UNIVERSITY OF LONDON THESIS

Degree PhD Year 2007 Name of Author ABHISEET APURVA PARIKH

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

LOAN
Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

☐ This copy has been deposited in the Library of UCL

☐ This copy has been deposited in the University of London Library, Senate House, Malet Street, London WC1E 7HU.
Effectiveness of intranasal lysine-aspirin in patients with aspirin-sensitive, and aspirin tolerant nasal polyposis: controlled trials

Abhijeet Apurva Parikh

Thesis submitted to the University of London
For the degree
Doctor of Philosophy
In
Otorhinolaryngology

2006

Department of Rhinology
Royal National Throat, Nose & Ear Hospital
Institute of Laryngology & Otology, London
For Apurva & Saroj
Acknowledgements

The successful completion of this body of work, which primarily involved clinical trials supported by laboratory-based analysis, required help from numerous individuals. Naming each person would require more than a few pages. Hence, I would like to say a collective thank you to everyone who helped me with these projects. However, in most research projects there are always certain individuals who deserve a very special note of thanks. I would like to single out Glenis (Scadding) who not only gave me the opportunity for this research but also has been and still is a source of constant encouragement. I am deeply indebted to her for the constant guidance, supervision and support.

I would also like to thank Gerald (Brookes), who gave me the initial lessons in writing a research paper, teaching me Otology, and for his support and encouragement. Clinical trials are difficult to run without efficient support. For this I am extremely grateful to Yvonne (Darby). The trials would still be ongoing if it was not for her competency. On a more personal note I would like to thank her for being there as a support during some difficult times.

An endeavour such as this needs financial support. I am grateful to the Rhinology research fund, and Professor Valerie Lund for providing me this support over the 2 ½ years of my post. Professor Lund has also been a strong source of support and encouragement throughout my career. I am particularly grateful to South Essex Medical Education & Research Trust for granting me £1900.00 towards the project.

I am indebted to the late Dr. A. Freedman, of the Laboratories of Applied Biology, for the supplies of lysine-aspirin and placebo, and to the pharmacy department at RNTNE hospital for maintaining the randomisation code and prompt dispensing. Part of the research involved collaborative work. For this my particular thanks to Ana Sousa, Prof. Jane Mitchell, and Prof. Tak Lee.

Lastly, I would like to thank the nursing staff at RNTNE hospital, Ray Allen, my Registrar colleagues, and friends outside of work – Sushrut, Mallika, Kailash, Vinay, David, Nick, Sanjay, Mus, and Sujeet.
Effectiveness of intranasal lysine-aspirin in patients with aspirin-sensitive, and aspirin tolerant nasal polyposis: controlled trials

Abhijeet Apurva Parikh

(Abstract)

Therapeutic options for patients with aspirin-sensitive, and aspirin tolerant nasal polyps include corticosteroids (topical and systemic), surgery to relieve nasal obstruction, or a combination of the two. Medical therapy i.e. corticosteroids aims to reduce the underlying inflammation and alleviates all nasal symptoms. The aim of surgery is to provide an adequate nasal airway for breathing.

Intranasal lysine-aspirin has been used as an option in these patients, and trials have shown its beneficial effects. However, their design and interpretation have been open to scientific criticism. Therefore, we planned to study the effectiveness of intranasal lysine-aspirin in the two groups of polyp patients by conducting trials in a randomised, double blind, and placebo controlled manner. Diagnosis of aspirin-sensitivity or tolerance was confirmed by intranasal lysine-aspirin challenge prior to enrolment in the appropriate trials. Nasal biopsy and polyp tissue were collected from the patients for laboratory-based experiments. Analysis of their results was aimed at improving our understanding of aspirin-sensitivity, and to generate a hypothesis on its pathogenesis.

Intranasal lysine-aspirin did not reduce polyp growth, or improve nasal symptoms in aspirin-sensitive or aspirin tolerant patients when compared to placebo. However, intranasal lysine-aspirin (16 mgs) did not have any deleterious effects in both groups. Immunohistochemistry revealed a significant increase in expression of CysLT1 receptor on inflammatory cells in nasal biopsies from aspirin-sensitive compared to tolerant patients. This expression reduced following treatment with intranasal lysine-aspirin, which suggested a possible mechanism of desensitization. We also found significantly higher levels of iNOS activity in polyp tissue from aspirin-sensitive compared to tolerant patients.

Enhanced expression of CysLT1 receptor provides further evidence of the central role played by leukotrienes in aspirin-sensitivity. Also, we suggest that high iNOS activity in polyp tissue is secondary to increased leukotriene production, and that the latter is most likely to be confined to the respiratory mucosa of patients with aspirin-sensitive asthma and/or polyposis.
Declaration

The work included in this thesis involved 2 clinical trials, and 2 collaborative projects. Dr. Glenis Scadding and Professor Tak Lee were responsible for the conception of the trial on aspirin-sensitive patients. I was substantially involved in the design, and conduct of the trial. I undertook the analysis, and interpretation of generated data.

Dr. Glenis Scadding was responsible for the conception of the trial on aspirin tolerant patients. I was substantially involved in the design and conduct of the trial, its analysis and in the interpretation of generated data.

Dr. Ana Sousa, who worked as a scientist in Professor Lee’s department of Respiratory Medicine & Allergy, King’s College London, performed immunohistochemistry of nasal biopsies from aspirin-sensitive and aspirin tolerant patients. I took the nasal biopsies and was responsible for their labeling and storage. Immunohistochemical analysis was part of our trial in aspirin-sensitive nasal polyp patients.

The other collaborative project (iNOS expression in nasal polyps) was with Professor Jane Mitchell, Department of Pharmacology in Critical care, National Heart & Lung Institute. I was substantially involved in the conception of the project, its analysis, and interpretation.

I take full responsibility for interpretation of findings from the trials and studies that have been included in this thesis, as well as the ensuing discussion.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>3</td>
</tr>
<tr>
<td>Dedication</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>Abstract</td>
<td>7</td>
</tr>
<tr>
<td>Declaration</td>
<td>15</td>
</tr>
<tr>
<td>Index</td>
<td>17</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>20</td>
</tr>
<tr>
<td>List of Figures</td>
<td>22</td>
</tr>
<tr>
<td>List of Tables</td>
<td>23</td>
</tr>
<tr>
<td>List of Appendices</td>
<td></td>
</tr>
<tr>
<td>Publications from the work in this thesis</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

CHAPTER 1: INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Aspirin</td>
<td>24</td>
</tr>
<tr>
<td>1.1.1 General facts</td>
<td>24</td>
</tr>
<tr>
<td>1.1.2 History</td>
<td>24</td>
</tr>
<tr>
<td>1.1.3 Mode of action of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs)</td>
<td>24</td>
</tr>
<tr>
<td>1.1.3a Arachidonic acid metabolism</td>
<td>24</td>
</tr>
<tr>
<td>1.1.3b Action of aspirin/NSAIDs</td>
<td>26</td>
</tr>
<tr>
<td>1.1.3c COX-1/COX-2</td>
<td>29</td>
</tr>
<tr>
<td>1.1.4 Non-steroidal anti-inflammatory drugs (NSAIDs)</td>
<td>29</td>
</tr>
<tr>
<td>1.1.5 Therapeutic use/side effects of aspirin and NSAIDs</td>
<td>29</td>
</tr>
<tr>
<td>1.1.6 Intolerance to aspirin and NSAIDs</td>
<td>31</td>
</tr>
<tr>
<td>1.2 Aspirin-sensitivity</td>
<td>33</td>
</tr>
<tr>
<td>1.2.1 Early case reports</td>
<td>33</td>
</tr>
<tr>
<td>1.2.2 Early case series</td>
<td>33</td>
</tr>
<tr>
<td>1.2.3 Samter and Beers clinical study</td>
<td>34</td>
</tr>
<tr>
<td>1.2.4 Epidemiology</td>
<td>36</td>
</tr>
<tr>
<td>1.2.5 The nose in aspirin-sensitive patients</td>
<td>39</td>
</tr>
<tr>
<td>1.2.5a Natural history of nasal disease</td>
<td>39</td>
</tr>
<tr>
<td>1.2.5b Nasal polyps in aspirin-sensitive patients</td>
<td>39</td>
</tr>
<tr>
<td>1.2.5c Inflammatory cells and mediators in aspirin-induced nasal disease</td>
<td>41</td>
</tr>
<tr>
<td>i. Nasal polyps</td>
<td>41</td>
</tr>
<tr>
<td>ii. Nasal mucosa</td>
<td>44</td>
</tr>
<tr>
<td>iii. Nasal response to aspirin in aspirin-induced nasal disease</td>
<td>44</td>
</tr>
<tr>
<td>1.2.6 Mechanism of aspirin-sensitivity</td>
<td>45</td>
</tr>
<tr>
<td>1.2.6a Immunologic studies</td>
<td>46</td>
</tr>
<tr>
<td>1.2.6b Biochemical studies</td>
<td>46</td>
</tr>
<tr>
<td>1.2.7 Diagnosis of aspirin-sensitivity</td>
<td>49</td>
</tr>
</tbody>
</table>
1.2.7a History 49
1.2.7b Aspirin challenge tests 50
 i. Oral challenge test 50
 ii. Inhalation challenge 51
 iii. Nasal challenge test 51
1.2.7c In-vitro test 52
1.2.8 Management 54
1.2.8a Avoidance of aspirin/NSAIDs 54
1.2.8b Diet 54
1.2.8c Alternatives to aspirin/NSAIDs 55
1.2.8d Anti-leukotriene drugs 57
1.2.8e Treatment of specific manifestations 58
1.2.8f Treatment of nasal disease 58
1.2.9 Desensitization 60
1.2.9a Refractory period 60
1.2.9b Clinical studies on desensitization 61
 i. Observation 61
 ii. ‘Open’ trials 62
 iii. ‘Controlled’ trials 62
 iv. Studies on long-term oral desensitization 63
 v. Studies on long-term intranasal desensitization 64
1.2.9c Mechanism of desensitization 65

CHAPTER 2: AIMS 67

2.1 Primary aim 67
2.2 Secondary aims 67

CHAPTER 3: PLAN OF INVESTIGATION 68

3.1 Characterization of patients 68
 3.1.1 Objective 68
 3.1.2 Design 68
3.1.3 Outcome measures

3.2 Trial 1
3.2.1 Objective
3.2.2 Design
3.2.3 Inclusion criteria
3.2.4 Exclusion criteria
3.2.5 Withdrawal or drop-out from the trial
3.2.6 Randomisation
3.2.7 Medication
3.2.8 Calculation of sample size
3.2.9 Outcome measures

3.3 Trial 2
3.3.1 Objective
3.3.2 Design
3.3.3 Inclusion criteria
3.3.4 Exclusion criteria
3.3.5 Withdrawal or drop-out from the trial, randomisation, medication
3.3.6 Calculation of sample size
3.3.7 Outcome measures

3.4 Laboratory based studies
3.4.1 Immunohistochemistry of nasal biopsies
3.4.1a Objective
3.4.1b Design
3.4.2 Expression of inducible nitric oxide synthase (iNOS)
3.4.2a Objective
3.4.2b Design

CHAPTER 4: METHODS

4.1 Nasal challenge
4.1.1 Challenge procedure
4.1.2 Criteria for positive challenge
4.1.3 Method of desensitisation

4.2 Clinical assessment

4.2.1 History

4.2.2 Rigid nasendoscopy

4.3 Visual analogue scale

4.4 Nasal inspiratory peak flow

4.4.1 Background

4.4.2 Method of use

4.4.3 Measurements

4.5 Acoustic rhinometry

4.5.1 Background

4.5.2 Method of use

4.5.3 Measurements

4.6 Peak expiratory flow rate

4.7 Diary

4.8 Quality of life questionnaire

4.9 Olfactory function

4.10 Nasal biopsy

4.11 Methods for laboratory studies

4.11.1 Immunohistochemistry of nasal biopsies

4.11.1a Detection of cells expressing CysLT₁ and B-LT receptor

4.11.1b Detection of total cells expressing CD45

4.11.1c Phenotype of cells expressing CysLT₁ and B-LT receptor

4.11.1d Cell counting

4.11.3 Measurement of nitric oxide synthase (NOS) activity in nasal polyps

4.12 Statistical methods

4.13 Ethical approval
CHAPTER 5: RESULTS

5.1 Nasal challenge results

5.1.1 Patients 102

5.1.2 Changes in measured parameters following challenge 103

5.1.2a Acoustic rhinometry measurements 103
 i. Volume 103
 ii. Minimum cross-sectional area 1 (Amin₁) 103
 iii. Minimum cross-sectional area 2 (Amin₂) 103

5.1.2b Nasal inspiratory flow rate 104

5.1.2c Visual analogue scale 104

5.1.2d Peak expiratory flow rate 104

5.1.3 Statistical analysis to classify a challenge as positive 106
 — Receiver Operator Characteristic (ROC) Curve
 i. Explanation of ROC curve 106
 ii. Constructing a ROC curve 106

5.1.3a ROC curve of Volume measurements 107

5.1.3b ROC curve of Amin₁ measurements 107

5.1.3c ROC curve of Amin₂ measurements 109

5.1.3d ROC curve of NIPF measurements 109

5.1.3e ROC curve of VAS measurements 111

5.1.3f ROC curve of PEFR measurements 111

5.1.4 Challenge results 114

5.1.5 Reproducibility of nasal challenge 128

5.1.6 Non-reproducible nasal challenges 133

5.2 Clinical characteristics 138

5.3 Trial 1 140

5.3.1 Patients 140

5.3.2 Trial profile 142

5.3.3 Statistical analysis 144

5.3.4 Analysis of longitudinal data 147
 i. Diary card measures: nasal/chest scores, NIPF, PEFR 147
 ii. 6-8 weekly acoustic rhinometry measurements 147
5.4 **Trial 2**

5.4.1 **Patients**

5.4.2 **Trial profile**

5.4.3 **Statistical analysis**

 i. Changes in laboratory measurements
 ii. Changes in quality of life measurement

5.5 **Laboratory-based studies**

5.5.1 **Measurement of iNOS activity in nasal polyps from AS and AT patients**

5.5.1a Patients

5.5.1b Nitric oxide synthase activity

5.5.3 **Immunohistochemistry**

5.5.3a Aspirin-sensitive patients

5.5.3b Aspirin tolerant patients

5.5.3c CD45 count, CysLT\textsubscript{1} and LTB\textsubscript{4} receptor expression

5.5.3d Phenotypes of cells expressing CysLT\textsubscript{1} and LTB\textsubscript{4} receptor

5.5.3e Effect of desensitization with LAS or placebo on number of cells expressing the CysLT\textsubscript{1} and LTB\textsubscript{4} receptor

 i. 6 month desensitization
 ii. 2 week desensitization
 iii. Combined data

CHAPTER 6: **DISCUSSION**

6.1 **Intranasal lysine-aspirin in aspirin-sensitive patients with nasal polyposis: clinical trial**

6.1.1 **Primary aim**

6.1.2 **Rationale for the study**

6.1.3 **Design of our study**

6.1.4 **Treatment dose and regimen**
6.1.5 Outcome measures 201
6.1.6 Critique of our clinical trial 204
6.1.7 Limitations of the trial 206
6.1.8 Revised sample size calculations 206

6.2 Mechanism of aspirin-sensitivity 208
6.2.1 Findings of laboratory based studies 208
6.2.2 CysLT₁ receptor expression 208
6.2.3 Inducible nitric oxide synthase expression 208
6.2.5 Role of COX-2, and COX products 212
6.2.6 A new paradigm for aspirin-sensitivity 214
6.2.7 Genetic susceptibility: role of leukotriene related gene polymorphisms 216

6.3 Mechanism of desensitization 218
6.3.1 What our study adds 218

6.4 Intranasal lysine-aspirin in aspirin tolerant patients with nasal polyposis: clinical trial 220
6.4.1 Primary aim 220
6.4.2 Rationale for the study 220
6.4.3 Design of our study 222
6.4.4 Treatment does and regimen 222
6.4.5 Outcome measures 223
6.4.6 Critique of our clinical trial 223
6.4.7 Limitations of the trial 224

CHAPTER 7: CONCLUSIONS AND FURTHER RESEARCH 226

7.1 Intranasal lysine-aspirin in aspirin-sensitive nasal polyp disease 226
7.1.1 Clinical Trial 226
7.1.2 Tissue studies 226

7.2 Intranasal lysine-aspirin in aspirin tolerant nasal polyp disease 227
7.2.1 Clinical Trial 227
7.3 Further Research

7.3.1 Dose of LAS

7.3.2 A patient tailored approach

7.3.3 Multicentre trials

7.3.4 Tissue studies following oral aspirin desensitisation

7.3.5 Pathophysiology

REFERENCES

APPENDIX
ABBREVIATIONS

General:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>Amin</td>
<td>Minimum cross-sectional area (mm²)</td>
</tr>
<tr>
<td>AR</td>
<td>Acoustic rhinometry</td>
</tr>
<tr>
<td>AS</td>
<td>Aspirin-sensitive (individuals or patients)</td>
</tr>
<tr>
<td>ASy</td>
<td>Aspirin-sensitivity</td>
</tr>
<tr>
<td>AT</td>
<td>Aspirin tolerant (individuals or patients)</td>
</tr>
<tr>
<td>B-LT</td>
<td>Leukotriene B receptor</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CysLT₁</td>
<td>Cysteiny l leukotriene receptor</td>
</tr>
<tr>
<td>DFP</td>
<td>5,5-dimethyl-3-[2-isopropoxy]-4-[methanesulfonylphenyl]-2[5H]-furanone (selective COX-2 inhibitor)</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume in 1 minute</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>LAS</td>
<td>Lysine-aspirin</td>
</tr>
<tr>
<td>LO</td>
<td>Lipooxygenase</td>
</tr>
<tr>
<td>LT</td>
<td>Leukotriene</td>
</tr>
<tr>
<td>LTC₄S</td>
<td>Leukotriene C₄ synthase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NIPF or NF</td>
<td>Nasal inspiratory peak flow</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEFR or PF</td>
<td>Peak expiratory flow rate</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PLA₂</td>
<td>Phospholipase A₂</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>RNTNEH</td>
<td>Royal National Throat, Nose & Ear Hospital</td>
</tr>
<tr>
<td>TX</td>
<td>Thromboxane</td>
</tr>
</tbody>
</table>
UPSIT University of Pennsylvania Smell Identification test
VAS Visual analogue scale
Vol Volume (mls)

Units of measurement:

- mg(s) milligram (plural)
- μg(s) microgram (plural)
- mm millimetre
- ml millilitre
- min minute

Statistical terms:

- S.D Standard deviation

LIST OF FIGURES

Figures are labelled according to chapter, and number. Therefore, figure 1 in chapter 1 is labelled Figure 1.1. Every endeavour has been made to have a figure on the page following its citation in the text.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Pathways of arachidonic acid metabolism</td>
<td>25</td>
</tr>
<tr>
<td>1.2</td>
<td>Arachidonic acid metabolism – Cyclooxygenase pathway</td>
<td>27</td>
</tr>
<tr>
<td>1.3</td>
<td>Arachidonic acid metabolism – Lipoxygenase pathway</td>
<td>28</td>
</tr>
<tr>
<td>1.4</td>
<td>Prevalence of aspirin-sensitivity (%) in various conditions</td>
<td>37</td>
</tr>
<tr>
<td>1.5</td>
<td>Number of polyp operations in aspirin-sensitive vs. aspirin tolerant patients</td>
<td>40</td>
</tr>
<tr>
<td>1.6</td>
<td>Arachidonic acid metabolites in nasal polyp tissue</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Profile of Trial 1</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Profile of Trial 2</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Process of desensitisation</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Picture of rigid nasendoscope</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Measuring nasal inspiratory peak flow</td>
<td>87</td>
</tr>
<tr>
<td>4.4</td>
<td>Use of acoustic rhinometer</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Acoustic rhinometry output of a positive intranasal lysine-aspirin challenge</td>
<td>90</td>
</tr>
<tr>
<td>4.6</td>
<td>Copy of printout from acoustic rhinometry reports programme</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of trials and studies</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>ROC of Volume and Amin$_1$</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>ROC of Amin$_2$ and NIPF</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>ROC of VAS and PEFR</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Challenge data (individual AS patients)</td>
<td>115</td>
</tr>
<tr>
<td>5.6</td>
<td>Challenge data (individual AS patients)</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Challenge data (individual AT patients)</td>
<td>117</td>
</tr>
<tr>
<td>5.8</td>
<td>Challenge data (individual AT patients)</td>
<td>118</td>
</tr>
<tr>
<td>5.9</td>
<td>Challenge data (individual AT patients)</td>
<td>119</td>
</tr>
<tr>
<td>5.10</td>
<td>Challenge data (individual AT patients)</td>
<td>120</td>
</tr>
</tbody>
</table>
5.11 Volume changes in AS and AT patients
5.12 Amin₁ changes in AS and AT patients
5.13 Amin₂ changes in As and AT patients
5.14 NIPF changes in AS and AT patients
5.15 PEFR changes in AS and AT patients
5.16 VAS changes in AS and AT patients
5.17 Reproducible nasal challenges
5.18 Reproducible nasal challenges
5.19 Reproducible nasal challenges
5.20 Reproducible nasal challenges
5.21 Non-reproducible nasal challenges
5.22 Comparison of nasal challenge changes in AS and AT patients
5.23 Challenge results of Trial 1 patients
5.24 Flow chart profiling Trial 1
5.25 Parameter changes in LAS and placebo phase (Nasal score, chest score, NIPF)
5.26 Parameter changes in LAS and placebo phase (PEFR, Volume, Amin)
5.27 Individual patient through the phases (BA)
5.28 Individual patient through the phases (LB)
5.29 Individual patient through the phases (LJ)
5.30 Individual patient through the phases (PD)
5.31 Individual patient through the phases (NM)
5.32 Individual patient through the phases (RC)
5.33 Individual patient through the phases (RP)
5.34 Individual patient through the phases (IR)
5.35 Individual patient through the phases (MD)
5.36 Individual patient through the phases (SH)
5.37 Individual patient through the phases (EM)
5.38 Challenge results of Trial 2 patients
5.39 Flow chart profiling Trial 2
5.40 Changes in Volume, Amin₁, Amin₂ at follow-up visits (every 3-4 months)
5.41 Changes in NIPF, UPSIT, PEFR at follow-up visits (every 3-4 months)
5.42 Changes in nasal polyp grade (L/R), and endoscopy score at follow-up visits (every 3-4 months)
5.43 Changes in VAS at follow-up visits (every 3-4 months), and Total QOL
5.44 Changes in QOL (individual domains)
5.45 Changes in QOL (individual domains)
5.46 iNOS/NOS activity in nasal polyp tissue
5.47 iNOS activity in nasal polyp tissue
5.48 Comparison of AS vs. AT patients (total CD45 cells/mm², CysLT₁ expressing cells/mm², LTB₄ receptor expressing cells/mm²)
5.49 Comparison of AS vs. AT patients (percentage of CD45 cells expressing CysLT₁ receptor, percentage of CD45 cells expressing LTB₄ receptor)
5.50 Sections of nasal biopsy specimens double stained for LTB₄, and CysLT₁ receptor in neutrophils
5.51 Effect of long-term desensitization (6 months)
5.52 Effect of long-term desensitization (6 months)
5.53 Effect of short term desensitization (2 weeks)
5.54 Effect of short term desensitization (2 weeks)
5.55 Effect of desensitization (long-term and short term)
5.56 Effect of desensitization (long-term and short term)
5.27 Sections of nasal biopsy specimens immunostained for LTB₄, and CysLT₁ receptor before and after desensitization
6.1 Studies on mechanism of aspirin-sensitivity
6.2 Role of iNOS in mechanism of aspirin-sensitivity
6.3 Hypothetical role played by COX-2, and COX products in mechanism of aspirin-sensitivity
6.4 A new paradigm for aspirin-sensitivity
LIST OF TABLES

Tables are labelled according to chapter, and number. Therefore, table 1 in chapter 1 is labelled Table 1.1. Every endeavour has been made to have a Table on the page following its citation in the text.

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Classification of analgesic, antipyretic, and non-steroidal anti-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>inflammatory drugs</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Clinical features of aspirin-sensitivity</td>
<td>35</td>
</tr>
<tr>
<td>1.3</td>
<td>Prevalence of aspirin-sensitivity (%) in various conditions</td>
<td>37</td>
</tr>
<tr>
<td>1.4</td>
<td>Prevalence of aspirin-sensitivity in nasal polyp patients</td>
<td>38</td>
</tr>
<tr>
<td>1.5</td>
<td>Number of polyp operations in aspirin-sensitive vs. aspirin tolerant</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>patients</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Arachidonic acid metabolites in nasal polyp tissue</td>
<td>42</td>
</tr>
<tr>
<td>1.7</td>
<td>Sensitivity and specificity of diagnostic tests</td>
<td>53</td>
</tr>
<tr>
<td>1.8</td>
<td>Dietary measures in management of aspirin-sensitive patients</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of trials and studies</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Accuracy of ROC curves</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>Sensitivity and specificity of various parameters derived from ROC</td>
<td>113</td>
</tr>
<tr>
<td>curves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Changes in measured parameters following intranasal lysine-aspirin</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>challenge – comparison of AS and AT patients</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Clinical features of AS and AT patients compared</td>
<td>139</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of patients randomised to LAS and placebo group for Trial</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>2 at baseline</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Clinical characteristics of patient groups enrolled for iNOS in nasal</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>polyp study</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>NOS/iNOS activity in nasal polyp tissue</td>
<td>174</td>
</tr>
<tr>
<td>5.9</td>
<td>Comparison of AS vs. AT patients (total CD45 cells/mm², CysLT₁</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>expressing cells/mm², LTB₄ receptor expressing cells/mm², percentage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of CD45 cells expressing CysLT₁ receptor, percentage of CD45 cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expressing LTB₄ receptor)</td>
<td></td>
</tr>
</tbody>
</table>
5.10 Percentages of total LTC\(_1\) and LTB\(_4\) receptor-positive cells co-expressing leukocyte phenotypic markers in the nasal mucosa 183

5.11 Effect of long-term desensitization (6 months) 186

5.12 Effect of short term desensitization (2 weeks) 190

6.1 Comparison of trials of desensitization 198

6.2 Outcome measures in desensitization trials 203

6.3 Outcome measures in our desensitization trial 203

6.4 Changes during the trial phases 205

6.5 Observations on mechanism of desensitization 219

6.6 Trials of intranasal LAS in aspirin tolerant patients 221

6.7 Comparison of Trial 2 groups at baseline 225
LIST OF APPENDICES

These are included at the end of the thesis following references.

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Consent form for Trial 1 (Use of intranasal LAS to desensitize AS patients)</td>
</tr>
<tr>
<td>B</td>
<td>Patient information sheet for Trial 1</td>
</tr>
<tr>
<td>C</td>
<td>Instructions for preparing nose drops in Trial 1</td>
</tr>
<tr>
<td>D</td>
<td>Daily diary maintained by patients in Trial 1</td>
</tr>
<tr>
<td>E</td>
<td>Visual analogue scale for nasal challenge</td>
</tr>
<tr>
<td>F</td>
<td>Consent form for Trial 2 (Use of intranasal LAS in AT patients)</td>
</tr>
<tr>
<td>G</td>
<td>Patient information sheet for Trial 2</td>
</tr>
<tr>
<td>H</td>
<td>Booklet to maintain data for Trial 2</td>
</tr>
<tr>
<td>I</td>
<td>Visual analogue scale for Trial 2</td>
</tr>
<tr>
<td>J</td>
<td>Quality of life questionnaire used in Trial 2</td>
</tr>
</tbody>
</table>
PUBLICATIONS FROM THIS WORK

Leukotriene receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis.

Differential expression of cysteinyl leukotriene and LTB₄ receptors in aspirin sensitive asthmatic individuals; effect of aspirin desensitization.

High levels of nitric oxide synthase activity are associated with nasal polyp tissue from aspirin-sensitive asthmatics.

4. A Parikh, G Scadding.
Double-blind, randomised, placebo-controlled, cross-over trial of intranasal lysine-aspirin in patients with aspirin-sensitive nasal polyposis.
J Allergy Clin Immunology 2001, 107; S165:S42. (abstract)

5. A Parikh, JA Mitchell, G Scadding.
Inducible nitric oxide synthase (iNOS) activity in aspirin-sensitive nasal polyps.
J Allergy Clin Immunology 1999, 103; S248:S55. (abstract)

6. A Parikh, G Scadding.
Clinical profile of aspirin-sensitive and aspirin-tolerant nasal polyposis, and results of intranasal lysine-aspirin challenge.

8. A Parikh, GK Scadding.
Clinical features of patients with aspirin-sensitive nasal polyposis and response to intranasal challenge.
Allergy. 1998 (suppl), 53:111. (abstract)
INTRODUCTION

1.1 Aspirin

1.1.1 General facts

Aspirin or acetylsalicylic acid has been available commercially for over 100 years. Bayer & Co. first marketed the drug in 1899 (Vane, 2000). Yearly world production of aspirin is estimated at 100,000 tons (Vane, 1976). In the UK, the average consumption of aspirin is 100 tablets/head/year. Low-dose aspirin, as a prophylactic against vascular events has gained popularity, and approximately 6% of 60-year-old subjects consume 300 mgs of it at least 5 days/week (Weil et al. 1995).

1.1.2 History

Rev. Edward Stone in 1763 was the first to report on the therapeutic effects of salicylates for acute fevers (Vane, 1976). Aspirin was developed at Bayer & Co. by Felix Hoffman, a young Chemist, and Dr. Heinrich Dresser who was head of the research department (Vane, 1976). Hoffman’s father used salicylic acid for his arthritis but was troubled by gastric upset following its use. Thus, it was acetylated in the hope that this would reduce its gastric irritability. As a consequence acetylsalicylic acid was born. Salicylic acid came from Spirea plants (spiric acid, or spirin). Therefore, acetylsalicylic acid became acetylspirin or Aspirin.

1.1.3 Mode of action of aspirin and other Non-steroidal anti-inflammatory drugs (NSAIDs)

1.1.3a Arachidonic acid metabolism

A variety of stimuli e.g. antigens, cytokines, can activate signal transduction pathways that culminate in activation of phospholipase A₂ (PLA₂). This enzyme cleaves arachidonic acid (AA) from cell membrane phospholipids. Oxygenation of AA produces a variety of physiologically active mediators, which play an important role both in
Figure 1.1

Pathways of Arachidonic acid metabolism

Inflammatory stimulus
e.g cytokines, antigens

Phospholipase A₂

Cell membrane phospholipids

Phospholipase A₂

ARACHIDONIC ACID

CYCLOOXYGENASE

PROSTAGLANDINS
HETEs

LIPOXYGENASE

LEUKOTRIENES
HPETEs

MONOOXYGENASE

EPOXIDES
HETEs

HETE: Hydroxyeicosatetraenoic acid
HPETE: Hydroperoxyeicosatetraenoic acid
'housekeeping', and inflammation (Figure 1.1). This occurs via 3 enzymatic pathways – cyclooxygenase, lipooxygenase, and monooxygenase (Holtzman, 1991). Two important pathways are briefly summarised below.

Cyclooxygenase pathway (Figure 1.2):

Two chemical reactions are responsible for metabolism of AA down this pathway. Oxygenation inserts 2 molecules of oxygen into AA forming prostaglandin (PG) G2. It is reduced by the peroxidase activity of cyclooxygenase (COX) to PGH2, which forms the substrate for the production of active metabolites – Thromboxane, Prostacyclin, and Prostaglandins (PGD2, PGE2, PGF2α).

Lipooxygenase pathway (Figure 1.3):

Three different lipooxygenases (LO) – 5, 12, and 15 metabolise AA. Of these, 5LO products are called Leukotrienes (LTs). Biologically active leukotrienes are LTC4, LTD4, and LTE4. These cysteine-containing LTs play a role in immediate hypersensitivity reactions, and also have pro-inflammatory effects (Samuelsson, 1983).

1.1.3b **Action of aspirin/NSAIDs**

NSAIDs were discovered in the latter half of the 20th century. Despite their different chemical structures they had identical therapeutic effects, and adverse reactions as aspirin. Thus, it was clear that their mode of action would be alike. In 1971 Vane (Vane, 1971) demonstrated that aspirin like drugs inhibited prostaglandin synthesis in a dose dependent manner, and this was supported in two further studies published simultaneously (Ferreira et al. 1971; Smith and Willis, 1971). Vane (Vane, 1971) postulated that it was inhibition of prostaglandin synthetase (cyclooxygenase – COX), which prevented prostaglandin formation. Subsequently it was shown that acetylation of prostaglandin synthetase by aspirin like drugs prevented the synthesis of prostaglandins (Roth et al. 1975).
Figure 1.2

ARACHIDONIC ACID METABOLISM

Cyclo-oxygenase pathway

Arachidonic acid

COX (oxygenation)

PGG₂

COX (peroxidase action)

PGH₂

PGD₂ mast cells

PGE₂

PGF₂α

PGI₂ unstable

6-keto-PGF₂α

TxA₂ unstable but active

TxB₂ stable

Tx synthetase (platelets)
ARACHIDONIC ACID METABOLISM

Lipoxygenase pathway

Arachidonic acid

5 LO

12 LO

15 LO

5 HPETE

12 HPETE

15 HPETE

LTA₄

LTC₄

12 HETE

15 HETE

hydrolase

LTC₄ synthase

1st committed step

LTB₄

↑ neutrophils

↑ lymphocyte activation

LTD₄

LTE₄

LIPOXIN A & B
1.1.3e **COX-1/COX-2/COX-3**

Cyclooxygenase (COX) is present in two isoforms in the body (Vane, 2000). These are termed COX-1 and COX-2. The former is a constitutive isoform found in most tissues, whereas the latter is an inducible isoform produced in inflammatory settings. Aspirin modifies COX-1 and COX-2 resulting in their *irreversible* inhibition. NSAIDs cause a *reversible* inhibition. The therapeutic effects, and adverse reactions of aspirin/NSAIDs are said to be due to this inhibition of COX-1/2, which in turn prevents prostaglandin formation. It is now widely accepted that the side effects of aspirin/NSAIDs are due to constitutive COX-1 enzyme inhibition (Warner et al. 1999), whereas the beneficial effects are due to inducible COX-2 enzyme inhibition. This knowledge has fuelled the research to find pharmacological agents with selective COX-2 inhibitory properties. Recently a third isoform, COX-3 has been isolated, which may be selectively inhibited by drugs like acetaminophen (Chandrasekharan et al. 2002).

