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Chapter 1

Introduction

1.1 The context of the research

Clinical trials are scientific investigations that examine and evaluate safety and efficacy 

of therapies in human subjects. Trials therefore carry a responsibility both to ensure the 

welfare of their participants and to be publicly accountable. If trials are to be successful 

and achieve their aim of improving healthcare for the public at large, then they need to 

be practical and relevant. This calls for trial designs which allow us to answer the right 

questions as quickly and efficiently as possible.

In the last 20 years there has been a major increase in our basic understanding of 

many diseases based on a revolution in molecular sciences. This has inevitably fuelled 

great hope in our potential to cure many serious diseases, such as cancer, HIV and heart 

disease. However, in a report in March 2004 the US Food and Drug Administration have 

identified a slowdown, rather than expected acceleration, in innovative medical therapies 

reaching patients [39]. As a consequence there is increasing concern that the hoped- 

for advances in improving survival and quality of life in many major diseases may not 

materialise.

Two factors are highlighted as being involved in this downturn including the high cost 

of bringing a new product to the market, estimated to be of the order of one billion US 

dollars, and the fact that most new treatments are not effective. The FDA have estimated 

that only approximately 8% of therapies entering Phase I trials reach the market.

This has happened despite the fact that in the last 10 years biomedical research 

spending has more than doubled in real terms in the private sector internationally and in
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the public sector in the USA. There have also been corresponding increases in research 

spending in the public sector in many countries in Europe. The FDA, in their report, 

emphasise the need for new approaches to reject ineffective therapies and continue testing 

the promising ones as rapidly and as reliably as possible. In this thesis we present some 

new methods that aim to achieve this goal.

1.2 Organisation and overview

This thesis is essentially divided into four main parts. The first part (Chapters 2 to 4) 

deals with the issues surrounding sample size for trials with survival type endpoints and 

extensions to non-uniform survival, multiple arms, loss to follow-up, non-proportional 

hazards and cross-over. The second part (Chapters 5 to 7) concentrates on multi-stage, 

multi-arm trials with intermediate endpoints. In Chapter 8, the third part, the impact of 

the variability in accruing events on the total trial time is examined both in a standard 

parallel group trial setting as well as in the multi-stage, multi-arm trials introduced in 

Chapters 5 to 7. Finally, we concentrate on the analysis of treatment-covariate interac­

tions in the fourth part of this thesis (Chapter 9).

The results of many randomised clinical trials are inconclusive, often because insuffi­

cient numbers of patients were included. In Chapter 2 we consider the need to estimate 

sample sizes realistically with particular emphasis on aspects which may reduce the power 

of a trial in time-to-event situations. In Section 2.2 the development of sample size for­

mulae for these types of trials over the years is examined. Extensions to more than one 

experimental arm in comparison with a control are described in Section 2.3 while Section

2.4 introduces more complex censoring situations.

We present a general framework for sample size calculation in survival studies based 

on comparing two or more survival distributions using any one of a class of tests including 

the logrank test in Chapter 3. The fundamentals of this method originated from work 

done by Professor A. Babiker. Incorporated within the method are the possible presence 

of non-uniform staggered patient entry, non-proportional hazards, loss to follow-up and 

treatment changes including cross-over between treatment arms which are discussed in 

Section 3.3. Further extensions to the methodology such as non-local alternatives for the 

logrank test are also considered. Their validity is explored using simulation studies in 

Section 3.4.
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The sample size framework described in Chapter 3 has been implemented in the freely 

available program ART (Analysis of Resources for Trials) for Stata which is discussed in 

Chapter 4. Our investigations suggest that ART is the first software to allow incorporation 

of all these elements. Characteristics of ART and other sample size programs available 

to the public are compared in Section 4.4.

In phase II /  III cancer trials, it is undesirable to stop a study early when the test 

treatment is promising. On the other hand, it is desirable to stop the study as early as 

possible when the test treatment is not effective or only likely to be minimally effective. 

Consequently, we propose a multi-stage design to determine at particular points during 

the trial whether a study drug holds sufficient promise to warrant further testing. In 

addition, it may not always be appropriate or possible for a randomised trial of a new 

treatment to be conducted on the clinical endpoint of primary interest. As a consequence, 

replacing the clinical endpoint of primary interest, such as overall survival, with a surro­

gate variable, which can be measured earlier, more frequently, easier and with lower costs, 

has been frequently advocated [31] [91] [29] [111] [136] [59] [23]. The lively and some­

times adversarial debate surrounding the use of surrogate markers is reflected in Chapter 

5. Section 5.2.2 outlines the often cited Prentice criterion for a surrogate marker and the 

discussion surrounding its use. Further approaches to the validation of surrogate markers 

are examined in Sections 5.2.3 and 5.2.4. The second part of the chapter concentrates on 

multiple stage designs, starting from the early literature concerning sequential designs in 

Section 5.3.1.

Through a series of empirical illustrations and discussions Chapter 6 formulates our 

approach to combining intermediate markers, which do not have to fulfill the stringent 

criteria of the Prentice criterion, and a multi-arm, multi-stage selection design. This 

provides an extension to the two-stage design proposed by Royston et al. [103]. The 

main aims of this design are to quickly reject any new therapies unlikely to provide an 

advantage over control in the primary outcome measure as early and reliably as possible, 

while continuing with those therapies which are likely to provide an advantage over control 

on this measure. Section 6.2 deals with the extension of the design to more than two 

stages with consideration of the calculation of overall power and significance level for 

the trial. Necessary changes to the correlation structure are considered in Section 6.2.7. 

Assumptions underlying the design are examined in Section 6.3. Section 6.4 provides two 

actual trial examples employing the extension to more than two stages in cancer, one of 

which has just started patient accrual.
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In Chapter 7 we discuss the performance of the design, and in particular its imple­

mentation in Stata, using simulation studies. For this purpose, the literature surrounding 

bivariate exponential distributions is surveyed in Section 7.2 and a new bivariate exponen­

tial distribution based on the bivariate normal distribution is proposed. The assessment 

of the robustness of the design also covers the occurrence of ’shocks’ to the design in 

Section 7.4, such as the mis-specification of key parameters at the planning stage.

Chapter 8 seeks to explore possible strategies to preempt the inherent variability in 

trial time and /  or the number of events. Such variability, especially in the case of trial 

time, has a direct impact on the time at which the primary analysis can be carried out 

and as a consequence may have an impact on the overall cost of the trial. Furthermore, 

the variability in the length of the first stage in a two-stage trial is important for the 

viability of the design as outlined in Chapter 6. We provide tools to assess the variability 

at the beginning of the trial in Section 8.3 as well as update these estimates throughout 

patient and event accrual in Section 8.4. A Stata tool is available which implements these 

methods.

