REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree PhD Year 2007 Name of Author GRIFFITHS, Karen

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

LOANS
Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible).

B. 1962-1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.

C. 1975-1988. Most theses may be copied upon completion of a Copyright Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

This copy has been deposited in the Library of

This copy has been deposited in the Senate House Library, Senate House, Malet Street, London WC1E 7HU.
The role of the kinetochore-associated Dam1 complex during fission yeast mitosis

Karen Griffiths

Submitted towards the degree of Doctor of Philosophy

University of London

University College London
Department of Biology
London, WC1E 6BT.
I declare that the work in this thesis is my own work
Acknowledgements

I would like to acknowledge the many people who supported and encouraged me in the completion of this work and thesis. I would like to thank my supervisor Takashi Toda and Cancer Research UK for giving me the opportunity to do this thesis. I would like to thank all the members of the Cell Regulation lab for their critique and discussion and technical help over the last 4 years. I would especially like to thank Yasmine Mamnun for always motivating and encouraging me in my work. I am extremely grateful to her for helping me stay focused even when things were tough. I would like to thank Nathalie Spielewoy for reading and correcting my thesis and encouraging me to think about science in a critical manner. I would also like to extend a special thanks to the other PhD students in the lab Amy Unsworth and Chii-shyang Fong for listening to my ideas over many lunches and tea breaks and never growing tired of my talkative nature. I am very grateful for their friendship and support over the last few years. I would like to acknowledge all the members of the other yeast labs for their support especially Rafael Carazo-Salas for teaching me how to use the Delta-vision microscope and Frank Uhlmann for his critical discussions of my work.

Finally I would like to thank all my family and friends for their encouragement over the last few years. I would especially like to thank my husband Stuart for all his love, support and patience during my PhD, when he was also contending with his own thesis. I cannot imagine that I could have come through the PhD successfully had we not taken the journey together.
Abstract

Bipolar attachment of the kinetochore to the spindle is crucial for sister chromatid separation during mitosis. The kinetochore, a specialised proteinaceous structure formed on centromeres is required for tethering the spindle. It consists of many sub complexes including core platform proteins and outer proteins. In budding yeast the Dam1/DASH complex is essential, constituting 10 components and plays a vital role in chromosome segregation. All 10 homologues of the Dam1 complex have been identified in the fission yeast, an organism that contains a more complex centromere structure. This thesis describes the study of the fission yeast Dam1 complex and its role during mitosis in ensuring proper chromosome segregation.

In this thesis we describe the localisation of this complex to the kinetochore and its dependence on both microtubules and functional Mis6 complex. We show that Dam1 complex genes are not essential but deletion shows monopolar chromosome segregation defects and spindle collapse indicative of an importance for proper microtubule dynamics and chromosome bi-orientation. We show that despite being non-essential, deletion mutants are synthetic lethal when combined with deletion of the kinesins Klp5/6, which play a role in promoting chromosome biorientation. To understand this further, we isolated a dam1 temperature-sensitive mutant in a klp5 null background, termed dam1-A8. This is a ‘gain of function’ mutant that shows resistance to the spindle drug TBZ unlike dam1 deletion, which is sensitive. We have shown in the double dam1-A8klp5 mutant massive chromosome mis-segregation, congression defects and monopolar attachment of the kinetochore to one SPB. Indeed dam1-A8 alone shows sister chromatid congression defects, thus indicating that the Dam1 complex despite its non-essentiality is required in concert with the mitotic kinesins Klp5/6 to promote proper bipolar attachment and spindle microtubule dynamics and either loss or gain of function dam1 mutants leads to defects in chromosome bi-orientation.
Table of Contents

The role of the kinetochore-associated Dam1 complex during fission yeast mitosis................1

Chapter 1 ... 14

1 Introduction... 14

1.1 Fission yeast ... 15

1.1.1 Fission yeast cell-cycle.. 15

1.1.2 Fission yeast-model organism.. 17

1.2 Cytoskeleton.. 18

1.2.1 Microtubules ... 18

1.2.2 MTOCs .. 19

1.2.3 Microtubule growth and shrinkage overview .. 20

1.2.4 Microtubule regulators .. 21

1.2.5 Fission yeast microtubules .. 26

1.3 Mitosis .. 29

1.3.1 Mitotic stages-overview ... 29

1.3.2 Kinetochore attachment & tension overview .. 31

1.3.3 Spindle assembly checkpoint ... 34

1.3.4 Turnover of incorrect kinetochore attachments .. 38

1.4 Centromere .. 40

1.4.1 Centromere sequence .. 40

1.5 Kinetochore ... 44

1.5.1 Budding yeast architecture .. 45

1.5.2 Metazoan kinetochore structure .. 48

1.5.3 Fission yeast kinetochore structure .. 54

1.6 The Dam1/DASH kinetochore complex ... 61

1.6.1 Overview of this thesis .. 68

Chapter 2 .. 71

2 Identification of the Dam1/DASH complex in the Fission yeast 71

2.1 Identification of the Dam1/DASH complex ... 71

2.2 Alignment of Dam1 .. 72

2.2.1 Alignment of Duo1 ... 79

2.2.2 Alignment of Dad1 .. 79

2.2.3 Alignment of Dad2 .. 83

2.2.4 Alignment of Dad3 .. 85

2.2.5 Alignment of Dad4 .. 85

2.2.6 Alignment of Hsk3 (Dad5/Hos3) .. 92
2.2.7 Alignment of Spc19 ... 92
2.2.8 Alignment of Spc34 ... 97
2.2.9 Alignment of Ask1 ... 99
2.3 Discussion .. 100
Chapter 3 ... 105
3 Localisation of the Dam1/DASH complex 105
Introduction ... 105
3.1 Kinetochore localisation of Dam1 complex 105
3.1.1 Dad1 localises constitutively to the kinetochore 108
3.1.2 Dad1 acts as anchor for recruitment of mitosis-specific Dam1/DASH complex ... 109
3.2 Dad1 localisation in kinetochore mutants 109
3.2.1 Dad1 localisation in Mis12 and Nuf2 mutants 112
3.2.2 Dad1 localisation in Mis6/Sim4 mutants 112
3.2.3 Cnp1 is not required for Dad1 localisation 113
3.3 Dam1/DASH complex localisation is dependent upon microtubule integrity? ... 113
3.4 Dam1-GFP localisation in mutants affecting microtubule dynamics 117
3.5 Discussion ... 117
Chapter 4 .. 121
4 Characterisation of Dam1/DASH deletion mutants 121
Introduction ... 121
4.1 Deletion of Dam1/DASH subunits in the fission yeast 121
4.1.1 Growth of Dam1/DASH deletions 122
4.1.2 Dam1/DASH mutants display chromosome segregation defects 125
4.2 Dam1/DASH mutants and the spindle assembly checkpoint 127
4.2.1 Mitotic delay in Dam1/DASH mutants 127
4.2.2 Deletion of the spindle checkpoint in Dam1/DASH mutants ... 129
4.2.3 Dad1 and the spindle assembly checkpoint 131
4.3 Non-disjunction phenotype of fixed Dam1/DASH mutants at 20°C 133
4.3.1 Dam1/DASH deletion results in broken spindles and chromosome mis-segregation at 20°C ... 133
4.3.2 Analysis of cen2-GFP sister-chromatid separation in fixed Δdam1 cells. 136
4.3.3 Dis1-GFP localisation in Δdam1 cells 140
4.4 Analysis of Cen2-GFP sister chromatid separation in live cells 140
4.5 Genetic Interactions of the Dam1/DASH complex 144
4.5.1 Deletion mutants of Dam1/DASH complex require Klp5/6 and Dis1 to survive .. 144
4.5.2 Mis6/Sim4 kinetochore mutants are synthetically lethal with Dam1/DASH mutants .. 147
4.5.3 Genetic interactions of Dam1/DASH mutants with other kinetochore or mitotic mutants .. 151
4.6 Discussion .. 152

Chapter 5 ... 160
5 Identification and characterisation of daml- A8 mutant allele .. 160

5.1 Mutagenesis screening for Dam1 mutants in a klp5 background .. 161
5.2 Confirmation of daml-A8 temperature sensitivity and sequencing the mutation .. 166

5.2.1 Sequencing the daml-A8 mutant allele .. 167

5.3 Dam1/DASH complex localisation in the daml-A8 mutant .. 170

5.3.1 Localisation of Dam1-A8-GFP in single daml-A8 and double daml-A8∆klp5 cells .. 170

5.3.2 Ask1-GFP localisation in daml-A8 single and double mutants .. 172

5.4 Characterisation of daml-A8 mutant .. 174

5.4.1 Growth defects of the daml-A8∆klp5 mutant .. 174

5.4.2 Mis-segregation of chromosomes in daml-A8∆klp5 mutant .. 176

5.4.3 Examination of mitotic defects in daml-A8∆klp5 synchronised cells .. 179

5.5 The spindle assembly checkpoint and the daml-A8 mutant .. 183

5.5.1 Increased mitotic index in daml-A8∆klp5 cells .. 185

5.5.2 Is the spindle assembly checkpoint maintained in daml-A8∆klp5 cells? .. 187

5.5.3 daml-A8∆klp5 cells require mad2⁺ for survival ... 189

5.6 Analysis of types of segregation defects in fixed daml-A8 and daml-A8∆klp5 cells .. 191

5.6.1 Does the single mutant daml-A8 show a non-disjunction “dis” phenotype at 20°C? .. 191

5.6.2 Examination of sister-chromatid separation ... 193

5.7 Live analysis of sister chromatid separation .. 196

5.8 Genetic interactions of the daml-A8 mutant .. 202

5.8.1 daml-A8 is synthetically lethal with ∆dis1 ... 202

5.8.2 Examination of daml-A8∆alp14 mutant .. 204

5.9 TBZ resistance of daml-A8. Is it similar to daml-127 truncation? .. 206
7.4.4 Gene Disruption & C-terminal tagging ... 253
7.4.5 Transformation and isolation of plasmid DNA in *E. coli* 253
7.5 Oligonucleotides .. 253
7.5.1 Deletion oligos ... 254
7.5.2 C-terminal tagging oligos .. 255
7.5.3 Dam1 mutagenic and sequencing oligos ... 256
7.6 Plasmids ... 257
7.7 Microscopic analysis ... 258
7.7.1 Visualisation of DNA and septa ... 258
7.7.2 Indirect immunofluorescence microscopy 258
7.7.3 Flourescence microscopy of live and fixed cells 259
8 Bibliography .. 260
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Meiotic and Mitotic cell cycle stages in the fission yeast S. pombe</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic showing microtubule dynamics</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Microtubule structure throughout the fission yeast cell cycle</td>
<td>28</td>
</tr>
<tr>
<td>1.4</td>
<td>Kinetochore attachment configurations</td>
<td>33</td>
</tr>
<tr>
<td>1.5</td>
<td>Activation mechanism of the spindle assembly checkpoint</td>
<td>37</td>
</tr>
<tr>
<td>1.6</td>
<td>Schematic of budding yeast kinetochore structure and components</td>
<td>49</td>
</tr>
<tr>
<td>1.7</td>
<td>Schematic of metazoan trilaminar kinetochore structure and components</td>
<td>51</td>
</tr>
<tr>
<td>1.8</td>
<td>Schematic representation of fission yeast kinetochore structure</td>
<td>56</td>
</tr>
<tr>
<td>1.9</td>
<td>Table of kinetochore components in budding yeast, fission yeast and metazoans</td>
<td>60</td>
</tr>
<tr>
<td>1.10</td>
<td>Model for Ipl1 and Mps1 phospho-regulation of attachment and bi-orientation of kinetochores in the budding yeast</td>
<td>67</td>
</tr>
<tr>
<td>2.1</td>
<td>Fission yeast Dam1 alignment and comparison with S. cerevisiae Dam1</td>
<td>74</td>
</tr>
<tr>
<td>2.2</td>
<td>Alignment of Fission yeast Dam1 sequence with S. cerevisiae orthologues from other fungi</td>
<td>78</td>
</tr>
<tr>
<td>2.3</td>
<td>Alignment of Duo1 sequences from S. cerevisiae and S. pombe and schematic representation of proteins</td>
<td>80</td>
</tr>
<tr>
<td>2.4</td>
<td>Alignment of Fission yeast Duo1 protein sequence with Duo1 protein sequences from other organisms</td>
<td>82</td>
</tr>
<tr>
<td>2.5</td>
<td>Alignment of S. pombe Dad1 with S. cerevisiae Dad1 protein and schematic of protein structure</td>
<td>84</td>
</tr>
<tr>
<td>2.6</td>
<td>Alignment of S. pombe Dad1 sequence with Dad1 sequences from other fungi</td>
<td>86</td>
</tr>
<tr>
<td>2.7</td>
<td>Alignment of S. pombe Dad2 protein with Dad2 in S. cerevisiae</td>
<td>87</td>
</tr>
<tr>
<td>2.8</td>
<td>Alignment of Dad2 from S. pombe with other fungal orthologues</td>
<td>88</td>
</tr>
<tr>
<td>2.9</td>
<td>Alignment and schematic representation of S. pombe Dad3 protein with its S. cerevisiae homologue</td>
<td>89</td>
</tr>
<tr>
<td>2.10</td>
<td>Alignment of many fungal Dad3 orthologues with S. pombe Dad3 protein sequence</td>
<td>90</td>
</tr>
<tr>
<td>2.11</td>
<td>Alignment of S. pombe Dad4 with S. cerevisiae and other fungal Dad4 orthologues</td>
<td>91</td>
</tr>
<tr>
<td>2.12</td>
<td>Alignment of S. pombe Hsk3 with orthologues from other fungi</td>
<td>93</td>
</tr>
<tr>
<td>2.13</td>
<td>Alignment of S. pombe Spc19 protein with its S. cerevisiae homologue.</td>
<td>94</td>
</tr>
</tbody>
</table>
Figure 2.14: Alignment of *S. pombe* Spc19 protein with orthologues from other fungi. ... 96
Figure 2.15: Alignment of *S. pombe* Spc34 protein with its homologue in *S. cerevisiae*. ... 98
Figure 2.16: Alignment of *S. pombe* and *S. cerevisiae* Spc34 proteins with orthologues from other fungi ... 101
Figure 2.17: Alignment of *S. pombe* Ask1 protein with its homolog in *S. cerevisiae*. ... 102
Figure 2.18: Alignment of Ask1 protein from *S. pombe* with orthologues from other organisms. .. 104
Figure 3.1: Schematic showing C-terminal GFP epitope tagging steps 106
Figure 3.2: Localisation of Ask-GFP, Duo1-GFP and Dam1-GFP in fixed cells 107
Figure 3.3: Dam1 does not localise to the SPB but localises to the kinetochore in a Dad1 dependent manner ... 110
Figure 3.4: Dad1-GFP localises constitutively to the kinetochore 111
Figure 3.5: Analysis of Dad1 localisation in various kinetochore mutants 114
Figure 3.6: Dam1 is microtubule dependent for localisation to the kinetochore..... 116
Figure 3.7: Dam1 localisation in mutants that perturb microtubule dynamics 118
Figure 4.1: Schematic showing gene deletion steps .. 123
Figure 4.2: Analysis of growth rate of Dam1/DASH deletion mutants 124
Figure 4.3: Dam1/DASH deletion mutants result in chromosome mis-segregation. 126
Figure 4.4: Spindle checkpoint induced mitotic delay in Dam1/DASH mutants. 128
Figure 4.5: Synthetic growth defects when spindle checkpoint is removed 130
Figure 4.6: Dad1 does not play a role in spindle assembly checkpoint maintenance. ... 132
Figure 4.7: Non-disjunction phenotype of Dam1/DASH mutants at 20°C 134
Figure 4.8: Mono-polar segregation of sister-chromatids occurs in Δadaml cells 137
Figure 4.9: Dis1-GFP can still localise in Δadaml cells at 20°C or 27°C 139
Figure 4.10: Live analysis of sister-chromatid separation in WT and Δadaml cells. 142
Figure 4.11: Severe segregation and morphology defects in ΔadamlΔlp14 cells 146
Figure 4.12: Cnp1 localisation is unperturbed in Δadaml cells 149
Figure 4.13: Synthetic growth defects of Dam1/DASH mutants combined with nuf2-2 or Δmal3 mutants .. 150
Figure 5.1: Schematic representation of mutagenic screening strategy 162
Figure 5.2: Serial dilution spot assay of final 16 dam1Δklp5 mutant candidates. 165
Figure 5.3: Co-segregation of ts' phenotype with double dam1-A8Δklp5 mutants. 168
Table of Tables

Table 2.1: Table of orthologues of Dam1/DASH complex in Fission yeast............... 73
Table 2.2: Table of residues of Dam1 mutated in S. cerevisiae and conservation in S. pombe. .. 75
Table 4.1: Genetic interactions of various mitotic mutants with Δdam1, Δask1 and Δdad1.. 145
Table 5.1: Table of dam1-GFP-Kan Δklp5 mutant candidates.................................... 164
Table 5.2: Genetic interactions of dam1-A8 and dam1-A8Δklp5............................... 203
Chapter 1

1 Introduction

The accurate separation of the genome during the cell cycle is crucial to maintaining cellular integrity. Loss of fidelity in this process can give rise to genomic instability, with the resulting aneuploidy a common hallmark of cancer in somatic cells and leading to genetic disease in gametes. The mechanisms of chromosome segregation are highly conserved from yeast to man, with this tightly regulated process involving interplay between spindle microtubules and the centromeric region of chromosomes. The kinetochore is a specialised proteinaceous structure that assembles on the centromeric DNA and attaches and tethers spindle microtubules to the centromeric region of chromosomes in metaphase. The kinetochores of each sister chromatid must become attached in a bipolar manner to ensure high fidelity separation of the sisters to opposite poles in anaphase.

The mechanism underlying the attachment of microtubules to the kinetochore involves a myriad of proteins, including molecules that tightly control microtubule dynamics such as kinesins, MAPs and other motor proteins, kinetochore components that provide a structural platform and docking site for the microtubules, kinases and other molecules which post-translationally modify microtubule and kinetochore regulators, and components of the spindle assembly checkpoint which prevent anaphase onset until each kinetochore is attached in a bipolar manner. This thesis presents a study of an outer kinetochore complex, the Dam1/DASH complex, in the fission yeast, and highlights the important role this complex plays in regulating the types of spindle microtubule attachments at the kinetochore, ensuring bi-orientation of sister chromatids and thus the accurate segregation of chromosomes during mitosis. In this first chapter we will introduce many of the mechanisms and molecules fundamental to kinetochore and microtubule function that facilitate proper chromosome segregation, not only in the fission yeast but also in higher organisms.
1.1 Fission yeast

The fission yeast *Schizosaccharomyces pombe* is a rod shaped unicellular organism that divides by medial fission. It belongs to the class of archaeascomycetes. It has a doubling time of between 2-4 hours and wild-type haploid fission yeast grows to a uniform size of 12-15μm at division with a width of 3-4μm. It has a relatively small genome of 14.2 Mb divided into three chromosomes of sizes 6, 4.7 and 3.5 Mb respectively and containing approximately 4900 genes (Moreno et al., 1991; Wood et al., 2002). The fission yeast is a predominantly haploid organism, but can exist as a diploid through the conjugation of haploids to form diploids and reductive meiosis to generate haploids. Haploid cells conjugate to form diploids only under conditions of nitrogen starvation (Fantes and Beggs, 2000). Haploid fission yeast cells have two mating types, h− and h+. Homothallic (h0+) cells can switch mating types and mate their h− and h+ cells (Forsburg, 1994). The newly formed diploids that result from conjugation, immediately sporulate to form haploid spores and thus the default for this organism is the haploid state.

1.1.1 Fission yeast cell-cycle

Fission yeast is mostly a G2 organism with a very short G1 phase that occurs shortly after mitosis, with cells entering S phase before cytokinesis has even been completed. Cells decide at Start/G1 whether to commit to a mitotic cell cycle or to undergo meiotic cell division, depending on nutrient availability and environmental conditions. Upon commitment to the mitotic cell cycle cells enter at G1. In G1 phase cells grow in size and prepare for DNA synthesis. In S phase cells replicate their genome and then enter into a gap-phase G2 where they determine if the conditions are appropriate for mitotic division. In M phase spindle microtubules become attached to the kinetochores of sister chromatids in a bipolar manner and are segregated to opposite poles. Cells then undergo cytokinesis before re-entering the subsequent G1 phase (Figure 1.1). Cell cycle regulators monitor the cellular and environmental state and thus temporally order the fission yeast cell cycle progression by controlling the transition from one phase to the next. The fission yeast cells contain a number of checkpoint surveillance mechanisms that monitor DNA replication, DNA damage and spindle assembly and attachment to kinetochores during mitosis. These checkpoints can stall the progression of the cell cycle until errors are corrected and conditions, which activated the checkpoint cascades, are satisfied (Hartwell and Weinert, 1989).
Figure 1.1: Meiotic and Mitotic cell cycle stages in the fission yeast *S. pombe*.

Fission yeast cells undergo four stages of the cell cycle in a similar manner to higher organisms, G1, G2, S and M phase. Fission yeast cells decide at Start/G1 phase whether to undergo meiotic or mitotic cell division according to environmental conditions. When starved of nitrogen cells either remain in G1 gap phase or if a mating partner is present enter a reductive meiotic cell division cycle, which consists of one round of S phase DNA replication and two rounds of chromosome segregation to generate haploid spores. Cells that commit to a mitotic cell division enter the cell cycle at G1 and prepare for DNA synthesis in S phase. Cells then proceed through S phase and enter G2 another gap phase, which prepares the cells for mitosis. In M phase the chromosomes are segregated to opposite poles and cytokinesis ensues. The cells then enter a subsequent G1 phase. In the absence of glucose cells exit the mitotic cell division cycle at G2 phase and enter a stationary G0 gap phase where growth does not occur. If glucose again becomes available the cells re-enter the mitotic cell cycle at G2.
Under conditions of low glucose cells exit the mitotic cell cycle at G2 and enter a gap stationary phase of no growth termed G0. If favourable environmental conditions, and glucose, again become available these cells can re-enter the mitotic cell cycle at G2 where they originally exited. Under conditions of nitrogen starvation the fission yeast cells exit the mitotic cell cycle at G1 phase. If no mating partners are present these cells arrest in G1 phase, however when mating partners are present the cells undergo conjugation. DNA replication occurs in pre-meiotic S phase and then the diploids undergo reductive meiotic division. There is only one round of DNA replication in meiosis but two rounds of chromosome segregation, which thus leads to the generation of haploid spores.

After the replication of DNA the zygotes undergo meiotic prophase whereby the nucleus elongates, telomeres cluster at the SPB and the telomere-led nucleus oscillates between both ends of the cell in what is known as horsetail movement. This movement facilitates the proper pairing of homologous chromosomes required for chiasmata formation and homologous recombination. Meiosis I involves the segregation of homologous chromosomes in a mono-polar manner. Cohesion at the centromere between sister chromatids is maintained at anaphase I until sister chromatid separation during meiosis II. These two rounds of chromosome segregation result in the formation of four haploid spores, which germinate to form four haploid cells, which can enter the mitotic cell cycle at Start/G1 (Figure 1.1) (Forsburg, 1994).

1.1.2 Fission yeast-model organism

The fission yeast is a genetically facile organism. Genetic manipulations such as gene tagging and gene deletions can be easily carried out and mutant alleles of various genes can be readily isolated and characterised. The fission yeast can be easily manipulated using different stress, nutrient conditions and mutant backgrounds that it therefore makes it a powerful tool to study various cellular processes. Indeed many of the genes for various cell cycle processes within the fission yeast are the same as those found in higher organisms and as such the fission yeast is an excellent model system to study how cell cycle related processes are regulated.
1.2 Cytoskeleton

The cytoskeleton is a cellular scaffolding which functions to maintain cell shape and polarity, provide mechanical strength, intracellular protein and organelle transport, cell migration and chromosome segregation. The cytoskeleton is made up of intermediate filaments, actin filaments and microtubules (Alberts et al., 1994). There are several types of intermediate filaments, all are composed of long monomers of their characteristic protein, and are approximately 10nm in diameter. Keratin filaments are found in epithelial cells and give rise to hair and nails. Nuclear lamins form a network that provides stabilisation and support for the inner membrane of the nuclear envelope. Neurofilaments function in strengthening the long axons of neurons and vimentins provide mechanical strength to muscles. Actin filaments known as F-actin are approximately 7nm in diameter and are composed of globular actin protein subunits termed G-actin. Actin is the most abundant protein in the cell and is one of the most highly conserved proteins amongst various organisms. Actin filaments like microtubules are polar in nature with a fast growing plus end and a slow growing minus end. Actin filaments are involved in many diverse functions including muscular contraction, cell growth, cell movement and cytokinesis (Alberts et al., 1994). The Actin filaments are further regulated by interactions with proteins which co-ordinate their polymerisation and depolymerisation and function in various cellular processes. The fission yeast cytoskeleton consists only of microtubules, actin cables and actin filaments.

1.2.1 Microtubules

Microtubules are linear polymers of a globular protein called tubulin. They serve as structural components within the cell and like actin are implicated in a variety of intracellular processes. Microtubules function in determining cell shape and polarity, the intracellular transport of organelles and proteins, cell locomotion and in the separation of sister chromatids during mitosis.

Microtubules can consist of α, β, γ, δ, and ε tubulin subunits. The α and β subunits exist as a heterodimer and form microtubule filaments that grow from an anchoring structure composed of γ tubulin by GTP hydrolysis. The γ tubulin subunit is found at microtubule organising centres (MTOCS) (Pickett-Heaps, 1969), where it interacts with other non-tubulin proteins to form the γ tubulin ring complex. This complex acts as a scaffold to initiate the nucleation of α and β tubulin protofilaments to form a
microtubule filament. The recently identified ε and δ tubulin subunits also play a role in the formation of MTOCs for microtubule nucleation. Human δ tubulin localises to the centriolar structures and partially co-localises with γ tubulin (Chang and Stearns, 2000; Inclan and Nogales, 2001). Human ε tubulin localises in a cell cycle dependent manner to the centrosome where it associates with only the old centrosome (Chang and Stearns, 2000; Inclan and Nogales, 2001).

1.2.2 MTOCs

In vertebrates the microtubule organising centres are called centrosomes. Centrosomes are cylindrical structures composed of two perpendicular centrioles, which are rich in ε tubulin, and are surrounded by pericentriolar material (PCM). Each centriole consists of nine triplets of microtubules. The PCM material contains proteins that function to nucleate and anchor microtubule filaments such as the γ tubulin complex, ninein and pericentrin. During interphase the centrosome is associated with the nuclear membrane. In S phase the centrosome duplicates and during mitotic prophase these migrate to opposite poles of the cell (Alberts et al., 1994). Following nuclear envelope breakdown the centrosomally nucleated spindle microtubules can interact with the chromatids to facilitate chromosome segregation. There are reports however that shows that the centrosome is not absolutely required for spindle formation in mitosis. Laser ablation of the centrosome in vertebrate cells can yield cells that form functional and morphologically normal mitotic spindles, and mutation of the sas4 gene in the fruitfly, which is required for centriole duplication, generates normally developed adult fruitflies albeit lacking centrosomes (Khodjakov et al., 2000; Megraw et al., 2001). It appears that in vertebrate cells microtubule nucleation can occur simply in the presence of chromatin, microtubules and motor proteins. However centrosomes are required for astral and interphase microtubule formation, cytokinesis, S phase entry and neuronal development highlighting the importance of this organelle for the overall survival of multicellular organisms.

Yeast cells contain several MTOCs including interphase MTOC (iMTOC), equatorial MTOC (εMTOC) and spindle pole bodies (SPBs) (Snyder, 1994). The iMTOC is a site of nucleation of interphase cytoplasmic microtubules (Becker and Cassimeris, 2005; Janson et al., 2005). These microtubules are nucleated in an independent manner from the SPB and require the binding of the γ tubulin complex to microtubules in the cytoplasm to initiate the nucleation. The εMTOC is involved in
the assembly of the post-anaphase array following chromosome segregation and this occurs in the centre of the cell at the site where cytokinesis will occur. The spindle pole body is analogous to the metazoan centrosome. The SPB functions to nucleate the mitotic spindle and astral microtubules during mitosis. The budding yeast SPB is quite distinct from the centrosomes of higher vertebrates, as it consists of a laminar body (Knop et al., 1999). In interphase the fission yeast SPB lies adjacent to the nuclear envelope in the cytoplasm, following the formation of a half bridge structure a duplicate laminar body structure forms around G1/S, although the exact timing of SPB duplication is still controversial (Ding et al., 1997; Uzawa et al., 2004). SPB maturation occurs in G2 and following invagination of the nuclear envelope the duplicated SPBs are incorporated into the nuclear envelope fenestra. As the cells enter mitosis the SPBs separate and the spindle microtubules are nucleated from the innermost layer of the SPB structure to form a bipolar spindle. Astral microtubules are nucleated in mid-late mitosis to regulate spindle length (Ding et al., 1997; Jaspersen and Winey, 2004; Uzawa et al., 2004). Despite the distinctions between vertebrate centrosomes and the yeast spindle pole bodies both MTOCs play conserved and important roles in the nucleation and organisation of microtubules within the cell.

1.2.3 Microtubule growth and shrinkage overview

Microtubules are nucleated from a starting structure composed of the γ tubulin ring complex, which acts as a scaffold for the polymerisation of α and β tubulin dimers to begin polymerisation to form a microtubule filament. Each microtubule filament is composed of ~13 protofilaments, which form a cylindrical microtubule structure of approximately 24-25nm in diameter. The microtubules are polar in nature with an anchoring minus end capped by the γ tubulin complex and a growing or shrinking plus end. Microtubule growth occurs through the addition of α and β tubulin heterodimers, bound to GTP, to the microtubule plus end. GTP that is bound to α-tubulin is stable, however, the GTP bound to β-tubulin is shortly hydrolysed to GDP. When GTP bound α and β-tubulin is incorporated at the plus end this stability facilitates the incorporation of further GTP bound tubulin heterodimers inducing microtubule growth. As tubulin heterodimers are added onto the plus end of microtubules only when in the GTP state there is usually a GTP cap protecting the plus end of microtubules from disassembly. The β-tubulin subunits undergo hydrolysis of GTP-GDP, when this hydrolysis catches up to the plus end tip of the
microtubule the β-tubulin at the tip hydrolyses its GTP-GDP and undergoes a conformational change which prevents GTP-tubulin heterodimers from adding onto the plus end and the filament undergoes rapid depolymerisation and shrinking. This switch from growth to shrinkage is known as a ‘catastrophe’. Following this a microtubule may again undergo growth and polymerisation. This switch from depolymerisation and shrinkage to polymerisation and growth is called ‘rescue’. Alternation between microtubule polymerisation and depolymerisation occurs continuously in what is termed ‘dynamic instability’ (Mitchison et al., 1986; Mitchison and Kirschner, 1984). This ‘dynamic instability’ is crucial to promote the function of microtubules both in cellular transport, the search and capture for attachment to chromosomes in mitosis, and for cellular locomotion. Assembled microtubule filaments are further regulated through various post-translational modifications such as acetylation and deetyrosination to modify those filaments that have not recently been polymerised.

1.2.4 Microtubule regulators

Many proteins also function to regulate the dynamics of microtubules within the cell. Microtubule associated proteins (MAPs) interact with the microtubules to promote a diverse range of functions within the cell. Most MAPs have microtubule stabilizing properties, however some have been shown to play roles in microtubule disassembly, cross-linking microtubules, regulating microtubule growth towards specific locations and facilitating interactions of microtubules with other proteins or structures (Alberts et al., 1994). MAPs were initially identified biochemically from the isolation of bovine brain microtubules. Perhaps one of the most famous MAPs is the Tau protein. This protein has been linked to the neurological disorder, Alzheimer’s disease. Tau binds to the outer surface of the microtubule protofilament and stabilises and bundles microtubules within neuronal cells (Cairns et al., 2004). The TOG family is another family of MAPs that are required for microtubule stabilisation and accurate chromosome segregation. One of the best studied is XMAP215 from X. laevis.
Figure 1.2 Schematic showing microtubule dynamics

Microtubule filaments are approximately 24-25 nm in diameter. The α/β heterodimer is 8nm in diameter. Each microtubule filament is composed of 13 protofilaments of tubulin arranged in a cylindrical tubular structure. The addition of αβ heterodimers to the plus end of the microtubule promotes microtubule polymerisation. These heterodimers must be bound to GTP to enable assembly at the plus end of the microtubule. When a filament contains GTP tubulin heterodimers at its plus end this promotes the addition of more heterodimers and microtubule growth ensues. Shortly after addition the β-tubulin subunit undergoes hydrolysis of its GTP to a GDP bound form. When this hydrolysis reaches the plus end of the microtubule the resultant conformational change in the β-tubulin subunit induces rapid depolymerisation and shrinkage of the microtubule filament.
XMAP215 has been shown biochemically to induce microtubule stabilisation and polymerisation activity in vitro (Gard and Kirschner, 1987; Vasquez et al., 1994) and is required for mitotic spindle formation and proper chromosome segregation during mitosis. The budding yeast TOG family member Stu2 functions in chromosome alignment in metaphase and spindle elongation in anaphase and is implicated in the activation of the spindle checkpoint, which monitors the attachment state of kinetochores in metaphase (Severin et al., 2001). The fission yeast contains two TOG family members Dis1 and Alp14 both of which are required for microtubule stabilisation and organisation and high fidelity chromosome segregation. These will be discussed in more detail later in this chapter.

Many molecules also function to negatively regulate microtubule dynamics by inducing microtubule depolymerisation or preventing the assembly of microtubule filaments. Stathmin (Oncoprotein-18, OP18) is one such protein, found in metazoans, which can bind to two tubulin heterodimers per molecule of stathmin. It has been proposed that the inhibitory effect of this molecule on microtubule filament formation may be due to the sequestration of tubulin heterodimers by the Stathmin protein which reduces the free concentration of tubulin heterodimers available for polymerisation, or that Stathmin may play a more direct role in inducing catastrophe at microtubule tips (Belmont and Mitchison, 1996; Cassimeris, 2002).

Kinesins are a class of microtubule based motor proteins that function in many diverse aspects of cellular function. Members of this family function in tasks in which force generation is required such as protein and organelle transport, regulation of microtubule dynamics and chromosome segregation. Conventional kinesin was the first member of the super-family identified and consists of two 120kDa heavy chains and two 64kDa light chains which make up a rod-like structure composed of two globular heads, a stalk and a fan-like end (Hirokawa and Takemura, 2004). The heavy chains in the globular head contain motor domains, coiled-coil domains and a stalk, which are required for microtubule binding and ATPase activity. Chromokinesins are a subgroup of kinesin motor proteins that function in mitosis to regulate chromosome condensation, chromosome alignment on the metaphase plate, chromosome segregation and cytokinesis. They belong to two families kinesin-4 and kinesin -10 and members include Kif4A and Kif4B (Kinesin-4 family) and KID (Kinesin-10 family). KID is a C. elegans plus end directed motor that demonstrates microtubule and DNA binding properties. It plays an important role in controlling the movement of chromosomes along the spindle in prometaphase and metaphase and
the alignment of the chromosomes to the metaphase plate (Tokai-Nishizumi et al., 2005). CENP-E is a member of the kinesin-7 family that is involved in the interaction of the spindle microtubules with the kinetochore. It localises to the kinetochore corona throughout the cell cycle and is also involved in the functioning of the spindle assembly checkpoint, and in the alignment of chromosomes to the metaphase plate (Cooke et al., 1997; McEwen et al., 2001; Schaar et al., 1997; Wood et al., 1997). Kinesin-5 (BimC) family members are structurally quite distinct from other kinesin super-family members. They have four motor domains with a 'dumbbell' like structure containing two motor domains at each end joined by a rod to form a bipolar homo-tetramer structure. This bipolar structure contributes to the function of this family of proteins in cross-linking microtubule filaments to form a bipolar spindle. Eg-5 is a vertebrate member of this family, which plays a crucial role in the cross-linking, and sliding of microtubules to form a proper bipolar spindle in mitosis (Cooke et al., 1997).

The kinesin-13 (Kin1) family does not possess motor activity but surprisingly possesses microtubule depolymerising activity. The motor domain is found in the middle of the protein rather than in the N or C termini as in other kinesin families. This family functions to promote catastrophe and dynamic instability in microtubule filaments (Desai et al., 1999). There are three mitotic kinesin-13 members in human cells Kif2a, Kif2b (Klp10A-Drosophila melanogaster) and Kif2c/MCAK (Klp59C-Drosophila melanogaster). The D. melanogaster kinesin-13 proteins Klp10A and Klp59C demonstrate a 'division of labour' to regulate microtubule depolymerisation during mitosis. Klp59C (MCAK) induces microtubule depolymerisation at the kinetochore attached plus-end in a 'pac-man' like manner, whereby kinetochores induce the disassembly of spindle microtubules allowing the movement of sister chromatids towards the pole by depolymerising the spindle as it goes. The kinesin-13 member Klp10A (Kif2a, Kif2b) functions to induce depolymerisation of the mitotic spindle and to drive anaphase sister chromatid movement in a distinctive manner. Klp10A depolymerises microtubules at the centrosome associated minus end to allow anaphase segregation of chromosomes via 'poleward flux' (Rogers et al., 2004). Furthermore both of these kinesin-13 members have been shown to form ring like and spiral structures around microtubules in a similar manner to the budding yeast Dam1/DASH complex which may allow these molecules to remain associated with the ends of microtubules during depolymerisation (Tan et al., 2006). MCAK (Mitotic centromere associated kinesin) is a potent vertebrate microtubule destabiliser that can target either microtubule end, in a non-motile manner, through a 'diffusion and
capture’ mechanism to allow rapid end binding of the microtubule (Helenius et al., 2006). MCAK induces catastrophe in stable microtubules through removal of the GTP cap from the plus end of microtubule filaments promoting rapid microtubule depolymerisation and disassembly in a motor and ATP hydrolysis dependent manner (Desai et al., 1999). MCAK and its homologues have been shown to oppose the microtubule stabilising properties of the TOG family (Holmfeldt et al., 2004; Tournubize et al., 2000). MCAK is found both in the cytoplasm and on centromeres throughout the cell cycle but its centromere association is enriched following mitotic entry, where it has been implicated in playing an important role alongside Aurora B in promoting proper kinetochore-microtubule interactions and error correction (Maney et al., 1998). The *X. laevis* XKCM1 (MCAK homologue) is also required for regulation of microtubule dynamics and accurate chromosome segregation (Desai et al., 1999; Severin et al., 2001). Disruption of XKCM1 activity in mitotic *X. laevis* egg extracts results in abnormally long asters and microtubules which lack dynamic instability, demonstrate a fourfold reduction in the catastrophe rate and are incapable of bipolar spindle formation (Walczak et al., 1996).

There are no kinesin-13 family members in yeast, they do possess however kinesin-8 family members which are thought to function in microtubule depolymerisation instead of kinesin-13 members in these organisms. Kinesin-8 proteins are quite similar to kinesin-13 members and disruption of their function yields longer interphase and mitotic microtubules, resistance to spindle drugs, mis-positioning of the mitotic spindle and disruption of correct spindle-kinetochore interactions (Cottingham and Hoyt, 1997; DeZwaan et al., 1997; Garcia et al., 2002a; Garcia et al., 2002b; Goshima et al., 2005; Rischitor et al., 2004). The budding yeast kinesin-8 member Kip3 depolymerises microtubules from the plus end in a length dependent manner. Kip3 possesses motor activity and uses ATP hydrolysis to move in a directed manner towards the plus end of the microtubule (Gupta et al., 2006; Varga et al., 2006). The *Drosophila melanogaster* kinesin-8 member Klp67A also serves to regulate microtubule dynamics by functioning as a microtubule destabiliser. Depletion of Klp67A by RNAi (RNA interference) causes the appearance of longer mitotic spindles, whereas overexpression of this protein leads to shorter mitotic spindles (Goshima et al., 2005). The fission yeast kinesin-8 family members Klp5 and Klp6 have been also implicated in microtubule depolymerisation, spindle length control, chromosome congression during metaphase and accurate chromosome segregation. These proteins will be discussed in further detail later in this chapter (Garcia et al., 2002a; Garcia et al., 2002b; West et al., 2002; West et al., 2001).
1.2.5 Fission yeast microtubules

Most organisms contain several α and β tubulin isoforms which can differentially regulate the localisation and functions of microtubule filaments. The fission yeast is no exception to this with two α-tubulin encoding genes atb^2 and nda^2 and one β-tubulin encoding gene nda^3 (Adachi et al., 1986; Hiraoka Y, 1984; Toda et al., 1984; Yanagida, 1987). The α-tubulin gene nda^2 is essential for viability, however atb^2 is not absolutely required for cell viability indicating some subtle differences between both α-tubulin isoforms. It seems however that these two genes are partially redundant as overexpression of atb^2 can rescue the lethality of nda^2 mutants.

In the fission yeast interphase cytoplasmic microtubules are nucleated from iMTOCs or SPBs to form 3-6 microtubule arrays that grow along the length of the fission yeast cell and function to maintain the cell shape and polarity. These cytoplasmic microtubules are arranged with the plus ends facing the cell tips and with minus ends overlapping near the centre of the cell (Sawin and Tran, 2006; Tran et al., 2001). The interphase microtubule arrays disappear as cells proceed into mitosis (Figure 1.3).

Upon entry into mitosis the duplicated invaginated SPBs separate and the mitotic spindle is nucleated from the nuclear side of the SPB. This mitotic spindle is composed of a number of different types of microtubule filaments; including pole-to-pole microtubules, kinetochore-to-pole microtubules and astral microtubules. Pole-to-kinetochore microtubules are anchored at their minus ends to the SPB with their plus ends protruding towards the chromosomes to facilitate kinetochore capture and chromosome segregation during anaphase. The pole-to-pole microtubules extend from one pole to the other with a region of overlap at the centre of the cell. During mitosis the cytoplasmic side of the SPB nucleates astral microtubules, however the exact timing or function of these astral microtubules remains controversial. Previous published reports argue that these cytoplasmic astral microtubules are nucleated prior to anaphase, that they play a crucial role in aligning the metaphase spindle in a perpendicular manner to the cell axis and in the ‘spindle orientation checkpoint’ (SOC) (Gachet et al., 2001; Gachet et al., 2004; Oliferenko and Balasubramanian, 2002; Rajagopal et al., 2004; Tournier et al., 2004). More recent work suggests these cytoplasmic astral microtubules are nucleated after the metaphase-anaphase transition and therefore have no function in a mitotic checkpoint. It is also postulated that what were presumed to be prometaphase-metaphase astral microtubules might be in fact intranuclear microtubules that are nucleated from the nuclear side of the SPB.
(Sawin and Tran, 2006; Zimmerman et al., 2004). It is therefore controversial when exactly these cytoplasmic astral microtubules are nucleated and indeed what their function if any is in mitosis.

The kinetochore-to-pole microtubules are nucleated from opposite poles, grow and interact with the kinetochores of sister chromatids. Bipolar attachments are formed so that a kinetochore of one chromatid is attached to one pole and the kinetochore of the sister is attached to the opposite pole. There are approximately 3 pole-to-kinetochore microtubules attached to each kinetochore in the fission yeast. Following this bipolar attachment tension is generated and anaphase onset can occur (Figure 1.3). Anaphase A involves the depolymerisation of the spindle microtubules, to facilitate the pulling of the sister chromatids towards the opposite poles. In anaphase B the pole-to-pole microtubules are elongated pushing the separated chromosomes and SPBs to opposite ends of the cell. At the end of mitosis the post anaphase array (PAA) is nucleated from the eMTOC in the centre of the cell where cell division will occur. A cytokinetic actomyosin ring then forms at this division site to facilitate cytokinesis (Sawin and Tran, 2006) (Figure 1.3).
Cytoplasmic interphase microtubule bundles grow along the cell axis and function to maintain cell shape and polarity. The invaginated and duplicated SPBs separate in mitosis and form a bipolar mitotic spindle. The pole-to-kinetochore microtubules nucleated from the nuclear side of the SPB grow with their plus ends towards the equator of the cell and capture the chromosomes aligned at the metaphase plate. Anaphase A onset induces depolymerisation and disassembly of the spindle to pull the separated chromosomes towards the opposite poles. Astral microtubules may play a role in facilitating this process. During Anaphase B the pole-to-pole microtubules are elongated and push the SPBs and newly separated chromosomes apart to the cell ends. A post anaphase array is formed at the site of cell division and a cytokinetic actomyosin ring is deposited at this site. Red represents microtubules, blue represents DNA, and green represents the SPB.
1.3 Mitosis

The process of cell division must be tightly controlled to ensure cellular integrity, genome stability and to prevent excess tissue proliferation. This process involves both a nuclear division of the genetic material of the cell during chromosome segregation and a cytoplasmic division to separate the newly formed daughter cells during cytokinesis. During the mitotic phase of the cell cycle the sequential transition from one mitotic stage to the next is regulated tightly in a quality control and temporal manner. Each stage of mitosis involves the co-ordination of various cellular organelles, signalling cascades, cytoskeleton components and a myriad of proteins playing unique contributory roles to ensure that the separation of chromosomes and division of the cell occurs with high fidelity and precision.

1.3.1 Mitotic stages-overview

The mitotic phase of the cell cycle can be subdivided into various different mitotic stages, prophase, prometaphase, metaphase, anaphase and telophase followed by cytokinesis (Alberts et al., 1994). During prophase the chromosomes condense into well-defined sister chromatids and the cytoplasmic microtubule arrays breakdown and are disassembled. The separating centrosomes begin nucleating the mitotic spindle outside of the nucleus. At the start of prometaphase nuclear envelope breakdown (NEBD) occurs in metazoan cells and the spindle microtubules now enter the nucleus (Alberts et al., 1994). The kinetochore structures on the centromeres of sister chromatids mature and are ready to facilitate the attachment of the chromosomes to the spindle microtubules. The kinetochore microtubules search and capture the kinetochores and tension is generated which aligns the chromosomes along the equator of the cell. During metaphase all of the chromosomes are congressed to the equator of the cell, which is known as the 'metaphase plate', and the attachment state of each kinetochore is monitored. At this stage kinetochores must be attached in a bipolar manner, with the kinetochore of one sister chromatid attached to one pole and the other sister attached to the opposite pole, and sufficient tension generated.

A checkpoint-signalling cascade detects the attachment state of the kinetochores and delivers a ‘wait’ signal in the event of incorrect or improper attachment. This delays anaphase onset until all sister chromatids can be attached in a proper bipolar manner.
and are correctly oriented (Hardwick et al., 2000; Hardwick et al., 1999; Wang and Burke, 1995; Waters et al., 1998). A cohesive complex, known as cohesin, holds the sister chromatids together. At anaphase onset this complex is cleaved allowing the separation of sister chromatids that can be then pulled pole-ward (Uhlmann, 2004; Uhlmann et al., 1999). During anaphase A the kinetochore microtubules are depolymerised to facilitate the movement of the chromosomes to the poles. Anaphase B involves the elongation of polar microtubules, which pushes the spindles poles apart and further separates the segregated chromosomes to opposite ends of the cell (Alberts et al., 1994; Barton and Goldstein, 1996). Telophase then follows which in mammalian cells involves the reformation of the nuclear envelope around each group of daughter chromosomes, the disappearance of the kinetochore microtubules, decondensation of the chromatin and the re-appearance of the nucleoli (Alberts et al., 1994). The newly formed daughter cells then undergo cytokinesis. In animal cells the plasma membrane around the cell centre is drawn inwards to form a cleavage furrow. This cleavage furrow continues to constrict until only a thin bridge of cytoplasm remains between the two new daughter cells. Eventually this bridge narrows and breaks and the cells are completely separated (Alberts et al., 1994).

Within the fission yeast cell cycle mitosis is also classified into the same distinct phases, prophase, prometaphase, metaphase, anaphase, telophase and cytokinesis. Unlike mammalian cells and other organisms the fission yeast nuclear envelope does not break down during mitosis and the fission yeast undergoes a ‘closed mitosis’ with mitotic spindle nucleation and chromosome segregation occurring completely within the nucleus (Egel et al., 1980). Prometaphase, metaphase and anaphase proceed in a similar manner as in mammalian cells with condensation of the chromosomes, breakdown of the cytoplasmic microtubule arrays, attachment of the pole-to-kinetochore microtubules to kinetochores, chromosome congression to the metaphase plate, segregation of the chromosomes during anaphase and pole-to-pole spindle elongation during anaphase B. During telophase a post anaphase array of microtubules is formed and septum formation occurs which allows separation of the fission yeast cells during cytokinesis.

Fission yeast mitosis can also be classified according to mitotic spindle dynamics. The pole-to-kinetochore microtubules cannot be visualised by fluorescence microscopy during fission yeast mitosis and only the pole-to-pole microtubules are apparent. Mitosis can therefore be classified according to the dynamics of these pole-to-pole microtubules as three distinct phases; phase I, phase II and phase III. In phase
I (prophase) mitotic spindle nucleation is initiated with spindle length corresponding to 0-2.5µm. In phase II (prometaphase-anaphase A) the spindle length remains constant at ~ 2.5µm. In phase III spindle elongation occurs (anaphase B) with the spindle length increasing to 12-15µm (Nabeshima et al., 1998). Mutations that affect kinetochore components, tubulin structure or dynamics and the regulation of mitotic timing can show delay in the duration of some of these phases.

1.3.2 Kinetochoore attachment & tension overview

During mitosis the kinetochores of sister chromatids must become correctly and stably attached in a bipolar manner. Kinetochoore microtubules ‘search and capture’ the kinetochores during prometaphase, but this is thought to be a stochastic process and often leads to the formation of incorrect and mal-oriented kinetochores. These incorrectly attached kinetochores must be ‘turned-over’ and repaired to allow bipolar attachments to form, tension to be generated and proper kinetochore bi-orientation to occur. Kinetochores that are stably attached in a bipolar configuration with the kinetochores of both sister chromatids attached to opposite spindle poles are known as amphitelic attachments (Figure 1.4). When this amphitelic state is achieved not only are the kinetochores attached to both poles but also tension, which is required to satisfy the spindle assembly checkpoint, is generated (Stern and Murray, 2001). This tension occurs due to the balance in opposing forces with the pole-ward force caused by depolymerisation of the attached kinetochore microtubules pulling against the sister chromatids, which are held together by cohesin (He et al., 2000; Tanaka et al., 2000). This tension is important to not only enable the sensing of correct attachment states but also in stabilising the microtubule attachments to the kinetochore.

Defects in microtubule-kinetochore attachment can be of several different configurations. If only one of the kinetochores on a pair of sister chromatids is attached and the other is unattached this is known as monotelic attachment (Figure 1.4). In this case the unattached kinetochore will activate the spindle assembly checkpoint-signalling cascade to induce a mitotic delay until an amphitelic configuration can be established (Hardwick, 2005; Zhou et al., 2002). Another type of mono-polar configuration exists whereby both sister kinetochores can become attached to the same pole, and is known as syntelic attachment (Figure 1.4). Syntetically attached kinetochores can satisfy the attachment criteria of the spindle assembly checkpoint, but sufficient tension is not generated by this configuration,
thus allowing the tension sensing components of the checkpoint to signal and induce an anaphase delay and activate an Aurora B dependent repair pathway (Dewar et al., 2004; Lampson et al., 2004; Pinsky and Biggins, 2005). Merotelic attachments occur when a single kinetochore is attached to both spindle poles by one or more microtubules (Figure 1.4). It has been shown that merotelic attachments occur frequently in tissue-cultured cells with approximately 30% of prometaphase Ptk1 cells showing one or more merotelically oriented kinetochores (Cimini et al., 2003). Despite the fact that evidence suggests that these attachments appear not to be detected by the spindle assembly checkpoint (Cimini et al., 2001) these defects do appear to be ‘turned over’ and repaired in an Aurora B and MCAK dependent manner (Cimini et al., 2003; Cimini et al., 2006; Knowlton et al., 2006). We will discuss the correction of mal-oriented kinetochore attachments in more detail later in this chapter.

