td>
<td>P=0.70</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>70.5 (8.29)</td>
<td>68.43 (11.01)</td>
<td>P=0.29</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>4.58 (1.01)</td>
<td>4.61 (0.81)</td>
<td>P=0.90</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>2.84 (0.89)</td>
<td>2.7 (0.82)</td>
<td>P=0.72</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.19 (0.29)</td>
<td>1.33 (0.28)</td>
<td>P=0.03*</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>5.01 (0.50)</td>
<td>5.1 (0.64)</td>
<td>P=0.24</td>
</tr>
<tr>
<td>Fasting Insulin (IU)</td>
<td>9.1 (6.04)</td>
<td>7.71 (4.39)</td>
<td>P=0.30</td>
</tr>
<tr>
<td>FMD (% change from baseline)</td>
<td>3.29 (2.6)</td>
<td>4.51 (2.78)</td>
<td>P=0.03*</td>
</tr>
<tr>
<td>GTN (% change from baseline)</td>
<td>21.65 (7.7)</td>
<td>24.31 (8.7)</td>
<td>P=0.13</td>
</tr>
</tbody>
</table>

Table 3.2 Phenotypic characteristics of the Cambridge Young Adults cohort according to p22phox C242T genotype. C allele carriers were analysed against TT homozygotes. C allele carriers had lower FMD compared to TT homozygotes. Data is represented as mean (SD). *P=<0.05 (statistically significant). All data was analysed by students t test.
3.4.3 Relationship between p22phox genotype and vascular function in the Cambridge Young Adults cohort.

A significant association was observed between genotype and endothelium dependent FMD (*P=0.03, One-way ANOVA). Mean (SD) FMD was 3.5±2.5 in CC homozygotes, 3.0±2.7 in CT individuals and 4.51±2.78 in TT homozygotes. Post hoc comparison of FMD between all three genotypes by Tukey’s post-test, revealed the major significant difference in FMD was between CT and TT subjects (p<0.05). No significant difference in FMD was observed between CC and CT individuals (p>0.05). The data was therefore analysed according to a recessive genetic model where TT subjects were compared to C allele carriers. TT homozygotes had significantly increased FMD compared to C allele carriers (*P=0.03, figure 3.1 and table 3.2). No significant difference was observed for endothelium independent response (P=0.13, figure 3.2 and table 3.2). In a linear regression model the positive association between TT homozygosity and endothelial function was independent of classical risk factors - systolic blood pressure, smoking, fasting glucose, LDL and HDL (regression coefficient for C242T alone = 0.0378 mm (95%CI: 0.00 to 0.08), p<0.05, r=0.13, and in a model including risk factors = 0.0399 mm (95%CI: 0.00 to 0.08) p<0.05, r=0.26.
Figure 3.1 FMD according to p22phox genotype in the Cambridge Young Adults Study. Individuals homozygous for the T allele has significantly higher FMD compared to CC+CT individuals *P=0.03 (students t test).

Figure 3.2 % change in brachial artery diameter in response to GTN (endothelium-independent response) according to p22phox genotype in the Cambridge Young Adults Study. No significant difference was observed between TT homozygotes and C allele carriers. P=0.13 (students t test).
3.4.4 *p22phox* genotype and cardiovascular risk factors in the EBCT cohort

Phenotypic characteristics according to *p22phox C242T* genotype are shown in table 3.3. C allele carriers were grouped and analysed against TT homozygotes. No significant association was observed between *p22phox* genotype and total cholesterol, HDL cholesterol, systolic blood pressure or diastolic blood pressure in the whole cohort.

<table>
<thead>
<tr>
<th>p22phox C242T</th>
<th>CC+CT Mean (SD)</th>
<th>TT Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=300</td>
<td>N=32</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>38.1 (3.96)</td>
<td>36.7 (4.01)</td>
<td>0.07</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>121.5 (14.23)</td>
<td>117.5 (13.74)</td>
<td>0.13</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>73.4 (9.28)</td>
<td>72.0 (8.73)</td>
<td>0.43</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.4 (1.17)</td>
<td>5.3 (1.16)</td>
<td>0.59</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.8 (0.44)</td>
<td>1.7 (0.52)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 3.3 Phenotypic characteristics of individuals from the EBCT study according to *p22phox C242T* genotype. C allele carriers were analysed against TT homozygotes. Data is represented as mean (SD). All data was analysed by students t test.
3.4.5 Relationship between p22phox genotype and vascular function in the EBCT cohort.

Endothelial function according to p22phox genotype is shown in figure 3.3. No significant association was observed between p22phox genotype (TT versus CC+CT individuals) and endothelial function in this cohort (Figure 3.3). This was also the case after analyzing diabetics, non-diabetics, smokers and non-smokers separately (table 3.4).

<table>
<thead>
<tr>
<th></th>
<th>Diabetics</th>
<th>Non-diabetics</th>
<th>Smokers</th>
<th>Non-smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β (P)</td>
<td>β (P)</td>
<td>β (P)</td>
<td>β (P)</td>
</tr>
<tr>
<td>Acetylcholine</td>
<td>0.03 (0.82)</td>
<td>0.16 (0.39)</td>
<td>0.04 (0.86)</td>
<td>0.04 (0.71)</td>
</tr>
<tr>
<td>Bradykinin</td>
<td>0.02 (0.85)</td>
<td>0.17 (0.17)</td>
<td>0.17 (0.19)</td>
<td>0.05 (0.58)</td>
</tr>
<tr>
<td>GTN</td>
<td>0.04 (0.60)</td>
<td>0.06 (0.64)</td>
<td>0.07 (0.60)</td>
<td>0.01 (0.91)</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>0.05 (0.26)</td>
<td>0.02 (0.83)</td>
<td>0.08 (0.46)</td>
<td>0.03 (0.44)</td>
</tr>
<tr>
<td>L-NMMA</td>
<td>0.004 (0.89)</td>
<td>-0.05 (0.25)</td>
<td>0.05 (0.36)</td>
<td>-0.03 (0.37)</td>
</tr>
</tbody>
</table>

Table 3.4 Results of multiple regression analysis of endothelial function according to p22phox genotype in diabetics, non-diabetics, smokers and non-smokers. Effect of genotype on vascular function in response to acetylcholine (doses 25, 50 and 100 nmol/l), bradykinin (doses 10, 30 and 100 pmol/min, each dose for 3 min), GTN (doses 4, 8 and 16 nmol/min, each dose for 5 min), noradrenaline (doses 60, 120 and 240 pmol/min, each dose for 5 min), L-NMMA (doses 1, 2 and 4 µmol/min, each dose for 5 min) was measured by venous occlusion plethysmography as described in chapter 2.2.13.1. Individuals were divided into diabetic/non-diabetic and smokers/non-smokers and analysed for a relationship between genotype (CC+CT versus TT) and endothelial function by multiple regression analysis. β coefficients and p value for the effect of genotype using a recessive model on forearm blood flow in response to drug infusion is reported.
Figure 3.3 p22phox genotype and vascular function in the EBCT study cohort. Graphs A-E show the fold change in forearm blood flow according to genotype (TT versus CC+CT individuals) after infusion with A-acetylcholine (25, 50 and 100 nmol/l), B-bradykinin (10, 30 and 100 pmol/min), C-glyceryl trinitrate (4, 8 and 16 nmol/min), D- L-NMMA (1, 2 and 4 μmol/min) and E- noradrenaline (60, 120 and 240 pmol/min). No significant association was observed between genotype and forearm vascular reactivity.
3.5 Discussion

During this study an association between the p22phox C242T polymorphism and FMD of the brachial artery was observed in a cohort of healthy subjects recruited from the Cambridge area. When analysed under a recessive model, individuals homozygous for the rare T allele exhibited significantly greater FMD compared to those individuals carrying the C allele. This difference was not confounded by differences in other cardiovascular risk factors including smoking, blood pressure, total and HDL cholesterol, since after adjustment for these in a multiple regression model, the relationship was preserved. No difference was observed for endothelium independent response between the two groups. In contrast no association was seen between p22phox genotype and endothelial function in the forearm vasculature in a cohort of type I diabetics and controls.

Diminished FMD in healthy individuals is associated with a family history of IHD and, in patients with CVD, endothelial function is predictive of future events (Suwaidi et al., 2000; Schachinger et al., 2000). Down-regulation of NO synthesis or activity is a possible cause of such endothelial dysfunction (Gaeta et al., 2000). Endothelium-dependent vasodilation in response to flow is largely dependent on NO release (Joannides et al., 1995). The rapid reaction between ROS such as NO and O_2^- resulting in the formation of ONOO$^-$ is a plausible mechanism whereby the vasodilator actions of NO might be attenuated in this vessel. In addition, oxidative inactivation of the essential NOS cofactor BH_4 could also lead to sub-optimal NOS activity resulting in decreased NO production and more O_2^- (Figure 3.4). If subjects homozygous for the 242T allele of p22phox produce less O_2^-
basally as has been reported previously (Guzik et al., 2000), this might lead to increased NO availability and enhanced FMD. In contrast, no relationship was detected between endothelium-dependent dilatation in the forearm vessels of type 1 diabetics or controls and p22phox genotype. Endothelium-dependent vasodilation in the smaller forearm resistance vessels that are studied by plethysmography is dependent not only on the release of NO, but also on the release of EDHF (Garland et al., 1995). This might be a potential explanation for the failure to detect an effect of p22phox genotype on endothelial function in this vessel type.

Figure 3.4 *Endothelial dysfunction as a manifestation of depleted NO caused by ROS generation.* \(O_2^-\) production by NADPH oxidase can lead to inactivation of NO either directly resulting in the generation of \(\text{ONOO}^-\) or by causing oxidative inactivation of \(\text{BH}_4\). At sub-optimum levels of \(\text{BH}_4\) eNOS produces \(O_2^-\) instead of NO. Reduced NO is thought to implicated in endothelial dysfunction.
The discovery of NADPH oxidases in cells of the vascular system has led to renewed interest in this family of enzymes as a possible source of constitutive O_2^\cdot release (Van Heerebeek et al., 2002). Recent research has focused on the expression pattern of various isoforms of the active subunit gp91phox and its associated subunit p22phox, and demonstrated that while the gp91phox subunits are differentially expressed depending on the cell type, p22phox is exclusively expressed in regions of most O_2^\cdot production (Sorescu et al., 2002). Discovery of several polymorphisms in p22phox led to speculation that common genetic variation in the p22phox gene ($CYBA$) may have subtle influences on O_2^\cdot generation, which could influence endothelial function and alter susceptibility to CVD. Consequently p22phox polymorphisms have become a focus of investigation for association with CVD risk. This study revealed that healthy subjects who carry two copies of the rare T allele for the p22phox C242T polymorphism exhibited greater FMD compared to subjects who carried at least one C allele. This finding fits with previous reports that the T allele may exert a protective effect upon the vasculature by down-regulating NADPH oxidase activity (Guzik et al, 2000a). The position of the polymorphism at nucleotide 242 gives a clue as to how enzyme activity may be modulated, as the resulting histidine to tyrosine substitution at position 72 of the protein lies in a heme binding domain which may be essential for optimal enzyme activity (Parkos et al., 1988). However, in vitro studies of isolated enzyme function will be needed to verify this hypothesis.

The risk of developing CVD such as atherosclerosis is greatly enhanced in the presence of diseases such as diabetes and renal failure (Bierman et al., 1992; Wheeler et al., 1996). Endothelial function in these individuals is reported to be attenuated by disruption of the L-
arginine→NO system, but the precise mechanisms remain unknown. The discovery that vascular O_2^- production is elevated in such disease states has led to the hypothesis that NO is inactivated by reaction with O_2^- thereby predisposing to vascular disease. In the light of the findings of an association between the p22phox C242T polymorphism and FMD, this study also investigated the effect of p22phox genotype on endothelial function assessed by venous occlusion plethysmography in a cohort of diabetic subjects. No association was seen between genotype and endothelial function in the resistance vasculature even when diabetics and non-diabetics and smokers and non-smokers were analysed separately. This data suggests that p22phox C242T genotype does not influence endothelial function in the resistance arteries of the forearm in either healthy subjects or in type 1 diabetics. The most likely explanation for this is that NO is a less important endothelium-dependent vasodilator in the small resistance arteries than it is in the larger conduit brachial artery. Alternatively, it is possible that the increased O_2^- reported in diabetic individuals originates from a different source other than NADPH oxidase, although the presence of other functional polymorphisms or mutations within the p22phox gene or indeed other NADPH oxidase subunits cannot be ruled out. During the time frame of the studies in this thesis, three new polymorphisms have been described within the coding region of CYBA resulting amino acid substitutions (NCBI SNP database, http://www.ncbi.nlm.nih.gov/SNP/). Two of these polymorphisms reside in exon 2 and confer a Thr→Ala substitution at amino acid 29 and a Phe→Ser at amino acid 38. The third is situated within exon 6 and results in a Val→Ala at amino acid 174. Further studies to investigate the role of these variants and endothelial function and indeed risk of vascular disease are now needed.
In summary, these data demonstrate a significant association between p22phox genotype and endothelial function in the brachial artery of healthy individuals. Subjects who carry the TT genotype showed increased FMD in comparison to C allele carriers. This finding supports the hypothesis that the presence of the T allele may down-regulate NADPH oxidase generation of O_2^- thereby preserving the vasodilator properties of NO. No association was observed between genotype and endothelial function in smaller forearm resistance vessels in a cohort of diabetic subjects, suggesting that O_2^- generation from NADPH oxidase and NO availability are less important mediators of vasoreactivity in these vessels.
CHAPTER 4

IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN GTP-CYCLOHYDROLASE 1 GENE (GCH1)
4.1 Aim

To scan the human GTP cyclohydrolase 1 gene (GCH1) for novel genetic variants, with the intention of investigating the role of any polymorphisms discovered in the regulation of endothelial dilator function, plasma neopterin and the susceptibility to CVD.

4.2 Background

Limited availability of the essential NOS cofactor BH4 has been proposed as one mechanism which may result in decreased NO production and susceptibility to CVD in some individuals. The amount of BH4 available to the NOS enzyme depends upon two factors: its rate of synthesis and rate of inactivation/breakdown. While inactivation of BH4 is most probably subject to the presence of ROS within the microenvironment of the enzyme, generated from a variety of sources in the vessel wall, the de novo production of BH4 is reliant upon three enzymes – GTPcyclohydrolase 1, 6-pyruvoyl-tetrahydropterin synthase and sepiapterin reductase (Chapter 1.3.3.2). BH4 is also regenerated via a 'salvage' pathway, which is a part of the aromatic amino acid hydroxylase system, but will not be discussed in this thesis (for review see Thony et al, 2000).

GTPCH1 catalyses the initial conversion of GTP to 7,8-dihydroneopterin triphosphate and is considered the rate limiting step in BH4 synthesis. Its expression can be up-regulated by various cytokines including tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1) and also bacterial endotoxin – lipopolysaccharide (LPS). Increased
transcription upon stimulation with cytokines is also associated with increased enzyme activity and elevation of intracellular BH₄ in endothelial cells (Werner-Felmayer et al., 1989; Werner-Felmayer et al., 1993; Hattori et al., 1993). In contrast PTPS and SR have been considered to be largely constitutive (Werner et al., 1990), though at least one group has demonstrated cytokine inducibility of PTPS (Linscheid et al., 1998). GTPCH₁ enzyme activity is regulated via post-translational modification, which has been shown to occur by phosphorylation, and is associated with an increase in enzyme activity and elevated BH₄ production (Lapize et al., 1998). Phosphorylation can be mediated through protein kinase C, and amino acid sequence studies have revealed a possible target (Ser 167 in rat and mouse protein sequence) for protein kinase C phosphorylation that is conserved between several species including man. In addition several sites for potential phosphorylation by casein kinase II have also been reported (Hatakeyama et al., 1991). Enzyme activity is also regulated by the GTPCH₁ feedback regulatory protein (GFRP), which in the presence of BH₄ and GTP forms an inhibitory complex with the GTPCH₁ enzyme (Figure 4.1). This inhibition is non-competitive, and can be reversed by L-phenylalanine (Harada et al., 1993; Yoneyama et al., 1997).
Figure 4.1 Synthesis of BH₄ and its regulation by GFRP

BH₄ synthesis is regulated by feedback inhibition by the product via GTPCH1 feedback regulatory protein (GFRP). In the presence of BH₄ and GTP, GFRP forms an inhibitory complex with GTPCH1. Inhibition can be reversed by L-phenylalanine.

GTPCH1 cDNA was first isolated from a rat library by Hatakeyama et al., 1991. In 1992, three different human GTPCH1 cDNA clones were isolated from a human liver cDNA library, each with identical 5' and central structures but differing 3' ends (Togari et al., 1992). Subsequently the human GCH1 gene was mapped to chromosome 14q22.1-q22.2 by fluorescence in situ hybridisation (Ichinose et al., 1994), which led to a comprehensive characterization of human and mouse GCH1 genes (Ichinose et al., 1995). Human GCH1 is encoded by a single copy gene composed of 6 exons spanning a length of ~30kb, and alternate splicing at the sixth exon was discovered to generate the three cDNAs (type 1 - 1181bp, type 2 - 994bp and type 3 - 819bp) isolated by Togari et al. The presence of two
of these cDNAs (Type 1 + 2) in a human liver cDNA library was confirmed by Gutlich et al., 1994, and expression of all three cDNA types in *E. coli* demonstrated that only the full-length type 1 cDNA has GTPCH1 enzyme activity (Gutlich et al., 1994). In contrast 2 species of mRNA (3.6kb and 1.4kb) were identified in rat and mouse tissues corresponding to type 1 and type 2 cDNAs. The biological significance of multiple splice variants of GTPCH1 is unknown, but could be important in cell-specific regulation of BH₄ synthesis. GTPCH1 mRNA has been isolated from a variety of tissues including liver, brain, kidney, spleen, lymphocytes and vascular smooth muscle cells endothelial cells reflecting its function in the synthesis of catecholamines and NO (Gutlich et al., 1992; Hattori et al., 1993; Katusic et al., 1998).

The 5' region of the human *GCH1* gene, which incorporates the promoter is ~600bp in length upstream of the translation start site (Ichinose et al., 1995; Witter et al., 1996). No TATA sequence motif was observed in this region. Instead an AT-rich sequence and a CAAT box are present 21bp upstream and 68bp upstream of the transcription start site respectively, both of which are conserved between human and mouse *GCH1* promoters (Witter et al., 1996; Ichinose et al., 1995). In addition putative consensus sequences for transcription factors CCAAT-box/enhancer binding protein (C/EBP), hepatic nuclear factor 1 (HNF1), upstream stimulating factor (USF), activator protein 1 (AP-1), serum response factor (SRF), glucocorticoid response element (GRE), nuclear factor κB (NFκB) and several GC boxes (SP1 sites) have been identified in the promoter region (Witter et al., 1996). Interestingly no consensus sequences for IFN-γ signal transduction such as the IFN-γ
activated site (GAS) or IFN-γ response region (GRR) have been identified. This is particularly surprising since GTPCH 1 expression is upregulated by interferon-γ.

To date 80 mutations have been reported in the human GCH1 gene (BH4 database, http://www.bh4.org accessed Jan 2003), but these are rare, and many are now known to be the cause of monogenic diseases such as dopa-responsive dystonia (DRD) and atypical hyperphenylalaninaemia (Bandmann et al., 2002; Niederwieser et al., 1984). The effect that these and indeed any undiscovered polymorphisms may have on BH4 production in the vasculature is unknown, but could have implications for NO synthesis. Common sequence variation within the GCH1 gene between individuals could result in subtle differences in the amount of BH4 available to the eNOS enzyme and act as a predisposing factor for CVD development.

The aim of this study was therefore to screen the GCH1 gene for novel common polymorphisms using a technique called single strand conformation polymorphism analysis (SSCP). This is a relatively quick and easy way to detect inter-individual differences in the DNA sequence in any given region of the genome. Disadvantages of this technique however are its limited sensitivity. The principle relies on the fact that single stranded DNA will take on a particular conformation dependent on its base sequence. Sequences of different conformation will migrate differently when electrophoresed on acrylamide gels, thereby allowing the detection of polymorphisms without the need for large-scale sequencing efforts.
4.3 Subjects and Methods

4.3.1 Subjects

Anonymised DNA samples from 32 healthy unrelated individuals, were used to screen the \textit{GCH1} gene for polymorphisms. Written informed consent was obtained from each volunteer and medical status ascertained by questionnaire. Blood was collected into EDTA tubes and DNA extracted by Qiagen DNA purification kit method (Chapter 2.2.1.2).

4.3.2 Oligonucleotide design and amplification of genomic DNA

Oligonucleotides were designed to cover the promoter and exons of the \textit{GCH1} gene. All oligonucleotides were designed to be approximately 50\% GC rich with minimum secondary structure formation. Each oligonucleotide pair was designed to have similar annealing temperatures, non-complementary sequence (which could result in 'primer-dimer' production) and produce a PCR product 200-400bp in length (optimum length for SSCP analysis). Promoter oligonucleotides were designed using the Genbank/EMBL database sequence (accession number NT_026437). Five pairs of oligonucleotides were designed to produce five PCR products, which overlapped one another to cover the region spanning +48 to -1080 relative to the transcription start site. This incorporates the 600bp sequence depicted to be the \textit{GCH1} promoter by Ichinose \textit{et al.}, 1995. Oligonucleotides used to amplify exons 2-6 have been reported previously (Bandmann \textit{et al.}, 1998). Exon 1 was divided into two overlapping PCR products because of its relatively large size (506bp),
and oligonucleotides designed from the Genbank/EMBL database. Tables 4.1 and 4.2 list all oligonucleotide sequences, positions relative to the transcription start site and PCR conditions.

Amplification was carried out by PCR as described in Chapter 2.2.2. All PCR products were electrophoresed on 1% agarose gels with 100bp ladder to ensure a single-band product of the correct size was achieved.

4.3.3 Screening for polymorphisms by SSCP analysis

Two SSCP methods were used to scan the GCH1 gene for polymorphisms. The promoter region was screened in collaboration with Dr. Noor Jeerooburkhan (UCL) using the radioactive method as described in Chapter 2.2.4.1. The non-radioactive PhastSystem was used to scan the six exons as described in Chapter 2.2.4.2.

4.3.4 DNA sequencing to define the nature of variants detected by SSCP

Genomic regions exhibiting different banding patterns on gel electrophoresis were chosen for sequence analysis. Samples were selected so that each different banding pattern produced by SSCP was represented at least twice and the region re-amplified from genomic DNA. The PCR product was used as a template and both forward and reverse sequencing reactions set up using the same oligonucleotides as for PCR. Sequencing was carried out as described in Chapter 2.2.5.
<table>
<thead>
<tr>
<th>Position of oligonucleotides relative to transcription start site</th>
<th>MgCl₂ (mM)</th>
<th>Annealing Temp (°C)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter 1 (-258 → +48)</td>
<td>1.5</td>
<td>56</td>
<td>F - 5’ ttt tctg ggt tgc cat tcc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R - 5’ gtg atc taa gca ggt cgc gta</td>
</tr>
<tr>
<td>Promoter 2 (-379 → -163)</td>
<td>2.0</td>
<td>64</td>
<td>F - 5’ ttt cac agg ggc agg gga ccc g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R - 5’ ctc cct ggg ctt ggc aac ccc</td>
</tr>
<tr>
<td>Promoter 3 (-552 → -342)</td>
<td>1.5</td>
<td>60</td>
<td>F - 5’ gtg aca ctt gcc ccc aca ggg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R - 5’ acc gga gcc ctt caa tgc agc</td>
</tr>
<tr>
<td>Promoter 4 (-768 → -421)</td>
<td>1.5</td>
<td>62</td>
<td>F - 5’ tat gtt ttc cag gct ggt ctc g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R - 5’ gtt ggt tcc taa tgc gtc gtt t</td>
</tr>
<tr>
<td>Promoter 5 (-1080 → -707)</td>
<td>1.5</td>
<td>62</td>
<td>F - 5’ acc cag gag ggc gag gat gaa g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R - 5’ tcc tcc cgc ctc ggt ctc cc</td>
</tr>
</tbody>
</table>

Table 4.1. Oligonucleotides designed to amplify the GCH1 promoter. A set of five overlapping oligonucleotides were designed to amplify the GCH1 promoter by PCR. The region amplified by each oligonucleotide pair is shown with the corresponding MgCl₂ concentration and annealing temperature.
<table>
<thead>
<tr>
<th>Exon amplified and position of oligonucleotides</th>
<th>MgCl$_2$ (mM)</th>
<th>Annealing Temp (°C)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1a (-64 → 226)</td>
<td>2.0 mM</td>
<td>64°C</td>
<td>F - 5’ gtt tag ccg cag acc tcg aag cg 3’</td>
</tr>
<tr>
<td>Exon 1b (178 → 431)</td>
<td>1.5 mM</td>
<td>68°C</td>
<td>R - 5’ acg agt aag ccg cgg gtt gta 3’</td>
</tr>
<tr>
<td>Exon 2 (37441 → 37127)</td>
<td>1.5 mM</td>
<td>64°C</td>
<td>F - 5’ agg agg ata aag agc tcg gaa cct c 3’</td>
</tr>
<tr>
<td>Exon 3 (42789 → 43048)</td>
<td>2.5 mM</td>
<td>64°C</td>
<td>R - 5’ gag gca act ccg gaa act tcg tgg 3’</td>
</tr>
<tr>
<td>Exon 4 (55449 → 55739)</td>
<td>1.5 mM</td>
<td>60°C</td>
<td>F - 5’ gac ttt gtt gta gaa cag c 3’</td>
</tr>
<tr>
<td>Exon 5 (56768 → 56943)</td>
<td>1.5 mM</td>
<td>64°C</td>
<td>R - 5’ ggt gtc ctt gtt tat gga agg c 3’</td>
</tr>
<tr>
<td>Exon 6 (58695 → 58462)</td>
<td>1.5 mM</td>
<td>68°C</td>
<td>R - 5’ aat act ggc gct gcc gta 3’</td>
</tr>
</tbody>
</table>

Table 4.2. Oligonucleotides designed to amplify GCH1 exons. Oligonucleotides were designed to cover exons 1-6 of the GCH1 gene. A set of 2 overlapping oligonucleotide pairs were designed to cover exon 1. Oligonucleotide sequences, annealing temperatures, MgCl$_2$, concentrations and the region amplified by each oligonucleotide pair are shown.
4.3.5 Search of the National Center for Biotechnology Information (NCBI) SNP database for \textit{GCH1} polymorphisms

The NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/) was also searched for all polymorphisms identified to date within the \textit{GCH1} gene as described in Chapter 2.2.7. The database was established in 1988 and is a resource of freely available molecular biology information compiled by genome sequencing consortiums worldwide.