The objective of a statistical interaction investigation is to assess whether the joint 

contribution of two or more factors is the same as the sum of the contributions from each 

factor when considered alone. An interaction test can be used to investigate whether 

the effectiveness of treatment is homogenous across groups of patients with different 

characteristics [123]. It is therefore important in the interpretation and inference of trial 

results. Interaction tests are introduced in Section 9.2 of Chapter 9. The following Section

9.3 illustrates the analysis of interaction using two substudies from cancer trials. A new 

Stata tool to aid the analysis and interpretation of treatment-covariate interactions is 

presented in Section 9.4.

Our conclusions are presented in Chapter 10.
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Chapter 2

Sample size calculations for trials 

w ith tim e-to-event outcom es - a 

review

2.1 M otivation

Many researchers reach the end of their study to find out that they cannot make the 

conclusions with the reliability that they were hoping to, because their study did not 

have enough “power” . This is not a simple problem to fix, but it is a simple problem 

to avoid. The power of a study is the ability of a study to demonstrate the targeted 

difference if in fact it does exist. The frequency of the event being studied, the size of 

the effect or the difference that is to be detected, the design of the study, and the sample 

size all affect the power of a study. The magnitude of this power will also depend on 

the choice of test used to analyse the data. Sample size is the easiest of these factors to 

modify. Thus, to avoid the disappointment of findings that one cannot draw conclusions 

from, sample size calculations must be performed at the design stage of any study.

In this chapter we are exploring sample size calculations in particular for survival 

type studies and their extensions to include more than two treatment arms as well as 

particular censoring situations. Parameters that underlie every one of those calculations 

are the power, the level of significance (Type I error rate), the underlying event rate and 

the size of the treatment effect sought [67]. Without taking account of the particular 

study setting, i.e. cohort, case-control, clinical trial, or the outcome measure used, we
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can represent the underlying structure of sample size calculations using a flow-chart as 

illustrated in Figure 2-1.

2.2 Sam ple size formulae and their developm ent over the  

years

Since the 1960s many papers have been published on the subject of sample size calcula­

tions for clinical trials. The idea of achieving maximum power of tests with the minimum 

sample size possible has remained central over the years. Due to the huge variety of 

possible calculations, several books and papers, such as ’Sample size tables for clinical 

studies’ by Machin &; Campbell [81] have attempted to bring some of these together. This 

section mainly concentrates on sample size calculations for survival analysis, however, we 

will also refer to some of the other developments.

One of the earlier sample size tables was published by Halperin et al. [55] and is based 

on the sample size

4 { ^ l - q v l 2 p ( l  -  P)] +  Z l-/3 y /[p E (l -  Pe) + P c(1  -P c ) } } 2
(pc — Pe )‘‘

where pc  and pe  are the anticipated T-year cumulative event rates in the control and 

experimental group respectively, p = \ ( pe +  Pc) and Z\_a and zp are normal deviates 

corresponding to a one-sided significance level a  and power 1 — /3. The assumptions are 

that i) there is no loss to follow up and ii) no non-event deaths occur. The event times 

in each treatment group follow an exponential model and the event rate for the control 

group is based on earlier studies.

George &; Desu [50] consider a comparison of the number of patients required derived 

under an exact distribution of the test statistic and a normal approximation when the 

time-to-event is being studied. One of the main differences to later papers is that whilst 

survival times are assumed to be exponential, accrual is based on the Poisson distribution 

instead of the uniform. Again, no censoring is assumed to occur. Using simulations, the 

authors have found that sample sizes based on the normal approximation, which is based 

on the logarithmic transformation, is accurate. This is given by

4(Zl- a +
In2 A {2'2)
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where z \_a and zp are defined as above and A denotes the hazard ratio in favour of the 

experimental group.

Schoenfeld [113] and Freedman [41] were among the first to propose sample size for­

mulae for comparing two survival distributions using the logrank test while taking into 

account administrative censoring. Their formulae are based on the asymptotic expecta­

tion and variance of the logrank statistic. Between 1981 and 1983 Schoenfeld et al. [114]

[113] [115] published three papers on sample size calculations and nomograms based on 

the logrank test. These are centered around the formula

_  (* l - q /2  +  * I - g ) 2 , .

~~ (In2 A)V>p(l — p )  1 ’

where z i - a , zp and A are defined as above, ip denotes the probability of not being 

censored by the end of the trial and p gives the proportion of patients allocated to the 

control treatment group. This formula assumes proportional hazards. The main difference 

between the two approaches by Freedman and Schoenfeld is that the formulation by 

Schoenfeld results in slightly lower estimates for the number of patients needed. In

addition, Schoenfeld takes account of the presence of administrative censoring which

occurs due to some patients not having experienced an event by the end of the study. 

Freedman encourages that modifications should be made allowing for withdrawal rates 

but does not consider the effect on sample sizes. He suggests to use

N  _  (1 +  <t>){z\-a +  Z \ - p ) 2 ( l  +  (j>A)2
0 2 ( l - A ) 2 [ ( l - p C) +  ( l-P i5 )]  1 ' ’

where pc  and pe  are again the survival rates in the two groups and <p is the allocation 

ratio of patients to the control and experimental group.

Gail [45] considered the relative efficiency of using a test of proportions as opposed 

to the logrank test for sample size calculations with survival outcomes. Assumptions he 

made in this assessment were no withdrawals, local proportional hazards and uniform 

accrual rates. He found that in situations such as cardiovascular disease trials where 

treatment was administered relatively quickly in comparison to survival times a sample 

size calculation based on a test of proportions resulted in an efficiency close to one. 

However, in the case of cancer or other trials where the accrual period exceeds mean 

survival time, a proportions based sample size calculation led to a 39% larger sample 

size requirement compared to the logrank based requirements. At the same time the 

efficiency of the proportions test can drop to 72% or less in such a setting. In conclusion,
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power calculations specifically tailored to the logrank test should be used for studies with 

a total duration comparable to the mean survival time, if one intends to employ the 

logrank statistic for analysis purposes.

A comprehensive review of the sample size literature centering around testing the 

difference in proportions for two sample trial designs was published by Sahai & Khurshid 

[106]. They give formulae for various conditional and unconditional tests starting with 

Fisher’s exact test. In addition to that they offer practical advice on how to use the 

formulae for clinical readers. Due to its volume readers are referred to their paper for 

further details of the sample size requirements.

The papers cited so far which have concentrated on survival outcomes have assumed 

an exponential survival distribution. Heo et al. [58], however, considered the Weibull 

model in their paper which would be more appropriate in the case of ageing research. 