1.1.4 **Non-steroidal anti-inflammatory drugs (NSAIDs)**

These drugs are organic acids that cause a competitive reversible inhibition of cyclooxygenase (Table 1.1) (Insel, 2001). Thus, their duration of action is dependent on their pharmacokinetic clearance from the body. As mentioned above, new selective COX-2 inhibitors are being manufactured that have a reduced incidence of side effects, in particular gastrointestinal ulceration.

1.1.5 **Therapeutic uses/Side effects of Aspirin & NSAIDs**

Aspirin and NSAIDs as a group are classically used as antipyretics, analgesics, and anti-inflammatory agents. However, reports of other beneficial effects of low dose aspirin continue to appear in literature (Symmons, 1996). It is used for secondary prevention of myocardial infarcts, stroke, vascular dementia, and there is some evidence of it reducing the risk of colorectal cancer. Other uses of NSAIDs include in neonates with patent
<table>
<thead>
<tr>
<th>Classification of analgesic, antipyretic, and non-steroidal anti-inflammatory drugs</th>
</tr>
</thead>
</table>
| **Non selective COX inhibitors**
 Salicylic acid derivatives:
 Aspirin
 Sodium salicylate
 Diflunisal
 Sulfasalazine
 Para-aminophenol derivatives:
 Acetaminophen
 Indole and Indene acetic acids:
 Indomethacin
 Sulindac
 Heteroaryl acetic acids:
 Diclofenac
 Ketorolac
 Arylpropionic acids:
 Ibuprofen
 Naproxen
 Ketoprofen
 Anthranilic acids:
 Mefenamic acid
 Enolic acids:
 Piroxicam
 Meloxicam
 Alkanones:
 Nabumetone
| **Selective COX-2 inhibitors**
 Diaryl substituted furanones:
 Rofecoxib
 Diaryl substituted pyrazoles:
 Celecoxib
 Sulfonanilides:
 Nimesulide |
ductus arteriosus (PDA), and in women with primary dysmenorrhoea. With the advent of selective COX-2 inhibitors the side effects will reduce considerably, and potential uses will include premature labour, colon cancer, and Alzheimer’s disease (Vane, 2000). Gastrointestinal ulceration and bleeding is the main side effect of aspirin and NSAIDs. The risk of such occurrence is 3 times that of nonusers (Insel, 2001). It is due to inhibition via cyclooxygenase blockade (COX-1 & 2) of prostaglandin synthesis (PGI₂, PGE₂), which are cytoprotective to the gastric mucosa. Recently introduced selective COX-2 inhibitors are considerably safer in this respect. The other side effect of note is bruising secondary to reduced platelet aggregation due to inhibition of thromboxane (TX₂) formation. Aspirin is particularly notorious because of its irreversible cyclooxygenase blockade.

1.1.6 Intolerance to Aspirin and NSAIDs

Certain individuals react in an abnormal manner to low or therapeutic doses of aspirin or NSAIDs. Terms used to describe this reaction include ‘aspirin-sensitivity’, ‘aspirin-intolerance’, and ‘aspirin-idosyncrasy’. In this thesis the term aspirin-sensitivity (ASy) will be used, and the individuals will be called aspirin-sensitive (AS). There are 3 kinds of reactions:

Respiratory reaction: Majority of the individuals intolerant to aspirin/NSAIDs will have this type of reaction (80%). Typically it occurs 20-30 minutes after aspirin/NSAID intake. Reaction can occur anytime from 10 minutes to 2 hours. Patients have an attack of asthma. The attack can be severe and unresponsive to conventional medication with the patient requiring hospitalisation, and needing intensive care admission. Fatalities have been reported. These individuals may have a nasal reaction, with rhinorrhea and blockage being the main symptoms. A small subset of individuals have a reaction that affects only the nasal lining with sneezing, itching, rhinorrhea, and nasal obstruction.

Skin reaction: Some individuals (10%) develop urticaria and/or angioedema. Unlike the respiratory reaction it can occur up to 14 hours after aspirin/NSAID intake. Facial swelling particularly around the eyes and lips is seen. Occasionally the oedema is severe so as to involve the tongue and larynx. This can culminate in death.

Combined reaction: There are individuals (10%) who have both the above-mentioned reactions to varying degrees after aspirin/NSAID use.
This aspirin-sensitivity is different from patients who have an anaphylactic reaction to the drug (Berkes-Eva, 2003). Here the patient goes into shock almost immediately following aspirin ingestion.
1.2 Aspirin-sensitivity

1.2.1 Early case reports

The first case of aspirin-sensitivity to be reported in medical literature was in 1902, three years after aspirin appeared on the market (Hirschberg, 1902). The patient had an urticarial reaction, and purpura after taking 1 gm. of aspirin. Gilbert described the case of a 40-year-old woman with chronic asthma who developed severe urticaria, which he called ‘urticaria gigantean or angioneurotic oedema’ after taking 300 mg of aspirin (Gilbert, 1911). She was treated with epinephrine and made a full recovery. Although there is no mention of wheezing in the report, it was concluded that the patient’s symptoms represented an attack of asthma, which was aggravated by an ‘intense idiosyncrasy’ to aspirin.

1.2.2 Early case series

As Physicians became more aware of this occurrence, they started to group cases together in order to present common features and also speculate on the underlying mechanism of the adverse reaction. Three such series are discussed here.

Cooke reported on a collection of 15 cases (Cooke, 1919). Nine cases (60%) developed asthma, and 3 (20%) had urticaria after aspirin intake. It is not clear from the paper if the remaining 3 had a combination of reactions. The primary aim of this series report was to comment on the possible underlying mechanism of these side effects. Cooke described idiosyncrasy to a drug as an ‘exaggerated normal or side action’. This he thought could be due to various reasons, one being an unstable mechanism by which a drug acts in the body. However, for aspirin he suggested ‘allergy’ as a reason because the adverse reactions i.e. asthma or urticaria were not its ‘exaggerated normal or side action’. In fact in 1919 the definition of allergy was far from our present day understanding of the subject. Anaphylaxis was considered an antigen-antibody reaction whereas an allergy was ‘the natural hypersensitivity of the individual not produced by immunologic processes, as the exciting agents or allergens are in many cases not capable of producing antibodies’.

Lamson and Thomas described 4 cases, all of them women (Lamson and Thomas, 1932). They highlighted the widespread use of aspirin, and also the possibility of its
inadvertent intake in nostrums (quack remedies), which were inadequately labeled. It seems likely that one of the cases had an anaphylactic reaction as the symptoms occurred within minutes of taking aspirin. Two of the cases are of note because nasal symptoms are mentioned. One of them suffered from nasal obstruction along with asthma, and the other noticed an exacerbation of hay fever-like symptoms every time she took aspirin.

Prickman and Buchstein studied 62 cases of aspirin-sensitivity, and published their findings in the first comprehensive clinical review (Prickman and Buchstein, 1937). They noted a high incidence amongst asthmatics, and quoted Van Leeuwen's estimate, which was about 10%. It is also stated that the incidence is much higher in patients with more severe asthma. Clinical observations in their 62 patients (Table 1.2) included a female preponderance (M:F = 1:2), age distribution (66% = between 31-50 years), presence of asthma in 43 patients (69%), history of urticaria/angioneurotic oedema in 10 patients (16%), vasomotor rhinitis in 21 patients (34%), hay fever in 11 patients (17%), and nasal polyps in 21 patients (34%). They administered a tablet of aspirin (an oral challenge), and studied various aspects of the adverse reaction. Thirty patients (48%) reacted within 1 hour, the mean time being 32 minutes. Asthma was the most frequent reaction occurring in 61% of cases, and urticaria/angioedema in 19%. The others had a combination of reactions. Three patients stated that their first attack of asthma was precipitated by aspirin ingestion. Again, it is brought to our attention that patients can inadvertently take aspirin as part of an unlabelled proprietary preparation.

1.2.3 Samter and Beers clinical study

Over a 10-year period (1954-1965) Samter and Beers followed more than 1000 patients with aspirin-sensitivity (Samter and Beers, 1968). From this cohort 182 patients were prospectively studied, and their observations formed the basis of the paper. The clinical features of this group are very similar to patients from Prickman's series (Table 1.2).

Of particular note however, are the observations made on the natural history of this condition. The majority of the patients (80%) followed a particular pattern for development of their respiratory tract disease. The initial indication is the development of profuse watery rhinorrhea in the 2nd or 3rd decades of life. At first this is intermittent but it gradually leads to chronic nasal blockage. This is suggestive of polypoid degeneration, which was present in 50% of their cases.
Clinical features of aspirin-sensitive patients

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Reference</th>
<th>90%: 21-60</th>
<th>Samter (1968) n = 182</th>
<th>Prickman (1937) n = 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex: male (female)</td>
<td>78 (104)</td>
<td>22 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at onset</td>
<td>≤ 30: 46 (25%)</td>
<td>21-50: 63%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of asthma</td>
<td></td>
<td>43 (69.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of atopy</td>
<td>40 (22%)</td>
<td>32 (51.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasal polyps</td>
<td>92 (50%)</td>
<td>21 (33.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of reaction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Asthma</td>
<td>154 (85%)</td>
<td>38 (61.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Urticaria/angioneurotic oedema</td>
<td>18 (10%)</td>
<td>12 (19.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Asthma and urticaria/angioneurotic</td>
<td>10 (5%)</td>
<td>2 (3.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oedema</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asthma started in middle age in most of their patients. Episodes in many individuals were precipitated after a polypectomy. Respiratory tract disease continued despite aspirin avoidance, and interestingly in some patients their first aspirin induced reaction was a few years after nasal polyps and asthma developed.

Commenting on the triad of nasal polyps, asthma, and aspirin intolerance they report that 'it is a disease entity, not a chance clutter of allergic symptoms, and represents, in fact, the prototype of a syndrome that has not been previously described and deserves recognition'. Thus, it has been suggested by many that this triad should be called Samter’s syndrome (Probst et al. 1992). However, the above comment may not be accurate as this triad has been recognised since the early part of the 20th century (Widal et al. 1987).

A further aspect highlighted in this paper was the cross-reactivity of certain foodstuffs, and food colourings in this group of patients. Twenty-six patients (14%) had reacted to foodstuffs and analysis revealed that the most common preservative used was sodium benzoate while the colouring was tartrazine or Food, Drug & Cosmetic yellow no.5 (FDC yellow no.5).

1.2.4 Epidemiology

The frequency of aspirin-sensitivity in the population has been estimated to be between 0.3-0.9% (Settipane, 1983; Settipane et al. 1974; Settipane et al. 1980). The figure is higher in patients with rhinitis, asthma, nasal polyps, and urticaria (Table 1.3, Figure 1.4). A recent study from Finland estimates the prevalence of doctor-diagnosed aspirin intolerance to be 5.7% (Hedman et al. 1999).

In patients with nasal polyps the prevalence varies from 3-26% (Table 1.4). Studies relying on history tend to underestimate the prevalence. Higher estimates are seen in studies that have a larger proportion of asthmatics, which may indicate a greater severity of disease. A reasonable estimate of 11% comes from a large study of 1600 patients with nasal polyps (Brown et al. 1979).

Conversely, the prevalence of nasal polyps in patients with aspirin-sensitivity is between 36-72% (Mygind, 1999). A recent study conducted by the European Network on Aspirin-Induced Asthma (AIANE) quotes a figure of 60% (Szczechlik et al. 2000). However, this estimate can rise to near 100% if endoscopy and CT scanning of sinuses is performed (Mullol et al. 2001).
Table 1.3

Prevalence of aspirin-sensitivity (%) in various conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal population</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>1.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Asthma</td>
<td>4-19</td>
<td>10.7</td>
</tr>
<tr>
<td>Nasal polyps</td>
<td>14-23</td>
<td>27.9</td>
</tr>
<tr>
<td>Urticaria</td>
<td>23-28</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Figure 1.4

[Graph showing prevalence (%) for normals, rhinitis, asthma, polyps, and urticaria with data from Settipane (1983) and Hedman (2000).]
Table 1.4

Prevalence of aspirin-sensitivity (AS) in nasal polyp (NP) patients

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>NP (n=)</th>
<th>% AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaney</td>
<td>1976</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Moloney</td>
<td>1977</td>
<td>445</td>
<td>6</td>
</tr>
<tr>
<td>Drake-Lee et al</td>
<td>1984</td>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>Brown et al</td>
<td>1979</td>
<td>1600</td>
<td>11</td>
</tr>
<tr>
<td>Larsen et al</td>
<td>1994</td>
<td>103</td>
<td>13</td>
</tr>
<tr>
<td>Schenck</td>
<td>1974</td>
<td>174</td>
<td>14</td>
</tr>
<tr>
<td>Settipane</td>
<td>1987</td>
<td>211</td>
<td>14</td>
</tr>
<tr>
<td>Jantii-Alanko et al</td>
<td>1989</td>
<td>85</td>
<td>26</td>
</tr>
</tbody>
</table>
1.2.5 The nose in aspirin-sensitive patients

1.2.5a Natural history of nasal disease

Rhinitis characterized by watery discharge, sneezing, and intermittent nasal obstruction appears in the 2nd decade of life (Samter and Beers, 1968). Nasal blockage becomes persistent and is accompanied by anosmia. Approximately 2 years later the patients have their first attack of asthma. The first attack of aspirin-sensitivity occurs about 4 years later and around the same period in time nasal polyps are diagnosed. This classical thinking of disease progression has been debated (Szczechlik et al. 2000). With modern techniques of examination like rigid nasendoscopy it is likely that polyps could be discovered prior to the patients first attack of asthma or aspirin sensitivity.

1.2.5b Nasal polyps in aspirin-sensitive patients

Macroscopically the appearance of polyps is similar in aspirin-sensitive and aspirin-tolerant patients. They are pedunculated smooth masses that are pale, semi translucent, bilateral, and project into the nasal cavity from the middle meatus. This is a functional and anatomical area on the lateral wall of the nose where the sinuses drain. Inflammation giving rise to the polyps is not confined to the lining of the ethmoid sinuses but also involves the frontal, sphenoid, and maxillary sinuses.

Nasal polyp disease is more aggressive in aspirin-sensitive as compared to aspirin-tolerant patients (Settipane et al. 1991). Aspirin-sensitivity is a highly significant factor affecting the recurrence rate (Drake-Lee et al. 1984). A study on the recurrence of nasal polyps provides good evidence of this aggressiveness (Jantti-Alanko et al. 1989). Of the aspirin-sensitive group 59% required repolypectomies compared to 19% of the aspirin-tolerant group. Also, the majority of aspirin-tolerant patients had needed 1 polypectomy compared to aspirin-sensitive patients who had undergone 3 or more polypectomies. Other studies have highlighted the same issue (Table 1.5; Figure 1.5).
Table 1.5

Number of polyp operations in aspirin-sensitive (AS) vs. aspirin tolerant (AT) patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drake Lee et al</td>
<td>1984</td>
<td>AS: 3.27 (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT: 1.4 (172)</td>
</tr>
<tr>
<td>English</td>
<td>1986</td>
<td>AS: 1.8 (205)</td>
</tr>
<tr>
<td>Schenck</td>
<td>1974</td>
<td>AS: 3.94 (18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT: 1.92 (156)</td>
</tr>
<tr>
<td>Szczechlik</td>
<td>2000</td>
<td>AS: 2.6 (500)</td>
</tr>
<tr>
<td>Larsen et al</td>
<td>1994</td>
<td>AS: 1.86 (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT: 1.39 (84)</td>
</tr>
<tr>
<td>Jantti-Alanko et al</td>
<td>1989</td>
<td>AS: 1.23 (22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT: 0.05 (63)</td>
</tr>
</tbody>
</table>

Figure 1.5

Number of polypectomies

![Bar chart showing number of polypectomies](chart.png)

- AS: n = 3, p = 0.031
- AT: n = 1
1.2.5c **Inflammatory cells and Mediators in Aspirin-sensitive nasal disease**

i) **Nasal polyps**

Microscopically polyps from aspirin-sensitive and aspirin-tolerant patients appear similar. Typically there is marked stromal oedema, infiltration with inflammatory cells, thickening of the basement membrane, and local fibrosis (Hamilos, 1996). However, closer examination of the cellular infiltrate and mediator content reveals several differences.

All types of *inflammatory cells* are found in nasal polyps (Takasaka et al. 1986). However, there is a preponderance of eosinophils and mast cells. In a quantitative study using immunohistochemistry, polyps from aspirin-sensitive patients were found to have 920/mm² eosinophils compared to 520/mm² in patients with asthma plus nasal polyps, and 880/mm² in patients with only nasal polyps (Jankowski et al. 1989). Mast cells numbered 40/mm², 20/mm², and 20/mm² respectively. Other studies analysing eosinophil/mast cell characteristics found evidence of increased activation (Ogata et al. 1999), and degranulation (Takasaka et al. 1986; Yamashita et al. 1989). In addition to enhanced activation there is evidence showing increased survival. An interesting recent study shows that the number of apoptotic eosinophils in nasal polyps was significantly lower in aspirin-sensitive patients (mean±S.E.M. 5.5±1.5/mm²) compared to atopic (18.7±3.8/mm²), and non-atopic patients (21.3±5.2/mm²) (Kowalski, 2000).

Studies on *mediator content* of nasal polyps have shown 2 main differences between aspirin-sensitive and aspirin tolerant patients. The first is low histamine content in aspirin-sensitive patients compared to aspirin tolerant patients (Burnsted et al. 1979; Hosemann et al. 1990). In one study the histamine content of nasal polyps from aspirin-sensitive asthmatics was 6.13µg/gm as opposed to 25.31µg/gm in patients without aspirin-sensitivity or asthma (Burnsted et al. 1979). The second difference is in the levels of arachidonic acid metabolism products. Two studies have shown that the ratio of cyclooxygenase/lipoxygenase products is significantly lower in aspirin-sensitive patients compared to aspirin tolerant patients (Pinto et al. 1997; Yamashita et al. 1989). Thus, polyps from aspirin-sensitive patients have high levels of leukotrienes (Table 1.6, Figure 1.6). Also, there is a significantly lower amount of PGE₂ in polyps from aspirin-sensitive as opposed to aspirin tolerant patients (Kowalski et al. 2000; Schmid et al. 1999; Yamashita et al. 1989).
Table 1.6

Arachidonic acid metabolites in nasal polyp tissue

<table>
<thead>
<tr>
<th>Group</th>
<th>Prostaglandins (10^-9 g/g tissue)</th>
<th>Leukotrienes (10^-12 g/g tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_2</td>
<td>$F_{2\alpha}$</td>
</tr>
<tr>
<td>CS</td>
<td>33.30±8.78</td>
<td>4.07±2.51</td>
</tr>
<tr>
<td>AR</td>
<td>28.6±10.21</td>
<td>6.45±3.23</td>
</tr>
<tr>
<td>ASA</td>
<td>7.33±2.28</td>
<td>1.45±0.66</td>
</tr>
</tbody>
</table>

Key: CS= chronic sinusitis (n=5); AR= nasal allergy (n=5); ASA= aspirin-sensitive asthma (n=5)
Figure 1.6

Arachidonic acid metabolites in nasal polyp tissue

Key: CS = chronic sinusitis (n=5); AR = nasal allergy (n=5); ASA = aspirin-sensitive asthma (n=5)

Levels of COX metabolites in nasal polyps

Levels of LO metabolites in nasal polyps
Further differences have also been noted on mediator release following addition of aspirin to polyp tissue in-vitro. Cultured polyp epithelial cells from aspirin-sensitive patients when incubated with aspirin were found to generate very high levels of 15-hydroxyeicosatetraenoic acid (15-HETE), whereas no effect was seen on 15-HETE generation by cells from aspirin tolerant patients (Kowalski et al. 2000).

Cytokine expression is also different in aspirin-sensitive and aspirin tolerant patients (Hamilos et al. 1995). Correlation statistics revealed a significant positive relationship between aspirin-sensitivity and non-allergic status, and aspirin tolerance and allergic status. Hence, the cytokine profile in polyps from aspirin-sensitive patients was similar to that from non-allergic individuals. Increased densities of IL-5, IL-2, and IFN-γ mRNA^+^ cells were seen.

Nasal polyp tissue has recently been used to study expression of COX-2 isoform of cyclooxygenase (Picado et al. 1999). This inducible form of cyclooxygenase plays an important role in the production of endogenous PGE₂. Using semi-quantitative PCR, COX-2 mRNA expression was found to be significantly lower in polyps from aspirin-sensitive compared to aspirin tolerant patients (0.38 ± 0.10 vs. 2.93 ± 0.52).

ii) Nasal mucosa

Compared to nasal polyp studies, the mucosa of the nose has been studied infrequently. In a recent study nasal biopsies from 10 aspirin-sensitive patients were compared to those from 12 healthy controls (Varga et al. 1999). The epithelium was considerably thicker, and significantly higher numbers of mast cells and eosinophils were seen in aspirin-sensitive patients. Correlation analysis showed that the degree of nasal obstruction was directly related to the number of activated eosinophils. Analysis of cytokine profile revealed an IL-5 dominated inflammation but IFN-γ mRNA^+^ cells were not increased as in polyp epithelium (Hamilos et al. 1995). This is in contrast to the profile seen in patients with allergic rhinitis where raised levels of Th₂ cytokines (IL-4, IL-5, IL-13, GM-CSF) are seen.

iii) Nasal response to aspirin in Aspirin-sensitive nasal disease

Nasal lavage has been widely used to study the response of the nose to either oral aspirin (Ferreri et al. 1988; Fischer et al. 1994; Kowalski et al. 1993) or its intranasal
instillation (Kowalski et al. 1996; Picado et al. 1992). In one study oral aspirin ingestion led to an increase in LTC₄ and histamine levels (Ferreri et al. 1988). However, this was only seen in patients who had both a naso-ocular and bronchospastic reaction. Those who had only a bronchospastic reaction did not show the rise in mediators. Other studies have shown that the rise is not confined to LTC₄ levels, but involves all cysteinyl leukotrienes (Kowalski et al. 1993; Picado et al. 1992). Also, the rise in these mediator levels seems to coincide with nasal symptoms (Ferreri et al. 1988; Kowalski et al. 1993). The source of these mediators appears to be eosinophils and mast cells (Fischer et al. 1994; Kowalski, 1996). Influx of eosinophils associated with a marked rise in eosinophil cationic protein, indicative of activation, has been shown. Tryptase levels also rise, which indicates mast cell degranulation.

1.2.6 Mechanism of aspirin-sensitivity

Three important events have greatly contributed to our present day understanding of aspirin-sensitivity. In 1967 a report appeared in medical literature which linked indomethacin, a NSAID, to aspirin-sensitivity (Vanselow and Smith, 1967). This link was confirmed the same year in another observational study (Samter and Beers, 1967). Eighteen hospitalised aspirin-sensitive patients were given 25 mgs each, precipitating an attack of asthma. Thus, it became evident that these two drugs with varied chemical structures caused similar adverse reactions in aspirin-sensitive individuals. The second event was a landmark study published in 1971, proposing that the mechanism of action of aspirin-like drugs was through inhibition of prostaglandin synthesis (Vane, 1971). The last event that significantly helped our understanding of aspirin-sensitivity was the discovery of leukotrienes as products of arachidonic acid metabolism along the lipoxygenase pathway (Samuelsson, 1983). In the first 70 years of the 20th century most observers thought, and tried to prove that aspirin-sensitivity was an immune mediated phenomenon. However, the above-mentioned events led to a shift in thinking towards a biochemical alteration, and most recent studies have concentrated on investigating these changes. A summary of the 2 periods is provided below.
1.2.6a Immunologic studies

The nature of adverse reactions i.e. acute asthma, naso-ocular reaction, urticaria, angioedema, and their rapid onset after aspirin intake led most clinicians to believe that aspirin-sensitivity was an immune-mediated event. However, studies aimed at demonstrating such a relationship could not prove so or were inconclusive. Skin tests were used to try and demonstrate the immunologic theory but the complete lack of a reaction led to alternative ways of explaining the link (Cooke, 1922; Freidlaender and Feinberg, 1947). One theory was that aspirin acted like a hapten combining with a serum protein subsequently leading to the adverse reaction (Bruce Pearson, 1963; Landsteiner, 1924). To demonstrate such a possibility 12 aspirin-sensitive patients were skin tested with salicylates containing human sera (Mathews et al. 1950). None of the patients had a positive response. Another theory suggested a reaction between aspirin and an antibody generated due to an extraneous antigen such as an infectious agent (Feinberg and Malkeil, 1951). Further in-vitro studies using conjugates of aspirin and serum protein also failed to prove a specific immunologic event (Giraldo et al. 1969; Yurchak et al. 1970).

This lack of evidence led to various non-immunologic theories. One theory suggested the presence of abnormal nasal/pulmonary kinin receptors in aspirin-sensitive patients, which were stimulated by aspirin intake (Samter and Beers, 1967). This theory was particularly attractive because by then it was known that chemically unrelated compounds such as indomethacin caused the same reactions in these individuals. Another suggestion was a direct stimulation of the complement system by aspirin (Yurchak et al. 1970). However, around this time the mechanism of action of aspirin and NSAIDs was discovered and the emphasis shifted towards a biochemical theory.

1.2.6b Biochemical studies

In 1975 a study was published firmly implicating many more NSAIDs to aspirin-sensitivity (Szczechlik et al. 1975). Eleven aspirin-sensitive asthmatics were given a variety of NSAIDs orally in gradually increasing doses. A reduction of 15% in peak flow rate was taken as a positive response. Also, the ability of these NSAIDs to inhibit prostaglandin synthetase (cyclooxygenase) in-vitro was studied. It became apparent that the capability of these drugs to induce bronchospasm was directly proportional to their
power in inhibiting prostaglandin synthetase activity. Despite these observations it was difficult to explain why the majority of asthmatics were tolerant to NSAIDs. The investigators proposed that inhibition of COX prevented the formation of prostaglandins E and F, which paved the way for endogenous histamine to act as a potent bronchoconstrictor. In aspirin tolerant patients the action of histamine was combated by the β-adrenergic system thus preventing bronchoconstriction, but in aspirin-sensitive patients the β-adrenergic system did not play a similar role. Another explanation came in 1977 suggesting NSAID induced COX inhibition lead to a preferential lack of bronchodilator PGE2 over bronchoconstrictor PGF2α thus, provoking asthma (Toogood, 1977).

The discovery of additional pro-inflammatory derivatives of arachidonic acid, which were named leukotrienes (Samuelsson, 1983), led to a shift in aspirin-sensitivity research towards studying these new mediators. In particular, the emphasis was on investigating the role of cysteinyl leukotrienes LTC4, LTD4, LTE4, as they were potent bronchoconstrictors. In the early days of leukotriene directed research an in-vitro study showed that there was a 3-fold increase in antigen-provoked leukotriene production by bronchial tissue following incubation with indomethacin (Undem et al. 1987). Thus, the possibility arose that inhibition of COX lead to an increased generation of leukotrienes. In aspirin-sensitive individuals an increase in leukotriene output after intake of aspirin or NSAIDs was confirmed by studies measuring levels in nasal lavage (Ferreri et al. 1988), urine (Christie et al. 1992; Christie et al. 1991), monocytes (Juergens et al. 1992), and bronchoalveolar washouts (Sladek et al. 1994). Also, there was evidence suggesting an elevated baseline metabolism of AA in these patients (Christie et al. 1991; Israel et al. 1993; Juergens et al. 1992). These observations generated a popular theory on the causation of aspirin-sensitive disease, called the ‘shunting hypothesis’. However, aspirin or NSAIDs should also cause a similar ‘shunting’ of AA towards the SLO pathway in aspirin tolerant individuals with enhanced production of LTs. This is not seen, calling into question the validity of this hypothesis (Mitchell and Belvisi, 1997).

Researchers were aware of this dilemma (VanArsdel, 1984), and an additional hypothesis was proposed suggesting increased target organ responsiveness to leukotrienes in aspirin-sensitive individuals (Stevenson, 1987). In a study conducted to test this hypothesis, 5 aspirin-sensitive patients and 15 aspirin tolerant patients were
challenged with histamine or LTE₄ (Arm et al. 1989). In aspirin-sensitive patients LTE₄ was found to be 1870 times more potent than histamine in causing a 35% reduction in airway conductance. In addition, the mean dose of LTE₄ required to reduce airway conductance was 16.5 times more in aspirin tolerant as opposed to aspirin-sensitive patients (0.17nmol vs. 2.8nmol). Thus, the study confirmed that aspirin-sensitive patients demonstrated increased airway responsiveness to leukotrienes. Another study confirmed the pivotal role played by 5LO products in aspirin-sensitive patients (Israel et al. 1993). In this study 8 aspirin-sensitive patients were pre-treated with a 5LO inhibitor (Zileuton) and challenged with oral aspirin in a double-blind, placebo-controlled, crossover manner. After Zileuton, the baseline urinary LTE₄ levels decreased, the rise after aspirin was not as steep, and it prevented the occurrence of nasal symptoms.

Other observations prompted studies into the role that PGE₂ may play in aspirin-sensitive patients. PGE₂ levels are significantly low in polyps from aspirin-sensitive patients (Kowalski et al. 2000; Schmid et al. 1999; Yamashita et al. 1989). It is a known bronchodilator (Mathe and Hedqvist, 1975), and in an early study on asthmatics it was shown to prevent bronchospasm caused by oral aspirin in a subgroup of aspirin-sensitive individuals (Pasargiklian et al. 1977). This phenomenon has been confirmed by the other studies (Sestini et al. 1996; Szczeklik et al. 1996).

A significant finding that implicated leukotrienes as the primary culprits in aspirin-sensitive disease came from a study that showed a profound overexpression of LTC₄ synthase (LTC₄S) in bronchial tissue from aspirin-sensitive patients (Cowburn et al. 1998; Sampson et al. 1997). Biopsies from aspirin-sensitive patients had 5 times the cells staining for LTC₄S compared to aspirin tolerant patients, and 9 times compared to normal individuals. The cells showing enhanced expression were eosinophils. These findings were followed by genetic work, which suggested that a polymorphism in the promoter region of the gene coding for LTC₄S might represent a risk factor to NSAIDs in patients with asthma (Sanak et al. 2000; Sanak et al. 1997). A single nucleotide transversion from adenine to cytosine found 444 nucleotides upstream from the first codon in the LTC₄S gene was associated with a relative risk of 3.89 for development of a aspirin-sensitive phenotype. However, this polymorphism could not be demonstrated within aspirin-sensitive patients in the United States (Van Sambeek et al. 2000). The study concluded that finding the 444C allele might represent a population-stratified polymorphism seen in patients of eastern European descent.
1.2.7 Diagnosis of aspirin-sensitivity

In patients with nasal polyps, and/or asthma, it is important to determine their aspirin-sensitive status as it has prognostic and therapeutic significance. This is generally done by taking a history and direct questioning. However, the only method of confirming aspirin-sensitivity is by undertaking a challenge test. Most commonly these are employed in research studies on aspirin-sensitive individuals. Rarely they may be undertaken in patients where the history is equivocal and aspirin or NSAIDs are required for treatment of other conditions such as rheumatoid arthritis or heart disease. Oral aspirin challenge was used for most of the last century, but it can precipitate a severe reaction. Techniques studied as an alternative to oral challenge in the hope that they would prove to be safe and reliable, included skin tests with aspirin (Cooke, 1922; Duke, 1933; Prickman and Buchstein, 1937), aspirin containing serum (Mathews et al. 1950), and aspirin-protein conjugates (Yurchak et al. 1970). All these were negative. Other inconclusive methods were immunoflorescent test and haemagglutination testing (Yurchak et al. 1970), or studying histamine release from nasal polyps of aspirin-sensitive patients (Hosemann et al. 1990). Methods used commonly are discussed below.

1.2.7a History

All patients with nasal polyps and/or asthma should be asked about aspirin-induced reactions. Typical clinical characteristics seen in aspirin-sensitive patients have been mentioned in the first four sections of this chapter. The likelihood of aspirin sensitivity is greater in patients with both nasal polyps and asthma (Settipane, 1983), or those who have required frequent hospitalisation for control of their asthma (Szczechlik et al. 2000). Patients with frequent nasal polyp recurrences needing surgery are also more likely to be aspirin-sensitive (Settipane et al. 1991).

