UNIVERSITY OF LONDON THESIS

Degree PhD Year 2008 Name of Author BARRETT, LUCINDA, KATE.

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

LOAN
Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.

D. 1989 onwards. Most theses may be copied.

☐ This copy has been deposited in the Library of

☑ This copy has been deposited in the University of London Library, Senate House, Malet Street, London WC1E 7HU.
Mechanisms of vasopressin hypersensitivity in septic shock

Dr Lucinda K Barrett MA MBBS MRCP

Thesis presented for the award of Doctor of Philosophy

University College London, March 2008
Declaration

I, Lucinda Barrett, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.
Abstract

Patients in prolonged, catecholamine-refractory septic shock have plasma vasopressin levels inappropriately low for their hypotension, yet show enhanced responses to exogenously administered hormone. I hypothesised that altered vasopressin signalling within vascular smooth muscle is responsible for this heightened sensitivity. Both vasopressin and the catecholamine, norepinephrine vasoconstrict via sarcolemmal G protein-coupled receptors. Diversity in the calcium signalling pathways downstream of these receptors may explain the differential effect of sepsis on vascular reactivity to the two hormones.

To investigate this, I characterised a long-term fluid-resuscitated, rat model of faecal peritonitis, and examined in-vivo reactivity to these vasopressors. In subsequent ex-vivo studies performed on mesenteric resistance arteries taken from these animals, I compared concentration-response characteristics, calcium mobilisation pathways, and calcium-tension relationships for the two agonists, using wire myography and fluorescence microscopy. I also measured hormone levels in a cohort of septic and non-septic intensive care patients and undertook preliminary myography studies on human small mesenteric arteries.

In prolonged illness, vasopressin levels were not elevated in either the septic rats or in septic patients, despite hypotension and organ dysfunction. Pressor responses to norepinephrine, but not vasopressin, were diminished in septic
rats. This pattern of reactivity was mirrored ex-vivo, with decreased efficacy of norepinephrine, but increased potency of vasopressin. Differences were apparent in the calcium mobilisation pathways contributing to norepinephrine- and vasopressin-induced responses in septic vessels, with a greater reliance on store-operated calcium channels with vasopressin, compared to voltage-gated calcium channels with norepinephrine. The norepinephrine calcium-tension relationship was similar in sham and septic vessels but, for vasopressin, there was evidence of agonist-specific increased calcium sensitivity of the contractile apparatus in the septic tissues.

In conclusion, my long-term septic model was able to satisfactorily mimic the clinical scenario. I demonstrated increased vasoconstriction to vasopressin suggesting enhanced receptor coupling to calcium signalling. Vasopressin, but not norepinephrine, may be able to both effectively mobilise calcium in septic vascular smooth muscle and sensitise the contractile apparatus to its effect. In addition to providing insight into the phenomenon of vasopressin hypersensitivity in septic shock, this work supports modulation of calcium mobilisation channels and/or sensitisation pathways as a potential new therapeutic paradigm.
Acknowledgements

A big thank you goes to my supervisors, Professors Mervyn Singer and Lucie Clapp, for all their guidance and support throughout my research fellowship. I am also most grateful to Dr Sandip Patel for his teaching and assistance in fluorescence microscopy, and to Dr Nelson Orie, Mrs Valerie Taylor and Mr Ray Stidwill for their invaluable instruction in wire myography and in-vivo practical techniques.
Contents

Declaration 2
Abstract 3
Acknowledgements 5
Contents 6
List of figures 12
List of tables 16
Abbreviations 18
Chapter 1: Introduction 21

1.1 Overview of vascular smooth muscle physiology 22
 1.1.1 Introduction 22
 1.1.2 Contractile mechanisms 23
 1.1.3 Intracellular calcium regulation 25
 1.1.4 Sarcolemmal potassium channels 26
 1.1.5 Interaction with the endothelium 27

1.2 Vasopressin 28
 1.2.1 Vasopressin physiology 28
 1.2.2 Vasopressin cellular signalling 30
 1.2.3 Comparison of norepinephrine to vasopressin 36

1.3 Sepsis and septic shock 37
 1.3.1 The clinical problem 37
 1.3.2 Pathophysiology 39
 1.3.2.1 Vascular smooth muscle changes 39

1.4 Vasopressin in septic shock 41
 1.4.1 Vasopressin levels 41
 1.4.2 Clinical use of vasopressin in septic shock 42
 1.4.3 Experimental evidence for vasopressin hypersensitivity 44
 1.4.4 Mechanisms underlying vasopressin hypersensitivity 45
1.4.4.1 Interaction with other factors contributing to vasodilatory shock 47
1.4.4.2 Changes in vasopressin receptor behaviour 50
1.4.4.3 Other possible mechanisms 52

1.5 Summary 54

1.6 Hypothesis 56

1.7 Aims 56

Chapter 2: *In-vivo* rat model of faecal peritonitis 58

2.1 Introduction 58

2.2 Materials and Methods 59
 2.2.1 Animal preparation 59
 2.2.2 Blood sampling 63
 2.2.3 Vasopressin measurement 63
 2.2.4 Norepinephrine measurement 67
 2.2.5 *In-vivo* drug administration 70
 2.2.6 Data and statistical analysis 70

2.3 Results 71
 2.3.1 General features of the model 71
 2.3.2 Blood pressure data 73
 2.3.3 Serum biochemistry 75
 2.3.4 Arterial blood gas analysis 78
 2.3.5 Vasopressin and norepinephrine levels 79
 2.3.5.1 Validation of vasopressin measurements 81
 2.3.6 *In-vivo* blood pressure responses 84

2.4 Discussion 88
 2.4.1 General characteristics of the septic model 88
 2.4.2 Vasopressin levels 90
 2.4.3 *In-vivo* blood pressure responses 92
 2.4.4 Summary 94
Chapter 3: *Ex-vivo* wire myography studies in small arteries taken from septic and sham-operated rats 95

3.1 Introduction 95

3.2 Materials and Methods 96

3.2.1 Dissection and mounting of resistance vessels 96
3.2.2 Normalisation and vessel activation 98
3.2.3 Endothelial removal 101
3.2.4 Concentration-response curves 103
3.2.5 Drugs and reagents 104
3.2.6 Data and statistical analysis 104

3.3 Results 106

3.3.1 Preliminary studies with arteries from naïve rats 106
3.3.2 *Ex-vivo* reactivity of small mesenteric arteries to norepinephrine 108
3.3.3 *Ex-vivo* reactivity of small mesenteric arteries to vasopressin and the V₁R agonist, F-180 112
3.3.4 Effect of endothelial removal on vasopressin and F-180 responses 116
3.3.5 Effect of nitric oxide synthase inhibition on contractile responses to F-180 120
3.3.6 Role of V₂ receptor in vasopressin responses in small mesenteric arteries 121
3.3.7 *Ex-vivo* reactivity of tail arteries from sham-operated and septic rats 126

3.4 Discussion 129

3.4.1 *Ex-vivo* vascular reactivity of small mesenteric arteries to norepinephrine 129
3.4.2 *Ex-vivo* vascular reactivity of small mesenteric arteries to vasopressin and the V₁ receptor agonist, F-180 131
3.4.3 Role of the endothelium in vasopressin and F-180 responses 132
Chapter 4: Investigation of the calcium mobilisation pathways contributing to norepinephrine- and vasopressin-induced contractions in small mesenteric arteries

4.1 Introduction

4.2 Materials and Methods
4.2.1 Wire myography
4.2.2 Contribution to contraction of sarcoplasmic reticulum Ca^{2+} stores
4.2.3 Contribution to contraction of store-operated channels
4.2.4 Contribution to contraction of voltage-gated and receptor-operated channels
4.2.4.1 Nifedipine and LOE 908
4.2.4.2 Bay K 8644
4.2.5 Drugs and solutions
4.2.6 Data and statistical analysis

4.3 Results
4.3.1 E_{\text{max}} responses to norepinephrine and vasopressin
4.3.2 Contribution to contraction of sarcoplasmic reticulum Ca^{2+} stores and plasmalemmal store-operated channels
4.3.3 Contribution to contraction of voltage-gated Ca^{2+} channels
4.3.4 Contribution to contraction of receptor-operated channels

4.4 Discussion
4.4.1 Contribution to contraction of sarcoplasmic reticulum Ca^{2+} stores
4.4.2 Contribution to contraction of store-operated channels
4.4.3 Contribution to contraction of nifedipine-sensitive voltage-gated Ca²⁺ channels 167
4.4.4 Contribution to contraction of receptor-operated channels 169
4.4.5 Summary 171

Chapter 5: Investigation of the calcium-tension relationships of norepinephrine- and vasopressin-induced contractions in small mesenteric arteries 172

5.1 Introduction 172

5.2 Materials and Methods 173
 5.2.1 Wire myography 173
 5.2.2 Fura-2 loading and fluorescence microscopy 174
 5.2.3 Simultaneous force and intracellular Ca²⁺ recording 176
 5.2.4 Drugs and solutions 178
 5.2.5 Data and statistical analysis 178

5.3 Results 180
 5.3.1 Peak tension responses 180
 5.3.2 Baseline intracellular Ca²⁺ 182
 5.3.3 Agonist-induced increases in intracellular Ca²⁺ 183

5.4 Discussion 186
 5.4.1 Peak tension responses 186
 5.4.2 Baseline intracellular Ca²⁺ 187
 5.4.3 Agonist-specific Ca²⁺ sensitivity 187

Chapter 6: Patient studies 190

6.1 Introduction 190

6.2 Materials and Methods 191
 6.2.1 Clinical study protocol 191
 6.2.2 Blood sample analysis 193
 6.2.3 Data and statistical analysis 194
6.3 Results
6.3.1 Patient characteristics
6.3.2 Plasma vasopressin levels
6.3.3 Patients receiving terlipressin treatment

6.4 Discussion
6.4.1 Plasma vasopressin levels
6.4.2 Terlipressin treatment

Chapter 7: Summary and Discussion

7.1 Summary of results
7.1.1 In-vivo rat model of faecal peritonitis
7.1.2 Wire myography concentration-response curves
7.1.3 Calcium mobilisation studies
7.1.4 Calcium sensitisation studies
7.1.5 Patient studies

7.2 Discussion and Future Investigations

7.3 Conclusions

Reference List

Publications, awards and presentations
List of figures

1.1 Calcium activation and sensitisation in vascular smooth muscle 24

1.2 Schematic showing the pathways of intracellular calcium elevation following V₁R stimulation in a vascular smooth muscle cell 32

1.3 Interplay between an endothelial and a vascular smooth muscle cell showing the mechanisms by which vasopressin may produce vasoconstriction and/or vasodilatation 35

1.4 Schematic showing the potential mechanisms of hypersensitivity to vasopressin in septic shock at the level of the vascular smooth muscle cell 46

2.1 Specimen standard curve obtained with vasopressin ELISA kit 65

2.2 Specimen standard curve obtained with norepinephrine ELISA kit 68

2.3 Mean arterial pressures in the in-vivo faecal peritonitis model 74

2.4 Serum biochemistry in the in-vivo faecal peritonitis model 76

2.5 Plasma hormone levels in the in-vivo faecal peritonitis model 80

2.6 Plasma vasopressin levels and changes in mean arterial pressure in acute shock models 83

2.7 In-vivo blood pressure responses to norepinephrine 85

2.8 In-vivo blood pressure responses to vasopressin 86

3.1 Schematic of dual chamber small vessel wire myograph 99

3.2 Wire myography trace showing testing of endothelial function in a small mesenteric artery from a sham-operated rat 102
3.3 A typical plot of tension against vasopressin concentration for a wire myograph experiment in a single vessel 105

3.4 Myograph recordings in response to cumulative addition of norepinephrine 109

3.5 Ex-vivo reactivity of small mesenteric arteries to norepinephrine 110

3.6 Myograph recording in response to cumulative addition of vasopressin 113

3.7 Ex-vivo reactivity of small mesenteric arteries to vasopressin and F-180 114

3.8 Effect of endothelial removal on vasopressin concentration-response curves 117

3.9 Effect of endothelial removal on F-180 concentration-response curves 118

3.10 Effect of L-NAME on contractile responses to F-180 in arteries from sham-operated rats 120

3.11 Effect of endothelial removal on vasopressin concentration-response curves: V₂ receptor antagonist experimental cohort 122

3.12 Effect of V₂ receptor antagonist (FE992082) on vasopressin concentration-response curves in sham-operated rat arteries 123

3.13 Effect of V₂ receptor antagonist (FE992082) on vasopressin concentration-response curves in septic rat arteries 124

3.14 Ex-vivo reactivity of tail arteries to norepinephrine, vasopressin and F-180 127

4.1 Ca²⁺-free / add-back experimental protocol 145
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Effect of nifedipine and LOE 908 on 50mM K⁺-induced contractile</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>responses</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Peak tension responses induced by E_{max} doses of contractile</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>agonists in Ca²⁺ mobilisation studies</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Norepinephrine-induced contractile responses in Ca²⁺-free / add-back</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>experiments</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Vasopressin-induced contractile responses in Ca²⁺-free / add-back</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>experiments</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Proportional contribution to contraction of SR Ca²⁺ release and</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>SOC-mediated Ca²⁺ influx</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Proportional contribution to contraction of nifedipine-sensitive</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>VGCC-mediated Ca²⁺ influx</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of Bay K on 50mM K⁺-induced contractile responses</td>
<td>160</td>
</tr>
<tr>
<td>4.9</td>
<td>Proportional contribution to contraction of LOE 908-sensitive ROC-</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>mediated Ca²⁺ influx</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Fluorescence microscopy of small mesenteric arteries</td>
<td>177</td>
</tr>
<tr>
<td>5.2</td>
<td>Analysis of simultaneous wire myograph and fluorescence ratio</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>recordings from a small mesenteric artery</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Peak tension responses induced by single doses of contractile</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>agonists in Ca²⁺ sensitisation studies</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Basal intracellular Ca²⁺ measurements in small mesenteric arteries</td>
<td>182</td>
</tr>
<tr>
<td>5.5</td>
<td>Peak increases in intracellular Ca²⁺ induced by single doses of</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>contractile agonists in Ca²⁺ sensitisation studies</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Septic:sham ratios for individual agonist responses</td>
<td>185</td>
</tr>
</tbody>
</table>
6.1 Plasma vasopressin levels in patients
List of tables

2.1 Severity scoring system for the rat model of faecal peritonitis 61
2.2 Serum biochemistry in the *in-vivo* faecal peritonitis model 77
2.3 Arterial blood gas results in the *in-vivo* faecal peritonitis model 78
2.4 *In-vivo* blood pressure responses to vasopressor infusions 89

3.1 Preliminary wire myography studies of small mesenteric arteries from naive Wistar rats compared to published data 107
3.2 *Ex-vivo* reactivity to norepinephrine: E_{max} and pD_2 values 111
3.3 *Ex-vivo* reactivity to vasopressin and F-180: E_{max} and pD_2 values 115
3.4 Effect of endothelial removal: E_{max} and pD_2 values 119
3.5 Effect of V$_2$ receptor antagonist (FE992082) on E_{max} and pD_2 values 125
3.6 *Ex-vivo* reactivity of tail arteries to norepinephrine, vasopressin and F-180: E_{max} and pD_2 values 128

4.1 Percentage contribution to contraction of SR Ca$^{2+}$ release and SOC-mediated Ca$^{2+}$ influx 156
4.2 Effect of nifedipine on agonist-induced contraction 158
4.3 Effect of Bay K on agonist-induced contraction 159
4.4 Effect of LOE 908 on agonist-induced contraction 162

6.1 Characteristics of patients enrolled in the clinical study 195
6.2 Group 3 patients who received terlipressin therapy
Abbreviations

α₁R \(\rightarrow \) α₁ adrenoceptor
ABG arterial blood gas
ACh acetylcholine
ACTH adrenocorticotropic hormone
ADH antidiuretic hormone
ANS autonomic nervous system
APACHE Acute Physiology and Chronic Health Evaluation
cAMP cyclic AMP
Ca\(^{2+}\) calcium
cGMP cyclic GMP
CIF calcium influx factor
CLP caecal ligation and puncture
CO cardiac output
DAG diacylglycerol
ELISA enzyme-linked immunosorbent assay
eNOS endothelial nitric oxide synthase
ET-1 endothelin-1
ICU intensive care unit
iNOS inducible nitric oxide synthase
IP\(_{3}\) inositol triphosphate
K\(^+\) potassium
K\(_{\text{ATP}}\) ATP-sensitive potassium channel
K\(_{\text{Ca}}\) calcium-activated potassium channel
K_{ir} inward rectifier potassium channel

K_v voltage-gated potassium channel

L-NAME NG-nitro-L-arginine methyl ester

LPS lipopolysaccharide

MAP mean arterial pressure

MLCK myosin light chain kinase

MLCP myosin light chain phosphatase

MLC$_{20}$ 20kDa regulatory light chain of myosin

NE norepinephrine

NO nitric oxide

NOS nitric oxide synthase

OTR oxytocin receptor

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

PSS physiological salt solution

PVN paraventricular nucleus of hypothalamus

ROC receptor-operated channel

ROK Rho-associated kinase

SEM standard error of mean

SERCA sarcoplasmic reticulum Ca$^{2+}$-ATPase

SOC store-operated channel

SON supraoptic nucleus of hypothalamus

SR sarcoplasmic reticulum

TP terlipressin
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRP</td>
<td>transient receptor potential</td>
</tr>
<tr>
<td>TXA$_2$</td>
<td>thromboxane A$_2$</td>
</tr>
<tr>
<td>UCLH</td>
<td>University College London Hospital</td>
</tr>
<tr>
<td>VGCC</td>
<td>voltage-gated calcium channel</td>
</tr>
<tr>
<td>VP</td>
<td>vasopressin</td>
</tr>
<tr>
<td>V$_1$R</td>
<td>vasopressin V$_1$ receptor</td>
</tr>
<tr>
<td>V$_2$R</td>
<td>vasopressin V$_2$ receptor</td>
</tr>
<tr>
<td>V$_3$R</td>
<td>vasopressin V$_3$ receptor</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

Schema for Introductory Chapter

1.1 Overview of vascular smooth muscle physiology:
- Contractile mechanisms
- Intracellular calcium regulation
- Sarcolemmal potassium channels
- Interaction with the endothelium

1.2 Vasopressin:
- Physiology
- Cellular signalling
- Comparison of norepinephrine to vasopressin

1.3 Septic shock:
- The clinical problem
- Pathophysiology
- Vascular smooth muscle changes

1.4 Vasopressin in septic shock:
- Vasopressin levels
- Clinical use
- Experimental evidence for hypersensitivity
- Mechanisms underlying hypersensitivity
1.1 Overview of vascular smooth muscle physiology

1.1.1 Introduction

Resistance blood vessels are those chiefly involved in the regulation of arterial blood pressure and tissue blood flow. These are small arteries and arterioles across which the pressure drop is greatest, and where small adjustments in tone have a significant impact on systemic haemodynamics [Davis et al., 1986]. The walls of the resistance vessels are composed of three layers: an outer adventitial layer containing sympathetic nerve endings, a medial layer containing smooth muscle cells, and an inner single layer of endothelial cells facing the vessel lumen. By virtue of the helical arrangement of the muscle cells, their contraction and relaxation produces changes in vessel diameter. As in skeletal muscle, thin (actin) and thick (myosin) filaments supported by the cytoskeleton comprise the cells’ contractile apparatus.

Vascular smooth muscle cells are inherently less permeable to potassium (K⁺) than those in cardiac muscle, but possess significant basal permeability to other monovalent ions (particularly chloride) [Hathaway et al., 1991]. The electrochemical gradient of these ions supports a resting membrane potential of between -40 and -60mV [Hathaway et al., 1991; Mulvany & Aalkjaer, 1990]. Membrane potential is not the only factor regulating vascular tone, as smooth muscle is subject to modulation by neural, humoral, myogenic, metabolic and endothelial factors. Neural regulation occurs predominantly via sympathetic
nerves releasing the catecholamine, norepinephrine (NE), though other vasoactive substances such as ATP may be co-released. Neurotransmitters and circulating vasoactive hormones (including vasopressin) mediate their cellular effects by binding to cell surface receptors on vascular smooth muscle, with the subsequent activation of G proteins triggering various second messenger signalling cascades.

1.1.2 Contractile mechanisms

Intracellular free calcium (Ca2+) concentration is the major determinant of smooth muscle contractility. Calcium binds to and activates the protein calmodulin, and the resultant Ca2+-calmodulin complex activates myosin light chain kinase (MLCK). This kinase phosphorylates the 20kDa regulatory light chain of myosin (MLC\textsubscript{20}) [Horowitz et al., 1996]. This phosphorylation step is critical for the formation of actin-myosin cross-bridges (Figure 1.1). Contraction depends on cross-bridge cycling, whereby conformational changes in the myosin head exert a pulling force on the attached actin filament, followed by release and subsequent re-attachment. This process is catalysed by the phosphorylated myosin ATP-ase [Hathaway et al., 1991]. Cross-bridge cycling continues until MLC\textsubscript{20} is dephosphorylated by myosin light chain phosphatase (MLCP).

Modulation of MLCP activity can regulate vascular smooth muscle contractility through a seemingly Ca2+-independent mechanism. A decrease in MLCP activity results in a greater phosphorylation of MLC\textsubscript{20} for a given level of
intracellular Ca\(^{2+}\), thus enhancing actin-myosin interaction. This process is commonly referred to as Ca\(^{2+}\) sensitisation of the myofilaments [Wier & Morgan, 2003] (Figure 1.1). Activation of plasma membrane (sarcolemmal) receptors by contractile agonists can mediate both Ca\(^{2+}\) activation and Ca\(^{2+}\) sensitisation. This will be described in more detail in subsequent sections.

Figure 1.1 Calcium activation and sensitisation in vascular smooth muscle

The actin-myosin interaction which underlies vascular smooth muscle contraction is enhanced by an increase in the activity of myosin light chain kinase (MLCK) (calcium activation), and/or by a decrease in the activity of myosin light chain phosphatase (MLCP) (calcium sensitisation).

- \(\text{MLC}_{20}\): 20kDa regulatory light chain of myosin
- \(\text{MLC}_{20-P}\): phosphorylated 20kDa regulatory light chain of myosin
1.1.3 Intracellular calcium regulation

The resting smooth muscle cytoplasmic free Ca\(^{2+}\) concentration (approximately 100nM) is increased either by influx of extracellular Ca\(^{2+}\) across the plasma membrane or by release of Ca\(^{2+}\) from intracellular stores contained within the sarcoplasmic reticulum (SR). The best characterised pathway mediating Ca\(^{2+}\) influx is through sarcolemmal L-type voltage-gated Ca\(^{2+}\) channels (VGCCs), the activity of which is primarily governed by the cell membrane potential [Horowitz et al., 1996]. Opening of these channels occurs upon membrane depolarisation, and closing upon membrane hyperpolarisation. Another important route of Ca\(^{2+}\) entry is via receptor-operated channels (ROCs). These are non-selective cation channels opened by a variety of vasoconstrictor hormones. Not only do these channels provide a depolarising stimulus to open VGCCs, but they have enough Ca\(^{2+}\) permeability to produce vascular smooth muscle contraction, even in the absence of changes in membrane potential [Large, 2002]. The activity of both VGCCs and ROCs is modulated by second messenger signalling cascades downstream of cell membrane G protein-coupled receptor activation (Section 1.2.2 and Figure 1.2).

Intracellular store depletion, triggered by inositol triphosphate (IP\(_3\))-induced activation of Ca\(^{2+}\) release channels located on the SR, can provide yet another pathway for extracellular Ca\(^{2+}\) influx. Emptying of the store promotes opening of store-operated channels (SOCs) via a mechanism still incompletely understood, but that may involve a calcium influx factor (CIF) of
unknown chemical identity and/or protein kinase C (PKC)-mediated phosphorylation [Albert & Large, 2003]. IP₃ is predominantly generated following phospholipase C (PLC) activation by G protein-coupled agonist receptors on the plasma membrane (Section 1.2.2 and Figure 1.2). However, in contrast to skeletal muscle, the intracellular stores themselves play a relatively minor role in directly adding to the myoplasmic Ca²⁺ pool, particularly in small resistance arteries [Mulvany & Aalkjaer, 1990].

Vascular smooth muscle relaxation is usually accompanied by a decrease in intracellular Ca²⁺ to basal levels. Calcium may be extruded from the cells via the sarcolemmal Na⁺:Ca²⁺ exchanger and Ca²⁺-ATPase, or re-sequestered into intracellular stores via the sarcoendoplasmic reticulum Ca²⁺-ATPase (SERCA) [Horowitz et al., 1996]. The activity of the latter is increased by vasodilatory agonists through the phosphorylation of the SR protein, phospholamban [Hathaway et al., 1991; Horowitz et al., 1996].

1.1.4 Sarcolemmal potassium channels

Potassium flux across the sarcolemmal membrane is fundamental to the regulation of both vascular smooth muscle resting membrane potential and contractility. Increased channel opening permits K⁺ efflux from the cell and results in membrane hyperpolarisation, thereby reducing VGCC activity and Ca²⁺ influx. Four main types of K⁺ channel have now been identified in the vasculature: the calcium-activated (KᵥCa), the ATP-sensitive (KᵥATP), the voltage-gated K⁺ (Kᵥ) and the inward rectifier (Kᵢᵣ) channel [Oliver & Landry, 2006]. Of
these, the most abundant is the K_{Ca} channel which provides negative feedback following elevation of intracellular Ca$^{2+}$ to limit depolarisation and muscle contraction [Clapp & Tinker, 1998]. K_{ATP} channels seem to play a minor role in the regulation of resistance vessel tone in health, but may assume greater importance in various pathophysiological states [Clapp & Tinker, 1998]. These channels are activated by hypoxaemia, acidosis, and reduced levels of ATP, and can thus respond to metabolic demand by increasing local blood flow [Clapp & Tinker, 1998]. Furthermore, K_{ATP} channels are inhibited by vasoconstrictor agonists, opened by vasodilators, and can be pharmacologically activated by potassium channel opener drugs such as levocromakalim [Quayle et al., 1997; Clapp & Tinker, 1998].

1.1.5 Interaction with the endothelium

The close apposition of endothelial and smooth muscle cells in the blood vessel wall allows functional interaction between these layers. The endothelium is responsible for synthesising several key vasoactive mediators, including nitric oxide (NO), prostacyclin, endothelium-derived hyperpolarising factor (EDHF) and endothelin. The enzyme NO synthase (NOS) catalyses production of NO from L-arginine and molecular oxygen. The constitutive endothelial form of this enzyme (eNOS) is activated by shear stress exerted on the vessel lumen, or by circulating vasoactive mediators acting on endothelial cell surface receptors. Under the influence of inflammatory stimuli, inducible NOS (iNOS) can also be expressed in all layers of the blood vessel wall [Titheradge, 1999]. NO produced within the endothelium diffuses into the
smooth muscle cell layer where it activates soluble guanylyl cyclase to produce cyclic GMP (cGMP). NO mediates smooth muscle relaxation via a number of cGMP-dependent and independent pathways, acting to reduce intracellular Ca\(^{2+}\), open K\(^+\) channels, and activate MLCP [Titheradge, 1999; Landry & Oliver, 2001].

1.2 Vasopressin

Vasopressin (VP), or antidiuretic hormone (ADH), is essential for cardiovascular homeostasis. It acts via the kidney to regulate water reabsorption, on the vasculature to regulate smooth muscle tone, and as a central neurotransmitter, modulating brainstem autonomic function.

1.2.1 Vasopressin physiology

Vasopressin (arginine vasopressin) is a nonapeptide hormone synthesised primarily in the magnocellular neurones of the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Following synthesis, hormone precursors migrate along the axons of these neurones via the supraoptic-hypophyseal tract to the posterior pituitary gland, to be stored in neurosecretory vesicles [Holmes et al., 2001]. Excitation of the magnocellular neurones triggers VP secretion into the circulation. Only 10-20% of the hormone within the posterior pituitary can be rapidly released. Further secretion occurs at a greatly reduced rate, even in the presence of sustained stimulation [Holmes et al., 2001]. Vasopressin is rapidly metabolised by liver
and kidney vasopressinases and has a plasma half-life of between ten and 35 minutes [Holmes et al., 2001].

Regulation of vasopressin release is complex. Under normal conditions, VP secretion is primarily regulated by changes in serum osmolarity (osmoregulation). This system is highly sensitive, such that a small (2%) increase in osmolarity is counteracted by a few pg/ml increase in VP, acting on the kidney to promote water reabsorption [Mutlu & Factor, 2004]. In contrast, baroregulation of vasopressin secretion plays a minimal role in health, with a greater than 10% drop in blood pressure needed to significantly elevate circulating hormone levels. In the setting of significant acute hypotension, however, an exponential increase in plasma VP is needed to help restore normotension [Mutlu & Factor, 2004].

Vasopressin release is also affected by other hormones. Of particular relevance are the interactions with catecholamines and the hypothalamic-pituitary-adrenal axis. Central adrenoceptors regulate VP release, but their activation can have inhibitory or stimulatory effects depending upon the catecholamine concentration and the receptor subtype involved [Leng et al., 1999]. In general, catecholamines exert stimulatory effects at low doses via α₁ adrenoceptors but, at high doses, may inhibit VP release via α₂ and β receptors [Day et al., 1985; Leng et al., 1999]. Secretion of vasopressin stimulates release of adrenocorticotropic hormone (ACTH) from the anterior pituitary, with consequent negative feedback of glucocorticoids on the posterior pituitary [Mutlu & Factor, 2004].
Other factors are important in critical illness. Hypoxaemia and acidosis stimulate carotid body chemoreceptors to increase VP release [Holmes et al., 2001]. Furthermore, both endotoxin and cytokines enhance vasopressin production [Mutlu & Factor, 2004], whilst NO plays a mainly inhibitory neuromodulating role on its secretion [Reid, 1994].

