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Abstract

In this thesis, state-of-the-art density functional theory calculations have been
performed to study a number of properties of the rocksalt-structured silver halides
which can broadly be defined as photographically-relevant. These involve point
defects and their interaction with free electrons and holes, created upon excitation
by actinic light.

In our initial calculations, we studied the primary intrinsic point defects within
the bulk of the material, in both charged and neutral forms, using the supercell
technique. We have correctly predicted the dominance of the Frenkel defect in
both AgCl and AgBr, and have found that the lowest energy configuration for
the interstitial cation defect in both materials involved a second cation, forming
a Agat split-interstitial species, orientated in a <111> direction.

We then extended this work by applying a hybrid QM/MM embedding tech-
nique to model two systems: the first represented the ideal (100) surface, while
the second represented a ‘realistic’ finite cluster. With the first, we have cal-
culated defect structures and formation energies on the flat surface, and have
examined the well-known space-charge layer. With our finite cluster, we studied
extended surface defects (steps, kinks etc.) and their interaction with individual
point defects.

We have also calculated trap depths, and the localisation of holes and electrons
at each of the sites. We have determined that, regardless of their location, an
electron diffusely localises around the interstitial cation and strongly localises on
the anion vacancy, while the corresponding hole becomes trapped around the
cation vacancy on a nearest-neighbour cation. However, overall, we consider the
positive kink on the surface to be the most likely electron trap, due to its relative
abundance and its position within the band gap.

Finally, we have investigated the properties of the latent pre-image centre,
which plays a key role in the photographic process.
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Introduction to This Thesis

Background

The role of crystalline defects in the silver halide photographic process has long
been recognised. Consequently, these materials have been very widely studied in
the literature, with details of the static, dynamic, electronic, surface and defect
properties having been well established. Experimentally, the atomic-scale defect
properties must be inferred from ionic conductivity or thermal expansion data.
Computer modelling can now be applied to problems such as these in order to
gain new insights into their structural and electronic properties.

Previously, calculations have been performed to improve our understanding
of the processes behind latent image formation. However, these have largely
concentrated upon the most industrially-relevant aspects, such as the growth of
the latent image cluster and the effects of extrinsic dopants. To our knowledge,
relatively little work has been done on the earlier stage of process: the ‘nucleation’
of the latent image cluster.

In this work we have therefore applied modern computational techniques,
based upon density functional theory, to study the properties of defects in the
silver halides both in the bulk crystal, and on the important (100) surface. We
have also extended this work to analyse key aspects of the nucleation process.

This work has been performed using two independent, but complementary,
techniques. First, the supercell method has been applied to bulk defects. This
method was chosen for its conceptual simplicity, and because it has previously
been applied to model defects in a wide variety of materials. Our second method,
based upon an embedded-cluster model, is considerably more involved, but po-
tentially overcomes the limitations associated with the use of a supercell. Here,
a quantum mechanically-described cluster of ions, containing the defect species,

is embedded in a computationally-inexpensive environment which reproduces the

11



Introduction to This Thesis

effects of the infinite lattice.

Using these techniques, we have for the first time studied the properties of
point defects in the rocksalt-structured silver halides using quantum-mechanical
calculations. We have also investigated the corresponding neutral point defects
in attempt to understand electron and hole trapping processes within the bulk —
properties of particular relevance to latent image formation.

With the embedded cluster method we have extended our calculations to
study defects on the (100) surface and at bulk-like locations, reproducing the
experimentally-measured space-charge layer. For the first time, we have deter-
mined the positions of the defect levels within the band gap, allowing us to as-
certain the fate of free electrons and holes in the conduction and valence bands.
These results suggest that the surface positive kink site is the primary electron
trap in the silver halides, in agreement with the hypothesis of the direct photol-
ysis mechanism, and that the kink strongly reconstructs in order to stabilise the
electron in this location. Finally, on the basis of this work, we have suggested a
formation mechanism for the latent pre-image centre.

It is worth noting that despite recent progress in digital photography, the con-
ventional silver halide process retains its scientific relevance due its fundamental
nature. Perhaps more importantly, the silver halides represent interesting ma-
terials which display a number of intriguing properties which are not yet fully

understood, but can now be investigated using computer modelling.

Plan of This Thesis

In Chapter 1 we introduce the silver halides, paying particular attention to what
distinguishes them from the apparently-similar alkali-metal halides. A description
of the photographic process is then given which, although by no means compre-
hensive, should provide a flavour of the relevance of this work. A brief description
of the relevant theory and methods is then given in Chapter 2.

The remaining chapters are dedicated to the results of our calculations, each
one describing the results of a different technique. Chapter 3 is concerned with
the use of semi-classical methods. Here we review the accuracy of current shell-
model interatomic potentials for the silver halides and report the development of
new potentials tailored for use in QM/MM embedding. Chapter 4 reports our
work on defects in the bulk of the silver halides which, as described above, used

12



Introduction to This Thesis

the supercell approach. Our complementary work using the embedded cluster
method is then reported in Chapter 5.
Finally, Chapter 6 contains a discussion of the relative merits of each method,

along with our final conclusions.

13



Chapter 1
Introduction

The silver halides are fascinating materials whose simple structures belie complex
and intriguing properties. Silver chloride and silver bromide have been the prime
materials of the photographic industry for over a century. They have retained
this dominance, despite their relative expense, as no other materials have been
able to provide the combination of properties required for this complex process
to function.

The work in this thesis is concerned with understanding the basic role of
structural defects in the process of latent image formation (i.e. the stage of the
photographic process that occurs within the camera). In this chapter, the silver
halides will be introduced, and their unique properties will be described. Their
role in their photographic process will be outlined, and the questions this work

will attempt to resolve will be described.

1.1 The Silver Halides

The first three silver halides (fluoride, chloride and bromide) adopt the rock-
salt structure, while under standard conditions silver iodide adopts the wurtzite
structure, as illustrated in Figure 1.1. Of these, silver chloride (AgCl) and silver
bromide (AgBr) are the most widely used, and therefore the most widely studied,
members of the family. Silver fluoride (AgF) is hygroscopic, thus making it un-
suitable both for experimental examination, and for commercial use. Conversely,
it is the extreme insolubility of silver iodide (Agl) that limits its use.

This work is therefore concerned primarily with the properties of AgCl and

14



1.1.

THE SILVER HALIDES Introduction

Figure 1.1: The rocksalt [left] and wurtzite [right] structures belonging
to AgX (X=F,Cl,Br) and Agl respectively. Throughout this thesis, blue
spheres represent silver cations, while green and brown spheres represent
chloride and bromide anions respectively.

AgBr, although some predictions have also been made for AgF in Chapter 4.

Despite the apparent similarity of these materials to the alkali halides, their

properties differ widely. For example:

they show a degree of directionality in their bonding,
there is a strong Cauchy violation in the elastic constants (i.e. Cia # Cy4),

there is an inversion of the transverse acoustic and transverse optic branches
of the phonon dispersion curves at the L-point of the Brillouin zone,

they have an indirect band gap, with the valence band maximum at the

L-point in reciprocal space,

the form of the intrinsic defects, and their characteristic properties, are

unique.

The reason for these differences is, of course, the presence of the silver cation.

However, the types of behaviour described above are due to different aspects of its

atomic structure and its interaction with the halide counter-ion. In the following

sections these features will be explored.

15



1.1. THE SILVER HALIDES Introduction

1.1.1 Structural Properties

The cubic lattice parameters for AgCl and AgBr have been measured to be 5.51A
and 5.77A at absolute zero. Already, this represents an anomaly as these values
are considerably smaller than those calculated from the Pauling ionic radii' — an
approximation which works well in the alkali halides.

Bucher has proposed that this bond-shortening is due to the strong van der
Waals attraction between the ions.? Indeed, a number of classical interatomic
potential calculations have also found that a large van der Waals coefficient is
required in order to model the silver halides accurately.>® To support his hy-
pothesis, Bucher employed interatomic potentials in which the van der Waals
coefficients were artificially reduced to the values used in the alkali halides.® As a
result, the new materials took on many of the properties of the alkali halides, in-
cluding the additivity of the experimental ionic radii. However, it is unlikely that
this is a true van der Waals-type interaction. While it is certainly the case that
the silver cation is more polarizable than an alkali-metal cation, one would not
expect van der Waals coefficients considerably in excess of the experimentally-
determined Mayer values*, as has been necessary in all previous studies.®”8 The
Cg coeflicient in these classical calculations represents all interactions with an
r~% dependence. It is possible that some missing feature of the model, such
as quadrupolar deformability or partial-covalency, may be compensated in the
mathematical fitting procedure by an increase in this term.

Interestingly, Density Functional Theory calculations, which include some de-
scription of electron correlation, but do not model long-range van der Waals
attraction, reproduce the experimental lattice parameter reasonably well. In
contrast, Hartree-Fock calculations, with no electron correlation, greatly overes-
timate this quantity.® This result again would suggest that Bucher’s Cg term is

not a true van der Waals interaction.

1.1.2 Elastic and Dynamical Properties

In the 1970s, the phonon dispersion curves of AgCl'® and AgBr!! were measured
using neutron scattering techniques (see Figure 1.2). It has been determined
that in order to model the phonon dispersion curves of the silver halides accu-

*Mayer combined data from ultraviolet absorption with ionic polarizabilities to obtain values
for the van der Waals coefficients, claimed to be accurate to within 15%.

16



1.1. THE SILVER HALIDES Introduction

rately, some description of the quadrupolar deformation of the cation must be
included.!?!7 Indeed, atomistic calculations including these terms reproduce the
experimental data with great accuracy,!''!%7 while those that do not, fail to
reproduce key features.> 10

This deformability will affect different vibrational modes of the crystal to
different extents. Clearly, the modes involving the movement of planes of cations
(such as the planes normal to <111>) will be some of the most significantly
altered. Indeed, the transverse optical (TO) mode has an unusually low frequency
at the L-point, as can be seen in Figure 1.2.

It has been argued that quadrupolar deformability is due to virtual d — s ex-
citations at the Ag™ ions, due to the small band-gap between the d-like valence
band and the s-like conduction band. The tight-binding calculations of Klepp-
mann and Weber!# supported this assumption, finding the crystal-field matrix
elements representing these intra-atomic transitions to be sizable. The authors
provided a good fit to experimental phonon dispersion curves, and suggested that
the instability of FCC silver iodide must be largely of the same origin.

The elastic constants of the silver halides are also affected by this deformabil-
ity. In a crystal with cubic symmetry, the elastic constants will obey the Cauchy
relation C13 = Cy4 if the bonding is central and pairwise in nature. While this
condition holds approximately for the majority of alkali halides, a number of
experimental studies have shown that in AgCl and AgBr there is a very strong
violation,'®*20 with Cj, ~ 5Cy4. This effect can be treated as a measure of the
many-body nature of the bonding in the silver halides, which is a combined re-
sult of the quadrupolar deformability and the partial-covalency described in the

previous section.

1.1.3 Electronic Properties

In the alkali halides, which have a direct band gap, the optical absorption spec-
trum is composed of an intense band in the UV region.?! The silver halides show
similar behaviour, but with the addition of an extended, temperature-dependent,
tail into the visible region.?? It was first proposed by Seitz in 1951 that this
may be due to the valence band maximum being at a position other than the
gamma-point in reciprocal space.?? With the conduction band minimum located
at the gamma-point, this behaviour leads to an indirect band gap. Excitations

17
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1.1. THE SILVER HALIDES Introduction

must therefore be phonon-assisted, reducing their probability, and introducing a
strong temperature-dependence. The intense band in the spectrum would result
from the direct exciton transition at higher energies.

It was later suggested by Krumhansl that this valence band structure could
be explained by realising that, in the Madelung potential of the crystal, the silver
4d level coincides with the halogen 3p (AgCl) or 4p (AgBr) level to within 1eV.?
Due to the inversion symmetry of the crystal, the levels cannot mix at the gamma-
point. However, towards the zone boundaries, they hybridise and spread, causing
the inverted valence band proposed by Seitz. This hybridisation is likely to be
the cause of the bond-directionality, or partial-covalency, discussed above.

These features of the band structure have been experimentally verified. Using
cyclotron resonance techniques, Tamura and Masumi established that the valence

t.2* Electron transport studies have also

band in AgBr is located at the L-poin
confirmed that the conduction band minimum in AgBr is at the gamma-point in
reciprocal space.?26 The direct and indirect band gaps in AgCl and AgBr have

27,28

also been verified by optical absorption spectroscopy, and are reproduced in

Table 1.1.

Table 1.1: Experimental indirect and direct band gaps / eV.

AgCl AgBr
Indirect Gap 3.245 2.684
Direct Gap 5.13 4.276/4.820*

*Doublet due to large spin-orbit splitting.

There have also been a large number of computational studies ranging from
early LCAO?30 and APW?! calculations through to accurate Hartree Fock,3%33
post-Hartree Fock? and Density Functional based methods.3**° As would be
expected from experience with other materials,*! the Hartree Fock calculations
overestimate and Density Functional calculations underestimate the band gaps.
However, they all show qualitative agreement, and confirm the p — d mixing in
the valence band?® and the largely s-like character of the conduction band.38 3

Irradiation with light of sufficient energy will create an electron-hole pair, or
exciton. This pair can become self-trapped in the pure material, and is believed
to consist of a self-trapped hole (STH) with a weakly bound electron.#? The

binding energy of these self-trapped excitons (STE) is small: 0.022eV in AgBr
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1.1. THE SILVER HALIDES Introduction

and 0.04eV in AgCl.?® Hence, they readily dissociate at room temperature into
free electrons and holes.

The free electron in the defect-free bulk silver halides will diffuse efficiently,
only limited by scattering from phonons. Accordingly, they have large room
temperature drift mobilities of 50 cm?V ~1s~! for AgCI*? and 60 cm?V 157! for
AgBr.#* Conversely, the hole can become self-trapped within the lattice, severely
limiting its mobility to just 0.02 em?V~!s7! for AgCI*> and 1 em?V~!s7! in
AgBr. 16

This STH is known to be localised on a single silver ion.4"%® As a result of this
localisation, a Jahn-Teller distortion occurs, splitting degenerate valence band
states, and producing a bound state which is stable to 50K.%%% This process
relies upon the unique valence band structure of the silver halides which, as

discussed earlier, have appreciable cation character.

1.1.4 Defect Properties

Structural defects occur in all natural crystals as a consequence of the second
law of thermodynamics: their presence introduces degrees of freedom, and hence
entropy, into the system. In binary ionic materials such as the silver halides,
point defects in their ground state will be charged, and thus must exist as part of
a neutral pair. In the silver halides, the dominant form are of the Frenkel type,
on the silver sub-lattice.?>*! Thus they consist of silver vacancies (V) and silver
ions in interstitial regions of the crystal (Agf), which is not the case for the vast
majority of rocksalt-structured materials which favour Schottky-pairs, consisting
of cation and anion vacancies (V,/V¥).

Early estimates of the concentration and formation energies of defects in the
silver halides were based on detailed analyses of thermal expansion data.®?:%3
However, more accurate values have since been obtained from ionic conductivity
data, which are highly dependent upon both the form of the defects and their
concentrations.?*5® The values quoted by Friauf°® are reproduced in Table 1.2.

The presence of defects in a crystal dramatically alters the behaviour of elec-
trons and holes produced on photo-excitation. For instance, the famous F-centre
in the alkali halides is formed when a free electron becomes trapped within an
anion vacancy.®® In the silver halides, anion vacancies do not exist in concentra-

tions great enough that F-centres can be detected. The only other centre capable
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1.1. THE SILVER HALIDES Introduction

Table 1.2: Experimental defect properties, from Reference 56.

AgCl AgBr
Frenkel Defect Formation Enthalpy / eV 1.49 + 0.02 1.16 % 0.02

Defect Concentration / em™3 1.15x 102 9.80 x 10'3

of trapping an electron is the interstitial silver cation. ENDOR spectroscopy has
been applied to this system and it has found that the trap depth is very small,

resulting in a very delocalised electron.0:61

The corresponding cation vacancy is thought to be an efficient hole-trap.5%:6263
The isolated STH is stable only up to 50K, but when it becomes complexed to a
cation vacancy its EPR signal persists up to 110K.%® While the higher-resolution
ENDOR spectroscopy of Bennebroek et al. showed no signal pertaining to the
presence of a vacancy,*® the experiments were performed both at much lower
temperatures (at which isolated STHs would be expected to dominate), and with
larger crystals in which the defect concentration is smaller (as discussed in further

detail in Section 1.1.6).

1.1.5 Defect Migration

The analysis of the conductivity measurements mentioned in the previous section
depends upon a detailed model of the migration mechanisms involved. It has been
found that the mobility determined through ionic conductivity considerably ex-
ceeds that found using self-diffusion measurements and the Einstein relation.4-%5
This discrepancy is due to correlation in the migration path, and led to the pro-
posal that the interstitialcy migration dominates in the silver halides.5*%% In this
mechanism, a cube-centred interstitial ion pushes a neighbouring lattice site ion
into an interstitial region, taking its place on the lattice site, as illustrated in
Figure 1.3. This process may happen in a collinear or non-collinear fashion, each
having a different probability.

The collinear interstitialcy mechanism dominates in AgCl and AgBr, and has
been found to have exceptionally small migration barriers, as can be seen in Ta-
ble 1.3. It has been proposed that the migrating cation undergoes quadrupolar
deformation upon migration, substantially lowering the energy barrier.1®6¢ De-

spite having a greater energy barrier due to steric restrictions, the non-collinear
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Figure 1.3: The collinear interstitialcy migration mechanism

64,67 The energy barriers in

interstitialcy migration path is also thought to occur.
this case are also shown in Table 1.3.

Migration of the corresponding silver vacancy is thought to contribute sig-
nificantly to cation transport. The process occurs via movement of a nearest
neighbour cation into the vacancy, leaving behind an empty lattice site. Rather
than migrate directly, which would involve an energetically unfavourable passage
through the centre of a pair of halide ions, the cation is proposed to move via

13,56,69

a pair of non-collinear jumps, as can be seen in Figure 1.4. Again, the

Table 1.3: Experimental defect migration barriers / eV. ci represents the
collinear interstitialcy mechanism; nci, the non-collinear mechanism; and
v the vacancy migration.

AgCI®  AgBrT
AE, 0003  0.048
AE,; 0113 0.481
AE, 0278 0.297
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1.1. THE SILVER HALIDES Introduction

Figure 1.4: Illustration of the proposed vacancy migration mechanism.
The dashed arrow corresponds to the energetically unfavourable direct
route, while the solid arrows show the lower energy pathway.

experimental energy barriers are reproduced in Table 1.3.