It was reported that astral microtubules play an important role in the orientation of the spindle and the generation of tension at the kinetochore-microtubule interface. Fission yeast cells that lack ‘astral’ microtubules in metaphase were unable to orient the mitotic spindle along the length of the cell and it was thus concluded that ‘astral’ microtubules orient the position of pole-to-kinetochore microtubules in a perpendicular manner to the cell axis (Gachet et al., 2004; Oliferenko and Balasubramanian, 2002). More recently it has been demonstrated that these microtubules are not ‘astral’ in nature and are actually intranuclear microtubules, however it is likely that instead of contacting the cell cortex to orient the mitotic spindle as earlier proposed they are in fact contacting the nuclear envelope and in this manner facilitating the orientation of the spindle and the generation of kinetochore tension (Zimmerman et al., 2004).
Figure 1.4: Kinetochore attachment configurations

Kinetochores that are correctly attached in a bipolar manner with both sister chromatids attached to opposite spindle poles are known as amphitelic attachments. If one of the kinetochores on a pair of sister chromatids is unattached this is known as monotelic attachment and leads to activation of the spindle assembly checkpoint. Syntelic attachments occur when both sister chromatids are attached to the same pole and causes activation of a tension-sensing arm of the checkpoint and induction of repair pathways. Merotelic kinetochores occur when kinetochores become attached to both spindle poles. These are not sensed by the checkpoint but are efficiently ‘turned over’ in an Aurora B dependent manner. Arrows represent direction of microtubule pulling force.
1.3.3 Spindle assembly checkpoint

The spindle assembly checkpoint functions to delay anaphase onset through inhibition of the APC/C until all chromosomes are attached in a bipolar manner and correctly bi-oriented. The spindle assembly checkpoint proteins were first discovered in the budding yeast in a genetic screen to identify mutants that fail to arrest in mitosis in the presence of spindle drugs. These include (mitotic arrest deficient) Mad1, Mad2 and Mad3 (hBubR1) Bub1 and Bub3 (budding uninhibited by benzimidazole) and Mps1 (Mph1-fission yeast) (Hoyt et al., 1991; Li and Murray, 1991; May and Hardwick, 2006). These proteins are well conserved across many species with homologues of all found from yeast to man. The names are maintained across species lines except for Mad3, which is known as BubR1 (Bub1 related 1) in metazoans and Mps1, which is called Mph1 (Mps1 like pombe homologue) in fission yeast. Several other checkpoint components have been identified in different organisms and these include; CENP-E which has been shown to stimulate BubR1 kinase activity in higher organisms (Mao et al., 2003), the RZZ complex of Rod, Zw10 and Zwilch which is involved in recruiting Mad1-Mad2 to kinetochores and in their subsequent removal (Basto et al., 2000; Buffin et al., 2005; Chan et al., 2000; Karess, 2005; Kops et al., 2005), Aurora B/Ipl1/Ark1 which is required for checkpoint activation due to lack of tension in mammals and budding yeast and due to lack of attachment in fission yeast.

The spindle assembly checkpoint is activated in response to chromosomes that lack attachment. Removal of unattached kinetochores either through the establishment of amphitelic orientation or through laser ablation results in silencing of the spindle assembly checkpoint and anaphase entry (Rieder et al., 1995). The checkpoint can also be activated when tension is lacking, such as is found in syntelic configurations or upon treatment with spindle poisons or chemicals (Kapoor et al., 2000; May and Hardwick, 2006; Skoufas et al., 2001). Mad1 and Mad2 localise to unattached kinetochores but do not localise to kinetochores that lack only tension (Waters et al., 1998), whereas Bub1 and BubR1/Mad3 can localise to both unattached and/or tensionless kinetochores (Skoufas et al., 2001) (Figure 1.5).

The spindle assembly checkpoint induces a mitotic delay through inhibition of the Anaphase promoting complex APC/C. The APC/C functions as an E3 ubiquitin ligase enzyme that ubiquitylates many cell cycle regulators and targets them for
degradation by the 26S proteasome. During metaphase the Cohesin complex holds
the sister chromatids together. The Sccl subunit of this complex is cleaved at the
metaphase-anaphase transition by a protease called Separase, which facilitates the
separation of sister chromatids during anaphase A (Ciosk et al., 1998; Klein et al.,
1999; Uhlmann et al., 1999; Uhlmann et al., 2000). Securin is an inhibitory
chaperone that prevents premature activation of Separase prior to anaphase onset
(Hornig et al., 2002; Salah and Nasmyth, 2000; Yanagida, 2000) and is a key
anaphase substrate for the APC/C. Destruction of Securin releases Seperase and
allows it to cleave Cohesin (Figure 1.5). The APC/C also targets Cyclin B for
destruction during anaphase, which facilitates mitotic exit through the abolition of
CDK activity (Shirayama et al., 1999). The APC/C is regulated by the presence of
accessory proteins Cdh1 or Cdc20, which interact with specific substrates and target
them to the APC/C for ubiquitylation (Peters, 2002). Cdc20 (Slp1-fission yeast) is
the mitotic accessory regulator of the APC/C and is the target of the spindle assembly
checkpoint. Several checkpoint proteins form a complex (MCC) that binds to Cdc20,
rendering the APC/C inactive and inducing a mitotic delay (Kim et al., 1998)(Figure
1.5).

When kinetochores are unattached or lacking in tension the spindle assembly
checkpoint components localise to the kinetochore where a 'wait anaphase' signal is
generated and amplified. Mad1 and Bub1 can stably associate with unattached
kinetochores where it is thought they act as a scaffold or platform for recruitment of
the other checkpoint signalling molecules Mad2 and Mad3/BubR1 (Howell et al.,
2004; Shah et al., 2004). There is a pool of Mad2 that always remains stably
associated with Mad1 at the kinetochore whereas a second population of Mad2 and
cdc20 cycles on and off the kinetochore in a dynamic fashion (Howell et al., 2004;
Shah et al., 2004; Vink et al., 2006). Structural studies have revealed that Mad2 can
exist as two different conformers. When free in solution Mad2 is in an open
confirmation called O-Mad2, this Mad2 conformer can bind to Mad1 or Cdc20 and
undergoes a conformational change to form closed Mad2, C-Mad2.(De Antoni et al.,
2005). The Mad1/C-Mad2 complex is very stable and acts as a template at the
kinetochore for the recruitment of O-Mad2 and facilitates the binding of O-Mad2 to
Cdc20, to form a Cdc20/C-Mad2 complex. This C-Mad2/Cdc20 complex displays
potent inhibition of the APC/C in vitro, however in vivo, the formation of a complex
consisting of Mad2, Mad3/BubR1, Bub3 and Cdc20 known as the mitotic checkpoint
complex (MCC) is required for inhibition of the APC/C (Figure 1.5).
Once kinetochores have become properly attached and bi-oriented the spindle assembly checkpoint must be switched off to allow anaphase to proceed and cells to exit mitosis. Several molecules have been implicated in playing an important role in checkpoint silencing at the metaphase-anaphase transition. The motor protein Dynein has been shown to play an important role in the transport of Mad1, Mad2 and BubR1 away from the kinetochore along microtubules, which could serve to prevent the formation of further inhibitory MCC complexes, or in the generation of the 'wait anaphase' signal (Howell et al., 2001). CENP-E has been implicated in spindle assembly checkpoint silencing due to its ability to regulate BubR1 kinase activity. It has been shown that the binding of microtubules to CENP-E downregulates the BubR1 kinase activity and switches off the checkpoint (Mao et al., 2003). The checkpoint inhibitory protein p31comet (CMT2) possess the ability to selectively bind to Mad2 that is bound to Cdc20 (Mapelli et al., 2006; Xia et al., 2004). Furthermore in vitro studies demonstrate that purified p31comet enhances the activity of the APC/C and that p31comet plays a role in silencing the spindle assembly checkpoint. Recently a new report highlighted an important discovery in furthering our understanding of how the spindle assembly checkpoint is silenced. It now seems that Cdc20 is multi-ubiquitinated in an UbcH10 dependent manner, which causes disruption of the MCC complex through dissociation of Mad2 and BubR1. This ubiquitination and dissociation of checkpoint proteins are enhanced by the presence of both UbcH10 and p31comet (Reddy et al., 2007). This process can be reversed through the action of a de-ubiquitinating enzyme USP44, which can stabilise the MCC complex through de-ubiquitination of Cdc20 both in vitro and in vivo (Reddy et al., 2007; Stegmeier et al., 2007). This suggests that the metaphase-anaphase transition is regulated by a dynamic balance in ubiquitination by the APC/C and de-ubiquitination by USP44.
Figure 1.5: Activation mechanism of the spindle assembly checkpoint

During metaphase the kinetochores must become attached in a bipolar amphitelic manner and sufficient tension generated. When correct attachments are generated anaphase onset begins by APC/C mediated ubiquitylation of Securin/Cut2, which is an inhibitory chaperone for the thiol protease Separase. Degradation of Securin causes the release of Separase and the cleavage of the Cohesin complex that holds sister chromatids together, allowing chromosomes segregation to occur. In conditions where kinetochores are unattached or lacking in tension the spindle assembly checkpoint cascade is activated. This process involves the recruitment of checkpoint proteins to the kinetochore. It is believed that Mad2 is recruited to the kinetochore through Mad1, Mad3 recruited through binding Bub1 and Bub3 through binding Mad3. The binding of Mad2, Bub3 and Mad3/BubR1 to the APC/C accessory protein Cdc20 then forms the MCC complex. This inhibits Cdc20 to prevent APC/C activation and induce a mitotic delay. O-Mad2 represents the open conformation of the Mad2 protein. C-Mad2 represents the closed conformation of the protein.
1.3.4 Turnover of incorrect kinetochore attachments

We have previously mentioned that merotelic kinetochores are not sensed by the spindle assembly checkpoint but are somehow 'turned over' and repaired to allow correct chromosome segregation to occur and prevention of aneuploidy. It is thought that the correction of merotelic kinetochores occurs in an Aurora B dependent manner. Aurora B localises to the centromere in early mitosis so it is in a prime location to function in the repair of mal-oriented kinetochores at this time. Indeed treatment of tissue culture cells with the Aurora kinase inhibitor ZM447439 or Aurora B RNAi causes an increase in the frequency of metaphase merotelic attachments and anaphase lagging chromosomes (Cimini et al., 2006; Ditchfield et al., 2003).

Merotelic kinetochores are ‘turned over’ and segregated equally by the activation of a pre-anaphase correction mechanism. This mechanism allows merotelic kinetochores to move away from the equator of the cell depending on the ratio of kinetochore microtubules from the correct to the incorrect pole. If this ratio is around 1:1 it leads to the failure in the ‘turn over’ of these merotelic kinetochores and anaphase lagging chromosomes result, however, if there is a higher ratio favouring the correct pole then poleward movement will occur with correct segregation of the sister chromatids in anaphase (Cimini et al., 2004). This mechanism has been shown to allow the correct segregation of merotelic kinetochores in tissue culture cells, with 16% of Ptk1 metaphase cells displaying one or more merotelic kinetochores but only ~1% of these produce anaphase-lagging chromosomes (Cimini et al., 2004).

Aurora B functions in the pre-anaphase ‘turnover’ of merotelic kinetochores that have a microtubule ratio of 1:1 by reducing the number of microtubules that are attached to the incorrect pole through microtubule detachment and depolymerisation. Evidence for this includes that kinetochore microtubules become much more stable when Aurora B is inhibited and also in anaphase when Aurora B relocates from the centromere/kinetochore to the spindle midzone (Cimini et al., 2006). It is thought that the detachment of incorrect microtubule attachments occurs through the regulation of the depolymerising kinesin MCAK by Aurora B. Both Aurora B and active MCAK are enriched at merotelic kinetochore sites (Knowlton et al., 2006) and a previously published report shows that the prevention of centromeric localisation of MCAK increases the frequency of anaphase lagging chromosomes (Kline-Smith et
al., 2004). It would therefore seem that one of the roles of Aurora B in the 'turnover' of merotelic kinetochores in mammalian cells is through the regulation of the depolymerisation activity of MCAK. It seems likely that other downstream modulators exist which must be modified by Aurora B to function not only in sensing merotelic attachments and in detachment of the incorrect microtubules, but also in the re-attachment of correctly oriented microtubules.

In the budding yeast the Aurora B ortholog, Ipl1, is found in a complex with Bir1 (Survivin) and Sli15 (INCENP) which has been shown to be required for anaphase spindle elongation, cytokinesis and in early mitosis in the generation of correctly bi-orientated kinetochores (Biggins and Murray, 2001; Dewar et al., 2004; Tanaka et al., 2002). Furthermore Ipl1 has been shown to be required for spindle assembly checkpoint activation in response to a lack of tension (Biggins and Murray, 2001). When the function of Ipl1 is lost the 'turnover' of syntelically-attached kinetochores does not occur and mono-polar segregation defects occur (Dewar et al., 2004; Tanaka et al., 2002). Ipl1 must therefore function in the 'turnover' of these mal-oriented kinetochores through the detachment of incorrect microtubule configurations and the re-attachment of correct microtubules.

A key downstream target for Ipl1 in the 'turnover' of syntellic kinetochores in the budding yeast is the Dam1/DASH complex. Ipl1 has been shown to phosphorylate Dam1 at various sites in vitro (Cheeseman et al., 2002a; Courtwright and He, 2002; Kang et al., 2001). Indeed phospho deficient dam1 mutants (S-A) phenocopy ipl1 mutants with respect to persistent mono-polar attachments (Cheeseman et al., 2002a). Moreover phospho mimic dam1 mutants (S-D) show a lagging chromosome phenotype indicative of unattached kinetochores (Cheeseman et al., 2002a). It seems that the phosphorylation of Dam1 by the Ipl1 kinase is required to detach incorrectly oriented kinetochore configurations and allow subsequent re-attachment of correct configurations. It has been demonstrated that the Dam1/DASH complex, which is bound to microtubules, can interact with Ndc80 on the outer kinetochore through the Dam1 subunit. Phosphorylation of Dam1 by the Ipl1 kinase is thought to disrupt this binding with Ndc80 and thus abrogate the kinetochore-microtubule interaction. Indeed phospho mimic dam1 mutants show not only disrupted binding to Ndc80 but also reduced binding to the centromere region by chromatin Immunoprecipitation (ChIP) analysis (Cheeseman et al., 2002a; Shang et al., 2003).
More recently it has been demonstrated that Ipl1 functions in the activation of the spindle assembly checkpoint in response to a lack of tension by creating unattached kinetochores and that this seems to be through the Ipl1 regulated phosphorylation of Dam1 (Pinsky et al., 2006). Therefore in order to correctly repair tension defects in this system they must first be converted into attachment defects through Ipl1 kinase activation. The fission yeast Aurora B orthologue is thought to be required for both attachment and the generation of correct tension at the kinetochore, however the exact nature of its role in correct kinetochore-microtubule interactions is still to be elucidated (Petersen and Hagan, 2003).

1.4 Centromere

During mitosis the chromosomes become attached to the spindle microtubules at a special site known as the centromere. Centromeres were first described as far back as the 1880’s as primary constrictions visible on condensed chromosomes and which corresponded to the site of attachment of the spindle microtubules (Fleming, 1882). The centromere directs the assembly of a multi-proteinaceous complex called the kinetochore, which facilitates the attachment of spindle filaments to enable sister chromatid separation.

1.4.1 Centromere sequence

Centromeres form on a specific site on each chromosome; therefore it was logical to assume that a specific DNA sequence would specify the assembly of centromeric chromatin and the site of kinetochore formation. However, while this appears to be the case for the simple ‘point’ centromere within the budding yeast S. cerevisiae, there is no apparent conservation of centromere sequence in other eukaryotes. While there are no obvious centromere determinant DNA sequences in these organisms, the centromeres do possess quite distinct features from the remainder of the chromosomal chromatin structure. The centromeres in these organisms contain tandem sequence repeats, which are specifically found only at the centromere region. Furthermore, centromeric chromatin contains a unique Histone H3 variant protein called CENP-A (fission yeast-Cnp1, budding yeast-Cse4) that is packaged in the nucleosomes to form a distinct centromeric chromatin structure.
1.4.1.1 Budding yeast centromere

The budding yeast centromere was the first to be cloned and sequenced (Clarke and Carbon, 1980). A 125-bp sequence was found to be necessary and sufficient for the formation of the centromere/kinetochore region (Cottarel et al., 1989; Gaudet and Fitzgerald-Hayes, 1989). The centromeric regions of the budding yeast chromosomes are divided into three distinct domains, CDEI, CDEII and CDEIII (Fitzgerald-Hayes et al., 1982). CDEI and CDEIII are palindromic and bind in a sequence specific manner to centromeric proteins complexes that constitute the inner kinetochore (McAinsh et al., 2003). CDEII is an AT rich sequence that can vary in length and is thought to wrap around the nucleosome, through interaction with the Histone H3 variant proteins Cse4 (Clarke and Carbon, 1980; Keith and Fitzgerald-Hayes, 2000). Cse4 can also interact with the CDEI sequence region. It is postulated that this binding of CSE4 to CDEI and CDEII forms a scaffold structure to facilitate the assembly of the kinetochore protein complexes (Cheeseman et al., 2002b; McAinsh et al., 2003).

The CDEI region also binds to the Cbf1 protein, which is a non-essential helix-loop-helix protein that shows some homology to the human CENP-B protein. While not an essential protein; Cbf1 does function to provide high-fidelity chromosome segregation, as in the absence of this protein the rate of chromosome loss is elevated (Cai and Davis, 1990; Stoyan et al., 2001). The CBF3 complex binds to the CDEIII region of the centromere. This complex is composed of 4 essential proteins, Ndc10, Ctf13, Cep3 and Skp1. The DNA binding activity of the CBF3 complex is through the zinc finger motif of the Cep3 protein (Espelin et al., 1997). The CBF3 complex acts as a scaffold or platform for the recruitment of all the other kinetochore proteins; indeed CBF3 is also required for the centromere binding of Cse4 and is a primary requirement and determinant of kinetochore localisation and assembly in the budding yeast (McAinsh et al., 2003; Measday et al., 2002). More recently Cse4 was shown to be also required for the recruitment of central and outer kinetochore components and therefore functions also as a determinant of kinetochore assembly along with CBF3 in the budding yeast (Collins et al., 2005; Westermann et al., 2007).
1.4.1.2 Fission yeast centromere

The fission yeast centromere spans approximately 40-100 kb in length and is composed of distinct and separate domains. All of the three fission yeast centromeres have the same fundamental structure, with a central core (cnt) of non-repetitive DNA that is flanked by inverted tandem repeats, the innermost repeats (imr) and the outermost repeats (otr) (Pidoux and Allshire, 2004; Wood et al., 2002). The cnt region is approximately 4-7kb in length that together with the imr forms a central domain that acts as the site of kinetochore assembly. The otr region forms a heterochromatic outer domain, which is involved in transcriptional silencing (Carroll and Straight, 2006; Pidoux and Allshire, 2004). The fission yeast centromere is therefore a good model to study centromere structure and formation in that it resembles centromeres of higher organisms.

The central core region has a unique chromatin structure, which forms a smear pattern following micrococcal nuclease digestion, whereas other chromosomal regions yield a typical nucleosomal ladder pattern (Polizzi and Clarke, 1991). This unique structure does not correlate with the centromeric sequence, as the introduction of fission yeast central core sequences into the budding yeast does not yield this smear pattern (Polizzi and Clarke, 1991). It is thought that epigenetic regulation may play a role in this central core chromatin structure (Pidoux and Allshire, 2004). The fission yeast, like other organisms, contains a Histone H3 variant protein, Cnp1, which is incorporated into the nucleosomes in the central core region. Several kinetochore proteins are required for the assembly of Cnp1 into the central core nucleosomes, including Mis15-18 and Mis6 (Hayashi et al., 2004; Takahashi et al., 2000).

The otr outer repeat region is maintained in a heterochromatic state. The histones H3 and H4 in the nucleosomes of the otr region are hypo-acetylated on the lysine residues in their N-termini, K14 (Histone 3) and K9 (Histone 4) respectively (Ekwall et al., 1997). In addition to this, lysine 9 of Histone H3 is methylated in these otr heterochromatic regions in a Clr4 dependent manner (Pidoux and Allshire, 2004; Rea et al., 2000). This creates a binding pocket for the chromodomain protein Swi6. Mutants in swi6 or clr4 show an alleviation of centromeric silencing, chromosome loss with a predominantly lagging chromosome phenotype and hypersensitivity to microtubule drugs (Allshire et al., 1995; Ekwall et al., 1996; Ekwall and Ruusala, 1994). Furthermore Swi6 has been implicated in the enrichment and retention of the
cohesin complex to the centromere, indicating the importance of heterochromatin for accurate sister-chromosome segregation and not just transcriptional silencing (Bernard et al., 2001; Nonaka et al., 2002).

As we have already stated the two domains in the fission yeast centromere are quite distinct, indeed when viewed by a light microscope the two domains can be seen as quite distinct cytological domains. It seems that these domains are prevented from spreading into each other. It is thought that the presence of tRNA genes within the inner repeat sequences forms a barrier between the two domains to keep them distinct and partitioned (Kuhn et al., 1991; Takahashi et al., 1991). The presence of inverted repeat symmetry within the imm and otr regions has generated speculation as to the higher order structure of the centromere and the function of the heterochromatic domain. It has been postulated that the two sides of the centromere interact to form a 'loop' like structure, which could project the central core region outwards to facilitate proper kinetochore assembly and a microtubule interaction site (Clarke et al., 1993; Pidoux and Allshire, 2004; Takahashi et al., 1992).

1.4.1.3 Metazoan centromere

The centromeres in metazoans are more complicated than the centromeres in yeast. The centromeres of human chromosomes contain large arrays of alpha satellite DNA that can span up to 4Mb (Carroll and Straight, 2006). The alpha-satellite DNA consists of 171 bp repeats called alpha-I satellite DNA. This alpha-I satellite DNA is flanked each side by divergent repetitive sequences and retrotransposons, called alpha-II satellite DNA. The external edge of human centromeric DNA is rich in LINE-1 elements (long interspersed element 1) (Schueler et al., 2001). The centromere usually forms on the alpha-I satellite DNA, however there are reports of centromere formation within regions devoid of alpha-satellite DNA. These 'neo-centromeres' tend to form on AT rich regions, which contain LINE-1 elements, this suggests that while alpha-satellite DNA is not required for centromere formation some higher-order structure and possibly other factors may be required.

The histone H3 variant CENP-A is incorporated into the nucleosomes of metazoan centromeric chromatin. The recruitment and incorporation of human hCENP-A relies on the same pathway as in the fission yeast, with both spMis16 homologues hRbAp46 and hRbAp48 required (Hayashi et al., 2004). CENP-A incorporation at
the centromere is essential for accurate chromosome segregation to occur (Howman et al., 2000; Vos et al., 2006). Furthermore CENP-A is required for the recruitment of CENP-C, CENP-H and CENP-I (Howman et al., 2000; Vos et al., 2006). Regions of pericentric heterochromatin flank the CENP-A containing regions. These heterochromatin regions contain tri-methylated Histone H3 lysine 9 and are hypo-acetylated on histone H3 and H4. This tri-methylation creates a binding site for the heterochromatin protein HP1, which silences the region and recruits and maintains cohesin at the centromere (Nonaka et al., 2002). The central core, CENP-A containing region, contains several epigenetic markers, including histone H3 dimethylated lysine 4. This modification is usually found on euchromatin, however the central core region is transcriptionally silent and does not contain any other euchromatic modifications. This di-methylated H3-K4 is found on the internal face of metaphase chromosomes, where cohesion is established, whereas CENP-A occurs on the external face of the chromosomes where the kinetochore is assembled (Sullivan and Karpen, 2004), thus allowing the formation of a higher-order structure which may facilitate a kinetochore-microtubule interface.

1.5 Kinetochore

The kinetochore is a specialised large multi-proteinaceous structure, which assembles onto centromeric DNA. A stable kinetochore structure is fundamental to ensure accurate and high fidelity chromosome segregation. Kinetochore function as the attachment sites for the spindle microtubules to anchor to the chromosomes to facilitate sister-chromatid separation during mitosis. Kinetochore are also required as a platform for the recruitment and signalling of spindle assembly checkpoint proteins and for the generation of pole-ward forces that separate the chromosomes during anaphase. The kinetochore consists of myriads of various proteins, which are arranged into various sub-complexes. In the budding yeast more than 65 different kinetochore proteins have been identified (De Wulf et al., 2003; Westermann et al., 2007). Fewer proteins have been identified in metazoan kinetochores, however what is clear is that the overall structure of the kinetochore, while not identical, is conserved amongst diverse organisms.
1.5.1 Budding yeast architecture

Budding yeast kinetochores are intrinsically different to kinetochores of other organisms with respect to their properties. The kinetochores are attached to only one spindle microtubule emanating from the pole (Figure 1.6). Furthermore these kinetochores are attached to microtubules throughout the cell cycle, and are only briefly disassembled in S-phase to allow passage through the replication machinery (Westermann et al., 2007; Winey et al., 1995). The proteins in the budding yeast kinetochore are classed into 3 different groups depending on their position in the centromere/kinetochore structure, (A) inner kinetochore proteins that are DNA binding and associate with the centromere, (B) central kinetochore proteins that act as linkers, and (C) microtubule binding proteins including MAPs, motor proteins and kinesins (McAinsh et al., 2003; Westermann et al., 2007). As discussed in the previous section the inner kinetochore proteins are those that associate closely with the centromeric DNA, including the Histone H3 variant Cse4, Cbf1 and the CBF3 complex. Mif2 is a protein that exists in the interface between these inner kinetochore proteins and the central linker kinetochore proteins. It has been shown by TAP-purification to associate with both Cse4 and the linker Mtw1 complex (Westermann et al., 2003). Mif2 is the budding yeast homologue of the vertebrate CENP-C protein. Indeed in vertebrates there is a close association between the Histone H3 variant protein CENP-A and CENP-C, reminiscent of the Cse4-Mif2 interaction (Cleveland et al., 2003; Westermann et al., 2007) (Figure 1.6).

The inner core kinetochore proteins connect the DNA binding proteins to the microtubule binding side of the kinetochore. These proteins also function to transduce the force generated by microtubule instability and tension into centromere oscillations (Westermann et al., 2007). The Mtw1 complex was originally identified as Mis12 in the fission yeast and Mtw1 in the budding yeast (De Wulf et al., 2003; Takahashi et al., 1994). This complex contains at least 4 essential proteins, Mtw1, Nuf1, Nsl1 and Dsn1 and is also known as the MIND (Mtw1 including Nuf1, Nsl1 and Dsn1) complex (De Wulf et al., 2003; Westermann et al., 2003) (Figure 1.6).

The Mtw1 complex associates very closely with Cse4, Mif2 and the Ndc80 complexes (Pinsky et al., 2003), and is highly conserved amongst higher organisms. Mutations in Mtw1, mtw1-1, result in a loss of tension at the kinetochore and spindle assembly checkpoint activation in an Ipl1 dependent manner (Pinsky et al., 2003). The Mtw1 complex has been proposed to form a rod-like structure of 30-35nm in
length with branched ends both sides, which can facilitate its function as a kinetochore linker complex (Westermann et al., 2007). The Spc105 complex consists of at least two proteins, Spc105 and YDR535c. Spc105 was first identified in preparations of Spindle pole bodies (Wigge et al., 1998). Mutants of Spc105 show defects in chromosome segregation (Nekrasov et al., 2003) and its homologues in the fission yeast Spc7 and in C. elegans KNL-1 have also been implicated in ensuring kinetochore-microtubule attachment and proper chromosome segregation (Cheeseman et al., 2006; Cheeseman et al., 2004; Kerres et al., 2004).

The Ctf19 complex, also called the COMA complex, consists of at least 4 proteins, Ctf19, Okp1, Mcm21 and Ame1 (Cheeseman et al., 2002a; De Wulf et al., 2003). Both OKP1 and AME1 are essential but the other two are dispensable for cell growth. The Ctf19 complex is thought to form a super-complex with the Ctf3 complex. Indeed Ctf3 has been shown to interact closely with Mcm21 and Mcm16 (Measday et al., 2002), and Chl4 and Iml3 of the Ctf3 complex localise to the kinetochore in a Ctf19 dependent manner (Pot et al., 2003). The exact function of this complex at the kinetochore remains elusive but it is thought to play a role in kinetochore assembly as well as functioning as a linker complex (Westermann et al., 2007)(Figure 1.6).

The Ndc80 complex contains 4 essential subunits, Ndc80, Nuf2, Spc24 and Spc25. This complex is highly conserved from yeast to higher organisms. Ndc80 and Nuf2 have been implicated in many organisms in functioning to ensure accurate chromosome segregation (DeLuca et al., 2002; Hori et al., 2003; McAinsh et al., 2003; Westermann et al., 2007; Wigge and Kilmartin, 2001). In the budding yeast the proteins were originally identified by mass spectrometry of spindle pole body preparations (Wigge et al., 1998). The Ndc80 complex is required for the localisation of outer kinetochore components such as the Dam1/DASH complex, Kip1, Stu2 and Cin8 (Cheeseman et al., 2001b; He et al., 2001; Tytell and Sorger, 2006), and also for spindle assembly checkpoint function (Gillet et al., 2004). All 4 of the complex proteins possess coiled coil domains and globular head domains, with the head domains in the N-termini of Ndc80 and Nuf2 and in the C-termini of Spc24 and Spc25 (Westermann et al., 2007). Electron microscopy of negatively stained samples has determined that the Ndc80 complex exists as a 570Å rod, with two globular domains at either end. The rod is formed by the tail-to-tail interaction of the coiled-coil domains of the four proteins and the molecule is oriented so that the Spc24/Spc25 globular head is facing the inner kinetochore and the Ndc80/Nuf2 head faces the microtubule interaction site of the kinetochore (Ciferri et al., 2005; Wei et
al., 2005). The Ndc80 and Nuf2 head has been shown to possess the ability to bind directly to microtubules and as such functions not only to facilitate the assembly of other outer kinetochore subunits but in directly attaching the spindle microtubule to the kinetochore (Cheeseman et al., 2006; DeLuca et al., 2006; Wei et al., 2007) (Figure 1.6).

The Dam1/DASH complex is an outer kinetochore complex that consists of 10 essential proteins. It has been shown to bind microtubules in vitro and can also bind the Ndc80 complex. This complex functions to establish proper bipolar attachment and bi-oriented chromosomes through Ipl1/Aurora B (Asbury et al., 2006; Cheeseman et al., 2002a; Cheeseman et al., 2001a; Janke et al., 2002; Kang et al., 2001; Miranda et al., 2005; Westermann et al., 2005; Westermann et al., 2006). We shall discuss this complex, which is the focal point of this thesis in the fission yeast, in more detail later in this chapter (Figure 1.6).

The third class of kinetochore proteins includes MAPs, kinesins and motor proteins. Kar3 is a kinesin-14 family member that has been shown to co-purify with the Cbf3 complex and localise to centromeric DNA by chromatin immunoprecipitation experiments (Hyman et al., 1992; Middleton and Carbon, 1994). In the budding yeast the spindle microtubules are initially captured by the kinetochores in a lateral manner (Dewar et al., 2004; Tanaka et al., 2005). Kar3 then promotes pole-ward movement of the chromosomes to promote end-on-attachment of the spindle to the kinetochore (Tanaka et al., 2005; Westermann et al., 2007). Cin8 belongs to the BimC family of motor proteins and is localised to the kinetochore where it functions with Kip1 in proper spindle assembly and in the metaphase clustering of budding yeast kinetochores into a bi-lobed configuration (Tytell and Sorger, 2006). Bik1 and Bim1 are TIPs, plus end microtubule binding proteins that can localise to the outer kinetochore and are thought to function in kinetochore capturing of the microtubule plus end and also play a role in the regulation of microtubule dynamics (He et al., 2001). Kip3 is a member of the kinesin-8 family of kinesins and localises at the outer kinetochore of the budding yeast where it has been implicated in microtubule destabilisation and the pole-ward movement of kinetochores during Anaphase A (Tytell and Sorger, 2006). Stu2 is a TOG family member that has been shown to localise to the kinetochore as well as plus ends of microtubules and the mitotic spindle Stu2 has been shown to possess microtubule depolymerising activity in vitro, however in vivo it functions as a microtubule stabiliser (Al-Bassam et al., 2006; van Breugel et al., 2003). Stu2 associates with α/β tubulin hetero-dimers and facilitates
the stabilisation of kinetochore- microtubule plus ends, however once bi-orientation has been established Stu2 promotes depolymerisation of the attached kinetochore-microtubule (Al-Bassam et al., 2006; Westermann et al., 2007). These molecules function in concert with the kinetochore molecules to facilitate the attachment of a spindle microtubule to the budding yeast kinetochore and promote proper bi-orientation and pole-ward movement required for accurate chromosome segregation.

1.5.2 Metazoan kinetochore structure

The metazoan kinetochore is composed of distinct layers arranged in a trilaminar plate structure with an inner plate consisting of chromatin and DNA binding proteins, an outer plate with approximately 20 microtubule binding sites for spindle attachments and the outermost fibrous corona, which is a dynamic network of proteins usually only visualised in the absence of microtubules (Ris and Witt, 1981) (Figure 1.7). The inner plate contains the Histone H3 variant protein CENP-A, which is required for kinetochore assembly and accurate chromosome segregation (Howman et al., 2000). Purification of CENP-A nucleosomes has led to the identification and classification of a novel complex termed the CENP-A-NAC (CENP-A nucleosome associated complex), which represents proteins that associate with CENP-A in the centromere proximal region. These include CENP-C, CENP-H, CENP-M, CENP-N, CENP-T and CENP-U(50) (Foltz et al., 2006).

CENP-B is the only protein that has been demonstrated to localise independently of CENP-A to the kinetochore. This protein binds specific DNA sequences in the α-satellite repeat region of the centromere known as a 17bp CENP-B box (Ohzeki et al., 2002). The function of this protein however, remains elusive, as it is non-essential in mammals with CENP-B−/− null mice showing normal kinetochore assembly and function.
Figure 1.6: Schematic of budding yeast kinetochore structure and components
CENP-C (budding yeast-Mif2) is dependent on CENP-A in all organisms tested for its kinetochoore localisation and CENP-H and CENP-I in chicken DT40 cells (Kwon et al., 2007; Nishihashi et al., 2002; Trazzi et al., 2002). CENP-C ensures proper kinetochore function and accurate chromosome segregation and CENP-C knockout cells display impaired spindle assembly checkpoint activation and a lack of mitotic delay in response to nocodazole treatment, indicating an important role of this protein in proper kinetochore function (Kwon et al., 2007). CENP-C has been demonstrated to bind to centromeric DNA, but seems to lack any apparent sequence specificity (Sugimoto et al., 1994).

CENP-I (fission yeast-Mis6, budding yeast Ctf3) localises constitutively to the kinetochore in DT40 cells (Okada et al., 2006). There is some evident to suggest that unlike the fission yeast Mis6, CENP-I is not required for CENP-A localisation to the centromere in vertebrates (Tomkiel et al., 1994), however another study demonstrated that CENP-H and CENP-I and other components, identified by purification with CENP-I in both DT40 and human cells, are required for the incorporation of newly synthesized CENP-A into centromeric nucleosomes (Okada et al., 2006). The newly identified CENP-I/ CENP-H interacting proteins include members of the CENP-A-NAC, CENP-M, and CENP-U and other proteins termed CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q and CENP-R. These proteins are all required for proper kinetochore function and faithful chromosome segregation (Okada et al., 2006).

The outer kinetochore plate and the fibrous corona consist of many proteins that have been implicated in microtubule-kinetochore interaction and in spindle assembly checkpoint signalling. The Mis12 complex (budding yeast Mtw1) localises to the metazoan kinetochore throughout the cell cycle. Depletion of hMis12 causes mitotic delay through activation of the spindle assembly checkpoint, unaligned metaphase chromosomes, abnormally elongated metaphase spindles and lagging anaphase chromosomes (Goshima et al., 2003). The hMis12 complex has been shown to be required for the recruitment of the CENP-I/CENP-H complex but has no effect on CENP-A incorporation into the centromere (Goshima et al., 2003). Furthermore disruption of hMis12 function causes a reduction in the kinetochore levels of Ndc80/Hec1, CENP-E and the checkpoint protein Bub1 (Kline et al., 2006).
Figure 1.7: Schematic of metazoan trilaminar kinetochore structure and components
The hMis12 complex has been found to interact with the heterochromatin modulator HP1 and Zwint-1 (Obuse et al., 2004), and it is thought that centromere localised HP1 anchors this Mis12 complex to the centromere and it then extends outwards and binds Zwint-1 in the core kinetochore (Obuse et al., 2004).

The Mis12 complex is proposed to be a part of a super-complex, which has been described in *C. elegans* as the KMN network. This network also contains the Ndc80 and the KNL-1 complexes. The Ndc80 complex in vertebrates contains 4 proteins, as in the budding yeast, Ndc80 (human-Hec1), Nuf2 (*C. elegans*-Him10), Spc25 and Spc25. This complex is required for the establishment of kinetochore-microtubule interactions and for the generation of tension (McCleland et al., 2004). It is required in *X. laevis* for spindle assembly checkpoint signalling and for the retention of Mps1, Mad1, Mad2 and Dynein to the unattached kinetochores (DeLuca et al., 2003; McCleland et al., 2003). Disruption of the function of this complex leads to unaligned chromosomes, loss of kinetochore tension, abnormally long spindles and few or no kinetochore microtubules (kMTs) (DeLuca et al., 2002; McCleland et al., 2004).

The Ndc80 complex has been shown to possess direct microtubule binding activity in vitro. It can co-sediment with stabilised microtubules and demonstrates in vitro microtubule bundling activity (Cheeseman et al., 2006). The Ndc80/Nuf2 head exhibits the microtubule binding activity of the complex with regulation of this binding controlled by Aurora B kinase. Phosphorylation of Ndc80 in vitro reduces the affinity of the complex for microtubules; perhaps highlighting the important role phospho-regulation of kinetochore components by Aurora B kinase plays in 'turnover' of microtubule attachments in higher organisms as in the budding yeast. The Ndc80 complex seems to be dependent on Knl-3 and Knl-1 for its kinetochore localisation in *C. elegans*. Furthermore KNL-1 also demonstrates microtubule binding and microtubule bundling activity in vitro, however this activity is synergised by the presence of all three subcomplexes of the KMN network, Mis12, Ndc80 and KNL-1/3 (Cheeseman et al., 2006). KNL-1 and KNL-3 were first identified in an RNAi screen in *C. elegans* to identify genes required for chromosome segregation (Desai et al., 2003). Depletion of either of these proteins results in a 'kinetochore-null' phenotype with failure in chromosome congression, an absence of chromosome segregation in anaphase and premature separation of the spindle poles (Desai et al., 2003). KNL-3 and KNL-1 function downstream of CENP-A and CENP-C and are thought to provide a platform for the assembly of the kinetochore-microtubule
interface. KNL-3 is required for the stability of the Mis12 complex and KNL-1 is required for the kinetochoore localisation of the NDC80 complex highlighting the interdependency that exists between various KMN network members (Cheeseman et al., 2006; Desai et al., 2003).

CENP-E localises only in mitosis to the fibrous corona on the metazoan kinetochoore (Yen et al., 1991). This kinesin like protein plays a role in aligning chromosomes during metaphase, with cells lacking CENP-E showing congression defects and also mono-oriented chromatids (Chan et al., 1998; Schaar et al., 1997; Weaver et al., 2003; Wood et al., 1997). CENP-E interacts with BubR1 at kinetochores and activates its kinase activity in the absence of microtubules in vitro (Mao et al., 2003; Weaver et al., 2003). It is therefore proposed to act as a mecheano-sensor to monitor the state of attachment and tension at the kinetochoore and relay this to the spindle checkpoint through BubR1. CENP-F associates with metazoan kinetochores following nuclear envelop breakdown. This molecule plays an important role in chromosome alignment and perhaps checkpoint signalling. Depletion of CENP-F by RNAi results in a dramatic reduction in the localisation of the checkpoint proteins Mad2, Bub1, Mps1 and BubR1 to the kinetochoore (Feng et al., 2006). However, another report suggests that CENP-F is dispensable for checkpoint signalling with CENP-F depleted cells showing a mitotic delay and reduced tension between the kinetochores and with decreased stability of kinetochoore-microtubules (kMTs) (Bomont et al., 2005). CENP-F has been shown to possess two microtubule-binding domains at each end of the molecule with the C-terminus microtubule-binding domain stimulating microtubule polymerisation in vitro (Feng et al., 2006).

The RZZ complex associates with the fibrous corona of metazoan kinetochores. This complex consists of 3 proteins, Rod (Rough Deal), ZW10 (Zeste-white 10) and Zwilch. These proteins were originally identified in D. melanogaster but are conserved amongst higher organisms (Karess and Glover, 1989; Scaerou et al., 1999; Starr et al., 1997; Williams et al., 1992). Null mutations show chromosome segregation defects with lagging chromosomes, chromosome non-disjunction, anaphase bridges and cells fail to arrest in mitosis even in the presence of spindle damage (Karess, 2005). This complex associates with the kinetochoore following mitotic entry but its kinetochoore localisation is dramatically reduced following microtubule attachment, with re-distribution to kinetochoore-microtubules towards the
poles (Scaerou et al., 2001; Williams et al., 1992). This process is termed ‘kinetochoreshedding’ and is a dynein-dynactin dependent process. Indeed Dynein-Dynactin are implicated in the removal of several outer kinetochore components from the kinetochore following bipolar attachment (Howell et al., 2001). The RZZ complex is required for the recruitment of Dynein to the kinetochore to facilitate this ‘kinetochoreshedding’ (Starr et al., 1998). Dynein levels are high on unattached kinetochores where this molecule has been implicated in the removal of Mad1-Mad2 from the kinetochore following microtubule attachment to facilitate inactivation of the spindle assembly checkpoint (Howell et al., 2001). Apart from its role in Dynein recruitment, and thus checkpoint inactivation, the RZZ complex also is involved in the recruitment of Mad1-Mad2 to unattached kinetochores. Depletion of RZZ or perturbation of the function of this complex prevents Mad1-Mad2 recruitment to unattached kinetochores (Buffin et al., 2005; Kops et al., 2005). These proteins have no as yet known homologues in yeast. This is thought to reflect the differences between the simpler kinetochores in yeast and the increased complexity in the kinetochore structure and spindle assembly checkpoint mechanisms in metazoan cells.

1.5.3 **Fission yeast kinetochore structure**

Fission yeast is an excellent model for the study of kinetochore structure and kinetochore function during mitosis. Fission yeast possesses centromeres that span from 35-100 kb and the assembled kinetochores are of a more complex nature than in ‘point-kinetochore’ containing yeasts. The fission yeast kinetochores can bind to more than one microtubule and thus reflect a level of organisation more reminiscent of the kinetochores in higher organisms. The kinetochores in fission yeast, unlike budding yeast, can become attached in a merotelic fashion. This provides an excellent study system to understand the cellular mechanisms that function to resolve these merotelic attachments, as merotelic attachments are regularly seen in human tissue cultures cells (Cimini et al., 2001).

In the fission yeast the inner kinetochore proteins are those capable of binding to centromeric DNA. The fission yeast is no different to other eukaryotic organisms and contains a Histone H3 variant protein in its centromeric nucleosomal structures, called Cnp1 (Takahashi et al., 2000). This protein is required for centromeric chromatin structure and to ensure accurate chromosome segregation during mitosis.
(Takahashi et al., 2000). The fission yeast contains three proteins that are homologous to the metazoan centromere binding protein CENP-B; Abp1, Cbh1 and Cbh2 (Irelan et al., 2001; Lee et al., 1997; Murakami et al., 1996). These genes are not essential but deletion of Abp1 and either Cbh1 or Cbh2 results in severe chromosome mis-segregation, sensitivity to spindle drugs and de-silencing at centromere regions (Irelan et al., 2001). It is thought that these proteins act as nucleation factors to the centromeric and the subsequent establishment of heterochromatin (Pidoux and Allshire, 2004).

The Mis6/Sim4 complex is a large kinetochore complex consisting of Mis6, Sim4, Mal2, Mis15, Mis17 and Fta1-7 (Sim4 & Mal2 associating proteins) (Liu et al., 2005). Mis6 was first identified in a screen for mini-chromosome loss mutants (Takahashi et al., 1994). Mis6 is an essential protein that localises constitutively to the kinetochore and was found to associate with the central core region by chromatin immunoprecipitation experiments (Saitoh et al., 1997). Perturbation of Mis6 function results in unequal chromosome segregation and elongated metaphase spindles. Furthermore mis6 mutants alter the structure of centromeric chromatin, with the typical centromeric ‘smear’ pattern following micrococal nuclease (MNase) digestion abolished to a ‘ladder-like’ pattern in mis6 mutants (Goshima et al., 1999; Saitoh et al., 1997; Takahashi et al., 1994). Mis6 and other members of the Mis6 complex, along with two upstream proteins Mis16 and Mis18, have been implicated in Cnp1 loading to the centromeric nucleosome, with mis6-302 cells defective in the incorporation of newly synthesized Cnp1 into the centromere (Takahashi et al., 2000). Mis6 has also been implicated in the functioning of the spindle assembly checkpoint in the fission yeast. It has been shown to physically interact with Mad2 under conditions of checkpoint activation; furthermore there is no localisation of Mad2 or activation of the spindle assembly checkpoint in mis6 mutants, despite obvious chromosome segregation defects (Saitoh et al., 2005; Takahashi et al., 1994). Sim4 is another essential member of this complex, and associates with the central core region of the centromere in a Mis6 dependent manner (Pidoux et al., 2003). Sim4 is also involved in the loading of Cnp1 to the fission yeast centromere and for the maintenance of the unique chromatin structure and ‘smear’ pattern following MNase digestion.
Figure 1.8: Schematic representation of fission yeast kinetochoore structure
Sim4 mutants display chromosome segregation defects with lagging chromosomes and are sensitive to spindle drugs, such as TBZ (Pidoux et al., 2003). Sim4 overexpression can rescue the phenotype of Mis6 mutants but not vice versa, indicating that Sim4 functions up-stream of Mis6 in the kinetochore hierarchy (Pidoux et al., 2003). Mal2 (budding yeast-Mcm21) is another essential member of this Mis6/Sim4 complex. It was originally identified in a screen to identify genes required for chromosome segregation (Fleig et al., 1996). Mutants of mal2 show increased loss of a mini-chromosome and chromosome mis-segregation with prominent non-disjunction of sister chromatids. These mal2 mutants show de-silencing at the central core region of the centromere and aberration in centromeric chromatin structures and elongated metaphase spindles (Jin et al., 2002).

The NMS super-complex consists of three kinetochore complexes, which associate and function in a very close manner; the Ndc80, Mis12 complexes and Spc7 (Liu et al., 2005). The components of this super-complex are required for accurate chromosome segregation and the maintenance of proper centromeric chromatin structure, however these proteins are dispensable for Cnp1 loading to the centromere (Kerres et al., 2006). The Ndc80/Nuf2 complex in the fission yeast contains Ndc80, Nuf2, Spc24 and Spc25 as in other organisms. Nuf2 was the first identified member of this sub-complex in the fission yeast (Nabetani et al., 2001). Disruption of Nuf2 yielded cells that showed an elongated mitotic spindle without chromosome segregation and a failure to activate the spindle assembly checkpoint. Temperature sensitive nuf2 strains show allelic differences in the type and penetrance of mitotic defects at the restrictive temperature, with some alleles arresting in metaphase with a short spindle and condensed chromosomes indicating the activation of the spindle assembly checkpoint (Nabetani et al., 2001). Biochemical purification of Nuf2-TAP allowed the identification of the fission yeast Ndc80, Spc24 and Spc25 homologues and revealed that the Ndc80 complex forms part of a much larger NMS complex with Spc7 and the Mis12 complexes (Liu et al., 2005).

The Mis12 complex consists of Mis12, Mis13, Mis14, and Nnf1. Mis12 was first identified in the same genetic screen as Mis6 for mutants that show elevated levels of mini-chromosome loss (Takahashi et al., 1994). Mis12 is an essential protein that localises constitutively to the kinetochore (Goshima et al., 1999). Mutants of mis12 show unequal chromosome segregation with a failure to activate the spindle assembly checkpoint and elongated metaphase spindles indicative of a failure in microtubule attachments and tension (Goshima et al., 1999; Takahashi et al., 1994). Furthermore
Mis12, and all other Mis12 complex members, are required for proper centromeric chromatin structure (Goshima et al., 1999; Kerres et al., 2006). Spc7 (budding yeast-Spc105, metazoan-KNL-1) was first identified as a binding partner of the plus end protein Mal3 (fission yeast-EB1) (Kerres et al., 2004). Spc7 is essential and localises to the central core region of the kinetochore but unlike other proteins that associate with the central core it does not seem to be involved in the maintenance of centromeric silencing (Kerres et al., 2007). Mutants of Spc7 show severe chromosome mis-segregation, spindle assembly checkpoint activation and defects in mitotic spindle formation. Indeed Spc7 is required for the kinetochore localisation of the Mis12 complex members Mis12 and Mis14 (Kerres et al., 2007).

Mal3 (fission yeast-EB1) localises to the plus end of growing microtubules (Beinhauer et al., 1997) and interacts with the NMS kinetochore component Spc7 during mitosis where it plays a role in ensuring accurate chromosome segregation (Asakawa and Toda, 2006; Asakawa et al., 2005; Kerres et al., 2004). Mal3 is not essential but mutants show an accumulation of mono-oriented sister chromatids indicating the importance of this molecule for the ‘turnover’ of mono-polar attached microtubule-kinetochore interactions. It is thought that Mal3 regulates microtubule dynamics to facilitate detachment and re-attachment of spindle microtubules to the kinetochore and enable ‘turnover’ of mal-oriented kinetochores (Asakawa and Toda, 2006). Recently it has been demonstrated that Mal3 stabilises microtubule through binding to the microtubule lattice seam and perhaps in this way regulates mitotic spindle dynamics and thus chromosome segregation (Sandblad et al., 2006).

Alp14 and Dis1 are the fission yeast members of the TOG family of microtubule stabilisers. Fission yeast is the only organism to possess two TOG family members and both genes are required for accurate chromosome segregation during mitosis. Alp14 or Dis1 deletion mutants, Δalp14 and Δdis1, or point mutants are conditional mutants, with alp14 mutants lethal at high temperatures and dis1 mutants lethal in the cold (Garcia et al., 2001; Nabeshima et al., 1995; Nabeshima et al., 1998; Nakaseko et al., 1996; Ohkura et al., 1988). Deletion or loss of function of one of the TOG proteins is compensated by the presence of the other, however deletion of both results in lethality at any temperature (Garcia et al., 2001; Nakaseko et al., 2001). Disruption of Alp14 function causes cells to become bent and branched through the perturbation of cytoplasmic interphase microtubule arrays. During mitosis Alp14 localises to the periphery of the centromere/kinetochore region. Mutants of alp14 show weak and short mitotic spindles and activation of the spindle assembly
checkpoint, however this checkpoint cannot be maintained implicating Alp14 as a component of the spindle assembly checkpoint mechanism (Garcia et al., 2001). Furthermore the recruitment of Mad2 to the kinetochores in Alp14 mutant cells indicates that the kinetochores are unattached in these mutants and highlights the important role Alp14 plays in the microtubule-kinetochore interaction (Garcia et al., 2001; Nakaseko et al., 2001).

