Haemostasis at open and laparoscopic myomectomy with the use of modified triple tourniquets

MD Thesis
University of London

A Alexander Taylor MB BS MRCOG
Honorary Lecturer in Obstetrics & Gynaecology
Royal Free Hospital
Royal Free and University College Medical School
London
UK

2005
Contents

Dedications 3
Abstract 4
Chapter One
Introduction 6
Chapter Two 25
Background to Thesis
Chapter Three 30
Consultant Survey
Chapter Four 45
Prospective randomised controlled trial of triple tourniquets at open myomectomy
Chapter Five 61
A feasibility study of triple tourniquets at laparoscopy myomectomy
Chapter Six 73
The effect of tourniquets on uterine blood flow
Chapter Seven 89
The effect of tourniquets on ovarian function
Chapter Eight 96
The effect of open myomectomy on menstrual blood loss
Chapter Nine 102
Psycho-social and quality of life data after open myomectomy
Chapter Ten 111
Summary
Chapter Eleven 114
Future research
Appendices
Appendix 1: References 118
Appendix 2: Forms 130
Appendix 3: CD (including movies and Excel files containing original data for the studies 139
This thesis is dedicated to the loving memory of my father a man who “was successful in combining scientific medicine and traditional family doctoring with a skill that belied his years”.

Abstract

Objectives
To investigate the prevalence of haemostatic techniques at myomectomy. To investigate the effectiveness of modified triple tourniquets at open myomectomy and for the first time to pilot their use at laparoscopic myomectomy.

Design
A questionnaire based postal survey.
A randomised controlled trial (RCT) and a feasibility study

Population
All UK Consultant Obstetricians & Gynaecologists.
38 patients with symptomatic fibroids undergoing open or laparoscopic myomectomy.

Methods
A standard questionnaire postal survey. At open myomectomy a number 1 polyglactin suture was tied around the cervix to occlude the uterine arteries, and polythene (polyglactin at laparoscopic myomectomy) tourniquets were tied around the ovarian vessels. At the end of the procedure the ovarian ties were released but the uterine artery suture remained in situ.
Outcome measures

Use of haemostatic techniques at open, laparoscopic and hysteroscopic myomectomy.

Intra-operative blood loss, post-operative blood loss, blood transfusion rates, operative morbidity, uterine blood flow, ovarian function, quality of life and effect on menstruation.

Results

59% responded to the survey. At open myomectomy 90% regularly used a haemostatic technique, with 85% prescribing pre-operative gonadotrophin releasing hormone agonists.

Open myomectomy RCT there was less blood lost in the tourniquet group than in the control (p<0.0001). The volume in the pelvic drain postoperatively failed to reach statistical significance between the two groups. There were no differences in uterine artery Doppler resistance indices and ovarian function was unaffected by the tourniquets. Open myomectomy significantly improved menorrhagia and quality of life.

In the laparoscopic study triple tourniquets were applied successfully and appeared effective.

Conclusions

Modified triple tourniquets are effective in reducing bleeding at open myomectomy and appear safe with no obvious effect on uterine perfusion or ovarian function. Our feasibility study would suggest they can also be successfully used at laparoscopic myomectomy.
Chapter One: Introduction
Leiomyomas

Definition
Leiomyomas are benign smooth muscle tumours that arise from the clonal expansion of single myocytes\(^1\). They are associated with variable amounts of collagen and fibrous tissue and it is this pathological feature that has led them to being colloquially known as “fibroids”\(^2\). Throughout this thesis, the two terms will be used interchangeable.

Epidemiology and Aetiology
A review of the epidemiology of uterine fibroids reveals a wide variation in reported prevalence rates. The figures quoted reflect the different diagnostic tests used, populations studied and the differences in trial design. One of the seminal papers on fibroids reported a prevalence rate of 25% based on clinical examination\(^3\), whilst others looking at the presence of myomas in hysterectomy specimens reported rates of 77%\(^4\). The largest study to date, the Nurses’ Health Study II, consisting of 116,678 female nurses aged 25-42 years, prospectively followed the group with questionnaires every two years, to determine the incidence of uterine leiomyoma among premenopausal woman both by age and race\(^5\). The diagnosis of fibroids was self reported and confirmed for a sample of cases. The crude incidence rate in this study was 12.8 per 1000 woman years. However the age standardised rates were much higher in black women than in white women, 30.6 and 8.9 per 1000 woman years respectively. Even after adjusting for a number of variables such as body mass index, infertility and contraception, the rates among black
women were significantly higher than those amongst white women (relative risks 3.25; 95% CI 2.71-3.88). The incidence of fibroids amongst women of Hispanic or Asian ethic origin in this study, were similar to those of white women.

Although the above study was a prospective longitudinal one and looked at large numbers of women, it might nonetheless have overestimated the risks because of detection bias. A more recent study from the National Institute of Environmental Health Sciences (NIEHS) aimed to obtain unbiased estimates of the age-specific cumulative incidence of uterine fibroids. This was achieved by randomly screening a selected sample of women with ultrasound, to provide cumulative incidence estimates for black and white women. The difference between the age-specific cumulative incidence curves for black and white women was still highly significant (odds ratio, 2.9; 95% CI, 2.5-3.4; \(P < .001 \)) (figure 1), but less than that suggested by Nurse’ Health Study. Interestingly, the estimated cumulative incidence of fibroids by age 50 was a >80% for black women and nearly 70% for white women (figure 2).

Both these recent studies, however, have focused on American women. There is evidence that different populations have different prevalence rates. A study in Sweden of 334 women revealed that for women who were 33 to 40 years old, the prevalence was only 8% compared to the NIEHS study of 26% for white women and 53% of black women, of the same age. Why there should be these population differences is not clear, but some of the researched aetiological variables are described below.
One variable that has been the focus of considerable research and debate is the association between oral contraceptive use and the risk of developing uterine fibroids. Amongst ever users, the risk of hysterectomy-confirmed leiomyomata has been observed to be reduced⁸,⁹, not associated¹⁰ or elevated¹¹.

The more recent Nurse' Health Study II reported on a number of variables in relation to leiomyomata development, including contraception use¹². This large prospective study reported that fibroids were inversely associated with early menarche, parity and positively associated with a history of infertility. With regard to contraceptive use, amongst ever users the risk of fibroid development was similar to that amongst never users (relative risks 1.03; 95% CI 0.93-1.15). In contrast, current users compared to never users appeared to be at a slightly reduced risk of developing fibroids (RR 0.80; 95% CI 0.67-0.94). Of interest in this study was the finding that early use of oral contraceptive at ages 13-16 was strongly associated with a hysterectomy confirmed diagnosis (RR 1.90; 95% CI 1.29-2.79) compared to never users.

Another recent study, this time a case-control one, reported on the same risk factors in 2000 women. The authors reported similar results to the Nurse' Health Study II¹³.

Other factors that have been studied include body mass index and smoking. Whilst the former appears associated with a modest increased risk of uterine fibroids¹⁴, the association with smoking appears less clear¹⁴,¹⁵.
Finally researchers have studied the effect of diet and its association with uterine fibroids \(^{16}\). Neither coffee, tea nor alcohol appeared associated with fibroids. Red meat was positively associated with fibroids (OR 1.7; 95% CI 1.4-2.2), whereas a high intake of green vegetables and fish appeared to have a protective effect (OR 0.5; 95% CI 0.4-0.6 and OR 0.7; 95% CI 0.6-0.9).

Pathology

Gross Features

Leiomyomas are generally white, spherical, firm lesions that are well circumscribed. When cut, they tend to bulge over the adjacent myometrium and the criss-cross of the smooth muscle bundles creates a classic “whorled” or “trabeculated” appearance.

They are classified according to their location within the uterus and are described as being either, submucosal, intramural (the commonest site) or subserosal. In two thirds of cases they are multiple \(^{4}\).

Occasionally, larger leiomyomas undergo degeneration. This gives rise to dark red areas, as a result of haemorrhage or to soft and yellow areas, as a result of necrosis. Fibroids that have previously undergone infarction or degeneration can also develop white or translucent fibrous scars, focal cystic areas, mucinous areas and sometimes calcification.
Microscopic

On microscopic examination the smooth muscle cells of leiomyomata appear elongated (spindled) and bundled together (fascicles), criss-crossing each other at right angles. These fascicles can extend long distances and account for the “whorled” gross appearances. The nuclei are centrally located and often described as being “cigar like” because of their elongated shape and blunt ends. They have abundant amounts of eosinophilic cytoplasm, which stains for antibodies against muscle-specific actin, alpha smooth muscle actin, and desmin on immunohistochemistry. There is typically no cellular atypia, increase in mitotic activity or tumour necrosis.

Surrounding and supporting the smooth muscle fascicles are variable amounts of fibrous tissue and collagen.

Foci of degeneration and infarction are common in leiomyomas and microscopically appear as oedema, haemorrhage, hyaline necrosis and fibrosis. Hyaline necrosis occurs secondary to ischaemia and can be identified in over half of all leiomyomas. It is characterized by the replacement of smooth muscle cells by eosinophilic fibrillary material that frequently surrounds necrotic smooth muscle cells. Haemorrhagic areas are frequently focal and sharply demarcated.

Several microscopic variants of leiomyomas have been described and a brief description of the more common ones will follow (They are summarised in Table 1). For a more complete description the reader is referred to two excellent review articles217.
• Cellular leiomyomas
These are leiomyomas that appear significantly more cellular than normal myometrium. The tumours almost always have <5 mitotic figures per 10 high-powered field. There is no cellular atypia or necrosis.

• Leiomyomas with bizarre nuclei
These leiomyomas, also known as atypical leiomyomas have focal areas of highly bizarre cells, with enlarged cytoplasm and nuclei (giant cells).

• Mitotically active leiomyomas
These are otherwise typical leiomyomas or cellular leimyomas that have an increased number of mitotic figures, usually between 5 and 15 per high power filed.

• Smooth muscle tumours of uncertain malignant potential
Indicators of malignancy in leiomyomas are increased cellularity, nuclear atypia and increased mitotic activity with atypical mitotic figures. Smooth muscle tumours of uncertain malignant potential do not exhibit all these features, but instead typically demonstrate two of varying severity.

• Leiomyosarcomas
This section would not be complete without mentioning leiomyosarcomas. These malignant tumours tend to arise de-novo from smooth muscle cells and women with pre-existing multiple leiomyomas do not seem to be at additional risk. They are typically solitary and poorly circumscribed. On microscopic examination, they are hypercellular, exhibit cellular pleomorphism, excess mitotic activity and necrosis. They are aggressive cancers with a recurrence rate of 71% in one series\(^{18}\), and a median survival time of 10 months in another\(^{19}\).
Pathogenesis

The underlying pathogenesis and pathophysiology of leiomyomas is highly complex and is far from being completely understood. However, in recent years with the mapping of the human genome and advances in molecular biology the interplay between genes, ovarian steroids and growth factors that result in fibroid development, is slowly being elucidated.

Genetic factors

Cytogenetic examination of leiomyomas, reveals that about 40% of them have chromosomal abnormalities\(^\text{20}\). These consist of translocations, trisomies, deletions and rearrangements\(^\text{21}\). The rest appear chromosomally normal but may exhibit mosaicism within the monoclonal tumour. These karyotype abnormalities have been shown to correlate with fibroid size and site, with deletions on chromosome 7 resulting in smaller tumours compared to rearrangements on chromosome 12 (5.0 vs 8.5 cm)\(^\text{22}\). The mechanisms that link these clinical phenotypes to their underlying genotypes varies. For example, translocations can either up-regulate or down regulate a gene and its expressed protein, depending on where the gene sequence is spliced. Trisomies on the other hand generally increase gene expression, through increased gene dosing.

Of those fibroids that exhibit cytogenetic abnormalities detected on light microscopy, by far the commonest mutation to date are translocations. The commonest of which is \(t(12;14)\) (q14–15;q23–q24), which occur in approximately 20% of fibroids with karyotypic rearrangements\(^\text{23}\). Other less
common translocation partners of chromosome 12 include chromosomes 2, 4, 22, and X.24

Abnormalities in the region q14-15 on chromosome 12 have also been reported in other benign mesenchymal neoplasms, such as lipomas and salivary gland adenomas, suggesting the presence of a gene or genes important in tumorigenesis. Indeed, subsequent research has revealed the presence of the gene HMGIC within this region. This critical gene codes for the high mobility group (HMG) protein of the same name. There are a number of HMG proteins, but they all act to indirectly regulate DNA activities, such as transcription, by serving as architectural factors. Soon after the mapping of the HMGIC gene, another HMG gene, HMG1Y, was discovered on the short arm of chromosome 6 and again discovered to be expressed in fibroids. However, HMG1Y differs from HMGIC in that it is also expressed in chromosomally normal fibroids.

How HMG proteins act and how they might be involved in tumorigenesis is complicated, but by binding to the DNA they reconfigure its structure, thereby affecting the actions of other DNA binding proteins. For example they have been shown to affect the transcription of a number of cytokines and growth factors such as interleukin 2 (IL-2) and nitric oxide synthase.27,28

Before moving on to the role of endocrine and growth factors in fibroid development it is worth mentioning research looking at the familial inheritance of fibroids. Very briefly, twin studies have shown a strong susceptibility to
fibroid development, with monozygotic twins twice as likely to develop fibroids compared to dizygotic twins. Familial clustering is well described and there are also several inherited disorders associated with fibroids such as Reed syndrome, Cowden disease and Bannayan-Zonana syndrome. These studies are important because they provide insights into the location of the genes involved in the pathogenesis of leiomyomas.