There have been a number of attempts to model the migration behaviour. The
earliest of these was by Hove in 1956 who used primitive interatomic potentials
for AgCl to study the three mechanisms above. While his quantitative results are
now believed to be unreliable, he observed the same ordering as reported in Table
1.3. More recent shell-model potentials have had greater success, reproducing the
defect formation energies and their temperature dependence.>® However, these
failed in their application to defect migration unless an ad hoc description of the
quadrupolar deformation of the migrating cation was introduced.5”-66

Finally, it should be pointed out that recent experimental and theoretical
work have shown strong evidence that the interstitial cation exists not at a cube-
centre, but in a split-interstitial configuration involving a second cation.5%:6%7
Should this be confirmed, the above analysis would become invalid, as there
would only be a single interstitial migration mechanism. However, this proposal is
not inconsistent with experimental data; but accurate comparisons would require

re-analysis of these results based on the new model.
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1.1. THE SILVER HALIDES Introduction

1.1.6 Silver Halide Surfaces

The average size of a silver halide grain used in a photographic emulsion is around
1 um. Hence the surface properties of the silver halides are relatively important,
and have been studied extensively. Only the {100} and {111} faces are stable,
and thus only grains of cubic and octahedral geometry are found naturally.?®

Atomistic modelling of the non-polar (100) surface of AgBr suggests a very
simple picture in which the ions have small displacements perpendicular to the
surface, creating a ‘rumpling’ effect.” This model was later supported by surface
extended x-ray absorption fine structure (SEXAFS) spectroscopy.™

The situation for the polar {111} surfaces is more complex, as they must re-
construct in order to reduce its surface dipole, which would result in a half-filled
layer of either silver or halide ions. Hamilton and Brady’s early electron diffrac-
tion experiments on AgBr resulted in a model consisting of top layer of silver
ions, arranged in a hexagonal configuration,” which is in agreement with more
recent AFM measurements,” but disagrees with both the atomistic modelling™
and SEXAFS studies™ which favour an alternate-row model. To our knowledge,
this issue has not be resolved.

Just as in the bulk, defects are present at the surfaces of the crystal. A
typical surface will be covered in flat terraces and atomic-scale islands laced with
vacancies, adatoms, steps and kinks, as illustrated in Figure 1.5. These defects
need not occur in neutral groupings. In fact, this latter behaviour will happen
only at the isoelectric temperature where the free energies of formation will be
identical. Indeed, it has been measured that the {100} surfaces have a space-
charge layer consisting of a negatively charged surface and a charge-compensating
subsurface concentration of interstitial silver cations.” 7" The resulting spatial
distribution of the defects within the space-charge layer has been derived by
solution of the Poisson equation.”3!

The positively-charged surface kink sites are thought to play a key réle in the
formation of a space-charge layer due their low coordination, and therefore their
low binding energy to the surface. As a result, they provide an efficient source
of cations for redistribution into the bulk. The surface kink sites have been
shown via simple symmetry arguments to have a charge of +5¢™, depending on

2

its occupancy by a cation or an anion,?? and are thought to be crucial to the

photographic process (see Section 1.2).
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1.2. THE PHOTOGRAPHIC PROCESS Introduction

Figure 1.5: A simplified illustration showing various surface defects: a
surface vacancy, a step, a kink, and an adatom.

The effects of the space-charge layer can cause the properties of small crys-
tallites to deviate strongly from those measured in large macroscopic crystals.
For instance, the defect concentrations are increased by two or more powers of
ten, and migration barriers are lowered.®? Indeed, the conductivity of AgBr has
been measured to be proportional to the surface to volume ratio.?> As will be
described in the following section, these properties are highly beneficial to the

photographic process.

1.2 The Photographic Process

A commercial photographic film consists of many micron-sized silver halide crys-
tallites suspended in gelatin. These crystallites are generally composed of AgCl,
AgBr or a solid solution of the two, sometimes with a small admixture of iodide.

When a film is exposed, certain grains will be exposed to light. Given enough
photon flux on a given grain, a small silver cluster will form on its surface. This
cluster, known as the photographic latent image, will catalyse the reduction of the
whole grain to macroscopic metallic silver (along with halogen dimers) during the
development process. These silver clusters represent dark specks on the resultant
negative image.

The detailed mechanism behind the process of latent image formation has
been the subject of much discussion over the past century. However a consensus

has not yet been reached. The basic principles were first outlined by Gurney and
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Mott in 1938,%3 but have evolved since then into the direct photolysis mechanism

of today. 26

1.2.1 Direct Photolysis

When a grain of silver halide is struck by light of great enough energy, an elec-
tron/hole pair is created. In the direct photolysis theory, the electron is vastly
more mobile than the hole, which rapidly becomes trapped within the bulk of
the crystal.®® Owing to the absence of deep electron traps in the bulk of the
material, the electron diffuses until it becomes trapped at a surface defect site,
which happens within 10™8 seconds of exposure.®® Due to its low coordination
and partial positive charge, the positive kink is thought to be the most likely site
for trapping (see Section 1.1.6). The electron is not thought to strongly localise,
and will instead precess around the surface defect in a large orbit. However, it
will alter the net charge of the site, and cause the surrounding ions to relax,

deepening the trap. In simplified notation:

kinki* + e~ — kink?™. (1.1)

This negatively-charged centre will then draw the highly mobile interstitial
cations from the subsurface space-charge layer towards the surface, whereupon

one will be reduced to a neutral silver atom, regenerating the positive kink:

kink?~ + Agf — kink* + Ag(s). (1.2)

This silver atom, known as the latent pre-image centre, is only metastable and
may recombine with a free hole. However, due to its location on an anion lattice
site, the silver atom is an efficient electron trap. Thus it may trap an additional
electron, then interstitial, to form Ag,, which is stable and is known as the latent
sub-image centre.?® This dimer does not catalyse the development process, but
with repeated electron and interstitial trapping, a latent image centre is formed
which is catalytically active. Depending upon the exact nature of film, this centre
is composed of 3-5 atoms. The processes involved in the growth of these silver
clusters have been modelled with increasingly accurate methods by Baetzold.%¢-8°
As a result, the geometries and electronic properties are now well understood, as

are the dependencies on surface site.
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The latent image centre acts as a catalyst for the reduction of the silver halide
grain to silver during photographic development. In this way, the cluster size is
effectively amplified by a factor of as much as 10°, making it visible to the human

eye.

1.2.2 Chemical Sensitisation

Despite the strict requirement of only 3-5 photons to form a developable cluster,
the most sensitive emulsions usually require 6-10 photons, which is due to a

number of factors:

e Dispersity (the formation of more than one latent image cluster per grain),

e Regression (the loss of a latent image cluster through reaction with mobile
holes),

e Electron-hole recombination.

In order to improve efficiency, silver halides grains are often heated with aque-
ous solutions of gold and sulphur salts, resulting in chemisorbed Ag.S and AgAuS
clusters.%® These chemical sensitisers direct the formation of the latent image such
that, in ideal cases, only a single latent image centre is formed, which is achieved
by providing a preferential surface site for electron trapping, usually Ag,S.5%:83
Gold atoms are usually also present, and are incorporated into the latent image
cluster, improving the ability of small clusters to develop. Again, the calculations
of Baetzold and co-workers have provided useful insights into these processes.®®:°!

An alternative, reduction sensitisation, involves partially reducing the grains
in an emulsion such that a number of small silver clusters are formed on the sur-
face. As they would not generally be located at a positive kink, their energy levels
would not be compatible with the nucleation and growth mechanism described
in the previous section. However, they act as hole traps, reducing the probability
of recombination. Absorbed hydrogen gas is thought to play a réle similar to
that of reduction sensitisation centres, and has long been used by astronomers to

improve the performance of their photographic detection plates.%?
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1.2.3 Spectral Sensitisation

The silver halides are intrinsically sensitive only to the UV and blue regions of
the spectrum. For a realistic image in the visible spectrum, organic dye molecules
are often employed. These molecules are electrically excited upon illumination by
longer wavelengths, and will transfer their excited electrons into the conduction
band of the crystal to which they are attached.?®%%9 Colour photography thus
involves a sophisticated layering of colour filters and colour-specific dyes.

1.2.4 Photo-Aggregation Theory

Mitchell’s photo-aggregation theory, which has been offered as an alternative
to the presently accepted direct photolysis mechanism described here, deserves
comment.

While similar to direct photolysis, Mitchell argued that holes, rather than
electrons, play the key role,»% which came about as a result of experiments
on large crystals which suggested that the positive holes are more mobile than
interstitial cations. Thus, recombination should occur in preference to latent
image formation. In addition, from these data, he calculated that there should
be less than one interstitial defect per grain.

Instead, a hole would become trapped at negative kink site. The net positive
charge on the kink would then repel a silver cation into a subsurface interstitial
position, and leave behind a Br; species. Due to the partial covalency of the
silver halides, and their high dielectric constant, Mitchell argued that an electron
would not become trapped at a positive kink site. However, the combination
of the kink with a nearby subsurface interstitial cation provided the necessary
conditions for electron trapping, which would then allow for the creation of a
silver atom. The formation of a developable latent image cluster would then
occur in a similar fashion to the direct photolysis theory.

The failing of this theory is that small crystallites have vastly different defect
properties than large crystals due to the presence of the space-charge layer. Thus,
subsurface interstitial cations will reach surface-trapped electrons rapidly. Conse-
quently, the direct photolysis mechanism is widely accepted to be more realistic,

and therefore has been the basis of most modern work.
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1.3 Aims of This Work

As should be clear from this chapter, the silver halides have unique and inter-
esting properties which make them ideal materials for the photographic process.
However, not all aspects of the process are fully understood. Much work has been
done on the industrially-important growth processes of the latent image cluster,
and the effects of chemical and spectral sensitisers. However, some key quantities
are not yet known.

The properties of bulk defects have not been studied since the early work,
based on interatomic potentials, even though this method had clear deficiencies
for the systems in question. State-of-the-art quantum mechanical calculations can
now give more reliable structures and energetics, while also providing information
on the electronic structure. Our primary aim is therefore to determine both the
structural forms of the intrinsic defects in the bulk and at the surfaces, and the
depth of hole and electron traps associated with these defects.

Much of the work regarding latent image formation has concentrated on the
step-wise growth of the silver-atom clusters on the surface from Ag; to Ag,.
However, there has been relatively little work on the earlier stages of the process.
As such, we also wish to understand the mechanism by which the first silver atom,

the latent sub-image centre, is formed.
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Chapter 2

Methodology

The methods used in this study are entirely computational. While the basic theo-
ries that underpin these methods have been known for decades, today’s increased
computing power has resulted in new applications. Therefore, we can now study
larger systems in greater detail than has been possible before.

Along with this increased power have come advances in quantum chemical
theory. Over the last 40 years, Density Functional Theory (DFT) has progressed
to a state where it has become a primary tool for modelling crystalline materials.

In this chapter, the basic ideas behind semi-classical and DFT-based methods
are outlined, followed by an introduction to the methods used to model defects

in insulating materials.

2.1 Semi-Classical Modelling

The idea behind semi-classical calculations is to remove all the quantum-mechanical
detail from short-range ion-ion interaction, and replace it with a simple function,
known as the interatomic potential. With a set of parameters describing the in-
teraction between all pairs (and, optionally, triplets and quartets) of ions in a
crystal, remarkably accurate properties can be calculated at relatively little com-
putational expense. In this section, the basic concepts behind these methods are
outlined. For a more complete description, the reader is directed to the volume
edited by Catlow and Mackrodt,% or the recent paper by Gale and Rohl.®”
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2.1.1 Ion-Pair Interaction

In ionic crystals, the interatomic potential can be described as the sum of a
Coulombic contribution, a short-ranged repulsive term and an attractive van der
Waals term. The Coulombic term, given simply by Coulomb’s law (Equation
2.1), will provide the dominant contribution to the total energy: typically around
90%.

Ulry) = 24 (2.1)

Tij
where g; ; are the ionic charges, 7;; is the interatomic separation, and all quantities
are in atomic units.

Although simple in form, in practice these terms are difficult to calculate as
they form a conditionally convergent series. As a result, special techniques and
conditions must be employed to transform the sum into a convergent series. The
most widely used example for bulk crystals is the Ewald sum,*® which imposes
conditions of charge neutrality and zero dipole moment, then splits the sum into
two terms: one rapidly convergent in real space, and one rapidly convergent in
reciprocal space. As will be described later, there are also methods which allow
these two conditions to be broken.%:100

In order to model a thermodynamically stable crystal, repulsive terms are
required. These result from the Pauli exclusion principle, and along with the
dispersive attraction, provide much of the chemical character of the material.
These contributions are usually combined into a single term, usually of the form
described by Buckingham, which is shown in Equation 2.2, and illustrated in

Figure 2.1.

Ul(ry;) = Aexp(—rij/p) — C/r?j (2.2)

where A, p and C are constants, fitted to either quantum mechanical or experi-
mental data.

The first term in the equation describes the overlap repulsion. The functional
form of this interaction will be complicated, and involve knowledge of the elec-
tronic structure of each atom. In practice, it is replaced by a simple exponential
term which reflects the radial dependence of a 1s-orbital. In an alternative form,

described by Lennard-Jones, the repulsion is represented by an r~!? term.!%
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U(r ij)

Figure 2.1: Plot of a standard Buckingham potential (Equation 2.2).

While more mathematically efficient, this has been shown to be inferior to the
Buckingham form for most ionic materials.

The second term describes the attractive short-range dispersion, or van der
Waals, force, which is due to the interaction of two dipoles produced through
random fluctuations of two polarizable ions. It is quantum mechanical in origin,
and the leading term has been shown to take the r—® form shown here. Higher-
order terms from other fluctuating multipoles are generally unnecessary, but have

8

the forms =8, =% and higher.

2.1.2 Many-Body Interaction Terms

In many materials the bulk properties cannot be reproduced accurately using
simple two-body interactions. A measure of the importance of many-body in-
teractions in a material is the degree to which the Cauchy condition is violated.
Cauchy stated that, for centrosymmetric cubic crystals at equilibrium, the elastic
constants must satisfy the condition Cjs = Cy. Deviations are small in materials
such as the alkali halides, but are large in the silver halides (where C12 = 5Cyy).

Three-body interactions arise from two different effects. First, due to the
form of the underlying molecular orbitals, a triplet of ions may have a preferred

internal angle. Thus, a term can be introduced which penalises deviation from
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Figure 2.2: Definition of the bond lengths and angles in Equation 2.4.

this angle, which would be of the form:

U(6) ~ (8 — 6)’ (2.3)

where 6 is the actual angle of the triplet, and 6, is the ‘preferred’ angle.

The other form, used in ionic materials without directional bonding, is the
three-centre dispersion relation (i.e. the three-body equivalent of the van der
Waals interaction). This term was derived by Axilrod and Teller,'%? and takes

the form:

1 + 3 cosb; cos 8 cos O
R}R3R}

U(R;, Rj, Rx) = Cijx (2.4)

where the R’s and 6’s are interatomic separations and angles, as shown in Figure
2.2, and Cjjy, is a constant. This form has been used by Baetzold et al. to model
the defect properties of the silver halides with some success.’

Four-body interactions are often required to model the dependence upon tor-
sional angles of molecular species. Similarly, they can be used when modelling
planar species, such as the carbonate anion, in order to reproduce the out-of-plane

bending mode.!%
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Figure 2.3: Illustration of the ‘shell model’ of Dick and Overhauser.!%4

The small sphere represents the core, which contains the nucleus and the
core electrons. The larger sphere, which is negatively charged, represents
the remaining valence electron(s). The two are connected via a spring of
spring constant k.

2.1.3 Polarizability

Normally in binary ionic materials such as the halides and oxides, the anion will
be highly polarizable. In some cases, such as the silver halides, the cation will
also have an appreciable polarizability. In materials such as these, the simple
monopole-monopole Coulomb term must be supplemented with terms involving
dipoles and possibly quadrupoles.

The effects of dipole polarizability are commonly introduced using the simple
mechanical shell model of Dick and Overhauser,'® which decomposes the atom
into two parts: the outer valence electrons (the shell), and the inner core contain-
ing the nucleus and all core electrons (known simply as the core). The core and
the shell are both charged, but do not interact Coulombically. However, their
positions are coupled via an harmonic spring, as illustrated in Figure 2.3.

Use of this model has lead to accurate descriptions of the dielectric, phonon
and defect properties of many ionic materials.!?1%° Some materials, such as
the silver halides, require quadrupolar-interaction terms.'%14110 The shell model
cannot easily be extended to include these interactions, and thus alternative tech-
niques must be used.

One alternative, is to assign each point ion a dipole and quadrupole polariz-
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ability. The contributions to the energy from the dipole and quadrupole can then
be calculated as a function of the electric field at that point in space.!’®12 The
primary disadvantages of this seemingly superior method are that the polarizabil-
ities are independent of their chemical environment, and also that the calculations
require self-consistent optimisation, as the electric field on one centre will depend

upon the induced multipoles on the surrounding ions.

2.1.4 Calculation of Crystal Structure and Properties

Given a particular crystal structure and a full set of interatomic potentials for
the constituent ions, the total lattice energy of the system, U, may be calculated.
The derivatives of this energy with respect to various quantities can provide a
wealth of data about the properties of the crystal.

The first and second derivatives with respect to atomic positions are used di-
rectly in structural optimisation calculations. Many algorithms have been devel-
oped which aim to find the global minimum, and hence the most stable structure,
in an efficient and accurate way. Knowledge of the matrix of second derivatives,
known as the Hessian, is highly beneficial, as it can be used to calculate directly
the position of the local minimum of a quadratic surface. However, in realistic
systems, repeated calculation of the inverse Hessian is required, which can be an
expensive process - especially for larger systems. Algorithms known as DFP113
and BFGS!! have been designed which update, rather than re-calculate, the in-
verse Hessian after each step. These have been shown to be extremely efficient,
and have been widely implemented.

For a system at equilibrium geometry, the Hessian can also tell us about
phonons in the crystal. The dynamical matrix, D(k), can be calculated from the
sum of these derivatives multiplied by a reciprocal-space dependent phase factor.

The frequencies can then be obtained from the eigenvalues of the equation:

D(k)u = / M; Mw?u. (2.5)

where M; ; are the masses of the ions (assuming a two-ion basis), w is the angular
frequency, and u are the eigenvectors corresponding to the vibrational modes.
A plot of the resultant frequencies against position in the Brillouin zone, k,
gives the phonon dispersion curves of the crystal.
The elastic properties of the material can also be calculated in a similar fash-
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ion. The elastic constants can be determined via the second derivatives of the

energy with respect to strain (e):

1 {020
Cii =7 ( aﬁiej) (2.6)

where V' is the volume of the unit cell, and the values form a 6 x 6 symmetric

tensor.

Within the symmetry of the crystal the number of independent matrix ele-
ments is reduced. For a cubic material, such as silver chloride, the only unique
elements are Cy;, C12 and Cyy. Given these quantities, other elastic data such as
the bulk and shear moduli can be approximated using simple relations.®”

The dielectric constants may also be routinely calculated. Two extreme values
are usually quoted, corresponding to the application of static and high frequency

electric fields. Each form a 3 x 3 tensor with coefficients calculated according to:

4 _
€ap = Sap + 77 (aD;59) (2.7)

where «, 8 correspond to Cartesian directions, q is the vector containing the
charges of all particles, and D, is the second derivative matrix.

The two quantities differ due to the nature of the polarization. For the high
frequency case, only the electrons can adapt to the changing field, and so D and ¢
contain values for the shells only. For static fields, the nuclei have time to relax,
and thus both the cores and shells appear in the expression and the dielectric
screening is much greater.

The results of our calculations employing these semi-classical techniques are

reported in Chapter 3.

2.2 Density Functional Theory

2.2.1 Introduction

Density Functional Theory puts the ground-state electron density at the heart of
electronic structure calculations. The origins of the method are in the Thomas-
Fermi model, which approximated the kinetic energy of the electrons as a func-
tional of their density, while neglecting exchange and correlation interactions.!!% 116

However, these approximations result in a method that is not accurate enough
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for most practical applications.