Dis1 was first identified in a cytological screen for mutants that show cold sensitivity (Ohkura et al., 1988). A group of mutants termed 'dis' (defect in sister chromatid dis-joining) were identified due to their cold sensitive non-disjunction phenotype, of which Dis1 was found to be a non-essential member. Dis1 has been shown to localise to the mitotic kinetochore and to the pole-to-pole microtubule lattice in anaphase, analysis of centromeric association by ChIP analysis demonstrates that Dis1 localizes to the central core region (Nakaseko et al., 2001; Ohkura et al., 2001). Deletion of dis1 is compensated by the presence of Alp14, but the cells display cold-sensitivity and a typical 'dis' phenotype with defects in pole-to-kinetochore microtubule formation (Nabeshima et al., 1995). Dis1 is phosphorylated in a Cdc2 dependent manner and this phosphorylation is required for the regulation of Dis1 localisation to the mitotic kinetochore and to the pole-to-pole lattice in anaphase, and is thus required for the regulation of kinetochore microtubule structure and accurate chromosome segregation (Aoki et al., 2006).
<table>
<thead>
<tr>
<th>Budding yeast</th>
<th>Fission yeast</th>
<th>Metazoan</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF3 Complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ndc10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctf13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cep3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skp1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cse4</td>
<td>Cnp1</td>
<td>CENP-A</td>
</tr>
<tr>
<td>Mist2</td>
<td>Cnp3</td>
<td>CENP-C</td>
</tr>
<tr>
<td>Cbf1</td>
<td>Abp1</td>
<td>CENP-B</td>
</tr>
<tr>
<td></td>
<td>Cbn1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cbn2</td>
<td></td>
</tr>
<tr>
<td>Ctf19 complex</td>
<td>Okp1</td>
<td></td>
</tr>
<tr>
<td>Mcm21</td>
<td>Mal2</td>
<td>hMcm21</td>
</tr>
<tr>
<td>Amel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mtw1 Complex</td>
<td>Mis12</td>
<td>hMis12</td>
</tr>
<tr>
<td>Nnf1</td>
<td>Nnf1</td>
<td>hNnf1</td>
</tr>
<tr>
<td>Nsl1</td>
<td>Mis14</td>
<td>hNsl1</td>
</tr>
<tr>
<td>Dsn1</td>
<td>Mis13</td>
<td>hDsn1</td>
</tr>
<tr>
<td>Ndc80 complex</td>
<td>Ndc80 complex</td>
<td>Hec1</td>
</tr>
<tr>
<td>Nuf2</td>
<td>Nuf2</td>
<td>hNuf2</td>
</tr>
<tr>
<td>Spc24</td>
<td>Spc24</td>
<td>hSpc24</td>
</tr>
<tr>
<td>Spc25</td>
<td>Spc25</td>
<td>hSpc25</td>
</tr>
<tr>
<td>Ctf3 Complex</td>
<td>Mis6</td>
<td>CENP-I</td>
</tr>
<tr>
<td>Mcm16</td>
<td>Sim4</td>
<td>hSim4</td>
</tr>
<tr>
<td>Mcm22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iml3</td>
<td>Mis15</td>
<td></td>
</tr>
<tr>
<td>Chl4</td>
<td>Mis17</td>
<td>hChl4</td>
</tr>
<tr>
<td>Nkp-1</td>
<td>Fta1-77</td>
<td></td>
</tr>
<tr>
<td>Nkp-2</td>
<td>Fta1-77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fta3</td>
<td>CENP-H</td>
</tr>
<tr>
<td>Spc105</td>
<td>Spc7</td>
<td>hKNL-1</td>
</tr>
<tr>
<td>Ydr532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam1 Complex</td>
<td>Dam1</td>
<td></td>
</tr>
<tr>
<td>Dad1</td>
<td>Dad1</td>
<td></td>
</tr>
<tr>
<td>Dad2</td>
<td>Dad2/Hos2</td>
<td></td>
</tr>
<tr>
<td>Dad3</td>
<td>Dad3</td>
<td></td>
</tr>
<tr>
<td>Dad4</td>
<td>Dad4</td>
<td></td>
</tr>
<tr>
<td>Duo1</td>
<td>Duo1</td>
<td></td>
</tr>
<tr>
<td>Ask1</td>
<td>Ask1</td>
<td></td>
</tr>
<tr>
<td>Spc19</td>
<td>Spc19</td>
<td></td>
</tr>
<tr>
<td>Spc34</td>
<td>Spc34</td>
<td></td>
</tr>
<tr>
<td>Dam5/Hsk3</td>
<td>Dam5/Hsk3/Hos3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.9: Table of kinetochore components in budding yeast, fission yeast and metazoans
1.6 The Dam1/DASH kinetochore complex

The Dam1/DASH complex was first identified in the budding yeast as a complex implicated in the interaction of kinetochores and spindle microtubules and the establishment of bi-oriented kinetochores during metaphase and for the integrity of anaphase mitotic spindles (Cheeseman et al., 2001b; Jones et al., 1999; Jones et al., 2001; Westermann et al., 2005; Westermann et al., 2006). This complex consists of 10 essential proteins, Ask1, Duo1, Dam1, Dad1-4, Hsk3, Spc34 and Spc19. The first component identified was Duo1 (Death Upon Overproduction) which was identified in a screen for genes that when overexpressed cause a morphological arrest and death phenotype (Hofmann et al., 1998). Indeed overexpression of Duo1 caused cells to arrest at the large budded stage with short spindle microtubules. A temperature sensitive allele was generated; duo1-2 which when incubated at the restrictive temperature caused a mitotic arrest with short spindles between 1-2μm long. Removal of the spindle assembly checkpoint by deletion of checkpoint signalling molecules enables these duo1-2 cells to bypass the mitotic arrest but microtubule morphology defects become apparent, with broken, bent and splayed anaphase microtubules and obvious chromosome segregation defects (Cheeseman et al., 2001b; Hofmann et al., 1998).

Dad1 (Duo1 and Mps1 interacting factor), was identified in a two-hybrid screen for Duo1 interacting factors and also independently in a screen to identify mutants that enhanced defects in mps1 mutants (Hofmann et al., 1998; Jones et al., 1999). The dam1-1 allele identified arrests at the restrictive temperature with large budded cells and spindles that have begun anaphase elongation but show a bent, broken and splayed phenotype and with mis-segregation of chromosomes (Jones et al., 1999). This mutant shows sensitivity to microtubule depolymerising drugs such as benomyl and exhibits a range of genetic interactions with other mitotic regulators, such as synthetic lethality with Acin8 or Δkar3 cells and exacerbation of sta1 mutants (Cheeseman et al., 2001a; Jones et al., 1999). Furthermore this mutant is synthetically lethal with various kinetochore mutants and with mutants of the chromosomal passenger complex, sli15-1 and ipl1-2 indicating an important role for this protein in kinetochore function (Cheeseman et al., 2001a).

Other Dam1/DASH temperature sensitive mutants show similar types of mitotic microtubule and chromosome segregation defects. The temperature sensitive strain dad1-1 also shows spindle assembly checkpoint mediated mitotic arrest with short
spindles at the restrictive temperature. Extended incubation at this temperature results in the Dam1/DASH mutant phenotype of broken, bent and splayed anaphase elongated spindles and this mutant demonstrates synthetic lethality with other Dam1/DASH mutants and exacerbates \textit{Abim1} and \textit{stu1-5} cells (Enquist-Newman et al., 2001). Similarly \textit{spc34-3} cells and \textit{ask1-2} cells arrest at the conditional temperature with large budded cells and short spindles and prolonged incubation at the restrictive temperature causes the appearance of the ‘broken’ spindle phenotype (Janke et al., 2002; Li et al., 2002).

Duo1 was shown by immunoflorescence and immunoelectron microscopy to localise to intranuclear spindles and to the SPB (Hofmann et al., 1998). However, it was realised that Duo1 and Dam1 localise not to the SPB but the kinetochore, as visualised by chromosome spreads where they co-localised with Ndc10, and Dam1 was found by chromatin immunoprecipitation experiments to associate with centromeric DNA (Cheeseman et al., 2001b; Jones et al., 2001). Subsequently the remaining Dam1/DASH members were identified biochemically and shown to localise to kinetochores and spindle microtubules by chromosome spreads, fluorescence microscopy and chromatin immunoprecipitation (ChIP) experiments (Cheeseman et al., 2001a; He et al., 2001; Janke et al., 2002; Li et al., 2002). The association of the Dam1/DASH complex is dependent on a functional kinetochore platform with the association of Dam1-GFP by ChIP abolished in \textit{ndc10-1} cells and both Spc34-GFP and Dad2-GFP failing to localise in \textit{ndc80-1} cells (Janke et al., 2002; Jones et al., 2001).

Localisation of the Dam1/DASH complex to the kinetochore has also been shown to be dependent on spindle microtubules. (Li et al., 2002) The centromere binding of Ask1 by ChIP is significantly reduced in G2 cells in the presence of nocodazole, a known spindle poison which results in depolymerisation of the spindle microtubules (Li et al., 2002). This loss of localisation is reversible. If the nocodazole is removed and spindle microtubules are allowed to form the centromere association of Ask1 by ChIP is restored (Li et al., 2002). These experiments also highlighted that the kinetochore association of Ask1 is most sensitive to spindle disruption by nocodazole during S-phase. This period of S-phase is the time when the kinetochores are re-assembled after DNA replication and microtubule attachments are re-established. It would seem therefore that binding of microtubules to the kinetochores in S-phase of \textit{S. cerevisiae} results in re-deposition of the Dam1/DASH complex at the kinetochore where it can then play a crucial role in facilitating kinetochore-spindle bi-orientation.
Recently the Dam1/DASH complex has been shown to form closed rings on microtubules in the budding yeast (Asbury et al., 2006; Miranda et al., 2005; Westermann et al., 2005; Westermann et al., 2006). Co-expression and purification of all ten subunits of the S. cerevisiae Dam1/DASH complex shows this to be a 210kDa heterodecamer with a stoichiometry of one copy of each subunit, which has the ability to oligomerize and form rings and/or paired helices that can encircle microtubules (Miranda et al., 2005; Westermann et al., 2005). The C-termini of α and β tubulin are required for Dam1/DASH ring formation with subtilisin digestion of microtubules resulting in no ring formation (Westermann et al., 2005). It appears that the budding yeast Dam1/DASH ring complex preferentially binds to GTP tubulin and that the C terminus region of Dam1 is required for this microtubule binding, but is dispensable for complex formation (Westermann et al., 2005). This complex thus appears to bind and encircle microtubules, facilitating an attachment of the microtubule to the kinetochore and playing an important role in bi-orientation.

The addition of the Dam1/DASH complex to microtubules in vitro induces microtubule polymerisation, microtubule bundling and stabilisation against dilution-induced disassembly (Westermann et al., 2005). It has been shown that the Dam1/DASH ring complex exhibits lateral mobility on microtubules and has the ability to track along with depolymerising microtubules without detaching from the microtubule lattice (Westermann et al., 2005; Westermann et al., 2006). This complex can harness the energy from depolymerising microtubules to generate force for movement and can couple cargo movement to the depolymerising microtubules (Asbury et al., 2006). This leads to an attractive model whereby this complex may form part of the proposed kinetochore sleeve that has been suggested to allow kinetochores to remain attached to depolymerising microtubule plus ends in anaphase and indeed may contribute directly to microtubule driven kinetochore movement.

Dam1/DASH mutants display a mono-polar segregation phenotype that is observed when a centromere pair is tagged with a GFP fluorophore and their respective separation monitored by fluorescence microscopy. The temperature sensitive mutant dam1-1 displayed a mono-polar segregation defect following incubation at the restrictive temperature (Cheeseman et al., 2001b; Jones et al., 2001). Furthermore spec34-3 cells are also unable to correctly bi-orient their kinetochores displaying mono-polar segregation defects with sister chromatids almost always associated with the mother SPB (Janke et al., 2002). These mono-polar segregation defects
phenocopy mutants of the Aurora B kinase protein Ipl1 which have been shown to
typically display mono-polar defects with attachments to the old spindle pole (Tanaka
et al., 2002). This result along with the synthetic lethality between ipl1 and sli15 and
Dam1/DASH mutants highlights the overlap that the Dam1/DASH complex and the
Aurora B passenger complex must play in ensuring properly oriented kinetochore-
microtubule interactions.

The budding yeast passenger complex members Ipl1 and Sli15 have been shown to
associate with both Dam1 and Duo1 by two-hybrid analysis and to co-purify with
GST-Dam1 in vivo (Kang et al., 2001). Ipl1 can phosphorylate Dam1 in vitro and the
slowly migrating multiple Dam1 isoforms are dramatically reduced in both ipl1-2 and
sli15-3 cells or in the presence of λ phosphatase, suggesting that Ipl1 phosphorylates
Dam1 in vivo on multiple sites (Kang et al., 2001). Mass spec analyses confirmed the
identification of at least four different in vivo Ipl1 phosphorylation sites on the Dam1
protein, one Ipl1 phosphorylation site on the Spc34 Dam1/DASH subunit and at least
1 in vivo phosphorylation site on the Ask1 protein (Cheeseman et al., 2002a).
Mutation of individual Dam1 phosphorylation sites to alanine (S-A) had no effect on
growth, however mutation of all four Dam1 phosphorylatable serines to alanine
resulted in lethality, suggesting a crucial role for phospho-regulation in Dam1
function. The double or triple Dam1 S-A mutants were synthetically sick or lethal
with the ipl1-2 mutant and spec34 T-A mutant. Furthermore these double or triple
dam1 S-A mutants, or the spec34 T-A mutant, displayed severe chromosome
segregation defects with more than 90% of the DNA segregated to a single pole in
anaphase cells (Cheeseman et al., 2002a). These S-A mutants pheno-copy the
temperature sensitive ipl1-2 and ipl1-321 mutants highlighting that the Dam1/DASH
complex acts as a crucial downstream target for the Ipl1 kinase during mitosis.

Mutation of all four Dam1 phosphorylation sites to aspartate to mimic constitutive
phosphorylation resulted in poor growth showing that the phoso-state of the
Dam1/DASH complex must be tightly regulated. Careful examination of the dam1 S-
D mutants by immunoflourescence showed the presence of lagging chromosomes in
the middle of the spindle, indicating an inability to form proper kinetochore-
microtubule attachments. It should be noted that the budding yeast has only one
microtubule attachment site per kinetochore so that lagging chromosomes in this
organism indicate a failure in attachment rather than merotelic configurations as in
other systems. It was previously demonstrated that Dam1 associates to the
centromere by ChIP in an Ndc10 dependent manner (Enquist-Newman et al., 2001).
This centromeric association is dramatically reduced in the *dam1 S-D* mutants corroborating the idea that constitutive phosphorylation of Dam1 causes the kinetochores to be unable to generate proper kinetochore-microtubule attachments (Cheeseman et al., 2002a).

A genome-wide two-hybrid screen using Dam1 as bait identified many kinetochore proteins that can interact with the Dam1/DASH subunit. Alongside this, binding assays for Dam1 were carried out and from a combination of both techniques Dam1 was shown to interact with Ndc80 of the Ndc80 complex, Ndc10, Ctf13 and Cep3 of the CBF3 complex, Cse4, and Ctf19, Okp1, Mcm22, Mcm17 and Mcm16 as well as other Dam1/DASH members, spindle assembly checkpoint proteins and the mitotic regulators Bim1 and Stu2 (Shang et al., 2003). To ascertain if the phosphorylation state of Dam1 alters the interactions of Dam1 with other proteins a genome-wide two-hybrid screen was carried out using quadruple *dam1 S-A* and *dam1 S-D* mutants. The *dam1 S-A* mutant showed the same range and strength of interactions with other Dam1/DASH subunits, however the *dam1 S-D* mutant displayed a reduction in the strength of interaction with Spc34 and Dad2 compared to wild-type, indicating that the interactions within the Dam1/DASH complex are largely unchanged, despite changes in the phosphorylation state of Dam1, but there are some alterations in the affinity of binding with Dad2 and Spc34 (Shang et al., 2003). In vitro binding assays revealed that the wild-type Dam1 protein showed a 5.5 times greater binding to Ndc80 than the *dam1 S-D* mutant, but the *dam1 S-A* mutant showed the same affinity as the wild-type Dam1 (Shang et al., 2003). Moreover mutants of the Gic7 protein phosphatase, which antagonizes Ipl1 kinase activity, are synthetically lethal with the *dam1 S-D* mutants indicating that waves of phosphorylation and de-phosphorylation are important in the regulation of Dam1/DASH function. These results have led to the development of a ‘turnover’ model whereby mal-oriented mono-polar attachments at budding yeast kinetochores are sensed by the Ipl1 kinase, which phosphorylates the Dam1/DASH complex members Dam1 and/or Spc34 and the Ndc80 protein to allow the detachment of incorrect microtubule structures and to facilitate the attachment of correctly oriented microtubules.

Ask1 is phosphorylated in a cell cycle regulated manner with the slowest migrating isoform of Ask1 detected in mitosis (Li et al., 2003). This phosphorylation is dependent on the budding yeast cyclin dependent kinase, Cdc28 (Li et al., 2003). Examination of the Ask1 protein sequence has led to the identification of 2 putative CDK sites, S216 and S250, and mutation of these sites to alanine abolishes the Cdc28
dependent phosphorylation of Ask1 demonstrating that these may be the in vivo
Cdc28 target sites. This phosphorylation is thought to act to regulate Ask1 in a
positive manner, as a double or triple mutant between ask1-S-A and ask1-3 causes
synthetic growth defects (Li et al., 2003).

There is also evidence to suggest Dam1 is phosphorylated by an alternative kinase to
the Ipl1/Aurora B kinase. Mps1 has been shown to phosphorylate Dam1 in vitro on
six different residues; S13, S49, S217, S218, S221 and S232 (Shimogawa et al.,
2006). A mutant Dam1 allele, dam1-765, in which the residue S221 is mutated to
S221F was isolated in a synthetic lethality screen with the SPB mutant spc110-226.
This spc110-226 allele weakens the SPB structure at the restrictive temperature so
that when tension is established in metaphase following bi-orientation of kinetochores
the SPBs become delaminated (Yoder et al., 2005), combining this spc110-226
mutant with the dam1-765 mutant must increase the stress on the SPB, possible
through additional spindle or tension defects which would cause SPB delamination
even at the permissive temperature and synthetic lethality (Shimogawa et al., 2006).
The dam1-765 mutant shows normal growth and no chromosome segregation defects,
however careful analysis of kinetochore and sister chromatid kinetics revealed shorter
mictotic spindles and the kinetochores are clustered closer to the SPBs in these cells
compared to wild-type cells. Mutation of another Mps1 phosphorylation site S218 to
S218A resulted in a reproduction of this same kinetochore clustering phenotype as
seen in dam1-765 cells and synthetic lethality with the spc110-226 mutant
(Shimogawa et al., 2006). In the dam1-765 or dam1-S218A cells the kinetochore
position is not coincident with the microtubule plus ends, as marked by measurement
of the distribution of Bik1-GFP fluorescence peaks and Nuf2-Cherry. Therefore in
these mutant cells it appears that the kinetochores are not attached to the plus end of
microtubules in an ‘end-on’ manner and must be laterally attached to the mitotic
spindle. It is known that in budding yeast the kinetochores are first attached in a
lateral manner and subsequent ‘end-on’ attachment and bi-orientation are established
in a Dam1/DASH complex dependent manner. It is proposed that lateral attachments
are converted to bipolar attachments by the Dam1/DASH complex and subsequently
Mps1 dependent phosphorylation of Dam1 facilitates a switch to a stable ‘end-on’
attachment (Shimogawa et al., 2006).
Figure 1.10: Model for Ipl1 and Mps1 phospho-regulation of attachment and bi-orientation of kinetochores in the budding yeast
The Dam1 protein is post-translationally modified in another manner other than phosphorylation. The Set1 methyltransferase can methylate Dam1 in vivo at the Dam1 K233 residue and that Dam1 can interact directly with Set1 by co-immunoprecipitation experiments (Zhang et al., 2005). Deletion of the methyltransferase Set1 can partially suppress the temperature sensitivity and chromosome mis-segregation phenotype of ipl1-2 cells. Furthermore the double mutant glc7-127Δset1 is synthetic lethal indicating that Set1 plays an important role in modulating Ipl1 and Dam1 function. Mutation of the Dam1 lysine residues K233 to alanine is lethal, however the K233A or K194A mutants can partially suppress the ipl1-2 mutant cells indicating that methylation of Dam1 may function to antagonise Ipl1 function. The Dam1 K233 site is flanked by nearby serine residues at positions S232, S234 and S235. This S232 site was identified as a possible Mps1 phosphorylation site however S324 and S235 are thought to be possible Ipl1 sites as they resemble the consensus sequence identified for Ipl1 targets ([R/K] X [T,S] [ILV]) and a synthetic peptide spanning Dam1 residues 228-239 can be phosphorylated by recombinant Ipl1 in vitro (Zhang et al., 2005). Ipl1 mediated in vitro phosphorylation is reduced significantly in a peptide spanning the same region that contains a dimethyl-Lysine at position K233, corroborating the idea that the methylation of Dam1 may act antagonistically to Ipl1 mediated phosphorylation of Dam1. Mutation of S232 or S234 to alanine rescued the lethality of the K233A mutation suggesting that the severe effect of loss of methylation can be rescued by a reduction in phosphorylation of Dam1 at these sites highlighting the importance of this region to regulate Dam1 function through post-translational modifications.

It would seem that the Dam1/DASH complex within the budding yeast is subjected to multiple levels of regulation at the protein level to ensure the attachment of correctly configured spindle microtubules to the kinetochores and the facilitation of bi-oriented sister chromatids, which enables a high-fidelity chromosome segregation process during mitosis.

1.6.1 Overview of this thesis

In this thesis we study the Dam1/DASH complex within the fission yeast. The fission yeast is an attractive model for kinetochore biology. It contains a more complex centromere/kinetochore structure (Fidoux and Allshire, 2004), and each kinetochore is bound by between 2-4 spindle microtubules allowing for the study of
more complex attachment configurations. We wished to study the Dam1/DASH complex in this more complex kinetochore system to elucidate if this complex was firstly conserved and whether it played a similarly vital role in microtubule-kinetochore interactions, bi-orientation, spindle integrity and chromosome segregation in the fission yeast, as in the budding yeast, and thus by inference in organisms with more complex kinetochore structures and mechanisms.

We first aimed to identify the fission yeast homologues of the Dam1/DASH complex and we present a discussion of residues and motifs shown to be important for the Dam1/DASH complex function in the budding yeast and their conservation in S. pombe. We then examine the localisation of the Dam1/DASH complex and make the surprising discovery that all the Dam1/DASH subunits examined, except Dad1, show localisation to the kinetochore only in mitosis. Dad1 shows constitutive localisation to the kinetochore throughout the cell cycle. We ascertain that Dad1's association to the kinetochore is dependent on a functional Mis6/Sim4 complex, but not on Mis12, Nuf2 or Cnp1. We demonstrate that the mitosis specific Dam1/DASH subunits may show some dependency on microtubules for their localisation to the kinetochore by examining Dam1-GFP localisation in the β-tubulin mutants nda3-1828 and nda3-311 and after cold shock treatment.

In chapter 4 we address whether the Dam1/DASH complex is essential in the fission yeast by carrying out gene replacement of several complex members. We demonstrate that the Dam1/DASH complex genes are dispensable for viability in the fission yeast but play an important role in the accurate segregation of chromosomes. We carry out some examination of the deletion phenotype of Dam1/DASH null mutants and show that these strains are sensitive to the presence of spindle drugs such as TBZ and show a range of genetic interactions with mutants of other kinetochore and/or microtubule regulators. We will show that the spindle assembly checkpoint is activated in our Dam1/DASH deletion strains and that chromosome segregation defects occur in the absence of Dam1/DASH subunits. Furthermore we will carry out detailed live analysis of the patterns of chromosome segregation defects and spindle collapse seen in Dam1 cells and confirm that the Dam1/DASH complex in the fission yeast is required to resolve mono-polar segregation defects and for spindle integrity during mitosis in a similar manner to its budding yeast counterparts.

In chapter 5 we will examine the reasons for the synthetic lethality between Dam1/DASH and Klpl/6 double deletion mutants. We identified a temperature
sensitive dam1 mutant in a Δklp5 background, termed dam1-A8Δklp5 and characterise the mitotic defects associated with this mutant following incubation at the restrictive temperature. The double mutant shows activation of the spindle assembly checkpoint even at the permissive temperature and massive mis-segregation of chromosome at the restrictive temperature. Live analysis of the double mutants demonstrates an inability to resolve mono-polar segregation defects, however the dam1-A8 mutation does not behave as a 'loss of function' mutant like Δadam1, as it is resistant to TBZ. We will demonstrate that the single dam1-A8 mutant shows cells with congression defects, although there is little mis-segregation of chromosomes. Furthermore we will show that the temperature sensitivity of this double mutant can be rescued by the addition of the microtubule depolymerising agent TBZ, which suggests that the extreme rigidity of the microtubule attachments and lack of microtubule dynamics at the kinetochore is the main reason for the failure in the resolution of mal-oriented kinetochoore configurations in this mutant. We will conclude that the non-essential Dam1/DASH complex works in concert with the Klp5 and Klp6 to facilitate end-on attached and bi-oriented kinetochores in the fission yeast.
Chapter 2

2 Identification of the Dam1/DASH complex in the Fission yeast

Introduction
In the budding yeast the Dam1/DASH complex plays an important role in ensuring accurate chromosome segregation. A fundamental question is whether this complex is conserved in other fungal species containing more complex centromere/kinetochore systems. We are interested in identifying orthologues of this complex within the fission yeast, *schizosaccharomyces pombe* to examine if it also plays an essential role in kinetochore-microtubule regulation in this organism during mitosis. In this chapter we show the identification of the fission yeast orthologues of the Dam1/DASH complex through a bioinformatics approach and discuss the lack of conservation of residues shown to be important to the function of this complex in the budding yeast.

2.1 Identification of the Dam1/DASH complex
To identify orthologues of this complex in the fission yeast we searched through several sequence databases. Using the *S. pombe* protein database containing the sequenced *Schizosaccharomyces pombe* genome we initially identified six of the ten subunits of the Dam1/DASH complex within the fission yeast-Dam1, Duol, Dad1, Dad2 (which is called Hos2 in fission yeast), Ask1 and Spc34. By analysing the *S. pombe* DNA sequence database we identified Spc19 and Dad4 orthologues. Concurrently I Sanchez-Perez & J Millar identified these subunits and the remaining complex members (J. Millar personal communication) as Dad3 and Hsk3 (*S. pombe* Hos3) (Table 2.1). We then carried out an alignment of the fission yeast Dam1/DASH orthologues against their counterparts in *S. cerevisiae*. The fission yeast Dam1/DASH complex shows low but significant sequence similarity to its budding yeast counterpart. We searched for conservation within the fission yeast
Dam1/DASH complex components of known important residues, motifs and phosphorylation sites from the budding yeast Dam1/DASH sequences.

2.2 Alignment of Dam1

The Dam1 protein in the fission yeast *Schizosaccharomyces pombe* is much smaller than *Saccharomyces cerevisiae* Dam1 at 155 amino acids and 343 amino acids respectively. Alignment of the proteins between both organisms shows 29% identity. The most conserved region within the *S. pombe* Dam1 is in the N terminus with some homologous regions also present in the middle of the protein (Figure 2.1). Sequence analysis of the *S. cerevisiae* Dam1 proteins shows the presence of a coiled-coil motif between residues 123-161 and a leucine zipper region between residues 63-98 (Figure 2.1).

It has been shown in the budding yeast that Dam1 interacts with the other Dam1/DASH complex members (Cheeseman et al., 2001a; Hofmann et al., 1998), to both the kinetochore passenger complex containing Ipl1, Sli15 and Brl1 and the Ndc80 kinetochore complex and can bind directly to microtubules (Cheeseman et al., 2001a). It has been speculated that the coiled-coil domain, a known protein-protein interaction motif, perhaps plays a role in the proteins various interactions both at the kinetochore and with microtubules and microtubule modifiers (Jones et al., 1999). It is interesting to note then that the fission yeast Dam1 does not contain a coiled coil domain and there appears to be no detectable motifs or domains within the fission yeast Dam1, perhaps therefore there is another mechanism of regulating the *S. pombe* Dam1 protein interactions (Figure 2.1).

In the budding yeast Dam1 protein several residues have been identified as playing an important role in the protein's function and regulation. We analysed whether any of these motifs or residues were conserved in the fission yeast Dam1 to give us further insight into possible functions of the *S. pombe* protein (Figure 2.1, Figure 2.2). The budding yeast temperature sensitive dam1-1 allele, which results in a 'broken spindle' phenotype (Jones et al., 1999; Jones et al., 2001), contains a single point mutation C111Y. This cysteine is conserved in the fission yeast protein and is also highly conserved amongst many other fungal species (Figure 2.1 Figure 2.2 Table 2.2).
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>(S. \text{pombe}) ORF annotation</th>
<th>(S. \text{cerevisiae}) ORF annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam1</td>
<td>SPAC589.08c</td>
<td>YGR113W</td>
</tr>
<tr>
<td>Duo1</td>
<td>SPBC32F12.08c</td>
<td>YGL061C</td>
</tr>
<tr>
<td>Dad1</td>
<td>SPAC16A10.05c</td>
<td>YDR016C</td>
</tr>
<tr>
<td>Dad2/Hos2</td>
<td>Hos2/SPAC1805.07c</td>
<td>YKR083C</td>
</tr>
<tr>
<td>Ask1</td>
<td>SPBC27.02c</td>
<td>YKL052C</td>
</tr>
<tr>
<td>Spec34</td>
<td>SPAC8C9.17c</td>
<td>YKR037C</td>
</tr>
<tr>
<td>Spec19</td>
<td>SPCC1223.15C</td>
<td>YDR201W</td>
</tr>
<tr>
<td>Dad4</td>
<td>SPBC3B9.22c</td>
<td>YDR320C-A</td>
</tr>
<tr>
<td>Dad3</td>
<td>SPAC14C4.16c</td>
<td>YBR2333W-a</td>
</tr>
<tr>
<td>Hsk3/Dad5/Hos3</td>
<td>Hos3/SPCC417.02</td>
<td>YPL116W</td>
</tr>
</tbody>
</table>

Table 2.1: Table of orthologues of Dam1/DASH complex in Fission yeast
Figure 2.1: Fission yeast Daml alignment and comparison with S. cerevisiae Dam1

(A). Residues of conservation between proteins from both species are marked with grey asterisks, the regions of homology are marked with dots. The coiled coil region within the S. cerevisiae sequence is underlined in black, the leucine zipper region is underlined in red and S. cerevisiae identified phospho-serines are highlighted by a black box. The conserved cysteine residues in both proteins are highlighted by the presence of a black asterisk (Jones et al., 1999; Jones et al., 2001) and the lysine residue implicated in methylation in S. cerevisiae is highlighted by the presence of a black arrowhead (Zhang et al., 2005). (B) Schematic comparison of the S. pombe and S. cerevisiae Dam1 protein.
<table>
<thead>
<tr>
<th>S. cerevisiae allele</th>
<th>Mutation</th>
<th>Conserved in S. pombe?</th>
</tr>
</thead>
<tbody>
<tr>
<td>dam1-1/dam1-10</td>
<td>C111Y/C111R</td>
<td>Yes-C81</td>
</tr>
<tr>
<td>dam1-5</td>
<td>T58I</td>
<td>No</td>
</tr>
<tr>
<td>dam1-5/dam1-11</td>
<td>L98P</td>
<td>No-F68</td>
</tr>
<tr>
<td>dam1-5/dam1-10/dam1-11</td>
<td>N139S</td>
<td>No-D100</td>
</tr>
<tr>
<td>dam1-5/dam1-9</td>
<td>T332A</td>
<td>No</td>
</tr>
<tr>
<td>dam1-9</td>
<td>S97F</td>
<td>Yes-S67</td>
</tr>
<tr>
<td>dam1-9</td>
<td>K170E*</td>
<td>No</td>
</tr>
<tr>
<td>dam1-9</td>
<td>S328P*</td>
<td>No</td>
</tr>
<tr>
<td>dam1-10</td>
<td>L102S</td>
<td>Yes-L72</td>
</tr>
<tr>
<td>dam1-10</td>
<td>T249I</td>
<td>No</td>
</tr>
<tr>
<td>dam1-10</td>
<td>N302D</td>
<td>No</td>
</tr>
<tr>
<td>dam1-10</td>
<td>I336STOP</td>
<td>No</td>
</tr>
<tr>
<td>dam1-19</td>
<td>Q205STOP</td>
<td>No</td>
</tr>
<tr>
<td>dam1-11</td>
<td>T332A</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 2.2: Table of residues of Dam1 mutated in S. cerevisiae and conservation in S. pombe.

dam1-1 (Cheeseman et al., 2001a; Jones et al., 1999; Jones et al., 2001)
dam1-5, dam1-9, dam1-10, dam1-11, dam1-19 (Cheeseman et al., 2001a)

Asterisk denotes numbering from published literature is incorrect. K170E is actually K171E, S328P is actually S327P.
Analysis of the phylogram (Figure 2.2) generated by the alignment shows that the *S. pombe* Dam1 protein sequence is not particularly close to its *S. cerevisiae* counterpart and is closer in sequence to several of the other fungi which reflects the divergence seen between both budding and fission yeast by phylogenetic analysis (Figure 2.2).

It has been shown in *S. cerevisiae* that Dam1 is phosphorylated by the Aurora B kinase homologue Ipl1 (Cheeseman et al., 2001a; Kang et al., 2001). Analyses by mass spec on Dam1 protein identified four *in vivo* phosphorylation sites (Cheeseman et al., 2002). Mutational analyses of these sites suggest the critical importance of phospho-regulation of Dam1 for its association to the centromere kinetochore region. The sites identified by mass spec as *in vivo* phosphorylation sites for *S. cerevisiae* Dam1 are S20, S257, S265 and S292 and are highlighted in Figure 2.1 and Figure 2.2. It is interesting to note that none of these sites are conserved as phosphorylation sites within the *S. pombe* Dam1 sequence (Figure 2.2). Within the other fungi the serine20 residue is also not conserved instead a threonine residue is present with high conservation of this region amongst the other fungi (Figure 2.2). S265 is conserved in some of the fungal species listed here. Sequence analysis shows the presence of a consensus Aurora B site (\{RK\}×\{TS\}\{ILV\}) (Cheeseman et al., 2002) at T105-KATL and a consensus Polo kinase site (E/D-X-S/T) at S143 –DTS, suggesting there are putative phosphorylation sites present on *S. pombe* Dam1 (Figure 2.2). However this is purely speculative as at present there is no biochemical evidence that *S. pombe* Dam1 is phosphorylated. (X. He personal communication)

In 2005 a paper by Zhang et al. demonstrated the methylation of the *S. cerevisiae* Dam1 at K233 by the methyltransferase Set1 *in vivo* (Zhang et al., 2005). This group speculates that perhaps methylation of this residue is critical for regulation of phosphorylation at nearby serines and thus some higher form of regulation of the role of the Dam1/DASH complex in chromosome segregation. However it is worth noting that in *S. pombe* neither the lysine residues K233 or K194 nor the nearby serines are conserved, and also do not appear to be well conserved in the fungal species aligned in Figure 2.2.

It appears that many of the individual residues deemed to be crucial for the function of Dam1 in the budding yeast are not highly conserved, suggesting that the essentiality of this complex in other organisms may not be conserved and functionally it may behave differently in organisms with a more complex kinetochore/centromere system.
<table>
<thead>
<tr>
<th>Organism</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. zeae</td>
<td>...</td>
</tr>
<tr>
<td>N. crassa</td>
<td>...</td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>...</td>
</tr>
<tr>
<td>A. oryzae</td>
<td>...</td>
</tr>
<tr>
<td>A. nidulans</td>
<td>...</td>
</tr>
<tr>
<td>Y. lipolytica</td>
<td>...</td>
</tr>
<tr>
<td>S. pombe</td>
<td>...</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>...</td>
</tr>
<tr>
<td>K. lactis</td>
<td>...</td>
</tr>
</tbody>
</table>
Figure 2.2: Alignment of Fission yeast Dam1 sequence with Dam1 orthologues from other fungi.

(A) Conserved residues are marked with an asterisk and regions of similarity are marked with dots. The highly conserved cysteine residue is marked with a black asterisk. Serine residues that are phosphorylated in S. cerevisiae Dam1 are underlined in black and lysine residues critical to S. cerevisiae Dam1 regulation are underlined in blue. (B) Phylogram of Dam1 sequence divergence drawn up from the result in (A). (C) Phylogram of fungi divergence taken from Meraldi et al. 2006.
2.2.1 Alignment of Duo1

The Duo1 protein in *S. cerevisiae* is larger than its *S. pombe* counterpart, 247 amino acids versus 166 amino acids respectively. Both proteins are quite divergent showing very limited sequence homology with only 19% identity between the two. We carried out an alignment of the *S. pombe* protein with *S. cerevisiae* Duo1. The majority of homology appears in the middle of the protein with the N and C-termini quite divergent (Figure 2.3). Indeed alignment with other fungal Duo1 orthologues shows the same homology with the middle of the protein but divergent at both termini (Figure 2.4). Interestingly sequence analysis reveals the presence of a candidate coiled-coil motif from residues 76-127 in the *S. pombe* Duo1, but this is not present in its *S. cerevisiae* partner (Figure 2.3). Analysis of the phylogram garnered from the multi-fungal alignment shows that the *S. pombe* Duo1 protein is not particularly close in terms of overall homology to the other fungi (Figure 2.4).

The Duo1 protein is essential, however, a temperature sensitive allele, duo1-2, has been generated (Cheeseman et al., 2001b). Sequencing of the duo1-2 allele revealed point mutations A117T and M124I (Hofmann et al., 1998). It is of note that these two residues mutated in duo1-2 are not conserved in the *S. pombe* Duo1 sequence and not well conserved in the other fungi (Figure 2.3) (Figure 2.4). Thus one can speculate that *S. pombe* Duo1 and perhaps Duo1 proteins in other fungal species may function in a different manner from the *S. cerevisiae* Duo1.

2.2.2 Alignment of Dad1

The *S. cerevisiae* and *S. pombe* Dad1 proteins are similar in size, 94 amino acids and 85 amino acids respectively. Sequence analysis of the Dad1 protein between the two organisms shows again low sequence homology with 31% identity (Figure 2.5). The *S. cerevisiae* Dad1 protein is essential but mutagenesis resulted in the creation of temperature sensitive allele dad1-1 (Enquist-Newman et al., 2001). This mutant contains two point mutations responsible for the temperature dependent phenotype, L69R and D71N (Enquist-Newman et al., 2001). In the *S. pombe* Dad1 protein neither of these residues are conserved and are instead replaced by 69F and 71N (Figure 2.5). It appears from alignment with other fungal species that again neither the leucine nor the aspartate present in *S. cerevisiae* are conserved and the other fungi show conservation of the residues seen in the *S. pombe* sequence, i.e. 69F and 71N (Figure 2.6).
Figure 2.3: Alignment of Duo1 sequences from *S. cerevisiae* and *S. pombe* and schematic representation of proteins.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The coiled coil residues in *S. pombe* Duo1 are overlined in black. The residues mutated in the duo1-2 allele from *S. cerevisiae* are underlined in red (Hofmann et al., 1998). (B) A schematic representation showing the Duo1 protein structure comparison between both yeasts.
Clustal W (1.83) Multiple Alignment

<table>
<thead>
<tr>
<th></th>
<th>A. fumigatus</th>
<th>A. cryzae</th>
<th>A. nidulans</th>
<th>A. terreus</th>
<th>N. crassa</th>
<th>G. zeae</th>
<th>Y. lipolytica</th>
<th>S. pombe</th>
<th>C. neoformans</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>A. cryzae</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>A. nidulans</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>A. terreus</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>N. crassa</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>G. zeae</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>Y. lipolytica</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>S. pombe</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>C. neoformans</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
</tbody>
</table>

Clustal W (1.83) is a multiple sequence alignment tool that is commonly used in bioinformatics to compare protein or DNA sequences.
Figure 2.4: Alignment of Fission yeast Duo1 protein sequence with Duo1 protein sequences from other organisms.

(A) Sequence alignment of \textit{S. pombe} Duo1 protein with sequences of orthologues from other fungi. Regions of homology are marked with dots and conserved residues are marked with an asterisk. (B) Phylogram based on sequence alignment in (A) showing conservation and divergence of the Duo1 protein sequences within those fungi listed.
Through the application of PASA-PCR (preferential amplification of the shortest amplicon using PCR) and using the yeast two-hybrid system in *S. cerevisiae* the Dad1 interaction domain within Spc34 has been mapped (Ikeuchi et al., 2003; Kawarasaki et al., 2002). From this analysis Dad1 appears to interact with Spc34 from region M1-D47 of the N terminus of Spc34 and also at the C-terminus 89 residues T207-E295 (Ikeuchi et al., 2003). This C terminus region also overlaps with the Spc19 mapped region and incorporates the entire coiled-coil motif of the Spc34 protein. As discussed later in this chapter Spc19 in *S. cerevisiae* appears to have three coiled-coil motifs for trimeric coiled-coil interactions. This suggests that Spc19 Dad1 and the C terminus of Spc34 may form a trimeric coiled-coil structure (Ikeuchi et al., 2003). From sequence analysis there is no obvious coiled-coil domain within the Dad1 protein, however it has been pointed out by Ikeuchi et al, 2003 that the Dad1 protein contains periodical hydrophobic residues interspersed with glycine residues and containing a linker region from V27-P81 in the middle of the Dad1 sequence suggesting an important motif for interaction with Spc19 and Spc34 (Ikeuchi et al., 2003). It is interesting therefore that the point mutations from the *dad1-1* allele L69R and D71N could potentially disrupt this motif, if indeed one exists. In the *S. pombe* sequence there is conservation of many hydrophobic residues within this region, but many of the glycines are not conserved. Thus it is unclear whether a higher order structural motif is indeed present in this region within the fission yeast protein. The phylogram generated by the alignment with other fungi shows that the *S. pombe* Dad1 protein is closest to *Cryptococcus neoformans*, with the *S. cerevisiae* sequences closer to the other fungal members (Figure 2.6).

2.2.3 Alignment of Dad2

The fission yeast Dad2 was originally termed Hos2. Mutants of *hos2* were identified because of their inability to grow and proliferate under high osmolarity conditions (Aoyama et al., 2000). Both the budding and fission yeast Dad2 proteins are quite small, 94 amino acids and 133 amino acids respectively. Sequence alignment of both proteins shows low homology with 26% identity (Figure 2.7). Alignment with other fungi shows homology in the middle of the proteins with high divergence in the C terminus (Figure 2.8). The *S. cerevisiae* Dad2 protein contains a coiled coil domain from residues 103-116 (Figure 2.7). This is not conserved in its *S. pombe* orthologue. Analysis of the phylogram created by alignment of the Dad2 sequence with the listed
Figure 2.5: Alignment of *S. pombe* Dad1 with *S. cerevisiae* Dad1 protein and schematic of protein structure.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The residues mutated in the *dad1-1* *S. cerevisiae* mutant are underlined in black. (B) Schematic of the Dad1 protein structure for both yeasts.
fungi reveals that the *S. pombe* Dad2 sequence is closest to *Candida albicans* (Figure 2.8).

2.2.4 Alignment of Dad3

Both the *S. pombe* and *S. cerevisiae* Dad3 proteins are similarly small in size at 86 and 94 amino acids respectively. Protein sequence alignment shows again low but significant homology with 28% identity between the two (Figure 2.9). The *S. cerevisiae* Dad3 protein is predicted to contain a coiled-coil region between amino acids 16-36, underlined in black in Figure 2.9, however it is interesting to note that this motif is lacking in the fission yeast protein (Figure 2.9). Sequence analysis of both Dad3 sequences shows the presence of a putative Aurora B site at serine 63 in *S. pombe*, which appears to be conserved in *S. cerevisiae*. This site is boxed in blue in Figure 2.9. Alignment of the Dad3 protein sequence with other fungal species also shows this serine residue and possible phosphorylation site to be highly conserved (Figure 2.10 Black arrow). One can speculate that phosphorylation may play a role in regulating this protein's interaction with the Dam1/DASH complex and or microtubules and kinetochore proteins. Analysis of the phylogram created from the multi sequence alignment reveals that within this list of orthologues *S. pombe* Dad3 is closest to the *Cryptococcus neoformans* homologue and quite divergent from its *S. cerevisiae* counterpart (Figure 2.10).

2.2.5 Alignment of Dad4

The *S. pombe* and *S. cerevisiae* Dad4 proteins are very small, both 72 amino acids respectively. Sequence alignment of Dad4 in *S. pombe* and *S. cerevisiae* shows high homology with 52% identity between the two yeast proteins (Figure 2.11). The *S. cerevisiae* Dad4 protein contains a putative coiled-coil motif between amino acids 20-47, underlined in black in Figure 2.11. This motif is not conserved in the fission yeast sequence. There also does not appear to be any putative consensus phosphorylation sites present in the *S. pombe* sequence. Alignment of the Dad4 protein with orthologues from other organisms shows that the high sequence homology is conserved (Figure 2.11). Analysis of the phylogram created from the multi-sequence alignment shows that amongst the orthologues listed the Dad4 *S. pombe* protein is closest in homology to its homologue in *Gibberella zeae* (Figure 2.11).
Figure 2.6: Alignment of *S. pombe* Dad1 sequence with Dad1 sequences from other fungi.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The region containing 69F and 71N is underlined in black. (B) Phylogram derived from the alignment in (A) above.
(A) CLUSTAL W (1.83) multiple sequence alignment

<table>
<thead>
<tr>
<th></th>
<th>S. pombe</th>
<th>S. cerevisiae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>S. pombe</td>
<td>------------------</td>
<td>58</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>------------------</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>MDSIDEQIAIKRKELQKSLQK1TSLQDGLKIQLTELNBQIKEMQMNADSAVQIMSNMNDSII</td>
<td>120</td>
</tr>
<tr>
<td>S. pombe</td>
<td>ESIQIAS-------QHSGALVRIP------------STSNYNASATRQCGDVEΕ---</td>
<td>94</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>NNISQASLGILYAVEGDY1CPWKSXXKKESEQSNETGLEAGENDKINEINDΕΕΕLVPL</td>
<td>133</td>
</tr>
<tr>
<td>S. pombe</td>
<td>---------------</td>
<td>94</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>PETMVRIKVDGNE</td>
<td>133</td>
</tr>
</tbody>
</table>

(B) Schematic of the Dad2 protein structure from both yeasts.

Figure 2.7: Alignment of *S. pombe* Dad2 protein with Dad2 in *S. cerevisiae*

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The coiled-coil domain in *S. cerevisiae* is underlined in black. (B)
Figure 2.8: Alignment of Dad2 from *S. pombe* with other fungal orthologues.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. (B) Phylogram generated from the alignment in (A).
Figure 2.9: Alignment and schematic representation of *S. pombe* Dad3 protein with its *S. cerevisiae* homologue.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The coiled coil motif of *S. cerevisiae* is underlined in black and the putative Aurora B phosphorylation site is boxed in blue. (B) Schematic representation of the Dad3 protein structure from the two organisms.
Figure 2.10: Alignment of many fungal Dad3 orthologues with *S. pombe* Dad3 protein sequence.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The conserved serine residue of a putative phosphorylation site is underlined in black. (B) Phylogram derived from the sequence analysis in (A) above.
Figure 2.11: Alignment of *S. pombe* Dad4 with *S. cerevisiae* and other fungal Dad4 orthologues.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The coiled-coil motif from *S. cerevisiae* is underlined in black.
(B) Schematic representation of the *S. pombe* and *S. cerevisiae* Dad4 protein structures.
(C) Multi-sequence alignment of the *S. pombe* Dad4 protein with other orthologues.
(D) Phylogram derived from the multi-alignment in (C) above.
2.2.6 Alignment of Hsk3 (Dad5/Hos3)

The *S. pombe* Hsk3 homologue was first termed Hos3. Mutants of *hos3* were identified in the same screen that identified *hos2* because of their inability to grow and proliferate under high osmolarity conditions (Aoyama et al., 2000). Sequence analysis shows that Hos3 in *S. pombe* is the Hsk3 Dam1/DASH complex homologue. Alignment with *S. cerevisiae* Hsk3 protein shows low homology with 31% identity (Figure 2.12). Upon alignment with orthologues from other organisms it appears that the majority of conservation occurs in the middle of the protein, with divergence at both termini (Figure 2.12). Hsk3 proteins in both *S. cerevisiae* and *S. pombe* are quite small, 69 and 94 amino acids respectively. The budding yeast Hsk3 protein contains a coiled-coil motif between amino acids 2-36, underlined in black in Figure 2.12. The *S. pombe* Hsk3 sequence also contains a coiled coil domain within this region, between residues 27-47 (Figure 2.12). Perhaps this coiled-coil domain facilitates interaction with the rest of the Dam1/DASH complex members and/or the kinetochore. The fission yeast Hsk3 sequence contains a putative Aurora B phosphorylation site at threonine 5-RSTI, which does not appear to be conserved in the *S. cerevisiae* sequence, whereas some of the other organisms show a serine at this residue (Figure 2.12). The *S. pombe* sequence also contains two putative CDK sites at serines 16 and 18 but these do not seem to be conserved in the other orthologues. It should be pointed out that there is no evidence as of yet that this protein is phosphorylated. Analysis of the phylogram shows that the Hsk3 sequence from *S. pombe* appears to be closest in homology to *Neurospora crassa* and *Giberella zeae*.

2.2.7 Alignment of Spc19

The Spc19 proteins in *S. pombe* and *S. cerevisiae* are 152 and 165 amino acids respectively. Alignment of *S. pombe* and *S. cerevisiae* Spc19 proteins shows low sequence homology with 29% identity (Figure 2.13). Sequence alignment with other fungal orthologues show that the homology is strongest in the middle of the protein with divergence in the N and C termini (Figure 2.14). The *S. cerevisiae* Spc19 protein has two predicted coiled-coil motifs from the yeast database between amino acids 74-94 and 135-165, but it has been reported in the literature that it contains three coiled-coil regions for trimeric coils (Ikeuchi et al., 2003).
Figure 2.12: Alignment of S. pombe Hsk3 with orthologues from other fungi.

(A) Regions of homology are marked with dots and conserved residues are marked with an asterisk. The coiled-coil motifs from S. cerevisiae and S. pombe are underlined in black and red. A putative Aurora B site is marked by a blue box and putative CDK sites are marked with black box. (B) Schematic representation of the S. pombe and S. cerevisiae Hsk3 protein structures. (C) Multi-sequence alignment of S. pombe Hsk3 protein with other orthologues. (D) Phylogram derived from the multi-alignment in (C) above.
Figure 2.13: Alignment of *S. pombe* Spc19 protein with its *S. cerevisiae* homologue.

(A) The predicted coiled-coil motif in the *S. pombe* protein is highlighted in red, with the predicted coiled-coil motifs of *S. cerevisiae* underlined in black. (B) Schematic representation of the Spc19 protein structures from both yeasts.
Figure 2.14: Alignment of *S. pombe* Spc19 protein with orthologues from other fungi.

(A) Multi sequence alignment of the *S. pombe* Spc19 protein with orthologues from other fungi. (B) Phylogram generated from the alignment, showing evolutionary conservation of Spc19 sequence.
There is evidence within *S. cerevisiae* that the Spc19 protein interacts with Spc34 (Ikeuchi et al., 2003; Kawarasaki et al., 2002). Through the application of PASA-PCR (preferential amplification of the shortest amplicon using PCR) using the yeast two-hybrid system the interaction of Spc19 to Spc34 was mapped to a region of the C-terminus S154-Q194 within the Spc34 protein (Ikeuchi et al., 2003; Kawarasaki et al., 2002). This region incorporates the entire coiled-coil motif of the Spc34 protein to which the Dad1 protein has also been mapped. This suggests that Spc19 Dad1 and the C terminus of Spc34 may form a trimeric coiled-coil structure (Ikeuchi et al., 2003). In the fission yeast *S. pombe* there is a single coiled coil motif from residue 71-105, perhaps implicating this motif as also playing a role in protein-protein interactions with the other Dam1/DASH subunits. There is no obvious consensus phosphorylation site detected in the *S. pombe* sequence. Analysis of the phylogram generated from the multi-sequence alignment in (Figure 2.14) shows that the *S. pombe* Spc19 protein is quite divergent from the other orthologues in the alignment.