1.2.2 Vasopressin cellular signalling

The actions of vasopressin are mediated via G protein-coupled receptors, classified by virtue of their location and second messenger pathways into V₁ (previously V₁a), V₂ and V₃ (previously V₁b) receptors [Birnbaumer, 2000]. In addition, VP has equal affinity with oxytocin for oxytocin receptors (OTRs), and may exert some of its actions via this route [Holmes et al., 2003].

V₁ receptors (V₁Rs)

V₁Rs are found mainly on vascular smooth muscle in the systemic, splanchnic, renal and coronary circulations, and their stimulation produces vasoconstriction. These receptors are coupled through G₉/₁₁ to PLC which, when activated, produces the second-messengers IP₃ and diacylglycerol (DAG), the latter in turn activating PKC [Holmes et al., 2003] (Figure 1.2). Some of the initial rise in intracellular Ca²⁺ is produced by the action of IP₃ on the SR, while a sustained rise is triggered by influx of extracellular Ca²⁺ [Ruegg et al., 1989; Nakajima et al., 1996]. As discussed above, the effect of Ca²⁺ is mediated through its binding to calmodulin and activation of MLCK, hence promoting muscle contraction (Figure 1.1).
The pathways leading to vasopressin-induced extracellular Ca\(^{2+}\) entry are shown in Figure 1.2. Store-operated, or capacitative, Ca\(^{2+}\) channels may play a minor role in comparison to the VGCCs and ROCs [Broad et al., 1999; Katori et al., 2001]. VGCCs are activated by depolarisation produced by cation influx through ROCs [Large, 2002] and/or chloride efflux through chloride channels [Van Renterghem & Lazdunski, 1993]. PKC can also trigger cell depolarisation via closure of K\(_{\text{ATP}}\) channels [Quayle et al., 1997], and can open VGCCs directly through channel phosphorylation [Beech, 1997]. Opening of ROCs is a G protein-dependent event involving PLC, with a downstream mechanism that employs DAG and arachidonic acid, acting either alone or in combination [Broad et al., 1999; Large, 2002]. In addition to its effects on Ca\(^{2+}\) influx, V\(_1\)R stimulation may sensitise the contractile apparatus to the effect of calcium via the inhibition of MLCP by PKC and/or Rho-associated kinase (ROK) [Bauer & Parekh, 2003] (Figure 1.1). ROK is the effector molecule activated by Rho A, a small G protein stimulated following a complex signal transduction cascade downstream of the V\(_1\)R [Bauer & Parekh, 2003; Somlyo & Somlyo, 2003]

V\(_1\)Rs are also found on platelets, renal collecting duct cells and in the brainstem [Holmes et al., 2003]. The latter mediate vasopressinergic modulation of the autonomic nervous system (ANS) [Koshimizu et al., 2006], and are responsible for a baroreflex-mediated decrease in heart rate that precludes a pressor effect when vasopressin acts on the vascular smooth muscle in healthy people [Peuler et al., 1990].
Figure 1.2 Schematic showing the pathways of intracellular calcium elevation following V₁R stimulation in a vascular smooth muscle cell

The weighting of the black solid arrows depicts the supposed relative contributions of the different pathways (see text).
V2 receptors (V2Rs)

V2Rs mediate the antidiuretic actions of vasopressin within the kidney. They are coupled through Gs to adenylyl cyclase, with ligand binding causing an increase in intracellular cyclic AMP (cAMP) and activation of protein kinase A (PKA) [Holmes et al., 2003; Mutlu & Factor, 2004]. Stimulation of this intracellular pathway triggers insertion of water channels (aquaporins) into the luminal membranes of renal collecting duct cells, thereby increasing water reabsorption [Holmes et al., 2003]. As will be discussed in a later paragraph, there is some debate as to whether V2Rs are also expressed in the vasculature.

V3 receptors (V3Rs)

V3Rs are found in the anterior pituitary and are coupled to a number of second messenger systems. To date, the best characterised role of the V3R is in the secretion of ACTH which appears to be mediated via activation of PKC [Holmes et al., 2003].

Oxytocin receptors (OTRs)

Like V1Rs, OTRs are coupled to PLC, the metabolism of phosphoinositides and the consequent elevation of intracellular Ca\(^{2+}\) [Holmes et al., 2003]. In myometrial and mammary myoepithelial cells, stimulation of OTRs produces smooth muscle contraction via MLCK [Holmes et al., 2003]. This may also occur in vascular smooth muscle [Yazawa et al., 1996; Stam et al., 1998] (Figure 1.3). In addition, OTRs are highly expressed on vascular endothelium [Thibonnier et al., 1999], where an increase in intracellular Ca\(^{2+}\) activates
constitutive NOS to release NO, thereby increasing smooth muscle cGMP to produce vasorelaxation [Holmes et al., 2003] (Figure 1.3). The lack of pressor response observed with oxytocin infusions in obstetric practice may be consequent to the opposing effects of OTR stimulation on endothelial and smooth muscle cells.

It is well documented that vasopressin produces vasodilatation in some vascular beds, but the receptor subtype responsible is uncertain. This may also vary between blood vessels and be dependent upon the circulating hormone concentration [Holmes et al., 2004]. There is additional uncertainty as to whether receptors mediating this effect are situated on endothelial and/or smooth muscle cells.

Stimulation of V₂Rs located on vascular smooth muscle may produce vasorelaxation via a cAMP-mediated drop in intracellular Ca²⁺ (Figure 1.3). Infusion of the selective V₂ agonist, DDAVP in anephric dogs elevated levels of plasma cAMP coincident with a fall in peripheral vascular tone, supporting the existence of extra-renal V₂Rs [Liard, 1992]. Alternatively, generation of cAMP in the endothelium would trigger eNOS activation and hence NO liberation (Figure 1.3). This is consistent with data from healthy human volunteers where high doses of vasopressin produced a decrease in forearm vascular resistance which appeared to be V₂R- and NO-dependent [Tagawa et al., 1993; Tagawa et al., 1995]. Interestingly, this vasodilatation was not seen in patients with nephrogenic diabetes insipidus secondary to a V₂R defect [van Lieburg et al., 1995]. Real-time polymerase chain reaction
Figure 1.3 Interplay between an endothelial and a vascular smooth muscle cell showing the mechanisms by which vasopressin may produce vasoconstriction and/or vasodilatation

The experimental evidence for the existence of V₂Rs on vascular smooth muscle cells is weak. Endothelial-derived NO causes vascular smooth muscle relaxation by a number of different pathways that are not detailed here.
(RT-PCR) has been used to demonstrate V₂R expression on cultured human lung endothelial cells and in heart, spleen and lung whole tissue specimens [Kaufmann et al., 2003]. Use of a selective V₂R radioligand to demonstrate binding to either vascular smooth muscle or endothelium in the rat, however, has so far proved unsuccessful [Phillips et al., 1990]. Ex-vivo studies support an endothelium-dependent mechanism for vasopressin-induced vasodilatation, but confusion is cast over the role of the V₂R by the variable effect of selective V₂ agonists on pre-contracted arterial preparations [Yamada et al., 1993; Martinez et al., 1994; Okamura et al., 1997; Okamura et al., 1999; Medina et al., 1999]. Indeed, there is some evidence to suggest the existence of endothelial V₁Rs that activate eNOS [Okamura et al., 1997; Okamura, et al., 1999] (Figure 1.3). As described above, it is also possible that OTRs located on the endothelium may account for non-V₁/non-V₂ mediated vasorelaxation.

1.2.3 Comparison of norepinephrine to vasopressin

Norepinephrine is the major neurotransmitter released from sympathetic nerve endings within the blood vessel wall, and thus mediates ANS control of resistance vessel tone. NE also acts as a hormone, and is secreted into the circulation from the adrenal medulla under conditions of stress, including hypotension. Like VP, NE acts on vascular tissue via a number of G protein-coupled receptors. In the resistance vasculature, α₁ adrenoceptors (α₁Rs) on the sarcolemmal membrane predominate [Mulvany & Aalkjaer, 1990; Guimaraes & Moura, 2001]. Similar to the V₁R, the α₁R is coupled via G₁₁.
proteins to PLC and the downstream signalling mechanisms described in Section 1.2.2 and Figure 1.2 [Wier & Morgan, 2003]. There may be differences, however, in the relative importance of the various Ca2+ mobilisation pathways utilised by the two vasoconstrictors (Section 1.4.4.1). Adrenoceptors are also present on the endothelium (\(\alpha_2\) and \(\beta\) subtypes) where stimulation produces vasodilatation via eNOS activation [Guimaraes & Moura, 2001].

1.3 Sepsis and septic shock

1.3.1 The clinical problem

Sepsis is defined as a systemic inflammatory response syndrome (\(\geq 2\) of fever [or hypothermia], tachycardia, tachypnoea, and leucocytosis [or leucopenia]) in the presence of suspected or proven infection [Bone et al., 1992]. The preceding infection can be due to any micro-organism and can originate at any site in the body. It is an important clinical problem, with a yearly incidence of 50-95 cases per 100,000, and accounting for 2% of all hospital admissions [Annane et al., 2005]. In the UK, around a quarter of patients nursed on an intensive care unit (ICU) fulfil the criteria for severe sepsis within the first 24 hours of their ICU admission [Harrison et al., 2006]. Mortality in this setting is upward of 40% [Annane et al., 2005]. The incidence of sepsis is still increasing, particularly as the population grows more elderly, and as more invasive surgery and immunosuppressive therapy are being performed.
The most severe complication of sepsis is septic shock, a condition characterised by organ dysfunction and hypotension not responding to adequate fluid resuscitation [Bone et al., 1992]. In this scenario, vasopressor agents are used to elevate blood pressure from a critically low level in order to provide a perfusion pressure that is adequate to support organ blood flow. Inherent to this manoeuvre is the risk of excessive regional vasoconstriction and iatrogenic tissue damage [Holmes, 2005]. Controversy remains regarding the choice, dose and combination of drugs used in septic shock. Indeed, the optimal blood pressure for an individual patient is still unknown. A paucity of controlled clinical trials and outcome data means evidence-based practice is limited [Beale et al., 2004; Dellinger et al., 2008]. Currently, norepinephrine is the most frequently used pressor in patients who remain hypotensive despite fluid resuscitation and who are deemed to require blood pressure elevation.

Shock states are generally characterised by sympathetic and renin-angiotensin system activation. Thus, in severe haemorrhage or acute cardiac failure, there is profound peripheral vasoconstriction. In septic shock, however, there is a reduced ability of the vascular smooth muscle to contract (so-called vasodilatory shock) [Landry & Oliver, 2001]. In this scenario, hypotension is often refractory (hyporeactive) to vasopressor therapy with exogenous catecholamines. This results in a need for very high doses and the incumbent increased risk of adverse effects.
1.3.2 Pathophysiology

Sepsis results from complex interactions between the infecting pathogen and the immune and inflammatory cells of the host. Bacterial surface molecules (lipopolysaccharide [LPS] in Gram-negative species and peptidoglycan in Gram-positives) bind to pattern-recognition receptors (CD14 and toll-like receptors [TLRs]) on immune cells [Russell, 2006]. This activates the transcription factor nuclear factor kappa B (NF-κB) which up-regulates the synthesis of immunomodulatory cytokines including tumour necrosis factor α (TNFα), interleukin-1β (IL-1β) and IL-10. These cytokines provoke further immune cell and endothelial activation, with increased production of prostaglandins, leukotrienes and NO [Russell, 2006]. Furthermore, a pro-coagulant state is induced, and hormonal and metabolic regulation is impaired. The consequent circulatory and bioenergetic changes are responsible for the most severe complications of sepsis: septic shock and multi-organ failure [Annane et al., 2005; Russell, 2006].

1.3.2.1 Vascular smooth muscle changes

The pathogenesis of vasodilatory shock is multifactorial. Increased levels of NO play an important, but not exclusive, role. In animal models of sepsis, vascular hyporeactivity is attenuated both in iNOS knockout mice [Laubach et al., 1995; Hollenberg et al., 2000], and by pharmacological iNOS inhibition [Wray et al., 1998; Hollenberg et al., 1999; Strunk et al., 2001]. Increased production of NO is found in septic patients, albeit at lower levels
[Thiemermann, 1997; Vallance & Chan, 2001], and is reported to be inversely
correlated with mean arterial pressure and systemic vascular resistance
[Annane et al., 2000]. Compared to animals, induction of iNOS appears
restricted in humans, occurring mainly in blood vessels at the very point of
infection [Annane et al., 2000]. The importance of either iNOS and/or up-
regulated eNOS in human sepsis is supported, however, by the marked blood
pressure rise following infusion of a non-specific NOS inhibitor in septic shock
patients [Bakker et al., 2004; Lopez et al., 2004].

Increased NO impairs vascular smooth muscle contractility by lowering
intracellular Ca^{2+}, reducing MLC phosphorylation, and opening K^+ channels
(Section 1.1.5) [Landry & Oliver, 2001]. Both K_{Ca} and K_{ATP} channels appear to
be targets of NO, with channel activity being stimulated through cGMP-
dependent and independent mechanisms [Buckley et al., 2006]. In
vasodilatory shock, persistent K_{ATP} channel activation produces vascular
smooth muscle hyperpolarisation [Clapp & Tinker, 1998; Buckley et al., 2006],
contributing to both hypotension and hyporesponsiveness to catecholamines
[Sorrentino et al., 1999; Chen et al., 2000; O'Brien et al., 2005]. In addition to
the effect of elevated NO concentrations, increased K_{ATP} channel opening in
septic shock may result from tissue hypoxia, acidosis, reduced ATP
concentration, and changes in hormone levels (CGRP, adenosine and ANF)
[Clapp & Tinker, 1998; Buckley et al., 2006]. A further contributor to
vasodilatory shock is the adrenoceptor desensitisation and down-regulation
which results from high circulating endogenous catecholamine levels in
combination with exogenous catecholamine treatment [Hwang et al., 1994;
Saito et al., 1995; Hotchkiss & Karl, 2003; Lin et al., 2005]. This is compounded by the inhibition of \(\alpha_1 \)R expression by NO and inflammatory cytokines [Bucher et al., 2003].

1.4 Vasopressin in septic shock

1.4.1 Vasopressin levels

The finding that some patients with severe, refractory septic shock were exquisitely sensitive to the pressor effects of exogenous vasopressin led to the investigation of its endogenous profile [Landry et al., 1997a]. In acute septic shock, an early rise in plasma levels is seen both in patients (c.20pg/ml) [Sharshar et al., 2003a; Lin, et al., 2005] and in animal models (up to several hundred pg/ml) [Wilson et al., 1981b; Brackett et al., 1985]. In human prolonged septic shock (\(\geq 24 \) hours), VP levels fall towards baseline unstimulated values (\(\leq 5 \)pg/ml) [Landry et al., 1997a; Sharshar et al., 2003a]. Hence, inappropriately low levels (i.e. a relative deficiency) of vasopressin may be another key component in the altered functional status of vascular smooth muscle. In support of this, endotoxic models have been used to demonstrate that \(V_1 \)R blockade exacerbates hypotension [Matsuoka & Wisner, 1997], and that survival is decreased in vasopressin-deficient Brattleboro rats [Brackett et al., 1983].

The explanation for inappropriately low VP levels is unclear. Levels of vasopressinase, the enzyme responsible for vasopressin breakdown, are not
elevated in septic shock patients [Sharshar et al., 2002]. Frequent hepatic and
renal dysfunction in this clinical scenario makes the possibility of increased
hormone breakdown even less likely. Depletion of neurohypophyseal stores,
inhibition of hormone synthesis, or depressed release may therefore be
responsible [Sharshar et al., 2002]. All of the above may be a consequence of
abnormal osmoregulation or baroregulation. Autonomic baroreflex dysfunction
could explain the lack of relationship between blood pressure and VP levels in
septic shock [Jochberger et al., 2006b]. Furthermore, impaired VP release has
been documented in patients with autonomic insufficiency [Zerbe et al., 1983;
Kaufmann et al., 1991], a phenomenon well recognised in sepsis [Garrard et
al., 1993]. Elevated levels of NO may also contribute to autonomic
dysfunction [Sharshar et al., 2003b], and have direct inhibitory effects on VP
secretion [Reid, 1994]. Indeed, sustained elevation of hormone levels
following endotoxin challenge in mice was seen in iNOS knockouts and after
pharmacological inhibition of NOS [Giusti-Paiva et al., 2002; Giusti-Paiva et
al., 2005; Carnio et al., 2005]. In addition, vasopressin levels may be
depressed by the high levels of circulating catecholamines that result from
both endogenous production and therapeutic administration [Day et al., 1985;
Leng et al., 1999].

1.4.2 Clinical use of vasopressin in septic shock

In 1997, Landry and colleagues published a case series of five septic patients
in whom low-dose vasopressin infusion produced dramatic pressor effects in
the context of catecholamine-refractory hypotension [Landry et al., 1997b].
The hormone doses administered would have produced no blood pressure rise in healthy individuals [Abboud et al., 1990]. Since then, numerous clinical studies have reported similar findings with both VP and terlipressin (TP) in septic and other forms of vasodilatory shock [den Ouden & Meinders, 2005; Pesaturo et al., 2006; Russell, 2007]. Terlipressin (1-triglycl-8-lysine-vasopressin) is the synthetic vasopressin analogue commercially available in the UK, and it has a more favourable pharmacological profile than endogenous arginine vasopressin, with a longer half-life and a two-fold greater V1R:V2R selectivity [Bernadich et al., 1998; Pesaturo et al., 2006]. Such clinical study results support the addition of these therapies to the intensive care armoury. Most trials, however, have been non-randomised, or have included only small numbers of patients. Study durations have been short and very few have examined outcome in terms of disease survival [den Ouden & Meinders, 2005]. Evidence is accumulating to suggest that, at low-doses, VP has neutral or beneficial effects on renal blood flow and urine output, and does not impair cardiac function [Luckner et al., 05; Russell, 2007]. Despite this, concerns remain regarding potential deleterious effects on mesenteric and peripheral perfusion.

The Surviving Sepsis guidelines of 2004 indicated that vasopressin was unproven in septic shock and were neutral in their recommendation pending the result of the VAsopressin and Septic Shock Trial (VASST) [Dellinger et al., 2004]. The results of this multicentre Canadian randomised trial were presented at the 2006 Congress of the European Society of Intensive Care Medicine. The authors reported that low-dose vasopressin (≤0.03units/min)
combined with norepinephrine provided significant outcome benefit (28- and 90-day mortality) over NE alone in patients with low baseline NE requirements (≤15µg/min). However, patients requiring higher NE doses at baseline showed similar mortality rates with NE ± VP. This finding will no doubt stimulate further use of VP in septic shock though debate will continue over what maximal dose is both effective and safe [Luckner et al., 2007]. Whether TP has additional benefits to VP remains to be investigated, though unlike vasopressin, this agent does not appear to cause rebound hypotension upon cessation of treatment [O'Brien et al., 2002a; Morelli et al., 2004].

1.4.3 Experimental evidence for vasopressin hypersensitivity

Heightened pressor responses to vasopressin have been found in several animal models of septic shock. An anaesthetised rat endotoxin model revealed a hypersensitivity of exposed cremaster muscle microvessels to topical VP, yet hyporeactivity to NE [Baker & Wilmoth, 1984; Baker et al., 1990]. Similarly, in a fluid-resuscitated endotoxic rat model developed in our laboratory, there was a marked pressor response to TP, but a reduced response to NE [O'Brien et al., 2002b]. The opposite pattern was seen in paired sham-operated controls. Hypersensitivity to TP has also been demonstrated in conscious ewes after 16 hours of endotoxaemia [Westphal et al., 2003]. Other in-vivo models have, however, produced conflicting results [Hollenberg et al., 1997; Albert et al., 2004; Bennett et al., 2004], most likely related to the wide variation in experimental design in terms of duration, insult, sepsis severity, and degree of fluid resuscitation.
Although ex-vivo reproduction of the vascular hyporeactivity to catecholamines is well described in septic models [Julou-Schaeffer et al., 1990; Mitolo-Chieppa et al., 1996; O'Brien et al., 2001], there has been relatively little work examining vascular reactivity to vasopressin. In one study, VP showed increased potency to constrict isolated perfused mesenteric vascular beds from endotoxaemic compared with control rats [Tarpey et al., 1998]. In contrast, a study using human gastroepiploic arteries showed attenuated contractile responses to VP after treatment with endotoxin, but significant enhancement of NE-induced contractions when co-administered to the same tissue [Hamu et al., 1999]. Decreased sensitivity to both VP and NE was found in isolated rat mesenteric arteries pre-treated with an NO donor to simulate septic shock-like conditions [Leone & Boyle, 2006].

1.4.4 Mechanisms underlying vasopressin hypersensitivity

Despite increasing clinical use of vasopressin in septic shock, the mechanism underlying the observed heightened pressor response is unknown. Simple replacement of a relative hormone deficiency does not appear to be the answer, as VP treatment is associated with supra-physiological hormone levels, and blood pressure response does not correlate with the baseline vasopressin level [Dunser et al., 2004a]. The potential mechanisms discussed below are summarised in Figure 1.4.
Figure 1.4 Schematic showing (in red) the potential mechanisms of hypersensitivity to vasopressin in septic shock at the level of the vascular smooth muscle cell

\[
\text{V1} \quad \text{V1, vasopressin receptor} \\
\text{OTR} \quad \text{oxytocin receptor} \\
\text{PLC} \quad \text{phospholipase C} \\
\text{NO} \quad \text{nitríc oxide} \\
\text{TXA}_2 \quad \text{thromboxane A}_2 \\
\text{eNOS} \quad \text{endothelial nitric oxide synthase} \\
\text{iNOS} \quad \text{inducible nitric oxide synthase} \\
\text{HPA} \quad \text{hypothalamic-pituitary-adrenal}
\]

\[
\text{V2} \quad \text{V2, vasopressin receptor} \\
\alpha 1 \quad \alpha_1, \text{adrenoceptor} \\
K_{ATP} \quad \text{ATP-sensitive K^+ channel} \\
\text{ET-1} \quad \text{endothelin-1}
\]

A further possibility not shown here is altered baroreflex sensitivity consequent to autonomic dysfunction.
1.4.4.1 Interaction with other factors contributing to vasodilatory shock (Section 1.3.2.1)

Nitric oxide

As described previously, elevated levels of NO in sepsis may contribute to relative VP deficiency. There may also be a reciprocal effect of VP on the NO cascade. Vasopressin inhibits interleukin-1 stimulated iNOS mRNA expression, and nitrite and cGMP production in cultured rat vascular smooth muscle cells [Kusano et al., 1997]. Since there was no inhibition of basal NO production, this suggests an effect specific to iNOS and hence states of inflammatory activation. The inhibition was dose-dependent and blocked by a V_1R antagonist. These findings have led to the hypothesis that heightened sensitivity to exogenous VP in septic shock may be consequent to iNOS inhibition. Further support is given by an in-vivo study where administration of terlipressin to endotoxic rats resulted in recovery of arterial blood pressure and an associated decrease in iNOS expression in isolated aortic tissue [Moreau et al., 2002]. However, no decrease in serum nitrite/nitrate concentrations was demonstrated in patients with vasodilatory shock after vasopressin infusion [Dunser et al., 2004b].

ATP-sensitive potassium (K\textsubscript{ATP}) channels

Inhibition of K\textsubscript{ATP} channels in septic shock could help to restore normal vascular reactivity [Sorrentino et al., 1999; O'Brien et al., 2005; Singer et al., 2005]. *In-vitro* work with insulin-secreting cells known to express the K\textsubscript{ATP} channel demonstrated the ability of vasopressin to close these channels if
applied to the outside of the membrane [Martin et al., 1989]. Of greater relevance to the cardiovascular system was the reproduction of this channel inhibition in cultured porcine vascular smooth muscle cells [Wakatsuki et al., 1992] and in isolated cardiac myocytes [Tsuchiya et al., 2002]. PKC is the likely mediator since the effects of VP on channel activity could be prevented by pre-treatment with the relatively selective PKC inhibitor, calphostin-C [Tsuchiya et al., 2002]. It is unclear whether PKC acts by direct phosphorylation of the channel [Quinn et al., 2003] or by increasing sarcolemmal ATP [Tsuchiya et al., 2002]. Other mechanisms of K_{ATP} channel inhibition by VP are also possible. An increase in intracellular Ca$^{2+}$ evoked by this agonist could activate the calcium-dependent phosphatase, calcineurin, and thus promote channel inhibition [Wilson et al., 2000; Singer et al., 2005]. In addition, calcineurin regulates gene transcription via the nuclear transcription factor NFAT; this, in turn, may down-regulate genes encoding K_{ATP} channel subunits, as has been shown for delayed rectifier potassium channels [Amberg et al., 2004].

Catecholamine sensitivity

Clinical experience with vasopressin and terlipressin in patients with catecholamine-resistant septic shock suggests that these agents restore vascular reactivity to endogenous and exogenous catecholamines [Landry et al., 1997b; O'Brien et al., 2002a; Dunser et al., 2003]. Potentiation of the vasoconstrictor actions of endogenous NE by physiological doses of exogenous VP was first reported forty years ago in a series of dog, cat and rat *in-vivo* experiments [Bartelstone & Nasmyth, 1965]. Parallel *ex-vivo* studies
with rat aortic strips suggested a direct vascular rather than a central mechanism of vasopressin action [Bartelstone & Nasmyth, 1965]. More recent studies with rat and human resistance arteries have confirmed this potentiation, both in normal vessels [Medina et al., 1997; Noguera et al., 1997; Hamu et al., 1999], and in those exposed to endotoxin [Hamu et al., 1999].

Several possible explanations may underlie this interaction. Norepinephrine vasoconstricts via α_1 adrenoceptors that, like V_1Rs, are coupled via $G_{q/11}$ proteins to PLC. Despite this, NE-induced contractions appear more dependent on release of intracellular Ca^{2+} stores rather than influx of extracellular Ca^{2+}, whereas the opposite seems to apply for vasopressin [Cauvin et al., 1988]. Thus the utilisation of different Ca^{2+} pathways may, at least in part, explain the synergism seen between the two agonists. In support of this, VP potentiation of adrenergic contraction in isolated rat mesenteric arteries was blocked both by a V_1R antagonist [Noguera et al., 1997; Hamu et al., 1999] and by nifedipine, a blocker of VGCCs [Noguera et al., 1997]. Alternatively, VP may act via PKC and/or ROK to inhibit myosin light chain phosphatase, thereby sensitising the contractile apparatus to the intracellular Ca^{2+} rise produced by α_1 R stimulation [Bauer & Parekh, 2003].

Cross-regulation may also occur at the level of the receptors. Work carried out in cell lines demonstrated the ability of V_2R activation to non-reciprocally inhibit adrenoceptor internalisation [Klein et al., 2001]. The proposed mechanism is via an inhibition of receptor internalisation by β arrestin. The
latter normally functions by binding to activated G protein-coupled receptors and promoting their removal from the cell membrane.

1.4.4.2 Changes in vasopressin receptor behaviour

As explained in Section 1.2.2 and Figure 1.3, the opposing effects of vasopressin on vascular tissue are consequent to the stimulation of the different VP receptor subtypes located on smooth muscle and/or endothelial cells. Differential changes in the regulation of these subtypes could therefore explain the pressor hypersensitivity seen in septic shock.

V₁ receptors

This subtype predominates on smooth muscle cells of the resistance vasculature and mediates vasoconstriction. In contrast to high norepinephrine levels and the resultant α₁R changes, relatively low circulating concentrations of VP in prolonged septic shock would leave more V₁Rs available for occupancy by exogenous hormone and so decrease the endogenous stimulus for receptor desensitisation [Birnbaumer, 2000; Landry & Oliver, 2001].

Another possibility is that V₁Rs are up-regulated in sepsis though this has not yet been confirmed. NO and cytokine-mediated changes in cell membrane receptor function are recognised [Bucher et al., 2002; Takakura et al., 2002], and endotoxin may perturb the lipid bilayer of the plasma membrane sufficiently as to alter receptor function directly [Ghosh & Liu, 1983]. However, no change in either number or affinity of V₁Rs was reported in cultured aortic
smooth muscle cells exposed to endotoxin for 24 hours [Burnier et al., 1995]. Moreover, a decrease in V1R gene expression was seen in liver, lung, kidney and heart tissue isolated from rats exposed to experimental endotoxaemia for up to 24 hours [Bucher et al., 2002]. Notably, this sepsis model was not fluid resuscitated, and did not demonstrate hypersensitivity to in-vivo administration of a vasopressin agonist. V1R number was also reduced in hepatic cells isolated from non-shocked rats who received a continuous, low-dose endotoxin infusion for 30 hours [Roth & Spitzer, 1987]. Further studies are required to examine changes in receptor binding in tissues from models more representative of human septic shock.