In 1964, Hohenberg and Kohn published a landmark paper proving that if
the electron density of a system is known, the external potential, V;:(r), can in
principle be uniquely determined.!'” Given this potential, the full Hamiltonian
is known, and any other property of that system may be calculated. In addition,
they stated that a universal functional for the energy in terms of the density can
be defined for any given potential. The global minimum value of this functional
is equal to the ground-state energy, while the corresponding density is also that
of the ground-state (Equation 2.8).

Egk[n] = T[n] + Eguln] + / Ve (r)n(r) + Epg (2.8)

where n is the electron density, T'[n] and E;[n] are the kinetic and internal
energy functionals, V. (r) is the external potential described above, and Ej; is
the interaction energy of the nuclei.

Unfortunately, the theorem could provide no information about the function-
als involved. In fact, these unknown functionals will in general have complex
non-local forms. As a result, the Hohenberg-Kohn theorems are of limited direct
applicability.

However, in 1965, Kohn and Sham published a method which brought prac-
tical applicability to Hohenberg and Kohn’s theory through the use of some
additional approximations.!’® They re-expressed the many-body form of the
Hohenberg-Kohn theorem (Equation 2.8) in a single-particle form:

Exsln] = Tln] + / B rVoms (0)0(1) + Entartree|nt] + Err + Exe[n] (2.9)

where T'[n] is now the independent-particle kinetic energy, Epariree[n] is the self-
interaction energy of the density, and E,.[n]| contains all the (unknown) many-
body exchange and correlation effects.

Key to the theory is the assumption that the ezact many-body ground state
density can be represented using the independent particle densities. Thus the
advantage of this approach is that if the exchange-correlation functional E,.[n]
is known, the ground state energy and density of the many-body system can be
determined.

In practice, E,.[n] is unknown, but by the Kohn-Sham construction, it can
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be approximated as a local or semi-local functional. There is currently an active
research area trying to find the best approximations to this complex functional.

This work is summarised in the following section.

2.2.2 Exchange-Correlation Functionals
Local Density Approximation

The Local Density Approximation (LDA), originally formulated by Kohn and
Sham,'® was the first example of an exchange-correlation functional. It was pro-
posed that the exchange-correlation energy could be approximated as an integral
over all space, with the energy density at each point assumed to be the same
as in a homogeneous electron gas with that density. This is reasonable for ma-
terials such as metals, which can be considered to be close to the limit of the

homogeneous electron gas.

Generalised-Gradient Approximations

For materials which have a greater degree of variation in their electron density
distribution, the inclusion of extra terms dependent on the magnitude of the
density gradient, |Vn|, generally provides a more accurate representation of the
exchange-correlation functional.!'® As a result, the overbinding found in LDA
calculations is reduced, and bond lengths are increased.

Common examples of these Generalised-Gradient Approximation (GGA) func-
tionals include B88,'2° PW91'?! and PBE.!?? Due to the additional complexity,
calculations using these functionals take approximately 50% longer than those
using the LDA.

Hybrid Functionals

The idea behind hybrid functionals is to empirically combine the strengths of DF'T
with those of the Hartree-Fock approach. This is reasonable, as the two methods
often have opposing characteristics: HF underbinds while DFT overbinds; HF
overestimates and DFT underestimates band gaps.

Simply mixing Hartree-Fock’s exact exchange into the DFT exchange-correlation
functional as a linear combination has provided some of the most accurate func-

tionals available today. A simple example is given in Equation 2.10, where « is a

38



2.3. BASIS SETS Methodology

fraction fitted to experimental data.

LDA
E.=aoEfF { (1-a)EEPA4+ ! (2.10)
N - _ N p
Exchange Terms Correlation Term

This method can, and usually is, extended to use GGA DFT. One of the
most common hybrid functionals, B3LYP, uses Hartree Fock and Becke’s B88
functional for exchange along with LYP correlation.'?

Also of note due its relevance to this work, is the systematic optimisation pro-
cedure also by Becke.'?* In this method, the exchange and correlation functionals
were expanded in a power series involving the density and its first derivative. To
this, a fraction of exact exchange was added. The resultant 10 parameter form was
fitted non-self-consistently to the G2 set of atomic and molecular energy data,'?
and provided very accurate results. Later, Hamprecht et al. re-parameterised
the B97 functional using a self-consistent procedure, resulting in the B97-1 func-
tional.'?¢ More recently the B97 functional form has been used again, with pa-
rameters fitted to thermochemical data and the exchange-correlation potentials,
obtained using the method of Zhao et al.'?" This resulted in the B97-2 func-
tional,'?® which represents a significant improvement over the B97, B97-1 and
the B3LYP functionals. The B97-2 functional has been used extensively in the

QM/MM work reported in Chapter 5.

2.3 DBasis Sets

In all practical applications of DFT, and in electronic structure calculations in
general, a basis set must be introduced with which to represent the electron
density, usually comprising analytical functions of a particular form, typically
gaussian functions or plane waves. If this set were mathematically complete
the accuracy of the calculation would be unaffected by its choice. However, in
reality, this infinite set of functions must be truncated, and as a result accuracy
is lost. The computational effort of a calculation scales with the number of basis
functions, and so a balance between accuracy and efficiency must be found.

In order to maximise the quality of a finite basis set, it should represent the
underlying structure of the material. Two of the most common methods are

described in the following sections.
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2.3.1 Atom-Centred Basis

In this basis set, functions are placed where they are needed: around each atom.
The most commonly used variant are the Gaussian Type Orbitals (GTO) which

have the form:

Xemtm(T,0,0) = NYym (6, 0)r®n2-De=¢r" (2.11)

where N is a normalisation constant, Y, are spherical harmonics and ¢ controls
the width of the orbital.

These have the disadvantage that they do not have the same behaviour as real
atomic orbitals, and therefore a linear combination of many such functions must
be used in order to reproduce the required forms. Their widespread use therefore
relates to the great efficiency with which they can be manipulated mathematically.

The size of a GTO basis set is classified according to a standard notation.
A minimum basis set, which has only enough functions to contain the electrons
of the neutral atom, is known as single zeta (SZ). Basis sets with double and
triple this number of functions are called double zeta (DZ) and triple zeta (TZ)
respectively. As the atoms become heavier, often only the active outer valence
electrons are treated at this level, and the basis sets are therefore termed DZV
and TZV. Furthermore, extra polarization functions may be added with higher
angular momentum, which allow for lower symmetries in the density, leading to
DZVP and TZVP quality basis sets. The latter are used for all calculations in
Chapter 5.

As long as the basis set remains incomplete there will be large systematic
errors in the computed energies. Relative energies, however, are far more accurate
due to error cancellation. This rule breaks down when differing geometries are
compared, as the quality of the basis set is not consistent. For example, when
the two constituent atoms of a dimer move closer together the description of one
ion becomes improved due to the proximity of the basis functions on the other.
The result is a lowering in energy of the bound system, and an overbound dimer.
This effect is known as basis set superposition error (BSSE), and must always be

considered in calculations of this type.
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2.3.2 Plane Wave Basis

Rather than have a basis set based upon the positions of the nuclei, which allows
for calculations in any periodicity (e.g. gas phase, condensed matter), the plane
wave basis set is restricted to the three dimensional periodicity of the crystal unit
cell. This means that Bloch’s theorem can always be applied, resulting in an

electronic wavefunction of the form:

Yise(r) = uip(r)e™, (2.12)

where u;x(r) has the periodicity of the cell.

This is, of course, true for condensed phase atom-centred basis calculations,
in which w; (r) will be a complicated periodic function involving the positions of
the nuclei. For the case of the plane wave basis set, u; k(r) is simply taken to be

a plane wave expansion:

Uix(r) =) cice T, (2.13)
)

where G are the reciprocal lattice vectors.
Therefore, the single-electron wavefunction can be written as a sum of plane

waves:

w,-,k(r) = Z cz_’k+Gei(k+G).r. (214)
G

Again, this basis set must be truncated. One of the great advantages of this
method is that a single parameter controls the quality of the basis set. This
parameter is known as the cut-off energy, and corresponds to the kinetic energy
of the largest wavevector in the plane wave basis:

h2

Eop = %(k + G)? (2.15)
All plane waves of kinetic energy below this value are included in the expan-
sion.
Other advantages are: the basis set treats all space equally, without any
bias towards atomic positions, eliminating BSSE; they are mathematically very
simple, improving efficiency; and they are potentially mathematically complete.

The main disadvantage of their use is that a very large number of plane waves,
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often millions, are required in order to achieve chemical accuracy.

2.4 Pseudopotentials

When dealing with heavy atoms, the number of required basis functions can be
very large. Fortunately, the innermost core electrons can be considered inactive,
and therefore chemically unimportant. The idea behind the pseudopotential ap-
proach is to replace the Coulomb potential of the nucleus and the effects of these
core electrons by an effective potential which acts upon only the valence elec-
trons. The resultant decrease in required basis set size increases the efficiency of
the calculations without a loss of accuracy. In fact, accuracy can often be im-
proved by incorporating relativistic effects into the pseudopotential which would
not normally be accounted for. ‘

Key to the pseudopotential approach is the transferability of the potential.
The conditions for a ‘good’ pseudopotential were laid out by Hamann, Schluter
and Chiang:!?°

e The all-electron and pseudo valence eigenvalues should agree,

e The all-electron and pseudo valence wavefunctions should agree outside a

chosen core radius,

The logarithmic derivatives of the all-electron and pseudo valence wave-

functions should agree at the core radius,

The first energy derivative of the logarithmic derivatives of both wavefunc-

tions should agree at the core radius,

The integrated charge within the core regions should agree.

When all of these conditions are met, the resultant pseudopotentials are
termed norm-conserving, and have proved to be very accurate and transferable.
However, when used with plane wave basis sets, high cut-off energies are usually
required, resulting in expensive calculations.

It has since been determined that the norm-conservation condition can be
relaxed, leading to smoother potentials, if an auxiliary function is added to deal

with the rapidly varying electron density around each ion’s core. This approach,
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resulting in ultrasoft pseudopotentials, has greatly increased the efficiency of to-

day’s calculations, and has been used for all calculations in Chapter 4.

2.5 Brillouin Zone Sampling

When imposing periodic boundary conditions upon a system, the number of elec-
trons becomes a finite, manageable quantity. However, the wavefunction and
density become artificially limited to the periodicity of the chosen cell. As can be
seen in Bloch’s equation (Equation 2.12), this is compensated by the introduc-
tion of reciprocal space-dependent exponential term, which may introduce long
wavelength oscillations into the wavefunction.

These reciprocal space vectors, or k-points, all exist within (or can be mapped
back into) the first Brillouin zone of the crystal. At each k-point, the eigenvalues
of the Hamiltonian will form a series of discrete energy levels. These levels will
generally vary smoothly between neighbouring k-points, and will thus form bands
of energy levels, an example of which can be seen later in Figure 4.3.

In order to reproduce all the long-range effects in the infinite crystal, the set
of k-points should be in principle be infinite. However, this set can be reduced
significantly to a small subset of representative points by exploiting the smooth-
ness of the calculated properties with small changes in k-space. The resulting
subset can often be further reduced by the use of symmetry. Early studies in
the literature have achieved reasonable accuracy using simple gamma-point cal-
culations, in which the phase-factor in Equation 2.12 is removed (k = (0,0, 0)).
However, modern calculations must use a representative sample of k-points if

chemical accuracy is to be achieved.

2.6 Point Defect Calculations

Calculations of defect properties have been performed for over 40 years, start-

107,130 and lately applying high level quantum

ing with simple classical models,
mechanical techniques.!3:132 Several techniques have been devised for studying

defects computationally. These can be placed into two broad categories:

e those that exploit the symmetry of, and the methodologies developed for,
the host crystal,
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e those that treat the defect and its immediate surroundings as an isolated
cluster, employing the methodologies developed for molecular systems.

In the following sections both approaches will be described.

2.6.1 Supercell Methods

The simple idea behind the supercell method is to place a defect into a cell that
is larger than the primitive unit cell, as depicted in Figure 2.4. This can be used
as a direct method with which to study defects at high concentrations, but as
concentration decreases, supercell size must increase. However, as the computing
resources required for such a calculation will increase with the number of atoms

in the system, clearly the limits will be reached quickly.

Figure 2.4: Illustration showing the supercell technique

Given that defects are normally present in small concentrations, it is useful
to adapt these methods in order to approximate a state of infinite dilution. For
the simple case of neutral defects, the interaction between a defect and its peri-

odic images will be minimal*. Given a supercell large enough to encompass any

*This only strictly true of defects with no multipole moments whatsoever.
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structural relaxations, an accurate defect formation energy can be obtained by
using a sufficiently dense k-point grid.

The situation is more complicated with charged defects. In this case, an infi-
nite array of charged supercells results in a divérgent Coulomb sum. This problem
can be circumvented using a neutralising background charge, which hopefully will
not alter the structural properties of the defect nor energy differences between
two similar cells.

For the case of a homogeneous jellium background charge, the error in using
this approach can be corrected for a posteriori using the term derived by Leslie
and Gillan.% A further term due to the quadrupole moment of the defective
system has also been derived,!® leading to the correction formula for systems

with no net dipole moment:

2
_ aq 2mqQ) _s
Eeorr(L,q) = Ep + Y7 O[L™®] (2.16)

The second term simply amounts to the energy of a system of periodic charges
in a uniform background charge, where q is the defect charge and « is the appro-
priate Madelung constant for this model system. The third term describes the
jellium-quadrupole interaction, where @ is the quadrupole moment. Each term
is reduced by the dielectric constant, ¢, to simulate the effects of the polarizable
crystalline lattice. Clearly, this approximation is only exact in the limit of infinite
supercell size.

Correcting the defect energetics with these terms has been shown to drastically
improve the convergence with respect to supercell size (see Section 4.1.5). The

individual defect formation energies can then be calculated according to:

Ef(q) = Edef - Epure — Nplin — Nxhx + qlie + Ecorr(Q), (217)

where Egz¢ is the energy of the defective cell, Ey,, . is the energy of the defect-
free reference system, ns/x are the change in number of cations/anions on going
from the pure cell to the defective system, pps/x are the cation/anion chemical
potentials relative to their standard states, g is the net cell charge, p. is the
chemical potential of the electron and F,,. is the correction described above
(Equation 2.16).

The chemical potential of the electron, p., or equivalently the Fermi energy,

is undefined in a perfect insulator,'®® and hence calculation of charged defect
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formation energies is problematic. For uncharged defects, however, the chemical
potentials can routinely be calculated relative to their standard states.

When calculating the full reaction cycle (i.e. the formation of a pair of charge-
compensating defects) two such equations are combined. For the cases of the

cation Frenkel and Schottky defects, the resulting equations are:

AE’Fv'enkel = Edef(MI) + Edef(VM) - 2Epure + Eoorr(MI) + Eoorr(VM), (218)

AEschottky = Egef (VM) + Egef(Vx) — (2 - Yb_) Epure + Ecorr(Va) + Eeorr(Vx),
(2.19)
where N is the number of MX formula units in the pure cell, and all other terms
are as described above.

For the Schottky pair, it is assumed the removed ions combine and add to the
bulk material, and hence the sum of their chemical potentials can be replaced
with the energy of a pair of ions in the bulk. The dependence upon the electron
chemical potential is cancelled, and thus calculation of these energies is tractable
regardless of charge state.

The calculation of energies in insulating materials are complicated by the lack
of a consistent reference energy. In some calculations, energies may be referenced
to the valence band maximum, however in general this is hard to implement in
a consistent fashion. Insertion of a defect into the band gap, or alteration of
the defect’s charge state, may also affect this reference energy. One method of
correcting for this behaviour is to compare the electrostatic potential at a distance
from the defect with that of the pure bulk material.13 Alternatively, comparison

of the energies of unaltered semi-core states in the band structures may suffice.!3?

2.6.2 Cluster-based Methods

In cluster-based methods, a fragment around the site of interest is excised from
the crystal and is treated as a large ‘molecule’. This approach has the advantage
of utilising standard quantum-mechanical molecular codes such as GAMESS-
UK!3% and GAUSSIAN,!37 which can often provide greater flexibility than codes

which implement periodic boundary conditions. For instance, while post-Hartree
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Fock and time-dependent DFT methods are readily available in many molecular
codes, they are rarely implemented in those designed to model the solid-state. As
a result, calculations of excited states can routinely be performed using cluster-
based techniques.

There are, however, drawbacks to this method:

e The cluster must be large enough to contain the major structural relaxations

around a defect, which can lead to large, costly, calculations.

e The electrostatic potential within the cluster will be missing all the long-
range electrostatic contributions from the removed crystalline lattice, re-

sulting in incorrect positioning of the energy levels.

e A defect within the cluster will interact with the artificially-imposed sur-
face. The under-coordinated surface species will be more polarizable than
in the bulk and hence the electronic polarization due to the defect will be

overestimated and the electronic structure may well be wrong.

Various schemes have been developed to improve the accuracy and efficiency
of this technique. Most are based upon the idea of embedding the cluster within
a representation of the infinite crystal lattice. In the literature, this has been
achieved using techniques which fall into two broad categories: those codes which
employ semi-classical ions and/or point charges to reproduce the effects of the
infinite crystal, such as ICECAP,!3%13% ChemShell,’4® and GUESS;'*! and those
codes which use the results of ab initio periodic calculations to represent the
extended crystal, such as EMBED'4? and the method of Carter et al.143

We have employed the former approach, termed QM/MM embedding, for the
work in this thesis. One of the most important factors affecting the accuracy
of this technique is the quality of the coupling between the QM and MM re-
gions. The various levels of sophistication have previously been characterised by
Bakowles and Thiel: !4
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Mechanical Embedding  The QM cluster is relaxed in a gas-phase calcu-
lation. The nuclei from this calculation appear

as point charges in a separate MM calculation.

Electrostatic Embedding The MM nuclei are explicitly included in the
QM Hamiltonian as point charges.

Polarized Embedding As electrostatic embedding, but the shell-
model ions’ polarizability is coupled to the QM
charge density.

We have used a self-consistent polarized embedding model in which the QM
and shell-model MM polarizations are brought to equilibrium using an iterative
technique at each step of the geometry optimisation.

At the interface between the QM and MM regions, special techniques are
required to reduce the unphysical effects of this artificial boundary. For covalent
materials, this can be a complex task, as each broken bond must be terminated,
usually by hydrogen atoms. The total energy expression must then be altered
to remove the contributions from these centres. For ionic materials, such as
those studied here, the situation is far more simple, with a region being defined
which has a degree of quantum character, but is also modelled using interatomic
potentials. Further details of our method will be described in Chapter 5.

It is important to note that for practical reasons we must impose a limit on
the number of ions that are free to relax in our system. This number can be
rather large, and will easily encompass any structural relaxations in our system.

However, we cannot model the long-ranged effects of polarization, which are very

important when modelling charged systems. Using the equation of Jost'* we can
however, include this contribution to the total energy a posterior::
2
q 1
EPn = —— (1 - —) 2.20
bulk o°R c (2.20)

where ¢ is the charge of the system, R is the cut-off radius after which we do not
relax our ions, and ¢ is the dielectric constant of the material.
This equation has been generalised by Sokol for surface calculations, as per-

formed here;146
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Epolar _ ___q_2_€ -1
surface — JRe+1

These correction terms cannot be neglected as they have been shown to sta-

(2.21)

bilise charged systems by around 0.5eV for singly charged systems within a typi-
cal embedding scenario. Due to the g2 dependence in the equations, this will rise
rapidly for higher charge states.

