UNIVERSITY OF LONDON THESIS

Degree PhD Year 2003 Name of Author Waller, Robert William

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

LOAN
Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.

D. 1989 onwards. Most theses may be copied.

☐ This copy has been deposited in the Library of

☐ This copy has been deposited in the University of London Library, Senate House, Malet Street, London WC1E 7HU.
Development of
Novel Isocyanide Based
Multicomponent Reactions

A thesis submitted in partial fulfilment of the requirements for the award of the
degree of

DOCTOR OF PHILOSOPHY

At the Chemistry Department of University College London

by

Robert William Waller

University College London
Christopher Ingold Laboratories
London
WC1H 0AJ
September 2008
DECLARATION

I hereby declare that the work described in this thesis is the work of the author and has not been previously submitted to this or any other university for any other degree. Where work has been derived from sources, I confirm this has been indicated in the thesis.

Robert William Waller
September 2008
To Aurora
Acknowledgements.

I would like to take this opportunity firstly to thank Prof. Willie Motherwell for his support and guidance during my three years in his laboratory. I would also like to thank Dr Robyn Hay-Motherwell for her help with the day to day aspects in the laboratory as well as her pastoral guidance.

Secondly I would like to thank Dr Tom Sheppard and Dr Steve Hilton for their help, and advice.

I would like to acknowledge all of the members of the Motherwell group, past and present, they have made the Motherwell lab a fun and special place in which to work over the years. In particular I would like to thank Phillip ‘Ebdon’ Gray for being the greatest friend a man could ever ask for and for being such a great fume-hood partner.

I would also like to thank Moussa for the entertainment, Chi and Yumiko for the food, Kylie for the musical education, Rob ‘Colchie’ Carrol for the laughs and Thierry for being so classy.

I would also like to acknowledge the EPSRC and AstraZeneca for the funding, without which, none of this work would have been possible. Many thanks to Dr Louis Diorazio for the help and supervision whilst I was away on my placement, Dr Rob Bristow for the MS studies, Brian Taylor for the help with the DoE work and Dr Abil Aliev for his enthusiastic help and support with the NMR.

To Aurora, I am forever indebted to you for all of the love and support you have given me during my write-up, I hope that I can repay you in the years to come.

Lastly, but by no means least, thank you to all of my family for their support during my education.
Abstract.

This thesis is divided into three parts. Part one presents an overview of isocyanide based multicomponent reactions, with a particular emphasis placed upon bifunctional substrates and novel nucleophilic partners for the Ugi reaction.

Part two discusses the development of three-component reactions between N-alkyloxazolidines, isocyanides and carboxylic acids. This reaction is then further developed to allow it to be carried out in a four-component manner from an aminoethanol and carbonyl compound rather than an N-alkyloxazolidine. The use of NH-oxazolidines in a surprising three-component reaction with isocyanides and carboxylic acids is then discussed, with interesting mechanistic consequences. Novel nucleophilic partners for reactions with oxazolidines and isocyanides, rather than the ubiquitous carboxylic acids are then discussed, giving rise to novel structural frameworks.

Bifunctional carbonyl-carboxylic acid substrates are then investigated as substrates for isocyanide based multicomponent reactions involving ethanolamines, leading to exciting new medium sized ring systems.

Finally, hydroxy-carbonyl compounds are briefly discussed as substrates for isocyanide based multicomponent reactions.

Part three describes the experimental procedures employed and results obtained.
Table of Contents

Abbreviations .. 8
INTRODUCTION .. 10
 1.1 General Remarks ... 11
 1.2 Multicomponent Reactions (MCRs) ... 11
 1.2.1 The Advantages of Multicomponent Reactions (MCRs) 12
 1.2.2 The History of the Multicomponent Reaction (MCR) 13
 1.3 Isocyanides .. 14
 1.3.1 The Chemistry of Isocyanides ... 17
 1.3.1.1 α-Addition to an Isocyanide .. 17
 1.3.1.2 Isocyanide Based Multicomponent Reactions (IMCRs) 21
 1.4 Passerini Three-component Reaction (P-3CR) .. 21
 1.4.1 Alternative Nucleophiles to Carboxylic Acids in the Passerini Reaction (P-3CR) 22
 1.4.2 Stereocontrol in the P-3CR .. 24
 1.5 Ugi Four-Component Condensation (U-4CR) .. 26
 1.5.1 Stereocontrol in the Ugi Reaction (U-4CR) ... 28
 1.5.2 Ugi Reactions Using Bifunctionalised Starting Materials 32
 1.5.2.1 Amino-acids in U-4CR ... 32
 1.5.2.2 Dicarbonyl Substrates in the Ugi Reaction .. 37
 1.5.2.3 Carbonyl-Carboxylic Acid Substrates in the Ugi Reaction 37
 1.5.2.4 Diamines as Components in the Ugi Reaction ... 41
 1.5.3 Alternatives to Amines in the Ugi Reaction ... 42
 1.5.4 Alternative Nucleophiles to Carboxylic Acids for the U-4CR 45
 1.5.5 Bifunctional Alternative Substrates ... 48
 1.5.5.1 Tethered Aminooalcohol Substrates ... 48
 1.6 Secondary Reactions of Isocyanide Based Multicomponent Reactions 49
 1.6.1 Convertible Isocyanides ... 50
 1.7 Application of Multicomponent Reactions Towards Diversity Oriented Synthesis 51
 1.8 Applications of Multicomponent Reactions Towards Target Orientated Synthesis 53
 Overview ... 55
RESULTS and DISCUSSION .. 56
 2.1 Introduction .. 57
 2.2 Oxazolidines .. 57
 2.2.1 Structure ... 57
 2.2.2 Synthesis ... 58
 2.2.3 Reactivity ... 59
 2.3 Results and Discussion .. 60
 2.3.1 Preparation of Oxazolidines .. 60
 2.3.2 Three-component Reaction Between an N-alkyloxazolidine, Isocyanide and Carboxylic Acid .. 62
 2.3.3 Initial IMCRs Involving N-alkyloxazolidines ... 65
 2.3.4 Examples of 3-CR Using N-alkyloxazolidines, Isocyanides and Carboxylic Acids under Initially Optimised Conditions ... 67
 2.3.5 Four-Component Reaction (4-CR) Using β-Aminoethanols, Isocyanides, Carbonyl Compounds & Carboxylic Acids with no Prior Condensation 69
 2.4 Introduction to the Design of Experiments (DoE) Approach in Organic Synthesis ... 72
 2.4.1 One Variable at a Time Experimental Method .. 72
 2.4.2 Considerations Prior to Construction of an Experimental Design 73
 2.4.3 Response Surface Models as Tools for the Chemist 74
 2.4.4 Alternative Approaches to One Variable at a Time (OVAT) 77
 2.4.5 Determination of Error and Model Significance .. 79
 2.5 Design of Experiments (DoE) for 2-CR Morpholinone Synthesis 79
 2.5.1 Manual Interpretation of Results by Sign Table ... 81
 2.5.2 Interpretation by Least Squares Fit Linear Regression 83
2.6 Design of Experiments (DoE) Approach to 3-CRs Involving N-alkyloxazolidines, Isocyanides and Carboxylic Acids... 85
2.71 Isolation of Exocyclic Imino Ether Intermediate 213. .. 90
2.72 Mechanistic Studies Including use of 18O2 Labelled Acetic Acid... 93
2.73 Use of NH Oxazolidines and Mechanistic Implications. .. 97
2.74 Acidic Nucleophiles for 3-CR with Oxazolidines and Isocyanides.............................. 106
2.8 Bicyclic N-O Acetals as Substrates for IMCRs... 113
 2.81 Preparation of Bicyclic N-O Acetals as Substrates for IMCRs. .. 113
 2.82 Use of Bicyclic N-O Acetals in 3-CRs.. 113
2.91 IMCRs Using Bifunctional Aldehyde – Carboxylic Acids, Ethanolamines, and Isocyanides.. 116
2.92 IMCRs using Bifunctional Carbonyl-Hydroxyl Compounds...................................... 119
Conclusions and Future Perspectives.. 122
EXPERIMENTAL.. 123
3.1 General Experimental Procedures.. 124
 3.11 Solvents and Reagents.. 124
 3.12 Data Collection. .. 124
3.2 Experimental Procedures.. 125
Appendix.. 179
 4.1 Modde® Plots for Design of Experiments #1 (Section 2.5) including ANOVA tables. 179
 4.2 Modde® Plots for Design of Experiments #2 (Section 2.6) including ANOVA tables. 180
References.. 184
Abbreviations.

Δ heat.
2-CR 2-component reaction.
3-CR 3-component reaction.
4-CR 4-component reaction.
A-4CR A singler four-component reaction.
Ac acetatyl.
AcOH acetic acid.
Ar aromatic.
qq. aqueous.
b broad.
B base.
br broad.
Bn benzyl.
b.p. boiling point.
Bu butyl.
Cbz benzylxoycarbonyl.
CI chemical ionisation.
CID collision induced dissociation.
CH₂O para-formaldehyde.
Cy cyclohexyl.
d doublet.
d. day.
Da Daltons.
DCM dichloromethane.
de diastereomeric excess.
DIPEA diisopropylamine.
DMF dimethylformamide.
DMSO dimethylsulfoxide.
DoE design of experiments.
E energy.
ee enantiomeric excess.
El electron impact ionisation.
El electrophile.
ES electrospray ionisation.
Et ethyl.
eq equivalent(s).
Et₂O diethyl ether.
EtOAc ethyl acetate.
EtOH ethanol.
EWG electron withdrawing group.
FAB (pos) positive ion fast atom bombardment.
FTIR Fourier transform infra-red.
h hour.
HOMO highest occupied molecular orbital.
HMBC heteronuclear multiple-bond correlation.
HPLC high performance liquid chromatography.
HRMS high resolution mass spectrometry.
Hz. Hertz.
IMCR isocyanide based multicomponent reaction.
IPA isopropanol.
IR infra-red.
¹Pr iso-propyl.
J coupling constant.
lit
literature.
LUMO
lowest unoccupied molecular orbital.
LRMS
low resolution mass spectrometry.
m
meta.
m
multiplet.
M
Molar concentration.
Me
methyl.
MeCN
acetonitrile.
MeOH
methanol.
MCR
multicomponent reaction.
min
minute(s).
Mmol
millimole.
mol.
Mole.
NMR
nuclear magnetic resonance.
^n^Oe
nuclear Overhauser effect.
^n^Pr
n-propyl.
Nu
nucleophile.
o
ortho.
o.n.
overnight.
OVAT
one variable at a time.
p
para.
P-3C-2CR
Passerini, three centered, two-component reaction.
P-3CR
Passerini, three-component reaction.
Phth
phthalimido.
pTsOH
para-toluene sulfonic acid.
Ph
phenyl.
PS
proton sponge.
PRESS
sum of squares predicted error.
q
quartet.
qn
quintet.
R
any organic substituent.
RDS
residuals.
r.f.
retention factor.
r.t.
room temperature.
SSR
sum of squares regression.
SST
sum of squares total.
t
tertiary.
t
triplet.
TBD
1,5,7-triazabicyclo[4.4.0]deca-5-ene.
^t^Bu
tertiary-butyl.
TEA
triethylamine.
tert.
tertiary.
Tf or Triflate
trifluoromethanesulfonate.
TFA
trifluoroacetic acid.
TFE
trifluoroethanol.
TLC
thin layer chromatography.
Ts
toluenesulfonyl.
THF
tetrahydrofuran.
U-3CR
Ugi, three-component reaction.
U-4CR
Ugi, four-component reaction.
U-4C-3CR
Ugi, four centred, three-component reaction.
U-5C-4CR
Ugi, five centred, four-component reaction.
UV
ultraviolet.
Part 1:

INTRODUCTION
1.1 General Remarks.

This present thesis describes research into novel isocyanide based multicomponent reactions (IMCRs). In consequence, the introductory chapter firstly explains the basic concepts of a multicomponent reaction, briefly discussing some important examples. Isocyanides are then discussed as a framework for the subsequent overview of classical and contemporary isocyanide based multicomponent reactions. Due to the extremely large amount of work carried out in the field of IMCRs and the number of recent reviews in the area,1-5 this introduction is not meant to be an exhaustive analysis of the field. Instead, particular emphasis is placed upon bifunctional substrates as well as novel nucleophilic partners for the Ugi reaction due to their later relevance to this work.

1.2 Multicomponent Reactions (MCRs).

A multicomponent reaction (MCR) may be loosely defined as a reaction involving three or more starting materials in which the majority of the atoms of each of the starting materials are incorporated into the final product. More than one of the functional groups may be present in any one starting material. In the ideal world, MCRs are ‘one-pot’ syntheses in which all of the starting materials are simultaneously present and react in sequential fashion in an ordered sequence according to a series of equilibria. MCRs may be divided into three types (Table 1).5

<table>
<thead>
<tr>
<th>MCR Type</th>
<th>Reaction Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$A + B \rightleftharpoons C \rightleftharpoons \ldots N \rightleftharpoons \text{Product}$</td>
</tr>
<tr>
<td>II</td>
<td>$A + B \rightleftharpoons C \rightleftharpoons D \rightleftharpoons \ldots N \rightarrow \text{Product}$</td>
</tr>
<tr>
<td>III</td>
<td>$A \rightarrow B + C \rightarrow D \rightarrow \ldots N \rightarrow \text{Product}$</td>
</tr>
</tbody>
</table>

\textbf{Table 1.} Three basic classifications of MCRs.
Type I MCRs lead to varying yields, as the reaction will not reach preparative completion upon reaching equilibrium without employing methods to shift this equilibrium in favour of the products by Le Chatelier's principle. Type I MCRs are thus not considered to be preparatively useful, as complex mixtures are likely and side reactions often occur. On the other hand, type II MCRs are of much greater synthetic value, as the final irreversible step drives the overall reaction to completion, thus resulting in good yields and few side products. Most side reactions are, in this case, reversible. Type III MCRs are rarely seen in vitro but are often seen in biological processes as a result of quasi-irreversible partial reactions driven by thermodynamic factors and enzymatic catalysis.

1.21 The Advantages of Multicomponent Reactions (MCRs).

MCRs have many benefits over simple, conventional two-component reactions. In a stepwise iterative synthesis, the complexity and preparative difficulty increases in proportion to the number of steps, with subsequent purification and characterisation often required at each stage. This is both time consuming and also results in inherently poor yields over the many steps unless the alternative strategy of an extremely convergent synthesis is planned. MCRs reduce the need for so many isolation, purification and characterisation steps as well as the extended use of protection and deprotection protocols. This leads to increased productivity and vastly increased yields for complex targets. MCRs are also particularly adept for application towards diversity orientated synthesis, since at least three points of structural diversity may be achieved by the systematic use of structural variation of each of the starting materials during the multicomponent step of the synthetic scheme. Coupled with these benefits is the fact that most known MCRs use simple readily available starting materials with great atom efficiency, thus reducing waste. In
essence, the ‘one pot’ nature of these reactions makes them both simple to carry out and ideal for automation.

1.22 The History of the Multicomponent Reaction (MCR).

The Strecker synthesis of α-amino acids in 1850 is generally recognised as the first synthetically useful reported MCR (Scheme 1). Following this, a series of heterocycle forming MCRs were published over the next half a century all of which are still in common use today (Scheme 1).

Strecker α-amino acid synthesis

\[
\text{Ar-CHO} + \text{NH}_3 + \text{HCN} \rightarrow \text{Ar-CN} + \text{H}_2\text{O} \rightarrow \text{Ar-COOH}
\]

Hantzsch dihydropyridine synthesis

\[
\text{EtOOOC} + \text{NH}_3 + \text{ CHO} \rightarrow \text{EtOOOC}
\]

Radziszewski imidazole synthesis

\[
\text{CHO} + \text{CH}_2\text{O} + \text{NH}_2 \rightarrow \text{N}
\]

Hantzsch pyrrole synthesis

\[
\text{EtOOOC} + \text{PhNH}_2 + \text{Br} \rightarrow \text{EtOOOC}
\]

Biginelli Reaction

\[
\text{Ar-CHO} + \text{H}_2\text{N} + \text{ COOEt} \rightarrow \text{Ar-COOEt}
\]

Many of these early MCRs revolve around the important carbonyl and amine to imine functional group transformation.
In 1921, Passerini published the first reported isocyanide based three-component reaction (P-3CR) between an isocyanide, a carboxylic acid and a carbonyl compound (*vide infra Section 1.4*). This visionary reaction then led to Ugi, three decades later, developing his powerful four-component condensation (U-4CR) by the further addition of an amine to the Passerini reaction (P-3CR) (*vide infra Section 1.5*). When taken together, their work laid the foundation of the important area of modern novel isocyanide based multicomponent chemistry.

1.3 Isocyanides

Isocyanides were first discovered by Lieke in 1859 during an experiment designed to produce allyl cyanide from allyl iodide and silver cyanide. Whilst attempting acidic hydrolysis of the product which he believed to be allyl cyanide, to a carboxylic acid, he instead produced an N-formamide. Further investigation by Lieke into this reaction was discontinued because of constant complaints of a vile odour in the neighbourhood. Indeed without realising it, Lieke had synthesised the first isocyanide - allyl isocyanide; which, along with all other volatile isocyanides has a strange pervading odour. This was described by Gautier as “reminiscent of artichokes and phosphorus at the same time.” Meyer later prepared both methyl and ethyl isocyanide from their iodides by alkylation with silver cyanide, but still did not recognise the structure, instead believing he had produced methyl and ethyl cyanide. Gautier’s later work began to elucidate the structure of these ‘isocyanides’, and on discovering that they were isomers of nitriles, he postulated two structures 7 and 8 (Scheme 2).

\[
\begin{align*}
\text{CH}_3\text{-CH}_2\text{-N}=\text{C} & \quad \text{CH}_3\text{-CH}_2\text{-N}=\text{C} \\
7 & \quad 8
\end{align*}
\]

Scheme 2
Twenty-five years later, Nef suggested the following structure 9 to explain the
divalent character of isocyanides based upon their observed α-addition reactions
(Scheme 3).17

\begin{center}
\begin{align*}
\text{CH}_3\text{-CH}_2\text{-N}=&\text{C}== & \text{CH}_3\text{-CH}_2\text{-N}=&\text{C}:
\end{align*}
\end{center}

\textit{would now be drawn as}

9

\begin{center}
10
\end{center}

Scheme 3

Finally, the fourth structure 11 was suggested by Lindemann and Wiegrabe in 1930,
which provided the most common graphical representation of an isocyanide used
today (Scheme 4).18

\begin{center}
\begin{align*}
\text{R-}=\text{N}^+=\text{C}^-
\end{align*}
\end{center}

11

Scheme 4

Although the synthesis of phenyl isocyanide from aniline and chloroform in the
presence of a strong base by Hoffmann in 1870 opened a route to aromatic
isocyanides,19 it was not until the work of Ugi in 1958, that isocyanides emerged from
twelve examples of discrete chemical curiosities into a distinct class of compounds in
their own right.20 Thus, Ugi’s synthesis of isocyanides from \textit{N}-formamides 12 by
dehydratation using POCl\textsubscript{3} and a base paved the way for the synthesis of a multitude of
isocyanides (Scheme 5).

\begin{center}
\begin{align*}
\text{R-}\text{N}=\text{H} \xrightarrow{\text{POCl}_3, \text{Base}} \text{R-}=\text{N}^+=\text{C}^-
\end{align*}
\end{center}

\textit{Base}

\textit{-H}_2\text{O}

12

Scheme 5

In the 1960s, the Bayer® Company noted generally low levels of toxicity for
isocyanides,21 this makes them simple compounds to handle, with the exception of
course of the strong odour of volatile examples.
In 1950, Rothe isolated the naturally occurring wide spectrum topical antibiotic Xanthocillin 13.22

Over the years, the isocyanide functional group has been noted to occur in a wide range of natural products, many of which show distinct antibiotic, fungicidal or insecticidal properties.23 A plethora of naturally occurring isocyanides have been isolated and characterised, many from marine sources. A few representative examples of these are shown in Scheme 6.
1.31 The Chemistry of Isocyanides.

The chemistry of isocyanides is dominated by two distinct and important types of reaction: the α-addition reaction and radical processes. The use of isocyanides in multicomponent chemistry is chiefly concerned with α-additions, and these are discussed in more detail in the next section. Isocyanides have seen use in radical cyclisations as exemplified by Curran’s elegant synthesis of the anti-tumour agent Camptothecin 23 via a [4+1] radical annulation (Scheme 7). This rich area of chemistry is, however, outside of the scope of this work.

\[
\begin{align*}
\text{PhNC} & \xrightarrow{\text{hv / 80°C}} \text{PhNC} \\
\text{Me₃SnSMe₃} & \xrightarrow{\text{PhNC}} \text{23}
\end{align*}
\]

\[+/- \text{Camptothecin}\]

\text{Scheme 7}

1.311 α-Addition to an Isocyanide

In contrast to conventional addition reactions such as addition of hydrogen bromide to an alkene, in an α-addition to an isocyanide, both nucleophilic and electrophilic constituents form bonds with the isocyanide carbon. A simple mechanism is shown below (Scheme 8).

\[
R-N^\equiv C + \text{El} \rightarrow R-N^\equiv C \text{Nu} \text{El}
\]

\text{Scheme 8}
This reaction may occur in a one-step concerted process, or more usually, in a two-step mechanism. α-Addition to an isocyanide is not dissimilar to the addition reactions undergone by carbon monoxide, which is isoelectronic with the isocyanide motif, and can also be compared with the cheletropic addition of an alkene to a singlet carbene. Isocyanides do not react readily with nucleophiles such as amines and alcohols even under forcing conditions without the use of transition metal catalysis and are stable to alkaline hydrolysis. In contrast, however, they are often attacked by nucleophiles when under the influence of acid catalysis, for example, in the facile acidic hydrolysis of an isocyanide to a formamide 25,34 or in the reaction with hydrogen sulfide to give a thioformamide 26 (Scheme 9).35

\[
\begin{align*}
R-N^+&=C^- & \xrightarrow{H^+} & \xrightarrow{H_2O \text{ or } H_2S} & R-N=\overset{\text{X}}{\overset{\text{H}}{\text{H}}} & \rightarrow & R-N\overset{\text{H}}{\overset{\text{X}}{\text{H}}} & \text{(X = O or S)}
\end{align*}
\]

Scheme 9

Isocyanides react willingly with a variety of reagents in simple α-addition reactions without the requirement of an added acid catalyst. The halogens – chlorine and bromine both react violently with isocyanides to give iminocarbamoyl halides 27 (Scheme 10).36 Anhydrous hydrogen halides give formimidoyl halides 28 in a similarly vigorous reaction (Scheme 10).37 Isocyanides react with acid chlorides to afford α-ketoimidoyl chlorides 29 (Scheme 10).38 Hydrazoic acid also reacts with isocyanides to give a good, general preparative method for 1-substituted tetrazoles 30 (Scheme 10).39
The reaction between an isocyanide and carboxylic acid gives a mixture of formamide 32 and an acid anhydride 33 (Scheme 11). The α-addition of the carboxylic acid to the isocyanide forms the α-adduct 31, which then reacts further with another molecule of the carboxylic acid to furnish the formamide 32 and acid anhydride 32.37

In the presence of transition metal catalysts, isocyanides will react with a further variety of compounds which will not otherwise react at all. Alcohols and thiols react readily to form formimidates 34 and thioformimidates 35 with Copper catalysts (Scheme 12).37,40,41 Amines will also react with an isocyanide under Cu(I) catalysis, forming a formamidine 36 (Scheme 12).42
Scheme 12

The frontier molecular orbital descriptions of an isocyanide and carbon monoxide highlight why the α-addition, which occurs on the carbon atom of an isocyanide and carbon monoxide is in stark contrast to the reactivity of a nitrile (Figure 1). The large π* LUMO orbital coefficient on the isocyanide and carbon monoxide carbon atom explains the electrophilic nature of the carbon on both of these moieties, enabling them to accept electron density into the π* LUMO orbital from a suitable Lewis base or nucleophile. Simultaneously, the σ HOMO-1 of an isocyanide or carbon monoxide may donate electron density to a suitable Lewis or Brønsted acid, thus also concurrently rendering the same carbon atom nucleophilic.

Figure 1. Frontier molecular orbitals of a nitrile, isocyanide and carbon monoxide.
1.312 Isocyanide Based Multicomponent Reactions (IMCRs).

Whilst many of the aforementioned α-addition reactions are synthetically useful in their own right, it is in the area of multicomponent reactions where the unique reactivity of the isocynano group really comes into its own. Isocyanides are perfectly geared up towards acting as the centrepiece in often complex multi-compound condensation reactions. Many isocyanide based multicomponent reactions (IMCRs) have been described in the last century, most of these being variations on a theme of the two classic isocyanide based multicomponent reactions - the Passerini and Ugi reactions.

1.4 Passerini Three-component Reaction (P-3CR).

Passerini described the first important isocyanide based multicomponent reaction (IMCR) in 1921,¹¹ in which an isocyanide, a carboxylic acid and a carbonyl compound all react to produce an α-acyloxy carbamide 37 (Scheme 13).

\[
\begin{align*}
R_1-N^+=C^- + R_2R_3 + R_4OH &\rightarrow P-3CR \\
&\rightarrow R_1N\begin{array}{c}O \\
R_2 \quad R_3 \quad R_4 \quad O
\end{array}
\]

Scheme 13

Several mechanisms have been suggested, but due to the observed retardation of the rate of the reaction by polar and protic solvents, a non-ionic concerted mechanism has been put forward to be the most likely (Scheme 14).¹ The irreversible final O-acyl migration step makes this reaction a type II MCR (vide supra, Table 1). The previous α-addition step is also quasi-irreversible due to the strongly exothermic nature of the isocyanide C² to C⁴ transition, which, in common with most preparative IMCRs drives the equilibrium to the right making them type II.
Whilst the use of aldehyde and ketone substrates is significantly more common, ketenes44 40 and acyl cyanates45 42 have also been used as the oxygen-containing component in a P-3CR (Scheme 15).

\begin{align*}
\text{Ph} & \quad \text{C} = \text{O} \\
\text{Ph} & \quad \text{R}^- \text{N}^+ = \text{C}^- \\
+ & \quad \text{R}_1 \text{COOH} \\
\rightarrow & \quad \text{R}_1' \text{N} \text{C(\text{O})C(\text{O})N} \text{R} \\
\text{R}_1 \text{C} = \text{O} & \quad \text{R}^- \text{N}^+ = \text{C}^- \\
+ & \quad \text{R}_2 \text{COOH} \\
\rightarrow & \quad \text{R}_2 \text{N} \text{C(\text{O})C(\text{O})N} \text{R}_1 \text{R}
\end{align*}

Scheme 15

1.41 Alternative Nucleophiles to Carboxylic Acids in the Passerini Reaction (P-3CR).

In the absence of a carboxylic acid, a Lewis acid such as BF\textsubscript{3}(Et\textsubscript{2})O, followed by an aqueous workup or use of an aqueous, protic acid allows water to act as the
nucleophilic component of a P-3CR to give an \(\alpha \)-hydroxyamide product 44 (Scheme 16).\(^{46}\) The \(\alpha \)-adduct in this case, is stable and no rearrangement reaction is therefore required to drive the reaction to preparative completion.

\[
\begin{align*}
R-N^+\cdot\cdot\cdotC^- + \overset{\text{O}}{\overset{\text{R}_1}{\text{R}_2}} & \quad \overset{\text{H}^+ / \text{H}_2\text{O}}{\text{or}} \quad \overset{\text{Lewis acid}}{\text{then H}_2\text{O}} \quad \overset{\text{R}_2}{\text{R}_1} & \quad \overset{\text{OH}}{\text{N}} \cdot\cdot\cdot\text{R} \\
\end{align*}
\]

Scheme 16

Hydrazoic acid may be used in the place of a carboxylic acid in the P-3CR to give disubstituted hydroxytetrazoles 45 (Scheme 17).\(^{47}\) However, this reaction only gives appreciable yields in cases with highly reactive carbonyl components, since in less reactive examples the competing formation of tetrazoles from the aforementioned \(\alpha \)-addition between hydrazoic acid and isocyanides dominates (vide supra, Scheme 10). This undesirable side reaction may be prevented by the use of aluminium azide in the place of hydrazoic acid.\(^{47}\)

\[
\begin{align*}
\overset{\text{R}}{\overset{\text{R}_1}{\text{R}_2}} + \overset{\text{N}^+\cdot\cdot\cdot\text{C}^-}{\overset{\text{HN}_3}{\text{R}_2}} & \quad \overset{\text{N}^+\cdot\cdot\cdot\text{C}^-}{\overset{\text{R}_1}{\text{R}_2}} \quad \overset{\text{OH}}{\text{N}} \cdot\cdot\cdot\text{OH} \\
\end{align*}
\]

Scheme 17

Following their recently published Ugi type process\(^{48}\) utilising electron deficient phenols in the place of carboxylic acids via a Smiles rearrangement\(^{49}\) (vide infra, Scheme 64), El Kaim and Grimaud have recently produced a three-component addition of an isocyanide to a nitrophenol and carbonyl compound (Scheme 18).\(^{50}\) The mechanism is proposed to involve an ionic mechanism in contrast to a classical Passerini reaction in a non polar aprotic solvent, with an ensuing Smiles rearrangement.\(^{49}\)
1.42 Stereocontrol in the P-3CR.

A P-3CR using a prochiral carbonyl substrate will generate a new chiral centre in the \(\alpha \)-acyloxyamide product 37. The concerted mechanism means that all three starting materials are involved in cyclic transition state 39, and therefore it should be possible to achieve asymmetric induction via the use of any enantiomerically enriched substrate. The use of chiral carbonyl starting materials results in poor diasteroselectivity, probably due to the low steric demand of the adjacent linear isocyanide in the transition state 39.** However the use of chiral keto-acid 47 results in exclusive formation of only one diasteriomer 48 (Scheme 19).**

Most isocyanides lead to little diasteroselectivity, however, the camphor derived example 49, gives good levels of asymmetric induction in the product 50 (Scheme 20).** This vinylic isocyanide 49 may be cleaved under mild acidic conditions to
yield either an acid or an ester and is therefore representative of a useful chiral auxiliary for the asymmetric P-3CR.

![Chemical structure](image)

Scheme 20

The use of a chiral catalyst has also been shown to achieve asymmetric control in the Passerini reaction. However, in the first studies the chiral catalyst was present as a Lewis acid, replacing the carboxylic acid component, and thus, the product, after aqueous workup was an \(\alpha \)-hydroxyamide 51. The first catalytic asymmetric \(\alpha \)-addition to isocyanides was demonstrated by Denmark and Fan in this manner, using a chiral phosphoramidate Lewis base 52 to activate the weak SiCl\(_4\) Lewis acid achieving moderate to excellent enantiomeric excesses (Scheme 21).\(^{53}\)

![Chemical structure](image)

Scheme 21

Following an extensive catalyst screening using parallel methods, Domling *et al.* published the first asymmetric P-3CR from three achiral starting materials via stereochemical induction by a Lewis acid / chiral catalyst 53 combination (Scheme 22).\(^{54}\) However, a strictly limited number of model substrates are shown and only a moderate enantiomeric excess has thus far been demonstrated.
More recently a P-3CR under Lewis acid chelation control using a tridentate Indian (pybox) bulky chiral Cu(II) derived Lewis acid catalyst 56 has been reported by Schreiber (Scheme 23). Enantiomeric excesses of up to 98% were achieved for aldehydic substrates with functionality capable of bidentate coordination, such as the examples shown in Scheme 23.

1.5 Ugi Four-Component Condensation (U-4CR).

In 1959, Ugi published his classic four-component condensation reaction between a primary amine, a carbonyl compound, an acid and an isocyanide. The use of extended systems of chiral substrates and reactions led to an indecipherable and seemingly endless supply of data, such that an early Zuse computer was used to provide a simplified reaction mechanism.

Fast initial imine formation takes place by the simple reaction of an amine with a carbonyl compound via the hemiaminal (Scheme 24).
After imine formation, the Ugi reaction could just be thought to be an aza-analogue of the Passerini reaction. However, experimental evidence shows that an entirely different mechanism is occurring. The imine is activated towards nucleophilic attack by protonation to afford an iminium ion. Subsequent α-addition leads to an unstable α-acyloxy imine adduct 57 (Scheme 25).

The α-addition has been postulated as a two-step sequence, where the iminium ion undergoes nucleophilic attack by the isocyanide, and this intermediate, in turn, is attacked by the acid component. In cases where this does not form a stable α-aminoalkylation product, an N-acylation occurs intramolecularly via a 6-membered intermediate c.f. the final step of the Passerini reaction (Scheme 26).