2.2.8 Alignment of Spc34

The *S. pombe* Spc34 protein is much smaller than its *S. cerevisiae* homologue, 164 versus 294 amino acids respectively. From the yeast database the *S. cerevisiae* protein contains a predicted coiled-coil motif between residues 223-250, underlined in black in Figure 2.15. The *S. pombe* Spc34 protein contains two predicted coiled-coil motifs within its C-terminus, between residues 109-129 and 134-161 (Figure 2.15). However Ikeuchi et al. describe Spc34 in *S. cerevisiae* as possessing two coiled coils between residues 207-262 and 272-294. Through the application of PASA-PCR and yeast two-hybrid it has become apparent that many of the Dam1/DASH components bind to Spc34 in the budding yeast (Ikeuchi et al., 2003). It appears that Dam1 can interact with Spc34 at the N-terminus of the Spc34 protein (M1-D47) and may be facilitated by Dad1 acting as a linker bridge (Ikeuchi et al., 2003). Indeed as previously mentioned Dad1 can interact with Spc34 at region M1-D47 and also interact with Spc34 at the C-terminus 89 residues T207-E295, a region that overlaps with Spc19 binding (S154-Q194) (Ikeuchi et al., 2003). Domain binding mapping for Duo1 shows it interacts also with the N-terminus region of Spc34 M1-E59 (Ikeuchi et al., 2003). One could imagine then that the N-terminus and C terminus regions of the Spc34 proteins are probably well conserved to maintain these interactions in other organisms.
Figure 2.15: Alignment of *S. pombe* Spc34 protein with its homologue in *S. cerevisiae*.

(A) Regions of similarity are marked by dots and asterisks mark regions of conservation. The coiled-coil regions of *S. pombe* Spc34 are overlined in blue and the coiled-coil region within the *S. cerevisiae* protein is underlined in black. Aurora B (Ip11) phosphorylation sites within the *S. cerevisiae* sequence are boxed in black. Point mutation sites from *S. cerevisiae* spc34-5, spc34-6 and spc34-7 mutants are indicated with an asterisk. (B) Schematic representative of the Spc34 protein structure in the two yeasts.
Alignment of Spc34 between _S. cerevisiae_ and _S. pombe_ shows a low sequence homology with 22% identity and indeed it does appear that the N and C termini are quite well conserved with the middle of the proteins showing high divergence (Figure 2.15). However alignment with orthologues from other fungi shows little homology, with both _S. pombe_ and _S. cerevisiae_ Spc34 proteins quite divergent from the other sequences in the phylogram analysis (Figure 2.16).

Spc34 is an essential gene but conditional mutants do exist that exhibit a bi-orientation defective phenotype when shifted to the restrictive temperature. The conditional lethal _spc34-5_ allele contains an F30L mutation resulting in a change of amino acid from phenylalanine to leucine (Janke et al., 2002) (Figure 2.15). Interestingly this residue is conserved in the _S. pombe_ sequence, however mutations present in the other mutant alleles _spc34-6_ (S18D and K198E) and _spc34-7_ (S18D and N124D), are not conserved in the fission yeast.

2.2.9 Alignment of Ask1

The Ask1 proteins in both _S. pombe_ and _S. cerevisiae_ are the largest of the Dam1/DASH complex at 307 and 292 amino acids respectively. Alignment of _S. pombe_ and _S. cerevisiae_ Ask1 protein sequences shows identity of 29% (Figure 2.17). Analysis of the phylogram created by alignment of Ask1 amongst various organisms shows that the _S. pombe_ Ask1 sequence is quite diverged from the others listed (Figure 2.18). The _S. cerevisiae_ Ask1 protein does not seem to contain any coiled-coil motif, however the _S. pombe_ Ask1 protein contains a coiled-coil motif between residues 274-294, underlined in black in Figure 2.17. Studies in _S. cerevisiae_ have shown that Ask1 is phosphorylated in a Cdc28 (CDK) dependent manner and de-phosphorylated upon anaphase entry (Higuchi and Uhlmann, 2005; Li et al., 2003). Two putative CDK phosphorylation sites are present within the Ask1 sequence at serine 216 and serine 250 (Li et al., 2003). Interestingly these possible CDK sites are conserved in the _S. pombe_ Ask1 sequence and it has been shown that the _S. pombe_ Ask1 protein is phosphorylated specifically during mitosis (Liu et al., 2005). There are several putative CDK sites present in the fission yeast Ask1 protein sequence and even a putative Polo site. It is tempting to speculate that this phosphorylation is mediated by Cdc2 kinase and plays a role in the mitotic function of Ask1 and perhaps de-phosphorylation of Ask1 in _S. pombe_ is also required to silence microtubule dynamics in anaphase in a similar manner to the budding yeast.
2.3 Discussion

The Dam1/DASH complex exists as an essential ten-subunit complex in *S. cerevisiae*. It has been implicated in facilitating high fidelity chromosome segregation by ensuring the establishment of bi-oriented sister kinetochores and the maintenance of spindle integrity during anaphase. This complex also exists in the fission yeast *S. pombe* where it perhaps plays a similar role in mediating accurate chromosome segregation. BLAST searching revealed the presence of orthologues of the subunits of each of the Dam1/DASH complex members in various other fungal species but so far there is no strong bioinformatical or experimental evidence that this complex is conserved in vertebrates or other higher organisms.

In *S. pombe* Dam1 we showed the presence of putative Aurora B and Polo phosphorylation sites. As discussed earlier, phospho-regulation of Dam1 by Ip11 in *S. cerevisiae* has been shown to be critical in turning over incorrectly attached kinetochores to facilitate bi-orientation (Cheeseman et al., 2002; Shang et al., 2003; Tanaka, 2002; Tanaka et al., 2002). One can imagine that such a regulatory system should exist in the fission yeast, which has the potential for merotelic as well as syntelic attachments. Although there is no biochemical evidence for modulation of the Dam1 protein in *S. pombe* it is tempting to speculate that there may be some form of regulation required. We also demonstrated that the critical lysine residues implicated in controlling the phospho state of Dam1 in *S. cerevisiae* are not conserved in the fission yeast. Hsk3 and Dad3 also show the presence of candidate Aurora B phosphorylation sites and Ask1 contains several possible CDK sites and a polo consensus site. Ask1 is the only subunit in *S. pombe* in which phosphorylation has been shown. It is tempting to speculate phospho-regulation of Dam1/DASH function in this organism occurs through Ask1.

The Dad1 subunit of the fission yeast complex does not appear to have a classical coiled-coil motif in either organism but as Ikeuchi et al discussed in their paper, there is a conserved region in many Dad1 orthologues of hydrophobic residues interspersed with glycines, perhaps indicating a possible function in protein protein interactions (Ikeuchi et al., 2003). Other proteins that may be implicated in protein-protein interactions in this complex in fission yeast Dam1/DASH complex are Ask1, Duol1, Spc19, Spc34 and Hsk3. These possess at least putative coiled-coil motifs that may enable the proteins to form an interactome with the other members of the complex, microtubules and other kinetochore subunits.
Figure 2.16: Alignment of *S. pombe* and *S. cerevisiae* Spe34 proteins with orthologues from other fungi.

(A) Regions of similarity are marked by dots and an asterisk marks regions of conservation. (B) Phylogram generated from the alignment above.
Figure 2.17: Alignment of *S. pombe* Ask1 protein with its homolog in *S. cerevisiae*.

(A) Regions of similarity are marked by dots and asterisks mark regions of conservation. The coiled-coil region within the *S. pombe* Ask1 sequence is underlined in black. The putative CDK sites within the *S. cerevisiae* Ask1 protein are boxed in black. The putative CDK sites within the *S. pombe* Ask1 protein are overlined in blue and the putative Polo site is overlined in green. (B) Schematic representation of the Ask1 proteins in the two yeasts.
Figure 2.18: Alignment of Ask1 protein from *S. pombe* with orthologues from other organisms.

(A) Regions of similarity are denoted by dots and asterisks denote regions of conservation. (B) Phylogram generated from the alignment in (A)
Chapter 3

3 Localisation of the Dam1/DASH complex

Introduction

Having previously identified putative orthologues of the Dam1/DASH complex in the fission yeast we wished to assess their localisation and ascertain if they are bona fide kinetochore and spindle proteins as in the budding yeast. Several of the Dam1/DASH subunits were C-terminally tagged with GFP, by insertion of PCR generated fragments at the 3' region of the gene just prior to the stop codon: as described by Bahler et al. 1998 (Figure 3.1). Tagging these Dam1/DASH genes with GFP did not seem to affect the functionality of the proteins. The localisation of these GFP tagged proteins at various stages of the cell cycle was then examined. We demonstrate that several of the components bind to the kinetochore as cells enter mitosis. However the Dad1 component is constitutively localised to the kinetochore throughout the cell cycle. We show that this association of Dad1 with the kinetochore is dependent on a functional Mis6/Sim4 complex, but not on Mis12, Nuf2, or Cap1. We also try to assess the microtubule dependency of the mitosis-specific Dam1/DASH components by examining localisation of Dam1 in the β-tubulin mutants nda3-1828 and nda3-311 and after cold shock treatment.

3.1 Kinetochore localisation of Dam1 complex

Analysis of the sub-cellular localisation of Ask1-GFP, Duo1-GFP and Dam1-GFP in fixed cells shows no signal detected in interphase cells; localisation of these subunits is only visualised as cells enter mitosis (Figure 3.2). In early mitotic cells localisation appears as one or two discrete dots possibly reflecting kinetochore or SPB localisation. As cells progress through metaphase multiple dots and/or weak spindle staining becomes apparent (Figure 3.2).
Figure 3.1: Schematic showing C-terminal GFP epitope tagging steps.

(A) The first step involves PCR from a plasmid containing the GFP-Kanamycin cassette pFa-KanMX6 (Bahler et al., 1998). The forward oligo for the PCR contains 80bp of the gene sequence just prior to the stop codon and 20bp from the cassette. The reverse oligo likewise contains an 80bp sequence downstream of the stop codon of the gene and 20bp from the GFP-kanamycin cassette. (B) The PCR product containing GFP-Kan is inserted at the 3' end of the gene just prior to the stop codon by homologous recombination.
Cells containing either *ask1*⁺*-GFP* (A) *duo1⁺-GFP* (B) or *dam1⁺-GFP* (C) were fixed in 3% formaldehyde (See Materials & Methods). The cells were stained with DAPI mounting medium and viewed by fluorescence microscopy. (A) Ask1-GFP in green, DAPI stained DNA in blue. (B) Duo1-GFP in green, DAPI stained DNA in blue. (C) Dam1-GFP in green, DAPI stained in blue. The scale bars represent 10µm.
Upon anaphase onset, as the chromosomes are segregated, the GFP signals are detected at both poles reflecting kinetochore segregation and/or SPB localisation (Figure 3.2).

In order to clarify if the mitosis-specific GFP dots visualised in Figure 3.2 were representing SPB localisation, as initially presumed in *S. cerevisiae* studies, we carried out live imaging of cells containing dam1\(^+\)-GFP and sad1\(^+\)-dsRed to visualise the SPB (Figure 3.3). In interphase and early G2 cells the SPB is clearly visible but there is no Dam1-GFP signal (Figure 3.3). As cells enter mitosis the Dam1-GFP signal appears to localise close to the SPB. When SPB separation is visualised in prometaphase and metaphase cells Dam1-GFP localises between the two poles in the intra-SPB region where the kinetochores can be found clustered on the spindle (Figure 3.3). At this stage the green Dam1-GFP and red Sad1-dsRed signals are quite distinct suggesting Dam1 localises to the kinetochore and not the SPB (Figure 3.3). Upon anaphase segregation the Dam1 signal appears close to the Sad1 SPB signal, reflecting the segregation of the kinetochores to opposite poles (Figure 3.3).

3.1.1 Dad1 localises constitutively to the kinetochore

We presumed that all the Dam1/DASH subunits would show this same mitosis-specific localisation, but surprisingly Dad1-GFP appears to localise at the kinetochore throughout the cell cycle (Figure 3.4A). In interphase cells Dad1 localises as a discrete dot at what appears to be clustered kinetochores, and as cells proceed through mitosis Dad1 signal remains at the kinetochore and can be visualised by up to 6 kinetochore dots during metaphase (Figure 3.4B) (Sanchez-Perez et al., 2005). As cells undergo anaphase the Dad1-GFP signals are visualised at both poles reflecting segregation of the kinetochores to the poles (Figure 3.4).

To assess if this Dad1-GFP pattern reflects kinetochore localisation we carried out live imaging on cells containing *dad1-GFP*\(^+\) and *nuf2-CFP*\(^+\) to visualise the kinetochore (Nuf2, a known kinetochore protein, is a member of the Ndc80 complex). The Dad1 signal closely correlates with the Nuf2 signal throughout the cell cycle, showing tight co-localisation at the kinetochore (Figure 3.4B). We therefore conclude that Dad1 is a bona fide kinetochore component, and unlike the other Dam1/DASH subunits it shows constitutive localisation to the kinetochore throughout the cell cycle.
3.1.2: **Dad1 acts as anchor for recruitment of mitosis-specific Dam1/DASH complex.**

The constitutive localisation of Dad1 to the kinetochore suggests this protein may play an active role in recruiting the remaining Dam1/DASH complex subunits during mitotic maturation of the kinetochore. To address this possibility we assessed the localisation of Dam1-GFP in a $\Delta dad1$ strain. Unsurprisingly Dam1-GFP does not appear to localise to the kinetochore at any stage of the cell cycle in $\Delta dad1$ cells (Figure 3.3B). It also appears that several of the other mitosis-specific Dam1/DASH components, namely Ask1 and Dad2 cannot localise in $\Delta dad1$ cells (Liu et al., 2005). Thus it appears that Dad1 acts as a platform for the recruitment of the mitosis-specific components of the Dam1/DASH complex during mitosis.

3.2 **Dad1 localisation in kinetochore mutants**

As we have demonstrated in the previous section Dad1 is constitutively localised to the kinetochore, where it acts as a platform for recruitment of the remaining Dam1/DASH complex during mitosis. It is clear that Dad1 itself must be anchored to the kinetochore by some other kinetochore protein, or proteins, to facilitate this Dam1/DASH recruitment role. We wished to elucidate which, if any, of the known kinetochore proteins are responsible for tethering Dad1 to the kinetochore. To address this we analysed Dad1-GFP localisation in various kinetochore temperature sensitive conditional mutants (Figure 3.5). The fission yeast kinetochore seems to be organized into discrete subcomplexes such as the Mis6/Sim4-Sim4 complex, the Mis12 complex and the Ndc80 complex (Liu et al., 2005; Pidoux and Allshire, 2004). Rather than test each individual member of these subcomplexes for Dad1 localisation to the kinetochore, we examined one or more mutants from each to ascertain if any of these subcomplexes are involved in tethering Dad1 at the kinetochore.
Figure 3.3: Dam1 does not localise to the SPB but localises to the kinetochore in a Dad1 dependent manner.

(A) Live imaging of cells containing dam1⁺-GFP and sad1⁺-dsRed fluorescence microscopy. Dam1-GFP in green: Sad1-dsRed in red. (B) Dam1-GFP localisation visualised in WT and Δdad1 fixed cells by fluorescence microscopy. (See Materials & Methods). Scale bars represent 10 μm.
Figure 3.4: Dad1-GFP localises constitutively to the kinetochore.

(A) Localisation of Dad1-GFP visualised in fixed cells by fluorescence microscopy (See Materials & Methods). Dad1-GFP in green, DAPI stained DNA in blue. (B) Live cell imaging of cells containing dad1-GFP and nuf2-CFP by fluorescence microscopy. Dad1-GFP is green; Nuf2-CFP is red. The scale bars represent 10μm.
3.2.1 Dad1 localisation in Mis12 and Nuf2 mutants

It appears that Dad1 localisation is not dependent on the Mis12 complex as Dad1-GFP was able to localise in mis12-537 cells (Goshima et al., 1999) shifted up to the restrictive temperature of 36° for 6 hours (Figure 3.5). Dad1 also does not appear to depend on Nuf2 and perhaps the Ndc80 complex for anchorage to the kinetochore. In our experiment using the nuf2-4 allele (Nabetani et al., 2001) we could not see any loss of Dad1 localisation at the restrictive temperature (Figure 3.5), despite the appearance of an obvious mis-segregation phenotype after 6 hours at this temperature. A recent paper states that Hos2, the fission yeast homologue of the Dad2 Dam1/DASH subunit in budding yeast, is dependent on Nuf2 for kinetochore localisation (Kobayashi et al., 2007). In this paper they examine Hos2-GFP localisation in nuf2-1 cells and show reduced Hos2-GFP localisation at the kinetochore at the restrictive temperature. We attempted to clarify whether this was due to differences in the alleles nuf2-1 and nuf2-4 by examining Dad1 localisation in the nuf2-1 cells, but in our hands this nuf2-1 allele did not appear temperature sensitive. (Data not shown) Therefore we cannot rule out the possibility that the Nuf2/Ndc80 complex does play a role in tethering Dad1 or maybe the mitosis-specific subunits to the kinetochore, however the two alleles nuf2-2 and nuf2-4 tested suggest Dad1 localisation to be independent of Nuf2.

3.2.2 Dad1 localisation in Mis6/Sim4 mutants

Dad1 localisation is dependent on a functional Mis6/Sim4 complex. Dad1 was unable to localise at the restrictive temperature in both mal2-1 and mis6-302 (Fleig et al., 1996; Saitoh et al., 1997) cells after shift up to the restrictive temperature. (Figure 3.5) Intriguingly Dad1 was still present in the Sim4 mutant sim4-193 (Pidoux et al., 2003), despite the appearance of an obvious mis-segregation phenotype after 6 hours at the restrictive temperature. Sim4 is also a component of the Mis6/Sim4 complex but perhaps this particular allele is not compromised for Dad1 localisation activity or indeed maybe Mis6 and Mal2, but not Sim4, are the physical docking proteins for Dad1.
3.2.3 Cnp1 is not required for Dad1 localisation

It has previously been established that the Mis6 protein is required for loading of Cnp1, the fission yeast CENP-A homolog, to the kinetochore (Saitoh et al., 1997; Takahashi et al., 2000). We have identified Mis6 as a requirement for anchoring Dad1 to the kinetochore and thus for the recruitment of the whole Dam1/DASH complex during mitosis. We postulate that the failure of Dad1 to localise in mis6-302 and mal2-1 cells is due to this complex playing a direct tethering role for Dad1 and the incoming Dam1/DASH complex at the kinetochore. Another intriguing possibility however, is that Dad1 fails to localise due to the loss of Cnp1 at the kinetochore in mis6-302 and possibly mal2-1 cells. To address this possibility directly we analysed Dad1-GFP localisation in cnp1-1 conditional mutant cells (Figure 3.5). If Dad1 is delocalised in Mis6/Sim4 complex mutants due to loss of Cnp1 from the kinetochore then Dad1 should similarly become delocalised at the restrictive temperature in cnp1-1 cells. Dad1 signal, however, appears intact even after 6 hours at 36°C in cnp1-1 cells (Figure 3.5). It seems that Dad1 localisation to the kinetochore is independent of Cnp1 and that Mis6 and Mal2 therefore play a more direct role in tethering this protein to the kinetochore throughout the cell cycle.

3.3 Dam1/DASH complex localisation is dependent upon microtubule integrity?

The budding yeast Dam1/DASH complex requires microtubules for its kinetochore localisation (Li et al., 2002). In the fission yeast it is thought that the kinetochores interact and attach to the microtubules only in mitosis. This is the time when the Dam1/DASH complex becomes fully loaded to the kinetochore in this organism (Figure 3.2, Figure 3.3). It therefore seems an attractive hypothesis to postulate that microtubules also play an important role in depositing the mitosis-specific Dam1/DASH subunits to the kinetochore in S. pombe. In order to assess this we analysed Dam1-GFP localisation in the β tubulin mutants nda3-1828, a temperature sensitive allele and nda3-311, a cold sensitive allele and after cold shock treatment of nda3-311 cells (Funahiki et al., 1993; Hiraoka Y, 1984; Radcliffe et al., 1998; Umesono et al., 1983). We used Dad1-GFP as a control, as it is constitutively localised to the kinetochore and should not be affected by depolymerisation of microtubules either by cold shock or β tubulin mutation.
Figure 3.5: Analysis of Dad1 localization in various kinetochore mutants.

Dad1-GFP signal analysed in WT and kinetochore mutant cells at permissive and restrictive temperature. Cells containing *dad1*'-GFP were grown in rich medium at 27°C. Cultures were then split and incubated at 27°C or shifted for 6 hours to the restrictive temperature of 36°C. Cells were then fixed and stained with DAPI mounting medium and viewed by fluorescence microscopy (See Materials & Methods). Scale bar represents 10μm.
As expected Dad1-GFP localisation is not affected at the restrictive temperature in the *nda3-1828* ts mutant, thus serving as a good control. Incubation of this strain at the restrictive temperature leads to mitotic arrest and the depolymerisation of microtubules due to the β tubulin conditional mutation, however Dad1 can still localise to the kinetochore throughout the cell cycle and is unperturbed by this microtubule loss (Figure 3.6 a&b). Dam1-GFP localisation appears normal in the *nda3-1828* ts allele at the permissive temperature (Figure 3.6c). Incubation at the restrictive temperature for 4 hours induces a mitotic arrest, as evidenced by the presence of condensed DNA, and the kinetochore localisation of Dam1-GFP is abolished in favour of diffuse cytoplasmic localisation (Figure 3.6d). We believe this to be strong evidence of a microtubule role in deposition of Dam1 and the other mitosis-specific Dam1/DASH complex members to the kinetochore in mitosis.

There is however a differing result published by Liu et al. 2005, inferring that the Dam1/DASH complex is localised first to the SPB in a microtubule independent manner. In this paper they show Dam1-GFP and Ask1-GFP can co-localise with Ndc80-CFP to the kinetochores in over 80% of the cells in an *nda3-311* strain after shift down to 18°C for 10 hours (Liu et al., 2005). These kinetochores are almost always associated with an SPB with only a fraction of unattached kinetochores showing Dam1 or Ask1 binding (Liu et al., 2005). To assess if the localisation of Dam1 is truly intact in the cs allele *nda3-311* we analysed Dam1-GFP localisation in this strain after shift down to the restrictive temperature for 8 hours (Figure 3.6e). We obtained the same result, whereby Dam1-GFP localisation appears intact in this strain. We hypothesized that this discrepancy in localisation between the two alleles, *nda3-1828* and *nda3-311*, may reflect the presence of residual microtubules that are nucleated near the SPB in the *nda3-311* strain. Therefore we decided to carry out ice-treatment in the *nda3-311* strain after 8 hours at the restrictive temperature to fully depolymerise any remaining microtubules (Figure 3.6f). In this strain incubation on ice for 30 minutes followed by fixation in 3% formaldehyde on ice results in total loss of Dam1-GFP signal from the kinetochore and the appearance of a diffuse cytoplasmic and nuclear signal (Figure 3.6f). This clear delocalisation of Dam1-GFP under these conditions strongly suggests that the fission yeast Dam1/DASH complex requires microtubules for kinetochore localisation during mitosis.
Figure 3.6: Dam1 is microtubule dependent for localisation to the kinetochore.

Cells containing Dad1-GFP or Dam1-GFP were grown in rich medium at 27°C prior to incubation at the restrictive temperature or cold shock treatment. The cells were fixed, stained with DAPI and visualised by fluorescence microscopy. GFP is visualised in green and DAPI in blue. (a&b) Dad1-GFP nda3-1828 mutant cells visualised at 27°C, or after 4 hours incubations at 36°C. (c) Dam1-GFP visualised in the nda3-1828 strain at 27°C. (d) Visualisation of Dam1-GFP in the nda3-1828 strain after 4 hours at 36°C. (e) The Dam1-GFP nda3-311 strain is shifted down to 20°C for 8 hours prior to fixation and/or cold shock in (f). (f) Dam1-GFP nda3-311 cells subjected to ice/cold shock treatment. Scale bars represent 10μm.
3.4 Dam1-GFP localisation in mutants affecting microtubule dynamics

The microtubules in early mitosis are extremely dynamic in the fission yeast (Ding et al., 1993; Mallavarapu et al., 1999; Sagolla et al., 2003). Photo-bleaching experiments have demonstrated that there is a more rapid tubulin turnover in microtubules during the early mitotic stages of prometaphase and metaphase compared to anaphase (Mallavarapu et al., 1999). We have shown that Dam1 requires microtubules at this early mitotic stage for its localisation to the kinetochore (Figure 3.6). We therefore next addressed whether the Dam1/DASH complex requires these highly dynamic microtubules to facilitate its deposition to the mitotic kinetochore. We therefore analysed Dam1-GFP localisation in WT and Δalp14, Δdis1 and Δklp5 backgrounds to ascertain whether Dam1-GFP could still localise to the kinetochore in these mutant strains when microtubule dynamics are affected. Neither the TOG mutants Δalp14 and Δdis1 nor the kinesin-13 mutant Δklp5 showed any loss of Dam1 localisation (Figure 3.7).

3.5 Discussion

In S. cerevisiae the Dam1/DASH complex localises to the SPB and kinetochore and decorates the spindle microtubules in mitosis (Cheeseman et al., 2001; Enquist-Newman et al., 2001; Hofmann et al., 1998; Janke et al., 2002; Jones et al., 1999; Li et al., 2002). As mentioned in the introduction to this chapter the Dam1/DASH complex members have been shown to associate to the centromere region by ChiP and to co-localise to the kinetochore along with Ndc10 throughout the cell cycle (Cheeseman et al., 2001; Jones et al., 2001). Within the fission yeast S. pombe the microtubules and kinetochores only interact and attach in mitosis, therefore one would expect in this organism that the Dam1/DASH complex would localise to the kinetochore specifically during the mitotic phase to facilitate the microtubule-kinetochore attachments. We C-terminally tagged various Dam1/DASH subunits with GFP and monitored their sub-cellular localisation at various stages of the cell cycle. As we expected Dam1 and other complex members did show a kinetochore localisation only as cells entered into mitosis (Figure 3.2, Figure 3.3). Surprisingly however Dad1, one of the subunits of the Dam1/DASH complex exhibited kinetochore localisation throughout the whole cell cycle (Figure 3.4).
Figure 3.7: Dam1 localisation in mutants that perturb microtubule dynamics

Cells containing Dam1-GFP were grown in rich medium at 27°C, shifted to their respective restrictive temperatures prior to fixation and visualised by fluorescence microscopy. (a) WT Dam1-GFP cells at 27°C. (b) Δdis1 Dam1-GFP cells shifted down to 20°C for 8hrs. (c) Δalp14 Dam1-GFP cells shifted up to 36°C for 6hrs. (d) Δklp5 Dam1-GFP cells at 27°C. The scale bar represents 10μm.
This was an intriguing result and seemed to suggest that Dad1 may play an additional important role at the kinetochore perhaps in a structural or functional capacity that is independent of the remaining Dam1/DASH complex members. We postulated that the constitutive kinetochore localisation of Dad1 serves as an anchor or platform for the recruitment of the other Dam1/DASH subunits upon mitotic entry. Our observation that Dam1-GFP localisation is abolished in Δdad1 cells appears to corroborate this hypothesis. Indeed Dad2 and Ask1 localisation also appears to be lost in Δdad1 cells according to a recent paper by Liu et al. 2005. This suggests a difference in *S. pombe* Dam1/DASH localisation and possible function compared to their *S. cerevisiae* counterparts. The Dad1 protein acts as a dock for the incoming mitotic complex members and possibly other mitotic kinetochore or microtubule regulators to promote proper kinetochore function and to ensure high fidelity chromosome segregation.

In *S. cerevisiae* the Dam1/DASH complex requires an intact core kinetochore structure for localisation. As we have previously discussed the association of Dam1 to the centromere by ChIP is dramatically reduced in an ndc10-1 background (Jones et al., 2001), and it has also been demonstrated that the localisation of Spc34-GFP and Dad2-GFP to the kinetochore is abolished in ndc80-1 cells (Janke et al., 2002). This suggests that a core intact kinetochore platform consisting of the CBF3 and the Ndc80 complexes are required for Dam1/DASH localisation in *S. cerevisiae*. We have shown that similarly in the fission yeast a core kinetochore structure is required for Dad1 and thus Dam1/DASH kinetochore loading. We have demonstrated that the Mis6/Sim4 complex is required to anchor Dad1 to the kinetochore (Figure 3.5). Dad1-GFP localisation is abolished from the kinetochore after shift-up to the restrictive temperature in *mal2-1* and *mis6-302* cells. It is worth noting that an interaction between Dad1 and the Mis6/Sim4 complex has been proven by Liu et al. 2005. They performed TAP purification using Dad1-TAP and repeatedly could co-purify Dad1 with Mal2, Mis6 and Sim4 of the Mis6/Sim4 complex. In interphase cells only Dad1 forms a complex with the Mis6/Sim4 complex, however the other Dam1/DASH complex members can be co-purified with the Mis6/Sim4 complex during mitosis (Liu et al., 2005). This thus supports our delocalisation data and model that Dad1 is docked to the kinetochore through this core kinetochore Mis6/Sim4 complex. It appears however that Mis12, Nuf2 and Cnp1 are dispensable for this localisation, but we cannot rule out allele specificity, therefore there is a possibility that other mutant alleles of these kinetochore components could result in a loss of Dad1 localisation.
The *S. cerevisiae* Dam1/DASH complex can form closed rings on microtubules and has been shown *in vitro* to possess polymerising and bundling activity (Asbury et al., 2006; Miranda et al., 2005; Westermann et al., 2005; Westermann et al., 2006). It is also known that within the budding yeast this complex requires the mitotic spindle microtubules for loading to the kinetochore (Li et al., 2002). This leads to a tempting model whereby the Dam1/DASH ring complex forms around microtubules and can "surf" into the kinetochore upon the spindle microtubules where it then interacts with core kinetochore components such as the Ndc80 and/or CBF3 complex to enable the attachment of kinetochores to the spindle microtubules. Intriguingly it appears that this microtubule dependency may also occur within the fission yeast for loading of the mitosis-specific subunits to the kinetochore (Figure 3.6), and perturbation of microtubule dynamics appears to have no effect on Dam1/DASH localisation (Figure 3.7). Recently there was another report using cold-shock treatment suggesting that the fission yeast Dam1/DASH complex can bind to the kinetochore in the absence of microtubules (Kobayashi et al., 2007). However they admit that some very short microtubules may still exist in these cells even after ice treatment, which could account for residual Hos2-GFP localisation and therefore cannot rule out the possibility of microtubule dependency. While it is not easy to fully reconcile this result with our own ice-treatment data, we feel strongly that the Dam1/DASH complex requires microtubules for its kinetochore localisation during mitosis. We believe the mitosis-specific Dam1/DASH subunits can interact with microtubules, whether by a ring or some other structural entity, and "surf" in on the incoming microtubule towards the kinetochore. This complex can then anchor the spindle at the kinetochore through interaction with Dad1 and the Mis6/Sim4 complex, thus facilitating proper bipolar attachment and bi-orientation.
Chapter 4

4 Characterisation of Dam1/DASH deletion mutants

Introduction

We have now seen that the conserved Dam1/DASH complex within the fission yeast can localise to the kinetochore during mitosis. The next critical question is what is the function of this complex at the kinetochore during mitosis. To address this we deleted various Dam1/DASH genes and intriguingly found that this complex was not essential in the fission yeast. We will examine the phenotype of these Dam1/DASH deletion mutants to understand the role of this complex during mitosis in the fission yeast. In this chapter we address the deletion of various subunits of the Dam1/DASH complex and demonstrate that this complex, while not essential, plays an important role in ensuring high fidelity chromosome segregation. We show that deletion strains are slightly sensitive to the spindle drug TBZ and show activation of the spindle assembly checkpoint. We show a range of genetic interactions with other kinetochore mutants and mutants of microtubule regulators and assay whether Dac1 may play an additional role in the spindle assembly checkpoint. We demonstrate anaphase spindle defects in fixed Dam1/DASH deletion strains and show spindle collapse in live cells, indicating this complex plays a role in ensuring bipolar spindle and anaphase spindle integrity maintenance in a similar manner to its budding yeast counterparts.

4.1 Deletion of Dam1/DASH subunits in the fission yeast

In order to ascertain if the Dam1/DASH complex is essential within the fission yeast, the genes coding for the various subunits of this complex were deleted using a simple PCR based approach, involving the insertion of a kanamycin resistance gene (Kan^R)
into the gene locus within a diploid strain (Figure 4.1) (Bahler et al., 1998). It was found that deletion of Dam1/DASH complex members was not essential (Carried out by N. Koonrugska & S. Dhut).

4.1.1 Growth of Dam1/DASH deletions

The Dam1/DASH complex is not essential in the fission yeast. In order to ascertain how deletion mutants of this complex behave we first examined the growth of logarithmically growing Δdam1, Δask1, and Δdad1 cells in rich medium at both 27°C and 36°C and in the presence of a red dye Phloxin B to stain dead or dying cells. These strains did not appear to have difficulty growing in rich medium at either 27°C or 36°C when compared to WT growth kinetics (Figure 4.2A). We then carried out a tenfold serial dilution spot assay of Δdam1, Δask1 and Δspc34 to further analyse the growth of Dam1/DASH deletion mutants at 36°C and in the presence of the microtubule destabiliser Thiametazole (TBZ). This drug is used regularly to assess the presence of mitotic defects. Mutants with mitotic defects may show either a sensitivity or resistance to the drug. We compared the growth on plates of these strains against other mutants of known mitotic regulators, Δmad2, Δalp14, and Δklp5. Mad2 plays a role in the spindle assembly checkpoint; it localises to unattached kinetochores and can induce mitotic arrest until correct attachments are established (Gillet et al., 2004; He et al., 1997; Kim et al., 1998; Pangilinan and Spencer, 1996; Waters et al., 1998). Deletion of mad2Δ yields cells that are very mildly sensitive to microtubule depolymerisation induced by the addition of TBZ, as these cells cannot arrest to repair the spindle damage (He et al., 1997). Alp14 is a microtubule stabilising protein that belongs to the Dis1/TOG and deletion of the alp14Δ gene yields cells that are temperature sensitive and very sensitive to TBZ (Garcia et al., 2001). Klp5, a member of the kinesin-8 family, is a microtubule depolymeriser and deletion of the klp5Δ gene results in hyper stabilised microtubules, which causes cells to become resistant to drugs such as TBZ. Consistent with known results both Δmad2 and Δalp14 cells show modest sensitivity to TBZ in our spot assay, Δalp14 cells show little growth at 36°C and the Δklp5 cells appear resistant to TBZ (Figure 4.2B).
Figure 4.1: Schematic showing gene deletion steps.

(A) The first step of gene deletion involves PCR from a plasmid containing a Kanamycin cassette pFA-KanMX6 (Bahler et al., 1998). The forward oligo for the PCR contains 80bp of the gene sequence approx 200bp upstream of the ORF of gene to be deleted and 20bp from the cassette. The reverse oligo likewise contains 20bp from the cassette and an 80bp sequence approx 200 bp downstream of the ORF of the gene to be deleted. (B) The PCR product containing kanamycin is inserted into the gene locus by homologous recombination.
Figure 4.2: Analysis of growth rate of Dam1/DASH deletion mutants.

(A) WT, dam1Δ, dad1Δ, and ask1Δ cells were cultured in rich medium at 27°C to a log-phase concentration of 1x10⁶ cells/ml. The cultures were split and incubated at either 27°C or 36°C and the cell number was counted every 2 hours. The cell number was plotted against time. (B) A tenfold serial dilution spot assay with the first spot containing 5x10⁵ cells, plated onto rich agar YE5S, YE5S & Phloxin B, YE5S & TBZ 5μg/ml, 10μg/ml, or 20μg/ml concentrations.

Deletion of the Dam1/DASH genes results in cells that show some sensitivity to TBZ, however this sensitivity is not equal amongst the different Dam1/DASH mutants tested. The Δspec34 cells appear strongly affected by the addition of TBZ, the Δdam1
cells are as sensitive as the mitotic mutants Δmad2 or Δalp14, however the Δask1 strain is only very mildly sensitive, appearing almost like WT. It seems that this may be a fundamental finding hinting at the fact that the subunits of the complex in the fission yeast are not equal which would argue against the presence of a ring complex in the fission yeast. We can thus infer that different subunits within this complex may function in slightly different ways.

4.1.2 Dam1/DASH mutants display chromosome segregation defects

The budding yeast Dam1/DASH mutants display chromosome segregation defects at the restrictive temperature. We assessed if deletion of components of this complex within the fission yeast causes mis-segregation of chromosomes. Visualisation of the DNA by DAPI staining in WT, Δadam1 and Δask1 cells showed the clear presence of mis-segregated chromosomes in the deletion strains compared to wild-type. The variable DAPI signals that are evident indicate aberrant DNA separation in these cells (Figure 4.3A). To further test the fidelity of chromosome segregation in these Dam1/DASH deletion mutants we incorporated a linear minichromosome into WT, Δadam1 and Δask1 strains (Niwa et al., 1989). This nonessential minichromosome Ch16 derives from the centromeric region of chromosome 3 in S. pombe and contains the ade6-m216 allele. This allele compensates for the ade6-m210 allele, which is present endogenously in the genome of the WT, Δadam1 and Δask1 strains. This minichromosome can be stably maintained in normal cells as they undergo mitosis, however when chromosome segregation defects occur this minichromosome will be lost and these cells can be observed as red auxotrophs on adenine- medium. The Dam1/DASH deletion strains Δadam1 and Δask1 clearly show the presence of red and sectored colonies in this plate assay (Figure 4.3B&C). The percentage of plasmid loss was calculated by counting the number of red sectored cells, to be 0.3% for WT, 7.8% for Δadam1 and 5.3% for Δask1 (Figure 4.3B&C). The Dam1/DASH deletion cells therefore have obvious defects in chromosome segregation during mitosis.
Figure 4.3: Dam1/DASH deletion mutants result in chromosome missegregation.

(A) WT, Δdam1 and Δask1 cells were shifted to 36°C for 4 hours, fixed and the DNA visualised by fluorescence microscopy. DAPI in red and Bright field in blue. The scale bar represents 10µm. (B) WT, Δdam1 and Δask1 strains containing a minichromosome were grown on selective medium to retain the mini-chromosome and then plated onto rich medium and incubated at 30°C for 4 days. Colonies that show sectored adenine auxotrophs indicate a loss of the mini-chromosome and are counted. (C) Graph of the percentage of plasmid loss from (B) N=1000.
4.2 Dam1/DASH mutants and the spindle assembly checkpoint

Mutants that give rise to spindle or attachment dysfunction in mitosis often cause a prolonged mitotic delay. Errors in microtubule attachment to the kinetochore, or disruption of spindle formation which leads to kinetochores becoming unattached, activates the spindle assembly checkpoint. This checkpoint causes a metaphase arrest by the activation of a signalling cascade that results in inhibition of the APC/C through binding of its activator protein Sip1/CDC20 (Chan and Yen, 2003; Chen et al., 1998; Fang, 2002; He et al., 1997; Millband and Hardwick, 2002). The checkpoint cascade involves localisation of the checkpoint proteins to the kinetochore and results in mitotic delay. We wished to investigate if there is a noticeable delay in our Dam1/DASH deletion mutants and whether this delay is dependent on the spindle checkpoint to aid our understanding of the mitotic phenotype of Dam1/DASH deletion mutants.

4.2.1 Mitotic delay in Dam1/DASH mutants.

To assess if there is an increased frequency of mitotic cells when the Dam1/DASH complex is perturbed we counted the mitotic index in WT, Δdam1 and Δadad1 cells. Cells were cultured in rich medium at 27°C, fixed and α-tubulin and DNA stained. The numbers of mitotic spindles were counted as a percentage of total cells. The stages of the spindles were assigned by subdividing the total number of spindles according to length, into short prometaphase/metaphase like spindles of <2μm in length, and longer anaphase like spindles of >2μm. The incidence of mitotic cells is slightly increased in both Δdam1 and Δadad1 strains, particularly cells possessing spindles of <2μm (Figure 4.4A). This infers that the increase in the mitotic index is probably due to accumulation of metaphase cells and is likely to be mediated by the spindle assembly checkpoint. To assess whether this delay is dependent on the spindle checkpoint we counted the mitotic index in Δadad1 and Δdam1 cells in which the spindle checkpoint components mad2" or bub1" have been deleted, which results in cells that cannot delay mitosis even in the presence of spindle damage or when kinetochore attachments have not been established (Rieder et al., 1994; Waters et al., 1998).
Figure 4.4: Spindle checkpoint induced mitotic delay in Dam1/DASH mutants.

(A&B) Graph showing the percentage of mitotic cells counted in WT, Δdad1, Δdam1, Δdad1mad2, Δdad1bub1, Δdam1mad2 and Δdam1bub1 cells. Cells were cultured at 27°C, fixed and immunofluorescence microscopy to visualise microtubules and DNA was carried out. N > 200 cells. (C) Quantification of frequency of Bub1-GFP in WT and Δdam1 cells. Cells were cultured in rich medium at 27°C, fixed, stained with DAPI and viewed by fluorescence microscopy. The scale bar represent 10μm. Red Arrowhead highlights Bub1-GFP foci. N > 200 cells.
4.2.2 Deletion of the spindle checkpoint in Dam1/DASH mutants.

To ascertain if removal of the spindle assembly checkpoint in Dam1/DASH deletion cells would lead to any additive defects, we examined the growth of these mutants in the absence and presence of the checkpoint components mad2\(^+\) and bub1\(^+\). The growth of logarithmic cells were analysed every 2 hours, from a starting concentration of 1x10\(^6\) cells/ml, in liquid culture at 27\(^\circ\)C and 36\(^\circ\)C. Consistent with our previous result Dam1 shows no obvious growth defect at either 27\(^\circ\)C or 36\(^\circ\)C and the Δmad2 strain also showed normal growth kinetics at both temperatures. The Δdam1mad2 and Δdam1bub1 mutants however, did show slower growth at both temperatures in liquid culture (Figure 4.5A). This was further corroborated by the apparent synthetic TBZ sensitivity defect seen in our serial dilution spot assay when the spindle checkpoint protein bub1\(^+\) is deleted in either Δdam1, Δask1 or Δspc34 cells (Figure 4.5B). Deletion of mad2 in these cells resulted in a mildly additive TBZ sensitivity compared to the single deletion mutants alone, however, deletion of bub1 results in cells that are extremely sensitive compared to the single deletion strains. Indeed Δdam1bub1, Δask1bub1 and Δspc34bub1 cells show very little to almost no growth on plates containing TBZ at a concentration of 10µg/ml, whereas the single mutants and wild-type cells are not affected at this concentration (Figure 4.5B).

The synthetic growth defects in Dam1/DASH mutants in which mad2\(^+\) or bub1\(^+\) have been removed suggests that these cells require the spindle assembly checkpoint to delay mitotic progression, thus providing the cells sufficient time to correct any errors in mitosis. Therefore one can postulate that removal of the spindle assembly checkpoint in Dam1/DASH mutants should lead to an increase in the frequency of mis-segregated chromosomes. Indeed this appears to be the case, a result published by Sanchez Perez et al. 2005 shows that the frequency of aberrant mitoses is doubled in Δdam1mad2 and Δdam1bub1 compared to the single Δdam1 mutant. It is plausible therefore that the spindle assembly checkpoint is required when Dam1/DASH function is compromised to give the cells sufficient time to correct errors in mitosis and thus enable a proportion of cells to undergo high fidelity chromosome segregation.
Figure 4.5: Synthetic growth defects when spindle checkpoint is removed.

(A) WT, dam1Δ, mad2Δ, dam1bub1Δ and dam1mad2Δ cells were cultured in rich medium at 27°C to a concentration of 1x10⁶ cells/ml. Cultures were split, incubated at either 27°C or 36°C and the cell number counted every 2 hours and plotted against time.

(B) Serial dilution growth assay of Dam1/DASH, spindle checkpoint deletion mutants, and double mutants on YE55 plates at 30°C or 36°C and in the presence of TBZ 5μg/ml or 10μg/ml at 30°C.
4.2.3 Dad1 and the spindle assembly checkpoint

The kinetochore protein Mis6 is thought to play a direct role in activation of the spindle assembly checkpoint. The Mis6 protein was shown to physically interact with Mad2 when the spindle checkpoint is active, and the spindle assembly checkpoint is not maintained in mis6-302 or mal2-1 under conditions of CBZ drug induced microtubule depolymerisation (Saitoh et al., 2005). It has been postulated that Mis6 acts as the Mad2 binding receptor for its localisation to the kinetochore and subsequent activation of the spindle assembly checkpoint-signalling cascade (Saitoh et al., 2005).

We have established that Mis6 is required for the kinetochore localisation of Dad1 throughout the cell cycle and it has been shown that Mis6 can co-purify with Dad1 (Liu et al., 2005). We pondered whether Dad1 might have a Dam1/DASH complex independent role at the kinetochore along with Mis6 in maintaining spindle checkpoint activation. We have shown that Δdad1 cells activate the spindle checkpoint, however, under certain conditions where prolonged maintenance of the spindle assembly checkpoint is required such as drug induced microtubule depolymerisation, perhaps Δdad1 cells are unable to maintain this arrest. To address this we treated WT and Δdad1 cells at 27°C with 11mM HU (Hydroxyurea) for four hours, which stalls DNA replication through inhibition of Ribonucleotide Reductase, leading to an early S-phase arrest. Then after washout, we re-suspended the cells in medium containing MBC/CBZ (Carbendazim) at 50µg/ml, causing microtubule depolymerisation and mitotic arrest. Cells were harvested every hour for five hours, stained with DAPI and calcoflour to visualise DNA and septa respectively, and the percentage of cells displaying hypercondensed or “cut” DNA (cells that form septa without undergoing proper chromosome segregation due to bypass of mitotic arrest) were calculated at each time point as a measure of the maintenance of mitotic arrest in these cells. If Dad1 plays a role in maintenance of the spindle assembly checkpoint under these conditions we would expect the Δdad1 cells to show a peak of hypercondensed and “cut” cells earlier than the wild-type peak, however, our results show that the checkpoint arrest is maintained in Δdad1 cells for as long as it is in wild-type cells. Furthermore the timing of septation was delayed in Δdad1 cells, consistent with our previous data that the spindle assembly checkpoint is activated in Dam1/DASH deletion mutants (Figure 4.6). We can therefore conclude that Dad1 does not function with Mis6 in spindle assembly checkpoint maintenance.
Figure 4.6: Dad1 does not play a role in spindle assembly checkpoint maintenance.

WT and Δdad1 exponentially growing cells were cultured in rich medium at 27°C and arrested in S-phase by the addition of 11mM HU for 4 hours. Cells were filtered, washed and re-suspended in medium containing 50μg/ml MBC/CBZ to arrest the cells in M-phase. Cells were harvested every hour for 5 hours after MBC/CBZ addition, stained with DAPI and calcoflour to visualise DNA and septa and visualised by fluorescence microscopy. The percentage of cells displaying hypercondensed and “cut” DNA were counted at each time-point and plotted against time.
4.3 Non-disjunction phenotype of fixed Dam1/DASH mutants at 20°C

We have shown that Dam1/DASH deletion mutants result in a spindle assembly checkpoint mediated mitotic delay and chromosome segregation defects (Chapter 4). Dam1/DASH mutants in the budding yeast display both a spindle assembly checkpoint induced mitotic delay and, after prolonged incubation at the restrictive temperature, chromosome segregation defects (Cheeseman et al., 2001; Hofmann et al., 1998; Janke et al., 2002; Jones et al., 1999; Jones et al., 2001). These mutants possess microtubule morphology defects with bent, broken and splayed anaphase spindles as visualised by electron microscopy and immunofluorescent tubulin staining suggesting an important role for this Dam1/DASH complex in microtubule stabilisation and spindle maintenance (Cheeseman et al., 2001; Janke et al., 2002; Jones et al., 1999; Jones et al., 2001). We were interested in whether the Dam1/DASH complex in *S. pombe* also plays a role in microtubule stabilisation and spindle integrity maintenance during mitosis. We already possess some tantalising hints that this complex may have such a role in the fission yeast, with deletion of various components results in sensitivity to the spindle drug TBZ (Figure 4.2). We had not, however, carefully analysed the microtubule morphology in the Dam1/DASH deletion mutants. We therefore wished to focus on whether there were obvious spindle microtubule defects in these cells to thus uncover a role for this complex in the regulation of spindle integrity.

4.3.1 Dam1/DASH deletion results in broken spindles and chromosome mis-segregation at 20°C

To ascertain if the Dam1/DASH complex in fission yeast functions in maintaining mitotic spindle integrity, we first examined microtubule morphology and DNA segregation in asynchronous fixed Δdam1 and Δdad1 cells at both 20°C and 36°C. The cells were cultured in rich medium overnight and shifted to either 20°C for 8 hours or 36°C for 4 hours prior to fixation and immunofluorescent staining of microtubules and DNA. The mitotic index and frequency of mis-segregated
Figure 4.7: Non-disjunction phenotype of Dlm1/DASH mutants at 20°C

(A) Δdaml and Δdad1 cells were cultured in rich medium at 20°C for 8 hours, or 36°C for 4 hours, fixed and immunofluorescent microscopy of microtubules and DNA carried out. The scale bar represents 10 μm. The black arrowhead highlights lagging chromosomes. The red arrowhead represents mono-polar defects. (B) Graph of the mitotic mis-segregation indexes counted from cells in (A). WT is included as a control. N>200 cells.
chromosomes were counted for both strains at both 20°C and 36°C (Figure 4.7A&B). Consistent with previous results both the \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells showed an increased frequency of mitotic cells compared to wild-type cells (7.8%) at 36°C with 12.49% and 18.45% percent mitotic cells respectively (Figure 4.7A&B). Chromosome segregation defects were also apparent by DAPI staining the DNA in both \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells at 36°C, with both strains showing approximately 7% of cells with mis-segregated nuclear material (Figure 4.7A&B). However there were no obvious microtubule defects detected in either \textit{Adam} \textit{l} or \textit{Adad} \textit{l} cells at this temperature (Figure 4.7A&B).

We then examined the microtubule and DNA staining in \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells after 8 hours at 20°C. The microtubule structure in interphase, and G2 cells appeared normal in both \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells, however, the prometaphase/metaphase spindles appeared elongated in these cells and as cells proceeded into late mitosis the spindle structure no longer looked completely normal or intact with anaphase like spindles displaying weak tubulin staining in the middle of the spindle, giving the appearance that they were starting to break down (Figure 4.7A). Moreover cells that had fully segregated their DNA content to opposite poles of the cell no longer contained normal elongated anaphase B type spindles, instead distinct tubulin staining regions at one or both poles were detected (Figure 4.7A). This indicates that in these cells the anaphase spindle loses integrity and can no longer be maintained in anaphase B when the spindle should begin to elongate, and a complete breakdown of the spindle ensues. It is of note that similar spindle defects were seen in Dam1/DASH mutants in the budding yeast. There are also clear chromosome segregation defects and the presence of persistent condensed chromatin in both the \textit{Adam} \textit{l} and \textit{Adad} \textit{l} mutants at this temperature. The \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells at 20°C show an increase in the mitotic index and in the frequency of mis-segregated chromosomes that is much higher even than \textit{Adam} \textit{l} and \textit{Adad} \textit{l} cells at 36°C (Figure 4.7B). Indeed some cells show the entire DNA, as represented by DAPI staining, segregating completely to one side of the cell (Figure 4.7A Top). This broken spindle phenotype and presence of condensed and sometimes mono-segregated DNA suggests that these cells are displaying a non-disjunction "\textit{diS}" phenotype at 20°C. Mutants that display a "\textit{diS}" (defective in sister-chromatid disjoining) phenotype classically show hyper-condensed, un-separated sister-chromatids with activation of the spindle assembly checkpoint and elongation of the mitotic spindle despite high Cdc2 kinase activity and without chromosome segregation (Nabeshima et al., 1995;
Nabeshima et al., 1998; Ohkura et al., 1988). These elongated spindles may then proceed to collapse and break.