The methods described here, although complex, have been shown to produce
accurate surface defect formation energies for Zn0O'46 and MgO.'4” We have used

this technique extensively to study silver chloride, as reported in Chapter 5.
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Chapter 3
Semi-Classical Calculations

As described in Chapter 2, semi-classical methods provide a very efficient way of
obtaining information about closed-shell systems. When a reliable, transferable,
model of the interactions has been derived it can be used to study either very
large systems or very long time-scale dynamics, leading to a more comprehensive
picture of the properties of the crystal.

In this chapter, previous work has been re-examined to investigate the ap-
plicability of existing interatomic potentials to modern simulations of the silver
halides. We have then derived a new set of potentials which have been optimised

for use in our QM /MM calculations reported in Chapter 5.

3.1 Method

Two programs were used for this work: GULP (General Utility Lattice Pro-
gram),% 18 and MARVIN’S Program (Minimisation and Relaxation of Vacancies
and Interstitials for Neutral Surfaces).!4® Both employ the standard techniques
described in Section 2.1, including the use of the shell-model to model dipole
polarization. While GULP is the more versatile code, until very recently it did
not include the ability to impose two-dimensional periodic boundary conditions
required for surface calculations, and thus MARVINS was utilised for this work.

While the general features of the semi-classical method have already been dis-
cussed, in this chapter it will be necessary to introduce some additional functional
forms, particularly for our three-body interactions. For the sake of clarity, they
will be described as they arise.
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3.2 Assessment of Existing Potentials

Although a number of authors have reported interatomic potentials for the silver
halides,578150:151 only a few have been applied to the calculation of defect
properties,35:57:66 the primary purpose of this work.

In order to find a robust set of interatomic potentials for use here, we have
applied each of the sets to the calculation of key properties, and as a result,
we have reassessed the quality of each in the modern context. Although there
are other older sets, they have not been studied here as they all have known
deficiencies.” % Furthermore, potentials using the polarizable point-ion model
described in Section 2.1 have not been investigated,”!!%15! a5 this approach is

known to have serious deficiencies.

3.2.1 Potentials of Catlow et al.

The simple two-body potentials of Catlow et al. were the first set of potentials
to reproduce key defect properties of AgCl accurately.® As can be seen in Table
3.1, they have larger van der Waals coeflicients than would be expected on the
basis of ion polarizability. However, it has been proposed that this effect is due to
the partial-covalency of the silver halide bonds. By modern standards these are
primitive potentials, as they act upon nearest-neighbours only. However, they
have been widely applied and have been shown to be consistent with experiment
in a number of cases.”” Due to their two-body nature, they fail to model the
Cauchy violation in the elastic constants, and are thus unsuitable for general

application.

Table 3.1: The two-body shell-model interaction potentials for AgCl of
Catlow et al.,> which are of the Buckingham form (Equation 2.2). The
shell charges and spring constants are: Qay,=-9.4826le|, Qc1=-2.485le],
k4g=597.69 eVA~2 and kc;=29.38 eVA~2. All interactions are nearest-
neighbour only.

Ag-Ag AgCl CLCl
AleV 16528.0 2518.8 1227.2
p/A 0.2370 0.3272 0.3214
Ci;/eVA® 2240 219.52 75.00

It should be noted that the techniques used to derive these potentials were
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used to obtain similar quality potentials for AgBr.? These potentials are not
discussed here as our primary interest lies with AgCl. However, they suffer the

same limitations as the potentials described above.

3.2.2 Potentials of Baetzold et al.

These potentials are a product of the same group as the previous set, but employ
three-body potentials in an attempt to improve the description of the bulk and
defect properties.® The Axilrod-Teller coefficients reported in the original publi-
cation were incorrectly scaled to compensate for over-counting.!®? The corrected
potentials are reported in Tables 3.2 and 3.3. While the resultant elastic and di-
electric properties are in good agreement with experiment, the phonon dispersion
curves are inconsistent with the data from neutron scattering.!® However, this
would be expected due to the lack of quadrupolar terms (see Section 1.1.2).

Table 3.2: The three-body interatomic potentials of Baetzold et al. for
AgCl5 The shell charges and spring constants are: Q,=-19.396|e|, Qci=-
2.485|e|, kag=4500.0 eVA~2 and kc;=29.38 eVA~2. The corrected values
of the Axilrod-Teller coefficients, Cjjx, are reported here. The two- and
three-body cut-offs are 2.5a, and 5.5A respectively, where a is the anion-
cation distance.

Ag-Ag AgCl CI-Cl
AleV 16528.0 2416.48 1227.2
p/A 0.2370 0.3302 0.3214
Cii/eVA® 3360 2750  75.0

Ag-Ag-Ag Ag-Ag-Cl ClAg-Cl CI-CLCI
Cijk/eVA®  124.86 758.67 30.22  8988.96

The use of these three-body potentials proved problematic in our defect simu-
lations, where the majority of calculations failed to converge due to a poor choice
of radial cut-off distance for the Axilrod-Teller potentials. The cut-off, which
defines which species will interact, was chosen to be 5.5A, which is very close to
the cubic cell length of 5.5064A. The original calculations were performed using
the CASCADE!®? code, in which a database of interacting species was created
at the initialisation stage, and was not updated. With the increased computing
power available today, the GULP code calculates the interacting species before
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Table 3.3: The three-body interatomic potentials of Baetzold et al. for
AgBr.5 The shell charges and spring constants are: Q4,=-25.967|e|, @p,=—
2.705|e|, kag=4109.34 eVA~2 and kp,=24.66 eVA~2. The corrected values
of the Axilrod-Teller coefficients, Cj;x, are reported here. The two- and
three-body cut-offs are 2.5a, and 5.5A respectively, where a is the anion-
cation distance.

Ag-Ag Ag-Br Br-Br
AjeV 16528.0 4943.0 29482
p/A 0.2370  0.3012 0.3320
Ci;/eVA® 2680 2284 2480

Ag-Ag-Ag Ag-Ag-Br Br-Ag-Br Br-Br-Br
Ciix/eVA®  300.09 14.47 0.00 20293.63

each geometry optimisation step. With large values of Cj;x, as we have here,
atoms that interact do so strongly, which can cause ions to move in and out
of the cut-off sphere, causing large changes in the total energy, and hence the
convergence problems we observed.

Consequently, although these are possibly the most accurate shell-model po-
tentials available, their applicability is limited unless they are re-parameterised

using a more suitable cut-off distance.

3.2.3 Potentials of Kiang and Goddard III

The results reported from this systematic study of the effects of polarization
on the AgBr phonon dispersion curves appear promising.® However, using their
favoured set of potentials (Set V), we find the crystal to be unstable. Using a
simpler model (Set III), we achieve stability, but do not obtain properties of the
quality reported by the authors.

It is clear that unreported methodological differences may be the cause of
these discrepancies. However, converting their ezponential-6 term to the form of
a standard Buckingham potential (Equation 2.2) and combining their three fitted
coefficients to obtain A, p and C has revealed to us their unphysical nature. These
potentials are clearly of little value, and consequently, no further investigation was

carried out.
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3.2.4 Conclusions

It is evident from the work reported here that there are no satisfactory shell-
model potentials for the silver halides. This problem is probably attributable to
the lack of a quadrupolar term in the potential and the inability to model the
effects of hybridisation in the valence band. However, it is also clear that the
extent of this deficiency depends upon the property which is being calculated.
Elastic and dielectric properties, for example, can be modelled accurately using
three-body interaction potentials and the shell model.

While the general applications of these type of potentials are limited, their use
in a combined QM/MM scheme, such as described in Section 2.6.2, can easily be
justified. The remainder of this chapter is therefore concerned with the derivation

of new potentials tailored to this purpose.

3.3 New Interatomic Potentials

3.3.1 Investigation of the Repulsive Potential

Early interatomic potentials relied upon fitting the coefficients of the analytical
forms described previously to experimental data using approximate mathematical
relationships. As previously mentioned, Mayer calculated the dispersion coeffi-
cients for a number of ionic materials on the basis of ultraviolet absorption spectra
and polarizability data.!®® However, for many years it has been possible to under-
take numerical fitting procedures so that parameters can be fitted to a large body
of experimental data, such as structural, elastic, dielectric and phonon properties.

With increased computing power, first principles calculations have been used
to provide a greater understanding of ion-ion interactions.!%%1%5 For the silver
halides, techniques based on the electron gas method!%® have been used by Catlow
et al.® and Jacobs et al.? to calculate the A and p parameters in the Buckingham
potential for AgCl and AgBr.

In this work, we have applied a modern hybrid density functional, and a very
accurate basis set, to investigate the interaction between pairs of like ions, where
parameters fitted empirically are more uncertain. To a reasonable approxima-
tion, the resultant interaction curves are formed from three components. The

dominant of these is, of course, the Coulomb repulsion, to which is added short-
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range repulsion and an attractive term. Although this approach appears similar
to the description of the Buckingham potential, there are no dynamical van der
Waals interactions in these (static) calculations, and thus the attraction is not
of the same origin. Instead, it is present due to the monopole-induced dipole
and induced dipole-induced dipole interactions between two charged, polarizable,
species.

Our aim is therefore to strip away the Coulomb and attractive interactions,
leaving behind only the repulsive part of the potential. We should then be able to
assess the suitability of the Buckingham repulsive potential for these interactions,
and determine accurate values for the A and p parameters.

If we assume the ions to be structureless point dipoles, we can calculate this
interaction analytically (for proof see Appendix A), resulting in the following

expression for identical species with unit charge:

3 3 2
where «a is the polarizability of the two identical species.

We have therefore fitted this function to the attractive region of our Coulomb-
subtracted quantum mechanical data. Despite having only one free parameter,
a very accurate fit can be achieved for the chloride-chloride interaction. The
fitted parameter can then be fed back into the equation, so that the attractive
component can be removed from our data. The repulsive part of the Buckingham
potential can then be fitted to the remaining data, and the A and p parameters
can be determined.

For the the silver-silver interaction, the one-parameter attractive potential did
not provide a sufficiently good fit. For this reason, dependence upon hyperpolar-
izability was introduced into our derivation. Unfortunately, with these terms, an
analytical result for the attractive potential could no longer be deduced. How-
ever, using an iterative scheme, a power series was determined (see Appendix A),
which for identical, singly charged, ions reduces to:

2a0 602 1603 56% 400t

U(r):—r—4 7 — 10 _2T11+ 13 + -y (32)

where 3 is the hyperpolarizability.
Using this equation, a good fit to the quantum mechanical data was then
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Figure 3.1: The hybrid-DFT-derived repulsive potentials for Ag-Ag (blue)
and CI-Cl (green). In each case, the crosses are the DFT data, while the
dashed lines correspond to a Buckingham-fit with the parameters shown in
Table 3.4.

possible by varying the two parameters o and 3. Again, the fitted parameters
were fed back into the equation, allowing us to remove the attractive contribution
from the interaction curves. It should be noted that applying this expansion to
the chloride data resulted in a negligible hyperpolarizability, and thus we reverted

to the analytical expression for this case.

Table 3.4: The repulsive parameters derived from QM data.

Ag-Ag CI-Cl
A/eV 1057000 1423
p/A 0194 0.346

The repulsive potentials obtained using this methodology are shown in Figure
3.1, with the fitted values of A and p reported in Table 3.4. It is clear that the
exponential dependence of the Buckingham repulsive potential is well suited to

modelling these interactions. Furthermore, the trends shown here are in agree-
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ment with our knowledge of the electronic structure of these ions: the silver ion is
larger but relatively dense, whilst the chloride ion is smaller but more diffuse, i.e.
Aag > Aci and pay < pcr- These trends are also shown in the values derived by
empirical methods (see Tables 3.1 and 3.2), and thus give them a solid theoretical
footing. o 7

These parameters were then used in the derivation of a new set of shell model

potentials, described in the following section.

3.3.2 Derivation of a QM /MM Interatomic Potential

Bearing in mind the intrinsic limitations of the shell model for studying the
silver halides, we have not attempted to model every property of these materials
accurately. For use in a QM /MM embedding scheme, accuracy in some properties
is more important than for others.

For our calculations, the following are the most important factors:

e lattice parameters, so that the electrostatic potential within the QM region

is accurate;
e clastic constants, so that the structure responds correctly upon relaxation;

e dielectric constants, so that for charged systems, polarization of the crys-

talline environment is correctly described;

e surface relaxations, so that the surface structure of the MM regions matches
that of the central QM region.

In previous work it has been shown that shell-model potentials with three-
body interaction terms can achieve most of these objectives.® The use of three-
body potentials for surface calculations has not been investigated. However, we
cannot envisage their inclusion adversely affecting the accuracy of these calcula-
tions.

Due to inconsistencies in the implementation of the Axilrod-Teller potential
between codes (see Section 3.2.2), we decided against using this form for our new
potentials. Instead, we employed the simple bcross potential, which is normally
used in molecular mechanics simulation, but is also physically justified for use in
ionic materials as it can model ionic deformation. It takes the form:
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U(Ri, R;) = K(R; —re)(R; —1¢) (3-3)

where K is a fitted constant, r.,r, are fixed equilibrium bond lengths, and R;,R;
are the interionic separations.

The experimental data included in the fitting procedure were the lattice pa-
rameter, the elastic and dielectric constants, and the phonon frequencies at the
', X and L points of the Brillouin zone. Although we used the results of the
previous section as starting points (initially holding their values fixed), we found
that we could substantially improve the fit to our data by optimising these pa-
rameters. This finding is not unexpected, as we know that essential aspects of
the physics of this material are missing from our model, and as a result, the
parameters in our fitting procedure will adjust to compensate. In total we fitted
the 15 parameters reported in Table 3.5 to 20 experimental values. As can be
seen from Table 3.6 the bulk properties obtained from these potentials are of as
good quality as those from previous potentials.

Table 3.5: Our QM /MM shell-model interaction potentials for AgCl. The
shell charges and spring constants are: Q4,=-2.9427|e|, Qci=-3.4656e/,
k4,=906.04 eVA~2 and kc;=33.70 eVA~2. All two-body interactions are
included up to 10 A. The three-body interactions pivot around the centre
ion in the triplet, and are nearest-neighbour only.

Ag-Ag AgCl CLCI
AleV 40619.7 3385.7 6265.0
p/A 0.2411 02754 0.3219
Ci;/eVA® 53126 4.987 174.240

Cl-Ag-Cl Ag-Cl-Ag
K/eVA=2  0.251 -0.07

Finally, we have employed the MARVINS code to examine the surface relax-
ations of the non-polar (100) surface of AgCl, the object of our QM/MM calcu-
lations in Chapter 5. For reasons of accuracy and efficiency, we need the surface
properties calculated using our potentials to match those from QM calculations
as closely as possible.

Figure 3.2 shows the surface which has been relaxed using our MM potentials.

The relaxations, as shown on the right of the figure, display the characteristic
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Table 3.6: Comparison of interatomic potentials for AgCl.

Experiment Catlow* Baetzold? This Work

Lattice Parameter / A 5.506 5.506 5.511 9.502
Relative Permittivity
€0 9.55 9.49 9.48 9.59
€z 3.97 3.97 2.99 3.86
Elastic Constants / GPa
Cn 75.9 88.5 74.9 74.9
Cia 39.1 14.0 36.5 41.2
Cua 6.89 12.8 11.6 20.2

*Constant volume calculation using the potentials of Catlow et al. from Reference 3.
tConstant pressure calculation using the potentials of Baetzold et al. from Reference 5.

‘rumpling’ effect exhibited by other rocksalt-structured materials.’®"-1%° With
our potentials, the cations sink into the surface slightly while the anions rise.

The magnitudes of these relaxations have been compared with equivalent
surface-slab calculations performed using the plane wave DFT code CASTEP6°
(see Chapter 4 for further details). In this technique, a two-dimensional slab is
periodically repeated in one dimension, and modelled using a code employing
three-dimensional periodic boundary conditions. Care must be taken that the
slabs are sufficiently isolated from each other. Likewise, the slab should be thick
enough that the two external faces do not interact. Of course, these demands
must be offset by the computational demands of such a calculation. For these
calculations we used a vacuum gap of 25A, and slab of AgCl 20A thick, which
we found to give converged results. All other details of the calculations were
identical to those described in Chapter 4.

As can be seen from Table 3.7, both set of results predict that the surface
chloride ions will relax further out of the surface than the silver cations. There is
a large discrepancy in the average position of each layer; our MM results predict
a slight inward relaxation of the surface layer, with the direction of relaxation
oscillating in the subsurface layers, while the QM results predict outward relax-
ations for all layers. Unfortunately, there are no experimental data with which
to compare our results.

We consider that this unusual behaviour can be explained by comparing the
electronic structure in the bulk and at the surface. As discussed in the Intro-
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Figure 3.2: The MM-relaxed (100) surface of AgCl. The figure on the
left shows a plan view of the surface with the surface unit cell, while the
figure on the right illustrates the surface relaxations by looking along the
(100) plane.

duction, strong p — d hybridisation occurs in the valence band of silver chloride,
which has the effect of shortening the ionic separations. Towards the surface, this
electronic structure is perturbed and the degree of hybridisation is reduced. As a
consequence, the ionic separations increase, resulting in the observed behaviour.
It seems that shell model interatomic potentials will not be able to model this
surface relaxation accurately. However, we consider that we can proceed with
QM/MM modelling on the basis that the errors introduced into the electrostatic
potential of the central region by this incorrectly-described surface will be small.
The results of our QM /MM calculations are therefore reported in Chapter 5.
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Table 3.7: A comparison of surface rumpling using the CASTEP and
MARVINS codes. The values quoted are vertical displacements from the
unrelaxed lattice-site positions / A.

MARVINS
Ag-topped Cl-topped Average
Surface Layer -0.18 +0.11 -0.04
Surface - 1 -0.07 +0.10 +0.02
Surface - 2 -0.03 +0.01 -0.01
CASTEP
Ag-topped Cl-topped Average
Surface Layer +0.22 +0.42 +0.32
Surface - 1 +0.24 +0.33 +0.29
Surface - 2 +0.18 +0.22 +0.20
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Chapter 4

Periodic DFT

In this chapter we have applied the supercell technique, along with a plane wave
basis set, to study defects within the bulk of the rocksalt-structured silver halides.

The plane wave basis set, although not as efficient as the atom-centred set,
provides two distinct advantages when dealing with isolated point defects in solid-

state materials:

e For a given level of theory, the accuracy of a calculation is determined by a

single parameter (see Section 2.3.2),

e All space is treated equally, with no bias towards atomic positions. Hence,

vacancies are described at the same quality as their surrounding ions.

The disadvantage of this choice is that it can only be applied to systems which
have periodic boundary conditions in three dimensions. In order to calculate the
energies of isolated ions or defects, they must be placed in a large enough supercell
that interaction between periodic images is minimal.

After a description of the methodology used in this work, the energetics and
geometrical structures of the charged point defects in AgF, AgCl and AgBr are
reported. Following on from this, the forms of the corresponding neutral defects,

and the localisation patterns of the trapped electron/hole are discussed.

4.1 Method

The new version of the CASTEP (CAmbridge Sequential Total Energy Package)
code!®® was used for these calculations as it employs the plane wave-pseudopotential

62



4.1. METHOD Periodic DFT

methodology, and has the functionality to deal with charged defects. Addition-
ally, the source-code is available and has been optimised for the UK terascale
supercomputing facilities, where many of these calculations were performed.

All calculations made use of the PBE?? exchange-correlation functional, due
to its accuracy and numerical stability. Further details are described in the fol-

lowing sections.