4.3.6 Search of the MatInspector promoter database for putative \textit{GCH1} transcription factor binding sites

A search of the MatInspector database (http://www.genomatix.de/free_login.html) with the \textit{GCH1} promoter sequence was undertaken to identify transcription factor binding sites as described in Chapter 2.2.8.
4.4 Results

4.4.1 Polymorphisms identified in GCH1

Four novel polymorphisms were identified within the GCH1 gene (Figure 4.2). SSCP analysis revealed a difference in banding pattern for PCR products generated with the oligonucleotides promoter 4, promoter 5 and exon 1b (Tables 4.1 and 4.2), suggesting the presence of genetic variation within these regions. This was confirmed by DNA sequencing, which revealed a total of four single base substitutions. Three of these variants were found to be located in the promoter (one within PCR product promoter 4 and two within PCR product promoter 5) at positions -796 (G→A), -741 (T→C) and -577 (G→A) (Figures 4.3-4.5). The fourth variant (observed within PCR product exon 1b) was identified as a C→G substitution at position +559, which lies within intron 1 (Figure 4.6).
Figure 4.2 *GCH1* gene structure.
The human *GCH1* gene is encoded by a single copy gene on chromosome 14. The promoter is highlighted in blue, and spans a distance of at least 600bp upstream of the *tsp*. Exons are numbered 1-6 and the size of each exon and intron indicated (kb). The position of polymorphisms identified by SSCP analysis are indicated by ↓.
Figure 4.3. DNA sequence (of the reverse strand) confirming a G→A substitution at position -796 in the GCH1 promoter. The top sequence shows a homozygote for the C (G on forward strand) allele, the middle sequence a homozygote for the T (A on forward strand) allele and the bottom sequence a heterozygote showing both the C and T alleles.
Figure 4.4 DNA sequence (of the reverse strand) confirming a T→C substitution at position -741 in the GCH1 promoter. The top sequence shows a homozygote for the A (T on forward strand) allele, the middle sequence a homozygote for the G allele (C on forward strand) and the bottom sequence a heterozygote showing both the A and G alleles.
Figure 4.5 DNA sequence electropherogram confirming a G→A substitution at position -577 in the GCH1 promoter. The top sequence shows a homozygote for the G allele, the middle sequence a homozygote for the A allele and the bottom sequence a heterozygote showing both the G and A alleles.
Figure 4.6 SSCP gel image (Phastsystem) and DNA sequence of GCH1 Exon 1b PCR. Samples 2 and 4 have a different banding pattern (4 visible bands) on the SSCP gel, suggesting the presence of a polymorphism in this PCR fragment. The DNA sequence electropherogram confirms a C→G substitution at position 559 in intron 1. The top sequence shows a homozygote for the C allele, the middle sequence a homozygote for the G allele and the bottom sequence a heterozygote showing both the C and G alleles.
4.4.2 Analysis of the \textit{GCH1} promoter and comparison of polymorphisms in the NCBI SNP database and those identified by SSCP.

The NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/) revealed the presence of 5 previously identified polymorphisms in the 3kb upstream of the \textit{GCH1} transcription start site (tsp). The nature of each SNP, identification number and position are shown in table 4.3. The three promoter polymorphisms (-796, -741 and -577) identified by SSCP during this study were not represented on the NCBI SNP database. One polymorphism was found in the database 44bp downstream of the tsp, and lies in the sequence of the reverse oligonucleotide promoter 1 (Figure 4.7). The location of this polymorphism within an oligonucleotide makes it difficult to identify by SSCP. The +559C/G variant was represented in the NCBI database (Table 4.3), but no further information regarding heterozygosity was available at the time of writing this thesis.

MatInspector analysis (http://www.genomatix.de) of the 1.2kb immediately upstream of the \textit{GCH1} transcription start site indicated that none of the polymorphisms identified by SSCP were situated in transcription factor binding sites or other known regulatory regions (Figure 4.7). However the -741 T/C lies just downstream of a shear stress element (SSRE) encoded by the sequence GAGACC and 1bp upstream of a nuclear factor 1 site (NF1). The -796G/A polymorphism is situated 10bp from the core binding domain of a signal transducer and activator of transcription site (STAT3) and the -577 G/A lies 5bp upstream of a serum response factor site (SRF).
<table>
<thead>
<tr>
<th>NCBI SNP ID</th>
<th>Base change</th>
<th>Position relative to tsp</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2183080</td>
<td>C/G</td>
<td>+559</td>
</tr>
<tr>
<td>rs3759660</td>
<td>C/T</td>
<td>-1042</td>
</tr>
<tr>
<td>rs3759661</td>
<td>C/T</td>
<td>-1044</td>
</tr>
<tr>
<td>rs3759664</td>
<td>C/T</td>
<td>-2034</td>
</tr>
<tr>
<td>rs3759665</td>
<td>C/T</td>
<td>-2059</td>
</tr>
<tr>
<td>rs3074168</td>
<td>CT/-</td>
<td>-2811</td>
</tr>
</tbody>
</table>

Table 4.3 Human *GCH1* promoter polymorphisms identified in the NCBI SNP database. The three promoter polymorphisms identified by SSCP during this study were not represented on the NCBI SNP database.
Figure 4.7. Nucleotide sequence of the human GCH1 promoter region. The transcription start site is indicated by tsp and exon 1 is highlighted in blue. Oligonucleotide sequences are in bold and underlined by arrows. Transcription factor binding sites identified by MatInspector software are highlighted in bold blue. Polymorphisms at positions -796, -741 and -577 are indicated in red type, and the SNP at position +44 identified from the NCBI SNP database is highlighted in pink type.
4.5 Discussion

4.5.1 GCHI promoter polymorphisms

Three new polymorphisms were identified in the promoter of GCHI during this study. Two of these polymorphisms lie further upstream than the predicted ~600bp core promoter sequence reported by Ichinose et al., 1995 and Witter et al., 1996, but are situated just downstream of putative transcription factor binding sites. The −741 T/C polymorphism lies 6bp from a shear stress response element (SSRE), and the −796 G/A lies 3bp from a CCAAT box/enhancer binding protein element (C/EBP). Although these polymorphisms are outside the core sequence binding motifs for these transcription factors, it is possible the protein-DNA interaction extends to the upstream and downstream flanking sequences. It is therefore conceivable that variation within these regions could influence transcription factor binding or stability of the protein-DNA complex. CCAAT enhancer elements play a role in determining promoter efficiency, therefore disruption of this site could result in a weaker promoter and decreased gene expression. SSRE sites convey responsiveness to laminar shear stress (LSS), which is generated by blood flow over the endothelium. It is not surprising therefore that a number of endothelial genes contain SSRE consensus sequences and exhibit markedly elevated gene expression under experimentally induced shear stress (Gimbrone et al., 2000). Areas of high LSS are known to be less susceptible to atherosclerotic lesion formation (Cornhill et al., 1976; Zarins et al., 1983), and it has been proposed that coordinated up-regulation of so-called atheroprotective genes such as eNOS via SSRE sites could account for this phenomenon (Topper et al., 1996). Further studies
are required to deduce if $GCH1$ is also upregulated by LSS in endothelial cells, but logic suggests that if $eNOS$ expression and activity is increased then an increase in BH$_4$ production may also be required to support NO production.

4.5.2 Polymorphisms within $GCH1$ exons

Only one polymorphism (559 C/G) was identified by SSCP analysis of the $GCH1$ coding regions. This variant was found to lie just downstream of exon 1 (made possible due to the fact that each oligonucleotide for PCR was designed within an intronic region, resulting in a small amount of intron being amplified as well as the exon itself). Disappointingly, as well as not residing within the coding sequence, this polymorphism did not lie within any obvious consensus sequence involved in splicing. In addition, a search of the NCBI SNP database indicated that no polymorphisms have as yet been identified in the $GCH1$ coding region, however the NCBI database only compares sequences from a small number of chromosomes. It is therefore possible that as more sequences are analysed, polymorphisms will be identified.

This study indicates that very little genetic variation is present within the $GCH1$ coding regions, which may be indicative of an essential role of GTPCH 1 for survival, which in turn has ensured the $GCH1$ gene has remained highly conserved throughout evolution (McLean et al., 1993). However, it is also possible that in this instance SSCP failed to reveal the presence of additional polymorphisms due to the limited (80-90%) sensitivity of detection of this technique. Advances in high-throughput sequencing technology have now
made it possible to accurately sequence and compare genes from hundreds of individuals relatively quickly without the need for SSCP. These large-scale sequencing efforts have led to the generation of SNP databases, which can provide an easily accessible source of information about potentially functional polymorphisms.

A search of the NCBI SNP database revealed the +559G/A polymorphism identified by SSCP during this study has already been described. The NCBI SNP database also highlighted a single polymorphism in the 5' untranslated region that was not detected by SSCP. This polymorphism at position +44bp lies within the reverse oligonucleotide sequence used to amplify the promoter 1 fragment.

4.5.3 Future work

The 3' untranslated sequence of the GCH1 gene was omitted from SSCP analysis, but it is now recognized that this region could be involved in the regulation of translation through the interaction of specific 3'UTR binding proteins (Mazumder et al., 2003). One polymorphism has recently been described in the GCH1 3'UTR (NCBI accession number NT_026437). SSCP analysis of the GCH1 3'UTR is therefore needed to complete a full scan of the gene. Promoter-reporter gene assays are required in order to elucidate the importance of the promoter variants with respect to regulation of gene expression, and band-shift experiments to determine if either the -796G/A or -741T/C polymorphisms influence the binding of transcription factors to consensus sequences in close proximity.
However, the potential for the GCH1 promoter variants described to influence GTPCH1 activity and endothelial function is further discussed in Chapter 5.
CHAPTER 5

GCH 1 POLYMORPHISMS AND THEIR FUNCTIONAL IMPACT ON PTERIN METABOLISM AND ENDOTHELIAL FUNCTION
5.1 Aim

To investigate the relationship between *GCH1* promoter polymorphisms (-577G/A and -796G/A) pterin metabolism and endothelial function in healthy individuals.

5.2 Background

Endothelial dysfunction and reduced NO availability are thought to be important in the initiation, progression and complications of atherosclerosis. Decreased synthesis or increased inactivation of the vasodilator NO is thought to play a vital part in this process. The mechanisms by which biologically active NO levels are reduced are not fully understood, but one important process might be depletion of the essential NOS cofactor BH₄, resulting in the preferential generation of O₂⁻ instead of NO by eNOS (Vasquez-Vivar et al., 1999; Wever et al., 1997; Xia et al., 1998). Generation of O₂⁻ can itself result in excessive oxidation of BH₄ leading to its inactivation (Laursen et al., 2000). Endothelium dependent vasodilation is attenuated in smokers, hypertensives, hypercholesterolemics and diabetics, and administration of low dose BH₄ to these individuals can improve endothelial function possibly by restoring NO/O₂⁻ balance (Ueda et al., 2000; Stroes et al., 1997; Pieper et al., 1997). Improved endothelial function upon supplementation with BH₄, suggests this essential cofactor could be limited in patients at risk of vascular disease.

Administration of anti-oxidants such as vitamin C and folic acid has also been shown to improve endothelial function in patients with coronary artery disease (CAD), hypertension,
diabetes, hypercholesterolemia and smokers, and low plasma levels of ascorbic acid have been correlated with atherosclerosis (Levine et al., 1996; Solzbach et al., 1997; Ting et al., 1996; Ting et al., 1997; Hornig et al., 1998; Heitzer et al., 1996). The protective mechanism behind administration of such anti-oxidants however is now thought to be more complex than just the scavenging of ROS. Baker et al., 2001 reported increased eNOS activity and BH₄ levels in cultured human umbilical vein endothelial cells (HUVEC) upon administration of vitamin C. However no such effect was observed upon treatment with the ROS scavenger Mn(III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), suggesting that the ability of vitamin C to restore endothelial function may be through increased intracellular BH₄ levels rather than ROS scavenging alone. This theory is supported by a recent publication that demonstrated NOO^· (generated by the reaction of NO and O_2^·) is a potent oxidizer of BH₄. The authors also showed that the reaction between NOO^· and BH₄ results in the production of the intermediate BH₃ radical, and that BH₃ can be recycled back to BH₄ by ascorbate reinstating NO synthesis from eNOS (Kuzkaya et al., 2003).

The consequence of depleted BH₄ is the generation of ROS such as O_2^· and H₂O₂ by eNOS itself which, in turn, might mediate oxidative inactivation of BH₄. The cause of the initial depletion of BH₄ in the presence of atherosclerotic risk factors is unclear. Many theories have been proposed including the up-regulation of ROS by systems such as NADPH oxidase (discussed in chapter 3) by oxLDL, ATII or high glucose and down-regulation of SOD (Fukai et al., 1998; Landmesser et al., 2000). Another possibility is that some individuals have reduced pterin pathway activity due to common polymorphisms in pterin synthesizing enzymes. The synthesis of BH₄ begins with the conversion of GTP to
dihydroneopterin triphosphate by GTPCH1. The majority of dihydroneopterin triphosphate is converted to 6-pyruvoyl tetrahydropterin by 6-pyruvoyl tetrahydropterin synthase (PTPS) and finally to BH₄ by sepiapterin reductase (SR). In human cells the low activity of PTPS results in a proportion of dihydroneopterin triphosphate being converted to neopterin, an inert molecule excreted by the kidneys which serves as a marker of pterin pathway activity and which has been used to assess the activation state of the cellular immune system (Murr et al., 2002; Berdowska et al., 2001). The circulating pool of neopterin probably reflects that generated by neuronal cells, immune cells and endothelial cells, but the relative contributions of these cell types to the overall pool is not known.

Genetic variation within genes encoding the enzymes involved in the synthesis of BH₄ could result in differences in local cellular as well as circulating BH₄ or neopterin levels thereby predisposing to endothelial dysfunction and vascular disease. GTPCH1 is the first and rate-limiting enzyme in the synthesis pathway of BH₄ (Duch and Smith, 1991). A number of rare mutations within the gene encoding GTPCH1 (GCH1) are known to cause DRD and hyperphenylalanemia but, as yet, no mutations or polymorphisms influencing endothelial function or risk of CVD development have been described. The detection of BH₄ requires HPLC-based techniques that are time consuming and consequently difficult to apply at the population level. Enzyme linked immunoassays (ELISA) for neopterin are commercially available in which multiple samples can be analysed in parallel in 96-well plate format.
This study has investigated whether novel polymorphisms in the *GCH1* gene are related to variation in plasma neopterin level in a subset of healthy subjects from the NPHSII cohort. We then investigated whether these polymorphisms were also associated with functional differences in endothelial function, in a cohort of young adults for whom non-invasive high-resolution ultrasound measurements of endothelial dependent flow mediated dilatation were available.

5.3 Subjects and Methods

Two subject groups were analysed for association between *GCH1* polymorphisms, serum noepterin, and endothelial function during this study.

5.3.1 Subjects investigated for association between *GCH1* genotype and neopterin

Northwick Park Heart Study II (NPHSII)

Subjects were selected from the NPHSII prospective cohort for analysis (section 2.2.12.1). Briefly this cohort comprises approximately 3000 men recruited from 9 primary care practices in the UK. All subjects selected for the study were healthy at the time of recruitment. The men were aged between 50 and 61 years and medical history was assessed by questionnaire. All subjects were reviewed annually. Smoking status, blood pressure (mmHg), BMI (kg/m²), serum cholesterol (mmol/L), triglycerides (mmol/L), fibrinogen (μmol/L), factor VII coagulant activity (FVIIc % standard) and HDL cholesterol
(mmol/L) were measured at the time of recruitment and during follow-up visits over the following 9 years. Venous blood was taken at time of recruitment and the plasma separated and stored at -80°C. DNA was extracted by the salting-out method described in section 2.2.1.1 and also stored at -80°C. All IHD events have been recorded over the time of the study and the mean follow up is 5 years. A total of 2390 out of 3000 subjects were genotyped for \textit{GCH1} polymorphisms and plasma neopterin measured in a subset of 939 individuals during this study.

5.3.2 Subjects investigated for association between \textit{GCH1} genotype and endothelial function

\textit{Cambridge Young Adults Study cohort}

248 subjects aged 20 to 28 years for whom blood had been stored for genotyping were studied from the Cambridge Young Adults Study (section 2.2.12.1). The study group comprised a sample of individuals born in Cambridge Maternity Hospital between 1969 and 1975 as described previously (Leeson et al., 2002). They were invited to attend a clinic for cardiovascular risk profile evaluation by questionnaire followed by venepuncture, physical measurements and vascular studies. In each subject, a fasting venous blood sample was analysed for insulin, glucose, total cholesterol, HDL and triglycerides, and LDL. Personal and family medical history (including details of heart disease and risk factors) was gathered by questionnaire at interview. Current or past smoking was recorded. Blood pressure was measured as the average of the last two of three seated readings using an automated oscillometric device (Critikon Inc, USA). Weight was recorded (to +/- 0.1
kg) using scales (Soenhle Ltd) and height (to +/- 0.1 mm) with a portable stadiometer. Every subject underwent measurement of endothelial dependent and independent vascular responses of the brachial artery, using high‐resolution ultrasound imaging as described in section 2.2.13.2.

5.3.3 Measurement of plasma neopterin in the NPHSII cohort

Neopterin measurements were taken from a total of 939 individuals from the NPHSII cohort, using the ELItest® competitive enzyme immunoassay kit (B.R.A.H.M.S diagnostica GMBH) as described in section 2.2.10. All measurement were carried out in collaboration with Dr Noor Jeerooburkhan (University College London). 243 and 288 neopterin samples were collected from the Chesterfield and North Mymms primary care practices respectively and a further 513 neopterin measurements collected from a random data set. The three data sets were pooled to give a total data set of 939 subjects. Plasma samples were collected and stored at -80°C until required. Neopterin has been shown to be stable in this state. The lower limit of detection for this assay was 2nmol/L, with an intra-assay variation of 3.5% and an inter-assay variation of 6.5%.

5.3.4 Genotyping studies

PCR‐RFLP analysis was used for genotyping studies as described in section 2.2.6. Two out of the four GCH1 polymorphisms identified by SSCP (-577G/A and -796G/A) were chosen for genotyping analysis. Genomic DNA was amplified by PCR as described in
chapter 4 (section 4.3.2). The restriction enzyme \textit{BsmF1} (which cuts in the presence of the G allele) was used for genotyping the $-577G/A$ polymorphism to produce bands of 206 and 142bp. The restriction enzyme \textit{BsrD1} (which cuts in the presence of the A allele) was used for genotyping the $-796G/A$ polymorphism to produce bands of 290 and 84bp. Digested products were electrophoresed on 2.5% agarose gels and visualised by ethidium bromide staining.

5.3.5 Statistical Analysis

Observed numbers of each genotype were compared with those expected under the assumption of Hardy-Weinberg equilibrium by χ^2 analysis. Allele frequencies were deduced from genotype frequencies. Pairwise linkage disequilibrium coefficients between polymorphisms were estimated by log linear analysis (Chakravarti et al., 1984). Data are presented as arithmetic mean (±SD) except for neopterin for which geometric mean (approximate SD) is presented due to the skewed nature of the distribution. Allelic associations were carried out by One-Way Analysis of Variance (ANOVA) and the significance of differences between genotype groups by Students t-test. Standard regression and interaction models were used to determine whether the association between endothelial function and genotype was influenced by classical risk factors. The primary hypothesis was that polymorphisms in the \textit{GCH1} gene would be associated with differences in neopterin and/or endothelial function. Sixty subjects were required to detect a 0.25 standard deviation difference in log neopterin between rare allele carriers and non-carriers at 80% power, $2P=0.05$. With a sample size of 248 individuals from the Cambridge Young
Adults cohort, the study had 80% power at $2P=0.05$ to identify a 0.02 mm or 0.6% difference in FMD between groups. A secondary hypothesis, that $GCH1$ polymorphisms would be associated with cardiovascular events was also tested. With 188 events in the genotyped NPHSII cohort the study had an 80% power to detect an odds ratio of 1.4 among rare allele carriers at $2P=0.05$.

5.4 Results

5.4.1 Genotype and allele frequency of $GCH1$ polymorphisms

Genotype and allele frequencies for the $-577G/A$ and $-796G/A$ $GCH1$ polymorphisms are shown in table 5.1. The $-796G/A$ variant did not conform to the Hardy Weinberg rule in either the NPHSII cohort ($\chi^2=275.3$, $P=<0.0001$) or the Cambridge Young Adults Study cohort ($\chi^2=20.8$, $P=<0.05$). Repeat genotyping and DNA sequencing confirmed that this was not the result of mis-genotyping. As there were no related individuals within the NPHSII cohort this was also ruled out as an explanation for the difference in observed and expected genotypes. The $-796G/A$ and $-577G/A$ polymorphisms were in tight linkage disequilibrium in both cohorts (NPHSII $\Delta 0.79$, $P=<0.0001$; Cambridge Young Adults cohort $\Delta 0.66$, $P=<0.0001$).
Table 5.1 Genotype and allele frequencies of *GCH1* polymorphisms in the NPHSII cohort (top panel) and the Cambridge Young Adults Study cohort (bottom panel). The -796G/A polymorphism did not conform to the Hardy-Weinberg equilibrium in either cohort.
5.4.2 Baseline demographics of NPHSII study participants

Baseline characteristics of the NPHSII cohort according to \textit{GCH1} genotype are shown in tables 5.2a and 5.2b. Orthodox cardiovascular risk factors such as blood pressure, pulse pressure, cholesterol, fibrinogen, BMI or age did not differ among groups of different genotype.

<table>
<thead>
<tr>
<th>Genotype –577G/A</th>
<th>GG Mean (SD)</th>
<th>GA+AA Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=1789</td>
<td>N=485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>56.1 (3.4)</td>
<td>56.0 (3.4)</td>
<td>0.77</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>84.6 (11.4)</td>
<td>84.8 (11.1)</td>
<td>0.64</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>138.7 (19.2)</td>
<td>138.5 (19.4)</td>
<td>0.84</td>
</tr>
<tr>
<td>Pulse Pressure</td>
<td>54.1 (14.5)</td>
<td>53.6 (14.7)</td>
<td>0.53</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>5.72 (1.02)</td>
<td>5.72 (0.98)</td>
<td>0.98</td>
</tr>
<tr>
<td>Fibrinogen (μmol/L)</td>
<td>0.08 (0.02)</td>
<td>0.08 (0.02)</td>
<td>0.33</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.5 (3.5)</td>
<td>26.2 (3.3)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table 5.2a Demographic details of subjects in the NPHSII cohort according to \textit{GCH1} –577G/A genotype. GA+AA individuals were grouped and analysed together. No significant difference was found in age, blood pressure, cholesterol, fibrinogen or BMI between genotypes.
Genotype -796G/A

<table>
<thead>
<tr>
<th></th>
<th>GG Mean (SD) N=1666</th>
<th>GA+AA Mean (SD) N=572</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>56.0 (3.4)</td>
<td>56.2 (3.4)</td>
<td>0.44</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>84.4 (11.3)</td>
<td>84.2 (11.1)</td>
<td>0.67</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>138.3 (19.1)</td>
<td>137.5 (19.2)</td>
<td>0.38</td>
</tr>
<tr>
<td>Pulse Pressure</td>
<td>53.9 (14.4)</td>
<td>53.3 (14.3)</td>
<td>0.41</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>5.72 (1.01)</td>
<td>5.75 (1.00)</td>
<td>0.52</td>
</tr>
<tr>
<td>Fibrinogen (µmol/L)</td>
<td>0.08 (0.02)</td>
<td>0.08 (0.02)</td>
<td>0.29</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.5 (3.5)</td>
<td>26.5 (3.4)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table 5.2b Demographic details of subjects in the NPHSII cohort according to GCH1 -796G/A genotype. GA+AA individuals were grouped and analysed together. No significant difference was found in age, blood pressure, cholesterol, fibrinogen or BMI between genotypes.

5.4.3 Distribution and determinants of plasma neopterin

Among the 939 healthy men from the NPHSII cohort, the distribution of neopterin values were skewed with a geometric mean neopterin value of 6.0 nmol/L (range: 2.16 nmol/L to 33.5 nmol/L), similar to that reported previously (Diamondstone et al., 1994). Univariate analysis revealed a significant positive correlation between plasma neopterin and fibrinogen (r=0.11, p=0.0006), and negative correlations with cholesterol (r=-0.12, p=0.0002) and apoA1 (r=-0.16, p=0.0001) (Table 5.3). Plasma neopterin was not significantly different between smokers (n=228) and non-smokers (n=711) (mean neopterin 6.11±1.42nmol/L vs 5.95±1.46nmol/L, p=0.16). No significant correlation was observed between levels of neopterin and systolic or diastolic pressure. Cardiovascular events were recorded in 41 individuals out of the 939 with neopterin measurements. No evidence of an association
between neopterin levels and cardiovascular outcome was observed, mean (SD) neopterin values for subjects in whom an event was recorded and those without an event was 6.10 (1.00) nmol/L and 6.25 (1.56) nmol/L respectively (P=0.38).

Table 5.3. Correlation of neopterin with risk factors for cardiovascular disease in the NPHSII cohort by stepwise multiple regression. An inverse relationship was observed between neopterin and cholesterol and ApoAl*. A positive relationship was observed between neopterin and fibrinogen hyp.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic BP</td>
<td>0.01</td>
<td>0.75</td>
</tr>
<tr>
<td>Systolic BP*</td>
<td>-0.04</td>
<td>0.23</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>-0.03</td>
<td>0.4</td>
</tr>
<tr>
<td>ApoA1*</td>
<td>-0.16</td>
<td><0.0001</td>
</tr>
<tr>
<td>ApoB</td>
<td>-0.007</td>
<td>0.84</td>
</tr>
<tr>
<td>Cholesterol*</td>
<td>-0.12</td>
<td>0.0002</td>
</tr>
<tr>
<td>Fibrinogen*</td>
<td>0.11</td>
<td>0.0006</td>
</tr>
<tr>
<td>BMI</td>
<td>-0.008</td>
<td>0.81</td>
</tr>
<tr>
<td>Age</td>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

5.4.4 Relationship between *GCH1* genotype and plasma neopterin in the NPHSII cohort

Full genotype and neopterin data were available for 696 individuals out of the 939 selected. Both the -577G/A and -796G/A polymorphisms showed significant association with neopterin levels both before and after adjustment for fibrinogen, cholesterol, apoA1 and primary care practice (Table 5.4). The associations also persisted after correction for renal
function ($p=0.001$ for both variants, table 5.4) with A-allele carriers having lower neopterin/creatinine ratio. In a stepwise multiple regression analysis fibrinogen ($r=0.13$, $p=0.001$), cholesterol ($r=-0.09$, $p=0.02$), ApoA1 ($r=-0.15$, $p=<0.0001$) and genotype ($r=-0.11$, $p=0.004$) were independently associated with plasma neopterin, accounting for 6.9% of variation.

Genotype -577G/A

<table>
<thead>
<tr>
<th></th>
<th>GG Mean (SD) N=565</th>
<th>GA+AA Mean (SD) N=131</th>
<th>P</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neopterin</td>
<td>6.30 (1.69)</td>
<td>5.87 (1.35)</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>Neopterin/Creatinine</td>
<td>0.067 (0.019)</td>
<td>0.061 (0.014)</td>
<td>0.0008</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Genotype -796G/A

<table>
<thead>
<tr>
<th></th>
<th>GG Mean (SD) N=565</th>
<th>GA+AA Mean (SD) N=131</th>
<th>P</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neopterin</td>
<td>6.29 (1.61)</td>
<td>5.95 (1.52)</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Neopterin/Creatinine</td>
<td>0.066 (0.018)</td>
<td>0.061 (0.016)</td>
<td>0.0006</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5.4. Neopterin and neopterin/creatinine according to $GCH1$ -577G/A (top panel) and -796G/A genotype (bottom panel). Individuals homozygous for the $GCH1$ -577 and -796 G allele (GG) had significantly higher neopterin and neopterin/creatinine compared to A allele carriers (GA+AA). Data has been adjusted for practice. *Also adjusted for fibrinogen, cholesterol and apoA1.
5.4.5 *GCH1* polymorphism, and CVD risk

A secondary hypothesis explored in the NPHSII cohort was that *GCH1* genotype influenced CHD risk. The total number of CHD events for the whole NPHSII cohort was 188. No evidence was found of an association between genotype and risk of IHD overall (Table 5.5). However, a significant interaction was observed between -796 genotype and smoking ($p=0.02$). Individuals homozygous for the -796 A allele who smoked had a hazard ratio for CHD of 7.78 (95%CI: 2.12-29.14), compared to a hazard ratio for CHD of 1.51 (95%CI: 1.11-2.06) for smokers overall. No evidence was found for an interaction between -577 genotype and smoking ($p=0.92$).