There are three genes that when deleted or mutated show the "dis" phenotype dis1\(^{-}\), dis2\(^{-}\) and dis3\(^{-}\). The Dis1 protein is a member of the TOG family in fission yeast and is a kinetochore binding microtubule-associated protein. Dis2 encodes a type I protein phosphatase that has been implicated in mitotic exit and Dis3 is a large 110 kDa protein that contains an RNase II (RNBI) domain but is thought to function at the kinetochore and in the maintenance of heterochromatin silencing (Murakami et al., 2007). It is thought that the abnormal spindle elongation in these mutants occurs due to the disruption of force balance in these "dis" mutant cells (Nabeshima et al., 1998). The normal attachment of kinetochores to spindle microtubules may be defective in these mutants, and it is this interaction that restrains the metaphase spindle length in normal cells. The force created when the kinetochores are pulled towards the poles, which also pull the two poles towards each other, may offset other microtubule-based forces that work to push the opposite poles apart. In these mutants this force balance is disordered resulting in the abnormal elongation of prophase spindles despite the lack of sister-chromatid separation (Nabeshima et al., 1998). It is possible that in these Dam1/DASH deletion mutants this force balance is also disrupted resulting in the spindle breakage phenotype seen in these cells. We know that Dam1/DASH deletion mutants are synthetically lethal when Dis1 is deleted and that this complex and Dis1 must therefore play an essential overlapping role in the cell, perhaps this role is in proper bipolar spindle formation and the establishment of end on attachment to the kinetochores and subsequent bi-orientation of sister kinetochores.

4.3.2 Analysis of cen2-GFP sister-chromatid separation in fixed \textit{\textbf{\textit{\emph{Adam1}}} cells.}

To further characterise the defective mitotic chromosome segregation phenotype in Dam1/DASH deletion mutants at 20°C we constructed wild-type and \textit{\textbf{\textit{\emph{Adam1}}} strains} with centromere 2 tagged with GFP (cen2-GFP) in order to carefully visualise sister-chromatid separation in these cells. In this cen2-GFP system a LacO array is integrated approximately 5 kB from centromere two and is bound by a GFP-LacI fusion protein which is expressed from the \textit{\textit{\textbf{\textit{\emph{his7}}} locus. We then examined the separation pattern of cen2-GFP in asynchronous fixed WT cells at 27°C and asynchronous fixed \textit{\textbf{\textit{\emph{Adam1}}} cells at 20°C, 27°C or 36°C on the Zeiss Axioplan}}
Figure 4.8: Mono-polar segregation of sister-chromatids occurs in \(\Delta \text{dam1} \) cells

(A) WT and \(\Delta \text{dam1} \) cells containing cen2-GFP were cultured overnight in rich medium at 27°C. The \(\Delta \text{dam1} \) culture was split and incubated at either 27°C for 4 hours, 20°C for 8 hours or 36°C for 4 hours prior to formaldehyde fixation. The wild-type culture was fixed at 27°C. The cells were stained with DAPI and viewed by fluorescence microscopy. The scale bar represents 10 μm. (B) The percentage of total cells with mis-segregation and mitotic cells showing mis-segregation were counted and graphed for \(\Delta \text{dam1} \) cells at all three temperatures. The types of mitotic mis-segregation were further classified as mono-polar cells, i.e. cells with a 2:0 or 1:0 cen2 separation pattern, or lagging cells and the frequencies of each graphed. N> 200 cells.
fluorescence microscope to determine whether deletion of dam1" results in a chromosome non-disjunction phenotype as in the “dis” mutants.

The wild-type cells displayed normal sister-chromatid separation with a 1:1 cen2-GFP segregation pattern at 27°C (Figure 4.8A). There is a population of mitotic cells in the Δdam1 strain however, which do not undergo normal cen2-GFP separation. In these cells a mono-polar 1:0 or 2:0 cen2-GFP segregation pattern is evident at 20°C, 27°C or 36°C (Figure 4.8A). We quantified the total number of Δdam1 cells and the number of mitotic Δdam1 cells that display mis-segregated cen2-GFP or DAPI cells at all three temperatures. Consistent with our earlier result, analysing fixed α-tubulin stained Δdam1 cells (Figure 4.7), we again saw a dramatic increase in the frequency of mis-segregation in both the total population of cells and mitotic cells when Δdam1 cells are incubated at 20°C as compared to incubation at either 27°C or 36°C (Figure 4.8B).

We attempted to classify the types of mitotic segregation defects visualised in these Δdam1 cells. We thus subdivided the aberrantly segregating mitotic cells into those that displayed a mono-polar 1:0 or 2:0 cen2-GFP pattern, or those that appeared to have lagging chromosomes, i.e. one cen2-GFP dot already segregated at the pole and one that was lagging behind and in the process of separation. From this analysis we can see that the mitotic mis-segregation in Δdam1 cells at all three temperatures is predominantly due to mono-polar segregation, i.e. non-disjunction of sister-chromatids. Albeit the Δdam1 cells at 20°C do show a small population of lagging chromosomes, which are never seen when incubated at either 27°C or 36°C.

We conclude from our analysis of cen2-GFP in fixed cells that deletion of Dam1 and most probably the other Dam1/DASH components results in mono-polar non-disjunction of sister-chromatids with a phenotype reminiscent of the “dis” mutants. We postulate that in a similar manner to “dis” mutants deletions of the Dam1/DASH complex are not able to maintain proper kinetochore-microtubule-pole interactions causing a force imbalance, which leads to premature spindle elongation and breakage and non-disjunction of sister-chromatids.
Figure 4.9: Dis1-GFP can still localise in Δdam1 cells at 20°C or 27°C

Δdam1 cells containing Dis1-GFP were cultured in rich medium overnight. The cultures were split and incubated at either 27°C for 4 hours or 20°C for 8 hours. The cells were then fixed, stained with DAPI and visualised by fluorescence microscopy. The scale bar represents 10 μm.
4.3.3 Dis1-GFP localisation in Adam1 cells.

From our analysis it appears that Adam1 cells show an increased frequency of mitotic aberrations when grown in the cold at 20°C. It is known that Dis1 cells show a non-disjunction phenotype when grown at 20°C. We thus postulate that this increase in mitotic "dis" defects in Adam1 cells at 20°C is due to de-localisation of Dis1-GFP from the kinetochore and/or spindle microtubules when Dam1 is deleted which renders the cells more susceptible to growth in the cold. We addressed this possibility by examining Dis1-GFP localisation in Adam1 cells. We constructed a Adam1 strain in which Dis1 is C-terminally tagged with GFP and examined the localisation of Dis1 in this strain at both 20°C and 27°C to ascertain if de-localisation of Dis1 in these cells is the cause of the non-disjunction phenotype. It appears in our hands that Dis1-GFP can still localise to both kinetochores and spindle microtubules despite the deletion of dam1+, and that growth at either 20°C or 27°C does not perturb this localisation (Figure 4.9). We would conclude from this result that the non-disjunction phenotype seen in Adam1 cells is not simply due to loss of Dis1 localisation in these cells. Moreover this is consistent with our earlier result that Dam1/DASH mutants are synthetically lethal with Dis1.

4.4 Analysis of Cen2-GFP sister chromatid separation in live cells

We wished to more carefully examine the non-disjunction and spindle breakage phenotype in Adam1 cells to gain a further insight into the roles of this protein in spindle formation and kinetochore-microtubule interactions. We carried out live imaging of cen2-GFP and Sad1-dsRed (a constitutive SPB component) separation in both wild-type and in Adam1 mitotic cells using the Deltavision fluorescent inverted microscope. Images were taken at room temperature (approximately 20-22°C) using 8 Z-stacks (200nm steps) every 30 seconds for each channel, compressed into a projection for each time-point, deconvolved and the channels for each time-point were merged to produce a series of time-lapse images showing clearly the segregation pattern of the two sister-chromatids of chromosome 2. Filming (Timepoint 0:00) started at prometaphase/metaphase when the two Sad1-dsRed signals indicative of the two SPBs had separated and was continued until after the sister-chromatids had segregated and anaphase B spindle elongation was carried out. In the case of Adam1

140
Figure 4.10: Live analysis of sister-chromatid separation in WT and \(\Delta dam1 \) cells.

(A) WT and (B&C) \(\Delta dam1 \) cells, containing cen2-GFP and Sad1-dsRed were cultured in rich medium overnight. The cells were immobilised onto a lectin coated microscopy dish and cen2-GFP and Sad1-dsRed visualised by fluorescence microscopy. The images for each channel were taken as a series of 8 Z-stacks every 30 seconds, compressed into a projection for each time-point, deconvolved using Deltavision deconvolution software and the red and green channels for each timepoint merged. The scale bars represent 10\(\mu \)m.
cells filming continued for approximately 30-60 minutes after anaphase B spindle elongation until signal bleaching occurred.

The wild-type cells as expected (N=7) all demonstrated normal 1:1 cen2-GFP sister-chromatid separation (Figure 4.10A), with no obvious defects or delay. Indeed normal sister-chromatid dynamics were visualised in the wild-type cells as obvious centromere oscillations was detected with some oscillations in the movements of the cen2-GFP signals across the metaphase plate prior to normal segregation. Within the \textit{Adaml} cells examined (N=18) there is a population of cells (10/18) that segregated both cen2-GFP sisters to opposite poles in a normal 1:1 fashion demonstrating that some cells can carry out normal chromosome segregation despite the lack of a functional Dam1/DASH complex.

Our analysis of cen2-GFP and Sad1-dsRed separation in the remaining eight cells revealed two distinct aberrant phenotypes in \textit{Adaml} cells. Firstly a population of cells (4/18) demonstrate a mono-polar segregation phenotype in which the cen2-GFP sisters fail to disjoin and are both segregated to the same pole (Figure 4.10B). This is consistent with our previous analysis of both \textalpha-tubulin and DAPI stained \textit{Adaml} cells and cen2-GFP separation in fixed asynchronous \textit{Adaml} cells, in which we saw a clear mono-polar segregation phenotype (Figure 4.7, Figure 4.8). In these cells there are very little centromere dynamics with the cen2-GFP signals showing reduced oscillations compared to wild-type (Figure 4.10B). Indeed once the cen2-GFP signals move towards one pole they tend to stick at that pole and no further cen2-GFP oscillations are detected, even if filming continues up to one hour past this point (Figure 4.10B, data not shown). Perhaps this lack of centromere oscillations and mono-polar segregation is demonstrative of the failure in these cells, in which the Dam1/DASH complex is non-functional, of proper bi-polar attachment of the kinetochores to the spindle and the subsequent establishment of tension and bi-orientation.

The second aberrant mitotic phenotype observed in these \textit{Adaml} cells is what we have termed a “spindle collapse” phenotype. In this population of \textit{Adaml} cells (4/18) the two SPBs are able to separate and mitotic onset can occur with the cen2-GFP sisters again showing little centromere oscillations compared to wild-type cells. In these cells instead of cen2-GFP segregation in a mono-polar fashion as in some \textit{Adaml} cells, or to opposite poles as in wild-type cells, there is no separation of the
cen2-GFP signals and the Sad1-dsRed marked SPBs start to converge and come back closer together until there is a total spindle collapse (Figure 4.10C). One could postulate in the live Δdam1 cells that there is a failure in the microtubule based forces that act to push the two poles apart resulting in a breakage or collapse of the pole-pole microtubules, which thus allows the two SPBs to converge and prevents the sister-chromatids from undergoing segregation. This defect probably stems again from disruption of the force balance, between the forces pulling the kinetochores towards the poles, which also pull the poles closer together, and the microtubule regulated forces, which push the poles apart. Albeit this disruption of force balance resulting in spindle collapse appears to be quite the opposite from that which causes the spindle elongation and breakage phenotype in Δdam1 fixed cells, in that case it is probably rather due to a failure in kinetochore-microtubule interactions.

4.5 Genetic Interactions of the Dam1/DASH complex

In order to gain a further understanding of Dam1/DASH complex function we screened for mutants that are synthetically lethal in Dam1/DASH deletion backgrounds (Table 4.1).

4.5.1 Deletion mutants of Dam1/DASH complex require Klp5/6 and Dis1 to survive

We were unable to construct double deletions of Δdam1, Δask1 or Δdad1 with either Δklp5, Δklp6 or Δdis1 by random spore analysis (Table 4.1). This indicates that double mutants between either klp5/klp6 and Dam1/DASH deletions or double mutants between dis1 and Dam1/DASH deletions results in a synthetic lethality. It is of note however that Dam1/DASH mutants while inviable in the absence of Dis1 are viable when Alp14 is deleted. The reasons behind this distinction between the two TOG members are at present unknown. It has been published from previous members of this lab that deletion of either klp5 or klp6 is synthetically lethal with Δdis1 or Δalp14 (Garcia et al., 2002). It would seem therefore there is a close functional link between Klp5/Klp6, Dis1, Alp14 and the Dam1/DASH complex. The Dam1/DASH complex and Klp5/Klp6 and/or Dis1 probably overlap in some essential mitotic function to ensure proper chromosome segregation. The requirement for klp5
<table>
<thead>
<tr>
<th></th>
<th>Δask1</th>
<th>Δadam1</th>
<th>Δdad1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δklp5</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
</tr>
<tr>
<td>Δklp6</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
</tr>
<tr>
<td>Δmal3</td>
<td>ND</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Δsgo2</td>
<td>ND</td>
<td>V</td>
<td>ND</td>
</tr>
<tr>
<td>Δalp14</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Δdis1</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
</tr>
<tr>
<td>cnp1-1</td>
<td>V</td>
<td>V</td>
<td>SL</td>
</tr>
<tr>
<td>mis6-302</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
</tr>
<tr>
<td>mal2-1</td>
<td>SL</td>
<td>SL</td>
<td>SL</td>
</tr>
<tr>
<td>sim4-193</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>nuf2-2</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>nuf2-4</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>mis12-537</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Δscd1</td>
<td>SL</td>
<td>SL</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 4.1: Genetic interactions of various mitotic mutants with Δadam1, Δask1 and Δdad1.

All interactions were tested at 27°C. V: viable; SL: synthetically lethal; ND: not determined.
Figure 4.11: Severe segregation and morphology defects in Δdam1Δalp14 cells

(A) WT, Δdam1, Δalp14 and Δdam1Δalp14 strains cultured in rich medium at 36°C. Cells were fixed and immunofluorescent staining of microtubules and DNA carried out. The scale bar represents 10 μm. (B) Tenfold serial dilution spot assay plated onto rich agar YE5S plates, YE5S & Phloxin B plates at 27°C or 36°C and YE5S plates containing TBZ 10μg/ml or 15μg/ml concentrations at 27°C.
and/or klp6 when Dam1/DASH function is compromised will be the focus of study in the next chapter.

We were interested in examining the double mutants created when \(\textit{alp14}^+ \) is deleted in Dam1/DASH deletion backgrounds, to see if the double mutants show exacerbated microtubule morphology defects and/or chromosome segregation defects. We carried out immunofluorescent staining of \(\alpha \)-tubulin to visualise the microtubules and DAPI to visualise the DNA. Consistent with published results (Garcia et al., 2002; Garcia et al., 2001), the single \(\Delta \text{alp14} \) cells show shorter cytoplasmic interphase microtubules with weaker staining and less bundles than wild-type cells, broken and destabilised mitotic spindles and mis-segregated chromosomes. Indeed in the double mutants of \(\Delta \text{adam1} \alpha \text{lp14} \) there is massive mis-segregation of chromosomes with ~69% of cells showing aberrant DNA staining after 4 hours at 20°C, and ~68% at 27°C, \((N > 200 \text{ cells})\) this is probably due to a lack of stable microtubules to attach to the kinetochores, as these cells also show an exacerbated microtubule morphology phenotype with extremely disorganized and broken microtubules at both interphase and mitosis (Figure 4.11). This, as well as the ‘spindle collapse’ phenotype seen by live-imaging, suggests that Dam1 has a role in microtubule stabilisation as the loss of this protein in \(\Delta \text{alp14} \) cells leads to an increased loss of microtubule stability.

The growth of these double mutants on a serial dilution spot assay was also examined. These \(\Delta \text{adam1} \alpha \text{lp14} \) cells show very little growth on YE5S rich medium at 27°C or 30°C, and no growth at 36°C or in the presence of the spindle drug TBZ. Therefore these cells are defective even at normal permissive temperatures and cannot survive when shifted to higher temperatures or when microtubule depolymerisation is induced through the addition of TBZ. It is probable to imagine that the \(\Delta \text{adam1} \text{dis1} \) cells, which are synthetically lethal, do not survive due to similar defects in microtubule stabilisation and chromosome mis-segregation.

4.5.2 Mis6/Sim4 kinetochore mutants are synthetically lethal with Dam1/DASH mutants

We have previously shown Mis6 and Mal2 are required for Dad1 localisation to the kinetochore throughout the cell cycle (Sanchez-Perez et al., 2005). We wondered if deletion of Dad1 or the mitosis-specific Dam1/DASH components would exacerbate the phenotype of Mis6/Sim4 complex mutants mis6-302 and mal2-1. We therefore
attempted to construct double mutants between deletions of the Dam1/DASH components \(\Delta \text{ask1}, \Delta \text{adam1}, \Delta \text{dad1} \) and \(\text{mis6-302} \) and \(\text{mal2-1} \) mutants of the Mis6/Sim4 kinetochore complex.

We were unable to construct double mutants between \(\Delta \text{dad1}, \Delta \text{ask1} \) or \(\Delta \text{adam1} \) and either \(\text{mis6-302} \) or \(\text{mal2-1} \) by random spore analysis (Table 4.1). This implies these double mutants are synthetically lethal and the Dam1/DASH complex is required for the survival of Mis6/Sim4 complex mutants even at the permissive temperature. It would appear that the Dam1/DASH complex works closely with the Mis6/Sim4 complex in performing some essential overlapping function. Interestingly we could construct double mutants between \(\Delta \text{dad1}, \Delta \text{adam1} \) or \(\Delta \text{ask1} \) and \(\text{sim4-193} \) (Table 4.1). This result is consistent with our earlier localisation studies in which Dad1-GFP can still localise in a \(\text{sim4-193} \) mutant at the restrictive temperature. It seems this allele is less penetrative than the \(\text{mis6-302} \) or \(\text{mal2-1} \) alleles and does not fully disrupt Mis6/Sim4 complex function.

It is established that the Mis6/Sim4 complex plays an important role in the loading of Cnp1, the fission yeast CENP-A histone H3 variant to the centromere (Saitoh et al., 1997; Takahashi et al., 2000). We speculated that perhaps the overlapping function of the Mis6 and Dam1/DASH complexes is in loading of this histone variant Cnp1 to the centromere in fission yeast. To address this we examined whether Cnp1-GFP localisation is dependent on Dad1 and is abolished in \(\Delta \text{dad1} \) cells. However Cnp1-GFP localisation is completely intact when \(\text{dad1}^{+} \) is deleted (Figure 4.12). The Dam1/DASH complex thus appears to have no major role in Cnp1 loading to the kinetochore and functionally overlaps with the Mis6/Sim4 complex in some other manner.
Figure 4.12: Cnp1 localisation is unperturbed in Δdad1 cells.

WT and Δdad1 cells containing Cnp1-GFP were cultured in rich medium at 27°C and fixed. The localisation of Cnp1-GFP was visualised by fluorescence microscopy. The scale bar represents 10µm.
Figure 4.13: Synthetic growth defects of Dam1/DASH mutants combined with nuf2-2 or Δmal3 mutants.

Tenfold serial dilution spot assay plated onto rich agar YE5S plates, YE5S & Phloxin B plates at 27°C or 36°C and YE5S plates containing TBZ (Thiabendazole) 10µg/ml at 27°C. (A) WT, Δdad1, nuf2-2, and Δdad1nuf2-2 cells spotted for 4 days at indicated temperatures. (B) WT, Δdam1, Δmal3 and Δdam1mal3 cells spotted for 4 days at indicated temperatures.
4.5.3 Genetic interactions of Dam1/DASH mutants with other kinetochore or mitotic mutants

We crossed the Dam1/DASH deletion mutants \(\Delta askl, \Delta daml \) and \(\Delta dadl \) to other kinetochore mutants. The \(cnpl-1 \) kinetochore mutant is viable in combination with \(\Delta daml \) or \(\Delta askl \), although intriguingly \(cnpl-1 \) is synthetically lethal with only \(\Delta dadl \) at all temperatures (Table 4.1). This is further evidence to support an additional role for Dad1 at the kinetochore independent of the mitosis-specific Dam1/DASH complex.

We could construct double mutants between \(\Delta dadl, \Delta daml \) or \(\Delta askl \) and the kinetochore mutants \(mis12-537, nuf2-2 \) and \(nuf2-4 \) (Table 4.1) (Goshima et al., 1999; Nabetani et al., 2001; Saitoh et al., 1997; Takahashi et al., 1994). We examined the growth of the double mutants \(\Delta dadl/nuf2-2 \) compared to the single \(nuf2-2 \) or Dam1/DASH mutants (Figure 4.13A). The \(nuf2-2 \) allele shows slight growth defects at the restrictive temperature of 36°C. This is aggravated by deletion of \(\Delta dadl \), with little or no growth at the restrictive temperature in \(\Delta dadl/nuf2-2 \) cells (Figure 4.13A). It is easy to imagine that the exacerbated growth defect in the double mutant is due to an increased perturbation of kinetochore structure and/or microtubule attachments at the restrictive temperature in these cells.

We also examined the genetic interaction between the Dam1/DASH deletion mutants \(\Delta dadl, \Delta daml \) and \(\Delta askl \) with a deletion of the fission yeast EB1 homologue \(\Delta mal3 \). Mal3 is a plus end microtubule binding protein that plays a vital role in cell polarity and cytoplasmic microtubule stability in interphase and mitotic spindle organisation and chromosome stability in mitosis (Asakawa and Toda, 2006; Beinhauer et al., 1997; Busch and Brunner, 2004; Chen et al., 2000; Kerres et al., 2004; Sandblad et al., 2006). The double mutants between Dam1/DASH deletions and \(\Delta mal3 \) were viable by random spore analysis and examination of the growth of \(\Delta daml/mal3 \) cells on a serial dilution spot assay showed no apparent temperature sensitivity but the sensitivity to the spindle depolymerising drug TBZ was worsened (Figure 4.13B). This yet again hints at a possible role for Dam1 in microtubule stabilisation during mitosis.

There is some evidence from the budding yeast that the Ras pathway can act antagonistically to the Dam1/DASH complex (Li et al., 2005). In the fission yeast
there is one Ras protein, Ras1, which can interact with two effector proteins Byr2 or Scd1. There is some evidence that Scd1 may play a more direct role in microtubule regulation and mitosis. We envisioned that in \textit{S. pombe} the Scd1 branch of the Ras pathway may play a role in mitotic regulation and perhaps can interact genetically with the fission yeast Daml/DASH complex. It appeared that deletion of \textit{scdl}$^+$ in Daml/DASH deletion backgrounds results in a synthetically lethal phenotype (Table 4.1), however we were unable to examine the phenotype of these double mutants by plasmid loss experiments (Data not shown). We therefore cannot conclude what is the overlapping function between the Daml/DASH complex and Scd1 during mitosis.

4.6 Discussion

Analysis of loss of function mutations in the Daml/DASH complex in the budding yeast have implicated this complex in playing an essential role in bi-polar attachment of the spindle microtubules to the kinetochore and the subsequent bi-orientation of the sister kinetochores in metaphase and the regulation and maintenance of microtubule integrity in anaphase (Cheeseman et al., 2001; Hofmann et al., 1998; Janke et al., 2002; Jones et al., 1999; Jones et al., 2001).

In this chapter we addressed whether this complex may play a similarly vital role in mitotic kinetochore-microtubule regulation in the fission yeast. To assess this we carried out deletion of several subunits of this complex using a PCR based approach whereby a kanamycin resistant cassette was disruptively inserted into the locus of each Daml/DASH member gene (Figure 4.1). We found that each of these Daml/DASH genes was not essential in \textit{S. pombe}. This result is not really surprising given that the centromere/kinetochore system in \textit{S. pombe} is more complicated than that of \textit{S. cerevisiae} and probably requires a concert of mitotic proteins to regulate attachment and bi-orientation. The centromere/kinetochore in budding yeast is a simple "point" centromere of 125bp in length, which is attached to microtubules from the SPB throughout the whole cell cycle. Indeed the kinetochores in this organism can only bind one microtubule per kinetochore, thus sister chromatids can only become syntetically or monotelically attached and complex merotelic attachments can never exist in this system (DeLuca et al., 2006). The fission yeast however, contains a more structurally complex centromere/kinetochore, closely resembling the centromeres from higher organisms, with repetitive centromeric DNA spanning from
35-110 kilobases in length. Each kinetochores in this organism can attach to between 2-4 microtubules allowing sister chromatids to become improperly attached in a more complex manner with syntenic, monotelic and merotelic attachment defects possible in this system. Finally the spindle microtubules are only nucleated during mitosis so kinetochores can only become attached in the mitotic phase. It seemed therefore likely that a complex that was essential in budding yeast perhaps functions redundantly with one or more other mitotic regulators in the fission yeast to facilitate kinetochores and attachment regulation.

Deletion of Dam1/DASH subunits in the fission yeast gives rise to cells that are slightly sensitive to the microtubule depolymerising drug TBZ. This sensitivity is not equally meted out between various Dam1/DASH deletion strains tested with Δspc34 appearing strongly sensitive to TBZ, with Δadam1 cells as sensitive as Δmad2 or Δalp14 cells, and Δask1 cells hardly sensitive at all to the drug (Figure 4.2). It seems that the degree of sensitivity is dependent on which subunit is deleted and thus different components in this complex may function in slightly different ways with respect to mitotic regulation. Indeed this hints at the fact that the subunits are not all equal within the fission yeast complex. In the budding yeast it has been proposed that the complex forms a ring in vitro on spindle microtubules with which it can mediate spindle-kinetochore interactions and the pulling of the kinetochores to opposite poles in anaphase (Asbury et al., 2006; Miranda et al., 2005; Westermann et al., 2005; Westermann et al., 2006). In this organism as of yet there does not appear to be any distinct difference between the various subunits with respect to ring formation, localisation and phenotype. Our result, where different components show slight phenotypic differences, suggests that this complex may not form a ring within the fission yeast, as not all subunits are equal. This possibility is also reinforced by variations in the localisation and genetic interactions of Dam1/DASH subunits. We have previously shown a difference in localisation between constitutively kinetochore localised Dad1 and the other mitosis-specific Dam1/DASH subunits, hinting that Dad1 may have some mitotic role independent of the other complex members. Moreover, cnp1-1 is synthetically lethal at all temperatures with Δdad1 cells but viable with Δadam1 or Δask1, thus inferring that Dad1 may somehow function in an overlapping essential pathway at the kinetochore with Cnp1, but that this is independent of the mitotic-specific Dam1/DASH members.
We have shown that Dad1 is dependent on the Mis6/Sim4 complex for its constitutive localisation to the kinetochore and Liu et al. 2005 showed that Dad1 interacts directly with the Mis6/Sim4 complex in both Dad1-TAP and Sim4-TAP eluates (Liu et al., 2005; Sanchez-Perez et al., 2005). We therefore postulated whether a Dam1/DASH complex independent role for Dad1 might be related to its close association with the Mis6/Sim4 complex and perhaps Dad1 functions with Mis6 in Cnp1 loading to the centromere. We found however that Cnp1 loading was unaffected when Dad1 is deleted (Figure 4.12). Another possibility was that Dad1 might function along with Mis6 as an acceptor for the Mad2 spindle assembly checkpoint protein. Mad2 was shown to interact directly with Mis6 under conditions where the spindle assembly checkpoint is switched on and it is established that there is no spindle checkpoint activation in "mis" family mutants such as mis6-302 or mal2-1 (Saitoh et al., 2005). Perhaps Dad1 is also required for Mad2 binding at the kinetochore and therefore the spindle assembly checkpoint would not be maintained in Δdad1 cells. We found however that upon treatment of Δdad1 cells with MBC, the spindle assembly checkpoint mediated arrest is maintained as well as it is in wild-type cells (Figure 4.6). It seems therefore that the Dam1/DASH complex independent role of Dad1 at the kinetochore still remains elusive.

Consistent with the possibility that various Dam1/DASH subunits may have slightly differing roles in relation to kinetochore and/or spindle regulation there are also other disparities in genetic interactions between the mitosis-specific Dam1/DASH subunits. We showed that double mutants between Δdam1, Δask1 or Δdad1 and the mis6-302 kinetochore "mis" mutant are synthetically lethal (Table 4.1). However a recent paper has shown that Δhos2 mutant cells are viable in combination with the mis6-302 mutant albeit with severe mitotic defects (Kobayashi et al., 2007). Indeed in this paper by Kobayashi et al. 2007 they also stated that a Δhos2 mutation is synthetically lethal in combination with nuf2-1, nuf2-2 or nuf2-3 cells when we have found that Δdam1, Δask1 and Δdad1 cells are viable with nuf2-2 or nuf2-4 cells (Table 4.1, Figure 4.1) (Sanchez-Perez et al., 2005). This suggests that not all the mitosis-specific Dam1/DASH deletions behave identically in respect to penetrance of phenotype and/or genetic interactions either.

Deletion of dam1Δ, ask1Δ or dad1Δ in a Δklp5 or Δklp6 strain results in synthetic lethality, indicating these proteins must perform an essential overlapping function (Table 4.1) (Sanchez-Perez et al., 2005). To gain a rudimentary understanding of
how these cells die Sanchez-Perez et al (2005) carried out a germination experiment on cells deleted for both \(dam1^+ \) and \(klp5^+ \) and \(cen2-GFP \) sister chromatid separation and Mad2-GFP foci formation were monitored. Multiple Mad2 foci were observed in these double mutants and are evidence that bi-polar kinetochore-microtubule attachment is defective in these cells (Sanchez-Perez et al., 2005). The double mutants showed a range of mitotic segregation defects indicative of several types of attachment errors, with some cells showing lagging chromosomes, syntelic monopolar segregation of both sister chromatids to the same pole, or failure of one of the two sister chromatids to segregate to a pole indicating an unattached or merotetically attached kinetochore. In this experiment the single \(\Delta dam1 \) cells showed only monopolar syntelic segregation of sister chromatids whereas the single \(\Delta klp5 \) strain showed only lagging chromosomes. It is therefore proposed that Klp5/6 and the Dam1/DASH complex function in an overlapping role to establish bi-polar kinetochore-microtubule attachment and chromosome bi-orientation through correction of mono-polar syntelic attachments through Dam1 and the correction of merotelic lagging chromosomes through Klp5 and Klp6. We will attempt to further address the lethality of these double mutants in the next chapter.

In \textit{S. cerevisiae} there is some evidence to support the idea that the Ras/PKA pathway may act antagonistically in mitosis to the Dam1/DASH complex (Li et al., 2005). We attempted to address whether the Ras pathway in fission yeast may play a similar role in functioning antagonistically to the Dam1/DASH complex. The fission yeast contains only one Ras molecule, Ras1, which has been shown to interact with Scd1, a putative guanine nucleotide exchange factor for the Rho like GTPase Cdc42, to regulate sexual differentiation, polarized growth, and cell shape in \textit{S. pombe} (Ahonen et al., 2005; Fukui et al., 1986; Fukui and Yamamoto, 1988). Indeed Scd1 has been proposed to function during mitosis. It has been shown to exacerbate the phenotype of tubulin mutants, is sensitive to the spindle de-polymerising drug TBZ, can interact with Klp5 and Klp6 both by immuno-precipitation experiments and genetically and has been shown to localise to the nucleus and along the spindle microtubules (Li et al., 2003; Li et al., 2000). We therefore tried to elucidate if Scd1 could interact genetically with the fission yeast Dam1/DASH complex. We were unable to construct double mutants between \(\Delta dam1 \) or \(\Delta ask1 \) and \(\Delta scd1 \), suggesting these double mutants are synthetically lethal, however we were able to create a \(\Delta dad1\Delta scd1 \) strain. It thus appears that a \(\Delta scd1 \) mutant is synthetically lethal only with deletions of the mitosis-specific Dam1/DASH components. Our attempt to ascertain how these
double mutants die, however, did not yield any data about the possible overlapping functions of Dam1/DASH and Scd1. We tried to induce plasmid loss in the double mutant cells, but unfortunately there was only a modest loss of the plasmid in our strains. It would seem then that any mitotic role for Scd1 with the Dam1/DASH complex in the fission yeast is independent of Dad1 and only requires the mitosis-specific Dam1/DASH members. However that role of Scd1 with the Dam1/DASH complex in mitosis still remains elusive.

Deletions of Dam1/DASH components have also been shown to be synthetically lethal when the chTOG protein Dis1 is absent. Dis1 is one of two chTOG family proteins in the fission yeast, the other being Alp14. Double mutants between dis1" and alp14" are synthetically lethal, but intriguingly double mutants of either Adam1 or Ask1 are viable in an Δalp14 background. These double mutants however are extremely sick, showing little growth even at the permissive temperature and absolutely no growth on plates treated with TBZ (Figure 4.11). There are severe chromosome segregation defects in these double mutants even at the permissive temperature with 68.15% of cells showing aberrant DAPI staining indicative of chromosome mis-segregation at 27°C in these cells. The microtubule structures in these cells are extremely disorganized with both interphase and mitotic cells having sometimes broken disturbed abnormal microtubule structures, or little or no microtubules (Figure 4.11).

Loss of Alp14 leads to destabilization of microtubules with short interphase microtubules and mitotic spindles and perhaps removal of a functional Dam1/DASH complex exacerbates this stress on the microtubules leading to a complete disorganization of microtubules. Further to this removal of Dam1 in a Δmal3 background worsens the TBZ sensitivity of single Δmal3 cells with the double Δadam1Δmal3 cells extremely sensitive to the microtubule de-polymerising drug. (Figure 4.13B) Both these results hint at the intriguing possibility that the Dam1/DASH complex in fission yeast like its counterpart in budding yeast may have a microtubule integrity function.

Indeed when we analysed Sad1-dsRed and cen2-GFP dynamics in live Δadam1 cells a population of cells showed a “spindle collapse” phenotype. In these cells the SPBs, which are marked by Sad1-dsRed, can duplicate and separate as normal but there are little centromere oscillations or movement of the sister cen2-GFP signals across the metaphase plate. As mitosis proceeds in these cells there is no segregation of the
cen2-GFP sister chromatids and the Sad1 marked SPBs begin to converge until there is complete collapse of the mitotic spindle (Figure 4.10C). We followed these cells for almost an hour past the point of collapse until signal bleach occurred, but these cells did not reform the spindle or undergo chromosome segregation.

There is a balance of force that occurs in normal cells, between the microtubule based forces that are pushing on the SPBs to move the two poles apart and the force that pulls the chromosomes towards the poles and the two poles together (Nabeshima et al., 1998). In normal cells this balance functions to maintain a constant spindle length in metaphase (Nabeshima et al., 1998), but in a subset of these Adam1 cells the "spindle collapse" defect probably occurs due to a disruption of this balance resulting in the pole-pole microtubules becoming de-stabilised which ultimately causes the two poles to converge and leads to a complete collapse of the spindle.

Deletion of Dam1/DASH subunits in the fission yeast results in chromosome segregation defects with DAPI staining in these cells showing aberrantly segregated DNA patterns (Figure 4.3A). Incorporation of a linear mini-chromosome shows an elevated level of loss of this mini-chromosome in Dam1/DASH deletion strains compared to wild-type cells with 7.8% plasmid loss for Adam1, 5.3% plasmid loss for Ask1 compared to 0.3% in wild-type cells (Figure 4.3B&C). The spindle assembly checkpoint is activated in these Dam1/DASH deletion mutants to induce a mitotic arrest. Bub1-GFP foci are visualised at an elevated rate in Adam1 cells compared to wild-type and the increased frequency of mitotic cells seen in Dam1/DASH null mutants is abolished when the spindle assembly checkpoint proteins Mad2 or Bub1 are deleted (Figure 4.4). Indeed if the spindle assembly checkpoint is removed in Dam1/DASH deletion mutants the resultant double mutants show synthetic growth defects in liquid culture, with Dam1/DASH null cells in which Bub1 is deleted showing extreme sensitivity to TBZ (Figure 4.5). This additional sensitivity seen when Bub1, but not Mad2, is removed in Dam1/DASH deletion strains highlights the obvious tension and bi-orientation defects in these cells.

The mitotic arrest seen in Dam1/DASH deletion mutants most likely occurs to give these cells time to promote proper attachment and repair spindle defects. We postulate that molecules like Klp5 or Klp6, Dis1 or Mal3 may function to try and promote proper bi-polar attachment in a stochastic manner. Despite this spindle assembly checkpoint activation however, a subset of Dam1/DASH null mutants still
undergo an aberrant mitosis and chromosome segregation defects occur (Figure 4.3). This result as expected shows that when this complex is non-functional chromosome segregation cannot occur with high fidelity and defects result.

Further to this our analysis of cen2-GFP sister chromatid separation in both fixed and live Δadam1 cells shows a clear mono-polar segregation non-disjunction phenotype in this mutant at 20°C, 27°C or 36°C, indicative of kinetochore-microtubule bi-orientation defects (Figure 4.8, Figure 4.10). Indeed examination of Δadam1 cells at 20°C reveals that at this low temperature an obvious "dis" phenotype appears with condensed chromatin, an increase in the frequency of chromosome mis-segregation and elongated spindles that cannot be maintained and break during anaphase (Figure 4.7). This phenotype is very similar to that seen in "dis" mutants, with a typical example being Δdis1. In these mutants the spindle assembly checkpoint is activated resulting in condensed sister chromatids but spindle elongation occurs despite checkpoint activation and non-disjunction of sister chromatids results (Nabeshima et al., 1995; Nabeshima et al., 1998; Ohkura et al., 1988).

As discussed above, the interaction between kinetochores and microtubules normally restrains the metaphase spindle length in wild-type cells. This occurs by maintaining the balance of microtubule-based forces within the cell between those that are pushing the opposite poles apart and those mediated by the interaction of kinetochores with the microtubules, which pull the poles closer (Nabeshima et al., 1998). However in "dis" mutants the spindle-kinetochore attachments are defective and this results in the poles becoming pushed apart and consequently the spindles abnormally elongate and can eventually break (Nabeshima et al., 1995; Nabeshima et al., 1998; Ohkura et al., 1988). We postulate that a similar disruption of this balance of force may be driving the elongation of metaphase spindles in the Δadam1 cells at 20°C and therefore this protein must play an important role in attachment of the spindle microtubules to the kinetochores and probably works in concert with Dis1 to facilitate this. It is of note that this disruption of force in Δadam1 cells gives rise to two distinct phenotypes, with the disruption of force that results in spindle collapse caused by a failure of pole-pole microtubule integrity whereas that which causes the spindle elongation and breakage occurs due to failure in kinetochore-microtubule attachments.
It seems that this complex in fission yeast functions in a similar manner to its counterpart in the budding yeast and is somehow involved in turnover of incorrect kinetochore-microtubule attachments and spindle integrity. We postulate that the Dam1/DASH complex in fission yeast functions predominantly to ensure syntelic mono-polar attachments are properly bi-oriented to form correct amphitelic attachments and in the subsequent maintenance of the mitotic spindle.
Chapter 5

5 Identification and characterisation of *dam1-A8* mutant allele

Introduction

In the previous chapter we examined the genetic relationship between Dam1/DASH null mutants and mutants of other mitotic regulators and found that deletion mutants of this complex were synthetically lethal when combined with mutants of the Mis6/Sim4 kinetochore complex or in Δdis1, Δklp5 or Δklp6 backgrounds. Interestingly deletions of either *klp5*⁺ or *klp6*⁺ have been shown to be lethal when *dis1*⁺ is deleted (Garcia et al., 2002a). This indicates that the Dam1/DASH complex and Dis1, Klp5 and Klp6 must perform some essential overlapping function during mitosis.

In this chapter we attempt to address the reasons for the lethality of double mutants between *dam1*⁺ and *klp5*⁺. By analysing how these cells die we should gain further understanding of the essential overlapping function of both Klp5 and Klp6 and the Dam1/DASH complex in the fission yeast. We therefore screened for a temperature sensitive *dam1* mutant in a *klp5* null background and isolated a mutant we termed *dam1-A8*. This mutant appears to be a ‘gain of function’ mutant, which shows resistance to the microtubule drug TBZ, in sharp contrast to Δ*dam1* cells, which are slightly sensitive. The temperature-sensitive double mutant *dam1-A8Δklp5* shows massive chromosome mis-segregation with mono-polar sister chromatid segregation defects, and activation of the spindle assembly checkpoint, however the temperature sensitivity of this double mutant can be rescued by the addition of the microtubule depolymerising agent TBZ. Indeed we show that the single *dam1-A8* mutant shows cells with congression defects, although there is little mis-segregation of chromosomes in these cells. We will demonstrate that despite the non-essentiality of the Dam1/DASH complex it plays a vital role in concert with the kinesins Klp5 and Klp6 to facilitate proper end on attachment of kinetochores to the spindle microtubules.
5.1 Mutagenesis screening for Dam1 mutants in a Δklp5 background

In order to address the reasons for synthetically lethality between null mutants of the Dam1/DASH complex and Δklp5 or Δklp6, we devised a screening strategy to isolate conditional temperature sensitive dam1⁺-GFP mutants in a Δklp5 background. The screening approach we formulated involves random mutagenesis of a template DNA fragment, which contains the dam1 gene tagged with a GFP fluorophore and a selectable drug resistance marker. The presence of the drug resistance marker allows us to select for correctly transformed strains rapidly, whereas the presence of the fluorophore will allow visualisation of localisation of this mutant Dam1 protein at both the permissive and restrictive temperatures. The randomly mutagenised dam1⁺ DNA fragment is then transformed to Δklp5 cells and the subsequent transformants assessed for the presence of the selectable marker and temperature sensitivity when incubated at the restrictive temperature (Figure 5.1). Using this approach we expect to select for only mildly mutated dam1⁺ alleles, severe mutations, which completely knock out Dam1 function, even at the permissive temperature, will in all probability be lethal in this Δklp5 background and will not grow on the initial transformation selection plates.

The first step in our mutagenic screen for dam1 mutants in a klp5 null background, involved PCR amplification of dam1⁺-GFP-Kan from a wild-type strain in which Dam1 was C-terminally tagged with GFP-kanamycin. This dam1⁺-GFP-Kan fragment of DNA will serve as our template for the random mutagenic PCR. To ensure that this initial amplification proceeded accurately we carried out this PCR using a high-fidelity proofreading Taq enzyme, Vent polymerase, and also sequenced the subsequently amplified DNA fragment. As expected this fragment had no erroneous sequences, mutations or deletions (data not shown, Figure 5.1A), and was then used as a template for the subsequent mutagenic PCR (Figure 5.1B). The mutagenic PCR was carried out in an error-prone manner using TaKaRa LA Taq™ and with 10×dGTP to unbalance the dNTP ratio. The resultant mutagenised PCR product was ethanol precipitated from the PCR reaction (sambrook, 1989) and then transformed into a total of ~1×10¹⁰ Δklp5 cells.
Figure 5.1: Schematic representation of mutagenic screening strategy

(A) Schematic showing region sequenced from \(\text{dam}^l \)-GFP-Kan fragment. (B) Diagrammatic representation of strategy used to generate temperature sensitive conditional \(\text{dam}^l \) mutants in a \(\Delta \text{klp}5 \) background.
The cells were plated onto rich medium YE5S plates containing the drug Geneticine (G418) to select for those cells that had successfully taken up the dam1"-GFP-kan fragment by homologous recombination. The transformation efficiency was very low with only 400 transformants in total. We envisage this low efficiency is due to the lethality of Δklp5 cells when Dam1 function is abolished, and as we discussed above, any severe mutations that abolish Dam1 function at the permissive temperature will not survive and will not be selected. These transformants were then replica plated onto various selection plates, including G418 plates, to ensure only cells with the integrated DNA fragment are selected, and rich medium YE5S and YE5S + Phloxin B plates, and all plates were incubated at 27°C, 30°C and 36°C for 2-3 days.

Each of the 400 transformant colonies were then analysed and their growth compared on each plate, and at each temperature, and cells that showed normal growth at 27°C, but showed little or no growth and were sick or dead at 36°C (appearing red on Phloxin B 36°C plates) were selected. These analyses lead to the initial selection of 16 mutant candidates, which were then re-patched onto the selection plates at both 27°C and 36°C and their respective growth and morphology phenotypes from the plates scored (Table 5.1). All of the final 16 candidates showed varying degrees of sick, bent, long cells at the restrictive temperature, however the majority of the mutants also showed an abnormal morphology or growth defective phenotype even at the permissive temperature of 27°C, with only a few of the candidates showing mild to normal growth or cell morphology at this temperature, #7, #9, #11, #16, #A3, #A6, and #A8 respectively (Table 5.1).

To aid in the further selection of a stringent conditional mutant from our list of candidates a serial dilution plate spot assay was carried out to assess the growth of the remaining candidates compared against wild-type and Δklp5 cells on YE5S, YE5S + Phloxin B plates at 27°C and 36°C and on TBZ 10μg/ml plates at 27°C (Figure 5.2). From this analysis we carefully examined the growth of the 7 candidates, #7, #9, #11, #16, #A3, #A6, and #A8, that appeared from Table 5.1 to show a mild growth and morphology phenotype at the permissive temperature.
<table>
<thead>
<tr>
<th>Mut</th>
<th>Growth 27°C</th>
<th>Morphology 27°C</th>
<th>Growth 36°C</th>
<th>Morphology 36°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>++-</td>
<td>Long, bent</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>7</td>
<td>+++</td>
<td>Longish</td>
<td>+--</td>
<td>Long, bent, sick</td>
</tr>
<tr>
<td>8</td>
<td>++-</td>
<td>Some long</td>
<td>+--</td>
<td>Long, bent, sick</td>
</tr>
<tr>
<td>9</td>
<td>+++</td>
<td>Some long</td>
<td>+--</td>
<td>Long, bent, sick</td>
</tr>
<tr>
<td>11</td>
<td>+++</td>
<td>Most normal</td>
<td>+--</td>
<td>Bent branched, long</td>
</tr>
<tr>
<td>16</td>
<td>+++</td>
<td>Longish</td>
<td>+--</td>
<td>Bent, branched, sick</td>
</tr>
<tr>
<td>18</td>
<td>++-</td>
<td>Some long</td>
<td>+--</td>
<td>Bent, branched, sick</td>
</tr>
<tr>
<td>20</td>
<td>++-</td>
<td>Some long</td>
<td>+--</td>
<td>Bent, branched, sick</td>
</tr>
<tr>
<td>24</td>
<td>++-</td>
<td>Some long</td>
<td>+--</td>
<td>Bent, branched, sick</td>
</tr>
<tr>
<td>A1</td>
<td>++-</td>
<td>Some long</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>A3</td>
<td>+++</td>
<td>Some long</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>A4</td>
<td>++-</td>
<td>Some long</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>A5</td>
<td>++-</td>
<td>Some long</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>A6</td>
<td>+++</td>
<td>Some long</td>
<td>---</td>
<td>Bent, branched, dead</td>
</tr>
<tr>
<td>A7</td>
<td>++-</td>
<td>Most normal</td>
<td>+--</td>
<td>Bent, branched, sick</td>
</tr>
<tr>
<td>*A8</td>
<td>+++</td>
<td>Normal</td>
<td>---</td>
<td>Bent, longish, dead</td>
</tr>
</tbody>
</table>

Table 5.1: Table of dam1-GFP-Kan Δklp5 mutant candidates

Asterisk denotes mutant chosen for final further study.
Figure 5.2: Serial dilution spot assay of final 16 dam1Δklp5 mutant candidates.

A tenfold serial dilution spot assay with cells plated onto rich agar YE5S plates, YE5S & Phloxin B plates incubated at 27°C or 36°C and YE5S plates containing 10μg/ml TBZ incubated at 27°C. The growth of the final 16 candidates is compared to wild-type and Δklp5 cells.
The 9 candidates from Table 5.1 that were scored as having abnormal growth or morphology at the permissive temperature appeared quite slow growing on the rich medium plates at either 27°C or 36°C and were immediately disregarded (Figure 5.1). Mutant #7, #9, #11 and #A3 while capable of growth at 27°C did not show strict temperature sensitivity at the restrictive temperature of 36°C and were disregarded, whereas mutant #16 did not show much, if any, growth at either temperature and was deemed too severe for analysis. Both mutants #A6 and #A8 were capable of growth at the permissive temperature and showed sensitivity at the restrictive temperature. We picked mutant A8, however, for further study as it seemed to have the most normal growth at 27°C of all the candidates and therefore was considered most suitable for conditional mutant analyses.

5.2 Confirmation of dam1-A8 temperature sensitivity and sequencing the mutation

In order to ensure that the temperature sensitivity phenotype seen in our dam1-A8 Δklp5 mutant was caused by the combination of the dam1-A8 allele with a Δklp5 background and not caused by some other unknown mutation we assessed the co-segregation of the ts' phenotype with the double mutant by both backcrossing and tetrad analysis. We also carried out sequencing of the dam1-A8 allele to check and site the mutation responsible for the temperature sensitive phenotype.

The dam1-A8 allele is tagged with a kanamycin marker, which confers resistance to the antibiotic drug Geneticine (G418), whereas the klp5 gene has been deleted by the integration of a Ura4⁺ marker, which disrupts the klp5 locus, and enables the Δklp5 cells to grow on minimal medium lacking uracil. If the temperature sensitive phenotype of the double mutant strain is not caused by an unlinked mutation then this phenotype should always and only, occur in cells that contain both the dam1-A8 allele and are deleted for klp5. These double mutant cells can be selected for by the presence of both selectable markers, however, the wild-type cells (which will be auxotrophic for uracil and G418-) or the single dam1-A8 or Δklp5 mutant progeny resulting from either backcrossing or tetrad analysis should not demonstrate the temperature sensitivity. To assess whether this ts phenotype only co-segregates with the double mutant, the dam1-A8Δklp5 strain was backcrossed to wild-type cells and the progeny analysed by random spore analysis and their growth assessed on YE5S
rich medium plates at both 27°C and 36°C, EMM-uracil plates and YE5S plates containing G418. As expected the Ura-G418- wild-type cells showed normal growth at both temperatures, the single dam1-A8 Ura- G418+ cells appeared almost normal, the single mutant Δklp5 Ura+ G418- cells were not temperature sensitive and only the double mutants containing both dam1-A8Δklp5 appeared temperature sensitive at the restrictive temperature of 36°C (Data not shown, Figure 5.3A).

To confirm this result we also assessed the co-segregation of the temperature sensitivity with the double mutants by tetrad analysis. The dam1-A8Δklp5 strain was crossed to a wild-type strain, which is auxotrophic for uracil, and the four spores from the ascii formed were dissected by a micromanipulator. The four spores from each ascus were separated into a line onto YE5S rich medium plates, incubated at 27°C for several days and allowed to form colonies. These plates were then replica plated onto G418, EMM-uracil and Phloxin B plates at both 27°C and 36°C and the segregation pattern of the different markers with the temperature sensitivity phenotype was examined. Using this approach it is quite clear that the temperature sensitivity phenotype always co-segregates with both kanamycin (G418) and uracil markers indicative of the double mutant dam1-A8Δklp5 strain. Therefore this temperature sensitivity is not due to the presence of another background mutation and is solely dependent on the dam1-A8 allele in a Δklp5 background.

