UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

The design and application of a small-scale corn degerming process for the recovery of transgenic products from corn seeds.

Cody, J.T.; (2004) The design and application of a small-scale corn degerming process for the recovery of transgenic products from corn seeds. Doctoral thesis, University of London. Green open access

[img]
Preview
Text
U602510.pdf

Download (15MB) | Preview

Abstract

This thesis presents the issues involved in designing a small-scale com seed degerming process based on large-scale principals, its characterisation and optimisation using the method of statistical experimental design and analysis, and its application to the processing of different types of com seed. During the early stages of process development for the extraction and purification of recombinant proteins produced in genetically modified crops, scarce quantities of material limit the extent of process investigations at pilot-scale. The small-scale degerming process was therefore designed for the development of a process suitable for handling small quantities of transgenic com. This process consisted of a small-scale degerming device, followed by a separation process consisting of roller-milling and sieving, capable of processing 50 seeds (approximately 12g). Successful degerming of transgenic com seed separated oil-and protein-rich germ (waste stream) from the product-containing endosperm fraction (product stream) of the seed. Oil content and mass of the product and waste streams were used to assess and compare degerming quality between all seed types. The degermer and separation process design were based on the principal operating factors identified in the large-scale operations used in com dry milling. Both operating factors and material properties affected the quality of degerming. The factors which had the largest impact on degerming were the degermer disk clearance, roller-milling and seed moisture content. Maximum degerming and separation, consisting of product stream containing 32.5% seed oil in 90.2% seed mass, occurred at a seed moisture content of 21%, (w/w), a disc clearance of 9mm, and three stages of roller-milling. Variation in quality between seed types was shown to affect degerming quality when operating the degermer under constant conditions. Five different types of seed were processed through the small-scale degermer. Two were transgenic, and three were non-transgenic, and one of these was additionally processed through a pilot-scale Beall degermer. The small-scale com degerming process was shown to separate seed fractions from all varieties of seeds processed. The greatest difference in quality of small-scale degerming between these different seed types was between the 'high quality' non-transgenic hybrid and either of the two transgenic seed types. Better degerming was achieved using the high-quality seed hybrid (detailed above) than the transgenic seed (84.2% seed mass, 46.8% seed oil) when processed using the optimised operating conditions. The quality of degerming that could be achieved using the pilot-scale Beall and small-scale degermers was compared using the 'low quality' non-transgenic seeds, which were physically the most similar to the transgenic seeds. The small-scale degerming process was shown to separate a greater proportion of germ from the endosperm, represented by the high mass of lower oil content product stream (81.5% seed mass, 29.3% seed oil) than that seed which had been degermed using the pilot-scale Beall degermer (92.5% seed mass, 64.3% seed oil).

Type: Thesis (Doctoral)
Title: The design and application of a small-scale corn degerming process for the recovery of transgenic products from corn seeds.
Identifier: PQ ETD:602510
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by Proquest
UCL classification: UCL > School of BEAMS > Faculty of Engineering Science > Biochemical Engineering
URI: http://discovery.ucl.ac.uk/id/eprint/1446585
Downloads since deposit
259Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item