Unless a patient gives a definite history linking aspirin intake with an adverse reaction, typical in its clinical and temporal characteristics, a reliable diagnosis of aspirin sensitivity cannot be made based on this method alone. Problems with history have been highlighted in previous studies. In one study 8.8% of individuals with a positive challenge were unaware that they had aspirin sensitivity, whereas 35% who thought they were aspirin-sensitive, had a negative challenge (Spector et al. 1979). In a more
recent investigation 15% of patients with a positive challenge were oblivious of their aspirin sensitivity (Szczeklik et al. 2000). Underreporting may be due to deliberate avoidance of NSAIDs as asthmatics may be aware of the potential for adverse reactions, or a lack of recognition of mild NSAID-induced symptoms.

1.2.7b Aspirin Challenge tests

Direct intake of aspirin as in a challenge test remains the only method to prove conclusively an individuals aspirin-sensitive/tolerant status (Szczeklik and Nizankowska, 2000). Aspirin has been administered via 3 different routes namely, oral, inhalation, and nasal.

i) Oral challenge test

Aspirin was first used to diagnose aspirin sensitivity in 1933 (Duke, 1933). A small granule of aspirin was placed on the tongue and the individual was watched over a period of 1 minute for development of symptoms. The temporal characteristics of an aspirin-induced reaction are such that this test would have been negative in the majority of aspirin-sensitive individuals. It was also regarded as unsafe.

A systematic approach to oral aspirin challenge was introduced in 1975 (Szczeklik et al. 1975). Patients were given gradually increasing doses of aspirin and other NSAIDs, which conclusively proved their cross-reactivity. However, a standardized protocol was suggested a few years later (Mathison and Stevenson, 1979). Informed consent was introduced, patients were warned of potential dangers, and intensive care facilities were available if needed. Challenge was not recommended in asthmatics with a 1-second forced expiratory volume (FEV₁) of less than 70% of predicted value. A challenge was considered as positive if patients developed naso-ocular symptoms or their FEV₁ dropped by 30%. Most challenges were undertaken in a single-blind, placebo-controlled manner. Patients were observed for a period of 4½ hours or in cases of urticaria for 24 hours. Two different schedules were used; a one-day test for patients with a history of weak reactions, and a two-day test for patients with more severe reactions. Despite the potential for serious adverse events an oral challenge still remains the ‘gold standard’ against which new challenge methods are compared. Recently oral aspirin challenge has been evaluated scientifically (Nizankowska et al. 2000). Considering a positive test to
be a fall in FEV₁ of over 20% and/or extrabronchial symptoms (nasal congestion, rhinorrhoea, redness of the face, eye congestion), the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were reported as 89%, 93%, 97%, 77%, and 90% respectively (Table 1.7).

ii) Inhalation challenge

It is also called bronchial provocation or challenge. This method was introduced in 1977 using lysine-aspirin, which is a truly soluble form of aspirin (Bianco et al. 1977). Also, indomethacin has been used (Martelli, 1979). Subsequently a standardized protocol for this method was put forward (Schmitz-Schumann, 1999). The method is safer and quicker than an oral challenge (Nizankowska et al. 2000; Phillips et al. 1989; Schapowal et al. 1995; Szczeklik and Nizankowska, 2000). The challenge is considered to be positive if the FEV₁ drops by 20%. Most reactions occur in 30-45 minutes, although observations should be continued for 3 hours as delayed reactions are seen occasionally. The study mentioned above also evaluated inhalation challenge (Nizankowska et al. 2000). The same criteria were used to denote a positive challenge. For this method the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were reported as 77%, 93%, 96%, 64%, and 82% respectively (Table 1.7).

iii) Nasal challenge test

This method of provocation was first used in 1987 to study release of mediators (Ortolani et al. 1987). As a diagnostic tool it was used unsuccessfully in 1989 (Clement et al. 1989). The authors concluded that a nasal challenge test was not a useful diagnostic method. However, they used aspirin in powder form for their challenge. It was not until the soluble form – LAS was used that positive results were obtained, and its value as a safe test established (Pawlowicz et al. 1991). An early study showed differences in sensitivity and specificity when the test was conducted in patients with aspirin-sensitive rhinitis or aspirin-sensitive asthma or aspirin-sensitive urticaria (Schapowal et al. 1995). The figures were 93%, 97% for aspirin-sensitive rhinitis, 76%, 97% for aspirin-sensitive asthma, and 8%, 100% for aspirin-sensitive urticaria. This indicated its unreliability in patients with urticaria. A more recent study refutes this
conclusion (Tomaz et al. 1997). It shows sensitivity/specificity figures to be 80%, and 100%. However, the test was conducted in a small number of patients (n=10).

Recently, lysine-aspirin nasal challenge has been evaluated in detail (Milewski et al. 1998). The maximum dose of LAS used was 16 mgs. After challenge, nasal flow was measured using anterior rhinomanometry (reduction of 40%) along with symptom scores and peak flow rate. The sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy are reported as 78%, 95.6%, 96.9%, 71%, and 84.4% respectively (Table 1.7). None of the patients had any reduction in FEV₁, reaffirming its safety. A drawback is its inconsistency in patients with almost complete nasal obstruction or those that have large fluctuations in nasal airflow measurements. To circumvent this problem acoustic rhinometry, which is another instrument for assessing nasal response has been used (Casadevall et al. 2000). Using a reduction of 25% in nasal volume as an end point, the sensitivity and specificity of the test was found to be 73% and 94% respectively. Most scientists conclude that nasal challenge is a simple, quick, and a safe test to undertake (Mullol et al. 2001).

1.2.7c In-vitro test

Topical methods of challenge i.e. inhalation and nasal are safer than an oral challenge, but not as sensitive. In addition, all these tests require patients to spend at least a day in the hospital. Thus, an in-vitro test would be advantageous. The cellular antigen stimulation test or CAST has been studied for this purpose (Czech et al. 1995; Kubota et al. 1997; May et al. 1999). In one study the release of cysteiny1 leukotrienes by leukocytes from aspirin-sensitive and aspirin tolerant patients was measured (Czech et al. 1995). The C5a induced release of these mediators was higher in leukocytes from aspirin-sensitive patients. However, others point out that the test may be too cumbersome for routine use, and its sensitivity variable (Kubota et al. 1997). To improve the tests reliability leucocytes from aspirin-sensitive patients were incubated with various NSAIDs (May et al. 1999). Although the sensitivity reached a 100% in aspirin-sensitive patients with urticaria a figure of only 72% was achieved in aspirin-sensitive patients with respiratory reactions (Table 1.7). The problems outlined above have prevented its widespread application in clinical practice.
Table 1.7

Sensitivity and Specificity of diagnostic tests

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of challenge</th>
<th>Dose of lysine-aspirin (mgs)</th>
<th>Parameter measured</th>
<th>Sens</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milewski et al (1998)</td>
<td>Nasal</td>
<td>16</td>
<td>AR + Symptoms</td>
<td>78</td>
<td>95.6</td>
<td>96.9</td>
<td>71</td>
</tr>
<tr>
<td>May et al (1999)</td>
<td>In vitro test (CAST)</td>
<td>-</td>
<td>-</td>
<td>72.7</td>
<td>96.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhaled</td>
<td>0.18-182 (cumm. dose)</td>
<td>PEF R + Symptoms</td>
<td>77</td>
<td>93</td>
<td>96</td>
<td>64</td>
</tr>
</tbody>
</table>

Key:
CAST = cellular allergen stimulation test; cumm. = cumulative dose; AR = active anterior rhinomanometry; AcR = acoustic rhinometry; PEF R = peak expiratory flow rate (litres/min); Sen = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value.
1.2.8 Management

Aspirin-sensitive disease is a chronic inflammatory process affecting the airways and skin. Currently there is no cure for it and management of the patient involves treating its various manifestations. These are asthma, urticaria, and nasal polyposis. In the following subsections I will consider treatment options that impact on all 3, followed by each manifestation individually. Desensitization, which does impact on all aspects of the disease process is discussed in detail as a separate section.

1.2.8a Avoidance of aspirin/NSAIDs

Avoiding aspirin, NSAIDs, and aspirin containing remedies is a precautionary measure (Schaposwal et al. 1995). It prevents an acute adverse reaction which may be potentially life threatening. It is important to emphasize to the patient that aspirin is part of many ‘over the counter’ medications e.g. flu remedies, and may be consumed inadvertently (Prickman and Buchstein, 1937). It is of paramount importance to check the contents of these medicines prior to consumption. However, avoidance of aspirin/NSAIDs does not alter the natural course of the disease process (Samter and Beers, 1968).

1.2.8b Diet

Certain food additives have aspirin like effects. These include food dyes, colourings, and preservatives such as benzoates (Samter and Beers, 1968). Provocation tests with these substances resulted in asthma or urticaria in 7 of 8 patients (Juhlin et al. 1972). A similar study in a larger number of patients provoked positive reactions in 70% of individuals (Genton et al. 1985). Many food additives have been shown in-vitro to have weak inhibitory effects on the cyclooxygenase system reducing thromboxane production and platelet aggregation (Williams et al. 1989). Thus, there appears to be experimental evidence to support dietary restriction measures.

The beneficial effects of a diet have been shown in several studies. One such study on patients with recurrent urticaria who had a positive provocation test with food additives showed that 24% were symptom free, 57% were better, and 19% were unchanged (Ros et al. 1976). The follow-up period ranged between 6-24 months, and
diet restriction was at least 1-3 months. Another such study included 24 patients with asthma and urticaria (Genton et al. 1985). These patients had positive provocation tests. Twenty patients (83%) noticed an improvement within 5 days of starting their exclusion diet, which persisted for 8-14 months. These included 6 of 9 (67%) patients with asthma and 14 of 15 (93%) with urticaria. Complete disappearance of symptoms was only seen in patients with urticaria. These clinical studies add further support to the role of an elimination diet in patients with aspirin-sensitive disease (Table 1.8).

1.2.8c Alternatives to aspirin/NSAIDs

Table 1.1 lists the various drugs that will cause an adverse reaction in aspirin-sensitive patients, and hence should be avoided. Thus, in these patients a safe alternative is required. Acetaminophen (Paracetamol) can be used, but cross-reactivity is seen in 34% of aspirin-sensitive individuals (Settipane et al. 1995). They found mild, easily reversible bronchospasm with a dose higher than 1 gram. If there is a doubt about a patient’s tolerability to acetaminophen an oral challenge can be undertaken (Schapowal et al. 1995). In one study 95% of aspirin-sensitive patients who were tolerant to acetaminophen had a negative oral challenge 1-3 years later (Quarantino et al. 1997). This proved its long-term safety. In the small minority of patients with reactions to acetaminophen a safe alternative would be an opiate such as dextropropoxyphene. Oral challenge with this drug was negative in 77 aspirin-sensitive patients (Szczeklik et al. 1977). Nimesulide was a new NSAID in the early 1990s and was evaluated as an alternative in 429 aspirin-sensitive patients (Andri et al. 1994). Only 3.3% (11) had a positive oral challenge test with a therapeutic dose of 200 mg. The reason for its relative safety remained unclear until the discovery of COX-2, the inducible form of the enzyme, and its preferential inhibition by Nimesulide (Famaey, 1997). With the discovery of COX-2 (Vane, 2000), selective COX-2 inhibitors have been introduced into the market. Their tolerability has been shown in various studies (Quarantino et al. 2000; Sanchez Borges et al. 2001; Szczeklik et al. 2001). Rofecoxib seems to be safest and this may be related to its highly specific ability of inhibiting COX-2.
Table 1.8

Dietary measures in management of aspirin-sensitive patients

<table>
<thead>
<tr>
<th>FOODS PERMITTED</th>
<th>TO AVOID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>Bread, and all cereals bought in fresh state</td>
</tr>
<tr>
<td>Fats</td>
<td>Butter, olive oil</td>
</tr>
<tr>
<td>Fruits</td>
<td>All permitted if in moderate amounts</td>
</tr>
<tr>
<td>Meats</td>
<td>Fresh meat, pork, eggs; fish in small quantities only</td>
</tr>
<tr>
<td>Vegetables</td>
<td>All (in fresh state) except cabbage, beans, spinach, sauerkraut, tomatoes only moderately</td>
</tr>
<tr>
<td>Condiments</td>
<td>Sugar, salt, pepper, others only as dried leaves, vinegar without additives</td>
</tr>
<tr>
<td>Sweets</td>
<td>Homemade without additives</td>
</tr>
<tr>
<td>Beverages</td>
<td>Fresh milk, tea, coffee, homemade fruit juice, mineral water</td>
</tr>
<tr>
<td></td>
<td>Coloured toothpaste, coloured cosmetics, coloured beverages, wines, alcohol, artificial sweeteners, ice cream, sweets, and commercially available desserts</td>
</tr>
</tbody>
</table>
1.2.8d **Antileukotriene drugs**

The key role played by leukotrienes, particularly cysteinyl leukotrienes, in aspirin-sensitive disease has been highlighted in the section on mechanism. Therefore inhibition of leukotriene production should have a major impact on this disease process. Two ways of preventing the physiological action of leukotrienes are interference with their generation (5LO inhibition), or with their binding at receptor level. In the early 1990s the availability of pharmacological agents possessing these abilities made it possible to conduct several experimental studies to evaluate their effect in aspirin-sensitive patients (Nasser and Lee, 1997). In a study using a weak cystLT₁ antagonist, partial inhibition (47%) of the bronchoconstrictor response to inhaled lysine-aspirin was shown (Christie et al. 1991a). A more potent antagonist caused a 4.4 fold right-directed shift in the dose-response curve following inhalation of lysine-aspirin to induce bronchoconstriction compared to a placebo (Dahlen et al. 1993a). The same group, studying the same drug, also found a bronchodilator response (mean increase in FEV₁= 18%) in aspirin-sensitive patients, which lasted 9 hours (Dahlen et al. 1993b).

Other studies evaluated a 5LO inhibitor, Zileuton. Patients pre-treated with this drug in a double-blind, placebo-controlled design, were shown to have reduced baseline urinary LTE₄ production (Israel et al. 1993). In addition, it also prevented the development of nasal and dermal symptoms when challenged with aspirin. However, a recent study suggests that it does not inhibit leukotriene synthesis or block symptoms when aspirin-sensitive individuals were challenged with higher doses of aspirin (Pauls et al. 2000).

Further studies have been done to show if this experimental evidence translates into clinical benefit. In a study of 40 aspirin-sensitive patients zileuton was given in a double-blind, placebo-controlled manner for a period of 6 weeks (Dahlen et al. 1998). Patients on zileuton noted an improvement in their FEV₁, reduced need for rescue medication, less nasal stuffiness, less rhinorrhea, and improved sense of smell. Although, montelukast a leukotriene receptor antagonist only partially protected patients from aspirin challenges (Stevenson et al. 2000), a recent 4-week double-blind, placebo-controlled clinical trial has shown that it improves pulmonary function and quality of life in aspirin-sensitive asthmatics (Dahlen et al. 2002).
1.2.8e Treatment of specific manifestations

An attack of acute asthma caused by either inadvertent intake of aspirin/NSAID or as part of a challenge procedure is best treated with 3-4 puffs of a nebulized β-agonist (Stevenson and Simon, 1993). This is repeated every 10-15 minutes with corticosteroids until the attack passes, but rarely it may prove refractory in which case intubation and ventilation may be required. Published guidelines for management of acute asthma should be followed in treating these reactions (The BTS/SIGN guidelines. 2003). For nasal reactions a topical decongestant is useful, and ocular symptoms can be relieved with antihistamines.

Long-term control of asthma in aspirin-sensitive patients usually requires topical corticosteroids, but 50% need regular daily oral corticosteroids for effective control (Szczeklik et al. 2000). If only a low dose of oral corticosteroids is needed to achieve control it can be given over a long period. However, if large doses are needed alternative therapies have to be attempted.

Patients with chronic urticaria should avoid aspirin/NSAIDs. Dietary measures should be instituted as they tend be more effective in this group of patients. Acute urticarial reactions are treated with oral or injected antihistamines. Occasionally, adrenaline 1:1000 is required for additional control. Also, for chronic urticaria antihistamines and leukotriene receptor antagonists have been shown to be beneficial (Pacor et al. 2001).

1.2.8f Treatment of nasal disease

Polyps, which are a manifestation of nasal disease in aspirin-sensitive patients, are managed in an identical manner to those in aspirin tolerant patients. Topical corticosteroids are prescribed for daily use to contain polyp growth. The beneficial effect has been shown in a double-blind, placebo-controlled, cross-over trial on 15 aspirin-sensitive patients (Mastalerz et al. 1997). Improvement of nasal inspiratory peak flow, symptoms scores, and sense of smell were noted. If nasal blockage is severe and topical corticosteroids are unable to impact upon it, a short course of oral corticosteroids will be needed. Nasal polypectomy is reserved for situations where medical options have failed.
Surgery on polyps fell into disrepute following an observational study, which concluded that in patients with the triad a polypectomy would probably make the asthma worse (Francis, 1929). This has been disputed and shown to be incorrect by more recent studies (Brown et al. 1979; Schenck, 1974). Other studies have shown that there is a beneficial effect of surgery on asthma. In a study of 205 aspirin-sensitive asthmatics 34% of patients who required alternate day oral corticosteroids could discontinue them following surgery (English, 1986). Their follow-up period was 6 months. However, the study also showed that patients with severe asthma requiring high doses of daily oral corticosteroids did not benefit from surgery. Overall, 84% benefited considerably from surgery, 14% showed less improvement, and 2% remained the same. Such high figures of improvement in pulmonary function have also been shown more recently (McFadden et al. 1997; Nakamura et al. 1999). The type and extent of surgery required in aspirin-sensitive patient has been evaluated. A radical approach was advocated if the maxillary and/or sphenoid sinuses were opaque on radiology (McFadden et al. 1990). The surgery recommended included a Caldwell-Luc procedure wherein the maxillary sinus mucosa was removed via a buccal incision, and a transantral opening of the ethmoid/sphenoid sinuses if they were involved. It was speculated that such a radical removal of diseased membrane would improve the patients’ asthma and reduce the need for revision surgery. In another retrospective study of 39 aspirin-sensitive patients who had undergone surgery, comparison was made between a radical and conservative approach (Rosen et al. 1996). After a longer follow-up period (average = 46.3 months), revision surgery rates did not differ between the groups. Since revision surgery was highly likely in this group of patients it was suggested that a conservative approach should always be taken. The proponents of radical surgery have also come to the same conclusion after a study with larger number of patients and longer follow-up (McFadden et al. 1997). In addition, the type and extent of surgery does not seem to influence postoperative lung function (Nakamura et al. 1999).

Studies specifically evaluating antileukotriene drugs in nasal disease have been conducted. Improvement in the sense of smell has been noted after Zileuton (5LO inhibitor) use in patients with asthma and nasal polyps (Gretchen Wooding and Incaudo, 1996). In a study on 40 aspirin-sensitive patients, Montelukast (LT receptor antagonist) was compared to mometasone furoate plus loratadine (Di Rienzo et al.
2000). All patients underwent endoscopic sinus surgery prior to randomisation into the two groups. After a 6-month follow-up, patients in both groups were free of nasal polyps and had good nasal patency. A similar conclusion was drawn from another trial using the same drug i.e. montelukast (Grundmann and Topfner, 2001). In this study on 18 aspirin-sensitive patients' clinical improvement was noted along with anti-inflammatory effects at a cellular level. A reduction in EG₂ positive cells and IL-5 levels was seen in inferior turbinate biopsies. A more recent open study has shown that montelukast results in a subjective improvement of nasal symptoms in approximately 50% of aspirin-sensitive patients as compared to 64% of aspirin tolerant patients (Ragab et al. 2001), but the aspirin-sensitive responders tend to show a greater degree of improvement.

1.2.9 Desensitization

To sensitize is 'to make (a person) sensitive' (The Shorter Oxford English Dictionary) (Little et al. 1988). Thus, desensitization would be to make (a person) insensitive. In the context of drugs this concept is not new and was used in cases of antipyrine hypersensitivity. The process involved giving small amounts of the drug to the patient. However, at the time opinion was against desensitization in aspirin-sensitive patients as it was considered unsatisfactory and hazardous (Prickman and Buchstein, 1937).

1.2.9a Refractory period

In aspirin-sensitive individuals there is a time phase after aspirin ingestion wherein repeat intake will not lead to adverse reactions. This has been called the 'refractory period'. Although, its existence was first recognized in 1922 (Widal et al. 1987), the phenomenon was accidentally rediscovered during oral challenges on a patient to diagnose their aspirin-sensitivity (Zeiss and Lockey, 1976). To ascertain the existence of this phenomenon the patient underwent an oral challenge on 5 separate occasions and on each of these there was a clear indication of a refractory period. This period lasted 72 hours. The patient was also challenged with indomethacin, but it provoked a severe reaction and the quest to determine the existence of a refractory period with this NSAID was abandoned. A refractory period has also been found in
patients following bronchial provocation with lysine-aspirin (Bianco et al. 1977), and after nasal challenge (Patriarca et al. 1991b). Additional confirmation about the presence of this period came from other studies. In a study on 2 aspirin-sensitive patients, both could tolerate daily aspirin after an initial positive oral challenge (Stevenson et al. 1980). The dose of aspirin was gradually increased to 1200mg/day in one patient, and 625mg/day in the other without any adverse effects. Temporal features of the refractory period were determined in another study (Pleskow et al. 1982). Its length was established in 16 patients. In the majority it was between 2 and 5 days. A gradual return to sensitivity occurred between 2 to 4 days. Other investigators found that the refractory period ranged from 24 hours to 9 days (Kowalski et al. 1984). An additional observation was absence of an adverse reaction to indomethacin during the refractory period, which resulted from aspirin intake (Kowalski et al. 1984; Pleskow et al. 1982).

1.2.9b **Clinical studies on desensitization**

i) **Observation**

During a study on 2 aspirin-sensitive patients to investigate their refractory periods it was noticed that they had a marked improvement in their clinical condition (Stevenson et al. 1980). Within 6 months of daily aspirin use their nasal symptoms had resolved, nasal examination revealed a healthy lining, FEV$_1$ increased, and oral corticosteroid intake had reduced. This phenomenon was called 'desensitization'. A further study from the same group on 30 aspirin-sensitive patients showed that all could be desensitized by oral aspirin challenge using incremental doses (Pleskow et al. 1982). The dose of aspirin needed for desensitization ranged from 33 mgs to 1083 mgs. Majority of the patients (60%) were desensitized after their initial challenge. It was noted that individuals requiring a small dose to provoke their initial reaction needed many more challenges prior to reaching a desensitized state. In 3 patients cross-desensitization with indomethacin was attempted with success. These studies provided a framework for further work to investigate the potential therapeutic benefits of desensitization.
ii) ‘Open’ trials

The results of 2 open trials were reported simultaneously in 1983 providing evidence on the beneficial effects of desensitization (Chiu, 1983; Lumry et al. 1983). One of the trials showed that patients could be desensitized rapidly within an average time of 322 minutes (Chiu, 1983). The 12 patients in this trial were maintained on a daily dose of aspirin averaging 539 mgs. Six patients (50%) noticed a symptomatic improvement, 3 (25%) were unchanged, and 3 noticed a deterioration of their asthma. The other trial included 19 aspirin-sensitive patients, exclusively with nasal symptoms (Lumry et al. 1983). Following desensitization 17 patients were maintained on a minimum daily dose of 325 mgs. Thirteen patients (77%) reported symptomatic improvement. This included a reduction in nasal obstruction, rhinorrhea, and an improvement in the sense of smell. Eight of these 13 patients noticed an initial and continued improvement. The average daily aspirin dose in these 8 patients was 1300 mgs. Two patients experienced initial benefit but with continued intake of aspirin, suffered from a recurrence of their symptoms despite a further increase in their maintenance dose up to 2600 mgs. The remaining 3 could not continue with daily aspirin because of side effects such as gastrointestinal upset and easy bruising.

iii) ‘Controlled’ trials

The therapeutic benefits of desensitization were examined more rigorously in a randomised, double-blind, placebo-controlled, cross-over trial (Stevenson et al. 1984). Thirty-eight aspirin-sensitive subjects were enrolled of whom 25 (66%) completed both phases. They were desensitized before randomisation into either an active or placebo phase, each lasting 3 months. After an intervening 1-month washout period they entered the opposite phase. The subjects maintained a daily diary of nasal and chest symptom scores, and topical corticosteroid use. They were examined every month and FEV₁ measured. Improvement was noticed by 16 (76%) patients. Of the 12 patients on regular prednisolone, 8 (67%) could reduce their daily dose. However, more patients had noticed an improvement in their nasal symptoms compared to chest symptoms (67% vs. 48%). An important factor in analysis was the different maintenance doses given to the 25 patients. The small number of subjects
receiving each dose made subgroup analysis difficult. However, there was a tendency for greater improvement in patients receiving a higher maintenance dose. Another observation was a tendency for patients to partially ‘escape’ from the desensitized state towards the end of their 3-month active phase. Only 1 of 9 patients (11%) on a high maintenance dose demonstrated ‘escape’. These observations suggested the possibility of a dose response relationship in aspirin desensitization.

The presence of a refractory period after nasal challenge (Patriarca et al. 1991b) prompted a novel study wherein lysine-aspirin (LAS) was used intranasally and its impact on nasal polyp growth measured (Patriarca et al. 1991a). Innovations in the trial included topical use of low dose aspirin (2000μg) and an objective measurement of polyp growth. Forty-three patients with nasal polyps (28 aspirin-sensitive, 15 aspirin tolerant) received topical LAS. A control group of 191 patients with nasal polyps (130 aspirin-sensitive, 61 aspirin tolerant) did not receive any topical treatment. Both groups were followed for 24 months with 3 monthly examinations and measurements. Patients on topical LAS, both aspirin-sensitive and aspirin tolerant, did better than those not on it. Recurrence of nasal polyps was seen in 21% of patients on topical LAS compared to 76% of the control group. Subgroup analysis of aspirin-sensitive patients revealed a recurrence rate of 32% in those who received topical LAS compared to 81% of aspirin-sensitive controls. None of the 15 aspirin tolerant patients on LAS had a recurrence, whereas 67% of the aspirin tolerant controls relapsed. More importantly, no patient with asthma noticed deterioration and there were no systemic side effects.

iv) Studies on long-term oral desensitization

It was evident from the trials discussed above that desensitization benefited patients in the short-term. Some of the same groups conducting the trials continued their patients on daily aspirin to observe the long-term effects. One study followed 107 aspirin-sensitive patients divided into 3 groups; 35 desensitized patients on continuous treatment for a mean duration of 3.75 years, 30 desensitized patients who discontinued treatment after a mean duration of 2 years, and 42 patients who avoided aspirin and served as controls (Sweet et al. 1990). Aspirin-sensitive patients in their desensitized state had significantly less hospitalisations, reduced need for polypectomies, an improvement in the sense of smell, and reduced requirement for
oral corticosteroids or short bursts of the same. A significant reduction in inhaled corticosteroid use was seen only in the group that continued on aspirin. Despite the success of desensitization with oral aspirin a large number of patients (20%) suffered from gastrointestinal side effects.

Another study on 65 aspirin-sensitive patients gave further insight into benefits of long-term desensitization (Stevenson et al. 1996). The patients were subdivided into 2 groups; those followed for 1-3 years (n = 29), and those followed for 3-6 years (n = 36). All the benefits mentioned above were also noted in these 65 patients. Mean oral prednisolone intake fell from 10.5mg to 2.5mg. Mean nasal corticosteroid dose reduced from 139μg to 106μg. Subgroup analysis revealed that patients followed for a longer duration i.e. 3-6 years required significantly less sinus or polyp operations. Again, 9 patients (14%) had to stop treatment due to gastrointestinal side effects.

Recently, the results of a prospective study on 30 aspirin-sensitive patients, given a low dose (100mgs) of aspirin orally, and followed for 1 year has been published (Gosepath et al. 2001). Only 4 patients had evidence of polyp recurrence, and 9 patients (of 12) with asthma noticed a marked improvement in lung function. Other noticeable improvements were in nasal airway and sense of smell.

v) Studies on long-term intranasal desensitization

Two studies advocating the use of intranasal LAS in patients with nasal polyposis and follow-up periods of 3 and 6 years have been reported recently (Nucera et al. 2000). Patients with aspirin-sensitive and aspirin tolerant nasal polyps were included in both studies. For both studies 191 patients who did not have any medical treatment post-operatively served as controls.

The first was a 6-year follow-up study on 76 polyp patients treated with surgery, and 1-month post surgery started on intranasal LAS 4mg, which was instilled 6 times/week. Cumulative recurrence rates of polyps compared to controls were as follows: after 1 year 6.9% vs. 51.3%, after 3 years 44.9% vs. 84.8%, and after 6 years 65% vs.93.5%. Although, topical LAS worked for all nasal polyp patients, no differences could be elicited between aspirin-sensitive and aspirin tolerant patients within the group or compared to controls.

The second was a 3-year follow-up study on 49 polyp patients who underwent a medical polypectomy and were subsequently started on intranasal LAS as described
above. Cumulative percentages of patients requiring surgical intervention were: 3.8% at 6 months, 13.1% at 1 year, and 32% after 3 years. Figures for the control group are 51.3%, and 85% at year 1 and 3 respectively. Once again, no differences could be shown between aspirin-sensitive and aspirin tolerant patients.

1.2.9c **Mechanism of desensitization**

Following initial studies evaluating the effects of desensitization several hypotheses were proposed for its mechanism (Pleskow et al. 1982; Stevenson et al. 1980). An immunologic theory was ruled out in favour of a biochemical one as cross desensitization between aspirin and indomethacin had been shown. Circumstantial evidence suggested a role for mast cells. In 7 aspirin-sensitive asthmatics plasma histamine levels increased following oral aspirin challenge as opposed to no change in aspirin tolerant asthmatics (Stevenson et al. 1976). This rise coincided with the onset of the adverse reaction and was highest in patients with the most severe reaction. Thus, it was proposed that aspirin acted via receptors on mast cell surface leading to degranulation and release of mediators and subsequent reaction. If aspirin intake continued mast cell mediator stores would be depleted, leading to a state of desensitization. If aspirin intake was halted, mast cells could revitalise their mediator stores. This would also explain the temporal features of an aspirin-induced refractory period. Indirect activation of mast cells via the complement system was another suggestion (Stevenson et al. 1976). This was not a new idea and had already been discussed as a possible explanation of aspirin-sensitivity (Yurchak et al. 1970). It was known that certain substances like dextran or endotoxin could directly activate the complement system. Formation of C3a and its subsequent action on mast cells could lead to histamine release. Prevention of an aspirin-induced reaction following pre-treatment with antihistamines (Szczechlik et al. 1980), or cromolyn sodium (Basomba et al. 1976), provided further evidence that mast cell release of histamine played an important role.

As leukotrienes became central to our understanding of aspirin-sensitivity their role in desensitization was investigated. It was shown that 1 day after oral aspirin desensitization the responsiveness of the airways to LTE₄ reduced 20-fold (Arm et al. 1989). Such an effect was not seen in aspirin tolerant patients. It was suggested that this might be due to desensitization of the LTE₄ receptor following persistent
stimulation by constant mediator release secondary to repeated aspirin intake. This possibility was revisited when a subsequent study demonstrated a rise in baseline urinary LTE₄ levels after chronic oral aspirin desensitization (Nasser et al. 1995). Further research showed that aspirin desensitization was accompanied by a reduction in leukotriene production (Juergens et al. 1995; Nasser et al. 1995). The rise in urinary LTE₄ levels accompanying an acute reaction reduced 4-fold after chronic aspirin desensitization (9 ± 3 months) with a daily dose of 600mgs (Nasser et al. 1995). In another study, release of leukotrienes from monocytes of 10 aspirin-sensitive subjects reduced significantly after aspirin desensitization (LTB₄; 861±139 pg/ml to 484±85 pg/ml) (Juergens et al. 1995).
AIMS

2.1 Primary aim

To undertake a clinical trial testing the hypothesis that in aspirin-sensitive patients with nasal polyps, regular long-term low-dose intranasal aspirin is more effective in reducing polyp growth rate compared to a placebo.

2.2 Secondary aims

2.2.1

To undertake a clinical trial testing the hypothesis that in aspirin-tolerant patients with nasal polyps, a combination of regular long-term low-dose intranasal aspirin and topical corticosteroid is more effective in reducing polyp growth rate compared to a combination of placebo and topical corticosteroid.

2.2.2

To study tissue from aspirin-sensitive patients and advance our understanding of:

i. Pathogenesis of aspirin-sensitivity

ii. Mechanism of desensitization
PLAN OF INVESTIGATION

To fulfil the aims outlined in the previous section we planned several studies. In this chapter I discuss their protocols. These studies were not sequential but proceeded simultaneously. Details of various methods employed are in the next chapter.

3.1 Characterization of patients

3.1.1 Objective

To determine if a patient was aspirin sensitive or tolerant, and to build a database of these two groups. This was an essential step prior to enrolling patients in the appropriate trials.