When a secondary amine is employed in the U-4CR, the amine nitrogen in the α-adduct 58 is tertiary and therefore cannot take part in an N-acyl migration as detailed
above. If the reaction is carried out in anhydrous methanol, the nitrogen atom of the imino-anhydride 58 is acylated to furnish an acylamide 59 (Scheme 27).58

\[
\begin{align*}
& \text{R} - \text{N}^+ = \text{C}^- \\
& \text{R}^1 \text{N}^+ \text{R}^2 \\
\text{MeOH} & \quad \text{O} \\
\text{R}^3 \text{O} \text{R}^4 & \quad \text{N}^+ \text{N}^+ \\
\text{R}^4 & \quad \text{R}^1 \text{R}^2 \\
\end{align*}
\]

Scheme 27

1.51 Stereocontrol in the Ugi Reaction (U-4CR)

Chiral isocyanides offer little to no asymmetric induction in the U-4CR. For example, when the chiral camphor derived isocyanide 49, which as previously discussed gives excellent diasterioselectivity in the P-3CR (Scheme 20), is used in the U-4CR, no selectivity at all is observed.56 This led to the suggestion that the isocyanide is not involved in the step which determines the configuration of the new chiral centre.52

Moreover, at present there are no reports of significant stereochemical induction by the use of a chiral carboxylic acid component. In similar fashion, carbonyl compounds are often only capable of moderate degrees of asymmetric induction for the U-4CR even for examples which would give good stereochemical induction with other nucleophiles.2

Conversely, when chiral amines are employed in the asymmetric U-4CR, either the \(R \) or \(S \) diastereomer is formed depending on the reaction conditions. Temperature and concentration changes can completely invert the selectivity. \(\alpha \)-Methylbenzylamines have been used many times as chiral auxiliaries in order to control the formation of a new chiral centre, and these directing groups can, of course then be simply removed by subsequent hydrogenolysis.59 In 1967, Ugi and co-workers suggested at least two competing mechanistic pathways to be in operation in an asymmetric Ugi reaction by employing \((S)-\alpha\)-methylbenzylamine as a bulky chiral directing group.60,61 Schemes
28, 29 and 30 show three potential mechanisms in order to explain the differing selectivity observed by varying reaction conditions. In mechanism A (Scheme 28), the established Ugi mechanism, the isocyanide must preferentially attack from the less sterically shielded bottom face of 60 leading to (S)-(S)-61 and subsequently (S)-(S)-62 as the product. (Note – nomenclature assumes R₁ = lowest priority).

![Chemical diagram](image)

Prevalent in polar solvents

Scheme 28

Mechanism B (Scheme 29) shows a similar mechanism to the Passerini reaction (P-3CR), in which the carboxylate forms a hydrogen bonded complex 63. At this stage insertion by the isocyanide with resultant inversion gives the (S)-(R)-intermediate 64, which undergoes N-acyl migration to give the (S)-(R)-product 65. This pathway may explain the lack of asymmetric induction by chiral isocyanides, since the isocyanide is not involved in formation of the initial reversible intermediate 63.
Favoured in non-polar solvents at high concentrations & higher temperatures

Scheme 29

The third pathway – mechanism C (Scheme 30) suggests that the reversible formation of the hydrogen bonded intermediate 63 is not the rate determining step, but in fact the isocyanide insertion is fast and irreversible and occurs before the hydrogen bonded complex can equilibrate to the lower energy (S)-(S)-complex 66. In this example, formation of the (S)-(R)-intermediate 63 is kinetically more favourable on steric grounds, but (S)-(S)-66 is lower in energy and thus thermodynamically favoured due to the destabilising interaction between Ph and R₁ in the (S)-(R) intermediate diastereoisomer 63. Therefore (S)-(S)-62 would be expected to be formed preferentially after the final irreversible N-acyl migration step has occurred.
At low reactant concentration, mechanism C prevails over B, whilst at higher concentrations, (S)-(R)-65 is formed in greater amounts via mechanism B. This is because an increase of the isocyanide concentration in mechanism B should increase the rate of isocyanide attack thereby making the formation of the hydrogen bonded complex the rate determining step (RDS). Lower reaction temperatures favour formation of (S)-(S)-62, which may be explained by the fact that pathways A and C are more entropically disfavoured than B. Therefore the decrease in reaction rate with temperature is lower for pathway B, since the -TΔS component of the Gibbs equation ($ΔG^* = ΔH^* - TΔS^*$) is less significant. Pathway A is expected to dominate over B & C in polar solvents since, similarly to the Passerini reaction mechanism, polar solvents retard the rate of this mechanism which requires the formation of cyclic hydrogen bonded intermediate.
1.52 Ugi Reactions Using Bifunctionalised Starting Materials.

Although a good degree of diversity may be achieved using the simple U-4CR by variation of the substituents on each of the components, the resulting structural framework remains constant. Efforts have therefore been made to broaden the scope of the reaction by using bifunctional starting materials.

1.521 Amino-acids in U-4CR.

Initial unpublished studies by Steinbruckner and Ugi into the use of α-amino-acids in an U-4CR to produce α-lactams 70 were, not surprisingly, unsuccessful. Since the non-isolable six-membered α-adduct 68 is not capable of $O \rightarrow N$ acyl migration due to ring strain (Scheme 31). Instead, solvent participation by methanol via nucleophilic attack on 68 results in a secondary amine product 69.

A vast array of α-amino-acids may undergo this reaction, usually in over 95% yield. In addition, the formation of the new chiral centre proceeds with good diastereoselectivity (see examples in Scheme 32).
This high level of diasterioselectivity may be explained by the reversible, thermodynamic formation of the cyclic intermediate 68. When the α-amino acid has a sterically demanding side chain -R, this will preferentially sit in an equatorial position, and conformation 74 will therefore be lower in energy than conformation 76 due to the reduced steric repulsion. The rate of formation of the different diastereomers will therefore be dependant on the relative population of intermediates 74 / 76. In consequence, the use of less sterically demanding R-groups generally results in lower diasterioselectivity (Scheme 33).65

Ugi \textit{et al.}, further suggested that the diasterioselectivity can be controlled by temperature and use of metal catalysts, but did not publish any further examples or data to this effect in the primary literature67. It was also reported that other classes of compounds, other than alcohols, such as amines and thiols can react as nucleophiles
in the U-5C-4CR although sadly no given examples were cited in this piece of work.68

When a trifunctionalised α-amino acid is applied to this reaction, the pendant nucleophilic side group may, in certain cases, attack the unstable α-adduct 68.69 Use of L-Lysine 78 results in the formation of a ε-lactam 80, either \textit{via} attack on the O-acylamide intermediate 79 by the pendant side chain amino group with resultant rearrangement, or by nucleophilic substitution of the standard U-5C-4CR ester product by the ε-amino functionality (Scheme 34).69

![Scheme 34]

However due to steric constraints, the use of L-ornithine 81 which has one fewer methylene units in the side chain only resulted in the formation of traces of the corresponding δ-lactam 82. Instead 83 was isolated as the major product (Scheme 35).69

![Scheme 35]

When homoserine 84 was selected as the α-amino acid substrate in the less nucleophilic solvent – trifluoroethanol, N-carbamoylmethyl-α-aminobutyrolactones
85 were produced by participation of the γ-hydroxyl group, instead of the alcoholic solvent (Scheme 36). Serine and threonine are not reported to react via this pathway.

\[
\begin{align*}
\text{O} & \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3-N\equiv\text{C}^- & \text{CF}_3\text{CH}_2\text{OH} & \text{O} \quad \text{R}_1 \quad \text{R}_2 \quad \text{N}\equiv\text{C}^- \quad \text{R}_3 \quad \text{H} \\
\text{H}_2\text{N} & \quad \text{CO}_2\text{H} & \quad & 42-97\% \\
\text{84} & & & 0-98\% \text{ de} \\
\end{align*}
\]

\text{Scheme 36}

A multicomponent approach to novel 3-substituted morpholine-2-one-5-carboxamides 86 using glycolaldehyde dimer as the ‘carbonyl’ constituent, an α-amino acid and an isocyanide in an Ugi five-centred, four-component reaction (U5C-4CR) has been developed by Kim (Scheme 37). Although optimal yields were achieved using 2,2,2-trifluoroethanol, increased diastereoselectivity (5:1 and 3:1 respectively) was observed with the use of ZnCl₂ as an activating Lewis acid in MeOH or THF.

\[
\begin{align*}
\text{O} & \quad \text{CO}_2\text{H} & \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3-N\equiv\text{C}^- & \text{CF}_3\text{CH}_2\text{OH} & \text{HN} \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3 \quad \text{O} \\
\text{HO} & \quad \text{OH} & \quad & 30-90\% \\
\text{86} & & & 9-57\% \text{ de} \\
\end{align*}
\]

\text{Scheme 37}

In 1961, Steinbruckner demonstrated an isocyanide based multicomponent approach to β-lactams using β-amino acids 87 in a U-4C-3CR (Scheme 38).

\[
\begin{align*}
\text{O} & \quad \text{R}_4 \quad \text{NH}_2 & \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3-N\equiv\text{C}^- & \text{HN} \quad \text{R}_1 \quad \text{R}_2 \quad \text{R}_3 \quad \text{N} \equiv \text{C}^- \quad \text{R}_5 \\
\text{HO}_2\text{C} & \quad \text{R}_5 & \quad & \text{R}_4 \quad \text{R}_2 \\
\text{87} & & & \text{R}_3 \quad \text{R}_1 \quad \text{R}_2 \\
\end{align*}
\]

\text{Scheme 38}

The immonium betaine 89, undergoes fast ring closure on the nitrilium cation produced by the isocyanide attack. The intermediate cyclic α-adduct 90 is
sufficiently conformationally flexible to undergo spontaneous quasi-irreversible transannular acylation to furnish the stable β-lactam 91 (Scheme 39).

\[
\begin{align*}
\text{Scheme 39}
\end{align*}
\]

Little to no diasterioselectivity is achieved when the stereogenic centre is at the α-position of the β-amino acid e.g. 92, due to the distance between the two chiral centres in the seven-membered intermediate 90 (Scheme 40).\(^3\)

\[
\begin{align*}
\text{Scheme 40}
\end{align*}
\]

However, when the β-position is chiral 94, a slightly greater degree of diasteromeric control is observed (Scheme 41).\(^3\)

\[
\begin{align*}
\text{Scheme 41}
\end{align*}
\]

The preparation of a penicillin derivative 97 was carried out using this methodology by Ugi and Wischofer in 1962, using an Asinger four-component reaction (A-4CR)\(^4\) and a subsequent Ugi reaction of the resultant thiazoline 96 (Scheme 42).\(^5\) This
represents the first example of the union concept of sequential combinations of multicomponent reactions.

![Chemical structure](image)

Scheme 42

1.522 Dicarbonyl Substrates in the Ugi Reaction.

The U-4CR of arylglyoxals 98, 1° amines, carboxylic acids and isocyanides with subsequent cyclisation was shown to be an efficient method for the preparation of substituted imidazoles 99 (Scheme 43).76

![Chemical structure](image)

Scheme 43

This reaction has also been carried out on a modified Wang resin as the isocyanide component with subsequent cleavage by TFA to yield a terminal carboxylic acid.77

1.523 Carbonyl-Carboxylic Acid Substrates in the Ugi Reaction.

Ketoacids as bifunctionalised substrates for the Ugi reaction had been investigated and published as early as 1968.78 Gross et al. demonstrated the use of levulinic acid 101 with benzylamine and cyclohexyl isocyanide to give a five membered lactam product 102 (Scheme 44). Interestingly, when this reaction is carried out in the presence of isobutyraldehyde, the normal Ugi product 100 is formed exclusively.78
More recently, in 1997, Short and Mjalli at Ontogen Corp.8 published the facile preparation of a further selection of five and six membered ring lactams by the U-4C-3CR of ketoacids 103, isocyanides and primary amines.79 Later in the same year, this work was extended by a second group to allow preparation of seven and eight membered lactams through the use of highly dilute reaction conditions (Scheme 45).80

Harriman suggests a mechanism in which the methanol solvent attacks the mixed imino-anhydride 107 prior to ring closure to the lactam, and this suggestion is substantiated by the fact that the reaction would not operate in the absence of methanol (Scheme 46).80
The use of phthalaldehydic acid 109 and 2-acetyl benzoic acid 110 as carbonyl-carboxylic acid substrates in the Ugi reaction has been shown to give bicyclic \(\gamma \)-lactams 111 (Scheme 47).\(^{79,81}\)

Hanusch-Kompa and Ugi later applied amino-acid esters to the above reactions furnishing 2,6-piperazinediones 112 and 1,4-diazabicyclo[4,3,0]nonane-3,5,9-triones 113 respectively by the combination of an U-4C-3CR with an intramolecular amide bond formation using potassium tert-butoxide in the second step (Scheme 48).\(^{81}\)
Scheme 48

Zhang and co-workers have demonstrated a similar use of suitably tethered aldehyde-carboxylic acid substrates for four-centred, three-component Ugi reactions (U-4C-3CR). In this case, the variation of tether length between three, five and six bonds results in a diverse series of cyclic amides (Scheme 49).
1.524 Diamines as Components in the Ugi Reaction

Giovenzana and Tron recently applied bis-secondary diamines to the Ugi reaction (U-4CR) (Scheme 50). Secondary amines are not usually applicable to the standard Ugi reaction since the nitrogen atom of the amino group is unable to take part in the acyl migration step as it is tertiary at this point in the mechanism. One amino group of the diamine is not involved in the initial mechanism between the aldehyde, isocyanide and carboxylic acid, and is thus free to take part in the N-acyl migration, producing a novel extended structure to a standard Ugi reaction. Diamines with three through to six bonds separating the amino groups are all shown to be compatible. In the case of diamine 118, remote transacylation via an eleven-membered transition state occurs with a surprisingly high yield of 56%.

Scheme 50

The synthetic power of this reaction can be exemplified by the one-step synthesis of the known vasodilator 120 (Scheme 51), which had previously only been synthesised in a four step sequence from piperazine.84
Tempest and Humle have reported the use of singly Boc protected diamines with 2-fluoro-5-nitrobenzoic acid in which the primary amine preferentially forms the imine and takes part in the Ugi reaction leaving a pendant secondary or tertiary amine in the product 121. Subsequent treatment with TFA and proton scavenging resins afforded a series of benzazepines 122 by deprotection and SNAr ring closure (Scheme 52).

1.53 Alternatives to Amines in the Ugi Reaction.

In 1998, Ugi and Zychlinski demonstrated that urea may be utilised in the place of an amine for the U-4CR (Scheme 53).
Scheme 53

Moderhack demonstrated the use of hydroxylamines as substrates for an isocyanide based three-component reaction (Scheme 54). When only 1 equivalent of aqueous protic acid is present, 125 is isolated, however, with 2 equivalents of acid, 2,2'-iminodicarboxdiamide 124 is produced.

Scheme 54

Tempest et al. demonstrated the use of a singly Boc-protected hydrazine in an U-4CR with subsequent $S_{N}Ar$ cyclisation to give dihydroindazol-3-ones 127 (Scheme 55).
Marcaccini et al. have applied hydrazine monohydrate, a carbonyl compound, cyclohexyl isocyanide and 2-benzoyl benzoic acid 128 in a U-4CR via the azine to produce 4-phenyl-1-(2H)-phthalazinone-2-alkanoic acid amides 130 after subsequent acidic workup and loss of one molecule of the initial carbonyl group (Scheme 56).

Recently, Marcaccini et al. have also shown that semicarbazones 131, react in the place of an amine and carbonyl compound in a U-3CR reaction using benzoyl or 4-
methoxybenzoylformic acid, the adduct of which 132 gives 3-hydroxy-6-oxo[1,2,4]triazin-1-yl alaninamides 133 upon treatment with sodium ethoxide (Scheme 57).

\[
\begin{align*}
R_3-N^+&=C^- + \text{NH}_2 \xrightarrow{\text{MeOH}} \text{Ar} \xrightarrow{\text{EtONa}} \\
R_1-R_2 &\xrightarrow{\text{O}} \text{NH}_2-N=O \xrightarrow{\text{MeOH}} \text{Ar} \xrightarrow{\text{HO}} \text{N} \xrightarrow{\text{53-84\%}} \text{N} \xrightarrow{\text{OH}} \text{N} \xrightarrow{\text{Ar}} \text{N} \\
\text{Scheme 57}
\end{align*}
\]

1.54 Alternative Nucleophiles to Carboxylic Acids for the U-4CR.

In the presence of a protic acid, water may act as a nucleophile in the Ugi reaction to produce an α-amino alkylamine 134 (Scheme 58).\(^{44,58,90}\) In this case, the α-adduct is stable and no further rearrangement occurs. Similarly, hydrogen selenide\(^{91}\) and hydrogen thiosulfate\(^{91}\) produce stable products with either primary or secondary amines, a carbonyl component and an isocyanide (Scheme 58).

\[
\begin{align*}
R-N^+&=C^- + \text{H}_2\text{Se} \xrightarrow{\text{H}_2\text{Se}} \\
R-N^+&=C^- + \text{H}_2\text{Se} \xrightarrow{\text{H}_2\text{Se}} \\
R-N^+&=C^- + \text{H}_2\text{Se} \xrightarrow{\text{H}_2\text{Se}} \\
\text{Scheme 58}
\end{align*}
\]
In 1961, Ugi realised the potential of using hydrazoic acid as the acid component of the Ugi reaction with either primary or secondary amines to produce substituted amino-tetrazoles 138 (Scheme 59).\(^{92}\)

\[
\begin{align*}
\text{R}_1 \text{C}=\text{N}^+\text{H} & \quad \text{R}_1 \text{C}=\text{N}^+\text{H} \\
\text{R}_3 \text{N}=\text{C}^- & \quad \text{HN}_3
\end{align*}
\]

U-4CR

\[
\begin{align*}
\text{R}_2 & \quad \text{R}_2 \\
\text{R}_3 & \quad \text{R}_3
\end{align*}
\]

137

138

Scheme 59

This methodology has been extended by Bienayme by the use of readily available alkyl-\(\beta-(N,N)\)-dimethylamino-\(\alpha\)-isocyanoacrylates 139,\(^{93}\) wherein the initial reaction is followed by acid catalysed cyclisation to produce interesting biologically relevant bicyclic tetrazoles in fair to good yields (Scheme 60).\(^{94}\) The often isolated - azanorbornanes 141 - formed by internal azide / olefin [3+2] cycloaddition revert to the standard Ugi product 142 upon treatment with dilute aqueous acid.

\[
\begin{align*}
\text{R}_1 \text{C}=\text{N}^+\text{H} & \quad \text{R}_2 \text{N}=\text{C}^- \\
\text{R}_3 \text{O}_2\text{C} & \quad \text{HN}_3
\end{align*}
\]

Scheme 60

Hydrogen cyanate\(^{95}\) and hydrogen thiocyanate\(^{96}\) may be used for the U-4CR in the place of the ubiquitous carboxylic acid to produce hydantoin-4-imides 143 and 2-thiohydantoin-4-imides 144 respectively (Scheme 61). As is the case with a carboxylic acid nucleophile, only a primary amine will react in this manner.

\[
\begin{align*}
\text{R}^-\text{N}=\text{C}^- & \quad \text{R}_1\text{N}=\text{C}^- \\
\text{R}_2 \text{C}=\text{O} & \quad \text{HXCN}
\end{align*}
\]

X=O or S

143/144

Scheme 61
In 1999, Domling suggested the use of thioacetic acid as a replacement for the carboxylic acid in an U-4CR. This results in entirely regioselective formation of α-aminoacylthioamides 147, rather than the corresponding α-aminothioacylamide 146 (Scheme 62).97 This is due to the nucleophilic nature of the thioacid which exclusively forms only one structural isomer of intermediate 145.98

![Chemical structure diagram]

Scheme 62

The combination of a thioacid with Schollkopf's aforementioned β-dimethylamino-α-isocynanoacrylate 148,93, which has a good leaving group at the β-position has also been explored, and allows the one-pot synthesis of 2,4-disubstituted thiazoles 149, (Scheme 63).

![Chemical structure diagram]

Scheme 63

In conjunction with their abovementioned variant of a Passerini-type reaction using nitrophenols as nucleophiles (\textit{vide supra}, Scheme 18), El Kaim and Grimaud have demonstrated an Ugi-type type process which replaces the ubiquitous carboxylic acid with a phenol bearing an electron withdrawing group (EWG) (Scheme 64).48
Protonation of the imine by the acidic phenol leads to an iminium ion which in turn attacked by the isocyanide in a comparable manner to the classical Ugi reaction. The phenoxide ion is then sufficiently nucleophilic to trap the nitrilium cation forming a labile intermediate 151 which then undergoes a Smiles rearrangement to afford an amino-amide 152 (Scheme 65). 49

1.55 Bifunctional Alternative Substrates.

1.551 Tethered Aminoalcohol Substrates

There have been many examples in the literature of the use of ethanolamine as the amine component in the Ugi reaction, in which the hydroxyl group takes no part in the reaction, and O-protection is therefore unnecessary. 99, 100, 82 Banfi et al. have thus carried out a Mitsunobu cyclisation 101 using the pendant hydroxyl group in the Ugi product 153 to form diazepanes, diazocanes and dihydrobenzoxapeninones 154 in two steps (Scheme 66). 100
Tempest and Hulme have applied the tethered amino alcohols- ethanolamine and propanolamine to an U-4CR with 2-fluoro-5-nitrobenzoic acid as the nucleophile, with subsequent $\text{S}_{\text{N}}\text{Ar}$ ring closure of the Ugi product by treatment with proton scavenging resins to give biologically interesting benzoxazepines and their larger ring derivatives (Scheme 67).85

1.6 Secondary Reactions of Isocyanide Based Multicomponent Reactions.

Further diversity may be added to an isocyanide based multicomponent reaction (IMCR) by the use of a substrate which may later be subjected to secondary reactions after incorporation into the IMCR product.102 This may allow simple diversification of the initial product into a further ‘mini library’ of products including many which
would not be accessible by the initial IMCR step, or allow further synthetic manipulation towards a designated target. This may be achieved by either carrying out MCRs with synthetically labile groups which do not participate in the reaction and thus require protection, or via the use of a convertible isocyanide. Some pertinent examples of synthetically labile groups in secondary reactions which are of interest later in this thesis have already been mentioned in the previous section. However, due to the extensive body of work in this area, detailed discussion is beyond the scope of the present introduction.¹⁰³

1.61 Convertible Isocyanides.

Ugi initially published results on the acid cleavable isocyanide, 1-isocyanocyclohexene 157,¹⁰⁴ and this concept was further developed by Armstrong into the ‘universal isocyanide’ to combat the lack of commercially available isocyanides.¹⁰⁵ The isocyanide component has long been the weak link in the pool of starting materials for the Ugi and Passerini type reactions, with a considerably larger array of the other substrate types commercially available for combinatorial approaches to be carried out. Thus, the ‘universal isocyanide’ (1-isocyanocyclohexene) 157 may take part in a series of acid catalysed reactions to modify the isocyanide-derived area of the final product (Scheme 68). Interestingly, in most cases, the isocyanide carbon is the only atom from the original isocyanide to remain in the product after the secondary reaction. An extremely diverse variety of transformations can now be performed as outlined in (Scheme 68).¹⁰⁵
1.7 Application of Multicomponent Reactions Towards Diversity

Oriented Synthesis.

Amongst the many advantages of multicomponent reactions (MCRs) are the extremely large numbers of products that may be synthesised from just a small number of starting materials. For example, a three-component reaction (3-CR) using just ten structural permutations of each type of starting material will yield 1,000 different products \(10^3\) whereas a four-component reaction (4-CR), again using ten structural variants of each will result in 10,000 different products \(10^4\), all with a similar structural backbone. This range of compounds may be further extended by using the aforementioned method of secondary reactions upon an IMCR product to diversify each product into a further mini-library of compounds.

Recent scientific developments, including genome analysis & proteomics (leading to a plethora of new drug targets) and high throughput automated combinatorial methods (especially those linked to the solid phase) have led to an increased demand
for a greater number of increasingly complex compounds for drug discovery. This may be in part, addressed by the development of novel MCRs, which produce pharmacologically interesting structures.

α-Amino-amide based local anaesthetics are an early success story of the targeted library approach to drug discovery, as appropriately demonstrated by the synthesis of the local anaesthetic Xylocain 163 by an U-3CR. This is produced simply from cheap, readily available starting materials in good yield over just one step and provides an excellent example (Scheme 69)106

\[
\begin{align*}
\text{H}_2\text{O} & + \text{CH}_2\text{O} & \xrightarrow{\text{U-3CR}} & \text{Xylocain 163} \\
\text{N}^+\text{C}^- & & & \\
\end{align*}
\]

Scheme 69

No fewer than twelve local anaesthetic structures based on this α-amino-amide structure of Xylocain 163 have since been produced and sold globally (Scheme 70).1 This was the result of Ugi’s early foresight into the ‘combinatorial type’ synthesis of large numbers of structural analogues of a biologically active IMCR product.
1.8 Applications of Multicomponent Reactions Toward Target Orientated Synthesis.

Total syntheses of a target molecule are usually carried out in several reaction steps, with protection and deprotection procedures often required therein. At each stage, the intermediates must be separated and purified to prevent a build up of impurities, before they can be used as an educt of the next step in the sequence. The overall yield of such a stepwise synthesis decreases sharply to a first order approximation with each further required step. Multi-component processes achieve multiple-bond formation in an operationally simple ‘one-pot’ manner; thus potentially allowing the generation of a high degree of complexity from simple, readily available starting materials, and therefore are an ideal tool for target-orientated synthesis. The first and most important example of a MCR in the field of natural product synthesis is, of course, Robinson’s classical synthesis of the alkaloid Tropinone 165 (Scheme 71).\(^{107}\)

\[
\begin{align*}
\text{HOOC-} & \quad \text{NH}_2 \quad \text{EtOH} \\
\text{H}_2\text{C} & \quad \text{O} \\
\text{H}_2\text{C} & \quad \text{O} \\
\text{HOOC} & \quad \text{OH} \\
\end{align*}
\]

Scheme 71

Analogues 168 of the complex gram-negative active antibiotic bicyclomycin 166 which is isolated from \textit{streptomyces sapporonensis}\(^{108}\) were synthesised by Fukuyama in only eight steps using an Ugi-four component condensation (U-4CR), to build in the bulk of the carbon skeleton by the production of four bonds in only one step. (Scheme 72).\(^{109}\)
The intramolecular Passerini reaction with bifunctional α-carboxylic aldehyde 169 allows a three-step synthesis of the alkaloid Hydrastrine 170, once again demonstrating the structural complexity, which may be built up in just one step using a multicomponent reaction (Scheme 73).
Overview.

The chemistry of IMCRs has not been anywhere near as extensively investigated in the last century as simple two-component chemistry. This is part due to their foul odour as well as the lack of available methods for their synthesis in the first part of the last century. IMCRs therefore still have large unknown areas yet to be discovered. It is important that continued effort is put into discovery of new IMCRs to probe new and exciting structural space as well as the further investigation of existing reactions. The example of the Ugi reaction shows the large amount of mechanistic ambiguity still existing for many IMCRs, mainly due to the greater number of degrees of freedom present in the reaction.

The discovery of new IMCRs may be facilitated by an intelligent design approach, or more often, perhaps in a serendipitous manner. Modern approaches include the use of combinational reaction finding techniques,111,112 whereby a collection of compounds with a variety of functional groups are reacted in each possible permutation.

In the following chapter we will discuss our own attempts towards the development of a series of novel IMCRs \textit{via} the use of interesting bifunctional starting materials as well as attempts to investigate novel replacements for the ubiquitous carboxylic acid nucleophile therein.
Part 2:

RESULTS and

DISCUSSION
2.1 Introduction.

Since the first part of this work involves the use of 1,3-oxazolidines 171 and their antecedent \(\beta \)-aminoalcohols 174 in a series of novel isocyanide based multicomponent reactions (IMCRs), it is therefore pertinent to briefly introduce this interesting class of saturated \(N-O \) heterocyclic compound.

2.2 Oxazolidines.

2.2.1 Structure.

Oxazolidines 171 are saturated five-membered heterocycles of the general structure shown in Scheme 74. They were discovered by Knorr in 1901 by the condensation of a \(\beta \)-aminoalcohol 174 with a carbonyl compound.

\[
\begin{array}{c}
R^\sim N \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
R_1 \quad R_2 \\
\end{array}
\]

Scheme 74

In cases where the nitrogen atom is trisubstituted, the five-membered ring structure has been well established (Scheme 74). However, where \(R=H \), a labile tautomeric system is present in which the cyclic oxazolidine 172 may exist in equilibrium with the ring opened – imine tautomer 173 (Scheme 75).

\[
\begin{array}{c}
\begin{array}{c}
H \quad N \quad O \\
R_1 \quad R_2 \\
\end{array} & \Leftrightarrow & \\
\begin{array}{c}
N \quad \bigcirc \bigcirc \bigcirc \\
R_1 \quad R_2 \\
\end{array}
\end{array}
\]

Scheme 75

There has been a great deal of debate and research into the exact nature of these \(NH \) oxazolidines, and indeed, many exist exclusively as the cyclic structure 172, whereas others are present entirely as the imine 173. Infrared spectroscopy, NMR and
molecular refraction have all been used to ascertain the structure and equilibrium ratios of particular NH oxazolidines. What seems certain is that aldehyde derived oxazolidines ($R_1 = H$) tend to favour the cyclic oxazolidine form 172 when $R_2 = alkyl$, and favour the imine form 173 when $R_2 = aryl$. This is due to the increased stability of the imine afforded by conjugation with the aryl group. Ketone derived NH oxazolidines, in many cases exist as a mixture of both tautomers. Interestingly, infrared spectroscopy results have shown that in almost all cases there is little or no intramolecular hydrogen bonding between the hydroxyl group and imine in tautomer 173 as depicted in Scheme 76.113

\begin{center}
\includegraphics[width=0.2\textwidth]{scheme76.png}

Scheme 76
\end{center}

2.22 Synthesis.

Several methods exist for the synthesis of oxazolidines 171, but by far the most prevalent is the condensation of a β-aminoalcohol 174 with a suitable carbonyl compound (Scheme 77).

\begin{center}
\includegraphics[width=0.3\textwidth]{scheme77.png}

Scheme 77
\end{center}

Many conditions have been applied to this reaction. Solvents including ethanol,115 chloroform,116 toluene,117 benzene118 or diethyl ether116 have been used. Catalysts and additives including iodine,119 acetic acid120 and anhydrous potassium carbonate114 have been shown to be successful in reducing reaction times and facilitating the preparation of difficult examples. The most commonly used method involves azeotropic distillation using Dean and Stark conditions.118,120 Reaction times vary from almost immediate formation in the case of many aldehydes to 67 hours for the
reaction between 2-amino-2-methyl-1-propanol and butan-2-one.113 In general however, most examples are complete in under one hour. The relative reactivity of carbonyl compounds with different β-aminoalcohols may be estimated by the measurement of reaction time for complete conversion under azeotropic distillation conditions. Use of aldehydes results in shorter reaction times, due to their increased electrophilicity compared with ketones. Substitution of the nitrogen atom of the β-aminoalcohol 174 has a significant effect on the rate of oxazolidine formation due to both electronic and steric factors. Substitution on the methylene groups and in particular geminal disubstitution of the aminoalcohol has a profound effect on the rate of reaction due to the Thorpe-Ingold effect and analogous steric factors.113

2.23 Reactivity.

\textit{NH} and \textit{N}-substituted oxazolidines are prone to nucleophilic attack by a series of reagents leading to a variety of substituted aminoethanols. These reactions give a complementary method to aminolysis of epoxides for the formation of substituted aminoethanols. Reducing agents such as LiAlH\textsubscript{4},121 NaBH\textsubscript{4},122 and lithium123 or potassium124 in THF give an aminoethanol 172. Cope and Hancock showed that catalytic hydrogenation of \textit{NH} oxazolidines 173 similarly led to the formation of aminoethanols 174.125,126 Oxazolidines readily undergo nucleophilic addition with Grignard reagents,126,127 and acetylides likewise attack oxazolidines leading to formation of alkyne substituted aminoalcohols 176.128,129 Aqueous hydrogen cyanide reacts with formaldehyde derived \textit{N}-alkyl oxazolidines 177 to form cyano-substituted aminoethanols 178.130,131,132 (Scheme 78).
2.3 Results and Discussion.

2.3.1 Preparation of Oxazolidines.

Given the above pattern of reactivity of oxazolidines with nucleophilic reagents, it was of interest to investigate their reactivity with isocyanides, with the objective of exploring the potential of the resultant intermediates in novel isocyanide based multicomponent reactions (IMCRs).

In the first instance, a series of oxazolidines 171 were accordingly prepared by condensation of β-aminoethanols 174 with carbonyl compounds (Scheme 77), the results are summarised in Table 2. Three methods were employed. The first was the traditional method of heating in benzene or toluene under Dean and Stark conditions in the presence of an acid catalyst (Method A). In this case, catalytic pTsOH and the
use of a trace of iodine were both found to be equally successful for the reduction of reaction times. A novel second method was developed, wherein repeated concentration of the two reactants from ethanolic solution *in vacuo* led to good yields (Method B). The latter approach was devised with automation of the reaction in mind. When this method was applied to reactions involving aldehydes it resulted in near quantitative conversion to oxazolidines 171 of sufficient purity (by 1H NMR) for direct use in the IMCRs. Some of the yields quoted in Table 2 are however lower than this due to mechanical loss of material upon small scale distillation.