This is due to the fact that the assumption of constant hazards breaks down when the 

follow-up time is long relatively to the life span of the study subjects and therefore the 

Weibull assumption would make the model more flexible. Calculations for the sample 

size are closely based on the Schoenfeld derivations [114] under the logrank test. The 

required sample size is then given by

=  ( Z ! . a  +  3 , - g ) 2

( k \n A) 2'ipp(l—p)

for parameters defined as before and k denoting the shape parameter of the Weibull 

distribution. Hence in the case of k = l we arrive at the exponential case and therefore 

Schoenfeld’s formula 2.3.

2.3 Extensions to  more than two treatm ent arms

Many trials today evaluate more than one experimental treatment group against standard 

therapy, as several promising treatment regimens become available at the same time and 

limited patient numbers are an issue. Makuch & Simon [82] have noted that the heuristic 

use of sample size formulae for two groups is inadequate in these cases. If we multiply the 

formula designed for two treatment arms by the required number of experimental arms 

we do not take into account multiple comparisons made in the analysis of the trial. A 

possible simple modification would be to take account of the multiple comparisons in the 

significance level used. Since the late 1980s a few authors have been suggesting different
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ways of approaching this problem.

Day & Graham [27] published a nomogram approach for trials in which the main 

method of analysis is ANOVA. They developed a new difference parameter, defined as 

the standard deviation of the expected treatment group means divided by the standard 

deviation of the measurements. This approach is quite simple to use since the nomograms 

are arranged as straight lines which makes reading off the required sample size much easier 

than in previous publications. Examples are given in the comparison of two, three and 

four groups and also in the case of a factorial design. In addition, reference is made 

to ordinal responses. However, a drawback of this method is that it only allows for 

equal group sizes. There are scenarios though when unequal allocation ratios may be 

beneficial. One example of this is the case where drugs are investigated for which only a 

small amount of prior information is available. In this case it is desireable to use unequal 

randomisation in order to find out more about the treatment. Another reason may be the 

very high cost of a particular treatment arm. If there is only a fixed sample size available 

for recruitment, unequal randomisation may confer large financial savings with limited 

impact on power.

For the case of survival endpoints both Ahnn &; Anderson [1 ] and Liu & Dahlberg [77] 

have generalised an approach by Makuch & Simon. Both papers hence extend the logrank 

test sample size calculations derived by Schoenfeld [114] to the case of k treatment arms. 

Furthermore, Ahnn et al. consider the case of dose-response settings using Tarone’s trend 

test and a stratified sample size calculation. Whilst Ahnn et al. base their work around 

the fact that the test statistic has a non-central chi-squared statistic, Liu &; Dahlberg take 

the route of Fisher’s least significant difference. The findings by Liu &; Dahlberg suggest 

that their sample size derivation has the most power in the case where all treatment 

arms are at least as good or better than the control arm. If the hazards are more evenly 

spread between the treatment arms and the control group, then the power decreases with 

the sample size being inadequate to detect such differences. Simulations run by Ahnn &; 

Anderson show that their sample size is fairly accurate for the case of three arms even 

if the alternatives are far from the null hypothesis. A further generalisation to unequal 

allocations was derived by Halabi & Singh [54].
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2 .3 .1  G lobal com parisons o f  treatm en t arm s

All of the above sample size calculations for more than two treatment arms as well as those 

provided by Barthel et al. [7], which are described in more detail in the next chapter, were 

derived for a global alternative hypothesis. This means that in a trial setting in which 

patients are randomised to one of K  treatment groups, labelled k = 1, 2,..., K,  and A&(£) 

is the hazard function in treatment group k (k = 1,..., AT), the null hypothesis of equality 

of the K  survival distributions can be expressed as Ho : Ai(t) = A2 (£) =  ... =  Ak ( )̂- The 

global alternative hypothesis Hi  : Afc(£) ^  Ai(t) for at least one k ^  I (1  < k, I < K)  

states that for at least one pair of study arms the hazards are different at time t.

Such a global alternative hypothesis is used in a variety of trial settings. PACES [96] 

was a patient preference trial conducted in the USA which considered a comparison of 

placebo, acetaminophen (paracetamol) or celecoxib. Patients were randomised to each of 

the treatment arms and then crossed over to a different arm after a period of 6  weeks. 

At the end of treatment, patients were then queried about their preference between the 

two treatment periods. The trial also assessed efficacy using the WOMAC score. Sample 

size was calculated based on a global comparison of the treatment arms. Subsequently, 

pairwise comparisons were also conducted and reported due to the significant result in 

the global comparison. Thus the global analysis served as a trigger for any other com­

parisons which would only be conducted if the global result was positive. Wolmark et 

al. [144] also considered three treatment arms (in this case all active agents) for the 

treatment of Dukes’ B and C Carcinoma of the Colon. In this case the trial was powered 

on pairwise comparisons of the treatment arms but a global comparison was reported. 

Both the pairwise and global comparisons were not significant. Sample size for a pair­

wise comparison of more than two treatment arms may be calculated using any of the 

methods in Section 2.3 above. We then need to account for the fact that more than one 

pairwise comparison is conducted by using a reduced nominal significance level through, 

for example, a Bonferroni adjustment on the heuristic approach of using the formula for 

the two treatment group situation and multiplying the required number of patients per 

treatment group by the number of groups to be compared. The resulting sample size will 

be more conservative than that for the global comparison.

Another setting in which a global comparison of more than two treatment arms is often 

used is that of a comparison of several doses of the same treatment. In a briefing paper 

the FDA reports efficacy and safety of three TNF blocking agents [38]. Efficacy for the
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different agents was assessed for different doses and results from a global comparison are 

reported. When doses are compared there is usually an intrinsic order in the treatments 

which can then be expressed in an ordered global alternative hypothesis, i.e. H\  : Xi(t) < 

^2(0 5: ••• < Xx(t).  A modified ordered logrank test as well as sample size requirements 

are provided by Liu et al. [79]. Resulting sample size requirements will be less conservative 

than those given by Ahnn &; Anderson [1]. Further discussion of the different testing 

strategies in multi-dose experiments is provided by Bauer et al. [9].

2.4 Treatment of more com plex censoring situations

So far the sample size calculations cited have either not taken account of censoring at 

all or have included right censoring at the end of the follow-up period only. In practice, 

clinical trials pose far more complex censoring situations such as loss to follow-up, non- 

compliance and lag times. We define a patient as lost to follow-up if he/she does no 

longer provide trial data after randomisation due to circumstances such as moving to a 

different area. In contrast to this a patient is labelled as being non-compliant if he/she 

remains available for follow-up but no longer adheres to the treatment regimen he/she was 

randomised to at the beginning of the trial. In addition, in some trials the proportional 

hazards assumption may break down and different models have been suggested in order 

to take that into account in the sample size calculations.