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Genotype</th>
<th>Hazard Ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-577 G/A</td>
<td>GG</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA/AA</td>
<td>0.76 (0.46-1.24)</td>
<td>$P=0.27$</td>
</tr>
<tr>
<td>-796 G/A</td>
<td>GG</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA/AA</td>
<td>1.11 (0.58-2.12)</td>
<td>$P=0.76$</td>
</tr>
</tbody>
</table>

Table 5.5. *GCH1* genotype and IHD risk in the NPHSII cohort. A allele carriers were grouped and analysed against GG homozygotes. No association was found between *GCH1* genotype and IHD risk.
5.4.6 Baseline demographics of Cambridge Young Adults Study participants

The characteristics of the study sample according to \textit{GCH1} genotype are summarised in tables 5.6a and 5.6b. There were no significant differences between genotype groups in levels of cholesterol, LDL, HDL, blood pressure, BMI, age, height, weight or smoking status within the whole group, males or females.

As previously reported (Leeson et al., 2002), there were no associations between cardiovascular risk factors and resting vessel size or brachial artery blood flow in this cohort. There was no difference in mean FMD or GTND between sexes. Smokers had lower mean FMD than non-smokers (0.090 ± 0.080 mm v 0.109 ± 0.081 mm respectively, p<0.05), with no difference in GTND (0.677 ± 0.225 mm v 0.674 ± 0.184 mm, p=0.90).

<table>
<thead>
<tr>
<th>Genotype –577G/A</th>
<th>GG Mean (SD) N=175</th>
<th>GA+AA Mean (SD) N=38</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (range, years)</td>
<td>23.0 (20-27)</td>
<td>23.0 (20-27)</td>
<td>ns</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>128.0 (14.0)</td>
<td>128.0 (14.0)</td>
<td>ns</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>71.0 (9.0)</td>
<td>71.0 (8.0)</td>
<td>ns</td>
</tr>
<tr>
<td>Cholesterol (mmol/L)</td>
<td>4.54 (0.94)</td>
<td>4.69 (1.11)</td>
<td>ns</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>2.81 (0.83)</td>
<td>2.89 (0.96)</td>
<td>ns</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.19 (0.3)</td>
<td>1.18 (0.33)</td>
<td>ns</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>2.4 (0.4)</td>
<td>2.5 (0.4)</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 5.6a. Demographic characteristics of the Cambridge Young Adults Study cohort according to \textit{GCH1} –577G/A genotype. No significant difference was observed in age, blood pressure, cholesterol or BMI between genotypes (ns=not significant, P>0.05).
Table 5.6b. Demographic characteristics of the Cambridge Young Adults Study cohort according to GCH1 -796G/A genotype. No significant difference was observed in age, blood pressure, cholesterol or BMI between genotypes (ns=not significant, P>0.05).

5.4.7 Relationship between GCH1 genotype and endothelial function.

The association between genotype and FMD is shown in table 5.7. Only subjects from whom scans of adequate quality for endothelial function together with successful genotyping data were chosen for analysis, leaving full details of genotype and vascular function available for 213 individuals for the -577G/A variant and 208 individuals for the -796G/A variant. FMD was lower in A-allele carriers for the -796G/A variant (p=0.03) and a similar but non-significant trend was observed between groups for the -577G/A variant (p=0.27). There were no differences in GTND between genotype groups.
Table 5.7. Endothelial function according to *GCH1* -577G/A (top panel) and -796G/A (bottom panel) genotype in the Cambridge Young Adults Study cohort. A significant difference in FMD was observed between GG homozygotes and A allele carriers of the -796G/A polymorphism. A allele carriers had lower FMD than GG individuals (% FMD, *P*=0.03). A similar but non-significant trend was observed for the -577G/A polymorphism (*P*=0.27).
5.5 Discussion

This study has identified two common novel variants in the GCH1 gene and examined their phenotypic consequences in two large population-based studies of healthy individuals. Carriage of an A-allele for the -796G>A and -577G>A variants for the GCH1 gene was associated with lower levels of plasma neopterin in the NPHSII cohort. Carriage of an A-allele for the -796G>A variant was associated with reduced endothelial-dependent vasodilation in the Cambridge Young Adults cohort, with a similar, though non-significant trend in endothelial function noted for the -577G>A variant.

We hypothesised that common genetic variation of the GCH1 gene could influence expression or activity of the GTPCH-1 enzyme in the general population and that this in turn could affect BH4 availability. This study has demonstrated an association between two variants within the GCH1 promoter and levels of plasma neopterin, a surrogate marker of BH4 synthesis. These variants might themselves influence GCH1 mRNA expression, or might be in linkage disequilibrium with regulatory variants elsewhere in the gene. The -796 G>A polymorphism lies 3bp from a CCAAT box/enhancer binding protein element (C/EBP) and could alter transcription factor binding and therefore gene expression. However, further in vitro analysis is needed to clarify the molecular mechanism of the observed associations.

GCH1 variants associated with changes in neopterin concentration were also associated with corresponding changes in endothelium-dependent vasodilation of the brachial artery, a
systemic in vivo bioassay of endothelial NO availability. This association was independent of any effect of classical cardiovascular risk factors on vascular responses. Impaired flow mediated dilatation has been shown to relate to the presence of cardiovascular risk factors and disease in the general population (Celermajer et al., 1992), to be predictive of future vascular events (Gokce et al., 2003), and to be largely mediated by endothelium-derived NO (Palmer et al., 1987). Impaired endothelium-dependent dilatation and NO availability may be due to reduced NO synthesis, increased inactivation by rapid chemical reaction with reactive oxygen species including O_2^-, or both. The restoration of endothelial function by local intra-arterial BH$_4$ infusion demonstrated in previous studies might therefore reflect augmentation of NO synthesis or an antioxidant effect of this molecule (Fukuda et al., 2002; Maier et al., 2000; Heitzer et al., 2000). Some studies suggest that functional BH$_4$ deficiency in cardiovascular disease is itself the result of increased oxidative inactivation of BH$_4$ (Heller et al., 2001). Our data suggest that changes in pterin synthesis, regulated by GCH1 expression might also play a role.

Despite associations between GCH1 polymorphisms, neopterin concentration and endothelial function, the NPHSII study of 2390 males did not provide evidence that GCH1 genotype altered future risk of CHD events. However, the NPHSII study is only powered to detect a genotype relative risk of >1.4 with 80% power at $2p=0.05$ and thus relative risks of 1.2-1.3, such have now been demonstrated in combined data sets for variants in other candidate genes such as ACE or MTHFR, could not be excluded (Keavney et al., 2000; Wald et al., 2002). There was statistical evidence that the -796 genotype, but not the -577 genotype, interacted with smoking to increase coronary disease risk. A significant
association was only demonstrated between the -796 genotype and flow mediated dilatation. However, differences in neopterin were seen with both genotypes and there was a trend to an association between flow mediated dilatation and the -577 genotype. Due to the small numbers involved these data must be interpreted with caution.

In summary we have identified novel variants in the GCH1 gene. Those situated within the promoter region are associated with plasma neopterin levels in a large prospective cohort of healthy men, which suggests neopterin and therefore BH4 synthesis is influenced by GCH1 genotype. Furthermore, in a cohort of young adults the -796 G>A variant is associated with significant differences in NO-dependent endothelial function, which is known to be a key early pathophysiological stage in the development of atherosclerosis. Variants relevant to BH4 synthesis appear to have an independent impact on endothelial function in healthy individuals from early in life.
CHAPTER 6
IDENTIFICATION OF POLYMORPHISMS IN THE HUMAN DIMETHYLARGININE DIMETHYLAMINOHYDROLASE GENE (DDAH2)
6.1 Aim

To scan the human dimethylarginine dimethylaminohydrolase gene (DDAH2) for novel genetic variants, with the intention of investigating the role of any polymorphisms in the regulation of ADMA metabolism, in the modulation of endothelial function and the susceptibility to CVD.

6.2 Background

Asymmetric dimethylarginine (ADMA) is a naturally occurring methylated arginine that inhibits the synthesis of nitric oxide (NO) from L-arginine. It impairs endothelium-dependent vasodilation, is found in elevated concentrations in plasma from patients with risk factors for vascular disease and its levels predict future vascular events (Vallance et al., 1992; Boger et al., 1998; Pettersson et al., 1998; Usui et al., 1998). Although ADMA levels vary between individuals little is known about the mechanism of such variation.

ADMA and symmetric dimethylarginine (SDMA) are generated by methylation of proteins by protein arginine methyltransferases (PRMTs) (Clarke, 1993). Unlike ADMA, SDMA has no inhibitory activity on the NOS enzyme. Whilst both ADMA and SDMA are excreted by the kidneys, and so accumulate when the kidneys fail, ADMA is also actively metabolised by the dimethylarginine dimethylaminohydrolase enzymes -DDAH1 and DDAH2 (Ogawa et al., 1987; Ogawa et al., 1989; Leiper et al., 1999).
The DDAH1 enzyme was first identified in rat kidney by Ogawa and colleagues in 1989. Ten years later Leiper et al reported the cloning and deduced amino acid sequence of human DDAH1 and the discovery of a novel DDAH isoform termed DDAH2. The DDAH2 isoform was shown to share approximately 62% homology with the DDAH1 amino acid sequence, and the DDAH2 cDNA and protein sequences exhibit 98% homology between human and mouse species. Northern blot experiments revealed distinct tissue distributions for DDAH1 and DDAH2, which showed some similarities with the tissue distribution of NOS isoforms. DDAH1 is highly expressed in brain, kidney, pancreas and liver, tissues in which the neuronal isoform of NOS is predominant. In contrast DDAH2 is highly expressed in the heart, kidney and placenta correlating with expression of eNOS (Leiper et al., 1999). A more in depth analysis of the tissue distributions of DDAH1 and DDAH2 also revealed that DDAH2 is highly expressed in foetal tissue and may have a role to play in cellular differentiation and cell cycle control (Tran et al., 2000). Thus tissue specific regulation of ADMA concentrations by distinct DDAH isoforms could be an important process regulating NO bioavailability. The expression of DDAH2 in highly vascularised tissues has also led to interest in this enzyme as a potential candidate for the predisposition to CVD.

Ribas et al, 1999, were the first to report the chromosomal localisation of a human gene thought to be homologous to rat DDAH. This gene (which they termed G6A) is located within the class three region of the major histocompatibility complex (MHC class III) on chromosome 6p21.3. The identity of this gene was confirmed as being DDAH2 by Tran et al., 2000 who also verified its location by radiation hybrid mapping and fluorescent in-situ
hybridisation (FISH). This region of human chromosome six contains a number of genes that are thought to be involved in autoimmune diseases such as insulin dependent diabetes mellitus, ankylosing spondylitis and coeliac disease (Bertrams, 1984; Brown et al., 1998; McManus et al., 1996). Localisation of \textit{DDAH2} to the MHC class III region and the observation that DDAH2 is expressed in many types of immune cell, suggests that regulation of ADMA may also be important for iNOS activity which is known to contribute to many autoimmune pathophysiologies (Weinberg et al., 1994).

The \textit{DDAH2} gene comprises 8 exons that span a distance of 3kb. The 5’ untranslated region of the mRNA is encoded by exons 1, 2 and part of exon 3. Three transcription initiation sites have been identified at the beginning of exons 1, 2 and 3, and alternate splicing results in transcripts originating from all three as identified by EST database searches (Ribas et al., 1999; Tran et al., 2000). In comparison the \textit{DDAH1} gene has 6 exons spread over a distance of more than 65kb. The translation start site of \textit{DDAH1} lies within exon 1, but no splice variants have been identified. The highly conserved exon/intron boundaries between \textit{DDAH1} and \textit{DDAH2} have led to the theory that these two genes arose through block duplication (Tran et al., 2000).

Publication of the crystal structure of a bacterial DDAH by Murray-Rust et al., 2001, revealed the nature of the enzyme active site and opened the way for research into the regulation of DDAH activity. They reported a catalytic triad (Cys-His-Glu), which is conserved in all known DDAH enzymes including human DDAH1 and DDAH2. Further work by Leiper et al., 2002 demonstrated that S-nitrosylation of the active site cysteine
(Cys) residue reversibly inhibits enzyme activity, and these authors proposed that in-vivo S-nitrosylation in the presence of high concentrations of NO for example seen after induction of iNOS, could lead to elevated ADMA levels. The authors also suggested that the elevated ADMA would lead to inhibition of all three NOS isoforms, explaining the observation that very high levels of NO from iNOS can suppress endothelium-dependent vasodilation due to NO release from eNOS (Kessler et al., 1997). Nitrosylation of DDAH could also account for the observations of Ito et al., 1999, who showed DDAH activity but not expression is reduced in ECV304 cells treated with oxLDL or cytokines and also in rabbits fed a high cholesterol diet. Initial up-regulation of iNOS by oxLDL and cytokines is now a plausible explanation for these findings.

Regulation of DDAH at the level of enzyme expression is also attracting interest as a mechanism of regulating circulating ADMA. To date the only publication demonstrating direct regulation of DDAH expression has highlighted all-trans retinoic acid (at-RA) as a transcription factor capable of increasing DDAH2 expression. Treatment of sEnd1 cells (a murine cell line) with at-RA not only increased DDAH2 expression, but also decreased ADMA and increased NO production without increasing NOS expression (Achan et al., 2002). At-RA is a powerful morphogen and has important effects on the developing cardiovascular system (Lansink et al., 1998), and these findings re-enforce the theory that DDAH2 may be involved in cell cycle control in the cardiovascular system.

Up to the writing of this thesis, no mutations or polymorphisms had been identified in either DDAH1 or DDAH2 by other groups. However, DDAH2 is a potential candidate gene
for vascular disease because of its likely importance in regulating ADMA levels, and through this NO availability and vascular function. The aim of this study was to screen the DDAH2 gene for common polymorphisms or mutations by SSCP analysis.

6.3 Subjects and Methods

6.3.1 Subjects

Anonymised DNA samples from 32 healthy unrelated individuals, was used to screen the DDAH2 gene for polymorphisms. Blood was collected into EDTA tubes and DNA extracted by the Qiagen DNA purification kit method (section 2.2.1.2).

6.3.2 Oligonucleotide design and amplification of genomic DNA

Oligonucleotides were designed to cover the promoter and exons of the DDAH2 gene. All oligonucleotides were designed to be approximately 50% GC rich with minimum secondary structure formation. Each oligonucleotide pair was designed to have similar annealing temperatures, non-complementary sequence (which could result in 'primer-dimer' production) and produce a PCR product 200-400bp in length (the optimum for SSCP analysis). Oligonucleotides were designed using the Genbank/EMBL database sequence (accession number AJ012008). Table 6.1 lists all oligonucleotide sequences, positions relative to the translation start site, and PCR conditions. Three pairs of
oligonucleotides were designed to produce three PCR products, which overlapped one another to cover the promoter region spanning -1078 to -1881 relative to the translation start site. Because of the small size of exon 4, intron 4 and exon 5 (100bp, 122bp and 73bp respectively), oligonucleotides were designed to amplify both exons in one PCR reaction.

Amplification was carried out by PCR as described in section 2.2.2. All PCR products were electrophoresed on 1% agarose gels with 100bp ladder to ensure a single-band product of the correct size was achieved.
<table>
<thead>
<tr>
<th>Position of oligonucleotides relative to translation start site</th>
<th>MgCl₂ (mM)</th>
<th>Annealing Temp (°C)</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter 1
-1536→-1881</td>
<td>1.5</td>
<td>64</td>
<td>F - 5'ggt cta aca tgt tgg tcc ctc3'
R - 5'ctc ttc cac cac acc atc ccg3'</td>
</tr>
<tr>
<td>Promoter 2
-1315→-1617</td>
<td>1.5</td>
<td>64</td>
<td>F - 5'tgc tac cca atg gac aca ctc3'
R - 5'agc agc ccc acc aca aac att3'</td>
</tr>
<tr>
<td>Promoter 3
-1078→-1389</td>
<td>1.5</td>
<td>64</td>
<td>F - 5'agg ggt ggg tca tgt atc tgt3'
R - 5'egg ctc cgg ggc att tgt taa3'</td>
</tr>
<tr>
<td>Exon 1
-869→-1221</td>
<td>1.5</td>
<td>68</td>
<td>F - 5'cga aga ccc gcc ccc tcc tcc3'
R - 5'gge ccc ccc aag caa gac tca3'</td>
</tr>
<tr>
<td>Exon 2
-403→-652</td>
<td>1.5</td>
<td>62</td>
<td>F - 5'ctt cgg gac tct tgt tgt tt3'
R - 5'tta acc ctc cgg tgc tgt cta3'</td>
</tr>
<tr>
<td>Exon 3
-121→+297</td>
<td>1.5</td>
<td>62</td>
<td>F - 5'aac gcc ctt tgt tgc agt tct3'
R - 5'tct gcc ttt ccc cat acc aca3'</td>
</tr>
<tr>
<td>Exon 4 +5
389→751</td>
<td>1.5</td>
<td>68</td>
<td>F - 5'ctt cgc ccc ccc tcc ctc cta3'
R - 5'gtc cgg tgc cct ctt ctc cta3'</td>
</tr>
<tr>
<td>Exon 6
818→1273</td>
<td>2.0</td>
<td>68</td>
<td>F - 5'ata ccc cat cac ccc tcc cgc3'
R - 5'ttt caa ccc cct acc ttc ccc3'</td>
</tr>
<tr>
<td>Exon 7
1398→1795</td>
<td>1.5</td>
<td>64</td>
<td>F - 5'tta gtg tgt tgt gag cag gca3'
R - 5'aca tgg tgt ggg gag aga ga3'</td>
</tr>
<tr>
<td>Exon 8
1769→2164</td>
<td>2.0</td>
<td>67</td>
<td>F - 5'tct cac ccc cct ctc ccc act3'
R - 5'ctc atc cct tgt ccc ctc taa3'</td>
</tr>
</tbody>
</table>

Table 6.1. Oligonucleotides used for PCR amplification of the human *DDAH2* gene. A set of three overlapping oligonucleotide pairs were designed to amplify the promoter region from position -1078 to -1881 relative to the translation start site. The region amplified by each oligonucleotide pair is shown with corresponding MgCl₂ concentration and annealing temperatures for PCR.
6.3.3 Screening for polymorphisms by SSCP analysis

The non-radioactive PhastSystem SSCP technique was used to scan the \textit{DDAH2} gene as described in section 2.2.4.2.

6.3.4 DNA sequencing to define the nature of variants detected by SSCP

Genomic regions exhibiting different banding patterns on SSCP gel electrophoresis were chosen for sequence analysis. Samples were selected so that each different banding pattern produced by SSCP was represented at least twice and the region re-amplified from genomic DNA. The PCR product was used as a template and both forward and reverse sequencing reactions set up using the same oligonucleotides as for PCR. Sequencing was carried out as described in section 2.2.5.

6.3.5 Search of the National Center for Biotechnology Information (NCBI) SNP database for \textit{DDAH2} polymorphisms

The NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/) was searched for all polymorphisms identified to date within the \textit{DDAH2} gene as described in chapter 2.2.7. The database was established in 1988 and is a resource of freely available molecular biology information compiled by genome sequencing consortiums worldwide.
6.3.6 Search of the MatInspector promoter database for putative DDAH2 transcription factor binding sites

A search of the MatInspector database (http://www.genomatix.de/free_login.html) with the DDAH2 promoter sequence was undertaken to identify transcription factor binding sites as described in chapter 2.2.8.

6.3.7 Identification of restriction enzyme sequences and genotyping of DDAH2 polymorphisms

Restriction enzyme sites created or abolished by the presence of a polymorphism were identified using Webcutter software (http://www.firstmarket.com/cutter/cut2.html). Two cohorts of healthy subjects were used for initial genotyping analysis to ascertain genotype and allele frequencies of polymorphisms identified by SSCP. Individuals from the NPHSII cohort (North Mymms and Chesterfield clinics, n=498) described in section 2.2.12.1, were genotyped for the -449G/C, -1151A/C and -1020C/G polymorphisms, and 128 individuals from the German population screen (section 2.2.12.1) were genotyped for the -1151A/C, -1020C/G and -871 6G/7G polymorphisms.

Genotyping of the -1151A/C, -1020C/G and -449G/C polymorphisms was carried out by PCR-RFLP analysis as described in chapter 2.2.6.1, using restriction enzymes BstUI, MwoI and BstUI respectively (table 6.2). The -871 6G/7G bi-allelic length variation polymorphism was genotyped by Genescan analysis as described in section 2.2.6.2, using
the fluorescent labelled forward reading oligonucleotide – 5' 6-FAM-TCTCCACCAACTCTGTTCCT3' and reverse oligonucleotide 5'TAGCTCCGCGCCCAATACCC3' to amplify a 191bp fragment containing the 6G variant or a 192bp fragment containing the 7G.

<table>
<thead>
<tr>
<th>DDAH2 Polymorphism*</th>
<th>Restriction enzyme</th>
<th>Recognition sequence</th>
<th>Digest products (size bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1151 C/A</td>
<td>BstUl</td>
<td>5' CG↓CG 3'</td>
<td>238+73</td>
</tr>
<tr>
<td>-1020C/G</td>
<td>MwoI</td>
<td>5' GCNNNN↓NNGC 3'</td>
<td>144+109</td>
</tr>
<tr>
<td>-449C/G</td>
<td>BstUl</td>
<td>5' CG↓CG 3'</td>
<td>204+46</td>
</tr>
</tbody>
</table>

Table 6.2 DDAH2 polymorphisms – restriction enzymes and digestion products. Characters in bold type indicate polymorphic bases recognized and cut by the restriction enzyme. ↓ = cutting site. * numbering with respect to the translation start site.
6.4 Results

6.4.1 Polymorphisms in $DDAH2$

Six polymorphisms were identified within the $DDAH2$ gene (Figure 6.1). The position of each polymorphism is numbered relative to the translation start site (ATG). SSCP analysis revealed a difference in banding pattern for PCR products generated with the oligonucleotides promoter 2, promoter 3, exon 1, exon 2 and exon 4+5 (tables 6.1), suggesting the presence of genetic variation within these regions. Figures 6.2a-6.2d show the SSCP gel images and the variation in banding pattern between individuals for the promoter 3, exon 1, exon 2 and exon 4+5 PCR products. Genetic variation in these regions was confirmed by DNA sequencing, which revealed a total of five single base substitutions at positions $-1415G\rightarrow A$, $-1151C\rightarrow A$, $-1020C\rightarrow G$, $-449C\rightarrow G$ and $+618C\rightarrow T$ and a 6G/7G bi-allelic length variation at position -871 (Figures 6.3a-6.3f). Two of the polymorphisms reside upstream of exon 1 ($-1415G/A$ and $-1151C/A$), one within exon 1 ($-1020C/G$), one within intron 1 (-871 6G/7G), one within intron 2 ($-449C/G$) and one within intron 4 ($618C/T$).
Polymorphisms identified by SSCP during this study are indicated by vertical arrows ↓. The position of each variant is numbered relative to the translation start site located in exon 3 (ATG). Exons 1-8 are numbered and filled in red. Five polymorphisms were identified upstream of the translation start site, one of these residing in the non-coding exon 1 (-1020C/G). Only one polymorphism was found downstream of the translation start site within intron 4 (618C/T).
Figure 6.2a. SSCP gel of *DDAH2* promoter 3 PCR. An extra band can be seen in samples 2, 3, 6 and 7 (indicated by an arrow). DNA sequencing identified this polymorphism as a C→A substitution at position –1151 (figure 6.3b).

Figure 6.2b. SSCP gel of *DDAH2* exon 1 PCR. An extra band is observed in lanes 2, 4 and 5 (indicated by an arrow). DNA sequencing identified this polymorphism as a C→G substitution at position –1020 (figure 6.3c). DNA sequencing also revealed an insertion/deletion (6g/7g) polymorphism at position –871 (figure 6.3d).
Figure 6.2c. SSCP gel of DDAH2 Exon 2 PCR
Lanes 3 and 6 have two bands that have migrated to
different positions compared to three bands
observed in all other lanes. DNA sequencing
identified this polymorphism as a C→G
substitution at position -449 (figure 6.3e).

Figure 6.2d. SSCP gel of DDAH2 Exon 4+5
PCR. Extra bands in samples 3 and 6 indicate the
presence of sequence variation in these PCR
products. DNA sequencing identified this
polymorphism as a C→T substitution at position
618 (figure 6.3f).
Figure 6.3a. DNA sequence confirming a G→A substitution at position −1415 in DDAH2 promoter 2 PCR. Each peak is generated by the fluorescence emitted by the dye-terminator nucleotides. Each termination nucleotide is labeled with a different fluorescent dye, which emits light of different wavelengths (A=green, G=black, C=blue, T=red). The upper sequence shows a homozygote for the G allele, the lower sequence a heterozygote for both G and A alleles.
Figure 6.3b. DNA sequence confirming a C→A substitution at position -1151 in the DDAH2 promoter 3 PCR. The upper sequence shows a homozygote for the A allele, the middle sequence a heterozygote for both A and C alleles, and the lower sequence a homozygote for the C allele. The numbers represent the position of each nucleotide in the PCR product. This sequence variation confirms the presence of a polymorphism as was indicated by SSCP (Figure 6.2a).
Figure 6.3c. DNA sequence confirming a C→G substitution at position -1020 in *DDAH2 exon1*. The upper sequence shows a heterozygote for both the C and G alleles, the lower sequence a homozygote for the C allele. No sequence electropherogram was available to illustrate a GG homozygote. This sequence variation confirms the presence of a polymorphism as was indicated by SSCP (Figure 6.2b).
Figure 6.3d. DNA sequence electropherogram confirming the presence of an extra G at position –871 in the DDAH2 promoter. The upper sequence illustrates a homozygote carrying 6G nucleotides at position –871, the middle sequence shows a homozygote carrying 7G nucleotides, and the lower panel identifies a heterozygote who has both 6G and 7G alleles.
Figure 6.3e. DNA sequence electropherogram confirming the presence of a C→G polymorphism within the DDAH2 exon2 PCR. The upper sequence shows a homozygote GG, the middle sequence a heterozygote G/C and the lower sequence a homozygote CC. This sequence variation confirms the presence of a polymorphism as was indicated by SSCP (Figure 6.2c).
Figure 6.3f. DNA sequence electropherogram confirming the presence of a C→T polymorphism within the exon 4+5 PCR product. The upper sequence shows illustrates a homozygote for the C allele and the lower sequence a heterozygote for both T and C alleles. No sequence electropherogram was available for a TT homozygote. This sequence variation confirms the presence of a polymorphism as was indicated by SSCP (Figure 6.2d).
6.4.2 Analysis of the *DDAH2* promoter and comparison of polymorphisms in the National Center for Biotechnology Information (NCBI) SNP database with those identified by SSCP.