For the case of volatile carbonyl compounds which could not be employed in the first two methods, a third set of reaction conditions, as developed by Knorr, were used.114 Diethyl ether, at room temperature, in the presence of anhydrous potassium carbonate resulted in good conversion for example 187 (Method C).

![Chemical structure](image)

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>Method</th>
<th>Yield 171</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMe-C$_6$H$_4$</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>90%</td>
<td>179</td>
</tr>
<tr>
<td>n-C6H${13}$</td>
<td>H</td>
<td>Me</td>
<td>A</td>
<td>73%a</td>
<td>180</td>
</tr>
<tr>
<td>pMeO-C$_6$H$_4$</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>77%a</td>
<td>181</td>
</tr>
<tr>
<td>pO$_2$N-C$_6$H$_4$</td>
<td>H</td>
<td>Me</td>
<td>B</td>
<td>60%a</td>
<td>182</td>
</tr>
<tr>
<td>pMe-C$_6$H$_4$</td>
<td>H</td>
<td>PhCH$_2$</td>
<td>B</td>
<td>97%</td>
<td>183</td>
</tr>
<tr>
<td>(CH$_2$)$_5$</td>
<td>Me</td>
<td></td>
<td>B</td>
<td>86%a</td>
<td>184</td>
</tr>
<tr>
<td>pMe-C$_6$H$_4$</td>
<td>H</td>
<td>tBu</td>
<td>A</td>
<td>64%a</td>
<td>185</td>
</tr>
<tr>
<td>pMe-C$_6$H$_4$</td>
<td>H</td>
<td>H</td>
<td>B</td>
<td>89%</td>
<td>186</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>C</td>
<td>80%</td>
<td>187</td>
</tr>
</tbody>
</table>

Table 2. Synthesis of oxazolidines by three methods.
2.32 Three-component Reaction Between an \(N \)-alkyloxazolidine, Isocyanide and Carboxylic Acid.

With effective methods now in hand for the preparation of the required 1,3-oxazolidines 171, attention was turned to their use as the electrophilic component in an isocyanide based multicomponent reaction (IMCR).

As previously mentioned (\textit{vide supra}, Schemes 66 & 67), ethanolamine itself has been reported many times as a suitable amine component for the Ugi reaction, in which the hydroxyl group merely acts as a spectator and takes no part in the reaction. 82,99,100

Recently Giovenzana and Tron described the use of bis-secondary diamines in the Ugi reaction (U-4CR) (Scheme 79). 83 In this case, one amino group of the diamine is not involved in the initial mechanism between the aldehyde, isocyanide and carboxylic acid, and is free to take part in the ensuing \(N \)-acyl migration. This reaction results in good to moderate yields despite the extended entropically disfavoured and transannularly strained \(N \)-acyl migration in intermediates 188 when up to eleven-membered rings are involved (Scheme 79). 83

\[
\begin{align*}
R_1 & \quad R_2 - N^\equiv C^- \\
\text{O} & \quad \text{O} \\
R_3 & \quad R_4 & \quad R_5 & \quad \text{COOH} \\
n = 2, 3, 4 \text{ or } 5 \\
\end{align*}
\]

Scheme 79

It was envisaged that by using \(N \)-substituted ethanolamines to form oxazolidines 171, a similar reaction with an isocyanide and carboxylic acid could occur (Scheme 80).
An initially proposed mechanism for this reaction would involve ring opening of the oxazolidine 171 in the presence of a protic acid to give an iminium ion 191, which is the reactive electrophilic partner in Ugi type reactions. This would be expected to react in quasi-irreversible fashion with an isocyanide. The resultant nitrilium cation 192 could then be trapped by the carboxylate anion resulting in intermediate 193 (Scheme 81). The use of a secondary N-substituted β-aminoalcohol as the amine component should, in this case, eradicate the N-acyl migration pathway seen in the Ugi reaction, since the amino group derived from the oxazolidine component in intermediate 193 is tertiary (Scheme 81).

The anticipated O-acyl migration (Scheme 81) benefits from the same thermodynamic driving forces involved in the Passerini reaction,11 the Ugi reaction of α-amino acids in methanol,63-66 and the Ugi reaction of homoserine 84,70 although, in this case it reacts via a larger - eight-membered transition state 194, and is therefore more entropically disfavoured than the other processes shown in Scheme 82.
Only one literature precedent for the formation of this class of interesting N-acyloxyethylamino acid amide 190 was found in a patent published by Ciba-Geigy® for the preparation of such aryl substituted amines 196 as intermediates for azodyestuffs (Scheme 83).133
The proposed 3-CR reaction of an N-alkyl oxazolidine, isocyanide and carboxylic acid (Scheme 80) would therefore provide a one-step, highly convergent synthesis of the N-acyloxyethylamino acid amide 190 unit in a far simpler and shorter route to that of Ciba-Geigy®, thereby exemplifying many of the advantages of multicomponent reactions over stepwise reaction sequences. Moreover, this structure was considered to be ideal for compound library synthesis due to the large number of substitutable positions in the various reagents, thereby allowing the preparation of a large variety of examples with the N-acyloxyethylamino acid amide core unit 190.

2.33 Initial IMCRs Involving N-alkyloxazolidines.

Gratifyingly, an initial reaction using 3-methyl-2-p-tolyl-oxazolidine 179, tert-butyl isocyanide and propionic acid in THF at room temperature was successful, albeit in a disappointing 12% isolated yield (Scheme 84).
Increasing the temperature of the reaction to reflux gave no significant improvement in yield for a similar example 198 (Scheme 85).

![Scheme 85](image)

It was therefore considered that the addition of an acid catalyst possessing a non-nucleophilic counterion might increase the rate of reaction by facilitating ring opening of the oxazolidine to the iminium ion. Use of 10 mol% pTsOH as an acid catalyst at reflux in THF led to a vast improvement in yield of 198 from 14% to 56% (Scheme 86).

![Scheme 86](image)

At this stage, due to the success of pTsOH as an acid catalyst, Dowex® 50W X4 acidic resin was trialled with a selection of solvents in an initial attempt to optimise the reaction conditions (Scheme 87). Dowex® 50W X4 was initially thought to be a good choice of acidic catalyst over pTsOH for the screening experiments on practical grounds since it could be removed simply by gravity filtration. Table 3 shows the results of this solvent screen. Only solvents that gave appreciable yields of the desired product are shown and use of acetonitrile was clearly shown to be beneficial. When the superior solvent choice – acetonitrile was used, but this time reverting to the use of 10 mol% pTsOH as a homogeneous catalyst instead of Dowex® 50W X4
resin, an improved yield of 66% was achieved. These reaction conditions were therefore selected to start investigating the generality of this reaction.

\[
\begin{align*}
\text{N} & \quad \text{PhCOOH} \\
\text{N} & \quad \text{Ph}\text{COOH} \\
179 & \quad \text{cat. H}^+ \\
\text{Ph} & \quad \text{reflux 18h} \\
198 & \quad \text{Scheme 87}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Solvent</th>
<th>Conditions</th>
<th>Yield 198</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowex</td>
<td>THF</td>
<td>Reflux 17h</td>
<td>24%</td>
</tr>
<tr>
<td>Dowex</td>
<td>MeOH</td>
<td>Reflux 17h</td>
<td>30%</td>
</tr>
<tr>
<td>Dowex</td>
<td>DMF</td>
<td>Reflux 17h</td>
<td>19%</td>
</tr>
<tr>
<td>Dowex</td>
<td>EtOAc</td>
<td>Reflux 17h</td>
<td>38%</td>
</tr>
<tr>
<td>Dowex</td>
<td>MeCN</td>
<td>Reflux 17h</td>
<td>52%</td>
</tr>
<tr>
<td>pTsOH</td>
<td>MeCN</td>
<td>Reflux 24h</td>
<td>66%</td>
</tr>
</tbody>
</table>

Table 3. Solvent and acid screen for Scheme 87.

2.34 Examples of 3-CR Using *N*-alkyloxazolidines, Isocyanides and Carboxylic Acids under Initially Optimised Conditions.

With these conditions in hand, a variety of *N*-alkyloxazolidines, isocyanides and carboxylic acids, (Scheme 88) were then reacted to yield a selection of *N*-acyloyxethylamino acid amides 190. As shown in Scheme 88 and Table 4, this reaction tolerates both aliphatic and aromatic isocyanides, but with higher yields seen for aliphatic examples. This is important since many published IMCRs only work well with either one or the other. This reaction also allows the use of aromatic and aliphatic carboxylic acids with no significant difference in yield. The use of the bifunctional and bulky 3-indole propionic acid however, unsurprisingly led to lower yields. Both aliphatic and aromatic aldehyde derived oxazolidines were successful substrates for this reaction, with aliphatic oxazolidine 180 giving the greatest yield. The lower yield for the *para*-nitrobenzaldehyde derived oxazolidine 182, when
compared with other more electron rich aldehyde derived oxazolidines may only be due to stability issues, rather than inherent electronic factors, since oxazolidine 182 was not stable to storage at room temperature. Ketone derived oxazolidine 184 showed a reasonable yield, similar to those for aromatic aldehyde derived oxazolidines. The large bulky tert-butyl substituent on the oxazolidine nitrogen of 185 appeared to have an extremely detrimental effect on the isolated yield.

![Scheme 88](image)

<table>
<thead>
<tr>
<th>171</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Ph</td>
<td>66%</td>
<td>197</td>
</tr>
<tr>
<td>179</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Et</td>
<td>64%</td>
<td>198</td>
</tr>
<tr>
<td>179</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'C₆H₁₁</td>
<td>Ph</td>
<td>71%</td>
<td>199</td>
</tr>
<tr>
<td>179</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'Pr</td>
<td>Ph</td>
<td>73%</td>
<td>200</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Ph</td>
<td>80%</td>
<td>201</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Et</td>
<td>78%</td>
<td>202</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>'C₆H₁₁</td>
<td>Ph</td>
<td>48%</td>
<td>203</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>2-(3-indole)ethyl</td>
<td>44%</td>
<td>204</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>2,6-dimethylphenyl</td>
<td>Et</td>
<td>42%</td>
<td>205</td>
</tr>
<tr>
<td>180</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>Me</td>
<td>2-methyl-6-chlorophenyl</td>
<td>Ph</td>
<td>29%</td>
<td>206</td>
</tr>
<tr>
<td>181</td>
<td>pMeO-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Ph</td>
<td>68%</td>
<td>207</td>
</tr>
<tr>
<td>182</td>
<td>pO₂N-C₆H₄</td>
<td>H</td>
<td>Me</td>
<td>'Bu</td>
<td>Ph</td>
<td>47%</td>
<td>208</td>
</tr>
<tr>
<td>183</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>PhCH₂</td>
<td>'Bu</td>
<td>Ph</td>
<td>44%</td>
<td>209</td>
</tr>
<tr>
<td>184</td>
<td>(CH₂)₅</td>
<td>Me</td>
<td>'Bu</td>
<td>Ph</td>
<td>63%</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>'Bu</td>
<td>'Bu</td>
<td>Me</td>
<td>20%</td>
<td>211</td>
</tr>
</tbody>
</table>

Table 4. Results for 3-CR formation of N-acyloxyaminoacid amides 190.
2.35 Four-Component Reaction (4-CR) Using β-Aminoethanols.

Isocyanides, Carbonyl Compounds & Carboxylic Acids with no Prior Condensation.

After the successful three-component reaction (3-CR) for a variety of substrates, (Scheme 88), it was reasoned that an in-situ preparation of an N-alkyloxazolidine in the presence of the isocyanide and carboxylic acid – a four-component reaction (4-CR) should also be successful. A brief study of the rate of N-alkyloxazolidine formation was carried out. Yields were determined by HPLC peak area against a 1,1,1-trifluorotoluene internal standard which had been calibrated against the respective isolated products. Under the previously applied reaction conditions of 10 mol% pTsOH in MeCN at reflux the aliphatic aldehyde n-heptanal reacted more quickly than the aromatic aldehyde p-tolualdehyde, but, in both cases, oxazolidine formation was virtually complete within 30 minutes (Scheme 89, Table 5).

![Scheme 89](image)

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>R= n-hexyl</th>
<th>R= p-tolyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>67%</td>
<td>56%</td>
</tr>
<tr>
<td>4</td>
<td>73%</td>
<td>62%</td>
</tr>
<tr>
<td>10</td>
<td>85%</td>
<td>76%</td>
</tr>
<tr>
<td>30</td>
<td>91%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 5. Yields for Scheme 89 at time intervals.

In fact, complete formation of the 1,3-oxazolidine ring is not actually required for the 4-CR to take place provided that the initial imine formation has occurred. Since fast initial imine formation is the first step in a vast multitude of MCRs this was not expected to be problematic. Thus, the required 4-CR was expected to be feasible under the currently optimised conditions.
Surprisingly, the reaction between *n*-heptanal, *N*-methylaminoethanol, *tert*-butyl isocyanide and benzoic acid gave a disappointing 13 % yield of the desired four-component product 197 after 18 hours, whilst “morpholinone” 212 was isolated as the major product (25 %) (Scheme 90). The 13% yield of 197 is very low when compared with the 80% yield previously seen when the reaction is carried out in a three-component manner from the oxazolidine 179.

The formation of 212 suggests the presence of an exocyclic imino ether intermediate 213 in the reaction mechanism (Scheme 91). This intermediate may undergo hydrolysis by water *in-situ* to give the morpholinone derivative 212. Closer examination of the \(^1\)H NMR spectra of the earlier three-component reactions (*vide supra*) indicated that small quantities of such morpholinone products were also present in the crude reaction mixtures, presumably due to traces of adventitious water in the reaction medium.

Nucleophilic attack of a carboxylic acid on the nitrilium cation intermediate 192 would lead to the multicomponent product 190 after rearrangement, whereas hydrolysis of the cyclic intermediate 213 would result in the morpholinone product 214 being formed. Therefore, the 4-CR would be expected to lead to formation of significant levels of morpholinone 214, as compared with the equivalent 3-CR, due to the generation of one equivalent of water during the initial oxazolidine formation.
Some support for this rationale came from an experiment where the reaction between \(n \)-heptanal, \(N \)-methylaminoethanol and \textit{tert}-butyl isocyanide was carried out in the absence of a carboxylic acid, but instead with one equivalent of \(p \)TsOH. In this instance, morpholinone 212 was obtained in 36% yield (Scheme 92).

Due to this disappointingly low yield of the direct morpholinone 212 synthesis, carbon monoxide was applied to this reaction in the place of \textit{tert}-butyl isocyanide (Scheme 93). Carbon monoxide is isoelectronic with an isocyanide (\textit{vide supra}, Figure 1), and so was thought to be an ideal and more atom economical alternative to \textit{tert}-butyl isocyanide for this C=O insertion reaction. Sadly, after 8 hours, no reaction was detected by TLC or \(^1\)H NMR.
The low yield of morpholinone 212 from the reaction between \textit{n}-heptanal, \textit{N}-methylaminoethanol and \textit{tert}-butyl isocyanide (Scheme 92) led to the use of a more modern method for the planning of experiments and subsequent statistical analysis of the results - a Design of Experiments (DoE) or Factorial Experimental Design process.134 It is therefore appropriate at this stage to briefly introduce this powerful statistical tool and it’s applications within organic chemistry.

2.4 Introduction to the Design of Experiments (DoE) Approach in Organic Synthesis.

Design of experiments (DoE) is a method of planning experiments prior to their being realised in order to allow analysis of the data by multivariate statistical techniques. DoE originated in 1925 with the initial research of Fisher.135 Over the last few years this method, which has previously seen most use in the industrial sector, has seen increasing use by academic chemists.

2.4.1 One Variable at a Time Experimental Method.

When a series of experiments, for example optimisation of a new chemical process is carried out it is common to adopt an iterative, one variable at a time (OVAT) approach. This is the seductively simple and seemingly successful, classical method of chemical experimental planning and allows the experimentalist to ensure beyond doubt that any effect \textit{e.g.} a change in yield is due to the change in variable they have just effected. However this method is a poor strategy, which may lead to the wrong
conclusions. For instance, in the case of a yield optimisation for a reaction with two variables, OVAT methods would lead the experimenter to change one variable initially until a maximum yield is achieved for this variable. Then the second variable would be investigated with the first variable fixed at the new optimised level. This overly simplistic method can lead to incorrect conclusions if there is an interaction between the two variables, since the actual optimised yield may not in fact have been discovered. It also teaches the researcher nothing about any interaction present and can also be inefficient and time consuming.

2.42 Considerations Prior to Construction of an Experimental Design.

Experiments run in a random manner will furnish results in an arbitrary fashion. For this reason, it is therefore necessary to plan a series of experiments prior to their being carried out if detailed information is to be gained from the resultant data. It is essential to state clear objectives prior to the construction of an experimental design. These objectives may for example be to determine optimum reaction conditions, or perhaps to ascertain if a change in a particular reaction condition will have a significant effect upon yield or selectivity. However, it is sensible to produce an experimental design only after some initial results and experience of the reaction system has already been gained. This will ensure that the reaction will give a measurable response and also assist in deciding which parameters require investigation.

In recent years a plethora of DoE computer software programs have become available, which allow the statistical planning of experiments and interpretation of the results in a simple user friendly graphical manner. Nevertheless, it is still important to understand the basic mathematical principles behind the software. The next
section will briefly introduce the concepts which are integral to the whole practice of DoE.

2.43 Response Surface Models as Tools for the Chemist

A graph showing two experimental factors \((x_1)\) and \((x_2)\) against a given response \((\mu)\), will give a three-dimensional plot (Figure 2). This is a graphical representation of a reaction surface. This is simple to visualise when there are only two variables and one measured response, but when there are multiple variables and / or responses it is not possible to graphically represent a multidimensional plot, however, the concepts involved remain the same.

![Figure 2](image.png)

Figure 2. (reproduced from\(^{134}\)).

The surface of an experimental domain may be described by a complex equation called the Taylor expansion.\(^{136}\) Fortunately, sufficiently accurate modelling of this experimental domain surface is simple, since the chemist is not usually looking at the entire range from 0-\(\infty\) for each variable, but, instead, often only a narrow range. For instance, with reaction temperature, the area of interest is often only 0\(^\circ\)C to the solvent boiling point. Therefore only the relevant section of the experimental domain.
needs to be modelled (Figure 3) and to do this, one of three polynomial equations may be employed.

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e \] \hspace{1cm} \text{(Equation 1)}

Figure 3. (reproduced from 14).

The simplest of these equations is the linear model or 1st order polynomial (Equation 1), where \(x_1 \) is the first parameter, the coefficient \(\beta_1 \) is the slope of the plane along the \(x_1 \) axis and \(e \) represents the error present. This equation may be thought of as a flat surface with no curves or twists on a three dimensional plot (Figure 4). A linear model may be sufficient when no factor–factor interactions are needed to be modelled.
Figure 4. (reproduced from 134)

If a linear model does not provide an adequate fit, a second order polynomial equation may be utilised (Equation 2). The factor-factor interaction term (β_{12}) describes the twist in the plane of the reaction surface (Figure 5).

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + e$$ \hspace{1cm} (Equation 2).

Figure 5. (reproduced from 134)

The final and most complex polynomial model is the quadratic model (Equation 3). This represents a curved area of the experimental domain (Figure 6). This model is only used out of necessity in cases where the previous two do not give an adequate fit.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + e$$ \hspace{1cm} (Equation 3).
Whilst these response parameter terms do not actually have a physical value, they may be used in a semi-quantitative manner to infer a relative importance of each parameter and whether each is a positive or negative effect.

2.44 Alternative Approaches to One Variable at a Time (OVAT).

The first alternative approach to a one variable at a time approach (OVAT) is a full factorial experimental design; this is conceptually simple and may potentially be carried out without the aid of computer software as later demonstrated in Section 2.51. A full fractional factorial experimental design takes each variable at two discrete levels (+1 and −1). Therefore the number of experiments required is \(2^n\), (where \(n\) = number of variables to be examined). This method is ideal in cases where there are low numbers of variables to be examined, but can become unwieldy at higher levels due to the sheer quantity of experiments which must be performed. For example, 7 variables at 2 levels would require 128 experiments, whilst 10 variables at 2 levels would require a massive 1024 experiments to be carried out. From a full factorial experimental design it is possible to calculate both the main effects (e.g. A, B or C ...,) as well as all of the factor-factor interactions (e.g. AB).
Figure 7. Geometrical illustration of a 2^3 full factorial design.

When higher numbers of variables become involved in the experimental design it is common to resort to a fractional factorial experimental design. This type of design is particularly useful when carrying out initial screening studies since a large number of variables are likely to be needed to be investigated.

In a fractional experimental design, only a subset of experiments from the full design are carried out, giving a good estimate of the main effects. As a consequence, this method is significantly less time consuming, since far fewer experiments are required to gain useful information, but often leads to confounding of factor-factor interactions and thus, the loss of potentially useful information.

Figure 8. Geometrical illustration of a 2^{3-1} fractional factorial design.
2.45 Determination of Error and Model Significance.

In synthetic chemistry it is fair to assume that a normal or bell-shaped distribution of error is occurring for the response for repetition of a reaction. Replication of a reaction with each variable set at the centre-point may provide an estimate of the random error of the system, but does not adequately give an estimate of the systemic error upon changing from one variable to another. This systemic variation or noise can be determined by the comparison of the calculated model effects (e.g. A, B or C) against an estimate of systemic experimental error. By the use of least squares fit multiple linear regression it is possible to calculate the residuals (RDS) as the difference between a predicted response at any given value (\hat{y}_i) and measured response (y_i) at a predetermined confidence level (Equation 4).

$$RDS = y_i - \hat{y}_i \quad \text{(Equation 4).}$$

The use of software to carry out the design of experiments process often gives values for R^2 and Q^2. R^2 is the goodness of fit, and is calculated according to Equation 5.

$$R^2 = 1 - \frac{(SSR)}{SST} \quad \text{(Equation 5).}$$

An R^2 value of >0.9 is considered excellent, whilst a value of >0.8 is usually considered adequate for the model.

Q^2 represents the goodness of prediction and is calculated according to Equation 6.

$$Q^2 = 1 - \frac{PRESS\text{S}}{RDS} \quad \text{(Equation 6).}$$

Q^2 values of >0.9 are considered excellent, whilst values of >0.5 are usually considered adequate for a screening model.

2.5 Design of Experiments (DoE) for 2-CR Morpholinone Synthesis.

In order to further investigate the formation of morpholinones 214 from an N-alkyl oxazolidine and an isocyanide, oxazolidine 183 and tert-butyl isocyanide were chosen as the model substrate to be investigated (Scheme 94).
The factors investigated in this study were solvent type (2 levels), pTsOH acid catalyst loading and tert-butyl isocyanide loading (Table 6). A full factorial experimental design (resolution V)137 with three factors with each at two levels, allowing main factors and interaction between factors to be assessed for importance was carried out as eight experiments plus two control experiments (Table 7). Yields of 215 were determined by HPLC UV peak area integration relative to 1,1,1-trifluorotoluene internal standard at the three reaction times stated in Table 7, and the results after 44 hours were used for further analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(-)</th>
<th>0</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Acid Catalyst (mol%)</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>B Isocyanide (equivalents)</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>C Solvent Type a</td>
<td>i</td>
<td>-</td>
<td>ii</td>
</tr>
</tbody>
</table>

a(i)-DMSO, (ii)-Sulfolane

\textbf{Table 6.} Variables considered, with levels employed in design.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>4h</th>
<th>22h</th>
<th>44h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0%</td>
<td>3%</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>4%</td>
<td>26%</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>8%</td>
<td>23%</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0%</td>
<td>16%</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>7%</td>
<td>33%</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>12%</td>
<td>24%</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>4%</td>
<td>28%</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>5%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Table 7. Experimental plan and results for DoE #1.

To show the conceptual simplicity of full factorial experimental design, the results have been interpreted both with and without the aid of computer software, although, in the latter case, more information can be gleaned. This is in order to help explain the fundamental principles involved.

2.51 Manual Interpretation of Results by Sign Table.

From the standard model matrix for a 2^3 full factorial design (Table 8), which is graphically depicted in Figure 9, it is possible to calculate the relative effects after 44 hours reaction time for the three variables above - A, B and C according to a second order approximation model.

<table>
<thead>
<tr>
<th>#</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>BC</th>
<th>ABC</th>
<th>44 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>26%</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>38%</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>27%</td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>51%</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4%</td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>29%</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>9%</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>36%</td>
</tr>
</tbody>
</table>

Table 8. Sign Table for 1st DoE.
A (ρTsOH Acid catalyst (mol%)) = 11

$$A = \frac{1}{2}[(a-1)+(ab-b)+(ac-c)+(abc-bc)]/4$$
so $$A = \frac{1}{8}[(a-1)+(ab-b)+(ac-c)+(abc-bc)]$$
so $$A = \frac{1}{8}[(36-26)+(51-27)+(29-4)+(36-9)] = 11$$

B (Isocyanide equivalents) = 3.3

$$B = \frac{1}{8}[(b-1)+(ab-a)+(bc-c)+(abc-ac)]$$
so $$B = [(27-26)+(51-38)+(9-4)+(36-29)] = 3.3$$

C (Solvent Type) = -8.0 (in favour of DMSO)

$$C = \frac{1}{8}[(c-1)+(ac-a)+(bc-b)+(abc-ab)]$$
so $$C = \frac{1}{8}[(4-26)+(29-38)+(9-27)+(36-51)] = -8.0$$

AB (Interaction between ρTsOH equivalents and isocyanide equivalents) = 1.7

$$AB = \frac{1}{2}[(A_{B_1} - A_{B_2})]$$
$$A_{B_1} = \frac{1}{2}[(ab-b)+(abc-bc)]/2$$
$$A_{B_2} = \text{(effect of A when B is at its highest level)}$$
so $$A_{B_1} = \frac{1}{4}[(ab-b)+(abc-bc)]$$
so $$A_{B_1} = \frac{1}{4}[(51-27)+(3-9)] = 13$$
$$A_{B_2} = \frac{1}{4}[(a-1)+(ac-c)]$$
so $$A_{B_2} = \frac{1}{4}[(38-26)+(29-4)] = 9.3$$
so $$AB = \frac{1}{2}[13-9.3] = 1.7$$

AC (Interaction between ρTsOH equivalents and solvent type) = 0

$$AC = \frac{1}{2}[(A_{C_1} - A_{C_2})]$$
$$A_{C_1} = \frac{1}{2}[(ac-c)+(abc-bc)]/2$$
$$A_{C_2} = \text{(effect of A when C is at its highest level)}$$
so $$A_{C_1} = \frac{1}{4}[(ac-c)+(abc-bc)]$$
so $$A_{C_1} = \frac{1}{4}[(29-4)+(36-9)] = 9.0$$
$$A_{C_2} = \frac{1}{4}[(a-1)+(ab-b)]$$
so $$A_{C_2} = \frac{1}{4}[(38-26)+(51-27)] = 9.0$$
so $$AC = \frac{1}{2}[9.0-9.0] = 0$$
BC \text{ (Interaction between isocyanide equivalents and solvent type) } = 0

\begin{align*}
BC &= 1/2[(BC_2 - BC_1) \\
BC_2 &= 1/2[(ab-b)+(abc-bc)]/2 \\
BC_1 &= (\text{effect of } C \text{ when } C \text{ is at it's highest level}) \\
\text{so } BC_2 &= 1/4[(bc-c)+(abc-ac)] \\
\text{so } BC_1 &= 1/4[(9-4)+(36-29)] = 3.0 \\
AB &= 1/4[(a-1)+(ac-c)] \\
\text{so } AB &= 1/4[(51-38)+(26-27)] = 3.0 \\
\text{so } AB &= 1/2[3.0-3.0] = 0
\end{align*}

The results give an indication that solvent type is an important factor in favour of DMSO and also that the loading of pTsOH is even more important. Adjusting the loading of tert-butyl isocyanide appears to have much less of an effect if any. The interaction between pTsOH loading and tert-butyl isocyanide loading (AB) appears small. There is no interaction effect between solvent type and pTsOH equivalents (AC), thereby indicating pTsOH is a similar strength acid in both solvents. Similarly, there is no interaction between tert-butyl isocyanide equivalents and solvent type (BC), indicating that tert-butyl isocyanide behaves similarly in both solvents.

The drawback to using sign tables such as Table 8 for calculation of effects as shown above is that it not possible to draw any conclusions as to the significance of any of these estimated effects since they can not be compared with an estimate of the experimental error variation. In order to do this, interpretation of the data by multiple linear regression is required.

2.52 Interpretation by Least Squares Fit Linear Regression.

The interpretation of the data using computer software allows for simple calculation of the residuals (RDS), goodness of fit (R2) and goodness of prediction (Q2) calculations. The data from Table 7 was analysed by least squares fit linear regression analysis using Modde 7.0138 to give a model where R$^2 = 0.892$, Q$^2 = 0.781$ and RDS = 5.51 at a 95% confidence limit. The data from the model is viewed as a scaled and centred coefficient plot where the sign and size of each coefficient bar
shows the relative effect on the yield and thus the relative importance of the factor in the model (Graph 1). The confidence intervals for this plot are shown on Graph 1 as error bars.

\[\text{Graph 1. Scaled and centred coefficients for morpholinone synthesis DoE #1.} \]

\[\begin{align*}
\text{N=10} & \quad \text{R2=0.892} & \quad \text{R2 Adj.}=0.862 \\
\text{DF=7} & \quad \text{Q2=0.781} & \quad \text{RSD}=5.5076 & \quad \text{Conf. lev.}=0.95
\end{align*} \]

The results above show that solvent type is an important factor, with DMSO superior to sulfolane. \(p \)-TsOH loading is also a factor, with the higher loading level studied resulting in a greater yield. Isocyanide loading had no effect within the levels studied. With this information in hand, the loading of \(p \)-TsOH was increased to 1.1eq. and DMSO was used as the reaction solvent leading to an improved yield of 60% for 215 (Scheme 95). Morpholinone 212 was isolated in 69% yield, using the new conditions, which is a dramatic improvement over the original 3-CR yield of only 36% in Scheme 92, before the DoE optimisation.
2.6 Design of Experiments (DoE) Approach to 3-CRs Involving N-alkyloxazolidines, Isocyanides and Carboxylic Acids.

Due to the problems associated with the 4-CR (Scheme 90), it was decided to also use a Design of Experiments (DoE) approach for the determination of optimum conditions, particularly those which disfavour the formation of the morpholinone. For experimental simplicity, initially conditions were developed for the 3-CR, with the intention of being able to subsequently carry out the reaction in a four-component fashion without morpholinone side product formation which would be exacerbated by the eliminated water. It was also anticipated that improved conditions would decrease the level of morpholinone side product produced in the 3-CR, enabling the reaction to be carried out under non-anhydrous conditions.
Oxazolidine 183, tert-butyl isocyanide and benzoic acid were used for this investigation (Scheme 96). This substrate was chosen because it had previously given a moderate yield of 44% (vide supra, Table 4) and thus had plenty of scope for detectable variation in the yield.

![Scheme 96](image)

In order to investigate this reaction, a mixed level level fractional factorial experimental design (resolution III)\(^{139}\) with 1 factor at 4 levels and 5 factors at 2 levels was planned. This design only allows for main factors to be assessed for importance, and was carried out as 16 experiments plus four control experiments (Table 9). Yields of 209 and 215 were determined by HPLC UV peak area integration against a 1,1,1-trifluorotoluene internal standard, which had been calibrated against previously isolated samples. The variables to be investigated and the levels chosen are shown in Table 9.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(-)</th>
<th>0</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Temperature (°C)</td>
<td>60</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td>B Solvent Concentration (M)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>C Benzoic Acid (R5) (equivalents)</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>D Acid Catalyst (mol%)</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>E Isocyanide (R4) (equivalents)</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>F Solvent Type (4 types)(^{a})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{a}\)(i)-Anisole (ii)-EtOAc (iii)-PrOH (iv)-MeCN

Table 9. Variables considered, with levels employed in DoE #2.