V2 and oxytocin receptors

Mechanisms for vasorelaxation through both V2Rs and OTRs have been demonstrated. Decreased activity of these receptor subtypes in the vasculature would enhance the contractile effects of vasopressin. Indeed, decreased expression of V2Rs was found in rat kidney 24 hours after intraperitoneal endotoxin injection [Grinevich et al., 2004]. Furthermore, V2R recycling and resensitisation is slow compared to that of V1Rs [Birnbaumer, 2000; Holmes et al., 2003]. This may well be of relevance in the context of exogenous vasopressin administration, and could explain the observation that the rebound hypotension seen on cessation of VP treatment in septic shock does not occur with TP [O’Brien et al., 2002a; Morelli et al., 2004], due to its greater selectivity for V1Rs over V2Rs [Bernadich et al., 1998].
1.4.4.3 Other possible mechanisms

Autonomic nervous system dysfunction

Vasopressin release is under the control of the ANS, with baro- and chemo-
receptor afferents projecting to the brainstem, and efferents from the
brainstem to the PVN and SON [Leng et al., 1999]. By virtue of its
neurotransmitter role, ANS output is also modulated by VP [Koshimizu et al.,
2006]. Therefore, the autonomic and vasopressinergic system abnormalities
seen in sepsis may well be related. Further complexity is added by the
apparent negative correlation between NO levels and sympathetic
cardiovascular output [Li & Patel, 2003; Sharshar et al., 2003b], as well as the
known interactions between VP and NO described above. In patients who
died from septic shock, iNOS expression was linked to apoptosis in the PVN
and SON [Sharshar et al., 2003b]. Primary autonomic failure is associated
with hypersensitivity to vasopressin’s pressor effects [Mohring et al., 1980] as
well as with abnormalities of its release [Kaufmann et al., 1991].
Hypersensitivity has also been reported in dogs with baroreceptor denervation
[Cowley et al., 1974]. Moreover, cirrhotic patients show an abnormally
prolonged blood pressure response to VP, and this has been ascribed to
abnormal autonomic cardiovascular regulation [Moreau et al., 1990].
Baroreflex impairment in septic shock is suggested by the failure of VP
administration to elicit a marked bradycardia as is observed in normal
individuals [Landry et al., 1997a].
Interaction with other vasoconstrictors

Elevated levels of the endogenous vasoconstrictors endothelin-1 (ET-1) and thromboxane A₂ (TXA₂) are found in septic shock. These contribute to the observed circulatory disturbances and explain, in part, the heterogeneity in tone seen across different vascular beds in sepsis [Young, 2004]. Vasopressin may increase production of both these vasoconstrictors. In human platelets, V₁Rs are stimulated by micromolar concentrations of VP to activate not only PLC but also phospholipase A₂, resulting in arachidonic acid metabolism and TXA₂ production [Siess et al., 1986]. In cultured endothelial cells, VP induces preproendothelin-1 mRNA expression and enhances cellular release of the mature peptide [Emori et al., 1991; Imai et al., 1992]. In-vivo findings support the potential role of ET-1 in vasopressin hypersensitivity: an exaggerated blood pressure response to exogenous VP in spontaneously hypertensive rats was abolished by pre-treatment with the endothelin antagonist, bosentan [Balakrishnan et al., 1997].

Interactions with the hypothalamic-pituitary-adrenal axis

Vasopressin stimulates ACTH and hence cortisol secretion [Mutlu & Factor, 2004]. Relative adrenal insufficiency is recognised in severe sepsis [Annané et al., 2002], and “low dose” steroid replacement may provide outcome benefit in such patients, especially those with severe shock [Annané et al., 2004]. One of the mechanisms by which steroid administration is thought to restore vascular sensitivity to catecholamines is via an increase in adrenoceptor gene expression [Saito et al., 1995]. While a similar effect on vasopressin receptor expression is feasible [Sutherland et al., 2006; Ertmer et al., 2007], VP
replacement may actually increase cortisol levels, thus acting synergistically to restore reactivity. However, this contradicts the finding that septic patients with relative adrenal insufficiency were less likely to have a relative deficiency of vasopressin than those with normal adrenal function [Sharshar et al., 2003a]. Furthermore, hypersensitivity to vasopressinergic agonists may still occur despite no haemodynamic response to corticosteroids [O'Brien et al., 2002a].

1.5 Summary

Understanding the pathogenesis and pathophysiology of septic shock represents a major challenge. Reviewing the literature relevant to vasopressin hypersensitivity shows that this particular area is no exception. The relationship between relative deficiency of endogenous VP and heightened sensitivity to its exogenous administration is not straightforward. The explanation behind this complex vasopressinergic system dysfunction is likely to be multifactorial, and hence many possibilities exist for further investigation. Patient studies are limited by the critical nature of septic shock and the difficulty in obtaining vascular and other tissues. Therefore, an in-vivo model truly representative of prolonged, severe sepsis is required to evaluate temporal changes in vascular reactivity, endocrine and autonomic function, and to provide suitable tissue samples for subsequent ex-vivo studies.

In this thesis, I have taken such an approach to examine how altered vascular reactivity to VP in septic shock relates to underlying changes in receptors and
calcium signalling pathways in resistance blood vessels. The interactions between VP and NO, K⁺ channels, other vasoconstrictors and the hypothalamic-pituitary-adrenal axis described in this chapter provide many avenues for related future studies. Increased mechanistic insight thus obtained will allow more educated clinical use of vasopressin.
1.6 Hypothesis

Pressor hypersensitivity to vasopressin in septic shock is consequent to changes either at the level of the vasopressin receptors within the vasculature, and/or an alteration of intracellular calcium handling that occurs downstream of receptor activation. Any such changes must differ from those affecting the adrenoceptor-mediated response to norepinephrine to account for the differential effect of sepsis on vascular reactivity to the two hormones.

1.7 Aims

1. In a 72-hour, conscious, fluid-resuscitated rat model of faecal peritonitis, I plan to:
 - characterise the model in terms of clinical illness, blood pressure and organ dysfunction
 - measure temporal changes in endogenous plasma levels of NE and VP and correlate these with illness severity
 - measure in-vivo blood pressure responses to fixed intravenous doses of NE and VP
 - compare septic animals with sham-operated controls throughout.

2. In small mesenteric arteries obtained from septic and sham-control rats, I propose to measure isometric tension responses using wire myography to:
 - examine the concentration-response characteristics of NE and VP
• assess the contribution of different receptor subtypes to the VP contractile response through the use of selective VP receptor agonists and/or antagonists
• examine the effect of endothelial removal and thus assess the influence of endothelial versus smooth muscle vasopressin receptors
• assess the contribution of different Ca\(^{2+}\) mobilisation pathways to NE- and VP-induced contractions through manipulation of extracellular Ca\(^{2+}\) concentration and the use of specific channel inhibitors.

3. Using simultaneous wire myography and fluorescence microscopy, I will:
 • examine the role of calcium sensitisation by measuring the calcium-tension relationships for NE and VP in septic and sham arteries.

4. I will see whether the findings made in my laboratory model can be replicated in patients and human resistance vessels by:
 • measuring temporal changes in endogenous plasma levels of VP in septic and non-septic intensive care patients
 • performing wire-myography studies on human small mesenteric arteries from patients undergoing laparotomy for septic or non-septic pathology to parallel those described above.
Chapter 2: *In-vivo* rat model of faecal peritonitis

2.1 Introduction

The clinical heterogeneity and critical nature of septic shock places significant limitations on patient studies. Consequently, animal models have been extensively used to study the pathogenesis of sepsis and to generate preclinical data for new therapies. An ideal *in-vivo* model should closely mimic the human illness; this is extremely challenging because, in addition to the aforementioned characteristics, the septic disease process in humans is influenced by conventional medical interventions such as antibiotics, sedation, fluid and vasoactive drug resuscitation, as well as mechanical organ support.

The majority of animal work has been carried in endotoxic septic models involving administration of the Gram-negative bacterial cell surface molecule, lipopolysaccharide (LPS) [Baker et al., 1990; Giusti-Paiva et al., 2002; Westphal et al., 2003; Albert et al., 2004; Bennett et al., 2004]. LPS is one important trigger for the cascade of inflammatory and immune changes seen in sepsis [Annane et al., 2005]. Use of a single, purified mediator can produce a controlled, reproducible model, but this approach fails to replicate the complexity and prolonged nature of the inflammatory response characteristic of human infection [Annane et al., 2005; Remick & Ward, 2005]. So-called “focus of infection” models, such as caecal ligation and puncture (CLP) or intra-peritoneal insertion of faecal material, produce a more clinically realistic insult and systemic response [Hollenberg et al., 1997; Hollenberg, 2005;
Remick & Ward, 2005]. Regardless of the insult chosen, adequate fluid resuscitation is vital if the hyperdynamic circulation typical of septic patients is to be achieved [Hollenberg, 2005].

A 3-day rat model of faecal peritonitis has been established in our laboratory [Brealey et al., 2004]. My initial aim was to use this model to examine temporal changes in endogenous vasopressin levels in a prolonged septic illness, and to replicate the enhanced pressor response to exogenous vasopressin seen in patients.

2.2 Materials and Methods

2.2.1 Animal preparation

Experiments were carried out in accordance with the Animals (Scientific Procedures) Act 1986. The model used has been granted Home Office approval (Licence Number: PPL 70/6143; Principal Licence Holder: M. Singer). Male Wistar rats (Charles River, Margate, Kent) of 250-275g weight were housed in the local animal unit 5 days prior to experimentation to allow acclimatisation to their new environment. Instrumentation was performed under isoflurane (Abbott Laboratories, Queenborough, Kent) anaesthesia maintained via a face mask. Internal jugular venous and carotid arterial lines (internal diameter 0.58mm, external diameter 0.96mm) were inserted and tunneled subcutaneously to emerge at the nape of the neck. This differed from the femoral approach formerly described [Brealey et al., 2004] because
in-vivo blood sampling requires the use of larger diameter cannulae. The lines were then mounted onto a swivel/tether system secured to the rat using silk sutures. This enabled the rat, on recovery from anaesthesia, to have unimpaired movement around the cage with free access to food and water. Both lines were flushed continuously with 0.15ml/h of heparinised saline (1:1000). Mean arterial pressure (MAP) was measured (P23XL transducers, Viggo-Spectramed, Oxnard, CA, USA) and recorded onto a pre-calibrated PowerLab system (ADInstruments, Sydney, Australia).

Twenty-four hours later, sepsis was induced by intraperitoneal injection of faecal slurry (0.625mg/100g body weight). This was prepared from the bowel contents of a rat from the same batch, suspended in normal saline and then filtered to remove fibrous material. Blood and other tissues were also taken from these naïve, un-instrumented animals. Fluid resuscitation was commenced after a further two hours via the internal jugular venous cannula. For the first day, 20ml/kg/h of a 1:1 solution of 6% hetastarch (EloHaes, Fresenius Kabi, Warrington, Cheshire) and 5% glucose was infused. This was reduced to 17.5ml/kg/h between 24 and 48 hours, and then to 10ml/kg/h from 48 to 72 hours. Sham-operated controls underwent the same initial operative procedure and fluid resuscitation regimens as the septic animals, but received no intraperitoneal injection to avoid accidental bowel perforation.

A clinical illness severity scoring system was devised previously for this model (Table 2.1). From 24 hours post-intraperitoneal injection, septic rats were
Table 2.1 Severity scoring system for the rat model of faecal peritonitis (as published in Brealey D et al., Am. J. Physiol Regul Integr Comp Physiol 2004: R491-R497)

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunched</td>
<td>Hunched</td>
<td>Marked piloerection</td>
</tr>
<tr>
<td></td>
<td>Piloerection</td>
<td>Marked piloerection</td>
<td>Markedly bloated abdomen</td>
</tr>
<tr>
<td></td>
<td>No bloating</td>
<td>Bloated abdomen</td>
<td>Conjunctival injection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunken eyes</td>
<td></td>
</tr>
<tr>
<td>Alertness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alert</td>
<td>Depressed alertness</td>
<td>Markedly depressed alertness</td>
</tr>
<tr>
<td></td>
<td>Occasional interest in environment</td>
<td>Little interest in environment</td>
<td>No interest in environment</td>
</tr>
<tr>
<td></td>
<td>Moves freely</td>
<td>Moves with difficulty</td>
<td>No movement</td>
</tr>
<tr>
<td>Mean blood pressure mmHg</td>
<td>>90</td>
<td>75-90</td>
<td><75</td>
</tr>
</tbody>
</table>

The rat needed to show at least 2 characteristics within the appearance and alertness categories to obtain a score for that category. The blood pressure recording was only used if the arterial line was patent and the trace was stable over a 10 minute period.
scored (2 observers, 1 blinded) as being mild, moderately or severely affected. Animals were sacrificed at fixed times, or at any point when a rat appeared in obvious distress. Overall mortality calculation took into account spontaneous deaths, and assumed that all rats appearing severely unwell at the time of sacrifice would not have survived to complete the experiment, but that all those classified as mild or moderate would have done so.

A 72 hour septic mortality of 40% with 0% sham mortality was achieved when this model was first established [Brealey et al., 2004], but pilot studies for the currently reported set of experiments revealed significantly higher death rates in both the septic and sham groups. It was initially uncertain whether such changes in the model’s mortality rate were a consequence of a change in animal phenotype, including altered fluid tolerance, and/or infection or vagal stimulation related to neck as opposed to groin line insertion. Advice was sought from a veterinary surgeon. As mortality was associated with the frequent observation of oedema, weight gain and apparent respiratory distress, this suggested fluid overload as the predominant problem. The excess mortality was rectified by a 50% decrease in the amount of fluid resuscitation given over each 24 hour period (i.e. 10ml/kg/h 0-24, 8.75ml/kg/h 24-48, 5ml/kg/h 48-72). All results presented in this thesis are from animals treated with the reduced fluid regimen.
2.2.2 Blood sampling

In-vivo blood sampling was performed at pre-determined time-points when line patency allowed. As a consequence of decreasing patency rates with increasing experimental duration, this technique was only reliable until 24 hours after the induction of sepsis. Up to 3ml of whole blood was aspirated from the indwelling arterial or venous cannula at any one time. Blood was also obtained by cardiac puncture under anaesthesia at the time of sacrifice. Blood was drawn into chilled EDTA di-potassium salt (Sigma-Aldrich, St. Louis, MO, USA) (1mg/ml blood) for norepinephrine (NE) measurement, and into EDTA plus aprotinin (Trasylol, Bayer, Newbury, Berks) (500KIU/ml blood) for vasopressin (VP) measurement. These samples were centrifuged at 1600g and 0°C for 15 minutes, and then the plasma supernatant decanted and frozen at -80°C. Serum for biochemical analysis (performed by the Clinical Chemistry Department, UCL Hospitals and The Doctors Laboratory, London) was obtained by the centrifugation of whole blood which had first been allowed to clot in plain tubes. In addition, rapid assessment of arterial blood gases (ABGs) was performed in some animals using 200μl heparinised samples in an ABL 300 analyzer (Radiometer, Copenhagen, Denmark).

2.2.3 Vasopressin measurement

Frozen plasma samples containing EDTA plus aprotinin were first allowed to thaw. To avoid erroneous measurement of other proteins, an extraction procedure was performed. The samples were mixed with ice-cold acetone and
then centrifuged at 12000g for 20 minutes. The supernatant was transferred to a separate tube and vortexed with ice-cold petroleum ether. This mixture was then centrifuged for 10 minutes at 10000g. The top ether layer was carefully removed, and the remaining volatile liquid layer evaporated under vacuum at 45°C (Maxi dry plus, Heto, Jouan Nordic, Allerod, Denmark). The resulting solid sample was reconstituted in tris-buffered saline and VP quantified using an enzyme-linked immunosorbent assay (ELISA) technique (Assay Designs Inc, Ann Arbor, MI, USA). In brief, the extracted samples, a VP-alkaline phosphatase conjugate, and a rabbit polyclonal antibody to VP were combined in microtitre wells coated with goat anti-rabbit IgG. The wells were washed after overnight incubation, and p-nitrophenyl phosphate added as substrate. This reaction produced a yellow colouration, the intensity of which was inversely proportional to the amount of VP in the sample. This signal was quantified using a plate reader (Spectra Max Plus, Molecular Devices Corporation, Sunnyvale, CA, USA) which was set to measure absorbency at 405nm. Suitable analysis software (Soft Max Pro, Molecular Devices Corporation) produced a calibration curve (four-parameter logistic fit) from the optical density values of serially diluted standards, thus enabling determination of the sample VP concentrations.

Samples and standards were processed in duplicate throughout. Standard curves with an r^2 value approaching 1 were routinely obtained (Figure 2.1). To ensure efficiency of the extraction procedure, this was performed on serially diluted standards, and a VP recovery of $\geq 90\%$ was achieved. Further control experiments, in which samples were either spiked with a known amount of VP
Figure 2.1 Specimen standard curve (four-parameter logistic fit) obtained with vasopressin ELISA kit

The "Soft Max Pro" programme (Molecular Devices Corporation, Sunnyvale, CA, USA) was used to determine the concentration in plasma samples from the optical density recordings made by the plate reader.
or serially diluted with buffer solution, confirmed the reliability of this technique. Samples taken simultaneously from arterial and venous lines in the same animal revealed there to be no significant difference in VP levels from these two sources.

During the analysis of samples, it became apparent that VP values measured in plasma obtained by cardiac puncture were 10- to 100-fold higher than in specimens from the same groups of animals taken from indwelling lines. Whilst the stressful nature or haemodynamic effect of cardiac puncture were entertained as possible reasons for this finding, the values obtained ran into several thousand pg/ml, considerably higher than figures reported from comparable experiments [Schaller et al., 1985; Holmes et al., 2001; Giusti-Paiva et al., 2002]. An alternative interpretation is that the cardiac puncture results were artefactually elevated. This was supported by the finding that VP values taken simultaneously from an indwelling line and by cardiac puncture, both under anaesthetic, produced vastly different results.

A review of the literature and direct discussions with experts in this field has provided no definite explanation for this artefact. Intra-cardiac VP synthesis has been demonstrated in isolated, pressure-overloaded rat hearts, but resulting peptide levels in cardiac effluents were much lower than the values measured in my cardiac puncture samples [Hupf et al., 1999]. Measurement of biochemical indices revealed frequent evidence of haemolysis in the blood taken by cardiac puncture. It is well known that VP is contained in platelets [Mutlu & Factor, 2004], and therefore blood cell damage could potentially
have caused erroneous elevation. There was no correlation, however, between plasma VP and serum potassium levels, suggesting that this is unlikely. Interestingly, analysis of serial aliquots of blood obtained by cardiac puncture from the same animal revealed a marked decrease in the apparent VP level with each millilitre of blood withdrawn. This points to a substance being released from the cardiac muscle or the surrounding tissue that may either be cross reacting with the VP assay or potentially degrading a component of the kit to produce a falsely high reading.

As a consequence of this difficulty, VP results from cardiac puncture blood samples have been excluded from the presented data. Unfortunately, as line patency was unreliable beyond the 24 hour time-point, it was only possible to obtain a few samples for VP assay beyond this stage of the model.

2.2.4 Norepinephrine measurement

Frozen EDTA plasma samples were allowed to thaw and then analysed using an ELISA technique (Labor Diagnostika Nord, Nordhorn, Germany). In brief, NE was first acylated to N-acylnorepinephrine in a macrotitre plate. This compound was then eluted using 0.025M hydrochloric acid and transferred to microtitre wells containing solid phase bound NE. Rabbit NE anti-serum was then applied and the system allowed to equilibrate. After washing away antibody bound to liquid phase (sample-derived) NE, the antibody bound to the solid phase NE was detected using an anti-rabbit IgG-peroxidase conjugate with tetramethylbenzidine (TMB) as substrate. This reaction
produced a yellow colouration, the intensity of which was inversely proportional to the amount of NE in the plasma sample. This signal was quantified using a plate reader (Spectra Max Plus), which was set to measure absorbency at 450nm. Suitable analysis software (Soft Max Pro) produced a calibration curve (four-parameter logistic fit) from the optical density values of six kit standards, thus permitting determination of the sample NE concentrations. The kit used is designed for NE measurement in both plasma and urine samples, and since a larger sample volume is used for the former, the plasma results read from the standard curve must be divided by 30. Samples and standards were processed in duplicate throughout. Standard curves with an r^2 value approaching 1 were repeatedly obtained (Figure 2.2). Control experiments, in which samples were spiked with a known amount of NE or serially diluted with buffer solution, confirmed the reliability of the assay. Samples taken simultaneously from arterial and venous lines in the same animal revealed no difference in NE levels from these two sources. Values obtained were in the region of those reported in comparable experiments [Schaller et al., 1985]. Unlike my experience with the VP ELISA, I found no obvious discrepancy between NE measurements from indwelling line and cardiac puncture samples.
Figure 2.2 Specimen standard curve (four parameter logistic fit) obtained with norepinephrine ELISA kit

\[
y = \frac{(A - D)}{(1 + (x/C)^B)} + D
\]

<table>
<thead>
<tr>
<th>Std (Standards: Concentration vs MeanVal...)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.483</td>
<td>0.967</td>
<td>12.584</td>
<td>0.263</td>
<td>0.999</td>
</tr>
</tbody>
</table>

The "Soft Max Pro" programme was used to determine the concentration in plasma samples from the optical density recordings made by the plate reader. The kit used is designed for NE measurement in both plasma and urine samples; since a larger sample volume is used for the former, the plasma results read from the standard curve are divided by 30.
2.2.5 In-vivo drug administration

In-vivo blood pressure responses to intravenous vasopressors (NE, VP and the selective V₁R agonist, F-180 [Bernadich et al., 1998]) were assessed after 24 hours of sepsis. This was performed after arterial and venous line patency was confirmed and a stable baseline MAP recorded. Drugs diluted in 5% glucose were administered as single doses chosen to produce an approximate 30mmHg increase in MAP in sham-operated animals: NE (norepinephrine tartrate, Abbott) 2.5μg in 0.25ml over five minutes; VP (arginine-8 vasopressin, Sigma-Aldrich) 0.017 units in 0.53ml over ten minutes; and F-180 (kindly donated by Ferring Pharmaceuticals, San Diego, CA, USA) 45 picomoles in 0.53ml over ten minutes. The doses of each vasopressor were determined by a review of similar published work [Bennett et al., 2004; Westphal et al., 2004]; past experience in our laboratory [O'Brien et al., 2002b]; and a series of preliminary experiments. Each drug infusion was followed by continuous fluid administration to ensure all active compound had travelled through the line system. The plateau of the resultant blood pressure response was recorded. When more than one drug was infused, at least 30 minutes was allowed between drug infusions, and the order of administration varied.

2.2.6 Data and statistical analysis

The group sizes reported for blood pressure, biochemistry and hormone level measurements vary and decrease over time, reflecting loss of arterial line
patency and the significant mortality rate in septic animals. Six to eight animals per group were used in the *in-vivo* vasopressor response studies. This number was chosen on the basis of previous similar experiments conducted in our laboratory. A formal power calculation, from which the sample size needed to show statistically and clinically significant differences could have been determined, was not performed. *In-vivo* blood pressure, biochemistry and hormone level measurements are presented as mean ± standard error (SEM) of *n* observations. They were compared between time-points and clinical groups using one-way ANOVA and post-hoc least-squares difference testing (SPSS 15.0, Chicago, IL, USA). In all analyses, a *p* value <0.05 was considered statistically significant.

2.3 Results

2.3.1 General features of the model

In the initial characterisation phase, 92 rats (313 ± 2g body weight) were successfully instrumented and made uneventful post-operative recoveries. All appeared well at the time of intra-peritoneal injection (0h). Forty-two rats were used as sham-operated controls, while sepsis was induced in 50. A further 20 animals (8 control, 12 septic) were instrumented for the F-180 vasopressor experiments. With the adoption of the reduced fluid regimen as described in section 2.2.1, sham animals appeared outwardly normal for the duration of the experiment, continuing to eat and drink and maintaining an interest in their
environment. The septic animals began to show clinical features of illness (Table 2.1) from about 12 hours after the injection of faecal slurry.

Continuous blood pressure data collection was possible in 83% of animals up to the 24 hour time-point, and in 76% until the 48 hour stage. Despite this high proportion of reliable arterial line traces, aspiration of blood from the indwelling lines was possible in approximately 50% of rats at 24 hours, in only 20% at 48 hours, and in none at 72 hours. When this model was previously characterised, it was observed that septic animals surviving to 72 hours showed signs of recovery. This knowledge, in combination with the finding that the in-vivo blood sampling needed for accurate VP measurement was essentially impossible at this time point, led to the conclusion that I would not continue studies beyond 48 hours.

Blood pressure values of the septic rats were higher than those recorded when the model was first established, with MAPs rarely dropping below 90mmHg (Section 2.3.2). This may have been due to the change in arterial line position from femoral to internal carotid, though changes in animal phenotype could not be excluded. As the severity scoring system is partly dependent on blood pressure data (Table 2.1), the change in MAP range meant that increased reliance was placed on clinical features. As this assessment can be difficult and rather subjective, the decision was made to classify septic animals into two rather than three subgroups: mild/moderate and severe. By 24 hours, 64% were graded as mild/moderate and 18% as severe; 14% had died spontaneously by this stage, and no score was
recorded for the remaining 2%. This gave a calculated 24 hour mortality of 32%. At 48 hours, 43% were deemed to be mild/moderate, 14% severely ill, and a further 43% had died. Assuming that all rats labelled as mild/moderate would have survived, and all those labelled severe would have not, the 48 hour mortality was 64%. During the harvesting of mesenteric tissue for later ex-vivo experiments, all septic rats showed evidence of peritoneal inflammation. This varied from small volume ascites and mild bowel oedema, in those only mildly affected, to gross bowel distension with purulent ascites and multiple adhesions in the most severely ill animals.

2.3.2 Blood pressure data

Figure 2.3a shows an overall trend of decreased MAPs in prolonged rodent sepsis when compared with sham-operated controls. The differences are emphasised graphically by the analysis of percentage change in MAP rather than absolute values (Figure 2.3b). Apparent from these figures are the small group sizes and large error bars for the severely septic rats. As a consequence of this and the aforementioned uncertainty in the clinical scoring system, I decided to pool together the septic groups at each time point (Figure 2.3c). Interestingly, MAPs were consistently higher in the septic rats four hours after intraperitoneal injection. There were significant drops in blood pressure in the septic rats at 24 and 48 hours when compared to baseline (0h) values. When sham-operated and septic groups were compared within these time-points, however, the numerically lower MAPs in the latter were not statistically significant.
Figure 2.3 Mean arterial pressures in the *in-vivo* faecal peritonitis model

a) absolute MAP (mmHg)

![Bar chart showing mean arterial pressures at different time points for sham and septic groups.]

b) % change MAP

![Bar chart showing percentage change in MAP at different time points for sham and septic groups.]

c) absolute MAP (mmHg) – septic groups combined at 24 and 48 hours

![Bar chart showing mean arterial pressures at different time points for septic groups combined at 24 and 48 hours.]

Bars represent mean ± SEM. Group sizes are shown in parentheses.

m/m = mild/moderate; 0h indicates samples taken immediately prior to injection of faecal slurry

* p<0.05 for comparisons between groups indicated by brackets
2.3.3 Serum biochemistry

To assess the degree of organ dysfunction in the model, and to ascertain if the clinical scoring system was an objective measurement of severity, serum biochemistry analysis was performed. Renal dysfunction (increased urea) and acute inflammation (increased alkaline phosphatase and decreased albumin) were evident in the septic rats. The marked drop in serum albumin at 4 hours in both the septic and sham groups when compared to baseline (0h) is likely to reflect the initiation of intravenous fluids which occurred midway between these time-points (Figure 2.4c). Overall, good correlation between these three chosen indices and the illness severity score was not observed (Figure 2.4). This supported the decision to analyse the septic animals as one group at each time-point (Table 2.2). In view of the osmoregulation of VP secretion, both sodium concentration and serum osmolarity are relevant when interpreting circulating VP levels. These values did not vary significantly between septic and sham groups at any time-point (Table 2.2).
Figure 2.4 Serum biochemistry in the *in-vivo* faecal peritonitis model

a) Urea

![Urea graph](image)

b) Alkaline phosphatase (ALP)

![ALP graph](image)

c) Albumin

![Albumin graph](image)

Values shown are mean ± SEM.

0h indicates samples taken immediately prior to injection of faecal slurry.

m/m = mild/moderate

^p<0.05 for comparison of ALP between m/m and severe groups at 48h; this was the only statistically significant difference found between the two septic groups at any one time-point.

Analysis of the m/m and severe septic groups combined is shown in Table 2.2.
Table 2.2 Serum biochemistry in the *in-vivo* faecal peritonitis model

<table>
<thead>
<tr>
<th></th>
<th>0h sham</th>
<th>4h sham</th>
<th>4h septic</th>
<th>24h sham</th>
<th>24h septic</th>
<th>48h sham</th>
<th>48h septic</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>21</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Urea (mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 (0.8)</td>
<td>5.1 (0.5)</td>
<td>4.4 (0.7)</td>
<td>3.9 (0.4)</td>
<td>5.8 # (0.7)</td>
<td>3.5 (0.6)</td>
<td>6.4* (0.9)</td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td>144 (1.3)</td>
<td>140 (1.3)</td>
<td>139 (1.0)</td>
<td>138 (0.8)</td>
<td>136 (1.3)</td>
<td>137 (0.9)</td>
<td>135 (1.8)</td>
</tr>
<tr>
<td>Alkaline phosphatase (IU/l)</td>
<td>125.0 (23.1)</td>
<td>75.3 (2.6)</td>
<td>90.7 (13.5)</td>
<td>43.1 (5.7)</td>
<td>84.3* (11.4)</td>
<td>40.9 (7.2)</td>
<td>112.3* (16.4)</td>
</tr>
<tr>
<td>Albumin (g/l)</td>
<td>31.4 (1.4)</td>
<td>20.7 (1.2)</td>
<td>19.3 (2.2)</td>
<td>16.3 (2.1)</td>
<td>11.1* (0.8)</td>
<td>17.9 (1.7)</td>
<td>12.1* (1.1)</td>
</tr>
<tr>
<td>Osmolarity (mmol/l)</td>
<td>308 (3.0)</td>
<td>302 (2.8)</td>
<td>299 (2.4)</td>
<td>297 (2.1)</td>
<td>294 (2.5)</td>
<td>295 (2.3)</td>
<td>292 (3.8)</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM).

Serum osmolarity was calculated as \[2 \times \text{(sodium} + \text{potassium}) + \text{glucose} \text{ (values not shown)} + \text{urea}\]. As accurate serum potassium levels were often not obtained due to sample haemolysis, a value of 4.0mmol/l was used for the purpose of this calculation.

* \(p<0.05\) and \# \(p=0.05\) for comparisons between sham and septic groups at the same time-point.
2.3.4 Arterial blood gas analysis

Blood gas analysis was performed on arterial samples from randomly selected septic and sham-operated rats 24 hours after the septic insult. Animals with faecal peritonitis had lower bicarbonate levels, a more negative base excess, and higher lactate levels, consistent with sepsis (Table 2.3). The unchanged pH but lower partial pressures of CO₂ in the septic rats may reflect successful compensation of metabolic acidosis by hyperventilation.