Schork & Remington [116] suggested that loss to follow-up and non-adherence should 

be taken into account when determining the sample size. In their paper they consider 

a trial with a single treatment control comparison, a binary outcome variable and a 

relatively long period of observation. They examine the impact on sample size using 

subject shifting patterns between the treatment group and the control and demonstrate 

that the sample size can be expressed as a function of the frequency with which these 

patterns occur. For the case of loss to follow-up they suggest the estimation of the 

expected proportion at the beginning of the study which should then be added to the 

total sample size.

Lachin & Foulkes [71] extended an earlier sample size approach by Lachin [70] to non- 

uniform entry, loss to follow-up, failure to comply with treatment and stratified analyses. 

They furthermore suggested that whenever sample size calculations are employed, these 

should take account of the worst case scenario in terms of the hazard ratio and censoring. 

Non-uniform entry is based on a concave entry distribution (lower rate of intake than
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expected) such as the truncated exponential. They found that in this case a substantial 

increase in sample size is required to compensate for a small reduction in power. For the 

case of loss to follow-up they use exponentially distributed loss to follow-up hazard rates 

which are independent of those for mortality. Findings suggest that the effect on sample 

size is roughly proportional to the addition of these. Noncompliance was considered for 

the case where patients stop taking treatment as required but are not lost to follow-up. 

The assumption here is that patients who are non-compliant in one group will then be 

subject to the hazard ratio in the other group for the entire study. This leads to slightly 

conservative estimates.

Further extensions were provided by Yateman & Skene [146] who modelled patient 

entry as a piecewise linear function as an alternative to uniform entry. In addition they 

modelled survival and loss to follow-up distributions using piecewise exponential distrib­

utions.

The use of discrete Markov chains for modelling censoring was suggested by Lakatos 

[72] [73] in two papers. He proposes a method which takes account of the lag in the 

effectiveness of medication and one which takes account of non-proportionality of the 

hazards. Whilst the first paper only considers a binomial model, the second also provides 

extensions to the logrank test and the Tarone-Ware class of statistics. Markov Chains 

are modelled as follows: In order to assign probabilities to the transition matrices a step 

function with a jump at the end of each year is used. However, this can be modelled 

to include jumps at quarterly rates or the like. Accrual is modelled so that all patients 

are assumed to enter the trial at the beginning and are then administratively censored in 

accordance with accrual rates. When considering non-compliers, a decision needs to be 

made about how to treat these in the trial. Considerations to be taken into account are 

an analysis based on intention-to-treat, which would mean that non-compliers are not to 

be considered as censored, and whether one allows non-compliers to reenter treatment. 

Comparisons were also made between the proportional hazards and two types of lag 

models. A computer program based on these methods was suggested by Shih [121]. In 

addition she introduced prior distributions to express the uncertainties surrounding the 

parameters in the model.

Further extensions of this model to more than two treatment groups were made by 

Ahnn & Anderson [2] and a combination with their earlier approach for more than two 

treatment groups was sought. They show that this model can be especially useful where
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unexpected events occur during the course of a trial, such as an advanced stage cancer 

trial where noncompliance takes place due to unexpected toxicity.

2.5 Conclusions

Over the course of this chapter we have presented developments in sample size calculations 

in particular for studies with a survival type outcome. All of these fit into the framework 

set out in the flow-chart in Figure 2-1. In particular, as the next chapter will show, 

patients lost to follow-up or not adhering to the allocated treatment, e.g. crossing over 

to receive the regimen of the other treatment group, while still being analysed under 

intention-to-treat, can have a significant effect on the power of a trial and hence allowance 

for this scenario should be made in sample size calculations.

Chapters 3 and 4 will introduce the Stata program ART (Analysis of Resources for 

Trials) which incorporates all of the above sample size issues.
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C hapter 3

Evaluation of sample size and 

power for multi-arm survival trials 

allowing for non-uniform accrual, 

non-proportional hazards, loss to  

follow-up and cross-over

3.1 Introduction

The logrank test is probably the most commonly used tool for designing and analysing 

clinical trials with a survival time outcome. The planning of such a trial must take 

into account not only the proposed method of analysis but also circumstances not usu­

ally encountered in other types of experiments. Patient accrual into a trial is staggered 

which means that patients enter the trial sequentially over an accrual period. Also, when 

complete, it is commonly followed by a fixed period during which patients are under ob­

servation for events but no new patients are entered. Further, administrative censoring 

occurs with some patients not experiencing an event by the time the trial ends. Usually, 

the statistical analysis of such a trial will consist of a test of the null hypothesis that 

there is no difference in survival between the treatments at a given significance level and 

power.

We present a general framework for sample size calculation in survival studies based
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on comparing two or more survival distributions using any one of a class of tests in­

cluding the logrank test. Incorporated within this framework are the possible presence 

of non-uniform staggered patient entry, non-proportional hazards, loss to follow-up and 

treatment changes including cross-over between treatment arms. The framework is very 

general in nature and is based on using piecewise exponential distributions to model the 

survival distributions. We illustrate the use of the approach and explore its validity using 

simulation studies. These studies have shown that not adjusting for loss to follow-up, 

non-proportional hazards or cross-over can lead to significant alterations in power or 

equivalently, a marked effect on sample size. The approach has been implemented in 

the freely available program ART (for Stata). Our investigations suggest that ART is 

the first software to allow incorporation of all these elements. Further extensions to the 

methodology such as non-local alternatives for the logrank test are also considered.

In Section 3.2 we provide an outline of the underlying multi-arm sample size method 

used in this chapter. Section 3.3.1 illustrates our approach to staggered entry and loss 

to follow-up based on piecewise exponential distributions which also allows for non­

proportional hazards. We propose an incorporation of treatment changes in Section 

3.3.2. The performance of the method incorporating all these elements is demonstrated 

using simulation results in Section 3.4 and trial examples in Section 3.5. A discussion is 

provided in Section 3.6.

3.2 M ulti-arm  trials

Consider a trial setting in which a population of N  patients are randomised to one of 

K  treatment groups, labelled k = 1,2,..., A", and the K  treatments are to be compared 

globally in terms of time to failure using a (weighted) logrank test. If Ak{t) is the hazard 

function in treatment group k (k = 1 ,..., K),  then the null hypothesis of equality of the 

K  survival distributions can be expressed as Ho : Ai(£) =  A2 (t) = ... = Xfcit)- The global 

alternative hypothesis H\  : \k(t)  ^  Ai(t) for at least one k ±  I (1 < k, I < K)  means 

that for at least one pair of study arms the hazards are different at time t. Let Ak(t) 

be the log hazard ratio in group k relative to group 1 , that is Ak{t) = log[Afc(£)/Ai(t)] 

(k — 2 , . . . ,  K ). Further, let A (t) =  (A2 (t ),..., Ak (t ))'. For the remainder of this section 

assume that A = A (t).