3.1.2 Design

Patients with nasal polyps, seen in the specialist Rhinology clinic at the Royal National Throat, Nose and Ear Hospital (RNTNEH), were invited to have their aspirin-sensitive status determined. This was done by undertaking a single-blind, placebo-controlled, intranasal lysine-aspirin challenge. It was conducted under controlled circumstances in the Rhinology laboratory situated on the premises of the RNTNEH.

3.1.3 Outcome measures

A reduction in nasal volume of 25%, with or without a 25% decrease in minimum cross-sectional area was taken as the main indicator of a positive challenge. Other parameters measured were symptom scores, peak flow rate, and dynamic nasal airflow.
3.2 Trial 1

3.2.1 Objective

To study the clinical effectiveness of intranasal lysine-aspirin, in reducing nasal polyp growth, in aspirin-sensitive patients with nasal polyposis.

3.2.2 Design (Figure 3.1)

A randomised, double-blind, placebo-controlled, crossover trial. Aspirin-sensitive patients were invited to take part in this trial. An information sheet providing details of the trial was given to interested patients along with a consent form (Appendix A, B). If a patient agreed to take part they were requested to attend the laboratory at a mutually convenient time. The consent form was collected and further queries were addressed.

Once enrolled the patient underwent repeated intranasal challenges with incremental doses of lysine-aspirin until they tolerated a dose of 16 mgs. Then they were randomised to receive either placebo or lysine-aspirin. Drops were used intranasally every 48 hours, considering the baseline visit as day 1. Instructions for preparing and correctly instilling the drops were provided (Appendix C).

Subjects remained in their respective phases for a period of 6 months or until their nasal symptoms deteriorated, whichever came first. Apart from the trial medication no other intranasal or oral drugs were allowed that would impact on their nasal inflammation. During this period they were reviewed every 6 weeks in the laboratory for clinical assessment and measurements.

At the last visit the subjects were re-challenged as at first visit with incremental doses of lysine-aspirin up to 16 mgs. In addition, they had clinical assessment and measurements. Following this visit the patients entered a 1-month ‘washout’ period.

During the washout period the patients were instructed to use Betamethasone sodium phosphate 1% nose drops (Betnesol®), 2 drops in each nasal cavity twice daily. If the drops finished earlier than a month they were asked to use an intranasal corticosteroid of their choice until 2 weeks before their baseline visit for the next phase of the trial. This baseline visit was identical to the patients initial enrolment.
Figure 3.1

Profile of Trial 1

Suitable patient (OPD):
- invited to take part
- information sheet/consent
- date for challenge/biopsy/start of trial

Start day:
- challenge until 16 mgs tolerated
- biopsy
- baseline measurements

Randomisation

Lysine-aspirin (16 mgs)
every 48 hours

Placebo
every 48 hours

Follow-up:
- every 6-8 weeks
- collect diary
- repeat measurements

End of phase:
- challenge
- biopsy (if patient agrees)
- repeat measurements

Washout period:
- 1 month
- 1 bottle of Betnesol nose drops (3 weeks)
- without drops for 1-2 weeks

CROSS-OVER

Measurements at baseline and each visit:
- Clinical evaluation
- Peak expiratory flow rate
- Nasal inspiratory flow rate
- Rigid nasendoscopy
- Acoustic rhinometry
visit, the only difference being that they were 'crossed over' by the pharmacy as regards the medication.

3.2.3 **Inclusion criteria**

i. Patients above 18 years
ii. Nasal polyps on clinical examination
iii. History of aspirin-sensitivity confirmed by a positive intranasal lysine-aspirin challenge

3.2.4 **Exclusion criteria**

i. Patients with poorly controlled asthma requiring regular or intermittent oral corticosteroids
ii. Pregnant or lactating females
iii. Patients with a severe deviation of the nasal septum

3.2.5 **Withdrawal or drop-out from the trial**

Patients were withdrawn from a phase of the trial if their symptoms deteriorated and adversely affected their quality of life. They were offered an 'emergency' visit, which was considered as the last visit for that particular phase. The protocol as for any last visit was followed. These patients were entered into the washout phase and treated with betamethasone sodium phosphate 1% nose drops. After this period, which lasted 4-6 weeks they were crossed over. Patients with a poor response to the drops were offered either a medical (Drake-Lee, 1994), (Mygind and Lindholt, 1996) or surgical polypectomy. In these cases we waited approximately 8 weeks prior to crossover.
Patients who did not attend scheduled follow-up appointments, and stopped using their intranasal medication, were contacted by telephone for an explanation. If they were still using their medication but wanted to drop-out, we suggested a final visit to the laboratory for challenge, clinical assessment, and measurements.
3.2.6 Randomisation

The pharmacy personnel at RNTNEH generated the randomisation code. This allocation schedule was held within the pharmacy. None of the patients, clinicians, or ancillary staff involved in the trial were privy to the allocation schedule. The code was concealed until preliminary analysis of the data was completed.

3.2.7 Medication

Capsules of lysine-aspirin and placebo (lysine), along with their diluents (normal saline), were prepared and provided by Laboratories for Applied Biology under the guidance of its Medical Director, Dr. A. Freedman MD, FRCP. The colour of the capsules, the powder within them, and diluent for both placebo and lysine-aspirin were colourless. The prepared solutions did not have a distinct taste and hence could not be distinguished. Capsules had a shelf life of 3 months when stored in a cool, dry place. These instructions were given to the patient. The pharmacy personnel maintained a stock of capsules, diluent, and received all deliveries. This gave an added degree of control on blinding.

3.2.8 Calculation of sample size

To help us in our calculations of an adequate sample size we utilized the results from a published study in which intranasal lysine-aspirin was used to desensitize patients with nasal polyps (Patriarca et al. 1991a).

The sample size was calculated using the following formula (Florey, 1993):

i. \[n = \frac{(\alpha + \beta)^2 (p_1 q_1 + p_2 q_2)}{\Delta^2}, \text{ where} \]

ii. \[n = \text{sample size} \]

iii. \[p_1 = \% \text{ of patients responding to active treatment (68\%)} \]

iv. \[p_2 = \% \text{ of patients responding to placebo (18\%)} \]

v. \[q_1 = \% \text{ of patients not responding to active treatment (32\%)} \]

vi. \[q_2 = \% \text{ of patients not responding to placebo (82\%)} \]

vii. \[\Delta = \text{Effect size we would like to see (50\%)} \]

viii. \[\alpha = \text{probability of a type I error (5\%)} \]
ix. $\beta =$ probability of a type II error

Using the results from the published study (Patriarca et al. 1991a), the values for these factors are $p_1 = 68\%$, $p_2 = 18\%$, $q_1 = 32\%$, $q_2 = 82\%$, $\Delta = 50\%$. The multiplier for the conventional values of α (5%) is 1.96, and that for β is 0.842. Thus, $n = (7.85) \frac{(2176 + 1476)}{2500} = 11.46 = 12$ patients. Taking into consideration withdrawals and dropouts we concluded that 20 patients would be an adequate sample size.

3.2.9 Outcome measures

i. Primary

- To compare nasal polyp growth rate in a patient while on intranasal lysine-aspirin with the rate when on placebo.

- To compare nasal polyp growth rate of patients on intranasal lysine-aspirin with those on placebo.

ii. Secondary

- To monitor the peak flow rate in patients on intranasal lysine-aspirin and note any deterioration in asthma control.
3.3 Trial 2

3.3.1 Objective

To study the combined efficacy of intranasal lysine-aspirin and intranasal corticosteroid, in reducing nasal polyp growth, in aspirin-tolerant patients with nasal polyposis.

3.3.2 Design (Figure 3.2)

A randomised, double-blind, placebo-controlled, parallel group trial, in aspirin-tolerant patients. Suitable patients were given an information sheet providing details of the trial along with a consent form (Appendix F, G). If a patient agreed to take part, baseline measurements were done in the laboratory following which he/she was randomised to receive either placebo or lysine-aspirin. Patients prepared a solution at home and sprayed the equivalent of 16 mgs, once a week. In addition, all patients were given an intranasal corticosteroid for daily use. Follow-up visits were arranged every 3 months for clinical assessment and measurements.

3.3.3 Inclusion criteria

i. Patients above 18 years

ii. Nasal polyps on clinical examination

iii. History of aspirin tolerance confirmed by a negative intranasal lysine-aspirin challenge

3.3.4 Exclusion criteria

i. Pregnant or lactating females

ii. Patients with a severe deviation of nasal septum
Figure 3.2

Profile of Trial 2

Suitable patient (OPD):
- invited to take part
- information sheet/consent
- date for challenge/start of trial

Start day:
- challenge to confirm AT
- baseline measurements

Randomisation

Lysine-aspirin (16 mgs) once every week + regular intranasal corticosteroid
Placebo once every week + regular intranasal corticosteroid

Follow-up:
- every 3 months
- repeat measurements

End of trial:
- repeat measurements

Measurements at baseline and each visit:
- Visual analogue scale of nasal symptoms
- Peak expiratory flow rate
- Nasal inspiratory flow rate
- UPSIT (smell test)
- Rigid nasendoscopy (appearance, grade of polyps)
- Acoustic rhinometry
- Quality of life questionnaire
3.3.5 Withdrawal or dropout from the trial, Randomisation, Medication

These aspects of the trial were identical to Trial 1.

3.3.6 Calculation of sample size

The same formula as in Trial 1 was used and the results from a preliminary study (Scadding et al. 1995) were utilized to derive some values. Thus, for this trial \(p_1 = 40\% \), \(p_2 = 15\% \), \(q_1 = 60\% \), and \(q_2 = 85\% \). The effect size we considered was \(\Delta = 50\% \). Values of \(\alpha \), and \(\beta \) were identical to Trial 1.

Thus, \(n = \frac{(7.85)(2400 + 1275)}{5625} = 40.25 \approx 12 \) patients in each group.

3.3.7 Outcome measures

i. Primary
 - To compare nasal polyp growth rate of patients on intranasal lysine-aspirin with those on placebo.

ii. Secondary
 - To study the quality of life in patients with nasal polyps over a long term.
 - To study the effect of intranasal lysine-aspirin on the patients’ sense of smell as compared to placebo.
3.4 Laboratory based studies

3.4.1 Immunohistochemistry of nasal biopsies

3.4.1a Objective

To measure expression of the CysLT₁ receptor on inflammatory leukocytes in nasal biopsies from aspirin sensitive and non-aspirin sensitive subjects with rhinosinusitis. To compare the expression of the CysLT₁ receptor with that of B-LT receptor, in aspirin-sensitive subjects, after 6 months of desensitization with topical lysine aspirin or placebo control.

3.4.1b Design

Patients participating in Trial 1 were requested to have a biopsy from their nasal mucosa. Biopsies were taken whenever possible at baseline, and at the end of each phase. The specimens were snap frozen and stored in liquid nitrogen. Immunohistochemical analysis was done after all partaking patients had completed the trial.
Whilst undertaking the clinical trials we started a collaborative project with another research group primarily interested in elucidating the mechanism of aspirin-sensitivity. Clinical information and tissue samples were provided by us and laboratory based analysis was undertaken by the reciprocating group.

3.4.2 Expression of inducible nitric oxide synthase (iNOS)

3.4.2a Objective

Inducible nitric oxide synthase (iNOS) expression is upregulated in nasal polyp epithelium implying a role for nitric oxide (NO) in their formation (Watkins et al. 1998). We decided to compare iNOS activity in polyp tissue from patients with and without aspirin-sensitivity.

3.4.2b Design

Nasal polyp tissue was collected from patients undergoing routine nasal polypectomy. It was stored in liquid nitrogen until the start of analysis. Patients were divided into 3 groups - Group A were aspirin-tolerant patients with nasal polyps without asthma; Group B were aspirin-tolerant patients with nasal polyps and asthma; Group C were aspirin-sensitive patients with nasal polyps and asthma. Group C patients had a history of aspirin-induced reaction and a confirmatory intranasal challenge with lysine-aspirin. NOS activity was measured by the ability of tissue homogenates to convert 3,4 L-arginine to L-citru!line in an L-NAME inhabitable fashion.
METHODS

4.1 Nasal challenge

4.1.1 Challenge procedure

Patients with nasal polyps were recruited from the outpatient clinics at RNTNEH. Those willing to undergo an intranasal lysine-aspirin challenge were explained the procedure and possible discomfort they may experience. A suitable appointment was arranged for them to have the challenge in the Rhinology laboratory bearing in mind that in all it took approximately 2 hours.

Patients were requested to stop using intranasal corticosteroids 2 weeks prior to challenge and avoid oral antihistamines for at least 48 hours. Patients with asthma continued using their inhalers as before. Only those patients with well-controlled asthma (peak expiratory flow rate $\geq 80\%$), not requiring oral corticosteroids were invited for the challenge.

On arrival to the laboratory for their challenge the patients spent 15 minutes acclimatizing to the room temperature. Following acclimatization they had a baseline clinical examination, marking of symptoms on a visual analogue scale (VAS), and measurements which included peak expiratory flow rate (PEFR), nasal inspiratory flow (NIPF), and acoustic rhinometry.

The challenge procedure was conducted in a single-blind, placebo-controlled manner. Patients were told that they would be challenged with various doses of lysine-aspirin. They were unaware of the order in which we performed the challenge. Solutions were prepared either prior to the patients’ arrival or hidden from their eyesight. A 1 ml syringe was used as a dropper for the solution, which was instilled into the patient’s nose with them in the head forward and down position for good distribution. They remained in this position for at least 45 seconds to 1 minute. The receptacles used for preparing solutions of varying strengths were thoroughly rinsed after the day’s tests to avoid contamination when preparing fresh solutions another day.

The challenge procedure started with a placebo followed by intranasal lysine-aspirin in incremental doses. These started with a dose of 4 mgs, followed by 8 mgs, and lastly 16 mgs. The interval period between each dose was 20 minutes. If there were
early indications of a reaction we waited an additional period of 20 minutes prior to
giving a further, higher dose. Patients stayed within the laboratory throughout the
procedure and refrained from hot or cold beverages or foodstuff.
Twenty minutes following each dose measurements were repeated. These were
similar to those done at baseline apart from clinical examination. At the end of the
procedure patients were informed of the results. Patients with a positive challenge
were observed for a further 40-60 minutes to ensure a good peak flow rate. Aspirin-
sensitive and tolerant patients were also informed about our on-going trials, and
invited to participate.

4.1.2 Criteria for positive challenge

The parameters considered significant were:

i. A 25% reduction in nasal volume measurements on acoustic rhinometry (AR).
ii. A 25% reduction in minimum cross-sectional area of the nose on AR.
iii. A 25% reduction in nasal inspiratory flow (NIPF).
iv. A 25% fall in peak expiratory flow rate (PEFR) from baseline.
v. A 10-point increase in composite visual analogue scale (VAS) scores.

The percentage changes for the measurements were derived after considering the
variability of each parameter. The challenge was considered positive if 2 out of 5
parameters were present.

4.1.3 Method of desensitisation (Figure 4.1)

Aspirin-sensitive patients who agreed to take part in our trial of desensitisation
underwent this process immediately after their diagnostic nasal challenge or at a later
date depending on their availability. Topical desensitisation was achieved by its
intranasal application in incremental doses, starting with 4 mgs, followed by 8 mgs,
and finally 16 mgs. Lysine-aspirin solution of different strengths were prepared
freshly on the day, and kept in separate labeled containers. The correct amount was
drawn up in a 1 ml syringe, and instilled in the nose with the head in a down and
forward position. The first dose was instilled following 30-minute of acclimatisation
Figure 4.1

Process of Desensitisation

Acclimatisate patient (30 min)
Take baseline measurements:
nasal score, chest score
NIPF, PEFR, AR (vol./amin)

Instill first dose of LAS (4mgs)

observe (20 min)

Repeat measurements
nasal score, chest score
NIPF, PEFR, AR (vol./amin)

+ve reaction
observe (60 min)

-ve reaction
observe (20 min)

Repeat measurements

nasal reaction returned to baseline
instill next dose

nasal reaction not returned to baseline
observe (60 min) or until returned to baseline

Repeat measurements

-ve reaction
instill next dose and repeat steps until +ve reaction

instill next dose incremental doses 8, and 16 mgs stop at 16 mgs

Key: NIPF: nasal inspiratory peak flow; PEFR: peak expiratory flow rate; AR: acoustic rhinometry; vol.: volume (0-7 cms); amin: minimal cross-sectional area; LAS: lysine-aspirin; min: minutes; mgs: milligrams
period. Reaction was monitored by recording nasal score, chest score, nasal inspiratory peak flow, peak expiratory flow rate, and acoustic rhinometry. Measurements were made at baseline, and subsequently at 20-minute intervals. The next incremental dose was instilled if after 2 observation periods (40 minutes) elapsed without a reaction. In patients with a reaction the interval to the next incremental dose was 1 hour. If the acoustic rhinometry measurements had not returned close to baseline, we waited a further 1-hour. Desensitisation was stopped once we reached our top dose of 16 mgs.

4.2 Clinical assessment

A patient was considered suitable for any of our investigations following an initial clinical assessment in our outpatient clinics. This included history taking, examination with a headlight, and a rigid nasendoscope. The latter confirmed the presence of nasal polyps.

4.2.1 History

In history particular emphasis was placed on the presence of asthma, drugs required for its management, and the current state of its control. A history of aspirin-sensitivity or tolerance was determined after direct questioning. Patients were asked if they recall taking aspirin or other NSAID. Names of commonly ingested NSAIDs were directly mentioned. They were asked about any adverse reactions following ingestion. Inquiry included a time course, type of reaction, relief measures, need to attend hospital, and any other relevant factors the patient could remember. If a patient thought he/she was aspirin tolerant, further questions were asked to ascertain their status. They were asked to recall the events following the last time they took aspirin or a NSAID (again, names were mentioned). If they had taken the drug within the past 1 year and could recall not having a reaction, they were considered as tolerant on history.
4.2.2 Rigid nasendoscopy

The modern rigid nasendoscope consists of a rod-lens system encased in a metal telescope tube. The diameter of a telescope can be 2.7 mm or 4 mm (Figure 4.1). Likewise, the tips can be either flat (0°) or angled (30°). These nasendoscopes are illuminated using a cold light source and a fibreoptic cable. The appreciation of intranasal structures is superior to conventional methods of nasal examination. Nowadays this method of nasal examination is considered mandatory in assessing ENT patients, in particular those with nasal complaints.

Rigid nasendoscopy was used to examine the patients in the outpatient clinic and confirm the presence of nasal polyps. In both clinical trials (1 and 2), rigid nasendoscopy was used to record polyp growth using a validated staging system (Lund and Mackay, 1993). This system graded polyps from I to III. Polyps confined to the middle meatus were classified as grade I, those beyond the middle meatus but not completely obstructing the nasal cavity were grade II, and those causing total obstruction were grade III. In addition, the presence of other features like congestion, discharge, and crusting were noted, and the appearances were scored using a recommended quantification system (Lund and Kennedy, 1997). This system had 0, 1, or 2 points for these appearances. A score of 0 signified absence of the feature, 1 indicated a mild presence, and 2 meant marked presence. Following nasendoscopy the grade of polyps on both sides, and scores for other features were recorded in the notes or a trial booklet (Appendix H).
Figure 4.2

4 mm and 2.7 mm rigid nasendoscopes

Close up showing an angled tip (30°), and a flat tip (0°)
4.3 Visual analogue scale

A validated visual analogue scale (VAS) was used for assessment of symptoms (Lund et al. 1991). It was used during intranasal challenges and during follow-up of patients in trial 2.

The scale has unmarked lines of equal length for each nasal symptom (Appendix E). For nasal challenge the symptoms included sneezing, itching, obstruction, and rhinorrhea. The left end of the unmarked line was 0, which signified absence of the symptom whereas the right end was 10 signifying symptom of a severe degree. Depending on how they felt, patients were instructed to mark on this line. The relative length from 0 was measured taking the whole length of the line to be 10. After measuring the lines for each symptom the numbers were added to arrive at a composite score, which was used for analysis. An increase in the score indicated a deterioration of nasal symptoms.

The scale was modified for trial 2 (Appendix I). Instead of an unmarked line we used a numbered scale from 0 to 10. Additional symptoms on the scale included headaches, facial pain, and sense of smell. The scale was more explicit making it easier to use. The numbers were added to make a total for each visit. Like the scale for nasal challenge an increase in score indicated deterioration.

4.4 Nasal inspiratory peak flow

4.4.1 Background

To study dynamic nasal airflow we measured nasal inspiratory peak flow (NIPF) using a Youlten's meter (Clement Clark International Ltd., London, UK) (Holmstrom et al. 1990). This objective method of assessing nasal patency is cheap, quick, and easy to use. It correlates highly with the total nasal resistance measured by active anterior rhinomanometry (Jones et al. 1991). NIPF has a sensitivity of 80% (confidence interval: CI = 69-100), in detecting changes to nasal patency (Porter et al. 1996).
4.4.2 *Method of use*

The meter has a nozzle to which is attached a cushioned face mask (Figure 4.2). This mask covers the nose and the soft cushion prevents any distortion of nasal contours, which could compromise readings. The patient is asked to empty the lungs and hold their breath. The meter is then applied around the nose using adequate pressure so as to achieve an airtight seal and avoid distorting the contours. The patient is asked to sniff air through the nose without opening their mouth and with a maximally forceful inspiratory effort. The reading on the meter is noted. Measurements are repeated 3 times and the highest value is taken for analysis. The unit of measurement is litres/minute (l/min).

4.4.3 *Measurements*

NIPF was used for measuring changes in nasal patency for all 3 clinical arms of the investigation. It was used to monitor changes during intranasal challenges with lysine-aspirin, which were done to characterize patients. NIPF measurements are reproducible in an individual with a coefficient of variation being approximately 10% (Holmstrom et al. 1990). However, to be definite we chose a figure of 25% to indicate a significant change.

In Trial 1 NIPF measurements were done at every visit to the laboratory. In addition, each patient was provided with a meter to be kept at home. This was used to measure daily NIPF, morning and evening, in between visits. The highest reading was noted in a diary, which was submitted to us at the following visit. In Trial 2 NIPF measurements were made at the follow-up visits every 3 months.
Figure 4.3

Youlden's nasal inspiratory peak flow meter
4.5 Acoustic Rhinometry

4.5.1 Background

To detect small changes in the nasal airway we used an objective method to measure its geometrical dimensions. This method is called acoustic rhinometry (Elbrond et al. 1991b). It is based on the principles of 'time domain reflectometry' (Fisher, 1997). Sound waves are generated by a spark and carried up a wave tube into the nose via a Perspex nosepiece (Figure 4.3). These waves are reflected as they encounter various structures within the nasal cavity. The reflected sound waves are detected by a microphone, attached to the wave tube, and analysed by computer software. It generates a graphic representation plotted as an 'area-distance function' showing the cross-sectional area of the airway on the y-axis and distance on the x-axis (Figure 4.4). The software can calculate the minimum cross-sectional area of the airway between two points a and b, also called Amin $(a-b)$. Integration of the areas under the curve produces a volume estimate denoted by a short form, Vol. Again, the software can generate values for it between two points, Vol $(a-b)$. Acoustic rhinometry is superior to another method of objective nasal patency assessment called anterior rhinomanometry. This is particularly true in assessing nasal challenge because a reaction causes marked reduction in nasal patency, and anterior rhinomanometry may be difficult to perform on an obstructed nose (Scadding et al. 1994). The sensitivity of acoustic rhinometry to detect changes in nasal patency is high; 90% (CI = 76-100) (Porter et al. 1996). Also, acoustic rhinometry has been validated for use in monitoring treatment of nasal polyps (Elbrond et al. 1991; Lindholt, 1989; O'Flynn, 1993).

4.5.2 Method of use

To increase accuracy of measurement and reduce variability certain technical details were observed (Fisher, 1997). We used the same gm instruments acoustic rhinometer (Kilwinning, UK) for all measurements. A standardized protocol was used for all patients. Prior to the procedure patients were seated in the laboratory for 15 minutes for acclimatization.
Figure 4.4

Acoustic rhinometry equipment
Figure 4.5

Acoustic Rhinometry output of a positive intranasal lysine-aspirin challenge

The solid line shows changes in Amin1 during a positive nasal challenge:

- Baseline = .45 mm²
- Post placebo = .40 mm²
- Post lysine-aspirin (4 mgs) = .28 mm²
- Post lysine-aspirin (8 mgs - 25 minutes) = .14 mm²
For the test patients were seated at the same height and a nosepiece that gave a good seal without distortion of the nostril was used. A protractor fixed to the rhinometer box ensured that the wave tube angle was constant and between 35^0-70^0. Patients were asked to hold their breath during the test. To ensure constancy of readings in each patient we used a nosepiece of the same size, and the same angle of wave tube at every visit.

Click sounds separated by 2 milliseconds were used to acquire 5 readings. Inter-reading variability was kept below 10%. The curves generated were printed with patient details and date of test. These were filed as hard copies for future analysis. Also, each curve could be saved on the computer as a single file. Files were named with patient initials followed by date of the test. At a later date these files were recalled into a special program (Acoustic Reports), meant for analysis of the data (Figure 4.5).

4.5.3 Measurements

We measured the minimal cross-sectional area (Amin), and Volume (Vol). For nasal challenge, Trial 1, and Trial 2 the volume measurements were between 0-7 centimeters; 0 being at the end of the nosepiece. This distance was chosen as it would include the middle meatus region from where the polyps arise. The sensitivity of volume 0-7 centimeters measurements is 90% (CI = 76-100) (Porter et al. 1996).

The curve generated following a test has notches, which signify narrow areas of the nasal cavity. Two such areas have been given names, the ‘I’ notch and ‘C’ notch (Lenders and Pirsig, 1990). ‘I’ indicates isthmus and ‘C’ is the Amin at the head of the inferior turbinate. We measured, and called the ‘C’ notch area Amin$_1$. We also analysed the curve and looked for an additional notch deeper into the nasal cavity in the region of the middle meatus from where the polyps grow. We also measured this notch and called it Amin$_2$.

Measurements were made before and after nasal challenge with lysine-aspirin, and at every visit in Trials 1 and 2. For the purpose of analysing nasal challenge, and Trial 2 results we used Vol (0-7) along with Amin$_1$ and Amin$_2$. In Trial 1 we used Vol (0-7) and only Amin$_2$.
Figure 4.6

Output from Acoustic reports programme

Patient: Roddy
Process:

<table>
<thead>
<tr>
<th>Distance, cm</th>
<th>Volume, cm³</th>
<th>Area, cm²</th>
<th>Min area, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 7</td>
<td>2 - 4</td>
<td>0 - 5</td>
</tr>
<tr>
<td>Pre Right</td>
<td>14.44</td>
<td>4.03</td>
<td>8.11</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td>Post Right</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Post Left</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Percent change Right</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percent change Left</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
4.6 Peak Expiratory Flow Rate

We monitored lung function in our patients by measuring peak expiratory flow rate (PEFR). The unit of measurement was litres/minute (l/min). We used either a standard Wright’s or mini Wright’s peak flow meter. Prior to a measurement we demonstrated the correct technique of use. Measurements were made with the patient standing up and holding the meter horizontally without obstructing movement of the marker, which was set in zero position. Patients were asked to take a deep breath in, hold their breath, put their lips around the mouthpiece ensuring a good seal, and blow as hard and fast as they could into the meter. The reading was recorded; marker reset to zero and after a minutes rest the measurement was repeated. Three such readings were recorded but for the purpose of analysis we took the highest figure.

In the study to characterize patients PEFR was measured pre and post intranasal challenge. If baseline PEFR was < 80% of predicted value the nasal challenge was deferred. Predicted values were calculated from a Nomogram chart for adults (Gregg and Nunn, 1989). A 25% fall in PEFR from baseline was taken as an indicator of a reaction.

In Trial 1, which involved aspirin-sensitive patients, PEFR was monitored closely to detect any deterioration in asthma. In addition to measuring PEFR at every 6-week visit, patients were given a peak flow meter to keep at home, and record daily morning and evening readings. These were entered into a diary, which was used for analysis. In trial 2 (as aspirin tolerant patients), PEFR was measured at every 3-month visit.

4.7 Diary

In Trial 1 we employed a structured diary to collect data from participating patients. They recorded a nasal score, chest score, PEFR, and NIPF on a twice-daily basis. A separate information sheet was provided to aid entering data (Appendix D). In the diary the patients recorded a week’s data on each sheet (Appendix D). We provided these diary sheets when the patients attended their 6-weekly visits.

The symptoms taken into consideration while arriving at a nasal score were blockage, rhinorrhea, itching, sneezing, and sense of smell. A composite score, which was an integer between 0 and 9, was entered twice daily. Similarly, the
symptoms considered for the chest score were tightness of chest, wheeze, shortness of breath on exertion, daytime cough, and night cough. The scoring system was similar to the nasal score (0-9).

Patients were provided with a Youlten’s nasal inspiratory peak flow meter and a Mini-Wright’s peak flow meter for daily measurements. In the diary they recorded the highest of 3 readings on a twice daily basis.

4.8 Quality of life questionnaire

In Trial 2 we included a quality of life (QOL) questionnaire to study the patients’ perceptions of changes in their health status. As our trial population were patients with nasal polyps we made minor modifications to the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ), which is a disease specific questionnaire for patients with allergic rhinoconjunctivitis (Juniper and Guyatt, 1991). Although the changes were not validated, this questionnaire has been used in several trials conducted by our department with permission from Professor Juniper.

The basic structure of the original questionnaire was maintained apart from a domain on eye symptoms, which was excluded (Appendix J). All the original items in each domain were included and new items added after consultation amongst the authors to make it more specific for this study. The questionnaire has 6 main domains with questions within them, which inquire about the effects of nasal polyps on the patients’ physical and psychosocial well-being. The 6 main domains with number of items within each () were: nasal problems (4), other symptoms (9), sleep disturbances (5), practical problems (5), interference with three patient-chosen activities (3), and emotional state (6). Each question is answered on a scale of 0 to 6; a higher score indicating poorer functioning or deteriorating symptoms.

Each patient completed the questionnaire (interviewer supervised) at the start of the trial and at every subsequent visit. For all domains they reported the degree of difficulty experienced over a 1-week period preceding their visit.

4.9 Olfactory function

In Trial 2 we used the University of Pennsylvania Smell Identification Test (UPSIT) to measure olfaction. It has 40 microencapsulated odours, each on a separate
‘scratch-and-sniff’ pad (Doty et al. 1984). Patients’ were provided with a sharp object to scratch the pad and respond by choosing from 4 given alternatives. Between each ‘scratch’ the patient was instructed to clean the object so as to avoid contamination of the next pad. The correct method of scoring involves patients’ making a guess even if they are unable to identify an item. This test has a good short-term and long-term test-retest reliability.

4.10 Nasal Biopsy

A nasal biopsy was taken from the inferior turbinate of aspirin-sensitive patients in Trial 1. The biopsy was performed at the start and end of the first phase, and at the end of the second phase (Figure 3.1). Patients were requested and had a choice to undergo the procedure. Following clinical examination a suitable site was chosen to biopsy. Cotton wool soaked in 10% cocaine solution with 1:1000 epinephrine was placed on the site and left for 20 minutes. Biopsies were taken with Gerritsma forceps (Fokkens et al. 1988). These forceps provide an adequate biopsy measuring 2.5 mm2 in diameter with undamaged epithelium and sufficient depth of lamina propria. The procedure is quick, easy to perform, and causes minimal discomfort. This latter feature encourages acceptance of the procedure, particularly when repeated biopsies have to be performed. After taking a biopsy the site was covered with dry cotton wool for tamponade. After 30 minutes of observation for any further bleeding patients were discharged.

Nasal biopsies were also performed on aspirin tolerant individuals with nasal polyps and processed in an identical manner to those from aspirin-sensitive patients, thus allowing comparisons. Aspirin tolerant patients, from the database we created following lysine-aspirin nasal challenges, were invited to have a biopsy. It was not essential for these patients to be in Trial 2. Patients from Trial 2 who agreed to have a biopsy had the procedure after completing the trial.

The biopsy specimen was immediately transferred into the centre of a small tin foil receptacle. A preservative was poured on the specimen to cover it completely and fill the receptacle. The biopsy was snap frozen by immersing it in liquid nitrogen. The frozen receptacle was transferred into a small plastic container, which was labeled to allow identification of the patient and the date of biopsy. It was stored in liquid nitrogen until immunohistochemical analysis.
4.11 Methods for Laboratory studies

4.11.1 Immunohistochemistry of nasal biopsies

Five μm sections were cut from the biopsy specimens, and mounted on to slides coated with 3-amo propyl triethoxysilane (Sigma, Dorset, UK), fixed for 10 minutes in acetone, and stored at -70°C until used for immunohistochemistry.

4.11.1a Detection of cells expressing CysLT₁ and B-LT receptors

Polyclonal rabbit antibodies against the CysLT₁ or the B-LT receptors (Cayman Chemicals, MI, USA) were used. The manufacturer has extensively validated these antibodies. For example, in COS-7 cells transfected with myc-tagged CysLT₁ receptor, the polyclonal antibody showed co-localisation of staining with anti-myc using confocal microscopy. Non-transfected cells, B-LT receptor transfected cells or cells transfected with vector control showed no staining. Conversely, using confocal microscopy the polyclonal B-LT receptor antibody was shown to stain COS-7 cells transfected with the B-LT receptor, but not cells transfected with CysLT₁ receptor or vector control. The immunostaining avidin biotin protocol was used as described previously (Nasser et al. 1996; Sousa et al. 1997a). Briefly, primary antibodies were used at a dilution of 1/50 and 1/600 for CysLT₁ and B-LT, respectively. Polyclonals were developed with a swine anti-rabbit biotinylated secondary antibody (Dako, Ely, UK) and the immunoperoxidase brown colour reaction developed with diaminobenzidine (DAB) (Sigma). Endogenous biotin reactivity and peroxidase activity were abolished as previously described (Nasser et al. 1996; Sousa et al. 1997a).