Ovarian steroids and growth factors

The ovarian steroids oestrogen and progesterone are important in the pathogenesis of fibroids. It has been shown that leiomyomas have increased levels of oestrogen and progesterone receptors when compared to normal myometrium, and that they also have increased expression of the enzyme P450 that allows the cells to synthesize their own endogenous oestradiol. Oestrogens affect tumour growth by stimulating the proliferation of uterine smooth muscle cells. Progesterone on the other hand, through its production of the bcl-2 protein, increases tumour bulk, by inhibiting programmed cell death.

Growth factors increase smooth muscle cell proliferation and act in a paracrine or autocrine way. They are also responsible for the increase in the extracellular matrix associated with so many leiomyomas. This matrix consists of collagens, proteoglycans and fibronectin. The growth factors identified to date include transforming growth factor β (TGFβ), heparin-binding factors and insulin-like growth factors.
Transforming growth factor β (TGFβ), increases the production of fibronectin and collagens \(^{36}\) and decreases collagenase production. It is abnormally expressed by leiomyomas. The heparin-binding growth factors include the fibroblast growth factors (FGF), heparin-binding epidermal growth factor, vascular endothelial growth factor and platelet derived growth factor. These increase cell proliferation and also stimulate blood vessel formation (angiogenesis) \(^{37}\). Finally, the insulin-like growth factors (IGF) are small polypeptides that promote cell proliferation and differentiation. IGF-I has been found to be abnormally expressed in leiomyomas compared to normal myometrium \(^{38}\). It appears to be even more potent in combination with epidermal growth factor or platelet derived growth factor \(^{39}\).

Clinical Features

Fibroids are associated with heavy and prolonged periods, reproductive dysfunction and pain. In addition their site and or size can affect the bladder and bowel, resulting in frequency of micturition, constipation and in extreme cases renal failure from ureteric obstruction \(^{31,40}\).

There are several mechanisms that might explain their association with abnormal bleeding. Firstly, fibroids tend to increase the endometrial surface, therefore increasing the volume of endometrium shed each month. Secondly, they are associated with angiogenesis and abnormal vessel characteristics \(^{41}\). Finally it is possible that they interfere with normal uterine contractility at the time of menstruation.
The association with reproductive dysfunction has long been reported3. However, good evidence supporting this has been scarce. Studies in the past have been retrospective, of insufficient size to confirm or detect any differences and have not distinguished between submucous, intramural or subserous fibroids. Fortunately, as a result of studies from reproductive medicine units this is changing. Such studies have already shown that submucous fibroids adversely affects fertility outcome42 and more recently it has been shown that intramural fibroids reduce the chance of an ongoing pregnancy by a factor of 0.46 (0.24-0.88, p=0.02)43. Suggested mechanisms that explain these findings include distortion of the uterine cavity, reduced implantation (the endometrium overlying submucous fibroids is often atrophic), and impairment of the rhythmic uterine contractions that facilitate the passage of sperm through the uterus.

Fibroids cause acute pain, either by undergoing torsion (if pedunculated) or by undergoing degeneration. In case of the latter, the fibroid outgrows its blood supply resulting in tissue ischaemia and necrosis. Red degeneration typically occurs in pregnancy. Here, bleeding occurs within the fibroid, causing acute pain. Fibroids are also associated with dyspareunia and noncyclic pelvic pain44. However, they do not appear to be associated with dysmenorrhoea.

It is easy to see how an enlarged fibroid uterus can compresses the bladder anteriorly or the rectum/sigmoid posteriorly to give rise to bladder and bowel symptoms. Renal compromise is rare but is more likely when the leiomyomas are present in the broad ligament, close to the ureters.
Medical and Non-surgical Treatments

Medical

Current medical therapies for fibroids are limited. They include the combined oral contraceptive pill, non-steroidal anti-inflammatory drugs (NSAIDs), and various regimes based on gonadotrophin releasing hormone analogues (GnRHa). As with all treatment options for fibroids, data on their efficacy is limited or absent.\(^{45}\)

Low-dose oral contraceptives have been reported to reduce menstrual flow and increase the haematocrit without increasing uterine size.\(^{46}\) Naproxen, a NSAID, has also been evaluated as a treatment for menorrhagia. Whilst it appeared successful in reducing blood loss in women with dysfunctional uterine bleeding, it did not appear effective in reducing blood loss in women who had fibroids.\(^{47}\) GnRHa have been more rigorously assessed than the above agents and they are effective when used preoperatively to reduce tumour size and correct anaemia.\(^{48}\) Some researchers have evaluated GnRHa in their own right, rather than as adjuncts to a surgical approach. The limiting factor is oestrogen deficient side effects and a regrowth of leiomyomas upon cessation of the standard six-month treatment course (any longer results in osteopenia and increases the risk of fractures). To overcome these problems, various hormone replacement treatments have been “added back”\(^{49,50}\). As a result, some have suggested it might even be possible to control fibroid related symptoms until the menopause with intermittent GnRHa courses.\(^{51}\).
Other reported medical agents currently being evaluated or in development include the anti-progesterone mifipristone, the anti-fibrotic drug perfenidone, the alkyloid halofuginone, and interferone therapy37,52.

Non-surgical treatments

There are two non-surgical treatment alternatives that are at different stages of development. The first is uterine artery embolisation (UAE). This is a radiological procedure that uses angiography to visualise the uterine arteries. The approach is usually unilateral, via the femoral artery and aims to block (embolise) the lumen of the uterine arteries by injecting them with micro-particles, typically in the form of polyvinyl alcohol. It was first described as a pre-operative technique to reduce intraoperative bleeding at myomectomy53 before being reported in it's own right as a treatment option54. The ischaemia it induces essentially infarcts the fibroids, resulting in hyaline degeneration, a reduction in tumour size and relief of associated symptoms. However, experience of the technique remains limited. To date, the largest published observational series has only involved 400 women55. The authors in this study reported a subjective improvement in menstrual bleeding of 84% at a mean follow up of 16.7 months and a 53% reduction in uterine volume based on magnetic resonance imaging (MRI). The reported rate of hysterectomy was 3%.

UAE is not without significant morbidity. Of the three reported deaths in the literature two occurred from fatal septicaemia56,57 and the third from pulmonary embolism58. One of the main concerns surrounding the procedure
is non-target embolisation. This can result in severe buttock pain from inadvertent embolisation of the superior gluteal artery59 or in transient ovarian failure via utero-ovarian anastomosis60. Some report the latter is far from transient with an overall figure of ovarian failure in 15\%, rising to 43\% in embolized women older than 45 years61. Indeed, the same researchers, based on prospective sonographic assessment of the ovarian arterial circulation, suggest that inadvertent embolization of the ovarian arterial bed occurs routinely during UAE62.

As a result of the controversy surrounding the procedure, the Australian Gynaecological Endoscopy Society have recently called for a moratorium on UAE until more evidence is available63. In the UK, a working party set up by the Royal College of Obstetricians and Gynaecologists examined UAE and reported in 2000. The group comprised of both interventional radiologists and gynaecologists. They made a number of recommendations, including establishing a national database and only offering UAE to infertile women within the context of a clinically controlled trial, because of concerns about adverse effects on fertility64.

The other non-surgical technique that is currently being evaluated for the treatment of symptomatic fibroids is percutaneous MRI guided laser ablation. This technique evolved from laparoscopic laser ablation of fibroids65 and was first reported in 199966. Under real time MRI, 18 gauge needles are inserted percutaneously into the largest fibroid under local anaesthetic. Neodymium: yttrium-aluminium-garnet (Nd YAG) laser fibres are then passed through the
lumen of the needles and thermal energy delivered. The temperature changes are thermally mapped in real time. A temperature of 55°C has been deemed to cause irreversible tissue damage.

To date there is an ongoing observational pilot study. Provisional data on 66 women showed a mean reduction in fibroid volume of 31% (P<0.001) and an objective reduction in menstrual blood loss 67. However the data set for the menstrual blood loss outcome consisted of only 8 women.
Table 1: Distinguishing features of leiomyoma and leiomyosarcoma

<table>
<thead>
<tr>
<th>Atypia</th>
<th>Mitotic Activity</th>
<th>Cellularity</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>0-4</td>
<td>Normocellular</td>
<td>Benign leiomyoma</td>
</tr>
<tr>
<td>Absent</td>
<td>5-15</td>
<td>Normocellular</td>
<td>Mitotically active leiomyoma</td>
</tr>
<tr>
<td>Absent</td>
<td>0-4</td>
<td>Hypercellular</td>
<td>Cellular leiomyoma</td>
</tr>
<tr>
<td>Minimal</td>
<td>(>(\geq))5</td>
<td>Hypercellular</td>
<td>Uncertain malignant potential</td>
</tr>
<tr>
<td>Present</td>
<td>0-4</td>
<td>Variable</td>
<td>Atypical leiomyoma</td>
</tr>
<tr>
<td>Present</td>
<td>(>(\geq))5</td>
<td>Hypercellular</td>
<td>Hypercellular leiomyosarcoma</td>
</tr>
</tbody>
</table>

Source: Zaloudek C \(^{150}\)
figure 1. The proportion with newly detected leiomyoma among women with no previous diagnosis of leiomyoma, by age group. The *closed bar* denotes black women; the *gray bar* denotes white women.\(^6\)
Figure 2. Estimated age-specific cumulative incidence of uterine leiomyoma for black women and white women, aged 35 to 49 years⁶.
Chapter Two: Background to thesis
Historically, symptomatic fibroids have been managed surgically and traditionally via laparotomy \(^68\), although there are reports of some being removed vaginally \(^69\). More recently they have been managed hysteroscopically \(^70\) and laparoscopically \(^71\). The route chosen depends on site, size of fibroid \(^72\), local resources and patient choice. However, it is not currently clear how prevalent these approaches are. Therefore, one of the aims of my research was to determine the current surgical techniques used when managing symptomatic fibroids.

Whilst the aim of surgery is to affect a cure or at worst relieve symptoms, by its invasive nature, it is not without morbidity and each route has its advantages and disadvantages. The main challenge that the surgeon faces is the control of intra-operative bleeding, which can be massive. Indeed the main focus of my research was evaluating modified triple tourniquets both at laparotomy and laparoscopically as a technique to improve haemostasis.

Open myomectomy remains the most likely treatment option and surgical route in the UK, with 1,414 open myomectomies being performed in 2001, accounting for 7,597 bed days \(^73\). Recent data for the USA show that 37,000 myomectomies are performed annually \(^45\). However, it is a major surgical procedure with potentially considerable operative morbidity. One recent study, for instance reported that 23% patients lost over 1000 mls of blood \(^74\). Other series reported transfusion rates between 18% and 24% \(^75\) \(^76\) \(^77\).

In an effort to reduce the morbidity associated with this blood loss a number of techniques have been described. These include pre-operative medical
therapy with gonadotrophin releasing analogues (GnRHA) and intra-operative mechanical tourniquets or chemical tourniquets. However, none of these are ideal and in particular the above techniques are designed primarily to reduce intra-operative blood loss, rather than post-operative bleeding from the uterine incision(s), which remains a potential problem.

We therefore sought to improve on the triple tourniquet concept by using an absorbable polyglactin suture tied around the cervix (to act as the uterine artery tourniquet, leaving it in situ at the end of the operation) in an attempt to reduce both intra- and post-operative bleeding at open myomectomy.

Although the use of tourniquets is well established, data from randomised controlled trials is scarce and more importantly, their effect on ovarian function has not been researched. Theoretically, laterally placed ovarian vessel tourniquets used to occlude the blood supply to the uterus from above could in principle effect ovarian function. Therefore, for the first time we sought to evaluate triple tourniquets, our novel modification and to determine their effect on ovarian function within the context of a randomised controlled trial.

Finally, although the removal of fibroids might seem the logical cure for associated symptoms good data on the efficacy of this operation is lacking. We therefore sought, again for the first time, to obtain prospective data on the effect of open myomectomy on menorrhagia and quality of life.

Laparoscopic myomectomy is a “keyhole operation” that has been developed as an alternative to open myomectomy, the rationale being that the
smaller the surgical incision, the less of an insult to the abdominal wall and therefore the quicker the patient will recover and mobilise following surgery. Evidence from randomised trials, appears to support this \(^{84,85}\).

In addition to laparoscopic myomectomy, a number of other endoscopic techniques have been described, including laparoscopic myolysis (in situ destruction of the fibroid either with diathermy or laser) \(^{82,86}\), myolysis achieved by occluding the uterine arteries with bipolar electrosurgery \(^{87}\), and hand-assisted laparoscopy for megamyomectomy \(^{88}\). For my thesis, I shall only be considering the technique of laparoscopic myomectomy (the removal of fibroids, usually by morcellating, through keyhole incisions in the abdominal wall) \(^{71}\).

As at open surgery, intraoperative bleeding can be significant during the laparoscopic approach. When the technique was first described, the chemical tourniquet vasopressin was used, and though vasoconstrictor agents are effective \(^{74}\), they are not without morbidity and inadvertent systemic injection can result in cardiovascular and pulmonary complications \(^{89}\). As a result, these drugs have been banned in some European countries, notably France.