5.2.1 Sequencing the dam1-A8 mutant allele

The dam1-A8 allele was amplified by high-fidelity PCR and sequenced using the same oligos previously used to sequence the dam1+-GFP-Kan fragment at the start of the screening process (Figure 5.1A). There are two C-G point mutations that were identified within the dam1 ORF in this mutant. We expected to yield C-G mutations due to our screening strategy, which involved the usage of 10xdGTP to incur guanidine incorporation at a higher frequency. These point mutations resulted in a change of amino acids H126R and E149G, at the C-terminal of the Dam1 protein. Neither of these residues is conserved in the budding yeast protein (Figure 5.4).
(A) Table listing the various strain combinations identified from random spore analysis. Only the double mutants containing both dam1-A8Δklp5 appeared temperature sensitive. (B) Tetrad analysis to confirm the co-segregation of the ts phenotype with the double mutants. Wild-type leu1 ura4 and dam1-A8-kanΔklp5::ura4 strains were crossed and after colony formation the resultant progenies were replica plated onto YE5S and Phloxin B plates at 27°C, Phloxin B plates at 36°C and G418 and EMM -uracil selection plates. Wild-type progeny are marked by a blue box, a green box marks Δklp5 colonies, an orange box marks single dam1-A8 progeny and the double mutants dam1-A8Δklp5 colonies are marked by a black box.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Uracil</th>
<th>G418</th>
<th>Ts?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>-</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>dam1-A8</td>
<td>-</td>
<td>+</td>
<td>Almost normal</td>
</tr>
<tr>
<td>Δklp5</td>
<td>+</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>dam1-A8Δklp5</td>
<td>+</td>
<td>+</td>
<td>TS red, dead</td>
</tr>
</tbody>
</table>

Figure 5.3: Co-segregation of ts' phenotype with double dam1-A8Δklp5 mutants.
CLUSTAL W (1.83) multiple sequence alignment

<table>
<thead>
<tr>
<th></th>
<th>S. pombe</th>
<th>S. cerevisiae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>S. pombe</td>
<td>MEKXYKATQNL</td>
<td>------------</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>NEEAKYLCTTARLYSGLSAPTSRGSNQCSLLMKPAQQELTSSYGEYNTIQ</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1...1...1...1...</td>
<td>1...1...1...1...</td>
</tr>
<tr>
<td>S. pombe</td>
<td>LAIVLDMNVEFPRKMNNSATQYCLQRNYEFSSEFLQGQNACFDYEA</td>
<td>88</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>QLLPLDFKELSDSITLGNFPTLNYTIEASLADQLSGELGICNDSNQCSVQPSQAPFD</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>1...1...1...1...</td>
<td>1...1...1...1...</td>
</tr>
<tr>
<td>S. pombe</td>
<td>LSESSLQQAKQKQFTALMTGRG</td>
<td>121</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>IQGDLIAKQLKSLDEKKVINLVMCNSNRRG1KRRKDEQGENLDAFASQNNQAGQLPPS 180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1...1...1...1...</td>
<td>1...1...1...1...</td>
</tr>
<tr>
<td>S. pombe</td>
<td>GVISRDVFYATAD</td>
<td>155</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>ETFATNDTSFIERPETYSASK</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>1...1...1...1...</td>
<td>1...1...1...1...</td>
</tr>
<tr>
<td>S. pombe</td>
<td>TTRLMNNTSKLARKSILATIRNSIASGALFIENDNVNLGLMNNRISLQSQAARPV</td>
<td>300</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>NGFVTNNNSFGRAERKAPTESHHVSACKTEKINTRPPFR</td>
<td>342</td>
</tr>
</tbody>
</table>

Figure 5.4: Analysis of mutation site in dam1-A8 mutant.

Sequence alignment of the *S. pombe* and *S. cerevisiae* Dam1 proteins. The *dam1-A8* mutant allele contains two mutation sites in the C-terminal of the protein H126R and E149G. These are overlined in black.
5.3 Dam1/DASH complex localisation in the

dam1-A8 mutant

We have identified a conditional mutant of *dam1* (*dam1-A8-GFP*) in a Δ*klp5* background. We first attempted to ascertain if this double mutant dies at the restrictive temperature due to a de-localisation of Dam1-A8 from the kinetochores and/or spindles when shifted up to this temperature. We also pondered whether the other Dam1/DASH complex subunits could still localise in a normal manner in mitotic cells and thus whether the complex as a whole may be still intact.

5.3.1 Localisation of Dam1-A8-GFP in single *dam1-A8* and double *dam1-A8Δklp5* cells

We examined the GFP localisation of this Dam1-A8 mutant protein in a wild-type and Δ*klp5* background by fluorescence microscopy. The single *dam1-A8* and the double *dam1-A8Δklp5* mutant cells were cultured in rich medium overnight at 27°C, fixed and the localisation of Dam1-A8 visualised by fluorescence microscopy at both 27°C and 36°C. Even at the permissive temperature of 27°C the localisation of Dam1-A8 in either the single *dam1-A8* or double *dam1-A8Δklp5* cells was severely compromised. The signal in both backgrounds could be just barely visualised. It appeared very weak and became progressively weaker at the restrictive temperature, and after two hours incubation at the restrictive temperature the GFP signal was undetectable in either the single *dam1-A8* or double *dam1-A8Δklp5* cells (Figure 5.5).

We conclude that even at the permissive temperature there is severely reduced localisation of Dam1-A8-GFP to the mitotic cells, however, the population of Dam1-A8 that can localise to the kinetochore and/or spindles albeit at a reduced frequency, seems to be sufficient for the growth and survival of this strain at 27°C when *klp5* is deleted. Incubation of either the single *dam1-A8* or double *dam1-A8Δklp5* cells at the restrictive temperature completely abolishes localisation in mitotic cells.
Figure 5.5: Localisation of Dam1-A8-GFP in single dam1-A8 and double dam1-A8Δklp5 mutants.

Single dam1-A8 and double dam1-A8Δklp5 mutant cells were cultured in rich medium overnight at 27°C. The cultures were split, incubated at 27°C or 36°C for four hours, fixed and visualised by fluorescence microscopy. The scale bar represents 10μm.
5.3.2 Ask1-GFP localisation in dam1-A8 single and double mutants

To determine whether the Dam1/DASH complex remains intact in dam1-A8Δklp5 double mutants we analysed if another subunit of this complex can still localise in a normal manner at the restrictive temperature. We thus examined Ask1-GFP localisation at 27°C, the permissive, and 36°C, the restrictive temperatures, in the dam1-A8Δklp5 double mutant and compared this to Ask1-GFP localisation in both wild-type and Δdam1 cells.

The Ask1-GFP in our wild-type control strain at both 27°C and 36°C, localised as expected to mitotic kinetochores and/or microtubules (Figure 5.6a&b). Ask1-GFP was able to localise to the kinetochores in Δdam1 cells at 20°C, 27°C and 36°C respectively, indicating that Dam1 is dispensable for Ask1 localisation to the kinetochore and/or spindle microtubule plus ends (Figure 5.6c&d&e). The double mutant dam1-A8Δklp5 showed normal Ask1-GFP localisation at 20°C (Figure 5.6f), however the localisation of Ask1-GFP to the kinetochores of mitotic dam1-A8Δklp5 cells is slightly reduced when incubated at 27°C and strongly reduced after 4 hours incubation at the restrictive temperature of 36°C. Therefore while Ask-GFP can localise normally when dam1+ is deleted there is a partial reduction in the strength of localisation signal in mitotic cells in the dam1-A8Δklp5 mutant. Perhaps the Dam1/DASH complex is not fully intact under this mutant condition, however due to our failure to visualise any of the Dam1/DASH proteins biochemically we are unable to test whether the complex remains intact in a more direct manner. We therefore cannot definitively conclude that the Dam1/DASH complex is disrupted in this dam1-A8 mutant despite a decrease in Ask1 signal at the kinetochore after prolonged incubation at high temperature.

What is of note however is the distinct difference between this dam1-A8Δklp5 allele and a Δdam1 strain with respect to Ask1-GFP localisation. Ask1 localises as normal in Δdam1 cells at the various temperatures tested but there is a clear reduction in Ask1-GFP signal after incubation at the restrictive temperature in dam1-A8Δklp5 cells. It would thus seem that this dam1-A8Δklp5 allele may not be a simple loss of function Dam1 mutation and may behave differently to a complete dam1+ deletion.
Figure 5.6: Ask1-GFP localisation in WT, Δdam1 and dam1-Δklp5 cells.

WT, Δdam1 and dam1-Δklp5 cells containing ask1-GFP-kan were cultured in rich medium at 27°C. The cultures were split and incubated at either 20°C for 8 hours, 27°C for 4 hours, or 36°C for 4 hours. The cells were fixed and Ask1-GFP and DAPI visualised by fluorescence microscopy. (a&b) Ask1-GFP visualised in wild-type cells at 27°C and 36°C respectively. (c&d&e) Ask1-GFP visualised in Δdam1 cells at 20°C, 27°C and 36°C respectively. (f&g&h) Ask1-GFP visualised in dam1-Δklp5 cells at 20°C, 27°C and 36°C respectively. The scale bar represents 10μm. The Red arrows highlight Ask1-GFP.
5.4 Characterisation of dam1-A8 mutant

We successfully generated a dam1 conditional mutant in a Δklp5 background. The analysis of the mitotic phenotype of this mutant after shift up to the restrictive temperature should aid in our understanding of why double mutants between Δklp5 or Δklp6 and null mutants of the Dam1/DASH complex are synthetically lethal and thus how these proteins function in concert to establish high fidelity chromosome segregation. In this section we will attempt to characterise the defects of this double mutant dam1-A8Δklp5 in chromosome segregation and/or microtubule regulation. We will also analyse the single dam1-A8 (in a klp5+ background) mutant to ascertain if it shows any mitotic chromosome segregation defects.

5.4.1 Growth defects of the dam1-A8Δklp5 mutant

In order to ascertain how the dam1-A8 single and dam1-A8Δklp5 double mutants behave we first examined their growth rates in logarithmically growing cultures compared to wild-type and Δadam1 cells at both 27°C and 36°C. The single dam1-A8 mutant showed growth kinetics almost identical to wild-type cells at both 27°C and 36°C, indicating that in a klp5+ background this strain does not show any proliferative defects (Figure 5.7A). The single Δklp5 mutant strain also shows normal growth kinetics for the first 4 hours of incubation at either 27°C or 36°C, after this time however; the growth becomes marginally slower than wild-type (Figure 5.7A). The double mutant dam1-A8Δklp5 shows slow growth even at the permissive temperature of 27°C, with a doubling time of approximately 4 hours, whilst wild-type cells have a doubling time of approximately 3 hours. Incubation of this strain at the restrictive temperature of 36°C severely compromises growth, with a doubling time now of approximately 6 hours (Figure 5.7A). It seems that this double mutant while able to grow at 27°C does not show normal growth kinetics and is functionally compromised at this permissive temperature.

We examined the dam1-A8Δklp5 cell morphology by light microscopy at 27°C and every two hours after the shift up to 36°C. The majority of cells look relatively normal at 27°C although there are a few cells with aberrant morphology, however this is increased following the shift up to the restrictive temperature with the appearance of some multi-septated, bent or branched and dead cells (Figure 5.7B).
Figure 5.7: Growth defects in \textit{dam1-\textit{A8}klp5} cells at the restrictive temperature

(A) WT, \textit{klp5A}, \textit{dam1-A8} and \textit{dam1-A8\textit{A8}klp5} cells were cultured in rich medium at 27°C. The cultures were split, incubated at either 27°C or 36°C and the cell number was counted every 2 hours. The cell number was plotted against time. (B) Images of \textit{dam1-A8\textit{A8}klp5} cells from various time-points shown. The scale bar represents 10μm. (C) Tenfold serial dilution spot assay of WT, \textit{\Delta dam1}, \textit{dam1-A8} and \textit{dam1-A8\textit{A8}klp5} cells plated onto rich agar YE5S plates, YE5S & Phloxin plates and YE5S plates containing TBZ (Thiabendazole) 10μg/ml, or 20μg/ml concentrations.
We have previously shown that the dam1-A8Δklp5 strain appears temperature sensitive when incubated at 36°C in a serial dilution spot assay (Figure 5.2). We had not, however, addressed the growth of the single dam1-A8 mutant using this assay. We therefore carried out another serial dilution assay to compare the growth of the single dam1-A8 and double dam1-A8Δklp5 mutants at both the permissive and restrictive temperatures and in the presence of the microtubule drug TBZ. In this assay we used wild-type and Δdam1 cells as controls for comparison with the dam1-A8 single and double mutants. The wild-type cells showed normal growth at 27°C and 36°C, but little growth in the presence of the microtubule de-polymerising drug TBZ (Figure 5.7C). The Δdam1 cells also showed normal growth at both temperatures, but consistent with previous results, these cells were more sensitive to the presence of TBZ than the wild-type strain (Figure 5.7C). The double mutant dam1-A8Δklp5 showed almost normal growth 27°C but growth defects when incubated at 36°C. This double mutant can grow in the presence of TBZ, even at concentrations such as 20μg/ml or 50μg/ml (data not shown). This TBZ resistance was presumed due to the Δklp5 background, as a single Δklp5 or Δklp6 mutant shows hyper-stabilisation of microtubules and strong resistance to TBZ and other microtubule de-polymerising drugs (Garcia et al., 2002b). We did not expect therefore that the single dam1-A8 mutant in a klp5+ background would be resistant to TBZ. Yet from our analysis it appears that this dam1-A8 allele confers TBZ resistance to the cell, albeit this is not as strong as when Klp5 is deleted (Figure 5.7C). This resistance to TBZ is completely contrasting to the sensitivity seen when Dam1 is deleted and again suggests that this allele is not a simple loss of function mutation.

5.4.2 Mis-segregation of chromosomes in dam1-A8Δklp5 mutant

It was previously shown that cells deleted for both klp5+ and dam1+ show kinetochore bi-orientation defects (Sanchez-Perez et al., 2005). It was presumed therefore that the reason for the lethality in these double deletion mutants was due to severe chromosome mis-segregation and an inability to establish correctly bi-oriented kinetochore attachments (Sanchez-Perez et al., 2005). We therefore examined whether the dam1-A8Δklp5 mutant also yields cells with severe chromosome mis-segregation.
We firstly stained α-tubulin and DAPI of both wild-type and *dam1-A8Δklp5* cells, by immunofluorescence, at both the permissive temperature 27°C and at 2, 4 and 6 hours following shift up to the restrictive temperature of 36°C. The wild-type cells showed normal segregation of chromosomes, as marked by DAPI staining of the DNA, and also normal interphase and mitotic microtubule structures (Figure 5.8A). The double mutant *dam1-A8Δklp5* showed a typical Δklp5/6 phenotype with respect to microtubule structure, with hyper-elongated interphase microtubules that often wind around the cell and with hyper-stabilised mitotic spindles. There were obvious chromosome segregation defects in these cells, which became extremely prominent after 4 and 6 hours incubation at the restrictive temperature (Figure 5.8A). The DNA in some cells at the 6 hour time-point looked extremely fragmented however it was not possible from this analyses to determine the types of segregation defects that gave rise to this severe mis-segregation phenotype.

In a similar experiment wild-type, Δklp5, *dam1-A8Δklp5* and *dam1-A8* single mutant cells were analysed for the frequency of mis-segregation of chromosomes following their incubation at either 27°C or 36°C for up to 6 hours. These cells were harvested every two hours after shift up to the restrictive temperature, fixed in formaldehyde and stained with DAPI to visualise any mis-segregation of chromosomes. The percentage of total cells that showed aberrantly segregated DNA for each strain at each time-point was calculated and graphed. Both wild-type and single *dam1-A8* cells show very little mis-segregation of chromosomes, while the single *dam1-A8* mutant does not behave as wild-type with respect to TBZ it does not show a high rate of chromosome mis-segregation (Figure 5.8B). The single Δklp5 strain shows some segregation defects (approximately 9-13%) at either 27°C or 36°C.

The double mutant *dam1-A8Δklp5* shows a level of mis-segregation at the permissive temperature of 27°C, comparable to the single Δklp5 mutant. The frequency of mis-segregation increases dramatically, however, following incubation at the restrictive temperature, with 71.7% of cells showing aberrantly separated DNA after 6 hours at 36°C. It would seem that these cells predominantly die at this temperature due to improper mis-segregation, however to address this more carefully we will examine segregation defects in synchronous *dam1-A8Δklp5* cells at the restrictive temperature.
Figure 5.8: Chromosome segregation defects in dam1-A8Δklp5 mutant.

(A) WT and dam1-A8Δklp5 cells were cultured in rich medium overnight at 27°C. The cultures were split and incubated at either 27°C or 36°C for up to 6 hours. The cells were fixed and immunofluorescent staining of microtubules and DNA was carried out. The scale bar represents 10μm. (B) Graph of the frequencies of mis-segregation counted from fixed and DAPI stained WT, Δklp5, dam1-A8Δklp5, and dam1-A8 single mutant cells (N>200 cells).
5.4.3 Examination of mitotic defects in *dam1-A8Δklp5* synchronised cells

In order to more carefully assess the mitotic phenotype seen when the *dam1-A8Δklp5* double mutant cells are shifted up to the restrictive temperature we attempted to synchronise the double mutant cells prior to incubation at the restrictive temperature to enrich for the mitotic population of cells and more carefully ascertain how, when and why these cells die. Due to the sick nature of these *dam1-A8Δklp5* cells we decided against using a cell cycle mutant or drug to induce an arrest, and opted instead for centrifugal elutriation as a mode of synchrony to collect early G2 cells. We first collected early G2 wild-type cells as a control to assess the degree of synchronisation when using this method. These cells were then incubated at both 27°C and 36°C for 5 hours, fixed every 20 minutes and the septation index counted to assess the degree of synchronisation. The level of synchrony in the wild-type strain was very high when these cells are incubated at 27°C with approximately 70% synchrony in the first cell cycle (judged from the percentage septating cells) and dropping to ~50% synchrony in the second cell cycle. This synchrony was not as good when the cells were incubated at 36°C, with 40-50% synchrony in the first and second cell cycle (Figure 5.9A).

We were concerned that if there is such a drop in synchrony even in wild-type cells at 36°C, that our double mutant would show very little synchrony after elutriation and incubation at this temperature. However the *dam1-A8Δklp5* cells showed reproducibly good synchrony of ~45% in both the first and second cell cycle when incubated at this temperature. We therefore perceived this to be an efficient method to synchronise our cells for the careful analysis of mitotic defects at the restrictive temperature in our double mutant.

Using this method we synchronised *dam1-A8Δklp5* cells in early G2 and incubated the collected cells at 36°C for 320 minutes. The cells were harvested every 20 minutes and the degree of synchronisation assessed by calcoflour staining as approximately 45%, with the time prior to the peak of septation indicative of the timing of mitosis. The frequency of mis-segregation at each time-point was then measured by DAPI staining and counting the number of cells displaying aberrant DNA.
Figure 5.9: *dam1-A8Δklp5* mutants show loss of viability and severe chromosome mis-segregation defects after the first mitosis.

(A) Wild-type cells were cultured in rich medium and subjected to centrifugal elutriation to collect G2 cells. These cells were then incubated at both 27°C and 36°C for 5 hours; fixed every 20 minutes and the septation index was calculated as the degree of synchronisation (N>200). (B) Centrifugal elutriation was used to synchronise *dam1-A8Δklp5* cells in early G2. These cells were then incubated at 36°C for 320 minutes. The cells were harvested every 20 minutes and approximately 500 cells were spread onto YES5 plates, which were incubated at 27°C, to assess the viability of these cells at each time-point. The remaining cells were fixed, stained with DAPI or calcioflour and the frequency of mis-segregation and the degree of synchronisation calculated and graphed along with the frequency of viability (N>200). (C) Images of DAPI stained cells from each time-point. Chromosome segregation defects are obvious, appearing in cells from ~ 100 minutes after incubation, which coincided with a drop in viability. The scale bar represents 10 μm. (D) Images of cells containing calcioflour stained septa. The scale bar represents 10μm.
We can see that the frequency of mis-segregation rises to ~40% after the first mitosis, but this has increased dramatically to around 70% of cells displaying abnormal DNA after the second mitosis (Figure 5.9B). Indeed visualisation of these DAPI stained cells shows the clear appearance of mis-segregation and aberrant DNA from 100 minutes after incubation at the restrictive temperature. The severity of mis-segregation increases following the second mitosis at the restrictive temperature with cells from 220 minutes onwards showing extremely fragmented DNA (Figure 5.9C).

Examination of those cells stained for calcoflour to highlight septa formation show normal septum structures after the first mitosis, however, the staining at later time-points, corresponding with the second mitosis, shows some cells with abnormal deposition of septa material, while some appear multi-septated (Figure 5.9D). We presume this is a secondary effect of the severe chromosome segregation defects in these cells. These cells were also subjected to a viability assay to determine the timing of when the majority of these cells die. At each time-point approximately 500 cells were plated onto YESS plates and incubated for several days at 27°C. The number of viably growing colonies were then counted and calculated as a percentage against the viability (100%) at time-point zero. In our analyses it is clear that there is a huge drop in viability during the first mitosis, just prior to the first septation peak with the viability dropping down to ~20%. It thus appears as cells enter the first mitosis following shift up to the restrictive temperature that they are committed to a lethal mitotic event resulting in massive chromosome mis-segregation (Figure 5.9B). We carefully assessed the microtubule structure in these synchronised daml-A8Δklp5 cells. These cells were synchronised in G2 and shifted up to the restrictive temperature. The cells were harvested every 20 minutes, fixed in methanol, microtubules and DAPI stained by immunofluorescence and examined by fluorescence microscopy. The microtubules in this mutant appeared similar to those seen in a single Δklp5/6 null mutant, or in asynchronous daml-A8Δklp5 cells (Figure 5.8), with strong tubulin staining in both interphase and mitotic cells indicative of very stable microtubules. Our analysis of microtubules at each timepoint did not highlight any defect that was previously unseen in our staining of microtubules in asynchronous daml-A8Δklp5 cells (Figure 5.10). It appears that the microtubule structure is not noticeably destabilised or altered in these cells.

We next categorised the mis-segregating mitotic cells according to type. We noticed four major mis-segregating phenotypes present in these cells. Type 1: reflects cells in
which the entire DNA is being segregated to one side of the cell. Type 2: these are the cells that are displaying a typical “mis” mutant phenotype of unequal segregation with large and small daughter nuclei. Type 3: Cells in which there are 3 or more bodies of DNA, some of which appear to be lagging. Type 4: Cells with only 2 DNA bodies in which one appears to be lagging behind during the segregation process. We quantified the distribution of the four types of mis-segregating cells visible during the first mitosis between 80 and 140 minutes when the cells were predominantly in mitosis (Figure 5.10B). Type 4 was only visible in the early stage of mitosis (80 mins) and the lagging DNA in these cells had obviously segregated in the manner of type 1, 2 or 3 by the time the next sample at 100 minutes was analysed. Overall throughout this first mitosis there was no type of aberrant DNA pattern that predominated, with Type 1 and Type3 showing an average for the four timepoints of \(~33\%\) and Type 2 showing \(~26\%\), suggesting form our DAPI analyses that a range of chromosome segregation defects are occurring in these cells, including lagging chromosomes, unequal distribution of chromatin and fragmented DNA.

It is apparent in these cells that the DNA, which is in the process of being segregated, is always associated with the mitotic spindle. There are no incidences of DNA bodies completely un-associated from the mitotic spindle (Figure 5.10d-i). We can only assume that while there are obvious segregation defects in these cells the chromosomes are attached in some capacity to the spindle. Perhaps this association to microtubules is by a lateral attachment of the kinetochores to the mitotic microtubules, and end-on attachment is not fully established in these cells, resulting in severe mis-segregation of chromosomes. However this is simply speculative and no concrete evidence exists to corroborate this at this time.

5.5 The spindle assembly checkpoint and the dam1-A8 mutant

Due to the slow doubling time of the dam1-A8Δklp5 strain when grown at the permissive temperature and the massive mis-segregation of chromosomes at the restrictive temperature we presume that the spindle assembly checkpoint is also activated in these double mutant cells. We will assess whether there is a noticeable increased frequency of mitotic cells in our dam1-A8Δklp5 double mutant and whether this delay is indeed dependent on the spindle assembly checkpoint.
Figure 5.10: Microtubule staining and chromosome mis-segregation of dam1- A8Δklp5 cells

(A) Cells were synchronised in G2 by elutriation, shifted up to 36°C for 320 minutes, fixed and processed for immunofluorescence every 20 minutes. The microtubules were stained using α-TAT-1 primary antibody and DNA stained by DAPI. The cells were visualised by fluorescence microscopy. (a-h) Images which are representative of the aberrant dam1- A8Δklp5 mitotic cells. The scale bar represents 10 μm. (B) Schematic and table showing frequency of four types of aberrant segregation pattern (N>200).
5.5.1 Increased mitotic index in *dam1-A8Δklp5* cells

To investigate if there is a mitotic delay in our *dam1-A8Δklp5* cells we first determined if there is an increased mitotic index in this double mutant by counting the percentage of mitotic cells. Wild-type, *Δklp5*, *dam1-A8Δklp5* and *dam1-A8* single mutant cells were cultured in rich YE5S medium at 27°C, cultures were split and incubated at either 36°C for 6 hours. The cells were harvested, fixed in methanol every 2 hours and processed for immunofluorescence to stain β-tubulin and DNA by DAPI. The number of cells displaying mitotic spindles was calculated for each strain at each time-point and measured as a percentage of total cells.

Our wild-type strain showed a mitotic index of approximately 5-10% over the course of the 6 hours (Figure 5.11). This is consistent with values seen in our previous experiment measuring the mitotic index in Dam1/DASH deletion mutants. (Figure 4.4) Our positive control *Δklp5* showed an increased frequency of mitotic cells (approximately 14-16%) compared to the wild-type strain (Figure 5.8A). This is consistent with published work in which it has been established that deletion of either Klp5 or Klp6 leads to localisation of either Mad2 or Bub1 to the kinetochore and subsequent activation of the spindle assembly checkpoint. (Garcia et al., 2002b) The single *dam1-A8* mutant showed a modest increase in the frequency of mitotic cells compared to wild-type, with approximately 12-13% mitotic cells over the 6 hour experimental period. Therefore while there is no chromosome mis-segregation in this single *dam1-A8* mutant (Figure 5.11A), there are obviously some defects present which leads to a mitotic delay in these cells. The double mutant *dam1-A8Δklp5* cells shows a frequency of mitotic cells comparable to the single mutant *dam1-A8* or the single *Δklp5* mutants when incubated at the permissive temperature of 27°C or just 2 hours after shift up to 36°C. The frequency increases dramatically, however, after 4-6 hours prolonged incubation at the restrictive temperature, rising to between 25-28% (Figure 5.11A). It is quite clear that this dramatic rise in the number of mitotic cells must be due to a mitotic delay and this is probably mediated by the spindle assembly checkpoint.

We next examined Mad2-GFP foci localisation in wild-type, *dam1-A8* single and *dam1-A8Δklp5* double mutants at 27°C and every two hours after shift-up to 36°C. Approximately 5% of wild-type cells displayed Mad2-GFP foci localisation at either 27°C or 36°C. The single *dam1-A8* mutant had approximately 9-15% of cells displaying Mad2-GFP foci at either 27°C or 36°C (Figure 5.11B). The double mutant
Figure 5.11: Mitotic delay induced by spindle assembly checkpoint in \textit{dam1-A8} and \textit{dam1-A8_Acllp5} cells.

(A) WT, \textit{Acllp5}, \textit{dam1-A8_Acllp5} and \textit{dam1-A8} cells were cultured in rich YE5S medium at 27°C, split and incubated at 36°C for 6 hours. The cells were fixed and processed for immunofluorescence to stain α-tubulin and DAPI. The percentage of cells displaying mitotic spindles were counted and graphed at each time-point (N>200). (B) WT, \textit{dam1-A8_Acllp5} and \textit{dam1-A8} single mutant cells containing \textit{mad2}_GFP were cultured in rich YE5S medium at 27°C and shifted up to 36°C for 6 hours. The cells were fixed and examined for Mad2-GFP foci localisation by fluorescence microscopy. The scale bar represents 10 μm. (N>200).
dam1-A8Δklp5 shows an extremely elevated level of Mad2-GFP foci localisation of approximately 25% even at the permissive temperature, despite the fact that the number of cells displaying a mitotic spindle at this time is ~12-13% (Figure 5.11B). The reason for this high frequency of Mad2-GFP foci is because the Mad2-GFP foci persist in these *dam1-A8Δklp5* cells even after mitosis and can be visualised in post anaphase and G1/S cells. It seems that a mitotic arrest may be induced, but as there are chromosome segregation defects this arrest is bypassed, however the Mad2 signal remains at the kinetochore even as cells leave mitosis and enter a new cell cycle. Perhaps this arrest is bypassed more efficiently at the permissive temperature, but prolonged incubation at the restrictive temperature results in a greater frequency of arrested cells despite the same number of cells displaying Mad2-GFP foci.

5.5.2 Is the spindle assembly checkpoint maintained in *dam1-A8Δklp5* cells?

In the preceding section we discussed the possibility that the spindle assembly checkpoint is activated in our *dam1-A8Δklp5* double mutant and may be bypassed at the permissive temperature, but prolonged incubation at the restrictive temperature may lead to full activation of this checkpoint and an increased frequency of cells arrested in mitosis. We wondered whether the spindle assembly checkpoint would be maintained in these cells, in conditions where de-polymerisation of the mitotic spindle induces a mitotic arrest.

We arrested wild-type and *dam1-A8Δklp5* cells with 11mM HU for four hours. After washout, we re-suspended the cells in medium with or without MBC/CBZ (Carbendazim) at 50µg/ml and incubated at either 27°C or 36°C for 5 hours. Cells were harvested every hour, stained with DAPI and calcoflour to visualise DNA and septa, and the percentage of cells displaying “cut” DNA was calculated as a measure of the maintenance of mitotic arrest. Wild-type cells without MBC/CBZ at either 27°C or 36°C did not show “cut” cells. Incubation of wild-type cells at 27°C resulted in the appearance of “cut” cells between 2-3 hours after the addition of medium containing MBC/CBZ. This increased dramatically when these wild-type cells were incubated in the presence of MBC/CBZ at 36°C, with “cut” cells appearing as early as 1.5 hours after incubation. Therefore the stringency of the mitotic arrest is not very high when treated with MBC/CBZ 50µg/ml and incubated at 36°C.
Figure 5.12: Is the spindle checkpoint maintained in dam1-A8Δklp5 cells?

WT and dam1-A8Δklp5 cells were cultured in rich medium at 27°C and arrested in S-phase by the addition of 11mM HU for 4 hours. The cells were filtered, washed and re-suspended in medium with or without 50μg/ml MBC/CBZ and incubated at either 27°C or 36°C for 5 hours. The cells were harvested every hour for 5 hours after MBC/CBZ addition, stained with DAPI and calcoflour to visualise DNA and septa and visualised by fluorescence microscopy. The percentage of cells displaying hypercondensed and "cut" DNA were counted at each time-point and plotted against time (N>200).
The double mutant dam1-A8Δklp5 shows a level of "cut" cells even in the absence of the spindle drug MBC/CBZ that is comparable to the wild-type when incubated with the drug at 27°C (Figure 5.12). The addition of MBC/CBZ to these cells at the permissive temperature does not elevate this beyond the basal level of "cut" cells this strain intrinsically displays. However, incubation of the double mutant at the restrictive temperature in the presence of the drug causes a massive increase in the frequency of "cut" cells, yet the timing compared to wild-type cells in the presence of the drug at 36°C is unchanged. This indicates that the spindle checkpoint mediated mitotic arrest induced by de-polymerisation of the spindle microtubules following the addition of MBC/CBZ is maintained in the double mutant dam1-A8Δklp5 as well as in wild-type cells at the restrictive temperature.

5.5.3 dam1-A8Δklp5 cells require mad2+ for survival

We have shown that the spindle assembly checkpoint is activated in dam1-A8Δklp5 cells. We theorised that the cells must need the checkpoint-induced delay to try and allow the cells to correct the kinetochore-microtubule interaction defects that are occurring in mitosis. If it were the case removal of this checkpoint through deletion of Mad2 or Bub1 proteins, which mediate the signalling cascade, must result in exacerbation of the mitotic defects seen in these dam1-A8Δklp5 cells. We therefore attempted to construct a triple mutant strain by crossing the dam1-A8Δklp5 double mutant to a strain in which mad2 is deleted. We were unable to pick up the triple dam1-A8Δklp5/mad2 strain by random spore analysis and it thus appeared that deletion of mad2 in this double mutant is synthetically lethal (data not shown).

We confirmed this synthetically lethality by tetrad analysis. The dam1-A8Δklp5 strain, which contains a kanamycin (G418) marker tagged to the dam1-A8 and is protrophic for uracil, was crossed to a Δmad2 strain, which is protrophic for leucine, and the four spores from the ascii formed were dissected by a micromanipulator. The four spores from each ascus were separated linearly onto YESS rich media plates, incubated at 27°C for several days and allowed to form colonies. These colonies were then replica plated onto G418, EMM-uracil, EMM-leucine and Phloxin B plates at both 27°C and 36°C and the segregation pattern of the different markers was examined.
dam1-A8-kanamycinΔklp5::ura4+ x Δmad2::LEU2

<table>
<thead>
<tr>
<th>YE5S-27oC</th>
<th>PhB-27oC</th>
<th>PhB-36oC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G418-27oC</th>
<th>EMM-ura</th>
<th>EMM-leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.13: Deletion of Mad2 is synthetically lethal with the dam1-A8Δklp5 mutant

Confirmation of the synthetic lethality of a mad2" deletion with the double mutant dam1-A8Δklp5. The double mutant strain dam1-A8-kanΔklp5::ura4" was crossed to a Δmad2::LEU2 strain and after colony formation the resultant progenies were replica plated onto YE5S and Phloxin B plates at 27°C and 36°C, G418 EMM-leucine and EMM-leucin selection plates. The wild-type progeny are marked by a blue box, Δklp5 colonies are marked by a green box, the single dam1-A8 progeny are marked by an orange box, the double mutants dam1-A8Δklp5 are marked by a pink box, the single Δmad2 colonies are marked by a red circle, the Δklp5mad2 colonies are marked by a yellow circle and the dam1-A8Δmad2 colonies are marked by a purple circle.
Using this method we were able to select all combinations of progeny except the triple mutant dam1-A8Δklp5mad2. It thus appears that the double mutants dam1-A8Δklp5 absolutely require Mad2 for their survival even at the permissive temperature. It is of note that we were also unable to construct triple mutant between dam1-A8Δklp5 and Δbub1 by random spore analysis (data not shown). The double mutants dam1-A8Δklp5 appear to require the time provided by the spindle assembly checkpoint to perhaps activate some repair pathway to correct the attachment defects in this mutant, albeit many of these defects persist resulting in severe mis-segregation of chromosomes.

5.6 Analysis of types of segregation defects in fixed dam1-A8 and dam1-A8Δklp5 cells

In this section we analyse whether the single dam1-A8 mutant demonstrates a non-disjunction “dis” phenotype at 20°C, we also further examine the types of segregation defects seen in single dam1-A8 and double dam1-A8Δklp5 mutants by cen2-GFP analysis in fixed cells.

5.6.1 Does the single mutant dam1-A8 show a non-disjunction “dis” phenotype at 20°C?

The single dam1-A8 mutant does not behave like a Δdam1 mutant with respect to TBZ sensitivity, however genetically it behaves in a similar manner, as it is synthetically lethal with Δdis1 and shows exacerbated microtubule morphology and chromosome segregation defects with an Δalp14 mutant. We examined whether the single dam1-A8 mutant shows the Δdam1 non-disjunction broken and elongated spindle phenotype when incubated at 20°C. We cultured the dam1-A8 mutant cells in rich medium YESS overnight at 27°C until log phase growth and then incubated the cells for 8 hours at 20°C. The cells were fixed in methanol, processed for immunoflorescence and tubulin and DAPI staining carried out.

The dam1-A8 cells did not show a typical “dis” phenotype when incubated for a prolonged period of time at this temperature. The spindle microtubules appeared normal with no abnormally elongated mitotic spindles. Indeed the astral microtubules, which are notably absent in “dis” mutants when incubated at this
Figure 5.14: *dam1-A8* does not show a non-disjunction phenotype at 20°C.

(A) *dam1-A8* cells were cultured in rich medium, shifted to 20°C for 8 hours and fixed. The cells were processed and immunofluorescence of α-tubulin using α-Tat1 antibody and DAPI staining was carried out. Cells were viewed by fluorescence microscopy. The scale bar represents 10 μm. (B) Graph of the mis-segregation index as counted from WT, Δdam1, Δdad1 and *dam1-A8* cells (N>200) in (A).
temperature, appeared normally positioned and intact. In the dam1-A8 cells (Figure 5.14A), the chromatin did not appear hyper-condensed, nor were there any obvious DAPI patterns indicative of non-disjunction or mono-polar segregation, which can be seen in the Dam1/DASH deletion mutants when incubated at 20°C. The microtubules and chromatin structures in the dam1-A8 cells looked in every respect normal (Figure 5.14A).

We next quantified the mitotic index and frequency of mis-segregation of chromosomes in these dam1-A8 cells when incubated at 20°C and compared this to wild-type, Δdam1 and Δdad1 cells. The dam1-A8 cells show an elevated rate of mitotic cells compared to the wild-type control. This is expected as we earlier saw approximately 9-15% Mad2-GF foci in this single mutant at either 27°C or 36°C indicating the spindle assembly checkpoint is activated in this single mutant and induces a mitotic delay. This rate is a lot less, however, than the frequency of mitotic cells seen in Dam1/DASH null mutants at this temperature (Figure 5.14B). The frequency of mis-segregation while slightly elevated compared to wild-type cells, which rarely show any aberrant separation of chromosomes, is not as high as that seen in either the Δdam1 or Δdad1 strain at 20°C. Therefore the single dam1-A8 mutant does show some slight defects compared to wild-type cells but does not demonstrate the “dis” phenotype seen in a Δdam1 strain.

5.6.2 Examination of sister-chromatid separation

To characterise further the types of chromosome segregation defects seen in the dam1-A8Δklp5 double mutant we tried to construct a dam1-A8Δklp5 strain containing cen2-GFP and Sad1-dsRed to carefully visualise sister-chromatid separation in these cells during mitosis. We were unable to easily construct a dam1-A8Δklp5 strain containing cen2-GFP by random spore analysis as the klp5 gene is linked to centromere two and homologous recombination always precludes the combination of both Δklp5 and the integrated LacO array from being co-selected. Therefore we created a dam1-A8Δklp6 strain containing cen2-GFP and Sad1-dsRed. Phenotypically there is no difference between dam1-A8Δklp5 and dam1-A8Δklp6 cells with both showing temperature sensitivity and mitotic defects (data not shown).

We examined the separation pattern of cen2-GFP in asynchronous fixed dam1-A8Δklp6 and dam1-A8 single mutant cells at 27°C and 36°C and compared their
Figure 5.15: *dam1-A8Δklp5* mutant shows lagging chromosomes and mono-polar segregation of cen2-GFP sister chromatids

Δdam1, dam1-A8Δklp5 and *dam1-A8* single mutant cells containing cen2-GFP and Sad1-dsRed were cultured overnight in rich medium. The cultures were split and incubated at either 27°C for 4 hours, 36°C for 4 hours or 20°C for 8 hours prior to fixation. The cells were stained with DAPI and viewed under by fluorescence microscopy. (A)* Images of Sad1-dsRed and cen2-GFP separation in *dam1-A8Δklp5* cells. The scale bar represents 10 μm. (B) The percentage of mitotic cells with mis-segregation were counted and graphed. The types of mitotic mis-segregation were further classified as mono-polar cells, i.e. cells with a 2:0 or 1:0 cen2 separation pattern, or lagging cells and the frequencies of each graphed. (N>200)
segregation pattern to a Δadam1 null mutant at 20°C, 27°C or 36°C on the Zeiss Axioplan fluorescent microscope. We selected mitotic cells that had clearly separated SPBS as represented by separated Sad1-daRed foci, analysed and quantified the patterns of sister-chromatids cen2-GFP mis-segregation in these cells and graphed these frequencies for each of our mutants (Figure 5.15). The double mutant dam1-A8Δklp5, which showed a range of chromosome segregation defects from our DAPI and Tubulin staining (Figure 5.8), displayed a predominantly mono-polar segregation phenotype when cen2-GFP separation was analysed, whereby each of the two sisters is segregated to the same pole in either a 2:0 or 1:0 pattern (Figure 5.15A, B). This mono-polar segregation defect became more prominent in the double mutant dam1-A8Δklp5 cells following shift up to the restrictive temperature. There is a small population of these double mutant mitotic cells that display lagging chromosomes, these were qualified as cells in which one of the cen2-GFP foci had moved to the pole but its sister was still in the process of being segregated and was not localised at or near a pole. This lagging phenotype is never seen in the single dam1-A8 mutant and only ever seen in the Δadam1 null mutant when incubated at 20°C, albeit the predominant phenotype in Δadam1 at any temperature is a mono-polar segregation phenotype (Figure 5.15B). The frequency of mitotic cells that display mis-segregation in the single dam1-A8 mutant containing cen2-GFP appears slightly increased compared to untagged dam1-A8, however this is still significantly lower than either the Δadam1 or dam1-A8Δklp5 mutants. Indeed these few instances of mitotic mis-segregation at either 27°C or 36°C appear to be cells in which mono-polar segregation occurs (Figure 5.15A, B).

It is intriguing that despite the obvious differences between the Δadam1 and dam1-A8 strains that the phenotype of Dam1/DASH null mutants and that of the double mutant dam1-A8Δklp5 are essentially the same, with both mutants showing high rates of mono-polar segregation defects. The Δadam1 cells which are sensitive to TBZ and form weak microtubule-kinetochore attachments give rise to defective syntelic mono-polar attachments, but also the dam1-A8Δklp5 cells which are highly resistant to TBZ also give rise to these same syntelic mono-polar segregation defects. It thus appears that mono-polar segregation defects are not corrected in cells with attachments that are too weak as in Δadam1 and other Dam1/DASH null mutants, or attachments that are too strong as is probably the case in the highly TBZ resistant dam1-A8Δklp5 cells.
5.7 **Live analysis of sister chromatid separation**

We wished to carefully examine the mis-segregation phenotype in *dam1-A8Δklp5* cells to try and gain a further insight into how the double mutants are compromised in the formation of correct kinetochore attachments, and to more carefully analyse the single *dam1-A8* mutant cells during mitosis. We therefore decided to carry out live imaging of *cen2-GFP* and Sad1-dsRed in both the single *dam1-A8* and the double *dam1-A8Δklp6* strain using the Delta vision fluorescent inverted microscope. Filming (Timepoint 0:00) again started at prometaphase or metaphase when the two Sad1-dsRed signals had separated and was continued until after the sister-chromatids had segregated and anaphase B spindle elongation was carried out.

We first carried out live imaging of *cen2-GFP* and Sad1-dsRed in a control strain *Δklp6*, to ensure we were aware of the extent of the *Δklp6* phenotype and how it contributes to our double mutant *dam1-A8Δklp6*. It has been shown, by other members of this lab, that *Δklp6* cells have chromosome congression defects during mitosis. The *cen2-GFP* sister-chromatids in these cells never congress to the equator of the metaphase spindle but shuttle back and forth from one pole to the other before one sister separates right across the cell to the other pole (A. Unsworth personal communication). Consistent with this described phenotype we see a similar lack of congression of the *cen2-GFP* sisters to the equator and extreme oscillations of the pair of *cen2* signals from one pole to the next, before eventual separation by one of the sisters to the opposite pole (Figure 5.16A).

We next examined *cen2-GFP* and Sad1-dsRed separation in the double mutant *dam1-A8Δklp6* at room temperature (approximately 20°C-22°C). All of the cells examined (N=12) showed typical *Δklp6* congression defects and extreme oscillations of the sister-chromatids from one pole to the other prior to separation (Figure 5.16B). Within the *dam1-A8Δklp6* cells analysed (N=12) there is a population of cells (7/12, 58.33%) that segregated both sisters to opposite poles in a normal 1:1 manner. These cells are capable of carrying out equal separation of *cen2-GFP* at this temperature despite the obvious congression defects. The remaining *dam1-A8Δklp6* cells (5/12, 41.66%) showed a typical mono-polar segregation phenotype, whereby the *cen2-GFP* sister-chromatids failed to disjoin and are both segregated to the same pole (Figure 5.16B).
Figure 5.16: Live analysis of sister-chromatid separation in Δklp6, dam1-A8\Delta$klp6 and dam1-A8 mutant cells

(A) Δklp6 cells (N=6) (B) dam1-A8Δklp6 cells (N=12) and (C) dam1-A8 cells (N=10) containing cen2-GFP and Sad1-dsRed were cultured in rich medium overnight. The cells were immobilised onto lectin coated microscopy dish and cen2-GFP and Sad1-dsRed visualised on a Delta vision fluorescence microscope. The scale bars represent 10\mu m.
This corroborates the high frequency of mono-polar segregation visualised by both α-tubulin and DAPI staining of fixed synchronised dam1-ΔA8Δklp5 cells and cen2-GFP analysis of fixed asynchronous dam1-ΔA8Δklp6 cells (Figure 5.10, Figure 5.15). Only one of the dam1-ΔA8Δklp6 cells that displayed mono-polar segregation (1/5) did not show oscillations of the sister-chromatids from one pole to the next before both segregating to the same pole. Indeed in this cell once the cen2-GFP signals moved towards one pole they remained at that pole and no further oscillations were detected even when filming was continued for a prolonged period after the spindle started to elongate in anaphase B. This is similar to the type of mono-polar segregation seen in Δadam1 cells. The remaining cells that displayed mono-polar segregation (4/5) showed varying degrees of congression defects with some extreme “shuttling” of the cen2-GFP signals form pole to pole before one of the sister-chromatids eventually separated right across the cell to the opposite pole. (Figure 5.16B) This “shuttling” movement suggests that the mono-polar attachments cannot be of a monotelic nature and that both sisters must be attached to spindle microtubules, albeit in a defective manner. The mono-polar segregation seen in Δadam1 cells whereby the sisters remain at one pole and do not move, suggests that the chromosomes in these cells are attached in a syntelic manner, with both sisters attached to only one pole. However the dynamic oscillations seen in the double mutant dam1-ΔA8Δklp6 cannot be explained by either of these attachment defects and indeed are more indicative of merotelic attachments that cannot be properly resolved to allow 1:1 equal sister segregation both instead result in separation of both sisters to the same pole. merotelic configurations. Perhaps in these double mutant cells the “merotelic” attachments, which are resolved to mono-polar attachments can then be resolved no further.

The dam1-ΔA8 single mutant cells examined (N=10) displayed segregation of the sister-chromatids to opposite poles in a normal 1:1 fashion (Figure 5.16C). However these cells nonetheless displayed some mitotic defects, albeit of a subtle nature. These dam1-ΔA8 cells also displayed a tendency to “shuttle” their respective sister-chromatids from one pole to the other, but in a less dramatic fashion than in the double dam1-ΔA8Δklp6 or Δklp6 mutants. Indeed some cells showed the typical congression defect seen in Δklp6 or dam1-ΔA8Δklp6 cells, with both sisters located at one pole just prior to the segregation of one of the sisters right across the cell to the other pole (Figure 5.16C). This suggests that this dam1-ΔA8 mutant is also slightly defective in the congression of sister-chromatids to the equator during mitosis, most
likely due to the inability to correct merotelic attachments. However, as in Δklp6 cells the chromosome attachments appear to eventually resolve to allow normal segregation of sister-chromatids in the single dam1-A8 cells. Perhaps this reflects the overlapping role of both the Dam1/DASH complex and the kinesins Klp5/6 in erroneous kinetochore-microtubule attachment correction.

We then used the live images of all the strains examined in this chapter and in the previous chapter to examine mean spindle length in both anaphase A and anaphase B, to ascertain if there is any difference in the length of the spindle between dam1-A8Δklp6 and the single Δklp6 mutant. The intra SPB distance was measured as the distance between both Sad1-dsRed SPB foci and used as a representation of the spindle length. This measurement was carried out for wild-type, Δdam1, Δklp6, dam1-A8 and dam1-A8Δklp6 cells at anaphase A, when the cen2-GFP sister-chromatids just begin to separate, and anaphase B, when the sister-chromatids have separated and the SPB distance begins to elongate. The mean spindle length was calculated for each of these cells, however it should be pointed out that this measurement does not include Δdam1 cells in which the 'spindle collapse' phenotype was observed. The wild-type cells showed an average anaphase-A spindle length of approximately 2.92 +/- 0.406μm and an anaphase B spindle length of 3.44 +/- 0.46 μm. These results are consistent with previous established results for the anaphase spindle length in wild-type S. pombe cells as 2.5μm for phase 2 (metaphase – anaphase A). The Δklp6 mutant shows much longer mitotic spindles than wild-type cells with an anaphase A spindle length of 4.7 +/- 1.36μm and an anaphase B length of 5.89 +/- 2.24μm, although there is a large deviation between spindle lengths when this strain is examined. This mutant appears to have decoupled spindle length from the timing of chromosome segregation. The double mutant dam1-A8Δklp6 does not show any significant difference in spindle length compared to the single Δklp6 cells.
Figure 5.17 Mean spindle length of dam1-A8\Delta klp6 cells

The mean spindle length of WT, Δdam1, Δklp6, dam1-A8 and dam1-A8Δklp6 cells was calculated as the distance between Sad1-dsRed SPB foci at anaphase A, when the cen2-GFP sister-chromatids begin to separate, and anaphase B, when the sisters have separated and the spindle is in the process of elongation. The mean length was calculated for each strain (N>5) and the standard deviation used to calculate error bars.
The anaphase A spindle for these dam1-A8Δklp6 cells is approximately 4.95 +/- 0.87 μm, and the anaphase B length is 5.46 +/- 0.96 μm (Figure 5.17). These cells show less variation in the spindle length than the single Δklp6 mutant; however there appears to be no significant difference in spindle length between the two strains. The single dam1-A8 average spindle length is the same as wild-type cells with an anaphase A spindle length of 2.94 +/- 0.28 μm and an anaphase B length of 3.32 +/- 0.406 μm (Figure 5.17). The Δdam1 cells that do not demonstrate a ‘spindle collapse’ phenotype show on average longer mitotic spindles than wild-type cells, with an anaphase A length of 3.31 +/- 0.817 mm and an anaphase B length of 4.29 +/- 1.001μm, however these spindles are not as long as in Δklp6 cells (Figure 5.17). It seems that average spindle length is unperturbed in the dam1-A8 mutant strain despite resistance to TBZ and the double mutant dam1-A8Δklp6 cells do not show any additive defects in spindle length compared to the single Δklp6 cells. The spindle length in Δdam1 cells is longer than wild-type cells, however we were unable to include those cells that underwent a ‘spindle collapse’ phenotype in this analysis, which would significantly reduce the spindle length.

5.8 Genetic interactions of the dam1-A8 mutant

We examined the genetic interactions of both the double dam1-A8Δklp5 and the single dam1-A8 mutants with mutants of other mitotic regulators that function to coordinate chromosome segregation.