The data was analysed using MODDE\(^{®}\) 7.0 software by a least squares fitting model. This resulted in two models, the first for N-acyloxyaminoacid amide 209 where \(R^2 = 0.922\), \(Q^2 = 0.844\) and \(RDS = 4.15\) at a 95% confidence level and a second model for
morpholinone 215 where $R^2 = 0.897$, $Q^2 = 0.711$ and RDS = 1.83 at a 95% confidence level.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Yield 209</th>
<th>Yield 215</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>i</td>
<td>48%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>ii</td>
<td>44%</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>iii</td>
<td>65%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>iv</td>
<td>67%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>i</td>
<td>38%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>ii</td>
<td>36%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>iii</td>
<td>64%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>iv</td>
<td>61%</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>i</td>
<td>47%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ii</td>
<td>38%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>iii</td>
<td>74%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>iv</td>
<td>68%</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>i</td>
<td>54%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ii</td>
<td>33%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>iii</td>
<td>68%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>iv</td>
<td>57%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ii</td>
<td>41%</td>
<td>18%</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ii</td>
<td>42%</td>
<td>18%</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ii</td>
<td>40%</td>
<td>19%</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ii</td>
<td>38%</td>
<td>18%</td>
</tr>
</tbody>
</table>

(i)-Anisole (ii)-EtOAc (iii)-PrOH (iv)-MeCN

Table 10. Experimental plan and results for DoE #2.

For the formation of N-acyloxyaminoacid amide 209, temperature; equivalents of benzoic acid, pTsOH and isocyanide and concentration of reactants all had no statistical effect within the parameters investigated. Graph 2 shows that choice of solvent is the most significant factor affecting the yield of N-acyloxyaminoacid amide 209, with isopropanol and, to a lesser degree, acetonitrile, being superior.
Graph 2. Scaled and centered coefficients for 209 yield.

ANOVA table and full data in appendix 4.2

Graph 3 indicates that the factors affecting yield of morpholinone 215 were solvent and pTsOH loading. The use of acetonitrile as solvent and a higher loading of pTsOH resulted in an undesirable increased yield of morpholinone side product 215.
The two models together show that for a cleaner higher yielding preparation of 209 in the presence of some extraneous water, isopropanol is a good choice of solvent, since it disfavours the formation of 209 relative to 215. A lower loading of pTsOH is also desirable, as it has no effect on the yield of 209, while a higher level favours the formation of side product 215. The lack of a significant yield difference between the lower temperature of 60°C and the higher temperature of 80°C, indicates that the lower temperature should probably be used as there is no benefit indicated by the use of the higher temperature. However it should again be noted that initial work showed that this reaction was prohibitively slow at room temperature or in the absence of an acid catalyst.

The new conditions suggested by this fractional factorial design were expected to reduce the amount of morpholinone 214 produced by hydrolysis of exocyclic imino ether intermediate 213, without the need to eliminate the presence of water from the reaction conditions. Satisfyingly when the 4-CR reaction was attempted between an N-alkyl ethanolamine, aldehyde, isocyanide and a carboxylic acid using the new conditions (Scheme 97), a yield akin to the 3-CR was obtained in most cases. Table 11 summarises several examples of the reaction carried out as a 4-CR using the optimized conditions.
2.71 Isolation of Exocyclic Imino Ether Intermediate 213.

The suggested mechanism (Scheme 98) for the formation of both \(\text{N-acyloxyethylamino acid amides 190} \) and morpholinones 214 involves the existence of exocyclic imino ether intermediate 213.

![Scheme 98](image)

It was suggested at this juncture that direct formation of \(\text{N-acyloxyethylamino acid amides 190} \) might in fact be facilitated directly by a ring opening reaction on the electrophilic cyclic imino ether intermediate 213 with no subsequent rearrangement necessary (Scheme 99).
This mechanism is conceptually similar to the work of Fry, Goldberg and Kelly and Wehrmeister (Scheme 100) in which oxazolines 215 & 216 are cleaved by the direct action of a nucleophilic species to form an amide leaving group, except that in the above case of an oxazolidine the N=C double bond is exocyclic.

Isolation of an imino ether intermediate was achieved initially in a reaction of oxazolidine 179, with 2,6-dimethylphenyl isocyanide, to form the stable product 217 (Scheme 101).
The \(E \) regioselectivity of 217 was proven by nOe studies (Scheme 102). No nOe enhancement was observed between the aryl-CH\(_3\) & the tertiary-CH as shown in Scheme 102.

\[
\begin{align*}
\text{Possible nOe interaction} & \quad \text{(not present)} \\
\text{interatomic length too great} & \quad \text{for a nOe interaction}
\end{align*}
\]

Scheme 102

Imino ether 217 was stable at room temperature in the atmosphere for at least 6 months. This stability was thought to be afforded by conjugation with the aromatic group adjacent to the C=\(N \), but even more so by the large steric bulk of the 2,6-disubstituted aryl group. It was not possible to isolate corresponding imino ethers derived from simple alkyl or phenyl isocyanides and aldehyde derived oxazolidines. However, the use of tert-buty1 isocyanide with ketone derived oxazolidine 184, with its quaternary centre, affords stable imino ether 218, in 32\% yield (Scheme 103). Once again, this is probably due to the increased steric bulk of the cyclohexyl group making hydrolysis more difficult.

\[
\begin{align*}
\text{IPA} & \quad 2\% p\text{TsoH} \\
\text{reflux} & \quad 17\text{h}
\end{align*}
\]

Scheme 103

When imino ether 217 was heated with 2 mol\% of \(p\text{TsoH} \) and an equimolar amount of propionic acid, the corresponding \(N \)-acyloxyethylamino acid amide 205 was isolated in 38\% yield (Scheme 104). This experiment was absolutely crucial since it proves beyond doubt that either the direct attack of the carboxylate on the imino ether
intermediate 217 is possible, or otherwise, that the ring closure of the hydroxyl group on to the nitrilium cation is reversible. This seems counterintuitive but if this ring closure was not irreversible then the Ugi reaction could not be carried out in alcoholic solvents, which they of course almost invariably are, without isolation of imino ether structures.

![Scheme 104]

2.72 Mechanistic Studies Including use of 18O$_2$ Labelled Acetic Acid.

Scheme 105 shows two plausible mechanisms for the reaction between an N-alkyloxazolidine an isocyanide and a carboxylic acid, either or both of which were considered to be in operation at this stage of the research. As indicated, one of these (Route A), involves direct attack on the exocyclic imino ether intermediate 213 by the carboxylate anion, whilst the second (Route B), requires capture of the nitrilium cation 192 by carboxylate and subsequent O-acyl migration.
In order to clarify the mechanism, 18O$_2$ labelled acetic acid was selected as the acid component of a three-component reaction with oxazolidine 180, and tert-butyl isocyanide. The position of the labelled oxygen atoms in the product of this reaction will be different depending on the mechanistic pathway followed (Scheme 106).
Thus, 221 will be formed by route B involving capture of the nitrilium cation by the carboxylate anion followed by O-acyl migration, whilst 223 is produced by route A which requires acid catalysed ring opening of the exocyclic imino ether 222 by S$_2$N$_2$ attack on the sp3 carbon by the carboxylic acid. This reaction was carried out in duplicate using both doubly 18O labelled acetic acid and also a standard or blank reaction in which non-labelled acetic acid was used.

Tandem MS/MS fragmentation studies (Figures 10 & 11) on the product of this reaction, by comparison with the product using non-labelled acetic acid 224 strongly suggests 221 to be the exclusive structure. This result indicates that carboxylic acids definitely react by the originally suggested route B, via trapping the nitrilium cation with ensuing O-acyl migration. The formation of the exocyclic imino ether 222 must therefore be considered as an undesirable parasite reaction.

Figure 10. MS-MS fragmentation of 18O$_2$ labelled product 221.

Figure 11. MS-MS fragmentation of non-labelled product 224.

Fragmentation of the [M+H]$^+$ ion, (m/z = 321), of 221, was achieved by in-source collision induced dissociation (CID). The in-source CID mass spectrum (Figure 10)
for the labelled compound 221 showed the fragment ion at m/z = 222.2, consistent with [M+H – C₄H₉NHC¹⁸OH⁺]: a loss of 103 Da. The in-source CID mass spectrum for the non-labelled compound 224 (Figure 11) showed the fragment ion at m/z = 220.1, consistent with [M+H – C₄H₉NCOH⁺]: a loss of 101 Da. These fragmentation patterns are indicated in Scheme 107.

\[\text{Scheme 107} \]

Since the mechanistic pathway had now been firmly established to require attack of a carboxylate anion upon the nitrilium cation 192 and subsequent O-acyl migration, some thought was given to this O-acyl migration step. This may possibly occur in either intra or intermolecular fashion. Thus, as shown in Scheme 108, hydroxyl group participation can occur either in the intramolecular mode involving an eight-membered ring tetrahedral intermediate (Path A), or in the intermolecular mode, which would probably involve sequential transfer (Path B). An alternative intramolecular scenario (Path C) involving the tertiary amino group of the original oxazolidine is also shown. In this instance, the more nucleophilic tertiary amino group is used instead of the hydroxyl group via a 5-membered ring intermediate to
generate an acylammonium cation 225 which can then undergo a second intramolecular transfer step using the pendant hydroxyl group.

![Diagram showing the pathways A, B, and C for O-acyl migration.]

Scheme 108

A great deal of effort was put into the design of potential crossover experiments to differentiate between these three possible O-acyl migration pathways shown in Scheme 108, but sadly, no simple experiments could be devised.

2.73 Use of NH Oxazolidines and Mechanistic Implications.

Ugi reactions using ethanolamine as the amine component have been reported to occur in high yield in MeOH at room temperature in the absence of an acid catalyst, with no requirement for protection of the hydroxyl group (vide supra, Schemes 66 & 67).99,100 In accord with this observation, Zhang and co-workers have shown that
bifunctional aldehyde-carboxylic acids undergo a successful U-4C-3CR using ethanolamine as the amine component, again, with no protection of the pendant alcohol moiety necessary (vide supra, Scheme 49).

However, initial attempts during the early stages of this research prior to the DoE optimisation to use oxazolidine 186 which possesses a secondary NH amino group in a 3-CR with benzoic acid and tert-butyl isocyanide using MeCN as solvent resulted in a complex mixture of products, with no Ugi product 226 detectable by crude 1H NMR analysis (Scheme 109).

Since this reaction had been unsuccessful, Cbz-protected oxazolidine 228 was prepared from ethanolamine over two steps (Scheme 110) in order to investigate it’s use in an IMCR, whereby subsequent deprotection could be carried out to give a similar secondary amine product 230 to the intended product above 226 (Scheme 111).
When this Cbz-protected oxazolidine 228 was reacted with acetic acid and tert-butyl isocyanide, no reaction occurred; this was thought to be due to the decreased reactivity of the carbamate moiety, hindering ring opening to an electrophilic iminium ion (Scheme 111).

Since, the above work was carried out prior to the DoE optimisation of the 3-CR conditions (vide supra, Section 2.6), it was therefore decided to reinvestigate the
reaction of ethanolamine derived NH-oxazolidines under the new conditions. An Ugi type reaction of the type previously reported in which the hydroxyl group merely acts as a spectator was anticipated. It was therefore extremely surprising when moderate yields of the O-acyl migration product 231 were isolated and no detectable N-acyl migration product (Ugi type) 232 was formed (Scheme 112).

![Scheme 112]

This was an unexpected result, since it was thought that the relative rate of acyl transfer to the secondary amino group in intermediate 233 would be much faster than to the hydroxyl group due to both the greater nucleophilicity of the amine nitrogen atom and the entropically favoured 5-exo-trigonal transition state for N-acyl migration as opposed to the 7-exo-trigonal transition state for the O-acyl transfer (Scheme 113).
In order to investigate this singularity, oxazolidine 186, tert-butyl isocyanide and benzoic acid were reacted under a variety of selected reaction conditions (Scheme 114). Table 12 shows that interestingly, an acid catalyst is not required for either the Ugi reaction or the formation of the N-acyloxyamino acid amide 231 from secondary amine derived NH-oxazolidines and it is moreover in fact, detrimental to the yield.

When MeOH was used at room temperature, 45°C or at reflux (65°C), no N-acyloxyamino acid amide 231 was isolated, but instead, the Ugi product 232 was formed. Very curiously, the selection of IPA at reflux gave only N-acyloxyamino acid amide 231, whilst at room temperature; only the Ugi product 232 was isolated. This was the case at both 1 Molar reaction concentration and at the standard Ugi reaction literature concentration of 0.4 Molar (with respect to each of the three components). Ethanol at reflux gave a mixture of both products, whilst a room temperature reaction gave only Ugi product 232. A room temperature reaction using tert-butanol gave only Ugi product 232, whilst tert-butanol at reflux favoured N-acyloxyamino acid amide 231, with some Ugi product 232 also being formed (12%).
This observation however, could be attributed to the almost complete loss of solvent from the reaction mixture as a result of crystallisation in the condenser.

The results of these experiments are a little confusing, but it seems that higher temperatures favour O-acyl migration, and that solvent choice is also an important contributing factor. The results are further confused by the fact that mixed reaction mixtures are obtained for both MeOH and IPA at 110°C in a monomode microwave reactor.

![Chemical structure](image)

Scheme 114

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Solvent</th>
<th>Conc. (M)</th>
<th>Time (h)</th>
<th>pTsOH (mmol)</th>
<th>Yield 231</th>
<th>Yield 232</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>IPA</td>
<td>1</td>
<td>18</td>
<td>2</td>
<td>57%</td>
<td>0%</td>
</tr>
<tr>
<td>82</td>
<td>MeCN</td>
<td>1</td>
<td>18</td>
<td>2</td>
<td>None present by crude 1H NMR</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>MeOH</td>
<td>0.4</td>
<td>42</td>
<td>0</td>
<td>0%</td>
<td>90%</td>
</tr>
<tr>
<td>25</td>
<td>MeOH</td>
<td>0.4</td>
<td>42</td>
<td>2</td>
<td>0%</td>
<td>81%</td>
</tr>
<tr>
<td>82</td>
<td>IPA</td>
<td>1</td>
<td>18</td>
<td>0</td>
<td>70%</td>
<td>0%</td>
</tr>
<tr>
<td>45</td>
<td>MeOH</td>
<td>0.4</td>
<td>18</td>
<td>0</td>
<td>0%</td>
<td>84%</td>
</tr>
<tr>
<td>65</td>
<td>MeOH</td>
<td>0.4</td>
<td>18</td>
<td>0</td>
<td>0%</td>
<td>80%</td>
</tr>
<tr>
<td>25</td>
<td>IPA</td>
<td>1</td>
<td>42</td>
<td>0</td>
<td>0%</td>
<td>66%</td>
</tr>
<tr>
<td>25</td>
<td>IPA</td>
<td>0.4</td>
<td>42</td>
<td>0</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>78</td>
<td>EtOH</td>
<td>1</td>
<td>18</td>
<td>0</td>
<td>30%</td>
<td>32%</td>
</tr>
<tr>
<td>25</td>
<td>EtOH</td>
<td>1</td>
<td>42</td>
<td>0</td>
<td>0%</td>
<td>71%</td>
</tr>
<tr>
<td>83</td>
<td>tBuOH</td>
<td>1</td>
<td>18</td>
<td>0</td>
<td>48%</td>
<td>12%</td>
</tr>
<tr>
<td>25</td>
<td>tBuOH</td>
<td>1</td>
<td>42</td>
<td>0</td>
<td>0%</td>
<td>48%</td>
</tr>
<tr>
<td>110*</td>
<td>MeOH</td>
<td>0.4</td>
<td>0.17</td>
<td>0</td>
<td>17%</td>
<td>51%</td>
</tr>
<tr>
<td>110*</td>
<td>IPA</td>
<td>0.4</td>
<td>0.17</td>
<td>0</td>
<td>24%</td>
<td>44%</td>
</tr>
</tbody>
</table>

*· monomode microwave reactor.

Table 12. Variation of conditions for Scheme 114.
Moreover, when the Ugi product 232 was refluxed in IPA overnight in the presence of 2 mol% pTsOH, 18% conversion to the O-acyl migration product 231 was observed (Scheme 115). This result is somewhat counterintuitive since, on thermodynamic grounds an amide is thought to be much less reactive than an ester.

![Scheme 115](image)

Upon protonation of the imino ether nitrogen of intermediate 235 it is possible that the carboxylate anion may reversibly attack this electrophilic species to form 239 which can then undergo migration either via a concerted mechanism or via assistance from the nitrogen lone pair (Scheme 116). This intermediate 239 is unstable and must lose either the carboxylate which will lead back to the exocyclic imino ether 235, or it is theoretically possible that a migration may occur via a concerted mechanism (Scheme 116). This may explain why the exclusive formation of the O-acyl migration product 238 occurs under certain conditions with the absence of the N-acyl migration product (Ugi type) 240.
It was not possible to isolate a stable exocyclic imino ether 235 from a secondary amine derived NH-oxazolidine. Therefore for the purpose of gauging relative rates of formation of the exocyclic imino ether 235, oxazolidine 179 was used (Scheme 117). The formation of N-alkyl imino ether 217 in the absence of a carboxylic acid or other nucleophile proceeds significantly faster in IPA at reflux than when the reaction is carried out in MeOH at reflux (Scheme 117). A significantly lower yield (33%) of the imino ether 217 was formed even after a prolonged time of 6 days when the reaction was carried out in MeOH. This reaction time is far greater than the timeframe normally required for N-acyloxyamino acid amide 190 formation in the previously discussed three-component reactions. It is thereby assumed that the formation of the secondary amine exocyclic imino ether intermediate 235 in the above reaction mechanism (Scheme 116) would similarly be significantly slower in MeOH than in IPA.
With this assumption in hand it is proposed that the comparative rate of formation of the two different products 232 and 231 (Scheme 113) is dependant upon the relative population of the NH exocyclic imino ether intermediate 235 (Scheme 118). Intermediate 235 is proposed above in Scheme 116 to be an integral steppingstone for the formation of the N-acyloxyamino acid amide product 238, thus, if only small amounts are present at steady state then the rate of formation of the N-acyloxyamino acid amide 238 will be low. Conversely, the formation of the Ugi product 240 will occur easily via the nitrilium ion 234 (Scheme 118). This argument also helps explain the difference in product ratios upon change of reaction temperature, whereby formation of an NH exocyclic imino ether 235 is theorised to be faster at higher temperatures.
Scheme 118

Three examples of this reaction were carried out in order to show a degree of generality (Scheme 119, Table 13).

Scheme 119

<table>
<thead>
<tr>
<th>Oxazolidine</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>pMe-C₆H₄</td>
<td>H</td>
<td>tBu</td>
<td>Ph</td>
<td>90%</td>
<td>231</td>
</tr>
<tr>
<td>187</td>
<td>Me</td>
<td>Me</td>
<td>tBu</td>
<td>2-(3-indole)ethyl</td>
<td>38%</td>
<td>241</td>
</tr>
<tr>
<td>187</td>
<td>Me</td>
<td>Me</td>
<td>tC₆H₁₁</td>
<td>Ph</td>
<td>37%</td>
<td>242</td>
</tr>
<tr>
<td>187</td>
<td>Me</td>
<td>Me</td>
<td>tBu</td>
<td>Ph</td>
<td>37%</td>
<td>243</td>
</tr>
</tbody>
</table>

Table 13. Examples of 3-CR between an NH-oxazolidine, an isocyanide and a carboxylic acid.

2.74 Acidic Nucleophiles for 3-CR with Oxazolidines and Isocyanides.

Despite the fact that the 18O₂ acetic acid labelling experiments had clearly demonstrated in the previous section that carboxylic acids were unable to directly attack the exocyclic imino ether intermediate 213, it was apparent that other nucleophiles would still be able to achieve this S$_{N}$2 type of attack (Scheme 120).
This reaction is definitely expected to be able to occur since it is so conceptually similar to the previously discussed reactions of Fry,140 Goldberg & Kelly141 and Wehrmeister142 (\textit{vide supra}, Scheme 100) between an oxazoline and thiobenzoic acid, thiophenol or HCl in a protic acid assisted S\textsubscript{N}2 reaction. This type of reaction has one clear benefit over the majority of IMCRs which use the ubiquitous carboxylic acid as a nucleophile, in that a stable product is directly formed by the use of any nucleophile in an irreversible step without the requirement for a final acyl migration step of the α-adduct. This type of α-addition to form a stable α-adduct is seen in the Ugi reaction when water,44,58,90 hydrogen selenide91 or hydrogen thiosulfate91 are used (\textit{vide supra}, Scheme 58).

In order for a nucleophile to be effective in this type of reaction it must fulfil two fundamental requirements. Firstly, it must be acidic in order to protonate the nitrogen atom of the imino ether functionality to activate it towards nucleophilic attack, although in this case, 5\% pTsOH is also being used as an acidic catalyst to facilitate this. A strongly acidic nucleophile should be deprotonated in the predominately basic reaction mixture and thus rendered significantly more nucleophilic as it’s corresponding anion. Secondly, the nature of the nucleophile must be such that it will attack the carbon atom of the exocyclic imino ether intermediate 213 α to the oxygen atom as seen above and not the nitrilium ion 192 present before the formation of the exocyclic iminoether intermediate 213. Attack on the nitrilium ion 192 by alternative nucleophiles will not give the desired product and in most cases will not give a stable α-adduct.
Scheme 121

Thiobenzoic acid was the first alternative to be investigated. Even though this ambident nucleophile may still react either analogously to a carboxylic acid by the previously discussed mechanisms or by the above mentioned proton assisted direct attack on the cyclic imino ether intermediate 213. Thiobenzoic acid has a pKa of 5.2 in DMSO\(^{143}\) which is significantly lower than benzoic acid (11.1 in DMSO).\(^{144}\) Gratifyingly, when oxazolidine 179, tert-butyl isocyanide and thiobenzoic acid were heated in the presence of 10 mol% \(p\)TsOH catalyst, \(S-\{2-[(\text{tert-Butyl carbamoyl-p-tolyl-methyl})-methyl-amino]-ethyl\}\text{thiobenzoate} 245\), was isolated in a modest yield of 20% (Scheme 121). MeCN was chosen as a solvent since it had previously provided the best yield for exocyclic imino ether 217 formation (Scheme 117).

Scheme 121

Extended reaction times led to no increase in yield. Use of thioacetic acid, sadly, led to a complex mixture presumably due to it’s lower stability compared with thiobenzoic acid.

The selection of thiophenol (pKa = 10.3 in DMSO)\(^{145}\) as a simpler nucleophilic partner led to an improved yield of 59% when reacted with oxazolidine 180 and tert-butyl isocyanide (Scheme 122).
This reaction was also found to be applicable to the ketone derived spirocyclic oxazolidine 184, albeit in a lower yield of 22% (Scheme 123).

The use of the ethanolamine derived NH-oxazolidine 186 resulted in an extremely low yield of 6% with no other isolated products (Scheme 124).

This was possibly due to attack of the secondary amine starting material on the exocyclic imino ether intermediate, since Fazio has demonstrated that secondary amines can undergo pTsOH catalysed attack on oxazoline 216, despite their high pKa of ~ 44,\(^{146}\) albeit at a significantly higher temperature (Scheme 125).\(^{147}\)
When an aliphatic thiol – n-dodecanethiol was used in the place of thiophenol with N-alkyl oxazolidine 180 and 2,6-dimethylphenyl isocyanide, no expected product 250 was observed (Scheme 126), instead the exocyclic imino ether intermediate 217 was isolated in 75% yield (Scheme 126). This was thought to be due to the increased pKa of ~17.0, since the nucleophilic nature of the mercaptan should of course be similar to thiophenol.

![Scheme 126](image)

Similarly, when phenol (pKa = 18.0) was applied to this reaction as a nucleophile, no anticipated product 251 was isolated, but instead only the morpholinone 216 in 32% yield (Scheme 127).

![Scheme 127](image)

The use of 5-phenyl-1H-tetrazole (pKa ~ 8.2) as a nucleophile gave a vastly higher yields of 71% and 67% of the multicomponent products 252 and 253 (Scheme 128).
Interestingly, nuclear Overhauser effect studies show an absence of an nOe enhancement between the aryl-CH and the CH$_2$ adjacent to the tetrazole. This suggests that the regiochemistry of the tetrazole product is exclusively 2-5 substituted and not 1-5 (Scheme 129).

No 3J$_{CH}$ coupling between the tetrazole-CH$_2$ and C=N is observed in the 1H NMR HMBC spectrum, again suggesting exclusive 2-5 substitution.

5-Phenyl-1H-tetrazole therefore attacks the exocyclic imino ether intermediate 213 exclusively via the tetrazole 2-position. The nitrogen at the 2-position possessing a lone pair in tautomer 255 is significantly less sterically shielded than the nitrogen
atom at the 1-position in tautomer 254 and thus would be expected to be more nucleophilic (Scheme 130).

![Scheme 130]

Initial investigations showed that pyrazole (pKa = 19.8),149 imidazole (pKa = 18.6),149 1,2,4-triazole (pKa = 14.8)149 and 1,2,3-triazole (pKa = 13.9)149 did not give any expected multicomponent reaction products 256 as depicted in Scheme 131. Once again this is thought to be due to the excessively high pKa's of these potential nucleophiles.

![Scheme 131]

In summary, there appears to be a correlation between pKa and efficacy as a nucleophile for S\textsubscript{N}2 type attack of the exocyclic imino ether intermediate 213 as part of an IMCR. There is also a distinct preference for soft nucleophiles in this reaction. It is thought that hard nucleophiles are either attacking the nitrilium ion or the C=N double bond and thus not giving stable products.
2.8 Bicyclic N-O Acetals as Substrates for IMCRs.

2.8.1 Preparation of Bicyclic N-O Acetals as Substrates for IMCRs.

The successful use of oxazolidines as substrates for an IMCR led to further investigation into the use of alternative N-O acetals with an exocyclic nitrogen atom. α-Amino-tetrahydrofuran and α-amino-tetrahydropyran rings may be simply produced in high yield by the addition of secondary amines to 2,3-dihydrofuran or 2,3-dihydropyran using K₂Pd(SCN)₄ as a catalyst (Scheme 132).¹⁵⁰

Thus, two representative bicyclic N-O acetals 257 and 258 were prepared using this methodology in order to provide starting materials for development of further isocyanide based multicomponent reactions (Scheme 133).

2.8.2 Use of Bicyclic N-O Acetals in 3-CRs.

Since exocyclic N-O acetals have a similar functional group connectivity to N-alkyl oxazolidines, it was envisaged that they would have a similar reactivity profile under acidic conditions: ring opening to an iminium ion with a pendant hydroxyl group. With this in mind, the IMCRs between bicyclic N-O acetals 257 or 258 tert-butyl isocyanide and a nucleophile were attempted using the conditions previously developed for oxazolidine IMCRs (Scheme 133). The results of this preliminary experimental screen are shown in Table 14.
\[\text{NuH = PhCOOH, 1H-phenyl tetrazole, PhSH} \]

Scheme 133

<table>
<thead>
<tr>
<th>Acetal</th>
<th>Nucleophile</th>
<th>Solvent</th>
<th>Time</th>
<th>Temp</th>
<th>pTsoH %</th>
<th>Yield</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>257</td>
<td>PhCOOH</td>
<td>IPA</td>
<td>18h</td>
<td>reflux</td>
<td>2</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>257</td>
<td>PhCOOH</td>
<td>MeOH</td>
<td>42h</td>
<td>r.t</td>
<td>2</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>257</td>
<td>5-phenyl-1H-tetrazole</td>
<td>MeCN</td>
<td>18h</td>
<td>reflux</td>
<td>10</td>
<td>74%</td>
<td>259</td>
</tr>
<tr>
<td>257</td>
<td>PhSH</td>
<td>MeCN</td>
<td>18h</td>
<td>reflux</td>
<td>10</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>258</td>
<td>PhCOOH</td>
<td>IPA</td>
<td>18h</td>
<td>reflux</td>
<td>2</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>258</td>
<td>PhCOOH</td>
<td>MeOH</td>
<td>42h</td>
<td>r.t</td>
<td>2</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>258</td>
<td>5-phenyl-1H-tetrazole</td>
<td>MeCN</td>
<td>18h</td>
<td>reflux</td>
<td>10</td>
<td>83%</td>
<td>260</td>
</tr>
<tr>
<td>258</td>
<td>PhSH</td>
<td>MeCN</td>
<td>18h</td>
<td>reflux</td>
<td>10</td>
<td>0%</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a=10:1\) ratio of 2-5 to 1-5 regioisomer, \(^b=15:1\) ratio of 1-3 to 1-2 regioisomer.

Table 14. IMCRs with bicyclic N-O acetics & different nucleophiles.

Most curiously, and in total contrast to the oxazolidines, only 5-phenyl-1H-tetrazole was successful under the conditions previously demonstrated for oxazolidine IMCRs (Scheme 134). Moreover, unlike the case of the reaction between an N-alkyl oxazolidine 180, an isocyanide and 5-phenyl-1H-tetrazole (Scheme 128) in which exclusive formation of 2,5-regioisomer was observed, mixtures of 10:1 and 15:1 respectively, of the 2,5-regioisomer to 1,5-regioisomer were isolated.
This nucleophile was also seen in the preceding section to be bar far the most effective of those investigated, but at the present time, no convincing explanations can be offered as to why benzoic acid and thiophenol were not successful in this reaction under the current conditions, despite the similar connectivity pattern of these bicyclic N-O acetals to N-alkyl oxazolidines.

The unusual behaviour of the thiophenol and benzoic acid nucleophiles was not further investigated. This was principally due to the fact that the anticipated products were not of much biological interest for compound library generation, due to their long central four carbon chain rendering them far too conformationally flexible.
Our attention then turned to the development of novel IMCRs featuring the use of a bifunctional substrate as a key component in an ethanolamine based reaction, thereby introducing novel elements of structural diversity and reactivity.

2.91 IMCRs Using Bifunctional Aldehyde – Carboxylic Acids, Ethanolamines, and Isocyanides.

Thus far, the major drawback of the IMCR products described in this thesis is their lack of rigidity. The vast majority of biologically active molecules are more conformationally rigid, thus allowing them to fit in receptors in a lock and key manner. As previously discussed (Section 1.5.22), Gross et al. and later Zhang and co-workers have described the use of aldehyde-carboxylic acid tethered substrates for IMCRs, giving biologically relevant products.\(^{78,82}\) It was envisaged that this reaction may be extended through the use of an ethanolamine as the amine component (Scheme 135) in a similar manner to the way ethanolamine has been used to extend the Ugi reaction earlier in this work.

![Scheme 135](image)

In order to investigate this reaction, 2-carboxybenzaldehyde was chosen as the bifunctional substrate with N-benzylaminoethanol and tert-butyl isocyanide. Initial conditions using IPA as solvent at reflux for 18 hours in the presence of 2 mol%
pTsOH were investigated. Interestingly, this led to incorporation of the isopropyl group from the alcohol to give of 3-isopropoxyisobenzofuran-1(3H)-one 263 in a reaction which did not involve the ethanolamine or isocyanide components (Scheme 136).

![Scheme 136](image)

Nevertheless, even though lowering the reaction temperature to room temperature led to considerably longer reaction times for this reaction, product 264 was isolated in 25% yield after 7 days (Scheme 137). This was however, considered a success since the reaction was now proven to be possible. Use of the less sterically demanding N-methylethanolamine with tert-butyl isocyanide resulted in shorter reaction times of 48 hours and an increased yield of 33%.

![Scheme 137](image)

Zhang and co-workers have demonstrated the use of ethanolamine with assorted bifunctional carbonyl-carboxylic acids including 2-carboxybenzaldehyde. They
only isolated the Ugi four centred, three component reaction product (U-4C-3CR). In the case of ethanolamine derived oxazolidines, the use of IPA at reflux led to the preference for an 8-membered O-acyl migration rather than the theoretically and energetically favoured 5-membered N-acyl migration. The reaction between 2-carboxybenzaldehyde, ethanolamine and an tert-butyl isocyanide results in similar intermediates and as such it was expected that the use of alternative reaction conditions may lead to isolation of an entirely different product 267 to that of Zhang et al. 82

Sadly, the use of IPA at reflux with 2 mol% pTsOH merely led to detection of Zhang’s Ugi type product 268 by 1H NMR after 48 hours (Scheme 138). In similar fashion, use of MeOH and 2,2,2-trifluoroethanol at reflux led to no detection of the elusive desired product 267.

![Scheme 138](image)

After the successful IMCRs using 2-carboxybenzaldehyde and N-substituted ethanolamines (Scheme 137), more complex bifunctionalised substrates which would require larger than 8-membered N-acyl migrations were investigated. The readily available 2-formylphenoxycetic acid 269 must react via an entropically disfavoured
and transannularly strained 10-membered intramolecular O-acyl migration. It was therefore surprising when the relatively high yield of 49% was achieved after 48 hours (Scheme 139).

![Scheme 139](image)

2.92 IMCRs using Bifunctional Carbonyl-Hydroxyl Compounds.

Marcaccini *et al.* have shown that the phenolic hydroxyl group of salicylaldehyde is sufficiently acidic to replace a carboxylic acid in an Ugi reaction with an isocyanide and ammonium formate (Scheme 140).\(^{151}\) In this reaction, the iminium ion 271 is attacked by the isocyanide with subsequent ring closure to an exocyclic imino ether 272, which reacts further with a second molecule of salicylaldehyde to form the stable imine product 274.