As an alternative to the use of vasoconstrictors, some surgeons have ligated the uterine arteries, either permanently with vascular clips or temporarily with a number 0-Polydioxanone (PDS) Endoknot \(^{90}\), prior to excising the fibroids from the uterus. However, even these alternatives have their drawbacks. The final arm of the research was therefore to see if the new triple tourniquets that
we had developed to reduce the morbidity at open surgery could be used to potentially reduce the morbidity at laparoscopic myomectomy.
Chapter Three: Consultant survey
Introduction

Uterine fibroids are the commonest benign tumour in women with a accumulative incidence of >80% for black women and 70% for white women at 50 years of age. Despite the introduction of new surgical and non-surgical techniques, myomectomy remains the mainstay of treatment for symptomatic fibroids. In the UK in 2001, 1,414 open myomectomies were performed, accounting for 7,597 bed days. Specific data for endoscopic myomectomy is not available but in 2001 there were, 18,880 therapeutic endoscopic operations on the uterus. In the same period 393 UAE were performed accounting for 1451 bed days.

Endoscopic removal of fibroids shortens the length of hospital stay and hastens the return to full activity. However not all United Kingdom (UK) Consultant Obstetricians & Gynaecologists offer operative endoscopy. In addition there are variations in practise amongst those that do. This survey, for the first time reports on the route of surgery, the haemostatic techniques employed at myomectomy and the availability and use of uterine artery embolisation.

Patients and Methods

The correspondence addresses of all UK Consultant Obstetricians & Gynaecologists were obtained with approval from the Royal College of Obstetricians & Gynaecologists. In addition Local Ethics Committee approval was obtained (Application No. 5855). The questionnaire was a double sided, pink coloured page, A4 size and comprised of 27 questions. Generated on
Pinpoint® software, it consisted initially of general questions about place of work, year of qualification before going on to ask in detail about open myomectomy, laparoscopic myomectomy, hysteroscopic myomectomy and uterine artery embolisation. Finally, respondents were asked to rank symptoms, in order that they were best treated by myomectomy. We did not ask if the survey was completed from memory or whether case notes or databases were reviewed.

The questionnaire was initially piloted in-house, before being posted out to each Consultant. Non-responders were sent one reminder questionnaire. The data was then analysed using Pinpoint® 2(Cambridge Software Publishing, Cambridge, United Kingdom) and SPSS® 11 software (SPSS Software, Chicago, Illinois, USA).

A copy of the questionnaire is provided in Appendix 1.

Statistics
The returned forms were entered into Pinpoint®. The data was then analysed and outputted within Pinpoint®. Where further analysis was required, the data was imported into Microsoft® Excel 2000 and then outputted using GraphPad Prism® 4 software (GraphPad Software, San Diego California, USA).

Results
Of the 1439 Consultants surveyed, 852 replied giving a response rate of 59%.
General Information

Seven hundred and thirty five Consultants (86%) performed regular sessions of gynaecology surgery. The median age of qualification was 1979 (range 1955-1992) and the average year of membership of the Royal College of Obstetricians and Gynaecologists was 1986 (range 1964-2001). Five hundred and thirty six respondents (63%) worked in a District General Hospital, two hundred and twenty seven (27%) worked in a Teaching Hospital and twenty-four (3%) worked solely in the Private Sector. The remaining seven percent did not specify their place of work.

Imaging

Seven hundred and eighty four respondents replied to the question about imaging of the fibroid uterus. Of these 82% used ultrasound to assess the site and size of fibroids, 13% MRI, 3% CT and the remainder used no imaging modality.

Open myomectomy

Five hundred and fifty (64%) Consultants performed at least one open myomectomy in 2001, with the majority (51%) performing between one and five procedures a year (Figure 7). When asked what was the smallest uterus they would manage by open myomectomy, two hundred and twenty-four (41%) replied a uterus equivalent to 12 weeks gestational size or less. Ninety-nine respondents (18%) would perform a third open myomectomy, and one hundred and fifty-five (28%) would perform an open myomectomy on a woman over 50 years of age.
Four hundred and ninety-five gynaecologists (90%) admitted to regularly using a specific technique to reduce operative bleeding (figure 8). Four hundred and sixty-six (85%) prescribed pre-operative gonadotrophin releasing hormone agonists (GnRHa), whereas intraoperative techniques were more varied and often used in combination (e.g. vasoconstrictors and cutting diathermy). Other techniques to reduce operative bleeding included supraselective embolisation (5%). One hundred and seventy (31%) reported the need for regular blood transfusions with rates varying from less than ten percent (20%) to more than thirty percent (3%).

Laparoscopic myomectomy

Ninety (11%) Consultants performed laparoscopic myomectomy in 2001 (Figure 9). The average uterine size managed laparoscopically was equivalent to a 12 weeks gestation (range 8 to 20 weeks). Nineteen (21%) would perform a laparoscopic myomectomy on a woman over 50 years of age. Thirty-five (39%) regularly used specific haemostatic techniques, cutting diathermy and pre-operative GnRHa being the commonest; only one (1%) Consultant used tourniquets (Figure 10). Of the eighteen who reported the need to convert to laparotomy, the median rate reported was 5% (range 1-5% to >20%). Of the twelve respondents who reported the need for transfusion post-operatively, nine (10%) transfused up to 10% of patients; the remaining three reported a transfusion rate of 20%.
Hysteroscopic myomectomy

Three hundred and sixty-four (43%) respondents performed hysteroscopic myomectomies. Of these, the majority (57%) carried out ≤ 5 cases a year, while thirty-one (9%) operated on > 20 cases in 2001 (Figure 11). The median size of uterus managed by hysteroscopic myomectomy was equivalent to 12 weeks gestation (range 8 to 20 weeks). Twenty-four (7%) Consultants reported the need for a blood transfusion in up to ten per cent of cases. Ten (3%) reported the need to convert to laparotomy, with a median rate of conversion of 5% (range 1-5% to >20%).

Uterine artery embolisation

Four hundred and thirty-nine (51%) respondents replied they had access to UAE. Of this group, the median number of patients referred annually was five (range 0 to >20) (figure 12). One hundred and fifty-five Consultants (26%) replied they would recommend UAE to a patient wanting to conceive.

Symptoms best treated by myomectomy

Abdominal mass was ranked as the commonest indication for myomectomy, followed by menorrhagia and pelvic pressure (2nd equal), urinary symptoms (4th) and infertility (5th).
Discussion

This survey reports on the current surgical and radiological management of symptomatic fibroids in the UK. The questionnaires may have been completed from memory and therefore recall bias cannot be excluded in interpreting the results. For instance this might have caused respondents to overestimate the total number of procedures or to underestimate the number of complications. However, until more robust and user-friendly hospital databases are the norm rather than the exception, such retrospective surveys will struggle to avoid this kind of bias. Nevertheless I still believe the results are of interest to the gynaecological community.

Of the 75% of Consultants performing open myomectomy, 87% used GnRHa pre-operatively. GnRHa is effective in reducing blood loss but can make the surgery more difficult by causing fibrosis between the tissue planes93. In addition, such pre-treatment has been shown to be associated with an increase in fibroid recurrence at six months93. Intra-operative techniques to reduce blood loss varied, with the use of cutting diathermy on the uterus and myomectomy clamps68 being the most popular. Significant numbers used vasoconstrictors and tourniquets.

The reported transfusion rate of up to 10% for 20% at open myomectomy is less than that reported in the literature74,94. This result may be genuine but could reflect recall bias of a complication. With regard to imaging of the fibroid uterus, ultrasound is the most frequently used technique, doubtless reflecting
its widespread accessibility, even though magnetic resonance imaging is probably superior.\(^{95,96}\)

Laparoscopic myomectomy was first described in 1979 \(^{71}\), the average year of medical school graduation for responders. However more than twenty years on, only 11% of our sample are performing laparoscopic myomectomy. In contrast, 41% are performing open surgery on a uterus equivalent to 12 weeks gestation, a size that can usually be managed laparoscopically.\(^{83}\) The reasons why laparoscopic surgery for fibroids has failed to become popular was not the focus of our survey, but is likely to reflect a lack of training, the non-availability of instruments such as morcellators, and not least, concerns about prolonged operating times.

As at laparotomy, GnRHa are preferred pre-operatively and intra-operatively cutting diathermy and vasoconstrictor agents were the most favoured techniques to reduce blood loss at laparoscopic myomectomy. The fact that a number of techniques are used probably reflects the fact that, while one haemostatic technique is better that nothing, none is ideal. For instance GnRHa are a risk factor for conversion to laparotomy\(^{97}\) and vasoconstrictor agents can be associated with severe iatrogenic injury.\(^{89}\)

The finding that 21% of respondents would perform a laparoscopic myomectomy and 28% an open myomectomy on a woman over 50 years of age, where historically they might have performed a hysterectomy is
interesting. This may well reflect an increasing demand for uterine preserving surgery and a societal trend away from hysterectomy.

The survey clearly shows that UK Consultants are more likely to have removed fibroids hysteroscopically than laparoscopically, although even this route was utilised relatively infrequently by the majority. Whilst the median size of uterus managed hysteroscopically was 12 weeks, a minority would operate on uteri up to 20 weeks despite the greater potential for fluid overload.

Uterine artery embolisation was first developed as a pre-operative technique to reduce intra-operative blood loss. However, it was noted that embolisation was associated with significant shrinkage of the fibroids and an improvement in symptoms that obviated the need for surgery. More than half the responders in this survey reported having access to interventional radiologists offering this procedure. Interestingly, 26% recommended UAE to a woman wanting to conceive despite the current Royal College of Obstetricians & Gynaecologists guidelines recommend that it should be only offered in these circumstances in the context of a controlled clinical trial.
Figure 7: Number of open myomectomies performed in 2001
Figure 8 Haemostatic techniques used at open myomectomy (several used more than one)
Figure 9 Number of laparoscopic myomectomies performed in 2001

Number of Consultants

0 25 50 75 100

1-5 6-10 11-20 >20

Number of procedures
Figure 10: Haemostatic technique at laparoscopic myomectomy

- GnRHa
- Tourniquets
- Vasoconstrictors
- Cutting Diathermy
- Other

Number of Respondents

Haemostatic Technique

75
60
50
40
30
20
10
0
Figure 11: Number of hysteroscopic myomectomies performed in 2001

<table>
<thead>
<tr>
<th>Number of Procedures</th>
<th>Number of Consultants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>150</td>
</tr>
<tr>
<td>6-10</td>
<td>70</td>
</tr>
<tr>
<td>11-20</td>
<td>30</td>
</tr>
<tr>
<td>>20</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 12: Number of women referred by Consultants for Uterine Artery Embolisation in 2001
Chapter Four: Prospective randomised controlled trial of triple tourniquets at open myomectomy
Introduction

Improvements in diagnostic imaging reveal that uterine fibroids are more prevalent than originally described3, recent data suggesting a cumulative incidence of at least 70\% for a woman aged 50 years of age6. When symptomatic, fibroids are associated with reproductive dysfunction, abnormal bleeding and pelvic pressure symptoms. Recent evidence has also suggested a link with dyspareunia and noncyclic pelvic pain44.

In the UK in 2001 1,414 open myomectomies were performed73. By comparison 44,461 hysterectomies were performed in the same period. Recent data for the USA show that 37,000 myomectomies are performed annually45. Open myomectomy is a major surgical procedure and is associated with considerable morbidity, in particular operative. One recent study, for instance, reported that 23\% patients lost over 1000 mls of blood74. Other series reported transfusion rates between 18\% and 24\%75 76 77.

Haemostatic tourniquets to reduce intra-operative bleeding have long been available99, but data on their efficacy from controlled trials is lacking. We set out to evaluate the use of triple tourniquets in controlled conditions and for the first time investigates the hypothesis that leaving a semi-permanent tourniquet around the uterine artery reduces postoperative bleeding from the uterine incisions, a well recognised sequel to surgery79-81.
Patients and Methods

Study Participants

From January 2002 to July 2003, patients seen in the Fibroid Clinic and Gynaecology Clinic at the Royal Free Hospital, and Gynaecology Clinic at the Whittington Hospital, London, were assessed for entry into this randomised controlled trial. Entry criteria were symptomatic fibroids, a uterine size equivalent ≥ 14 weeks gestation and a request of myomectomy. Exclusion criteria were a history of a bleeding disorder, concurrent anticoagulant therapy, a haemoglobin less than 10.5 g/dl at the time of surgery, and premalignant endometrial histology.

Diagnosis of uterine fibroids was based on clinical examination and ultrasound scan. Women complaining of abnormal uterine bleeding (e.g. menorrhagia, intermenstrual bleeding) underwent outpatient diagnostic hysteroscopy and endometrial biopsy.

Pre-operative gonadotropin releasing hormone agonists (GnRHa) were only prescribed if the patient was anaemic (Hb < 10.5 g/dl) or if uterine size was > 20 weeks gestation size (to facilitate the use of a low transverse incision at myomectomy).