Table 2.3 Arterial blood gas results in the in-vivo faecal peritonitis model

<table>
<thead>
<tr>
<th></th>
<th>24h sham</th>
<th>24h septic</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>pH</td>
<td>7.48 (0.01)</td>
<td>7.49 (0.02)</td>
</tr>
<tr>
<td>pCO₂ (kPa)</td>
<td>4.64 (0.21)</td>
<td>3.94 (0.25) *</td>
</tr>
<tr>
<td>pO₂ (kPa)</td>
<td>14.65 (0.65)</td>
<td>12.52 (0.76) *</td>
</tr>
<tr>
<td>SBE (mmol/l)</td>
<td>2.15 (1.05)</td>
<td>-0.79 (1.03)</td>
</tr>
<tr>
<td>SBC (mmol/l)</td>
<td>26.7 (0.84)</td>
<td>24.74 (0.76)</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>1.31 (0.27)</td>
<td>3.11 (0.49) *</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM).

pCO₂, partial pressure of carbon dioxide; pO₂, partial pressure of oxygen; SBE, standard base excess; SBC, standard bicarbonate

* p<0.05 when septic and sham groups compared (t tests used for each parameter)
2.3.5 Vasopressin and norepinephrine levels

Figure 2.5 shows the plasma levels of NE and VP. As discussed in section 2.2.3, few VP samples were available at 48 hours. Baseline values in the unstressed rat are reported as approximately 300pg/ml for NE [Schaller et al., 1985; Pajovic et al., 2005], and 3.5pg/ml for VP [Giusti-Paiva et al., 2002; Cisowska-Maciejewska & Ciosek, 2005]. I found NE levels were significantly elevated in septic rats at all time-points after 4 hours (Figure 2.5a). VP levels were highest in the first few hours of the experiment, but decreased at 24 and 48 hours (Figure 2.5b). No significant difference was seen between septic and sham-operated control rats at any one time-point despite clinical illness, a decrease in blood pressure (Figure 2.3), and evidence of a catecholamine stress response (Figure 2.5a) in the septic animals. Since other short-term animal studies of sepsis have found up to 40-fold rises in circulating VP [Brackett et al., 1985; Schaller et al., 1985; Giusti-Paiva et al., 2002], I also measured VP levels at 12 hours following intra-peritoneal injection. The values (3.6 ± 0.8pg/ml, n=5) were comparable to those found at 24 and 48 hours.
Figure 2.5 Plasma hormone levels in the *in-vivo* faecal peritonitis model

a) plasma norepinephrine (pg/ml)

```
0h  4h  24h  48h
(9) (5) (9) (9)
```

b) plasma vasopressin (pg/ml)

```
0h  4h  24h  48h
(11) (6) (9) (9)
```

Bars represent mean ± SEM. Group sizes are shown in parentheses.

Dotted lines represent the normal values for rat reported in the literature for NE (300 pg/ml) and VP (3.5pg/ml).

* p<0.05 for comparisons between sham and septic groups
2.3.5.1 Validation of vasopressin measurements

To ensure that the ELISA technique used was capable of detecting a VP rise, and to assess the magnitude of such a rise induced by a severe cardiovascular insult other than that seen in the prolonged sepsis model, two positive control experiments were performed. Both were carried out on small numbers of rats instrumented under anaesthesia for the insertion of arterial and venous cannulae via the neck approach, with 24 hours allowed for recovery.

Acute awake haemorrhage

With concurrent clinical observation and blood pressure monitoring, 1.5ml of blood for subsequent VP assay was aspirated from the arterial line at 15 minute intervals. This was continued until a maximum of five samples had been taken, or until the animal appeared overtly distressed. The circulating volume of a rat is approximately 70ml/kg body weight so, for a 300g rat, around 35% of circulating blood volume was removed after five samples.

Acute awake endotoxaemia

A 20mg/kg dose of *Klebsiella pneumoniae* LPS (Sigma-Aldrich), dissolved in normal saline, was administered intravenously in a volume of 1ml. Previous work in our laboratory found this dose to reliably produce severe acute endotoxic shock in Wistar rats. Immediately prior to injection, 0.75ml of blood was aspirated from the arterial line for subsequent VP assay. This was followed by a replacement intravenous hetastarch colloid bolus of the same
volume to minimise the haemodynamic effect of blood sampling. Blood samples were then taken in the same manner at 15 minute intervals until a maximum of five samples had been taken or until the animal appeared overtly distressed. Blood pressure was continuously monitored during the procedure.

In both these experiments, a clear rise in VP levels was measured following the acute stressor insult (Figure 2.6). In the haemorrhage model, hormone levels were approximately tripled after 6ml (c.25% of circulating volume) of blood had been withdrawn (45 minute stage). This corresponded to a drop in MAP of approximately 33% (Figure 2.6a). Interestingly, the magnitude of increase in VP was much higher in the acute endotoxin model, with a maximal increase of more than 50-fold for a MAP change comparable to that seen in the haemorrhage study (Figure 2.6b).
Figure 2.6 Plasma vasopressin levels and changes in mean arterial pressure in acute shock models

a) Acute haemorrhage

Values shown are mean ± SEM; n=4 rats for each experiment.

Note different scales for the y axes (VP concentration) in the two experiments.

In study a), 1.5ml of arterial blood was taken at time 0 and this was repeated at 15 minute intervals thereafter. In study b), intravenous endotoxin was administered at time 0.

*p<0.05 when time 60 VP and MAP values were compared with time 0 measurements in each experiment
2.3.6 *In-vivo* blood pressure responses

Intravenous infusions of vasopressors were given 24 hours post-induction of peritonitis. This time-point was chosen as it was considered to represent prolonged illness while providing adequate line patency for reliable drug administration and mean arterial pressure recording. Specimen MAP traces are shown in Figures 2.7 and 2.8 and plateau blood pressure rises are summarised in Table 2.4. Pressor responses to NE were markedly reduced in septic compared to sham-operated control rats (Table 2.4a). The blood pressure rises with VP (Table 2.4a) and F-180 (Table 2.4b) were also attenuated in the septic rats, but to a lesser degree. In three rats, plasma NE and VP levels were measured during the drug infusions at the time of peak pressor response. Median plasma NE was 3525pg/ml (range 2883-4250); and VP 69.9pg/ml (range 47.6-89.6). Of note, VP levels measured after exogenous infusion were similar to those found in patient samples taken concurrent to vasopressin treatment [Landry et al., 1997b; Dunser et al., 2004a].

In an attempt to better simulate conditions seen in septic shock patients, I repeated the NE and VP in experiments in a separate cohort of septic and sham rats under anaesthesia (Table 2.4c). Prior to vasopressor administration, animals were transferred from their cages onto a warmed operating mat, allowing controlled inhalation of isoflurane via a face mask. To facilitate handling, the venous and arterial lines were detached from the tether system. As in the awake vasopressor experiments, a stable MAP was established prior to drug infusion. NE and VP were administered at the same
Figure 2.7 *In-vivo* blood pressure responses to norepinephrine

a)

Typical blood pressure traces with infusion of 2.5μg norepinephrine over 5 min (↔ indicates infusion period; note longer trace lengths & smaller x axis scales in a) & c):

a) sham rat awake; b) sham under anaesthetic; c) septic rat awake; d) septic under anaesthetic
Figure 2.8 *In-vivo* blood pressure responses to vasopressin

Typical blood pressure traces with infusion of 0.017 units arginine-vasopressin over 10 mins (↔ indicates infusion period; note longer trace lengths & smaller x axis scales in a) & c): a) sham rat awake; b) sham under anaesthetic; c) septic rat awake; d) septic under anaesthetic
Table 2.4 *In-vivo* blood pressure responses to vasopressor infusions

a) Norepinephrine (NE) and vasopressin (VP) in awake animals

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>NE response (mmHg)</th>
<th>VP response (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-operated controls</td>
<td>7</td>
<td>34.9 (4.2)</td>
<td>33.1 (4.6)</td>
</tr>
<tr>
<td>Septic</td>
<td>6</td>
<td>8.5 (3.4)*</td>
<td>20.3 (5.6)</td>
</tr>
</tbody>
</table>

b) F-180 in awake animals

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>F-180 response (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-operated controls</td>
<td>6</td>
<td>35.5 (1.4)</td>
</tr>
<tr>
<td>Septic</td>
<td>6</td>
<td>21.0 (2.2)*</td>
</tr>
</tbody>
</table>

c) Norepinephrine (NE) and vasopressin (VP) given to animals under anaesthetic

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>NE response (mmHg)</th>
<th>VP response (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-operated controls</td>
<td>6 (NE) 8 (VP)</td>
<td>39.2 (7.3)</td>
<td>6.3 (1.3)**</td>
</tr>
<tr>
<td>Septic</td>
<td>6 (NE) 8 (VP)</td>
<td>12.0 (5.0)*</td>
<td>15.4 (2.9)</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM).

NE response = *Mean arterial pressure (MAP) increase after 2.5μg of norepinephrine i.v.*

VP response = *MAP increase following 0.017 units of vasopressin i.v.*

F-180 response = *MAP increase following 45 picomoles of F-180 i.v.*

* p<0.05 when compared with response to same drug under same conditions in sham-operated controls; ** p<0.05 when compared to response to same drug in awake sham rats
dose, rate and protocol as described in Section 2.2.5. In all of these rats, drug effect was observed more rapidly than in the awake experiments due to the shortened venous line length once detached from the tether (e.g. compare Figures 2.7a and b). No differences were seen between the awake and anaesthetised responses to NE in sham or septic animals, with a depressed response still obvious in the latter (Figure 2.7 and Table 2.4). In contrast, the VP response in sham-operated animals was significantly decreased under isoflurane anaesthesia. The septic rats showed numerically greater responses to vasopressin than the sham-controls under these conditions, but this finding did not reach statistical significance (Figure 2.8 and Table 2.4).

2.4 Discussion

2.4.1 General characteristics of the septic model

This rat model of faecal peritonitis aimed to mimic human septic illness in terms of type and duration of insult, and subsequent fluid resuscitation. The clinical observations, mortality rate and biochemical data presented suggest that this was largely achieved. The marked, prolonged catecholamine stress response is also consistent with critical illness. The relatively modest degree of hypotension is likely related to adequate volume loading and the preservation of cardiovascular reflexes in conscious animals.

When compared to the original characterisation of this model in our laboratory [Brealey et al., 2004], a number of differences are apparent. Because of new
concerns over fluid overloading, as indicated by significant initial mortality in the sham-control group, all rats were given less aggressive fluid resuscitation. Despite maintenance of higher mean arterial pressures than previously described, mortality rates were higher in the septic animals (64% at 48 hours, compared to 40% at 72 hours [Brealey et al., 2004]). I was also unable to demonstrate a good correlation between clinical severity score and the objective measures of illness (MAP and serum biochemistry), hence my decision to analyse the septic rats as a single, larger group. The explanation for these findings is unclear but change in animal phenotype is likely to be partly responsible. Although this method of induction of intra-abdominal sepsis is clinically realistic, a significant drawback of blind faecal slurry injection is the inability to accurately quantify and therefore administer a consistent bacterial insult.

On initial experiment planning, I had hoped that the carotid arterial cannulae would enable in-vivo blood sampling and continuous blood pressure monitoring for up to 72 hours after the septic insult. In the case of a non-patent arterial line, the intention was to obtain blood by cardiac puncture at the time of animal sacrifice. I found, however, that aspiration of blood from the indwelling lines became difficult at 48 hours and beyond, and, as discussed in Section 2.2.3, the VP measurements in cardiac puncture samples were erratic and were markedly higher than levels recorded from line-aspirated blood. Furthermore, the requirement for both arterial and venous line patency for in-vivo vasopressor administration meant that this could only realistically be performed in the early stages of the model (up to 24 hours). The relative
deficiency of vasopressin and hypersensitivity to its exogenous administration have been described as features of prolonged (>24 hours) septic shock in patients [Landry et al., 1997a; Sharshar et al., 2003a]. In aiming to reproduce these features in an animal model, a judgement must be made as to how this time course in generally elderly humans relates to experimental duration in a comparatively young rat. Previous work in our laboratory has shown that recovery from the faecal peritonitis insult is evident in surviving rats by 72 hours [Brealey et al., 2004]. This represents a much shorter illness duration than is seen in adult patients, and would suggest that a state of "prolonged" sepsis is achieved by 24 hours. With this in mind, and in light of the encountered experimental difficulties, my in-vivo and ex-vivo studies focussed on rats at 24 hours after induction of sepsis.

2.4.2 Vasopressin levels

Baseline VP levels measured in this study were slightly higher than normal values reported in the literature [Giusti-Paiva et al., 2002; Cisowska-Maciejewska & Ciosek, 2005]. We anticipated an early rise in VP levels in septic rats, but found no difference from paired sham-controls at any time-point investigated. The difficulty in reliable quantification of this hormone due to its instability and association with platelets is well acknowledged [Struck et al., 2005]. Other investigators have used radioimmunoassay [Schaller et al., 1985; Giusti-Paiva et al., 2002] rather than ELISA [Lodha et al., 2006] to measure vasopressin. I confirmed the ability of the ELISA to detect several-fold elevations in plasma VP in the acute endotoxic and hemorrhagic shock
experiments (Section 2.3.5), and from the samples analyzed following in-vivo VP infusion (Section 2.3.6). Moreover, the results of the former were found to be comparable with those reported in other short-term rat LPS models [Brackett et al., 1985; Schaller et al., 1985].

It is possible that an acute peak was missed in the septic rats by virtue of the short half-life of VP (10-35 minutes) [Holmes et al., 2001], and the relatively long sampling time intervals employed. An alternative explanation is that the peritonitis insult was insufficiently severe to trigger significant vasopressin release. A blood pressure drop of at least 15% is required to evoke vasopressin release [Mutlu & Factor, 2004], a statement supported by the results of my acute haemorrhage experiments (Figure 2.6). Although this degree of hypotension was rarely seen in rats with faecal peritonitis, other stimuli of VP secretion, including endotoxin, cytokines and metabolic acidosis were presumably in operation [Holmes et al., 2001; Mutlu & Factor, 2004]. Indeed, my short term study suggests that intravenous endotoxin produces a rise in hormone levels far greater than would be predicted from the associated hypotension (Figure 2.6). Moreover, the marked elevation in plasma norepinephrine in the septic animals is consistent with severe illness. Therefore, particularly at the 24 hour time point, the lack of elevation in VP levels in the septic animals could be deemed inappropriate, and this is consistent with the concept of relative vasopressin deficiency described in patients with prolonged septic shock [Landry et al., 1997a; Sharshar et al., 2003a].
As reviewed in Chapter 1 (Section 1.4.1), the explanation for the lack of rise in VP levels in prolonged sepsis is multifactorial. It is likely that increased NO, previously demonstrated in this model to peak between 24 and 48 hours [Brealey et al., 2004], and high circulating NE levels act to inhibit hormone synthesis and/or release [Reid, 1994; Leng et al., 1999; Giusti-Paiva et al., 2002]. In support of this, immunohistochemical studies on rat brains from this peritonitis model have shown decreased VP staining in the hypothalamic supraoptic nucleus and the posterior pituitary of septic animals (T. Sharshar, University de Versailles, France, personal communication).

2.4.3 In-vivo blood pressure responses

Decreased pressor sensitivity to catecholamine infusion is a feature of prolonged septic shock [Paya et al., 1993; Annane et al., 1998; Landry & Oliver, 2001; Pickkers et al., 2006]. In awake animals, I was unable to reproduce the hypersensitivity to VP reported in septic patients [Landry et al., 1997b; Malay et al., 1999; Patel et al., 2002], although the effect of VP was relatively preserved compared to that seen with NE. One possible explanation could be simultaneous activation of both vasoconstrictor (V₁) and (non-V₁) vasodilatory VP receptors. However, I obtained similar results with the selective V₁R agonist, F-180, suggesting that this is not the case. Contrary to findings in healthy human volunteers [Abboud et al., 1990], I found that low-dose VP infusion produced a marked pressor effect in sham-operated control rats. Preliminary studies revealed the blood pressure response to VP in these animals increased several-fold across a narrow dose range, presenting an
additional difficulty in choosing an optimal dose to demonstrate a potential enhanced sensitivity in septic animals. The literature reports a considerable species variation in the ability to dissociate VP-induced changes in systemic vascular resistance (SVR) from changes in MAP, with a much steeper gradient of the blood pressure versus VP curve in rats than in humans [Cowley, 1982]. This knowledge, in combination with the recognition that vasopressin treatment is very rarely given to conscious septic patients, prompted the repetition of these experiments in anaesthetised rats.

Under anaesthesia, the decreased pressor effect of norepinephrine in septic compared to sham-control rats remained. With vasopressin, however, blood pressure responses were blunted in the sham-operated group yet maintained in the septic animals. As a formal sample-size calculation was not performed, it may be that the study was underpowered to detect a heightened septic versus sham VP response. Anaesthetic administration may alter vascular reactivity via disruption of autonomic reflexes. Furthermore, the changes in autonomic function observed in septic patients [Garrard et al., 1993] are one plausible explanation for VP hypersensitivity (Section 1.4.4). It may be, therefore, that the usual concomitant administration of sedation in such patients exaggerates the increased pressor effect. Interpretation of the current findings in relation to the clinical situation is difficult however, in view of the aforementioned underlying species' differences in VP-baroreflex interactions [Cowley, 1982].
2.4.4 Summary

I have used this rat model of faecal peritonitis to demonstrate inappropriately low endogenous levels of vasopressin in prolonged sepsis. Despite only mild hypotension in the septic animals, the markedly decreased pressor responses to exogenous norepinephrine in this group support the presence of vasodilatory shock. Vasopressin responses were preserved in sepsis, and were numerically greater than those in sham-controls when the drug was administered to anaesthetised rats. These results validate the use of this model for further exploration of the mechanism of vasopressin hypersensitivity in septic shock.
Chapter 3: *Ex-vivo* wire myography studies in small arteries taken from septic and sham-operated rats

3.1 Introduction

The development of wire myography has enabled the *ex-vivo* investigation of the mechanical and pharmacological properties of the small arteries comprising the resistance vasculature [Mulvany & Aalkjaer, 1990]. Prior to this, the available organ bath methods precluded studies of vessels smaller than c.400μm internal diameter. Wire myography permits the relatively atraumatic mounting of vessel segments on two secured, small (40μm diameter) wires so that isometric tension measurements can be made under loading conditions simulating *in-vivo* pressures [Mulvany & Aalkjaer, 1990].

Much of the myograph work characterising the resistance vasculature of the rat has been performed on second and third order branches of the mesenteric artery [Mulvany & Aalkjaer, 1990; Buus *et al.*, 1994]. I therefore chose the wire myography approach to investigate the *ex-vivo* vascular reactivity of small mesenteric arteries dissected from the sham-operated and septic rats from the faecal peritonitis model. To formally learn this method, I attended a week’s course held at the Department of Pharmacology of the University of Aarhus in Denmark. I was also able to benefit from the already considerable experience of this technique in our laboratory [Chauhan *et al.*, 2003; Orie *et al.*, 2006].
In this chapter, I have characterised the baseline reactivity of mesenteric vessels from sham-control and septic rats to norepinephrine and vasopressin. As demonstrated in the \textit{in-vivo} peritonitis model (Section 2.3.6), I hoped to reveal differences in the impact of sepsis on vascular reactivity to the two vasoconstrictors. Furthermore, in view of the existence of several VP receptor subtypes in the vasculature (Section 1.2.2), I aimed to employ manoeuvres to dissect out the possible different components of this agonist's response. \(V_1\) receptors are the major subtype producing vasoconstriction, and their contribution was assessed by determining the dose-response characteristics of the selective \(V_1\)R agonist, F-180 [Bernadich \textit{et al.}, 1998]. The role of endothelial receptors was investigated through the effects of its physical removal and the inhibition of eNOS. Finally, the possible \(V_2\)R component of VP's action was explored through the use of a selective \(V_2\)R antagonist, FE992082. For comparison with an alternative vascular bed, a small number of similar experiments were done using tail arteries.

\section{3.2 Materials and Methods}

\subsection{3.2.1 Dissection and mounting of resistance vessels}

For the initial \textit{ex-vivo} studies investigating the baseline reactivity of vessels to NE and VP, arteries were taken from the cohort of rats described in Chapter 2. Subsequent experiments required additional animals that underwent the same experimental protocol as explained in Section 2.2.1.
Twenty-four hours after intra-peritoneal injection of faecal slurry (or no injection in sham-operated controls), and after at least one hour’s recovery if vasoactive drugs had been administered, rats were deeply anaesthetised with isoflurane and then killed by cervical dislocation. A midline laparotomy was then performed to expose the mesenteric vascular bed. A segment of intestine with its proximal end about 10cm distal to the pylorus was identified. Using scissors, this section and its feeding vasculature, including part of the superior mesenteric artery, was carefully removed. A nick was made in the proximal end of the excised bowel to aid later identification. The specimen was then immediately placed into cold (4°C) physiological salt solution (PSS) of the following composition (mM): NaCl 112, KCl 5, CaCl₂ 1.8, MgCl₂ 1, NaHCO₃ 25, KH₂PO₄ 0.5, NaH₂PO₄ 0.5, and glucose 10, previously bubbled with carbogen gas (95% O₂, 5% CO₂). The fresh mesenteric tissue was transferred to a Petri dish containing a layer of agar to hold fixing pins and kept moist with fresh cold PSS. Having identified the proximal end of the segment, the tissue was pinned such that the mesenteric veins lay above the arteries. Under a light microscope, the adipose tissue surrounding the vessels was cut away. The veins were then removed, and second or third order mesenteric arterial branches (c.200μm internal diameter) dissected and cleaned of connective tissue.

To obtain tail arteries, the tough outer skin of the tail was scored proximally with scissors and then completely peeled away with forceps. The tail was sectioned, and the distal third immediately placed into cold PSS. This portion was pinned with the ventral side uppermost, and the artery identified in the groove running along the ventral surface. This was carefully lifted away, using
scissors to cut through the encasing connective tissue and small side branches. The arterial segments thus dissected were of approximately 500μm internal diameter.

Arterial segments of 2mm in length were then mounted in a small vessel, dual chamber wire myograph (model 510A, Danish Myo Technology, Aarhus, Denmark) for isometric tension recording. Each vessel segment was mounted on two 40μm stainless steel wires, one attached to a force transducer and one attached to a micrometer, via a pair of stainless steel jaws (Figure 3.1). Adjustments to and measurements from the transducer and micrometer were performed via an electronic controller (Myo Interface, Danish Myo Technology), the information from which was fed to a PC and visualised using appropriate software (Myodaq and Myodata, National Instruments Corporation, Austin, TX, USA). Two segments were mounted in one myograph at a time. The vessels were bathed in 10ml of PSS, heated to 37°C and bubbled continuously with carbogen. A plastic divider could be inserted between the two sets of jaws to form two separate chambers, each of 5ml volume.

3.2.2 Normalisation and vessel activation

Following equilibration for 30 minutes, an automated normalisation procedure was performed to determine the arterial lumen necessary for optimal force generation [Mulvany & Halpern, 1977]. It has been shown previously that for rat small mesenteric arteries, maximal force generation is achieved when a
Each set of jaws, known by convention as “NEAR” and “FAR”, is attached on one side to a micrometer which measures jaw separation, and on the other to a force transducer which measures the force exerted by the arterial contraction on the mounting wires.
segment is stretched to 90% of the diameter expected had it been relaxed and exposed to a transmural pressure of 13.3kPa (100mmHg) [Buus et al., 1994]. This diameter is known as L_{100} and 90% of this value as L_1. In practical terms, this is achieved by step-wise distension of the vessel, with micrometer and force readings made at each step. The Laplace relationship is then applied to calculate L_{100} from the intersection of the exponential tension-circumference plot and an isobar curve corresponding to 100mmHg [Mulvany & Halpern, 1977]. In practice, L_1 values for mounted small mesenteric arteries were close to 200\(\mu \)m. In the initial characterisation studies, the average normalised diameter was \(212 \pm 8\mu \text{m (mean } \pm \text{ SEM) for 29 vessels (sham: 228} \pm 14 \mu \text{m (n=11) and septic: 202} \pm 8\mu \text{m (n=18), p=0.052).} \)

To activate the mechanical and functional properties of the vessel segments and to confirm tissue viability, a standard start procedure was performed 30 minutes after normalisation. Contraction was stimulated by the addition of 5\(\mu \)M NE to the myograph chamber. After three minutes, when a plateau contraction was achieved, the chamber was washed four times with PSS. Following a five minute rest period, the dose was repeated. A measure of viability was calculated to determine whether the isolation and mounting of a vessel had damaged the arterial wall. The following relationship was used, which corrects for differences in the length and diameter of vessel segments:

\[
\text{Effective pressure (kPa)} = \frac{2 \times \Delta \text{ wall tension (mN/mm)}}{L_1 (\text{mm})}
\]
Exposure of rat mesenteric arteries usually produces a pressure response of >20kPa. By convention, arteries were considered non-viable if the effective pressure generated was <13.3kPa [Mulvany & Halpern, 1977]. Vessels removed from septic animals often showed non-sustained contractions when exposed to NE (see Results Figure 3.4). In this circumstance, calculations of effective pressure were performed using the peak values. On the third activation step, 10µM acetylcholine (ACh) was applied at the peak of the NE-induced contraction to test for endothelial function (Figure 3.2a). Endothelial integrity was confirmed if a ≥50% relaxation was achieved; in practice an average relaxation of around 80% was observed (e.g. mean ± SEM: 75.7 ± 3.5% for n=29 vessels in initial characterisation studies).

3.2.3 Endothelial removal

In some experiments, the effect of endothelial removal on agonist-induced contractile responses was examined. In these studies, vessels were washed thoroughly after the standard start procedure. Following a 15 minute equilibration period, a force of 0.5mN was applied to the artery to be denuded by manually increasing the separation of the jaws by a few µm. Under light microscopy, a thick human hair was inserted into the vessel lumen using fine forceps. The luminal arterial surface was then rubbed gently along its length for five minutes, taking care not to damage the underlying muscle layer. The vessel was then returned to its normalised diameter, washed with PSS and left to equilibrate for a further 15 minutes. The standard start procedure was repeated (Section 3.2.2). Endothelial removal was considered successful if
Figure 3.2 Wire myography trace showing testing of endothelial function in a small mesenteric artery from a sham-operated rat

Trace from a freshly mounted arterial segment contracted with 5μM norepinephrine (NE) before and after endothelial removal with a single thread of hair. After a plateau was reached, 10μM acetylcholine (ACh) was applied before being washed out as indicated by arrows. In b), a <25% relaxation response to ACh demonstrates adequate endothelial removal.
the contractile response to NE was ≥95% of the force measurement previously recorded, and the relaxation produced by ACh was ≤25% (Figure 3.2b) (e.g. mean ± SEM: 18.1 ± 2.6% for n=16 vessels in initial endothelial removal studies).

3.2.4 Concentration-response curves

Thirty minutes after the standard start sequence and thorough washing of the myograph chamber, ascending cumulative doses of either NE (2x10^{-8} to 10^{-5} M), VP (10^{-11} to 3x10^{-8} M) or F-180 (10^{-10} to 3x10^{-7} M) were applied to the myograph chamber at fixed intervals: three minutes for NE and four minutes for VP and F-180. This approach allowed adequate time for the contractile response to peak prior to addition of the next dose of agonist, and was adopted in view of the non-sustained contractions observed in septic arteries when exposed to NE (see Results Figure 3.4b). In this circumstance, standardised recording of peak and sustained tension values was performed (see Results Figure 3.4a). When more than one concentration-response curve was performed, a 30 minute equilibration time was allowed between experiments, and the order in which agonists were applied varied.

The contribution of the V2R to vasopressin responses was investigated by adding a V2R antagonist (FE992082, 30nM) to the chamber 30 minutes before the addition of VP. In a series of experiments with sham arteries, eNOS was blocked by the addition of NG-nitro-L-arginine methyl ester (L-NAME, 100μM) to the bathing solution 30 minutes before the application of F-180.
3.2.5 Drugs and reagents

Norepinephrine (norepinephrine tartrate) was purchased from Abbott Laboratories. F-180 (V_1R agonist) and FE992082 (V_2R antagonist) were kindly donated by Ferring Pharmaceuticals. All other drugs and reagents were obtained from Sigma-Aldrich.

3.2.6 Data and statistical analysis

Unless otherwise stated, data are shown as mean ± SEM of n animals. Force measurements (mN) were corrected for vessel length to give tension values (N/m). Data were then analysed using GraphPad Prism software (GraphPad Software Inc, San Diego, CA, USA). Tension versus concentration data for individual experiments were plotted using a logistical fitting routine to produce a sigmoidal curve with a variable slope, according to the following equation:

\[
y = \text{min} + \frac{\text{max-min}}{1 + 10^{(\log EC_{50} - x)}} \text{Hill slope.}
\]

These individual fits were used to obtain values for agonist sensitivity (or potency), expressed as the negative log of the concentration required to produce 50% of the maximum tension (pD_2 or -log EC_{50}), and agonist efficacy, expressed as the maximal tension (E_{max}) response (Figure 3.3). The combined mean concentration-response curves for sham-operated and septic groups were compared using two-way ANOVA for repeated measures with Bonferroni post-hoc analysis for multiple comparisons. The mean EC_{50} and
Figure 3.3 A typical plot of tension against vasopressin concentration for a wire myograph experiment in a single vessel

\[E_{\text{max}} = 4.68 \]

Tension N/m

50 % max

\[[\text{VP}] \text{ M} \]

\[\text{EC}_{50} = 1.71 \text{nM} \]

\[pD_2 (-\text{lgEC}_{50}) = 8.77 \]

Tension is plotted on a linear scale and concentration on a logarithmic scale. The data were fitted to a sigmoid curve with a variable slope using the logistical function in GraphPad Prism software. From this, the maximal response \(E_{\text{max}} \) and the concentration producing 50% of this response \(\text{EC}_{50} \) can be estimated. By convention, the \(\text{EC}_{50} \) is expressed as the negative log value, \(pD_2 \). \(E_{\text{max}} \) is a measure of agonist efficacy and \(pD_2 \) is a measure of agonist sensitivity or potency.
\(E_{\text{max}} \) values were compared between two animal groups using Student’s t test (unpaired) or ANOVA when more than two groups were compared (i.e. for analysis of peak and sustained data in NE dose-response curves) (SPSS 15.0). In all analyses, a p value <0.05 was considered statistically significant.