4.1.1 Pseudopotentials

Pseudopotentials are essential to the plane wave basis set methodology. The size
of the basis set necessary to describe core electrons would make the calculations
prohibitively expensive. Instead, their effects are included by incorporating them
into a pseudopotential, as described in Section 2.4.

The PBE-derived ultrasoft pseudopotentials supplied with the CASTEP code
were used for all calculations, having core and valence regions consisting of
([K7)).4d™ .55 for silver, and ([He]).25%.2p°, ([Ne]).35%.3p° and ([Ar].3d"°?).452.4p°
for fluorine, chlorine and bromine respectively.’®® Crucially, these pseudopoten-
tials were derived using relativistic theory, and hence have the properties neces-

sary for an accurate description of the heavier ions.!6!

4.1.2 Basis Set

As detailed in Section 2.3, the size of the basis set in a plane wave calculation
is defined by its cut-off energy. Wave vectors greater in energy than this cut-off
energy will be excluded from the wavefunction expansion. Increasing the cut-off
will therefore improve the accuracy of a calculation, but will also increase its cost.
A balance between these two factors must be achieved.

A thorough study of the convergence behaviour of the defect energies with
the plane wave cut-off has been performed for all three materials. Very similar
behaviour was observed in each case, suggesting that the description of the silver
cation is the key factor affecting the accuracy of these calculations. We found
that using a cut-off of 350eV leads to defect energies, for both charged and neutral
point defects, that are converged to within 0.01eV.
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4.1.3 Reciprocal Space Sampling

The sampling scheme used here is that of Monkhurst and Pack,'%? which simply
consists of a regular grid of points in reciprocal space. Such a set can be specified
by three integers, corresponding to the number of points in each direction in
reciprocal space.

A study of the convergence of the defect energy with the density of the k-
point grid was performed for each of the three materials. It would be expected
that the convergence would be faster for closed-shell charged defects than for
neutral defects with trapped electrons or holes. Consequently, convergence was
investigated for two systems: the charged and the neutral anion vacancy (F-
centre). This defect was chosen as it represents a well-behaved system in both
charge states.

As expected, the neutral defect converged more slowly, requiring a k-point
density of 33A to achieve convergence to within 0.01eV. For the corresponding
charged defect, a grid of only 22A was needed. For consistency, a grid of 33A was
used for all calculations, which corresponds to 3x3x3 k-points for a cubic 64-ion
supercell and 2x2x2 k-points for a cubic 216-ion supercell. For most calculations,

this number was drastically reduced by the application of symmetry.

4.1.4 Validation

As a test of these parameters, the gas-phase dimers, both homonuclear and het-
eronuclear, involving silver and the three halide anions were modelled, maintain-
ing periodic boundary conditions by placing each dimer in an empty unit cell
of sufficient size to isolate the dimer from its images. For ease of comparison,
a cubic cell with lattice parameter equal to that of our AgCl 64-ion supercell
(described later) was chosen (a = 11.066A). The results of these calculations are
tabulated in Table 4.1, along with corresponding experimental results. While
the bond lengths are in good agreement (within 2%, of experimental values) the
bond dissociation energies are less well reproduced, with the halogen molecules
being strongly overbound. It should be noted, however, that these homonuclear
diatomics represent a ‘worst case scenario’ in that the pseudopotentials will have
been generated and optimised for closed-shell X~ species, and would be expected
to perform better for X5~ dimers than for the X; molecules studied here. By

contrast, the heteronuclear diatomics, in which charge-transfer will have occured,
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Table 4.1: Dimer properties calculated within periodic boundary condi-
tions using the CASTEP code.

Bond Length (A) Dissociation Energy (eV)
Dimer This Work Experiment This Work Experiment

Ags 2.58 2.53163 1.75 1.64%04
F, 1.43 1.41165 2.22 1.66166
Cl, 1.98 1.99165 2.90 2.51166
Br, 2.31 2.28165 2.41 1.98167
AgF 2.03 1.98165 3.55 3.67168
AgCl 2.29 2.28165 3.14 3.24169
AgBr 2.42 2.39165 2.84 3.01168

are modelled far more accurately, with binding energies within 0.2eV of exper-
imental values. We consider therefore that for the defect systems studied here,

the set of parameters used for these calculations should lead to minimal error.

4.1.5 Defect Calculation Methodology

All calculations within this Chapter were performed using the supercell method.
The lattice parameters of these cells were chosen as integer multiples of the cubic
values obtained through initial constant pressure geometry optimisation calcula-
tions. These values are discussed in the next section, and are reported in Table
4.2. As we are attempting to describe the properties of isolated point defects, all
subsequent calculations were performed at constant volume.

Initial calculations were performed using a cubic supercell containing 64 ions,
of which only the inner 27 were allowed to relax, leaving the boundary atoms
fixed. A select number of calculations were also performed using larger supercells
containing 216 ions. For these, an extra spherical shell of ions was allowed to
relax, bringing the total number to 33.

The defect was placed near the centre of the cube, and symmetry was imposed
on the cell, where appropriate, to reduce computational expense. We can be
confident that our supercells adequately enclose the major structural relaxation
around the defects in question, as the displacements of the outer ions are small.
However, a proper description of the electronic effects may require a larger cell.

When modelling aperiodic systems within periodic boundary conditions, the
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Figure 4.1: Convergence of the ion self-energy with cubic supercell size
for Ag™ [left] and Cl~ [right]. Black lines and crosses are the raw energies
output by CASTEP, which converge as L™!. Red lines and circles are the
same energies corrected by the Leslie-Gillan term,® and converge as L™3.
Finally, the blue lines and squares correspond to the energies that have
been corrected according to the Makov-Payne scheme,'® which converges
as L™° or faster.

choice of k-point sampling in the first Brillouin zone is critical.'™ A good choice
can accelerate convergence with supercell size by minimising defect-defect interac-
tions. We followed Makov et al.,'™ who suggested using a converged Monkhorst-
Pack k-point set for calculations on smaller cells, but on larger cells where gamma-
point calculations would normally suffice, substitute a set of k-points, which would
exclude the direct interaction of a defect with its nearest images. For cubic sys-
tems such as the silver halides, a set containing four (%, i, i)—type k-points was
reported to be the most efficient.'™

For all charged defect calculations the correction terms described in Equation
2.16 have been applied a posteriori. Evaluation of the first term (L~') could be
performed routinely, and had the effect of destabilising each charged defect by
approximately 0.2 eV. Calculation of the second term (L~®) was more involved,
as it required us to analyse the positions of the nuclei and the electron density
within the supercell to produce a value for the quadrupole moment, @, for the
defect. As can be seen in Figure 4.1, these corrections worked very well for
isolated ions (which can be considered as defects in the vacuum of an empty cell),
and a reasonable energy was obtained from all of the supercells studied.

For defects in the solid state, the density of the defective cell can be divided
into two contributions: the underlying defect-free lattice; and an aperiodic overlay

which resembles a molecular density, and represents the isolated point defect.
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The spurious interactions between the aperiodic densities in neighbouring cells
accounts for the observed supercell size dependence, and our value for Q) must be
obtained from this density.

As shown in Equation 2.16, the correction was reduced by the dielectric con-
stant of the material to account for dielectric response. Experimental values for
this property were used for AgCl and AgBr. Due to lack of experimental data for
AgF, a reasonable estimate was made. However, the defect energies would not

be expected to be strongly dependent upon the chosen value.

4.2 Pure Material

As an initial test of the reliability of these calculations, fundamental properties
of the silver halides have been calculated. The cubic lattice parameter, a, the
bulk modulus, B, and the three elastic constants, C, are shown in Tables 4.2
and 4.3, which were calculated using a primitive unit cell and the Finite Strain
technique [171, Appendix GJ.

Table 4.2: The cubic lattice parameters for the silver halides at absolute

Z€ero.
Calculated Experiment
AgF 5.01 (4.94)7
AgCl 5.53 5.51
AgBr 5.82 5.77

TRoom temperature value from Ott.172

Table 4.3: Elastic properties of the silver halides at absolute zero. The
bulk moduli, B, and the elastic constants C.

B/GPa Cn/GPa. Clz/GPa C44/GP3.
Cale. Expt. Calc. Expt.* Calc. Expt.* Cale. Expt.*
AgF  58.8 - 75.7 - 50.3 - -3.8 -

AgCl 504 51.3 673 75.9 41.9 39.1 5.4 6.9
AgBr 379 498 53.8 75.5 29.9 36.7 7.5 8.3
*Elastic data for AgCl from the low-temperature data of Hidshaw et al.'®
Elastic data for AgBr extrapolated from the high-temperature data of Cain et al.2°
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Figure 4.2: The variation of the elastic constants of AgCl with tempera-
ture, in the range 4.2 - 300K, from Reference 18.

As with other GGA-DFT calculations, the lattice parameters are systemati-
cally (slightly) overestimated due to incomplete self-interaction cancellation. The
experimental values for the elastic properties of AgCl are extrapolated to OK from
data in the range 4.2 - 300K'® and thus can be considered more accurate than the
data for AgBr which are obtained from data in the range 273 - 673K.? Given the
non-linearity at low temperatures found by the former authors (see Figure 4.2),
the experimental data for AgBr can be considered only rough estimates. This
may explain the apparent softness of AgBr in our calculations. To our knowledge,
no experimental elastic data exist for AgF.

Given these results, we have confidence that our method more accurately rep-
resents the silver halides than the atomistic methods of previous defect studies.®?
These models, although fitted to structural and elastic data, failed to accurately
reproduce the strong Cauchy violation (Ci2 # C44) shown in the data in Table
4.3. This is an indication that fundamental interactions were unaccounted for in
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Figure 4.3: The calculated band structure of AgF [left], AgCl [centre]
and AgBr [right]. Special points of the Brillouin zone: I'/G=[0;0;0],

X=[3;3:0, K=[3: & 3], L=1[3; 3: 3], W=I[3: 3: 3)-

the simple form of the interatomic potentials used in these studies. Furthermore,
our results are in better agreement with experiment than earlier LDA calculations
for AgCl1,3 highlighting the need for gradient-corrected (GGA) functionals.
Also considered were the basic electronic properties, shown in Figure 4.3 and
Table 4.4. The use of Kohn-Sham eigenvalues to calculate band gaps is not
theoretically justified and has been shown to be unreliable. Consequently, we

also report here values calculated using the equation:*!

AEgpg = E[-] + E[+] - 2E[0] (4.1)

where E[—] and E[+] correspond to the energy of a perfect cell containing an
excess electron or hole respectively, and E|[0] is the energy of the pure, charge-
neutral, perfect cell.

Table 4.4: Electronic properties of the silver halides.

Direct Band Gap / eV  Indirect Band Gap (L — T')/ eV
Calculated®*  Expt.  Calculated* Calculated! Expt.

AgF 4.96 4.63 -0.36 0.52 2
AgCl 4.22 5.15 0.94 1.73 3.245
AgBr 3.87 4.29 0.71 1.84 2.684

*Obtained via eigenvalue spectrum fObtained via Equation 4.1
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While our results are in good agreement with previous DFT studies,343%17

each having an indirect L — T transition, as with all DFT calculations these
band gaps are systematically underestimated.*! Silver fluoride has been found
to be a negative indirect band gap material in the eigenvalue spectrum, where it
should have a positive gap of 2.8¢V.1”® Based on a positive direct band gap we
nevertheless attempt calculation of the defect properties. In this approach we ex-
pect to reproduce, to a first approximation, the properties primarily controlled by
the charge density distribution (i.e. formation energies and structure of charged
defects). However, the properties of excited and localised electron/hole defect

states would be unreliable.

4.3 Energies of Charged Defect Formation

Our intention is to elucidate the energetic and structural properties of the defect
pairs in the silver halides. Initially, we have studied the energetics of formation
of individual charged defects in the limit of infinite separation. These individ-

ual defects are the species previously studied by Mott-Littleton-based atomistic

modelling®® and conductivity measurements.7:¢8

We have thus considered three processes:

e Adding a silver ion to form a cation interstitial defect:

Ag*(g) — Agy. (4.2)

e Removing a silver ion leaving a cation vacancy:

Agag — Vi, + Ag'(g). (4.3)

e Removing a halide ion resulting in an anion vacancy:

Xx — Vi + X~ (g). (4.4)

The resulting defect energies are reported in Tables 4.5, 4.6 and 4.7. Unfortu-

nately, it is not possible to calculate the formation energies of individual defects
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Table 4.5: Defect formation energies for AgF / eV.

This Work
Cation Frenkel Pair 0.74
Schottky Pair 0.49

Table 4.6: Defect formation energies for AgCl / eV.

This Work Interatomic Potentials® Experiment
Cation Frenkel Pair 0.36 1.46 1.45%°
Schottky Pair 0.80 1.70 >1.552

consistently (see Section 2.6), and thus the energies reported are for defect pairs
only. It should be noted that experiment also only provides these values.

It can be seen from the tables, that the dominance of the charged cation
Frenkel species for AgCl and AgBr is correctly predicted. Preliminary calcula-
tions, which we now believe were not fully converged (so have not been reported
here), indicated that in all three materials the anion Frenkel species has a con-
siderably higher formation energy. Therefore, they are very unlikely to be found
in the real material. Again, experimental data are not available for AgF, so the
results here must be considered as predictions.

All values are systematically lower in energy than would be expected, which
is likely to be due to the incorrect description of electrostatic potential in the cell.
For charged defects such as these, the potential in the supercell is contaminated
with contributions from the periodic images of the defect. For example, it has
recently been shown that the Makov-Payne corrected ionisation potential of an
F-centre in a 64-ion supercell of NaCl is in error by 0.8eV for this reason.!™
Schultz has proposed an alternative to the jellium compensating scheme which
correctly represents the electrostatic potential, and provides considerably more
accurate defect energies.!™ 17 However, his method requires a mixed boundary
condition approach, and as such is incompatible with our plane wave basis set.

It should be noted that the positions of the energy bands vary with the defect
charge state due to the change in the potential. An alternative correction scheme
would be to line-up the low-energy core states between charged and neutral cal-

culations. However, due to our use of pseudopotentials in our calculations, the
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Table 4.7: Defect formation energies for AgBr / eV.

This Work Interatomic Potentials® Experiment
Cation Frenkel Pair 0.03 1.05 1.00-1.05
Schottky Pair 0.98 1.40 -

core states were not clearly defined.

To our knowledge, the only method of improving the quality of our results was
to employ a larger supercell in which the periodic charged defects were further
separated. In order to investigate this we have performed key calculations using a
larger, and more computationally expensive, 216-ion supercell. These calculations
were only performed on silver chloride due to the large resources they require.
The results of these calculations are shown in Table 4.8, along with the previously

reported results for the smaller 64-ion cell.

Table 4.8: The convergence of defect formation energies with supercell
size for AgCl / eV.

64-Ion 216-Ion Interatomic Potentials® Experiment
Cation Frenkel Pair  0.36 0.77 1.46 1.45%°
Schottky Pair 0.80 0.80 1.70 >1.5%

It can be seen from the table that the larger cell produces a Frenkel energy
that is closer to the experimental value. The unchanged Schottky energy is more
likely to be coincidence rather than being indicative of convergence having been
achieved. Our 216-ion calculations reported here are at the limits of the currently
available computing power. Hence, calculations using the next-largest cubic su-
percell (512-ions) would not be feasible. Instead, alternative methods, such as
the QM /MM embedded cluster technique used in Chapter 5, should prove more
efficient.

It is interesting to note that DF'T correctly predicts the ordering of the defect
pairs in AgCl and AgBr. There has been much debate over the last 25 years over
the origin of the unique properties of the silver halides, including the dominance
of the cation Frenkel defect.® It was previously thought that interatomic van der
Waals forces stabilise the silver interstitial, lowering the Frenkel energy. DFT

methods cannot model accurately the long range van der Waals attraction, but
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as we have shown, still predict the dominance of this form of defect.

4.4 The Atomic Structure of Charged Defects

In this section, the atomic structure of each charged point defect is described.
These properties are more reliable than the energetics obtained for the same
models, as the energy difference between two similar configurations will, to a first

approximation, be free of the problems described in the previous section.

4.4.1 Interstitial Silver Ion

The interstitial cation defect is of considerable interest as it is present in high con-
centrations in silver halide crystallites, and is unusually mobile. Most previous
analyses assumed the interstitial ion in the silver halides to be at a body-centred
(BC) site. Energetics from atomistic calculations on charged interstitials sup-
ported this assumption,®® and it became the model with which all subsequent
experimental data were interpreted.5”-%®

Our calculations on all three halides have shown the BC structure to be un-
stable. Instead, we have found the equilibrium configuration to involve a second
cation, forming a dumbbell-shaped split-interstitial structure centred on a lattice
site (see Figure 4.4), in agreement with the Hartree Fock results of Baetzold and
Eachus™ for AgCl and the ENDOR work of Bennebroek et al.?%%! on AgCl and
AgBr. It is worth noting that the interaction between the quadrupole moment of
the defect and the background charge destabilised the split-interstitial structure
to a greater extent than the BC structure, and thus application of our a posteriori
correction terms was crucial when calculating the energy differences.

However, there is disagreement over the orientation of this Ag2" species. Ben-
nebroek et al. proposed a [110] orientation for the neutral defect in AgCl, and
suggest that the charged defect should be qualitatively similar due to the diffuse
nature of the trapped electron (with an effective radius estimated at 16.6A). The
orientation of the Ag3 species in AgBr could not be determined due to low spec-
tral resolution. Our calculations, however, suggest a [111] orientation is more
stable in AgCl by 0.4 eV. Similarly, we found the same equilibrium structure in
AgF and AgBr. This is also the model Baetzold used for his Hartree Fock and

post-Hartree Fock calculations, as well as being the most intuitively reasonable
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Figure 4.4: Illustration of the charged Ag§+ split-interstitial species in
the [111] orientation, with a typical cation chain highlighted. White circles
represent silver ions, black represent halide ions.

structure.

Bennebroek’s analysis hinges upon how the symmetry of the split-interstitial
species affects the equivalency of the surrounding shells of ions. In the ®Ag
ENDOR spectra for AgCl shown in Figure 4.5, the intensities of the peaks the
authors assign to the second shell of silver ions have a 2:1 ratio. This is consistent
with a symmetry of Dy, and thus a [110] orientation. If their analysis was self-
consistent and peak assignment was correct, it would be expected that the first
peak would also be split.!”” This is not the case, and as such, doubt must be cast
on their analysis.

As is common when dealing with H-centres in the alkali halides, the split-
interstitial species can be treated as a molecular dimer within the crystal.?® The
bond length of the charged Ag2t dimer was found to be 2.95A in AgCl, with
the silver ions located at the centres of two triangles of chloride ions, as shown
in Figure 4.4. The distance between each member of the dimer and its nearest
cation neighbours was found to be 2.94A. We therefore observed chains of cations
with approximately equal separation (indicated in Figure 4.4), suggesting the
importance of electrostatics in determining the structure. The slight inequality
in the bond lengths is likely to be due to electrostatic interactions with the sur-

rounding chloride anions, which were situated at a distance of 2.49A from each
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Figure 4.5: The 9949 ENDOR spectrum of AgCl from Reference 61.
The authors propose that the peak labelled ‘2’ in spectrum (b) indicates
the Dyj, symmetry of the Ags species.
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cation (0.28A shorter than normal separation in pure AgCl, but with silver in a
trigonal, rather than octahedral, configuration), displaced only slightly from their
lattice sites (0.02A outwards) due to the competition between Coulombic attrac-
tion and short-range repulsion. Silver fluoride showed very similar behaviour to
AgCl, while AgBr had a longer dimer bond length, as can be seen in Table 4.9
together with the data for AgCl. While the interstitial ions in the smaller halides
appeared to be sterically unrestricted in their triangle-centre equilibrium posi-
tions, the larger size of the bromide ions resulted in less free space for the cation,
and therefore the anions relaxed outwards to reduce the short-range repulsion.