![Scheme 140](image)

We therefore elected to investigate the reaction of o-Hydroxyacetophenone with benzylamine, *tert*-butyl isocyanide and benzoic acid (Scheme 141). It was
anticipated that since the amine used in this case is primary, the exocyclic imino ether intermediate \textbf{276} will not react further with a second molecule of salicylaldehyde to give a stable product, but instead the benzoic acid nucleophile would become involved in a mechanism similar to that which has been previously encountered.

![Chemical Reaction Diagram]

Scheme 141

However, disappointingly, despite promising indications from the crude \(^1 \)H NMR spectra, it was not possible to isolate pure products from this complex reaction mixture.

4-Hydroxy-2-butanone was then investigated since the exocyclic imino ether intermediate, in this case, would be able to be attacked by alternative nucleophiles to carboxylic acids unlike in the above example. It also should have the advantage of the exocyclic imino ether not forming the amino dihydrofuran type of structure \textbf{273} noted above where conjugation with the aromatic ring affords stability.
When 5-phenyl-1H-tetrazole was used as the nucleophilic component with 4-hydroxy-2-butanone, benzylamine and tert-butyl isocyanide in MeCN at reflux with 2 mol% pTsOH, an acceptable yield of 26% of the 2-5 tetrazole regioisomer was isolated (Scheme 142).

The proton coupled 13C spectrum shows a triplet (4.4 Hz $^{3}J_{CH}$) coupling to the ortho proton at 165.2 ppm. This indicates the presence of the 2-5 regioisomer, also indicated by the absence of a triplet of triplets at 165.2 for the 1-5 regioisomer in which C=N would couple with the ortho proton and the N-CH$_2$. No $^{3}J_{CH}$ coupling between the N-CH$_2$ and C=N is observed in the HMBC spectrum, again suggesting exclusive 2-5 substitution. The major constituent of the product mixture was 54% of 4-(5-phenyl-2H-tetrazol-2-yl)butan-2-one side product 278. This was most probably formed by acid catalysed elimination of water from the 4-hydroxy-2-butanone starting material followed by Michael addition by the soft nucleophile, and explains the poor yield of expected product 277.

\[
\begin{align*}
\text{MeCN} & \text{reflux}\ 18\text{h} \\
2%\ p\text{TsOH} & \\
\text{277} & \text{26%} \\
\text{278} & \text{54%}
\end{align*}
\]

Scheme 142

Similarly, when thiophenol was used as the nucleophile, the expected product 279 was isolated in 53% yield, together with 38% 4-(phenylthio)butan-2-one side product 280 (Scheme 143). Use of IPA as solvent in both cases gave lower yields of the desired products and higher levels of side product.
Conclusions and Future Perspectives.

This present thesis has described the development of several simple and useful IMCRs. By the investigation of oxazolidines and their congeners, it has been demonstrated that an ethanolamine moiety may take part in an Ugi type reaction in a similar manner to the U-4C-3CR of homoserine 84, whereby the hydroxyl group takes an active part in the reaction mechanism. Alternative nucleophiles to the ubiquitous carboxylic acid have also been shown to be applicable for IMCRs that react via an exocyclic imino ether intermediate 213.

The potential for further investigation of these reactions lies both in the stereocontrol of the new chiral centre and in the exploration of further substrates. It seems likely that if a chiral amino alcohol is used then good stereochemical induction would be achieved in a similar manner to the Ugi reaction. The use of alternative five-membered saturated heterocycles would possibly lead to new and exciting structures. 1,3-Dithiolanes, 1,3-oxathiolanes, thiazolidines and 1,3-oxazinanes and also their antecedent bifunctional starting materials would all be worth investigating.
Part 3:

EXPERIMENTAL
3.1 General Experimental Procedures.

3.11 Solvents and Reagents.

Unless otherwise stated, all reactions were performed using oven dried glassware, which was cooled under a flow of nitrogen or argon prior to use. Benzene and DMSO were distilled from calcium hydride; THF, CH₂Cl₂, Et₂O, MeCN, toluene and n-hexane, were prepared as anhydrous, degassed solvents from an anhydrous engineering® zeolite drying apparatus. Methanol and ethanol were distilled from magnesium methoxide. Hexanes refers to light petroleum ether b.p. 60-80°C. Anhydrous IPA was purchased from Sigma-Aldrich®.

3.12 Data Collection.

Melting points were performed on a Reichert Thermostar hot stage apparatus and are uncorrected. Boiling points were measured during distillation and are uncorrected. Proton magnetic resonance (¹H NMR) spectra were recorded at 300 MHz on a Bruker AMX300 spectrometer at 300K unless otherwise stated, and are reported as follows: chemical shift δ (ppm) (number of protons, multiplicity, coupling constant J (Hz), assignment). The coupling constants are quoted to the nearest 0.1 Hz (s=singlet, d=doublet, t=triplet, q=quartet, qn=quintet, m=multiplet, b=broad) and are reported as measured splittings on each individual resonance. The residual protic solvent CHCl₃ (δH = 7.26 ppm, s) DMSO (δH = 2.50 ppm, qn) and MeOH (δH = 3.30 ppm, q) were used as an internal reference. ¹³C spectra (¹³C NMR) were recorded at 75 MHz on a Bruker AMX300 spectrometer at 300K unless otherwise stated. The central reference of CDCl₃ (δC = 77.0 ppm, t), DMSO (D₆) (δC = 39.4 ppm, septuplet) or
MeOH (D₄) (δₒ = 49.0 ppm, septuplet) was used as an internal reference. Chemical shifts are reported to the nearest 0.1 ppm or 0.01 ppm in cases where adjacent peaks are less than 0.1 ppm apart. Infrared spectra were carried out on a Shimadzu FTIR – 8700 and are recorded as a KBr disc or as a neat oil in between NaCl disks. Only selected absorbencies (νₘₐₓ) >1400 cm⁻¹ are reported with the exception of strong structurally important fingerprint region peaks (1400-600 cm⁻¹). Mass spectra and accurate mass measurements were recorded using a Micromass 70-SE magnetic sector spectrometer at the University College London Chemistry Department.

3.2 Experimental Procedures.

3-Methyl-2-p-tolyl-oxazolidine 179.

![Chemical Structure](image)

2-(Methylamino)-ethanol (1.5 g / 1.61 ml, 20 mmol) and p-tolualdehyde (3.02 g, 20 mmol) were added sequentially in one portion to ethanol (20 ml) and stirred at r.t. for 1.5 h. The solvent was removed under reduced pressure and ethanol (10 ml) was added and then immediately removed under reduced pressure. The addition and evaporation of ethanol was repeated three times and then the product was dried under vacuum for 11 h to give crude 3-methyl-2-p-tolyl-oxazolidine 179 (3.6 g, 90 %) as a colourless oil, which was distilled under reduced pressure (96-98°C, 0.5 mm/Hg), (lit¹⁵⁴ = 67-68°C, 0.05 mm/Hg) to give 3-methyl-2-p-tolyl-oxazolidine 179 (2.9 g, 83 %).
^1H NMR (CDCl₃) δ 2.28 (3H, s, N-CH₃), 2.35 (3H, s, tolyl-CH₃), 2.70 (1H, dd, J= 9.1, 17.0 Hz, N-CH₃CH₂), 3.30-3.36 (1H, m, N-CH₃CH₂), 3.99-4.14 (2H, m, O-CH₂), 4.62 (1H, s, tert-CH), 7.24 (2H, d, J= 17.1Hz, Ar), 7.33 (2H, d, J=16.5 Hz, Ar).

^13C NMR (CDCl₃) δ 21.3, 38.2, 54.7, 65.3, 98.3, 127.6, 129.0, 129.7, 129.8, 136.1, 138.5.

HRMS - (FAB (pos)) - calculated for C₁₁H₁₆NO: 178.12318, found 178.12330.

LRMS - (FAB (pos)) 154 (100), 178 (85, M+H), 155 (30),177 (20), 179 (10), 156 (7).

IR (thin film) ν max- 3029, (aryl), 2994 (alkyl), 2955 (alkyl), 2897 (alkyl), 2816 (N-CH₃), 1701, 1690, 1604, 1456 cm⁻¹.

3-Benzyl-2-p-tolyl-oxazolidine 183.

2-(Benzylamino)-ethanol (3.02 g, 20 mmol) and p-tolualdehyde (3.02 g, 20 mmol) were added sequentially in one portion to ethanol (5 ml) and stirred at r.t. for 1.5 h. The solvent was removed under reduced pressure and ethanol (10 ml) was added and then immediately removed under reduced pressure. The addition and evaporation of ethanol was repeated three times and the product was dried under vacuum for 24 h to give the crude oxazolidine 183 (5.1 g, 97 %) as a yellow oil. This was distilled under reduced pressure (137-140°C, 0.03 mm/Hg), (lit¹⁵⁵= 129°C, 0.1 mm/Hg) to yield 3-benzyl-2-p-tolyl-oxazolidine 183 as a colourless oil (4.6 g, 91 %).
1H NMR (CDCl$_3$) δ 2.46 (3H, s, toyl-CH$_3$), 2.70-2.79 (1H, m, N-CH$_A$H$_B$), 3.21-3.28 (1H, m, N-CH$_A$H$_B$), 3.45 (1H, d, J = 13.0 Hz, Ar-CH$_A$H$_B$), 3.92 (1H, d, J = 13.0 Hz, Ar-CH$_A$H$_B$), 4.08-4.16 (2H, m, O-CH$_2$), 5.02 (1H, s, CH), 7.25-7.46 (9H, m, Ar).

13C NMR (CDCl$_3$) δ 21.4, 51.6, 56.3, 65.3, 96.8, 127.2, 127.9, 128.5, 128.8, 129.2, 136.8, 138.5, 139.0.

HRMS - (FAB (pos)) – calculated for C$_{17}$H$_{20}$NO: 254.15449, found 254.15465.

LRMS - (FAB (pos)) 254 (100, M+H), 253 (83), 162 (55), 253 (45), 255 (20), 152 (10).

IR (thin film) ν max- 3026, (aryl), 2952 (alkyl), 2921 (alkyl), 2885 (alkyl), 1698, 1498, 1454 cm$^{-1}$.

2-Hexyl-3-methyl-oxazolidine 180.

1-Heptanal (20.0 g, 0.174 mol) and 2-(methylamino)-ethanol (13.1 g, 0.174 mol) were added to anhydrous benzene (125 ml) and heated under an atmosphere of nitrogen at 80°C with iodine (10 mg, 0.04 mmol). The water was azeotropically removed using a Dean and Stark apparatus for 1.5 h. Excess solvent was removed under reduced pressure and the crude oxazolidine 180 (28.6 g) was distilled under reduced pressure (67-69°C, 3 mm/Hg), (lit156 = 103°C, 20 mm/Hg) to yield 2-hexyl-3-methyl-oxazolidine 180 as a colourless oil (21.9 g, 73 %).

1H NMR (CDCl$_3$) δ 0.73 (3H, t, J = 7.2 Hz, CH$_3$), 1.23-1.30 (10H, m, (CH$_2$)$_5$), 2.19 (3H, s, N-CH$_3$), 2.45 (1H, dd, J = 9.5, 8.3 Hz, N-CH$_A$CH$_B$), 3.00-3.08 (1H, m, N-CH$_A$CH$_B$), 3.65-3.72 (3H, m, O-CH$_2$ & CH).
13C NMR (CDCl$_3$) δ 13.9, 22.5, 24.8, 29.3, 21.7, 33.2, 38.7, 54.7, 63.9, 97.2.

HRMS - (FAB (pos)) - calculated for C$_{10}$H$_{12}$NO: 172.17013, found 172.16977.

LRMS - (FAB (pos)) 154 (100), 172 (92, M+H), 155 (30), 170 (28), 156 (7).

IR (thin film) ν max- 2957 (alkyl), 2930 (alkyl), 2856 (alkyl), 2797 (N-CH$_3$), 1467, 1456 cm$^{-1}$.

2-(4-Methoxy-phenyl)-3-methyl-oxazolidine 181.

![Chemical Structure](image)

2-(Methylamino)-ethanol (3.8 g, 50 mmol) and p-anisaldehyde (6.8 g, 50 mmol) were added to ethanol (10 ml) and stirred at r.t. for 0.5 h. Excess solvent was removed under reduced pressure and ethanol (10 ml) was added and then immediately removed under reduced pressure. The addition and evaporation of ethanol was repeated three times and the product was dried under vacuum for 12 h to give the crude oxazolidine 181 (9.1 g) as colourless oil. The crude oxazolidine 181 was distilled under reduced pressure (94-97°C, 0.03 mm/Hg), (lit157 = 133-136°C, 3 mm/Hg) to yield 2-(4-methoxy-phenyl)-3-methyl-oxazolidine 181 as a colourless oil (7.4 g, 77 %).

1H NMR (CDCl$_3$) δ 2.20 (3H, s, N-CH$_3$), 2.59-2.62 (1H, m, N-CH$_2$H$_{2b}$), 3.25-3.29 (1H, m, N-CH$_2$H$_{2b}$), 3.77 (3H, s, OMe), 3.94-4.06 (2H, m, O-CH$_2$), 4.53 (1H, s, CH), 6.87 (2H, d, J= 8.7 Hz, Ar), 7.36 (2H, d, J= 8.7 Hz, Ar).

13C NMR (CDCl$_3$) δ 38.0, 54.7, 55.2, 65.2, 98.0, 113.2, 129.2, 131.5, 160.1.

HRMS - (Cl (pos) methane) - calculated for C$_{11}$H$_{12}$NO: 194.11810, found 194.11829.
LRMS - (Cl (pos) methane) 135(100), 194 (58), 210 (53, M+CH₄), 86 (52), 192 (52), 137 (13).

IR (thin film) ν max- 2963 (alkyl), 2897 (alkyl), 2847 (alkyl), 2801 (N-CH₃), 1603, 1515 cm⁻¹

3-Methyl-2-(4-nitro-phenyl)-oxazolidine 182.

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{NO₂}
\end{array}
\]

\text{182}

\(p\)-Nitrobenzaldehyde (7.6 g, 5 mmol) and 2-(methylamino)-ethanol (3.8 g, 5 mmol) were added to ethanol (10 ml) and stirred at r.t. for 30 mins. Excess solvent was removed under reduced pressure, and ethanol (10 ml) was then added and immediately removed under reduced pressure. The addition and evaporation of ethanol was repeated three times and the residue was dried under vacuum for 24 h to yield the crude oxazolidine 182 (10.2 g) as an orange oil. Distillation under reduced pressure (121-122°C, 0.02 mm/Hg), (lit158 = 118-119°C, 0.045 mm/Hg) gave 3-methyl-2-(4-nitro-phenyl)-oxazolidine 182 as an orange oil (6.3 g, 60 %). This was then triturated with petrol to give colourless prisms (6.1 g, 58 %), (m.p. = 31-34°C), (lit159 = 31-32°C, from petrol).

1H NMR (CDCl\textsubscript{3}) δ 2.29 (3H, s, N-CH\textsubscript{3}), 2.72 (1H, dd, J = 17.5, 8.1 Hz, N-CH\textsubscript{A}CH\textsubscript{B}), 3.20-3.26 (1H, m, N-CH\textsubscript{A}CH\textsubscript{B}), 4.01 (2H, dd, J = 7.5, 5.1 Hz, O-CH\textsubscript{2}), 4.78 (1H, s, CH), 7.60 (2H, d, J = 8.5 Hz, Ar), 8.02 (2H, d, J = 8.5 Hz, Ar).

13C NMR (CDCl\textsubscript{3}) δ 38.7, 54.4, 65.5, 97.0, 123.4, 124.2, 128.5, 130.4, 146.9, 148.2.

HRMS - (EI) - calculated for C\textsubscript{10}H\textsubscript{12}N\textsubscript{2}O\textsubscript{3}: 208.08479, found 208.08538.

LRMS - (EI) 86 (100), 92 (41), 150 (24), 207 (23), 104 (19), 161 (17).
IR (KBr Disc) ν max- 2955 (alkyl), 2895 (alkyl), 2800 (N-CH₃), 1609, 1522 (nitro), 1452, 1348 (nitro) cm⁻¹.

(E)-2-[(4-Methyl-benzylidene)-amino]-ethanol **186**.

\[\text{OH} \quad \begin{array}{c} \text{N} \\ \text{186} \end{array} \]

p-Tolualdehyde (9.8 g, 82 mmol) and ethanolamine (5.0 g, 82 mmol) were added to ethanol (40 ml) and stirred at r.t. for 30 mins. The solvent was removed under reduced pressure, and ethanol (10 ml) was then added and immediately removed under reduced pressure. The addition and evaporation of ethanol was repeated three times and the residue was dried under vacuum for 24 h to yield the crude oxazolidine **186** as a white solid. Recrystallisation from EtOAc gave *(E*)-2-[(4-Methyl-benzylidene)-amino]-ethanol **186** (11.9 g, 89 %), as colourless needles (m.p. = 45-46°C), (lit¹⁶⁰ = 67-69°C, from benzene).

¹H NMR (CDCl₃) δ 2.19 (3H, s, tolyl-CH₃), 2.91 (1H, bs, OH), 3.70 (2H, t, J = 4.9 Hz, N-CH₂), 3.81 (2H, t, J = 4.8 Hz, O-CH₂), 7.17 (2H, d, J = 8.0 Hz, Ar), 7.57 (2H, d, J = 8.0 Hz, Ar), 8.15 (1H, s, N=CH).

¹³C NMR (CDCl₃) δ 21.5, 62.4, 63.3, 128.2, 129.4, 133.3, 141.2, 163.1.

HRMS - (EI) - calculated for C₁₀H₁₃NO: 163.09971, found 163.10024.

LRMS - (EI) 86 (100), 92 (41), 150 (24), 207 (23), 104 (19), 161 (17).

IR (KBr disc) ν max- 3215 br (OH), 3028 (aryl), 2928 (alkyl), 2850 (alkyl), 1643 (C=N), 1607, 1569, 1408 cm⁻¹.

4-Methyl-1-oxa-4-aza-spiro[4,5]decane **187**.
Cyclohexanone (12.8 g, 0.13 mol), 2-(methylamino)ethanol (10 g, 0.13 mol) and iodine (10 mg, 0.04 mmol) were added to anhydrous benzene (100 ml). Water was azeotropically removed using Dean and Stark apparatus for 2.5 h. Excess solvent was removed under reduced pressure and the crude oxazolidine 187 (19.6 g) was distilled under reduced pressure (88-89°C, 20 mm/Hg), (lit\(^\text{16}\) = 89-92°C, 16 mm/Hg) to yield 4-methyl-1-oxa-4-aza-spiro[4.5]decane 187 as a colourless oil (17.4 g, 86%).

\(^1\text{H NMR}\) (CDCl\(_3\)) \(\delta\) 1.13-1.17 (1H, m, cy), 1.33-1.76 (9H, m, cy), 2.30 (3H, s, N-CH\(_3\)), 3.00 (2H, ddd, \(J = 6.6, 4.2, 2.5\) Hz, N-CH\(_{\text{A}}\)CH\(_{\text{B}}\)), 3.82 (2H, ddd, \(J = 6.6, 4.4, 2.3\) Hz, O-CH\(_{\text{A}}\)H\(_{\text{B}}\)).

\(^{13}\text{C NMR}\) (CDCl\(_3\)) \(\delta\) 23.5, 25.6, 27.0, 32.3, 36.1, 42.0, 52.9, 62.5, 95.7.

\textbf{HRMS} - (EI) - calculated for C\(_9\)H\(_{17}\)NO: 155.13101, found 155.13121.

\textbf{LRMS} - (EI) 112 (100), 107 (78), 89 (40), 88 (33), 154 (23), 155 (20, m+).

\textbf{IR} (thin film) \(\nu\) max- 2934 (alkyl), 2860 (alkyl), 2791 (N-CH\(_3\)), 1716, 1475, 1449 cm\(^{-1}\).

\textit{3-tert-Butyl-2-p-tolyl-oxazolidine 185.}

2-(\textit{tert}-Butylamino)-ethanol (5.86 g, 50 mmol), \textit{p}-tolualdehyde (7.55 g, 50 mmol) and iodine (5 mg, 0.02 mmol) were added to anhydrous benzene (50 ml). Water was azeotropically removed using Dean and Stark apparatus for 4 h. Excess solvent was
removed under reduced pressure and the residue was purified by distillation under reduced pressure (74-78°C, 0.02 mm/Hg) to give 3-tert-butyl-2-p-tolyl-oxazolidine 185 as a colourless oil (7.0 g, 64%).

1H NMR (CDCl₃) δ 1.14 (9H, s, t-Bu), 2.34 (3H, s, tolyl-CH₃), 3.02-3.07 (1H, m, N-CH₃), 3.14-3.18 (1H, m, N-CH₃), 3.78-3.86 (2H, m, O-CH₃H₃), 5.65 (1H, s, CH), 7.16 (2H, d, J= 7.9 Hz, Ar). 7.46 (2H, d, J= 7.9 Hz, Ar).

13C NMR (CDCl₃) δ 21.5, 27.9, 46.3, 53.5, 56.9, 91.4, 127.0, 129.6, 137.3, 140.6.

HRMS - (ES (pos)) - calculated for C₁₄H₂₂N₂O: 220.17014, found 220.17014.

LRMS - (ES (pos)) 220 (100, M+H), 176 (17), 164 (8), 221 (7), 175 (4), 201 (3).

IR (thin film) v max- 2971 (alkyl), 2870 (alkyl), 1605, 1512, 1473 cm⁻¹.

2,2-Dimethyl-oxazolidine / 2-(propan-2-ylideneamino)ethanol 187.

![Diagram](image)

This compound was prepared according to a previously reported literature procedure.¹²²

To a solution of ethanolamine (10 g, 0.16 mol), in CH₂Cl₂ (100 ml) was added anhydrous potassium carbonate (15 g) and then acetone (18 ml, 0.24 mol) in one portion. The mixture was stirred under an atmosphere of nitrogen for 6 h at r.t. The suspension was filtered and the filtrate was evaporated under reduced pressure at 20°C. Distillation under reduced pressure (55-58°C, 80 mm/Hg), (lit¹²²= 75.5-76°C, 22 mm/Hg) gave 2,2-dimethyl-oxazolidine / 2-(propan-2-ylideneamino)ethanol as a colourless oil (12.9 g, 80%).

1H NMR (CDCl₃) (two tautomers 3:2 ratio) δ 1.32 (6H major, s, (CH₃)₂), 1.82 (3H minor, s, CH₃), 1.99 (3H minor, t, J= 1.5 Hz, CH₃), 2.80 (2H major, t, J= 5.2 Hz, N-
CH₃CH₂), 3.15 (2H minor, t, J= 6.7 Hz, N-CH₂), 3.27 (1H minor, br, J= 4.6 Hz, OH),
3.57 (2H major, t, J= 5.2 Hz, O-CH₂CH₂), 3.71 (2H minor, t, J= 6.7 Hz, O-CH₂), 3.78
(1H major, t, J= 5.2 Hz, NH).

¹³C NMR (CDCl₃) δ 19.2, 26.2, 28.9, 43.7, 45.9, 63.6, 65.0, 94.8, 169.9.

HRMS - (CI (pos) methane) - calculated for C₇H₁₂NO: 102.09188, found 102.09166.

LRMS - (CI (pos) methane) 102 (100, M+H), 86 (79), 84 (52), 100 (10), 85 (9), 91
(5).

IR (thin film) ν max: 3358 br, 3296 br, 2935 (alkyl), 2869 (alkyl), 1665 (C=N), 1600
(NH), 1447 cm⁻¹

Benzyl 2-hydroxyethylcarbamate 227.

This compound was prepared according to a previously reported literature
procedure.¹³²

To a solution of ethanolamine (15.3 g, 0.25 mol) in THF (133 ml) and water (266 ml),
sodium bicarbonate (42 g) and then benzyl chloroformate (40.5 g, 0.24 mol) were
added in one portion at 0°C and then vigorously stirred for 12 h at r.t. The suspension
was filtered, and the THF layer was separated. Diethyl ether (50 ml) was added to the
aqueous layer and stirred for 10 mins. The organic layer was then separated and the
combined organic phases were combined, dried (MgSO₄) and then filtered.
Concentration of the organic liquor under reduced pressure yielded benzyl 2-
hydroxyethylcarbamate 227 as a white solid (21.5 g 44 %), (m.p. = 60-61°C), (lit¹⁶²=
62-62.5°C, from diethyl ether) of sufficient purity to be used directly in the next stage
without further manipulation.
Spectroscopic data was identical to that previously reported.132

Benzyl 2-(4-chlorophenyl)oxazolidine-3-carboxylate 228.

\begin{center}
\includegraphics[width=0.2\textwidth]{228.png}
\end{center}

Benzyl 2-hydroxyethylcarbamate 227 (10.0 g, 51 mmol), \textit{p}-chlorobenzaldehyde (7.2 g, 51 mmol) and iodine (10 mg, 0.04 mmol) were added to toluene (100 ml) and heated at reflux using Dean and Stark water removal apparatus for 24 h. Excess solvent was removed under reduced pressure to yield a crude white solid which was recrystallised from EtOAc to give benzyl 2-(4-chlorophenyl)oxazolidine-3-carboxylate 228 (9.75 g, 60\%), as colourless plates (m.p. = 53-55\ºC).

\textbf{\textit{1H NMR}} (CDCl\textsubscript{3}) \(\delta\) 3.54-3.62 (1H, m, N-CH\textsubscript{a}CH\textsubscript{b}), 3.85-3.98 (1H, m, N-CH\textsubscript{a}CH\textsubscript{b}), 4.01-4.14 (2H, m, O-CH\textsubscript{2}), 5.12 (2H, s, Ar-CH\textsubscript{2}), 6.98-7.50 (9H, m, Ar).

\textbf{\textit{13C NMR}} (CDCl\textsubscript{3}) \(\delta\) 45.2, 65.9, 67.4, 88.7, 128.0, 128.2, 128.5, 128.6, 128.8, 134.7, 136.1, 137.7, 153.8.

\textbf{HRMS} - (CI (pos - Methane)) - Measured (M+H) = 318.08914, theoretical (M+H) = 318.08969.

\textbf{LRMS} – (CI (pos - Methane)) 91 (100), 92 (75), 93 (67), 119(66), 89 (63), 117 (60).

\textbf{IR} (KBr Disc) \(v\) max- 2924 (alkyl), 2855 (alkyl), 1713 (C=O), 1458, 1427, 1412 cm-1.

\textbf{2-[(tert-Butylcarbamoyl-p-tolyl-methyl)-methyl-amino]ethyl benzoate 197.}
Method A

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 μl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[(tert-butylcarbamoyl-p-tolyl-methyl)-methyl-amino]ethyl benzoate 197 (509 mg, 66 %) as a colourless oil. R.f = 0.23 (2:1 hexanes:EtOAc).

Method B

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), tert-butyl isocyanide (166 mg / 226 μl, 2 mmol) and pTsOH (38 mg, 0.2 mmol) were added to anhydrous THF (5 ml) and heated at reflux for 23 h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to yield 2-[(tert-butylcarbamoyl-p-tolyl-methyl)-methyl-amino]ethyl benzoate 197 as a pale yellow oil (426 mg, 56 %).

Method C

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), tert-butyl isocyanide (166 mg, 2 mmol) and pTsOH (38 mg, 0.2 mmol) were added to CH₂Cl₂ (3 ml) and heated to in a CEM® monomode microwave reactor for 20 minutes at 100°C. Excess solvent was removed under reduced pressure and the
crude product was purified by column chromatography (4:1 hexanes:EtOAc) to yield
the title compound 197 as a pale yellow oil (379 mg, 50%).

1H NMR (CDCl$_3$) δ 1.27 (9H, s, t-Bu), 2.27 (3H, s, tolyl-CH$_3$), 2.34 (3H, s, N-CH$_3$),
2.67-2.88 (2H, m, N-CH$_2$), 4.00 (1H, s, CH), 4.33-4.65 (2H, m, O-CH$_2$), 6.93 (1H, bs,
NH), 7.05-7.60 (9H, m, Ar).

13C NMR (CDCl$_3$) δ 21.1, 28.6, 40.5, 50.7, 53.5, 62.4, 75.6, 128.4, 129.0, 129.2,
129.7, 130.1, 132.9, 133.1, 137.8, 166.5, 170.8.

HRMS - (FAB (pos)) - calculated for C$_{23}$H$_{31}$N$_2$O$_3$: 411.26475, found 411.26357.

LRMS - (FAB (pos)) 310 (100), 411 (60, M+H), 311 (35), 409 (22), 412 (17), 410
(8).

IR (thin film) ν max- 3400-3100 br (NH), 2928 (alkyl), 1718 (C=O), 1665 (C=O),
1604, 1514 (NH) cm$^{-1}$.

![2-[(tert-Butylcarbamoyl-heptyl)methyl-amino]ethyl benzoate 201](image)

Method A

2-Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), benzoic acid (244 mg, 2
mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 μl, 2
mmol) were added to anhydrous MeCN (5 ml) heated at reflux under an atmosphere
of nitrogen for 21 h. Excess solvent was removed under reduced pressure and the
residue was purified by column chromatography (4:1 hexanes:EtOAc) to yield 2-
[(tert-butylcarbamoyl-heptyl)methyl-amino]ethyl benzoate 201 (599 mg, 80 %) as a
colourless oil. R.f. = 0.34 (2:1 hexanes:EtOAc).
Method B

2-(Methylamino)-ethanol (161 μl, 2 mmol), 1-heptanal (279 μl, 2 mmol), benzoic acid (244 mg, 2 mmol) and pTsOH (8 mg, 0.04 mmol) were added to anhydrous IPA (2 ml). tert-Butyl isocyanide (166 mg / 226 μl, 2 mmol) was then added and the mixture refluxed for 17h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[(tert-butylcarbamoyl-heptyl)methyl-amino]ethyl benzoate 201 (515 mg, 68 %) as a colourless oil.

\[^1H \text{NMR (CDCl}_3) \delta 0.74 (3H, t, J= 6.9 Hz, CH}_3) \], 1.16 (9H, s, t-Bu), 1.17-1.41 (6H, m, CH\textsubscript{2}) 1.44-1.59 (2H, m, CH\textsubscript{2}), 1.62-1.77 (2H, m, CH\textsubscript{2}), 2.23 (3H, s, N-CH\textsubscript{3}), 2.77-2.87 (3H, m, N-CH\textsubscript{2} and CH), 4.32-4.47 (2H, m, CH\textsubscript{2}-O), 6.62 (1H, bs, NH), 7.40 (2H, t, J= 7.8 Hz, Ar), 7.53 (1H, t, J= 7.8 Hz, Ar), 8.00 (2H, d, J= 7.8 Hz, Ar).

\[^13C \text{NMR (CDCl}_3) \delta 14.0, 22.5, 27.2, 27.4, 28.6, 29.5, 31.6, 38.3, 50.2, 53.7, 62.7, 68.9, 128.3, 129.5, 130.0, 133.0, 166.4, 172.2. \]

HRMS - (FAB (pos)) - calculated for C\textsubscript{22}H\textsubscript{37}N\textsubscript{2}O\textsubscript{3}: 377.28040, found 377.28061.

LRMS - (FAB (pos)) 276 (100), 377 (74, M+H), 277 (18), 378 (18), 154 (8), 375 (5).

IR (thin film) ν max- 3365 br (NH), 3026 (aryl), 2948 (alkyl), 2926 (alkyl), 2856 (alkyl), 1724 (C=O), 1674 (C=O), 1506 (NH), 1452 cm-1.

2-[(tert-Butylcarbamoyl-heptyl)methyl-amino]ethyl propionate 202.
2-Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), propionic acid (149 µl, 2 mmol), PTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 21 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[(tert-butylicarbamoyl-heptyl)methyl-amino]ethyl propionate 202 (537 mg, 78 % as a colourless oil. R.f. = 0.21 (2:1 hexanes:EtOAc).

\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.77 (3H, t, J= 6.6 Hz, heptyl-CH\(_3\)), 1.05 (3H, t, J= 7.5 Hz, propyl-CH\(_3\)), 1.13-1.23 (6H, m, CH\(_2\)), 1.25 (9H, s, t-Bu), 1.39-1.54 (2H, m, CH\(_2\)), 1.60-1.72 (2H, m, CH\(_2\)), 2.19 (3H, s, N-CH\(_3\)), 2.25 (2H, q, J= 7.5 Hz, C=O-CH\(_2\)), 2.53-2.71 (2H, m, N-CH\(_2\)), 2.77 (1H, dd, J= 7.3, 5.3 Hz, CH), 4.04 (2H, t, J= 6.5 Hz, O-CH\(_2\)), 6.78 (1H, bs, NH).

\(^13\)C NMR (CDCl\(_3\)) \(\delta\) 9.0, 14.0, 22.7, 27.3, 27.5, 28.7, 29.2, 30.0, 38.4, 51.0, 53.3, 62.0, 68.9, 172.3, 174.3.

HRMS - (FAB (pos)) - calculated for C\(_{18}\)H\(_{37}\)N\(_2\)O\(_3\): 329.28040, found 329.28191.