The logrank test is based on a comparison between the observed and expected numbers 

of events under Hq. Let t\ < ... < tm be the distinct failure times, such as deaths or
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disease progressions, and assume no ties. Let be the observed number of events in 

group k at time tj ( j  = 1, Let rk(tj) be the number of patients at risk in group k

at time tj. The expected number of events ek(tj \ .) in group k at time tj depends on the 

event history and on whether Ho or the more general H\  is assumed. Under Ho we have 

simply
e*(tj ; 0 ) =  - ^ L

1=1

[89] whereas under H\,
/j. . a \ rk( t j )exp(Ak(tj))

ek\*ji K
J 2 ri(t j)exp(Ai(tj))
i=i

[24]. For comparing group k with group 1, the logrank test is based on the distribution 

under Ho of the observed minus the expected number of events, that is on

m
Uk = ^ 2 w ( t j ) [ O i - e l!(tr , 0)]

3= 1

where W  (tj) is a weight function [24]. The standard logrank test has W(tj)  = 1. Weights 

according to Tarone &; Ware [130] and Harrington &; Fleming [56] may be found in 

Appendix B.

The global logrank test statistic Q is based on the vector U = (U2 , ..., Uk Y and is 

defined as the quadratic form

Q = U'V(0)~lU

where V'(O) is the covariance matrix of U under Ho (see Expression B.l in Appendix B). 

Since U is asymptotically distributed as multivariate Normal N (0, V  (0)) under Ho the 

distribution of Q is central x 1 on K  — 1 degrees of freedom [22].

To derive the sample size we consider a sequence of local alternatives to the null 

hypothesis, i.e. that Ak(t) is of the order 0 ( N ~1/2) [113]. Thus a higher sample size will 

be required the closer Ak(t) is to 1 . The resulting formula performs best under hazard 

ratios which are not too far from one, e.g. for hazard ratios around 0.6 - 1.67. Under 

local alternatives Q approximately follows a non-central chi-squared distribution on K  — 1 

degrees of freedom [2 2 ] with non-centrality parameter

r  =  NM' V( 0)~ l M  (3.1)
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where

and

M *(A) =  - = £ ( t 4 | t f i )

Further details on the calculation of M  and E{Uk\H\) may be obtained in Appendix 

B. The value of the non-centrality parameter r  needs to be obtained for a given power 

I -  (3 and significance level a  either from the chi-squared tables provided by Hayman et 

al. [57] or a statistical package. The required sample size is then obtained by solving 

Equation 3.1 for N  replacing V(0) and M  by their asymptotic values (see Appendix B). 

For the simple case of the logrank test under proportional hazards (Afc independent of t) 

and no treatment changes N  is given by

K K K

k= 2 k= 2 q=2k<q

whereby ip is defined as the probability of not being censored by the end of the trial [1 ]. 

When evaluating Expression 3.2 for two treatment groups only we arrive at Schoenfeld’s 

formula 2.3.

A better approximation of the distribution of Q for more distant alternatives is given 

in Appendix C.

3.3 Im plem entation

The framework underlying the calculations incorporating staggered patient entry, loss 

to follow-up, cross-over and non-proportional hazards requires the total trial time to 

be split into several periods. For tractability these are taken to be of equal length. 

Hence we can examine the number of patients at risk and the occurrence of events in all 

groups separately for each period. The length of each period may depend on the amount 

of knowledge available about patient characteristics at the planning stage of the trial. 

In some instances, for example, we may have a lot of information about the survival 

distribution in the control group in which case one month long periods are advantageous. 

Furthermore modelling the survival distributions over each of the periods allows us to take 

non-proportional hazards into account. This is not only important for overall survival
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which may have non-constant relative hazards due to, for example, time delays in the 

effect of treatment but also cross-over which may vary over the course of the trial. For 

instance, patients may change their treatment or drop out towards the end of a long 

study, particularly if the frequency of follow-up visits declines.

3.3 .1  S taggered  p atien t en try  and loss to  fo llow -up

We define T  as the total number of periods in the trial, i.e. T  is the sum of the number 

of periods of accrual and follow-up. Each of these periods is of equal length. Patients 

are accrued over the periods 1 to f? where R < T. Define F R(t) as the cumulative 

distribution function of recruitment time. For example, F R(t) may be represented as 

a piecewise truncated exponential of the form given by Cox &; Oakes (p. 178) [24] or a 

uniform distribution, depending on which type of entry mechanism is deemed to be more 

appropriate. The number of patients N  is then accrued using an exponential or uniform 

process. Furthermore F R(t) is allowed to have a point mass F R(0) at zero, allowing 

one to specify a certain proportion of patients randomised before the start of the first 

period of the trial. This proportion may vary between 0 and 100% of the total number 

of patients. Figure 3-1 illustrates the accrual pattern in a trial consisting of five periods 

where accrual takes place during the first four periods only. Additionally, a proportion 

of patients has been recruited before the start of the trial. The accrual pattern itself is 

uniform during each of the periods, however, it is not constant over the whole course of 

the accrual period.

Under the derivation of the probability ip of not being censored given by Schoenfeld

[114] patient entry occurs over the accrual period resulting in administrative censoring 

times after completion of planned follow-up, i.e. at t = T.  However, in most trials some 

patients are lost to follow-up due to other reasons. This means that the observed survival 

time for each patient will be the minimum of the time to event, time to loss to follow- 

up or time to termination of the trial. It is assumed that time to loss to follow-up is 

independent of survival times. We define Sk (t) as the survivor function of time to loss 

to follow-up and Sf?(t) as the survivor function of failure times where k = 1,2, 

Assume that Sk (t) has been adjusted for cross-over, i.e. treatment changes (see Section 

3.3.2). Both Sk (t) and Sk (t) can be approximated by piecewise exponential distributions 

with hazards eki and fiki (treatment /c, period i) respectively where t G [0, T], Denote 

the probability density functions associated with Sk (t) and Sk (t) by f k (t) and f k (t)
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Figure 3-1: Cumulative distribution function of accrual over five periods of a trial with a 
point mass at zero
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respectively. According to Yateman & Skene [146] the density for time to loss to follow- 

up is of the form

fiat) = ^
M f c i e x p { 0 < t < l

(3-3)
~F k j ) \  - P k . i t )  1 -  1 < t < i ,  » =  2 ,. . . ,T

3 = 1

and the density for time to failure can be expressed in a similar manner.