The study protocol was approved by the Local Ethics Committee (Application No. 5855).
Power Calculation

Based on a review of the published literature74,102, we hypothesised that 75% of our control group would lose more than 500 mls of blood compared with 25% of those managed with tourniquet. For the probability of a type 1 statistical error (two-sided) to be less than 0.05 and the probability of a type 2 error to be less than 0.2 we calculated that we would need 14 patients in each group, giving a total of study size of 28 women.

Randomisation

Patients were allocated to the control or tourniquet by means of sealed, sequentially numbered opaque envelopes containing computer-generated random numbers. Randomisation was done immediately before surgery, and patients were not informed of their assignment.

Surgical technique

All patients underwent a routine open myomectomy performed by one of three operators (Alex Taylor, Adam Magos or Marcus Setchell) based on the technique described by Buttram and Reiter3. The default skin incision was a suprapubic transverse one. The uterus was exteriorised and the bowels packed away using two large wet swabs. We tried to use a single midline anterior uterine incision whenever possible. Blood loss was assessed by weighing swabs and measuring blood collected by suction. To calculate the amount of blood lost in the surgical swabs the following formula was used:

\[
\text{(Wet swab weight (g) - dry swab weight (g)) / 10.06 g/ml (the density of blood)}
\]
The volume of blood measured by the suction was recorded in millilitres. Suction drains were left inside for 48 hours. All patients received perioperative thromboprophylaxis with anti-embolic stockings and heparin, and antibiotic prophylaxis with co-amoxiclav (Augmentin®, GlaxoSmithKline).

Triple tourniquets

Three tourniquets were applied prior to myomectomy, one to occlude the uterine arteries and two more to occlude the left and right ovarian vessels. The broad ligament was opened anteriorly and the bladder reflected inferiorly. Next, a small opening was made in the avascular space in the posterior leaf of the broad ligament on either side of the uterine isthmus superior to the uterine vessels and ureter. A number 1 polyglactin tie was threaded through the two holes and tied tightly anteriorly around the cervix at the level of the internal os, using a Roeder slipknot, which could be retightened using a laparoscopic knot pusher if required.

A 20 cm length of narrow bore plastic tubing (we used a 3 mm Westcott® anaesthetic anti-syphon set) was used for the ovarian tourniquets based on the technique described by Thompson. The tubing was passed through the defect in the broad ligament and looped around the infundibulopelvic ligament lateral to the fallopian tube and ovary. The two ends of the tubing were threaded through a short length of 24 Fr Foley catheter tubing, which acted as a cushion, and pulled tight and held with a small clamp to occlude the ovarian vessels. The procedure was repeated on the contralateral side.
Control group

Women in the control group did not receive tourniquets.

Outcome measures

Primary outcome

- Intra-operative blood loss

Secondary outcomes

- Post-operative blood loss (assessed by surgical drains and changes in haemoglobin concentration)
- Blood transfusion rates
- Operative morbidity

Statistics

Data was analysed using t test (paired and unpaired), Mann-Whitney test, Wilcoxon signed rank test, and Fisher’s exact test. The analysis was performed GraphPad Prism® 4 software (GraphPad Software, San Diego California, USA) and SPSS® 11 software (SPSS Software, Chicago, Illinois, USA). We assumed significance at the 5% level (p<0.05).

Results

The 28 patients were recruited from a cohort of 171 patients referred to hospital for management of moderately enlarged uterine fibroids. Of the 30 women for whom open myomectomy was judged appropriate, one patient was excluded because of anaemia due to thalassemia, and another declined to be
randomized (figure 13). The two-randomization groups were similar in baseline characteristics, including uterine size (Table 2).

Primary outcome

- *Intra-operative blood loss*

The operative details are summarised in Table 3. All myomectomies were completed successfully. Operating times were not significantly different between the two groups (p= 0.74). The mean time the ovarian tourniquet was applied for in the tourniquet group was 52 minutes (range 26 to 77 minutes). Intra-operative bleeding was 1870 mls greater in the control group compared with those given tourniquets (95% CI 1159-2580 mls, p<0.0001).

Secondary outcomes

- *Blood transfusion rates, post-operative blood loss (assessed by surgical drains) and operative morbidity*

The transfusion rate in the control group was 79% compared to 7% in the tourniquet group (p=0.0003) (Table 4). Postoperatively, there were no statistically significant differences in pelvic drainage between the two groups at 20 minutes and 48 hours. Morbidity in the control group was significantly greater (8 versus 1 episodes, p=0.0128), especially the incidence of pyrexia > 38°C (Table 5).
Discussion

For the first time under controlled conditions, this study shows that triple
tourniquets applied to the uterine and ovarian vessels significantly reduce
operative blood loss, the need for blood transfusion and perioperative
morbidity at open myomectomy. Although the study did not find a statistically
significant benefit to leaving the absorbable uterine tourniquet in situ after the
myomectomy, this was not a primary end point and the study proved
underpowered for this outcome. The study was inclusive rather than exclusive
and by including patients who had undergone previous laparotomy, including
previous myomectomy, these results are as generalisable as possible.

Temporary haemostatic occlusion of the uterine blood supply at open
myomectomy was first achieved using metal clamps68 and evolved from
earlier practices of caustic packs105 and ligation of the uterine arteries106. In
the original description, both the uterine arteries and the ovarian vessels were
occluded and although there are reports of occluding only the uterine arteries
78, the technique of total vascular occlusion of the uterine blood supply is still
taught today104.

Chemical tourniquets using vasopressin have also been described74,76. One
randomized trial comparing intramyometrial vasopressin with uterine
tourniquet did report a significant advantage to the former, but ovarian
tourniquets were not applied, the uterine was tourniquet was released every
20 minutes, and most importantly, blood loss in swabs were not included in
the estimation of operative blood loss74. Another trial utilised occlusion of
both the uterine and ovarian vessels and reported no difference compared with vasopressin76. It seems, therefore, that triple tourniquets are effective as vasopressin injection, but without the risks of the latter to the extent that the use of vasoconstrictors at myomectomy is banned in some European countries89,107,108.

Whilst intra-operative blood loss in the tourniquet group was broadly comparable to previously published data, the results in the control group were considerably in excess of what I expected based on a review of the literature. One explanation could be the use of different methods of blood loss collection and estimation as discussed earlier. Another reason for this discrepancy might be differences in the amount of fibroid tissue removed. Previously published series do not to include data on the weight of fibroids removed, and yet it is known that estimation of uterine size is only a rough estimate of uterine weight and therefore fibroid weight. One study, for instance, found that a uterus which on bimanual examination feels equivalent to an 20 week gestation has on average weight of about 1000g, but with a standard deviation of over 500g109. As intraoperative bleeding is proportional to the amount of fibroid tissue removed, differences in fibroid weight can account for major differences in blood loss data76.

In our study, pre-operative GnRHa was only used under certain well-defined conditions. Although such pre-treatment has been shown to be effective in reducing blood loss at open myomectomy93, these drugs are expensive, are associated with estrogen deficient side effects, can make the surgery more
difficult by causing fibrosis between the tissue planes, and most importantly, have been shown to be associated with an increase in fibroid recurrence at six months. Recently the use of misoprostol as a pre-operative medical agent has been described but this technique requires further evaluation.

The use of an absorbable tourniquet that is left in situ around the uterine arteries to reduce perioperative bleeding and subsequent pelvic adhesions, is a novel idea and is potentially superior to the recently reported techniques of permanent bilateral ligation of the ascending branches of the uterine artery.

In one of these groups, the investigators cut and ligated the uterine artery with 2.0 vicryl. In the other group investigators, either permanently tied off the uterine arteries with silk sutures at laparotomy or occluded them with hemoclips at laparoscopy. All of these methods appeared to reduce intra-operative blood loss. However because they are permanent, their use like UAE in women who wish to preserve their fertility is of concern. Despite this recently reported two year data suggests that permanent ligation leads to improved long term results and less fibroid recurrence. In addition a number of successful pregnancies were also reported.

The absorbable tourniquet in theory should have less effect on subsequent fertility. Longer term follow up is required to assess it effect on fibroid recurrence. That it did not significantly reduce post-operative bleeding may be because the study was underpowered to examine such an outcome. It could also be that the use of drain volumes is a crude outcome measure against which to evaluate the tourniquet as it reflects not only blood loss but serous
fluid that oozes from the uterine incisions and therefore potentially might be erroneous.
Figure 13. Trial Profile

- Patients referred with fibroids: 171
 - Conservative treatment: 95
 - Surgical treatment: 70
 - Uterine artery embolisation: 6
 - Endoscopic myomectomy: 34
 - Open myomectomy: 30
 - Hysterectomy: 6
 - Suitable for study: 29
 - Agreed to study: 28
 - Control: 14
 - Completed study: 14
 - Tourniquets: 14
 - Completed study: 14
Table 2. Patient baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (N=14)</th>
<th>TOURNIQUET GROUP (N=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>39.5 (SD 4.7)</td>
<td>42.6 (SD 6.7)</td>
</tr>
<tr>
<td>Parity</td>
<td>0 (0 to 3)</td>
<td>0 (0 to 3)</td>
</tr>
<tr>
<td>Pre operative Hb (g/dl)</td>
<td>11.8 (SD 0.7)</td>
<td>12.2 (SD 0.9)</td>
</tr>
<tr>
<td>GnRHa</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Previous surgery</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Uterine Size</td>
<td>18 (SD 3.7)</td>
<td>17 (SD 2.4)</td>
</tr>
<tr>
<td>Mean number of fibroids</td>
<td>2.6 (1 to 4)</td>
<td>2.9 (1 to 4)</td>
</tr>
<tr>
<td>Cases of multiple fibroids(>5)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mean diameter of largest fibroid (cm)</td>
<td>7.7 (SD 2.5)</td>
<td>8.4 (SD 2.9)</td>
</tr>
</tbody>
</table>
Table 3. Operative details

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (N=14)</th>
<th>TOURNIQUET GROUP (N=14)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse/Vertical incision</td>
<td>12/2</td>
<td>14/0</td>
<td>0.48</td>
</tr>
<tr>
<td>Operating time (mins)</td>
<td>118 (SD 40)</td>
<td>114 (SD 27)</td>
<td>0.74</td>
</tr>
<tr>
<td>Tourniquet time (mins)</td>
<td>-</td>
<td>52 (SD 17)</td>
<td>-</td>
</tr>
<tr>
<td>No. fibroids removed</td>
<td>4.5 (1 to 34)</td>
<td>10.5 (1 to 24)</td>
<td>0.35</td>
</tr>
<tr>
<td>Weight fibroids (g)</td>
<td>481 (SD 330)</td>
<td>395 (SD 246)</td>
<td>0.44</td>
</tr>
<tr>
<td>Blood loss (ml)</td>
<td>2359 (SD 1241)</td>
<td>489 (SD 362)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Table 4: Postoperative blood loss and transfusion data

<table>
<thead>
<tr>
<th></th>
<th>CONTROL GROUP (N=14)</th>
<th>TOURNIQUET GROUP (N=14)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain at 20 mins (ml)</td>
<td>20 (5 to 120)</td>
<td>15 (0 to 40)</td>
<td>0.167</td>
</tr>
<tr>
<td>Total drain at 48 hours (ml)</td>
<td>220 (70 to 320)</td>
<td>150 (0 to 420)</td>
<td>0.165</td>
</tr>
<tr>
<td>Hb drop pre-op to day 2 (g/dl)</td>
<td>2.96 (SD 0.92)</td>
<td>2.79 (SD 0.33)</td>
<td>0.79</td>
</tr>
<tr>
<td>No. patients transfused</td>
<td>11 (79%)</td>
<td>1 (7%)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Blood</td>
<td>59 units</td>
<td>2 units</td>
<td>0.0005</td>
</tr>
<tr>
<td>Fresh frozen plasma</td>
<td>21 units</td>
<td>0</td>
<td>0.016</td>
</tr>
<tr>
<td>Platelet</td>
<td>2 unit</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>CONTROL</td>
<td>TOURNIQUET</td>
<td>P</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Total morbid events</td>
<td>8 *</td>
<td>1</td>
<td>0.0128</td>
</tr>
<tr>
<td>Pyrexia > 38 degrees C</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Post-op haemorrhage</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Repeat surgery</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bowel obstruction</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wound infection</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wound haematoma</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chest infection</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DVT</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Involved 5 patients
Chapter Five: A feasibility study of triple tourniquets at laparoscopy myomectomy
Introduction

Fibroids are associated with menorrhagia, pelvic pressure symptoms and infertility. Laparoscopic myomectomy, preserves fertility, is associated with less analgesia requirement and a shorter inpatient stay\(^3,4\). However, as at open myomectomy bleeding can be considerable. Hemostatic techniques at open surgery are well described but surgical options at laparoscopy are limited.

We have recently described the use of a novel absorbable cervical tourniquet at open myomectomy\(^5\). Here we report our use of it during laparoscopic myomectomy.

Patients and Methods

Women with symptomatic uterine leiomyoma who were judged to be suitable for laparoscopic myomectomy were recruited from the Fibroid Clinic at the Royal Free Hospital, London between May 2002 and May 2003. Inclusion criteria included a wish to retain their fertility, and uterine size less than or equal to a 14 week gravid uterus on clinical examination. Exclusion criteria included women with mainly intra-cavity myomas, pedunculated subserous myomas, a history of a bleeding disorder, concurrent anticoagulant therapy, haemoglobin less than 10.5 g/dl and previous myomectomy. The study protocol was approved by the Local Ethics Committee (Application No. 5855).