Table 4.9: Bond lengths around the Ag%+ dimer / A. Subscripted ions are
those of the interstitial pair, while unsubscripted ions are on lattice sites.

Agr—Agr Agr—Ag Agi—X Ag—X

AgF 2.69 2.76 2.28 2.50
AgCl 2.95 2.94 2.49 2.77
AgBr 4.11 2.89 2.64 291

To validate this analysis we performed calculations purely of the electrostatic
energies. Atomic coordinates from our DFT calculations on each material were
imported into the GULP code,'*® and assigned full ionic charges. Variation of the
electrostatic energy was calculated as a function of the Ag2* dimer bond length,
while keeping the rest of the crystal fixed. This procedure gave an equilibrium
bond length of 2.7A for AgF, 2.9A for AgCl and 3.1A for AgBr. The values for
AgF and AgCl are extremely close to the DFT data, confirming that electrostatic
interactions control the structure of these system. Our tests on the molecular
dimer, reported in Section 4.1.4, allow us to conclude that the interaction between
silver cations at closer separation is well described, and hence corroborate our

prediction for the split-interstitial geometry.

Migration Barriers

Calculations have also been performed on the body-centred interstitial species,
as this geometry corresponds to the transition state for migration. As would be
expected, in line with conductivity measurements, the barrier to migration was
found to be very small. The barriers obtained by our method are shown in Table

4.10. A direct comparison with experiment is not possible as all experimental
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data have been interpreted using a body-centred model.”®:"®17 However, our
results compare very favourably with the averaged interstitial defect mobility
values quoted by Weber and Friauf.!™ A reinterpretation based on the split-
interstitial model would be very useful. HoWeﬁrer, the analysis would be far more

complex as the migration path shows a greater degree of correlation.

Table 4.10: Barriers to migration / eV.

Calculated Experimental*

AgF 0.49 -
AgCl 0.06 0.05
AgBr 013 0.17

* Averaged interstitial defect mobility (Reference 179)

Previous atomistic calculations® 8% have been used to study the difference
in energy between the body-centred and split-interstitial species in AgCl. As
mentioned above, these calculations find the BC geometry to be of lowest energy,
with a [111]-orientated transition state 0.03eV higher in energy.'® However, as
stated in Section 4.2, we consider our method more accurately represents the
silver halides, and thus can be considered more reliable.

With our equilibrium and transition state geometries and energies we can
envisage facile motion of the interstitial species throughout the volume of the
crystallite. Conversely, the [110] direction would restrict migration to within a
plane, reducing the number of interstitial ions available for aggregation into a
latent image cluster. This planar migration has not been observed in the silver
halides. As a result our [111] orientation is the most likely candidate structure.

4.4.2 Silver Vacancies

For the corresponding charged cation vacancy, we observe small structural relax-
ations, as reported in Table 4.11. We find that the distance between the vacancy
centre and nearest-neighbour anions increases, while the nearest silver ions relax

inwards, as would be expected on electrostatic grounds.
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Table 4.11: Inward displacement of shells of nearest-neighbour (NN) ions
towards charged silver vacancies in the silver halides / A.

1st-NN 2nd-NN  3rd-NN
AgF  -0.11 +0.08 0.00
AgCl -0.10 +0.06 -0.04
AgBr -0.12 +0.05 -0.02

4.4.3 Anion Vacancies

Although anion vacancies are relatively rare in these materials, they are of inher-

ent interest for two reasons:

e They form the counter-ion in the Schottky pair, and their study may eluci-
date why this defect type is less prevalent.

e Anion vacancies are well studied defects in the rocksalt alkali-metal halides,
in which F-centres form readily.® Data from the silver halides would there-

fore provide an interesting comparison.

The calculated relaxations are reported in Table 4.12. We find that while
AgBr obeys the expected behaviour based on electrostatics, the nearest-neighbour

cations in AgF and AgCl relax towards the vacancy.

Table 4.12: Inward displacement of shells of nearest-neighbour (NN) ions
towards charged anion vacancies in the silver halides / A.

1st-NN 2nd-NN 3rd-NN
AgF  +034 +0.12  -0.02
AgCl +0.04 +0.11 -0.02
AgBr -0.06 +0.10 -0.01

This is a further indication of the breakdown of the rigid ion model for these
materials. As discussed in the Introduction, it is clear that the fundamental inter-
actions within the silver halides differ from those of the alkali halides. The p — d
hybridisation, often referred to as partial-covalency, shortens the cation-anion dis-
tance. On removal of an ion to form a vacancy, the nature of the bonding around

the defect necessarily changes. Around an anion vacancy, our results imply that
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the bond-shortening effect is reduced, and therefore the nearest-neighbour cations
must lower their energy by relaxing into the vacant space. The extent of this
relaxation will be limited by the resultant changes in the electrostatic and short-
ranged interactions. From the data in Table 4.12 we can see that this balance
shifts smoothly from AgF to AgBr.

4.5 Energies of Formation of Neutral Defects

As has been previously described in the Introduction, the interactions between
defects in the bulk and the electrons and holes liberated on photon capture are of
great interest due to their relevance to the photographic effect. To increase the
efficiency of the process, these electrons and holes must be prevented from recom-
bining. Due to the small exciton binding energy (0.04 eV for AgCl, 0.022 eV for
AgBr!82:183) the electron-hole pair will rapidly dissociate into free species. Fur-
thermore, due to the unusual band structure of the silver halides, the probability
of free electron-hole recombination is small, as the process must be accompanied
by a change in momentum (see Section 4.2). As a result, there is a low probability
of recombination even in the pure silver halides.

This probability is, however, further reduced via hole trapping at negatively
charged centres, such as the silver vacancy. The electron can also become trapped
at a positively charged site such as an interstitial cation, although this centre
is thought to be a very shallow trap and will thus only be significant at low
temperatures.'8

Using our method, we can calculate the energies of defect formation and also
study the localisation of the trapped species. The processes we now study are

subtly different from those described earlier:

e Adding a silver atom in its standard state (metallic silver) to form a neutral
interstitial defect (which can be considered as an Ag* cation and an excess

electron):

Ag(s) — Ag + €. (4.5)

e Removing a silver atom leaving a vacancy and an excess hole:
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Agag — Vig +h* + Ag(s). (46)

e Removing a halogen atom resulting in a chlorine vacancy and an additional

electron:

1

As we are now dealing with adding and removing atoms in their standard

states, and are maintaining charge balance, we are able to calculate point de-

fect formation energies in addition to the formation energies of defect-pairs (see
Section 2.6.1). The energetics for AgCl and AgBr are reported in Tables 4.13
and 4.14 respectively. Calculations on the trapping properties of AgF were not

carried out for the reasons stated in Section 4.2.

Table 4.13: Formation energies of neutral and charged defects in AgCl /

eV.

Neutral Defects

Charged Defects

64ion 216ion 64 ion 216 ion

Silver Interstitial 2.07
Silver Vacancy 0.35
Chloride Vacancy 1.46

Cation Frenkel Pair 2.42
Schottky Pair 0.98

1.76
0.25
1.32

2.10
0.83

0.36 0.77
0.80 0.80

Table 4.14: Formation energies of neutral and charged defects in AgBr /

eV.

Neutral Defects

Charged Defects

Silver Interstitial
Silver Vacancy
Bromide Vacancy

Cation Frenkel Pair
Schottky Pair

1.64
0.36
2.66

2.00
2.28

0.03
0.98

Although the energies reported here can be considered to be more accurate

than those of the charged defects, as all supercells were charge-neutral, it is clear

80



4.6. STRUCTURE & LOCALISATION Periodic DFT

that we do not yet have convergence with supercell size. As will be explained in
the following section, this is due to incorrect electron or hole localisation due to
the presence of the defect images.

It should be noted that these energies of formation are included for the sake
of completeness. Concentrations of point defects in the bulk are determined by
the formation energies of charged pairs. As has been previously discussed in the
Introduction, there are no deep electron traps in the bulk, with trapping occur-
ring predominantly at surface sites. Unfortunately, due to the aforementioned
problems with modelling charged systems within a supercell, and the deficiencies
of GGA functionals in reproducing the band gap, accurate trap depths could not
be calculated using this technique.

4.6 Structure and Localisation around Neutral
Defects

The structure of the atoms around a neutral point defect is intimately related to
the localisation of the excess hole or electron present. This relationship can be
probed experimentally using electron spin resonance spectroscopy such as EPR
and ENDOR. These techniques have both been applied to the study of the pri-

mary intrinsic defects in the silver halides.4850,60,61

4.6.1 Interstitial Silver Ion

As described in Section 4.4, ENDOR spectroscopy identified a split-interstitial
species in AgCl and AgBr, surrounded by a very diffuse trapped electron with
Bohr radii of 16.6A and 24.8A respectively.®! The corresponding optimised struc-
tures and electron localisations found by us are displayed in Figures 4.6 and 4.7.
Our calculations predicted a small bond length increase of the Ags species to
3.00A for AgCl and 4.14A for AgBr, which was indicative of shallow trapping.
While a full quantitative comparison with experiment would require calculations
on larger supercells capable of fully enclosing the electron density, we did observe
diffuse localisation in both cases.

In AgCl, it can be seen that the electron density, although diffuse, is somewhat
concentrated upon p-like polarization functions of the two interstitial cations. In
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Figure 4.6: Spin localisation in defective AgCl: silver interstitial. Contour
plot of the <110> plane in the larger 217-ion supercell containing the Agy
species (centre).
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Figure 4.7: Spin localisation in defective AgBr: silver interstitial. Contour
plot of the <110> plane in the smaller 65-ion supercell containing the Ag{
species (centre).
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contrast, the electron density is more evenly spread across a Ag,Brs unit due to
the increased dielectric constant.

It should be noted that some caution in the interpretation of our results is
needed. GGA-DFT is well known to over-delocalise the electron distribution,!8®
which may have the effect of increasing the bond lengths of the molecular ions in
their neutral states, making the more constrained [110] geometries less favourable.
However, our arguments based on conductivity and steric effects (Section 4.4.1)

suggest that our [111] geometry can be considered more likely.

4.6.2 Silver Vacancies

The interaction of a silver vacancy with an electronic hole is perhaps of greatest
interest, as the vacancy provides a deep trap, and is consequently more active
in the photographic process. Examining the distribution of the hole in Figures
4.8 and 4.9, it can be seen that the hole predominantly localises on the silver
cations, populating the 4d,2_,2 orbitals. This structure was found to be stable
with respect to small symmetry-breaking perturbations of the nearest-neighbour
ions. As a result of this the cations become fractionally more positively charged,
and thus are attracted to the negatively charged vacancy. The magnitude of the

relaxations are shown in Table 4.15.

Table 4.15: Inward displacement of shells of nearest-neighbour (NN) ions
towards neutral silver vacancies in the silver halides / A.

IstNN 2nd-NN 3rd-NN
AgCl  -0.09 +007 -0.04
AgBr -0.14  +0.05  0.00

It should be noted that both spin density patterns show appreciable density
on cations around the cell boundary. This is due to the close proximity of the
image defects, and would disappear in the limit of infinite dilution. Indeed, we
observe this effect in moving from the 63-ion to 215-ion AgCl supercells.

Previous experimental studies of the hole-vacancy complex in AgCl have sug-
gested that the hole is centred on a single Jahn-Teller elongated lattice cation
adjacent to the vacancy.5®18 The difference in our distribution may be due to

the localisation problem in DFT. Pacchioni et al. have recently found that the
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Figure 4.8: Spin localisation in defective AgCl: silver vacancy. Contour
plot of a <100> plane in the larger 215-ion supercell containing the vacancy
(centre).

hole in an a-quartz Al centre is incorrectly described by DFT.!87 Experiment and
MP2 calculations showed localisation on a single oxygen site, while hybrid and
pure DFT methods showed the hole to be delocalised over a number of oxygen
ions. More recent hybrid functionals'® have, however, managed to reproduce

experimental behaviour.'®?

4.6.3 Anion Vacancies

The electronic properties of vacancies at anion sites are also of considerable in-
terest. In the alkali halides, F-centres form, stabilising the excited electron.?® It
can be seen in Figures 4.10 and 4.11 that diffuse F-centres also form in AgCl
and AgBr. However, the electron is largely located upon the nearest neighbour
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Figure 4.9: Spin localisation in defective AgBr: silver vacancy. Contour
plot of a <100> plane in the smaller 63-ion supercell containing the vacancy
(centre).

cations, rather than being centred on the vacancy itself as in a conventional F-
centre.

It can be seen from Table 4.16 that trapping of an electron causes the neigh-
bouring silver ions to contract symmetrically into the vacancy by 0.70A for AgCl.
Again, the radial displacement of the other ions is small, which could, however,
be due to the constraints imposed by the small size of the cell. When breaking
the initial symmetry, the system relaxes back to the symmetrical geometry shown

in the figure.

Table 4.16: Inward displacement of shells of nearest-neighbour (NN) ions
towards neutral anion vacancies in the silver halides / A.

1st-NN 2nd-NN 3rd-NN
AgCl  +0.70 +0.08 0.01
AgBr -0.02 +0.09 0.00

In the majority of systems studied previously,>!®! the nearest neighbour

cations to the vacancy expand outwards. The unusual cation contraction ob-
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Figure 4.10: Spin localisation in defective AgCl: chlorine vacancy. Con-
tour plot of a <100> plane in the larger 215-ion supercell containing the

vacancy (centre).
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Figure 4.11: Spin localisation in defective AgBr: bromine vacancy. Con-
tour plot of a <100> plane in the smaller 63-ion supercell containing the
vacancy (centre).

served in our calculations therefore warranted further examination. As a test
of the basis set used, we employed the DMol3 code'® (which employs an atom-
centred numerical basis) to repeat the calculation. We found the same structural
relaxations as reported in Table 4.16 to within 4%, the difference being due to
less stringent convergence criteria.

As a further test, we used our methodology to study a well known and exten-
sively studied system. Sodium chloride (NaCl) was chosen owing to its apparent
similarities to AgCl; being isostructural with a common anion, and lattice pa-
rameters that match to within 0.1A. Using the same procedure as above we
studied the F-centre, and found a well-localised electron contained within the va-
cancy (see Figure 4.12). We also observed small structural relaxations, with the
nearest-neighbour cations moving outwards by 0.025A. On removal of this trapped
electron to form a charged defect, we find outward relaxation of the cations and
inward relaxation of the nearest anions, consistent with the electrostatics and
with magnitudes comparable with previous embedded-cluster calculations.'4!
Thus, we believe that our results for the silver halides are valid, and that
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Figure 4.12: Spin localisation in defective NaCl: chloride vacancy (F-
Centre). Contour plot of a <100> plane containing the vacancy (centre).

the unusual inward relaxation around the anion vacancy in AgCl can again be

attributable to the complex nature of the bonding in this material.

4.7 Conclusions

When applying the supercell methodology, we have found the calculation of en-
ergies of formation of paired charged defects to be especially problematic. The
spurious interactions between a defect and its images results in contributions to
the energy that cannot be entirely removed using a posteriori correction factors.
Within the plane wave methodology we are unaware of any existing schemes which
address this problem. Consequently our only option is to increase the size of the
supercell. However, the limits of current computational resources are reached
rapidly.

Nevertheless, we have gained interesting structural information on the point
defects, including the prediction of [111]-orientated split interstitial structure for
the charged silver interstitial species. In addition, we have confirmed the presence

of the neutral split-interstitial as predicted by Bennebroek et al. on the basis of
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their ENDOR spectra.®’ We have also observed unusual relaxations around the
vacancies, which we consider reflects the nature of the bonding in these materials.

With these calculations, we have gained interesting insights into the localisa-
tion of electrons and holes around these point defects. Although no quantitative
comparisons could be made with experiment due to the small size of our models,
we found good qualitative agreement between our calculations and Bennebroek’s
ENDOR work. In contrast, we find that our calculations incorrectly predict the
localisation of the hole around the cation vacancy. The observed behaviour is,
however, entirely consistent with other similar studies which have found that
GGA-DFT tends to over-delocalise the hole state.

This chapter has shown that despite the limitations imposed by the choice
of the plane wave basis set and supercell method, useful information can be
obtained relating to intrinsic defects in the silver halides. In the following chapter,
we extend this work to the important (100) surface using the hybrid QM/MM

technique.
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Chapter 5

QM /MM Embedding

As discussed in the Introduction, the defect properties of the silver halides are
strongly influenced by the presence of a crystalline surface. Point defects on the
important (100) surface have been studied here using the QM/MM embedding
technique described in Chapter 2. The {111} surfaces have been omitted from
this study due to the additional complexity involved in modelling polar surfaces.”
However, their properties may be important in the understanding of modern
photographic emulsions.

The calculations presented here are very demanding on computational re-
sources, and consequently required extensive use of national terascale supercom-
puting facilities. Therefore we had to be selective in our calculations. While a
direct comparison with the results of the previous chapter would have been de-
sirable, we have chosen to concentrate our resources on surface properties for the
reasons given above.

In the following section, we will provide a complete description of the two
models used in this work: the semi-infinite model, and our ‘nanocube’. We then

proceed to describe the results we obtained from each model in turn.

5.1 Method

For this work the ChemShell code'? was employed, which allows the coupling of
a QM calculation to an MM calculation using a simple shell-script-like interface.
For the calculations reported here, the quantum mechanical code GAMESS-UK!36
was used in combination with the semi-classical shell-model code GULP.14®
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A general description of the embedded cluster technique was provided in Chap-

ter 2. The methods used for these calculations are detailed in this section.

5.1.1 Model

In this work, we used two models, both employing a self-consistent polarized
embedding procedure. The first system was a semi-infinite surface, while the
second consisted of a finite nano-particle (herein referred to as a ‘nanocube’).

The innermost regions of each model were identical, consisting of:

Region 1  Described fully quantum-mechanically

Region 2 Interface, described with full core pseudopotentials and inter-

atomic potentials (cations only)

Region 3 Described using interatomic potentials (also included in QM
Hamiltonian, as described in Section 2.6.2)

Where the models differed was in their description of the remainder of the
system. The semi-infinite model, as its name suggests, attempted to replicate
the effects of an infinite system using a computationally-tractable finite series of
point charges (Figure 5.1). The nanocube, on the other hand, was an explicitly
finite system (Figure 5.2).

Our initial calculations were performed using the semi-infinite model. How-
ever, it became apparent that the use of a finite cluster would have a number
of advantages for the problems we were studying. Most importantly, it allowed
the study of a range of surface and bulk-like sites within a single framework (e.g.
terraces, kinks and steps). However, with this advantage came the disadvan-
tage that we were modelling the properties of neither the idealised material, nor
a fully realistic system. Instead, we were modelling a simplified system which

should exhibit some of the key properties of the real crystallite.