Let s be the time at which a patient is accrued and F R(s) be the entry distribution 

function with properties as described above. We can express the distribution of time on 

the study or potential exposure time as F R(T — s) [71] [146] where T  — R  < T  — s < T ,  

i.e. T  — s is the administrative censoring time. In order to calculate the probability -0 

of not being censored which is required to arrive at the sample size in Equation 3.2 we 

derive the proportion UR of patients experiencing an event in treatment group k over the 

duration of the trial. The probability that the event of a patient is observed is given by 

the integral of the probability that the event occurs at time t and the patient has not 

been lost prior to that time. These probabilities then need to be summed over all possible 

exposure times, that is
T

n £  = I  F h (T -  s)S£(s)fF(s)ds  (3.4)
'o

Hence the proportion of patients not censored by the end of the trial is given by = 
K  K

whereby pk denotes the probability of being randomised to group k and ^ ^ P k  =
k= 1 k= 1
1 .

3.3 .2  C ross-over

In our context we use cross-over to describe a patient who changes from the designated 

therapy regimen to that of another treatment group but remains available for follow-up. 

Analysis of the trial data under intention-to-treat is envisaged. This situation may arise 

in HIV or cancer trials where patients might, for example, change from a more intensive 

therapy to the therapy of the standard arm due to toxicity. Furthermore, we allow for 

patients changing to a treatment regimen not part of any of the treatment groups in the 

trial. In contrast to the method of Lakatos [73], as implemented by Shih in the SIZE 

program [1 2 1 ], patients crossing over from one treatment to another are not allowed to 

return to their original treatment in our derivation. This is a conservative assumption
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but it allows direct calculation of S'jf (t) adjusted for cross-over.

We calculate the distribution of time to failure adjusted for cross-over. This is nec­

essary for the calculation of r  in Appendix B since there is no closed form for N  under 

non-proportional hazards due to cross-over. Let and t c  be times to failure and cross­

over respectively, with corresponding survivor functions S^( t )  and S%(t) and density 

functions f ^ ( t )  and f ^ ( t )  respectively. The hazard function of £# if cross-over occurs at 

time t c  is

h f (tE\tc) — ^b{t) ; t < t c  

= Aa(£) ; t > t c

where Aa(t) and A*,(£) are the hazard functions for failure before and after cross-over 

respectively. Then,

oo

s f  (t) =  f  P { T >  i)Sc (tc)dtc  
0
oo t

= ^ e x p [ -  j  \ T(u\tc)du)fc {tc )dtc  
0 0

t tc  t

= SQ(t)S%(t) + j  exp[— j  Ab(u)du-  j  Aa(u)du]fc (tc )dtc
0 0 ic

where *S(f (£) is the survivor function in the absence of cross-over, i.e. <S(f(£) =  P { T  > 

t\tc =  oo}. The numerical evaluation of the above integrals is facilitated by the piecewise 

exponential assumption of the distributions of time to failure and cross-over.

3.4 Sim ulation results

To evaluate the performance of our method in terms of attaining pre-specified power, and 

in particular its implementation in our sample size program ART (Analysis of Resources

for Trials) [101] [8 ] as described in more detail in Chapter 4, simulations were performed

in Stata 8 . Design specifications for all sets of simulations were two years of accrual, two 

years of follow-up, equal allocation to both treatment arms, uniform accrual, exponential 

survival and one year median survival in the control group. Furthermore, sample sizes 

were calculated for 90% power with a two-sided significance level a = 0.05. In Tables 3.1
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- 3.6 the simulated power is based on 5000 simulated trials which gives an approximate 

standard error of 0.4% and hence an approximate confidence interval around 90% power 

from 89.2% to 90.8%. All tables give simulation results for the adjusted and unadjusted 

sample size calculation. Hence they provide a comparison with the approach of Schoenfeld 

since the unadjusted sample size given is equivalent to sample size calculated using his 

Formula 2.3. Furthermore, simulations based on the sample sizes given by Shih’s sample 

size program SIZE [121] were conducted and results from these are provided in each of 

the appropriate tables. Initial calculations for a trial without loss to follow-up, non­

proportional hazards or cross-over show that sample sizes derived using SIZE are higher 

than sample sizes given by our method if the event rate is high, whereby our method 

gives power as desired. In a trial with a desired hazard ratio of 0.6 SIZE will give 2.5% 

higher sample size than ART for an event rate of 50% in the control arm whereas the 

difference between the methods will be only 0.5% if the control arm event rate is 10%.

3.4 .1  M ore th a n  tw o trea tm en t arm s

The results displayed in Table 3.1 illustrate simulation studies for trials with three treat­

ment arms. Two experimental arms were simulated with a hazard ratio of HR1  and 

HR2  in comparison to the control arm respectively. All three arms were then analysed 

in a global logrank test. We can observe that power is maintained within the confidence 

bounds for all hazard ratio combinations.

3.4 .2  T ied  even ts

The derivation of sample size in Section 3.2 relies on the assumption of no tied events. We 

wanted to investigate how robust the calculations are to tied events occurring during the 

trial. In order to create tied events event times were rounded to two and three decimal 

places. This creates datasets with 37% and 2% of tied events respectively on average. 

The results are illustrated in Table 3.2. From these it is apparent that the calculations 

are robust to tied events.

3 .4 .3  Loss to  follow -up

Table 3.3 outlines the simulations run for loss to follow-up. Time to loss to follow-up 

was simulated using an exponential distribution with a hazard calculated under a certain
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proportion of loss to follow-up by the end of the trial. Ilf' and give the percentage of 

loss to follow-up assumed to have occurred in each treatment arm by the end of the trial.

From the power calculations under unadjusted sample size it is evident, at least under 

this model, that only high rates of loss to follow-up, i.e. 50% in both treatment arms, 

will lead to an important loss in power if they are not taken into account at the planning 

stage. This is because patients lost to follow-up over the course of the trial can still 

provide important and useful information if they are not lost at a very early stage. We 

need to be aware, though, that the estimate of the hazard ratio will only be unbiased if 

the reason for loss to follow-up is unrelated to the performance of the treatment regimen 

they are lost from. Nevertheless, under this assumption our approach performs well within 

the confidence interval around 90% power for all parameter combinations and generally 

slightly better than calculations according to SIZE. This comparison was not available 

for unequal proportions of loss to follow-up in the group since SIZE does not allow for 

that. Hence, while both methods allow for flexible calculations of loss to follow-up over 

the periods, SIZE does not allow for differing rates in each of the groups. Results for 

differing trial duration and allocation ratios were observed to be similar.

3 .4 .4  N on -p rop ortion a l hazards

Simulation results under non-proportional hazards are displayed in Table 3.4. In this case 

the hazard in the experimental arm was changed for each patient after having survived 

two years in the trial which led to a change in the overall hazard ratio from HR1 to HR2. 