Pre- and post-operative assessment

All women underwent pre-operative ultrasonography to assess the site and size of the fibroids. Five women received 3 months pre-operative treatment
with Gosere lin (Zoladex®, Astra Zeneca, London, UK) either to reduce the
size of their fibroids, or to correct anaemia. All patients were given
prophylactic antibiotics during and for 5 days after surgery (typically
Augmentin®, GlaxoSmithKlein, Uxbridge, UK).

Surgical Technique

A standard 4-port laparoscopy was performed under CO₂ pneumoperitoneum
using a subumbilical or left upper quadrant port for the laparoscope, a 10mm
port in the left lower quadrant (ipsilateral side to the surgeon), and two 5mm
ports placed suprapubically and in the right lower quadrant respectively. The
uterovesical fold was opened and the bladder identified. A long No. 1
polyglactin tie was introduced on a pointed grasper via the suprapubic port
and threaded around the cervix through small incisions in the avascular
space, in the broad ligament on either side of the uterine isthmus immediately
lateral and superior to the uterine vessels. The suture was brought out
through the suprapubic port and tightened anteriorly on to the cervix using an
extracorporeal Roeder knot to occlude the uterine vessels (Figure 14). The
suture was left long so that the Roeder knot could be retightened if required.

An additional number 1 polyglactin tie was inserted via the suprapubic port,
passed through the incision in the left broad ligament and carried under the
Fallopian tube and ovary before being brought out through the left lower
quadrant port. The other end of the tie was pulled into the peritoneal cavity
and also brought out through the left lateral port so that this pedicle included
the infundibulo-pelvic and round ligaments, with the ovary, fallopian tube and
ovarian ligament lying medial to the tourniquet. A Roeder knot was then tied to occlude the left ovarian vessels within this pedicle, and cut 3 cm from the knot so that it could more easily be removed at the end of the myomectomy. The procedure was then repeated on the contralateral side to occlude the right ovarian blood supply (Figure 15).

With all three tourniquets in place, a laparoscopic myomectomy was then carried out using bipolar desiccation and blunt and sharp dissection to excise the myoma(s) (Figures 16 & 17). The uterine incision(s) were carefully repaired in layers before cutting the ties around the infundibulopelvic ligaments. The uterine artery tourniquet was retightened at the end of the surgery and cut short, leaving it in situ to dissolve over the next few weeks. The excised fibroids were removed by morcellation or via a posterior colpotomy, and a size 10 Redivac® drain left in before deflation and closure of the abdominal wall incisions.

Postoperative care

Postoperative management was routine. Haemoglobin estimation was repeated on the second postoperative day. Patients were discharged from hospital when medically fit and reviewed 6 weeks after surgery.

Outcome measures

Primary outcome measure

- Intra-operative bleeding*
Secondary outcome measures

- Blood transfusion rates
- Post-operative blood loss (assessed by pelvic drains)
- Operative morbidity

* Blood loss was estimated by meticulous collection all suction fluids. To take account of the use of irrigation fluid (Normal Saline), the actual blood loss was calculated from the dilution of haemoglobin in the suction reservoir compared to the pre-operative haemoglobin.

Results

During the study period, a total of 171 patients were seen in the Fibroid Clinic, and 70 underwent myomectomy (open myomectomy 30, laparoscopic myomectomy 13, hysteroscopic myomectomy 21). Of those treated laparoscopically, 10 were done using triple tourniquets while the three patients with single, pedunculated myomas were managed without.

The average age of the patients was 38 years (29-45), and their parity 1 (0-2). Nine were Caucasian and one was Afrocaribbean. Nine women had had no previous surgery while one had undergone a lower segment caesarean section. The median uterine size was equivalent to 12.4 weeks gestation (range 8-14). Pre-operative ultrasound assessment identified an average of two fibroids per patient (range 1-10), ranging in diameter from 3.8 to 9.8 cm (median 6.8). The myomas were intramural in six cases, and intramural and subserosal in four.
All procedures were completed successfully by the intended route. An average of 2 fibroids were removed per patient (range 1-10), with a median total weight of 209 g (range 22-290). Total operating time ranged from 100 to 265 mins (median 178), the ovarian tourniquet being applied for an average of 71 mins (range 45-158). Measured intra-operative blood loss averaged 163 ml (range 33-827). Post-operatively, the median loss in the pelvic drain at 20 minutes was 20 mls (range 10-280), and at 24 hours 248 ml (range 90-430). The average drop of the day 2 haemoglobin was 2 g/dl (range 0.7-4.9). In the learning phase of the technique, one patient received a two-unit blood transfusion having sustained a vessel injury in the broad ligament during insertion of the right ovarian pedicle suture. There were no other complications.

Discussion

Surgical techniques to reduce blood loss at open myomectomy are well described and include myomectomy clamps, tourniquets, and vasoconstrictor agents. Haemostasis at laparoscopic myomectomy can be just as challenging as at open surgery with the caveat that this route of surgery tends to be reserved for the smaller uterus with fewer fibroids. When first described in the late seventies, bleeding at laparoscopic myomectomy was minimized by injecting a vasoconstrictor into the myometrium. Whilst vasoconstrictor agents are effective, as has already been mentioned, they are not without risks. Similarly, there are advantages and disadvantages to
medical pre-operative treatment with gonadotrophin releasing hormone analogues (GnRHa) as discussed earlier.

In theory, occlusion of the uterine blood supply with tourniquets to create a “dry” surgical field should be possible at laparoscopic myomectomy as it is open myomectomy. Temporary occlusion of the uterine isthmic vessels with a number 0-Polydioxanone (PDS) Endoknot has recently been reported with promising results. However, the blood supply to the uterus comes not only from the uterine artery but also from the anastomosis with the ovarian vessels, and this is the reason why occlusion of both the uterine and ovarian blood flow to the uterus is an established technique at laparotomy. We applied the same principles to laparoscopic myomectomy, and our feasibility study shows that such temporary devascularisation can be applied successfully at laparoscopy as well.

The procedure differs from the traditional laparotomy tourniquet technique in that an absorbable tourniquet was tied around the uterine vessels, and not removed at the end of surgery but left in situ to dissolve over the ensuing weeks. (See previous section on open myomectomy study). As our study was uncontrolled, we do not know if the use of absorbable tourniquets at laparoscopy reduces the morbidity of myomectomy as they do at laparotomy, but significant postoperative bleeding did not occur in any of our patients. Following the case of the one patient who was transfused, the technique has been slightly modified, and the surgeon is now careful to reflect the anterior
leaf of the broad ligament to ensure visualisation of an avascular space in the posterior leaf through which the tourniquet can be passed.
figure 14 Uterine artery tourniquet at laparoscopic myomectomy

A- Straight knot pusher tightening uterine artery tourniquet

B- Opened uterovesical fold

C- Cervix
figure 15 Right ovarian tourniquet at laparoscopic myomectomy

A- Application of right ovarian tourniquet

B- Right ovary and tube, held medially prior to tightening of tourniquet

C- Uterus
figure 16 Triple tourniquets in place at laparoscopic myomectomy

A- Uterine artery tourniquet
B- Left ovarian tourniquet
C- Right ovarian tourniquet
D- Opened uterovesical fold exposing cervix
E- Uterus
figure 17 Excision of fibroid at laparoscopic myomectomy

A- Dissection of fibroid

B- Uterus

C- Claw forceps
Chapter Six: The effect of tourniquets on uterine blood flow
Introduction

The evaluation of uterine and ovarian haemodynamics post uterine artery embolisation (UAE) is well reported62,113,114. But data on uterine perfusion post myomectomy is sparse115, with no data in the literature on serial measurements post open myomectomy. Our data for the first time uses Doppler ultrasound to assess the effect of myomectomy on uterine artery blood flow and to assess the effect on the haemodynamic changes associated with a novel absorbable cervical tourniquet.

Patients and methods

From January 2002 to July 2003, patients seen in the Fibroid Clinic and Gynaecology Clinic were assessed for entry into a randomised controlled trial, evaluating the use of tourniquets as a haemostatic technique to reduce blood loss at open myomectomy and in particular the use of an absorbable polyglactin tie (cervical tourniquet) left in situ at the end of the operation. The main outcome measure was intra-operative blood loss which is reported in Chapter Four. However we were also interested in assessing the effect on uterine artery blood flow post-operatively. It is this data that is presented here. The trial design has already been described in detail in Chapter Four, but it is worth reiterating the relevant points in relation our study of uterine blood flow. All patients underwent a routine open myomectomy. In the tourniquet group, three tourniquets were applied prior to myomectomy, one to occlude the uterine arteries and two more to occlude the left and right ovarian vessels. To occlude the uterine arteries, a number 1 polyglactin tie was tied tightly anteriorly around the cervix at the level of the internal os using a Roeder
slipknot, which could be retightened using a laparoscopic knot pusher if required. This remained insitu at the end of the operation. For the ovarian tourniquets we used a 20 cm length of 3mm plastic anti-syphon tubing. The tubing was passed through the broad ligament and looped around the infundibulopelvic ligament lateral to the fallopian tube and ovary. The ovarian tourniquets were released at the end of the procedure.

All patients were scanned with a Type HDI 3000 Philips ATL scanner (Eindhoven, Netherlands) equipped with a C8-4 MHz trans-vaginal probe. Colour Doppler sonography was used to identify the uterine artery just lateral to the cervix. The resistance index (RI), pulsatility index (PI) and peak systolic velocity (PSV) were then calculated from the flow velocity waveforms of both uterine arteries. Care was taken to ensure that angle correction was applied when measuring PSV. To optimise flow imaging and to eliminate noise and aliasing adjustments were made to the pulse repetition frequency, wall filter and sample volume size. Doppler measurements were obtained pre-operatively and post-operatively at day 5, 6 weeks, 3 months and 6 months. All Doppler measurements were performed by one of the researchers (S.B). The day of the cycle was not considered when performing the ultrasound assessments.

Pre-operative gonadotropin releasing hormone agonists (GnRHa) were only prescribed if the patient was anemic (Hb < 10.5 g/dl) or if uterine size was > 20 weeks gestation size (to facilitate the use of a low transverse incision at myomectomy). The study protocol was approved by the Royal Free Hospital,
Local Ethics Committee (Application No. 5855) and written informed consent was obtained from all participants.

Statistics

Data was analysed with independent sampled t test and paired t test using SPSS® 11 software (SPSS Software, Chicago, Illinois, USA). We assumed significance at the 5% level (p<0.05).

Results

Of the 28 patients (14 in each group) who underwent open myomectomy, data was obtained for 12 patients in the tourniquet group and 11 in the control group. Three patients did not attend for their pre-operative Doppler assessment and one patient in each group did not subsequently attend for follow up measurements.

The two-randomization groups were similar in baseline characteristics, including uterine size, number of fibroids and size of fibroids (Table 2). Where there were more than five fibroids, the uterus was reported as containing “multiple fibroids”. Therefore when the mean number of fibroids was calculated, these uteri were excluded from the analysis.

RI, PI and PSV values were calculated for both right and left arteries. There were no significant differences between the two vessels (figures 18-20) and so for ease of data interpretation, the following results relate only to the right
uterine vessel indices. There were no differences between the two groups for either uterine artery Doppler resistance indices at 5 days (p=0.70), 6 weeks (p=0.17), 3 months (p=0.40), 6 months (p=0.41) post-operatively (figure 18a & b) or for pulsatility indices at 5 days (p=0.62), 6 weeks (p=0.53), 3 months (p=0.70), 6 months (p=0.38) post-operatively (figure 19a & b). However the peak systolic velocity (PSV) was significantly reduced in the tourniquet compared to the control group at 5 days (p=0.014). Thereafter there were no significant differences in the PSV between groups at 6 weeks (p=0.44), 3 months (p=0.07), or 6 months (p=0.53) (figure 20a & b).

Discussion

Ultrasound imaging was first used in gynaecology in the 1950’s 116. Since then it has been developed and refined almost beyond all recognition. It is now widely used throughout medicine and has become a routine extension of clinical examination. Doppler ultrasound is a more sophisticated version of basic ultrasound technology. It allows the assessment and analysis of a moving target and is therefore a very useful non-invasive tool in the evaluation of blood flow. The detailed physics of the Doppler equipment is beyond the scope of this thesis, but the basic principle is that of the Doppler effect. This can be explained as follows. When a source of sound waves and an observer are approaching each other the observed frequency of the sound is increased (the pitch/tone of the sound goes up). The explanation is that the observed frequency of sound depends upon the number of wavefronts reaching the ear per second. So the closer the source of sound to the observer, the more
wavefronts hit the ear, so the tone of the sound goes up. The shift between the emitted frequency and the observed frequency is called the Doppler effect. By directing an ultrasound wave (generated from a piezoelectric crystal, mounted in the transducer probe) at blood cells within vessels, this Doppler effect can be measured and displayed. This Doppler signal can then be analysed to reveal the underlying clinical condition of the vessel. Colour Doppler sonography is a non-invasive technique that can be used to assess blood flow. It is based on the assumption that red blood cell motion is the same as blood flow. The amplitude of each Doppler component corresponds to the number of red blood cells moving at a specific velocity and at a particular time. Flow away from the transducer is displayed in shades of dark blue, bright blue and blue-green. Different velocities also depicted by different colour shades. It was colour Doppler sonography that was used to locate the uterine artery. Once located the Doppler waveform of the uterine artery was acquired by means of pulse Doppler wave equipment.