4.11.1b Detection of total cells expressing CD45

Sections were stained with murine monoclonal anti-human CD45 primary antibody, then peroxidase-conjugated second layer rabbit anti-mouse antibody (Dako) used at 1/400 dilution, and a brown colour reaction developed with DAB.
4.11.1c Phenotype of cells expressing CysLT₁ and B-LT receptors

Sequential immunostaining for cells expressing CysLT₁ and B-LT receptors and leukocyte phenotypic markers was performed as previously described (Nasser et al. 1996; Sousa et al. 1997a). Briefly, the murine monoclonal antibodies UCHT1 (anti-CD3, Dako, used at 1/50 dilution), PGM1 (anti-CD68, Dako, 1/100 dilution), EG2 (anti-eosinophil cationic protein, Pharmacia, 1/100 dilution), AAI (anti-mast cell tryptase, Dako, 1/50 dilution), NP57 (anti-neutrophil elastase, Dako, 1/100 dilution) were used to identify T cells, macrophages, activated eosinophils, mast cells and neutrophils respectively. Alkaline phosphatase conjugated goat anti-mouse secondary antibody (Seralab, Salisbury, UK used at 1/100 dilution) was used to detect these antibodies. A blue colour reaction was developed with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (Sigma). The rabbit polyclonal antibodies were detected as described above. Double-stained cells were identified which expressed both a blue and a brown precipitate.

4.11.1d Cell counting

Sections were coded and counted by an investigator without prior knowledge of the randomisation protocol. Positive cells were counted using an Olympus microscope connected to an image analyser and associated software (Zeiss KSS 300, Imaging Associates, Oxford, UK). Positive staining cells were counted in the total area of the biopsies, which was measured automatically by the analyser. Cell counts were expressed per square mm of tissue section.
The following study was a collaborative project with Professor Jane Mitchell’s group (Department of Critical Care Medicine, Imperial College School of Medicine, National Heart and Lung Institute), and she has kindly provided details of the methods used for analysis of the specimens.

4.11.3 Measurement of nitric oxide synthase (NOS) activity in nasal polyps

Samples were collected and stored in liquid nitrogen until NOS activity was measured by the ability of tissue homogenates to convert tritiated L-arginine to L-citrulline in a L-NG nitro-L-arginine (L-NAME) inhabitable fashion. Samples were given numbers and laboratory scientists were blinded to the patients clinical characteristics or grouping during analysis for iNOS activity. Briefly, tissue was homogenized on ice in 50 mM Tris buffer (pH 7.4) containing phenylmethylsulfonyl fluoride (1mM) in a ratio of 5:1 (vol:wt). The NOS activity was measured in the presence of the co-factors tetrahydrobiopterin (5\textmu M), NADPH (1mM), calmodulin (300U/ml). L-valine (10mM) was added to inhibit the conversion of L-arginine to L-citrulline via the arginase pathway. NOS activity was measured in each sample in the presence of calcium (2mM) and also in the absence of calcium but in the presence of EGTA (1mM). Separate incubations were carried out with each sample in the presence of the NOS inhibitor L-NAME (1mM), activity remaining in these incubations were considered to be not specific to the NOS pathway. In each case the reaction was initiated by the addition of substrate, L-arginine (10\mu M plus 0.03\mu M tritiated). After 30 min incubation at room temperature the reaction was stopped by the addition of ice-cold 20mM HEPES buffer (pH 5.5). The newly formed citrulline was separated from the arginine by passing the reaction solution of Dowex-50W (sodium form) columns and eluted with the HEPES buffer, scintillation fluid was then added and samples counted in a scintillation counter.

4.12 Statistical methods

Collected data was entered into a statistical package – SPSS for Windows version 10.0.7. This statistical package was used for analysis and production of some graphs. Graphs for the trials and biopsy results were produced using Graph Pad Prism version 4. Details of sample size calculations and analysis of outcome measures has
been included in the relevant sections. I consulted Professor S. Senn from University College London for analysis of the two clinical trials. Non-parametric tests have been used for analysis of data. Thus, all graphs will show medians. Within group analysis was done using Wilcoxon signed ranks test, and between group analysis was done using Mann Whitney U test. Significance level for all results was set at p < .05.

4.13 Ethical approval

Trial protocols were presented to the local ethics committee at the RNTNEH. These outlined all interventions that patients would undergo. They were nasal challenge with lysine-aspirin, exposure to placebo or LAS during the trials, nasal biopsy, and nasal polypectomy. Patient information sheet, and consent forms were also attached to the protocols. Formal approval for the trials, and all interventions was received from the ethics committee.
RESULTS

One hundred and twenty-seven patients with nasal polyps were involved in the various studies (Figure 5.1, Table 5.1). These included 70 males (55.1%) and 57 females (44.9%) with an age range of 20-73 years (mean ± S.D = 44.8 ± 11.6). Skin prick tests were done in 117 patients and results were positive in 77 patients (77/117, 65.8%). A history of asthma requiring regular medication was obtained from 77 patients (77/127, 60.6%). Thirty-nine patients (39/127, 30.7%) gave a history of an aspirin induced reaction. The majority of these patients had undergone surgery for polyps (97/127, 76.4%), with the number of operations ranging from 1-20 (mean ± S.D = 3.6 ± 3.4).
Figure 5.1: Table 5.1

OVERVIEW OF TRIALS AND STUDIES

<table>
<thead>
<tr>
<th>Patients taking part in various studies</th>
<th>Patients taking part in various studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASAL CHALLENGE n = 108</td>
<td>TRIAL in AS patients n = 22</td>
</tr>
<tr>
<td>TRIAL in AT patients n = 40</td>
<td>iNOS study n = 15</td>
</tr>
<tr>
<td>Nasal biopsies n = 34</td>
<td></td>
</tr>
<tr>
<td>As part of this research n = 98</td>
<td>As part of an earlier trial n = 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>All studies</th>
<th>Nasal challenge</th>
<th>Trial 1 in AS patients</th>
<th>Trial 2 in AT patients</th>
<th>iNOS study</th>
<th>Biopsy study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years: range</td>
<td>20-73</td>
<td>20-69</td>
<td>23-68</td>
<td>28-73</td>
<td>35-60</td>
<td>20-69</td>
</tr>
<tr>
<td>(mean±S.D)</td>
<td>(44.8±11.6)</td>
<td>(43.8±11.2)</td>
<td>(41.2±11.9)</td>
<td>(47.1±10.6)</td>
<td>(43.3±8.5)</td>
<td>(43.9±14.3)</td>
</tr>
<tr>
<td>Sex: Male (Female)</td>
<td>70 (57)</td>
<td>55 (43)</td>
<td>7 (15)</td>
<td>28 (12)</td>
<td>6 (9)</td>
<td>14 (20)</td>
</tr>
<tr>
<td>Asthma: Yes (No)</td>
<td>77 (50)</td>
<td>64 (33)</td>
<td>18 (4)</td>
<td>21 (19)</td>
<td>8 (7)</td>
<td>25 (9)</td>
</tr>
<tr>
<td>History of AS: Yes (No)</td>
<td>39 (87)</td>
<td>36 (45)</td>
<td>19 (3)</td>
<td>0 (40)</td>
<td>5 (10)</td>
<td>22 (12)</td>
</tr>
<tr>
<td>Challenge: +ve (-ve)</td>
<td>29 (79)</td>
<td>27 (71)</td>
<td>20 (2)</td>
<td>1 (34)</td>
<td>5 (0)</td>
<td>22 (6)</td>
</tr>
<tr>
<td>Skin test: +ve (-ve)</td>
<td>77 (40)</td>
<td>63 (29)</td>
<td>16 (5)</td>
<td>23 (16)</td>
<td>10 (2)</td>
<td>20 (10)</td>
</tr>
<tr>
<td>Surgery: Yes (No)</td>
<td>97 (30)</td>
<td>74 (24)</td>
<td>19 (3)</td>
<td>34 (6)</td>
<td>15</td>
<td>24 (10)</td>
</tr>
<tr>
<td>Operations for polyps:</td>
<td>1-20</td>
<td>1-20</td>
<td>1-20</td>
<td>1-16</td>
<td>1-7</td>
<td>1-20</td>
</tr>
<tr>
<td>range (mean±S.D)</td>
<td>(3.6±3.4)</td>
<td>(2.7±3.4)</td>
<td>(5.2±4.5)</td>
<td>(3.3±3.6)</td>
<td>(2.4±2.1)</td>
<td>(5.4±4.2)</td>
</tr>
</tbody>
</table>
5.1 Nasal challenge results

5.1.1 Patients

One hundred and eight patients with nasal polyps (108/127, 85%) underwent an intranasal lysine-aspirin challenge. Of these, 10/108 (9.3%) were challenged in 1993-95 as part of a previous study. The results of this study have been published (Scadding et al. 1995). Thus, the results of the remaining 98/108 (90.7%) intranasal lysine-aspirin challenges are presented.

Challenges were performed in 98 patients (M = 55, F = 43, ratio = 1.28:1), with an age range of 20-69 years (mean ± S.D = 43.8 ± 11.2). The majority of these patients had asthma (64/98; 65.3%), were skin prick test positive (63/98; 63.4%), and had undergone surgery for their nasal polyps (74/98; 75.5%).

All patients with asthma were on a combination of inhaled corticosteroids (preventer), and a bronchodilator (reliever). Their lung function was well controlled on this combination and none of our patients were on regular oral corticosteroids. The commonest combination used amongst our patient population was beclomethasone dipropionate plus salbutamol.

In patients who had undergone surgery the number of interventions ranged from 1-20 (mean ± S.D = 2.7 ± 3.4). Intranasal polypectomy was the commonest operation performed in 63/98 (64.3%) patients. Endoscopic polypectomy was performed in 16/98 (16.3%) patients. Four patients (4/98, 4.1%) had undergone radical surgery for control of their polyp disease. Two of these had a Caldwell-Luc operation and 2 had an external ethmoidectomy procedure.

All patients were asked about the effect of aspirin or NSAID intake. Those patients who recalled tolerating aspirin or NSAID were specifically asked if they had taken either drug during the past year. If they could not recall taking the drug during the past year their responses were considered equivocal. Thirty-six patients (36/98, 36.7%) gave a history of an adverse reaction; forty-five patients (45/98, 45.9%) gave a history of tolerating aspirin or NSAID intake, and 17 patients (17.3%) could not recall having ingested aspirin or NSAID for a substantial period of time. These patients were considered in the equivocal group.

Of the 36 patients with a history of aspirin induced adverse reaction 30 (83%) developed asthma (19 only asthma; 9 with urticaria and angioedema, 2 with
rhinoconjunctivitis). Two patients developed nasal symptoms only, and 4 only urticaria.

5.1.2 Changes in measured parameters following challenge

5.1.2a Acoustic rhinometry measurements

i) Volume

We had complete data on 96/98 (97.9%) patients. The average pre and post challenge values were 16.8 ± 9.3 mls (median ± S.D) (range = 3.5 to 56.2 mls), and 15.8 ± 9.4 mls (range = 2.2 to 51.9 mls) respectively.

The change following challenge was calculated by subtracting the pre from the post value. Thus, a negative (-) change indicated deterioration. The average change in volume was -.94 ± 4.8 mls (median ± S.D) (range = -20.7 to 17.0 mls). The average percentage change was -6.9 ± 22.6 mls (range = -70.7 to 61.1 mls).

ii) Minimum cross-sectional area 1 (Amin1)

We had complete data on 97/98 (98.9%) patients. The average pre and post challenge values were 1.15 ± .56 mm² (median ± S.D) (range = .20 to 3.01 mm²), and 1.08 ± .59 mm² (range = .06 to 3.62 mm²) respectively.

The change following challenge was calculated by subtracting the pre value from the post value. Thus, a negative (-) change indicated deterioration. The average change in Amin1 was -.1 ± 0.26 mm² (median ± S.D) (range = -1.07 to 0.61 mm²). The average percentage change was -8.2 ± 22.7 mm² (range = -72.67 to 46.72 mm²).

iii) Minimum cross-sectional area 2 (Amin2)

We had complete data on 78/98 (78.9%) patients. The average pre and post challenge values were 1.98 ± 2.28 mm² (median ± S.D) (range = .39 to 11.93 mm²), and 1.76 ± 2.59 mm² (range = .25 to 14.37 mm²) respectively.

The change following challenge was calculated by subtracting the pre value from the post value. Thus, a negative sign (-) indicated deterioration. The average change in
Amin₂ was \(-0.09 \pm 1.01 \text{ mm}^2\) (median \pm S.D) (range = -3.21 to 4.69 \text{ mm}^2). The average percentage change was \(-5.21 \pm 11.65 \text{ mm}^2\) (range = -75.76 to 76.52 \text{ mm}^2).

5.1.2b Nasal inspiratory flow rate

We had complete data on 78/98 (79.6%) patients. The average pre and post challenge values were 157.5 \pm 70.1 \text{ lts/min} (median \pm S.D) (range = 0 to 340 \text{ lts/min}), and 140 \pm 72.3 \text{ lts/min} (range = 0 to 300 \text{ lts/min}) respectively.

The change following challenge was calculated by subtracting the pre value from the post value. Thus, a negative sign (-) indicated deterioration. The average change in nasal inspiratory flow rate was \(-0.0 \pm 37.9 \text{ lts/min} \) (median \pm S.D) (range = -160.0 to 50.0 \text{ lts/min}). The average percentage change was \(-2.1 \pm 27.6 \text{ lts/min} \) (range = -100.0 to 57.14 \text{ lts/min}).

5.1.2c Visual analogue scale

Sneezing, itching, obstruction, and rhinorrhea were the 4 symptoms marked on a scale of 0 – 10. Thus, the lowest and highest possible scores were 0 and 40 respectively. Scales were marked prior to and post challenge providing us with paired data for comparison.

We had 93/98 (94.9%) complete pairs of data. The average pre and post challenge scores were 5 \pm 5.58 (median \pm S.D; range = 0 to 26.9), and 6 \pm 5.81 (range = 0 to 24). Change was calculated by subtracting post from pre values. Thus a negative (-) sign indicated deterioration. The average change was 0 \pm 4.17 (range = -16.5 to 10.5).

5.1.2d Peak expiratory flow rate

We had complete data on 95/98 (96.9%) patients. The average pre and post challenge values were 470 \pm 110.5 \text{ lts/min} (median \pm S.D) (range = 210 to 700 \text{ lts/min}), and 470 \pm 108.9 \text{ lts/min} (range = 210 to 680 \text{ lts/min}) respectively. The change following challenge was calculated by subtracting the pre value from the post value. Thus, a negative sign (-) indicated deterioration. The average change in peak expiratory flow rate was \(-5 \pm 27.1 \text{ lts/min} \) (median \pm S.D; range = -80.0 to 80.0 \text{ lts/min}). The average
percentage change for this group was -0.88 ± 7.1 lts/min (range = -24.6 to 34.8 lts/min).
5.1.3 **Statistical analysis to classify a challenge as positive - Receiver Operating Characteristic (ROC) curve**

The utility of each measured parameter towards diagnosing aspirin-sensitivity was examined by plotting ROC curves.

i. **Explanation of ROC curves**

ROC curves are a way to analyse the accuracy of a diagnostic test (Rao, 2003), (Zweig and Campbell, 1993). The accuracy of a diagnostic test depends on its ability to detect disease when truly present (sensitivity), and to recognise disease absence when it is truly absent (specificity). A ROC curve is a graphical representation displaying the sensitivity of a diagnostic test over all possible false positive rates (1 – specificity). It shows that any increase in sensitivity is accompanied by a decrease in specificity.

Once a curve is plotted it also provides us with various ‘cut-off’ points each having their own sensitivity and specificity. With the curve we can choose the best cut-off value for distinguishing between positive and negative results or find the sensitivity/specificity for any pre-determined cut-off value. Another useful indicator of the discriminative value of the diagnostic test is area under the ROC curve (AUC\textsubscript{ROC}). An area of 1 represents a perfect test, whereas an area of .5 represents a worthless test. A rough guide for classifying the accuracy of a diagnostic test is shown in Table 5.2.

ii. **Constructing a ROC curve**

In the absence of a gold standard criterion for diagnosis of a disease, investigators have used patient reported symptoms or signs as a substitute in ROC analysis (Christian Wasmuth et al, 2002). Thus, we used a positive history of aspirin-induced reaction to plot the ROC curve for each measured parameter. Statistical software Graphpad Prism (v 4.00) was used to construct the plot, give an AUC\textsubscript{ROC}, and provide sensitivity/specificity values for the cut-off point chosen (Table 5.3). Results above this cut-off point would signify a positive challenge.
5.1.3a *ROC curve of Volume measurements* (Figure 5.2)

For this acoustic rhinometry measurement we chose the cut-off point as -25%. The coefficient of variation for volume measurements in our laboratory was approximately 10%. Hence, we considered a reading of -25% or above as a valid cut-off to denote a positive challenge. Also, this threshold has been evaluated in an earlier study, and it provides good sensitivity/specificity (Casdevall et al, 2000).

Overall accuracy of the test was fair as shown by area under the curve (AUC\textsubscript{ROC} = .75; 95% CI = .65 - .86). A fall in nasal volume of 25% or more gave us a sensitivity of 92% (95% CI = 81 – 97), and a specificity of 46% (95% CI = 29 – 63).

5.1.3b *ROC curve of Amin₁ measurements* (Figure 5.2)

For Amin₁ we chose the cut-off point as -25%. In our laboratory the coefficient of variation for Amin₁ was approximately 10%. Hence, we considered a reading of -25% or above as a valid cut-off to denote a positive challenge.

Overall accuracy of the test was fair as shown by area under the curve (AUC\textsubscript{ROC} = .73; 95% CI = .62 - .85). A fall in Amin₁ of 25% or more gave us a sensitivity of 95% (95% CI = 86 – 99), and a specificity of 41% (95% CI = 25 – 58).
Figure 5.2

ROC of Vol

-25% chg in Vol
Sen = 92; Spec = 46
area under curve = .75

ROC of Amin₁

- 25% chg in Amin₁
Sen = 95; Spec = 41
area under curve = .73
5.1.3c *ROC curve of Amin₂ measurements* (Figure 5.3)

For Amin₂ we chose the same cut-off point as Amin₁ (-25%).

Overall accuracy of the test was fair as shown by area under the curve (AUC\textsubscript{ROC} = .72; 95% CI = .59 - .86). A fall in Amin₂ of 25% or more gave us a sensitivity of 91% (95% CI = 79 – 97), and a specificity of 58% (95% CI = 37 – 78).

5.1.3d *ROC curve of NIPF measurements* (Figure 5.3)

For NIPF we chose the cut-off point as -25%. The coefficient of variation for this measurement has been shown to vary from 6% to 10% (Holmstrom et al, 1990), (Lee D et al, 2004).

Overall accuracy of the test was poor as shown by area under the curve (AUC\textsubscript{ROC} = .62; 95% CI = .45 - .79). A fall in NIPF of 25% or more gave us a sensitivity of 88% (95% CI = 75 – 95), and a specificity of 39% (95% CI = 22 – 58).
Figure 5.3

ROC of Amin$_2$

- 25% chg in Amin$_2$
Sen = 91; Spec = 58
area under curve = .72

ROC of NIPF

-25% chg in NIPF
Sen = 88%; Spec = 39%
area under curve = .62
5.1.3e **ROC curve of Visual analogue scale - VAS** (Figure 5.4)

An increase in the composite score by a minimum of 10 points was taken as the cut-off point. VAS is a subjective measurement, but with a minimum score of 0 and maximum possible of 40, a change of 10 was thought as significant.

Overall accuracy of the test was fair as shown by area under the curve (AUC\(_{ROC} = .71; 95\% \ CI = .59 - .82\)). A 10-point increase in VAS gave us a poor sensitivity of 5\% (95\% CI = 1.1 - 14.6), but a perfect specificity of 100\% (95\% CI = 90 - 100).

5.1.3f **ROC curve of PEFR** (Figure 5.4)

A decrease in FEV\(_1\) of 20\% is considered significant as a response to inhalation challenge (Nasser et al, 1996), (Nizankowska et al, 2000). We chose -25\% as a cut-off to increase the accuracy of our results.

Overall accuracy of the test was poor as shown by area under the curve (AUC\(_{ROC} = .5; 95\% \ CI = .38 - .62\)).
Figure 5.4

ROC of VAS

- 10 chg in VAS
Sen = 5; Spec = 100
area under curve = .71

ROC of PEFR

-25% chg in PEFR
Sen = 4%; Spec = 100%
area under curve = .50
Table 5.2

Accuracy of ROC curves

<table>
<thead>
<tr>
<th>Area under the ROC curve</th>
<th>Accuracy of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9 - 1</td>
<td>Excellent</td>
</tr>
<tr>
<td>.8 - .9</td>
<td>Good</td>
</tr>
<tr>
<td>.7 - .8</td>
<td>Fair</td>
</tr>
<tr>
<td>.6 - .7</td>
<td>Poor</td>
</tr>
<tr>
<td>.5 - .6</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Table 5.3

Sensitivity and Specificity derived from ROC curves

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cut-off point</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Area under ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>-25%</td>
<td>92</td>
<td>46</td>
<td>.75</td>
</tr>
<tr>
<td>Amin₁</td>
<td>-25%</td>
<td>95</td>
<td>41</td>
<td>.73</td>
</tr>
<tr>
<td>Amin₂</td>
<td>-25%</td>
<td>91</td>
<td>58</td>
<td>.72</td>
</tr>
<tr>
<td>NIPF</td>
<td>-25%</td>
<td>88</td>
<td>40</td>
<td>.62</td>
</tr>
<tr>
<td>VAS</td>
<td>-10 point change</td>
<td>5</td>
<td>100</td>
<td>.70</td>
</tr>
<tr>
<td>PEFR</td>
<td>-25%</td>
<td>4</td>
<td>100</td>
<td>.50</td>
</tr>
</tbody>
</table>
5.1.4 Challenge results

Twenty-seven patients (27/98, 27.6%) fulfilled our criteria for a positive challenge, and hence were considered aspirin-sensitive. Figures 5.5, 5.6 show the results of these 27 patients. Measurements shown are Volume, Amin$_1$, Amin$_2$, and NIPF (see legend). PEFR did not deteriorate in any patient by -25%, and thus has been omitted from the graphical presentation of challenge results. Only 7 patients showed a 10-point deterioration in their composite VAS score. These patients have been highlighted in the graphs by an asterisk (*).

Seventy-one patients did not fulfill our criteria for a positive challenge, and hence were labeled aspirin tolerant. Figures 5.7, 5.8, 5.9, 5.10 show their results. Measurements shown are Volume, Amin$_1$, Amin$_2$, and NIPF (see legend). PEFR did not deteriorate in any patient by -25%, and thus has been omitted from the graphical presentation of challenge results. None of the patients had a significant change in VAS score.
Figure 5.5

Challenge data (Individual patients - aspirin sensitive)

% change

1 2 3 4 5 6 7 8 9 10 11 12 13

NIPF
Vol
Amin
Amin

Amin
Challenge data (Individual patients - aspirin sensitive)

% change

NIPF
Vol
Amin
Amin

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 5.7

Challenge data (Individual patients - aspirin tolerant)

% change

NIPF
Vol
Amin\textsubscript{1}
Amin\textsubscript{2}

1 2 3 4 5 6 7 8 9

Challenge data (Individual patients - aspirin tolerant)

% change

NIPF
Vol
Amin\textsubscript{1}
Amin\textsubscript{2}

1 2 3 4 5 6 7 8 9
Figure 5.8

Challenge data (Individual patients - aspirin tolerant)

Challenge data (Individual patients - aspirin tolerant)
Challenge data (Individual patients - aspirin tolerant)

Challenge data (Individual patients - aspirin tolerant)
Figures on the previous pages show percentage changes for each parameter and in each individual. Further representations of the changes in the various parameters for each individual patient are shown in the before-after graphs (Figures 5.11, 5.12, 5.13, 5.14, 5.15, and 5.16).
Figure 5.11

Volume change (Individual AS patients)
$n = 13$

Volume (ml)

Vol pre Vol post

Volume change (Individual AS patients)
$n = 14$

Volume (ml)

Vol pre Vol post

Volume change (Individual AT patients)
$n = 18$

Volume (ml)

Vol pre Vol post

Volume change (Individual AT patients)
$n = 17$

Volume (ml)

Vol pre Vol post

Volume change (Individual AT patients)
$n = 17$

Volume (ml)

Vol pre Vol post
Figure 5.13

Amin₂ change (Individual AS patients)
\[n = 9 \]

\[\begin{array}{c}
\text{Amin}_2 \text{ pre} \\
\text{Amin}_2 \text{ post}
\end{array} \]

Amin₂ change (Individual AT patients)
\[n = 15 \]

\[\begin{array}{c}
\text{Amin}_2 \text{ pre} \\
\text{Amin}_2 \text{ post}
\end{array} \]
Figure 5.15

PEFR change (Individual AS patients)
\(n = 14 \)

PEFR change (Individual AT patients)
\(n = 17 \)

PEFR change (Individual AT patients)
\(n = 17 \)

PEFR change (Individual AT patients)
\(n = 17 \)
Figure 5.16 (* show change of 10 points or more)
5.1.5 Reproducibility of Nasal challenge

Several aspirin-sensitive patients had repeat challenges as part of their trial. Figures 5.17, 5.18, 5.19, and 5.20 show the results of patients who had 2 or more challenges. Patients who dropped out are not included as they had only 1 challenge. The figures show that many patients had reproducible challenges. However, the degree of reaction, and the parameters that change differ with every challenge. The figures also show patients with a positive challenge and a subsequent negative challenge (BA3, RC2, YG2, SH3, LJ2, and IR2). Closer examination of the data shows that each of these challenges were after their wash-out phase. We suspect that they may still have some effect of the topical corticosteroid used in this period, and the top dose of 16 mgs of lysine-aspirin used was inadequate.
Figure 5.17

% change in measurements

volchg
amin1chg
amin2chg
nfchg

BA1 BA2 BA3 LB1 LB2 LB3 RC1 RC2 RC3
Figure 5.18

[Graph showing % change in measurements with different markers for volchg, amin1chg, amin2chg, and nfchg.]
Figure 5.20
5.1.6 Non-reproducible Nasal challenge

Figure 5.21 shows 2 patients with a strong history of aspirin induced idiosyncratic reaction, but repeated negative challenges.

EC was a 67 year old lady with a 30 year history of asthma and nasal polyps. Her asthma at the time of our research was well controlled with inhalers, but in the past she had required oral steroids on 4-5 occasions. Also, she had had more than 12 polypectomies over the years. She gave a history of aspirin-induced reaction, which started within 10 minutes of taking a tablet of aspirin, but this did not need hospital treatment. Ever since the reaction she avoided all NSAIDs. Thus, we took her to be aspirin-sensitive, and entered her as in our trial of aspirin-sensitive patients. However, with repeated negative challenges we have decided to withdraw her data from analysis (see section 5.3.1).

DM was a 21 year old male with asthma and nasal polyps. He had had 5 polypectomies, and at his last admission for a routine nasal polypectomy was inadvertently given Keterolac (NSAID). He developed severe asthma post surgery, and hence we decided to label him as aspirin-sensitive and enter him in Trial 1. He was one of our early drop-outs due to non-compliance, and hence his data has not been used for analysis (see section 5.3.1).
Figure 5.22 shows a comparison of changes during intranasal lysine-aspirin challenge between aspirin-sensitive and aspirin tolerant patients. Table 5.4 gives actual values.
Figure 5.22

Nasal challenge changes in AS and AT patients

Nasal challenge changes in AS and AT patients

Boxes represent 50% of values, with a line through median. Whiskers represent highest and lowest values.
Table 5.4

Changes in measured parameters following intranasal lysine-aspirin challenge – comparison of AS and AT patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AS patients (n = 27)</th>
<th>AT patients (n = 71)</th>
<th>p =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>median ± S.D</td>
<td>median ± S.D</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>-29.2 ± 15.9</td>
<td>-.81 ± 16.6</td>
<td>.000</td>
</tr>
<tr>
<td>Amin₁</td>
<td>-27.8 ± 20.2</td>
<td>.33 ± 17.4</td>
<td>.000</td>
</tr>
<tr>
<td>Amin₂</td>
<td>-40.8 ± 11.9</td>
<td>-.98 ± 20</td>
<td>.000</td>
</tr>
<tr>
<td>NIPF</td>
<td>-28.1 ± 31.3</td>
<td>0 ± 20.7</td>
<td>.000</td>
</tr>
<tr>
<td>PEFR</td>
<td>-1.4 ± 6.5</td>
<td>0 ± 7.4</td>
<td>.70</td>
</tr>
</tbody>
</table>

Key:

Negative values indicate deterioration.

S.D: standard deviation
5.2 Clinical characteristics

Table 5.5 compares the clinical features of the two groups classified by the results of the intranasal lysine-aspirin challenge.
Table 5.5

Comparison of AS and AT patients

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>AS (n = 27)</th>
<th>AT (n = 71)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years: range (mean±S.D)</td>
<td>23-68 (38 ± 11.5)</td>
<td>20-69 (46 ± 10.9)</td>
<td>.08</td>
</tr>
<tr>
<td>Sex: Male (Female)</td>
<td>10 (17)</td>
<td>45 (26)</td>
<td>.02</td>
</tr>
<tr>
<td>Skin test: +ve (%)</td>
<td>20 (74.1)</td>
<td>44 (62)</td>
<td>.14</td>
</tr>
<tr>
<td>Asthma: Yes (%)</td>
<td>21 (77.8)</td>
<td>44 (62)</td>
<td>.14</td>
</tr>
<tr>
<td>History of AS: Yes (%)</td>
<td>22 (81.5)</td>
<td>14 (19.7)</td>
<td>.00</td>
</tr>
<tr>
<td>Surgery: Yes (%)</td>
<td>23 (85.2)</td>
<td>51 (71.8)</td>
<td>.17</td>
</tr>
<tr>
<td>Operations for polyps: range</td>
<td>0-9 (3 ± 2.9)</td>
<td>0-20 (1 ± 3.6)</td>
<td>.10</td>
</tr>
<tr>
<td>(mean±S.D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radical surgery: Yes (%)</td>
<td>1 (3.7)</td>
<td>3 (4.2)</td>
<td>.13</td>
</tr>
<tr>
<td>Other surgery: Yes (%)</td>
<td>11 (40.7)</td>
<td>17 (23.9)</td>
<td>.15</td>
</tr>
</tbody>
</table>
5.3 Trial 1

Randomised, double-blind, placebo-controlled, crossover trial to study the clinical effectiveness of intranasal lysine-aspirin in reducing nasal polyp growth, in aspirin-sensitive patients with nasal polyposis.

5.3.1 Patients

Twenty-two aspirin-sensitive patients were enrolled and randomised in this trial. These included 15 women and 7 men with an age range of 23-68 years (41.2 ± 11.9). Sixteen were skin prick test positive, 19 had a history of aspirin induced adverse reaction, and 18 had asthma. Their asthma was well controlled on inhaled corticosteroids and none of them required regular oral corticosteroids. Nineteen patients had undergone surgery for nasal polyps with the number of operations ranging from 1-20 (5.2 ± 4.5).

All 22 patients underwent intranasal lysine-aspirin challenge (Figure 5.23). Twenty patients had a positive challenge. Two patients (DM, EC) had a negative challenge (see section 5.1.5). Their data has not been included in this analysis.
Figure 5.23

Challenge results of Trial 1 patients

% change

BA LA LB RC MD PD BE YG SG GD SH

Challenge results of Trial 1 patients

% change

MH LJ NM PM EM RP JP IR BS EC DM
5.3.2 Trial profile

Figure 5.24 shows the trial profile. Ten patients (45.5%) were randomised to receive the active treatment (intranasal lysine-aspirin) followed by placebo, and 12 patients (54.5%) received placebo followed by the active treatment. These two arms of the trial are labelled as AP and PA respectively, and each treatment period as phase 1 or 2.

Four patients from the AP arm and 5 from the PA arm completed both phases of the trial. Two patients in the PA arm were crossed-over to the second phase but subsequently withdrawn. One of them was newly diagnosed as having multiple sclerosis, and the other patient had become non-compliant with medication. One patient in each arm completed only phase 1. Thus, we had data from both phases on 11 patients and from a single phase on 2 patients.