5.8.1 dam1-A8 is synthetically lethal with Δdis1

We initially screened for conditional dam1 mutants in a Δklp5 background to understand why deletion of both these molecules is synthetically lethal to the cell. We also considered the idea of screening for dam1 mutants in a Δdis1 background to ascertain why these double mutants die, but unfortunately time-constraints prevented this possibility. We therefore crossed the other dam1 alleles, to a strain, in which dis1" was deleted, hoping it would provide us with ready-made dam1Δdis1 conditional mutants. This was not the case however, as all of the dam1 alleles tested appeared to be synthetically lethal with Δdis1 (data not shown). We then attempted to construct a dam1-A8Δdis1 strain by random spore analysis, but again this dam1-A8
<table>
<thead>
<tr>
<th>Strain</th>
<th>$dam1^{-18}$</th>
<th>$dam1^{-18}\Delta klp5$</th>
<th>$\Delta dam1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta dis1$</td>
<td>SL</td>
<td>ND</td>
<td>SL</td>
</tr>
<tr>
<td>$\Delta asgo2$</td>
<td>V</td>
<td>V sick</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta mal3$</td>
<td>V sick</td>
<td>V sick</td>
<td>V sick</td>
</tr>
<tr>
<td>$\Delta alp14$</td>
<td>V sick</td>
<td>ND</td>
<td>V sick</td>
</tr>
</tbody>
</table>

Table 5.2: Genetic interactions of $dam1^{-A8}$ and $dam1^{-A8}\Delta klp5$

V: viable; SL: synthetically lethal; ND: not determined.

* Those strains designated ND were not tested because Klp5 and Dis1 deletions, or Klp5 and Alp14 deletions already known to be synthetically lethal.
mutant was synthetically lethal with the Δdis1 strain. We could not therefore generate a ready-made dam1Δdis1 conditional mutant. It would seem that cells in which Dis1 is deleted are more sensitive to perturbations in Dam1 function than Δklp5 or Δklp6 cells.

5.8.2 Examination of dam1-A8Δalp14 mutant

We previously determined that a Δadam1alp14 mutant shows exacerbated microtubule and chromosome segregation defects compared to either of the single Δadam1 or Δalp14 mutants. In this section we examine the relationship between the dam1 allele dam1-A8 and the Δalp14 null mutant. We were able to generate a viable double mutant between Δalp14 and dam1-A8 by random spore analysis. We examined the growth of this double mutant compared to wild-type, dam1-A8, Δalp14, Δadam1, and the Δadam1alp14 strain at various temperatures and in the presence of TBZ by a serial dilution spot assay. It must be pointed out that the first 4 rows of this spot-test were used previously in figure 4.7B, when examining the Δadam1alp14 strain. The dam1-A8Δalp14 strain shows good growth at both 27°C and 30°C. This is in sharp contrast to the Δadam1alp14 strain, which shows very little growth even at 27°C. The dam1-A8Δalp14 strain does show perturbed growth at 36°C, which is slightly worse than the growth of a single Δalp14 mutant at this temperature, but is much better than the Δadam1alp14 strain, which doesn’t grow at all when incubated at 36°C (Figure 5.18B). Intriguingly the dam1-A8Δalp14 strain behaves like the single dam1-A8 in that it is resistant to TBZ, whereas the single Δalp14 cells are sensitive to the drug.

We were interested therefore in how the morphology and microtubule structure of these double dam1-A8Δalp14 cells would look.

We examined the morphology of these cells when cultured in rich medium at 36°C for 6 hours. These double mutants appear like Δalp14 cells with altered polarity, showing bent and branched and T-shaped cells suggesting perturbation of the microtubule structures in these cells (Figure 5.18A). Visualisation of the microtubule structure of these cells by immunofluorescence staining of α-tubulin and DAPI revealed cells with strongly stained highly disorganised interphase microtubule arrays and perturbed spindle structures. The microtubules looked very similar to the Δdam1alp14 double deletion mutants with many broken structures. Indeed the frequency of cells displaying mis-segregation of chromosomes was also very high in
Figure 5.18: Deletion of Alp14 in dam1-A8 mutant is viable but cells show TBZ resistance and mis-segregation

(A) Morphology defects of cells grown in rich medium liquid culture for 6 hours at the restrictive temperature 36°C. (B) Tenfold serial dilution spot assay plated onto rich agar YESS plates, YESS & Phloxin B plates, incubated at 27°C, 30°C or 36°C and YESS plates containing 10µg/ml or 15µg/ml TBZ plated at 27°C and incubated for 3 days. (C) dam1-A8Δalp14 cells were cultured in rich medium at 36°C for 6 hours. The cells were fixed and immunofluorescence of α-tubulin and DAPI staining was carried out. The scale bar represents 10 µm.
these dam1-A8Δalp14 cells with approximately 52.9% of cells with aberrant DNA after 6 hours at the restrictive temperature, albeit this is slightly lower than that seen in Δdam1alp14 cells (~68-69% at 27°C or 36°C). Therefore even though dam1-A8 does not behave exactly like a Δdam1 null mutant with respect to TBZ, phenotypically when crossed to an Δalp14 strain it behaves very similarly.

It thus appears from the exacerbated microtubule morphology defects in both the Δdam1alp14 and dam1-A8Δalp14 strains that Dam1 has a role in the regulation of microtubule dynamics as the loss of function of Dam1 or the presence of this dam1-A8 mutant in a Δalp14 background results in an increased disorganisation of microtubule structures and mis-segregation of chromosomes compared to the single Δalp14 strain.

5.9 TBZ resistance of dam1-A8. Is it similar to dam1-127 truncation?

We have shown in this chapter that the single mutant dam1-A8 does not behave like a Δdam1 null mutant with respect to TBZ sensitivity. There is another dam1 allele that has been shown to act in a resistant manner to the spindle de-polymerising drug TBZ. This is a C-terminal dam1 truncation (dam1-127) that was isolated as a multi-copy suppressor of the TBZ sensitivity of the cdc13-117 and a mal3-1 conditional mutant (Sanchez-Perez et al., 2005). It was thus presumed that the C-terminal of Dam1 must play an important regulatory role in microtubule stability (Sanchez-Perez et al., 2005). In this section we compare our dam1-A8 mutant allele to the C-terminal truncation allele dam1-127. We theorised that the dam1-A8 allele was simply behaving as a loss of C-terminal mutant like the dam1-127 strain, and therefore this truncation mutant would behave phenotypically the same as the dam1-A8 mutant with respect to genetic interactions.

5.9.1 Growth comparison of dam1-A8 and dam1-127

It is interesting to note that both of the point mutations that we identified in the dam1-A8 allele are resident within the C-terminal region. Perhaps the C-terminal structure is disrupted in our Dam1-A8 protein, in a similar manner seen in the dam1-127 C-
terminal truncation mutant. We presumed therefore that both mutants would behave in a similar manner with respect to growth in a serial dilution spot assay.

The wild-type strain shows good growth at either 27°C or 36°C and shows marginal growth in the presence of 15μg/ml TBZ. Consistent with previous results the Δdam1 cells do not appear temperature sensitive but are slightly more sensitive to growth in the presence of TBZ than the wild-type cells. The daml-127 and daml-A8 strains behave identically with respect to growth at either 27°C or 36°C and both strains show a similar level of resistance to TBZ on plates (Figure 5.19).

5.9.2 Examination of daml-127Δklp5 and daml-127Δalp14 cells

The daml-127 and daml-A8 strains appear to grow in a similar manner on YES5 plates at either 27°C or 36°C or in the presence of TBZ. We next assessed if the daml-127 mutant will show the same severity of phenotype as a daml-A8 mutant when combined with either Δklp5 or Δalp14 null mutants. We generated the double daml-127Δklp5 or daml-127Δalp14 strains by random spore analysis and carried out immunoflourescent staining of α-tubulin on methanol fixed cells, 6 hours after shift up to 36°C.

The daml-127Δklp5 cells showed strong staining of both interphase and mitotic microtubules with a typical Δklp5 phenotype of elongated mitotic spindles that sometimes curve around the cells (Figure 5.20). However, some of the interphase microtubules demonstrated disorganised microtubule arrays unseen in the single Δklp5 cells (data not shown). The daml-127Δalp14 strain showed cells with shorter, weaker stained microtubules, typical of an Δalp14 phenotype. The microtubule structures of these cells did not look like either the daml-A8Δalp14 or Δdam1alp14 double mutants, which have extremely disorganised and broken microtubule structures (Figure 5.20A). Furthermore we counted the frequency of mis-segregation in both daml-127Δklp5 and daml-127Δalp14 cells and while there is a significant frequency of aberrant segregation of DNA in these cells it is much less severe than double mutants of either Δklp5 or Δalp14 cells combined with daml-A8 (Figure 5.20B). Therefore it seems while both alleles daml-127 and daml-A8 cause resistance to the microtubule-depolymerising drug TBZ, they do not behave similarly
Figure 5.19: Spot assay comparing dam1-A8 and dam1-127 growth

Tenfold serial dilution spot assay plated onto rich agar YE5S plates, YE5S & Phloxin B plates incubated at 27°C or 36°C and YE5S plates containing 10µg/ml or 15µg/ml TBZ plated at 27°C and incubated for 3 days.
Figure 5.20: *dam1-127Δklp5* and *dam1-127Δalp14* cells show microtubule and chromosome segregation defects

(A) *dam1-127Δklp5* and *dam1-127Δalp14* cells were cultured in rich medium at 36°C for 6 hours. The cells were fixed and immunofluorescence of α-tubulin using α-TAT-1 antibody and DAPI staining was carried out and cells were viewed by fluorescence microscopy. The scale bar represents 10 μm. (B) Graph showing the frequency of mis-segregation of chromosomes in WT, *dam1-A8Δklp5*, *dam1-A8Δalp14*, *dam1-127Δklp5* and *dam1-127Δalp14* cells (N>200).
in terms of their genetic interactions with \(\Delta klp5 \) or \(\Delta alp14 \). The \(dam1-A8 \) mutant appears to be a more severe mutation than the simple C-terminal truncation mutant and cannot be thus simply explained as a C-terminal mutant.

5.10 Suppression of the \(dam1-A8\Delta klp5 \) mutant

The \(dam1-A8\Delta klp5 \) mutant shows severe growth and chromosome segregation defects when incubated at the restrictive temperature. To gain a different perspective on the reasons for the lethality of these double mutant cells and an insight into the overlapping functions of both the Dam1/DASH complex and Klp5 and Klp6, we carried out a multi-copy suppressor screen on the \(dam1-A8\Delta klp5 \) double mutant. We also examined whether the severity of bi-orientation defects in the double mutant might be due to extremely stable kinetochore-microtubule attachments in these cells as indicated by hyper-resistance to TBZ at the permissive temperature. To address this we examined if the addition of TBZ at the restrictive temperature, which would de-polymerise the rigidly attached microtubules, would cause suppression of the temperature sensitive growth defect in these cells.

5.10.1 TBZ rescues the lethality of \(dam1-A8\Delta klp5 \) cells at 36°C

The single \(\Delta klp5 \) and \(dam1-A8 \) mutants both display resistance to the addition of the spindle microtubule de-polymerising drug TBZ. We postulated that the severe kinetochore bi-orientation defects in the double \(dam1-A8\Delta klp5 \) cells might be due to extremely stable microtubule attachments at the kinetochores of this mutant. The attachments to the kinetochores in these cells may be of such a stable nature with no dynamic instability that any incorrect merotelic or syntelic attachments to the kinetochores that occur would not be resolved due to the rigidity of the spindle microtubules, preventing turn-over of attachments and the establishment of bipolar attachments. We hypothesized that induction of dynamic instability in these spindle microtubules through the addition of TBZ, that causes microtubule de-polymerisation, could suppress the inability of these cells to correct erroneous kinetochore attachments and rescue the temperature sensitive growth defect at the restrictive temperature. We therefore carried out a serial dilution spot assay to assess
the growth of our double mutant at the restrictive temperature in the absence and presence of varying concentrations of TBZ.

In this assay we included several control strains such as wild-type, Δadam1, Δklp5 and the single mutant dam1-A8. The wild-type and Δadam1 cells grew normally at either 27°C or 36°C on rich medium in the absence of TBZ, but showed no growth in the presence of 20μg/ml TBZ at 27°C. These strains were able to grow, however, on 20μg/ml TBZ when incubated at 36°C, highlighting that the efficacy of the drug is reduced at this higher temperature (Figure 5.21). Likewise the single mutant dam1-A8 grew normally on rich medium at either 27°C or 36°C and showed better growth than the wild-type strain on TBZ at either 27°C or 36°C. The Δklp5 strain showed strong growth, as expected, in the presence of TBZ at 27°C and could grow on concentrations up to 75μg/ml of TBZ at 36°C. The double mutant dam1-A8Δklp5 showed TBZ resistance at 27°C, growing on plates containing a concentration of 20μg/ml and consistent with previous results showed severe growth defects on both YE53 and Phloxin B plates when incubated at the restrictive temperature 36°C. This temperature sensitivity was rescued by the addition of TBZ, with dam1-A8Δklp5 cells able to grow as well as Δklp5 cells at the restrictive temperature, on plates containing 20, 50 or 75μg/ml concentration of TBZ (Figure 5.21). It seems that the addition of this microtubule de-polymerising drug can suppress the growth defects seen when the double dam1-A8Δklp5 cells are incubated at the restrictive temperature. We theorise that addition of TBZ to these cells at this temperature allows the stable rigid microtubule-kinetochore attachments to undergo dynamic instability, and thus allow turnover of erroneous attachments at the kinetochore and the subsequent establishment of properly bi-oriented kinetochores.

We wished to understand the reasons why the addition of TBZ to dam1-A8Δklp5 cells at the restrictive temperature resulted in suppression of the temperature sensitive growth defects. We therefore attempted to carry out a rescue experiment on dam1-A8Δklp5 cells in liquid culture at the restrictive temperature through the addition of MBC/CBZ. We first tried examining both wild-type and dam1-A8Δklp5 cells at 27°C or 36°C before and following the addition of 50μg/ml MBC/CBZ, to assess whether the addition of this drug would reduce the incidence of chromosome mis-segregation in the double mutants at 36°C. This concentration was far too high and resulted in a high frequency of even wild-type cells at 27°C with chromosome mis-segregation and “cut” phenotype. We reduced the concentration of the drug to 25μg/ml and 20μg/ml
and tried several times to develop an optimised experimental system to assess the physiological reasons for suppression of the double mutant following microtubule de-polymerisation, however, we could not find a concentration of MBC/CBZ sufficient to induce microtubule de-polymerisation without causing a high frequency of chromatin defects in the wild-type or dam1-Δ8Δklp5 strain. Therefore while we can reproducibly see that the addition of TBZ rescues the growth defects of our double mutant at the restrictive temperature we cannot visualise which aspects of the dam1-Δ8Δklp5 phenotype are suppressed under these conditions.

5.10.2 Does Δmal3 suppress dam1-Δ8Δklp5 cells?

The suppression of the temperature sensitivity of dam1-Δ8Δklp5 cells by the addition of TBZ caused us to wonder if a mitotic mutant that results in destabilised microtubule plus ends might also suppress the ts phenotype in dam1-Δ8Δklp5 cells. Mal3 is the fission yeast EB1 homologue. It acts as a plus end microtubule binding protein and plays an important role in cell polarity, cytoplasmic microtubule and mitotic spindle integrity and chromosome stability in mitosis (Asakawa and Toda, 2006; Beinhauer et al., 1997; Busch and Brunner, 2004; Chen et al., 2000; Kerres et al., 2004; Sandblad et al., 2006). Deletion of Mal3 results in short interphase microtubule structures, abnormal mitotic spindles, and the failure of cells to resolve syntelic attachments resulting in mono-polar segregation defects (Asakawa and Toda, 2006; Asakawa et al., 2005). We therefore pondered whether deletion of Mal3 in a dam1-Δ8Δklp5 background would also suppress the growth defects of this double mutant at the restrictive temperature in a similar manner to the addition of TBZ. We constructed the triple mutant strain dam1-Δ8Δklp5Δmal3. This strain was viable but did not result in suppression of our dam1-Δ8Δklp5 mutant. We then carried out a serial dilution spot assay to assess the growth of this triple mutant and compared it against wild-type, the single mutants Δmal3, Δklp5, dam1-Δ8, the double mutant dam1-Δ8Δklp5 and dam1-Δ8Δmal3 and Δmal3klp5 which we also generated by random spore analysis selection. Deletion of mal3 in the dam1-Δ8Δklp5 strain does not result in suppression of the temperature sensitive growth defect of the double dam1-Δ8Δklp5 mutant. The triple mutant cells grow even more slowly than the double dam1-Δ8Δklp5 mutant when incubated on plates at the permissive temperature (Figure 5.22A). The double dam1-Δ8Δmal3 mutant shows some synthetic growth defects at 36°C.
Figure 5.21: The addition of TBZ rescue the temperature sensitive growth defects of dam1-A8Δklp5 cells at the restrictive temperature

Tenfold serial dilution spot assay of WT, Δdam1, dam1-A8, Δklp5, and dam1-A8Δklp5 cells in the presence and absence of TBZ. The cells are plated onto rich agar YESS plates, YES5 & Phloxin B plates incubated at 27°C or 36°C and YESS plates containing 20μg/ml, 50μg/ml or 75μg/ml TBZ plated at 27°C or 36°C and incubated for 3 days.
compared to the respective single mutants, however, these cells still retain the ability to grow in the presence of TBZ as well as the single dam1-A8 cells, unlike Δdam1mal3 cells which show an exacerbated sensitivity to TBZ.

We next carried out immunofluorescence staining of microtubules in fixed asynchronous wild-type, Δmal3, dam1-A8, dam1-A8Δmal3, and dam1-A8Δklp5mal3 cells and examined cells under Zeiss fluorescent microscope. We quantified the number of mitotic spindles to indicate the mitotic index, and also quantified the frequency of chromosome mis-segregation in these cells. The microtubule staining of Δmal3 cells revealed short interphase microtubules and weakly stained spindles. The dam1-A8Δmal3 cells however, did not show short interphase or weak spindle microtubules, which is consistent with the retained resistance to TBZ in these cells (Figure 5.22B). The dam1-A8Δmal3 cells did not show an increased frequency of mitotic cells compared to the single Δmal3 or dam1-A8 mutants, however the incidence of mis-segregation in the dam1-A8Δmal3 cells increased dramatically (Figure 5.22C). The triple mutant dam1-A8Δklp5mal3 cells showed a substantially high level of chromosome mis-segregation even at the permissive temperature, which was expected due to the poor growth of this strain on plates at 27°C.

There is a decrease in the mitotic index in this triple mutant strain compared to the dam1- A8Δklp5 cells, this is probably due to the high frequency of dead cells with abnormal microtubule staining and mis-segregated chromosomes, which are included in the quantification of total cells (Figure 5.22B&C). Therefore we can conclude that deletion of Mal3 does not suppress the temperature sensitive growth and mitotic defects seen in dam1-A8Δklp5 cells.

5.10.3 **Suppressor screen for dam1-A8Δklp5 cells**

We carried out a multi-copy suppressor screen on the dam1-A8Δklp5 mutant to garner an insight into how the Klp5 and Klp6 kinesins and the Dam1/DASH complex function to regulate bi-orientation of kinetochores in mitosis. We transformed our dam1-A8Δklp5 mutant cells with a genomic library, cloned into the PAL-SK vector, which spanned the entire genome of *S. pombe*. The vector contained LEU2 and ampicillin markers to enable selection of transformed cells on EMM –leucine plates. The transformants (approximately 4000) were then replica plated onto YES5 and Phloxin B plates, incubated at 27°C, 34°C, 35°C and 36°C for approximately 3 days
Figure 5.22: Deletion of Mal3 does not suppress the growth or mis-segregation defects of dam1-A8Δklp5 cells

(A) Tenfold serial dilution spot assay of WT, Δmal3, dam1-A8, Δklp5, dam1-A8Δklp5, dam1-A8Δmal3, Δmal3klp5 and dam1-A8Δklp5mal3 cells. The cells are plated onto rich agar YE55 plates, YE55 & Phloxin B plates incubated at 27°C or 36°C and YE55 + 10μg/ml, TBZ plated at 27°C and incubated for 3 days. (B) Δmal3, dam1-A8, dam1-A8Δmal3 and dam1-A8Δmal3klp5 cells were cultured in rich medium at 27°C, shifted to 36°C for 4 hours and fixed. Cells were processed and immunofluorescence of α-tubulin using α-TAT-1 antibody and DAPI staining was carried out. Cells were viewed by fluorescence microscopy. The scale bar represents 10 μm. (C) Graphs of the mitotic and mis-segregation indexes as counted from WT, Δmal3, dam1-A8, dam1-A8Δmal3, dam1-A8Δklp5 and dam1-A8Δmal3klp5 cells (N=200).
and growth of each colony at each temperature carefully analysed. Colonies that were now capable of growth when incubated at 34°C, 35°C or 36°C were selected for further analysis as possible suppressor candidate (Figure 5.23A).

Fifteen suppressor candidates were selected and were then re-streaked onto EMM - leucine, and Phloxin B containing plates at 27°C, 35°C and 36°C for confirmation of the suppression. A colony, which was identified as a negative suppressor in our screen, was included in the plate assay as a negative control. Only 6 of the candidates showed plasmid (leucine +) dependent suppression of the temperature sensitive phenotype in this assay (Figure 5.23B). These six remaining candidates, #2, #6, #7, #9, #10 and #15, were subjected to a further plasmid dependency test to ensure that the temperature sensitive suppression was dependent on the presence of the plasmid and not due to a background mutation (data not shown). Following this, the plasmids were extracted from the remaining candidates and digested with a restriction enzyme to ensure the presence of an insert in the plasmid (data not shown). Candidate #7 strangely did not appear to have an insert in its respective plasmid and was disregarded at this stage, however the other candidates all contained an insert and were selected for sequencing.

Sequencing of the remaining 5 candidates was carried out with candidates #2 and #15 identified as carrying the klp5⁺ gene, and candidates #6 and #9 were identified as carrying the dam1⁺ gene (Figure 5.23C). We were pleased to identify klp5⁺ in our screen, as expected; as this highlighted that the screen was indeed working. The identification of dam1⁺ also validated the screen, however we had not been sure whether this would be identified due to the complex "gain of function" nature of the dam1-A8 allele. Candidate #10 was identified as a gene called dsk1 (Figure 5.23C). The dsk1⁺ gene was first identified as a multi-copy suppressor of cold-sensitive Dis1 mutants (Ohkura et al., 1988). It was presumed that "dis" mutants could enter mitosis but due to the chromosome non-disjunction and spindle elongation phenotype that these cells could not exit properly from mitosis. It had been shown that overexpression of Dsk1 causes a delay in G2/M progression and therefore overproduction of Dsk1 could somehow allow these cells to sufficiently exit mitosis (Ohkura et al., 1988; Takeuchi and Yanagida, 1993). Dsk1 is a serine/threonine protein kinase that is itself phosphorylated in G2/M by Cdc2. This protein is not essential for viability but plays a possible role in mitotic regulation (Takeuchi and Yanagida, 1993). Dsk1 localises to the cytoplasm in interphase but in mitosis it becomes localised to the
(A)

Genomic library -leucine marker

Transform cells with library

Select transformants on Leu- plates

27°C-leucine

Replica plate

(B)

Select colonies that can grow at restrictive temperature

EMM-leucine 27°C

PhB-35°C

PhB-36°C
Figure 5.23: Multi-copy suppressor screen of \textit{dam1-A8\Delta klp5}

(A) Diagrammatic representation of the strategy used to identify multi-copy suppressor candidates in a \textit{dam1-A8\Delta klp5} background. (B) Confirmation of the plasmid dependency suppression of temperature sensitivity of \textit{dam1-A8\Delta klp5} cells. WT, suppressor candidates #1-15 and negative control strains were streaked onto EMM –leucine plates at 27°C, Phloxin B plates at 27°C, 35°C and 36°C and incubated for 3 days.
nucleus where it associates with spindle microtubules and the SPBS (Nabeshima et al., 1995). Intriguingly Dsk1 has more recently been identified as a multi-copy suppressor for the "hos" family of mutants including Δhos3 (Fission yeast Hsk3 Dam1/DASH component) (Aoyama et al., 2000). Therefore it is not surprising that Dsk1 also suppresses a mutant defective in proper Dam1 function, as this Dsk1 protein may play an important regulatory role in chromosome segregation and mitotic regulation.

5.11 Discussion

We previously showed that deletion of Dam1/DASH subunits in a Δklp5 or Δklp6 background is synthetically lethal, a result which was also corroborated by Sanchez-Perez et al. To gain an understanding of why these cells die a germination grow-out experiment was carried out on cells doubly deleted for both klp5 and dam1. (Sanchez-Perez et al., 2005) These double null mutants could only undergo a few divisions before lethality. These cells were defective in forming proper bi-polar attachments of the spindle to the kinetochores, with multiple Mad2-GFP foci often visualised per cell (Sanchez-Perez et al., 2005). Sister chromatid cen2-GFP separation was monitored both in these double deletion mutants and in the single Δklp5 and Δdam1 mutants. The single Δdam1 mutant cells displayed mono-polar segregation with a predominantly 2:0 or 1:0 separation pattern of cen2-GFP. The Δklp5 cells displayed a phenotype consisting of 'lagging' chromosomes, with mono-polar segregation defects never visualised in this cells. The double null mutants Δdam1klp5 showed a range of mitotic cen2-GFP separation defects. Some of these double null mutant cells, approximately 20%, showed a normal 1:1 segregation pattern of the cen2-GFP sisters but not all the DNA was separated normally. Approximately 19% of the cells displayed a typical non-disjunction phenotype, 25% of the cells separated their chromosomes in a mono-polar manner to the same pole, and 34% of the cells displayed a 'lagging' phenotype whereby one of the two cen2-GFP sisters failed to separate to a pole (Sanchez-Perez et al., 2005). It was therefore proposed that the Dam1/DASH complex and Klp5 and Klp6 play an essential overlapping role in the correction of mal-oriented sister kinetochores, whereby the Dam1/DASH complex predominantly corrects mono-polar syntelic attachments in a similar manner to its homologous complex in the budding yeast, and the kinesins Klp5 and Klp6 function to turn-over merotetrically attached kinetochores.
In this chapter we attempted to further address the reasons for the synthetically lethality between the Dam1/DASH complex and Klp5 and Klp6. We carried out a mutagenesis screen for dam1 mutants in a Δklp5 background. We expected a poor transformation efficiency due to the lethal nature of the double Δdam1Δklp5 null cells; any mutations that severely impaired Dam1 function at the permissive temperature in this Δklp5 background would also result in lethality. Therefore we expected that any mutant selected would show a strong mutant phenotype in the Δklp5 background but in a klp5+ background would show a negligible phenotype. This turned out to be the case with screening leading to the identification of a mutant dam1 allele we termed dam1-A8 that showed a strongly temperature sensitive phenotype when combined with a Δklp5 background but that did not show a very strong phenotype as a single dam1-A8 mutant in a klp5+ background.

We ensured that the temperature sensitivity of this double dam1-A8Δklp5 mutant was due to the presence of both dam1-A8 and Δklp5 and not some background mutation, confirming the co-segregation of the ts' phenotype with markers for both mutants by tetrad analysis and random spore analysis (Figure 5.3). The dam1-A8 mutant was sequenced and found to contain two point mutations in the C-terminal region of the Dam1 protein, resulting in amino acid changes H126R and E149G. Neither of these residues are conserved in the S. cerevisiae sequence, however the area around both these residues seems quite conserved amongst the two fungal species, possibly indicating an important role for this region of the Dam1 C-terminal in mitotic regulation (Figure 5.4).

This dam1-A8 mutant demonstrated resistance to the addition of the microtubule spindle poison TBZ independent of the Δklp5 background. A C-terminal dam1 truncation mutant dam1-127 exists which is also resistant to TBZ and was originally identified as a multi-copy suppressor for mal3-1 and cdc13-117 mutants. We postulated whether the dam1-A8 mutant is disrupted in its C-terminal by the presence of the two mutation sites and thus acts in a similar manner to a C-terminal disruption, pheno-copying the dam1-127 truncation. We first compared both the dam1-A8 and dam1-127 mutants and found both to be strongly resistant to the presence of TBZ. We then compared the genetic interactions of both dam1-A8 and dam1-127 mutants in a Δklp5 and Δalp14 mutant background. The dam1-A8Δklp5 and dam1-A8Δalp14 cells showed a more severe and dramatic phenotype than the dam1-127Δklp5 or dam1-127Δalp14 cells (Figure 5.20). Therefore there appears to be some differences
between the *dam1*-A8 and *dam1*-127 allele with respect to genetic interactions. The *dam1*-A8 mutant seems to be a more severe mutation than the *dam1*-127 mutant, when combined with either Δklp5 or Δalp14 backgrounds, indicating it is not just a simple C-terminal disruption mutation.

We examined the localisation of the Dam1-A8 protein in both single *dam1*-A8 and *dam1*-A8Δklp5 cells at both the permissive and restrictive temperature to ascertain if its localisation is abolished following incubation at the restrictive temperature. Dam1-A8-GFP kinetochore localisation appeared to be compromised even at the permissive temperature in both strains (Figure 5.5). The localisation was further dramatically reduced in both strains following incubation at the restrictive temperature. We postulate that the reason for the lethality of this *dam1*-A8Δklp5 strain at the restrictive temperature and its slow growth at even the permissive temperature is due to the decrease in localisation of the Dam1-A8 protein at the kinetochore. We cannot however, exclude the possibility that a small amount of Dam1-A8 is still retained at the kinetochore at the restrictive temperature.

We wished to ascertain whether the Dam1/DASH complex itself was intact in the *dam1*-A8Δklp5 mutant following incubation at the restrictive temperature. We were unable to visualise various Dam1/DASH subunits by western blotting and tried various protein extraction methods to enable the detection of the complex in extracts but to no avail. Therefore we examined Ask1-GFP localisation in the double mutant at both permissive and restrictive temperature, and in Δdam1 cells. Ask1 does not require Dam1 for its kinetochore localisation, as it could still localise to mitotic cells in Δdam1 cells at 20°C, 27°C or 36°C. Intriguingly the signal intensity of Ask1-GFP was reduced in *dam1*-A8Δklp5 cells at the permissive temperature and almost completely abolished following incubation at the restrictive temperature (Figure 5.6). Perhaps residual kinetochore localised Dam1-A8 interferes with the Dam1/DASH complex structure or integrity in a way that is not seen when the Dam1 protein is deleted, however our understanding of the reasons for this remain elusive. It seems that the *dam1*-A8 mutant is not a loss of function mutant as the Δdam1 null strain, but behaves more as a 'gain of function' mutant.

This evidence that *dam1*-A8 does not behave as a loss of function mutation is further corroborated by the differences between the Δdam1 cells and *dam1*-A8 cells with respect to TBZ. The Δdam1 strain is slightly sensitive to the addition of TBZ, however the single *dam1*-A8 mutant is strongly resistant to the microtubule de-
polymerising drug. Furthermore, incubation of the dam1-A8 mutant at 20°C does not cause the appearance of the typical "dis" mutant phenotype seen in Δdam1 and other Dam1/DASH null mutants at this temperature, indicating that this dam1-A8 mutant is quite distinct phenotypically from a Dam1 deletion. Moreover, analysis of cen2-GFP separation in live mitotic cells reveals the major phenotype of Δdam1 to be monopolar sister-chromatid separation and "spindle collapse" phenotype that is never seen in dam1-A8 cells. The dam1-A8 mutant instead displays a slight chromosome congression defect with sister-chromatids showing slight oscillations and "shuttling" between the two poles before one of the sisters separates to the opposite pole (Figure 5.16). It would seem therefore that several lines of evidence underline the fact that the novel dam1 allele identified in our mutant screen behaves differently from a complete dam1' deletion. There are some similarities however between the two dam1 alleles. Both strains Δdam1 and dam1-A8 are synthetically lethal in combination with deletion of the chTOG protein Dis1. Deletion of the other chTOG member, alp14' in either Δdam1 or dam1-A8 is not lethal but yields cells that are extremely sick. The Δdam1alp14 cells show little growth even at the permissive temperature and are extremely sensitive to the addition of TBZ. These cells show severe microtubule morphology defects and a huge rate of chromosome mis-segregation. The dam1-A8Δalp14 cells are not as sick as the double null mutants; they can grow when incubated at 27°C but show temperature sensitivity when incubated at 36°C with chromosome mis-segregation defects, albeit at a reduced frequency than the double null mutants (Figure 5.18). It is interesting to note that despite the fact that these double mutant cells show resistance to TBZ, analysis of their microtubule structures reveals similar microtubule structures as seen in Δdam1mal3 cells with broken and disorganised microtubules (Figure 5.22). Perhaps in both strains a disruption in the balance of microtubule dynamics causes the same phenotypic outcome in relation to microtubule integrity and chromosome segregation.

The spindle assembly checkpoint is absolutely required for the viability of the double mutant dam1-A8Δklp5 at even the permissive temperature (Figure 5.13). The spindle assembly checkpoint must be required to provide these mutant cells with time to activate an error repair pathway to correct some of the attachment and/or bi-orientation defects in these double mutant cells. Perhaps this pathway involves the Aurora B kinase homologue in S. pombe Ark1, in a similar manner to the important role Ipl1 (budding yeast Aurora B) plays in Dam1/DASH function and error correction in the budding yeast. Ark1 is an essential protein in the fission yeast and it
was therefore not possible prior to writing to test any possible role for this kinase with the Dam1/DASH complex in establishing proper bi-polar attachments and bi-oriented chromosomes. Recently however Ark1 temperature sensitive mutants have become available, so it would be interesting to see how these mutants interact genetically with both Δdam1 and other Dam1/DASH nulls and our dam1-A8Δklp5 strain.

We demonstrated that the spindle assembly checkpoint is activated, not only in the double mutant dam1-A8Δklp5, but also in the single dam1-A8 mutant at both permissive and restrictive temperatures, with an increase in the frequency of mitotic cells and cells displaying Mad2-GFP foci (Figure 5.11). This indicates that, despite the low incidence of chromosome segregation defects seen in these cells, some mitotic defect is present that leads to the activation of the checkpoint. Indeed this is attested to by our visualisation of chromosome congression defects in this single mutant, with oscillations in the cen2-GFP signals prior to separation of the sister-chromatids. The double mutant dam1-A8Δklp5 showed a similar level of mitotic cells as the single dam1-A8 at the permissive temperature, but this rapidly increased following incubation at the restrictive temperature. The frequency of double mutant cells displaying Mad2-GFP foci however remained unchanged at either temperature with approximately 25% of cells with one or more Mad2 signal. It also appears that these Mad2 foci persist in these double mutant cells beyond mitosis and can be visualised in post-anaphase and G1/S phase cells. The spindle assembly checkpoint is activated in these cells but for some reason mitosis proceeds in a defective manner, leading to mis-segregation of chromosomes, however, the Mad2-GFP signals still remains associated with the kinetochores even as cells exit mitosis and enter a new round of the cell cycle. We postulated that the spindle assembly checkpoint may be bypassed in these cells, and perhaps it is bypassed more efficiently at the permissive temperature leading to an accumulation of mitotic cells at the restrictive temperature despite the frequency of cells displaying Mad2-GFP foci remaining unchanged.

To examine if the spindle assembly checkpoint is maintained in these double mutant cells we arrested the double mutant and wild-type cells with hydroxyurea and then treated the cells with CBZ/MBC at 27°C or 36°C for 5 hours to induce a mitotic arrest due to de-polymerisation of the microtubules. Incubation of the double mutant in the spindle drug caused a massive increase in the frequency of “cut” cells compared to the mutant without the drug, or wild-type cells. The timing of the appearance of
"cut" cells was the same as wild-type, however, which indicates that the spindle assembly checkpoint mediated mitotic arrest is maintained as well in the double mutants as in wild-type cells. Perhaps it would be more relevant to test the maintenance of the spindle assembly checkpoint in these cells under conditions where a mitotic arrest is induced through the disruption of tension, however due to time and strain constraints this was not assessed.

Careful analysis of the aberrant separation pattern of DNA in the synchronised and fixed dam1-A8Δklp5 cells, showed a range of mitotic mis-segregation defects including lagging chromosomes, unequal distribution of chromatin, mono-polar separation of chromosomes and fragmented DNA. This result is consistent with the germination grow-out experiment carried out by Sanchez-Perez et al. whereby they visualised lagging chromosomes and mono-polar segregation defects in Δdam1klp5 cells prior to cell death, indicating that perhaps Kl5p/6 and the Dam1/DASH complex play distinct but overlapping roles in error correction and the resolution of attachments to promote proper bi-orientation.

We carried out live analysis of cen2-GFP sister-chromatid separation in the double mutant cells and in single Δklp6 cells as a control. The Δklp6 cells displayed a "shuttling" phenotype whereby the cen2-GFP sister-chromatids oscillated from one pole to the other prior to the separation of one of the sisters across the cell to the opposite pole. These cells did not demonstrate any real congression of the sister-chromatids on the spindle prior to anaphase A (Figure 5.16). It is presumed that these "shuttling" chromosomes in Δklp6 cells are merotetrically oriented, with each kinetochore attached to one or more microtubules from each pole, thus causing the cells to be pulled from one pole to the other. However, many of these Δklp6 cells do undergo equal chromosome segregation and considering that all of the mitotic Δklp6 cells display these mal-oriented congression deficient chromosomes, there must therefore exist a further redundant error correction pathway apart from Kl5p/6 to facilitate the repair of some of these "shuttling" chromosomes.

The double dam1-A8Δklp6 cells also displayed this "shuttling" phenotype showing oscillations of the cen2-GFP sisters from one pole to the other prior to anaphase onset. More than half of the cells (7/12) separated their sister-chromatids in an equal 1:1 manner despite the "shuttling" congression defect. The remaining cells (5/12) displayed a mono-polar segregation pattern with both cen2-GFP sister-chromatids
segregating to the same spindle pole. Four of these five cells displayed congression defects and typical “shuttling” of the sister-chromatids prior to the cen2-GFP sisters remaining associated with only one pole. The other cell did not demonstrate the “shuttling” phenotype and the cen2-GFP sisters became associated with one pole and did not undergo any further oscillations in a manner reminiscent of Δadam1 cells (Figure 5.16). It would seem that in this and Δadam1 cells the sister-chromatids are attached in a syntelic manner with each sister-kinetochore attached to the same pole. The dam1-A8Δklp6 cells that display an oscillatory phenotype cannot be syntetically or monotellically attached and must be attached in a merotelic fashion. It would seem that these cells that display “shuttling” followed by mono-polar segregation may be highlighting the sequential steps involved in resolution of erroneous attachments in fission yeast cells, whereby merotelic attachments may be first resolved to attachments of a mono-polar nature in a stochastic manner before proper bi-polar attachments can be established. Perhaps this population of dam1-A8Δklp6 cells can somehow resolve the merotelic attachments but are unable to resolve the mono-polar attachments thus causing segregation of a mono-polar nature. It is worth pointing out, however, that another redundant error correction mechanism must exist in these cells as 7/12 of these cells can resolve both attachment defects to undergo normal cen2-GFP separation. It is tempting to speculate as to which proteins might play a role in such a process, Dis1, Mal3, some novel unknown protein, however as of yet this sequential model is speculative and more work needs to be done to establish a concrete model of error-correction in the fission yeast mitosis.

While we have not, due to time constraints, examined cen2-GFP sister-chromatid separation in the triple dam1-A8Δklp6mal3 cells. We have carried out some preliminary examination of dam1-A8Δklp5mal3 triple mutant cells. These triple mutant cells appear more defective than the double dam1-A8Δklp5 cells with very poor growth and a high frequency of chromosome mis-segregation even when incubated at the permissive temperature, suggesting that deletion of Mal3 exacerbates the growth and mitotic defects seen in dam1-A8Δklp5 cells. Indeed the double mutant dam1-A8Δmal3 show synthetic growth defects and dramatic increase in the frequency of chromosome mis-segregation at 36°C compared to the single dam1-A8 or Δmal3 mutants (Figure 5.22). These results could be an indicator that Mal3 also plays an important overlapping role in error-correction and kinetochore-microtubule attachment in concert with Klp5/6 and the Dam1/DASH complex. It would be interesting to examine the separation pattern on cen2-GFP sister-chromatids in these
$daml^{-}A8\Delta mal3$ and $daml^{-}A8\Delta klp6mal3$ cells to understand if Mal3 is participating in another facet of this error correction and bi-polar establishment pathway.

Finally it is worth considering our suppression studies on our $daml^{-}A8\Delta klp5$ double mutant. We demonstrated that the addition of TBZ at the restrictive temperature suppresses the temperature sensitive growth defects of the $daml^{-}A8\Delta klp5$ mutant. This seems to suggest that the reasons for the extreme lethality of these cells at the restrictive temperature is due to the rigidity and hyper-stabilised nature of the spindle microtubules in these cells, which prevents proper end on bi-oriented attachments to the kinetochore. Therefore it would seem that the addition of TBZ to these cells allows these rigid microtubules to become more dynamic and perhaps in this way facilitate turnover of the improperly attached kinetochores and the establishment of properly bi-oriented sister chromatids.

We carried out a multi-copy suppressor screen on our $daml^{-}A8\Delta klp5$ mutant. We identified two copies of $klp5^+$ and two copies of $daml^+$ as suppressors of our double mutant. This validated the effectiveness of the screen as a method to identify genes that may interact genetically with $daml$ and $klp5/6$. We were mildly surprised to identify $daml^+$ in this screen as we had been unsure whether it would be identified, due to the complex nature of the $daml^{-}A8$ mutant. We further identified a gene termed $dskl^+$, which is a serine/threonine kinase that has been implicated in mitotic regulation. Intriguingly Dsk1 was identified both as a multi-copy suppressor of Dis1 mutants, but also as a multi-copy suppressor of $Ahos3$ (fission yeast Hsk3). It had been shown that over-expression of Dsk1 causes a delay in G2/M progression and it was presumed that over-expression of this gene suppresses Dis1 mutants, which can enter mitosis but are presumed unable to exit mitosis, by allowing these mutants to exit mitosis (Ohkura et al., 1988; Takeuchi and Yanagida, 1993). Dsk1 has not been extensively characterised. It is known that it can localise to the nucleus in mitosis, where it is thought to associate with spindles and SPBS. It has been shown that Dsk1 itself is phosphorylated, possibly in a Cdc2 dependent manner and it is thought that this somehow may regulate its localisation and/or kinase function. Perhaps Dsk1 is an important regulatory kinase not just in the G2/M transition but also in mediating proper kinetochore attachments and orientation and ensuring accurate sister chromatid separation during mitosis. However, as of yet the role for Dsk1 remains to be seen.
Chapter 6

6 Discussion

6.1 Conservation of the Dam1/DASH complex

The Dam1/DASH complex was first identified in the budding yeast *S. cerevisiae* and shown to be an essential 10 component complex required for the attachment of spindle microtubules to the kinetochore in a bi-oriented manner and to ensure the resolution of incorrect kinetochore configurations to an amphitelic bipolar attachment state (Cheeseman et al., 2002; Janke et al., 2002; Kang et al., 2001). We investigated whether this complex is conserved in the fission yeast by identifying homologous proteins by searching through the sequence databases. We initially identified 6 of the 10 fission yeast Dam1/DASH subunits with the remaining four proteins subsequently identified by Sanchez-Perez & J Millar. We demonstrated that the *S. pombe* Dam1/DASH proteins showed low but significant homology to their *S. cerevisiae* counterparts and that several of the residues and motifs shown to be required for Dam1/DASH function in the budding yeast are conserved highlighting a possible conservation of the nature and function of this complex in the fission yeast. However we also identified several budding yeast Dam1/DASH motifs and residues that were shown to be important for the function of the complex that are not conserved in the fission yeast indicating that despite an overall conservation of the complex and function between the two organisms there are differences and divergences in structure and function of the complex between the two species.

6.2 Localisation of the Dam1/DASH complex

The budding yeast Dam1/DASH complex localises to the kinetochores and SPBs throughout the cell cycle and to the mitotic spindle (Cheeseman et al., 2001; Enquist-Newman et al., 2001; Hofmann et al., 1998; Janke et al., 2002; Jones et al., 1999; Li et al., 2002). In the fission yeast the kinetochores only become attached to the microtubules during mitosis, but in the budding yeast the kinetochores are attached to microtubules throughout the cell cycle. We expected therefore that the fission yeast
Dam1/DASH complex would show only mitotic specific kinetochore and/or spindle localisation due to the nature of the fission yeast system. As expected the majority of the fission yeast Dam1/DASH complex localises to the kinetochores and plus ends of the microtubules only during mitosis. However, Dad1 localises in a constitutive manner to the kinetochore throughout the cell cycle. This suggests that Dad1 may act as an anchor for the recruitment of the mitotic specific Dam1/DASH members during mitosis. Indeed we demonstrated that Dam1-GFP localisation to the kinetochore is abolished in Δdad1 cells but not vice versa. Furthermore in a recently published paper Kobayashi et al. demonstrated that Dad2 and Ask1 localisation to the kinetochore is abolished in Δdad1 cells (Kobayashi et al., 2007). Therefore it seems that Dad1 acts as a platform to facilitate the docking of the mitotic specific Dam1/DASH complex to the kinetochore during mitosis.

In the budding yeast recruitment of outer kinetochore components such as the Dam1/DASH complex requires a stable and intact kinetochore structure. Indeed the budding yeast Dam1/DASH complex has been shown to localise to the kinetochore in a CBF3 and Ndc80 complex dependent manner (Janke et al., 2002; Jones et al., 2001). We examined the kinetochore requirements for the localisation of Dad1 to the fission yeast kinetochore and demonstrated that the Mis6/Sim4 complex is required to tether Dad1 to the kinetochore in a constitutive manner thus enabling the docking of the mitotic specific Dam1/DASH members. We saw that Dad1-GFP localisation is abolished following a shift up to the restrictive temperature in mal2-1 and mis6-302 cells. Furthermore Liu et al showed that Dad1 can co-purify with the Mis6/Sim4 complex and seems to bind this core kinetochore structure throughout the cell cycle (Liu et al., 2005). We did not see delocalisation of Dad1 from the kinetochore in cnpl-1, mis12-537, nuf2-2 or nuf2-4 cells however, in a recent paper it was shown that Hos2(Dad2)-GFP is delocalised in nuf2-1 cells following incubation at the restrictive temperature and thus Nuf2 is required for the kinetochore localisation of the Dam1/DASH complex (Kobayashi et al., 2007). It may be that the Ndc80 complex is indeed required to tether both Dad1 and the mitotic Dam1/DASH complex to the kinetochore or perhaps more specifically the mitotic Dam1/DASH members. We cannot completely exclude this possibility at this time.

The budding yeast Dam1/DASH complex has been shown to require an intact mitotic spindle for its association with the kinetochores during G2/M phase (Li et al., 2002). We analysed the microtubule dependency of the Dam1/DASH complex by examining the localisation of Dam1-GFP in the temperature sensitive β-tubulin mutant nda3-
at the restrictive temperature and demonstrated that Dam1-GFP is delocalised at the restrictive temperature in these cells. At this time a conflicting report was published that suggested that the fission yeast Dam1/DASH complex was not dependent on microtubules. In this paper Ask1-GFP localisation was examined in the cold sensitive nda3-311 cells and shown to accumulate in over 80% of these mitotically arrested cells (Liu et al., 2005). We examined Dam1-GFP in this nda3-311 background and obtained the same result. We postulated that difference between the results in both strains might be due to the presence of residual microtubules in the nda3-311 strain even at the restrictive temperature. To remove any residual microtubules we ice-treated and fixed the nda3-311 cells following incubation at the restrictive temperature and then saw that Dam1-GFP was no longer able to localise in this strain, indicating that intact microtubules are required for the kinetochore localisation of the Dam1/DASH complex during mitosis. This microtubule dependency provides an attractive model whereby the mitotic specific Dam1/DASH subunits ‘surf’ in on the incoming spindle microtubule, bind to Dad1, which is already kinetochore localised and facilitate the tethering of the microtubule to the kinetochore (Figure 6.1).

6.3 **Dam1/DASH complex function**

The essential budding yeast Dam1/DASH complex plays a crucial role in the proper attachment of kinetochores to spindle microtubules during mitosis and ensures ‘turnover’ of mal-oriented kinetochore configurations to facilitate bi-orientations and tension establishment. We deleted several components of the fission yeast Dam1/DASH complex and found that this complex is not essential in this organism. Upon reflection this result does not seem that surprising given that the fission yeast centromere/kinetochore structure is a more complicated than that of the budding yeast and probably requires a myriad of mitotic regulators to ensure proper kinetochore architecture and functioning during mitosis. Perhaps the Dam1/DASH complex functions in concert with several other proteins to facilitate proper kinetochore-microtubule interactions and bi-orientation. Indeed we showed that Dam1/DASH deletion mutants are synthetic lethal with deletions of the kinesin-8 proteins.
Figure 6.1: Model of microtubule dependent 'surfing' of mitotic specific Dam1/DASH complex to Dad1 platform at the kinetochore during mitosis.
Klp5 and Klp6 and the TOG family member Dis1 perhaps highlighting that these proteins function together in an overlapping and essential role during mitosis. It is also of note that Klp5/6 and Dis1 also show a synthetic lethal interaction (Garcia et al., 2002).

Dam1/DASH mutants in the budding yeast display chromosome segregation defects during mitosis. Examination of sister-chromatid separation in spc34-3 or dam1-1 cells shows a high frequency of mono-polar segregated chromosomes with most associated to the mother spindle pole indicative of a failure in the establishment of proper bipolar amphi-telec attachments. Within the budding yeast the kinetochores only become attached to one spindle microtubule ensuring that syntelic attachments are the most common mal-oriented kinetochore configuration and that merotelic configurations are never seen. The fission yeast kinetochores are, on the other hand, capable of becoming syntetically or merotetically attached and thus it was interesting to visualise sister chromatid separation in the Dam1/DASH deletion mutants so see which kind of segregation defects were the most prevalent in this system. We first demonstrated that the fission yeast Dam1/DASH complex is required for high-fidelity chromosome segregation. Deletion of Dam1/DASH subunits leads to mis-segregation of chromosomes and mini-chromosome loss. Examination of the separation of cen2-GFP sister chromatids showed that a high frequency of mono-polar segregation defects occurs when the Dam1/DASH complex is compromised in the fission yeast as in budding yeast. This indicates that the fission yeast Dam1/DASH complex plays a similar role to the budding yeast complex in the resolution of syntetically mal-oriented kinetochores.

Examination of Dam1/DASH deletion mutants in the fission yeast at 20°C revealed a ‘dis’ phenotype of chromosome non-disjunction and broken spindles highlighting the importance of this complex for not only correct kinetochore attachment but also, anaphase spindle integrity as in the budding yeast. Typical ‘dis’ mutants phenotypically show condensed non-disjoined sister chromatids with elongation of the mitotic spindle, despite activation of the spindle assembly checkpoint, which can then collapse and break (Nabeshima et al., 1995; Nabeshima et al., 1998; Ohkura et al., 1988). This abnormal spindle elongation occurs due to a disruption in the balance of force between microtubule based pushing forces and the force that pulls the kinetochores towards the poles. When this force is disrupted in these mutants due to defective kinetochore-microtubule interactions it causes the abnormal elongation of prophase spindles and their breakage (Nabeshima et al., 1998). A similar disruption
in this balance of force probably occurs in the Dam1/DASH deletion cells causing the elongation and breakage of the mitotic spindle.

The budding yeast Dam1/DASH mutants activate the spindle assembly checkpoint to induce a mitotic delay. We also demonstrated the activation of the spindle assembly checkpoint and an increase in the mitotic index in fission yeast Dam1/DASH deletion mutants. We also investigated whether Dad1 may have a Dam1/DASH complex independent role at the kinetochore in conjunction with the Mis6/Sim4 complex, in spindle assembly checkpoint signalling. Mis6 has been implicated as the kinetochore binding receptor for Mad2, with no checkpoint activation in Mis6/Sim4 mutants (Saitoh et al., 2005). We postulated therefore that Dad1 may play an active role with the Mis6/Sim4 complex in the Mad2 checkpoint, however we discovered that the spindle assembly checkpoint is activated and maintained in Δdad1 cells under conditions of induced microtubule depolymerisation. However as a dad1 deletion, but not dam1, shows a synthetic lethal interaction with a temperature sensitive cpn1 mutant, Dad1 might play a centromere-related role independent of the Dam1/DASH complex.