The pulsatility index (PI) is the difference between the highest value of the waveform and the lowest value of the waveform divided by the mean value (figure 21). The A: B ratio describes the rate at which flow velocities fall away during diastole. It closely responds to peripheral resistance. The resistance index (RI) makes use of the same two points as the A: B ratio but expresses the values in a more convenient form. It is for that reason the RI index is reported rather than the A: B ratio. The peak systolic velocity is commonly used to assess arterial stenosis in peripheral vascular disease. As a general rule the greater the degree of arterial narrowing the higher the peak
systolic velocity, unless there is complete arterial occlusion, in which case there will be no flow (Table 6).

Polyglactin sutures are completely absorbed by slow hydrolysis at 60-70 days post operatively. However their tensile strength diminishes rapidly, such that only 40% remains at three weeks. We would therefore expect them to have a temporary effect on uterine artery blood flow (ie. post-operative haemostasis) before their tensile strength diminishes, facilitating a return towards normal reperfusion. Our PSV data clearly demonstrates this but surprisingly, we did not see a rise in PSV in all patients, as we would have expected at day 5. In some cases the tourniquet may have loosened, whilst in other cases we might well have sampled smaller collateral vessels, no longer being able to detect the occluded uterine artery. This later point is important, because occluding the main blood supply to the uterus might in theory put it at risk of being infarcted. The opening up of detectable collaterals is reassuring and is consistent with the many reported techniques of artery ligation to control obstetric haemorrhage79,118,119 and more recently with UAE55.

The apparent lack of effect on the RI and PI is reassuring, but slightly surprising. RI and PI reflect vascular impedance, which in turn approximates resistance to arterial flow. These values are significantly increased following UAE. That they should not appear to be significantly affected by the cervical tourniquet may be explained by the fact that the tourniquet works from outside in rather than inside out as in UAE. That is to say the uterine artery lies within
the connective tissue of the cervix and broad ligament, tissue that may modulate the effect of the tourniquet and therefore the RI and PI. The use of tourniquets at open myomectomy is not new, but they are effective and our novel cervical tourniquet appears to reduce peri-operative ooze. Ultrasound Doppler evaluation of this technique suggests that there are no long-term harmful effects on uterine reperfusion.
figures 18a & 18b. Changes in right uterine artery Doppler resistance index

Controls

<table>
<thead>
<tr>
<th>Time</th>
<th>Preop</th>
<th>Day 5</th>
<th>6 weeks</th>
<th>3 mths</th>
<th>6 mths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance Index</td>
<td>0.0</td>
<td>0.45</td>
<td>0.5</td>
<td>0.55</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tourniquet

<table>
<thead>
<tr>
<th>Time</th>
<th>Preop</th>
<th>Day 5</th>
<th>6 weeks</th>
<th>3 mths</th>
<th>6 mths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance Index</td>
<td>0.0</td>
<td>0.45</td>
<td>0.5</td>
<td>0.55</td>
<td>1.0</td>
</tr>
</tbody>
</table>
figures 18 c & 18d. Changes in left uterine artery Doppler resistance index

Control

Time

Tourniquet

Time
figures 19 a & 19b. Changes in right uterine artery Doppler pulsatility index

Control

Tourniquet

Time
Figure 19c & 19d. Changes in the left uterine artery Doppler pulsatility index

Control

![Control Pulsatility Index Graph]

Tourniquet

![Tourniquet Pulsatility Index Graph]
Figure 20a & 20b. Right uterine artery peak systolic velocity

Control

Pre-op Day 5 6 weeks 3 mths 6 mths

Tourniquet

Pre-op Day 5 6 weeks 3 mths 6 mths
Figure 20c & 20d. Left uterine artery peak systolic velocity

Control

Peak systolic velocity

Pre-op Day 5 6 weeks 3 mths 6 mths

Time

Tourniquet

Peak systolic velocity

Pre-op Day 5 6 weeks 3 mths 6 mths

Time
Figure 21. A Schematic waveform showing how the common indices that are applied to the Doppler waveform are obtained.

Pulsatility index (PI) = A-B/Mean

A/B ratio = A/B

Resistance index (RI) = A - B/A
Table 6. Relationship between peak systolic velocity and degree of stenosis

<table>
<thead>
<tr>
<th>Diameter of Stenosis (%)</th>
<th>Peak systolic velocity (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-39</td>
<td><110</td>
</tr>
<tr>
<td>40-59</td>
<td>110-149</td>
</tr>
<tr>
<td>60-79</td>
<td>150-249</td>
</tr>
<tr>
<td>80-99</td>
<td>250-610</td>
</tr>
<tr>
<td>100</td>
<td>O</td>
</tr>
</tbody>
</table>
Chapter Seven: The effect of tourniquets ovarian function
Introduction

In the original description of the use of tourniquets at myomectomy both the uterine and the ovarian arteries were occluded to create as “dry” a surgical field as possible106,120. Though this still remains standard teaching104, in theory occluding the ovarian blood supply may have harmful effects. On reviewing the literature, research in this area is either absent or unpublished. By contrast ovarian function post hysterectomy121-123 and post UAE60,124 is well reported. Our tourniquet studies investigate this important outcome for the first time.

Patients and Methods

In both the open myomectomy RCT and the laparoscopic myomectomy pilot study (Chapters three and four), follicle stimulating hormone (FSH) levels were checked on day two of the cycle pre-operatively and again on day two of the cycle three months post-operatively.

Statistics

Pre- and post-operative changes in serum FSH concentrations were compared using Wilcoxon signed rank test for paired data. The analysis was performed using GraphPad Prism® 4 software (GraphPad Software, San Diego California, USA. We assumed significance at the 5% level (p<0.05).
Results

- **Ovarian function, assessed by changes in serum FSH**

Of the 28 patients in the open myomectomy RCT, complete data was obtained for 12 patients in the tourniquet group and for 11 patients in the control group. In the laparoscopic study data was obtained for five women, the remainder received pre-operative treatment with Goserelin (Zoladex®, Astra Zeneca, London, UK) either to reduce the size of her fibroids or to correct anaemia.

In the laparotomy RCT the mean time the ovarian tourniquet was applied for was 52 minutes (range 26 to 77 minutes). In the laparoscopy study the mean time the ovarian tourniquet was applied for was 71 minutes (range 45 to 158 minutes).

In the open myomectomy study, there were no significant differences in day two serum FSH concentrations at three months after surgery compared to baseline values in either the control or tourniquet group (p = 0.25 and p=0.41 respectively) (Figures 22a & 22b). Similarly changes in day two serum FSH concentration were not statistically significant in the laparoscopic tourniquet study (p=0.62) (Figure 23).

Discussion

In the original reports of myomectomy, the ovarian blood supply was occluded with ring forceps. Concern about ovarian ischemia led to one surgeon placing a rubbershod clamp medial to the ovaries to preserve ovarian perfusion.
This had a gap in the clamp jaws to prevent tubal injury, but importantly still occluded the blood supply to the uterus via the round ligament (Sampson’s artery). However the placement of such clamps can hamper and impede the myomectomy. As a result, this reported technique is rarely used.

For the first time this trial attempted to determine the effect of triple tourniquets on ovarian function based on changes in serum FSH, the rationale being that ischaemic injury might result from the application of the tourniquets, depleting the ovarian reserve and therefore secondarily causing a rise in FSH. Although the mean tourniquet time was close to one hour in the open myomectomy study and seventy minutes in the laparoscopic myomectomy study, reassuringly there did not appear to be any significant changes observed compared to pre-operative levels. However I accept the study might not have been appropriately powered to detect a difference. The results though are in keeping with data from heterotopic autotransplantation in the ewe (an accepted model in reproductive endocrinology) which suggests that there is only minimal injury to ovarian tissue even after three hours of ovarian vascular occlusion \(^{126}\).

It could be argued that FSH alone is in sufficient to assess ovarian function. Investigators examining fertility in cancer survivors have used a range of biochemical indices, estradiol, inhibin B and anti-Mullerian hormone (AMH) in addition to FSH \(^{127}\). However none of these indices at the moment have been shown to predict ovarian reserve accurately. It would be prudent to recommend an appropriately powered study be carried out in the future to
answer this specific question, although choosing which biochemical indice to use, remains controversial.
figures 22a & 22b. Changes in serum FSH in Laparotomy RCT

Control

![Control graph](image)

- FSH in IUL
- Time: Pre-op, Post-op
- P = 0.25

Tourniquet

![Tourniquet graph](image)

- FSH in IUL
- Time: Pre-op, Post-op
- P = 0.41
figure 23. Changes in serum FSH at Laparoscopic myomectomy with tourniquets
Chapter Eight: The effect of open myomectomy on menstrual blood loss
Introduction

One in 20 women aged 30-49 years consult their general practitioner each year with heavy periods (approximately 1.5 million women in England and Wales) \(^{128}\) and although they are often successfully managed in the community significant numbers are referred to secondary care. In fact heavy menstrual bleeding accounts for one in eight referrals to a gynaecologist \(^{129}\). Once referred 60% of women will have undergone a hysterectomy, within five years of referral \(^{130}\). Whilst hysterectomy, is the definitive surgical “cure”, it is not without morbidity and is not appropriate for women who wish to preserve their fertility. By contrast myomectomy, preserves fertility and in theory should improve menorrhagia. However good research in this area is lacking and currently clinicians and patients rely on subjective measurements\(^{45}\), on which to base their decision to proceed to surgery. For the first time this study attempted to quantify the effect of open myomectomy on menstrual blood loss.

Patients and Methods

A randomised controlled trial to assess the effectiveness of triple tourniquets as a haemostatic technique to reduce blood loss at open myomectomy was carried out at the Royal Free and Whittington Hospitals, between January 2002 to July 2003. The main outcome measure was intra-operative blood loss, but we also recorded data on a number of important secondary outcome measures including the effect of open myomectomy on menstrual blood loss. The detailed methodology of the trial has already been described in Chapter four.
Women filled out a menstrual pictogram for two periods pre-operatively and again for two periods at four to six months post-operatively. The PBAC score corresponded to blood loss in millilitres and menorrhagia was defined as a score of >80. All women were advised to use Tampax tampons and Kotex pads (as the pictograms had only been validated with these brands). A copy of the menstrual pictogram and score sheet can be found in appendix 2.

Statistics
Data was analysed with independent sampled t test, paired t test using SPSS® 11 software (SPSS Software, Chicago, Illinois, USA). We assumed significance at the 5% level (p<0.05) and all tests were two sided.

Results
As already described, twenty-eight patients were recruited from a cohort of 171 patients referred to hospital for management of symptomatic uterine fibroids. They were randomization into two groups and both had similar baseline characteristics, including uterine size (Table 2). Twenty five women completed the menstrual pictograms, the remaining three, two from the control group and one from the tourniquet group, failed to complete the follow up questionnaire despite postal reminders.

Nineteen women had menorrhagia pre-operatively and three suffered from it post-operatively (p<0.0001). There were significant reductions in menstrual
blood loss for both groups, but no significant differences between groups (p=0.125 [CI -5 to 40]). Total group scores were calculated for the cohort as a whole, comparing their post-operative scores with their pre-operative scores. For the group as a whole, menstrual blood loss reduced significantly following open myomectomy (Figure 24), with mean pre operative and post operative scores of 214 (SD 178) and 40 (SD 28) respectively, and the difference between the means was 172 (p<0.0001 [95% CI 98 to 249]).

Discussion

Pictorial charts were first introduced as an accurate and yet simple objective measure of menstrual blood loss \(^{131}\). They provided clinicians and patients with a practical and convenient alternative to the time consuming alkaline haematin method \(^{132}\). These early charts were reported to have a sensitivity of 86% and a specificity of 81% in diagnosing menorrhagia (defined as menstrual blood loss \(\geq\) 80ml for the whole period). However, in recent years the accuracy of these charts has been questioned \(^{133}\). In response to the shortcomings of the original pictograms, they have since been refined and revalidated to reflect the differing levels of absorbency of blood on sanitary towels and tampons \(^{100}\). It was these new and improved pictograms that we used to evaluate open myomectomy, as a treatment for menorrhagia.

The association with fibroids and heavy periods has long been reported \(^3\), but the actual underlying pathophysiological is still not completely understood. There are several mechanisms that might explain their association with abnormal bleeding. Firstly, fibroids tend to increase the endometrial surface,
therefore increasing the volume of endometrium shed each month. Secondly, they are associated with angiogenesis and abnormal vessel characteristics \(^{41}\). Finally it is possible that they interfere with normal uterine contractility at the time of menstruation. For all that they have been reported to be associated with abnormal bleeding\(^ {3}\), data on the effectiveness of myomectomy is limited. Only vaginal myomectomy \(^{134}\) and hysteroscopic myomectomy have been shown to reduce menstrual blood loss \(^{135,136}\). Objective evidence that open myomectomy improves menstrual blood loss is lacking. By contrast, investigators evaluating uterine artery embolisation (UAE) have more recently shown a reduction in menorrhagia, using a five point scale\(^ {137}\).