LRMS - (FAB (pos)) 228 (100), 329 (24, M+H), 229 (15), 170 (7), 327 (7), 226 (6).

IR (thin film) ν max- 3330 br (NH), 2951 (alkyl), 2930 (alkyl), 2858 (alkyl), 1746 (C=O), 1662 (C=O), 1510 (NH), 1456 cm\(^{-1}\).

2-[(tert-Butylicarbamoyl-(4-methoxy-phenyl)-methyl]-methyl-amino]-ethyl benzoate 207.

![2-[(tert-Butylicarbamoyl-(4-methoxy-phenyl)-methyl]-methyl-amino]-ethyl benzoate 207](image)

Method A
2-(4-Methoxy-phenyl)-3-methyl-oxazolidine 181 (387 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude residue was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[[tert-butylcarbamoyl-(4-methoxy-phenyl)-methyl]methyl-amino]-ethyl benzoate 207 (542 mg, 68 %) as a colourless oil. R.f = 0.40 (2:1 hexanes:EtOAc).

Method B

2-(Methylamino)-ethanol (161 µl, 2 mmol), p-anisaldehyde (243 µl, 2 mmol), benzoic acid (244 mg, 2 mmol) and pTsOH (8 mg, 0.04 mmol) were added to anhydrous IPA (2 ml), tert-Butyl isocyanide (166 mg / 226 µl, 2 mmol) was then added and the mixture heated at reflux for 17h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[[tert-butylcarbamoyl-(4-methoxy-phenyl)-methyl]methyl-amino]-ethyl benzoate 207 (527 mg, 66 %) as a colourless oil.

1H NMR (CDCl₃) δ 1.27 (9H, s, t-Bu), 2.33 (3H, s, N-CH₃), 2.67-2.85 (2H, m, N-CH₂), 4.02 (3H, s, O-CH₃), 4.06 (1H, s, CH), 4.32-4.62 (2H, m, O-CH₂), 6.78 (2H, d, J= 6.8 Hz, m-PhOMe), 7.04 (1H, bs, NH), 7.17 (2H, d, J= 6.8 Hz, o-PhOMe), 7.32-7.53 (3H, m, Ar), 8.00 (2H, d, J= 8.5 Hz, Ar).

13C NMR (CDCl₃) δ 28.5, 40.4, 50.6, 53.4, 62.3, 75.1, 113.8, 128.1, 128.4, 129.6, 130.1, 130.2, 132.5, 133.1, 159.4, 166.4, 170.9.

HRMS - (FAB (pos)) - calculated for C₂₃H₂₁N₂O₄: 399.22837, found 399.22720.

LRMS - (FAB (pos)) 399 (100, M+H), 298 (68), 400 (27), 220 (23), 192 (14), 299 (13).
IR (thin film) ν max- 3390 br (NH), 2980 (alkyl), 2970 (alkyl), 2930 (alkyl), 2885 (alkyl), 1716 (C=O), 1678 (C=O), 1510 (NH), 1452 cm⁻¹.

2-{{[tert-Butylcarbamoyl-4-nitro-phenyl]-methyl}[methyl-amino]-ethyl benzoate 208.}

Method A

3-Methyl-2-(4-nitro-phenyl)-oxazolidine 182 (416 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (3:1 hexanes:EtOAc) to give 2-{{[tert-butylcarbamoyl-4-nitro-phenyl]-methyl}[methyl-amino]-ethyl benzoate 208 (389 mg, 47 %) as an orange oil. R.f. = 0.29 (2:1 hexanes:EtOAc).

Method B

2-(Methylamino)-ethanol (161 µl, 2 mmol), p-nitrobenzaldehyde (302 mg, 2 mmol), benzoic acid (244 mg, 2 mmol) and pTsOH (8 mg, 0.04 mmol) were added to anhydrous IPA (2 ml), tert-Butyl isocyanide (166 mg / 226 µl, 2 mmol) was then added and the mixture heated at reflux for 17 h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-{{[tert-butylcarbamoyl-4-nitro-phenyl]-methyl}[methyl-amino]-ethyl benzoate 208 (247 mg, 30 %) as an orange oil.
^{1}H NMR (CDCl$_3$) δ 1.26 (9H, s, t-Bu), 2.30 (3H, s, N-CH$_3$), 2.67-2.88 (2H, t, J= 5.6 Hz N-CH$_2$), 4.18 (1H, s, CH), 4.41(2H, m, O-CH$_2$), 6.98 (1H, bs, NH), 7.39-7.47 (4H, m, Ar), 7.52-7.57 (1H, m, Ar), 8.01 (2H, d, J= 8.6 Hz, Ar), 8.12 (2H, d, J= 8.6 Hz, Ar).

13C NMR (CDCl$_3$) δ 28.5, 40.0, 51.0, 53.8, 61.9, 74.7, 123.5, 128.5, 129.6, 129.9, 130.2, 133.3, 143.0, 147.5, 166.4, 169.1.

HRMS - (FAB (pos)) - calculated for C$_{22}$H$_{27}$N$_3$NaO$_5$: 437.19099, found 437.19266.

LRMS - (FAB (pos)) 176 (100), 313 (80), 360 (47), 174 (46), 436 (34), 330 (32).

IR (thin film) v max- 3300 br (NH), 3057 (aryl), 2991 (alkyl), 2894 (alkyl), 2807 (N-CH$_3$), 1716 (C=O ester), 1682 (C=O amide), 1521 (NH), 1452 cm$^{-1}$.

2-[(Cyclohexylcarbamoil-p-tolyl-methyl)-methyl-amino]-ethyl benzoate 199.

![Chemical Structure](image)

3-Methyl-2-p-tolyloxazolidine 179 (355 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then cyclohexyl isocyanide (218 mg / 248 μl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[(cyclohexylcarbamoil-p-tolyl-methyl)-methyl-amino]-ethyl benzoate 199 (580 mg, 71 %) as a pale yellow oil. R.f. = 0.14 (2:1 hexanes:EtOAc).

^{1}H NMR (CDCl$_3$) δ 0.95-1.81 (10H, complex m, Cy), 2.27 (3H, s, tolyl-CH$_3$), 2.29 (3H, s, N-CH$_3$), 2.67-2.81 (2H, m, N-CH$_2$), 4.00 (1H, s, CH), 4.30-4.43 (1H, m,
CH$_3$H$_2$-O), 4.30-4.43 (1H, m, CH$_3$H$_2$-O), 6.93 (1H, bs, NH), 7.03-7.54 (7H, m, Ar),
8.00-8.05 (2H, m, Ar).

13C NMR (CDCl$_3$) δ 21.1, 28.6, 40.5, 50.7, 53.5, 75.6, 128.4, 129.0, 129.2, 129.7,
130.1, 132.9, 133.1, 137.8, 166.5, 170.8.

HRMS - (FAB (pos)) - calculated for C$_{25}$H$_{32}$N$_2$NaO$_3$: 431.23105, found 431.23051.

LRMS - (FAB (pos)) 431 (100, M+Na), 432 (35), 282 (23), 360 (14), 149 (10), 201 (8).

IR (thin film) ν max- 3310 (NH), 2922 (alkyl), 2852 (alkyl), 1726 (C=O ester), 1651
(C=O amide), 1562 (NH), 1460 cm$^{-1}$.

2-[(1-Cyclohexylcarbamoyl-heptyl)-methyl-amino]-ethyl benzoate 203.

![2-[(1-Cyclohexylcarbamoyl-heptyl)-methyl-amino]-ethyl benzoate 203](image)

Method A

2-Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), benzoic acid (244 mg, 2
mmol), ρTsOH (38 mg, 0.2 mmol) and then cyclohexyl isocyanide (218 mg / 248 µl,
2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an
atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure
and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to give
2-[(1-cyclohexylcarbamoyl-heptyl)-methyl-amino]-ethyl benzoate 203 (383 mg, 48
%) as a colourless oil. R.f. = 0.26 (2:1 hexanes:EtOAc).

Method B
2-(Methylamino)-ethanol (161 μl, 2 mmol), 1-heptanal (279 μl, 2 mmol), benzoic acid (244 mg, 2 mmol) and pTsOH (8 mg, 0.04 mmol) were added to anhydrous IPA (2 ml), cyclohexyl isocyanide (248 μl, 2 mmol) was then added and the mixture refluxed for 17h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (4:1 hexanes:EtOAc) to give 2-[(1-cyclohexylcarbamoyl-heptyl)-methyl-amino]-ethyl benzoate 203 (346 mg, 43 %) as a colourless oil.

\[^1H \text{ NMR (CDCl}_3) \delta 0.86 (3H, t, J= 7.0 \text{ Hz, CH}_3), 0.88-1.05 (3H, m, alkyl), 1.20 (9H, bs, alkyl), 1.32-1.80 (8H, m, alkyl), 2.27 (3H, s, N-CH}_3), 2.83-2.97 (2H, m, N-CH}_2), 3.53-3.61 (1H, m, CH), 4.28-4.42 (2H, m, CH}_2-O), 6.82 (1H, d, J = 8.5 \text{ Hz, NH}), 7.36-7.41 (2H, m, Ar), 7.47-7.51 (1H, m, Ar), 7.96-8.01 (2H, m, Ar). \]

\[^13C \text{ NMR (CDCl}_3) \delta 14.0, 22.6, 24.8, 25.4, 27.3, 27.5, 29.5, 31.7, 32.8, 33.1, 38.4, 47.5, 53.8, 62.6, 68.5, 128.4, 129.6, 130.1, 133.1, 166.5, 171.9. \]

HRMS - (FAB (pos)) - calculated for C\text{24}H\text{39}N\text{2}O\text{3}: 403.29605, found 403.29553.

LRMS - (FAB (pos)) 276 (100), 403 (81, M+H), 402 (23), 267 (20), 401 (15), 154 (12).

IR (thin film) ν max- 3315 br (NH), 2930 (alkyl), 2955 (alkyl) 1717 (C=O ester), 1647 (C=O amide), 1510 (NH), 1452 cm\(^{-1}\).

Benzyl-2-p-tolyl-oxazolidine 183 (507 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by flash chromatography (6:1 hexanes:EtoAc) to yield 2-[[benzyl-(2-butylation-3-p-tolyl-6-methyl)-amino]-ethyl benzoate 209 as a yellow oil (404 mg, 44 %). R.f. = 0.58 (2:1 hexanes:EtoAc).

^1H NMR (CDCl₃) δ 1.26 (9H, s, t-Bu), 2.34 (3H, s, tolyl-CH₃), 2.79-2.98 (2H, m, N-CH₂), 3.53-3.58 (1H, d, J = 4.7 Hz, Ar-CH₃H₈), 3.87-3.92 (1H, d, J = 4.7 Hz, Ar-CH₃H₂), 4.20-4.49 (2H, m, CH₂-O), 4.39 (1H, s, CH), 6.96 (1H, bs, NH), 7.13-7.98 (14H, m, Ar).

^13C NMR (CDCl₃) δ 21.2, 28.7, 49.2, 50.9, 56.3, 62.6, 70.2, 127.4, 128.4, 128.5, 129.0, 129.7, 129.9, 130.2, 132.1, 133.1, 137.6, 138.8, 166.5, 170.8.

HRMS - (FAB (pos)) - calculated for C₂₉H₃₅N₃O₃: 459.26475, found 459.26337.

LRMS - (FAB (pos)) 358 (100), 459 (99, M+H), 359 (42), 359 (37), 178 (18), 457 (13).

IR (thin film) ν max- 3342 br (NH) 2924 (alkyl), 1717 (C=O), 1678 (C=O), 1510 (NH) cm⁻¹.

2-[(1-tert-Butylation-3-cyclohexyl)-methyl-amino]-ethyl benzoate 210.

4-Methyl-1-oxa-4-aza-spiro[4.5]decane 184 (310 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an
atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the residue was purified by flash chromatography (4:1 hexanes:EtuAc) to yield 2-[(1-tert-Butylcarbamoyl-cyclohexyl)-methyl-amino]-ethyl benzoate 210 as a colourless oil (455 mg, 63%). R.f. = 0.63 (2:1 hexanes:EtuAc).

1H NMR (CDCl$_3$) δ 1.19 (9H, s, t-Bu), 1.30-1.37 (2H, m, CH$_2$) 1.51-1.91 (8H, m, CH$_2$), 2.21 (3H, s, N-CH$_3$), 2.68 (2H, t, J = 6.0 Hz, N-CH$_2$), 4.28 (2H, t, J = 6.1 Hz O-CH$_2$), 6.22 (1H, bs, NH), 7.04-7.41 (3H, m, Ar), 7.92 (2H, d, J = 9.4 Hz, Ar).

13C NMR (CDCl$_3$) δ 22.9, 25.9, 28.6, 30.2, 36.0, 49.8, 50.1, 63.7, 66.4, 128.3, 129.9, 130.1, 132.9, 166.3, 174.4.

HRMS - (FAB (pos)) - calculated for C$_{21}$H$_{33}$N$_2$O$_3$: 361.24910, found 361.24790.

LRMS - (FAB (pos)) 260 (100), 361 (91, M+H), 154 (55), 362 (22), 155 (20), 261 (18).

IR (thin film) ν max- 3380 br (NH), 2973 (alkyl), 2944 (alkyl), 2870 (alkyl), 1710 (C=O), 1680 (C=O), 1505 (NH), 1465 cm$^{-1}$.

3-[[1-(2,6-Dimethyl-phenylcarbamoyl)-heptyl]-methyl-amino]ethyl propionate 205.

Hexyl-3-methyl-oxazolidine 180 (262 mg, 2 mmol), propionic acid (149 μl, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 μl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by flash chromatography (5:1 hexanes:EtuAc) to yield 3-[[1-
(2,6-dimethyl-phenylcarbamoyl)-heptyl]-methyl-aminol-ethyl propionate 205 as a
colourless oil (320 mg, 42 %). R.f. = 0.40 (2:1 hexanes:EtOAc).

1H NMR (CDCl$_3$) δ 0.88 (3H, t, J = 6.6 Hz, CH$_3$), 1.02 (3H, t, J = 7.5 Hz,
COCH$_2$CH$_3$), 1.25-1.58 (10H, m, CH$_2$), 1.63-1.78 (1H, m, CH$_2$), 1.88-2.00 (1H, m,
CH$_2$), 2.21 (6H, s, Ar-CH$_3$), 2.45 (3H, s, N-CH$_3$), 2.91 (2H, m, N-CH$_2$), 3.25 (1H, t,
J = 6.5 Hz, CH), 4.22 (2H, t, J = 5.5 Hz, CH$_2$-O), 7.01 (3H, s, Ar), 8.65 (1H, bs, NH).

13C NMR (CDCl$_3$) δ 8.9, 14.1, 18.7, 22.6, 27.33, 27.38, 29.6, 31.7, 38.8, 54.0, 62.1,
68.6, 126.8, 128.8, 134.1, 134.9, 171.4, 174.4.

HRMS - (FAB (pos)) - calculated for C$_{22}$H$_{36}$N$_2$NaO$_3$: 399.26235, found 399.26169.

LRMS - (FAB (pos)) 399 (100, M+Na), 228 (40), 400 (24), 229 (5), 377 (4).

IR (thin film) ν max - 3300 br (NH), 3020 (aryl), 2955 (alkyl), 2928 (alkyl), 2856
(alkyl), 1738 (C=O ester), 1674 (C=O amide), 1468 cm$^{-1}$.

3-[(1H-Indol-3-yl)-2-f(1-tert-butylcarbamoyl-heptyl)]-methyl-aminol-ethyl propionate 204.

Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), 3-indole propionic acid (378 mg,
2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl,
2 mmol) were added to anhydrous MeCN (5 ml) and heated to reflux under an
atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure
and the crude product was purified by flash chromatography (6:1 hexanes:EtOAc) to
give 3-[(1H-indol-3-yl)-2-f(1-tert-butylcarbamoyl-heptyl)]-methyl-aminol-ethyl propionate 204 (388 mg, 44 %) as a colourless oil. R.f. = 0.12 (2:1 hexanes:EtOAc).
1H NMR (CDCl$_3$) δ 0.89 (3H, t, J= 6.8 Hz, CH$_3$), 1.20-1.32 (8H, m, CH$_2$), 1.37 (9H, s, t-Bu), 1.50-1.64 (1H, m, CH$_3$H$_B$-alkyl), 1.68-1.82 (1H, m, CH$_3$H$_B$-alkyl), 2.26 (3H, s, N-CH$_3$), 2.62-2.72 (2H, m, N-CH$_2$), 2.75 (2H, t, J= 7.5 Hz, CO-CH$_2$), 2.87 (1H, t, J= 5.4 Hz, CH), 3.13 (2H, t, J= 7.5 Hz, C=C-CH$_2$), 4.17 (2H, t, J= 5.6 Hz, O-CH$_2$), 6.92 (1H, s, NH), 6.97 (1H, s, C=CH), 7.11 (1H, t, J= 7.2 Hz, Ar), 7.18 (1H, t, J= 7.1 Hz, Ar), 7.34 (1H, d, J= 7.8 Hz, Ar), 7.69 (1H, d, J= 7.7 Hz, Ar), 8.84 (1H, bs, NH indole).

13C NMR (CDCl$_3$) δ 14.1, 20.8, 22.7, 27.3, 27.6, 28.8, 29.6, 31.7, 35.1, 38.5, 50.5, 53.4, 62.3, 69.1, 111.4, 114.3, 118.5, 119.1, 121.76, 121.82, 127.1, 136.5, 172.6, 173.5.

HRMS - (FAB (pos)) - calculated for C$_{25}$H$_{40}$N$_3$O$_3$: 443.31479, found 443.31388.

LRMS - (FAB (pos)) 343 (100), 444 (65), 344 (23), 445 (18), 154 (14), 172 (12).

IR (thin film) ν max- 3300 br (NH), 3387 br (NH), 3020 (aryl), 2959 (alkyl), 2930 (alkyl), 2858 (alkyl), 1732 (C=O), 1666 (C=O), 1514 (NH), 1456 cm$^{-1}$.

2-(tert-Butyl(2-(tert-butilamino)-2-oxo-1-p-tolylethyl)ammo)ethyl acetate 211.

![Chemical structure of 2-(tert-Butyl(2-(tert-butilamino)-2-oxo-1-p-tolylethyl)ammo)ethyl acetate 211.]

3-tert-Butyl-2-p-tolyl-oxazolidine 185 (438 mg, 2 mmol), acetic acid (120 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then tert-butyl isocyanide (166 mg / 226 μl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of nitrogen for 48 h. Excess solvent was removed under reduced pressure and the crude product was purified by flash chromatography (4:1 hexanes:EtOAc) to
give 2-[tert-butyl-(tert-butylcarbamoyl-p-tolyl-methyl)-amino]ethyl-acetate 211 (145 mg, 20%) as a colourless oil. R.f. = 0.40 (2:1 hexanes:EtOAc). (Crystallised by slow evaporation from CHCl₃ (needles), (m.p. = 90-91 °C).

^1H NMR (CDCl₃) δ 1.16 (9H, s, t-Bu), 1.41 (9H, s, t-Bu), 2.00 (3H, s, CO₂CH₃), 2.28 (3H, s, tolyl-CH₃), 2.30-2.41 (1H, m, N-CH₃H₂), 2.81-2.92 (1H, m, N-CH₃H₂), 3.58-3.67 (1H, m, O-CH₃H₂), 3.78-3.87 (1H, m, O-CH₃H₂), 4.55 (1H, s, CH), 7.01 (2H, d, J= 8.1 Hz, Ar), 7.08 (2H, d, J= 8.1 Hz, Ar), 7.83 (1H, bs, NH).

^13C NMR (CDCl₃) δ 21.1, 27.9, 28.7, 42.8, 50.6, 56.7, 129.5, 130.2, 134.4, 137.3, 170.7, 174.0.

HRMS - (Cl (pos) methane) - calculated for C₂₂H₂₇N₂O₃: 363.26475, found 363.26552.

LRMS - (Cl (pos) methane) 262 (100), 206 (71), 307 (32), 119 (22), 263 (17), 176 (15).

IR (KBr Disc) ν max- 3314 br (NH), 2968 (alkyl), 2924 (alkyl), 1738 (C=O ester), 1670 (C=O amide), 1506 (NH), 1456 cm⁻¹.

2-[(tert-Butylcarbamoyl-p-tolyl-methyl)-methyl-amino]-ethyl propionate 198.

![Molecular structure](image)

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), propionic acid (150 µl, 2 mmol), pTsOH (38 mg, 0.2 mmol) and tert-butyl isocyanide (166 mg, 226 µl, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1
iso"hexane:EtOAc) to yield 2-[(tert-butylcarboxyloxy-p-tolyl-methyl)-methylamino] ethyl propionate 198 as a colourless oil (428 mg, 64 %). R.f . = 0.26 (2:1 iso"hexane:EtOAc).

1H NMR (CDCl₃, 400 MHz) δ1.08 (3H, t, J= 7.7 Hz, CH₂-CH₃), 1.28 (9H, s, t-Bu), 2.14 (3H, s, tolyl-CH₃), 2.25 (3H, s, N-CH₃), 2.27 (2H, q, J= 7.7 Hz, CH₂-CH₃), 2.54 (2H, t, J= 5.8 Hz, N-CH₂), 3.76 (1H, s, CH), 4.10 (2H, t, J= 5.8 Hz, O-CH₂), 6.23 (1H, bs, NH), 7.03-7.10 (4H, m, Ar).

13C NMR (CDCl₃, 100 MHz) δ 9.5, 21.5, 28.0, 40.7, 51.0, 53.9, 62.3, 76.3, 129.2, 129.5, 133.6, 138.1, 171.2, 174.7.

HRMS - (FAB (pos)) - calculated for C₁₉H₃₆N₂O₃: 335.23346, found 335.23240.

LRMS - (FAB (pos)) 154 (100), 155 (83), 307 (78), 335 (44, M+H), 289 (30), 308 (22).

IR (thin film) ν max- 3404 br (NH), 3054 (aryl), 2970 (alkyl), 2926 (alkyl), 2826 (N-CH₃), 1737 (C=O ester), 1664 (C=O), 1513 (NH), 1456 cm⁻¹.

2-[(tert-Butylcarboxyloxy-p-tolyl-methyl)-methyl-amino] ethyl acetate 18O₂, 221.

\[\text{2-Methyl-2-p-tolyl-oxazolidine 179 (138 mg, 0.78 mmol), acetic acid-18O₂ (95 atom % 18O) (50 mg, 0.78 mmol), pTsOH (15 mg, 0.078mmol) and tert-butyl isocyanide (88 µl, 0.78 mmol) were added to anhydrous MeCN (2 ml) and heated at reflux under an atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 iso"hexane:EtOAc) to yield 2-[(tert-butylcarboxyloxy-p-tolyl-methyl)-methyl-amino]} \]
18O$_2$ ethyl acetate 221 as a colourless oil (120 mg, 47 %). R.f. = 0.37 (2:1 isohexane:EtOAc).

1H NMR (CDCl$_3$, 400 MHz) δ1.28 (9H, s, t-Bu), 2.06 (3H, s, COCH$_3$), 2.15 (3H, s, tolyl-CH$_3$), 2.24 (3H, s, N-CH$_3$), 2.57-2.62 (2H, m, N-CH$_2$), 3.83 (1H, s, CH), 4.10 (2H, dt, J= 5.7, 1.2 Hz, O-CH$_2$), 6.99 (1H, bs, NH), 7.10 (2H, d, J= 8.0 Hz, Ar), 7.14 (2H, d, J= 8.0 Hz, Ar).

13C NMR (CDCl$_3$, 100 MHz) δ 20.9, 21.0, 28.5, 40.0, 50.6, 53.3, 61.6, 75.5, 128.6, 128.8, 129.0, 129.2, 137.7, 137.9, 170.3 (br), 170.7.

HRMS - (FAB (pos)) - calculated for C$_{18}$H$_{29}$N$_2$O$_{18}$O$_2$: 325.22630, found 325.22528

LRMS - (FAB (pos)) 154 (100), 155 (65), 307 (55), 325 (45, M+H), 289 (24), 156 (17).

IR (thin film) ν max- 3360 br (NH), 2966 (alkyl), 2920 (alkyl), 2884 (alkyl), 1708 (C=O ester), 1643 (C=O amide), 1512 (NH), 1456 cm$^{-1}$.

2-[(tert-Butylcarbamoyl-p-tolyl-methyl)-methyl-amino] ethyl acetate 224.

![Structure of 2-[(tert-Butylcarbamoyl-p-tolyl-methyl)-methyl-amino] ethyl acetate 224](image)

3-Methyl-2-p-tolyl-oxazolidine 180 (355 mg, 2 mmol), acetic acid (116 µl, 2 mmol), pTsOH (8 mg, 0.04 mmol) and then tert-butyl isocyanide (226 µl, 2 mmol) were added to anhydrous IPA (2 ml) and heated at reflux under an atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 isohexane:EtOAc) to yield 2-[(tert-butylcarbamoyl-p-tolyl-methyl)-methyl-amino] ethyl acetate 224 as a colourless oil (346 mg, 54%). R.f. = 0.40 (2:1 isohexane:EtOAc).
1H NMR (CDCl$_3$, 400 MHz) δ 1.28 (9H, s, t-Bu), 2.09 (3H, s, COCH$_3$), 2.16 (3H, s, tolyl-CH$_3$), 2.23 (3H, s, N-CH$_3$), 2.54 (2H, t, J = 5.6 Hz, N-CH$_2$), 3.76 (1H, s, CH), 4.09 (2H, dt, J = 5.6, 1.2 Hz, O-CH$_2$H$_2$), 6.95 (1H, bs, NH), 7.11 (2H, d, J = 8.0 Hz, Ar), 7.23 (2H, d, J = 8.0 Hz, Ar).

13C NMR (CDCl$_3$, 100 MHz) δ 21.1, 21.2, 28.7, 40.2, 51.5, 61.9, 75.5, 127.5, 128.8, 129.1, 133.0, 138.8, 167.4, 169.2.

HRMS - (EI) - calculated for C$_{18}$H$_{29}$N$_2$O$_3$: 321.2173, found 321.2155.

LRMS - (EI) 176 (100), 321 (78, M+H), 220 (54), 343 (17, M+Na), 177 (12), 221 (8).

IR (thin film) v max- 3330 br (NH), 2987 (alkyl), 2943 (alkyl), 2872 (alkyl), 2875 (alkyl), 1732 (C=O ester), 1667 (C=O amide), 1515 (NH), 1455 cm$^{-1}$

2-[[1-(2-Chloro-6-methyl-phenylcarbamoyl)-heptyl]-methyl-amino]-ethyl benzoate 206.

2-Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then 2-chloro-6-methyl isocyanide (303 mg, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 isohexane:EtOAc) to yield 2-[[1-(2-chloro-6-methyl-phenylcarbamoyl)-heptyl]-methyl-amino]-ethyl benzoate 206 as a colourless oil (258 mg, 29%). R.f. = 0.18 (2:1 isohexane:EtOAc).
1H NMR (CDCl$_3$, 400 MHz) δ 0.77 (3H, t, J= 6.9 Hz, CH$_2$CH$_3$), 1.16-1.28 (6H, m, CH$_2$), 1.32-1.47 (2H, m, CH$_2$), 1.65-1.75 (1H, CH$_2$), 1.87-1.94 (1H, m, CH$_2$), 2.10 (3H, s, N-CH$_3$), 2.55 (3H, s, Ar-CH$_3$), 3.13 (2H, t, J= 5.6 Hz, O-CH$_2$), 3.53 (1H, dd, J= 7.1 Hz, 6.0Hz, CH), 4.45-4.90 (2H, t, J= 5.6 Hz, O-CH$_2$), 7.05-7.32 (2H, m, Ar), 7.44-7.49 (2H, m, Ar), 7.57-7.61 (1H, m, Ar), 7.95-8.00 (1H, m, Ar), 8.11 (2H, m, Ar), 8.70 (1H, bs, NH).

13C NMR (CDCl$_3$, 100 MHz) δ 13.9, 18.9, 22.5, 27.2, 27.5, 29.3, 31.5, 38.4, 53.6, 62.0, 68.3, 127.0, 127.5, 128.17, 128.23, 129.0, 129.4, 130.0, 132.9, 133.2, 137.6, 166.4, 171.3.

HRMS - (FAB (pos)) - calculated for C$_{23}$H$_{34}$ClN$_2$O$_3$: 445.2258, found 445.2266.

LRMS - (FAB (pos)) 445 (100, M+H (35Cl)), 447 (33, M+H (37Cl)), 446 (23), 448 (25), 444 (2), 432 (1).

IR (thin film) ν max- 3280 br (NH), 2961 (alkyl), 2919 (alkyl), 2874 (alkyl), 1719 (C=O ester), 1676 (C=O amide), 1467 cm$^{-1}$.

2-[(Isopropylcarbamoyl-p-tolyl-methyl)-methyl-amino]-ethyl benzoate 200.

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol) and then isopropyl isocyanide (warning – cyanide like effects)* (189 mg, 2 mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1
isoctane:EtOAc) to afford the title compound **200** as a colourless oil (535 mg, 73 %). R.f. = 0.21 (2:1 isooctane:EtOAc).

^1H NMR (CDCl₃, 400 MHz) δ 1.00 (3H, d, J= 6.6 Hz, CH-CH₃), 1.07 (3H, d, J= 6.6 Hz, CH-CH₃), 2.28 (3H, s, N-Me or Ar-CH₃), 2.29 (3H, s, N-Me or Ar-CH₃), 2.63-2.70 (1H, m, N-CH₃H₈), 2.72-2.80 (1H, m, N-CH₃H₈), 3.96 (1H, s, C=OCH), 3.99-4.05 (1H, m, CH-(CH₃)₂), 4.35-4.41 (1H, m O-CH₃H₈), 4.46-4.52 (1H, m, O-CH₃H₈), 6.91 (1H, d, J= 8.3 Hz, NH), 7.10 (2H, d, J= 7.6 Hz, Ar), 7.16-7.20 (2H, m, Ar), 7.39-7.48 (2H, m, Ar), 7.56-7.62 (1H, m, Ar), 8.04-8.09 (2H, m, Ar).

^13C NMR (CDCl₃, 100 MHz) δ 21.0, 22.4, 40.4, 40.7, 53.4, 62.2, 62.3, 75.1, 128.3, 128.8, 129.1, 129.5, 130.0, 132.9, 133.0, 137.7, 166.4, 170.5.

HRMS - (FAB (pos)) - calculated for C₂₂H₂₉N₂O₃: 369.2178, found 369.2177.

LRMS - (FAB (pos)) 369 (100, M+H), 370 (20), 371 (4), 317 (1), 247 (1), 190 (1).

IR (thin film) ν max- 3420 br (NH), 2985 (alkyl), 2968 (alkyl), 1739 (C=O ester), 1651 (C=O amide), 1506 (NH), 1452 cm⁻¹.

* = Care, this material can produce a cyanide like effect! Always have a cyanide first-aid kit present when using this material. The onset of symptoms is generally delayed pending conversion to cyanide.

3-Hexyl-4-methyl-morpholin-2-one 212.

![Chemical structure of 3-Hexyl-4-methyl-morpholin-2-one 212.](image)

2-Hexyl-3-methyl-oxazolidine **180** (343 mg, 2 mmol), pTsOH (419 mg, 2.2 mmol) and then tert-butyl isocyanide (226 μl, 2 mmol) were added to reagent grade DMSO (5 ml) and heated to 75°C under an atmosphere of nitrogen for 24 h. The reaction was cooled to r.t. and sat. NaHCO₃ (aq) (5 ml) and EtOAc (5 ml) were added. The organic layer was separated and the aqueous layer was further extracted with EtOAc (2 x 5 ml). The combined organic layers were then washed with brine (5 ml), dried
(MgSO₄), filtered and evaporated under reduced pressure. Purification by column chromatography (3:1 hexanes:EtOAc) gave 3-hexyl-4-methyl-morpholin-2-one 212 as a colourless oil (277 mg, 69%). R.f. = 0.25 (2:1 hexanes:EtOAc).

¹H NMR (CDCl₃) δ 0.83 (3H, t, J= 6.8 Hz, CH₂CH₃), 1.23-1.32 (7H, m, alkyl), 1.45-1.54 (1H, m, alkyl), 1.70-1.78 (1H, m, alkyl), 1.88-2.02 (1H, m, alkyl), 2.30 (3H, s, N-CH₃), 2.60 (1H, ddd, J= 12.8, 11.1, 3.3 Hz, N-CH₃CHB), 2.84 (1H, dt, J= 9.8, 2.7 Hz, N-CH₃CH₃), 2.99 (1H, t, J= 4.9 Hz, CH), 4.23-4.27 (1H, ddd, J= 10.8, 3.2, 2.3 Hz, O-CH₃CH₃), 4.38 (1H, td, J= 10.9, 3.1 Hz, O-CH₃CH₃).