3.3 Results

3.3.1 Preliminary studies with arteries from naïve rats

In preliminary experiments using vessels from non-instrumented rats, I was able to produce results comparable to those published describing use of the wire myograph with third order mesenteric arteries from naïve Wistar rats [Buus et al., 1994; McIntyre et al., 1998] (Table 3.1).
Table 3.1 Preliminary wire myography studies of small mesenteric arteries from naïve Wistar rats compared to published data

a) Preliminary studies

<table>
<thead>
<tr>
<th></th>
<th>Vessel diameter (µm)</th>
<th>Effective pressure (kPa)</th>
<th>Max Tension (N/m)</th>
<th>Potency of NE pD₂</th>
<th>Potency of VP pD₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SEM)</td>
<td>253 (9)</td>
<td>38.7 (1.70)</td>
<td>4.93 (0.31)</td>
<td>5.45 (0.04)</td>
<td>8.80 (0.07)</td>
</tr>
<tr>
<td>n (vessels)</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vessel diameter (µm)</th>
<th>Effective pressure (kPa)</th>
<th>Max Tension (N/m)</th>
<th>Potency of NE pD₂</th>
<th>Potency of VP pD₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean SEM</td>
<td>-</td>
<td>-</td>
<td>3.85 (0.25)</td>
<td>5.77 (0.05)</td>
<td>8.98</td>
</tr>
<tr>
<td>n (vessels)</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vessel diameter (µm)</th>
<th>Effective pressure (kPa)</th>
<th>Max Tension (N/m)</th>
<th>Potency of NE pD₂</th>
<th>Potency of VP pD₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean SEM</td>
<td>237 (6)</td>
<td>26.33 (1.78)</td>
<td>2.79 (0.28)</td>
<td>5.76 (0.08)</td>
<td>-</td>
</tr>
<tr>
<td>n (vessels)</td>
<td>107</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3.2 *Ex-vivo* reactivity of small mesenteric arteries to norepinephrine

Figure 3.4 shows a typical myograph recording from a norepinephrine dose-response experiment. The non-sustained nature of the contractions elicited by this agonist in arteries taken from septic animals (Figure 3.4b) necessitated measurement of both peak and sustained responses (Figure 3.4a).

Combined concentration-response curves of septic arteries were significantly right shifted (p<0.0001) when compared to sham-control arteries (Figure 3.5a), this effect being more pronounced when sustained tensions were plotted (Figure 3.5b). The efficacy of NE, as measured by maximum contractile response (E_{max}), was significantly decreased in arteries taken from septic animals, and again this was more marked when comparing sustained tension values (Table 3.2). Such analyses also un-masked a trend towards a decreased potency of NE in septic vessels (Table 3.2), though this did not reach statistical significance.
Figure 3.4 Myograph recordings in response to cumulative addition of norepinephrine (NE)

a) Complete force recording from a segment of small mesenteric artery from a sham-operated rat. Arrows indicate the addition of each NE dose (2x10^8 to 10^5 M). Peak (A-C) and sustained (B-C) tension measurements were made for each dose step.

b) Close-up view comparing portions of tension recordings from a sham-operated and a septic rat artery, showing the typical smaller, non-sustained contractions observed in the latter.
Figure 3.5 *Ex-vivo* reactivity of small mesenteric arteries to norepinephrine (NE)

a)

![Graph](image)

b)

![Graph](image)

Mean concentration-response curves of a) peak and b) sustained tension obtained from arteries taken from sham-operated (squares, n=9) and septic (triangles, n=12) rats

* *p* < 0.05 for comparison between sham and septic arteries*
Table 3.2 *Ex-vivo* reactivity to norepinephrine: E_{max} (maximal tension) and pD_2 (-logEC$_{50}$, potency) values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pD_2</td>
</tr>
<tr>
<td>Sham-operated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak</td>
<td>4.69</td>
<td>5.60</td>
</tr>
<tr>
<td>(0.24)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>sustained</td>
<td>3.83</td>
<td>5.59</td>
</tr>
<tr>
<td>(0.24)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Septic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak</td>
<td>2.98*</td>
<td>5.54</td>
</tr>
<tr>
<td>(0.28)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>sustained</td>
<td>1.57*</td>
<td>5.36</td>
</tr>
<tr>
<td>(0.35)</td>
<td>(0.11)</td>
<td></td>
</tr>
</tbody>
</table>

Values shown are mean (SEM).

* $p<0.05$ for comparison between sham and septic groups*
3.3.3 *Ex-vivo* reactivity of small mesenteric arteries to vasopressin and the V₁R agonist, F-180

Figure 3.6 shows a typical myograph recording from a vasopressin dose-response experiment. In arteries from sham-operated and septic rats, contractions elicited by both VP and F-180 were maintained across the four minute dose interval employed.

In contrast to the pattern observed with NE, there was a significant leftward shift \((p=0.016)\) of the VP concentration-response curves of septic compared to sham arteries, with minimal overall difference between peak and sustained measurements within groups (Figures 3.7a and b). VP efficacy \((E_{\text{max}})\) was not decreased in septic arteries, while \(pD_2\) values were significantly increased (Table 3.3). Results obtained with the selective V₁R agonist, F-180 showed an exaggeration of the changes seen with VP; there was a half log unit leftward shift of the septic artery concentration-response curve \((p<0.0001)\) (Figure 3.7c), and a significant increase in agonist efficacy and potency (Table 3.3). Again there were minimal differences between peak and sustained measurements within groups for this agonist (sustained data not shown).
Complete force recording from a segment of small mesenteric artery from a septic rat. Arrows indicate the addition of each VP dose (10^{-11} to 3x10^{-8} M).

In contrast to contractions elicited by NE in septic arteries, the peak response to each concentration of VP was maintained across the four minute dose interval employed. Dose-response recordings from sham-operated control arteries were of a similar morphology (not shown).
Figure 3.7 *Ex-vivo* reactivity of small mesenteric arteries to vasopressin (VP) and F-180

a)

![Graph a)

b)

![Graph b)

c)

![Graph c)

Mean vasopressin concentration-response curves of a) peak and b) sustained tension obtained from arteries taken from sham-operated (squares, n=9) and septic (triangles, n=13) rats

c) Mean F-180 concentration-response curves of peak tension obtained from arteries taken from sham-operated (squares, n=6) and septic (triangles, n=6) rats

* p<0.05 for comparison between sham and septic arteries*
Table 3.3 Ex-vivo reactivity to vasopressin and F-180: E_{max} (maximal tension) and pD_2 (-logEC$_{50}$, potency) values

<table>
<thead>
<tr>
<th></th>
<th>Vasopressin</th>
<th>F-180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pD_2</td>
</tr>
<tr>
<td>Sham-operated</td>
<td>5.00 (0.21)</td>
<td>8.74 (0.05)</td>
</tr>
<tr>
<td>n=9 (VP), 6 (F-180)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic</td>
<td>4.62 (0.23)</td>
<td>9.07* (0.04)</td>
</tr>
<tr>
<td>n=13 (VP), 6 (F-180)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) from plots of peak tension responses.

* $p<0.05$ and # $p=0.05$ for comparison between sham and septic groups
3.3.4 Effect of endothelial removal on vasopressin and F-180 responses

Removal of the endothelium from arteries taken from sham-operated rats did not alter reactivity to VP (Figure 3.8a and Table 3.4). However, arteries from septic animals became more sensitive to the effects of this agonist at concentrations below 3nM after endothelial rubbing (Figure 3.8b and Table 3.4).

In contrast to VP responses in sham arteries, a dramatic leftward shift of the F-180 concentration response curve was observed in sham vessels denuded of endothelium (p<0.001, Figure 3.9a). There was a clear increase in agonist sensitivity but only a trend to increased efficacy. In septic arteries, a small, but significant enhancement of F-180 potency was seen after endothelial removal (Figure 3.9b and Table 3.4).
Figure 3.8 Effect of endothelial removal on vasopressin (VP) concentration-response curves

a)

![Graph showing concentration-response curves for Tension vs [VP] M with error bars for different concentrations of VP.]

b)

![Graph showing concentration-response curves for Tension vs [VP] M with error bars for different concentrations of VP.]

a) Mean concentration-response curves of peak tension obtained with arteries taken from sham-operated rats with intact (squares, n=9) and denuded endothelium (triangles, n=4).

b) Mean concentration-response curves of peak tension obtained with arteries taken from septic rats, with intact (squares, n=13) and denuded endothelium (triangles, n=4)

* p<0.05 for comparison between vessels with intact and removed endothelium within sham-operated and septic groups
Figure 3.9 Effect of endothelial removal on F-180 concentration-response curves

a)

![Graph showing concentration-response curve for F-180 with tension (N/m) on the y-axis and [F180] M on the x-axis.]

b)

![Graph showing concentration-response curve for F-180 with tension (N/m) on the y-axis and [F180] M on the x-axis.]

a) Mean concentration-response curves of peak tension obtained with arteries taken from **sham-operated** rats with intact (squares, n=6) and denuded endothelium (triangles, n=6).

b) Mean concentration-response curves of peak tension obtained with arteries taken from **septic** rats, with intact (squares, n=6) and denuded endothelium (triangles, n=6)

* p<0.05 for comparison between vessels with intact and removed endothelium within sham-operated and septic groups
Table 3.4 Effect of endothelial removal: E_{max} and pD_2 values

a) Sham-operated arteries

<table>
<thead>
<tr>
<th></th>
<th>Vasopressin</th>
<th></th>
<th>F-180</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pD_2</td>
<td>E_{max}</td>
<td>pD_2</td>
</tr>
<tr>
<td>Endothelium intact</td>
<td>5.00</td>
<td>8.74</td>
<td>5.11</td>
<td>7.60</td>
</tr>
<tr>
<td>n=9(VP), 6(F-180)</td>
<td>(0.21)</td>
<td>(0.05)</td>
<td>(0.54)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Endothelium removed</td>
<td>5.23</td>
<td>8.82</td>
<td>6.17</td>
<td>8.00*</td>
</tr>
<tr>
<td>n=4(VP), 6(F-180)</td>
<td>(0.38)</td>
<td>(0.08)</td>
<td>(0.77)</td>
<td>(0.06)</td>
</tr>
</tbody>
</table>

b) Septic arteries

<table>
<thead>
<tr>
<th></th>
<th>Vasopressin</th>
<th></th>
<th>F-180</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pD_2</td>
<td>E_{max}</td>
<td>pD_2</td>
</tr>
<tr>
<td>Endothelium intact</td>
<td>4.62</td>
<td>9.07</td>
<td>6.84</td>
<td>8.18</td>
</tr>
<tr>
<td>n=13(VP), 6(F-180)</td>
<td>(0.23)</td>
<td>(0.04)</td>
<td>(0.56)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Endothelium removed</td>
<td>4.29</td>
<td>9.43*</td>
<td>6.30</td>
<td>8.38*</td>
</tr>
<tr>
<td>n=4(VP), 6(F-180)</td>
<td>(0.45)</td>
<td>(0.10)</td>
<td>(0.44)</td>
<td>(0.06)</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) from plots of peak tension responses.

* $p<0.05$ for comparison between vessels with intact and removed endothelium within sham-operated and septic groups.
3.3.5 Effect of nitric oxide synthase inhibition on contractile responses to F-180

The leftward shift of the F-180 concentration-response curve induced by endothelial denudation in sham-operated rat arteries was similar to that observed with the application of the NOS inhibitor, L-NAME (100μM), 30 minutes prior to agonist exposure (Figure 3.10).

Figure 3.10 Effect of L-NAME on contractile responses to F-180 in arteries from sham-operated rats

![Graph showing concentration-response curves](image)

*Mean concentration-response curves of peak tension obtained with arteries taken from sham-operated rats, in the presence (upward triangles, n=3) or absence (squares, n=9) of NG-nitro-L-arginine methyl ester (L-NAME) 100μM. The contractile response to F-180 in endothelium denuded sham-operated arteries from Figure 3.9a (dotted line, downward triangles) is overlaid for visual comparison.

* p<0.05 for comparison between endothelium-intact curves with and without L-NAME*
3.3.6 Role of V₂ receptor in vasopressin responses in small mesenteric arteries

As these studies were performed at a later date and in a cohort of animals separate to those in which ex-vivo reactivity to VP was characterised (Section 3.3.3), I first reconfirmed the overall pattern of enhanced responses in arteries from septic rats (Figure 3.11a). Endothelial removal had a similar effect on dose-response curves obtained from septic arteries (Figures 3.8b and 3.11c). Unlike previous studies, however, in this batch of experiments the sham-operated concentration-response curves to VP were shifted to the left following endothelial removal (Figure 3.8a and 3.11b).

Pre-incubation of vessels with the V₂ receptor antagonist, FE992082 (30nM), produced no statistically significant changes in the ex-vivo reactivity to VP in sham or septic arteries whether the endothelium was intact or removed (Figures 3.12 and 3.13 and Table 3.5). However, a numerical increase in the VP sensitivity of endothelium-intact sham vessels in the presence of the antagonist was observed (pD₂ 8.75 ± 0.10 vs. 8.57 ± 0.03, p=0.098).
Figure 3.11 Effect of endothelial removal on vasopressin (VP) concentration-response curves: V₂ receptor antagonist experimental cohort

a) Mean concentration-response curves of peak tension obtained from arteries taken from sham-operated (squares, n=8) and septic (triangles, n=6) rats
b) Mean concentration-response curves of peak tension obtained with arteries taken from sham-operated rats, with intact (squares, n=8) and denuded endothelium (triangles, n=6)
c) Mean concentration-response curves of peak tension obtained with arteries taken from septic rats, with intact (squares, n=6) and denuded endothelium (triangles, n=6)

* p<0.05 for comparison between sham and septic vessels in a), and between vessels with intact and removed endothelium within sham-operated and septic groups in b) and c)
Figure 3.12 Effect of V_2 receptor antagonist (FE992082) on vasopressin (VP) concentration-response curves in sham-operated rat arteries

a) Endothelium intact

![Graph showing concentration-response curves for V2 receptor antagonist effect on arteries with intact endothelium.]

b) Endothelium removed

![Graph showing concentration-response curves for V2 receptor antagonist effect on arteries with denuded endothelium.]

a) Mean concentration-response curves of peak tension obtained from arteries with intact endothelium in the presence (triangles, n=8) or absence (squares, n=8) of the V_2 receptor antagonist FE992082 (30nM).
b) Mean concentration-response curves of peak tension obtained with arteries with denuded endothelium in the presence (triangles, n=6) or absence (squares, n=6) of FE992082 (30nM).
Figure 3.13 Effect of V_2 receptor antagonist (FE992082) on vasopressin (VP) concentration-response curves in septic rat arteries

(a) Endothelium intact

(b) Endothelium removed

a) Mean concentration-response curves of peak tension obtained from arteries with intact endothelium in the presence (triangles, $n=7$) or absence (squares, $n=6$) of the V_2 receptor antagonist FE992082 (30nM)

b) Mean concentration-response curves of peak tension obtained with arteries with denuded endothelium in the presence (triangles, $n=6$) or absence (squares, $n=6$) of FE992082 (30nM)
Table 3.5 Effect of V\(_2\) receptor antagonist (FE992082) on \(E_{\text{max}}\) and \(pD_2\) values

a) Sham-operated arteries:

<table>
<thead>
<tr>
<th></th>
<th>Endothelium intact</th>
<th></th>
<th>Endothelium removed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{\text{max}})</td>
<td>(pD_2)</td>
<td>(E_{\text{max}})</td>
<td>(pD_2)</td>
</tr>
<tr>
<td>FE992082 - n=8(E+), 6(E-)</td>
<td>5.67</td>
<td>8.57</td>
<td>6.03</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.03)</td>
<td>(0.38)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>FE992082 + n=8(E+), 6(E-)</td>
<td>5.05</td>
<td>8.75</td>
<td>5.43</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.10)</td>
<td>(0.79)</td>
<td>(0.10)</td>
</tr>
</tbody>
</table>

b) Septic arteries:

<table>
<thead>
<tr>
<th></th>
<th>Endothelium intact</th>
<th></th>
<th>Endothelium removed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_{\text{max}})</td>
<td>(pD_2)</td>
<td>(E_{\text{max}})</td>
<td>(pD_2)</td>
</tr>
<tr>
<td>FE992082 - n=6(E+), 6(E-)</td>
<td>6.45</td>
<td>8.78</td>
<td>6.67</td>
<td>9.14</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.08)</td>
<td>(0.48)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>FE992082 + n=7(E+), 6(E-)</td>
<td>5.85</td>
<td>8.69</td>
<td>7.35</td>
<td>9.16</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.11)</td>
<td>(0.57)</td>
<td>(0.14)</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) from plots of peak tension responses.

There were no statistically significant differences found between FE992082 present and FE992082 absent values when compared within endothelium intact or removed groups.
3.3.7 *Ex-vivo* reactivity of tail arteries from sham-operated and septic rats

To examine the reactivity of a vascular bed further away from the initial site of infection, contractile responses to NE, VP and F-180 were examined in tail arteries taken from septic and sham-operated rats. These vessels had larger normalised diameters than the small mesenteric arteries used in previous experiments (c.500\(\mu\)m c.f. 200\(\mu\)m). I found there to be no significant differences between the sham and septic concentration-response curves obtained with any of the three agonists used (Figure 3.14 and Table 3.6). Moreover, in contrast to observations made with small mesenteric arteries, contractile responses to NE were sustained in nature in both septic and sham-operated rat vessels.
Figure 3.14 \textit{Ex-vivo} reactivity of tail arteries to norepinephrine (NE), vasopressin (VP) and F-180

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3_14}
\caption{Mean concentration-response curves of peak tension for a) norepinephrine, b) vasopressin and c) F-180 obtained from arteries taken from sham-operated (squares, \(n=5\)) and septic (triangles, \(n=5\)) rats.}
\end{figure}
Table 3.6 *Ex-vivo* reactivity of tail arteries to norepinephrine, vasopressin and F-180: E_{max} (maximal tension) and pD_2 (-logEC$_{50}$, potency) values

<table>
<thead>
<tr>
<th></th>
<th>Norepinephrine</th>
<th>Vasopressin</th>
<th>F-180</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pD$_2$</td>
<td>E_{max}</td>
</tr>
<tr>
<td>Sham-operated</td>
<td>12.03 (1.14)</td>
<td>5.89 (0.04)</td>
<td>7.76 (1.04)</td>
</tr>
<tr>
<td>n=5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic</td>
<td>11.23 (0.55)</td>
<td>6.22 (0.25)</td>
<td>8.17 (0.57)</td>
</tr>
<tr>
<td>n=5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) from plots of peak tension responses.

There were no statistically significant differences between sham-operated and septic arteries when compared for each agonist.
3.4 Discussion

I hypothesised that the heightened vascular reactivity to vasopressin observed in patients with septic shock was due to changes occurring within the resistance vasculature rather than through external influences from the autonomic nervous system. The method of wire myography described in this chapter permits direct investigation of the pharmacological properties of resistance arteries in an environment removed from the confounding effects of circulating vasoactive substances and neural inputs. Consistent with the in-vivo responses observed in anaesthetised rats (Sections 2.3.6 and 2.4.3), in arteries taken from septic animals after 24 hours of faecal peritonitis, I found decreased efficacy and potency of NE, but preserved efficacy and increased potency of VP. An exaggeration of the pattern of change of vascular reactivity to VP in sepsis was seen when dose-response studies were performed with the selective V_1R agonist, F-180. These results suggest that the V_1R vasoconstrictor pathway is up-regulated in mesenteric resistance arteries in this model of faecal peritonitis.

3.4.1 Ex-vivo vascular reactivity of small mesenteric arteries to norepinephrine

Hyporeactivity to catecholamines has been demonstrated in many ex-vivo and in-vitro animal models of sepsis [Baker & Wilmoth, 1984; Julou-Schaeffer et al., 1990]. Rat mesenteric arteries are frequently used in such studies [Mitolo-Chieppa et al., 1996; O'Brien et al., 2001], although some have reported
decreased NE responses in such small vessels to be dependent on exogenous L-arginine, the substrate for nitric oxide synthase [Schneider et al., 1992; Schneider et al., 1994; Martinez et al., 1996]. Hyporesponsiveness is likely to be multifactorial (Section 1.3.2), though down-regulation of α1Rs in response to high circulating catecholamine levels probably contributes [Hwang et al., 2003].

In addition to decreased maximal tension responses, I observed a marked difference in the morphology of the NE-induced contractions in septic rat arteries. Despite continued presence of agonist, contractions were often transient in nature, whereas those produced in sham vessels were largely maintained (Figure 3.4). This phenomenon has been reported previously [Martinez et al., 1996], and may indicate an alteration in calcium handling within the vascular smooth muscle. As described in Chapter 1 (Section 1.1.2), sustained vasoconstriction is dependent upon both elevation of intracellular Ca^{2+} (Ca^{2+} activation) and Ca^{2+} sensitisation [Horowitz et al., 1996; Wier & Morgan, 2003], and these processes may be altered in sepsis (Chapters 4 and 5). An alternative hypothesis is that NE cannot produce a sustained effect due to its rapid breakdown. Superoxide anions generated in sepsis auto-oxidise catecholamines, and in an in-vivo rat endotoxin model, administration of a superoxide dismutase mimetic was shown to reverse hyporeactivity to norepinephrine [Macarthur et al., 2000]. Whether a sufficient concentration of free radicals could be generated in the extracellular bathing fluid of the myograph chamber is unknown. Nevertheless, septic arteries tended to be normalised to smaller diameters than sham arteries (Section 3.2.2); this may
have been due to increased basal tone related to the production of superoxide anions [Hernanz et al., 2003].

3.4.2 Ex-vivo vascular reactivity of small mesenteric arteries to vasopressin and the V1 receptor agonist, F-180

Although ex-vivo hypersensitivity to vasopressin has been found in other rodent septic models [Baker et al., 1990; Tarpey et al., 1998], the current work represents the first demonstration of a temporal association of normal endogenous VP levels with heightened vascular reactivity to exogenous hormone. Depressed VP reactivity has been reported in studies where endotoxin or an NO-donor have been used to simulate sepsis in-vitro [Hamu et al., 1999; Leone & Boyle, 2006]. The discrepancy between these results and my data may relate to the ability of my model to more closely mimic the human condition. Interestingly, the point of maximal separation of the septic and sham-operated VP concentration-response curves (Figure 3.7a) corresponds to circulating plasma levels (c.100pg/ml) seen following treatment of septic patients with VP [Dunser et al., 2004a].

Increased vasopressinergic reactivity in septic arteries was more pronounced when V1R responses were selectively examined with F-180 (Figure 3.7c). Taken together, the VP and F-180 results suggest enhanced V1R–mediated vasoconstriction. The wider separation of the septic and sham-operated F-180 concentration-response curves compared to that seen with VP suggests that VP also activates non-V1R vasodilatory pathways, and that these may too be
up-regulated in sepsis. Enhanced V₁R-mediated contraction could be a consequence of increased receptor number or affinity, more efficient coupling to downstream second messengers, or alterations in Ca²⁺ handling mechanisms. Sustained contractile responses with VP and F-180 in septic arteries (Figure 3.6) imply adequate Ca²⁺ mobilisation and sensitisation. Whereas high circulating levels of catecholamines in sepsis might contribute to desensitisation of the α₁R, normal plasma VP concentrations provide no similar stimulus for V₁R down-regulation. However, two published studies have reported a decrease in V₁R gene expression in liver, lung, kidney and heart taken from rats exposed to endotoxin for up to 24 hours, although blood vessels were not examined [Roth & Spitzer, 1987; Bucher et al., 2002].

3.4.3 Role of the endothelium in vasopressin and F-180 responses

The effect of endothelial removal on vasopressin reactivity was examined in two cohorts of sham-operated and septic rats. In both sets of experiments, I found that arteries from septic animals became more sensitive to vasopressin after endothelial removal (Figure 3.8b and Figure 3.11c). The results obtained with endothelium-denuded sham vessels were inconsistent, with no change in VP responses in the first set of studies (Figure 3.8a), but a small increase in sensitivity in the second set (Figure 3.11b). Animal numbers were greater in the later cohort, but there was no difference between the percentage relaxation responses to ACh post endothelial removal in the two experimental sets (data not shown).
The finding that disruption of the endothelium can alter vasopressinergic reactivity confirms that part of the agonist response in intact arteries is mediated via this cell layer. The net vasoconstrictor or vasodilatory effect of VP within a vascular bed is likely to reflect the balance of different receptor subtypes within the regional vasculature (Figure 1.3). There is considerable evidence to support vasopressin-mediated vasodilatation via receptors located on the surface of endothelial cells, although whether V_1Rs, V_2Rs, OTRs or multiple subtypes are involved is controversial [Martinez et al., 1994; Tagawa et al., 1995; Okamura et al., 1997; Okamura et al., 1999; Thibonnier et al., 1999] (Section 1.2.2). The ability of vasopressin to increase thromboxane and endothelin synthesis means that endothelium-mediated vasoconstrictor actions are also feasible [Siess et al., 1986; Imai et al., 1992]. The increase in agonist sensitivity I found following endothelial rubbing implies net disruption of vasodilatory pathways. My results suggest that such pathways operate in both sham-operated and septic arteries, but possibly to a greater extent in the latter.

Further conclusions are difficult from the arginine-vasopressin studies as all receptor subtypes present would have been simultaneously activated by this agonist. Valuable information was gained from the comparable F-180 experiments, however. Endothelial removal in sham-operated arteries produced a profound increase in the sensitivity of this selective V_1R agonist (Figure 3.9a). This strongly supports the existence of this receptor subtype on the endothelium, which, under normal conditions, is activated to oppose the vasoconstrictor effect of V_1Rs on the smooth muscle layer. The similar increase in potency seen with the NOS inhibitor, L-NAME (Figure 3.10)
substantiates the hypothesis that the mechanism of vasorelaxation is via endothelial-derived NO, as previous studies have reported for vasopressin [Tagawa et al., 1993; Okamura et al., 1999]. In contrast to the results obtained with sham vessels, endothelial denudation of septic arteries produced only a small increase in F-180 potency. This difference could be explained by a specific dampening of the V₁R vasodilatory pathway in sepsis, or by the more pervasive effects on endothelial vasomotor control recognised in this clinical scenario [Scott et al., 2002; Aird, 2003].

3.4.4 Contribution of the V₂ receptor to vasopressin responses

In-vitro studies have demonstrated V₂R expression on human endothelial cells [Kaufmann et al., 2003], and infusion of the selective V₂R agonist, desmopressin to healthy human volunteers has been shown to produce forearm vessel dilatation [van Lieburg et al., 1995]. With this evidence supporting the existence of vascular V₂Rs in mind, I investigated the role of this receptor subtype in our model. To this end, I was kindly given FE992082, a compound developed by Ferring Pharmaceuticals to selectively block the V₂R in the rat. Unlike F-180, the selectivity data for this peptide antagonist has not been published, but the dose used in my experiments (30nM) was chosen on the basis of the V₁R and V₂R Kᵢ values (i.e. the concentration of antagonist required to produce a 50% decrease in receptor activity in the presence of a maximal concentration of agonist) provided by the manufacturer (65nM and 0.6nM, respectively).
Disappointingly, I found no statistically significant changes to vasopressin reactivity in arteries from sham-operated or septic rats, whether studied with or without an intact endothelium. The only hint that vasodilatory \(V_2 \)Rs were present was given by the trend towards increased VP sensitivity in the presence of FE992082 when endothelium-intact sham vessels were studied. An endothelial location for these receptors is suggested by the disappearance of this trend once the endothelium was removed. The lack of a similar effect in septic arteries conflicts somewhat with the preceding discussion in which enhanced non-\(V_1 \)R vasodilatory pathways in sepsis were proposed (Section 3.4.2).

These largely negative findings can be interpreted in several ways. A non-significant number of \(V_2 \)Rs may be present in small mesenteric arteries of the rat. Indeed, most studies reporting the presence of vascular \(V_2 \)Rs have been carried out in humans [Tagawa et al., 1993; Tagawa et al., 1995; Martinez et al., 1994; Kaufmann et al., 2003], and such binding sites could not be localised using a receptor selective radioligand in rat vessels [Phillips et al., 1990]. It may be that oxytocin receptors account for non-\(V_1 \)R-mediated relaxation rather than \(V_2 \)Rs [Thibonnier et al., 1999] (Figure 1.3). An alternative explanation is that an inadequate dose of the antagonist was used. A number of experiments were performed using three times the dose of FE992082 (100nM) (c.150 x \(K_i \)), but this produced no greater increase in VP sensitivity (data not shown). A further possibility is that the compound has inadequate selectivity for the \(V_2 \)R, and that any \(V_2 \)R-blocking effect promoting a contractile response is masked by a coincident \(V_1 \)R-blocking effect. A recent
consultation with Ferring Pharmaceuticals revealed that this may well be the case.

This experience highlights the limitations of using supposedly selective receptor agonists or antagonists, and stresses the need for further studies in which vasopressin receptor mRNA and protein expression are directly quantified.