To our knowledge, this is the first report showing an objective reduction in menstrual blood loss following the removal of fibroids at laparotomy. Although our prospective series is small we believe that it provides the best evidence to date that open myomectomy relieves menorrhagia.
figure 24. Mean menstrual blood loss scores pre and post myomectomy

- O^{22} and O^1 are outliers
Chapter Nine: Psycho-social and quality of life data after open myomectomy
Introduction
Symptomatic fibroids can have a significant negative effect on a woman's psycho-social and psycho-sexual health. Heavy bleeding from fibroids can be socially embarrassing, restrict social activities and impair sexual arousal and performance. Infertility is well recognised as having negative psycho-emotional consequences \(^{138,139}\) and pain and pelvic pressure symptoms can make life miserable for some women. Fibroids not only affect a woman's quality of life\(^ {140}\), but they can also have an adverse effect on her economic health and that of her employer. Heavy periods are a well recognised cause of sick leave from work and have been estimated at an annual cost of $1692 per woman \(^ {141}\).

Whilst surgery remains the mainstay of treatment, robust outcome data to suggest it improves quality of life is lacking \(^ {45}\). Our study aims to provide clinicians and patients with good quality evidence on which to make informed decisions.

Patients and methods
From January 2002 to July 2003, patients seen in the Fibroid Clinic and Gynaecology Clinic at the Royal Free Hospital, and Gynaecology Clinic at the Whittington Hospital were assessed for entry into a randomised controlled trial, evaluating the use of triple tourniquets as a haemostatic technique to reduce blood loss at open myomectomy (see Chapter Four). The main outcome measure was intra-operative blood loss however we were also
interested in assessing the effect of myomectomy on quality of life. It is this data that is presented here.

As already described, twenty-eight patients were recruited from a cohort of 171 patients referred to hospital for management of symptomatic uterine fibroids. They were randomization into two groups and both had similar baseline characteristics, including uterine size (Table 2).

Quality of life was assessed by the Uterine Fibroid Symptom and Quality of Life questionnaire (UFS-QOL)101. This is a new questionnaire designed specifically to assess symptom severity and symptom impact on health related quality of life for women with fibroids. It consists of 72 items, 18 relating to symptoms and 54 relating quality of life. The symptom questions assess the frequency and severity of fibroid symptoms whilst the areas assessed by the quality of life questions are, fatigue, sleep, self-image, mood disturbance/psychological distress, fear of embarrassment, interference with daily activities, relationships with family and friends, and sexual functioning. Patients are presented with five response options ranging from "none of the time" to "all of the time" for symptom frequency and quality of life questions and "not at all" to "a very great deal" for the symptom severity questions. A copy of the questionnaire can be found in Appendix 2.

All 28 patients were given a questionnaire in the hospital outpatient clinic and asked to complete and return it, prior to their operation. Post-operatively at the six-month clinic check they were again asked to complete a questionnaire.
Statistics

Data was analysed with the independent sampled t test and the paired t test using SPSS® 11 software (SPSS Software, Chicago, Illinois, USA). We assumed significance at the 5% level (p<0.05).

Results

Twenty-six women completed both pre-operative and post-operative UFS-QOL questionnaires. The remaining two, one from each group failed to complete the follow up questionnaire despite postal reminders.

There were significant improvements in symptom control for both groups, but no significant differences between groups based on any of the eight subscales within the UFS-QOL (Table 7). Total group scores were calculated for the cohort as a whole, comparing their post-operative scores with their pre-operative scores. Seven out of the eight measures were significantly improved (Table 8).

For the group as a whole, the symptom severity scale, a measure of menorrhagia, reduced significantly post open myomectomy figure 25 (p<0.001 [CI 18-35]) and all subscales within the health related quality of life scale, improved significantly (concern p<0.001 [CI 17-47], activities p=0.001 [CI 10-33], energy/mood p<0.001 [12-32], control p<0.001 [CI 12-32], self consciousness p<0.003 [CI 8-35]), except for sexual function which did not significantly improve (p=0.114 [CI -2-22]). An overall score was given by the HRQL total, where a higher score was indicative of a better outcome. This again was significantly improved HRQL total p<0.001 [CI (-13)-(-34)].
Discussion

Health related quality of life questionnaires are not new142. However they tend to be generic and this “one size fits all approach” limits their sensitivity when measuring outcomes unique to a particular condition. Despite this they have often been used in surgical trials to measure symptom alleviation143,144. Questionnaires specific to gynaecological symptoms have been developed such as the Menorrhagia Questionnaire145 but these do not assess the non-bleeding symptoms of fibroids, such as pelvic pressure, urinary frequency and pelvic discomfort. Nor do they assess the impact of symptoms on quality of life. Only one fibroid specific questionnaire has been developed, it was designed to assess the effect of uterine artery embolization on fibroid symptoms146. However this questionnaire did not include a patient perspective and was based on a generic health status questionnaire. The new UFS-QOL questionnaire, by contrast is specific to leiomyomata and incorporates a patients perspective, which therefore makes it, a much more powerful tool when assessing interventions specific to fibroids. It has been rigorously evaluated and validated using a number of instruments, including the Short-Form 36 Health survey, the Menorrhagia Questionnaire and the Revicki-Wu sexual function scale101.

This small but meticulous study shows that at six months post myomectomy women report significantly improved menstrual loss and an improvement in all but one of the other quality of life measures (sexual function). Although there was a reduction in post-operative scores for sexual function, this was not significant. However, it may be that a six-month follow up period was to short.
Researchers evaluating the effect of hysterectomy on sexual function, only reported significant improvements at twelve months \(^{147}\).

Although not powered to detect a difference in symptom outcome using the UFS-QOL we were nonetheless interested to see if our absorbable cervical tourniquet, improved symptom relief more than a standard myomectomy. The theory being that there would be less post-operative bleeding, therefore less adhesion development and perhaps therefore an increase in quality of life scores. However although there appeared to be a trend towards lower post-procedure scores compared to pre-procedure scores, crucially the differences between the two groups were not significant.
Table 7. Mean scores of UFS-QOL

<table>
<thead>
<tr>
<th></th>
<th>Control Group (n=13)</th>
<th>Tourniquet Group (n=13)</th>
<th>Differences between means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-op scores</td>
<td>Post-op scores</td>
<td>p</td>
</tr>
<tr>
<td>Symptom severity</td>
<td>50</td>
<td>26</td>
<td>0.001</td>
</tr>
<tr>
<td>(menorrhagia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concern</td>
<td>46</td>
<td>20</td>
<td>0.013</td>
</tr>
<tr>
<td>Activities</td>
<td>39</td>
<td>23</td>
<td>0.05</td>
</tr>
<tr>
<td>Energy/mood</td>
<td>40</td>
<td>20</td>
<td>0.016</td>
</tr>
<tr>
<td>Control</td>
<td>40</td>
<td>23</td>
<td>0.015</td>
</tr>
<tr>
<td>Self-conscious</td>
<td>45</td>
<td>30</td>
<td>0.13</td>
</tr>
<tr>
<td>Sexual function</td>
<td>30</td>
<td>24</td>
<td>0.59</td>
</tr>
<tr>
<td>HRQL Total</td>
<td>58</td>
<td>76</td>
<td>0.022</td>
</tr>
<tr>
<td>Group</td>
<td>Pre-op scores</td>
<td>Post-op scores</td>
<td>p</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Symptom severity (menorrhagia)</td>
<td>50</td>
<td>22</td>
<td><0.001</td>
</tr>
<tr>
<td>Concern</td>
<td>20</td>
<td>15</td>
<td><0.001</td>
</tr>
<tr>
<td>Activities</td>
<td>42</td>
<td>15</td>
<td>0.001</td>
</tr>
<tr>
<td>Energy/mood</td>
<td>43</td>
<td>20</td>
<td><0.001</td>
</tr>
<tr>
<td>Control</td>
<td>43</td>
<td>20</td>
<td><0.001</td>
</tr>
<tr>
<td>Self-conscious</td>
<td>48</td>
<td>26</td>
<td>0.003</td>
</tr>
<tr>
<td>Sexual function</td>
<td>32</td>
<td>22</td>
<td>0.114</td>
</tr>
<tr>
<td>HRQL Total</td>
<td>55</td>
<td>79</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figure 25. Mean group scores for menorrhagia pre and post myomectomy
Chapter Ten: Summary
1) The majority of women with symptomatic fibroids continue to be managed surgically in the UK. Open and hysteroscopic myomectomy are frequently utilised in contrast to laparoscopic myomectomy. The use of pre-operative GnRHa appears widespread whereas intra-operative techniques for reducing blood loss at open and at laparoscopic myomectomy appear more varied. The reported rate of blood transfusion appears lower than that reported in the literature. Whilst the majority of respondents now have access to UAE, the numbers of women referred for the procedure remains low.

2) Triple tourniquets are effective in reducing the blood loss and the morbidity of open myomectomy. The use of an absorbable cervical tourniquet left in situ post-operatively, may reduce peri-operative bleeding.

3) The use of triple tourniquets at laparoscopic myomectomy is feasible and in principle should reduce operative blood loss. In addition, the use of an absorbable uterine tourniquet may also reduce post-operative bleeding.

4) Ultrasound Doppler evaluation of the absorbable cervical tourniquet suggests that such a tourniquet has no long-term harmful effects on uterine reperfusion.

5) The use of ovarian tourniquets does not appear to be harmful to ovarian function.
6) Given, the triple tourniquets advantages over alternative hemostatic techniques I would recommend their routine use at open myomectomy.

7) In 1997, the costs of surgical management of fibroids in the USA, exceeded $2 billion and yet good evidence supporting this intervention was lacking. Although our prospective series is small it provides the best evidence to date that open myomectomy relieves menorrhagia and improves quality of life.
Chapter Eleven: Future research
The pathophysiology of leiomyomas is slowly being unravelled. Advances in our understanding of the underlying molecular biology and genetics of fibroid development is opening up new therapeutic avenues which are even now being explored in vitro. However, there remains a long way to go before new medical treatment options are available to clinicians and patients.

By contrast, myomectomy is well established and has been with us for nearly a hundred years. Medicine has changed enormously in that time, including the way we practise and the way new treatments are evaluated. Evidence based practice is part of that change and randomised controlled trials are the gold standard within evidence based medicine. However performing randomised controlled trials in surgery is difficult and I believe far more difficult than organising similar trials for a new drug. This is because it is often unethical to have a control group, patients may decline randomisation and instead may request a particular operation. Also whilst quality control measures can ensure drug uniformity in a medical trial, such quality control measures are much harder to incorporate into surgical trials where there are many more variables such as different surgeons, different centres, different post operative teams, all of which can effect the outcome. Such difficulties have called some authors to question the place of surgical RCTs and instead have called for a return to personal audit. Despite all of these difficulties though randomised controlled trials, remain the gold standard, not least because patients increasingly want to know the benefits and risks of surgery, in order to make an informed choice about treatment options.
The rationale for this thesis reflects this change and the results re-evaluate myomectomy in line with current thinking and practise. However this is just a small step in that process. For the future, the triple tourniquets need to be evaluated against GnRHa (the commonest haemostatic technique employed in the UK) and an appropriately powered study needs to be conducted to see if an absorbable cervical tourniquet left in situ post-operatively reduces post-operative blood loss. Having determined that the use of triple tourniquets at laparoscopic myomectomy is feasible, their effectiveness needs to be evaluated in a randomised controlled trial. Also unlike at open myomectomy, at laparoscopic myomectomy (where there is generally a smaller uterus and therefore less blood flow) it might be possible to use only a single cervical absorbable tourniquet. This would in theory reduce the operating time and avoid temporary occlusion of the ovarian vessels. These outcomes and its effect on intra-operative blood loss should be evaluated in a single versus triple tourniquet trial.

The results on symptom relief and improvement are new and exciting, but they remain only short-term data at the moment. The women from the open myomectomy study should be followed up in the medium to longer term, to determine the outcome of myomectomy on menstrual blood loss and quality of life.

It is also important to determine the effect of the absorbable tourniquet on fibroid recurrence. Standard techniques have reported a 50 % five year recurrence rate \(^{149}\), whereas recent data on uterine artery ligation at
myomectomy has suggested this leads to no recurrences at two years. What effect will our novel cervical tourniquet have?

I believe our work has significantly contributed to our knowledge base on the technique of myomectomy and its clinical effectiveness. This is of real benefit to patients and to the gynaecological community. However much research remains to be done before patients opting for myomectomy can be said to be "fully informed".
Appendix 1

Reference List

contraceptive use in relation to the risk of uterine leiomyomata.

73. Hospital Episode Statistics.

Appendix 2- Forms

i) Copy of Pinpoint Survey questionnaire
CONSULTANT QUESTIONNAIRE ON THE SURGICAL MANAGEMENT OF UTERINE FIBROIDS

Thank you for making the time to fill out this questionnaire. We would like to find out about current practice for managing women presenting with symptomatic uterine fibroids, and in particular about surgical technique. We appreciate that answering such surveys can be a thankless task, but we feel the information would be of interest to the gynaecological community. It should not take you more than 5 minutes to answer the questions.