As mentioned in the earlier section EC completed both phases (she was in the PA arm) of the trial, but her data has been withdrawn from analysis following a revision of her aspirin-sensitive status.
Flow chart profiling Trial 1

TRIAL 1
n = 22

Randomised
n = 22

Active treatment followed by Placebo
n = 10

Withdraw
n = 5

Completed trial
n = 4

Completed active phase then drop-out
n = 1

Placebo followed by Active treatment
n = 12

Withdraw
n = 4

Completed trial
n = 5

Completed placebo phase then drop-out
n = 1

Completed placebo phase and part of active phase then withdrawn
n = 2

Data withdrawn (EC)
n = 1
Four patients from the AP arm and 5 from the PA arm withdrew from the trial. Two patients moved away from the area and could not follow-up; we withdrew 1 patient because he was non-compliant with the medication, and the rest withdrew because they found that the trial was more time consuming than they had expected.

5.3.3 Statistical analysis

Six measures were analysed. These included 2 acoustic rhinometry measures i.e. volume (0-7 cms), Amin (minimum cross-sectional area), and 4 diary card measures i.e. daily nasal and chest score, and daily nasal inspiratory and peak expiratory flow rate.

Changes in individual patients are presented in Figures 5.25 and 5.26. Comparison of data values from the start and end of each phase was done using Wilcoxon matched pairs test. Comparison of changes during each phase was done using Mann-Whitney U test. Significance level was set at $p = .05$.

Various parameters changed significantly within a phase. However, comparison of the 2 phases did not reveal any significant difference.
Figure 5.25

Nasal score change in LAS phase
n = 9

Nasal score change in placebo phase
n = 11

p = .82

Chest score change in LAS phase
n = 9

Chest score change in placebo phase
n = 11

p = .60

NIPF change in LAS phase
n = 9

NIPF change in placebo phase
n = 10

p = .97
Figure 5.26

PEFR change in LAS phase
- $n = 9$
- $p = .004$
- $p = .55$

Volume change in LAS phase
- $n = 10$
- $p = .004$
- $p = .58$

Amin change in LAS phase
- $n = 10$
- $p = .009$
- $p = .97$
5.3.4 Analysis of longitudinal data

Data from 11 patients is presented in this section. Figures 5.27–5.37 show 8 patients completing both phases, 2 patients completing one phase and withdrawing from the subsequent phase, and 1 patient completing one phase only.

i) Diary card measures: Nasal/Chest scores, NIPF, and PEFR

Trial patients were asked to maintain a daily record of their nasal and chest scores, and NIPF and PEFR on a printed diary sheet. These were averaged for each week to produce a longitudinal data set.

ii) 6-8 weekly acoustic rhinometry measurements

Trial patients were followed up every 6-8 weeks to measure their nasal airway by acoustic rhinometry.

iii) Statistical analysis

Non-parametric analysis (Mann-Whitney U test) was used to study any differences between values while a patient was in the placebo or intranasal lysine-aspirin phase. No significant difference was observed for any patient between the two phases. Significance values are displayed in the graphs. Some graphs do not have p values because Mann Whitney U test is only possible when more than 2 pairs of data are available for analysis.
Figure 5.27

BA

Volume (0-7 cm^3/mL)

- LAS
- PL

p = 1.00

Visit

Amin (mm^2)

- LAS
- PL

p = 0.63

Visit

Nail score (0-10)

- LAS
- PL

p = 0.62

Week

Chest score (0-10)

- LAS
- PL

p = 0.50

Week

TIP (fL/min)

- LAS
- PL

p = 0.001

Week

PEFR (L/min)

- LAS
- PL

p = 0.002

Week
Figure 5.28

LB

- LAS
- PL

Volume (0.7 cm² ml)

Visit

Amin (mm²)

Visit

Nasal score (n/10)

Week

Cough score (n/10)

Week

NIPF (l/min)

Week

PEFR (l/min)

Week

p = .86

p = .25

p = .006

p = .03

p = .02

p = .09
Figure 5.29

LJ

![Graphs showing measurements over time with annotations](image-url)
Figure 5.30

PD

- Volume (cm³/min)
 - LAS
 - PL
 - p = 0.02

- AHI (events/h)
 - LAS
 - PL
 - p = 0.02

- Nasal score (0-10)
 - LAS
 - PL
 - p = 0.26

- Chest score (0-10)
 - LAS
 - PL
 - p = 0.002

- HR (beats/min)
 - LAS
 - PL
 - p = 0.48

- RRST (beats/min)
 - LAS
 - PL
 - p = 0.70
Figure 5.31

NM

Graphs showing changes in volume, nasal score, chest score, HAPI (takmin), and PEFR (takmin) over weeks for LAS and PL groups, with significance levels indicated.

- Volume (cc/mls)
- Nasal score
- Chest score
- HAPI (takmin)
- PEFR (takmin)

Significance levels: p = 0.03, p = 0.12, and p = 0.003.
Figure 5.32

RC
Figure 5.33

RP

- Volume: LAS and PL
- Airflow: LAS and PL
- Nasal score: LAS and PL
- Chest score: LAS and PL
- NIPF (l/min): LAS and PL
- not recorded in placebo phase

Graphs showing changes over time (week) for various parameters.
Figure 5.34

IR

- Volume (b-7 cm³, ml)
- Ann (mm²)
- Nasal score (pts/10)
- Chest score (pts/10)
- NIPF (l/min)
- PEFR (l/min)

Graphs showing changes over visits and weeks for different parameters.
5.4 Trial 2

Randomised, double-blind, placebo-controlled, parallel group trial to study the clinical effectiveness of intranasal lysine-aspirin in conjunction with intranasal corticosteroid in reducing nasal polyp growth, in aspirin-tolerant patients with nasal polyposis.

5.4.1 Patients

Forty aspirin tolerant patients were enrolled and randomised in this trial. These included 12 women and 28 men with an age range of 28-73 years (47.1 ± 10.6). Twenty-three were skin prick test positive, 39 could tolerate aspirin, 1 was unsure about an aspirin/NSAID induced adverse reaction, and 21 had asthma. Their asthma was well controlled on inhaled corticosteroids and none of them required regular oral corticosteroids. Thirty-four patients had undergone surgery for nasal polyps with the number of operations ranging from 1-16 (3.3 ± 3.6).

Thirty-five of 40 patients had an intranasal lysine-aspirin challenge (Figure 5.38). Of these 34 had a negative and 1 had a positive challenge (no. 11 on bottom graph). Of the 5 patients who did not have an intranasal lysine-aspirin challenge, 3 had taken aspirin/NSAID in the recent past without any adverse reaction, and 2 patients were on regular low dose aspirin.

The patient with a positive challenge was on regular aspirin and hence we decided to include her in this aspirin tolerant group as we did the other 2 patients on regular aspirin. However, with hindsight we realize that they do not qualify as aspirin tolerant, and hence have removed them from the analysis of this trial. Thus, on final count we had 37 patients in this trial.
Figure 5.38

Challenge results of Trial 2 patients

- NIPF
- Vol
- Amin₁
- Amin₂

% change

1 2 3 4 5 6 7 8 9 10 11 12
5.4.2 Trial profile

Figure 5.39 shows the trial profile. Twenty patients were randomised into each arm of the trial. Four patients from Group A did not complete the trial, as they were lost to follow-up. Three patients did not come back after the enrolment visit and 1 did not attend after 2 visits. In Group B, 1 patient was withdrawn as her asthma deteriorated. Thus, 35 patients (active group: 16; placebo group: 19) completed the trial with a follow up of 3-33 months (mean ± S.D: 14.3 ± 9.4). The follow up periods for both groups matched (Table 5.6), without any statistical difference. Further comparison of the groups is shown in Table 5.6.
Figure 5.39

Profile of Trial 2

- **TRIAL 2**
 - n = 40

- **Randomised**
 - n = 40

- **Intranasal LAS group**
 - n = 20
 - Lost to follow-up
 - n = 4
 - 1 = after 2 visits
 - 3 = after 1 visit
 - Completed trial
 - n = 16

- **Placebo group**
 - n = 20
 - Completed trial
 - n = 19
 - Withdrawn
 - n = 1
 - asthma worse

- **Data withdrawn**
 - n = 2

- **Data withdrawn**
 - n = 1
Comparison of the randomised patients at baseline

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>LAS (n = 18)</th>
<th>Placebo (n = 19)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years range (median ± S.D)</td>
<td>32-59 (47 ± 7.9)</td>
<td>28-64 (46 ± 10.7)</td>
<td>.71</td>
</tr>
<tr>
<td>Sex: Male (Female)</td>
<td>17 (1)</td>
<td>9 (10)</td>
<td>.01</td>
</tr>
<tr>
<td>Skin test positive</td>
<td>9</td>
<td>12</td>
<td>.41</td>
</tr>
<tr>
<td>Asthma: Yes</td>
<td>11</td>
<td>10</td>
<td>.66</td>
</tr>
<tr>
<td>Surgery: Yes</td>
<td>15</td>
<td>16</td>
<td>.96</td>
</tr>
<tr>
<td>Operations for polyps range (median ± S.D)</td>
<td>1-13 (2.5 ± 3.3)</td>
<td>1-16 (2 ± 4.2)</td>
<td>.76</td>
</tr>
<tr>
<td>Follow-up in months range (median ± S.D)</td>
<td>3-29 (12 ± 8.5)</td>
<td>4-33 (13.5 ± 9.6)</td>
<td>.27</td>
</tr>
</tbody>
</table>
5.4.3 Statistical analysis

i) Changes in laboratory measurements (Figures 5.40, 5.41, 5.42, 5.43)

Ten measures were analyzed. At each visit patients had acoustic rhinometry, rigid nasendoscopy, smell test (UPSIT), NIPF, PEFR, and a visual analogue scale for symptom score. Changes within a group were analyzed using Wilcoxon signed-rank test, and between groups by Mann-Whitney U test. Significance values are shown in the graphs. Endoscopic nasal polyp grading was the only measure that revealed a significant change in both groups. Between group analysis of this parameter was not significant.

ii) Changes in Quality of life (QOL) measurement (Figures 5.44, 5.45)

The six domain scores were added to obtain a total. The total scores at the start and end of the trial were compared for each group. Patients receiving intranasal lysine-aspirin were significantly worse at the end of their trial period (p = .00, Figure 5.43). This was not the case in patients receiving placebo, and a comparison of the groups revealed a significant difference (p = .04).

Each domain was analyzed separately using a Mann-Whitney U test, and within group analysis was done using Wilcoxon signed-rank test. Patients receiving intranasal lysine-aspirin scored significantly worse in the following domains: ‘sleep’ (p=.01; placebo, p=.71; between groups, p=.04), and ‘other symptoms’ (p=.00; placebo, p=.46; between groups, p=.01). The difference between the groups was not significant in all other domains although patients in the lysine-aspirin group fared worse.
Figure 5.40

Changes in measurements at follow-up visits (every 3-4 months)

Change in Volume (0-7 cms)
$n = 13$

Change in Volume (0-7 cms)
$n = 17$

Change in $Amin_1$
$n = 13$

Change in $Amin_1$
$n = 16$

Change in $Amin_2$
$n = 14$

Change in $Amin_2$
$n = 17$

$p = .74$

$p = .98$

$p = .42$
Figure 5.41

Changes in measurements at follow-up visits (every 3-4 months)

Change in NIPF
$n = 14$

Change in NIPF
$n = 17$

$p = .71$

Change in UPSIT
$n = 15$

Change in UPSIT
$n = 15$

$p = .56$

Change in PEFR
$n = 15$

Change in PEFR
$n = 17$

$p = .50$
Figure 5.42

Changes in measurements at follow-up visits (every 3-4 months)

Change in NP grade (L)
\(n = 14 \)

\[\begin{align*}
\text{polyp grade (0-3)} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post LAS} \\
\hline
\end{align*} \]

\[p = .00 \]

Change in NP grade (L)
\(n = 16 \)

\[\begin{align*}
\text{polyp grade (0-3)} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post placebo} \\
\hline
\end{align*} \]

\[p = .01 \]

\[p = .21 \]

Change in NP grade (R)
\(n = 14 \)

\[\begin{align*}
\text{polyp grade (0-3)} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post LAS} \\
\hline
\end{align*} \]

\[p = .00 \]

Change in NP grade (R)
\(n = 16 \)

\[\begin{align*}
\text{polyp grade (0-3)} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post placebo} \\
\hline
\end{align*} \]

\[p = .04 \]

\[p = .13 \]

Change in Endoscopy score
\(n = 16 \)

\[\begin{align*}
\text{Score} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post LAS} \\
\hline
\end{align*} \]

\[p = .50 \]

Change in Endoscopy score
\(n = 17 \)

\[\begin{align*}
\text{Score} \\
0 & \quad 1 \\
\text{baseline} & \quad \text{post placebo} \\
\hline
\end{align*} \]

\[p = .41 \]

\[p = .24 \]
Figure 5.43

Change in VAS
n = 15

Change in VAS
n = 18

p = .44

Change in Total QOL score
n = 14

Change in Total QOL score
n = 17

p = .04
Figure 5.44

Changes in Quality of Life

Change in domain 'sleep'
$n = 14$

Change in domain 'sleep'
$n = 17$

p = .04

Change in domain 'other symptoms'
$n = 14$

Change in domain 'other symptoms'
$n = 17$

p = .01

Change in domain 'nasal problems'
$n = 14$

Change in domain 'nasal problems'
$n = 17$

p = .19
Figure 5.45

Changes in Quality of Life

Change in domain 'practical problems'
\(n = 14 \)

\[\text{Score (n=30)} \]

\[\text{baseline} \rightarrow \text{post LAS} \]

\[p = .01 \]

<table>
<thead>
<tr>
<th>[\text{Score (n=30)}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{baseline} \rightarrow \text{post placebo} \]

\[p = .68 \]

\[p = .15 \]

Change in domain 'activities'
\(n = 14 \)

\[\text{Score (n=18)} \]

\[\text{baseline} \rightarrow \text{post LAS} \]

\[p = .23 \]

<table>
<thead>
<tr>
<th>[\text{Score (n=18)}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{baseline} \rightarrow \text{post placebo} \]

\[p = .74 \]

\[p = .44 \]

Change in domain 'emotional state'
\(n = 14 \)

\[\text{Score (n=36)} \]

\[\text{baseline} \rightarrow \text{post LAS} \]

\[p = .00 \]

<table>
<thead>
<tr>
<th>[\text{Score (n=36)}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

\[\text{baseline} \rightarrow \text{post placebo} \]

\[p = .33 \]

\[p = .16 \]
5.5 Laboratory based study

5.5.1 Measurement of inducible nitric oxide synthase (iNOS) activity in polyp tissue from aspirin-sensitive, and aspirin tolerant patients.

5.5.1a Patients

Fifteen patients with nasal polyps undergoing routine nasal polypectomy were enrolled for this study. They were classified into 3 groups (Table 5.7). Group A comprised 7 patients without asthma or aspirin-sensitivity (3 men, age in years 46.3±9.8; mean ± S.D). Group B consisted of 3 patients with asthma who were aspirin tolerant (n=3, 1 man, age in years 40.0±6.9; mean ± S.D). Group C included 5 patients with aspirin-sensitive asthma (Samter’s triad; n=5, 2 men, age in years 45.8±8.3; mean ± S.D). Aspirin-sensitive patients had undergone more polypectomies, mean 4±3, compared to 2±1 (group A), and 3±2 (group B). All asthmatics (Group B, and C) were on regular inhaled corticosteroids, and β₂-adrenoreceptor stimulants for use as required. At the time of surgery their asthma was well controlled. None of the patients were on regular oral corticosteroids.

Group C patients had a positive history of aspirin-induced reaction. They developed a respiratory type reaction (asthma ± rhinoconjunctivitis) following aspirin or NSAID ingestion. These patients had their aspirin-sensitivity confirmed by an intranasal challenge with lysine-aspirin. Patients in Groups A and B were aspirin-tolerant. Tolerance to aspirin was ascertained by direct questioning about recent aspirin/NSAID intake. This was done at their outpatient visit or by telephone.
Table 5.7

Clinical characteristics of patient groups

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=7)</th>
<th>Group B (n=3)</th>
<th>Group C (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal polyps</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Asthma</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aspirin-sensitivity</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Age in years: mean±S.D</td>
<td>46.3±9.8</td>
<td>40.0±6.9</td>
<td>45.8±8.3</td>
</tr>
<tr>
<td>Sex: M (F)</td>
<td>3 (4)</td>
<td>1 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Skin test positive</td>
<td>4 (57%)</td>
<td>2 (66%)</td>
<td>4 (80%)</td>
</tr>
<tr>
<td>Operations for polyps: mean±S.D</td>
<td>2±1</td>
<td>3±2</td>
<td>4±3</td>
</tr>
</tbody>
</table>

S.D: standard deviation
5.5.1b Nitric oxide synthase activity

Nitric oxide synthase (NOS) activity was found to be present in polyp tissue from the 3 groups. There was a significantly greater amount of activity present in tissue from aspirin-sensitive individuals compared to tolerant asthmatics or non-asthmatics (Table 5.8, Figure 5.46, and Figure 5.47). Moreover, the elevated level of NOS activity present in tissue from aspirin-sensitive individuals was independent of calcium, indicative of the inducible form of the enzyme (iNOS). Subgroup analysis revealed a significant difference between Group C and B (Kruskal-Wallis test with Dunn’s comparison of groups). Levels of NOS did not correlate with disease severity or with the occurrence of asthma.
Table 5.8

<table>
<thead>
<tr>
<th>Group</th>
<th>NOS activity</th>
<th>p value</th>
<th>iNOS activity</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP + ASA (n = 5)</td>
<td>579.5 ± 456.3</td>
<td>.05</td>
<td>501.9 ± 32.1</td>
<td></td>
</tr>
<tr>
<td>NP (n = 7)</td>
<td>96.52 ± 223.9</td>
<td></td>
<td>197.4 ± 220.8</td>
<td>.02</td>
</tr>
<tr>
<td>NP + A (n = 3)</td>
<td>28.97 ± 124.0</td>
<td></td>
<td>0 ± 41.06</td>
<td></td>
</tr>
</tbody>
</table>

p value derived using non-parametric test for 3 or more groups i.e. Kruskal-Wallis. Dunn’s multiple comparison test examines the relationship between the individual groups. For NOS activity none of the relationships were significant. However, for iNOS there was a significant difference between group NP+ASA and NP+A (Figure 5.46, 5.47).
Figure 5.46

iNOS activity in nasal polyp tissue

NOS activity in nasal polyp tissue
Levels of NOS activity in homogenates of polyp tissue obtained from patients without asthma (NP), with asthma (NP+A) or with aspirin-sensitive asthma (NP+ASA). Total NOS activity (open bars) was determined in the presence of calcium. iNOS activity (hatched bars) was determined in the absence of calcium and in the presence of EGTA. iNOS activity is expressed as pmol of L-citrulline formed by samples containing equivalent levels of protein (5 mg/incubation). In each case the level of arginine converted to citrulline in the presence of 1mM L-NAME, which constituted approximately 10% of total activity, (ie non-NOS activity) has been subtracted. Data is given as the mean ± S.E. mean for n=3-7 patients. ★ represents a statistically significant difference (one way analysis of variance followed by Dunns test) in the levels of total iNOS activity in samples from aspirin sensitive patients compared to individuals with polyps and asthma.
5.5.3 Immunohistochemistry

To measure expression of the cysteiny1 leukotriene$_1$ receptor and leukotriene B$_4$ receptor, in nasal biopsies from aspirin sensitive and aspirin tolerant subjects.

To compare the expression of cysteiny1 leukotriene$_1$ receptor and leukotriene B$_4$ receptor in aspirin-sensitive subjects, after desensitization with topical lysine aspirin or placebo control.

5.5.3a Aspirin-sensitive patients

Twenty-two aspirin sensitive patients underwent nasal biopsy. Fifteen were female (7 male), with a mean age of 40.8 (S.D: 18.2; range: 20-68 years). The majority were skin prick test positive (n=15), had asthma (n=19), and had undergone surgery for nasal polyps (n=19). The mean number of operations they had undergone was 5.9 (S.D: 4.4; range: 1-20).

These 22 patients were compared to the other patients forming the aspirin sensitive group. No significant differences were noted amongst the two, which indicated that these 22 patients represented the whole aspirin sensitive group.

5.5.3b Aspirin tolerant patients

Twelve aspirin tolerant patients underwent nasal biopsy. Seven were male (5 female), with a mean age of 49.4 (S.D: 13.3; range: 21-69 years). Five patients were skin prick test positive, 6 had asthma, and 5 had undergone surgery for nasal polyps. The mean number of operations they had undergone was 3.4 (S.D: 2.9; range: 1-7).

These 12 patients were compared to the other patients forming the aspirin tolerant group. The only significant difference amongst the two was in the number of patients undergoing surgery, which was significantly higher in the non-biopsied group (p=.008).
5.5.3c CD45 count, CysLT₁ and LTB₄ receptor expression

The total numbers of submucosal (CD45) leukocytes in aspirin sensitive and aspirin tolerant patients was not statistically different (p=.16, Figure 5.48, Table 5.9). The number of submucosal cells expressing the CysLT₁ receptor was significantly elevated in aspirin sensitive patients as compared to the aspirin tolerant group, although there was some overlap between the groups (p=.00, Figure 5.48, Table 5.9). In contrast, the numbers of cells expressing the LTB₄ receptor was not statistically different between the groups (P=.76, Figure 5.48, Table 5.9).

The percentages of the total leukocytes expressing the CysLT₁, but not the LTB₄ receptor was significantly elevated in the aspirin sensitive group as compared to the tolerant patients (p=.00, p=.23 respectively, Figure 5.49, Table 5.9).
Figure 5.48

Aspirin sensitive (AS) vs. Aspirin tolerant (AT)

Total CD45 cells/mm²

CysLT₁ receptor expressing cells/mm²

LTB₄ receptor expressing cells/mm²

Horizontal lines represent medians.
Figure 5.49

Aspirin sensitive (AS) vs. Aspirin tolerant (AT)

% of CD45 cells expressing CysLT₁ receptor

$\begin{array}{c}
\text{50} \\
\text{40} \\
\text{30} \\
\text{20} \\
\text{10} \\
\text{0} \\
\end{array}$

\[p = .00 \]

% of CD45 cells expressing LTB₄ receptor

$\begin{array}{c}
\text{100} \\
\text{50} \\
\text{0} \\
\end{array}$

\[p = .23 \]

Horizontal lines represent medians.
Table 5.9

Aspirin-sensitive vs. Aspirin tolerant (baseline data and comparison)

<table>
<thead>
<tr>
<th>Cells counted</th>
<th>GROUP</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AS (n = 22)</td>
<td>AT (n = 12)</td>
</tr>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>2797.27 ± 1158.7</td>
<td>2154.91 ± 595.03</td>
</tr>
<tr>
<td>Total CysLT₁ receptor expressing cells/mm²</td>
<td>628.82 ± 367.37</td>
<td>117.92 ± 60.77</td>
</tr>
<tr>
<td>Total LTB₄ receptor expressing cells/mm²</td>
<td>594.32 ± 277.1</td>
<td>669.75 ± 331.45</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT₁ receptor</td>
<td>24.09 ± 12.48</td>
<td>5.79 ± 3.07</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB₄ receptor</td>
<td>24.43 ± 14.96</td>
<td>33.31 ± 20.5</td>
</tr>
</tbody>
</table>
5.5.3d Phenotypes of cells expressing CysLT₁ and LTB₄ receptor

Macrophages, T cells, eosinophils, neutrophils and mast cells respectively accounted for a similar proportion of the total nasal submucosal cells expressing the CysLT₁ receptor, and the LTB₄ receptor in aspirin sensitive and aspirin tolerant patients (Figure 5.50, Table 5.10).
Table 5.10

Percentages of total LTC1 and LTB4 receptor-positive cells co-expressing leukocyte phenotypic markers in the nasal mucosa of 3 AS and 3 AT patients. Data are expressed as the mean (range)

<table>
<thead>
<tr>
<th>Leukocyte</th>
<th>% Of total LTB4 receptor expressing cells</th>
<th>% Of total LTC1 receptor expressing cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AS</td>
<td>AT</td>
</tr>
<tr>
<td>Macrophages</td>
<td>29.1 (24.8 -</td>
<td>29.8 (28.0 -</td>
</tr>
<tr>
<td></td>
<td>32.2)</td>
<td>30.8)</td>
</tr>
<tr>
<td>T cells</td>
<td>32.1 (31.8 -</td>
<td>31.6 (29.8 -</td>
</tr>
<tr>
<td></td>
<td>32.8)</td>
<td>32.7)</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>29.6 (24.5 -</td>
<td>26.6 (23.6 -</td>
</tr>
<tr>
<td></td>
<td>32.8)</td>
<td>32.3)</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>0.6 (0.5 - 0.6</td>
<td>1.6 (1.3 - 1.9</td>
</tr>
<tr>
<td></td>
<td>32.2)</td>
<td></td>
</tr>
<tr>
<td>Mast cells</td>
<td>7.2 (5.2 - 9.2</td>
<td>7.9 (4.3 - 11.5</td>
</tr>
<tr>
<td>Total</td>
<td>98.6</td>
<td>97.5</td>
</tr>
</tbody>
</table>
Figure 5.50

Double staining for LTB₄ receptor (brown) and Neutrophils (blue)

Double staining for CysLT₁ receptor (brown) and Neutrophils (blue)
5.5.3e Effect of desensitization with lysine-aspirin or placebo on numbers of cells expressing the CysLT$_1$ and LTB$_4$ receptors

i. 6 month desensitization

During the trial of desensitization (Trial 1; section 5.3), nasal biopsies were obtained from consenting patients at baseline and at the end of their 6-month phase. Three patients agreed to a biopsy at each stage, 2 at the end of the intranasal lysine-aspirin phase, and 1 at the end of the placebo phase. Thus, we had 5 pairs to compare baseline and post lysine-aspirin and 4 pairs to compare baseline and post placebo.

Table 5.11 and figure 5.51, 5.52 show the changes in the different cell counts after active or placebo treatment. There was tendency towards reduction in the total number of cells expressing CysLT$_1$ receptors (p=.13), which was more obvious when we narrowed our focus to CD45 leukocytes expressing CysLT$_1$ receptors (p=.06). Following placebo no significant changes were seen.

The reduction in CysLT$_1$ receptors both total, and as a percentage of CD45 was significantly greater in the intranasal lysine-aspirin phase when compared to the placebo phase (p=.03, and p=.03 respectively; Figure 5.52).
Table 5.11: Effect of long term desensitization (6 months)

<table>
<thead>
<tr>
<th>Count</th>
<th>Baseline</th>
<th>Post LAS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>2477.45 ± 1368.33</td>
<td>3513.72 ± 2369.96</td>
<td>.31</td>
</tr>
<tr>
<td>Total CysLT₁ receptor expressing cells/mm²</td>
<td>588.50 ± 240.66</td>
<td>252.00 ± 281.74</td>
<td>.13</td>
</tr>
<tr>
<td>Total LTB₄ receptor expressing cells/mm²</td>
<td>600.67 ± 332.71</td>
<td>562.00 ± 318.31</td>
<td>1.0</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT₁ receptor</td>
<td>.27 ± .09</td>
<td>.07 ± .04</td>
<td>.06</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB₄ receptor</td>
<td>.30 ± .24</td>
<td>.25 ± .18</td>
<td>.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count</th>
<th>Baseline</th>
<th>Post placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>2477.45 ± 1368.33</td>
<td>3847.37 ± 946.17</td>
<td>.38</td>
</tr>
<tr>
<td>Total CysLT₁ receptor expressing cells/mm²</td>
<td>588.50 ± 240.66</td>
<td>1820.25 ± 1967.85</td>
<td>.25</td>
</tr>
<tr>
<td>Total LTB₄ receptor expressing cells/mm²</td>
<td>600.67 ± 332.71</td>
<td>732.25 ± 248.69</td>
<td>.88</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT₁ receptor</td>
<td>.27 ± .09</td>
<td>.41 ± .34</td>
<td>.63</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB₄ receptor</td>
<td>.30 ± .24</td>
<td>.19 ± .05</td>
<td>.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% change post LAS</th>
<th>% change post placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>27.35 ± 30.74</td>
<td>71.98 ± 76.38</td>
</tr>
<tr>
<td>Total CysLT₁ receptor expressing cells/mm²</td>
<td>-54.16 ± 52.95</td>
<td>135.63 ± 150.23</td>
</tr>
<tr>
<td>Total LTB₄ receptor expressing cells/mm²</td>
<td>51.07 ± 141.64</td>
<td>86.01 ± 182.01</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT₁ receptor</td>
<td>-63.56 ± 36.55</td>
<td>42.72 ± 68.94</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB₄ receptor</td>
<td>44.44 ± 153.29</td>
<td>25.38 ± 97.19</td>
</tr>
</tbody>
</table>
Figure 5.51

Effect of long term desensitization (6 months)

CD45 expressing cells/mm²

\[n = 5 \]

\[p = .31 \]

\[p = .56 \]

LTB₄ receptor expressing cells/mm²

\[n = 5 \]

\[p = 1.0 \]

\[p = .56 \]

% of CD45 cells expressing LTB₄ receptor

\[n = 5 \]

\[p = .63 \]

\[p = 1.0 \]

Horizontal lines represent medians.
Figure 5.52

Effect of long term desensitization (6 months)

Horizontal lines represent medians.
ii. **2 week desensitization**

Nine patients agreed to have nasal biopsy following a 2-week course of either intranasal lysine-aspirin (n=5) or placebo (n=4) in order to study the effects of short-term desensitization. Table 5.12, figures 5.53, and 5.54 show the changes in the different cell counts after active or placebo treatment. CD45 leukocytes expressing There was a tendency towards significant reduction in CysLT1 receptors following intranasal lysine-aspirin (p=.06). Following placebo no significant changes were seen.
Table 5.12: Effect of short term desensitization (2 weeks)

<table>
<thead>
<tr>
<th>Count</th>
<th>Baseline</th>
<th>Post LAS</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>1051.02 ± 379.51</td>
<td>2660.83 ± 417.96</td>
<td>.13</td>
</tr>
<tr>
<td>Total CysLT<sub>1</sub> receptor expressing cells/mm²</td>
<td>455.64 ± 248.86</td>
<td>608.52 ± 430.23</td>
<td>.63</td>
</tr>
<tr>
<td>Total LTB<sub>4</sub> receptor expressing cells/mm²</td>
<td>709.95 ± 378.59</td>
<td>856.23 ± 278.21</td>
<td>.31</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT<sub>1</sub> receptor</td>
<td>41.72 ± 9.96</td>
<td>21.33 ± 5.38</td>
<td>.06</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB<sub>4</sub> receptor</td>
<td>64.95 ± 15.53</td>
<td>40.93 ± 28.47</td>
<td>.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count</th>
<th>Baseline</th>
<th>Post placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CD45 expressing cells/mm²</td>
<td>942.85 ± 290.34</td>
<td>1669.05 ± 680.29</td>
<td>.25</td>
</tr>
<tr>
<td>Total CysLT<sub>1</sub> receptor expressing cells/mm²</td>
<td>535.29 ± 250.89</td>
<td>675.06 ± 477.59</td>
<td>.88</td>
</tr>
<tr>
<td>Total LTB<sub>4</sub> receptor expressing cells/mm²</td>
<td>540.42 ± 185.01</td>
<td>689.11 ± 145.04</td>
<td>.25</td>
</tr>
<tr>
<td>% of CD45 cells expressing CysLT<sub>1</sub> receptor</td>
<td>55.49 ± 18.09</td>
<td>41.50 ± 26.25</td>
<td>.37</td>
</tr>
<tr>
<td>% of CD45 cells expressing LTB<sub>4</sub> receptor</td>
<td>57.09 ± 10.00</td>
<td>45.39 ± 18.40</td>
<td>.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% change post LAS</th>
<th>% change post placebo</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.37 ± 222.14</td>
<td>98.85 ± 118.74</td>
<td>.41</td>
</tr>
<tr>
<td>90.24 ± 178.10</td>
<td>51.23 ± 101.44</td>
<td>.91</td>
</tr>
<tr>
<td>55.35 ± 94.82</td>
<td>36.72 ± 40.99</td>
<td>.73</td>
</tr>
<tr>
<td>-46.64 ± 16.69</td>
<td>-24.51 ± 38.26</td>
<td>.91</td>
</tr>
<tr>
<td>-33.29 ± 46.49</td>
<td>-18.22 ± 35.40</td>
<td>.41</td>
</tr>
</tbody>
</table>
Figure 5.53

Effect of short term desensitization (2 weeks)

CD45 expressing cells/mm²

- **n = 5**
- **p = 0.13**

- **n = 4**
- **p = 0.25**

LTB₄ receptor expressing cells/mm²

- **n = 5**
- **p = 0.31**

- **n = 4**
- **p = 0.25**

% of CD45 cells expressing LTB₄ receptor

- **n = 5**
- **p = 0.31**

- **n = 4**
- **p = 0.38**

Horizontal lines represent medians.
Figure 5.54

Effect of short term desensitization (2 weeks)

- **CysLT₁ receptor expressing cells/mm²**
 - *n = 5*
 - **Baseline** vs **Post LAS**
 - Count:
 - Baseline: 250, 200, 150, 100, 50
 - Post LAS: 500, 600, 700, 800, 900
 - *p = .63*
 - **Baseline** vs **Post Placebo**
 - Count:
 - Baseline: 100, 200, 300, 400, 500
 - Post Placebo: 500, 600, 700, 800, 900
 - *p = .88*

- **% of CD45 cells expressing CysLT₁ receptor**
 - *n = 5*
 - **Baseline** vs **Post LAS**
 - Percent:
 - Baseline: 60, 50, 40, 30, 20
 - Post LAS: 10, 20, 30, 40, 50
 - *p = .06*
 - **Baseline** vs **Post Placebo**
 - Percent:
 - Baseline: 70, 60, 50, 40, 30
 - Post Placebo: 30, 40, 50, 60, 70
 - *p = .37*

Horizontal lines represent medians.
iii. **Combined data**

Since the trends in these changes following either 2 weeks or 6 months of treatment with lysine-aspirin or placebo were identical, the 2 groups were amalgamated for the purpose of further statistical analysis.