5.1.2 Description of the QM region

Region 1 was described fully quantum-mechanically using the GAMESS-UK code,36
and consisted of a cluster of 15-30 ions, depending on the geometry of the system.
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Figure 5.1: Illustration of the five-region model for the semi-infinite sur-
face. Red ions correspond to those treated fully quantum-mechanically,
white are those in the interface region, and dark blue corresponds to the
relaxed MM region. The remainder of the hemisphere was composed of
rigid MM ions. The point charges, reproducing the field of the infinite
crystal, are shown in grey.
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Figure 5.2: Illustration of the four-region model for the ‘nanocube’. High-
lighted are various choices of the QM region: positive kink [front left], step
[top] and corner [top right]. Red ions correspond to those treated fully
quantum-mechanically, white are those in the interface region, dark blue
corresponds to the relaxed MM region, and the remainder of the nanocube
was composed of rigid MM ions.
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Table 5.1: Properties of relevant dimers calculated using GAMESS-UK,
our custom basis set (see text), and a variety of functionals. Dissociation
energies are in electron-volts, and bond lengths are in Angstroms.

B97-2™® BO7-1'® B3LYP™® Expt.®

D.(AgCl) 3308  3.327 3.032 3.239
d(AgCl) 2319  2.326 2.330 2.281

D.(Ags) 1873  1.919 1.664 1.64
d(Ags) 2571 2576 2.580 2.53
D.(Cl) 2420  2.465 2.244 2.51
d(Cly) 2012 2032 2.042 1.99

Each ion was described with a TZVP-quality basis set, which were modified ver-
sions of the basis sets developed by Ahlrichs, in which the most diffuse functions
were removed in order to prevent the instabilities in the SCF procedure that are

191

often experienced when dealing with solid-state systems.””* In addition, a small-

192 which reduced computational

core pseudopotential was placed on the silver ion,
load and took into account certain relativistic effects.

Hybrid functionals provide significantly better estimates of the band gap and
lattice parameters than either pure Hartree Fock or pure DFT. Therefore, they
should also reproduce the localisation of holes and electrons more accurately.
The B97-2 hybrid DFT functional was employed for all calculations.!® Our
tests, reported in Table 5.1, have shown this functional to produce results that
were significantly more accurate than both the B97-11%6 and the commonly used

B3LYP!? functionals.

5.1.3 Description of the Interface Region

The interface region existed to prevent mobile charge within Region 1 escaping
towards positively charged centres in the outer regions. In the current imple-
mentation this was achieved by placing full-core pseudopotentials on the cations
surrounding Region 1. Thus these centres appeared as structured positively-
charged centres, but were not assigned basis functions and thus were unable to
trap mobile charge.

Our calculations employed a customised version of the full-core pseudopoten-
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tials of Stoll et al.,’®® in which we introduced a local component with an exponent
manually adjusted such that the bond length of the AgCl dimer matched the value
obtained using the small-core pseudopotential.

The possibility of having Region 2 anions is currently under investigation.!%4
Progress has been limited, as current QM codes do not have the functionality to
allow the use of full-core anion pseudopotentials, as this would be meaningless in
most contexts.

In addition to the QM description of the ions in this region, each centre was
assigned short-range interatomic potentials. In this way, the interactions within
Region 2, and between Region 2 and Region 3 could be included.

The semi-infinite model described here has been used previously within our
group to study the surfaces of catalytically-active metal oxide materials.146:19
For these calculations, the oxygen anion was treated using the shell-model while
the metal cation was treated as a rigid ion. Consequently, the code required some
modifications in order to deal with shell-model cations within the interface region.
As a first approximation, the small number of cations in this region were converted
to rigid ions, removing the ambiguity of where to situate the pseudopotentials.
These rigid ions interact with the shell-model ions in the adjacent Region 3 using
our standard short-ranged interatomic potentials. This approximation appeared

to work well, and so no further enhancements to the model were pursued.

5.1.4 Description of the MM region

Region 3 extended outwards from the defect cluster to create a hemisphere of
radius 15A. As reported in Chapter 3, we have derived a new set of interatomic
potentials tailored to QM/MM embedding. A full description of their derivation
can be found in Section 3.3.2, and the potentials are reported in Table 3.5.

The centres in this region were free to polarize as part of the self-consistent

embedding procedure, and were also active in geometry optimisation calculations.

5.1.5 Description of the Remainder of the System

The shape of this region defines the difference between the semi-infinite model
and the ‘nanocube’ structure. In each case, this region is present purely to provide .
a field for the inner regions, and remains static throughout the calculations.
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In the semi-infinite surface model, we surrounded the inner regions by a hemi-
spherical shell of static ions 26A in radius (Region 4). The hemisphere containing
all four regions was initially excised from an MM-relaxed surface slab. It was sub-
sequently partitioned into the regions described above, and augmented by a series
of point charges which were least-squares fitted to reproduce the electrostatic po-
tential of the infinite system within the active (relaxed) region.

The ions in Region 4 experienced long-range electrostatic interactions with
the inner regions, and due to their associated interatomic potentials, also had
short-ranged interactions with Region 3. The point charges of Region 5 were
placed at locations with spherical symmetry below the surface, and with cylin-
drical symmetry above the surface. In order to improve the fit of the electrostatic
potential, additional charges were placed at large distances from the cluster (typ-
ically IOOA) whose role is to reproduce the multipole moments of the system.
Additional details of this method have been described previously by Sokol et
al.146

For our nanocube, the model is considerably simpler. Rather than being hemi-
spherical, Region 4 comprised the entire remainder of the structure, as illustrated
in Figure 5.2. External point charges were no longer required, as a finite system
was being modelled.

The nanocube used in this work was created by hand from a cubic supercell of
AgCl of edge 55A. A variety of surface defects were created on its faces, and the
entire system was relaxed using our interatomic potentials. Although artificially
created and smaller-scale than a real grain (photographic films contain grains of
size 50 - 1000 nm), our nanocube contained features that we would expect to find
in a full-sized, annealed, system.

The rest of this chapter describes the results obtained using these two meth-
ods, starting with the semi-infinite model (Section 5.2), and later moving to the

nanocube (Section 5.3).

5.2 Semi-Infinite Surfaces

In order to provide general results relating to the surface and its basic defects,
initial calculations were performed using the semi-infinite model. Although ex-
tension of this model to study bulk defects would be straightforward, we had
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limited computational resources and so this was not pursued.

5.2.1 The (100) Surface: Self-Embedding Test

In section 3.3.2, the ‘rumpling’ of the (100) surface layer was discussed. There,
we proposed that the increased interionic spacings observed in the surface layers
of the QM calculation were due to a reduction in hybridisation of the valence
band. This behaviour was not observed using the simple shell-model interatomic
potentials.

For all the calculations in this section our QM cluster consisted of 19 ions,
arranged in a square pyramid, which was then surrounded by 32 Region 2 cations;
a hemisphere of approximately 350 Region 3, and 1500 Region 4, shell-model
ions; and around 250 point charges. Initially, our unrelaxed QM/MM cluster
had surface properties inherited from the MM-relaxed slab. The magnitudes of
the QM/MM relaxations upon geometry optimisation of this defect-free cluster
therefore give a measure of the accuracy of the embedding model, and is known
as the self-embedding test. Because of the known deficiencies of our interatomic
potentials, we can expect the relaxations from the MM positions in the surface
layers to be relatively large.

As can be seen in Figure 5.3, the characteristic rumpling effect is reproduced
throughout all regions in our cross-section. Quantitative results are reported in
Table 5.2. As would be expected, our QM/MM calculation show relaxations
intermediate between the two extremes of the QM and MM calculations.

The discrepancies in the magnitudes of the surface relaxations have been
shown to be a result of the failure of the MM potentials. However, there is little
scope for their improvement while remaining within the current versions of the
shell model. Our embedding calculations necessarily involve energy differences
between two similar systems. As a result, small errors in the absolute positions
of our MM ions are of reduced significance. We therefore believe that our model

is satisfactory for the purposes here.

5.2.2 Surface Defects

Following the work in the previous chapter on structural defects within the bulk
of the silver halides using the supercell model, we now wish to extend this study
to the formation of individual point defects on the flat (100) surface of AgCl
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Table 5.2: A comparison of surface rumpling using three codes. The
CASTEP and MARVINS results are identical to those in Table 3.7, while
the QM /MM values come from the central column of ions from two separate
calculations, each having 19 ‘Region 1’ ions arranged in an square pyramid.
Values quoted are vertical displacements from the unrelaxed lattice-site
positions / A.

MM: MARVINS
Ag-topped Cl-topped Average
Surface Layer -0.18 +0.11 —0.04
Surface - 1 -0.07 +0.10 +0.02
Surface - 2 -0.03 +0.01 —0.01
QM: CASTEP
Ag-topped Cl-topped Average
Surface Layer +0.22 +0.42 +0.32
Surface - 1 +0.24 +0.33 +0.29
Surface - 2 +0.18 +0.22 +0.20

QM/MM: ChemShell
Ag-topped Cl-topped Average

Surface Layer -0.02 +0.17 +0.08
Surface - 1 -0.15 +0.04 —-0.06
Surface - 2 -0.08 -0.14 —-0.11
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Region 1 Region 3 a Region 4

Figure 5.3: A slice through the cluster representing the (100) surface.
The regions of the model are marked, with Region 2 ions identified using
dashed circles. Region 5 has been been omitted for clarity.

using our QM/MM model. We used the same model as for the self-embedding
test above, which included up to the third-nearest neighbour ions within Region
1. When studying vacancy defects, a ‘ghost atom’ (comprised of basis functions
but no nucleus) was employed in order to reduce basis set superposition error.

At the surface of a material, defects need not be formed in charge-balancing
pairs since the surface itself may become charged. The calculated defect formation
energies, relative to isolated ions, were -3.52 eV, 4.39 eV and 4.68 eV for the Agy,
Vag and Vi species respectively. Surface-layer Frenkel pairs therefore have a
formation energy of 0.87 eV. Unfortunately, there are no experimental data with
which to compare this value. However, due to the increased interatomic spacing
near the surface, we would expect the defects to be formed more easily than in the
bulk, where the experimentally-determined Frenkel energy is 1.49 eV (see Table
1.2).

5.2.3 Depths of Electron and Hole Traps

As we have described in the Introduction, knowledge of the processes of electron
and hole trapping at defect sites is vitally important to the understanding of latent
image formation. As well as knowing the defect concentrations, it is therefore

desirable to know the positions of the electron traps relative to the conduction
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Table 5.3: Positions of the defect levels at the (100) surface of AgCl,
relative to the vacuum level. The valence band maximum is located at
-7.63 eV, and the conduction band minimum is at -2.51 eV. All values are
in electron-volts.

Vertical Relaxed Stabilisation Energy

Agr 326  -4.12 —0.86
Vig -7.14  -6.69 +0.45
Voo -169  -3.44 ~1.75

band, and the hole traps relative to the valence band.

To calculate these quantities, we must determine the energy levels of the
defects relative to a common reference energy, which is usually taken to be the
vacuum level. In order to position the valence band we must calculate the vertical
ionisation energy, while the conduction band may be obtained through calcula-
tion of the electron affinity. For our semi-infinite surface model we calculated
a value for the band gap of 5.1 eV, which is in very good agreement with the
experimental direct band gap for the bulk (see Table 1.1). This result would
suggest that our 19-ion QM cluster is too small to reproduce the effects of the
indirect band gap. However, a larger cluster was too expensive for the calcula-
tions here. Nevertheless, we have proceeded with the 19-ion cluster on the basis
that the conduction band minimum is located at the gamma-point, and therefore
should be well-described. For completeness we have calculated the properties of
the states near the valence band, but they may be considered to be less accurate.

Figure 5.4 and Table 5.3 show the results of our calculations for point defects
on the (100) surface. In the figure, solid lines represent the vertical trapping levels,
while the dashed lines show the extent of stabilisation upon ionic relaxation. From
the data, it is clear that the surface interstitial cation represents a good electron
trap, and due to the relaxation processes described above, the electron would
become deeply trapped. The unrelaxed F-centre represents a resonance state,
as it is located within the conduction band. However, upon ionic relaxation, it
becomes a stable, bound, neutral defect. Although there is uncertainty in the
accuracy of the calculations, our results indicate that the surface silver vacancy
is an efficient hole trap.

In the following section, the structural properties of each of the charged and

neutral surface point defects will be discussed.

100



5.2. SEMI-INFINITE SURFACES QM/MM Embedding

Figure 5.4: The depths of electron and hole traps at point defects on the
(100) surface of AgCl. Dashed lines show the extent of further stabilisation
upon ionic relaxation.
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Figure 5.5: The structure of the charged interstitial defect on the (100)
surface of AgCl. Plan view [left] and side view [right].

5.2.4 Structural Properties
Interstitial Cation

As for the bulk defects studied in Chapter 4, we find a split-interstitial structure to
be of lower energy than a conventional body-centred geometry. Due to the lower
coordination at the surface, the Ag3™ dimer is distorted from the [111] orientation
into a flatter geometry with an angle of only 18.4° to the surface plane, as shown
in Figure 5.5. There is also a corresponding increase in the dimer bond length
to 3.17A - an increase of 7% over the bulk value calculated using the CASTEP
code in the previous chapter.

Due to the asymmetry of this split-interstitial species, with one ion protruding
from the surface, the effects of electron trapping differ from the symmetrical bulk
case. We observe that the electron initially localises upon the protruding cation,
as can be seen in Figure 5.6. The electron then becomes stabilised through
relaxation of the cation out of the plane of the surface, and as a result, the
split-interstitial form is lost. The final geometry and localisation pattern are
shown in Figure 5.7. It is interesting to note that the nearest neighbour cations
displace such that a Ag, tetrahedron is formed (highlighted in Figure 5.7), which
is indicative of covalent bonding. Indeed, in the spin density distribution we

observed a small accumulation of density in the centre of the tetrahedron.
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Figure 5.6: The localisation of the trapped electron on the interstitial
defect on the (100) surface of AgCl before relaxation.
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Figure 5.7: The localisation of the trapped electron on the interstitial
defect on the (100) surface of AgCl after relaxation.
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Figure 5.8: The localisation of the trapped hole next to a cation vacancy
on the (100) surface of AgCl.

Cation Vacancy

The relaxation around the charged cation vacancy can be explained on simple
electrostatic grounds, as was the case for the bulk defect. Here, the surface
anions relaxed 0.42A outwards, while the anion below the vacancy, whose vertical
position is already strongly perturbed by the presence of the surface, relaxed
0.21A downwards.

As can be seen in Figure 5.8, when a hole is present it strongly localised in the
4d;2_,2 orbital of a single cation located in a subsurface next-nearest-neighbour
position to the vacancy. This behaviour is similar to that experimentally-determined
for the bulk,’® as discussed in Section 4.6, and supports our assumption that
GGA-DFT was incorrectly describing our bulk system.

Eachus et al. have studied this system using a combination of EPR, ENDOR
and ab initio calculations, and have suggested that the hole may be localised over
four equivalent chloride ions on the surface layer.'%¢ However, they described
inconsistencies in the results of their analysis and intended to perform additional

experiments before providing a definitive assignment.

Anion Vacancy

Similar to the cation vacancy, but in contrast to our bulk results (Section 4.4),
the relaxations around the anion vacancy were consistent with predictions based
upon electrostatics, with the surface cations relaxing 0.26A outwards, and the
subsurface cation relaxing 0.34A downwards. The difference is likely to be due
to the reduced level of hybridisation in the surface layers, as discussed in Section
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Figure 5.9: The localisation of the trapped electron on the (100) surface
anion vacancy (F-centre). Plan view [left] and side view [right].

5.2.1.

For the neutral anion vacancy in the bulk (F-centre), we observed unusually
large inward relaxations of the nearest-neighbour cations. The same behaviour
was observed here, with relaxations of 0.63A for the surface species, and 0.26A
for the subsurface cation. The observed localisation, shown in Figure 5.9, was
remarkably similar to that obtained in our bulk calculations (Figure 4.10). The
results here, which used a more accurate functional than our work in the previous
chapter, give further credibility to these unusual findings. Again it should be
emphasised that this centre is largely of technical and methodological interest,
as it would not be present in great enough concentrations to be experimentally
detectable.

5.2.5 Subsurface Defects

As described in the Introduction, the silver halides are known to have a surface
space-charge layer. We have initially investigated the depth-dependence of the
charged defect formation energies using the semi-infinite model down to a depth
of two atomic layers. Our calculations were most accurate when the defect was
in the centre of the cluster, when the description of the lattice polarization in
the outer layers was optimal. Thus, the QM/MM cluster was redefined for each
subsurface layer, as illustrated in Figure 5.10. In addition, two clusters were

required for each layer: one cation-centred, one anion-centred.
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Figure 5.10: Illustration of the variation of the QM/MM cluster from the
surface through to the second subsurface layer.

The energies of point defect formation, relative to isolated ions, at two depths
are shown in Table 5.4, along with the surface-layer results from the previous sec-
tion. The data follow smooth trends with the exception of the interstitial cation,
where we believe that the additional relaxation of the surface-layer defect, as
described above, stabilises this species. Hence, we suggest that the interstitial
cations and anion vacancies are most stable at bulk, or bulk-like, sites. Con-
versely, cation vacancies are most stable at surface sites. This is consistent with
experimental measurements of a negative surface potential for the (100) surface
of AgCl,""™ and is similar to the semi-classical results of Baetzold et al. for
AgBr.™

Table 5.4: Charged point defect formation energies for the surface and
two subsurface layers / eV.

Agr Vag Vo
Surface -3.52 4.39 4.68
Surface -1 -3.42 4.44 4.37
Surface - 2 -3.47 4.64 4.21

From these calculations, we would expect a large concentration of cation va-
cancies, with a compensating subsurface concentration of cation interstitial de-
fects. We can therefore consider the surface silver vacancy to be the dominant
hole trapping centre in microcrystalline AgCl crystals, in agreement with Eachus
et al.'® However, due to its low concentration, we would not expect the surface

interstitial cation to be an important trapping centre.
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5.3 Nanocube Calculations

The remainder of this chapter deals with calculations performed using the nanocube
structure, described previously, and illustrated in Figure 5.2. Using this tech-
nique, the results from the semi-infinite model were extended so that they com-
pare the formation energies and trap depths at a variety of surface sites. The

results of these calculations are reported in the following sections.

5.3.1 Surface Point Defect Formation Energies

In order to understand the relative abundance of our surface point defects, we
have calculated the energies of formation, relative to isolated ions, of defects at
a variety of locations on the surface of our nanocube. Additionally, we have
studied point defect formation at the centre of our model system, at sites which
have an electrostatic potential within 3% of bulk values, and should therefore
have bulk-like properties. Anion defects have been neglected as the calculations
would require a large amount of computer time, and yet they are not thought to

play a significant réle in latent image formation.

Table 5.5: Charged point defect formation energies at various sites on the
nanocube / eV.

AgI VAg
Flat (100) -3.52 4.62
Bulk-like -3.91 491
Step -3.79 5.23

Positive Kink -3.37 5.25

Our calculated defect energies are reported in Table 5.5. By comparing our
new data for the flat surface with values from the semi-infinite model (Table 5.4),
we can see that the approximations inherent to the nanocube model do not affect
the formation energies strongly. If we therefore consider the defect formation
energies from our bulk-like cluster as part of the series in Table 5.4, they can be
seen to be consistent with the trends described, and support our assumption that
interstitial cations are most stable at bulk sites.