At the time of writing the NCBI SNP database contained information on 6 polymorphisms in the *DDAH2* gene. The nature of each SNP, identification number and position are shown in table 6.3. All polymorphisms in the SNP database lie upstream of the translation start site and, in line with the current study no polymorphisms were identified in the coding exons or in the 3' region of the gene. The -1415 C/T, -1151 C/A and the -449G/C polymorphisms identified by SSCP during this study were represented in the NCBI SNP database. The average allele frequencies reported for these variants are; -1415 G=90%, A=8%, -1151 A=64%, C=36%. Allele frequency was unavailable for the -449 variant.

<table>
<thead>
<tr>
<th>NCBI SNP ID</th>
<th>Base change</th>
<th>Position relative to tsp</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2272592</td>
<td>G/A</td>
<td>-1415</td>
</tr>
<tr>
<td>rs805304</td>
<td>C/A</td>
<td>-1151</td>
</tr>
<tr>
<td>rs453560</td>
<td>G/C</td>
<td>-738</td>
</tr>
<tr>
<td>rs3763297</td>
<td>G/C</td>
<td>-728</td>
</tr>
<tr>
<td>rs707916</td>
<td>T/C</td>
<td>-620</td>
</tr>
<tr>
<td>rs805305</td>
<td>G/C</td>
<td>-449</td>
</tr>
</tbody>
</table>

Table 6.3. Human *DDAH2* promoter polymorphisms identified in the NCBI SNP database. The -1415 C/T, -1151A/C and the -449C/G polymorphisms were also identified by SSCP during this study. No polymorphisms have been identified in the coding exons.
MatInspector analysis of the 1.6kb immediately upstream of the \textit{DDAH2} translation start site revealed two of the polymorphisms identified by SSCP were situated in potential transcription factor binding sites (Figure 6.4). The $-1020C/G$ polymorphism lies with a putative E2F transcription factor binding site (TTTCGCGC), and the $-8716G/7G$ bi-allelic length variation lies in a region encoding a nerve growth factor induced protein C/ early growth response (NGFIC/Egr-3) binding sequence GCGTGGGGGG and a MYC-associated zinc finger protein related transcription factor site (MAZF).
agaattcgt tccacctgtc cagatgatga ggagatcgag ctcgcctatg
ccctccattt tctccacaa aagccctgcttg gtttccacat tgctacccaa
tggacacact ccaaatggc cagttgcagc ggaatcttgg agcacttggtt
cggggatggt gttgaatggcg aggggatgag ggggggcctg
gttggacctc atggagttgca tggatcttga gctccagggca
agaaccagga atttaagaag aagatgtttt tgggtggggt ctgtatgtttc
gtgccgggtcc gctggtcctgc gcgtgtgctg gttggtgaga ctggtgctg
ttgccagcccc gtcgcccaggg cggccagat ctgggctgggc ctgggccagcg
ctcgctgggc cggggcatcc gtcggctgctg ctctgaggtc tacgaagcgt
ttgccggtgc ctcggctgcgc cgttgcgctg tcgagttgc tcccaaatttg
ttggtggggct gcctatgtttc gagttgttgc ctggttggcc ctggtgctg
ttggtggcgc cgggctggtg gtttccacat tggcagatttt
ataaaataca gaaatggagt ccagttggttc tacgcaatgg gggtgggtca
-1415
ataaaataca gaaatggagt ccagttggttc tacgcaatgg gggtgggtca
-1020 E2F
cccatcgtag tatatgagct cgcctacaca aggaccccagc cttacccaca
NFKB
gagcctccag tcccgagggc ttgagaacgg gcggactgccctt cttcagttggc
60
PPAR/RXR SP1
cttgctccctg ggggggtgggg cccccagcca gagccagccag ccagacacagt
gggggtgggg cccccagccga gagccagaaa ccagggaatggg tggcccagag
SRF
tattggtgggt gtttgccaca agccagacagc tgtttcgcac cccagccaga
cataaacggg gaaaccggggt cttgagccgg gattgtggcc aacgccccgg
-871 NGFIC+MAZF
Figure 6.4 continued ➔
Figure 6.4 DNA sequence of the DDAH2 5' untranslated region. Exon sequences are indicated in blue. Oligonucleotide sequences are underlined by arrows. The position of transcription factor binding sites identified by MatInspector are shown in green and polymorphisms are shown in red type and numbered by position relative to the translation start site. The -1020C/G polymorphism lies in an E2F transcription factor binding site and the -871 6G/7G polymorphism lies within a NGFIC/MAZF binding sequence.
6.4.3 Genotype and allele frequencies of \textit{DDAH2} polymorphisms

Gel images representing common homozygotes, heterozygotes and rare homozygotes for the single nucleotide polymorphisms -1151A/C, -1020C/G and -449G/C polymorphisms are shown in figure 6.5. Figure 6.6 shows the electropherogram trace produced by Genescan analysis of the -871 6G/7G insertion/deletion polymorphism. The peaks correspond to PCR products 191bp (6G/6G), 191+192bp (6G/7G) and 192bp (7G/7G).

The genotype and allele frequencies of each polymorphism are shown in table 6.4. Rare allele frequency for the -1151A/C, -1020C/G and -449G/C polymorphisms in the NPHSII cohort were 0.31, 0.12 and 0.34 respectively. Rare allele frequencies for the -1151A/C, -1020C/G and -871 6G/7G polymorphisms in the German population screen were 0.31, 0.16 and 0.01 respectively. All polymorphisms were in Hardy-Weinberg equilibrium except for the -1020C/G polymorphism in the German population screen ($\chi^2 = 8.6, P=0.003$). Table 6.5 shows the linkage disequilibrium coefficients for each polymorphism. The -1151A/C, -1020C/G and -449G/C polymorphisms were in very tight linkage disequilibrium in the NPHSII cohort (P=<0.0001). In the German population screen the -1151A/C and -1020C/G were in tight linkage disequilibrium (*$\Delta=-0.3, P=0.0008$).
Figure 6.5 Restriction digest gel images. The top panel shows the digest products after restriction of the −1151A/C polymorphisms with the enzyme BstUl. The middle panel shows the digest products after restriction of the −1020C/G polymorphism with MwoI and the bottom panel shows the digest products after restriction of the −449G/C polymorphism with BstUl. All three genotypes for each polymorphism are represented.
Figure 6.6 Genescan trace produced upon genotyping the DDAH2 -871 6G/7G bi-allelic length variation. The region encompassing the polymorphism was amplified by PCR using a fluorescent labelled forward oligonucleotide and electrophoresed on an ABI 377 DNA sequencer. Data from 3 individuals is shown. The top trace shows two peaks (190bp+191bp) corresponding to a heterozygous 6G/7G individual. The middle trace shows 1 peak (191bp) corresponding to a homozygous 7G/7G individual and the bottom trace shows 1 peak (190bp) corresponding to a homozygous 6G/6G individual. Peaks were automatically sized by Genotyper software.
Table 6.4. Genotype and allele frequencies of DDAH2 polymorphisms in the NPHSII cohort (top panel) and the German Population Screen cohort (bottom panel). All polymorphisms conformed to the Hardy-Weinberg equilibrium except the -1020C/G polymorphism in the German Population Screen ($\chi^2=8.6$, *P=0.003).
Table 6.5. Pairwise linkage disequilibrium coefficients (Δ) for DDAH2 polymorphisms. The -1020C/G and -1151A/C polymorphisms were in tight linkage disequilibrium in both the German population screen (*Δ=-0.30, P=0.0008) and NPHSII cohort (\(^{*}\)Δ=-0.54, P<0.0001). The -449G/C polymorphism was in tight linkage with both the -1020C/G and the -1151A/C polymorphisms in the NPHSII cohort (\(^{*}\)P<0.0001). The -871 6G/7G polymorphism was not in linkage disequilibrium with either the -1020C/G or -1151A/C polymorphisms in the German population screen.

Discussion

6.5.1 DDAH2 promoter polymorphisms

Five polymorphisms were identified upstream of the DDAH2 translation start site during this study in the putative promoter region. The DDAH2 translation start site is located within exon 3, and therefore the promoter incorporates the non-coding exons 1 and 2. Alternate splicing between exons 1, 2 and 3 generates three transcripts, which have been identified in the EST database. The -1020C/G polymorphism is situated within exon 1. Although this exon is non-coding in terms of protein synthesis, it may act as a promoter for
transcription starting at exons 2 and 3. Alternatively, as the −1020C/G polymorphism changes a nucleotide that will reside in the 5' untranslated region (5'UTR) of the mRNA, it could effect gene expression through mRNA stability and translation efficiency. MatInspector analysis revealed the presence of putative transcription factor binding sites within this region, and the position of the −1020G/C variant falls within an E2F consensus sequence. E2F transcription factor sequences are a common feature within the promoter regions of genes involved in control of the cell cycle. Interaction of the E2F protein with the retinoblastoma (RB) family of proteins (pRb/105, 107, and pRb/p130) determines transcription of E2F regulated genes. VSMCs from atherosclerotic plaques have a higher ratio of the active form of RB compared to the inactive form and show lower level of E2F regulated gene transcription and cell proliferation compared to normal VSMCs. This fits with the observation that plaque VSMCs exhibit slow proliferation, senescence and undergo apoptosis in culture (Gordon et al., 1990; Bennett et al., 1995). E2F regulation of DDAH2 transcription during VSMC proliferation could be involved in the process of atherosclerotic plaque formation and restenosis (Black et al., 1999; Bennett et al., 1998). Further work is needed to determine if this polymorphism is functional via interaction with E2F.

The four remaining upstream polymorphisms do not lie within exon sequences. The −1415G/A and −1151C/A are situated farthest upstream and are not known to reside within any important regulatory regions. The −871 6G/7G bi-allelic length variant and the −449C/G are located in introns 1 and 2 respectively. Neither polymorphism disrupts an exon/intron boundary sequence, but the −871 6G/7G lies within a nerve growth factor
induced protein C/early growth response (NGFIC/Egr-3) consensus site which overlaps with a MYC-associated zinc finger protein related transcription factor site (MAZF). Genotyping of 128 healthy German subjects revealed a 7G allele frequency of just 1%. Previous investigators have shown that length variations in runs of bases such as Gs may alter the rate of gene transcription. Such genes include the stromelysin and plasminogen activator inhibitor (PAI) genes among others (Terashima et al., 1999; Gardemann et al., 1999). Stromelysin (MMP3) is a member of the matrix metalloproteinase enzyme family, which regulates the accumulation of extracellular matrix (Sellers and Murphy, 1981) and has been implicated in connective tissue remodeling during atherogenesis (Ye et al., 1996). A common polymorphism at position −1171 in the MMP3 promoter, which results in one allele containing a run of 5A nucleotides and the other allele 6A nucleotides, has been shown to alter gene transcription in a promoter/reporter assay (Ye et al., 1996). A common polymorphism in the PAI1 gene promoter, which results in ether 4 or 5G nucleotides has also been shown to influence gene expression. The 5G allele demonstrated reduced promoter activity, and an additional protein binding site not present in the 4G allele (Dawson et al., 1993). It was subsequently shown that the 4G allele binds only to an activator, whereas the 5G allele binds an activator and an inhibitor protein. The 4G allele has been associated with higher levels of PAI1 and increased risk of vascular disease (Dawson et al., 1993; Rossaak et al., 2000).

The position of the −871 6G/7G polymorphism within a NGFIC/MAZF transcription factor site may have implications for DDAH2 expression. Nerve growth factor (NGF) mediates a whole host of responses including cell differentiation, cell survival and gene expression.
Recently, studies have shown that NGF activates PRMT1 activity in PC12 cells, consequently leading to the asymmetric methylation of arginine residues in target proteins, which upon metabolism release free ADMA (Cimato et al., 2002). NGF has also been shown to induce GCH1 and NOS expression leading to elevated BH4 and NO respectively (Anastasiadis et al., 1996; Hirayama et al., 1995; Peunova et al., 1995; Kalisch et al., 2002). Evidence of a role for NGF in the development of atherosclerosis has been put forward by a number of investigators who have observed reduced NGF expression in atherosclerotic coronary arteries and reduced levels of plasma NGF in individuals with congestive heart failure compared to healthy controls (Chaldakov et al., 2001; Kaye et al., 2000). Taken together these observations suggest that NGF might provide co-ordinate regulation of NO synthesis in target cells by concerted modulation of multiple relevant target genes in the NO pathway. Disruption of the NGFIC binding site in the DDAH2 gene promoter by the -871 6G/7G polymorphism could alter DDAH2 expression and the breakdown of ADMA in the body, but further research will be needed to test this hypothesis. The transcription factor MAZF has been identified as an important regulator of TATA-less promoters (Parks et al., 1996). In addition to binding its consensus DNA sequence, MAZF also interacts with SP1 to modulate gene transcription (Parks et al., 1996). Genes identified as being regulated by MAZF include eNOS, serotonin 1a receptor, c-myc and CD4 (Karantzoulis-Fegaras et al., 1999; Parks et al., 1996; Bossone et al., 1992; Duncan et al., 1995). The observation that eNOS expression is regulated by MAZF raises the possibility that this transcription factor is also involved in the control of genes that regulate cell differentiation, survival and in particular NO availability.
6.5.2 Polymorphisms within \textit{DDAH2} coding exons

Only one polymorphism was identified downstream of the translation start site. This variant encodes a C→T substitution at position +618 within intron 4. No obvious consensus sequences for splicing are situated in this region. The absence of any polymorphisms in the coding exons, either suggests this region has remained highly conserved throughout evolution or that SSCP failed to detect all variants present in the samples analysed.

A search of the NCBI SNP database revealed six polymorphisms in the \textit{DDAH2} 5' untranslated region, three of which (−1415 G/A, -1151A/C and the −449C/G) were identified by SSCP during this study. Of the remaining three (rs453560, rs3763297 and rs707916) none are located in consensus sequences for any transcription factor binding sites or other important regulatory sequences. The NCBI SNP database did not contain any polymorphisms downstream of the translation start site, indicating that this region is highly conserved.

In summary, six polymorphisms were identified by SSCP in the \textit{DDAH2} gene. Three of these variants have been described on the NCBI SNP database. Two polymorphisms upstream of the translation start site reside with transcription factor binding sites and may influence \textit{DDAH2} promoter activity. A luciferase promoter/reporter gene assay has been used to investigate the effect of the −1151A/C and −871 6G/7G polymorphisms on \textit{DDAH2} expression, and the results are described in chapter 7.
CHAPTER 7

INFLUENCE OF DDAH2 POLYMORPHISMS ON

PROMOTER FUNCTION
7.1 Aims

To assess the influence of DDAH2 polymorphisms on DDAH2 gene expression in vitro using a luciferase reporter assay.

7.2 Background

Common genetic variation within the promoters of many genes has been demonstrated to alter gene expression. A polymorphism that resides in the consensus sequence for a transcription factor may modulate the affinity of that factor for its binding site, thereby either enhancing or repressing gene transcription. The identification of several polymorphisms within the DDAH2 gene promoter (Chapter 6) raises the hypothesis that DDAH2 expression may be influenced by common genetic variation at these sites. If so, variation in DDAH2 expression between individuals could have consequences for local or systemic concentrations of ADMA and rates of NO synthesis. Therefore, in theory, individuals with a lower DDAH2 expression would be expected to have elevated levels of ADMA, which would compete with L-arginine for the active site of the NOS enzyme, leading to decreased NO synthesis and, potentially, an increased risk of cardiovascular disease.

The analysis of gene expression by commercially available genetic reporter systems is now a widely used technique. In essence, a promoter of interest is cloned into a vector containing a gene whose protein product can be readily assayed, the construct is transfected into a target cell, and protein expression or activity quantified. Expression or activity of the reporter protein serves as an indirect semi-quantitative index of
promoter function. Basal reporter activity, as well as activity following exposure of
cells to chemical or physical signals can be assayed. Several different vector systems
are available to clone and study virtually any eukaryotic gene promoter. Examples
include plasmids, which can accommodate relatively small pieces of DNA sequence
(typically up to ~8kb), cosmids (hybrids between a phage DNA molecule and a bacterial
plasmid), which can hold more than 40kb of sequence and yeast expression vectors such
as yeast artificial chromosomes (YAC), which are capable of accommodating much
larger DNA sequences. Commercial vectors contain a range of genetic elements to
facilitate cloning and expression. For example, polylinkers which contain many
restriction enzyme sites into which DNA can be inserted, an origin of replication,
enhancer and promoter sequences. The critical component of a reporter vector is the
presence of genes such as luciferase or chloramphenicol acetyltransferase (CAT) whose
expression can be readily quantified by standard techniques. Reporter gene vectors also
contain selectable genes such as antibiotic resistance genes. During this study, the
plasmid vector pGL3basic (manufactured by Promega) was used to clone the \textit{DDAH2}
promoter. This vector comprises 4818bp of circular DNA and harbours a polylinker
upstream of the firefly \textit{(Photinus pyralis)} luciferase reporter gene, and the ampicillin
resistance gene for easy selection (Figure 7.1).
Figure 7.1 **Diagrammatic representation of the vector pGL3basic.** The circular vector comprises 4818bp of DNA and incorporates the luciferase gene (luc'), ampicillin resistance gene (Amp'), and a polylinker site into which a promoter sequence can be inserted. *Adapted from Promega-Protocols and Applications Guide, 1996.*

The luciferase reporter assay involves inserting the DNA of interest (in this case the *DDAH2* promoter) into a vector (pGL3basic), upstream of the firefly luciferase reporter gene. The reporter construct is then transfected into a relevant target cell maintained in cell culture. The construct will then be replicated along with the host cell genome, and the luciferase enzyme expressed in proportion to the activity of the promoter of interest. Upon addition of the luciferase substrate (beetle luciferin) the product oxyluciferin is generated together with AMP, PPi, CO$_2$ and a flash of light (in proportion to the amount of luciferase expressed), which can be quantified in a luminometer (Figure 7.2).

To assess the influence of polymorphisms on *DDAH2* promoter activity, constructs representing all four possible permutations of the -871 6G/7G and -1151A/C variants
(6G/A, 6G/C, 7G/A, 7G/C) were made and expressed in HUVEC. These variants were chosen because the -871 6G/7G polymorphism lies in a transcription factor binding site for NGFIC/MAZF and preliminary genotyping analysis of the -1151A/C variant suggested a possible association with ADMA/SDMA ratio. Primary HUVEC were chosen because DDAH2 is highly expressed in this cell type (Tran et al., 2000) and therefore all the necessary components for transcription of the DDAH2 gene are available. HUVEC were simultaneously co-transfected with the pRL-SV40 vector (Promega, Dual-Luciferase Reporter Assay System), which contains the Renilla (Renilla reniformis) luciferase gene under control of the SV40 promoter. Co-transfection of HUVEC with the Renilla luciferase allows correction for variability in transfection efficiency. Due to the different evolutionary origins of the firefly and Renilla luciferases, they have dissimilar enzyme structures and substrate requirement, making it possible to discriminate between the bioluminescence reactions (Figure 7.2).

Figure 7.2. Bioluminescent reactions of the firefly and Renilla luciferases. The firefly and renilla luciferase enzymes have different evolutionary origins and therefore different enzyme structures and substrate requirements. Firefly luciferase catalyses the oxidation of beetle luciferin and renilla luciferase the oxidation of coelenterazine to produce light and CO₂. Adapted from Promega Technical Manual No. 040.
A restriction fragment spanning nucleotides -1755 to -216 and incorporating the *DDAH2* promoter has already been shown to direct gene expression in an ECV304 cell line (Achan et al., 2002). Several *at*-RA acid transcription factor-binding sequences (PPAR/RXR) are present within the *DDAH2* promoter, and treatment of transfected ECV304 cells with *at*-RA was shown to enhance *DDAH2* promoter activity by 47% during this study. During the same study treatment of murine endothelioma cells (sEnd.1) with *at*-RA was shown to increase NO$_2^-$ production without increasing eNOS expression. The authors concluded that increased generation of NO by *at*-RA treatment might be mediated through changes in *DDAH2* expression and modulation of ADMA concentrations and eNOS activity.

The *DDAH2* gene has three transcription initiation sites at exons 1, 2 and 3. Alternate splicing between the 3' ends of exons 1 and 2 and an internal site within exon 3 results in 3 possible *DDAH2* transcripts (Tran et al., 2000). The aim of this study therefore, was to identify which splice variants of the *DDAH2* gene are expressed in HUVEC and therefore which sequences might be acting as a promoter in these cells. This study also investigated whether the -871 6G/7G (which lies within a NGFIC and a MAZF consensus sequence) and -1151A/C polymorphisms affect *DDAH2* promoter activity in primary HUVEC. As a positive control, promoter activity in the presence of *at*-RA was also assessed.
7.3 Materials and Methods

7.3.1 Identification of DDAH2 transcripts in HUVEC

mRNA was isolated from HUVEC and cDNA generated by Dr. Juan Pablo Casas Romero (University College London). mRNA was isolated using the Microfast Track kit (Invitrogen). mRNA was reverse transcribed by RT-PCR in a 20μl reaction volume containing 2μl of mRNA, 150ng of random primers (hexamers), 0.5mM each of dATP, dCTP, dGTP and dTTP, 5x first strand buffer (250mM Tris-HCl [pH8.3], 375mM KCl, 15mM MgCl2), 0.1M dithiothreitol (DTT), 9μl of DEPC H2O and 200 units of superscriptII RNase H' (Life Technologies). The reactions were incubated at 42°C for 55 minutes followed by 72°C for 10 minutes.

PCR to amplify exons 1, 2 and 3 was carried out as described in Chapter 2.2.2 using the following oligonucleotides; Exon 1 forward (-1097 to -1076) 5' TTAGACAATGCCCCCGGAGCGCGC3', Exon 1 reverse (-929 to -908) 5' ATCCTGTCGCGCTGTGATCTC3' (product 190bp), Exon 2 forward (-588 to -568) 5' GAGAGGATGCTTAACTCCTTA3', Exon 2 reverse (-544 to -524) 5' GAACGAGAAGGGGAGAGGTG3' (product 66bp), Exon 3 forward (-148 to -127) 5' AGACCTGGGGCGCTCTTAACCAC3' and Exon 3 reverse (59-80) 5' TCCCCCGACGCGAGCTCTCTCTG3' (product 230bp). The annealing temperature for each PCR reaction was 60°C. PCR amplification of the glyceraldehyde-3 phosphate dehydrogenase (GAPDH) housekeeping gene was used as a positive control (forward oligo 5' AAGGTGAAGGTCGGAGTCAACG3', reverse oligo
5'GGCAGAGATGATGACCCTTTTGGC3'). PCR products were electrophoresed on 1% agarose gels and visualised by ethidium bromide staining.

7.3.2 Cloning of human DDAH2 promoter/reporter constructs containing allelic variants

Promoter/reporter constructs containing allelic variants identified by SSCP at position −871(6G/7G) and −1151(A/C) were generated as shown in figure 7.3. A 1.6kb fragment containing the DDAH2 promoter was cloned into the vector - pGL3basic by Miss Lucy Tran, University College London (Achan et al., 2002). The region containing the −871 6G/7G and −1151 A/C variants was sequenced to identify the genotype of the primary construct. This construct was used as a template for generating allelic variants by site-directed mutagenesis, so that all four possible permutations were represented: - 6G/A, 7G/A, 6G/C and 7G/C. All variants were verified by DNA sequencing.

7.3.2.1 Site-directed mutagenesis

DNA sequencing revealed the DDAH2 promoter cloned into the vector pGL3basic, contained the 6G variant at position −871 and an A allele at position −1151. Both forward and reverse allele-specific oligonucleotides for site-directed mutagenesis were designed to cover the regions incorporating the −871 7G allele and −1151 C allele (Table 7.1). Two PCR reactions for each variant were carried out using the allele-specific oligonucleotides and the forward and reverse reading vector oligonucleotides RV3 and GL2 (Table 7.1). PCR reactions were carried out in 50μl volumes containing 1μl of pGL3basic vector containing the DDAH2 promoter, 5μl 10x buffer, dNTPs,
50pmol of each oligonucleotide, 1.5mM MgCl₂ and 2 units of Taq Expand (Roche Expand High Fidelity PCR kit). Cycling conditions were 95°C for 5mins followed by 10 cycles of 95°C for 30sec, 60°C for 30sec and 72°C for 2mins and a final extension at 72°C for 10mins. PCR products were electrophoresed on a 1% agarose gel to check products were the expected size and gel extracted using the QIAquick gel extraction kit (Qiagen).

The two PCR products were annealed to give the full DDAH2 promoter containing the desired allelic variant by 5 cycles of PCR in which oligonucleotides were omitted from the reaction. After 5 cycles 50pmol of the forward and reverse vector oligonucleotides - RV3 and GL2 were added and the reaction continued for a further 20 cycles. PCR products were electrophoresed on a 1% agarose gel to check the expected band size (1.6kb), and sequenced to confirm the desired allele had been incorporated.

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDAH2 –871 7G</td>
<td>F 5' ttg cgt ggg ggg gcc ctg aac 3'</td>
</tr>
<tr>
<td></td>
<td>R 5' gtt cag gge ccc ccc aeg caa 5'</td>
</tr>
<tr>
<td>DDAH2 –1151 C</td>
<td>F 5' taa tgg ggc egg ctt agc agg 3'</td>
</tr>
<tr>
<td></td>
<td>R 5' cct gct aag ccg cgc cca tta 3'</td>
</tr>
<tr>
<td>pGL3 basic vector RV3</td>
<td>F 5' cta gca aaa tag gct gtc cc 3'</td>
</tr>
<tr>
<td>pGL3 basic vector GL2</td>
<td>R 5' ctt tat gtt ggc gtc ttc c 3'</td>
</tr>
</tbody>
</table>

Table 7.1 Allele-specific and vector oligonucleotides used for site directed mutagenesis to generate DDAH2 promoter constructs. Mismatched bases are highlighted in bold.
Allele-specific PCR products were initially TA cloned using the TOPO TA cloning kit (Invitrogen). 2μl of PCR product was TA cloned into TOPO vector by incubating at room temperature for 5 minutes. 2μl of the cloning reaction was then added to a vial of One Shot chemically competent *E. coli* cells and incubated on ice for 30 minutes. Cells were then heat-shocked for 30 seconds at 42°C to facilitate uptake of DNA. 250μl of SOC medium (containing 2% tryptone, 0.5% yeast extract, NaCl, KCl, MgCl2, MgSO4, and glucose) was added to the reaction and the cells incubated at 37°C for 1 hour. 100μl of cells was then spread onto agar plates containing the β-galactosidase substrate- X-gal (5-bromo-4-chloro-indolyl-β-D-galactosidase) and incubated overnight at 37°C. Insertion of the PCR product into the TOPO cloning vector disrupts the β-galactosidase (*lacZ*) gene and renders the cell unable to metabolise X-gal resulting in white colonies on agar/xgal plates. Non-transformed cells produce blue colonies on agar/X-gal plates. White colonies were picked and grown overnight in 3ml of LB media containing 0.1mg/ml Ampicillin. The plasmid DNA was isolated using the Qiagen DNA miniprep kit.

7.3.2.3 Cloning allele-specific constructs into pGL3basic vector

The TOPO vector containing the *DDAH2* promoter allele-specific PCR was digested with *HindIII* to excise the *DDAH2* promoter sequence and electrophoresed on a 1% agarose gel. The 1.6kb product was then gel purified using the QIAquick gel extraction kit (Qiagen). The purified 1.6kb product was ligated into *HindIII* digested pGL3basic vector in a 10μl reaction containing 1μl *HindIII* digested pGL3basic vector, 2μl of the
1.6kb product, 2µl T4 DNA ligase buffer (Gibco) and 1µl T4 DNA ligase (Gibco). The reaction was incubated at 4°C overnight.