Identical trends were confirmed with no significant differences observed between the 2-week and 6-month treatment groups. Groups were compared for changes in absolute CD45 leukocyte counts, absolute numbers of CysLT\textsubscript{1} receptor expressing, LTB\textsubscript{4} receptor expressing cells, percentages of CD45 leukocytes expressing CysLT\textsubscript{1} receptor, and percentages of CD45 leukocytes expressing LTB\textsubscript{4} receptor.

The combined data are shown in Figure 5.55, 5.56 and representative sections are shown in Figure 5.57. In the patients treated with lysine-aspirin there was a small but significant (p=.03) increase in the total CD45 leukocytes in the nasal mucosa which was not seen in the patients treated with placebo. However, the difference between the changes in each group were not significant (p=.83). Treatment with lysine-aspirin was associated with a reduction in the percentages of CD45 leukocytes expressing CysLT\textsubscript{1} receptor in all 10 patients so treated (p=.002). The response to placebo treatment was heterogeneous but showed no overall significant change. The differences between the changes in the percentages of CD45 leukocytes CysLT\textsubscript{1} receptor in the lysine-aspirin and placebo-treated groups were also significant (p=.02). There were no significant changes in the percentages of CD45 leukocytes expressing the LTB\textsubscript{4} receptor in association with lysine-aspirin or placebo therapy, and the differences in the changes seen in each group were likewise not significant.
Figure 5.55

Effect of desensitization (long term and short term)

CD45 expressing cells/mm²

- **n = 10**
 - Baseline: [Graph 1]
 - Post LAS: [Graph 2]
 - p = .03

- **n = 8**
 - Baseline: [Graph 3]
 - Post placebo: [Graph 4]
 - p = .15

- **p = .83**

LTB₄ receptor expressing cells/mm²

- **n = 10**
 - Baseline: [Graph 5]
 - Post LAS: [Graph 6]
 - p = .56

- **n = 8**
 - Baseline: [Graph 7]
 - Post placebo: [Graph 8]
 - p = .25

- **p = .69**

% of CD45 cells expressing LTB₄ receptor

- **n = 10**
 - Baseline: [Graph 9]
 - Post LAS: [Graph 10]
 - p = .16

- **n = 8**
 - Baseline: [Graph 11]
 - Post placebo: [Graph 12]
 - p = .25

- **p = .41**

Horizontal lines represent medians.
Figure 5.56

Effect of desensitization (long term and short term)

CysLT₁ receptor expressing cells/mm²

\[n = 10 \]

\[p = .56 \]

\[p = .15 \]

CysLT₁ receptor expressing cells/mm²

\[n = 8 \]

\[p = .20 \]

% of CD45 cells expressing CysLT₁ receptor

\[n = 10 \]

\[p = .002 \]

\[p = .02 \]

% of CD45 cells expressing CysLT₁ receptor

\[n = 8 \]

\[p = .84 \]

Horizontal lines represent medians.
Figure 5.57

DESENSITISATION

Before

After

CysLT$_1$ receptor

LTB$_4$ receptor
DISCUSSION

6.1 Intranasal LAS in AS patients with nasal polyposis: clinical trial

6.1.1 Primary Aim

We studied the effects of alternate day, low dose (16 mgs) intranasal lysine-aspirin in patients with aspirin-sensitive nasal polyps. The clinical effectiveness of this therapeutic option in controlling nasal symptoms and polyp growth rate were evaluated by conducting a randomised, double blind, placebo-controlled, crossover trial. We also collected nasal turbinate tissue prior to and during the trial to examine the changes that may be occurring at a molecular level. Immunohistochemical analysis has shown for the first time that in patients with aspirin-sensitive nasal polyposis there is a significant selective increased expression of CysLT_1 receptor on nasal submucosal inflammatory cells, and that low dose intranasal lysine-aspirin leads to a significant reduction in the number of cells expressing this receptor when compared to placebo. However, analysis of the clinical parameters failed to demonstrate any significant benefit on nasal symptoms or polyp growth rate.

6.1.2 Rationale for the study

Since the initial report on tolerance to aspirin after a positive oral challenge (Stevenson et al. 1980), and an improvement in rhinitis and asthma following its continued use, several studies have been published to evaluate the clinical effectiveness of regular aspirin (Table 6.1). Majority of these studies concluded that regular intake of aspirin improved the patients nasal symptoms and controlled polyp growth rate. Gastrointestinal side effects were reported by many studies with percentages ranging from 8-46%. To avoid these side effects a new route, intranasal, was employed for desensitization (Patriarca et al. 1991b). This study demonstrated the beneficial effects of low dose intranasal lysine-aspirin on nasal symptoms and polyp growth.
Table 6.1

Trials of desensitization

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Type of study</th>
<th>Method</th>
<th>Dose (mgs)</th>
<th>n</th>
<th>Period (mths)</th>
<th>Outcome measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>1980</td>
<td>Observation</td>
<td>Oral</td>
<td>325-650</td>
<td>2</td>
<td>8-9</td>
<td>FEV₁, Oral CS use, Nasal CS use, Nasal symptoms (arbitrary scale 0-4)</td>
<td>Stable, Reduced, Same, Improved</td>
</tr>
<tr>
<td>Chiu</td>
<td>1983</td>
<td>Prospective</td>
<td>Oral</td>
<td>173-807</td>
<td>12</td>
<td>4</td>
<td>Subjective asthma status, Oral CS use, Inhaled CS use</td>
<td>Improved = 50%, No change = 25%, Worse = 25%, Stopped = 1 (8%), Stopped = 3 (24%)</td>
</tr>
<tr>
<td>Lumry</td>
<td>1983</td>
<td>Prospective</td>
<td>Oral</td>
<td>325-2600</td>
<td>17</td>
<td>12</td>
<td>Patient reported improvement: In nasal symptoms & asthma</td>
<td>Improved =11 (47%), Initial improvement = 2 (12%), No improvement = 4 (23%)</td>
</tr>
<tr>
<td>Stevenson</td>
<td>1984</td>
<td>R, DB, PC, CO</td>
<td>Oral</td>
<td>325-2600</td>
<td>25</td>
<td>7</td>
<td>Daily nasal symptoms (arbitrary scale 1-5), Daily chest symptoms (arbitrary scale 1-5), FEV₁ monthly, Oral CS use</td>
<td>Improvement = 67%, Improvement = 48%, No comment, Reduced = 36%, Same = 20%, More = 24%</td>
</tr>
<tr>
<td>Naeije</td>
<td>1984</td>
<td>Prospective</td>
<td>Oral</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>FEV₁, Oral/Inhaled CS use</td>
<td>No improvement, No improvement</td>
</tr>
<tr>
<td>Kowalski</td>
<td>1986</td>
<td>Prospective</td>
<td>Oral</td>
<td>600</td>
<td>14</td>
<td>1</td>
<td>Nasal symptom score (no scale), Asthma score (no scale), Response to inhaled histamine</td>
<td>Improvement = 8 (57%), Improved = 7 (50%), Improved = 10 (71%)</td>
</tr>
<tr>
<td>Group</td>
<td>Year</td>
<td>Type of study</td>
<td>Method</td>
<td>Dose (mgs)</td>
<td>n=</td>
<td>Period (mths)</td>
<td>Outcome measures</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-----</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Sweet</td>
<td>1990</td>
<td>Retrospective, with controls</td>
<td>Oral</td>
<td>325-2600</td>
<td>107</td>
<td>25-102</td>
<td>Hospital visits</td>
<td>Reduced (p= .01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral/inhaled/nasal CS use</td>
<td>Reduced (p< .01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smell sense</td>
<td>Improved (p< .01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nasal symptoms (arbitrary scale 1-5)</td>
<td>Reduced (p< .01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chest symptoms (arbitrary scale 1-5)</td>
<td>Reduced (p= .10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of polypectomies</td>
<td>Less (p= .04)</td>
</tr>
<tr>
<td>Patriaca</td>
<td>1991</td>
<td>Prospective, with controls</td>
<td>Intranasal</td>
<td>2</td>
<td>28</td>
<td>24</td>
<td>Relapse of polyps</td>
<td>Reduced (p< .0001)</td>
</tr>
<tr>
<td>Schapowal</td>
<td>1994</td>
<td>R, DB, PC</td>
<td>Intranasal</td>
<td>100</td>
<td>12</td>
<td>1</td>
<td>Nasal symptoms (arbitrary scale 0-4)</td>
<td>No significant difference on all counts when compared to placebo group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nasal polyps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smell sense</td>
<td></td>
</tr>
<tr>
<td>Stevenson</td>
<td>1996</td>
<td>Prospective</td>
<td>Oral</td>
<td>325-1950</td>
<td>29</td>
<td>12-36</td>
<td>Attacks of sinusitis/year</td>
<td>Less (p= .0001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>36-72</td>
<td>Sinus surgery/year</td>
<td>Less (p=. 001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospital visits</td>
<td>Less (p=. 005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral/inhaled/nasal CS use</td>
<td>Reduced (p= .002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smell sense</td>
<td>Improved (p< .0001)</td>
</tr>
<tr>
<td>Nucera</td>
<td>2000</td>
<td>Prospective, with controls</td>
<td>Intranasal</td>
<td>4</td>
<td>38</td>
<td>72</td>
<td>Recurrence of nasal polyps</td>
<td>Less (p< .001)</td>
</tr>
<tr>
<td>Gosepath</td>
<td>2001</td>
<td>Prospective</td>
<td>Oral</td>
<td>100</td>
<td>30</td>
<td>12</td>
<td>Recurrence of nasal polyps</td>
<td>Reduced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Attacks of sinusitis</td>
<td>Reduced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung function</td>
<td>Improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nasal blockage, Smell sense</td>
<td>Improved</td>
</tr>
</tbody>
</table>
We decided to undertake a similar trial at our hospital where the specialist rhinology clinics (led by my internal supervisor Dr. Glenis Scadding) managed a large population of patients with nasal polyps many of whom were aspirin-sensitive. These patients were treated with traditional methods that included medical polypectomy (a course of oral corticosteroids), long-term intranasal corticosteroids, and surgical polypectomy when required. An alternative therapeutic option was very welcome and to explore the possibilities in detail we designed this trial.

6.1.3 Design of our study

Desensitization using aspirin intranasally has been attempted only on one occasion (Patriarca et al. 1991b). Despite the success there are several criticisms of the trial. The patients were not randomised or blinded. Their publication does not mention the criteria for allocating patients to the active treatment or control group, and if there was any attempt to match them at baseline. Also, the use of adjuvant intranasal medication by the groups during their trial period is unclear.

To address these issues we designed a randomised, double blind, placebo-controlled trial. During our trial patients were requested to stop all other intranasal medication. We were available to see our patients between scheduled visits if they deteriorated. Our clinical and laboratory assessment helped us decide if withdrawal was warranted.

Recruiting an adequate number of patients for a long-term study can be difficult (Stevenson et al. 1996). Allocating the patients into the active treatment or control group would increase the sample size further. To deal with these issues we decided on a crossover design, which reduces subject variability from treatment comparisons and thus decreases the number of subjects required (Altman, 1991). In addition, this design is particularly suited for studying chronic conditions (Feingold and Gillespie, 1996). In fact the only properly controlled trial of desensitization has employed this design (Stevenson et al. 1984).

A disadvantage of the crossover trial is the possibility of a ‘carry over’ effect (Altman, 1991). Here the treatment effect from one period is forwarded into the next study period. Such a treatment period interaction could invalidate data obtained from the second phase of the trial. To counter this period effect a wash-out period is
included in the design of the trial. We incorporated a 1-month 'washout' phase between treatment periods (Stevenson et al. 1984).

6.1.4 Treatment dose, and regimen

We based our dose of intranasal lysine-aspirin on the Italian trial, which was 2 mgs (Patriarca et al. 1991b). However, we found that most of our patients had a positive challenge with 8-16 mgs, and required 16 mgs to be desensitized. In addition, none of our patients experienced chest symptoms at this dose during the challenge. Thus, 16 mgs was the final dose we chose for intranasal lysine-aspirin.

To determine the frequency of trial medication we considered the temporal characteristics of the refractory period (Zeiss and Lockey, 1976). These have been studied in detail (Pleskow et al. 1982). It lasts between 2-5 days. Thus, we decided to have an alternate day regimen (every 48 hours).

6.1.5 Outcome measures

Investigators have used several variables to study the treatment effect of oral or intranasal aspirin (Table 6.1). These variables can be classified as those measuring nasal changes and those measuring lung function changes. These measurements can be either subjective or objective (Table 6.2).

None of the trials to date have used objective, validated methods to study the effects of desensitization. Changes in nasal symptoms have been measured using subjective scales, which were not validated. Apart from these scales, indirect methods e.g. attack of sinusitis/year, sinus surgery/year, use of nasal corticosteroids, have been employed to indicate a change in nasal airway status. Also, in the long-term studies (Stevenson et al. 1996; Sweet et al. 1990) the final analysis and its implications depended on accurate reporting of data. Many desensitized patients were discharged to the care of their local physician who recorded subsequent changes. These methods of data entry can be a major source of variability and introduce errors in analysis. In the trial using intranasal lysine-aspirin (Patriarca et al. 1991b), the investigators did use a semi objective method to measure airway dimensions (digital rhinomanometry). However, they confined its use to the initial challenge and not in the follow up of their patients. Several studies have used measures such as
recurrence or relapse of polyps, and the need for polypectomy. These outcome measures are debatable. It is difficult to remove the entire polypoidal lining of the sinuses at surgery. This would make it difficult to document recurrence, as patients will invariably show evidence of polyps immediately after surgery if examined carefully with a rigid nasendoscope. The need for surgery can also be dependent on the patient’s threshold to tolerate nasal obstruction, and the surgeon’s preferences. These issues are particularly relevant in trials without any ‘blinding’.

Lung function changes have been monitored using symptom scores and peak expiratory flow rate (FEV\textsubscript{1}). Indirect methods have included documenting number of asthma attacks/year, need for hospitalisation/year, and oral or inhaled corticosteroid use. In the trial of desensitization via the nasal route (Patriarca et al. 1991b), it is mentioned that the patients’ asthma did not deteriorate. However, there is no mention of the method used to monitor the lung function, and baseline versus end of trial figures are not reported. Most trials that have used oral aspirin monitored their patients’ asthma using FEV\textsubscript{1}. In the only properly controlled trial (Stevenson et al. 1984), these measurements were done on a monthly basis. This monitoring is infrequent as patients’ took aspirin daily, and it could allow for small changes in lung function status to go undetected.

In designing our trial outcome measures we attempted to manage these issues by including validated methods that had been successfully used in detecting nasal and chest airway changes. Nasal airway changes were monitored using a twice-daily symptom score and NIPF. We were using the same scale for the symptom score during our intranasal lysine-aspirin challenge. It correlated well with the changes measured by acoustic rhinometry. However, the method is subjective and hence we decided to implement significance to changes in excess of 40%. NIPF is used often and has a sensitivity of 80% in detecting changes in nasal patency (Porter et al. 1996). Our primary method of detecting small changes in nasal airway patency was acoustic rhinometry (Elbrond et al. 1991b). It is highly sensitive (Porter et al. 1996), and its use as an effective tool in monitoring treatment effects on nasal polyps has been validated (Elbrond et al. 1991a; Lindholt, 1989; O’Flynn, 1993). To monitor lung function changes we decided to follow the same approach as most of the earlier trials.
Table 6.2

Outcome measures used in various studies

<table>
<thead>
<tr>
<th>Nasal changes</th>
<th>Objective</th>
<th>Chest changes</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective</td>
<td>Objective</td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>Asking a patient if their nose is better/same/worse</td>
<td>Asking a patient if their asthma is better/same/worse</td>
<td>FEV1</td>
<td></td>
</tr>
<tr>
<td>Symp score (scale 0-4, or 1-5)</td>
<td>Chest score (scale 1-5)</td>
<td>Oral/Inhaled CS use</td>
<td></td>
</tr>
<tr>
<td>Nasal CS use</td>
<td>Oral/Inhaled CS use</td>
<td>Hospital visits for acute attacks</td>
<td></td>
</tr>
<tr>
<td>Attacks of sinusitis/year</td>
<td>Hospital visits for acute attacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinus surgery/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sense of smell (better/same/worse)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence of nasal polyps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need for polypectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3

Outcome measures in our study

<table>
<thead>
<tr>
<th>Nasal changes</th>
<th>Objective</th>
<th>Chest changes</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective</td>
<td>Objective</td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td>Daily nasal scores (validated; scale: 0-10)</td>
<td>Daily NIPF (am/pm)</td>
<td>Daily chest scores (validated; scale: 0-10)</td>
<td>Daily FEV1 (am/pm)</td>
</tr>
<tr>
<td>Acoustic rhinometry (Amin/Volume)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and use PEFR (FEV$_1$). In addition, nasal/Thoracic scores and NIPF/PEFR were measured on a twice-daily basis, making small changes detectable.

6.1.6 Critique of our clinical trial

Nine patients completed both phases of the trial, 1 completed only the lysine-aspirin phase, and 3 only the placebo phase. As mentioned in section 6.1.1 of this chapter, intranasal lysine-aspirin did not improve our patients' nasal symptoms or reduce polyp growth.

Table 6.4 summarizes the changes and adds the dimension of time. It is evident from the table that there was deterioration in the nasal airway during the active phase. However, the same applies to the placebo phase and moreover the differences are not significant. This implies that patients deteriorated as expected if untreated. Also, if they were not in a desensitized state, with repeated applications of aspirin the degree of deterioration would have been greater. As this was not the case, it establishes 16 mgs as an adequate dose for desensitization.

It is important to consider the time spent by each patient in the 2 phases. Table 6.4 shows that time spent in the lysine-aspirin phase was marginally less than in the placebo phase, but the variability was higher, and a paired t-test did not show any significant difference ($p = .091$). However, a paired samples correlation was significant ($p = .011$). This indicates that each patient spent approximately the same time in the 2 phases. Again, this shows that 16 mgs of lysine-aspirin did not cause a regular nasal reaction, which would have led to a faster deterioration in these patients compared to placebo. It was also important to analyse the diary entries on a weekly basis (longitudinal data) to see if there were any period effects. We did not find any such effects or 'escape' from the desensitized state as mentioned in an earlier study (Stevenson et al. 1984).

Table 6.4 also highlights the stability of our patients' asthma status. The peak flow rate remained consistently near the baseline throughout the two trial periods, as seen in figure 5.6. None of our patients required treatment with oral corticosteroids during the trial.
Table 6.4

Changes during the trial phases

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LAS phase</th>
<th>Placebo phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (weeks)</td>
<td>12.27 ± 8.73</td>
<td>16.27 ± 12.1</td>
</tr>
<tr>
<td>Nasal changes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR - Amin</td>
<td>-31.48 ± 39.4</td>
<td>-25.77 ± 51.69</td>
</tr>
<tr>
<td>NIPF</td>
<td>-19.73 ± 22.99</td>
<td>-31.93 ± 43.71</td>
</tr>
<tr>
<td>Nasal score</td>
<td>-32.08 ± 66.36</td>
<td>-38.93 ± 72.1</td>
</tr>
<tr>
<td>Chest changes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEFR (FEV₁)</td>
<td>-2.86 ± 4.48</td>
<td>-3.15 ± 12.22</td>
</tr>
<tr>
<td>Chest score</td>
<td>-27.46 ± 34.75</td>
<td>-36.74 ± 120.65</td>
</tr>
</tbody>
</table>

AR: acoustic rhinometry
Mean ± standard deviation
Negative values indicate deterioration
6.1.7 Limitations of the trial

The main criticism of our study would be its small sample size. Our calculations suggested that we would reach an adequate power if 12 patients completed both phases successfully. To achieve this target we thought enrolling 20 patients would be sufficient. However, we fell short of our target despite enrolling 22 patients. Recruitment difficulties have been highlighted in a previous report (Stevenson et al. 1996). We found recruitment was not difficult. However, a 1-year trial period was a problem for many who were enrolled. Some patients moved away from the area and could not follow up. Others found it time consuming to maintain a regular regimen of diary keeping and medication. We realised these problems and continued to recruit but this prolonged the total duration of the trial. An ideal situation would be to enroll larger number of patients who all start at the same time, thus reducing the overall time of the trial.

6.1.8 Revised sample size calculations

Our sample size calculations (section 3.2.8) were based on results of an earlier trial (Patriarca et al. 1991a), and a formula that utilized ‘effect size’ in its equation (Florey, 1993). We decided to put an arbitrary figure of 50% to the effect size. This meant we were hoping to see a difference in improvement of 50% between patients on placebo and active treatment. This 50% improvement would be a composite of all outcome measures. However, in retrospect we think this is incorrect because we did not have method to convert the results into composite scores.

If the study was to be repeated we would suggest that improvement should be based on acoustic rhinometry outcome measures i.e. Volume change, and Amin₁ change. Based on these outcome measures we present revised figures for the sample size.

The figures are based on a nomogram used to calculate sample size (Altman, 1991). For continuous data (acoustic rhinometry measures), 4 quantities need to be specified. These are:

1. Standard deviation of variable i.e. Volume change, and Amin₁ change (S.D)
2. Clinically relevant difference (δ)
3. Significance level (α)
4. Power (1 – β)
We calculated the S.D for Volume and Amin\textsubscript{1} from the challenge data available to us on 98 patients. The values were 9.4 mls, and .58 mm2 respectively. The clinically relevant difference, we think, that could be considered as a significant change would be 5 mls and .5 mm2 respectively. Significance level and power would be set at .05 and .80 respectively. Before using the nomogram we have to calculate another quantity, which is called Standardized difference. The formula for this quantity in a cross-over trial is 2\delta/S.D. Thus, the standardized difference for Volume would be 1, and that for Amin\textsubscript{1} would be 1.7. Based on these figures we use the nomogram to derive a sample size. If the primary outcome measure is volume it would be 30 patients. If the primary outcome measure is Amin\textsubscript{1} it would be 16 patients.
6.2 Mechanism of aspirin-sensitivity

6.2.1 Findings of laboratory-based studies

We conducted 2 laboratory-based studies to provide further insight into the mechanism of aspirin-sensitivity. The tissues studied were nasal mucosa and nasal polyps. In each study a comparison was made between aspirin-sensitive and aspirin tolerant individuals. The results of these studies have been published (Parikh et al. 2002; Sousa et al. 2002). The main findings from these studies were:

Compared to aspirin tolerant patients with nasal polyps, those with aspirin-sensitive nasal polyps express significantly more CysLT₁ receptors on nasal submucosal inflammatory cells. There is no difference in the expression of LTB₄ receptors.

There is a significantly higher expression of iNOS in nasal polyps from aspirin-sensitive compared to aspirin tolerant patients.

6.2.2 CysLT₁ receptor expression

Leukotrienes, in particular cysteinyi leukotrienes, have been the primary focus of inquiry into the mechanism of aspirin-sensitivity for several years. These investigations have firmly established them as the responsible mediators of the chronic inflammatory process in aspirin-sensitive individuals.

Figure 6.1 shows the various studies that have added to the knowledge base of our understanding about the mechanism of aspirin-sensitivity. The findings of our study provide the possible reason for the increased sensitivity to cysteinyi leukotrienes.

6.2.3 Inducible nitric oxide synthase expression

As shown in figure 6.1, leukotriene production is upregulated in aspirin-sensitive patients. Cysteinyi leukotrienes have been implicated in activation of the enzyme
Figure 6.1

? Polymorphism of LTC₄S gene

Overexpression of LTC₄S

Increased baseline synthesis of CysLTs

Enhanced release of CysLTs after aspirin

Increased end organ responsiveness

Enhanced expression of CysLT₁ receptor
nitric oxide synthase leading to formation of nitric oxide (Ignarro, 1990). This has been demonstrated by our study, which showed a significantly elevated expression of iNOS levels in polyp tissue of aspirin-sensitive patients as compared to aspirin tolerant individuals (Parikh et al. 2002).

We propose that these high levels of iNOS may play an important role in intensifying and self-propagating the microenvironment of inflammation in aspirin-sensitive patients (Figure 6.2). It is known that Fas ligand-Fas receptor interactions play an important role in the regulation of eosinophil apoptosis (Hebestreit et al. 1998). NO specifically prevents this interaction enhancing eosinophil survival at sites of inflammation. In aspirin-sensitive subjects this NO could prevent Fas ligand-Fas receptor interaction leading to increased survival of eosinophils, which in turn express more cytokines leading to recruitment and activation of more cells. This process could continue in an autocrine fashion propagating the inflammation. A recent study seems to confirm our suspicion that eosinophils survive longer in this microenvironment (Kowalski, 2000).
Possible role of iNOS in aspirin-sensitivity

Increased production of CysLTs

Activation of iNOS

High levels of iNOS

High levels of NO

Prevention of eosinophil apoptosis

↑ cytokine release → further recruitment/activation
6.2.5 Role of COX-2, and COX products

Figure 6.3 explains the hypothetical role played by COX-2 and COX products in aspirin-sensitive patients, with and without intake of NSAIDs (Mitchell and Belvisi, 1997). There is scientific basis for this hypothesis. It has been shown that expression of COX-2 mRNA is enhanced in asthmatic airways of aspirin-sensitive patients (Sousa et al. 1997b). In the presence of aspirin COX-2 is modified leading to the production of 15-HETE from AA rather than prostaglandins. These metabolites are processed further by 5LO to form a new group of products called 15-Epilipoxins. It has been suggested that these novel metabolites may have a putative role in aspirin sensitivity (Mitchell and Belvisi, 1997). However, recent work suggests an anti-inflammatory role for these mediators (Chavis et al. 2000; Serhan, 2002), which does not support the above hypothesis. In addition, there is conflicting evidence about COX-2 expression in the airways of aspirin-sensitive patients. Rather than an increase some studies have shown that COX-2 expression is reduced in aspirin-sensitive patients (Picado et al. 2003; Picado et al. 1999).

Another explanation forwarded is based on the bronchoprotective role played by PGE₂. Studies have shown that inhaled PGE₂ can prevent aspirin-induced bronchoconstriction in aspirin-sensitive patients and that this may not be related to its bronchodilator action (Sestini et al. 1996; Szczeklik et al. 1996). These researchers have suggested that formation of PGE₂ probably leads to an inhibitory effect on leukotriene production and the addition of a NSAID prevents its production. Subsequently, LT production is increased due to its release from the inhibitory effect of PGE₂. This proposed mechanism has not been disputed, but fails to explain the complete picture of aspirin-sensitivity.
Figure 6.3: Role of COX products in aspirin-sensitivity

Without NSAID

\[COX \]
\[\longrightarrow \]
\[AA \]
\[\longrightarrow \]
\[SLO \]
\[\longrightarrow \]
\[Other \text{ PGs} \]
\[\longrightarrow \]
\[PGE_2 \]
\[\longrightarrow \]
\[LTs \]
\[\text{Inhibitory effect} \]

Bronchodilator effect

With NSAID

\[COX \]
\[\longrightarrow \]
\[AA \]
\[\longrightarrow \]
\[SLO \]
\[\longrightarrow \]
\[COX-2 \]
\[\longrightarrow \]
\[Other \text{ PG's} \]
\[\longrightarrow \]
\[PGE_2 \]
\[\longrightarrow \]
\[LTs \]
\[\text{Inhibitory effect} \]

Bronchodilator effect

\[15 \text{ HETE} \]
\[\longrightarrow \]
\[SLO \]
\[\longrightarrow \]
\[15 \text{ Epilipoxins} \]
6.2.6 A new paradigm for aspirin-sensitivity

Over the years various explanations have been put forward to explain the mechanism by which aspirin and other NSAIDs cause a reaction in aspirin-sensitive individuals. As mentioned above, CysLTs seem to be at the centre of such reasoning. Despite scientific evidence of increased LT production in these individuals, their origins remain unclear, particularly in the absence of extrinsic exposure to NSAIDs. Our finding of increased CysLT₁ receptor expression emphasises the role of CysLTs. However, receptor physiology dictates that in most instances of chemical messenger-receptor interaction, increased levels of the chemical should lead to a down regulation of the corresponding receptor (Ganong, 1987). This is not a rigid rule e.g. angiotensin II increases the number of active receptors in the adrenal gland, or IgE increases expression of FcεR. This may be the case with CysLTs. Again, our finding of high iNOS activity helps by providing a possible explanation for reduced eosinophil apoptotic activity in aspirin-sensitive subjects.
Figure 6.4

A new paradigm for aspirin-sensitivity

POPULATION

No Pre-existing susceptibility

Environmental factors:
POLLUTANTS
DIET
RT* INFECTION
ALLERGY

Pre-existing susceptibility

? GENETIC
? IMMUNOLOGIC

Shift towards ↑ inflammation

Not LT driven

Shift towards ↑ inflammation

LT driven

☑ LT production

☐ ASPIRIN/NSAID INTAKE

☐ LT production reaches a critical mass

☐ AS DISEASE

☐ AT DISEASE

RT: respiratory tract; ☑: reaction; ☐: no reaction
All these findings help our understanding of the underlying disease process at the end organ level. However, reasons for a particular individual being aspirin-sensitive in the first place remain unclear. A possible mechanism, purely speculative, which considers interplay of various factors, is shown in Figure 6.4. This hypothesis is based on the premise that a reaction to aspirin or NSAID is purely coincidental, and its intake does not play a role in the pathogenesis of this disorder. Individuals with a pre-existing susceptibility to inflammation, which is predominantly leukotriene driven are likely to develop the spectrum of manifestations when they are exposed to an interplay of various environmental factors. The pre-existing susceptibility may be genetic, immunologic, or both, ensures that the inflammation is leukotriene mediated. The individual’s inherent characteristics and environmental influences continue their interplay leading to increasing leukotriene production. In the initial stages of the disease process, NSAID intake will not cause an untoward reaction, as the production of leukotriene has not reached a critical level. The inflammatory process continues driven by internal and external influences, and reaches a stage where LT production attains a critical mass. From here on if the individual takes aspirin or NSAID, a COX (1,2) blockade will remove the inhibitory influence of PGE₂, divert some metabolites towards the 5LO pathway, exaggerating the LT release, and precipitating a clinical reaction. This theory can explain the continuing inflammatory process despite lack of exposure to NSAID. However, as mentioned above, it is purely speculative.

Desensitization is more difficult to explain based on this theory. However, continued exposure to aspirin could work at different levels. Firstly, it could work as an anti-inflammatory agent. Secondly, regular intake could lead to a depletion of LT stores, and production not keeping up with its pace. Thirdly, PGE₂ production resumes ‘escaping’ the COX blockade. Fourthly, regular aspirin may increase production of 15-Epilipoxins that may have a beneficial effect. Lastly, as our study has shown a reduction in LT receptor expression plays an important role in desensitization (section 6.3).

6.2.7 Genetic susceptibility: role of leukotriene related gene polymorphisms

As mentioned in the previous section one possible reason for an individual to overproduce leukotrienes and develop aspirin-induced disease is their genetic
susceptibility. The enzymes involved in the production of leukotrienes are 5 lipoxygenase (ALOX5), and leukotriene C4 synthase (LTC4S). These have been the focus of several genetic studies. In particular, attention has been on the promoter region of the enzyme gene.

A single nucleotide polymorphism (SNP) in the LTC4S gene has already been mentioned in section 1.2.6b. This SNP has been shown to have a positive association with aspirin induced disease in the Polish population (Sanak et al 1997, Sanak et al 2000). However, this association has not been replicated in the Japanese (Kawagishi et al 2002), American (Van Sambeek et al 2000), and Korean (Choi et al 2004) populations suggesting a population stratified finding.

Two studies have investigated promoter segment polymorphism of the ALOX5 enzyme gene (In et al 1997, Choi et al 2004). The first study showed a promoter segment polymorphism, which consisted of a variable number of tandem repeats of GC rich motifs that are associated with binding of Sp1 transcription factors (In et al 1997). Subjects with the wild type genotype (5 repeats) show a significantly higher capacity to produce CysLTs compared to a mutant genotype (3, 4 or 6 repeats). Also, the study suggested that this polymorphism may be responsible for the variable response of asthma patients to drugs that modulate the 5LO pathway.

The second study investigated the role of several leukotriene related single nucleotide polymorphisms in a group of Koreans which consisted of 93 aspirin intolerant asthmatics, 181 aspirin tolerant asthmatics, and 123 normal controls (Choi et al 2004). They found the frequency of ALOX5-h1 (G-C-G-A) haplotype to be significantly higher in patients with aspirin-induced asthma as compared to patients with aspirin tolerant asthma (odds ratio = 5).
6.3 *Mechanism of desensitization*

Table 6.5 highlights the various changes noted following chronic aspirin intake. Apart from our study (Sousa et al. 2002), changes in nasal mucosa have never been studied before, and in particular those after long-term intranasal aspirin use. Only one study, which demonstrated a beneficial effect of intranasal lysine-aspirin has speculated on its potential mechanism (Nucera et al. 2000). They hypothesize that the effect of intranasal LAS is most likely due to its direct anti-inflammatory action. They base this on the findings of a study where LAS was shown to inhibit growth of nasal polyp cells in a culture medium (Bruzese et al. 1998).