This was simulated by first assigning a probability to whether patients experienced an 

event before the time of changing hazard, i.e. at two years after a patient had entered a 

trial. If no event had been experienced, the exponential survival distribution was adapted 

to incorporate a change in hazards after this point causing a change in the hazard ratio 

from HR1 to HR2. These situations may occur when a treatment is very effective in the 

beginning but patients experience a levelling off of the treatment effect, which in turn 

brings the survival curves closer together over time or if, such as in a trial comparing 

surgery followed by chemotherapy with surgery alone, the two treatments have similar 

hazards in the beginning which then diverge over time. Unadjusted simulations were run 

by taking the first of the two hazard ratios (HR1)  given in the table to calculate N.  

Another column of the table illustrates the impact on power and sample size by taking 

the arithmetic mean of the two hazard ratios when calculating the sample size required
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Parameters Analysis using 
global logrank test

HR1 HR2 N Power
0 .6 0.9 344 90.7
0.7 0 .8 714 89.9
0 .8 0.7 714 90.4
0.9 0 .6 344 90.1
0 .8 0 .8 1357 90.1

Table 3.1: Simulation results for three treatment groups
HR1 - hazard ratio in favour of first experimental group in comparison with con­
trol, HR2 - hazard ratio in favour of second experimental group in comparison with 
control, N - sample size calculated for 90% power, Power - power achieved through 
simulation with sample size N

Parameters 2 % tied 
events

37% tied 
events

HR N Power N Power
0 .6 206 90.0 206 90.1
0.7 408 90.1 408 90.1
0 .8 1015 90.4 1015 90.4
0.9 4454 90.5 4454 90.5

Table 3.2: Simulation results for tied events
HR - hazard ratio in favour of experimental group, N - sample size calculated for 90% 
power, Power - power achieved through simulation with sample size N

Parameters Adjusted for loss 
to follow-up

Unadjusted SIZE

HR n i n 2̂ N Power N Power % diff N N Power % diff N
0.7 0 0 408 90.0 408 90.0 0 .0 415 91.1 + 1.7
0 .8 0 0 1029 89.5 1029 89.5 0 .0 1029 89.5 0 .0

0.7 5 2 0 424 89.9 408 88.9 - 3.9 n/a n/a n/a
0.7 2 0 5 424 90.3 408 88.9 - 3.9 n/a n/a n/a
0.7 5 5 414 89.6 408 89.1 - 1.5 423 90.9 + 2 .2

0.7 2 0 2 0 433 90.8 408 87.7 - 6 .1 447 90.5 + 3.2
0.7 30 30 448 89.7 408 87.4 - 9.8 466 90.6 + 4.0
0.7 40 40 466 90.3 408 85.1 - 14.2 489 91.9 + 4.9
0.7 50 50 487 89.7 408 83.3 - 19.4 516 91.2 + 6 .0

0 .8 30 30 11 1 2 90.3 1015 8 6 .8 - 9.6 1154 91.3 + 3.8
0 .8 40 40 1155 90.0 1015 86.7 - 13.8 1209 91.0 + 4.7
0 .8 50 50 1206 89.6 1015 83.5 - 18.8 1276 91.0 -I- 5.8

able 3.3: Simulation results for loss to follow-L
HR - hazard ratio in favour of experimental group, n f  - proportion lost to follow- 
up in control group by the end of the trial, n£  - proportion lost to follow-up in 
experimental group by the end of the trial, N - sample size calculated for 90% power, 
Power - power achieved through simulation with sample size N, % diff N - change in 
sample size relative to adjusted use of ART for loss to follow-up in percent, i.e. % diff in 
N =  ( Adjusted /  Unadjusted * 100 ) - 100, n /a  - option not available in the program
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Parameters Adjusted for 
non-proportional 

hazards

Unadjusted Adjusted using 
arithmetic mean

HR1 HR2 N Power N Power % diff N N Power % diff N
0 .6 0.9 274 89.9 206 80.9 - 33.0 619 99.8 + 125.9
0 .6 0 .8 249 90.1 206 85.3 - 20.9 408 98.6 + 63.9
0 .6 0.7 227 90.1 206 87.0 - 1 0 .2 285 95.8 + 25.6
0.7 0 .8 458 90.2 408 85.6 - 12.3 619 96.7 + 35.2
0 .8 0.7 869 89.3 1015 93.7 + 16.8 619 78.2 - 29.8
0 .8 0 .6 749 89.9 1015 96.9 + 35.5 408 67.3 - 46.6
Parameters SIZE
HR1 HR2 N Power % diff N
0 .6 0.9 281 90.1 + 2 .6

0 .6 0 .8 255 89.9 + 2.4
0 .6 0.7 232 90.8 + 2 .2

0.7 0 .8 466 90.5 + 1 .8

0 .8 0.7 882 90.5 + 1.5
0 .8 0 .6 761 90.0 + 1 .6

Table 3.4: Simulation results for non-proportional hazards
HR1 - hazard ratio in favour of experimental group for first two years in trial, 
HR2 - hazard ratio after two years in trial, N - sample size calculated for 90% power, 
Power - power achieved through simulation with sample size N, % diff N - change in 
sample size relative to adjusted use of ART for non-proportional hazards in percent, i.e. 
% diff N =  ( Adjusted /  Unadjusted * 100 ) - 100

for the trial.

We can observe from the simulation results that if sample size is calculated assuming 

proportional hazards in a situation where hazards vary over time, this can lead to signifi­

cant over- or underestimation of sample size depending on the direction of the evolution of 

the hazard ratio over time. Furthermore, we can observe that already for a small change 

in the hazard ratio, from 0.7 to 0.8 for example, a loss in power of more than 4% occurs 

(compared to unadjusted calculations) if this change is not adjusted for.

3.4 .5  C ross-over

In order to investigate the performance of our method when cross-over is expected to 

occur (Table 3.5), time to cross-over was simulated using the exponential distribution 

in the experimental group similar to the simulations looking at loss to follow-up. Thus 

patients were simulated to cross over to the other treatment group at a certain time in 

the trial if they had not experienced an event before that time. Following such an event, 

patients would then continue to follow the hazard of the treatment group they had crossed
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over to. Hence, cross-over occurred with probability n ^ , which is given as a percentage 

of patients in the tables.

The simulation results illustrate that adjusting for cross-over becomes particularly 

important as we approach 2 0 % cross-over in one of the treatment arms (or 1 0 % in both 

arms) if time to cross-over follows an exponential distribution. We have found that as 

cross-over from both arms increases, ART gives more conservative sample size estimates 

than SIZE. This may be due to the different assumptions underlying their calculations 

whereby patients are allowed to change treatment groups more than once over the course 

of the trial under SIZE.