7.3.2.4 Transformation of DH5α competent cells

Subcloning efficiency DH5α competent cells were purchase form Invitrogen, UK. 10µl of ligation reaction was added to 100µl of cells and incubated on ice for 30 minutes. The cells were then heat-shocked at 37°C for 45 seconds and placed immediately on ice for 2 minutes. 950µl of SOC media was added to the cells and incubated while shaking at 37°C for 1 hour. The cells were pelleted by centrifugation and 900µl of spent media removed. The cells were re-suspended in the remaining media and 100µl spread onto agar/X-gal plates. Plates were incubated overnight at 37°C. White colonies were picked, grown in 3ml of LB media and the plasmid isolated using the Qiagen DNA miniprep kit. To identify colonies containing the DDAH2 promoter and the orientation of the insert, samples were digested with restriction enzymes HindIII and NarI respectively.
1. Site directed mutagenesis

Incorporation of the desired allele (represented in green) into the DDAH2 promoter sequence (shown in grey) by two rounds of PCR (site-directed mutagenesis). Step 2.

2. TOPO TA cloning

Cloning the allele-specific PCR product into the TOPO vector, transformation of E.coli and harvesting the recombinant plasmid.

3. Ligation

Ligation of the new DDAH2 promoter into pGL3 basic vector for luciferase assay.

Figure 7.3. A diagramatic representation of the steps involved in cloning DDAH2 promoter/reporter constructs containing allelic variants. Step 1. Incorporation of the desired allele (represented in green) into the DDAH2 promoter sequence (shown in grey) by two rounds of PCR (site-directed mutagenesis). Step 2. Cloning the allele-specific PCR product into the TOPO vector, transformation of E.coli and harvesting the recombinant plasmid. Step 3. Ligation of the new DDAH2 promoter into pGL3 basic vector for luciferase assay.
7.3.3 Luciferase reporter gene assay

7.3.3.1 Cell culture and transfection

HUVEC were purchased from Promocell (Germany) and cultured prior to transfection as described in Chapter 2. Transfection of HUVEC with the promoter/reporter constructs and renilla expression vector (to control for transfection efficiency) was carried out in 12 well culture plates as described in Chapter 2. Briefly, transfection of HUVEC was mediated by incubating the cells with lipofectin reagent (Invitrogen) in serum free media (Optimem 1) for four hours, after which the transfection reagent was removed and replaced with endothelial cell growth media (EGM). For each experiment transfections were performed in triplicate for each construct and luciferase activity was normalised to renilla activity. A total of 7 independent experiments were conducted for each construct. To test the effect of at-RA on promoter activity, HUVEC were treated for 24 hours with 10μmol/L atRA 24 hours after transfection.

7.3.3.2 Cell lysis and luciferase assay

Cell lysis and luciferase measurements were performed using the dual light luciferase reporter assay kit (Promega, Madison, USA) as described in Chapter 2.2.11.2.

7.3.3.3 Statistical analysis

Transformations were performed in triplicate and the average reading taken after correction for transfection efficiency. Promoter activity between constructs was
analysed by One-way ANOVA and Students t-test where appropriate. Results are presented as relative activity measured by the amount of light generated by activation of luciferase, which is proportional to promoter activity.

7.4 Results

7.4.1 Identification of DDAH2 transcripts in HUVEC

PCR bands corresponding to exons 2 and 3 were amplified from HUVEC cDNA (Figure 7.4). No PCR band was observed corresponding to exon 1. This data indicates that transcription of the DDAH2 gene in HUVEC begins at exon 2 and the sequence residing upstream of exon 2 could potentially function as a promoter. This region incorporates four of the polymorphisms identified by SSCP (Chapter 6) including the −871 6G/7G and the −1151A/C polymorphisms.

Figure 7.4 DDAH2 transcripts identified in HUVEC. PCR bands corresponding to exons 2 and 3 were amplified from HUVEC cDNA by PCR, indicating that transcription starts at exon 2. No band was amplified corresponding to exon 1 (top panel). The bottom panel illustrates alternate slicing between the 3’ ends of exons 1 and 2 and an internal site in exon 3 of the DDAH2 gene. Three transcription start sites are indicated by arrows.
7.4.2 Effect of DDAH2 polymorphisms on promoter activity

Reporter gene constructs representing the four possible permutations for the −1151A/C and −871 6G/7G polymorphisms were transfected into HUVEC and assayed for luciferase activity. A significant difference in promoter activity was observed between the four DDAH2 constructs with the highest activity being seen with the 7G/C construct and the lowest activity with the 6G/A construct (*P=0.01 one-way ANOVA, Figure 7.5). Both constructs containing the 7G variant had greater activity than their 6G counterparts (*P=0.001, figure 7.6). The 7G allele enhanced promoter activity to a greater degree in the presence of a −1151C allele (mean difference between 6G/A and 7G/A was 0.63, and between 6G/C and 7G/C was 1.42, P=0.33). Treatment with at-RA increased promoter activity in all constructs by at least 48% (Figure 7.7). The largest increase was seen for the 6G/C variant (179%). Increased activity of the 7G/C construct in response to at-RA indicates that the higher basal expression demonstrated by this construct can be increased still further by transcriptional regulators.
Figure 7.5 **Effect of different promoter variants on DDAH2 expression.** Mean luciferase activity generated by the 4 DDAH2 constructs representing the -1151A/C and -871 6G/7G polymorphisms transfected into HUVEC cells. The construct representing 7G at position -871 and C at position -1151 of the DDAH2 promoter demonstrated the greatest promoter activity (*P=0.01 for 7G/C compared to 6G/A by One-Way ANOVA). n=7

![Bar chart showing luciferase activity for different DDAH2 constructs](image1)

Figure 7.5

Figure 7.6 **Promoter activity of 6G constructs compared to 7G constructs.** Mean luciferase activity was combined for the two 6G constructs and compared with luciferase activity for the combined 7G constructs transfected into HUVEC. Mean luciferase activity for the 7G constructs was significantly greater than the 6G constructs (*P=0.001 by Students t-test).

![Bar chart showing promoter activity for 6G and 7G genotypes](image2)

Figure 7.6
Figure 7.7 Effect of at-RA treatment on DDAH2 promoter activity. To test if at-RA had any effect on DDAH2 promoter activity and to ascertain if this was influenced by promoter genotype, HUVEC were treated 24 hours post transfection with 10μmol/L at-RA for 24 hours. at-RA increased DDAH2 promoter activity of all constructs by at least 48% (P=>0.05 for each construct).
7.5 Discussion

SSCP analysis of the *DDAH2* promoter identified several polymorphisms of potential interest (Chapter 6). RT-PCR of mRNA isolated from HUVEC revealed that exons 2 and 3, but not exon 1 were expressed in this cell type and therefore the sequence upstream of exon 2 could act as a promoter. Two polymorphisms situated upstream of exon 2 were chosen for further investigation for potential effect on promoter activity using a luciferase promoter/reporter assay in HUVEC. The -871 6G/7G variant was chosen because of its location within a putative NGFIC/MAZF transcription factor binding sequence and because it is located in the core promoter sequence identified by site specific deletion analysis (Jones et al., 2003). The -1151A/C variant was chosen because the results of preliminary genotyping analysis indicated this variant might be associated with plasma ADMA/SDMA concentration (see Chapter 8). To determine if either of these variants influenced promoter activity, promoter/reporter constructs representing all four possible permutations of the -1151A/C and -871 6G/7G polymorphisms in the *DDAH2* promoter (linked to the luciferase reporter gene) were made and expressed in HUVEC.

Based on the promoter/reporter gene assay, at least one of these polymorphisms was identified as being of potential interest as a functional variant. A genotype specific difference was observed in promoter activity between the four constructs, with the construct containing 7G at position -871 showing highest promoter activity. Indeed, in HUVEC, constructs carrying the 7G variant showed a 2-fold increase in activity compared to constructs with the 6G variant at this position. Although the 7G variant appeared to increase promoter activity, in all constructs, the size of the effect was
contingent on the allele at the -1151 locus. The 7G allele enhanced promoter activity to a greater degree in the presence of a C allele at position -1151. This observation suggests that -1151 genotype might modulate the effect of the -871 genotype. Furthermore, the 6G/7G polymorphism lies in a region defined as a basal promoter element on the basis that the region from -927 to -216 (relative to the translation start site) supports transcription at the same level as the full length promoter in ECV304 cells. It is possible that binding of the transcription factor NGFIC or MAZF may be either up or down regulated due to the presence of an extra G allele at position -871, resulting in variation of DDAH2 expression. NGF has been shown to influence the expression or activity of several genes involved in the regulation NO synthesis such as PRMT, GCH1 and eNOS (Cimato et al., 2002; Anastasiadis et al., 1996; Hirayama et al., 1995; Peunova et al., 1995; Kalisch et al., 2002). NGF exerts its effects by binding two distinct receptors on the cell surface, the high affinity trkANGFR receptor and the low affinity p75NTRe receptor. It is thought that the trkANGFR receptor mediates cell proliferation and differentiation while the p75NTRe receptor is thought to mediate apoptosis in some cell types (Barker, 1998; Lopez-Sanchez et al., 2002). Binding of NGF to the trkANGFR receptor causes activation of the receptor tyrosine kinase and downstream signalling cascades, resulting in mobilisation of transcription factors such as NGFIC/Egr-3. Recent research has shown that HUVEC express both the trkANGFR and p75NTRe receptors, and also significant levels of NGF protein and mRNA under standard culture conditions that are up-regulated during serum starvation (Cantarella et al., 2002). NGF promotes HUVEC proliferation and exerts a potent angiogenic effect in-vivo possibly through regulation of NO synthesis (Cantarella et al., 2002). The transcription factor MAZF has been shown to interact with the human eNOS promoter and exhibits a negative effect on eNOS promoter activity in Drosophila Schneider cells.
Further studies to investigate the possible role of these transcription factors on DDAH2 expression are now required.

At-RA was capable of inducing the *DDAH2* promoter activity of all four constructs in HUVEC including the 7G variants, indicating that although the 7G increased basal expression, these constructs retained the ability to increase activity in response to *at*-RA. Upregulation of expression in response to *at*-RA in HUVEC is in agreement with the findings in the ECV304 cell line reported by Achan et al., 2002, and served as a useful positive control for the integrity of the assay system. *At*-RA is known to be an important mediator in the development of the cardiovascular system and may exert its effects by upregulating genes involved in maintaining sufficient NO production. Although it is likely that this regulation is likely to operate through transcription factor binding distinct from the −1151A/C and −871 6G/7G sites studied here, the observation that the magnitude of the *at*-RA response differed by −1151 and −871 genotype suggests that these sites may modulate transcription regulated primarily through the PPAR/RXR sites, in particular the PPAR/RXR site at position −927.

In summary, the presence of an extra G allele at position −871 within the *DDAH2* promoter is associated with increased basal DDAH2 expression and might be expected to confer protection against the harmful effects of elevated ADMA generation. Further analysis to determine if the increased *DDAH2* promoter activity of the 7G variant at position −871 is relevant to *in vivo* concentrations of ADMA is needed. Genotyping cohorts of individuals and comparing their circulating ADMA and SDMA levels is one possible way to achieve this, and the results of such investigation are presented in Chapter 8.
CHAPTER 8

DDAH2 POLYMORPHISMS AND CIRCULATING METHYLARGININE CONCENTRATION
8.1 Aims

To investigate the association between DDAH2 polymorphisms and plasma concentrations of ADMA, SDMA and the ADMA/SDMA ratio.

8.2 Background

Synthesis of NO can be inhibited by the endogenous methylarginine ADMA. Vallance et al., 1992, were the first to describe elevated plasma ADMA concentrations in patients with renal failure, and proposed that impaired renal excretory function would result in accumulation of ADMA which, in sufficient concentrations, would inhibit the synthesis of NO and lead to endothelial dysfunction. They proposed that this might account for the increased susceptibility to CVD among such patients (Vallance et al., 1992). Recent studies have shown that ADMA concentration in patients with renal failure is predictive of future CVD (Zoccali et al., 2001), and that dialysis, which significantly reduces serum ADMA levels, is associated with improved endothelial function (Cross et al., 2001). One potential explanation for higher ADMA concentrations in renal failure is reduced excretion of ADMA by the kidneys. However, in contrast to SDMA, which is exclusively eliminated by renal excretion, ADMA is also metabolised by the enzymes DDAH1 and DDAH2. Indeed, increases in SDMA concentration in renal failure are greater than the increase in ADMA concentration suggesting that metabolism of ADMA persists. However, since DDAH2 is expressed in the kidney (Tran et al., 2000), it is conceivable that the elevated ADMA concentration seen in patients with renal failure reflects both decreased elimination and reduced metabolism. It is possible that interindividual differences in the expression or activity of the DDAH enzymes (DDAH1 and
DDAH2) could influence ADMA levels not only in renal failure but also in patients with disorders such as diabetes, preeclampsia, hypertension and hypercholesterolemia where ADMA levels are high but renal function is normal (Stuhlinger et al., 2002; Pettersson et al., 1998; Boger et al., 1997; Surdacki et al., 1999; Boger et al., 1998b). Both ADMA and SDMA are generated upon metabolism of methylated proteins, and both are excreted via the kidneys. However, ADMA but not SDMA is additionally metabolised by the DDAH enzymes and therefore the ADMA/SDMA ratio may be used as an index of DDAH activity.

The DDAH2 isoform is highly expressed in endothelium and is thought to play an important role in regulating ADMA levels and endothelium-derived NO synthesis in the vasculature. Thus variation in DDAH2 expression or activity maybe an important mechanism underlying variation in ADMA concentrations, either locally within endothelial cells or systemically. The aim of the studies in the present chapter was to determine whether the novel common polymorphisms in the DDAH2 gene identified as part of this thesis (Chapter 6), and which were associated with differences in promoter activity relate to differences in ADMA concentration or ADMA/SDMA ratio in healthy subjects and in individuals with renal failure.
8.3 Subjects and Methods

8.3.1 Subjects investigated for association between \textit{DDAH2} polymorphisms and ADMA, SDMA and ADMA/SDMA ratio.

Three subject groups with differing and complementary phenotypic measurements were analysed for association between \textit{DDAH2} polymorphisms and plasma ADMA and SDMA concentration and ADMA/SDMA ratio as well as other relevant cardiovascular disease phenotypes or risk factors. Table 8.1 summarises the cohorts and their phenotypic characteristics. Full demographic characteristics of each study cohort are outlined in Chapter 2.

\textit{Healthy subjects (German population screen)}

Blood was collected from a cohort of 128 healthy individuals from a German population screen (Chapter 2.2.12.1) and genotyped for the \textit{\textminus}1020C/G, \textit{\textminus}1151A/C and the \textit{\textminus}871 6G/7G \textit{DDAH2} polymorphisms. ADMA and SDMA measurements were made using HPLC by Professor Rainer Boger (Department of Clinical Pharmacology, University of Hamburg). Measurements of age, height, weight, blood pressure, heart rate, triglycerides and cholesterol were recorded and entered into an Excel database.

\textit{Renal failure patients (London Renal Failure cohort)}

A cohort of individuals comprising 126 patients with renal failure (London Renal Failure cohort) of varying ethnicity (recruited from the Middlesex Hospital, London by Dr. Jenny Cross) were also genotyped for the \textit{\textminus}1020C/G, \textit{\textminus}1151A/C and the \textit{\textminus}871 6G/7G \textit{DDAH2} polymorphisms (Chapter 2.2.12.2). Endothelial function was assessed \textit{in vivo}
by FMD measurement of the conduit artery in a subset of these patients, and ADMA and SDMA measurements were made by HPLC.

Renal failure patients (CREED)

DNA from 277 renal failure patients was kindly donated by Dr Carmine Zoccali (IBIM-CNR, Italy) for association studies between *DDAH2* genotype and plasma ADMA and SDMA concentrations and ADMA/SDMA ratio (Chapter 2.2.12.2). Subjects were originally recruited for the CREED (Cardiovascular Risk Extended Evaluation in Dialysis) study, in which a total of 278 dialysis patients were followed up over a four year period and in whom baseline ADMA concentrations have been found to be predictive of later CVD (Malatino et al., 1999).
<table>
<thead>
<tr>
<th>Cohort</th>
<th>Description of Cohort</th>
<th>Conventional CV risk factors</th>
<th>ADMA/SDMA</th>
<th>Polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTHY</td>
<td></td>
<td></td>
<td></td>
<td>-1020 -1151 -871</td>
</tr>
<tr>
<td>Healthy subjects</td>
<td>128 healthy subjects</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(German)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

DISEASE				C/G C/A 6G/7G
Renal failure	126 renal failure patients	+	+	+
(London)				+
Renal failure	277 renal failure patients	+	+	+
(CREED)				+

Table 8.1 Summary of cohorts genotyped for association between DDAH2 polymorphisms and various risk factors for CVD. Risk factors and polymorphisms analysed for each cohort are indicated by +.
8.3.2 Genotyping \textit{DDAH2} polymorphisms

Three out of the six \textit{DDAH2} polymorphisms identified by SSCP in chapter 6 were chosen for genotyping studies. The -1020C/G and -1151A/C were genotyped by PCR-RFLP analysis (Chapter 6.3.7). The -871 6G/7G bi-allelic length variation polymorphism was genotyped by Genescan analysis (Chapter 6.3.7).

8.3.3 Measurement of plasma ADMA and SDMA by HPLC analysis

Plasma concentrations of ADMA and SDMA were measured by HPLC. ADMA and SDMA concentrations in the London renal failure subjects were measured in our laboratory by Miss Rachel Jackson using the method described by Vallance et al., 1992. Briefly, venous blood samples were centrifuged at 3000rpm for 15 minutes at 4°C to separate plasma. 1ml of plasma was loaded onto a 2ml Bondelut SCX column (Anachem) previously washed with ddH2O and HPLC grade methanol. Methylarginines were serially eluted in 25% ammonia/methanol and the 50% ammonia/methanol eluate evaporated at 100°C. The dried extract was resuspended in 2ml ddH2O and applied to a washed Bondelut CBA column. Methylarginines were again eluted using 10% ammonia/methanol and the eluate dried at 100°C and then resuspended in 100μl ddH2O. Each sample was spiked with a known quantity of L-NMMA, which acted as an internal standard and allowed calculation of extraction efficiency. The extracted samples were applied to a C18 HPLC column (BDH). 40μl of the 100μl sample was injected into the column and the absorbance read at 200nm.
8.3.4 Statistical Analysis

Observed numbers of each genotype were compared with those expected under the assumption of Hardy-Weinberg equilibrium by \(\chi^2 \) analysis. Allele frequencies were deduced from genotype frequencies. Values are represented as median (inter-quartile range) for skewed distributions and mean (standard deviation) for normally distributed data. Allelic associations were assessed using parametric (One-Way Analysis of Variance or Students t test) and non-parametric (Kruskal-Wallis test or Mann-Whitney test) where appropriate.
8.4 Results

8.4.1 Genotype and allele frequencies of *DDAH2* polymorphisms in study cohorts.

The allele frequencies for the -1020C/G, -1151A/C and the -871 6G/7G polymorphisms for each cohort are shown in table 8.2. Genotype frequencies did not differ from those expected under Hardy-Weinberg equilibrium except for the -1020C/G polymorphism in the German population screen (*P=0.003, table 8.2) and the -1151A/C polymorphism in the renal failure cohort (*P=0.04, table 8.2). The -1151A/C polymorphism was in Hardy-Weinberg equilibrium in the London renal failure cohort only after adjustment for race.

<table>
<thead>
<tr>
<th></th>
<th>-1020C/G</th>
<th></th>
<th>-1151A/C</th>
<th></th>
<th>-871 6G/7G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (%)</td>
<td>G (%)</td>
<td>A (%)</td>
<td>C (%)</td>
<td>6G (%)</td>
</tr>
<tr>
<td></td>
<td>χ² (P)</td>
<td></td>
<td>χ² (P)</td>
<td></td>
<td>χ² (P)</td>
</tr>
<tr>
<td>German Population screen</td>
<td>84.0 16.0</td>
<td>8.6 (0.003)*</td>
<td>69.0 31.0</td>
<td>3.0 (0.08)</td>
<td>99.0 1.00</td>
</tr>
<tr>
<td>Renal Failure (London)</td>
<td>96.0 4.00</td>
<td>51.0 49.0</td>
<td>3.5 (0.06)</td>
<td>4.1 (0.04)*</td>
<td>95.0 5.00</td>
</tr>
<tr>
<td>Renal Failure (CREED)</td>
<td>-</td>
<td>69.0 31.0</td>
<td></td>
<td>0.0 (0.9)</td>
<td>95.0 5.00</td>
</tr>
</tbody>
</table>

Table 8.2. Allele frequencies, χ² and P values of each *DDAH2* polymorphism. All polymorphisms were in Hardy Weinberg equilibrium except the -1020C/G in the German population screen (*P=0.003) and -1151A/C in the London renal failure cohort (*P=0.04). The London Renal Failure cohort was in Hardy Weinberg equilibrium after adjusting for race. The -1020C/G polymorphism was omitted from genotyping analysis in the CREED cohort due to limited availability of genomic DNA.
8.4.2. Relationship between \textit{DDAH2} genotype, ADMA and SDMA concentration and ADMA/SDMA ratio in the German population screen.

Demographic characteristics of the cohort are shown according to \(-1020\mathrm{C/G}, -1151\mathrm{A/C} \) and \(-871\mathrm{6G/7G} \) genotype in tables 8.3a-c. A significant difference in systolic and diastolic blood pressure was observed between homozygous 6G individuals and 7G allele carriers for the \(-871\mathrm{6G/7G} \) polymorphism (*P=0.01 and *P=0.005 respectively, table 8.3c). Blood pressure was 14\% lower in the 7G allele carriers compared to 6G/6G individuals.

<table>
<thead>
<tr>
<th>Genotype (-1020\mathrm{C/G})</th>
<th>CC Mean (SD)</th>
<th>CG Mean (SD)</th>
<th>GG Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathrm{N}=93)</td>
<td>(\mathrm{N}=26)</td>
<td>(\mathrm{N}=8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>128.4 (12.44)</td>
<td>125.6 (11.55)</td>
<td>121.9 (8.43)</td>
<td>0.24</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>78.45 (6.92)</td>
<td>76.40 (7.0)</td>
<td>75.63 (8.21)</td>
<td>0.30</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.60 (0.82)</td>
<td>4.37 (1.22)</td>
<td>4.38 (0.71)</td>
<td>0.44</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>2.77 (0.72)</td>
<td>2.72 (1.19)</td>
<td>2.53 (0.65)</td>
<td>0.72</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.12 (0.33)</td>
<td>1.04 (0.25)</td>
<td>1.29 (0.73)</td>
<td>0.23</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.59 (1.04)</td>
<td>1.29 (0.69)</td>
<td>1.30 (0.89)</td>
<td>0.32</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>36.25 (10.51)</td>
<td>35.21 (11.55)</td>
<td>40.83 (8.47)</td>
<td>0.51</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>76.22 (14.02)</td>
<td>77.64 (13.08)</td>
<td>80.13 (20.45)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Table 8.3a Demographic characteristics of the German Population Screen cohort according to \(-1020\mathrm{C/G} \) genotype. No significant association was found between genotype and any of the conventional cardiovascular risk factors measured (by One-Way ANOVA).
Table 8.3b Demographic characteristics of the German Population Screen cohort according to -1151 A/C genotype.
No significant association was found between genotype and any of the conventional cardiovascular risk factors measured (by One-Way ANOVA).

<table>
<thead>
<tr>
<th>Genotype -1151A/C</th>
<th>AA Mean (SD)</th>
<th>AC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=64</td>
<td>N=45</td>
<td>N=16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>128.8 (11.19)</td>
<td>125.9 (13.44)</td>
<td>127.5 (13.12)</td>
<td>0.50</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>78.31 (6.71)</td>
<td>77.20 (7.42)</td>
<td>77.86 (8.02)</td>
<td>0.74</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.47 (0.87)</td>
<td>4.58 (0.99)</td>
<td>4.81 (0.78)</td>
<td>0.38</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>2.71 (0.80)</td>
<td>2.74 (0.93)</td>
<td>3.01 (0.67)</td>
<td>0.44</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.10 (0.37)</td>
<td>1.12 (0.29)</td>
<td>1.04 (0.40)</td>
<td>0.77</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.43 (0.83)</td>
<td>1.60 (1.18)</td>
<td>1.73 (0.89)</td>
<td>0.46</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>37.67 (10.82)</td>
<td>34.42 (9.95)</td>
<td>38.31 (11.83)</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>78.10 (14.93)</td>
<td>74.88 (14.05)</td>
<td>77.36 (13.08)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 8.3c Demographic characteristics of the German Population Screen cohort according to -871 6G/7G genotype.
No 7G/7G homozygotes were observed in this cohort. A significant association was found between genotype and blood pressure (*Students t-test).

<table>
<thead>
<tr>
<th>Genotype -871 6G/7G</th>
<th>6G/6G Mean (SD)</th>
<th>6G/7G Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=123</td>
<td>N=3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>127.9 (11.88)</td>
<td>110.0 (10.00)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>78.09 (6.77)</td>
<td>66.67 (11.55)</td>
<td>0.005*</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>4.55 (0.91)</td>
<td>4.20 (0.82)</td>
<td>0.51</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>2.75 (0.83)</td>
<td>2.53 (0.81)</td>
<td>0.65</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.11 (0.36)</td>
<td>1.10 (0.36)</td>
<td>0.96</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.53 (0.99)</td>
<td>1.23 (0.55)</td>
<td>0.61</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>36.29 (10.36)</td>
<td>31.67 (11.02)</td>
<td>0.45</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>77.03 (14.41)</td>
<td>66.67 (6.11)</td>
<td>0.22</td>
</tr>
</tbody>
</table>
ADMA and SDMA measures were successful in 126 and 127 individuals respectively out of 128 subjects recruited. Both ADMA and SDMA exhibited skewed (to the right) distributions with median (IQR) values of 0.85µmol/l (0.63-1.21) and 0.55µmol/l (0.38-0.79) respectively. The median ADMA/SDMA ratio for the whole cohort was 1.44 (1.05-2.56).