3.4.5 Ex-vivo reactivity of tail arteries to norepinephrine, vasopressin and F-180

To determine whether the patterns of ex-vivo vascular reactivity demonstrated in sham and septic rat arteries were evident outside the mesenteric circulation, I investigated the responses of tail arteries from the same groups of animals to NE, VP and F-180. Rat tail arteries have been used in the wire myograph for other pharmacological investigations in our laboratory [Orie et al., 2006]. These vessels are easily accessible and are surrounded by little connective tissue, facilitating atraumatic dissection.

Neither hyporeactivity to NE nor hypersensitivity to VP or F-180 was observed in tail arteries from septic rats. Whilst this result raises questions as to the validity of our model, without broadening studies to other vascular beds it cannot be concluded that vasopressinergic hyper-reactivity is solely a characteristic of small mesenteric arteries. Separate investigations in our laboratory have demonstrated hyporeactivity to phenylephrine in aortic rings.
taken from septic rats after 24 hours of faecal peritonitis (unpublished data), but VP reactivity is yet to be studied in these tissues. The proximity of small mesenteric arteries to the site of the infectious insult might mean that changes induced by the septic process are more apparent here. In addition, the particular ability of V_1R agonists to produce vasoconstriction of the mesenteric circulation is acknowledged, both in the treatment of portal hypertension and with regard to adverse side effects of their use in septic shock [Pesaturo et al., 2006; Oliver & Landry, 2007].

The hypotension and altered in-vivo vasopressor responses in rats with faecal peritonitis (Chapter 2) are evidence of widespread, systemic circulatory changes consistent with septic shock. It should also be remembered that heterogeneity in tone across different vascular beds is well described in sepsis [Young, 2004]. Furthermore, tail arteries may be less representative of the resistance vasculature than small mesenteric vessels, by virtue of their larger internal diameters [Davis et al., 1986].

3.4.6 Summary

In agreement with my in-vivo vascular reactivity studies, ex-vivo responses to norepinephrine were diminished in mesenteric resistance arteries taken from septic rats after 24 hours of faecal peritonitis. By contrast, vasopressinergic contractile responses were enhanced in septic vessels when compared to the sham-control group. This supports my hypothesis of an up-regulation of V_1R-mediated smooth muscle vasoconstrictor pathways in sepsis. This may be
due to changes occurring at the level of the receptor or further downstream. In addition, the existence of endothelial \(V_1 \)Rs mediating vasodilatation via NO production is strongly suggested. This vasodilatory pathway appears depressed in sepsis.

Other receptors activated by vasopressin must be present in the mesenteric vascular bed to account for the differences observed between the VP and F-180 results. I was unable to demonstrate a role for the \(V_2 \)R, however. This is an area that clearly requires further investigation.
Chapter 4: Investigation of the calcium mobilisation pathways contributing to norepinephrine- and vasopressin-induced contractions in small mesenteric arteries

4.1 Introduction

In Chapter 3, I described the differential effects of prolonged *in-vivo* sepsis on *ex-vivo* mesenteric arterial responses to norepinephrine and vasopressin. The increased sensitivity of septic arteries to vasopressin and the V_1R agonist, F-180 supports my hypothesis that the vascular smooth muscle V_1R-mediated contractile pathway is up-regulated in this disease process. While this may be a consequence of elevated plasmalemmal receptor number and/or affinity, an additional or alternative possibility is that receptor coupling to downstream calcium signalling is altered. Increased contractile responses could result from larger increases in intracellular Ca^{2+} concentration and/or heightened sensitivity of the contractile apparatus to Ca^{2+} (Ca^{2+} sensitisation) following receptor stimulation. While hyporeactivity to NE in sepsis has been attributed to down-regulation of vascular smooth muscle α_1Rs [Hwang *et al.*, 1994; Hotchkiss & Karl, 2003], my observation of non-sustained NE-induced contractile responses in arteries taken from septic rats (Figure 3.4) could also suggest impairment of adrenoceptor-coupled calcium mobilisation.

As reviewed in Chapter 1, both α_1Rs and V_1Rs are coupled through $G_{q/11}$ to PLC, and the multiple pathways through which intracellular Ca^{2+} can be elevated following receptor stimulation are shown in Figure 1.2. Despite a
minor direct contribution to the myoplasmic Ca\(^{2+}\) pool in small arteries, emptying of the sarcoplasmic reticulum (SR) stores is thought to trigger a noteworthy Ca\(^{2+}\) influx via store-operated channels (SOCs) [Mulvany & Aalkjaer, 1990; Wier & Morgan, 2003]. There are two other types of sarcolemmal channel potentially mediating Ca\(^{2+}\) influx, namely the voltage-gated Ca\(^{2+}\) channel (VGCC), and the receptor-operated channel (ROC), a non-selective cation channel with significant permeability to Ca\(^{2+}\). The idea that the various Ca\(^{2+}\) release and entry mechanisms contribute differentially to the contractile responses produced by agonists acting at different receptors is not new [Cauvin et al., 1988; Large, 2002; Furutani et al., 2002; Bauer & Parekh, 2003]. Moreover, the septic disease process may selectively impair and/or enhance Ca\(^{2+}\) mobilisation pathways [Steendijk, 2005]. For example, the opening of K\(_{ATP}\) channels in septic shock produces vascular smooth muscle hyperpolarisation, which would reduce the activity of VGCCs [Clapp & Tinker, 1998; Oliver & Landry, 2006]. In isolated vascular smooth muscle cells, nitric oxide (NO) appears to be involved in the regulation of both SOC and ROC Ca\(^{2+}\) currents [Moneer et al., 2003]. Thus, supra-physiological NO levels in vasodilatory shock may impact on this regulation. Indeed, altered interactions between NO and calcium influx pathways have been shown to contribute to vascular dysfunction in animal models of pulmonary and portal hypertension [Atucha et al., 2005; Jernigan et al., 2006].

Through manipulation of the extracellular Ca\(^{2+}\) concentration and the use of drugs to differentially inhibit plasma membrane channels, the Ca\(^{2+}\) mobilisation profile activated by different receptors can be assessed. I used
such an approach in the wire myograph to dissect the pathways involved in mesenteric artery contractile responses to NE and VP. Responses were compared in vessels taken from rats with faecal peritonitis and from sham-operated controls.

4.2 Materials and Methods

4.2.1 Wire myography

Studies were performed on vessels taken from sham-operated and septic rats from the faecal peritonitis model described in Chapter 2. Twenty-four hours after intra-peritoneal injection of faecal slurry (or no injection in sham-operated controls), rats were deeply anaesthetised with isoflurane and then killed by cervical dislocation. Small mesenteric arteries were dissected as in Section 3.2.1. Arterial segments of 2mm in length were then mounted in an automatically operated dual chamber wire myograph (model 510A, Danish Myo Technology) for isometric tension recording (Figure 3.1). The vessels were bathed in 10ml of physiological salt solution (PSS), heated to 37°C and bubbled continuously with carbogen gas (95% O₂, 5% CO₂).

Thirty minutes after mounting, vessels were normalised to the physiologically realistic luminal diameters necessary for optimal force generation (Section 3.2.2). After a further 30 minutes’ equilibration period, arteries were activated by three exposures to 5μM NE as described in Section 3.2.2. Effective pressure calculations were performed to confirm adequate vessel viability
before commencing the experimental protocols described below. The removal of several arteries from each animal allowed fresh arterial segments to be used for each experimental protocol.

4.2.2 Contribution to contraction of sarcoplasmic reticulum Ca$^{2+}$ stores

The method employed is outlined in Protocol 1. Following activation, responses to E_{max} doses ("test doses") of NE (10μM) and VP (10nM) were measured. Extracellular Ca$^{2+}$ was removed by exchanging normal PSS for Ca$^{2+}$-free PSS, in which CaCl$_2$ was replaced with 1mM of the Ca$^{2+}$ chelator, EGTA. The subsequent contraction then produced by maximal agonist stimulation was deemed to be due solely to Ca$^{2+}$ release from the SR (Figure 4.1). Percentage contribution of the SR to contractile responses in each vessel was calculated as follows:

$$\text{Peak tension response in Ca}^{2+}\text{-free PSS} \times 100.$$
Test dose peak tension response in normal PSS

Equilibration periods in normal PSS between agonist stimulations ensured adequate store refilling and recovery. High dose caffeine (20mM) was used to assess total intracellular store capacity.

4.2.3 Contribution to contraction of store-operated channels

The roles of SR stores and SOCs were assessed as part of the same experimental protocol. Contractions resulting from Ca$^{2+}$ influx through SOCs
were measured when extracellular Ca2+ was returned following maximal agonist-mediated store depletion and then agonist wash-out (Figure 4.1) [Zhang et al., 2002]. Percentage contribution of SOCs to contractile responses in each vessel was calculated as follows:

\[\text{Peak tension response on Ca}^{2+}\text{-add back} \times 100. \]

Test dose peak tension response in normal PSS
Protocol 1: Ca\(^{2+}\)-free / add-back experiments

1. Normalisation

2. Activation \hspace{1cm} \text{NE 5\mu M x 3}

3. Test doses \hspace{1cm} \text{NE 10\mu M, VP 10nM}

4. Replace PSS with Ca\(^{2+}\) free PSS, leave 5 minutes

5. Caffeine 20\text{mM}

6. Wash x 3 with normal PSS and rest 10 minutes

7. Replace with Ca\(^{2+}\) free PSS, leave 5 minutes

8. Agonist 1, allow to plateau = SR response

9. Wash x 3 with Ca\(^{2+}\) free PSS, leave 5 minutes

10. Return Ca\(^{2+}\) as normal PSS, allow to plateau = SOC response

11. Wash x 3 with normal PSS and rest 10 minutes

12. Repeat 7-11 with Agonist 2

13. Repeat 7-11 with Agonist 1 or 2 (to check reproducibility)

14. Repeat 7-11 with Agonist 1 or 2 (whichever not used in 13)

15. Wash x 3 with normal PSS

\text{NE, norepinephrine; VP, vasopressin; SR, sarcoplasmic reticulum; SOC, store-operated channel}

\text{The vessels are exposed to each agonist (i.e. NE or VP) twice in steps 8-14 at the test dose in a random order.}
A sample wire myograph force recording taken from an experiment performed on an artery from a sham-operated rat. The artery was first exposed to a test dose of vasopressin (VP) in the presence of extracellular calcium (Ca$^{2+}$) to allow measurement of the maximal contractile response (A-D).

Later in the experiment, after 5 minutes' incubation in Ca$^{2+}$-free solution, the same dose of agonist was applied. C-D represents contraction arising from Ca$^{2+}$ released from intracellular stores. Agonist was then washed out, and after a further 5 minutes, Ca$^{2+}$ returned to the bathing solution. B-D represents contraction arising from Ca$^{2+}$ influx through store-operated channels.
4.2.4 Contribution to contraction of voltage-gated and receptor-operated channels

4.2.4.1 Nifedipine and LOE 908

The method employed is outlined in Protocol 2. Following activation, the responses to E_{max} doses ("test doses") of NE (10µM) and VP (10nM) were measured. These contractions were compared to responses produced in the same vessel after pre-incubation with either nifedipine (10µM), a blocker of L-type VGCCs, or LOE 908 (300nM), a blocker of ROCs [Furutani et al., 2002]. Inhibition was expressed as the percentage of contractile response remaining after channel blockade:

$$\frac{\text{Post blocker peak tension response}}{\text{Test dose peak tension response}} \times 100.$$

Application of high concentrations of K^+ produces vessel contraction resulting almost entirely from VGCC opening [Hathaway et al., 1991]. Nifedipine was therefore used at a concentration found to abolish the response to 50mM K^+ (Figure 4.2a). In preliminary concentration-response studies, LOE 908 partially inhibited the contraction produced by 50mM K^+ at micromolar doses. No inhibition of potassium-induced contraction was seen at 300nM (Figure 4.2b), so this concentration was used in all subsequent experiments.
Protocol 2: Ca²⁺ channel blocker experiments

1. Normalisation

2. Activation
 NE 5µM x 3

3. Test doses
 NE 10µM, VP 10nM

4. Channel blocker added to one vessel (chamber divided)

 LOE 908 (300nM) or nifedipine (10µM)
 leave 10 minutes

5. Agonist 1 to both vessels, allow to plateau

6. Wash x 3 with PSS, leave 5 minutes

7. Re-add same blocker to same vessel, leave 10 minutes

8. Repeat 5-7 with Agonist 2

9. Repeat 5-7 with Agonist 1 or 2 (to check reproducibility)

10. Repeat 5-7 with Agonist 1 or 2 (whichever not used in 9)

11. Wash x 3 with PSS

NE, norepinephrine; VP, vasopressin
Two vessels from the same animal are mounted, and the myograph chamber divided.
Only one vessel is exposed to the blocker, the other acts as a control.
Only one blocker used in each experiment.
The vessels are exposed to each agonist (i.e. NE or VP) twice in steps 5-10 at the test dose in a random order.
Figure 4.2 Effect of (a) nifedipine and (b) LOE 908 on 50mM K⁺-induced contractile responses

Since high concentration K⁺-induced contractions result almost entirely from VGCC-mediated Ca²⁺ influx, doses of nifedipine (10µM) and LOE 908 (300nM) were chosen to produce complete (a) and negligible (b) inhibition of 50mM K⁺ responses, respectively.
4.2.4.2 Bay K 8644

To complement the experiments using nifedipine, and to further investigate the effect of sepsis on the VGCC, additional studies were performed using the dihydropyridine agonist, (S)(-) Bay K 8644 [Schramm et al., 1985]. As enhanced opening of VGCCs was expected to potentiate contractile responses, sub-maximal test doses of NE (2μM) and VP (1nM) were used. Having measured contractile responses to these test doses of agonist, Bay K (10μM) was used in the myograph in the manner described for the blockers in Protocol 2. Percentage potentiation of contraction in each vessel was calculated as follows:

\[
\frac{(\text{Post Bay K peak tension response} - \text{Test dose peak tension response}) \times 100}{\text{Test dose peak tension response}}
\]

4.2.5 Drugs and solutions

Norepinephrine (norepinephrine tartrate) was purchased from Abbott Laboratories and LOE 908 was kindly donated by Boehringer-Ingelheim (Ingelheim, Germany). All other drugs and reagents were obtained from Sigma-Aldrich. Because of limited water solubility, nifedipine and Bay K 8644 were dissolved in dimethylsulfoxide (DMSO) (final concentration 0.1%). The presence of 0.1% DMSO alone in the myograph chamber was found to have no effect on vessel tone. Normal PSS was of the following composition (mM): NaCl 112, KCl 5, CaCl₂ 1.8, MgCl₂ 1, NaHCO₃ 25, KH₂PO₄ 0.5, NaH₂PO₄ 0.5,
and glucose 10. In high potassium PSS (KPSS), NaCl was replaced with an equimolar amount of KCl. To generate a solution containing 50mM K\(^+\), normal PSS was mixed (60:40) with KPSS. In Ca\(^{2+}\)-free PSS, 1mM EGTA was added and CaCl\(_2\) omitted.

4.2.6 Data and statistical analysis

Arteries from six sham-operated and six septic rats were studied in each set of experiments. Vessels from the same cohort of animals were used in the Ca\(^{2+}\) free / add-back and VGCC studies. Experiments using LOE 908 were performed at a later date using arteries taken from a separate batch of sham and septic rats. Peak force measurements (mN) were corrected for vessel length to give tension values (N/m). When agonist stimulations to the same vessel were repeated under similar conditions, the mean peak tension was calculated. Percentage contribution, inhibition and potentiation values for sham and septic groups are expressed as mean ± SEM. The means of the two groups were compared using Student’s t test (unpaired). A p value <0.05 was considered statistically significant.
4.3 Results

4.3.1 E_{max} responses to norepinephrine and vasopressin

The peak tension responses produced by E_{max} concentrations (test doses) of NE and VP (Figure 4.3) were similar to those reported for the ex-vivo vascular reactivity characterisation studies described in Chapter 3 (Tables 3.2 and 3.3). As shown previously, the E_{max} induced by NE was significantly reduced in septic vessels, whereas VP-induced contractions were maintained.
Figure 4.3 Peak tension responses induced by E_{max} doses of contractile agonists in Ca$^{2+}$ mobilisation studies

(a) Norepinephrine 10μM

(b) Vasopressin 10nM

Values shown are mean ± SEM of $n = 12$ animals (results from Ca$^{2+}$free / add-back, nifedipine and LOE 908 studies combined)

* $p<0.05$ for comparison between sham and septic groups
4.3.2 Contribution to contraction of sarcoplasmic reticulum Ca\(^{2+}\) stores and plasmalemmal store-operated channels

The contribution to contraction of both Ca\(^{2+}\) release from the SR and SOC-mediated Ca\(^{2+}\) influx were assessed within the same experimental protocol and hence these data are displayed together. Typical wire myograph recordings from sham-operated and septic arteries are shown in Figures 4.4 (NE) and 4.5 (VP). Table 4.1 and Figure 4.6 display the calculated percentage contributions to contraction of the SR and SOCs. In both sham-operated and septic arteries, contractions mediated via SR Ca\(^{2+}\) release were non-sustained in nature (Figures 4.4 and 4.5), and reached peak tension values \(\leq\)25\% of the \(E_{\text{max}}\) test dose response (Table 4.1). Contractile responses in septic arteries exposed to NE in the absence of extracellular Ca\(^{2+}\) were particularly small, though statistical analysis did not reveal any significant differences in the percentage contribution of SR Ca\(^{2+}\) release between agonists or animal groups. High dose caffeine (20mM) produced transient contractile responses of similar size in arteries from sham-operated and septic rats (1.04 \(\pm\) 0.16 N/m sham; 1.26 \(\pm\) 0.15 N/m septic).

In all arteries studied, re-addition of Ca\(^{2+}\) to the myograph chamber following NE-mediated intracellular store depletion produced negligible contractile responses. In contrast, Ca\(^{2+}\) influx via SOCs contributed significantly to VP-induced contractions, accounting for close to 20\% in controls, and almost 50\% of total tension in septic vessels.
Figure 4.4 Norepinephrine (NE)-induced contractile responses in Ca2+-free / add-back experiments

a) typical wire myograph force recording from sham-operated artery

b) typical wire myograph force recording from septic artery
Figure 4.5 Vasopressin (VP)-induced contractile responses in Ca2+-free / add-back experiments

a) typical wire myograph force recording from sham-operated artery

b) typical wire myograph force recording from septic artery
Table 4.1 Percentage contribution to contraction of SR Ca2+ release and SOC-mediated Ca2+ influx

<table>
<thead>
<tr>
<th>% contribution to contraction</th>
<th>Norepinephrine 10μM</th>
<th>Vasopressin 10nM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>Septic</td>
</tr>
<tr>
<td>SR</td>
<td>25.6 (5.0)</td>
<td>12.4 (5.2)</td>
</tr>
<tr>
<td>SOC</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>74.4</td>
<td>87.6</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) of n = 6 animals.
% values were calculated with respect to peak tension responses induced by \(E_{\text{max}}\) doses of agonist; "Other" was calculated as 100 - SR% - SOC% and is taken to represent contraction arising from Ca2+ released from other pathways not assessed in this protocol.
* \(p<0.05\) for comparison between sham and septic groups

Figure 4.6 Proportional contribution to contraction of SR Ca2+ release and SOC-mediated Ca2+ influx

a) Norepinephrine 10μM
b) Vasopressin 10nM

Percentage contributions SR and SOCs shown in Table 4.1 were used to proportionally divide the maximal agonist-induced contractile responses (Figure 4.3).
4.3.3 Contribution to contraction of voltage-gated Ca2+ channels

Addition of nifedipine (10\mu M) to the myograph chamber had no effect on basal vessel tone. Agonist stimulated contractions in both sham-operated and septic arteries were markedly inhibited, however, after 10 minutes' pre-incubation with the L-type VGCC blocker (Table 4.2 and Figure 4.7). NE-induced contraction was depressed to a greater extent than VP-induced responses. Least affected by nifedipine were the VP-mediated contractions in septic arteries; these were diminished by less than 50%, despite using a concentration that fully inhibited contractions to 50mM K+ (Figure 4.2a).

Unlike the consistent results obtained with nifedipine, use of the VGCC opener, Bay K 8644 (10\mu M) produced highly variable findings. Despite identical reagent preparation, addition of Bay K to the myograph increased basal vessel tone in sham-operated and septic arteries in some, but not all experiments. Furthermore, the potentiating effect of this compound on sub-maximal NE- and VP-induced contractions was erratic (Table 4.3), precluding meaningful data interpretation. Interestingly, however, Bay K reproducibly potentiated 50mM K+-induced responses to a greater extent in sham-operated than in septic arteries (Table 4.3 and Figure 4.8).
Table 4.2 Effect of nifedipine on agonist-induced contraction

<table>
<thead>
<tr>
<th></th>
<th>Norepinephrine 10μM</th>
<th></th>
<th>Vasopressin 10nM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>Septic</td>
<td>Sham</td>
</tr>
<tr>
<td>% nifedipine</td>
<td>26.6 (3.2)</td>
<td>16.6 (6.7)</td>
<td>40.7* (1.8)</td>
</tr>
<tr>
<td>insensitive</td>
<td>73.4</td>
<td>83.4</td>
<td>59.3</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) of n = 6 animals.
The nifedipine insensitive component of contraction was calculated as a percentage by dividing the peak agonist response in the presence of the Ca^{2+} channel blocker by the response obtained in the absence of blocker, and multiplying by 100. The nifedipine sensitive component was calculated as 100 – the nifedipine insensitive proportion.

* p<0.05 for comparison between NE- and VP-induced responses in sham vessels
p<0.05 for comparison between VP-induced responses in sham and septic vessels

Figure 4.7 Proportional contribution to contraction of nifedipine-sensitive VGCC-mediated Ca^{2+} influx

a) Norepinephrine 10μM
Nifedipine sensitive and insensitive percentages shown in Table 4.2 were used to proportionally divide the maximal agonist-induced contractile responses (Figure 4.3).
Table 4.3 Effect of Bay K on agonist-induced contraction

<table>
<thead>
<tr>
<th>% potentiation of contraction</th>
<th>Sham</th>
<th>Septic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine 2μM</td>
<td>62.7 (33.3)</td>
<td>83.5 (51.4)</td>
</tr>
<tr>
<td>Vasopressin 1nM</td>
<td>31.8 (21.0)</td>
<td>38.8 (29.8)</td>
</tr>
<tr>
<td>K⁺ 50mM</td>
<td>22.8 (2.6)</td>
<td>5.0* (1.0)</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) of n = 6 animals.

Bay K potentiation was calculated as follows:

\[
\text{(Post Bay K peak tension response – Test dose peak tension response)} \times 100
\]

Test dose peak tension response

* p<0.05 for comparison between sham and septic responses
Figure 4.8 Effect of Bay K on 50mM K⁺-induced contractile responses

Typical wire myograph recordings showing the effect of pre-incubation with Bay K on 50mM K⁺-induced contractile responses in a) sham-operated and b) septic arteries. The VGCC opener was found to produce greater potentiation of contraction in the former.
4.3.4 Contribution to contraction of receptor-operated channels

Addition of LOE 908 (300nM) to the myograph chamber had no effect on basal vessel tone. After ten minutes' pre-incubation, LOE 908 caused marked inhibition of NE-induced contractions but had little effect on VP-induced contractions (Table 4.4 and Figure 4.9). LOE 908 was most effective at inhibiting NE-mediated responses in septic arteries, these being diminished by 75% in the presence of this agent.
Table 4.4 Effect of LOE 908 on agonist-induced contraction

<table>
<thead>
<tr>
<th></th>
<th>Norepinephrine 10µM</th>
<th>Vasopressin 10nM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sham</td>
<td>Septic</td>
</tr>
<tr>
<td>% LOE 908 insensitive</td>
<td>61.1 (5.4)</td>
<td>24.3* (9.5)</td>
</tr>
<tr>
<td>% LOE 908 sensitive</td>
<td>38.9</td>
<td>75.7</td>
</tr>
</tbody>
</table>

Values shown are mean (SEM) of n = 6 animals.
The LOE insensitive component of contraction was calculated as a percentage by dividing the peak agonist response in the presence of the Ca^{2+} channel blocker by the response obtained in the absence of blocker, and multiplying by 100. The LOE sensitive component is calculated as 100 – the LOE insensitive proportion.

* p<0.05 for comparison between NE-induced responses in sham and septic vessels
p<0.05 for comparison between NE- and VP-induced responses in sham vessels

Figure 4.9 Proportional contribution to contraction of LOE 908-sensitive ROC-mediated Ca^{2+} influx

a) Norepinephrine 10µM

b) Vasopressin 10nM

LOE 908 sensitive and insensitive percentages shown in Table 4.4 were used to proportionally divide the maximal agonist-induced contractile responses (Figure 4.3).
4.4 Discussion

The aims of this section of my thesis were to compare the vascular smooth muscle Ca\(^{2+}\) mobilisation profiles utilised by norepinephrine and vasopressin, and to determine whether any differences exist that might account for the sepsis-induced changes in agonist vascular reactivity described in Chapter 3.

\(E_{\text{max}}\) doses of NE and VP were used to maximally activate receptors. Hence, these studies provide information most pertinent to the Ca\(^{2+}\) signalling mechanisms operating at the top of the agonist concentration-response curves. At this point, NE-induced contractile responses were significantly diminished, and were non-sustained in nature, in mesenteric arteries taken from septic rats (Figures 3.5 and 4.3). By contrast, VP-induced tensions were maintained, both in terms of magnitude and duration (Figures 3.7 and 4.3). I hypothesised that these changes in agonist efficacy reflect a selective preservation of the ability of vasopressin to effectively mobilise Ca\(^{2+}\) under septic conditions. The results presented suggest that this may be due to a lesser dependence of this agonist on voltage-gated and receptor-operated Ca\(^{2+}\) influx, and a greater dependence on store-operated Ca\(^{2+}\) influx, when compared to norepinephrine.

A drawback of the approach taken was that tension responses were measured as a surrogate of intracellular Ca\(^{2+}\) concentration. The relationship of Ca\(^{2+}\) concentration and tension is not linear, in part due to the phenomenon of Ca\(^{2+}\) sensitisation (Figure 1.1, and Chapter 5) [Somlyo & Somlyo, 2003]. In
addition, the Ca2+ influx via SOCs serves to refill intracellular stores as well contributing to activation of the myofilaments [Albert & Large, 2003]. Complex interactions exist between the various Ca2+ mobilisation mechanisms. For example, the non-selective cation current mediated by SOCs and ROCs can provide a depolarising stimulus to open VGCCs, while Ca2+ entry can produce further rises in intracellular Ca2+ by promoting its release from the SR, a process known as Ca2+-induced Ca2+ release [Wier & Morgan, 2003]. Thus, attempts to isolate individual pathways can be problematic. Despite these considerations, the methodology I employed did reveal clear differences in the mechanisms by which norepinephrine and vasopressin receptors are coupled to Ca2+ signalling pathways. This offers an important contribution to our understanding of changes in vascular reactivity to different agonists during sepsis.

4.4.1 Contribution to contraction of sarcoplasmic reticulum Ca2+ stores

The small, non-sustained tensions produced by NE and VP in the absence of extracellular Ca2+ suggest that SR Ca2+ stores provide little direct contribution to agonist-stimulated contraction in rat small mesenteric arteries. The similar responses observed upon application of caffeine also imply a small releasable Ca2+ pool in these vessels. Measurements of Ca2+ signals in isolated aortic smooth muscle cells have demonstrated that a large initial peak in intracellular Ca2+ results from agonist-mediated SR store release [Ruegg et al., 1989; Nakajima et al., 1996; Furutani et al., 2002]. A minor role for SR Ca2+ in tension development is supported, however, by the marked effect of
extracellular Ca2+ removal on contractile responses in several whole vessel preparations [Lagaud et al., 1999; Katori et al., 2001; Furutani et al., 2002; Villalba et al., 2007]. I found that in arteries taken from sham-operated rats, NE- and VP-induced responses were inhibited to a similar degree in Ca2+-free solution. This conflicts with findings in larger vessels suggesting that NE-induced contractions are more dependent on SR Ca2+ release than those triggered by VP [Cauvin et al., 1988; Bauer & Parekh, 2003].

An increased cytosolic Ca2+ concentration has been reported in vascular smooth muscle in sepsis, and this is attributed to abnormalities of intracellular Ca2+ storage [Martinez et al., 1996]. This concept has been widely investigated in the context of sepsis-related myocardial dysfunction, and although there is evidence to suggest altered function of both SR Ca2+ release channels and the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), study results have been inconsistent [Steendijk, 2005]. In my experiments, I found that caffeine produced equal contractile responses in sham-operated and septic arteries. This argues against significant impairment of SR store release in vascular smooth muscle during sepsis. Vasopressin produced Ca2+-free tensions similar in magnitude to caffeine-induced responses in sham and septic vessels (c.1N/m). Norepinephrine-induced tensions, however, were notably smaller in septic tissues (Figure 4.6). This does hint at a possible defect in adrenoceptor coupling to SR Ca2+ release channels.
4.4.2 Contribution to contraction of store-operated channels

Depletion of SR Ca\(^{2+}\) triggers influx of extracellular Ca\(^{2+}\) through cation channels located at the plasma membrane. This influx not only replenishes intracellular stores, but also contributes directly to contraction [Albert & Large, 2003]. While signalling mechanisms coupling SR depletion to channel activation remain poorly understood, several gating mechanisms including a calcium influx factor (CIF), lysophospholipids and PKC appear involved in SOC activation in smooth muscle [Albert & Large, 2006]. With regard to the molecular identity of SOCs, increasing evidence suggests that the transient receptor potential (TRP) family of proteins are integral components [Albert & Large, 2006]. SOC-mediated Ca\(^{2+}\) currents have been demonstrated in vascular smooth muscle using both NE and VP as stimulators [Wier & Morgan, 2003; Moneer et al., 2003; Brueggemann et al., 2006], and shown to provide a significant contribution to the contractile response [Zhang et al., 2002; Furutani et al., 2002]. The results of my Ca\(^{2+}\) add-back experiments in rat small mesenteric arteries support this argument for vasopressin, but indicate a negligible role for SOCs with norepinephrine (Figures 4.4 and 4.6). The explanation for this unexpected finding is not clear. A possible defect in NE–induced SR Ca\(^{2+}\) release in septic arteries (Section 4.4.1), may impair any store depletion-triggered signal to sarcolemmal channels, but this does not account for the absence of SOC-mediated contraction in sham vessels. Alternatively, NE-activated Ca\(^{2+}\) entry through SOCs may be sequestered directly into a subcellular compartment that has limited access to the contractile machinery [Villalba et al., 2007]. Another possibility is that SOCs
opened by NE are less Ca\(^{2+}\) permeable than those opened by VP. Influx of other cations might still be expected to produce contraction, however, secondary to cell depolarisation and VGCC activation [Villalba et al., 2007].