Please return to:-
Alex Taylor MB BS MRCOG, Clinical Research Fellow
Adam Magos BSc MD FRCOG, Consultant Gynaecologist
University Department of Obstetrics and Gynaecology,
Royal Free Hospital,
Pond Street,
Hampstead,
London NW3 2QG.

Please answer all the questions by placing a tick in the appropriate box or entering data.

GENERAL QUESTIONS

Q.1 Do you have regular sessions of gynaecological surgery?
☐ Yes ☐ No

Q.2 Year of qualification?

Q.3 Year of membership of RCOG?

Q.4 Where do you mainly work?
☐ Teaching Hospital ☐ District General Hospital ☐ Private Hospital

OPEN MYOMECTOMY

Q.5 How many open myomectomies did you perform in 2001?
☐ None ☐ 1-5 ☐ 6-10 ☐ 11-20 ☐ >20

Q.6 What % required a blood transfusion?
☐ None ☐ <10% ☐ 11-20% ☐ 21-30% ☐ >30%

Q.7A Do you use a specific technique to reduce operative bleeding?
☐ Never ☐ Some of the time ☐ All of the time

Q.7B If you use a specific technique or techniques, please tick the appropriate boxes.
☐ Preop GnRH analogues ☐ Myomectomy clamp ☐ Tourniquets
☐ Vasoconstrictor (eg. vasopressin) ☐ Cutting diathermy on the uterus ☐ Other (please specify)

Q.8 What is the smallest uterus you would manage by open myomectomy?
☐ 8 weeks ☐ 12 weeks ☐ 16 weeks ☐ 20 weeks

Q.9 Would you perform repeat open myomectomy?
☐ No ☐ Only after 1 previous ☐ Even after >1 previous

Q.10 Do you have an upper age limit for doing an open myomectomy?
☐ No ☐ 30 years ☐ 40 years ☐ 50 years ☐ 60 years

Q.11 What preop imaging do you perform in >50% of cases?
If you use more than one, please tick the appropriate boxes.
☐ None ☐ Ultrasound ☐ MRI ☐ CT ☐ Other (please specify)

Please continue overleaf
LAPAROSCOPIC MYOMECTOMY

Q.12 How many laparoscopic myomectomies did you perform in 2001? If none, then proceed to Q19.
 □ None □ 1-5 □ 6-10 □ 11-20 □ >20

Q.13 What % required a blood transfusion?
 □ None □ 1-10% □ 11-20% □ 21-30% □ >30%

Q.14A Do you use a specific technique to reduce operative bleeding?
 □ Never □ Some of the time □ All of the time

Q.14B If you use a specific technique or techniques, please tick the appropriate boxes.
 □ Preop GnRH analogues □ Tourniquets □ Vasoconstrictor (eg.vasopressin)
 □ Cutting Diathermy on the uterus □ Other (please specify)

Q.15 What % required conversion to laparotomy?
 □ None □ 1-5% □ 6-10% □ 11-20% □ >20%

Q.16 What is the largest uterus you would manage by laparoscopic myomectomy?
 □ 8 weeks □ 12 weeks □ 16 weeks □ 20 weeks

Q.17 Do you have an upper age limit for doing a laparoscopic myomectomy?
 □ No □ 30 years □ 40 years □ 50 years □ 60 years

Q.18 What preop imaging do you perform in >50% of cases?
 □ None □ ultrasound □ MRI □ CT □ Other (please specify)

HYSTEROSCOPIC MYOMECTOMY

Q.19 How many hysteroscopic myomectomies did you perform in 2001? If none, then proceed to Q23.
 □ None □ 1-5 □ 6-10 □ 11-20 □ >20

Q.20 What % required a blood transfusion?
 □ None □ 1-10% □ 11-20% □ 21-30% □ >30%

Q.21 What % required conversion to laparotomy?
 □ None □ 1-5% □ 6-10% □ 11-20% □ >20%

Q.22 What is the largest uterus you would manage by hysteroscopic myomectomy?
 □ 8 weeks □ 12 weeks □ 16 weeks □ 20 weeks

UTERINE ARTERY EMBOLISATION

Q.23 Do you have access to uterine artery embolisation (UAE) for uterine fibroids?
 □ Yes □ No

Q.24 How many women did you refer for UAE in 2001?
 □ None □ 1-5 □ 6-10 □ 11-20 □ >20

Q.25 What is the smallest uterus you would refer for uterine artery embolisation?
 □ 8 weeks □ 12 weeks □ 16 weeks □ 20 weeks

Q.26 Would you recommend UAE to someone wanting to conceive?
 □ Yes □ No

AND FINALLY

Q.27 Number the following symptoms in the order you feel would be best treated by myomectomy (1=best reason, etc)
 □ Abdominal mass □ Pelvic pressure □ Infertility □ Menorrhagia □ Urinary symptoms

Q.28 Respondent number
ii) Menstrual pictogram.
Reproduced with permission from Prof PMS O'Brien,
Academic dept Obstetrics & Gynaecology,
Keele University
Menstrual Pictogram

Please mark which of the pictures most closely resembles the appearance of each used sanitary towel by placing a tick in the appropriate box. Please note which type/brand of sanitary towel has been used and whether it was daytime or a night-time towel. This should be repeated each time you change your sanitary towel.

Day 1 is the 1st day of your period. There is a separate column for each day of your period.

If you use tampons and towels please mark the tampons on the top right page.

The first column has been filled out as an example.
BLOOD LOST ON SANITARY TOWELS

<table>
<thead>
<tr>
<th>TOWEL</th>
<th>TYPE</th>
<th>example</th>
<th>Day 1</th>
<th>day 2</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>day 7</th>
<th>day 8</th>
<th>day 9</th>
<th>day 10</th>
<th>day 11</th>
<th>day 12</th>
<th>day 13</th>
<th>day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>BRAND</td>
<td>Kotex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Night time</td>
<td></td>
</tr>
</tbody>
</table>

Please mark which of the pictures most closely resembles the appearance of each used sanitary towel by placing a tick in the appropriate box. Please note which type/brand of sanitary towel has been used and whether it was daytime or a night-time towel. This should be repeated each time you change your sanitary towel.

Day 1 is the 1st day of your period. There is a separate column for each day of your period.

If you use tampons and towels please mark the tampons on the tampon page

The first column has been filled out as an example
<table>
<thead>
<tr>
<th>TAMPON</th>
<th>TYPE</th>
<th>example</th>
<th>day 1</th>
<th>day 2</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>day 7</th>
<th>day 8</th>
<th>day 9</th>
<th>day 10</th>
<th>day 11</th>
<th>day 12</th>
<th>day 13</th>
<th>day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>BRAND</td>
<td>Tampax</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super Plus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super Plus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Super Plus</td>
<td></td>
</tr>
</tbody>
</table>

Please mark which of the pictures most closely resembles the appearance of each used tampon by placing a tick in the appropriate box. Please note which type of tampon has been used and whether it was regular, super or super plus. This should be repeated each time you change your tampon.

Day 1 is the 1st day of your period. There is a separate column for each day of your period. The first column has been filled out as an example.
Please mark the presence and size of clots using the size of the pictures to guide you. A tick should be placed in the appropriate box each time you lose a blood clot. Day 1 is the first day of your period. There is a separate column for each day of your period. **The first column has been filled out as an example.**
BLOOD LOSS IN THE TOILET WHEN CHANGING SANITARY WEAR

<table>
<thead>
<tr>
<th>TOILET</th>
<th>example</th>
<th>day 1</th>
<th>day 2</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>day 7</th>
<th>day 8</th>
<th>day 9</th>
<th>day 10</th>
<th>day 11</th>
<th>day 12</th>
<th>day 13</th>
<th>day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before you change your sanitary wear please place a 2p piece at the bottom of your toilet. Please look at the colour of the water *before* you put any paper into the toilet.

Which of these pictures are most like the colour of the water and how clearly can you see the coin. If there are any clots please mark them on the ‘clot chart’.

If you are using a lavatory without a coin in it please estimate which colour is closest to the colour of the water.

Day 1 is the 1st day of your period. There is a separate column for each day of your period. **The first column has been filled out as an example.**
iii) Reproduced with permission by The Cardiovascular and Intervventional Radiology and Education Foundation (CIRREF)

Pt. Initials: ___________ Pt. ID: ___________

Date: ___________

Uterine Fibroid Symptom and Health-Related Quality of Life Questionnaire (UFS-QOL)

Listed below are symptoms experienced by women who have uterine fibroids. Please consider each symptom as it relates to your uterine fibroids or menstrual cycle. Each question asks how much distress you have experienced from each symptom during the previous 3 months.

There are no right or wrong answers. Please be sure to answer every question by checking (✓) the most appropriate box. If a question does not apply to you, please mark "not at all" as a response.

<table>
<thead>
<tr>
<th>During the previous 3 months, how distressed were you by...</th>
<th>Not at all</th>
<th>A little bit</th>
<th>Some-what</th>
<th>A great deal</th>
<th>A very great deal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Heavy bleeding during your menstrual period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Passing blood clots during your menstrual period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Fluctuation in the duration of your menstrual period compared to your previous cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fluctuation in the length of your monthly cycle compared to your previous cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Feeling tightness or pressure in your pelvic area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Frequent urination during the daytime hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Frequent nighttime urination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Feeling fatigued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following questions ask about your feelings and experiences regarding the impact of uterine fibroid symptoms on your life. Please consider each question as it relates to your experiences with uterine fibroids during the previous 3 months.

There are no right or wrong answers. Please be sure to answer every question by checking (√) the most appropriate box. If the question does not apply to you, please check “none of the time” as your option.

<table>
<thead>
<tr>
<th>During the previous 3 months, how often have your symptoms related to uterine fibroids...</th>
<th>None of the time</th>
<th>A little of the time</th>
<th>Some of the time</th>
<th>Most of the time</th>
<th>All of the time</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Made you feel anxious about the unpredictable onset or duration of your periods?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Made you anxious about traveling?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11. Interfered with your physical activities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>12. Caused you to feel tired or worn out?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>13. Made you decrease the amount of time you spent on exercise or other physical activities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>14. Made you feel as if you are not in control of your life?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>15. Made you concerned about soiling underwear?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>16. Made you feel less productive?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>17. Caused you to feel drowsy or sleepy during the day?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>18. Made you feel self-conscious of weight gain?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>19. Made you feel that it was difficult to carry out your usual activities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>20. Interfered with your social activities?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>21. Made you feel conscious about the size and appearance of your stomach?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>22. Made you concerned about soiling bed linens?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
UFS-QoL Scoring Manual

To calculate a symptom score for symptom severity, create a summed score from the items listed below and then use the formula below the table to transform the value. This will provide symptom scores where higher score values are indicative of greater symptom severity or bother and lower scores will indicate minimal symptom severity (high scores = bad).

<table>
<thead>
<tr>
<th>Scale</th>
<th>Sum Item Values</th>
<th>Lowest and Highest Possible Raw Scores</th>
<th>Possible Raw Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Severity</td>
<td>Sum 1 – 8</td>
<td>8, 40</td>
<td>32</td>
</tr>
</tbody>
</table>

Transformation for Symptom Severity raw scores ONLY:

\[
\text{Transformed Score} = \frac{(\text{Actual raw score} \ - \ \text{lowest possible raw score})}{\text{Possible raw score range}} \times 100
\]

For the HRQL subscales (concern, activities, energy/mood, control, self-conscious, and sexual function), create summed scores of the items listed below for each individual subscale. To calculate the HRQL total score, sum the value of each individual subscale (do not sum individual items). Use the formula below the table to transform all values. Higher scores will be indicative of better HRQL (high = good).

<table>
<thead>
<tr>
<th>Scale</th>
<th>Sum Item Values</th>
<th>Lowest and Highest Possible Raw Scores</th>
<th>Possible Raw Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concern</td>
<td>9+15+22+28+32</td>
<td>5, 25</td>
<td>20</td>
</tr>
<tr>
<td>Activities</td>
<td>10+11+13+19+20+27+29</td>
<td>7, 35</td>
<td>28</td>
</tr>
<tr>
<td>Energy/mood</td>
<td>12+17+23+24+25+31+35</td>
<td>7, 35</td>
<td>28</td>
</tr>
<tr>
<td>Control</td>
<td>14+16+26+30+34</td>
<td>5, 25</td>
<td>20</td>
</tr>
<tr>
<td>Self-conscious</td>
<td>18+21+33</td>
<td>3, 15</td>
<td>12</td>
</tr>
<tr>
<td>Sexual function</td>
<td>36+37</td>
<td>2, 10</td>
<td>8</td>
</tr>
<tr>
<td>HRQL TOTAL</td>
<td>Sum of 6 Subscale Scores</td>
<td>29, 145</td>
<td>116</td>
</tr>
</tbody>
</table>

Formula for transformation of HRQL raw scores ONLY:

\[
\text{Transformed Score} = \frac{(\text{Highest possible score} \ - \ \text{Actual raw score})}{\text{Possible raw score range}} \times 100
\]

Missing Items

For the subscale analyses, if < 50% of the scale items are missing, the scale should be retained with the mean scale score of the items present used to impute a score for the missing items. If ≥ 50% of the items are missing, no scale score should be calculated, the subscale score should be considered missing. If a subscale score is missing, the HRQL total cannot be calculated.
Appendix 3: CD (including movies and Excel files containing original data for the studies)