DNA from 128 healthy individuals was genotyped for the DDAH2 -1020C/G, -1151A/C and -871 6G/7G polymorphisms and analysed for association between genotype and plasma ADMA, SDMA and ADMA/SDMA ratio (Figures 8.1a-c). No association was detected between -1020 genotype and either ADMA, SDMA or ADMA/SDMA ratio (P≥0.05, figure 8.1a). A trend towards a lower ADMA/SDMA ratio was observed for -1151CC homozygous individuals (P=0.04, figure 8.1b). This approached statistical significance when A allele carriers were grouped and analysed against CC homozygotes (1.62 [1.05-2.67] versus 1.16 [1.05-1.36], P=0.05 Mann-Whitney test). No significant association was detected between -871 6G/7G genotype and ADMA, SDMA or ADMA/SDMA ratio (P≥0.05, figure 8.1c). The three individuals carrying the -871 7G allele had a lower median ADMA/SDMA ratio (1.08 [1.00-1.11]) compared to 6G homozygotes (1.48 [1.05-2.57]).
A

<table>
<thead>
<tr>
<th>Genotype -1020C/G</th>
<th>CC Median (IQR)</th>
<th>CG Median (IQR)</th>
<th>GG Median (IQR)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=93</td>
<td>N=25</td>
<td>N=8</td>
<td></td>
</tr>
<tr>
<td>ADMA (µmol/l)</td>
<td>0.83 (0.63-1.25)</td>
<td>0.90 (0.65-1.15)</td>
<td>0.78 (0.62-1.02)</td>
<td>0.62*</td>
</tr>
<tr>
<td>SDMA (µmol/l)</td>
<td>0.55 (0.38-0.79)</td>
<td>0.54 (0.35-0.77)</td>
<td>0.64 (0.37-0.77)</td>
<td>0.86*</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>1.40 (1.08-2.37)</td>
<td>1.68 (0.97-2.71)</td>
<td>1.02 (0.90-2.49)</td>
<td>0.41*</td>
</tr>
</tbody>
</table>

B

Figure 8.1a. ADMA and SDMA concentrations and ADMA/SDMA ratio according to -1020C/G genotype in the German Population Screen. A. Table showing the median (IQR) ADMA, SDMA and ADMA/SDMA ratio. No significant difference was observed for ADMA, SDMA or ADMA/SDMA ratio between genotypes (*Kruskal-Wallis test). B. Scatter plot of ADMA/SDMA ratio according to genotype. The median value is marked with a horizontal bar.
A

<table>
<thead>
<tr>
<th>Genotype –1151 A/C</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA Median (IQR) N=62</td>
<td>AC Median (IQR) N=44</td>
<td>CC Median (IQR) N=16</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.83 (0.62-1.15)</td>
<td>0.92 (0.67-1.26)</td>
<td>0.77 (0.59-1.06)</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>0.55 (0.38-0.81)</td>
<td>0.49 (0.32-0.70)</td>
<td>0.66 (0.48-0.81)</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>1.43 (0.99-2.50)</td>
<td>1.91 (1.17-3.02)</td>
<td>1.16 (1.05-1.36)</td>
</tr>
</tbody>
</table>

Figure 8.1b. ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1151 A/C genotype in the German Population Screen. A. Table showing the median (IQR) ADMA and SDMA concentration and ADMA/SDMA ratio. A significant difference was observed for ADMA/SDMA ratio between genotypes *Kruskal-Wallis test. B. Scatter plot of ADMA/SDMA according to genotype. The median value is indicated by a horizontal bar.
A

<table>
<thead>
<tr>
<th>Genotype</th>
<th>6G/6G (Median (IQR), N=119)</th>
<th>6G/7G (Median (IQR), N=3)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.90 (0.64-1.23)</td>
<td>0.59 (0.54-0.83)</td>
<td>0.15*</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>0.55 (0.37-0.79)</td>
<td>0.53 (0.50-0.83)</td>
<td>0.79†</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>1.48 (1.05-2.57)</td>
<td>1.08 (1.00-1.11)</td>
<td>0.16*</td>
</tr>
</tbody>
</table>

B

Figure 8.1c. ADMA and SDMA concentration, and ADMA/SDMA ratio according to -871 6G/7G genotype in the German Population Screen. A. Table showing the median (IQR) ADMA and SDMA concentration and ADMA/SDMA ratio. The SDMA concentration in this cohort exhibited a normal distribution. No 7G/7G homozygotes were observed in this cohort. No significant difference was observed in ADMA, SDMA or ADMA/SDMA ratio between genotypes (* Mann-Whitney test, †Students t-test). B. Scatter plot showing ADMA/SDMA ratio for 6G/6G individuals versus 7G carriers. The median value is indicated by a horizontal bar.
8.4.3. Relationship between *DDAH2* genotype, ADMA and SDMA concentration and ADMA/SDMA ratio in the London Renal Failure Cohort.

Demographic characteristics according to *DDAH2* genotype are shown in table 8.4a-c. Systolic and diastolic blood pressure measurements were available for 96 individuals and age was known for 116 individuals. No association was detected between *DDAH2* genotype and either blood pressure or age.

<table>
<thead>
<tr>
<th></th>
<th>Genotype –1020C/G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC+CG</td>
</tr>
<tr>
<td></td>
<td>Mean (SD)</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>144.2 (32.07)</td>
</tr>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>80.15 (17.09)</td>
</tr>
<tr>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.68 (17.38)</td>
</tr>
<tr>
<td></td>
<td>107</td>
</tr>
</tbody>
</table>

Table 8.4a. Demographic characteristics of the London Renal Failure Cohort according to –1020C/G genotype. No association was detected between genotype and either systolic BP, diastolic BP or age (P≥0.05, Students t-test).
Genotype –1151A/C

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AA Mean (SD)</th>
<th>AC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>136.1 (31.73)</td>
<td>146.8 (29.44)</td>
<td>148.7 (35.55)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>41</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>77.22 (17.45)</td>
<td>77.29 (12.94)</td>
<td>86.06 (20.76)</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>41</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>50.24 (20.16)</td>
<td>57.43 (16.05)</td>
<td>51.00 (15.49)</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>47</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.4b. Demographic characteristics of the London Renal Failure Cohort according to –1151A/C genotype. No association was detected between genotype and either systolic BP, diastolic BP or age (P≥0.05, One-Way ANOVA).

Genotype –871 6G/7G

<table>
<thead>
<tr>
<th>Genotype</th>
<th>6G/6G Mean (SD)</th>
<th>6G/7G Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>143.0 (32.09)</td>
<td>157.8 (32.00)</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>79.46 (17.21)</td>
<td>84.38 (17.51)</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.29 (17.67)</td>
<td>52.08 (14.33)</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.4c. Demographic characteristics of the London Renal Failure Cohort according to –871 6G/7G genotype. No association was detected between genotype and either systolic BP, diastolic BP or age (P≥0.05, Students t-test).
ADMA and SDMA measures were successful in all 126 subjects. Both ADMA and SDMA exhibited skewed (to the right) distributions with a median (IQR) of 1.28µmol/l (0.89-1.9) and 3.46µmol/l (2.35-4.41) respectively. The median ADMA/SDMA ratio for the whole cohort was 0.40 (0.25-0.62).

126 renal failure patients were genotyped for the \textit{DDAH2} \texttt{–1020C/G} and \texttt{–1151A/C} polymorphisms, and 125 for the \texttt{–871 6G/7G} polymorphism and analysed for association with plasma ADMA, SDMA and ADMA/SDMA ratio (Figure 8.2a-c). No association was detected between \textit{DDAH2} genotype and ADMA, SDMA or ADMA/SDMA ratio in this cohort.
A

<table>
<thead>
<tr>
<th>Genotype –1020C/G</th>
<th>CC Median (IQR) N=117</th>
<th>CG+GG Median (IQR) N=9</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMA (μmol/l)</td>
<td>1.26 (0.92-1.87)</td>
<td>1.48 (0.78-2.16)</td>
<td>0.82*</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>3.50 (2.34-4.42)</td>
<td>3.16 (2.46-3.70)</td>
<td>0.54*</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>0.40 (0.24-0.62)</td>
<td>0.45 (0.27-0.68)</td>
<td>0.67*</td>
</tr>
</tbody>
</table>

B

Figure 8.2a. ADMA and SDMA concentration, and ADMA/SDMA ratio according to −1020C/G genotype in the London Renal Failure cohort. A. Table showing the median (IQR) for ADMA and SDMA concentration and ADMA/SDMA ratio. Data for CG and GG individuals was combined due to the small number of GG (n=1) individuals identified. No significant difference was observed for ADMA, SDMA or ADMA/SDMA ratio between genotypes (* Mann-Whitney test). B. Scatter plot of ADMA/SDMA ratio according to genotype. The median value is marked with a horizontal bar.
Figure 8.2b. ADMA and SDMA concentration, and ADMA/SDMA ratio according to −1151A/C genotype in the London Renal Failure cohort. A. Table showing the median (IQR) for ADMA and SDMA concentration and ADMA/SDMA ratio. No significant difference was observed for ADMA, SDMA or ADMA/SDMA ratio between genotypes (*Kruskal-Wallis test). B. Scatter plot of ADMA/SDMA ratio according to genotype. The median value is marked with a horizontal bar.
Genotype –871 6G/7G

<table>
<thead>
<tr>
<th></th>
<th>6G/6G Median (IQR)</th>
<th>6G/7G Median (IQR)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=112</td>
<td>N=13</td>
<td></td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>1.30 (0.91-1.87)</td>
<td>1.18 (0.86-1.62)</td>
<td>0.37*</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>3.46 (2.41-4.41)</td>
<td>3.26 (1.80-5.50)</td>
<td>0.94*</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>0.42 (0.27-0.60)</td>
<td>0.24 (0.21-0.65)</td>
<td>0.26*</td>
</tr>
</tbody>
</table>

Figure 8.2c. ADMA and SDMA concentration, and ADMA/SDMA ratio according to –871 6G/7G genotype in the London Renal Failure cohort. A. Table showing the median (IQR) for ADMA and SDMA concentration and ADMA/SDMA ratio. No significant difference was observed for ADMA, SDMA or ADMA/SDMA ratio between genotypes (*Mann-Whitney test). B. Scatter plot of ADMA/SDMA according to genotype. The median value is marked with a horizontal bar. Only 13 individuals carrying the 7G allele were identified during this study. No 7G homozygotes were identified.
8.4.4 Relationship between DDAH2 genotype and ADMA, SDMA and ADMA/SDMA ratio in the CREED cohort.

Demographic characteristics according to DDAH2 genotype are shown in tables 8.5a-b.

No significant correlation was observed between -1151 A/C genotype and risk factors for CVD (Table 8.5a). A significant association was observed between -871 6G/7G genotype and levels of triglycerides (*P=0.02, table 8.5b). Carriers of the 7G allele for this variant had higher circulating levels of triglycerides (mean=2.48 mmol/l) compared with 6G homozygous individuals (mean=1.98 mmol/l). 7G allele carriers also had lower HDL cholesterol levels, but this did not reach significance (P=0.05, table 8.5b).

No 7G homozygous individuals were identified in this cohort.

Table 8.5a Demographic characteristics of the CREED cohort according to -1151 A/C genotype. No significant association was found between genotype and any of the conventional cardiovascular risk factors measured (P≥0.05, One-Way ANOVA).
<table>
<thead>
<tr>
<th></th>
<th>6G/6G Mean (SD) N=230</th>
<th>6G/7G Mean (SD) N=25</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP (mmHg)</td>
<td>132.6 (23.13)</td>
<td>127.7 (21.52)</td>
<td>P=0.31</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>74.26 (12.61)</td>
<td>75.20 (10.10)</td>
<td>P=0.72</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.37 (1.52)</td>
<td>5.40 (1.25)</td>
<td>P=0.89</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>3.40 (1.30)</td>
<td>3.33 (1.12)</td>
<td>P=0.80</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.07 (0.29)</td>
<td>0.95 (0.29)</td>
<td>P=0.05</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>1.98 (1.03)</td>
<td>2.48 (1.12)</td>
<td>P=0.02*</td>
</tr>
<tr>
<td>Age (years)</td>
<td>61.35 (15.09)</td>
<td>62.84 (16.71)</td>
<td>P=0.64</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.76 (4.39)</td>
<td>25.65 (4.06)</td>
<td>P=0.34</td>
</tr>
<tr>
<td>Fibrinogen (µmol/l)</td>
<td>13.55 (6.24)</td>
<td>12.94 (6.51)</td>
<td>P=0.65</td>
</tr>
</tbody>
</table>

Table 8.5b. **Demographic characteristics of the CREED cohort according to -871 6G/7G genotype.** No 7G/7G homozygotes were observed in this cohort. A significant association was found between genotype and triglyceride levels (*Students t-test).
ADMA and SDMA measurements were available for 259 individuals out of 277 recruited. Both ADMA and SDMA exhibited skewed (to the right) distributions with median (IQR) values of 3.02µmol/l (1.72-4.26) and 2.94µmol/l (2.30-4.41) respectively. The median (IQR) ADMA/SDMA for the whole cohort was 0.96 (0.36-1.82).

259 renal failure patients from the CREED study were genotyped for association between the -1151 A/C and -871 6G/7G DDAH2 polymorphisms and plasma ADMA, SDMA and ADMA/SDMA ratio (Figures 8.3a-c). The -1020C/G polymorphism was omitted from the genotyping study because of limited availability of DNA. No association was detected between -1151A/C genotype and either ADMA, SDMA or ADMA/SDMA ratio (Figure 8.3a). This was also true after grouping A allele carriers and analysing against CC homozygotes (ADMA 3.00µmol/l [1.71-4.16] versus 3.50µmol/l [1.64-5.24], SDMA 2.91µmol/l [2.24-4.45] versus 3.58µmol/l [2.55-4.28], ADMA/SDMA ratio 0.96 [0.36-1.79] versus 1.06 [0.31-2.12] P≥0.05, Mann-Whitney test). No association was detected between -871 6G/7G genotype and ADMA, SDMA or ADMA/SDMA ratio (Figure 8.3b).
A

<table>
<thead>
<tr>
<th>Genotype -1151A/C</th>
<th>AA Median (IQR)</th>
<th>AC Median (IQR)</th>
<th>CC Median (IQR)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMA (µmol/l)</td>
<td>2.95 (1.77-4.31)</td>
<td>3.00 (1.67-4.15)</td>
<td>3.50 (1.64-5.24)</td>
<td>0.67*</td>
</tr>
<tr>
<td>SDMA (µmol/l)</td>
<td>2.99 (2.21-4.55)</td>
<td>2.81 (2.28-4.27)</td>
<td>3.58 (2.55-4.28)</td>
<td>0.62*</td>
</tr>
<tr>
<td>ADMA/SDMA</td>
<td>0.94 (0.40-1.82)</td>
<td>1.01 (0.34-1.78)</td>
<td>1.06 (0.31-2.12)</td>
<td>0.94*</td>
</tr>
</tbody>
</table>

B

Figure 8.3a. ADMA and SDMA concentration, and ADMA/SDMA ratio according to -1151A/C genotype in the CREED cohort. A. Table showing the median (IQR) for ADMA and SDMA concentration and ADMA/SDMA ratio. No significant difference was observed for ADMA, SDMA or ADMA/SDMA between genotypes (*Kruskal-Wallis test). B. Scatter plot of ADMA/SDMA according to genotype. The median value is marked with a horizontal bar.
Figure 8.3b. ADMA and SDMA concentrations, and ADMA/SDMA ratio according to –871 6G/7G genotype in the CREED cohort. A. Table showing the median (IQR) for ADMA and SDMA concentration and ADMA/SDMA ratio. No significant difference was observed for ADMA, SDMA or ADMA/SDMA ratio between genotypes (*Mann-Whitney test). B. Scatter plot of ADMA/SDMA according to genotype. The median value is marked with a horizontal bar. No 7G homozygous individuals were identified in this study.
8.5 Discussion

During this study the association between three polymorphisms in the *DDAH2* promoter (identified by SSCP in Chapter 6) and plasma ADMA and SDMA concentrations and the ADMA/SDMA ratio as well as other relevant risk factors for the development of CVD has been explored. Three different cohorts were investigated including a group of healthy individuals and two groups of renal failure patients in whom susceptibility to CVD is greatly enhanced.

ADMA is an endogenous inhibitor of nitric oxide synthase (Vallance et al., 1992). It is synthesised during protein turnover (Najbauer et al., 1993) and is eliminated from the body via renal excretion (Kakimoto et al., 1970) and through metabolism by DDAH enzymes (Ogawa et al., 1987). In healthy individuals plasma levels of ADMA and SDMA are found in a ratio of approximately 1:1. However, in patients with renal failure, elevations in the circulating concentration of SDMA are higher than those of ADMA with the consequence that the ADMA/SDMA ratio falls to approximately 0.3 (MacAllister et al., 1996). The plasma levels of ADMA and SDMA reported during this study are comparable to those reported previously (Fleck et al., 2001; Kielstein et al., 2002; MacAllister et al., 1996; Wahbi et al., 2001). ADMA and SDMA concentrations were higher in both the renal failure cohorts compared to the healthy cohort, consistent with the renal impairment in these subjects. Consistent with previous findings, the ADMA concentration was lower than the SDMA concentration in the London Renal Failure cohort, which is explained by the fact that ADMA but not SDMA is a metabolised by DDAH enzymes (Ogawa et al., 1987). The observed similarity in ADMA and SDMA levels in the CREED cohort (ADMA/SDMA ratio = 1) may suggest
down-regulation of DDAH enzymes in these subjects, however no association was found between *DDAH2* polymorphisms and either the ADMA, SDMA or the ADMA/SDMA ratio during this study.

On the basis of the promoter/reporter assay results obtained in Chapter 7 (which identified the −871 7G allele as having a greater promoter activity), it might be expected that carriage of the −871 7G allele would be associated with lower ADMA concentrations and/or ADMA/SDMA ratio. This was seen in the German sample of healthy individuals, with 7G allele carriers exhibiting a lower ADMA/SDMA ratio and interestingly significantly lower systolic and diastolic blood pressure. These data must be interpreted with caution, however, as they are based on only three 7G carriers. No association was observed between *DDAH2* genotype and either circulating ADMA or SDMA concentration or the ADMA/SDMA ratio in either of the renal failure subjects during this study. There are several potential explanations for this including the relatively small size of the cohorts studied. The observation that the frequency of the 7G allele for the −871 6G/7G polymorphism is very low (and no 7G/7G individuals were detected) limits further the statistical power to detect any association in cohorts of the size studied. Also, in patients with renal failure the decreased excretory function may outweigh any small genetic differences in metabolism and make genotype dependent changes in ADMA concentration difficult to detect. Alternatively, local changes in ADMA concentration may occur without changing the systemic ADMA concentration.

In summary, *DDAH2* genotype was not associated with ADMA or SDMA concentration or ADMA/SDMA ratio in healthy subjects or renal failure patients during
this study. Also \textit{DDAH2} genotype was not associated with conventional cardiovascular risk factors in the renal failure cohorts. Further work to compare \textit{DDAH2} genotype and expression in patient groups where ADMA concentration is elevated would be useful in determining the role of \textit{DDAH2} in diseases such as hypertension and hypercholesterolaemia.
CHAPTER 9

DDAH2 POLYMORPHISMS, ENDOTHELIAL FUNCTION
AND PLASMA NITROGEN OXIDES (NO_x)
9.1 Aims

To investigate the association between DDAH2 polymorphisms and plasma concentration of nitrate/nitrite (NO\textsubscript{X}) and endothelial function.

9.2 Background

The risk of developing CVD is significantly enhanced in many disease states. For example, diabetic patients are 3-8 times more likely to develop premature cardiovascular disease compared to healthy individuals (Bierman et al., 1992), and patients with renal failure have a 10-20 fold increased risk of developing cardiovascular disease compared to the general population (Wheeler et al., 1996). In addition, elevated cholesterol levels and increased blood pressure are also recognised as risk factors for the development of CVD (Danesh et al., 2000). Preeclampsia, which is characterised by hypertension and proteinuria during pregnancy has also been shown to be an independent risk factor for cardiovascular disease later in life. In a retrospective study of 129,290 births, women with a history of preeclampsia were shown to have a 1.5-2.0 fold increased risk of IHD (Smith et al., 2003). Also, in a case control study (in which 1199 women diagnosed with preeclampsia were compared to 1197 without preeclampsia/eclampsia and 1197 with gestational hypertension) women with preeclampsia/eclampsia had a 1.4-4.0 fold increased risk of hypertension and a 4 fold risk of stroke (Wilson et al., 2003).

The mechanism underlying increased risk of vascular disease in these patients is incompletely understood. However, individuals who have risk factors for CVD or
established CVD also exhibit endothelial dysfunction, which predates and predicts CVD onset (Gaeta et al., 2000). Endothelial dysfunction is thought to be due in part to deficient NO synthesis or action (Vallance and Chan et al., 2001). Elevated circulating levels of the NOS inhibitor ADMA have been demonstrated in all of the disorders mentioned above (Vallance et al., 1992; Pettersson et al., 1998; Usui et al., 1998; Swurdaki et al., 1999; Stuhlinger et al., 2002), and correlate with endothelial dysfunction providing a possible mechanism for limited NO availability. It is not surprising therefore that a large amount of interest has been generated in evaluating the role of ADMA in endothelial dysfunction in patients at risk of CVD.

In vivo NO has a half-life of approximately 30 seconds (Ignarro et al., 1987) and is readily oxidised to NO$_2^-$ making it difficult to measure NO directly in biological samples. NO$_2^-$ can undergo further oxidation by oxyhaemoglobin (O$_2$Hb) forming NO$_3^-$. NO$_2^-$ and NO$_3^-$ are stable in biological samples stored at -20°C (Moshage et al., 1995), existing in approximate proportions of 1:20. It has therefore been suggested that plasma levels of NO$_2^-$ and NO$_3^-$ (NOx) can be used as an indirect measure of NO production. NO$_2^-$ can be measured by quantifying the coloured diazonium product formed after the reaction between NO$_2^-$, sulfonilamide and N-(1-naphthyl)ethylenediamine (also known as the Greiss reaction) and the concentration of NO$_3^-$ can be ascertained by first converting NO$_3^-$ to NO$_2^-$ using the enzyme nitrate reductase. However, since NO$_3^-$ is also a dietary constituent (present mainly in vegetables such as lettuce, celery, cauliflower, spinach and broccoli) (White, 1975), such measurement is potentially complicated by NO$_3^-$ intake. Nevertheless, plasma concentrations of NOx have been reported to be a reliable marker of NO synthesis via the L-arginine-NOS pathway in fasted humans (Rhodes et al., 1995), although, since there are three enzymatic sources
of NO (iNOS, nNOS and eNOS) this technique cannot distinguish isoform specific NO formation. Several studies have reported lower plasma NOx levels in human and animal subjects with risk factors for CVD such as hypertension, renal failure, diabetes and LDL cholesterol (Node et al., 1997; Schmidt and Baylis, 2000; Kurioka et al., 2000; Tanaka et al., 1997). Plasma concentrations of NOx have also been reported to be lower in smokers compared to non-smokers and show a positive correlation with the percentage change in FMD (Jeerooburkhan et al., 2001; Hori et al., 2001).

Despite the evidence to support the theory that lower circulating NO levels are associated with risk factors for CVD, the cause of lower NO levels in individuals at risk of CVD is still unclear. Conflicting evidence has been put forward with regards to the influence of an individuals genetic ‘makeup’ on ability to synthesise NO. Two studies have reported an association between a 27bp repeat polymorphism within intron 4 of the eNOS gene and plasma concentration of NO (Wang et al., 1997; Tsukada et al., 1998). However, no such association was observed between several eNOS polymorphisms and NO in the large NPHSII study (Jeerooburkhan et al., 2001). These conflicting results may be the consequence of the difficulty in controlling for dietary NOx intake and/or the relative insensitivity of the assays. The most reliable measure of NO in vivo has proved to be an indirect bioassay of its action, namely endothelium-dependent vasodilation. Several genes involved in the regulation of NO synthesis have been investigated in this tissue for association with endothelial dysfunction. For example, polymorphisms in the GCH1 gene were found to be associated with plasma neopterin levels (a marker of BH4 synthesis) and FMD in healthy individuals, supporting the theory that genetic regulation of the GCH1 gene can influence circulating BH4 which in turn would be expected to affect NO synthesis resulting in endothelial dysfunction.
The p22phox 242TT genotype was also associated with significantly greater FMD in healthy subjects, possibly due to reduced NADPH oxidase activity and therefore production of less O$_2^-$ which could potentially react with NO (Chapter 3). In addition, variants in the eNOS, MTHFR, ACE and glutamate-cysteine ligase catalytic subunit (GCLC) genes, to name a few, have also been associated with differences in endothelial function (Savvidou et al., 2001; Leeson et al., 2002; Pullin et al., 2002; Mulder et al., 2003; Koide et al., 2003).

The aim of this study therefore was to investigate the hypothesis that $DDAH2$ polymorphisms influence endothelial function and biochemical indices of NO synthesis. Although $DDAH2$ polymorphisms were not associated with plasma concentrations of ADMA (Chapter 8), given the in $vitro$ data obtained by promoter/reporter analysis (Chapter 7), it was considered possible that $DDAH2$ polymorphisms might influence local endothelial cell ADMA and therefore endothelial function and NO availability, in the absence of detectable changes in circulating ADMA concentration.
9.3 Subjects and Methods

Four subject groups with differing and complementary phenotypic measurements were analysed for association between *DDAH2* genotype and either plasma NOx or endothelial function, as well as other relevant cardiovascular disease phenotypes or risk factors. Unfortunately, due to time constraints not all the polymorphisms identified by SSCP (Chapter 6) could be genotyped in every cohort. Where possible priority was given to the −1151A/C and −871 6G/7G polymorphisms in view of the results obtained in chapter 7. Table 9.1 summarises the cohorts and their phenotypic characteristics. Full demographic characteristics of each study cohort are outlined in Chapter 2.

9.3.1 Subjects investigated for association between *DDAH2* polymorphisms, plasma NOx and blood pressure.

Healthy subjects (NPHSII cohort)

Briefly, subjects from the prospective NPHSII cohort (Chapter 2.2.12.1) were analysed for association between *DDAH2* polymorphisms, plasma NOx and blood pressure. This cohort comprises healthy men aged 50-61 years. Individuals from the Chesterfield (n=260) and North Mymms (n=290) clinics for whom plasma samples were available were selected. The −449G/C, −1020C/G and −1151A/C polymorphisms were genotyped in these subjects as these were the first variants identified by SSCP.
9.3.2 Subjects investigated for association between *DDAH2* polymorphisms and endothelial function

Healthy subjects (Cambridge Young Adults Study cohort)

Blood was collected from 264 healthy subjects from the Cambridge Young Adults Study recruited by Dr. Paul Leeson and Professor J. Deanfield (Chapter 2.2.12.1). DNA was extracted using the Qiagen DNA purification kit method described in Chapter 2.2.1.2 and genotyped for the −1151 A/C and the −871 6G/7G polymorphisms. Measures of endothelium dependent and independent (mediated by GTN) vascular responses were performed using high-resolution ultrasound imaging (Leeson et al., 2002). In each subject a fasting venous blood sample was analysed for total cholesterol, HDL, LDL and triglycerides. Blood pressure and weight were also recorded.

Healthy subjects (Pregnancy cohort)

A cohort of women with normal singleton pregnancies was investigated for association between *DDAH2* genotype and endothelial function (Chapter 2.2.12.4). Common genetic variation in the eNOS gene had previously been associated with endothelial function in this cohort (Savvidou et al., 2001). Briefly, 139 unrelated Caucasian women with normal singleton pregnancies were recruited from the Harris Birthright Centre antenatal clinic by Dr. M Savvidou (Savvidou et al., 2001). All were healthy and had no history of cardiovascular disease. Age, smoking status, blood pressure (average of three seated readings), FMD, gestational age, parity and heart rate were recorded (Savvidou et al., 2001). DNA was extracted from whole blood using the Qiagen DNA purification kit method (Chapter 2.2.1.2) and genotyped for the −1020C/G, −1151A/C and the −871 6G/7G polymorphisms.
Disease subjects (EBCT cohort)

DNA from the EBCT cohort of 385 individuals, comprising 188 type I diabetic patients and 197 control subjects recruited by Dr. H Colhoun (Chapter 2.2.12.3) was analysed for association between the -1020C/G and -1151A/C $DDAH2$ polymorphisms and endothelial function (assessed by venous occlusion plethysmography) as well as for other relevant cardiovascular disease phenotypes or risk factors (Chapter 2.2.12.3). The EBCT cohort was recruited with the primary aim of examining the effect of type I diabetes on coronary artery calcification (CAC) assessed by electron beam computerised tomography (EBCT), a surrogate marker of coronary artery atherosclerosis (Colhoun et al., 2000). Type I diabetic subjects with age of onset ≤25 years were recruited from five London hospitals. Control subjects were drawn from two London general practices and were included regardless of heart disease.
Table 9.1 Summary of cohorts genotyped for association between DDAH2 polymorphisms and various risk factors for CVD. Risk factors and polymorphisms analysed for each cohort are indicated by +. *Measured by FMD ^Measured by venous occlusion plethysmography.
9.3.3 Genotyping *DDAH2* polymorphisms

Subjects were genotyped for the -449G/C, -1151A/C and -1020C/G polymorphisms by PCR-RFLP analysis as described in Chapter 6.3.7. The -871 6G/7G polymorphism was genotyped by Genescan analysis as described in Chapter 6.3.7.