In arteries obtained from septic rats, the contribution of SOCs to VP-induced contraction was significantly greater than in sham vessels. This implies decreased reliance on the other sarcolemmal Ca\(^{2+}\) channels, ROCs and VGCCs. If membrane hyperpolarisation in sepsis impairs the function of the latter [Clapp & Tinker, 1998; Oliver & Landry, 2006], vasopressin’s ability to mobilise Ca\(^{2+}\) via SOCs could be one explanation to account for its preserved contractile efficacy. To date, no published work has reported enhanced SOC activity in sepsis. Of relevance, NO is important for the regulation of SOCs [Moneer et al., 2003; Atucha et al., 2005; Jernigan et al., 2006]. Thus, iNOS activation in sepsis could impact on their activity.

4.4.3 Contribution to contraction of nifedipine-sensitive voltage-gated Ca\(^{2+}\) channels

Although both L-type and T-type (long-lasting and transient, respectively) voltage-gated calcium channels are described in smooth muscle, the role of the former in vasoconstriction is far better understood [Horowitz et al., 1996]. An important role for Ca\(^{2+}\) influx through L-type VGCCs is suggested by the marked inhibition by nifedipine of NE- and VP-induced contractions in arteries from both sham-operated and septic animals. Consistent with the greater VP-mediated activation of SOCs discussed in the last section, responses to this
agonist were less affected than those to NE by VGCC blockade, particularly in septic vessels (Figure 4.7). The profound reduction of NE-mediated contraction in septic arteries following pre-incubation with nifedipine indicates that VGCCs can still be significantly activated at a maximal dose of agonist, despite the underlying membrane hyperpolarisation that is likely to be occurring in sepsis. Nevertheless, the decreased ability of Bay K 8644 to potentiate potassium-induced contractions in septic compared to sham arteries hints at an underlying dysfunction of these channels.

Several studies provide evidence for VGCC abnormalities in septic shock. Decreased L-type Ca$^{2+}$ channel currents have been demonstrated in cardiac myocytes from endotoxic guinea pigs [Zhong et al., 1997], and also in arteriolar smooth muscle cells harvested from rats in haemorrhagic shock [Zhao & Zhao, 2007]. A reduction in dihydropyridine binding sites in septic cardiac muscle has been found by some [Lew et al., 1996] but not other investigators [Ives et al., 1986]. In-vivo enhanced pressor responses to Bay K 8644 in endotoxic animals [Ives et al., 1986; Preiser et al., 1991] oppose a decrease in VGCC number. Ex-vivo, however, contractile responses to this agent were depressed in aortic rings from LPS treated rats [Biguad et al., 1990]. Furthermore, Bay K 8644 was unable to reverse the impairment in endotoxic myocyte VGCC-mediated currents [Zhong et al., 1997].
4.4.4 Contribution to contraction of receptor-operated channels

Like SOCs, receptor-operated channels mediate a non-selective cation current with variable permeability to Ca\(^{2+}\), and are structurally comprised of TRP proteins. ROC activation, however, requires G protein-coupled receptor stimulation, with DAG acting as the key second messenger [Large, 2002; Albert & Large, 2006].

From the relative contributions of SR stores, SOCs and VGCCs deduced from the experiments discussed so far, little effect of ROC blockade on NE- and VP-induced contractions was expected. This was borne out in my findings with VP, but not with NE, where the ROC blocker, LOE 908 significantly inhibited contractions in all arteries studied. This suggests that ROC-mediated Ca\(^{2+}\) influx is important for NE- but not VP-induced contraction. However, if, the percentages of the NE-induced contractions sensitive to nifedipine and LOE 908 are combined, values greater than 100% result (Tables 4.2 and 4.4). This must be attributed to some degree of overlap in the Ca\(^{2+}\) channel blockade produced by these agents. By virtue of the high dose used (10\(\mu\)M), nifedipine may have been acting in a non-specific manner, thus the contribution from VGCCs could have been overestimated. Non-specific effects of LOE 908 are less likely as this compound has been shown to have good selectivity for ROCs over other types of plasma membrane Ca\(^{2+}\) channel even up to \(\mu\)M concentrations [Iwamuro et al., 1999]. Despite this, I found that potassium-induced contractions were partially inhibited at this dose, suggesting blockade of VGCCs, and necessitating its use at a lower
concentration (300nM). As for SOCs, depolarisation consequent to cation influx via ROCs is a recognised mechanism of VGCC activation [Large, 2002; Wier & Morgan, 2003], and provides an alternative plausible explanation for the overlap in inhibition. NE responses were more sensitive to LOE 908 in septic than in sham vessels (Figure 4.9). This mirrors the pattern of effect of nifedipine on NE-induced contractions (Figure 4.7), and may therefore have been a consequence of the overlap in channel blockade.

The almost complete insensitivity of VP-induced responses to LOE 908 could be viewed as surprising, given that ROC-mediated Ca^{2+} influx appears as important as SOC-mediated Ca^{2+} influx for vasopressin-induced contractions in rat aorta, and to have a greater contribution to VP- than NE-stimulated responses [Furutani et al., 2002]. Moreover, in cultured aortic smooth muscle cells, ROCs have been demonstrated as the predominant Ca^{2+} entry pathway following vasopressin stimulation [Broad et al., 1999; Moneer et al., 2003]. The discrepancy between my results and this published data may relate to the differences in type and size of vessel investigated [Large, 2002; Bauer & Parekh, 2003]. Furthermore, whether a pharmacological or electrophysiological approach is taken, definitive separation of SOC and ROC currents is difficult in view of their similar cation selectivity and molecular structure. Although non-selective cation influx via ROCs would be expected to trigger vasoconstriction via VGCC activation, it is also possible that VP- and NE-activated ROCs have different Ca^{2+} permeability and that by measuring the effects of these agonists on contraction rather than on ion currents the activity of the former could be overlooked.
4.4.5 Summary

My results clearly suggest that the Ca$^{2+}$ mobilisation pathways stimulated by norepinephrine and vasopressin in small mesenteric arteries are not the same. In these resistance vessels, SOC-mediated Ca$^{2+}$ influx is important for VP- but not NE-induced contraction. Moreover, VGCC-mediated, and probably ROC-mediated, Ca$^{2+}$ influx provide a greater contribution to NE- than VP-stimulated responses. Sepsis was seen to have a marked effect on the pathways contributing to the contractile responses produced by vasopressin, with increased reliance on SOCs but decreased reliance on VGCCs. This may well be of significance in view of the VGCC dysfunction described in septic vascular smooth muscle. Little published work has focussed upon the effects of sepsis on store- or receptor-operated Ca$^{2+}$ channels. However, endotoxin-treated knockout mice deficient in TRP vanilloid 1 (TRPV1), coding for a non-selective cation channel, showed enhanced hypotension and inflammation compared to wild-type controls, suggesting a potentially protective role for such channels in sepsis [Clark et al., 2007].
Chapter 5: Investigation of the calcium-tension relationships of norepinephrine- and vasopressin-induced contractions in small mesenteric arteries

5.1 Introduction

Studies investigating calcium-tension relationships in vascular smooth muscle have revealed that the force generated at a given level of intracellular Ca\(^{2+}\) depends upon the type of excitatory stimulus applied. This led to the recognition of Ca\(^{2+}\) sensitisation, defined as agonist-induced muscle contraction in the absence of an increase in intracellular Ca\(^{2+}\) [Somlyo & Somlyo, 2003]. While the onset of contraction is dependent on Ca\(^{2+}\) activation of myosin light chain kinase, Ca\(^{2+}\) sensitisation is important in sustaining tension (Figure 1.1) [Horowitz et al., 1996]. Although many mechanisms of Ca\(^{2+}\) sensitisation have been proposed in smooth muscle [Somlyo & Somlyo, 2003; Wier & Morgan, 2003], the best characterised is via inhibition of myosin light chain phosphatase (MLCP) following sarcolemmal G protein-coupled receptor stimulation (Figures 1.1 and 1.3) [Sward et al., 2000; Hirano, 2007]. Work with small resistance arteries suggests the involvement of several kinases including PKC and ROK as second messenger molecules [Buus et al., 98; Martinez et al., 2000; Wier & Morgan, 2003]. These enzymes are activated downstream of \(V_1\) and \(\alpha_1\) receptors, but appear to contribute differently to VP- and NE-induced contractile responses [Bauer & Parekh, 2003]. This may be relevant in septic shock, as vasodilatation is partly
attributed to decreased Ca^{2+} sensitivity of the vascular smooth muscle contractile apparatus [Landry & Oliver, 2001; Mansart et al., 2006].

In Chapter 4, I demonstrated the ability of VP to mobilise Ca^{2+} more effectively than NE in arteries taken from septic animals. Such an effect may account for the ex-vivo results described in Chapter 3 where VP-induced E_{max} responses were preserved in septic arteries, whereas those to NE were markedly reduced. An intriguing possibility is that, in addition to maintaining Ca^{2+} activation of the contractile apparatus, the heightened potency of VP in septic vessels may also reflect increased Ca^{2+} sensitivity.

To investigate this, I simultaneously measured changes in tension and intracellular Ca^{2+} induced by NE and VP in small mesenteric arteries taken from sham-operated and septic rats. This involved combining wire myography with fluorescence microscopy, a method used in several published Ca^{2+}-tension relationship studies [Bian & Bukoski, 1995; Thomas et al., 2005; Trautner et al., 2006; Villalba et al., 2007].

5.2 Materials and Methods

5.2.1 Wire myography

Studies were performed on vessels taken from sham-operated and septic rats from the faecal peritonitis model described in Chapter 2. Twenty-four hours after intra-peritoneal injection of faecal slurry (or no injection in sham-operated
controls), rats were deeply anaesthetised with isoflurane and then killed by cervical dislocation. Small mesenteric arteries were dissected as in Section 3.2.1. Arterial segments of 2mm in length were then mounted in an automatically operated dual chamber wire myograph (model 510A, Danish Myo Technology) for isometric tension recording (Figure 3.1). The vessels were bathed in 10ml of PSS, heated to 37°C and bubbled continuously with carbogen gas (95% O₂, 5% CO₂).

Thirty minutes after mounting, vessels were normalised to the physiologically realistic luminal diameters necessary for optimal force generation (Section 3.2.2). After a further 30 minutes’ equilibration period, arteries were activated by three exposures to 5μM NE as described in Section 3.2.2. Effective pressure calculations were performed to confirm adequate vessel viability. The contractile response to high potassium PSS (KPSS) was also measured in each artery. This was taken to represent maximal agonist-independent tension response, and compared to later KPSS stimulations to exclude vessel damage during the course of the experiment.

5.2.2 Fura-2 loading and fluorescence microscopy

After activation with NE and KPSS, mounted arterial segments were loaded with 10μM of the cell-permeable dye, Fura-2 acetoxymethyl ester (Fura-2 AM, Invitrogen, Carlsbad, CA, USA). This ratiometric dye was chosen to minimise the effects of uneven dye loading, dye leakage, and photobleaching, as well as the problems associated with measuring Ca²⁺ in cells of unequal thickness.
Intracellular non-specific esterases hydrolyse the AM ester to formaldehyde and acetic acid, liberating the Ca\(^{2+}\)-sensitive indicator which, because of its poor lipid solubility, remains trapped inside the cell. After one hour’s incubation of the dye at 37°C, the myograph chamber was washed, the carbogen gas switched off, and normal PSS exchanged for a HEPES- (4-(2-hydroxyethyl)-1-pipirazine-ethanesulfonic acid) buffered salt solution (pH 7.4 with NaOH). This allowed subsequent microscopy to be performed at a stable, physiological pH without the problem of image distortion due to bubbling of the bathing fluid with carbogen. Vessels were then re-stimulated with KPSS to ensure responses had not been affected by the solution change or dye loading.

The myograph, which has glass windows covering the base of the chamber, was placed on the stage of an inverted Olympus IX71 fluorescence microscope (Olympus, Tokyo, Japan). Excitation wavelengths of 340 and 380nm were delivered to arteries at a frequency of 0.33Hz with a Polychrome IV monochromator Illuminator (TILL Photonics, Munich, Germany). The emitted light was passed through a 440nm long-pass filter and signals recorded by an Imago CCD camera (TILL Photonics). Digital images thus obtained were analysed with TILL visION software (TILL Photonics). Regions of interest (ROIs) were manually selected from still images and after background subtraction, the 340:380nm ratio (R340/380) values were calculated. These values are proportional to Ca\(^{2+}\) concentration.
5.2.3 Simultaneous force and intracellular Ca2+ recording

To best assess any change in vascular smooth muscle Ca2+ sensitivity due to prolonged sepsis, earlier concentration-response studies (Chapter 3) were reviewed to determine doses at which sham-operated and septic artery curves were maximally separated: 5μM for NE (c.EC\textsubscript{90}) (Figure 3.5) and 1nM for VP (c.EC\textsubscript{50}) (Figure 3.7). Unexpectedly, however, preliminary studies using the HEPES-buffered solution revealed small rightward shifts of agonist potency when compared to experiments performed in normal PSS. In this bathing solution, the largest changes in contraction induced by sepsis were seen at 10μM NE and 3nM VP. These doses were therefore used in the fluorescence microscopy protocol. In each experiment, one vessel from a sham rat and one vessel from a septic rat were used. The kinetics of both force and Ca2+ fluorescence were simultaneously recorded before, during and after stimulation with single doses of NE and VP. Both contraction and intracellular Ca2+ changes were allowed to plateau before agonist washout. Only when these returned to baseline was the next agonist added. The order of NE and VP administration was varied, and each experiment was ended with a control stimulation with KPSS. Figure 5.1 shows some typical snapshot still images obtained using this protocol.
Figure 5.1 Fluorescence microscopy of small mesenteric arteries

a) Typical time-dependent changes in intracellular Ca$^{2+}$ from a (septic) small mesenteric artery stimulated with 10μM norepinephrine (NE), 3nM vasopressin (VP) and 117.5mM K$^+$ (KPSS).

![Graph showing fluorescence changes](image)

Ca$^{2+}$ concentration is expressed as the background-corrected 340 to 380nm fluorescence ratio (R340/380).

b) A selection of still images taken from the experiment shown above

![Image no 1: pre NE](image)

![Image no 45: peak of NE response](image)

![Image no 200: pre VP](image)

![Image no 325: peak of VP response](image)

![Image no 490: pre KPSS](image)

![Image no 498: peak of KPSS response](image)
5.2.4 Drugs and solutions

Norepinephrine (norepinephrine tartrate) was purchased from Abbott Laboratories. Fura-2 AM and Pluronic F-127 were acquired from Invitrogen. All other drugs and reagents were obtained from Sigma-Aldrich. Fura-2 was dissolved in a 3:1 mixture of DMSO and 2% Pluronic F-127 (final concentrations 1% and 0.005%, respectively). The addition of the dye solution to the myograph chamber was found to have no effect on vessel tone. Normal PSS was of the following composition (mM): NaCl 112, KCl 5, CaCl₂ 1.8, MgCl₂ 1, NaHCO₃ 25, KH₂PO₄ 0.5, NaH₂PO₄ 0.5, and glucose 10. In high potassium PSS (KPSS), NaCl was replaced with an equimolar amount of KCl, to give a final K⁺ concentration of 117.5mM. HEPES-buffered PSS contained (mM): NaCl 135, KCl 5, NaOH 4.5, HEPES 10, CaCl₂ 1.8, MgCl₂ 1, and glucose 10.

5.2.5 Data and statistical analysis

Arteries from six sham-operated and six septic rats were studied. In each vessel, the peak increases in force and intracellular Ca²⁺ following application of each agonist were measured (Figure 5.2). Force measurements (mN) were corrected for vessel length to give tension values (N/m), while intracellular Ca²⁺ concentrations were expressed as 340:380nm ratios (R340/380). Results were combined to examine differences between sham and septic groups. In addition, sham-operated and septic artery data were compared within
Figure 5.2 Analysis of simultaneous wire myograph and fluorescence ratio recordings from a (sham-control) small mesenteric artery

(a)

For each vessel studied, measurements of peak force and peak Ca$^{2+}$ increase following agonist application were measured from a) the myograph, and b) the fluorescence kinetic traces, respectively. Ca$^{2+}$ concentration is expressed as the background-corrected 340 to 380nm fluorescence ratio (R340/380).
experiments (i.e. six sham-septic animal pairs). Pairs of means were compared using Student's t test (unpaired). A p value <0.05 was considered statistically significant.

5.3 Results

5.3.1 Peak tension responses

At concentrations close to the maximal agonist dose, NE-induced contractions were significantly smaller in arteries taken from septic animals when compared to the control group (Figure 5.3a). By contrast, VP, at an approximately EC_{50} dose, produced significantly greater tensions in septic arteries (Figure 5.3b). The contractions induced by KPSS were of a similar magnitude in the two groups (sham 5.74 ± 0.33 N/m; septic 5.26 ± 0.84 N/m, p=ns).
Figure 5.3 Peak tension responses induced by single doses of contractile agonists in Ca2+ sensitisation studies

a) Norepinephrine 10μM

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{norepinephrine_bar_chart.png}
\caption{Norepinephrine 10μM}
\end{figure}

\begin{itemize}
\item Tension (N/m)
\item sham: \quad \text{bar with dotted pattern}
\item septic: \quad \text{bar with solid pattern}
\item * indicates statistical significance at p<0.05
\end{itemize}

b) Vasopressin 3nM

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{vasopressin_bar_chart.png}
\caption{Vasopressin 3nM}
\end{figure}

\begin{itemize}
\item Tension (N/m)
\item sham: \quad \text{bar with dotted pattern}
\item septic: \quad \text{bar with solid pattern}
\item * indicates statistical significance at p<0.05
\end{itemize}

Values shown are mean ± SEM of n = 6 animals.

* p<0.05 for comparison between sham and septic groups
5.3.2 Baseline intracellular Ca2+

Measurements of baseline intracellular Ca2+ concentration were made before the contractile agonists were applied. Consistently higher 340:380nm ratios were seen in arteries taken from septic rats compared with those measured in vessels from sham animals (Figure 5.4).

Figure 5.4 Basal intracellular Ca2+ measurements in small mesenteric arteries

![Graph showing R340/380 ratio for sham and septic groups]

Values shown are mean ± SEM of n = 6 animals.

Ca2+ concentration is expressed as the background-corrected 340 to 380nm fluorescence ratio (R340/380).

p < 0.05 for comparison between sham and septic groups
5.3.3 Agonist-induced increases in intracellular Ca^{2+}

In parallel with the findings for tension responses, NE-induced increases in intracellular Ca^{2+} in septic arteries were markedly smaller than those stimulated in vessels from sham-operated controls (Figures 5.3a and 5.5a). Despite enhanced contractile responses to vasopressin in septic vessels (Figure 5.3b), the concomitant elevation in intracellular Ca^{2+} induced by VP was not significantly greater in this group (Figure 5.5b). As noted for KPSS-induced tensions, high K^+ produced similar increases in Ca^{2+} in sham and septic arteries ($\Delta R_{340/380}$: 0.34± 0.05 and 0.25 ± 0.04, respectively, p=ns).

As an alternative method of data analysis, for each individual experiment the corresponding tension and Ca^{2+} responses produced in septic and sham vessels were compared for each agonist. The resulting septic:sham ratios were then combined for analysis across experiments. For norepinephrine, both tension and Ca^{2+} responses in septic arteries were approximately half that of the comparable measurements made in control vessels (Figure 5.6a). With vasopressin, contractions were increased by 2.5-fold in septic vessels but the Ca^{2+} response remained unchanged, thus giving a ratio close to 1 (Figure 5.6b).
Figure 5.5 Peak increases in intracellular Ca$^{2+}$ induced by single doses of contractile agonists in Ca$^{2+}$ sensitisation studies

a) Norepinephrine 10μM

$\Delta R_{340/380}$

<table>
<thead>
<tr>
<th>sham</th>
<th>septic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Values shown are mean ± SEM of n = 6 animals.

$\Delta R_{340/380}$ is the fluorescence ratio 340:380nm calculated as the plateau agonist response minus that obtained pre-agonist exposure.

* p<0.05 for comparison between sham and septic groups
Figure 5.6 Septic:sham ratios for individual agonist responses

a) Norepinephrine 10μM

Values shown are mean ± SEM of n=6 experiments. The dotted lines represent equal responses in sham and septic arteries (fold increase = 1). Ca^{2+} concentration is expressed as the background-corrected 340 to 380nm fluorescence ratio (R340/380). ΔR340/380 is the fluorescence ratio 340:380nm calculated as the plateau agonist response minus that obtained pre-agonist exposure.
5.4 Discussion

By combining wire myography and fluorescence microscopy, I was successful in examining the Ca\(^{2+}\)-tension relationships underlying norepinephrine- and vasopressin-induced contractions in small mesenteric arteries. The results presented in Chapter 4 suggest that the Ca\(^{2+}\) signals downstream of V\(_1\) and α\(_1\) receptor activation are not the same. Furthermore, the experiments described in the current chapter have revealed an alteration in the VP, but not NE, Ca\(^{2+}\)-tension relationship in sepsis. Thus, enhanced vascular reactivity to vasopressin in septic shock may reflect heightened Ca\(^{2+}\) sensitivity of the contractile apparatus induced by this agonist.

5.4.1 Peak tension responses

To best assess sepsis-induced changes in agonist-specific Ca\(^{2+}\) sensitivity, I examined responses at agonist doses which highlighted the maximal sham and septic differences in vascular reactivity. Comparing the tension values displayed in Figure 5.3 with those of earlier concentration-response curves shown in chapter 3 (Figures 3.5 and 3.7) confirms that this aim was achieved. In addition, the similar sized contractions to high-dose potassium in both sham and septic arteries imply that, despite differences in NE and VP reactivity, the contractile machinery is not damaged in my septic model.
5.4.2 Baseline intracellular Ca$^{2+}$

Basal intracellular Ca$^{2+}$ levels were higher in small resistance arteries taken from septic rats. This pattern has been previously reported in both mesenteric arteries and aortae taken from other rat models of sepsis induced by either endotoxin [Martinez et al., 1996] or caecal ligation and puncture [Song et al., 1993]. This elevation in cytosolic Ca$^{2+}$ may reflect sepsis-related disturbances of one or more of the Ca$^{2+}$ mobilisation pathways discussed in Chapter 4, or indicate a defect in re-uptake of Ca$^{2+}$ back into the SR. In sepsis induced by CLP, ATP-dependent Ca$^{2+}$ uptake into cardiac SR was unimpaired after nine hours, yet decreased at 18 hours [Wu et al., 2001], an effect associated with reduced phosphorylation of phospholamban [Wu et al., 2002]. Therefore, defects in the SERCA may contribute to contractile failure in the vasculature. Furthermore, increased basal intracellular Ca$^{2+}$ may provoke metabolic dysfunction in vascular smooth muscle, as demonstrated in endotoxin-treated hepatocytes [Portoles et al., 1991].

5.4.3 Agonist-specific Ca$^{2+}$ sensitivity

Comparison of the peak tension and peak Ca$^{2+}$ increases induced by NE and VP revealed obvious differences between the two agonists. This was borne out by analysis of data both across and within experiments. For norepinephrine, tension and Ca$^{2+}$ responses were reduced in parallel when septic arteries were compared to sham-controls. This indicates no change in the Ca$^{2+}$-tension relationship for this agonist. By contrast, vasopressin
produced a 2.5-fold greater rise in peak tension in septic arteries for a comparable peak change in Ca\(^{2+}\) to that induced in sham-operated vessels. Hence, there appears to be heightened Ca\(^{2+}\) sensitivity of the contractile apparatus to the effect of VP in sepsis.

As described in Chapter 1, NO synthesised following iNOS activation is a key mediator in the pathogenesis of vasodilatory shock (Section 1.3.2). Via cGMP, NO can activate MLCP, and thus reduce the Ca\(^{2+}\) sensitivity of the vascular smooth muscle contractile machinery [Landry & Oliver, 2001]. While this represents one of many mechanisms through which NO may promote vasodilatation, it is believed to contribute significantly to sepsis-induced vascular hyporeactivity [Martinez et al., 1996; Mansart et al., 2006]. The results currently presented suggest that enhanced signalling via the V\(_1\) vasopressin receptor in sepsis can overcome any such Ca\(^{2+}\) desensitisation. The inability for high dose norepinephrine to produce a similar effect may be consequent to \(\alpha_1\) adrenoceptor down-regulation. An alternative explanation is that the two agonists utilise different Ca\(^{2+}\) sensitisation pathways that could be differentially affected in sepsis.

The predominant mechanism for agonist-stimulated alteration of Ca\(^{2+}\) sensitivity in vascular smooth muscle is believed to be via inhibition of MLCP [Hirano, 2007]. MLCP activity is reduced by phosphorylation of either the myosin phosphatase target subunit (MYPT) or the inhibitory protein CPI-17 [Hirano, 2007]. This phosphorylation is mediated by several kinases, including PKC and ROK, activated downstream of plasmalemmal G protein-coupled
receptors. The signalling mechanisms involved are complex and may involve $G_{12/13}$ as well as diacylglycerol liberated by PLC downstream of $G_{q/11}$ [Hirano, 2007]. Use of PKC and ROK inhibitors in ex-vivo rat studies suggested that Ca$^{2+}$ sensitisation is at least as important as Ca$^{2+}$ influx in the maintenance of NE- and VP-mediated contractile responses in normal vessels [Bauer & Parekh, 2003]. In addition, it was shown that PKC contributes more to NE- than VP-induced Ca$^{2+}$ sensitisation of the contractile apparatus [Bauer & Parekh, 2003].

In mesenteric arteries taken from a rat model of severe haemorrhagic shock, vascular hyporeactivity and Ca$^{2+}$ desensitisation was partially reversed by both PKC and ROK activators [Xu & Liu, 2005]. In the same model, it was later demonstrated that vasopressin could restore both in-vivo and ex-vivo responses to norepinephrine, an effect inhibited by HA-1077, a ROK antagonist [Yang et al., 2006]. Potentiation by VP of NE reactivity has also been found in experimental septic shock [Hamu et al., 1999], and is an observation frequently made when vasopressin is used in combination with norepinephrine in the treatment of septic patients [Landry et al., 1997b; Dunser et al., 2003]. Putting these data together, one could hypothesise that enhanced vascular reactivity to vasopressin in sepsis is, in part, mediated via ROK-mediated Ca$^{2+}$ sensitisation.
Chapter 6: Patient studies

6.1 Introduction

Having demonstrated enhanced pressor sensitivity to exogenous vasopressin, Landry and colleagues proceeded to measure endogenous levels of the hormone in patients with catecholamine-refractory septic shock [Landry et al., 1997a; Landry et al., 1997b]. VP levels were found to be lower in these septic patients (c.3pg/ml) than in a group with comparable hypotension secondary to cardiogenic shock (c.20pg/ml), and so they labelled the former as having a "relative deficiency of vasopressin" [Landry et al., 1997a]. It was hence postulated that low VP levels both contributed to the pathogenesis of vasodilatory shock and explained the heightened response to replacement therapy [Landry et al., 1997a; Landry & Oliver, 2001]. Subsequent studies suggested that VP levels were elevated in the acute, early phase of septic shock, but that when the illness was prolonged, circulating concentrations of this hormone fell toward normal values despite continued hypotension [Sharshar et al., 2003a; Leclerc et al., 2003]. Similar observations were also made in patients with vasodilatory shock following cardiopulmonary bypass or prior to solid organ donation [Argenziano et al., 1997; Chen et al., 1999]. A more recently published, large cohort study, however, reported similarly elevated vasopressin levels (c.12pg/ml) across a mixed population of critically ill patients [Jochberger et al., 2006b]. Vasopressin deficiency was rarely found, and a generally poor correlation between hormone levels and haemodynamic parameters was noted.
Ongoing at University College London Hospital (UCLH) is a prospective observational clinical study examining the temporal relationship of bioenergetic, metabolic, hormonal, and immune responses in critical illness. As one of the investigators, I have assayed vasopressin in blood samples taken from patients admitted to the ICU. These measurements could then be related to recorded clinical, haemodynamic and therapeutic data. Terlipressin (synthetic 1-triglycyl-8-lysine-vasopressin) is occasionally given to septic shock patients at UCLH, so I was able to assess to what extent plasma VP concentrations were elevated by this treatment.

6.2 Materials and Methods

6.2.1 Clinical study protocol

Ethical approval for this study was obtained from the Joint UCL/UCLH Committees on the Ethics of Human Research (REC Ref No: 04/Q0505/60). Patients were recruited into three groups:

Group 1: healthy control patients

These were non-ICU patients undergoing elective total hip replacement.

Group 2: non-septic, critically ill patients

These were patients requiring intensive care within 48 hours of admission to hospital from home, for a non-septic/non-inflammatory pathology. At enrolment, such patients must have received mechanical ventilation
commencing within 48 hours of admission to intensive care, should be likely to require mechanical ventilation for at least 48 hours, and must not fulfil the 2001 International Sepsis Definition Conference criteria for severe sepsis or septic shock [Levy et al., 2003].

Group 3: patients with severe sepsis or septic shock

These were patients requiring intensive care within 48 hours of admission to hospital from home, with evidence of severe sepsis (organ dysfunction due to infection) or septic shock as defined by the 2001 International Sepsis Definition Conference criteria [Levy et al., 2003].