The atomic structures of our bulk-like defects were largely the same as found

in the previous chapter. However, we observed significant relaxations around
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Figure 5.11: A step on the (100) surface of AgCl with a cation vacancy
[left] and interstitial [right].

each defect, extending for many more shells of ions than were present within
the confines of our supercells. As a result, our Ag2" species elongated by 3% to
3.05 A, with corresponding expansions in the distances to the nearest-neighbour
ions. Similarly, the anions adjacent to the cation vacancy relax 0.35 A outwards,
compared to only 0.11 A in the supercell calculations, due to the removal of the
constraints of periodicity.

We have found the formation of point defects on extended defects, such as
steps and kinks, to be energetically unfavourable compared to the sites previously
discussed. The formation of a cation vacancy along a step edge was found to
require considerably more energy than formation on the flat surface due to the
creation of sites of very low coordination. As can be seen in Figure 5.11, formation
of the cation vacancy was accompanied by considerable structural relaxation of
the 3-coordinate nearest-neighbour anions, which can be accounted for by simple
electrostatics. The case of the interstitial ion at a step is interesting because it
was found to be more stable there than on the flat face. At first sight, the atomic
structure was unusual, as the interstitial ion was at its lowest energy when located
midway between two chloride ions at the step edge (see the slice in Figure 5.11
[right]). However, this site minimises interaction with the exposed cations along
the edge of the step.

As described in the Introduction, the positive kink on the (100) surface is
thought to play a key role in latent image formation, as it provides a site for
growth of the silver cluster. These processes have been studied previously,36-8-9
but to our knowledge have always assumed little structural relaxation of the kink
itself. In contrast, we found that the silver cation on the corner of the kink site
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Figure 5.12: Structural relaxation of the positive kink [left] and negative
kink [right].

rose out of the surface so as to minimise its interaction with its cation neighbours,
as can be seen in Figure 5.12.

We also considered the negative kink, which for the purposes of Table 5.5,
was considered to be cation vacancy on a positive kink. Here we see very similar

structural relaxations to those described for the positive kink.

5.3.2 Electron and Hole Trapping

As for the semi-infinite model, we can calculate the trap-depths of various centres
located on the surface or in the interior of our nanocube. Unlike in the previous
section, we now have sites of low coordination that can also trap holes and elec-
trons, such as kinks and corners. Indeed, the trapping of an electron at a positive
kink site is one of the fundamental tenets of the direct photolysis mechanism (as
described in Section 1.2.1).

Additionally, we may use the present method to provide a comparison with the
results of the neutral defects from the previous chapter. As reported in Section
4.6.2, the choice of a method employing GGA-DFT and periodic boundary con-
ditions for the study of spin localisation presented two issues: the self-interaction
error lead to an over-delocalised spin density, and the defect images perturbed
the localisation pattern leading to artefacts. Here, we have employed a more
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accurate hybrid functional which should reduce the effects of the self-interaction
error and improve the reproduction of the band gap. However, we must remem-
ber that with the size of our QM clusters, it is unlikely that our description of the
electronic structure adequately reproduces the hybridisation of the valence band.

Figure 5.13 and Table 5.6 show the results of our calculations. It is clear that
both the cation interstitial species and the positive kink site provide good electron
traps, while the cation vacancies provide good traps for free holes. Interestingly,
from a simple comparison of the positions of the valence band edges, we found
that a hole in the valence band is considerably more stable within the bulk of
the crystal, which can simply be ascribed to the reduced hybridisation at the
surface, which results in less spreading of the energy levels in the valence band,
and therefore a lower valence band maximum.

Figure 5.13: The depths of electron and hole traps at point defects on the
nanocube. Dashed lines show the extent of further stabilisation upon ionic
relaxation. The approximate position of the bulk valence band maximum
has also been included for reference.
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Table 5.6: Positions of the defect levels below the vacuum level for three
regions of the nanocube. The position of the valence band maximum
(VBM) and conduction band minimum (CBM) are included in the table
for reference. Both vertical (v) and relaxed (r) defect levels are reported.
All values are in electron-volts.

VBM CBM Agr(v) Agr(r) Vag(v) Vag(r)
Flat 1.90 747 3.24 4.12 6.76 6.18
Bulk 196 7.09 2.84 3.53 6.78 6.48
Step 1.7 7.71 2.98 4.33 6.76 6.05

Electron Trapping Centres

In keeping with the results from the semi-infinite model, we found that the in-
terstitial cation provides an efficient electron trap, both at the surface and at the
other sites studied, and that this ability depended only weakly upon the location
of the defect, as can be seen in Figure 5.13. The distribution of an electron at an
interstitial defect within the bulk is reported in Figure 5.14. The electron local-
isation observed for the defect on the flat surface was identical to that reported
in Section 5.2.4, so will not be replicated here.

For the bulk defect, we found the electron to localise largely upon the same
p-like polarization functions, as we saw using the supercell method (Figure 4.6).
However, in these calculations, we observed a greater degree of localisation, with
density accumulating between the two ions forming a partially-covalent bond,
accounting for the 12% reduction of the Ag, bond length to 2.70A. This result
is in contrast to the supercell results which saw little localisation, and hence
little change in ionic separation. We consider that the current approach is more
accurate owing to the use of an hybrid functional, as this has been shown to be
important in predicting localisation properties in similar systems.!%

We have also found that the positive kink on the (100) surface will trap an
electron, as it is positioned only slightly below the vacuum level at -2.02eV (see
Figure 5.13). Upon capture of the electron, a very strong reconstruction occurs,
stabilising the centre by 1.6 eV. From Figure 5.15, it can be seen that the result
is a bound tetrahedral cluster of silver ions equally sharing the excess electron,
which is similar to the behaviour discussed for the trapped electron at a surface
interstitial defect in Section 5.2.4, but is more pronounced in this case.

This stabilisation mechanism has not been observed before. Fundamental to
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Mitchell’s photo-aggregation model is the suggestion that the positive kink would
not trap an electron deeply enough to provide sufficient time for the migrating
interstitial cations to reach the surface.®®* However, our calculations show that
this process can indeed occur, and thus we can further corroborate this crucial
aspect of the direct photolysis mechanism.

Also worthy of discussion is the réle of corner sites, as these are sites of low
coordination, and have been shown to trap electrons in other materials.'4! We
have found that the silver-tipped corner is a resonance state, but will relax to
form a stable defect, much like the case of the anion vacancy. However, we must
be aware that the number of these defects is necessarily small, and thus they are
not thought to play a significant réle in electron trapping.

In order to determine the most likely trapping site, we must consider the trap
depths reported here along with the defect concentrations. Experimental studies
of the (100) surface suggested that the concentration of positive kink sites is high,
while studies of the space-charge layer found that the concentration of surface
interstitial defects was low. We therefore predict, in line with the direct photolysis
mechanism, that positive kinks are the dominant surface electron trap. However,
our results do not preclude trapping of electrons at bulk cation interstitial defects.

Hole Trapping Centres

From Table 5.5 and Figure 5.15, we would expect the dominant hole-traps in
microcrystalline silver chloride to be silver vacancies either in the bulk or at the
flat (100) surface. Figure 5.16 shows the spin density distribution of the hole
around the cation vacancy in the bulk and at a step on the flat surface. Again,
the distribution for the hole at the vacancy on the flat (100) surface was identical
to that described in Section 5.2.4, so will not be replicated here.

The localisation of the hole at a vacancy in the bulk shows a distinct axial
symmetry, with a single mirror plane. The hole is localised on two cations at
[2,0,0] and [-2,0,0], and four cations at [1,1,0], [1,-1,0], [-1,1,0] and [-1,-1,0], as can
be seen in Figure 5.16. This unusual distribution may represent a local minimum
in the energy surface. More likely, is that the hole is most stable at a [2,0,0]
position, but cannot fully localise there due to the small size of our QM cluster.
Therefore we treat this result as suspicious, and expect the true ground state

to consist of a hole localised on a single cation, as seen for the surface cation
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Figure 5.16: A trapped hole close to a cation vacancy in the bulk [left]
and on the edge of a step [right].

vacancy (Section 5.2.4), and for the vacancy on the step (Figure 5.16 [right]).
As predicted, this result contrasts with the delocalised hole from the previous
chapter (Section 4.6.2), calculated using a pure GGA functional.

From the results here it is clear that the site at which the hole is most likely
to trap depends on the size of the crystallite. For large crystals, we would expect
free holes to migrate towards the bulk due to its valence band structure, where
they could trap at bulk cation vacancies. However, for small crystallites, the
increased cation vacancy concentration due to the space-charge layer is likely to
offset this effect, and thus holes will trap at the surface.

5.3.3 Latent Pre-image Centre

The final component of our study involves extending our calculations to model
a system that has direct relevance to latent image formation. Thus far we have
modelled electron trapping at a positive kink site on the (100) surface of AgCl.
According to the direct photolysis theory, a subsurface interstitial cation would
then migrate towards the trapped electron until they recombine, forming a silver
atom at the kink site. This atom is known as the latent pre-image centre (see
Section 1.2 for more details). We have studied the structure and properties of
this centre, and the results are reported in Figure 5.17.
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As can be seen in the figure, the electron preferentially localised in the silver
ion’s 5s orbital. This is not surprising given that this site has a positive elec-
trostatic potential. Without further calculations, which could not be performed
due to lack of resources, we can only speculate about the process of formation
of this centre. However, we can envisage a process by which a subsurface inter-
stitial cation migrates towards the electron trapped at the positive kink (Figure
5.15), whereupon an ion would be forced from the Ag, tetrahedron into a site
surrounding the positive kink. Depending upon the electrostatic potential at its
new location, the trapped electron may localise more strongly upon the ejected
cation, and the system would relax to the stable configuration shown in Figure
5.17. From here, the centre may grow or decay according to the mechanisms

proposed in the literature.

5.4 Conclusions

We have shown in this chapter that QM /MM embedding is a very effective tool
for studying defects in the silver halides. We have employed two model systems
in this work: a semi-infinite surface, and a finite nano-cluster which we assume
reflects the properties of a realistic photographic crystallite.

With the former model, we have been able to study the structures and en-
ergetics of point defects on the (100) surface of AgCl. We have also calculated
the properties of these intrinsic hole and electron traps. Furthermore, we have
been able to characterise the space-charge layer, known to be present in the silver
halides.

Using our novel nanocube structure, we have been able to extend this work to
study the properties of point defects on and around surface defects such as steps
and kinks. From this work, we have been able to characterise the most likely
intrinsic electron and hole traps in silver chloride.

Finally, we have also been able to speculate on the formation processes of the

latent pre-image centre - a key stage in latent image formation.
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Chapter 6
Discussion

In this thesis, we have described our work on three broad categories of problems
relating to the silver halides: charged point defects, neutral point defects, and
photographically-relevant centres on the (100) surface. These systems were stud-
ied using a mixture of the supercell technique and the hybrid QM /MM approach,
each of which had its own advantages for problems of this type.

Initially we investigated the possibility of using semi-classical interatomic po-
tentials for some of this work. However, it quickly became apparent that the
silver halides represent materials that are very difficult to model in this fashion,
mainly due to their unusual valence band structure. Thus, the use of the method
was confined to the QM /MM study reported in Chapter 5, where its inaccuracies
were far less critical. The bulk of this work therefore employed density functional
theory, which provides an excellent balance between accuracy with numerical
efficiency.

As well as gaining important new insights into the silver halides, our work can
also be treated as a methodological study. In this final chapter we will therefore
discuss both the conclusions pertaining to the silver halides, and those pertaining
to the methods used.

Charged Defects

In our investigation into the structures and energetics of charged point defects
in the silver halides, we initially employed the supercell method. We found that
the unwanted effects of periodicity could, to a certain extent, be reduced by a
posteriori application of both the monopole-monopole and monopole-quadrupole
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correction terms. However, errors in the electrostatic potential of the cell re-
sulted in incorrect energies, which caused the defect-pair formation energies to
be systematically too low by around 1 eV for a 64-ion supercell. While methods
have been developed to circumvent this problem, to our knowledge, none of them
are applicable for use with a plane wave basis set. We employed a larger 216-ion
supercell for a number of key calculations, but found that the improvement in our
energetics was not substantial, and thus we concluded that the use of this method
was not appropriate for the calculation of these properties. However, due to the
nature of the calculations involved, we believe that the structural properties we
obtained were correct.

We also employed the hybrid QM/MM approach to study a similar set of
problems. Due to the expense of these calculations, and therefore the need to
be selective, we did not investigate the idealised bulk defects. However, using
our novel nanocube structure, we did calculate the properties of charged defects
in bulk-like positions, and at a variety of surface sites, using an accurate hybrid
functional. This model not only freed us of the spurious defect-defect interac-
tions, but also allowed us to relax many more shells of neighbouring ions - the
effects of which are particularly important when modelling charged defects. The
drawback of this method is that its ability to reproduce long-ranged modulations
in the electron density is limited by the size of the QM cluster, an effect which
is especially important for indirect band gap materials such as silver chloride. In
contrast, these effects can be included routinely in periodic calculations using a
representative set of k-points.

This combination of two complementary techniques has given us insights into
the properties of bulk and surface point defects. We have predicted that the
interstitial cation adopts a split-interstitial configuration both in the bulk and at
the (100) surface. We have also quantified the extent of the relaxations around
the vacancies. Despite our concerns over the energetics from these models, we
successfully predict the dominance of the Frenkel defect pair. Through calcula-
tion of the depth-dependence of the point defect formation energies we have also
verified the existence of the space-charge layer in AgCl.
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Neutral Defects

We have used the same two techniques to study neutral defects, in which an
electron or hole is trapped in or around the charged defect. Of fundamental
relevance to the processes of latent image formation are the positions of the defect
levels within the band gap, as these determine the trapping probabilities of the
centres, and hence the fate of the free electron/hole pair. From a fundamental
perspective, we were also interested in the structural forms of these defects and
the distribution of the trapped species.

With the supercell approach, many of the limitations described previously for
charged defects were removed. The primary interaction between a neutral defect
and its periodic neighbours is of quadrupole-quadrupole origin, which decreases
as L75, and was thus neglected in this study. The electrostatic potential in
the cell was also far more accurate, leading to much better formation energies.
However, new limitations were introduced, such as the ability of the supercell to
enclose the spin density distribution. Although not intrinsic to the method, the
primary factor affecting the accuracy of these calculations was the use of a GGA
functional, which has previously been shown to over-delocalise the distribution of
trapped electrons and holes and also significantly underestimates the band gap.
However, hybrid functionals have recently been implemented in the CASTEP
code, promising improvements in these properties for future calculations.

The use of QM /MM techniques for these problems suffer the same limitations
as for the charged defects, in that use of a ‘small’ cluster may affect the ability
of the calculation to reproduce an indirect band gap. Additionally, we must be
aware that we cannot model extended delocalised states such as a free electron
in the conduction band or a free hole in the valence band.

Nevertheless, we have obtained meaningful results using these techniques. We
have shown that the cation vacancy will trap a hole in a 4d orbital of an adjacent
cation. In line with recent work on other systems, this result required the use of an
accurate hybrid functional, otherwise a more delocalised state was observed. The
interstitial cation was found to trap an electron, and retain its split-interstitial
configuration in the bulk, in agreement with experiment. At the (100) surface,
the electron predominantly localised on a single cation, drawing it further out
of the surface plane. The anion vacancy F-centre is stable in the bulk and at

the surface, and exhibited unusually-large inward relaxations of the surrounding
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cations. However, this neutral centre will have a negligible concentration as the

charged anion vacancy is itself relatively rare.

Photographically-Relevant Centres

In addition to the intrinsic point defects described above, we have also studied
the properties of a number of systems which are thought to be relevant to the
formation of a latent image. These calculations made use of a novel finite nano-
cluster which consisted of a cube of edge 55A, with surfaces exhibiting important
structural features. Although smaller than a realistic photographic crystallite, we
assume that the properties calculated for our system are representative of reality.

The most significant of these is the positive kink site on the (100) surface.
A number of previous studies have investigated the growth of the latent image
cluster. However, to our knowledge, the properties of the ‘bare’ site have not been
reported. In our calculations, we observed relaxation of the corner cation out of
the surface in order to minimise its interaction with nearby cations. In agreement
with experiment, and the direct photolysis mechanism, we predicted that this
centre will trap an electron. On doing so, it underwent significant relaxation,
resulting in a covalently-bound tetrahedral cluster of cations, and effect which
has not been observed before, and which explains the stability of the electron at
this site.

We have also calculated the properties of the latent pre-image centre, which
we have confirmed to consist of a single silver atom located at a positive kink.
This centre is not developable, and is thought to form and decay a number of
times before growing to a stable, developable, size. Finally, given our findings,

we speculated about the formation processes of the pre-image centre.

Conclusions

We have shown that with these two complementary computational techniques,
we can achieve a greater degree of understanding about the silver halides, and
their role in latent image formation. We have also shown that each method
has its drawbacks and merits, and that a combined approach is the only way of
determining defect properties accurately.

With this work , we have shed light upon the defect properties of the rocksalt-
structured silver halides, including the structures, energetics and trapping be-
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haviours. These results, in combination with our studies of the surface positive
kink site, have provided new insight into the processes behind latent image for-

madtion.

122



Appendix A

The Interaction Between Two

Charged Polarizable Ions

Analytical Result

The potential at point 2, due to ion 1 is,

79 - M
¢o = b+ TEEL, (A1)
T12 T12

and therefore the electric field is:

- 3712(p1 - 71 )
By=—Vgy=Ln3+ 37ia(fi - 712) E i2) _ 2 (A.2)
T12 12 Ti2

Realising that p; must be along n7, leads to the relations: p; = pini2, and

p1 - 12 = pir, and so the electric field can be written:

~ . 2 o
Ey, = Z—;’nlg + —:;—17112. (A3)

Similarly, defining p> as p3 = ponis leads to:

=~ — 2 —
E1 = —%’nlg + %nm, (A4)
and hence the polarizabilities:
. = o 2a .
P2 = axEy = (————:qu + ——rzpl) n12, (A.5)
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. - o 2c .
n=ak = (— ;2(12 + Tlspz) ni2. (A.6)

Substituting and rearranging results in:

3
o Qr°—2og\ .
P2 = 0T (—_r6 " donas ) n12, (A7)
3
" Qr’ — 20001\
=— == . A8
h ur ( ré — 4oy ) iz ( )

An expression for the work done can then be obtained:

W = qup2—p2Es
@‘f‘ Q201 1 2

I T a_2p2
3 _ 2 3 _ 2 2
_ 12 @ (T oq1) or? Qo7 21 (A.9)
r r % — 4oy r — 4o
For identical species ¢ = g =¢q, 0y =@z = a:
2 3 3 2
¢ qa (gqr’—2aq 2 [qr° — 209
w=21_L£ (1L =1y I— A.10
T <r6—4a2) ar(r6—4a2> (A4.10)

Iterative Procedure

The equations for the dipole moment (Equations A.5 and A.6) must be supple-
mented with the hyperpolarizability (3):

p=aE+ %ﬂEZ (A.11)

The above equation can no longer be solved analytically. However, using an
iterative procedure within Mathematica'® we have determined the first few terms
of the expansion of this unknown function. Th resultant equation is too complex
to reproduce here. However, for identical species (with unit charge) the expansion

reduces to:
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W= 1 2a 6a%2 1602 58% 40a* 18apB?
"‘;_—TZ+ P70 opl ri3 rld

(A.12)

while for non-identical species with equal and opposite charges, the expansion

reduces to:
W = _l o tay B+ B2 _ 601 o B 4048z + 4o
r 4 26 7 9
8aias + 8a3ar 50102
— r10 - 911 + .. (A13)

where each subscript refers to a given ion.
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