9.3.4 Measurement of plasma nitrite and nitrate (NOx)

Plasma NOx concentrations were measured in collaboration with Dr. Noor Jeerooburkhan (UCL) by the Griess reaction, in individuals from the Chesterfield (n=260) and North Mymms (n=290) clinics of the NPHSII cohort as described in Chapter 2.2.9. Briefly, plasma samples were filtered using Ultrafree microcentrifuge filter units (Biomax-5, Millipore) to remove proteins such as Hb, which could interfere with the reaction. NO$_3^-$ was reduced to NO$_2^-$ by the addition of nitrate reductase in the presence of NADPH, glucose-6-phosphate and glucose-6-phosphate dehydrogenase. Upon addition of sulphanilic acid the NO$_2^-$ formed a diazonium salt, which when coupled with NED produced a purple chromophore. The absorbance measured at 540nm is proportional to the amount of NO$_2^-$ in the plasma sample. The lower limit of detection for this assay was 0.5µM, with an inter-assay variation of 4% and intra-assay variation of 3.4%.

9.3.5 Statistical Analysis

Observed numbers of each genotype were compared with those expected under the assumption of Hardy-Weinberg equilibrium by χ^2 analysis. Allele frequencies were
deduced from genotype frequencies. Plasma NOx concentrations and cardiovascular risk factors are represented as mean (SD) or mean (SEM) and allelic associations were examined by parametric or non-parametric tests where appropriate. Endothelial function measured by FMD was expressed as the mean (SD) % change in diameter. Endothelial function measured by venous occlusion plethysmography was represented as mean (SEM) % change in flow in response to intra-brachial infusion of acetylcholine (ACh) at doses 25, 50 and 100 nmol/min each dose for 3 minutes, bradykinin (BK) at doses 10, 30 and 100 pmol/min each dose for 3 minutes, glyceryl trinitrate (GTN) at doses 4, 8 and 16 nmol/min each dose for 5 minutes, N^G-monomethyl-L-arginine (LNMMA) at doses 1, 2 and 4 µmol/min each dose for 5 minutes and noradrenaline (NA) at doses 60, 120 and 240 pmol/min each dose for 5 minute as described previously by Chan et al., 2003. The mean blood flow for each drug dose was assessed in each genotype group. From this, the difference in response between genotypes is expressed as the percentage difference in absolute flow in the presence of the drug, adjusted for baseline flow and averaged across three drug doses using the repeated-measures analysis of covariance model (XTREG procedure in STATA 6) with the data log transformed as appropriate (Statistical analysis was carried out by Miss Shona Livingstone, UCL).
9.4 Results

9.4.1 Genotype and allele frequencies of DDAH2 polymorphisms in each study cohort.

The allele frequencies for the -449G/C, -1020C/G, -1151A/C and -871 6G/7G polymorphisms for each cohort are shown in table 9.2. Genotype frequencies did not differ from those expected under Hardy-Weinberg equilibrium except for the -871 6G/7G polymorphism in the Cambridge Young Adults cohort (χ²=183.3, P=<0.05, table 9.2). Repeat genotyping and DNA sequencing ruled out mis-typing as the cause of deviation from the Hardy-Weinberg equilibrium in this cohort.

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>-449G/C</th>
<th>-1020C/G</th>
<th>-1151A/C</th>
<th>-871 6G/7G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G(%)</td>
<td>C(%)</td>
<td>G(%)</td>
<td>A(%)</td>
</tr>
<tr>
<td></td>
<td>χ² (P)</td>
<td>χ² (P)</td>
<td>χ² (P)</td>
<td>χ² (P)</td>
</tr>
<tr>
<td>NPHSII</td>
<td>66.0</td>
<td>34.0</td>
<td>88.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Cambridge</td>
<td>0.0 (0.89)</td>
<td>0.3 (0.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young Adults</td>
<td>86.0</td>
<td>14.0</td>
<td>71.0</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>3.0 (0.08)</td>
<td>183.3 (<0.05)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>87.0</td>
<td>13.0</td>
<td>67.0</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>0.8 (0.37)</td>
<td>0.0 (0.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBCT</td>
<td>92.0</td>
<td>8.00</td>
<td>56.0</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>2.5 (0.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.2. Tests for Hardy-Weinberg equilibrium in four cohorts in which NOx or endothelial function was assessed. All polymorphisms were in Hardy-Weinberg equilibrium except the -871 6G/7G in the Cambridge Young Adults Study cohort (*P<0.05).
9.4.2 Relationship between *DDAH2* genotype and plasma NOx in the NPHSII cohort.

Patients from two clinics of the prospective NPHSII study cohort were analysed for association between *DDAH2* genotype and plasma nitrite and nitrate (NOx) concentrations. Plasma NOx measurements were successful in 235 individuals out of 260 from the Chesterfield cohort and 287 individuals out of 290 from the North Mymms cohort. Plasma NOx exhibited a skewed (to the right) distribution with median (IQR) of 9.21\(\mu\)mol/l (7.26-12.66) for the Chesterfield and 11.22\(\mu\)mol (9.10-14.65) for the North Mymms clinics respectively.

Subjects were genotyped for the -449G/C, -1020C/G and -1151A/C *DDAH2* polymorphisms and analysed for association between genotype and plasma NOx (Tables 9.3a-c). Due to the small number of rare homozygotes (GG) for the -1020C/G polymorphism, heterozygotes and rare homozygotes were grouped and analysed together. A significant association was observed between -1020C/G genotype and plasma NOx in the Chesterfield clinic only (*P=0.01, table 9.3b). Individuals carrying the G allele had higher average plasma NOx than CC homozygotes. No association was observed between *DDAH2* genotype and plasma NOx after combining the Chesterfield and North Mymms clinics (*P=0.59, table 9.3d).
9.4.2.1 *DDAH2* genotype and blood pressure in the NPHSII cohort

No statistically significant association was observed between genotype and blood pressure in either the North Mymms or Chesterfield subjects (Tables 9.3a-c, *P* ≥ 0.05) or when both clinics were combined (Table 9.3d, *P* ≥ 0.05).

| Genotype –449G/C | GG Mean (SD) | GC Mean (SD) | CC Mean (SD) | *P*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chesterfield</td>
<td>N=69</td>
<td>N=73</td>
<td>N=19</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>10.08 (4.82)</td>
<td>10.47 (6.02)</td>
<td>9.98 (4.27)</td>
<td>0.95*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>141.3 (15.23)</td>
<td>139.3 (15.78)</td>
<td>143.2 (20.05)</td>
<td>0.57</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>87.51 (11.40)</td>
<td>86.68 (10.52)</td>
<td>89.93 (11.51)</td>
<td>0.52</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.78 (1.06)</td>
<td>5.82 (1.14)</td>
<td>5.74 (1.14)</td>
<td>0.96</td>
</tr>
<tr>
<td>North Mymms</td>
<td>N=117</td>
<td>N=111</td>
<td>N=35</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>12.23 (4.97)</td>
<td>13.10 (9.59)</td>
<td>12.63 (4.90)</td>
<td>0.38*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>138.7 (20.74)</td>
<td>135.5 (19.78)</td>
<td>133.3 (20.02)</td>
<td>0.28</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>85.82 (11.09)</td>
<td>84.90 (10.44)</td>
<td>81.36 (11.90)</td>
<td>0.12</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.88 (1.91)</td>
<td>5.70 (0.92)</td>
<td>5.90 (0.85)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 9.3a. Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to –449 G/C genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics. Genotyping was successful in 161 subjects out of 235 with NOx measurements in the Chesterfield clinic and 263 subjects out of 287 in the North Mymms clinic. No statistical significant association was observed between genotype and NOx (*by Kruskal-Wallis test), blood pressure or cholesterol (by One-way ANOVA).
<table>
<thead>
<tr>
<th></th>
<th>Chesterfield</th>
<th>North Mymms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype –1020C/G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx (μmol/l)</td>
<td>N=128</td>
<td>N=214</td>
</tr>
<tr>
<td></td>
<td>9.69 (5.33)</td>
<td>12.94 (7.56)</td>
</tr>
<tr>
<td></td>
<td>11.51 (4.8)</td>
<td>11.74 (5.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>N=40</td>
<td>N=62</td>
</tr>
<tr>
<td></td>
<td>139.5 (16.88)</td>
<td>137.1 (20.87)</td>
</tr>
<tr>
<td></td>
<td>143.5 (14.10)</td>
<td>133.9 (18.30)</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>86.55 (11.28)</td>
<td>84.68 (11.56)</td>
</tr>
<tr>
<td></td>
<td>88.82 (9.81)</td>
<td>85.18 (9.91)</td>
</tr>
<tr>
<td></td>
<td>0.26</td>
<td>0.76</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.76 (1.15)</td>
<td>5.82 (0.88)</td>
</tr>
<tr>
<td></td>
<td>5.82 (0.87)</td>
<td>5.70 (0.93)</td>
</tr>
<tr>
<td></td>
<td>0.77</td>
<td>0.36</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 9.3b. Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to –1020 C/G genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics. Genotyping was successful in 168 subjects out of 235 with NOx measurements in the Chesterfield clinic and 276 subjects out of 287 in the North Mymms clinic. CG and GG individuals were analysed together because of the small number of GG homozygotes identified (n=3 Chesterfield, n=4 North Mymms). No statistically significant association was observed between genotype and blood pressure or cholesterol in the Chesterfield or North Mymms clinics (P≥0.05, Students t test). A significant association was observed between genotype and plasma NOx in the Chesterfield cohort only (*by Mann-Whitney test).</td>
<td></td>
</tr>
<tr>
<td>Genotype –1151A/C</td>
<td>AA Mean (SD)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chesterfield</td>
<td></td>
</tr>
<tr>
<td>N=82</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>10.00 (4.78)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>140.4 (15.66)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>86.94 (11.27)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.81 (1.07)</td>
</tr>
<tr>
<td>North Mymms</td>
<td></td>
</tr>
<tr>
<td>N=134</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>12.35 (5.02)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>138.3 (21.80)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>85.69 (12.23)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.84 (0.87)</td>
</tr>
</tbody>
</table>

Table 9.3c. Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to –1151 A/C genotype for the Chesterfield (top) and North Mymms (bottom) NPHSII clinics. Genotyping was successful in 140 subjects out of 235 with NOx measurements in the Chesterfield clinic and 276 subjects out of 287 in the North Mymms clinic. No statistically significant association was observed between genotype and NOx (*by Kruskal-Wallis test), blood pressure or cholesterol (by One-way ANOVA).
Table 9.3d. Plasma NOx, systolic blood pressure (SBP), diastolic blood pressure (DBP) and cholesterol according to -449G/C (top), -1020C/G (middle) and -1151 A/C (bottom) genotype for the combined Chesterfield and North Mymms NPHSII clinics. No statistically significant association was observed between genotype and NOx, blood pressure or cholesterol by One-way ANOVA or Student t-test unless otherwise stated. *Kruskal-Wallis test, ^Mann-Whitney test.

<table>
<thead>
<tr>
<th>Genotype -449G/C</th>
<th>GG Mean (SD)</th>
<th>GC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined clinics</td>
<td>N=186</td>
<td>N=184</td>
<td>N=54</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>11.52 (5.01)</td>
<td>12.10 (8.50)</td>
<td>11.68 (4.82)</td>
<td>0.48*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>139.7 (18.88)</td>
<td>137.0 (18.34)</td>
<td>136.8 (20.41)</td>
<td>0.33</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>86.45 (11.20)</td>
<td>85.61 (10.48)</td>
<td>84.37 (12.37)</td>
<td>0.45</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.85 (0.97)</td>
<td>5.75 (1.01)</td>
<td>5.84 (0.95)</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype -1020C/G</th>
<th>CC Mean (SD)</th>
<th>CG+GG Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined clinics</td>
<td>N=342</td>
<td>N=102</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>11.79 (7.02)</td>
<td>11.66 (5.25)</td>
<td>0.59*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>138.0 (19.48)</td>
<td>137.6 (17.35)</td>
<td>0.86</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>86.38 (11.47)</td>
<td>86.60 (9.98)</td>
<td>0.33</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.79 (0.99)</td>
<td>5.75 (0.90)</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype -1151 A/C</th>
<th>AA Mean (SD)</th>
<th>AC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined clinics</td>
<td>N=216</td>
<td>N=184</td>
<td>N=44</td>
<td></td>
</tr>
<tr>
<td>NOx (µmol/l)</td>
<td>11.54 (5.05)</td>
<td>12.12 (8.57)</td>
<td>11.07 (4.00)</td>
<td>0.76*</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>139.1 (19.68)</td>
<td>137.3 (18.57)</td>
<td>136.8 (18.80)</td>
<td>0.58</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>86.16 (11.86)</td>
<td>85.25 (10.00)</td>
<td>85.70 (11.97)</td>
<td>0.71</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.83 (0.95)</td>
<td>5.76 (1.03)</td>
<td>5.75 (0.94)</td>
<td>0.75</td>
</tr>
</tbody>
</table>
9.4.3 Relationship between *DDAH2* genotype and endothelial function in the Cambridge Young Adults Study

9.4.3.1 Baseline demographic details the Cambridge Young Adults Study

Characteristics of the study cohort according to *DDAH2* genotype are shown in tables 9.4a-c. No statistically significant association was observed between genotype and blood pressure, total cholesterol, HDL or LDL (P≥0.05).

9.4.3.2 *DDAH2* genotype and endothelial function

Subjects from the Cambridge Young Adults Study cohort comprising 264 healthy individuals were analysed for association between genotype and endothelial function. A total of 258 out of 264 individuals recruited were genotyped for the *DDAH2* -1020C/G and -1151A/C polymorphisms, and 261 individuals genotyped for the -871 6G/7G polymorphism and analysed for association with endothelium-dependent and independent (GTN mediated) FMD of the brachial artery. No association was observed between *DDAH2* genotype and either endothelium-dependent FMD or endothelium-independent (GTN mediated) dilation (Table 9.4a-c, P≥0.05). Furthermore, no association was observed between genotype and endothelial function after heterozygotes and rare homozygotes were grouped together for both the -1151A/C and -871 6G/7G polymorphisms (P≥0.05, Students t test).
Genotype -1020C/G

<table>
<thead>
<tr>
<th></th>
<th>CC Mean (SD)</th>
<th>CG+GG Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=188</td>
<td>N=70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-years</td>
<td>23.44 (1.87)</td>
<td>23.7 (1.90)</td>
<td>0.33</td>
</tr>
<tr>
<td>Systolic BP-mmHg</td>
<td>125.4 (14.44)</td>
<td>125.7 (13.18)</td>
<td>0.86</td>
</tr>
<tr>
<td>Diastolic BP-mmHg</td>
<td>70.39 (10.09)</td>
<td>70.55 (8.88)</td>
<td>0.91</td>
</tr>
<tr>
<td>Cholesterol-mmol/l</td>
<td>4.62 (1.06)</td>
<td>4.55 (0.87)</td>
<td>0.65</td>
</tr>
<tr>
<td>LDL cholesterol-mmol/l</td>
<td>2.88 (0.96)</td>
<td>2.78 (0.75)</td>
<td>0.43</td>
</tr>
<tr>
<td>HDL cholesterol-mmol/l</td>
<td>1.19 (0.29)</td>
<td>1.21 (0.31)</td>
<td>0.77</td>
</tr>
<tr>
<td>FMD-% change</td>
<td>3.41 (2.69)</td>
<td>3.41 (3.37)</td>
<td>0.99</td>
</tr>
<tr>
<td>GTN-% change</td>
<td>21.20 (7.86)</td>
<td>22.35 (7.53)</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Table 9.4a Endothelium-dependent and independent FMD and other CVD risk factors according to -1020C/G genotype in the Cambridge Young Adults Study cohort. Due to the small number of GG individuals (N=4) CG+GG individuals were grouped together. No significant difference was observed between genotype and either blood pressure, cholesterol or endothelium-dependent or independent dilation (by Students t test).

Genotype -1151A/C

<table>
<thead>
<tr>
<th></th>
<th>AA Mean (SD)</th>
<th>AC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=136</td>
<td>N=95</td>
<td>N=27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-years</td>
<td>23.67 (1.95)</td>
<td>23.30 (1.86)</td>
<td>23.29 (1.49)</td>
<td>0.29</td>
</tr>
<tr>
<td>Systolic BP-mmHg</td>
<td>125.5 (15.29)</td>
<td>126.7 (15.00)</td>
<td>125.1 (14.83)</td>
<td>0.80</td>
</tr>
<tr>
<td>Diastolic BP-mmHg</td>
<td>69.85 (8.66)</td>
<td>70.50 (10.38)</td>
<td>72.50 (12.56)</td>
<td>0.43</td>
</tr>
<tr>
<td>Cholesterol-mmol/l</td>
<td>4.62 (0.93)</td>
<td>4.47 (0.98)</td>
<td>4.88 (1.44)</td>
<td>0.15</td>
</tr>
<tr>
<td>LDL cholesterol-mmol/l</td>
<td>2.88 (0.85)</td>
<td>2.73 (0.88)</td>
<td>3.06 (1.24)</td>
<td>0.20</td>
</tr>
<tr>
<td>HDL cholesterol-mmol/l</td>
<td>1.18 (0.29)</td>
<td>1.22 (0.29)</td>
<td>1.22 (0.35)</td>
<td>0.56</td>
</tr>
<tr>
<td>FMD-% change</td>
<td>3.56 (3.19)</td>
<td>3.22 (2.59)</td>
<td>2.94 (2.30)</td>
<td>0.49</td>
</tr>
<tr>
<td>GTN-% change</td>
<td>22.40 (7.64)</td>
<td>20.99 (8.02)</td>
<td>18.62 (6.56)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 9.4b Endothelium-dependent and independent FMD and other CVD risk factors according to -1151A/C genotype in the Cambridge Young Adults Study cohort. No significant difference was observed between genotype and either blood pressure, cholesterol or endothelium-dependent or independent dilation (by One-Way ANOVA).
Table 9.4c Endothelium-dependent and independent FMD and other CVD risk factors according to -871 6G/7G genotype in the Cambridge Young Adults Study cohort. No significant difference was observed between genotype and either blood pressure, cholesterol or endothelium-dependent or independent dilation (by One-Way ANOVA).
9.4.4 Relationship between *DDAH2* genotype and endothelial function in women with normal pregnancies

9.4.4.1 Baseline demographics of the pregnancy cohort

The characteristics of the study cohort according to *DDAH2* genotype are shown in tables 9.5a-c. No significant association was observed between genotype and age, blood pressure, cholesterol, gestational age or parity in this cohort (Tables 9.5a-c, P>0.05).

9.4.4.2 *DDAH2* genotype and endothelial function

139 women with normal singleton pregnancies were genotyped for the *DDAH2* -1020C/G, -1151A/C and the -871 6G/7G polymorphisms and analysed for association between genotype and endothelium-dependent FMD. The results show both FMD 1 minute after cuff deflation and the maximum FMD recorded. Genotyping was successful in 137 individuals for the -1020C/G polymorphism and 136 individuals for the -1151A/C and -871 6G/7G polymorphism. No association was observed between *DDAH2* genotype and endothelium-dependent FMD in this cohort (Table 9.5a-c, P>0.05).
Genotype -1020C/G

<table>
<thead>
<tr>
<th></th>
<th>CC Mean (SD)</th>
<th>CG+GG Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>105</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>32.02 (4.83)</td>
<td>33.16 (4.36)</td>
<td>0.24</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>115.0 (9.87)</td>
<td>117.0 (11.40)</td>
<td>0.32</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>69.48 (6.54)</td>
<td>78.5 (14.20)</td>
<td>0.87</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.11 (0.78)</td>
<td>5.12 (0.88)</td>
<td>0.94</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>20.76 (11.66)</td>
<td>21.38 (12.45)</td>
<td>0.79</td>
</tr>
<tr>
<td>Parity (N)</td>
<td>0.72 (0.82)</td>
<td>0.78 (1.16)</td>
<td>0.73</td>
</tr>
<tr>
<td>FMD at 1 minute (% change)</td>
<td>3.55 (0.56)</td>
<td>3.46 (0.45)</td>
<td>0.43</td>
</tr>
<tr>
<td>FMD max (% change)</td>
<td>9.36 (3.50)</td>
<td>9.31 (2.63)</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Table 9.5a Endothelium-dependent FMD and other CVD risk factors according to -1020C/G genotype in the Pregnancy cohort. Due to the small number of GG individuals (N=3), CG+GG individuals were grouped together. No significant association was found between genotype and age, blood pressure, cholesterol, gestational age, parity or FMD (by Students t test).

Genotype -1151A/C

<table>
<thead>
<tr>
<th></th>
<th>AA Mean (SD)</th>
<th>AC Mean (SD)</th>
<th>CC Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>58</td>
<td>65</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>32.66 (4.82)</td>
<td>32.12 (4.41)</td>
<td>31.31 (6.36)</td>
<td>0.62</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>115.0 (8.5)</td>
<td>116.2 (11.81)</td>
<td>113.9 (9.723)</td>
<td>0.69</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>68.43 (13.7)</td>
<td>69.31 (7.30)</td>
<td>66.92 (5.88)</td>
<td>0.72</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.15 (0.81)</td>
<td>5.15 (0.81)</td>
<td>4.60 (0.65)</td>
<td>0.06</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>19.87 (12.27)</td>
<td>21.17 (11.17)</td>
<td>21.44 (14.68)</td>
<td>0.80</td>
</tr>
<tr>
<td>Parity (N)</td>
<td>0.91 (1.08)</td>
<td>0.64 (0.78)</td>
<td>0.38 (0.51)</td>
<td>0.09</td>
</tr>
<tr>
<td>FMD at 1 minute (% change)</td>
<td>3.59 (0.66)</td>
<td>3.43 (0.43)</td>
<td>3.69 (0.35)</td>
<td>0.14</td>
</tr>
<tr>
<td>FMD max (% change)</td>
<td>9.25 (3.37)</td>
<td>9.64 (3.30)</td>
<td>8.63 (3.07)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 9.5b Endothelium-dependent FMD and other CVD risk factors according to -1151A/C genotype in the Pregnancy cohort. No significant association was found between genotype and age, blood pressure, cholesterol, gestational age, parity or FMD (by One-Way ANOVA).
<table>
<thead>
<tr>
<th></th>
<th>6G/6G Mean (SD)</th>
<th>6G/7G Mean (SD)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>32.41 (4.56)</td>
<td>27.75 (8.22)</td>
<td>0.05</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>115.5 (10.23)</td>
<td>113.9 (13.49)</td>
<td>0.75</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>68.80 (10.51)</td>
<td>68.75 (9.07)</td>
<td>0.99</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.10 (0.81)</td>
<td>5.38 (0.63)</td>
<td>0.49</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>20.75 (11.77)</td>
<td>23.13 (14.81)</td>
<td>0.69</td>
</tr>
<tr>
<td>Parity (N)</td>
<td>0.75 (0.92)</td>
<td>0.25 (0.50)</td>
<td>0.28</td>
</tr>
<tr>
<td>FMD at 1 minute (%) change</td>
<td>3.52 (0.54)</td>
<td>3.84 (0.20)</td>
<td>0.32</td>
</tr>
<tr>
<td>FMD max (%) change</td>
<td>9.38 (3.33)</td>
<td>8.03 (2.71)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table 9.5c Endothelium-dependent FMD and other CVD risk factors according to –871 6G/7G genotype in the Pregnancy cohort. No 7G/7G homozygotes were identified in this cohort. No significant association was found between genotype and age, blood pressure, cholesterol, gestational age, parity or FMD (by Students t test).
9.4.5 Relationship between *DDAH2* genotype and endothelial function in the EBCT cohort.