Informed consent for inclusion was given by the patient where possible. In situations where the patient did not have mental competency, next-of-kin agreement was sought and retrospective consent obtained from the patient once he/she regained competency. The exclusion criteria applied to this study were as follows:

- age <18 years
- Child-Pugh Class C liver disease
- chronic dialysis-dependent renal failure
- hepatitis B or C infection
- immunosuppression (e.g. haematological malignancy, neutropenia, HIV infection)
- immunosuppressive drug therapy within past 6 months
• patient receiving oral or IV steroid therapy for greater than 1 week, within 6 months prior to ICU admission
• patient receiving thyroid hormone therapy prior to ICU admission
• next-of-kin declines agreement / patient declines consent.

Over a maximum period of two weeks, clinical data and blood samples were collected from the enrolled patients. For control patients (group 1) only one such set was obtained at the time of elective surgery. For patients in groups 2 and 3, data and samples were collected at six-hourly intervals for the first 48 hours following enrolment, 24 hourly for the next 48 hours, and on every third day thereafter. The clinical data recorded included Acute Physiology and Chronic Health Evaluation (APACHE) II scores, mean arterial pressure (MAP), cardiac output (CO), and inotrope administration.

6.2.2 Blood sample analysis

Blood was collected from indwelling arterial lines or by venepuncture into EDTA and aprotonin-containing (1mg/ml and 500KIU/ml blood, respectively) vacutainer tubes for vasopressin assay. After standing for 30 minutes to allow the serum samples to clot, tubes were centrifuged at 1600g and 0°C for 10 minutes. The supernatants were then decanted and frozen at -80°C. Plasma VP was assayed using a commercially available ELISA (Assay Designs Inc.) as described in Chapter 2 (Section 2.2.3). A control experiment confirmed one-to-one cross-reactivity for terlipressin (TP) in the VP ELISA.
6.2.3 Data and statistical analysis

Grouped data are expressed as mean ± SEM. Patient clinical and hormonal indices were compared between multiple groups and sampling time-points using one-way ANOVA and post-hoc least-squares difference testing. Comparisons between critically ill and septic patients, or between survivors and non-survivors, were made with unpaired Student’s t test. In all analyses, a p value <0.05 was considered statistically significant.

6.3 Results

6.3.1 Patient characteristics

Over a 30 month period, 39 patients were enrolled in the clinical study: 10 healthy controls, 7 non-septic, critically ill, and 22 with severe sepsis or septic shock (Table 6.1). Age and gender were well matched across the three groups and mean illness severity scores were similar for non-septic and septic patients. As expected, group 2 and 3 patients were hypotensive at baseline compared to the group 1 controls. Of relevance to vasopressin measurement, serum sodium values were normal in all groups at the time of study enrolment.

The mortality rate in the septic group was 45%. Of the 10 that died, five were male and five female. Sub-group analysis revealed that non-survivors and survivors were similar in terms of age but that the former tended to have higher baseline APACHE II scores (30.3 ± 2.6 vs. 24.5 ± 2.3, p=ns).
Table 6.1 Characteristics of patients enrolled in the clinical study

<table>
<thead>
<tr>
<th>Group</th>
<th>1 Healthy controls</th>
<th>2 Non-septic, critically ill</th>
<th>3 Severe sepsis or septic shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number enrolled survivor : non-survivor</td>
<td>10</td>
<td>7 4 : 3</td>
<td>22 12 : 10</td>
</tr>
<tr>
<td>Gender (M : F)</td>
<td>4 : 6</td>
<td>5 : 2</td>
<td>11 : 11</td>
</tr>
<tr>
<td>Age (years)</td>
<td>58.1 (3.6)</td>
<td>70.1 (5.4)</td>
<td>61.8 (3.7)</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>N/A</td>
<td>30.7 (3.0)</td>
<td>26.9 (1.8)</td>
</tr>
<tr>
<td>0h MAP (mmHg)</td>
<td>86.0 (2.4)</td>
<td>75.7 (8.7)</td>
<td>70.9 (1.9)*</td>
</tr>
<tr>
<td>0h Na (mmol/l)</td>
<td>139 (1.0)</td>
<td>142 (2.6)</td>
<td>141 (1.1)</td>
</tr>
</tbody>
</table>

Where applicable, values shown are mean (SEM).

0h, time of enrolment to study; MAP, mean arterial pressure; Na, serum sodium

APACHE II = Acute Physiology and Chronic Health Evaluation score. This score is used as a predictor of mortality in ICU patients, with a higher score predicting greater risk of death.

* p<0.05 compared to group 1 controls
6.3.2 Plasma vasopressin levels

Of the 22 patients in group 3, four received terlipressin at some stage during their illness. Because of the resulting very high hormone levels measured in the VP ELISA (Section 6.3.3), samples taken subsequent to TP treatment were excluded from this analysis. The healthy control patients in group 1 had normal VP levels averaging approximately 5 pg/ml (Figure 6.1). Baseline hormone values were higher in septic than non-septic patients (group 3: 10.2 ± 1.1 vs. group 2: 7.8 ± 1.1 pg/ml, p=ns). When group 3 patients were subdivided into eventual survivors and non-survivors, it became apparent that the latter group accounted for the more elevated hormone levels (Figure 6.1b). Interestingly, these sub-groups were not clearly distinguishable in terms of blood pressure, cardiac output or inotrope requirement at this stage. Despite considerable variability, a trend towards an early (<24 hours) rise in VP followed by a fall back to control levels was observed in both septic and non-septic patients, although this was more pronounced in the former (Figure 6.1a).
Figure 6.1 Plasma vasopressin (VP) levels in patients

a) Temporal variation in VP levels over the 72 hour period following study enrolment; only one blood sample was taken from group 1 patients at 0h

b) Data from group 3 at 0h are further analysed with patients split into eventual survivors and non-survivors.

All values shown are mean ± SEM with group sizes given in parentheses.

MAP, mean arterial pressure; CO, cardiac output; NE, norepinephrine

* p<0.05 compared to group 1 controls at time of study enrolment
6.3.3 Patients receiving terlipressin treatment

VP levels were extremely high in the three septic patients who received TP as part of their treatment for refractory hypotension (Table 6.2). TP administration stabilised or elevated MAP while concurrent NE infusion rates were decreased (Table 6.2). Unfortunately, none of these patients survived their illness. A fourth group 3 patient, for whom data are not shown, had received terlipressin prior to study enrolment as treatment for portal hypertension.

Table 6.2 Group 3 patients who received terlipressin therapy

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>TP dose</th>
<th>Plasma VP (pg/ml)</th>
<th>MAP (mmHg)</th>
<th>NE dose (μg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pre</td>
<td>post</td>
<td>pre</td>
</tr>
<tr>
<td>009</td>
<td>0.5mg qds</td>
<td></td>
<td>521</td>
<td>55.0</td>
</tr>
<tr>
<td>011</td>
<td>1mg qds</td>
<td>13.9</td>
<td>637</td>
<td>57.0</td>
</tr>
<tr>
<td>040</td>
<td>1mg qds</td>
<td>7.8</td>
<td>960</td>
<td>74.0</td>
</tr>
</tbody>
</table>

TP, terlipressin; VP, vasopressin; MAP, mean arterial pressure; NE, norepinephrine

Pre-TP figures for VP, MAP and NE are the last set of values recorded prior to TP therapy; post-TP figures are the mean values recorded during 24 hours of TP therapy.
6.4 Discussion

6.4.1 Plasma vasopressin levels

The results described in this chapter are derived from a comparatively small patient cohort, but still provide a valuable contribution to the relevant literature. The growing body of work in this area now supports a complex vasopressinergic dysfunction, rather than a simple hormone deficiency in critical illness.

In line with the largest cohort of patients studied to date, I found that plasma VP levels were higher in early critical illness than in healthy control patients, and that values were generally poorly correlated with haemodynamic parameters in critically ill patients [Jochberger et al., 2006b]. Few others have attempted serial VP measurements, but those who have report a biphasic response in adults but perhaps not in children with prolonged severe sepsis [Sharshar et al., 2003a; Lodha et al., 2006]. Despite considerable variability, a trend to an initial (<24 hours) rise in VP, followed by a fall towards control levels was observed in our group 3 patients. A similar, if less obvious pattern among the group 2, non-septic subjects contrasts Landry's initial findings in cardiogenic shock [Landry et al., 1997a], but is in keeping with another study in patients evaluated after cardiac bypass surgery [Argenziano et al., 1997]. Peak values in septic (group 3) subjects (mean c.10-20pg/ml), akin to those previously reported [Sharshar et al., 2003a; Jochberger et al., 2006b], are perhaps surprisingly low in comparison to findings in acute animal models.
(Section 2.3.5) [Wilson et al., 1981a; Brackett et al., 1985; Schaller et al., 1985]. As discussed for the faecal peritonitis rats in Chapter 3 (Section 2.4.2), this may relate to the choice of sampling time-points. Severe sepsis may have commenced several hours prior to study recruitment, making the “0h” measurements a somewhat artificial baseline. That said, VP levels were no higher in a patient cohort presenting to the emergency department at a very early stage in their septic illness [Lin et al., 2005]. In our study, VP levels beyond 24 hours were not as low as those found previously in this clinical scenario [Landry et al., 1997a; Patel et al., 2002]. However, these values were probably still inappropriately low for the concomitant degree of hypotension. The osmo- and baro-regulatory mechanisms of VP secretion, reviewed in Chapter 1 (Section 1.2.1), operate with different sensitivities to alter hormone levels within very different concentration ranges [Mutlu & Factor, 2004]. This, in combination with the iatrogenic influence of intensive care, makes the determination of what is an appropriate vasopressin level in critical illness very difficult [Landry & Oliver, 2006]. The impact of sample timing and resuscitative treatments also complicates the possible interpretation of poor correlation between VP and MAP as evidence of baro-regulatory dysfunction [Jochberger et al., 2006b; Sutherland et al., 2006; Oliver & Landry, 2007].

Whether used to guide inotrope therapy, or as a possible marker of the development of vasodilatory shock, there is increasing call for accurate VP measurement in ICU patients [Oliver & Landry, 2007]. In view of the instability and platelet association of vasopressin and the incumbent difficulties in its
assay, a sandwich ELISA for copeptin, a stable peptide derived from the hormone precursor, was recently developed [Morgenthaler et al., 2006]. Early studies suggest a good correlation between VP and copeptin levels [Struck et al., 2005; Jochberger et al., 2006a]. Inexplicably, however, the copeptin:VP ratio may vary between control and septic patients [Jochberger et al., 2006c]. An alternative possibility is that, analogous to the management of adrenal insufficiency, dynamic tests of vasopressinergic system function are adopted in preference to static hormone measurements [Sharshar et al., 2006].

The finding of higher baseline levels of plasma VP in eventual non-survivors has been reported in both septic [Leclerc et al., 2003; Lodha et al., 2006] and other critically ill patients [Boldt et al., 1995]. Recently, similar observations have been made for copeptin levels [Muller et al., 2007]. In our cohort, survivors and non-survivors could not be distinguished at the first sampling time-point in terms of haemodynamic parameters or NE dose requirements, suggesting a multifactorial explanation for the divergence in hormone levels.

6.4.2 Terlipressin treatment

Terlipressin was used to treat catecholamine refractory shock in three group 3 patients. Conclusions regarding the impact of this therapy, or comparisons with past studies, are difficult with such a small number of subjects. However, to the best of my knowledge, there are no published data concerning plasma VP levels during terlipressin treatment. It appears that six-hourly doses of 0.5-1mg achieve vastly supra-physiological circulating concentrations of VP. Few
investigators have measured hormone levels concurrent to arginine-vasopressin infusion, either in patients or animal models, although high, pharmacological levels have been reported by the majority [Landry et al., 1997b; Dunser et al., 2004a; Ertmer et al., 2007]. This finding, along with the resistance vasculature changes investigated in this thesis, opposes the early hypothesis that heightened pressor responses to vasopressin simply reflect restoration of appropriate hormone levels. Indeed, the degree of blood pressure elevation seems not to be proportional to the plasma VP level prior to exogenous hormone infusion [Dunser et al., 2004a].
Chapter 7: Summary and Discussion

7.1 Summary of results

7.1.1 In-vivo rat model of faecal peritonitis

This animal model of prolonged sepsis mimicked human illness in terms of insult type, duration, and fluid resuscitation. With respect to sham-operated rats, septic animals became clinically unwell with hypotension and biochemical evidence of organ dysfunction. After 24 hours, plasma norepinephrine levels were markedly elevated in this group but vasopressin levels were normal. Pressor responses to exogenous NE were significantly depressed in septic rats, whether assessed in anaesthetised or conscious states. In awake animals, blood pressure responses to VP and the selective V₁R agonist, F-180 were diminished in sepsis, but to a lesser extent than that seen for NE. On the other hand, when anaesthetised, VP-induced pressor responses were numerically greater in septic than in sham-operated rats, thus more closely imitating the response seen in septic patients. This finding did not reach statistical significance, however. This may be due to inadequate sample sizes producing an underpowered study.

7.1.2 Wire myography concentration-response curves

The efficacy of NE in contracting small mesenteric arteries removed from rats at the 24 hour time-point was significantly reduced in septic vessels compared to those from sham-operated controls. Furthermore, the tension responses
produced by NE in septic arteries were non-sustained in nature despite continued presence of the contractile agonist. By contrast, VP efficacy was preserved, and its potency in contracting arteries from septic rats was enhanced. Tension responses produced by VP were sustained in all vessels. The pattern of enhanced ex-vivo reactivity was exaggerated when the selective V₁ agonist, F-180 was used, with increased efficacy and potency observed in septic vessels. Hence, the vasoconstrictor pathways activated by NE and VP in these resistance vessels are differentially affected by the septic process.

Removal of the endothelium further enhanced the potency of the vasopressin agonists; this effect was more apparent in septic arteries for VP, but in sham arteries for F-180. The leftward shift in the sham F-180 concentration response curves produced by endothelial rubbing was reproduced by pre-incubation of endothelium-intact vessels with the non-selective NOS inhibitor, L-NAME. This suggests that vasodilatory V₁ receptors on the endothelium are coupled to NO production. Addition to the myograph of the V₂R antagonist, FE992082 had no significant effects on VP concentration-response curves in sham or septic arteries. This implies a negligible role for the V₂ receptor in this preparation.

When tail arteries were investigated, contractile responses to NE, VP and F-180 were similar regardless of whether the animals were septic or not. Thus, despite observing vascular hyporeactivity to NE in-vivo, such changes are not reflected ex-vivo in all arterial beds. The diameters of the tail artery segments
mounted were significantly greater than those of the small mesenteric arteries however, and therefore may not represent true resistance vessels.

7.1.3 Calcium mobilisation studies

Removal of extracellular Ca2+ markedly depressed maximal NE- and VP-stimulated contractions in small mesenteric arteries obtained from sham-operated and septic rats, suggesting a high degree of dependence on Ca2+ influx for both initiating and maintaining tension. Re-addition of Ca2+ to the myograph produced significant contractile responses following VP- but not NE-mediated intracellular store depletion. This implies Ca2+ influx via store-operated channels is more important for VP-induced vasoconstriction. Voltage-gated and receptor-operated channels appear to contribute more to NE-induced responses, as pre-incubation with either the L-type Ca2+ channel blocker, nifedipine or the ROC antagonist, LOE 908 had a greater inhibitory effect on contractions produced by this agonist. Sepsis had a clear effect on VP's utilisation of Ca2+ entry pathways, with an increased contribution of SOCs but a decreased contribution of VGCCs to contractions produced in septic vessels.

7.1.4 Calcium sensitisation studies

Baseline intracellular Ca2+ concentrations were consistently higher in mesenteric arteries taken from septic than sham-operated rats. This hints at dysregulation of calcium handling in septic vascular smooth muscle. NE-
induced elevation of intracellular Ca^{2+} was reduced by approximately 50% in septic compared to sham vessels, which paralleled the depressed tension responses to this agonist. By contrast, VP-induced Ca^{2+} changes were similar in sham and septic arteries despite a 2.5-fold increase in the magnitude of contractions induced in the latter. An enhanced contractile response for a comparable Ca^{2+} rise indicates a VP-mediated sensitisation of the myofilaments to the effect of calcium in septic vessels.

7.1.5 Patient studies

In the cohort of ICU patients studied, plasma vasopressin levels were elevated in early severe septic illness when compared to those in healthy controls. Within the septic group, those that went on to die had higher hormone levels at the time of study recruitment compared to those that went on to survive, despite having similar haemodynamic measurements. Beyond 24 hours, VP concentrations returned towards normal values, despite continued critical illness. In catecholamine-refractory septic shock, treatment with terlipressin produced supra-physiological circulating VP concentrations, suggesting that the drug is not simply working by restoring appropriate hormone levels.

7.2 Discussion and Future Investigations

Although successful in many respects in producing a clinically realistic animal model of sepsis, there are drawbacks to the faecal peritonitis method used.
Only mild hypotension was induced in septic animals, in the face of severe clinical illness and high mortality. Moreover, I was unable to demonstrate correlations between severity scores and blood pressure or biochemical indices. Whilst the biochemical measurements revealed organ dysfunction consistent with a systemic inflammatory response, this could have been further supported by comparing plasma cytokines and nitrite/nitrate levels in the septic and sham-control groups [Bernard et al., 1998]. In addition, the septic insult produced by intra-peritoneal injection of faecal slurry could have been better quantified by determining its bacterial load and/or by assaying the consequent endotoxaemia [Bernard et al., 1998].

Despite these limitations, in rats with faecal peritonitis, I demonstrated the pattern of endogenous VP and NE levels [Sharshar et al., 2003a; Lin et al., 2005] and the decreased catecholamine pressor response [Hotchkiss & Karl, 2003] characteristic of prolonged septic shock in patients. Blood pressure responses to norepinephrine were very similar in awake and anaesthetised animals. With vasopressin, however, anaesthesia diminished the sham-control, but not the septic pressor response. This suggests that the sedation of critically ill patients, a very common component of ICU care, might partly explain the therapeutic effect of vasopressin in this clinical setting. Although not investigated further in this thesis, the complex interactions between VP and the autonomic nervous system [Mohring et al., 1980; Leng et al., 1999; Koshimizu et al., 2006], and the sepsis-related dysfunction of the latter [Garrard et al., 1993; Sharshar et al., 2003b], are likely to contribute to the
multifactorial mechanisms underlying vasopressin hypersensitivity (Section 1.4.4).

In an ex-vivo setting, away from any confounding neural influences, a pattern of sepsis-induced depressed vascular reactivity to NE yet enhanced reactivity to VP was seen. This suggests that changes in the direct effect of vasopressin on vascular smooth muscle in sepsis are an important contributor to hypersensitivity to this hormone. This finding also validates the use of small mesenteric arteries in the wire myograph for further exploration of this hypothesis.

Although only limited deductions regarding changes in receptor characteristics can be made from pharmacological concentration-response experiments, the obvious depression of maximal responses to NE in septic arteries does support a decrease in the number of sarcolemmal α_1 receptors. By contrast, the rise in F-180 E_{max} in septic vessels suggests that the V_1 receptor number is increased. The lack of change in VP E_{max} between septic and sham arteries can be reconciled by the existence of other, non-V_1 vasopressin receptors within the resistance vasculature, the expression of which may also be affected by the septic insult. This would also explain the greater degree of separation seen between sham and septic concentration-response curves for F-180 compared to VP.

From the endothelial removal studies, it can be surmised that receptors on this cell layer do contribute to vasopressin-stimulated responses. The lesser effect of endothelial denudation on F-180 responses in septic vessels implies
down-regulation of the NO-mediated V$_1$R vasodilatory pathway in sepsis. The accentuated leftward shift of the VP concentration-response curve in septic compared with sham vessels following endothelial removal however implies up-regulation of non-V$_1$R vasodilatory pathways. The V$_2$R is a likely candidate [Tagawa et al., 1995; Kaufmann et al., 2003], but unfortunately, little useful data were gleaned in this regard from the FE992082 experiments. The role of this receptor subtype would be better addressed in future investigations through the use of a more selective V$_2$R antagonist, or by assessing the direct vasodilatory effect of a selective V$_2$ agonist. In addition, a similar approach should be adopted with oxytocin receptor-selective agents, since evidence suggests that these receptors are also present in blood vessels [Yazawa et al., 1996; Thibonnier et al., 1999].

To complement these pharmacological studies, direct measurements of receptor characteristics are also needed. In-situ hybridisation, radioligand-binding, and nucleic acid amplification techniques have all been used to quantify vasopressin receptors in rat tissues [Roth & Spitzer, 1987; Phillips et al., 1990; Bucher et al., 2002; Grinevich et al., 2004]. Although a sepsis-induced decrease in solid organ V$_1$R expression has been reported [Roth & Spitzer, 1987; Bucher et al., 2002], these models did not show in-vivo enhanced vasopressinergic reactivity and the investigators did not examine the resistance vasculature.

Aside from any alteration in receptor number, modification of the coupling of α$_1$Rs and V$_1$Rs to Ca$^{2+}$ signalling mechanisms could account for the changes
in NE and VP vascular reactivity seen during sepsis. Non-sustained NE-induced contractions yet sustained VP-induced contractions in septic arteries suggest that the two agonists differentially activate Ca\(^{2+}\) entry and/or Ca\(^{2+}\) sensitisation pathways. This hypothesis is supported by my results.

Inference from the Ca\(^{2+}\) mobilisation studies was restricted due to the use of tension responses as a surrogate of intracellular Ca\(^{2+}\) concentration and the known complexity of interaction between the different pathways involved [Wier & Morgan, 2003]. Despite this, I have demonstrated that the Ca\(^{2+}\) mobilisation pathways stimulated by NE and VP in small mesenteric arteries are not the same. NE-stimulated tension responses depended primarily on VGCC- and/or ROC- mediated Ca\(^{2+}\) influx, whereas SOC-mediated influx was more important for VP-stimulated responses. Although VGCCs were still activated in septic vessels by high dose NE, sepsis-induced dysfunction of these channels [Zhong et al., 1997; Zhao & Zhao, 2007] might significantly limit the Ca\(^{2+}\) rise produced by this agonist. Conversely, VP may be able to mobilise Ca\(^{2+}\) with unimpaired or even greater efficiency in sepsis if SOC activity is preserved (or even enhanced).

My findings seemingly contradict previous reports of significant contributions of the SOC to NE- and the ROC to VP-mediated contractions [Furutani et al., 2002; Zhang et al., 2002]. While this may simply relate to differences in vascular bed or vessel size, it would be pertinent to confirm my results by either refining or changing the methodology used. Other compounds reported to selectively block SOCs (e.g. 2-aminoethoxydiphenyl borate [2-APB]) or
both SOCs and ROCs (e.g. SK-96365) have been employed in similar studies [Furutani et al., 2002; Villalba et al., 2007]. Tension experiments could be performed to determine optimal concentrations for the various channel inhibitors which could then be used alone and in combination. In addition, maximal SOC activity in sham and septic vessels could be measured through the use of a SERCA inhibitor such as thapsigargin or cyclopiazonic acid (CPA) [Furutani et al., 2002; Villalba et al., 2007]. A complementary approach would be to quantify channel expression [Lew et al., 1996; Jung et al., 2002], although definitive separation of SOCs and ROCs remains complicated by the known similarities in their molecular structure [Albert & Large, 2006].

Sepsis-induced changes in intracellular calcium handling were clearly demonstrated in the \(\text{Ca}^{2+} \) sensitisation studies. VP, but not NE, sensitised the contractile apparatus to the effect of \(\text{Ca}^{2+} \) in septic arteries to generate a greater tension for a comparable increase in intracellular \(\text{Ca}^{2+} \). This may result from VP-stimulated inhibition of MLCK via the ROK pathway [Yang et al., 2006]. In future experiments, it would be very interesting to observe the effect of ROK antagonists, such as HA-1077, on the vasopressin \(\text{Ca}^{2+} \)-tension relationship. VP-mediated \(\text{Ca}^{2+} \) sensitisation might not only contribute to its enhanced pressor effect in septic patients, but may also explain why NE responsiveness is improved when the two drugs are given in combination [Dunser et al., 2003]. The combined in-vivo and ex-vivo methods used in this thesis would be ideal for exploration of this theory.
To further validate all these findings, their successful translation across different vascular beds and, more importantly, into patient studies is necessary. It is uncertain why vascular reactivity was unaltered in tail arteries taken from rats with faecal peritonitis despite evidence of systemic septic illness. This should be addressed by repeating ex-vivo concentration-response experiments on other extra-abdominal resistance vessels, such as small renal or femoral arteries.

Serial hormone measurements in our cohort of severely septic patients revealed VP profiles similar to those reported previously in this clinical scenario [Sharshar et al., 2003a; Jochberger et al., 2006b]. Ideally, resistance vessels obtained from these subjects would have been used for wire myograph concentration-response and Ca$^{2+}$ studies. Unfortunately, due to logistical and ethical constraints, I was unable to obtain tissue samples for vascular reactivity studies from any of these patients. Depressed NE reactivity in myograph-mounted human omental arteries from patients with intra-abdominal sepsis has been demonstrated previously [Stoclet et al., 1999], and thus investigation of heightened VP reactivity in such a preparation is a realistic possibility.

7.3 Conclusions

The treatment of septic shock remains a major challenge in intensive care medicine. Although the first large, randomised trial comparing vasopressin to norepinephrine has shown non-inferiority rather than superiority [Russell et
al., 2008], further patient studies and continued clinical use of vasopressin are likely.

The work described in this thesis provides valuable insight into the sepsis-induced changes in vasopressin signalling in vascular smooth muscle. By virtue of its use as a comparator, valuable information concerning norepinephrine-mediated vasoconstriction has also been gained. The implied up-regulation of V₁ receptors in septic resistance vessels supports the development of more selective compounds for clinical use. Indeed, the greater V₁ selectivity of terlipressin may, in part, explain accumulating evidence that this drug may be preferable to vasopressin for the treatment of septic shock [Lange et al., 2007].

Downstream of the V₁ receptor, vasopressin is able not only to effectively mobilise Ca²⁺ in septic vascular smooth muscle but also to sensitise the myofilaments to its effect. The different Ca²⁺ entry channels utilised by NE and the lack of a sensitising effect in sepsis likely contribute to the impaired pressor effect of this agent in prolonged septic shock. These findings thus promote modulation of Ca²⁺ sensitisation and/or Ca²⁺ mobilisation pathways as potential new therapeutic paradigms for the treatment of septic shock. Of relevance, recent work has demonstrated benefit of a cardiac muscle Ca²⁺ sensitising agent, levosimendan, in animal models of septic myocardial depression [Sorsa et al., 2004; Barraud et al., 2007].
Reference List

Broad LM, Cannon TR, Taylor CW. A non-capacitative pathway activated by arachidonic acid is the major Ca$^{2+}$ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. *J.Physiol* 1999; 517:121-134.

Martin SC, Yule DI, Dunne MJ, Gallagher DV, Petersen OH. Vasopressin directly closes ATP-sensitive potassium channels evoking membrane depolarization and an increase in the free intracellular Ca²⁺ concentration in insulin-secreting cells. EMBO J. 1989; 8:3595-3599.

Sutherland AM, Gordon AC, Russell JA. Are vasopressin levels increased or decreased in septic shock? *Crit Care Med.* 2006; 34:542-543.

Publications

Original Article
Barrett LK, Orie NN, Taylor V, Stidwill R, Clapp LH, Singer M
Differential effects of vasopressin and norepinephrine on vascular reactivity in
a long-term rodent model of sepsis
Critical Care Medicine 2007; 35:2337-2343 PMID: 17700487

Review Article
Barrett LK, Clapp LH, Singer M
Vasopressin: mechanisms of action on the vasculature in health and in septic
shock
Critical Care Medicine 2007; 35:33-40 PMID: 17133186

Prize

The Intensive Care Society Research Gold Medal Award 2007
The mechanisms of vasopressin hypersensitivity in septic shock
Awarded on the basis of a written summary and oral presentation describing
three years’ work

Abstracts presented at meetings

European Society of Intensive Care Medicine Annual Congress 2007
Barrett LK, Taylor V, Clapp LH, Singer M
Can different calcium mobilisation pathways explain the changes in vascular
sensitivity to norepinephrine and vasopressin in septic shock?
Intensive Care Medicine 2007; 33, Supplement 2: S34
Barrett LK, Patel S, Taylor V, Clapp LH, Singer M
Calcium sensitisation underlies enhanced vascular reactivity to vasopressin in septic shock
Intensive Care Medicine 2007; 33, Supplement 2: S34

British Pharmacological Society Annual Meeting 2006
Barrett LK, Taylor V, Singer M, Clapp LH
Enhanced vascular responses to vasopressin in a rat model of fecal peritonitis
Proceedings of the BPS (pA₂ online); Vol 4 Iss 2 abst 185P

European Society of Intensive Care Medicine Annual Congress 2006
Barrett LK, Taylor V, Stidwill R, Clapp LH, Singer M
Ex-vivo demonstration of enhanced vascular reactivity to vasopressin in prolonged septic shock
Intensive Care Medicine 2006; 32, Supplement 1: S76

Barrett LK, Stotz M, Breen P, Bellingan G, Clapp LH, Singer M
Vasopressin levels in septic shock: relationship to survival and effect of terlipressin treatment
Intensive Care Medicine 2006; 32, Supplement 1: S202

Medical Research Society, Academy of Medical Sciences and Royal College of Physicians Meeting for Clinical Scientists in Training 2006
Barrett LK, Clapp LH, Singer M
Vasopressin deficiency and hypersensitivity in septic shock [Abstract no. 91]
European Society of Intensive Care Medicine Annual Congress 2005

Barrett LK, Clapp LH, Singer M

Circulating vasopressin levels and vascular reactivity in prolonged septic shock

Intensive Care Medicine 2005; 31, Supplement 1: S218