¹³C NMR (CDCl₃) δ 14.0, 22.6, 24.7, 29.3, 30.1, 31.7, 43.1, 51.1, 67.0, 67.7, 170.5.

HRMS - (Cl (pos) methane) - calculated for C₁₁H₂₂NO₂: 200.16505, found 200.16432

LRMS - (Cl (pos) methane) 216 (100, M+CH₄), 160 (49), 200 (26), 131 (17), 217 (15), 214 (14).

IR (thin film) v max- 2963 (alkyl), 2931 (alkyl), 2874 (alkyl), 2867 (alkyl), 1738 (C=O ester), 1552 1459 cm⁻¹.

4-(4-Methyl-benzyl)-3-p-tolyl-morpholin-2-one 215.

Benzyl-2-p-tolyl-oxazolidine 183 (130 mg, 0.5 mmol), pTsOH (106 mg, 0.55 mmol) and then tert-butyl isocyanide (62 µl, 0.5 mmol) were added to reagent grade DMSO (1.25 ml) and heated to 80°C under an atmosphere of nitrogen for 24 h. The reaction was cooled to r.t. and sat. NaHCO₃ (aq) (2 ml) and EtOAc (2 ml) were added. The upper organic layer was separated and the aqueous layer was further extracted with
EtOAc (2 x 2 ml). The combined organic layers were washed with brine (2 ml), dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by column chromatography (3:1 hexanes:EtOAc) gave 4-(4-methyl-benzyl)-3-p-tolyl-morpholin-2-one 215 as a colourless oil (87 mg, 62%). R.f. = 0.45 (2:1 hexanes:EtOAc).

\(^1\)H NMR (CDCl₃, 400MHz) \(\delta\) 2.27 (3H, s, Ar-CH₃), 2.55 (1H, ddd, \(J= 12.7, 11.0, 3.2\) Hz, N-CH₃CH₂), 2.90 (1H, dt, \(J= 12.7, 2.7\) Hz, N-CH₃CH₂), 3.08 (1H, d, \(J= 13.1\) Hz, Ar-CH₂CH₂), 3.71 (1H, d, \(J= 13.4\) Hz, Ar-CH₂CH₂), 4.14 (1H, s, CH), 4.27 (1H, ddd, \(J= 10.8, 3.2, 2.4\) Hz, O-CH₂CH₂), 4.46 (1H, td, 11.0, 3.2 Hz, O-CH₂CH₂), 7.11 (1H, m, Ar), 7.14 (1H, m, Ar), 7.16 (1H, m, Ar), 7.17 (2H, d, \(J= 1.2\) Hz, Ar), 7.21 (1H, d, \(J= 2.8\) Hz), 7.23 (1H, t, \(J= 1.6\) Hz, Ar), 7.36 (1H, t, \(J= 1.6\) Hz, Ar), 7.38 (1H, t, \(J= 1.6\) Hz, Ar).

\(^{13}\)C NMR (CDCl₃, 100MHz) \(\delta\) 21.5, 47.1, 59.2, 69.0, 70.7, 127.9, 128.7, 129.20, 129.23, 129.9, 134.9, 137.5, 138.6, 169.3.

HRMS - (ES (pos)) - calculated for C₁₈H₂₀NO₂: 282.14940, found 282.14894.

LRMS -(ES (pos)) 282 (100, M+H), 177 (55), 233 (38), 304 (23, M+Na), 283 (17), 276 (13).

IR (thin film) v max- 3018 (aryl), 2973 (alkyl), 1742 (C=O ester), 1512, 1452 cm⁻¹.

4-Methyl-3-p-tolylmorpholin-2-one 216.

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), pTsOH (419 mg, 2.2 mmol) and then tert-butyl isocyanide (226 µl, 2 mmol) were added to DMSO (5 ml) and heated to 75°C under an atmosphere of nitrogen for 24 h. The reaction was cooled to r.t. and sat. NaHCO₃ (aq) (5 ml) and EtOAc (5 ml) were added. The upper organic
layer was separated and the aqueous layer was further extracted with EtOAc (2 x 5 ml). The combined organic layers were then washed with brine (5 ml), dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by column chromatography (2:1 hexanes:EtOAc) gave 4-methyl-3-p-tolylmorpholin-2-one 216 as a colourless oil (226 mg, 55 %). R.f. = 0.10 (2:1 hexanes:EtOAc).

\(^1\)H NMR (CDCl₃, 400 MHz) δ 2.19 (3H, s, tolyl-CH₃ or N-CH₃), 2.32 (3H, s, tolyl-CH₃ or N-CH₃), 2.79-2.84 (1H, m, N-CH₃CH₃), 3.00 (1H, ddd, J= 12.7, 3.0, 1.9 Hz, N-CH₃CH₃), 3.87 (1H, s, CH), 4.37-4.45 (1H, ddd, J= 10.8, 3.2, 2.0 O-CH₃CH₃), 4.64 (1H, td, J= 11.3 3.5 Hz, O-CH₃CH₃), 7.15 (2H, d, J= 7.9 Hz, Ar), 7.27 (3H, td, J= 8.1 Hz, Ar).

\(^13\)C NMR (CDCl₃, 100 MHz) δ 21.2, 43.6, 51.0, 68.4, 72.3, 128.7, 129.3, 134.4, 138.1, 168.9.

HRMS - (FAB (pos)) - calculated for C₁₂H₁₆NO₂: 206.11810, found 206.11854.

LRMS – (FAB (pos)) 178 (100), 206 (55, M+H), 176 (17), 179 (13), 207 (8).

IR (thin film) ν max- 2951 (alkyl), 2795 (N-CH₃), 1738 (C=O ester), 1514, 1456 cm⁻¹.

(Z)-(2,6-Dimethyl-phenyl)-(3-heptyl-4-methyl-morpholin-2-ylidene)-amine 217.

\[\text{Method A} \]

2-Hexyl-3-methyl-oxazolidine 180 (342 mg, 2 mmol), pTsOH (8 mg, 0.04 mmol), and then 2,6-dimethylphenyl isocyanide (262 mg, 2 mmol) were added to anhydrous IPA (2 ml) and refluxed under an atmosphere of nitrogen for 17 h. Excess solvent
was removed under reduced pressure and the crude product was purified by column chromatography (10:1 hexanes:EtOAc) to yield (Z)-(2,6-Dimethyl-phenyl)-(3-heptyl-4-methyl-morpholin-2-ylidene)-amine 217 as a colourless oil (421 mg, 73 %). R.f. = 0.23 (6:1 hexanes:EtOAc).

Method B

2-Hexyl-3-methyl-oxazolidine 180 (342 mg, 2 mmol), pTsOH (8 mg, 0.04 mmol), and then 2,6-dimethylphenyl isocyanide (262 mg, 2 mmol) were added to anhydrous MeOH (2 ml) and heated at reflux under an atmosphere of nitrogen for 6 d. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (8:1 hexanes:EtOAc) to give (2,6-Dimethyl-phenyl)-(3-heptyl-4-methyl-morpholin-2-ylidene)-amine 217 as a colourless oil (202 mg, 33 %). and recovery of 2-hexyl-3-methyl-oxazolidine 180 (137 mg, 40 %).

\(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.99 (3H, t, J= 6.4 Hz, CH\(_2\)CH\(_3\)), 1.33-1.51 (6H, m, alkyl), 1.58-1.74 (2H, m, alkyl), 1.93-2.04 (1H, m, alkyl), 2.17 (6H, s, Ar-CH\(_3\)), 2.21-2.34 (1H, m, alkyl), 2.48 (3H, s, N-CH\(_3\)), 2.65 (1H, ddd, J= 12.9, 9.4, 3.8 Hz, N-CH\(_3\)CH\(_3\)), 2.92 (1H, dt, J= 3.5, 12.7 Hz, N-CH\(_2\)CH\(_3\)), 3.32 (1H, t, J= 4.8 Hz, CH), 4.05-4.22 (2H, m, O-CH\(_2\)), 6.83 (1H, t, J= 7.6 Hz, Ar), 7.04 (2H, d, J= 10.4 Hz, Ar).

\(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.2, 18.9, 22.7, 25.4, 29.7, 31.8, 32.0, 43.5, 51.1, 65.2, 66.4, 122.6, 127.5, 128.3, 145.4, 155.8.

HRMS - (FAB (pos)) - calculated for C\(_{20}\)H\(_{32}\)N\(_2\)NaO: 325.22557, found 325.22509.

LRMS -(FAB (pos)) 325 (100, M+Na), 218 (73), 301 (67), 176 (60), 303 (50), 170 (48).

IR (thin film) v max- 3021 (aryl), 2957 (alkyl), 2957 (alkyl), 2854 (alkyl), 1624 (C=N), 1477, 1443 cm\(^{-1}\).
(Z)-(tert-Butyl)-1-Methyl-(5-ylidene-4-oxa-1-aza-spiro[5.5]undecane) 218.

![Chemical Structure](image)

4-Methyl-1-oxa-4-aza-spiro[4.5]decane 184 (300 mg, 2 mmol), pTsOH (38 mg, 0.2 mmol), and then tert-butyl isocyanide (226 µl, 2 mmol) were added to MeCN (2 ml) and heated to 80°C under an atmosphere of nitrogen for 17 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (2:1 hexanes:EtOAc) to yield the title compound 218 as a colourless oil (153 mg, 32%). R.f. = 0.24 (2:1 hexanes:EtOAc).

1H NMR (CDCl$_3$) δ 1.20 (9H, s, t-Bu), 1.32-1.46 (2H, m, CH$_2$), 1.48-1.58 (4H, m, CH$_2$), 1.70-1.86 (4H, m, CH$_2$-C-CH$_2$), 1.86 (N-CH$_3$), 3.08 (2H, t, J= 5.8 Hz, N-CH$_2$), 4.15 (2H, t, J= 5.8 Hz, O-CH$_2$).

13C NMR (CDCl$_3$) δ 21.5, 25.9, 30.4, 32.5, 36.6, 46.7, 53.1, 60.2, 63.4, 156.9.

HRMS - (FAB (pos)) - calculated for C$_{14}$H$_{27}$N$_2$O: 239.21234, found 239.21278.

LRMS - (FAB (pos)) 239 (100, M+H), 159 (68), 240 (26), 183 (6), 166 (3), 181 (3).

IR (thin film) ν max- 2934 (alkyl), 2860 (alkyl), 2793 (N-CH$_3$), 1674 (C=N), 1448, cm$^{-1}$.

2-(1-tert-Butylcarbamoyl-1-methyl-ethylamino)-ethyl benzoate 243.

![Chemical Structure](image)

2,2-Dimethyl-oxazolidine / 2-(propan-2-ylideneamino)ethanol 187 (202 mg, 2 mmol), benzoic acid (244 mg, 2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2
mmol) were added to anhydrous IPA (2 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (1:1 isohexane:EtOAc) to yield 2-(1-tert-butylcarbamoyl-1-methyl-ethylamino)-ethyl benzoate 243 as a colourless oil (224 mg, 37%). R.f. = 0.35 (1:1 hexanes:EtOAc).

$^1\text{H NMR}$ (CDCl$_3$) δ 1.27 (9H, s, t-Bu), 1.28 (6H, s, CH$_3$), 2.86 (2H, t, J= 5.5 Hz, N-CH$_2$), 4.37 (2H, t, J= 5.6 Hz, O-CH$_2$), 7.13 (1H, bs, NH), 7.43 (2H, t, J= 7.5 Hz, m-Ar), 7.52 (1H, m, p-Ar), 8.01 (2H, d, J= 10.0 Hz, o-Ar).

$^{13}\text{C NMR}$ (CDCl$_3$) δ 25.6, 28.6, 42.6, 50.1, 58.9, 65.0, 128.4, 129.6, 130.0, 133.1, 166.6, 175.6.

HRMS - (CI (pos) methane) - Measured (M+H) = 307.20284, theoretical (M+H) = 307.20216.

LRMS - (CI (pos) methane) 206 (100), 307 (63, M+H), 111 (16), 149 (15), 113 (15), 207 (14).

IR (thin film) ν max- 3330 br (NH), 2995(alkyl), 2940 (alkyl), 2880 (alkyl), 1720 (C=O), 1665 (C=O), 1510 (NH), 1406 cm$^{-1}$.

2-[(tert-Butylcarbamoyl-p-toly]-methyl-amino]-ethyl benzoate 231.

![Chemical Structure](image)

2-p-Tolyl-oxazolidine / 2-[(4-methyl-benzylidene)-amino]-ethanol 186 (326 mg, 2 mmol), benzoic acid (244 mg, 2 mmol) and then tert-butyl isocyanide (166 mg / 226 μl, 2 mmol) were added to anhydrous IPA (2 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1
isohepane:EtOAc) to yield \(2-[(tert-butylcarbamoyl-p-tolyl-methyl)-methylamino] \)
ethyl propionate 231 as a colourless oil (516 mg, 70 \%). R.f. = 0.36 (2:1
hexanes:EtOAc).

\(^1\text{H NMR\)} (CDCl\textsubscript{3}) \(\delta\) 1.28 (9H, s, t-Bu), 2.07 (1H, bs, NH), 2.28 (3H, s, tolyl-CH\textsubscript{3}),
2.88-3.02 (2H, m, N-CH\textsubscript{2}), 4.08 (1H, s, CH), 4.34-4.41 (2H, m, O-CH\textsubscript{2}), 6.96 (1H, s,
NH), 7.10 (2H, d, \(J= 7.8\) Hz, Ar), 7.22 (2H, d, \(J= 8.1\) Hz, Ar), 7.38-7.55 (3H, m, Ar),
8.00 (2H, d, \(J= 8.3\) Hz, Ar).

\(^{13}\text{C NMR\)} (CDCl\textsubscript{3}) \(\delta\) 21.1, 28.7, 47.1, 50.6, 64.3, 67.7, 126.8, 128.4, 129.1, 129.5,
130.0, 133.1, 136.6, 137.7, 166.5, 171.2.

\textbf{HRMS} - (FAB (pos)) - calculated for C\textsubscript{22}H\textsubscript{29}N\textsubscript{2}O\textsubscript{3}: 369.21781, found 369.21690.

\textbf{LRMS} – (FAB (pos)) 369 (100, M+H), 268 (61), 370 (27), 154 (23), 176 (13).

\textbf{IR\) (thin film) \(\nu\) max- 3370 br (NH), 2985 (alkyl), 2930 (alkyl), 2880 (alkyl), 1716
(C=O), 1670 (C=O), 1514 (NH), 1452 cm-1.

\textit{N-(tert-Butylcarbamoyl-p-tolyl-methyl)-N-(2-hydroxy-ethyl)-benzamide 232.}

\includegraphics[width=0.2\textwidth]{image}

2-p-Tolyl-oxazolidine 186 (327 mg, 2 mmol), benzoic acid (244 mg, 2 mmol), and then tert-butyl isocyanide (2 mmol 226 \(\mu\)l) were added to anhydrous methanol (5 ml)
at r.t and stirred for 42 h under an atmosphere of nitrogen. Excess solvent was
removed under reduced pressure and the crude product was purified by column
chromatography (2:1 hexanes:EtOAc) to yield \textit{N-(tert-butylcarbamoyl-p-tolyl-methyl)-N-(2-hydroxy-ethyl)-benzamide 232} (660 mg, 90 \%) as a white powder. R.f. =
0.16 (2:1 hexanes:EtOAc). Recrystallised from petrol / IPA to give colourless needles (m.p. = 138-139°C).

1H NMR (DMSO d$_6$, 400 MHz, 373K) δ 1.35 (9H, s, t-Bu), 2.33 (3H, s, tolyl-CH$_3$), 3.13-3.27 (2H, m, N-CH$_2$), 3.39-3.49 (2H, m, O-CH$_2$), 4.45 (1H, bs, OH), 5.58 (1H, s, CH), 7.20-7.26 (4H, m, Ar), 7.38 (1H, bs, NH), 7.43-7.48 (5H, m, Ar).

13C NMR (DMSO d$_6$, 100 MHz 373K) δ 19.9, 27.9, 47.5, 50.1, 58.6, 63.9, 125.9, 127.6, 128.34, 128.40, 128.5, 132.9, 136.6, 136.7, 168.5, 171.5.

HRMS - (EI) - calculated for C$_{22}$H$_{29}$N$_2$O$_3$: 369.21782, found 369.21828.

LRMS - (EI) 369 (100 M+H), 367 (92, M+Na), 370 (30), 396 (29), 392 (27), 268 (10).

IR (KBr Disc) v max- 3406 br, 3317, 3027 (aryl), 2993 (alkyl), 2981 (alkyl), 2931 (alkyl), 1665 (C=O amide), 1618 (C=O amide), 1542, 1450, 1419 cm$^{-1}$.

3-(1H-Indol-3-yl)-2-(1-tert-butylcarbamoyl-1-methyl-ethylamino)-ethyl ester 241.

![Chemical Structure](attachment:241.png)

2,2-Dimethyl-oxazolidine / 2-(propan-2-ylideneamino)ethanol 187 (202 mg, 2 mmol), 3-indolepropionic acid (379 mg, 2 mmol) and then tert-butyl isocyanide (166 mg / 226 µl, 2 mmol) were added to anhydrous IPA (2 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (50:50:1 isohexane:EtOAc:TEA) to yield 3-(1H-Indol-3-yl)-2-(1-tert-butylcarbamoyl-1-methyl-ethylamino)-ethyl ester 241 as a colourless oil (284 mg, 38 %). R.f. = 0.11 (50:50:1 isohexane:EtOAc:TEA).
1H NMR (CDCl$_3$) δ 1.22 (6H, s, (CH$_3$)$_2$), 1.27 (9H, s, t-Bu), 2.04 (1H, s, NH), 2.67 (2H, t, J= 5.5 Hz, N-CH$_2$), 2.75 (2H, t, J= 7.5 Hz, CO-CH$_2$), 3.12 (2H, t, J= 7.5 Hz, Indole-CH$_2$), 3.61-4.36 (2H, m, O-CH$_2$), 7.00 (1H, d, J= 2.2 Hz, Ar), 7.11-7.22 (2H, m, Ar), 7.28 (1H, bs, NH amide), 7.34 (1H, d, J= 8.0 Hz, Ar), 7.59 (1H, d, J= 7.7 Hz, Ar), 8.51 (1H, bs, NH indole).

13C NMR (CDCl$_3$) δ 20.7, 25.5, 28.7, 34.9, 42.3, 50.1, 58.8, 64.5, 111.3, 114.5, 118.6, 119.2, 121.6, 122.0, 127.1, 136.4, 173.4, 175.6.

HRMS - (ES (pos)) - calculated for C$_{21}$H$_{32}$N$_3$O$_3$: 374.24437, found 374.24483.

LRMS - (ES (pos)) 374 (100 M+H), 273 (35), 275 (22), 396 (16), 203 (8), 274 (7).

IR (KBr Disc) v max- 3354 (NH), 3318 (NH), 3171 (NH), 2974 (alkyl), 2923 (alkyl), 1730 (C=O ester), 1645 (C=O amide), 1521, 1456 cm$^{-1}$.

2-((1-Cyclohexylcarbamoyl-1-methyl-ethylamino)-ethyl benzoate 242.

![Structure 242](image)

2,2-Dimethyl-oxazolidine / 2-(propan-2-ylideneamino)ethanol 187 (202 mg, 2 mmol), benzoic acid (244 mg, 2 mmol) and then cyclohexyl isocyanide (249 µl, 2 mmol) were added to anhydrous IPA (2 ml) and heated at reflux under an atmosphere of nitrogen for 18 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (4:1 isohexane:EtOAc) to yield 2-((1-cyclohexylcarbamoyl-1-methyl-ethylamino)-ethyl benzoate 242 as a yellow oil (258 mg, 37 %). R.f. = 0.19 (Et$_2$O).

1H NMR (CDCl$_3$) δ 0.83-1.04 (4H, m, cy), 1.27 (6H, s, (CH$_3$)$_2$), 1.44-1.61 (4H, m, cy), 2.83 (2H, t, J= 5.4 Hz, N-CH$_2$), 3.56-3.64 (1H, tdt, J= 10.6, 8.9, 3.9 Hz, cy H$_{ax}$),
4.35 (2H, t, J= 5.4 Hz, O-CH₂), 7.21 (1H, br d, J= 8.4 Hz, CONH), 7.41 (2H, tt, J=
7.4, 1.3 Hz, Ar), 7.53 (1H, tt, J= 7.4, 1.3 Hz, Ar), 8.00 (2H, s, J= 8.5 Hz, Ar)

¹³C NMR (CDCl₃) δ 24.8, 25.5, 25.7, 33.0, 42.7, 47.5, 58.5, 64.9, 128.4, 129.6,
130.0, 133.1, 166.5, 175.2.

HRMS - (EI) - calculated for C₁₉H₂₉N₂O₃: 333.21782, found 333.21810.

LRMS - (EI) 333 (100 M+H), 355 (61, M+Na), 206 (37), 334 (17), 356 (11), 207

IR (thin film) ν max- 3320 br (NH), 2930 (alkyl), 2871 (alkyl), 1720 (C=O ester),
1661 (C=O amide), 1514, 1463 cm⁻¹.

S-{2-[[(tert-Butylcarbamoyl-p-tolyl-methyl)-methyl-amino]-ethyl} thiobenzoate 245.

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), thiobenzoic acid (259 µl, 2
mmol), pTsOH (19 mg, 0.1 mmol) and tert-butyl isocyanide (166 mg, 226 µl, 2
mmol) were added to anhydrous MeCN (5 ml) and heated at reflux under an
atmosphere of argon for 24 h. Excess solvent was removed under reduced pressure.
Purification by column chromatography (4:1 isohexane:EtOAc) afforded S-{2-[(tert-
butylcarbamoyl-p-tolyl-methyl)-methyl-amino]-ethyl} thiobenzoate 245 as a pale
yellow oil (159 mg, 20 %). R.f. = 0.33 (2:1 isohexane:EtOAc).

¹H NMR (CDCl₃, 400 MHz) δ 1.24 (9H, s, t-Bu), 2.15 (3H, s, N-CH₃), 2.22 (3H, s,
Ar-CH₃), 1.02 (2H, t, J= 6.7 Hz, N-CH₂), 3.09-3.21 (2H, m, S-CH₂), 3.81 (1H, bs,
NH), 7.02 (2H, d, J= 8.0 Hz, Ar), 7.09 (2H, d, J= 8.0 Hz, Ar), 7.34-7.38 (2H, m, Ar),
7.47-7.51 (1H, m, Ar), 7.87-7.89 (2H, m, Ar).
13C NMR (CDCl$_3$, 100 MHz) δ 21.5, 27.6, 29.0, 39.9, 51.0, 54.5, 75.5, 127.1, 128.5, 128.9, 130.0, 132.8, 133.4, 136.8, 137.5, 170.5, 191.2.

HRMS - (FAB (pos)) - calculated for C$_{23}$H$_{31}$N$_2$O$_2$S$_2$: 399.2106, found 399.2109.

LRMS – (FAB (pos)) 399 (100, M+H), 400 (22), 397 (4), 291 (2), 260 (1), 176 (1).

IR (thin film) ν max- 3444 br (NH), 3007 (aryl), 2970 (alkyl), 2898 (alkyl), 1667 (C=O), 1662 (C=S), 1506 (NH), 1470 cm$^{-1}$.

N-tert-Butyl-2-(2-phenylsulfanyl-ethylamino)-2-p-tolyl-acetamide 248.

![Chemical Structure](image)

2-p-Tolyl-oxazolidine 186 (163 mg, 2 mmol), thiophenol (205 µl, 2 mmol), pTsOH (19 mg, 0.1 mmol) and tert-butyl isocyanide (166 mg, 226 µl, 2 mmol) were added to anhydrous MeCN (2 ml) and heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (2:1 hexanes:EtOAc) to yield *N-tert-butyl-2-(2-phenylsulfanyl-ethylamino)-2-p-tolyl-acetamide 248* as a colourless oil (40 mg, 6 %). R.f. = 0.19 (2:1 hexanes:EtOAc).

1H NMR (CDCl$_3$) δ 1.32 (9H, s, t-Bu), 1.91-2.04 (1H, bs, NH), 2.37 (3H, s, Ar-CH$_3$), 2.84 (2H, m, S-CH$_2$), 3.02-3.08 (2H, m, NH-CH$_2$), 3.97 (1H, s, CH), 7.13- 7.37 (9H, m, Ar).

13C NMR (CDCl$_3$) δ 21.2, 28.7, 34.5, 47.2, 67.7, 126.4, 127.0, 129.0, 129.5, 129.7, 131.8, 136.7, 137.6, 171.2.

HRMS - (ES (pos)) - calculated for C$_{21}$H$_{29}$N$_2$O$_2$S: 357.20006, found 357.20142.
LRMS – (ES (pos)) 357 (100, M+H), 379 (74, M+Na), 176 (73), 256 (30), 358 (27).

IR (thin film) ν max- 3330 br (NH), 2974 (alkyl), 2905 (alkyl), 2865 (alkyl), 1662 (C=O amide), 1515, 1480, 1454 cm⁻¹.

2-{Methyl-[2-(5-phenyl-tetrazol-1-yl)-ethyl]-amino}-octanoic acid tert-butylamide 252.

2-Hexyl-3-methyl-oxazolidine 180 (343 mg, 2 mmol), 5-phenyl-1H-tetrazole (292 mg, 2 mmol), pTsOH (19 mg, 0.1 mmol) and then tert-butyl isocyanide (226 μl, 2 mmol) were added to anhydrous MeCN (5 ml) at r.t. and then heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (80:10:1 hexanes:EtOAc:TEA) to yield 2-{Methyl-[2-(5-phenyl-tetrazol-1-yl)-ethyl]-amino}-octanoic acid tert-butylamide 252 as a colourless oil (565 mg, 71 %). R.f. = 0.35 (90:30:1 hexanes:EtOAc:TEA).

¹H NMR (CDCl₃) δ 0.74 (3H, t, J= 6.8 Hz, CH₂CH₃), 1.11 (9H, s, t-Bu), 1.16-1.28 (8H, m, alkyl), 1.33-1.44 (1H, m, alkyl), 1.57-1.68 (1H, m, alkyl), 2.17 (3H, s, N-CH₃), 2.76 (1H, dd, J= 7.1, 5.8 Hz, CH), 3.03 (1H, ddd, J= 13.6, 7.0, 5.2 Hz, CH₃NCH₃CH₃), 3.13 (1H, ddd, J= 13.6, 7.0, 5.2 Hz, CH₃NCH₃CH₃), 4.58 (1H, ddd, J= 13.9, 7.0, 5.2 Hz, N-CH₃CH₃), 4.67 (1H, ddd, J= 13.9, 7.0, 5.1 Hz, N-CH₃CH₃), 6.26 (1H, s , NH), 7.31-7.39 (3H, m, Ar), 8.00-8.05 (2H, m, Ar).

¹³C NMR (CDCl₃) δ 14.0, 22.5, 27.0, 27.4, 28.5, 29.2, 31.6, 37.3, 50.3, 51.3, 53.9, 68.6, 126.7, 127.3, 128.8, 130.3, 165.0, 171.6.
HRMS – (CI (pos-methane)) – calculated for C_{22}H_{37}O: 401.30287, found 401.30378.

LRMS – (CI (pos-methane)) 401 (100, M+H), 300 (80), 104 (53), 402 (26), 255 (23), 272 (20).

IR (thin film)ν max- 3335 br (NH), 2955 (alkyl), 2920 (alkyl), 2862 (alkyl), 1665 (C=O amide), 1518 (NH), 1460 cm^{-1}.

N-tert-Butyl-2-(methyl(2-(5-phenyl-2H-tetrazol-2-yl)ethyl)amino)-2-p-tolylacetamide

253.

![Structural formula](image)

3-Methyl-2-p-tolyl-oxazolidine 179 (355 mg, 2 mmol), 5-phenyl-1H-tetrazole (292 mg, 2 mmol), pTsOH (19 mg, 0.1 mmol) and then tert-butyl isocyanide (226 μl, 2 mmol) were added to anhydrous MeCN (5 ml) at r.t. and then heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (80:10:1 hexanes:EtOAc:TEA) to yield *N-tert-butyl-2-(methyl(2-(5-phenyl-2H-tetrazol-2-yl)ethyl)amino)-2-p-tolylacetamide* 253 as a colourless oil (441 mg, 67 %). R.f. = 0.11 90:30:1 (hexanes:EtOAc:TEA).

^{1}H NMR (CDCl₃) δ 1.56 (9H, s, t-Bu), 2.26 (3H, s, N-CH₃), 2.33 (3H, s, tolyl-CH₃), 2.85-2.92 (1H, m, CH₂NCH₃CH₃), 0.99 (1H, m, CH₃NCH₃CH₃), 3.84 (1H, s, CH), 4.62-4.68 (1H, m, N-CH₃CH₃), 4.72-4.81 (1H, m, N-CH₃CH₃), 6.61 (1H, s, NH), 6.92 (2H, d, J= 8.2 Hz, Ar), 7.02 (2H, d, J= 7.8 Hz, Ar), 7.49-7.60 (3H, m, Ar), 8.13-8.16 (2H, m, Ar).
13C NMR (CDCl$_3$): δ 21.1, 28.5, 40.1, 50.7, 51.1, 53.1, 75.4, 126.8, 127.4, 128.8, 128.9, 129.3, 130.4, 132.6, 137.9, 165.2, 170.3.

HRMS - (ES (pos)) - calculated for C$_{23}$H$_{32}$O: 407.25593, found 407.25580.

LRMS – (ES (pos)) 407 (100, M+H), 429 (39, M+Na), 408 (26), 430 (8), 379 (7).

IR (thin film) ν max- 3190 (br, NH), 2966, 2873, 1668 (C=O amide), 1514, 1466, 1452 cm$^{-1}$.

1-[Methyl-(2-phenylsulfanyl-ethyl)-amino]-cyclohexanecarboxylic acid tert-butylamide 247.

![Chemical Structure](image)

4-Methyl-1-oxa-4-aza-spiro[4.5]decane 184 (311 mg, 2 mmol), thiophenol (205 µl, 2 mmol), pTsOH (19 mg, 0.1 mmol) and then tert-butyl isocyanide (166 mg, 226 µl, 2 mmol) were added to anhydrous MeCN (1 ml) and heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the crude product was purified by column chromatography (6:1 hexanes:EtOAc) to yield 1-[Methyl-(2-phenylsulfanyl-ethyl)-amino]-cyclohexanecarboxylic acid tert-butylamide 247 as a colourless oil (154 mg, 22%). R.f. = 0.40 (6:1 hexanes:EtOAc).

1H NMR (CDCl$_3$): δ 1.32 (9H, s, t-Bu), 1.39-1.77 (10H, m, cyclohexyl), 2.23 (3H, s, N-CH$_3$), 2.70 (2H, dd, J= 7.7 6.7 Hz, N-CH$_2$), 3.03 (2H, dd, J= 7.7 6.7 Hz, S-CH$_2$), 6.71 (1H, bs, NH), 7.14-7.34 (4H, m, Ar).

13C NMR (CDCl$_3$): δ 23.0, 26.0, 28.7, 30.3, 33.5, 34.5, 66.6, 125.9, 128.9, 129.0, 136.8, 175.6.

HRMS - (Cl (pos) methane) - calculated for C$_{20}$H$_{33}$N$_2$OS: 349.23135, found 349.23170.
LRMS – (CI (pos) methane) 248 (100), 349 (74, M+H), 137 (30), 249 (17), 350 (16), 347 (15).

IR (thin film) ν max- 3380 br (NH), 2959 (alkyl), 2930 (alkyl), 1676 (C=O), 1508, 1481, 1448 cm⁻¹.

2-[Methyl-(2-phenylsulfanyl-ethyl)-amino]-octanoic acid tert-butylamide 246.

2-Hexyl-3-methyl-oxazolidine 180 (342 mg, 2 mmol), thiophenol (205 μl, 2 mmol), pTsOH (19 mg, 0.1 mmol) and then tert-butyl isocyanide (166 mg, 226 μl, 2 mmol) were added to anhydrous MeCN (1 ml) and heated at reflux under an atmosphere of nitrogen for 24 h. Excess solvent was removed under reduced pressure and the residue was purified by column chromatography (8:1 hexanes:EtOAc) to yield 2-[Methyl-(2-phenylsulfanyl-ethyl)-amino]-octanoic acid tert-butylamide 246 as a colourless oil (428 mg, 59 %). R.f. = 0.21 (6:1 hexanes:EtOAc).

¹H NMR (CDCl₃) δ 0.81 (3H, t, J= 6.7 Hz, CH₂CH₃), 1.21 (7H, bs, alkyl), 1.28 (9H, s, t-Bu), 1.34-1.59 (2H, m, alkyl), 1.64-1.73 (1H, m, alkyl), 2.19 (3H, s, N-CH₃), 2.71 (2H, t, J= 6.6 Hz, N-CH₂), 2.81 (1H, dd, J= 7.1, 5.5 Hz, CH), 2.99 (2H, t, J= 6.6 Hz, S-CH₂), 7.10-7.29 (4H, m, Ar).