9.4.5.1 Baseline demographics of the EBCT cohort.

Demographic characteristics according to *DDAH2* genotype of the EBCT cohort are shown in tables 9.6a and 9.6b. No significant association was found between *DDAH2* genotype and risk factors for cardiovascular disease including age, sex, smoking status, total cholesterol, HDL and blood pressure (P>0.05, tables 9.6a and 9.6b). However, a significant difference in allele distribution was observed between type I diabetics and non-diabetics for both the -1020C/G and -1151A/C polymorphisms (Table 9.7). The rare allele G for the -1020 polymorphism was less frequent amongst diabetics (*P=0.0001*), and the rare allele C for the -1151 polymorphism was found to be less frequent amongst non-diabetics (*P=0.0001*).
Genotype -1151 A/C

<table>
<thead>
<tr>
<th></th>
<th>AA Mean (SEM)</th>
<th>AC Mean (SEM)</th>
<th>CC Mean (SEM)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N=112</td>
<td>N=205</td>
<td>N=68</td>
<td></td>
</tr>
<tr>
<td>Age (Years)</td>
<td>38.0 (0.36)</td>
<td>37.8 (0.28)</td>
<td>37.9 (0.5)</td>
<td>0.83</td>
</tr>
<tr>
<td>Sex- Number (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Men</td>
<td>63 (55.3)</td>
<td>99 (48.3)</td>
<td>30 (44.12)</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>51 (44.74)</td>
<td>106 (51.7)</td>
<td>38 (55.9)</td>
<td></td>
</tr>
<tr>
<td>Smoking status - Number (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Current</td>
<td>32 (28.1)</td>
<td>52 (25.4)</td>
<td>13 (19.12)</td>
<td></td>
</tr>
<tr>
<td>Past</td>
<td>23 (20.3)</td>
<td>52 (25.4)</td>
<td>22 (32.4)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>59 (51.8)</td>
<td>101 (49.3)</td>
<td>33 (48.53)</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.5 (0.1)</td>
<td>5.5 (0.9)</td>
<td>5.3 (0.13)</td>
<td>0.46</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.7 (0.04)</td>
<td>1.8 (0.03)</td>
<td>1.8 (0.06)</td>
<td>0.17</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>118.5 (1.36)</td>
<td>122.2 (0.96)</td>
<td>122.1 (1.81)</td>
<td>0.07</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>72.4 (0.89)</td>
<td>74.0 (0.62)</td>
<td>72.7 (1.16)</td>
<td>0.27</td>
</tr>
<tr>
<td>Calcification</td>
<td>48 (42.86)</td>
<td>89 (44.28)</td>
<td>29 (42.65)</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table 9.6a Demographic characteristics of the EBCT cohort according to -1151 A/C genotype. Data are presented as mean (SEM). No significant association was found between genotype and age, sex, smoking status, cholesterol, blood pressure or coronary artery calcification (by One-Way ANOVA).
Genotype -1020C/G

<table>
<thead>
<tr>
<th></th>
<th>CC Mean (SEM)</th>
<th>CG Mean (SEM)</th>
<th>GG Mean (SEM)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=327</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age- Years</td>
<td>37.8 (0.22)</td>
<td>38.6 (0.6)</td>
<td>38.2 (1.42)</td>
<td>0.31</td>
</tr>
<tr>
<td>Sex- Number (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>Men</td>
<td>159 (48.6)</td>
<td>29 (54.7)</td>
<td>2 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>168 (51.4)</td>
<td>24 (45.3)</td>
<td>3 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Smoking status - Number (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td>Current</td>
<td>79 (24.2)</td>
<td>18 (34.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Past</td>
<td>83 (25.4)</td>
<td>10 (19.0)</td>
<td>3 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>165 (50.5)</td>
<td>25 (47.2)</td>
<td>2 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Cholesterol -mmol/l</td>
<td>5.4 (0.07)</td>
<td>5.5 (0.15)</td>
<td>5.3 (0.39)</td>
<td>0.73</td>
</tr>
<tr>
<td>HDL -mmol/l</td>
<td>1.8 (0.03)</td>
<td>1.9 (0.05)</td>
<td>1.5 (0.11)</td>
<td>0.16</td>
</tr>
<tr>
<td>Systolic BP-mmHg</td>
<td>121.6 (0.79)</td>
<td>118.9 (2.0)</td>
<td>117.2 (6.03)</td>
<td>0.36</td>
</tr>
<tr>
<td>Diastolic BP-mmHg</td>
<td>73.2 (0.5)</td>
<td>74.3 (1.33)</td>
<td>70.9 (4.12)</td>
<td>0.60</td>
</tr>
<tr>
<td>Calcification</td>
<td>143 (43.7)</td>
<td>22 (41.5)</td>
<td>2 (40.0)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table 9.6b Demographic characteristics of the EBCT cohort according to - 1020C/G genotype. Data are presented as mean (SEM). No significant association was observed between genotype and age, sex, smoking status, cholesterol, blood pressure or coronary artery calcification (by One-Way ANOVA).
<table>
<thead>
<tr>
<th></th>
<th>-1151A/C</th>
<th></th>
<th>-1020C/G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA n (%)</td>
<td>AC n (%)</td>
<td>CC n (%)</td>
<td>CC n (%)</td>
</tr>
<tr>
<td>Diabetic</td>
<td>33 (17.37)</td>
<td>114 (60.0)</td>
<td>43 (22.63)</td>
<td>175 (93.09)</td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>81 (41.12)</td>
<td>91 (46.19)</td>
<td>25 (12.69)</td>
<td>152 (77.16)</td>
</tr>
</tbody>
</table>

Significance: *P=0.0001

*Table 9.7 Distribution of −1151A/C and −1020C/G alleles according to diabetic status. The rare allele G for the −1020 polymorphism was less frequent amongst diabetics compared to non-diabetics (*P=0.0001), and the rare allele C for the −1151 polymorphism was found to be less frequent amongst non-diabetics (*P=0.0001).*
385 individuals (188 type 1 diabetics, 197 controls) were genotyped for the DDAH2 – 1151A/C and –1020C/G polymorphisms and investigated for association between genotype and endothelium-dependent and independent vascular response as measured by venous occlusion plethysmography. Genotyping was successful in all 385 subjects for the –1020C/G polymorphism and the –1151A/C polymorphism. Flow responses to incremental doses of ACh, BK (endothelium-dependent dilators), GTN (endothelium-independent dilator), LNMMA (endothelium-dependent constrictor) and NA (endothelium-independent constrictor) are shown in figures 9.1a and 9.1b according to DDAH2 –1020C/G and –1151A/C genotype. Overall, no difference was observed in endothelium-dependent dilator responses between genotypes either before or after adjustment for age and sex (P≥0.05, figures 9.1a and 9.1b). Neither was any significant difference in vascular function detected when subjects were divided by diabetic or smoking status (appendix 3, tables 1-4). A weak but statistically significant difference in endothelium-independent response (GTN mediated) was observed between –1151AA and –1151CC genotypes (*P=0.02, figure 9.1a). This was also observed when diabetics and non-smokers were analysed separately (P=0.02 and P=0.03 respectively, appendix 3; table 1 and 3). A small but significant difference between genotypes was observed for LNMMA response between –1020 CC and GG diabetic subjects (*P=0.04, appendix 3; table 2).
Figure 9.1a Endothelium-dependent and independent vascular responses according to –1151A/C genotype in the EBCT cohort. Data are presented as mean (SEM) % change in flow of infused/non-infused arm during drug treatment after adjustment for baseline flow. Genotypes AC and CC are compared to AA by multiple logistic regression and data are adjusted for age and sex. No significant difference in endothelium-dependent vascular response was observed between genotypes after infusion with acetylcholine (ACh) and bradykinin (BK) (P>0.05). A significant difference was observed between genotypes AA and CC for endothelium-independent response after infusion of glyceryltrinitrate (GTN) (*P=0.02). No difference was observed in response to LNMMA or noradrenaline (NA) (P≥0.05).
Figure 9.1b Endothelium-dependent and independent vascular responses according to −1020C/G genotype in the EBCT cohort. Data are presented as mean (SEM) % change in flow of infused/non-infused arm in response to drug dosage. Genotypes CG and GG are compared to CC by multiple logistic regression and data are adjusted for age and sex. No significant difference in vascular response was observed between genotypes after infusion with acetylcholine (ACh), bradykinin (BK), glyceryltrinitrate (GTN), LNMMA or noradrenaline (NA) (P≥0.05).
9.5 Discussion

During this study the association between *DDAH2* genotype and plasma NOx was investigated in a subset of healthy individuals selected from the NPHSII cohort. The relationship between *DDAH2* genotype and endothelial function was also explored in a cohort of 264 healthy individuals from the Cambridge Young Adults Study, 139 women with normal pregnancies and a cohort comprising 188 type I diabetics and 197 control subjects. The relationship between *DDAH2* genotype and other relevant risk factors for the development of CVD was also investigated in each cohort.

9.5.1 *DDAH2* genotype and plasma concentrations of NOx in the NPHSII cohort

During this study an association was observed between the *DDAH2* -1020C/G polymorphism and plasma NOx in subjects recruited from the Chesterfield clinic of the NPHSII cohort. However, failure to detect any association between genotype and NOx in the North Mymms clinic or when both clinics were combined indicates that this data needs to be interpreted with caution. These conflicting results could be due a lack of statistical power, differences in dietary NOx intake or undetected inflammatory processes, which would obscure any associations due to production of NO from other NOS isoforms. Alternatively, genetic variation within other genes that influence circulating NO may mask any association between *DDAH2* genotype and plasma NOx. *DDAH2* enzyme activity would be expected to affect NO synthesis indirectly via ADMA, therefore any influence of *DDAH2* on NO levels may be masked by other factors that affect circulating ADMA such as PRMT activity and LDL cholesterol or renal function. Due to time constraints, the NPHSII cohort was not genotyped for the -
871 6G/7G polymorphism, which in a luciferase promoter/reporter system demonstrated functionality when transfected into HUVEC (Chapter 7). Further studies to investigate the association between this variant (and differential DDAH2 expression) and plasma NOx in the NPHSII cohort are planned.

9.5.2 *DDAH2* genotype and endothelial function

The second part of this study investigated the association between *DDAH2* genotype and endothelial function. Endothelial dysfunction is an early marker of CVD and is thought to be a manifestation of deficient NO availability (Clarkson et al., 1997; Gaeta et al., 2000). Although no association was detected between *DDAH2* genotype and ADMA concentration (Chapter 8), the hypothesis explored in this chapter was that *DDAH2* polymorphisms effect local ADMA concentrations and through this, local NO availability and NO-dependent vasodilation. Three cohorts in whom endothelial function had been assessed previously were investigated. Firstly, no association was observed between *DDAH2* genotype and NO-mediated endothelial function in a group of young healthy subjects from the Cambridge Young Adults Study cohort. This same cohort has previously been investigated for association between endothelial function and the eNOS Glu298Asp polymorphism. Overall, no association was observed between this variant and FMD (Leeson et al., 2002), however, FMD was lower in male smokers carrying the Asp allele, suggesting a potential eNOS genotype-environment interaction in this population, and supporting the potential for detecting gene effects on endothelial function in this group. In the present study, with a sample size of 264 individuals, we had 80% power at $2P=0.05$ to identify a 28% difference in FMD between groups.
The second cohort studied were women with normal pregnancies. During normal pregnancy there is an increase in circulating blood volume and cardiac output and a decrease in blood pressure due to systemic vasodilation. Some evidence suggests that this vasodilation is due to an increase in NO availability (Nelson et al., 2000), and it has also been shown that the circulating levels of ADMA are significantly lower in pregnant women compared with non pregnant women, suggesting that systemic vasodilation during pregnancy maybe regulated by ADMA (Maeda et al., 2003). In keeping with this, ADMA levels are elevated in preeclampsia (Holden et al., 1998) and in women in early pregnancy prior to the development of preeclampsia (Savvidou et al., 2003). Also, ADMA concentrations in these women correlate with endothelial dysfunction (Savvidou et al., 2003). Therefore we tested the hypothesis that genetic variation in the DDAH2 gene, that alters DDAH2 transcription in vitro, may lead to differences in circulating ADMA levels, which, during pregnancy, might have an impact on maternal vascular endothelial function. However, during this study, no association was observed between DDAH2 genotype and endothelial function, which suggests genotype does not influence endothelial function in women with normal pregnancies. In addition genotype did not correlate with other parameters (such as cholesterol or blood pressure) that might influence FMD. The cause of elevated ADMA in these individuals is unknown but, as SDMA levels are unchanged, variation in DDAH2 expression or activity is a likely candidate. DDAH2 is highly expressed in the placenta and common genetic variation in the DDAH2 gene in this tissue may be important for differences in circulating levels of ADMA. Further work to characterise the expression of placental DDAH2 in women with preeclampsia and to determine the effects of DDAH2 variants in the susceptibility to preeclampsia is necessary.
The final part of this study investigated the association between \textit{DDAH2} genotype and endothelial function in a cohort of diabetic patients and controls. A previous study in this cohort demonstrated dysfunction of endothelium-dependent vasodilation in diabetic subjects (Chan et al., 2003). However, the precise mechanisms behind endothelial dysfunction and increased risk of CVD seen in diabetics is still unknown. In this cohort, only \textasciitilde13\% of the variation in endothelial function could be explained by the presence of conventional CVD risk factors (Chan et al., 2001) suggesting, perhaps, that genetic and other influences may be important. However, during this study no association was observed between \textit{DDAH2} genotype and endothelium-dependent function either when the whole cohort was analysed or when diabetics and non-diabetics and smokers and non-smokers were analysed separately, suggesting that \textit{DDAH2} genotype does not play a significant role in regulation of endothelial function in this cohort.

One interesting observation to emerge from this study was the difference in allele distribution between diabetics and non-diabetics for both the \textasciitilde1020C/G and \textasciitilde1151A/C polymorphisms. However, this may be explained by the location of the \textit{DDAH2} gene within the MHC class III region on chromosome 6, a region that has been strongly linked with type1 diabetes in previous studies (Field, 2002). Therefore it is possible that these \textit{DDAH2} polymorphisms maybe acting as a marker for the presence of type1 diabetes in this cohort.

In summary, no association was observed between \textit{DDAH2} genotype and endothelial function in young healthy subjects, in women with normal pregnancies or in a cohort of diabetic patients and controls. These data are in keeping with the findings of chapter 8.
in which no association was detected between DDAH2 genotype and ADMA concentration or ADMA/SDMA ratio. They are at odds however, with the findings of chapter 7 where in an in vitro reporter system, DDAH2 promoter genotype was found to alter promoter activity. Taken together, these observations indicate that, in the healthy state in vivo, and despite the potential for DDAH2 genotype to modulate DDAH2 transcription in vitro, it does not have a significant impact upon endothelial function. The reasons for this discrepancy between in vitro and in vivo observations are worthy of further investigation. Further research is also needed to ascertain whether DDAH2 genotype is an important modulator of DDAH2 expression in the presence of other disorders or risk factors known to result in elevated circulating ADMA.
CHAPTER 10

GENERAL CONCLUSIONS
Despite numerous scientific breakthroughs in the understanding of the complex nature of the cardiovascular system and its disorders, cardiovascular disease remains the UK's biggest cause of mortality (BHF, 2003). It is fully recognized that environmental risk factors such as a diet rich in cholesterol, smoking and the presence of diseases such as diabetes and renal failure are major players in the cause of vascular disease. However a vast amount of evidence now implicates an individual’s genotype as a relevant determinant of disease development. Research into some rare monogenic disorders such as familial hypercholesterolaemia has helped to gain an insight into genes, which may be influential in the more complex multi-factorial vascular disease process. It is envisaged that each individual carries a complement of such common susceptibility alleles ('a genetic load') and that the interaction between susceptibility genes and the environment determines the development of cardiovascular disease.

A plethora of genes have been associated with carrying an increased risk of developing cardiovascular disease such as those involved in lipid metabolism, blood pressure regulation and coagulation (Nakai et al., 2002; Yamada et al., 2002). The essential role of the endothelium for the maintenance of a healthy vasculature has focused one area of the search on genes that are expressed by the endothelial cell. The discovery that one product of the endothelium, the simple gaseous molecule NO which, has many atheroprotective functions (Ignarro et al., 1987), has led to an explosion of research into the regulation of NO synthesis and degradation.
During this study, genes encoding proteins in three different pathways implicated in the regulation of NO activity have been investigated. Firstly, inactivation of NO by O_3^- is thought to be one explanation for diminished endothelial function in some individuals (Kodja et al., 1999), and has prompted investigations into the enzymes responsible for O_3^- production such as NADPH oxidase. This study investigated the hypothesis that endothelium-dependent vaso-reactivity in healthy subjects would be dependent on genotype for the C242T polymorphism of the NADPH oxidase subunit - $p22phox$. The results demonstrated that a significant difference in endothelium-dependent vasodilation of the brachial artery does indeed exist between individuals of different genotype. Subjects who carried two copies of the 242T allele demonstrated augmented FMD of the brachial artery (an NO-dependent response) compared to subjects carrying the C allele. This implies that these individuals may have a preserved NO response due to decreased NADPH oxidase activity. A second study using venous occlusion plethysmography to assess endothelial function in the resistance arteries of the forearm, failed to reproduce this association in a case-control study of type 1 diabetic subjects. One potential explanation for this discrepancy is that endothelium-dependent vasodilation in resistance vessels is dependent more on the dilator substance EDHF than on NO.

The synthesis of NO from L-arginine requires BH$_4$, an essential cofactor for the NOS enzymes. In a second study, the hypothesis that common genetic polymorphisms within the human $GCH1$ gene (the rate-limiting enzyme in the BH$_4$ synthesis reaction) could influence pterin synthesis and endothelial function was explored. Three bi-allelic variants within the $GCH1$ promoter were identified, two of which correlated with plasma neopterin
(an index of pterin pathway activity) in healthy subjects, suggesting the synthesis of the NOS cofactor BH₄ is genetically determined. In addition, the finding that GCH1 genotype was associated with NO-mediated, endothelium-dependent vasodilation of the brachial artery supports further the hypothesis that GCH1 genotype can influence NO synthesis through the availability of BH₄. Future studies to investigate whether these GCH1 promoter polymorphisms influence gene transcription, and therefore could account for the difference in neopterin seen in this study are needed. A system such as the luciferase reporter gene assay described in Chapter 7 will be used in this study.

Finally, the third series of investigations examined a pathway known to be involved in the regulation of NO synthesis through inhibition of NOS. The main objectives of this series of studies was to identify common polymorphisms in the DDAH2 gene and investigate the relationship between DDAH2 genotype and circulating levels of the NOS inhibitor ADMA. The relationship between DDAH2 genotype and conventional CVD risk factors including endothelial function was also explored. Elevated ADMA levels are a common feature in patients with vascular disease including diabetics, subjects with renal failure and preeclampsia. The identification of several polymorphisms within the DDAH2 promoter region, two of which are situated in transcription factor binding sequences, suggests that DDAH2 transcription could be genetically regulated. This hypothesis was explored by a promoter/reporter assay, which confirmed different promoter activities for the variant alleles at position −871. Disappointingly, the present study failed to identify any association between DDAH2 genotype and ADMA, ADMA/SDMA ratio or endothelial function, but given the rarity of the −871 variant among Caucasian subjects future large
scale genotyping studies including a wide range of disease phenotypes may be required to fully test the hypothesis that this DDAH2 variant is an important determinant of vascular disease development.

To conclude, the findings of this study indicate that some, but not all, common genetic variation within genes involved in NO synthesis and inactivation are associated with differences in endothelial function that predates and predisposes to atherosclerosis. It is likely that a combination of polymorphisms in a wide variety of genes interact to compose the genetic element of CVD and these polymorphisms in turn are modulated by the environment. During this study the completion of the human genome project was announced, which together with advances in large-scale genotyping efforts makes the prospect of defining multiple gene-gene interactions and their impact on complex diseases a potentially realisable goal in the not too distant future.
Appendix I

Hardy-Weinberg Principle

The relationship between the genotypic frequency and allelic frequency of a population was described by Godfrey Hardy and Wilhelm Weinberg in 1908, and became known as the Hardy-Weinberg principle. The principle states that after one generation of random mating single locus genotypic frequencies can be represented as a function of the allelic frequencies (Hardy, 1908). If a gene has two alleles designated A and a, then the frequency of these alleles in a population is p and q respectively where $p+q=1$. If random mating occurs (i.e. random union of male and female gametes) then the frequency of the offspring will be as follows:

<table>
<thead>
<tr>
<th>Male gametes</th>
<th>Female gametes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A (p)$</td>
<td>$a (q)$</td>
</tr>
<tr>
<td>$A (p)A (p)$</td>
<td>$A (p)a (q)$</td>
</tr>
<tr>
<td>$A (p)a (q)$</td>
<td>$A (q)a (q)$</td>
</tr>
</tbody>
</table>

$\text{p}^2+2\text{pq}+\text{q}^2=1$

To determine whether the observed number of genotypes differs from those expected under the Hardy-Weinberg rule the Chi-square test (χ^2) is applied:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
Appendix II

Linkage disequilibrium

Two genes (or in the context of this thesis-polymorphisms) in relative close proximity on the same chromosome are said to be linked. The closer the polymorphisms are to one-another, the less likely genetic recombination between them during gamete formation.

Linkage disequilibrium (non-random association) between alleles of two polymorphisms was calculated by Chakravarti et al, 1984.

Two loci A and B each with two allelic variants A1A2 and B1B2 will result in the production of gametes: A1B1, A1B2, A2B1, A2B2. The corresponding frequency of each gamete will be:

\[P_{11} = p_1q_1 + \Delta \text{ for } A1B1 \]
\[P_{12} = p_1q_2 - \Delta \text{ for } A1B2 \]
\[P_{21} = p_2q_1 - \Delta \text{ for } A2B1 \]
\[P_{22} = p_2q_2 + \Delta \text{ for } A2B2 \]

\(\Delta \) measures the non-random association or linkage disequilibrium between alleles.

\[\Delta = \frac{P_{11}P_{22} - P_{12}P_{21}}{\sqrt{(P_{11} + P_{12})(P_{21} + P_{22})(P_{11} + P_{21})(P_{12} + P_{22})}} \]

\(\Delta \) values range between 0 and 1. The closer the \(\Delta \) value is to 1 the more tightly linked the two loci. A negative \(\Delta \) value indicates the rare allele at one loci is in complete linkage with the common allele at the second loci.
Appendix III

The difference in vascular responses between genotypes for Diabetics and non-diabetics and smokers and non-smokers.

<table>
<thead>
<tr>
<th>Genotype –1151 A/C</th>
<th>Diabetics</th>
<th>Non-Diabetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA versus AC</td>
<td>AA versus CC</td>
</tr>
<tr>
<td></td>
<td>β coef (P)</td>
<td>β coef (P)</td>
</tr>
<tr>
<td>Ach</td>
<td>0.08 (0.40)</td>
<td>0.12 (0.29)</td>
</tr>
<tr>
<td>BK</td>
<td>-0.05 (0.45)</td>
<td>-0.04 (0.60)</td>
</tr>
<tr>
<td>GTN</td>
<td>-0.06 (0.29)</td>
<td>-0.18 (0.02)*</td>
</tr>
<tr>
<td>NA</td>
<td>0.01 (0.78)</td>
<td>-0.01 (0.8)</td>
</tr>
<tr>
<td>LNMMMA</td>
<td>0.03 (0.34)</td>
<td>-0.004 (0.91)</td>
</tr>
</tbody>
</table>

Table 1. **Vascular response of Diabetic and Non-diabetic subjects according to –1151 A/C genotype.** Vascular response in AA genotypes were compare with AC and CC genotypes. A significant difference in endothelium independent response was observed between individuals genotyped as AA compared to CC individuals in the diabetic patients only (*P*<0.02). Data are adjusted for age and sex.
Table 2. Vascular response of Diabetic and Non-diabetic subjects according to – 1020 C/G genotype. Vascular response in CC genotypes were compare with GC and GG genotypes. A significant difference in endothelium independent response was observed between individuals genotyped as CC compared to GG individuals in the Non-diabetic patients only (*P=0.02). A weak significance was also observed for LNMMMA response between CC and GG diabetic subjects (*P=0.04). Data are adjusted for age and sex.

<table>
<thead>
<tr>
<th></th>
<th>Diabetics</th>
<th>Non-Diabetics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC versus GC</td>
<td>CC versus GG</td>
</tr>
<tr>
<td></td>
<td>β coeff (P)</td>
<td>β coeff (P)</td>
</tr>
<tr>
<td>Ach</td>
<td>-0.07 (0.63)</td>
<td>-0.22 (0.52)</td>
</tr>
<tr>
<td>BK</td>
<td>-0.06 (0.57)</td>
<td>-0.08 (0.75)</td>
</tr>
<tr>
<td>GTN</td>
<td>-0.04 (0.67)</td>
<td>0.22 (0.35)</td>
</tr>
<tr>
<td>NA</td>
<td>0.06 (0.35)</td>
<td>-0.10 (0.54)</td>
</tr>
<tr>
<td>LNMMMA</td>
<td>0.03 (0.46)</td>
<td>-0.19 (0.04)*</td>
</tr>
</tbody>
</table>
Table 3. Vascular response of Smokers and Non-smokers according to -1151 A/C genotype. Vascular response in AA genotypes were compare with AC and CC genotypes. A significant difference in endothelium independent response was observed between individuals genotyped as AA compared to CC individuals insmokers only (*P=0.03). Data are adjusted for age and sex.

<table>
<thead>
<tr>
<th></th>
<th>Smokers</th>
<th>Non-Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA versus AC β coef (P)</td>
<td>AA versus AC β coef (P)</td>
</tr>
<tr>
<td>Ach</td>
<td>0.20 (0.19)</td>
<td>0.27 (0.23)</td>
</tr>
<tr>
<td>BK</td>
<td>0.09 (0.36)</td>
<td>0.16 (0.28)</td>
</tr>
<tr>
<td>GTN</td>
<td>0.06 (0.59)</td>
<td>-0.15 (0.32)</td>
</tr>
<tr>
<td>NA</td>
<td>0.08 (0.33)</td>
<td>0.13 (0.27)</td>
</tr>
<tr>
<td>LNMMA</td>
<td>0.01 (0.69)</td>
<td>-0.02 (0.68)</td>
</tr>
</tbody>
</table>
Table 4. Vascular response of Smokers and Non-smokers according to -1020C/G genotype.

Vascular response in CC genotypes was compared with both GC and GG genotypes for Non-smokers. Vascular response of CC genotypes was compared to CG genotypes in smokers, no GG subjects were found among the smoking group. No difference in vascular response was observed between genotypes in either smokers or non-smokers. Data are adjusted for age and sex.

<table>
<thead>
<tr>
<th></th>
<th>Smokers</th>
<th>Non-Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC versus CG</td>
<td>CC versus GG</td>
</tr>
<tr>
<td></td>
<td>β coef (P)</td>
<td>β coef (P)</td>
</tr>
<tr>
<td>Ach</td>
<td>0.24 (0.08)</td>
<td>-</td>
</tr>
<tr>
<td>BK</td>
<td>-0.05 (0.56)</td>
<td>-</td>
</tr>
<tr>
<td>GTN</td>
<td>-0.11 (0.23)</td>
<td>-</td>
</tr>
<tr>
<td>NA</td>
<td>0.007 (0.92)</td>
<td>-</td>
</tr>
<tr>
<td>LNMMA</td>
<td>-0.01 (0.88)</td>
<td>-</td>
</tr>
</tbody>
</table>
References

Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. *Biochem J* 2001 Aug 1; 357(Pt 3): 593-615

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. *Proc Natl Acad Sci USA.* 1990 Feb; 87(4): 1620-4

Colhoun HM, Rubens MB, Underwood RS, Fuller JH. The Effect of Type1 Diabetes Mellitus on the Gender Difference in Coronary Artery Calcification. *J Am Coll Cardiol.* 2000; 36: 2160-7

282

Fleck C, Janz A, Schweitzer F, Karge E, Schwertfeger M, Stein G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in renal failure patients. *Kidney Int Suppl.* 2001 Feb; 78: S14-8

Ghosh DK, Abu-Soud HM, Stuehr DJ. Domains of Macrophage NO Synthase Have Divergent Roles in Forming and Stabilizing the Active Dimeric Enzyme. *Biochemistry.* 1996 35; 1444-1449

Hingorani AD, Liang CF, Fatibene J, Lyon A, Monteith S, Parsons A, Haydock S, Hopper RV, Stephens NG, Shaughnessy KM, Brown MJ. A common Variant of the Endothelial Nitric Oxide Synthase (Glu298 Asp) Is a Major Risk Factor for Coronary Artery Disease in the UK. *Circulation.* 1999 100; 1515-1520

Hishikawa K, Luscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. *Circulation* 1997 Nov 18; 96(10): 3610-6

286

Lopez-Sanchez N, Frade JM. Control of the cell cycle by neurotrophins: lessons from the p75 neurotrophin receptor. *Histol Histopathol* 2002 Oct; 17(4): 1227-37

McDonald KK, Zharikov S, Block ER, Kilberg MS. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". *J Biol Chem* 1997 Dec 12; 272(50): 31213-6

Meier B, Jesaitis AJ, Emmendorfer A, Roesler J, Quinn MT. The cytochrome b-558 molecules involved in the fibroblast and polymorphonuclear leucocyte superoxide-generating NADPH oxidase systems are structurally and genetically distinct. *Biochem J* 1993 Jan 15; 289 (Pt 2): 481-6

291

Murad F. Cyclic guanosine monophosphate as a mediator of vasodilation. *J Clin Invest.* 1986 78; 1-5

Najbauer J, Johnson BA, Young AL, Aswad DW. Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized

Ribas G, Neville M, Wixon J L, Cheng J, Campbell R D. genes Encoding Three New Members of the Leukocyte Antigen 6 Superfamily and a Novel Member of Ig Superfamily, Together with Genes Encoding the Regulatory Nuclear Chloride Ion Channel Protein (Hmcc) and a Nw-Nw- Dimethylarginine Dimethylaminohydrolase Homologue, Are Found in a 30kb Segment of the MHC Class 111 Region. *The Journal of Immunology* 1999 163; 278-287

Rossak JI, Van Rij AM, Jones GT, Harris EL. Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. *J Vasc Surg* 2000 May; 31(5): 1026-32

Thony B, Blau N. Mutations in the GTP cyclohydrolase I and 6-pyruvoyl-tetrahydropterin synthase genes. *Hum Mutation*. 1997; 10(1): 11-20