None of the studies using the oral route for desensitization have investigated nasal mucosal changes. However, changes shown after chronic oral aspirin use include a reduction of cysteinyl leukotriene - LTB₄, LTC₄, and LTE₄ release in nasal secretions, urine, or peripheral leukocytes (Ferreri et al. 1988; Gosepath et al. 2001; Juergens et al. 1995; Nasser et al. 1995) (Table 6.5). Also, a significant decrease in sensitivity to inhaled LTE₄ has been demonstrated (Arndt et al. 1989).

These changes establish that there is a generalised down regulation of leukotriene synthesis, in particular cysteinyl leukotrienes, and also decreased end organ responsiveness. This should lead to a reduction in tissue inflammation, with improvement in nasal symptoms and slowing of polyp growth.

6.3.1 *What our study adds*

Using immunohistochemistry, we have shown for the first time that compared to placebo, alternate day intranasal lysine-aspirin (16 mgs) significantly reduces the number of nasal submucosal inflammatory cells expressing CysLT₁ receptors. This reduction seems to occur as early as 2 weeks after starting intranasal treatment, and is maintained for as long as 6 months. A significant decrease in end organ responsiveness has been demonstrated (Arndt et al. 1989), and it was speculated that this is likely to be due to down regulation of the relevant receptors. Our study seems to provide this vital proof.

Speculations on the possible mechanisms of desensitization have been proposed in section 6.2.6, under ‘A new paradigm for aspirin-sensitivity’.
Table 6.5

Observations on mechanism of desensitization

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Observed changes after desensitization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferriri et al</td>
<td>1988</td>
<td>Nasal secretions:</td>
</tr>
<tr>
<td>(oral, 650 mgs)</td>
<td></td>
<td>• Marked reduction in levels of LTC₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Marked reduction in levels of histamine</td>
</tr>
<tr>
<td>Arm et al</td>
<td>1989</td>
<td>• Marked reduction in sensitivity to inhaled LTE₄</td>
</tr>
<tr>
<td>(oral, 600 mgs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juergens et al</td>
<td>1995</td>
<td>Peripheral monocytes:</td>
</tr>
<tr>
<td>(oral, 650 mgs)</td>
<td></td>
<td>• Reduced synthesis of LTB₄</td>
</tr>
<tr>
<td>Nasser et al</td>
<td>1995</td>
<td>Urine:</td>
</tr>
<tr>
<td>(oral, 600 mgs)</td>
<td></td>
<td>• Reduction in mean levels of LTE₄</td>
</tr>
<tr>
<td>Gosepath et al</td>
<td>2001</td>
<td>Mixed lymphocyte culture:</td>
</tr>
<tr>
<td>(oral, 100 mgs)</td>
<td></td>
<td>• Reduction in release of peptido-leukotrienes, LTB₄, LTC₄, LTE₄</td>
</tr>
<tr>
<td>Sousa et al</td>
<td>2002</td>
<td>Nasal tissue:</td>
</tr>
<tr>
<td>(intranasal, 16 mgs)</td>
<td></td>
<td>• Marked reduction in submucosal inflammatory cells expressing CysLT₁ receptor</td>
</tr>
</tbody>
</table>
6.4 Intranasal lysine-aspirin in aspirin tolerant patients with nasal polyposis: clinical trial

6.4.1 Primary Aim

We conducted a randomised, double blind, placebo controlled, parallel group trial in aspirin tolerant patients to study the effect of intranasal lysine-aspirin on their nasal symptoms, and polyp growth. Patients used their trial medication in conjunction with regular daily intranasal corticosteroid.

We did not find intranasal lysine-aspirin to be more effective than placebo in augmenting the response to intranasal corticosteroids. Both patient groups gradually deteriorated. This was reflected by an increase in nasal symptom scores, quality of life scores, and an increase in polyp size. Quality of life deteriorated more significantly in the lysine-aspirin group. For all other measured parameters, the differences were not significant.

6.4.2 Rationale for the study

Nasal polyps are manifestations of a chronic inflammatory process for which we do not have a cure. Control of symptoms, primarily nasal blockage requires medical treatment, which consists of oral corticosteroids in bursts, and regular intranasal corticosteroids for maintenance. If these fail, surgery is the only other option. Medical therapy is aimed at the underlying inflammation and hence impacts on all symptoms including nasal obstruction, whereas surgery deals primarily with the later. Thus, any additional medical therapy would add to our armamentarium when used alone or in conjunction with intranasal corticosteroids.

There have been only 3 studies evaluating intranasal lysine-aspirin in the treatment of patients with aspirin tolerant nasal polyps (Table 6.7). Two of them have been conducted by the same group, but at different times, and with differing dose regimens (Nucera et al. 2000b; Patriarca et al. 1991b). Both concluded that intranasal lysine-aspirin was beneficial in controlling nasal polyp growth and reducing their relapse rate. The third study, which was more scientific and used objective parameters to
Table 6.6

Trials of intranasal LAS in aspirin tolerant patients

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>Type of study</th>
<th>Dose (mgs)</th>
<th>Regimen</th>
<th>n=1 (controls)</th>
<th>Period (mths)</th>
<th>Outcome measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patriaca et al</td>
<td>1991</td>
<td>Prospective, with controls</td>
<td>2</td>
<td>Once/week</td>
<td>15 (61)</td>
<td>24</td>
<td>Relapse of polyps</td>
<td>Relapse rate significantly less</td>
</tr>
<tr>
<td>Scadding et al</td>
<td>1995</td>
<td>Prospective, self control</td>
<td>2</td>
<td>Once/week</td>
<td>20 (20)</td>
<td>15</td>
<td>Symptom score</td>
<td>Less polyp tissue on LAS side</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(opposite nostril acted as control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acoustic rhinometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rigid nasendoscopy</td>
<td></td>
</tr>
<tr>
<td>Nucera et al</td>
<td>2000</td>
<td>Prospective, with controls</td>
<td>4</td>
<td>6 times/week</td>
<td>62 (61)</td>
<td>72</td>
<td>Recurrence of nasal polyps</td>
<td>Relapse rate significantly less</td>
</tr>
</tbody>
</table>
measure nasal symptoms and polyp growth, concluded that intranasal lysine-aspirin was possibly beneficial (Scadding et al. 1995). It was used as a pilot for a further controlled study with a larger number of patients, which is presented in this thesis.

6.4.3 Design of our study

The first study to show a beneficial effect of using intranasal lysine-aspirin in aspirin tolerant patients is open to several criticisms (Patriarca et al. 1991b). Aspirin-sensitive and aspirin tolerant subjects were grouped together, and it is unclear if the control group (n=191) had nasal challenges to characterize their aspirin-sensitive status. The control group did not receive any medication (nor placebo). Thus, the trial subjects, and investigators were not blinded. A further long-term study by the same group (Nucera et al. 2000) is also open to the same criticisms as mentioned above.

To address these issues we decided to conduct a randomised, double blind, placebo controlled, parallel group trial, which was based on an earlier pilot study (Scadding et al. 1995).

6.4.4 Treatment, dose, and regimen

We decided to use the same regimen as our pilot (Scadding et al. 1995), and the original trial that showed intranasal LAS to control polyp growth in aspirin tolerant patients (Patriarca et al. 1991b). Our subjects had to make up the solution to be instilled in their nose, and compliance was excellent with a once a week regimen. We adhered to using 16 mgs, as this was the top dose to which most aspirin-sensitive patients reacted, and a non-reaction was a good confirmation of their aspirin tolerant status. In the pilot, the trial medication was instilled into one nostril with the opposite one acting as its control. This was thought to be a potential source of bias due to cross contamination. Thus, we decided on a parallel group design with instillation of trial medication in both nostrils. Hence, the number of patients recruited was increased to a total of 40.
6.4.5 Outcome measures

Apart from our pilot study, the other 2 trials have not used objective measurements to study outcomes (Table 6.7). They used measures such as recurrence or relapse of polyps (Nucera et al. 2000b; Patriarca et al. 1991b). I have criticised the use of such measures in section 6.1.5. The same arguments apply to this trial.

In our trial we used 3 monthly symptom scores, PEFR, NIPF, rigid nasendoscopy, acoustic rhinometry, and UPSIT. All these parameters are validated methods that had been successfully used in detecting nasal and chest airway changes.

In addition, we measured quality of life changes over the period of the trial. Traditional study endpoints have been physiologic and biologic assessments, but they do not always correlate with the patient’s perceptions of changes in their health status. This applies particularly to chronic ailments where surgical or medical interventions do not afford a cure, and therapy needs to be prolonged. In such instances, quality of life is the essential outcome that requires to be studied (Berzon, 1998). Most health professionals dealing with nasal polyposis are aware of its negative impact on the day-to-day lives of patients. Thus, any trial investigating a therapeutic regime should aim to measure relevant aspects of a patient’s general health in addition to clinical and physiologic parameters. To implement this recommendation of the Task Force on Rhinosinusitis (Leopold et al. 1997), we included a QOL questionnaire that was completed at the patients 3 monthly visit.

6.4.6 Critique of our clinical trial

Thirty-five patients completed the trial (LAS group = 16; placebo group = 19). The follow-up period for both groups was similar (LAS group= 13.3±8.9; placebo group= 15.8±9.8, p=.36). Thus, intranasal LAS did not influence polyp growth. However, there was a steady deterioration in nasal symptoms and an increase in polyp size in both groups. This would indicate that intranasal corticosteroids slow polyp growth, but do not abolish it completely. Consequently, any adjunctive therapy that would help further would be useful.

Despite the similar deterioration in clinical parameters observed in both groups, QOL scores were significantly worse in the intranasal LAS group (Figure 5.11). This is difficult to explain. Further examination of the results (Figures 5.9, 5.10) shows
that for all measured parameters, patients in the LAS group were marginally better at baseline. This comparison is shown in Table 6.8. Also, males predominated in the LAS group. These differences are not significant on statistical analysis. However, it is possible that these may be significant if larger number of candidates were enrolled in the trial. Consequently, we speculate that patients who are better at baseline notice deterioration more, and this is reflected in their QOL scores.

6.4.7 Limitations of the trial

The limitations of this trial are very similar to those that are outlined in section 6.1.7, which addresses our trial in aspirin-sensitive patients. Despite our sample size calculations we think that the enrolled numbers fall short and fail to provide us with a more robust conclusion. Also, most anti-inflammatory medications are used on a daily basis. Our regimen was a weekly dose of LAS, and this may have been inadequate. It is difficult to change the protocol during a trial, and hence we adhered to our original regimen. An everyday or alternate day dose may have been a better option. Also, the twice-daily use of topical corticosteroid was probably maximally effective in reducing cytokine release and the addition of intranasal LAS did not have any further anti-inflammatory effects. Patients with aspirin tolerant nasal polyps do not have raised leukotrienes or leukotriene receptors, and the possibility of aspirin acting via their reduction does not arise.
Table 6.7

The two groups at baseline

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LAS group (mean±S.D)</th>
<th>Placebo group (mean±S.D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual analogue scale</td>
<td>25.1±12.3</td>
<td>28.6±16.2</td>
</tr>
<tr>
<td>PEFR</td>
<td>521.2±93.5</td>
<td>485.5±101.8</td>
</tr>
<tr>
<td>NIPF</td>
<td>168.8±67.7</td>
<td>136.8±61.5</td>
</tr>
<tr>
<td>UPSIT</td>
<td>16.9±8.9</td>
<td>15.1±9</td>
</tr>
<tr>
<td>Endoscopy score</td>
<td>1.6±.9</td>
<td>1.9±.8</td>
</tr>
<tr>
<td>Polyp grade (L)</td>
<td>.9±.4</td>
<td>1.1±.8</td>
</tr>
<tr>
<td>Polyp grade (R)</td>
<td>.9±.5</td>
<td>1.4±.6</td>
</tr>
<tr>
<td>Acoustic rhinometry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>22.2±7.9</td>
<td>19.9±10.4</td>
</tr>
<tr>
<td>Amin<sub>1</sub></td>
<td>1.4±.5</td>
<td>1.3±.5</td>
</tr>
<tr>
<td>Amin<sub>2</sub></td>
<td>3.1±1.7</td>
<td>2.7±2</td>
</tr>
<tr>
<td>Sex: M(F)</td>
<td>17(1)</td>
<td>9(10)</td>
</tr>
</tbody>
</table>
CONCLUSIONS AND FURTHER RESEARCH

7.1 Intranasal lysine-aspirin in aspirin-sensitive nasal polyp disease

7.1.1 Clinical trial

The primary aim of this study was to investigate the effectiveness of low dose intranasal lysine-aspirin (LAS) in controlling polyp growth in patients with aspirin-sensitive nasal polyposis. To achieve this we designed a randomised, double blind, placebo controlled, crossover trial. Our subjects used 16 mgs of LAS or placebo on alternate days. Measurement of polyp size was undertaken using validated methods, which included acoustic rhinometry, and nasal inspiratory peak flow. Their lung function was monitored by measuring peak expiratory flow rate.

Our results indicate that 16 mgs of LAS on alternate days does not reduce polyp growth compared to placebo. Measurement of nasal volume (0-7 cms), nasal cross-sectional area, nasal inspiratory peak flow, and nasal symptom scores indicated a gradual deterioration in both groups. The rate and magnitude of increase in polyp size was similar in both groups. There was no deterioration in lung function, which proves the long-term safety of alternate day intranasal LAS (16 mgs) instillation.

Nasal reaction to intranasal LAS was abolished by its repeated instillation, doubling the dose until 16 mgs could be applied without any adverse effect. This proves that topical intranasal application of LAS can be an alternative to oral aspirin in nasal desensitization. It is possible that this route may only affect the nasal lining, and could be used for nasal disease but may not prove beneficial in patients with accompanying systemic disease such as aspirin-sensitive asthma and urticaria.

7.1.2 Tissue studies

Our secondary aim was to compare tissue from aspirin-sensitive and aspirin tolerant individuals, which would provide an insight into the pathogenesis of aspirin-sensitive disease. Nasal mucosa biopsies were studied using immunohistochemistry. The results show that CysLT1 receptor expression on submucosal inflammatory cells is significantly higher in aspirin-sensitive as compared to aspirin tolerant individuals. In addition, compared to placebo, regular alternate day intranasal LAS (16 mgs)
significantly reduces CysLT\textsubscript{1} receptor expression. This explains, at least in part, the mechanism of desensitization. Also, it confirms 16 mgs of LAS as a dose that results in changes at a molecular level although these do not translate into clinical improvement.

Apart from nasal mucosa, we studied polyp tissue and compared blood for leukotriene production in aspirin-sensitive versus aspirin tolerant patients. Polyp tissue was studied for iNOS levels. This showed a significantly higher level of iNOS in polyp tissue from aspirin-sensitive individuals suggesting a higher intensity of inflammatory change. Whole blood leukotriene production was not different amongst the two groups when it was incubated with a stimulant or with the addition of various NSAIDs.

7.2 Intransal lysine-aspirin in aspirin tolerant nasal polyp disease

7.2.1 Clinical Trial

A further clinical trial was designed to explore the therapeutic benefit of once weekly topical LAS in patients with aspirin tolerant nasal polyposis. Patients were randomised to receive placebo or 16 mgs of LAS intranasally, once a week. Placebo or LAS was used in conjunction with a topical corticosteroid. We did not find any therapeutic benefit in adding topical LAS to a corticosteroid. All monitored parameters showed that nasal polyps increased in size. This deterioration was seen in both active and placebo groups. Analysis of the quality of life questionnaire showed that overall deterioration was worse in the topical LAS group.

7.3 Further Research

Our immunohistochemistry studies have thrown light on two issues pertaining to patients who have aspirin-sensitive nasal polyp disease. These patients have a significantly higher expression of CysLT\textsubscript{1} receptors on their nasal mucosal leukocytes, and regular alternate day intranasal lysine-aspirin (16 mgs) seems to significantly reduce this expression. The latter finding is highly suggestive of the mechanism by which patients achieve desensitization. However, this does not
translate into clinical benefit. This raises various questions that could be addressed by further research.

7.3.1 Dose of LAS

It is possible that 16 mgs of LAS on alternate days may not be sufficient to see a clinical benefit i.e. it may not result in arresting polyp growth. Hence, further work could be undertaken using a higher dose. Also, LAS could be used on a daily basis rather than every 48 hours.

7.3.2 A patient tailored approach

It is highly likely that individual patients behave differently following desensitization. In some cases it may be necessary to increase the dose of LAS after a period of time if monitored parameters show that there is some deterioration. This could prove difficult in a trial scenario due to the criteria laid down at its onset.

7.3.3 Multicentre trials

Trial based research in aspirin sensitive patients can prove to be difficult as a single institution may not be able to recruit an adequate number of subjects. In addition, withdrawals and dropouts will reduce the sample size further. Hence, multicentre trials should be designed to provide sufficient power to future studies.

7.3.4 Tissue studies following oral aspirin desensitization

Clinical benefit following oral aspirin desensitization has been shown in various trials as outlined in chapter 1. However, tissue studies have not been undertaken. It would be of interest to examine nasal tissue to see if there is a reduction in expression of CysLT$_1$ receptors. If that were not the case it would indicate that this phenomenon is restricted to topical LAS use, and that there is a further mechanism of desensitization at work leading to improvement in nasal symptoms. Also, polyp tissue could be analysed in these patients to see if iNOS levels reduced.
7.3.5 Pathophysiology

Enhanced expression of CysLT₁ receptors adds to our understanding of this disease process. However, the underlying reason for a hyper-functioning leukotriene pathway down to the receptor level remains unknown. I have speculated on the possible reasons for this in section 6.2.6. These could involve genetic and environmental factors. A large database, and collaborative work will help to shed further light on these issues.

Our study on whole blood did not show overproduction of leukotrienes when incubated with a stimulant or NSAIDs. However, further work on polyp tissue or bronchial biopsies should be performed as it may show that this phenomenon is localised to the respiratory tract mucosa. This switch may occur due to a virus confined to the respiratory tract, and a study aimed at isolating it would improve our understanding of this disease process. Also, it is possible that patients who exhibit a more generalised reaction to aspirin intake such as urticaria, angioedema, or anaphylaxis may have increased blood leukotriene production. To investigate this possibility it would be important to have rigid inclusion criteria isolating such individuals that would be included in the study. If increased blood leukotriene production was found in these patients a different mechanism for aspirin sensitivity would have to be considered in these patients.
REFERENCES

189. The BTS/SIGN British guideline on the management of Asthma. (2003); *Thorax* **58**, suppl **1**.

APPENDICES
CONSENT FORM

Study Title: Double blind, placebo controlled, trial of intranasal lysine-aspirin, in aspirin-sensitive patients with nasal polyposis and asthma.

Investigators: Dr. Glenis Scadding
Mr. Abhi Parikh

To be completed by patient/volunteer

Delete as necessary

1. Have you read the information sheet about this study? YES/NO
2. Have you had an opportunity to ask questions and discuss this study? YES/NO
3. Have you received satisfactory answers to all your questions? YES/NO
4. Have you received enough information about this study? YES/NO
5. Which doctor have you spoken to about this study? Dr.
6. Do you understand that you are free to withdraw from this study?
 * at any time
 * without giving a reason for withdrawing
 * without affecting your medical care? YES/NO
7. Do you agree to take part in this study? YES/NO

Signed .. Date

Name in block letters ..

Doctor ..
Appendix B

INFORMATION SHEET

Study Title
Double blind, placebo controlled, cross-over trial of intranasal lysine-aspirin, in aspirin-sensitive patients with nasal polyposis and asthma.

Investigators
Dr. Glenis Scadding, Consultant Physician in Clinical Immunology, Allergy & Rhinology.
Mr. Abhi Parikh MS FRCS, Research Fellow

Hospital
Royal National Throat, Nose & Ear hospital, Gray's Inn road, London WC1X 8DA

You are being requested to take part in the above named study. It will help us to find out the effectiveness of using aspirin in the nose to control your nasal polyps and asthma. We would request good compliance and co-operation if you decide to take part in the project. The fundamental idea is that regular small doses of aspirin in the nose can “desensitize” the nose, and possibly the lungs. It is essential that the treatment is taken REGULARLY every other day. If you miss two doses, DO NOT take the next one, but contact us on 0171 915 1674.

The study will run over 12 months. You will undergo a polypectomy at the start. 2 weeks following your operation you will be enrolled for the study. This will entail taking lysine-aspirin or placebo (salt solution), on alternate days for a period of 6 months. At the end of this period you will enter a 'washout' phase where neither of the above drugs will be used (a 'rest' period). Then we will switch you into the second part of the study using either placebo or lysine-aspirin.

During each 6 month period you will be asked to come for assessments at intervals of 6 weeks. These will be brief and will include measuring your polyp growth and nasal area. We will use a telescope to view the inside of your nose. A special instrument will be used to measure the area inside your nose. None of these assessments involve any pain. You will be asked to maintain a diary card during this period. Clear instructions will be mentioned on the diary card.

At the start of the study and at the end of each 6 month period, we will challenge your nose with lysine-aspirin and collect a nasal lavage sample for laboratory analysis. At the same time a small biopsy will be taken under local anaesthetic. This may cause slight discomfort but should not be unduly painful.

This study should help you and similar patients by reducing the number of polyp operations, and in controlling their asthma.

We do not have external funding for this trial as yet, but can pay traveling expenses. So please bring your tickets with you at each visit.

You do not have to take part in this study if you do not want to. If you decide to take part you may withdraw at any time without having to give a reason. Your decision whether to take part or not will not affect your care and management in any way.
Appendix C

INSTRUCTIONS TO PATIENTS

How to prepare the drops to be put in the nose.

You are provided with:

1. CAPSULES; which contain powder
2. BOTTLE; of liquid (the diluent)
3. MEASURING CUP
4. STIRRER; plastic
5. DROPPER

You need to have ready:

1. Pair of sharp SCISSORS
2. Clean tea spoon (if stirrer not provided)

Steps to prepare drops:

1. Pour liquid into cup to the level marked 10, and place on table.
2. Take a capsule and flick it while holding straight up. The powder should settle leaving an air space above.
3. Using the scissors, snip off the top of the capsule where the air space is.
4. Empty the capsule powder into the cup. Flick if necessary so that the capsule has been emptied.
5. Stir the powder in the liquid using the stirrer or the spoon. The powder should dissolve quickly.
6. Load the dropper with the solution.
7. Place 2 drops in each side of the nose, holding the head as has been shown to you.
8. Throw away the remaining solution. It must not be kept for the next time.
9. Do this every other day i.e. alternate days.
DIARY CARD

<table>
<thead>
<tr>
<th>NAME:</th>
<th>TRIAL NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>START DATE:</td>
<td></td>
</tr>
<tr>
<td>NEXT VISIT:</td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONS:</td>
<td></td>
</tr>
</tbody>
</table>

To complete symptom score, please score each symptom on a 0 to 9 basis where:

0 = no symptoms
9 = worst possible symptoms

Symptoms to consider for nasal scoring:
blockage, running, itching, sneezing, sense of smell

Symptoms to consider for chest scoring:
tightness of chest, wheeze, shortness of breath on exertion, daytime cough, night cough

PEFR = highest of 3 readings
NIPF = highest of 3 readings

Contact Telephone no.:
<table>
<thead>
<tr>
<th>WEEK NO.:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>AM</td>
<td>AM</td>
<td>AM</td>
<td>AM</td>
<td>AM</td>
<td>AM</td>
<td>AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASAL SCORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEST SCORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIPF</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASAL SCORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEST SCORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIAL DRUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ALT. DAYS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER DRUGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E (reproduced)

Name of patient
Date
Pre:
Challenge with:
NIPF
PEFR
Rhinometry

VAS

Sneeze

0 10

Itch

0 10

Obstruction

0 10

Running (Ant+Post)

0 10
Appendix F

Confidential

CONSENT FORM

Study Title Double blind, placebo controlled, trial of intranasal lysine-aspirin in addition to regular topical corticosteroids, in aspirin tolerant patients with nasal polyposis.

Investigators Dr. Glenis Scadding Consultant Physician in Clinical Immunology, Allergy & Rhinology. Mr. Abhi Parikh MS FRCS, Research Fellow

To be completed by patient/volunteer

Delete as necessary

1. Have you read the information sheet about this study? YES/NO

2. Have you had an opportunity to ask questions and discuss this study? YES/NO

3. Have you received satisfactory answers to all your questions? YES/NO

4. Have you received enough information about this study? YES/NO

5. Which doctor have you spoken to about this study? Dr.

6. Do you understand that you are free to withdraw from this study?

 * at any time
 * without giving a reason for withdrawing
 * without affecting your medical care? YES/NO

7. Do you agree to take part in this study? YES/NO

Signed .. Date

Name in block letters ...

Doctor ...
Appendix G

INFORMATION SHEET

Study Title
Double blind, placebo controlled, trial of intranasal lysine-aspirin in addition to regular topical corticosteroids, in aspirin tolerant patients with nasal polyposis.

Investigators
Dr. Glenis Scadding, Consultant Physician in Clinical Immunology, Allergy & Rhinology.
Mr. Abhi Parikh MS FRCS, Research Fellow

Hospital
Royal National Throat, Nose & Ear hospital, Gray's Inn road, London WC1X 8DA

You are being requested to take part in the above named study. It will help us to find out if aspirin (in the form of a nasal spray) in addition to your regular treatment is helpful in controlling your nasal polyps. We would request good compliance and co-operation if you decide to take part in the project.

The study will run over 12 months. It is a randomized study and hence you have a 50% chance of receiving aspirin or placebo (salt solution). The medication will be in the form of capsules from which you will prepare a solution to be used as a spray. This has to be used once a week. Every week you have to make a fresh preparation. This treatment is in addition to daily Flixonase in nebule form.

During the 12 month period you will be asked to come for 3 monthly assessments. These will include measuring your polyp growth and nasal area. We will use a telescope to view the inside of your nose. A special instrument will be used to measure the area and volume inside your nose. None of these assessments involve any pain. You will be asked to maintain a diary card of your daily nasal symptoms and airflow measurements during this period. Clear instructions will be mentioned on the diary card.

You do not have to take part in this study if you do not want to. If you decide to take part you may withdraw at any time without having to give a reason. Your decision whether to take part or not will not affect your care and management in any way.
DOUBLE-BLIND, PLACEBO-CONTROLLED TRIAL OF INTRANASAL LYSINE-ASPIRIN IN ADDITION TO CORTICOSTEROIDS IN THE CONTROL OF NASAL POLYPOSIS IN ASPIRIN-TOLERANT PATIENTS

Patient name:

Patient Hospital no:

Patient Trial no:
Visit 1

Date:

Check if the patient fulfills these inclusion/exclusion criteria.

Inclusion criteria:

1. Adults >18 years
2. Aspirin tolerant
 - on history
 - negative aspirin challenge
3. Nasal polyps

Exclusion criteria:

1. Aspirin-sensitivity
2. Acute Infective Rhinitis (at present or in the 2/52 preceding)
3. Severe deviation of nasal septum
4. Severe obstructive nasal polyps
5. Pregnancy/Lactation
6. Psychiatric illness
Visit 1 (continued)

1. Information sheet
 √ or x

2. Consent
 √

3. Acclimatize (10-15 minutes)
 √

4. VAS (for this study)
 √

5. Peak flow (3 readings) and NIPF
 √

6. Acoustic rhinometry (same Z, nose-piece, seat)
 √

7. QOL questionnaire
 √

8. Appointment (3/12)
 √

9. Endoscopy (0-3 scale)
 √

 - polyp size
 - oedema
 - discharge
 - crusting

10. UPSIT
 √
Visit 2 (3 months)

Date:

1. Acclimatize (10-15 minutes)

2. VAS (for this study)

3. Peak flow (3 readings) and NIPF

4. Acoustic rhinometry (same ∠, nose-piece, seat)

5. Appointment (3/12)

6. Endoscopy (0-3 scale)
 - polyp size
 - oedema
 - discharge
 - crusting

7. UPSIT
Visit 3 (6 months)

Date:

1. Acclimatize (10-15 minutes)
2. VAS (for this study)
3. Peak flow (3 readings) and NIPF
4. Acoustic rhinometry (same ∟, nose-piece, seat)
5. QOL questionnaire
6. Appointment (3/12)
7. Endoscopy (0-3 scale)
 - polyp size
 - oedema
 - discharge
 - crusting

8. UPSIT
Visit 4 (9 months)

Date: []

1. Acclimatize (10-15 minutes) []
2. VAS (for this study) []
3. Peak flow (3 readings) and NIPF []
4. Acoustic rhinometry (same ∠, nose-piece, seat) []
5. Appointment (3/12) []
6. Endoscopy (0-3 scale) []
 - polyp size
 - oedema
 - discharge
 - crusting
7. UPSIT []
Final visit (12 months)

Date: []

1. Acclimatize (10-15 minutes) []
2. VAS (for this study) []
3. Peak flow (3 readings) and NIPF []
4. Acoustic rhinometry (same ∟, nose-piece, seat) []
5. QOL questionnaire []
6. Appointment (3/12) []
7. Endoscopy (0-3 scale) []
 - polyp size
 - oedema
 - discharge
 - crusting
8. UPSIT []
9. Thank patient
Drop-out visit or if patient is withdrawn

Date:

1. Acclimatize (10-15 minutes)
2. VAS (for this study)
3. Peak flow (3 readings) and NIPF
4. Acoustic rhinometry (same ∠, nose-piece, seat)
5. QOL questionnaire
6. Appointment (3/12)
7. Endoscopy (0-3 scale)
 - polyp size
 - oedema
 - discharge
 - crusting

8. UPSIT

9. Thank patient
Appendix I

DOUBLE-BLIND, PLACEBO-CONTROLLED TRIAL OF INTRANASAL LYSINE-ASPIRIN IN ADDITION TO CORTICOSTEROIDS IN THE CONTROL OF NASAL POLYPOSIS IN ASPIRIN-TOLERANT PATIENTS

Symptom scale

These markings are for your symptoms in the past 1 week only. PLEASE CIRCLE A NUMBER.

Name: Date:

0 = NO TROUBLE WITH THE SYMPTOM
10 = SEVERE TROUBLE WITH THE SYMPTOM

- Difficulty in breathing through the nose (Nasal blockage)
- Runny nose (discharge from the nostril)*
- Discharge going down the back of your nose (postnasal drip)*
- Sneezing
- Headaches
- Pain around the eyes/cheek (facial pain)
- Sense of smell

*For discharge indicate colour by circling:
 - C = clear
 - D = green, yellow
 - Discharge from front = C or D
 - Discharge from back = C or D
Appendix J

QUALITY OF LIFE QUESTIONNAIRE

Name:
Patient hosp. no:
Patient trial no:
Date:
no: Visit

Circle one answer per line

SLEEP

To what extent have you been troubled by each of the following problems because of your nose problems in the last week?

<table>
<thead>
<tr>
<th></th>
<th>not at all</th>
<th>very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Trouble falling asleep</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. waking up during the night</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>c. lack of sleep</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>d. waking up feeling tired</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e. night cough</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

OTHER SYMPTOMS

During the past week, to what degree have you been disturbed by each of the following problems, due to the nose?

<table>
<thead>
<tr>
<th></th>
<th>not at all</th>
<th>very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. tiredness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. thirst</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>c. reduced productivity</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>d. difficulty concentrating</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e. headaches</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>f. exhaustion</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>g. poor sense of smell</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>h. poor sense of taste</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>i. catarrh</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

NASAL PROBLEMS

During the past week, to what degree have you been disturbed by each of the following?

<table>
<thead>
<tr>
<th></th>
<th>not at all</th>
<th>very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. stuffy nose</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. runny nose</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
c. sneezing 0 1 2 3 4 5 6
d. itchy nose 0 1 2 3 4 5 6

PRACTICAL PROBLEMS

During the past week, to what degree have you been disturbed by each of the following problems, because of your nose?

<table>
<thead>
<tr>
<th>Problem</th>
<th>not at all</th>
<th>at very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. the inconvenience of always having to carry a handkerchief</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. the need to rub your nose</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>c. the need to blow your nose frequently</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>d. the need to clear your throat</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e. cough</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

ACTIVITIES

During the past week, to what degree have you been disturbed during your activities because of your nose problems? (Choose your own 3 activities - you do not have to mention the activities chosen)

<table>
<thead>
<tr>
<th>Activity</th>
<th>not at all</th>
<th>very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Activity 1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. Activity 2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>c. Activity 3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

EMOTIONAL STATE

During the past week, how often have you been in each of the following emotional states because of your nose problems?

<table>
<thead>
<tr>
<th>Emotion</th>
<th>not at all</th>
<th>at very slightly</th>
<th>slightly</th>
<th>moderately</th>
<th>fairly</th>
<th>very</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Frustration</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>b. impatience and restlessness</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>c. irritability</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>d. ill at ease due to the nose</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>e. feeling low</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>f. difficulty with coping</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
PUBLICATIONS