It is probable that the activation of the spindle assembly checkpoint occurs to provide the Dam1/DASH mutant cells with sufficient time to repair any erroneous attachments and thus allow a normal segregation of chromosomes to proceed. In the budding yeast the spindle assembly checkpoint is activated and maintained through Aurora B/Ipl1 kinase activity. Ipl1 senses mal-oriented kinetochore configurations and induces the detachment of the spindle microtubule from the kinetochore, which facilitates the checkpoint signalling. It appears that Ipl1 creates unattached kinetochores through the phosphorylation of Dam1 and Spc34 and Ndc80 disrupting the interaction of the Ndc80 and Dam1/DASH complexes and the interaction of the microtubule to the kinetochore (Pinsky et al., 2006; Shang et al., 2003). In the fission yeast there is as of yet no evidence that the Dam1/DASH complex is regulated by Aurora B/Ark1 kinase activity. Any error correction pathway may act in a similar manner as in the budding yeast by detaching mal-oriented microtubule configurations and allowing new attachments to form, however as of yet the mechanics of such a system are unknown. We presume however, that such an error correction pathway may function through various mitotic regulators such as Klp5 and Klp6 to ‘turnover’ merotelic attachments and Mal3 to ‘turnover’ syntenic mono-polar attachments. Indeed further evidence for a possible functional overlap in erroneous attachment correction comes from studies on our double mutant dam1-$A8\Delta$klp5.
To understand the reasons for the synthetic lethality between the Dam1/DASH complex and the kinesins Klp5 and Klp6 we generated a temperature sensitive dam1 mutant in a Δklp5 background. The double mutant dam1-A8Δklp5 shows severe chromosome segregation defects following incubation at the restrictive temperature and is dependent on the spindle assembly checkpoint protein Mad2 for survival even at the permissive temperature. This indicates that these cells require the time provided by the spindle assembly checkpoint to activate a repair pathway in an attempt to ‘turnover’ erroneous kinetochore-microtubule configurations. Live analysis of cen2-GFP sister chromatid separation in these dam1-A8Δklp6 cells showed a typical klp6 phenotype of chromosome congression defects with oscillations of the sister chromatids from one pole to other pole prior to anaphase onset. More than half of the double mutant cells eventually went on to segregate their cells normally following the oscillations, however, 5/12 cells did not segregate their sister chromatids properly and mono-polar segregation defects occurred. It is presumed that the chromosome oscillation and shuttling phenotype in Δklp6 cells is indicative of the presence of merotelic attachments which cause the sisters to be pulled from one pole to the other. The double dam1-A8Δklp6 mutants that display an oscillatory phenotype must be attached in a merotelic manner and those that go on to segregate in a mono-polar fashion are highlighting the possible sequential steps involved in the resolution of these mal-orientations, whereby merotelic configurations may be first resolved to monotelic or syntelic mono-polar states before complete resolution to a proper bipolar attachment state. If the detachment of mal-connected microtubules occurred in a stochastic manner then merotelic kinetochores could be turned over to amphitelic, monotelic or syntelic configurations. These mono-polar connections could be then further processed to ensure the establishment of amphitelic bipolar and bi-oriented configurations (Figure 6.2). This mutant shows the important overlapping but distinct role that both Klp5 and Klp6 play with the Dam1/DASH complex in the ‘turnover’ of mal-oriented attachments and bi-oriented kinetochores.

Our dam1-A8 mutant contains two mutations sites in the C-terminal region H126R and E149G. The single dam1-A8 mutant in a klp5" background is resistant to the spindle depolymerising drug TBZ. The dam1-127 C-terminal truncation mutant identified as a multicopy suppressor of cdc13-117 and mal3-1 cells also demonstrates resistance to TBZ (Sanchez-Perez et al., 2005).
Figure 6.2: Model of 'turnover' of merotelic kinetochore configurations in a stochastic manner

Resolution of merotelic kinetochores may occur through disassembly of mal-oriented microtubules from the kinetochore. This probably occurs in a stochastic manner which give rise to monotelic, syntelic and amphitelic configurations. The mono-polar monotelic and syntelic configurations are perhaps further resolved to yield bipolar amphitelic configurations.
We showed that our \textit{dam1-A8} mutant does not act simply as a C-terminal disruption mutant as it shows a more severe genetic interaction with both \textit{Δalp14} and \textit{Δklp5} cells than the \textit{dam1-127} strain. The resistance of this \textit{dam1-A8} mutant to TBZ highlights that this mutant also differs in nature from \textit{Δdam1} cells, which are sensitive to TBZ. Furthermore the single \textit{dam1-A8} cells do not display a ‘\textit{dis}’ phenotype following incubation at 20\(^\circ\)C, which is seen in other Dam1/DASH null mutants, this is probably due to structural integrity defects in microtubules/kinetochores in terms of the establishment of chromosome bi-orientation. There are some similarities between both \textit{dam1} mutants however, with both mutant alleles being synthetically lethal with \textit{Δdis1} cells and synthetic growth and chromosome segregation defects in combination with \textit{Δalp14} cells and similar microtubule morphology defects in a \textit{Δmal13} background. This perhaps demonstrates that despite the differences between these strains with respect to microtubule stabilisation that similar phenotypic outcomes result due to a perturbation of microtubule dynamics and attachments in these cells albeit by contrasting mechanisms. This is also reinforced by the similar mono-polar segregation phenotype that is evident in both \textit{Δdam1} and \textit{dam1-A8Δklp6} cells. The suppression of the temperature sensitivity of the \textit{dam1-A8Δklp5} cells by the addition of TBZ at the restrictive temperature indicates that the lethality of these cells is caused by extreme stability and rigidity of the microtubule structures and attachments in these cells. The addition of TBZ induces microtubule dynamics and probably allows the detachment of rigid mal-oriented kinetochore-microtubule attachments. Perhaps hyper-stabilised attachments result in the same failure to ‘turnover’ mal-oriented kinetochores and a failure to promote bi-orientation that is also seen when microtubule attachments are weak such as in \textit{Δdam1} cells. Therefore the same phenotypic outcome occurs in both \textit{Δdam1} and \textit{dam1-A8Δklp5} cells despite the differences in microtubule dynamics in these cells due to a failure to resolve mal-oriented kinetochore states. It would seem that the Dam1/DASH complex, while dispensable for viability, is required in concert with other mitotic regulators to ensure high fidelity microtubule attachments and proper chromosome segregation.

We have demonstrated that the Dam1/DASH complex is conserved in the fission yeast and plays an important role in accurate chromosome segregation during mitosis by ensuring correctly configured kinetochore-microtubule interactions through the resolution and ‘turnover’ of mal-oriented mono-polar attachment states. It is of interest that this complex is not essential in the fission yeast and begs the question as to the conservation of this complex in higher organisms, which also contain
structurally and functionally complex centromere/kinetochore systems. There is one report of an Ask1 homologue in the fruitfly however this has not been confirmed. Currently the existence and identification of Dam1/DASH members in higher organisms remains elusive. Perhaps if this complex is conserved amongst vertebrates then it is also non-essential and functions in concert with a myriad of other mitotic regulators to ensure correct microtubule-kinetochore attachments, although this remains to be seen.
Chapter 7

7 Materials & Methods

7.1 Stocks & Solutions

The Cancer Research UK Central Services provided all media; pipette tips, autoclaved glassware, and some commonly used chemical solutions.

7.1.1 Media recipes

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMM (Minimal media used for proto/auxotrophic selection)</td>
<td>14.7 mM KH phthalate, 15.5 mM Na₂HPO₄, 93.5 mM NH₄Cl, 111 mM dextrose, salt and vitamin stocks.</td>
</tr>
<tr>
<td>DV clear media</td>
<td>EMM</td>
</tr>
<tr>
<td>N₂ starvation media</td>
<td>EMM – NH₄Cl</td>
</tr>
<tr>
<td>L Broth (for bacteria)</td>
<td>170 mM NaCl, 0.5% (w/v) yeast extract, 1% (w/v) bacto-tryptone, pH 7.0.</td>
</tr>
<tr>
<td>YE (rich fission yeast media)</td>
<td>0.5% Difco yeast extract, 3% dextrose</td>
</tr>
<tr>
<td>YESs (rich fission yeast media)</td>
<td>0.5% Difco yeast extract (yeast nitrogen base – amino acids not yet added), 3% dextrose +250 μg/ml, histidine, leucine, uracil, adenine, and lysine.</td>
</tr>
<tr>
<td>YFM (fission yeast freezing media)</td>
<td>YESs with 15% glycerol</td>
</tr>
</tbody>
</table>
7.1.2 Immunofluorescent reagents

<table>
<thead>
<tr>
<th>Immunofluorescent reagents</th>
<th>PBSA (washing and mounting cells)</th>
<th>170 mM NaCl, 3 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 7.0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEM (pH 6.9)</td>
<td>100 mM PIPES, 1 mM EGTA, 1 mM MgSO₄.</td>
<td></td>
</tr>
<tr>
<td>1.2 M Sorbitol</td>
<td>1.2 M Sorbitol</td>
<td></td>
</tr>
<tr>
<td>PEMS</td>
<td>PEM + 1.2 M Sorbitol.</td>
<td></td>
</tr>
<tr>
<td>PEMBAL (pH 6.9)</td>
<td>PEM +1%BSA, 0.1% NaN₃, 100 mM lysine hydrochloride. Filter sterilised.</td>
<td></td>
</tr>
</tbody>
</table>

7.1.3 DNA reagents

<table>
<thead>
<tr>
<th>DNA reagents</th>
<th>TE</th>
<th>10 mM Tris-HCl, pH 7.0, 0.1 M EDTA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBE</td>
<td>0.02M Tris borate, 0.4 mM Na₂EDTA</td>
<td></td>
</tr>
<tr>
<td>TAE</td>
<td>0.08M Tris acetate, 2 mM Na₂EDTA</td>
<td></td>
</tr>
<tr>
<td>10X loading buffer</td>
<td>60% (w/v) sucrose, 0.1% (w/v) bromophenol blue.</td>
<td></td>
</tr>
</tbody>
</table>

7.1.4 Commercial Kits

TaKaRa LA Taq™:
PCR kit for amplification of long DNA fragments (5-17kb).

QIAquick Gel extraction kit:
DNA purification system for extraction and clean-up of linear DNA (70bp-10kb) from agarose gels.

Promega Wizard® DNA clean-up system:
DNA purification system for linear and circular DNA (200bp-50kb). Used in this study for purification of DNA from PCR reactions and plasmid recovery from fission yeast transformants in multi-copy suppressor screen.
7.2 Yeast Physiology

7.2.1 Fission yeast nomenclature

The nomenclature used for fission yeast in this thesis is as follows. Gene names and other cis elements are represented in italics, e.g. dam1. The wild-type allele of a gene is denoted in italics with a superscript plus sign following the gene name e.g. \(\text{dam}1^+ \). Mutant alleles of the gene are indicated in italics followed by the allele number e.g. \(\text{dam}1\text{-A}8 \), \(\text{dam}1\text{-127} \). When a gene has been deleted by the integration of a specific marker gene this is represented by the gene name written in italics, followed by the marker name that is replacing it, and separated by ‘:’ e.g. \(\text{klp}5::\text{Ura}4 \). Resistance to the selectable marker is denoted by the presence of a superscript ‘r’ e.g. \(\text{dam}1::\text{kan}^\prime \). Deleted genes in this thesis are often referred to by the presence of a ‘Δ’ before the italicised gene name e.g. \(\Delta \text{dam}1 \). A gene that has been C-terminally tagged is represented by the italicised gene name followed by the name of the tag and its selectable marker e.g. \(\text{dam}1^{\prime\prime}\text{-GFP-kan}^\prime \). Protein names are not italicised in the fission yeast. The gene products are given the same name as the gene name, however, the first letter is written in the upper-case e.g. \(\text{Dam}1 \). Tagged gene products are also not written in italics and are represented by the protein name followed by the name of the tag and its selectable marker e.g. \(\text{Dam}1\text{-GFP-Kan} \).

7.2.2 Budding yeast nomenclature

Gene names within the budding yeast are represented in upper-case italics e.g. \(\text{DAM}1 \). Mutant alleles are denoted in lower-case italics followed by the allele number e.g. \(\text{dam}1\text{-}1 \). Gene deletions and protein names follow the fission yeast format.

7.2.3 Strain growth and maintenance

Fission yeast strains were frozen and stored, revived, grown and maintained according to well-described methods (Moreno et al., 1991). \(\text{S. pombe} \) cells were grown either in liquid culture media or on agar plates containing 1.6% agar. The recipes for different media types are listed above in section 7.1. Stocks of yeast strains were stored in YFM media at -70°C. Selection media containing the drug Geneticine (G418), to assay for Kanamycin resistance, were made by the addition of 100\(\mu \)g/ml G418 to molten YE55 agar. Selection plates containing the dye phloxin B
(Sigma # P4030), to assess dead or dying cells, were made by the addition of 5mg/L phloxin B to cooled YE5S molten agar. Selection plates containing the drug Hygromycin B (Hph, Roche) were made by the addition of 300µg/ml hygromycin B to molten YE5S agar. Selection plates containing the drug nourseothricin (clonNAT, Werner Bio-agents) were made by the addition of 100µg/ml clonNAT to YE5S molten agar.

7.2.4 Transformation of DNA into *S. pombe* cells

Transformation of fission yeast cells was carried out to introduce plasmid DNA or to integrate a PCR product into the genome. The protocol used for the transformation of DNA into *S. pombe* cells is based on well-described methods (Bahler et al., 1998; Keeney and Boeke, 1994). This protocol uses lithium acetate (10x LiAc: 1M lithium acetate, pH 7.5; 10x TE: 0.1 M Tris-HCl, 0.01 M EDTA, pH 7.5), fresh PEG 40% and DMSO.

A 50ml culture was grown to log phase (approximately 1x10⁷ cells/ml) in YE5S media. Cells were pelleted and washed in an equal volume of ddH₂O, followed by 1ml ddH₂O and then 1ml LiAc/TE solution. Cells were resuspended in ~200µl LiAc/TE solution and 100µl used for each transformation. Salmon sperm DNA (10µg/ml, Stratagene) was added (approximately 2µl) to cell mix. Approximately 3-10 µg PCR fragments, or ~1 µg plasmid DNA, added to the mix. Cells were incubated with the DNA at room temperature for 10 mins. 260µl PEG4000/LiAc/TE (40% in LiAc/TE solution) was added, mixed gently by pipetting, and then incubated for 30-60 mins at 30°C (25°C for temperature sensitive strains). 43µl of pre-warmed DMSO was added and the cells heat-shocked at 42°C for 5 mins. Cells were pelleted, washed in 1ml ddH₂O then resuspended in 500µl ddH₂O. 250µl was plated onto the appropriate media and incubated at 30° (25°C for temperature sensitive strains) for selection. For drug resistant selection, cells were first plated onto YE5S and incubated overnight before replica plating onto selection plates. Selective markers used include, *LEU2, ura4*, *his7*, *kan*, *naf* and *hph*. Transformants were selected, restreaked onto selective media and their phenotypes and/or genotypes verified. Oligonucleotides used for amplifying PCR fragments, and plasmids used for transformation listed in sections 7.5 and 7.6.
7.2.5 Random spore analysis and tetrad dissection

Most of the strains used in this study were constructed by random spore analysis. Strains of different mating types and different genotypes were crossed on EMM plates lacking nitrogen (conjugation and sporulation do not take place in fission yeast except under conditions of nutrient starvation) and allowed to sporulate for 3 days. Once mated and ascii observed, cells treated with 0.5% helicase (a crude snail gut enzyme that can break down the ascus wall) for between 1-5 hours. The ascii/cells are then pelleted, washed in ddH₂O and plated onto YE5S plates to grown unassorted for several days before replica plating to selection media to obtain desired strain.

For tetrad dissection a two-day-old cross is most normally used, as the ascus wall has not yet begun to break down at this stage. Asci are selected using a micromanipulator and placed in a vertical line about 3mm apart on a YE5S plate and left to breakdown at 30°C for approximately 3-5 hours. All four spores from each ascus are separated on plates by the micromanipulator to give a line of four isolated spores separated by about 3-5mm. These plates are incubated at an appropriate temperature until colonies form and desired strain selected by replica plating to selection media. Strains generated from both ransom spore analysis and tetrad dissection, which are used in this study, are listed along with externally obtained strains in section 7.3.

7.2.6 Cell number counting and viability assays

Cell number of fission yeast cultures were counted using Sysmex Microcell counter F-800. 20μl or 200μl of cell culture added to 10ml of Isoton (Beckman Coulter), sonicated (soniprep 150 sonicator MSE, setting 5) for approximately 45 seconds and counted on Sysmex F-800. For viability assays cells were counted, diluted into YE5S broth and plated out on YE5S plates at a concentration of ~500 cells per plate. Plates were incubated at 26°C and colonies that grew were counted and calculated as a percentage of the 500 plated cells.

7.2.7 Production of synchronous cultures

To synchronise cells in G2 or M phase for various experimental procedures we used either hydroxyurea (HU) treatment or centrifugal elutriation.
7.2.7.1 **HU induced S-phase arrest**

To examine populations of mitotic cells in assorted strains we used HU block and release experiments. HU is a drug that stalls DNA replication through the inhibition of ribonucleotide reductase, leading to a depletion of the cellular level of dNTP’s and an early S-phase arrest through the activation of the S-phase checkpoint. The addition of HU allows cells to accumulate in early S-phase and upon release into HU-free media they can resume the cell cycle at late S-phase. In our experiments 11mM HU (must be made fresh) was added to an exponentially growing culture (approximately 2x10⁶ cells/ml) and incubated for 4 hours at 26°C. Cells were then filtered and washed 2-3 times in YE5S broth and re-suspended in HU-free media.

7.2.7.2 **Centrifugal elutriation-synchrony in early G2**

Centrifugal elutriation was carried out using a Beckman Coulter Avanti J-20 centrifuge as described by the manual and as previously published (Moreno et al., 1991). Centrifugal elutriation is a process whereby cells are separated according to size. The opposing centrifugal force and the pressure created by the use of a pump within the elutriation chamber, causes the sedimentation of the cells by size, with the smallest cells (G2 cells in fission yeast) sedimenting at a slower rate. Increasing the pressure from the pump causes these G2 cells to be elutriated out of the chamber where they can be harvested. A 3 litre culture of cells is grown in YE5S to a mid-log phase cell number of approximately 2x10¹⁰ cells in total. Cells are pumped into the elutriation chamber, which is maintained at 26°C, at a pump rate of ~85 ml/min and increased to ~110ml/min to build up sedimentation front of cells within the chamber. When all cells are loaded reservoir is switched to fresh media and pump rate adjusted to between 60-110 ml/min to allow elutriation and collection of smallest G2 cells. Elutriated cultures then split in half, filtered, re-suspended in pre-warmed media at 26°C or 36°C for several hours. Synchrony was measured as a percentage of septated to non-septated cells.

7.2.8 **Microtubule drug treatment & cold shock**

To assess sensitivity or resistance of strains to microtubule de-polymerising drugs we used plates containing thiaabendazole (TBZ). TBZ was added to YE5S plates at a concentration of 10, 15, 20, 50 or 75 μg/ml, depending on the individual experiment.
Stock solutions of TBZ were prepared to a concentration of 20mg/ml in DMSO and stored at -20°C. To visualise the physiology of cells in liquid culture following incubation with a microtubule de-polymerising drug we used carbendazim (MBC/CBZ). MBC/CBZ was added to HU arrested and released cells at a concentration of 50μg/ml as previously described (Hardwick et al., 2000). Stock solutions of MBC/CBZ were stored at 5mg/ml concentrations in DMSO at -20°C.

Cold shock treatment to de-polymerise microtubules was carried out by incubation of cells on ice for 30 minutes. Cells were then fixed in 3% formaldehyde while on the ice to prevent rapid re-polymerisation of microtubules.

7.2.9 Mini-chromosome loss assay

Mini-chromosome loss assay was carried out to assess the fidelity of chromosome segregation in various Dam1/DASH null mutants compared to wild-type cells. For this assay we used a well-established method (Niwa et al., 1989), whereby a non-essential linear mini-chromosome (Ch16) was incorporated into the strains to be tested. This nonessential minichromosome (Ch16) derives from the centromeric region of chromosome 3 in the fission yeast and contains the ade6-m216 allele, which can compensate for the ade6-m210 adenine mutation, which is carried endogenously in the genome of the strains to be tested. Cells were grown on selective media (EMM-adenine) lacking adenine to retain the mini-chromosome and were then cultured overnight and plated onto rich YE media and incubated at 30°C for 4 days. The mini-chromosome is normally stably maintained in mitosis, however when chromosome segregation or DNA replication defects occur the mini-chromosomes are lost and the cells appear as red auxotrophs on the YE plates. The percentage of chromosome loss is calculated by quantifying the number of colonies with red sectors against the total number of colonies.

7.2.10 Spot test growth assay

To examine the growth of mutant strains at various temperatures, or in the presence of microtubule drugs, compared to wild-type and other control strains, we carried out a serial dilution spot test assay. Strains were streaked fresh onto rich media YE5S plates overnight and then suspended in ddH₂O and cell number calculated. Cell concentration was adjusted to 1 x 10⁷ cells/ml as the starting concentration and
serially diluted in a ten-fold manner in a 96 well micro-titre plate. 5μl of each
dilution was spotted onto appropriate agar plates such that the first spot contains 5 x
104 cells/ml. Plates used varied depending on individual experiments but often
included YE5S, YE5S& phloxin B and TBZ containing plates of varying
concentrations.

7.2.11 **Plasmid loss assay on plates and liquid
culture**

Plasmid loss assay on plates was carried out by culturing various mutant strains and
wild-type (control) cells, containing plasmid to be lost, overnight in selective media,
EMM- leucine (plasmid contains LEU2 marker). Cell number was calculated and
approximately 500 cells were plated onto rich agar YE5S, incubated at 26°C for 4
days, followed by replica plating onto minimal media lacking leucine (EMM –
leucine) for 3 days. The number of colonies that could no longer grow in the absence
of leucine (EMM- leucine) was calculated as a percentage of the total 500 colonies.
This represented the percentage of cells that had lost the plasmid.

To study the phenotypic defects of plasmid loss in mutant and wild-type strains we
carried out nitrogen starvation and re-feeding to induce plasmid loss in liquid culture.
Cells containing plasmid to be lost were starved of nitrogen for ~ 12 hours overnight
by incubation in minimal media lacking nitrogen (EMM-NH$_4$Cl), washed and re-
suspended in rich media YE5S broth at 36°C for 8 hours. Samples were harvested
every hours and processed for immuno-flourescent staining.

7.3 **Fission yeast strain list**

<table>
<thead>
<tr>
<th>Name</th>
<th>Genotype</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>h^+ leu1 ura4</td>
<td>Lab stock</td>
</tr>
<tr>
<td>TP108-3D</td>
<td>h^+ leu1 ura4 his2</td>
<td>Lab stock</td>
</tr>
<tr>
<td>CHP428</td>
<td>h^+ leu1 ura4 his7 ade6-210</td>
<td>Dr. Hoffmann</td>
</tr>
<tr>
<td>CHP429</td>
<td>h^+ leu1 ura4 his7 ade6-m216</td>
<td>Dr. Hoffmann</td>
</tr>
<tr>
<td>HM248</td>
<td>h^+ his2 ade6-210 containing Ch16</td>
<td>Dr. Niwa</td>
</tr>
<tr>
<td>HM?</td>
<td>h^+ ade6-210 containing Ch16</td>
<td>Dr. Niwa</td>
</tr>
<tr>
<td>KC29</td>
<td>h^+ leu1 ura4 dam1"-GFP-Kan"</td>
<td>This study</td>
</tr>
</tbody>
</table>
KC56 h\(^{+}\) leu1 ura4 dad1\(^{+}\) -GFP-Kan\(^{r}\) This study
KC57 h\(^{+}\) leu1 ura4 ask1\(^{+}\) -GFP-Kan\(^{r}\) This study
KC58 h\(^{+}\) leu1 ura4 duo1\(^{+}\) -GFP-Kan\(^{r}\) This study
MA217 h\(^{+}\) leu1 ura4 his2 nuf2\(^{+}\) -CFP-Kan\(^{r}\) Lab stock
KC164 h\(^{+}\) leu1 ura4 his2 nuf2\(^{+}\) -CFP-Kan\(^{r}\) This study
dad1\(^{-}\) -GFP-Kan\(^{r}\)
KC175 h\(^{+}\) leu1 ura4 his2 dam1\(^{+}\) -GFP-Kan\(^{r}\) This study
Sad1\(^{-}\) -dsRed-LEU2\(^{+}\)
MA194 h\(^{+}\) leu1 ura4 sad1\(^{-}\) -dsRed-LEU2\(^{+}\) Lab stock
KC396 h\(^{+}\) leu1 ura4 dam1\(^{-}\) -GFP-Kan\(^{r}\) dad1:: Kan\(^{r}\) This study
Mal2-1 h\(^{+}\) leu1 ura4 ade6-210 mal2-1\(^{ts}\) Dr. Fleig
KC201 h\(^{+}\) leu1 ura4 ade6-210 dad1\(^{-}\) -GFP-Kan\(^{r}\) mal2-1\(^{ts}\) This study
SP540 h\(^{+}\) leu1 ade6-216 mis6-302\(^{ts}\) Dr. Takahashi
SP142 h\(^{+}\) leu1 his2 mis6-302\(^{ts}\) Dr. Takahashi
KC181 h\(^{+}\) leu1 ura4 dad1\(^{+}\) -GFP-Kan\(^{r}\) mis6-302\(^{ts}\) This study
SP920 h\(^{+}\) leu1 ura4 mis12-537\(^{ts}\) Dr. Takahashi
SP306 h\(^{+}\) leu1 ura4 his2 mis12-537\(^{ts}\) Dr. Takahashi
KC179 h\(^{+}\) leu1 ura4 dad1\(^{-}\) -GFP-Kan\(^{r}\) mis12-537\(^{ts}\) This study
SP525 h\(^{+}\) leu1 ura4 cnpi::ura4\(^{+}\) lys1\(^{+}\) -cnpi1-1\(^{ts}\) Dr. Takahashi
KC200 h\(^{+}\) leu1 ura4 cnpi::ura4\(^{+}\) lys1\(^{-}\) -cnpi1-1\(^{ts}\) This study
dad1\(^{+}\) -GFP-Kan\(^{r}\)
FY5232 h\(^{+}\) arg3 leu1 ura4 ade6-216 sim4-193\(^{ts}\) Dr. Fleig
FY5233 h\(^{+}\) arg3 leu1 ura4 ade6-216 sim4-193\(^{ts}\) Dr. Fleig
KC202 h\(^{+}\) leu1 ura4 his2 dad1\(^{+}\) -GFP-Kan\(^{r}\) sim4-193\(^{ts}\) This study
ANF254-3A h\(^{+}\) ura4 nuf2-4- ura4\(^{+}\) Dr. Takahashi
KC199 h\(^{+}\) leu1 ura4 nuf2-4- ura4\(^{ts}\) + dad1\(^{-}\) -GFP-Kan\(^{r}\) alp12 This study
h\(^{+}\) leu1 ura4 his2 nda3-1828\(^{ts}\) Lab stock
KC184 h\(^{+}\) leu1 ura4 his2 dam1\(^{+}\) -GFP-Kan\(^{r}\) nda3-1828\(^{ts}\) This study
KC207 h\(^{-}\) leu1 ura4 dad1\(^{+}\) -GFP-Kan\(^{r}\) nda3-1828\(^{ts}\) This study
KC210 h\(^{-}\) leu1 ura4 dad1::kan\(^{r}\) cnpi1::-GFP::lys1\(^{r}\) This study
Cnp1-GFP h\(^{+}\) leu1 ura4 cnpi1::-GFP::lys1\(^{r}\) Lab stock
nda3-311 h\(^{+}\) arg1 leu1 ura4 nda3-311\(^{ts}\) Lab stock
KC211 h\(^{+}\) leu1 ura4 his2 dam1\(^{+}\) -GFP-Kan\(^{r}\) nda3-311\(^{ts}\) This study
h\(^{-}\) leu1 ura4 dis1::ura4\(^{+}\) Dr. Yanagida
MA131 h\(^{+}\) leu1 ura4 his7 dis1::ura4\(^{+}\) Lab stock
MA130 h\(^{+}\) leu1 ura4 ade6-210 alp14::kan\(^{r}\) Lab stock
NK162 h* leu1 ura4 alp14::kan::ura4* Lab stock
MA060 h* leu1 ura4 his7 ade6-216 klp5::ura4* Lab stock
MA061 h* leu1 ura4 his7 ade6-216 klp6::ura4* Lab stock
KC137 h* leu1 ura4 his2 dam1+::GFP-Kan r dis1::ura4* This study
KC397 h leu1 ura4 dam1+::GFP-Kan r alp14::kan::ura4* This study
KC213 h* leu1 ura4 his7 dam1+::GFP-Kan r klp5::ura4* This study
KC60 h* leu1 ura4 ade6-216 dam1::kan This study
KC392 h* leu1 ura4 ade6-216 dam1::kan::hph This study
KC63 h leu1 ura4 ade6-210 dad1::kan This study
KC62 h leu1 ura4 ade6-210 SPC34::kan This study
KC61 h leu1 ura4 ade6-216 ask1::kan This study
MS197 h* leu1 ura4 mad2::LEU2+ Lab stock
 h leu1 ura4 mad2::LEU2+ Lab stock
343 h leu1 ura4 ade6-216 bub1::ura4* Dr. Javerzat
KC154 h* leu1 ura4 ade6-216 dam1::kan This study
 containing Ch16
KC155 h* leu1 ura4 ade6-216 ask1::kan This study
 containing Ch16
KC106 h leu1 ura4 dam1::kan r bub1::ura4* This study
KC107 h leu1 ura4 dam1::kan r bub1::ura4* This study
KC108 h* leu1 ura4 dam1::kan r mad2::LEU2+ This study
KC109 h* leu1 ura4 dam1::kan r mad2::LEU2+ This study
KC112 h* leu1 ura4 dad1::kan r mad2::LEU2+ This study
KC111 h leu1 ura4 dad1::kan r bub1::ura4* This study
MA239 h leu1 ura4 bub1+::GFP-Kan r Lab stock
KC409 h leu1 ura4 dam1::kan r bub1+::GFP-Kan r This study
KC89 h leu1 ura4 ask1::kan r bub1::ura4* This study
KC87 h leu1 ura4 ask1::kan r mad2::LEU2+ This study
KC85 h leu1 ura4 spec34::kan r bub1::ura4* This study
KC83 h leu1 ura4 spec34::kan r mad2::LEU2+ This study
KC197 h* leu1 ura4 dam1::kan r alp14::kan::ura4* This study
KC187 h leu1 ura4 dam1::kan r mis12-537+ This study
KC158 h leu1 ura4 ask1::kan r mis12-537+ This study
KC195 h* leu1 ura4 dam1::kan r mal3::kan::ura4* This study
 h leu1 ura4 mal3::kan::ura4* Lab stock
 h leu1 ura4 sog2::kan Lab stock
 h* leu1 ura4 sog2::kan This study
KC410 h' leu1 ura4 sgo2::kan' dam1::ura4'
KC190 h' leu1 ura4 ask1::kan' cnpl::ura4'
 lys1" - cnpl1"n
KC188 h' leu1 ura4 dam1::kan' cnpl::ura4'
 lys1" - cnpl1"n
KC415 h' leu1 ura4 ade6-216 dam1::kan' sim4-193
KC416 h' leu1 ura4 ade6-216 dam1::kan' sim4-193
KC220 h' leu1 ura4 dad1::kan' nuf2-2::ura4'
KC221 h' leu1 ura4 dad1::kan' nuf2-4::ura4'
Δscdl h'00 leu1 ura4 ade6-210 scdl::ura4'
 This study
KC216 h'00 leu1 ura4 ade6-210 scdl::ura4'
 This study
 containing psclod1"-LEU2"n
KC217 h' leu1 ura4 ade6-210 dam1::kan' scdl1::ura4'
 This study
 containing psclod1"-LEU2"n
KC218 h' leu1 ura4 ade6-210 dam1::kan' scdl1::ura4'
 This study
 containing psclod1"-LEU2"n
KC413 h' leu1 ura4 ade6-210 ask1::kan' scdl1::ura4'
 This study
 containing psclod1"-LEU2"n
KC414 h' leu1 ura4 ade6-210 spe34::kan' scdl1::ura4'
 This study
 containing psclod1"-LEU2"n
KC85 h' leu1 his7::lacZ-GFP ura4
 cen2::Kan-ura4-lacZ-op sad1"-dsRed-LEU2"n
KC411 h' leu1 dam1::hph' his7::lacZ-GFP ura4?
 cen2::Kan-ura4-lacZ-op sad1"-dsRed-LEU2"n
MA042 h' leu1 ura4 dis1"-GFP-Kan'n
KC398 h' leu1 ura4 dam1::hph' dis1"-GFP-Kan'n
KC367 h' leu1 ura4 his7 dam1-A8"-GFP- hph'
 klp5::ura4'
KC366 h' leu1 ura4 his7 dam1-A8"-GFP- naf
 klp5::ura4'
KC344 h' leu1 ura4 his7 dam1-A8"-GFP- kan'n
 klp5::ura4'
KC301 h' leu1 ura4 his7 dam1-4"-GFP- kan'n
 klp5::ura4'
KC302 h' leu1 ura4 his7 dam1-7"-GFP- kan'n
 klp5::ura4'

This study
Dr. Chang
248
KC303 h^ leu1 ura4 his7 daml-8^GFP- kan^ klp5::ura4^ This study
KC304 h^ leu1 ura4 his7 daml-9^GFP- kan^ klp5::ura4^ This study
KC306 h^ leu1 ura4 his7 daml-11^GFP- kan^ klp5::ura4^ This study
KC308 h^ leu1 ura4 his7 daml-16^GFP- kan^ klp5::ura4^ This study
KC310 h^ leu1 ura4 his7 daml-18^GFP- kan^ klp5::ura4^ This study
KC311 h^ leu1 ura4 his7 daml-20^GFP- kan^ klp5::ura4^ This study
KC314 h^ leu1 ura4 his7 daml-24^GFP- kan^ klp5::ura4^ This study
KC329 h^ leu1 ura4 his7 daml-A1^GFP- kan^ klp5::ura4^ This study
KC331 h^ leu1 ura4 his7 daml-A3^GFP- kan^ klp5::ura4^ This study
KC332 h^ leu1 ura4 his7 daml-A4^GFP- kan^ klp5::ura4^ This study
KC333 h^ leu1 ura4 his7 daml-A5^GFP- kan^ klp5::ura4^ This study
KC336 h^ leu1 ura4 his7 daml-A6^GFP- kan^ klp5::ura4^ This study
KC335 h^ leu1 ura4 his7 daml-A7^GFP- kan^ klp5::ura4^ This study
KC400 h^ leu1 ura4 his7 daml-A8^GFP- hph^ klp5::ura4^ ask1^-GFP-Kan^ This study
KC346 h^ leu1 ura4 daml-A8^GFP- kan^ This study
KC345 h^ leu1 ura4 his7 daml-A8^GFP- kan^ This study
KC399 h^ leu1 ura4 his7 daml-A8^GFP- hph^ This study
KC356 h^ leu1 ura4 his7 daml-A8^GFP- hph^ klp5::ura4^ mad2^-GFP-LEU2^ This study
MA? h^ leu1 ura4 mad2^-GFP-LEU2^ Lab stock
KC401 h^ leu1 ura4 ura4 his7 daml-A8^GFP- hph^ mad2^-GFP-LEU2^ This study

249
KC402
\[h^+ \text{ leu1 ura4 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{sgo2::kan}^R \]
This study

KC403
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ sgo2::kan}^R \]
This study

KC404
\[h^+ \text{ leu1 ura4 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ mal3::kan}^R \]
This study

KC405
\[h^+ \text{ leu1 ura4 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{mal3::kan}^R \]
This study

KC391
\[h^+ \text{ leu1 ura4 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{alp14::kan::ura4}^+ \]
This study

\[\text{dam1-127} \]
\[\text{h^+ leu1 ura4 dam1-127-kan}^R \]
Dr. Millar

KC407
\[h^+ \text{ leu1 ura4 dam1-127-kan}^R \text{ alp14::kan::ura4}^+ \]
This study

KC408
\[h^+ \text{ leu1 ura4 dam1-127-kan}^R \text{ klp5::ura4}^+ \]
This study

KC359
\[h^+ \text{ leu1 ura4 his7+::lacI-GFP ura4?} \]
\[\text{Cen2::Kan-ura4}^+ \text{-lacOp Sad1}^+-\text{dsRed-LEU2}^+ \]
\[\text{dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \text{ klp6::kan}^R \]
This study

KC412
\[h^+ \text{ leu1 ura4 his7+::lacI-GFP ura4?} \]
\[\text{Cen2::Kan-ura4}^+ \text{-lacOp Sad1}^+-\text{dsRed-LEU2}^+ \]
\[\text{dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
This study

AR030
\[h^+ \text{ leu1 ura4 his7+::lacI-GFP ura4?} \]
\[\text{Cen2::Kan-ura4}^+ \text{-lacOp Sad1}^+-\text{dsRed-LEU2}^+ \]
\[\text{klp6::kan}^R \]
Lab stock

KC420
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ contains suppressor plasmid #2-klp5}^+ \]
This study

KC421
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ contains suppressor plasmid #6-pdam1}^+ \]
This study

KC422
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ contains suppressor plasmid #9-pdam1}^+ \]
This study

KC423
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ contains suppressor plasmid #10-psykl1}^+ \]
This study

KC424
\[h^+ \text{ leu1 ura4 his7 dam1-}A8^\text{th}-\text{GFP-} \ hph^+ \]
\[\text{klp5::ura4}^+ \text{ contains suppressor plasmid #15-klp5}^+ \]
This study

250
7.4 Molecular biological techniques

Molecular biology techniques were carried out according to well-described methods (Maniatis et al., 1982). This included the growth and transformation of competent bacterial cells, restriction enzyme digests, minipreps, and gel electrophoresis of DNA in TBE buffer.

7.4.1 Nucleic acid preparation and manipulation

Yeast genomic DNA was prepared using a well-established method (Burke et al., 2000). A 5 ml culture in YE5S was grown over-night to saturation. Cells collected by centrifugation for 5 mins, washed in 500µl ddH₂O, centrifuged for 5 secs and re-suspended in 200µl ‘breaking buffer’ (2% Triton X-100, 1% SDS, 100mM NaCl, 10mM Tris-HCl-pH8.0, 1mM Na₂EDTA-pH8.0). 200µl phenol:chloroform:isoamyl alcohol was added along with 0.3g of acid washed beads and mixture vortexed for 3-4 mins using the Bio101 Fastprep FP120 cell disruptor (Anachem). 200µl TE (pH 8.0) was then added and mixture centrifuged for further 5 mins. The top aqueous layer was then carefully transferred to a fresh eppendorf, 1ml EtOH added and mixed by inversion. Mixture was incubated at room temperature for 5 mins, centrifuged for 2 mins and supernatant discarded. 500µl of 70% EtOH was added and mixed by inversion. Tube centrifuged for 5 secs, supernatant discarded and pellet air dried at room temperature. The pellet was resuspended in 20µl TE.

Enzymatic digestion of DNA with restriction enzymes carried out as recommended by suppliers (New England Biolabs). DNA fragments were examined on a 1% (w/v) agarose gel in 1xTBE buffer. Electrophoresis was carried out at 100V in 1x TBE buffer.

7.4.2 Polymerase Chain reaction

7.4.2.1 Non-mutagenic PCR

Normal PCR reactions were carried out using LA Taq™ (TaKaRa) and Vent (New England Biolabs) polymerase for high-fidelity amplification when the product was to be used for yeast transformation, including gene-tagging and marker switching. Buffers were supplied by the manufacturers and used as recommended. High-fidelity
PCR reactions for transformation were performed in 50µl volumes with 1 mM MgSO₄, 1µM of each oligonucleotide primer, ~10ng of template DNA, 0.2 mM dNTPs and 2.5 units of enzyme. Colony PCR samples were prepared in a similar manner, however, without the addition of enzyme. Yeast cells were first added to the reaction mix before boiling at 95°C for 5 mins. The enzyme was subsequently added to reaction mix and PCR reaction started. For colony PCRs a generic in-house prepared Taq polymerase supplied by Cancer Research UK central services was used. PCR reactions were carried out on a Peilter Thermal Cycler-200. PCR products were purified using EtOH precipitation and/or Promega Wizard® DNA clean-up system. PCR products were subsequently run on 1% agarose gel to check for correct product size. If template was used for subsequent sequencing DNA fragment was gel purified using Qiagen QIAquick gel extraction kit.

7.4.2.2 Mutagenic PCR

PCR was carried out under modified ‘error-prone’ conditions to create DNA fragments containing random mutations. The ‘error-prone’ PCR was carried out using TaKaRa LA Taq™ Taq polymerase and 10xdGTP. In these reactions the concentration of dGTP was increased to 2mM, whilst the remaining dNTPs were supplied at a concentration of 0.2mM per reaction. The total reaction volume used was 100µl with 1 mM MgSO₄, 1µM of each oligonucleotide primer, ~10-50ng of template DNA and ~5units of enzyme.

7.4.3 Sequencing

Forward and reverse oligonucleotide primers of ~20 base pairs each were designed based on the known sequence of the dam1⁺ gene in S. pombe, and the GFP-kanamycin vector to which dam1⁺ is tagged. The dam1⁺ gene in S. pombe is extremely small (468bp) so a single oligonucleotide was sufficient to read the whole ORF. PCR reactions including each of these oligonucleotide primers (3.2pmol) and dam1⁺-A8 mutant amplified DNA (150-200ng) were carried out with ABI Prism Dye Terminator Cycle Sequencing Ready Reaction Kit followed by automated readout using a Perkin Elmer sequencer, ABI prism 3730.
7.4.4 **Gene Disruption & C-terminal tagging**

Genes were disrupted using PCR generated kan\(^{r}\) containing fragments (Bahler et al., 1998). N. Koonrugsan & S. Dhut carried out deletion of Dam1/DASH genes by insertion of a kanamycin resistance gene (Kan\(^{R}\)) into the gene locus within a diploid strain.

C-terminal tagging of genes with HA, Myc or GFP epitopes was also carried out by insertion of PCR generated fragments in the same manner as described above (Bahler et al., 1998). Sequences encoding the epitopes were inserted at the 3' region of the gene just prior to the stop codon, to allow epitope expression. All tagging was confirmed by colony PCR to look for increased gene size.

7.4.5 **Transformation and isolation of plasmid DNA in** *E. coli*

Competent *E. coli* cells stored at -70°C were thawed on ice and incubated with ~10-50 ng of plasmid DNA on ice for 10-30 mins. Cells were then heat shocked at 42°C for 90 secs and incubated on ice for 1-2 mins. ~800 µl-1 ml of LB broth was added, and cells allowed to recover at 37°C for approximately 45 mins. Cells were then plated onto LB plates containing 100 µg/ml ampicillin and incubated at 37°C.

5 ml of transformed *E. coli* were grown overnight in LB broth containing 100 µg/ml ampicillin at 37°C. Cells were then harvested by centrifugation at 5000 rpm for 5 mins. Plasmid isolation was carried out internally by Cancer Research UK central services.

7.5 **Oligonucleotides**

The oligonucleotides designed for use in this study were based on methods and plasmids from Bähler *et al.* (1998). Capitalised letters represent genome binding sequences, whereas italics represent DNA sequences designed to bind to plasmids from Bähler *et al.* (1998). The plasmid binding sequences facilitate the amplification of epitope tags and/or selection markers. The genome binding sequence facilitates the integration of the DNA fragment by homologous recombination into the fission yeast genome.
7.5.1 Deletion oligos

ask1(kan)fwd
CATGCCTAATAATGGACGCTAGTATACCTACCATCAGTTGCAGTTGCC
ATAAATTTCTACCATTGAGAGTTTCTATACTCGGATCCCCGGGTTAATTAA

ask1(kan)rev
CTGCTTAGAAAAATAATAGAAAAATGCGAAAGTAAAGTTCACCTAA
GGCGAAACGAAAGGTGATAACCTTCAGCAATGCAGAATTCGAGCTCGTTAAAC

dad1(ken)fwd
CTATGCTAATACGTCTCTTTGAATATATTTCTATGCTCGTACGGAAGCT
TCAATTTTTGCGATTTAATTTATGAAGATAGTGCAGATCCCCGGGTATTAA

dad1(ken)rev
CAGGTTGTGTATTGTAATATGTAATTTAAAAAAGATCCTGACCTTT
GACCAATTTTTGAGGACGCTATTTAAATTTAAGAATTCGAGCTCGTTAAAC

dad2(ken)fwd
CCAAAAACGAAATCGCCTTATATGGAAGTAGATAAATCTAGTAAATT
CGTACCTCCTCCTACAACATTTGGCGTGAACCGGATCCCCGGGTAAATTAA

dad2(ken)rev
CGATACCTTGGAACTTTGGTTGCTGTCGGGGTTTACCAATTCTGAAATAGAA
GAAAACAAATATGAAATAGGACAGAAACAATGAATTCGAGCTCGTTAAAC

dag1(ken)fwd
CGTCTACAGTCTCAGGCTAGGCTTTTTGAGAAACGTCGGAAGAAAAT
GTTCCCTGCTGCTGCTGCCAAACGCGTACGCGGATCCCCGGGTTAATTA

dag1(ken)rev
CAATGATCATATGATTTCGTTTCTATTATCCAACTGATATGCTAGGT
TATTCCTTCCGACTATTATAATAATGGAATTCGAGCTCGTTAAAC

duo1(ken)fwd
CCCTTGCTACTCTTTTGTACTGAATTCTTCTTTTAAACAATTCGCAATCTTTCA
ATCGAATACCTTTGTAGGTTAATAGCAGGATCCCCGGGTAAATTAA

254
duo1(kan)\text{rev}
CTATAGTAGAGGAGGAGGTTGGCCGATTTTGGAAATTGCGGATTTGGCGA
TGACTTGGCAAAAGATAGAAAGAGGTCTCTCAAAGATTTGGCAC

spc34(kan)fwd
CCCGAGAGATTGATACACTCTTGGCAACTCTGTTGAAGTGAATTGAAAC
ATACTTTTACTAATTACGAGTCGAAATTAGTCTGGAGTTCCCAGGGTTAATTAA

spc34(kan)\text{rev}
CCTCAAATCCATGATAAAAACAACGACCTCGCTTCTCTTTTTCTAATGTTAC
ACCAATACGAAAGTCTGACCTACCAAGAAATTCGAGCTCGTTTAAAC

7.5.2 C-terminal tagging oligos

ask1-fwd-tag
GCCTGTCTTTGCAGAGAATGGCGAAACTTGAAATGTCTAACATAGTATTAGT
TTGTCAAGAAAGAGATAGTGGGAAACTCCGGATTTCCCAGGGTTAATTAA

ask1-rev-tag
TTTACTTGGTTTACGATATTTTATACCCTGACTTTATGATTCTCTTTAAAAGAAGA
GAATTTTCCCAAATTAAATAGAACAAGGTACAAGGAATTCGAGCTCGTTTAAAC

dad1-fwd-tag
TTGAAAATGTGTCGTCTCTTTGGAAGAGTTCAAATTCAGTGTACAG
AAGAAAAGATGCTAAGATGACACCTCGGATTTCCCAGGGTTAATTAA

dad1-tag-rev
GAAGTGACTTAAGGGTTTGGTTGTAATATGAAATAGTTAAATTTAAAAGA
TCCTGACCTTTGGCACCATTGGAGGACGAATTCGAGCTCGTTTAAAC

dam1-tag-fwd
ATTTTGCAACTGCAGACGAACATTTGGTACAAAAAGTACACACCCTTTTCTCTT
AACGGCCAAAACCTATTCCGGCTTCCAGACGGGATTTCCCAGGGTTAATTAA
7.5.3 Dam1 mutagenic and sequencing oligos

Fwddam1: CAACACCTGTATCTACGCGCCATTTGTAGCG

Revdam2: GAGCCACTGAAGTTGTAATGTGAGTATCG

FdamSeq2: GACTTGCTTCACTGTGAAATCGTTATTGC

FdamSeq3: CGTACTAAGATAGCGTGGGTTG

Revdam3: CAGTTCACTTCGCTGAAAGAAAAATGTGC
pAL-SK vector containing *S. pombe* genomic library received from Dr. Shimoda & Dr. Nakamura. This plasmid library used for multi-copy suppressor screening in this study. pDB248 *S. pombe* genomic library plasmid containing *scd1* used in pscd1 plasmid loss experiments.
7.7 Microscopic analysis

7.7.1 Visualisation of DNA and septa

Prior to visualisation of septa or DNA cells must be fixed in formaldehyde. Approximately 1ml of log-phase culture (~2x10⁶ cells/ml) is fixed in 1/10 volume of formaldehyde for 10 mins. The cells were then pelleted and washed in PBSA. To visualise DNA 4’, 6-diamidino-2-phenylindole (DAPI, Vectashield, Vector Laboratories) is added, cells are mounted on a coverslip and viewed by a Zeiss axioplan fluorescent microscope. To visualise septa, the cells were stained with F3543 Fluorescent brightener 28 (Sigma-Aldrich) and viewed by fluorescent microscopy.

7.7.2 Indirect immunofluorescence microscopy

Immunofluorescence was carried out according to well-established methods (Hagan and Hyams, 1988) to stain α-tubulin. Cells grown to mid-log phase (~2.5x10⁶ cells/ml) and a total of ~5x10⁷ cells filtered and fixed in 10ml MeOH at ~70°C for 10 minutes. Cells then harvested from MeOH, washed in PEM and cell wall digested with 0.6 mg/ml zymolyase 20T in PEMS for 70 mins at 37°C (shaking). Cells then pelleted and re-suspended in 1%TritionX in PEMS for 5 minutes at room temperature. Cells washed in PEM x3 and then incubated in PEMBAL for ~30 mins at room temperature. Primary antibody added in 50 µl of PEMBAL and cells left overnight at room temperature on shaker. Cells washed in PEMBAL to remove primary antibody, secondary antibody added in 200µl PEMBAL and cells incubated in dark for 2 hours at room temperature. Cells are again washed in PEMBAL x3 and then re-suspended in PBSA + 0.2 µg/ml NaN₃. Images were viewed under Zeiss Axioplan fluorescent microscope using Velocity Improvision software.

7.7.2.1 Primary antibodies

α-tubulin (TAT-1) Dr. Keith Gull monoclonal 1:40

7.7.2.2 Secondary antibodies

Cy3-conjugated sheep anti-mouse IgG (Sigma C2128) 1:500
Fluorescein-linked sheep anti-rabbit IgG (Amersham F0208) 1:40
7.7.3 Fluorescence microscopy of live and fixed cells

Live imaging was carried out according to well-established methods (Brunner and Nurse, 2000), using a thin layer of lectin on the surface of a dish to prevent cell movements. All the imaging was carried out by the use of a chilled camera connected to a computer and microscope. The imaging of fixed cells, including cells subjected to immuno-fluorescent staining, was carried out on a Zeiss Axioplan fluorescent microscope using Improvision Velocity software (Zeiss). For all imaging of fixed cells, Z-stacks (200-400nm steps) were taken and the images were subjected to deconvolution to remove any background haze. The imaging of live cells was carried out on a Deltavision inverted fluorescence microscope (Olympics) with 8 Z-stacks (200nm steps) taken every 30 seconds for each channel. The Z-stacks were then compressed into a projection for each time-point, deconvolved and the channels for each time-point merged to produce a series of time-lapse images. All images were processed by Adobe® Photoshop CS2.
8 Bibliography