¹³C NMR (CDCl₃) δ 14.1, 22.6, 27.2, 27.5, 28.7, 29.2, 29.5, 31.7, 32.7, 37.4, 50.4, 53.7, 68.7, 126.0, 127.4, 128.9, 129.2, 136.4, 172.4.

HRMS - (CI (pos) methane) - calculated for C₂₁H₃₇N₂OS: 365.26265, found 365.26202.
LRMS – (CI (pos) methane) 111 (100), 255 (32), 156 (28), 365 (20, M+H), 257 (20), 128 (17).

IR (thin film) ν max- 3430 br (NH), 2958 (alkyl), 2927 (alkyl), 2856 (alkyl), 1674 (C=O), 1510 (NH), 1481, 1456 cm⁻¹.

1-(Tetrahydrofuran-2-yl)pyrrolidine 257.

![Chemical Structure](image)

The title compound 257 was prepared following a standard literature procedure.¹⁵⁰

To a stirred mixture of 2,3-dihydrofuran (22.5 ml, 297 mmol) and pyrrolidine (2.2 ml, 26.1 mmol) at r.t. was added potassium tetrakis(thiocyanate)palladium(II) (234 mg, 0.54 mmol) the mixture was stirred at 80°C for 18 h. The volatile reagents were then removed under reduced pressure. Hexanes (90 ml) were then added and the mixture was filtered. The filtrate was concentrated under reduced pressure. The crude product was distilled under reduced pressure (80-83°C, 6 mm/Hg), (lit¹⁵⁰ = 65-67°C, 4.5 mm/Hg) to give 1-(tetrahydrofuran-2-yl)pyrrolidine 257 as a colourless oil (2.80 g, 76 %).

¹H NMR (CDCl₃) δ 1.73-2.02 (8H, m, CH₂), 2.63-2.82 (4H, m, CH₂-N-CH₂), 3.79-3.93 (2H, m, O-CH₂), 4.76 (1H, t, J= 5.6 Hz, O-CH).

¹³C NMR (CDCl₃) δ 23.8, 25.5, 30.0, 47.9, 67.1, 93.5.

LRMS – (CI (pos) methane) 97 (100), 111 (64), 125 (55), 96 (35), 98 (34), 113 (27).

IR (thin film) ν max- 2964 (alkyl), 2872 (alkyl), 1456, 1402 cm⁻¹.

4-(Tetrahydro-2H-pyran-2-yl)morpholine 258.

![Chemical Structure](image)
The title compound 258 was prepared following a standard literature procedure. To a stirred mixture of 2,3-dihydropyran (9.1 ml, 100 mmol) and morpholine (721 µl, 8.7 mmol) at r.t. was added potassium tetrakis(thiocyanate)palladium(II) (78 mg, 0.18 mmol) the mixture was stirred at 80°C for 18 h. The volatile reagents were then removed under reduced pressure. Hexanes (30 ml), were then added and the mixture was filtered. The filtrate was concentrated under reduced pressure. The crude product was distilled under reduced pressure (90-92°C, 4 mm/Hg), (lit150 = 111.5°C, 12 mm/Hg) to give 4-(tetrahydro-2H-pyran-2-yl)morpholine 258 as a colourless oil (1.43 g, 96%).

\(^{1}\text{H NMR}\) (CDCl\(_{3}\)) \(\delta\) 1.40-1.64 (5H, m, CH\(_{2}\)), 1.80-1.93 (1H, m, CH), 2.54–2.62 (2H, m, N-CH\(_{2}\)), 2.82-2.90 (2H, m, CH\(_{2}\)), 3.36-3.47 (1H, m, O-CH), 3.63-3.79 (4H, CH\(_{2}\)-O-CH\(_{2}\)), 3.96 (1H, dd, J=11.1, 3.0 Hz, O-CH).

\(^{13}\text{C NMR}\) (CDCl\(_{3}\)) \(\delta\) 23.4, 25.8, 28.4, 48.2, 67.2, 67.5, 93.6.

HRMS - (EI) - calculated for C\(_{9}\)H\(_{17}\)NO\(_{2}\): 171.12592, found 171.12534.

LRMS - (EI) 85 (100), 113 (87), 119 (65), 225 (41), 171 (64, M+), 149 (63).

IR (thin film) \(\nu\) max- 2955 (alkyl), 2861 (alkyl), 1403 cm\(^{-1}\).

5-Methyl-1-oxo-3,4,5,6-tetrahydro-1H-benzo[f][1,4]oxazocine-6-carboxylic acid cyclohexylamide 265.

![265]

2-(Methylamino)-ethanol (161 µl, 2 mmol), pTsOH (8 mg, 0.04 mmol), and cyclohexyl isocyanide (202 µl, 2 mmol) were added to a solution of 2-carboxybenzaldehyde (300 mg, 2 mmol) in anhydrous IPA (1.5 ml). The mixture was
stirred for 48 h at r.t. under N₂. Excess solvent was removed under reduced pressure and the residue was purified by flash chromatography (2:1 hexanes:EtOAc) to give 5-methyl-1-oxo-3,4,5,6-tetrahydro-1H-benzo[f][1,4]oxazocine-6-carboxylic acid cyclohexylamide 265 as a white solid, which was recrystallised from Methanol to give colourless needles (202 mg, 33 %), (m.p. = 146-148°C) R.f. = 0.12 (2:1 hexanes:EtOAc).

¹H NMR (CDCl₃) δ 1.08-1.37 (5H, m, cy), 1.51-1.88 (5H, m, cy), 2.32 (3H, s, N-CH₃), 2.94 (1H, ddd, J= 14.2, 7.3, 3.8 Hz, N-CH₃CH₆), 3.07 (1H, ddd, J= 14.2, 4.0, 3.8 Hz, N-CH₃CH₆), 3.69 (1H, dt, J= 10.5, 8.5, 3.9 Hz, cy), 3.84 (1H, ddd, J= 12.6, 5.8, 3.8 Hz, O-CH₃CH₆), 4.07 (1H, ddd, J= 12.6, 7.3, 4.0 Hz, O-CH₃CH₆), 4.27 (1H, s, CH), 6.96 (d, J= 8.2 Hz, NH), 7.04-7.06 (1H, m, Ar), 7.28-7.32 (3H, m, Ar).

¹³C NMR (CDCl₃) δ 24.6, 25.4, 32.7, 32.9, 42.4, 48.1, 55.5, 64.8, 70.6, 128.3, 128.6, 130.2, 130.8, 134.9, 168.3, 173.4.

HRMS - (EI) -calculated for C₁₈H₂₅N₂O₅: 317.18652, found 317.18574.

LRMS - (EI) 339 (100 M+Na), 317 (83, M+H), 340 (17), 318 (13), 202 (12), 221 (7).

IR (KBr Disc) ν max- 3309 (NH), 2936 (alkyl), 2854 (alkyl), 1717 (ester), 1634 (C=O amide), 1539, 1454 cm⁻¹.

5-Benzyl-1-oxo-3,4,5,6-tetrahydro-1H-benzo[f][1,4]oxazocine-6-carboxylic acid tert-butylamide 264.
2-(Benzylamino)-ethanol (284 μl, 2 mmol), pTsOH (8 mg, 0.04 mmol), and tert-butyl isocyanide (226 μl, 2 mmol) were added to a solution of 2-carboxybenzaldehyde (300 mg, 2 mmol) in anhydrous IPA (1.5 ml). The mixture was stirred for 7 days at r.t. under N₂. Excess solvent was removed in vacuo and the residue was purified by flash chromatography (3:2 hexanes:EtOAc) to give 5-benzyl-1-oxo-3,4,5,6-tetrahydro-1H-benzo[f][1,4]oxazocine-6-carboxylic acid tert-butylamide 264 as a pale yellow oil (179 mg, 25 %). R.f. = 0.40 (1:1 hexanes:EtOAc).

\(^1\text{H NMR}\) (CDCl₃) δ 1.29 (9H, s, t-Bu), 2.82 (1H, (1H, ddd, J= 14.2, 6.2, 4.2 Hz, N-CH₂CH₃), 3.19 (1H, ddd, J= 14.2, 6.7, 4.8 Hz, N-CH₂CH₃), 3.78 (2H, s, Ar-CH₂), 3.88 (1H, ddd, J= 12.5, 6.8, 4.2 Hz, O-CH₂CH₃), 4.11 (1H, ddd, J= 12.4, 6.3, 4.8, Hz, O-CH₂CH₃), 4.41 (1H s, CH), 6.42 (1H bs, NH), 7.29-7.42 (9H, m,Ar).

\(^{13}\text{C NMR}\) (CDCl₃) δ 28.5, 51.5, 51.8, 56.9, 64.9, 71.0, 127.3, 127.7, 128.4, 128.4, 128.7, 128.9, 129.1, 130.2, 130.8, 134.4, 137.5, 168.9, 173.7.

\textbf{HRMS} - (EI) – calculated for C₂₂H₂₇N₂O₅: 367.20217, found 367.20211.

\textbf{LRMS} – (EI) 389 (100 M+Na), 367 (64, M+H), 390 (23), 369 (9), 368 (8), 181 (7).

\textbf{IR} (thin film) ν max- 3340 br (NH), 2984 (alkyl), 2924 (alkyl), 2885 (alkyl), 1716 (C=O ester), 1667 (C=O amide), 1486, 1408 cm⁻¹.

\textit{11-Methyl-7-oxo-6,7,9,10,11,12-hexahydro-5,8-dioxo-11-aza-benzocyclodecene-12-carboxylic acid tert-butylamide 270.}

\[\text{2-(Methylamino)-ethanol (161 μl, 2 mmol), pTsOH (8 mg, 0.04 mmol), and tert-butyl isocyanide (226 μl, 2 mmol) were added to a solution of 2-formylphenoxyacetic acid (360 mg, 2 mmol) in anhydrous IPA (1.5 ml). The mixture was stirred for 48 h}.\]
at r.t. Excess solvent was removed under reduced pressure and the residue was purified by flash chromatography (1:1 hexanes:EtOAc) to give 11-methyl-7-oxo-6,7,9,10,11,12-hexahydro-5,8-dioxo-11-aza-benzocyclodecene-12-carboxylic acid tert-butylamide 270 as a white solid which was recrystallised from IPA to give colourless prisms (317 mg, 49 %), (m.p. = 140-143°C), R.f. = 0.20 (1:1 hexanes:EtOAc).

1H NMR (CDCl₃) δ 1.30 (9H, s, t-Bu), 2.44 (3H, s, N-CH₃), 2.53 (1H, dt, J= 2.3, 15.5 Hz, N-CH₂CH₂), 2.71-2.82 (1H, m, N-CH₂CH₂), 4.24 (2H, dd, J= 1.7, 6.9Hz, O-CH₂), 4.40 (1H, d, J= 13.4 Hz, OCH₂CH₂C=O), 4.58 (1H, d, J= 13.4 Hz, OCH₂CH₂C=O), 4.79 (1H, s, CH), 6.66 (1H, bs, NH), 6.98-7.07 2H, m, Ar), 7.18 (1H, td, J= 7.7, 1.6 Hz, Ar), 7.26 (1H, dd, J= 7.6, 1.4 Hz, Ar).

13C NMR (CDCl₃) δ 28.6, 38.8, 50.4, 50.6, 60.6, 66.8, 72.8, 121.2, 124.5, 128.6, 129.5, 130.9, 156.8, 168.1, 171.1.

HRMS - (EI) -calculated for C₁₇H₂₅N₂O₄: 321.18143, found 321.18214.

LRMS - (EI) 321 (100 M+H), 322 (18), 343 (10, M+Na), 220 (7), 276 (5), 298 (4).

IR (KBr Disc) ν max- 3356 (NH), 2944 (alkyl), 1742 (C=O ester), 1674 (C=O amide), 1508, 1487, 1448 cm⁻¹.

*N-tert-Butyl-5-(5-phenyl-2H-tetrazol-2-yl)-2-(pyrrolidin-1-yl) pentanamide 259a and N-tert-butyl-5-(5-phenyl-1H-tetrazol-1-yl)-2-(pyrrolidin-1-yl) pentanamide 259b (15:1 Mixture).

![Diagram](image-url)

1-(Tetrahydrofuran-2-yl)pyrrolidine 257 (282 mg, 2 mmol), 5-phenyl-1H-tetrazole (292 mg, 2 mmol), pTsOH (8 mg, 0.04 mmol) and then tert-butyl isocyanide (226 μL,
2 mmol) were added to anhydrous MeCN (2ml) and heated at reflux for 42 h under an atmosphere of N₂. Excess solvent was removed under reduced pressure and the residue was purified by flash column chromatography (2:1 hexanes:EtOAc) to give N-tert-Butyl-5-(5-phenyl-2H-tetrazol-2-yl)-2-(pyrrolidin-1-yl) pentanamide 259a and N-tert-Butyl-5-(5-phenyl-1H-tetrazol-1-yl)-2-(pyrrolidin-1-yl) pentanamide 259b (15:1 mixture) as a colourless oil (548 mg, 74%). R.f. = 0.23 (2:1 hexanes:EtOAc).

Major regioisomer ¹H NMR (CDCl₃, 500 MHz) δ 1.28 (9H, s, t-Bu), 1.48-1.57 (1H, m, CHCH₃HB), 1.65-1.69 (4H, m, CH₂-CH₂), 1.69-1.77 (1H, m, CHCH₃HB), 2.01-2.08 (1H, m, CH₃HB), 2.08-2.18 (1H, m, CH₃HB), 2.38-2.44 (4H, m, CH₂-N-CH₂), 2.62 (1H, dd, J = 8.7, 4.3 Hz, CH), 4.60 (1H, ddd, J = 13.6, 8.2, 6.9 Hz, N-CH₃HB), 4.64 (1H, ddd, J = 13.6, 8.2, 6.9 Hz, N-CH₃HB), 6.54 (1H, bs, NH), 7.38-7.42 (3H, m, Ar), 8.06 (2H, dd, J = 8.2, 1.9 Hz, Ar).

¹³C NMR (CDCl₃, 125 MHz) δ 23.06, 25.3, 28.46, 28.53, 51.3, 52.7, 60.13, 68.9, 126.6, 127.3, 128.7, 130.0, 164.8, 171.83.

Minor regioisomer ¹H NMR (CDCl₃, 500 MHz) δ 1.24 (9H, s, t-Bu), 1.48-1.57 (1H, m, CH₂), 1.48-1.57 (1H, m, CHCH₃HB), 1.65-1.69 (4H, m, CH₂-CH₂), 1.69-1.77 (1H, m, CHCH₃HB), 2.01-2.08 (1H, m, CH₃HB), 2.08-2.18 (1H, m, CH₃HB), 2.38-2.44 (4H, m, CH₂-N-CH₂), 2.52 (1H, dd, J = 8.8, 4.5 Hz, CH), 4.38-4.43 (2H, m, N-CH₂), 6.52 (1H, bs, NH), 7.46-7.50 (3H, m, Ar), 7.61-7.65 (2H, m, Ar).

¹³C NMR (CDCl₃, 125 MHz) δ 23.06, 25.8, 28.46, 28.50, 47.6, 51.2, 60.13, 68.7, 123.8, 128.5, 129.1, 131.1, 154.1, 171.72.

HRMS - (CI (pos) methane) – calculated for C₂₀H₃₁247O: 371.25592, found 371.25524.

LRMS – (CI (pos) methane) 270 (100, M+H), 371 (88, M+H), 104 (64), 225 (41), 173 (27), 189 (25).
IR (thin film) ν max- 3335 (br, NH), 2964 (alkyl), 2888 (alkyl), 1663 (C=O amide), 1520, 1464, 1450 cm⁻¹.

\[N\text{-}\text{tert-butyl-2-morpholino-6-(5-phenyl-2H-tetrazol-2-yl)hexanamide \, 260a \, (major)} \]

\[N\text{-}\text{tert-butyl-2-morpholino-6-(5-phenyl-1H-tetrazol-1-yl)hexanamide \, 260b \, (minor)} \, (10:1 \, \text{Mixture}) \]

4-(Tetrahydro-2H-pyran-2-yl)morpholine 258 (342 mg, 2 mmol), 5-phenyl-1H-tetrazole (292 mg, 2 mmol), pTsOH (8 mg, 0.04 mmol) and then tert-butyl isocyanide (226 µl, 2 mmol) were added to anhydrous MeCN (2 ml) and heated at reflux for 18 h under an atmosphere of N₂. Excess solvent was removed under reduced pressure and the residue was purified by flash column chromatography (90:10:1 hexanes:EtOAc:TEA) to give \emph{N}‐tert‐butyl‐2‐morpholino‐6‐(5‐phenyl‐2H‐tetrazol‐2‐yl)hexanamide 260a and \emph{N}‐tert‐butyl‐2‐morpholino‐6‐(5‐phenyl‐1H‐tetrazol‐1‐yl)hexanamide 260b (10:1 Mixture) as a colourless oil (663 mg, 83%). R.f. = 0.44 (90:10:1 hexanes:EtOAc:TEA).

\emph{Major regioisomer} \[^1H\]NMR (CDCl₃) δ 1.16 (9H, s, t-Bu), 1.22-1.137 (2H, m, CH₂), 1.39-1.48 (2H, m, CHCH₂), 1.78-1.86 (2H, m, CH₂), 2.27-2.41 (4H, m, CH₂-N-CH₂), 2.55 (1H, t, J= 6.7 Hz, CH), 3.55 (4H, t, J= 4.8 Hz, CH₂-O-CH₂), 4.26 (2H, t, J= 7.2 Hz, N-CH₂), 6.62 (1H, bs, NH), 7.38-7.42 (3H, m, Ar), 7.49-7.54 (2H, m, Ar).

\[^13C\]NMR (CDCl₃) δ 23.2, 27.2, 28.6, 29.3, 50.54, 52.7, 67.06, 69.5, 126.6, 127.4, 128.8, 130.1, 164.8, 171.2.
Minor regioisomer 1H NMR (CDCl$_3$) δ 1.17 (9H, s, t-Bu), 1.22-1.1.37 (2H, m, CH$_2$), 1.50-1.59 (2H, m, CHCH$_2$), 1.88-2.00 (2H, m, CH$_2$), 2.27-2.41 (4H, m, CH$_2$-N-CH$_2$), 2.55 (1H, t, J= 6.7 Hz, CH), 3.55 (4H, t, J= 4.8 Hz, CH$_2$-O-CH$_2$), 4.50 (2H, t, J= 7.0 Hz, N-CH$_2$), 6.61 (1H, bs, NH), 7.28-7.37 (3H, m, Ar), 7.96-7.99 (2H, m, Ar).

13C NMR (CDCl$_3$,) δ23.4, 27.0, 28.6, 29.5, 47.7, 50.54, 67.06, 69.3, 123.8, 128.6, 129.2, 131.1, 154.2, 170.9.

HRMS - (FAB (pos)) – calculated for C$_{21}$H$_{33}$O$_2$: 401.26649, found 401.26566.

LRMS – (FAB (pos)) 154 (100), 401 (62, M+H), 155 (24), 153 (15), 307 (14), 402 (13).

IR (thin film) ν max- 3320 (br, NH), 2963 (alkyl), 2952 (alkyl), 2863 (alkyl), 1663 (C=O amide), 1533, 1464, 1452 cm$^{-1}$.

\textit{N}-\textit{tert}-Butyl-\textit{2}-\textit{methyl}-\textit{2}-\textit{phenylamino}-\textit{4}-\textit{phenylsulfanyl}-\textit{butyramide 279}.

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (0.5,0) -- (0.5,0.5) -- (0,0.5) -- cycle;
\draw (1,0) -- (1,0.5) -- (1.5,0.5) -- (1.5,0) -- cycle;
\draw (1.5,0) -- (1.5,0.5) -- (2,0.5) -- (2,0) -- cycle;
\draw (2,0) -- (2,0.5) -- (2.5,0.5) -- (2.5,0) -- cycle;
\draw (0.5,0.5) -- (1,1) -- (1.5,1) -- (2,0.5);
\draw (2,0.5) -- (2,1.5);
\draw (1,1) -- (1.5,1.5);
\draw (2,1.5) -- (2.5,1.5);
\draw (1.5,1.5) -- (2,1);
\draw (-0.5,0) -- (-0.5,0.5);
\end{tikzpicture}
\end{center}

4-Hydroxybutanone (172 µl, 2 mmol), benzylamine (219 µl, 2 mmol), thiophenol (205 µl, 2 mmol), pTsOH (4 mg, 0.02 mmol) and then \textit{tert}-butyl isocyanide (226 µl, 2 mmol) were added to anhydrous MeCN (5ml) and heated at 45°C for 18 h under an atmosphere of N$_2$. Excess solvent was removed under reduced pressure and the residue was purified by flash column chromatography (7:1 hexanes:EtOAc) to give \textit{N}-\textit{tert}-Butyl-\textit{2}-\textit{methyl}-\textit{2}-\textit{phenylamino}-\textit{4}-\textit{phenylsulfanyl}-\textit{butyramide 279} (373 mg, 53 %) as a pale yellow oil R.f.= 0.32 (2:1 Hexanes:EtOAc) and 4-(Phenylthio)butan-2-one 280 as a colourless oil (137 mg, 38%).
1H NMR (CDCl$_3$) δ 1.34 (9H, s, t-Bu), 1.37 (3H, s, CH$_3$), 1.97-2.04 (2H, m, CH$_2$),
2.14 (1H, s, NH), 2.91 (1H, ddd, J = 13.1, 9.9, 6.4 Hz, S-CH$_2$CH$_3$), 2.98 (1H, ddd, J =
13.1, 9.9, 6.7 Hz, S-CH$_2$CH$_3$), 3.53 (1H, d, J = 12.6 Hz, ArCH$_2$H$_3$), 3.68 (1H, d, J =
12.6 Hz, Ar-CH$_2$H$_3$), 7.13 (1H, tt, J = 6.2, 1.5 Hz, Ar), 7.25-7.39 (9H, m, Ar + NH).

13C NMR (CDCl$_3$) δ 22.5, 28.6, 28.8, 38.6, 47.5, 50.4, 62.0, 126.1, 127.3, 127.9,
128.7, 129.0, 129.1, 129.2, 136.2, 140.0, 174.0.

HRMS - (EI) - calculated for C$_{22}$H$_{31}$N$_2$OS: 371.21571, found 371.21583.

LRMS - (EI) 371 (100 M+H), 372 (22), 393 (20, M+Na), 212 (8), 270 (6), 395 (5).

IR (thin film) v max- 3345 br (NH), 3012 (aryl), 2998 (alkyl), 2887 (alkyl), 2952
(alkyl), 2913(alkyl), 1668 (C=O amide), 1583, 1480, 1439 cm$^{-1}$.

![Chemical Structure](image)

4-Hydroxybutanone (172 µl, 2 mmol), benzylamine (219 µl, 2 mmol), 5-phenyl-1H-
tetrazole (292 mg, 2 mmol), pTsOH (4 mg, 0.02 mmol) and then tert-butyl
isocyanide (226 µl, 2 mmol) were added to IPA (5ml) and heated at 45°C for 18 h
under an atmosphere of N$_2$. Excess solvent was removed under reduced pressure and
the residue was purified by flash column chromatography (4:1 hexanes:EtOAc) to
give N-tert-Butyl-2-methyl-2-phenylamino-4-(5-phenyl-tetrazole-2-yl)-butyramide
227 as a colourless oil (211 mg, 26 %) R.f. = 0.36 (2:1 Hexanes:EtOAc) and 4-(5-
Phenyl-2H-tetrazol-2-yl)butan-2-one 278 as a colourless oil (234 mg, 54 %).

1H NMR (CDCl$_3$) δ 1.38 (9H, s, t-Bu), 1.46 (3H, s, CH$_3$), 2.41 (1H, ddd, J = 14.2, 8.7,
6.2 Hz, CH$_2$CH$_3$), 2.50 (1H, ddd, J = 14.2, 8.5, 7.0 Hz, CH$_2$CH$_3$), 3.55 (1H, d, J =
12.7 Hz, Ar-CH$_2$H$_8$), 3.68 (1H, d, J= 12.7 Hz, Ar-CH$_3$H$_8$), 4.70 (1H, ddd, J= 13.8
8.6, 6.2 Hz, N-CH$_3$CH$_3$), 4.87 (1H, ddd, J= 13.8, 8.7, 7.0 Hz, N-CH$_3$CH$_3$), 7.19-
7.25 (5H, m, Ar), 7.41 (1H, bs, NH), 7.44-7.49 (3H, m, Ar), 8.06-8.14 (2H, m, Ar).

13C NMR (CDCl$_3$) δ 23.1, 28.7, 37.7, 47.5, 49.6, 50.7, 126.8, 127.3, 127.4, 127.7,
128.6, 128.9, 130.3, 139.5, 165.1, 173.4.

HRMS - (EI) – calculated for C$_{23}$H$_{31}$O: 407.25593, found 407.25612.

LRMS – (EI) 407 (100 M+H), 360 (92), 338 (54), 429 (30), 317 (27), 261 (22).

IR (thin film) ν max- 3370 br (NH), 3048 (aryl), 3007 (aryl), 2953 (alkyl), 2937
(alkyl), 2867 (alkyl), 1661 (C=O amide), 1516 (NH), 1451, 1362 cm$^{-1}$
Appendix.

4.1 Modde® Plots for Design of Experiments #1 (Section 2.5) including ANOVA tables.

Scaled & Centered Coefficients for 44hrs Side Product (Extended)

\[
\begin{align*}
\text{Sol}_T(DMSO) & \quad \text{Sol}_T(Sulfolane) & \quad \text{Aci} \\
\text{N}=10 & \quad \text{R}^2=0.892 & \quad \text{R}^2 \text{ Adj.}=0.862 \\
\text{DF}=7 & \quad \text{Q}^2=0.781 & \quad \text{RSD}=5.5076 & \quad \text{Conf. lev.}=0.95
\end{align*}
\]

MODDE 7 - 26/07/2006 13:45:20

<table>
<thead>
<tr>
<th>44hrs Side Product</th>
<th>Coeff. SC</th>
<th>Std. Err.</th>
<th>P</th>
<th>Conf. int(±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>28.5833</td>
<td>1.77756</td>
<td>8.74E-07</td>
<td>4.20332</td>
</tr>
<tr>
<td>Sol_T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol_T(DMSO)</td>
<td>-9.08333</td>
<td>1.77756</td>
<td>0.00138403</td>
<td>4.20332</td>
</tr>
<tr>
<td>Sol_T(Sulfolane)</td>
<td>-9.08333</td>
<td>1.77756</td>
<td>0.00138403</td>
<td>4.20332</td>
</tr>
<tr>
<td>Aci</td>
<td></td>
<td>1.94722</td>
<td>0.000775223</td>
<td>4.6045</td>
</tr>
</tbody>
</table>

	N = 10	Q2 = 0.781	Cond. no. = 1.2247
	DF = 7	R2 = 0.892	Y-miss = 0
		R2 Adj. = 0.862	RSD = 5.5076
			Conf. lev. = 0.95
4.2 Modde ® Plots for Design of Experiments #2 (Section 2.6) including ANOVA tables.

![Scaled & Centered Coefficients for 24hrs Product (Extended)](image)

N=20
DF=15
R²=0.922
R² Adj.=0.901
Q²=0.844
RSD=4.1493
Conf. lev.=0.95

MODDE 7 - 28/07/2006 11:01:30

<table>
<thead>
<tr>
<th>24hrs Product</th>
<th>Coeff. SC</th>
<th>Std. Err.</th>
<th>P</th>
<th>Conf. int(±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>54.1875</td>
<td>0.970328</td>
<td>8.08962e-019</td>
<td>2.0682</td>
</tr>
<tr>
<td>Sol_T</td>
<td>DF = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol_T(Anisole)</td>
<td>-7.43751</td>
<td>1.75887</td>
<td>0.000729582</td>
<td>3.74892</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)</td>
<td>-15.1875</td>
<td>1.42041</td>
<td>2.05682e-008</td>
<td>3.02753</td>
</tr>
<tr>
<td>Sol_T(IPA)</td>
<td>13.5625</td>
<td>1.75887</td>
<td>1.35082e-006</td>
<td>3.74892</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)</td>
<td>9.0625</td>
<td>1.75887</td>
<td>0.000118029</td>
<td>3.74892</td>
</tr>
<tr>
<td>Sol_C</td>
<td>-2.5</td>
<td>1.03732</td>
<td>0.0292445</td>
<td>2.21099</td>
</tr>
</tbody>
</table>

N = 20
DF = 15
Q² = 0.844
Cond. no. = 2.3583
R² = 0.922
Y-miss = 0
R² Adj. = 0.901
RSD = 4.1493
Conf. lev. = 0.95
Scaled & Centered Coefficients for 24hrs Side Product (Extended)

<table>
<thead>
<tr>
<th>24hrs Side Product</th>
<th>Coeff. SC</th>
<th>Std. Err.</th>
<th>P</th>
<th>Conf. int(±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>23.0625</td>
<td>0.560996</td>
<td>3.76494e-015</td>
<td>1.21196</td>
</tr>
<tr>
<td>Sol_T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol_T(Anisole)</td>
<td>0.687498</td>
<td>1.01689</td>
<td>0.51084</td>
<td>2.19686</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)</td>
<td>-5.3125</td>
<td>0.821213</td>
<td>2.1027e-005</td>
<td>1.77412</td>
</tr>
<tr>
<td>Sol_T(IPA)</td>
<td>-1.3125</td>
<td>1.01689</td>
<td>0.219291</td>
<td>2.19686</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)</td>
<td>5.9375</td>
<td>1.01689</td>
<td>5.79067e-005</td>
<td>2.19686</td>
</tr>
<tr>
<td>BA_R5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aci</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4_I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 20 Q2 = 0.711 Cond. no. = 2.3583
DF = 13 R2 = 0.897 Y-miss = 0
R2 Adj. = 0.849 RSD = 2.3989 Conf. lev. = 0.95
Confounding structure

<table>
<thead>
<tr>
<th>Sol_T (Ethyl Acetate)</th>
<th>Sol_T (IPA)</th>
<th>Sol_T (Acetonitril)</th>
<th>Sol_C</th>
<th>BA_R5</th>
<th>Aci</th>
<th>R4_I</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol_T(Ethyl Acetate)</td>
<td>1</td>
<td>0.422577</td>
<td>0.422577</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)</td>
<td>0.422577</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)</td>
<td>0.422577</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BA_R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)^*Sol_C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)^*BA_R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)^*Aci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)^*R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Ethyl Acetate)^*Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)^*Sol_C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)^*BA_R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)^*Aci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)^*R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(IPA)^*Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)^*Sol_C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)^*BA_R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)^*Aci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)^*R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_T(Acetonitril)^*Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_C^BA_R5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_C^Aci</td>
<td>0.707107</td>
<td>0.707107</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_C^R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sol_C^Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BA_R5^Aci</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BA_R5^R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BA_R5^Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aci^R4_I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aci^Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R4_I^Temp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

0.258199
References.

12) (a) Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrückner, C. Angew. Chem. 1959, 71, 386.
 (b) Ugi, I.; Steinbrückner, C. Angew. Chem. 1960, 72, 267.
 (c) Ugi, I. Angew. Chem. Int. Ed. 1962, 1, 8
 (b) Gautier, A. Ann. Chim (paris) 1869, 17, 103.
 (c) Gautier, A. Ann. Chim (paris) 1869, 17, 203.

 (b) Ugi, I.; Meyr, R. Chem. Ber., **1960**, *93*, 239.

21) Values of LD$_{50}$ = 1-5 g per Kg of body weight (mouse) upon subcutaneous injection and / or oral application are no exception. 1,4-Diisocyanobutane, however is extremely toxic according to tests carried out by the Bayer AG (LD$_{50}$ < 10 mg Kg$^{-1}$). *op. cit.* (Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. **2000**, *39*, 3168).

22) (a) Rothe, R. Pharmazie, **1950**, *5*, 190.

 (b) Hagedorn, I.; Tonjes, H. Pharmazie **1957**, *12*, 567.

 (c) This was commercially available as a topically applied antibiotic (Arzneimittel Dresden). *op. cit.* Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. **2000**, *39*, 3168.

(b) German Patent. 1,173,082, **1964**.

(b) Hughes, D.L. Org. React. 1992, 42.

2005.

(d) Goodson, L.H.; Christopher, H. J. Am. Chem. Soc. 1950, 72, 358.

135) Fisher, R.A. Statistical methods for research workers, Oliver and Boyd, 1925.

137) Main effects are confounded with four-variable interaction effects, two-variable interaction effects are confounded with three-variable interaction effects.

138) www.umetrics.com

139) Main effects are confounded with two-variable interaction effects.

152) Argon was only used whilst at AstraZeneca due to non-availability of N₂.

153) Isohexane was only used whilst at AstraZeneca due to non-availability of light petroleum ether b.p. 60-80°C.