3 .4 .6  M u ltip le  ad justm ents

We furthermore evaluated the performance of the sample size approach under the presence 

of non-proportional hazards, loss to follow-up and cross-over in one trial as illustrated 

in Table 3.6. These scenarios were designed in the same way as the separate simulation 

studies for loss to follow-up, non-proportional hazards and cross-over. In this case, pa­

tients in the experimental treatment group were subjected to a change in hazards after 

two years if they had not had an event, been lost to follow-up or crossed over to the 

control arm before that point in time.

Apart from the assessment of performance in terms of power attained, a further 

objective was to assess whether the effect of these adjustments is additive in terms of 

power and sample size. The simulation results convey that the difference in terms of 

sample size between adjusting for loss to follow-up, non-proportional hazards and cross­

over and not adjusting for any can be vast, in some cases as extreme as 63%. Similarly, 

actual power achieved may be nearly 20% less than the nominal power of 90%. In other 

situations, we can observe in the table that the presence of non-proportional hazards 

may offset the effect of cross-over in terms of power achieved. This situation arises if 

we designed the trial for a constant hazard ratio which was higher than the hazard ratio 

obtained by the end of the trial due to a decrease of the hazard in the experimental group 

over time.
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Parameters Adjusted for cross-over Unadjusted SIZE
HR n i n 2 N Power N Power % diff N N Power % diff N
0 .6 0 5 2 1 2 90.0 206 8 8 .8 - 2.9 217 91.2 + 2.4
0 .6 0 10 218 89.9 206 8 8 .2 - 5.8 224 90.8 + 2 .8

0 .6 0 2 0 232 90.1 206 8 6 .1 - 1 2 .6 238 90.4 + 2 .6

0 .6 0 30 248 90.7 206 84.2 - 20.4 256 90.7 + 3.2
0.7 0 30 489 90.5 408 83.6 - 19.9 502 90.9 + 2.7
0 .8 0 30 1213 90.1 1015 84.2 - 19.5 1240 90.2 + 2 .2

0.9 0 30 5312 89.4 4454 84.0 - 19.3 5429 90.6 + 2 .2

0.7 10 10 458 90.0 408 87.0 - 12.3 467 90.5 + 2 .0

0.7 2 0 10 490 91.0 408 85.3 - 2 0 .1 499 91.0 + 1 .8

0.7 30 10 527 91.7 408 83.3 - 29.2 537 92.0 + 1.9
0.7 2 0 2 0 522 90.9 408 84.1 - 27.9 530 92.2 + 1.5
0.7 30 30 606 91.7 408 78.1 - 48.5 609 91.4 + 0.5

Table 3.5: Simulation results for cross-over
HR - hazard ratio in favour of experimental group, - proportion crossing over to 
different treatment regimen from control group by the end of the trial, N - sample size 
calculated for 90% power, Power - power achieved through simulation with sample size 
N, % diff N - change in sample size relative to adjusted use of ART for cross-over in 
percent, i.e. % diff in N = ( Adjusted /  Unadjusted * 100 ) - 100

Parameters Adjusted Unadjusted
HR 1 HR 2 n i n 2 n i n 2 N Power N Power % diff N
0 .6 0.7 30 30 0 2 0 274 90.8 206 80.7 - 33.0
0 .6 0.7 30 30 0 30 291 89.2 206 78.2 -41.3
0 .6 0 .8 30 30 0 2 0 296 89.5 206 76.4 - 43.7
0 .6 0 .8 30 30 0 30 313 90.0 206 74.8 - 51.9
0 .6 0.9 30 30 0 2 0 319 89.9 206 75.4 - 54.9
0 .6 0.9 30 30 0 30 337 89.6 206 71.9 -63.4
0 .8 0 .6 30 30 0 2 0 964 90.1 1015 91.6 - 5.0
0 .8 0 .6 30 30 0 30 1036 89.8 1015 8 8 .8 - 2 .1

0 .6 0 .8 2 0 2 0 10 10 292 90.5 206 78.9 - 41.7
0 .6 0 .8 2 0 2 0 10 2 0 308 90.9 206 76.6 -49.5
0 .6 0 .8 2 0 2 0 2 0 2 0 331 91.4 206 74.8 -60.7

Table 3.6: Simulation results for loss to follow-
up, non-proportional hazards and cross-over combined
HR 1 - hazard ratio in favour of experimental group for first two years in trial, 
HR 2 - hazard ratio after first two years, nj" - proportion lost to follow-up in control 
treatment group by the end of the trial, n 7̂ - proportion crossing over to different 
treatment regimen from control group by the end of the trial, N - sample size calculated 
for 90% power, Power - power achieved through simulation with sample size N, % 
diff N - change in sample size relative to adjusted use of ART for loss to follow-up, 
non-proportional hazards and cross-over in percent, i.e. % diff in N =  ( Adjusted /  
Unadjusted * 100 ) - 100
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3.5 Non-uniform  accrual

We examined the accrual pattern of four cancer trials conducted by the MRC and com­

pared these with a uniform pattern. The results are illustrated in Figure 3-2. For each 

trial recruitment per calendar month is plotted. The solid line illustrating uniform accrual 

was derived from the length of the accrual period as originally defined in each trial proto­

col. In TE08 (ISRCTN: 6475197) [18] actual and uniform accrual differed by four months, 

in BR1 1  (EORTC 26951) [21] by 19 months and in CR08 (ISRCTN: 79877428) [20] by 

seven months. Recruitment in CH03 (ISRCTN: 62576956) [19] was never completed. 

Fitting an exponential entry pattern with a scale parameter of —1 to the recruitment of 

TE08 mirrors its actual process more closely. ART allows the user to specify a certain 

fraction of patients to have been accrued before the start of the trial. BR11 is a trial 

where this facility was needed as nearly half of the patients required had already been 

entered by the EORTC (European Organisation for Research and Treatment of Cancer) 

before recruitment opened at the MRC. Hence in order for this trial to accurately calcu­

late the projected end of recruitment one not only needs to take into account the actual 

accrual pattern but also the point mass at zero of the cumulative distribution function of 

recruitment time.

The impact of a concave exponential accrual pattern, i.e. an exponential entry pattern 

with a negative exponent, is further examined in Figure 3-3 and Table 3.7. Results in 

Table 3.7 were obtained by conducting ’what if’ calculations in ART. Underlying all 

trial scenarios is a hazard ratio of 0.7, a median survival of five years and a two-sided 

5% significance level. Comparisons were then made with a uniform recruitment pattern 

(Figure 3-3). Power was calculated for each trial for a sample size of 634 (the sample size 

needed under a uniform recruitment pattern) using the same trial length as in the uniform 

case, i.e. nine years, under exponential accrual with scale parameter 7 . This illustrates 

that unless the recruitment pattern deviates substantially from the uniform distribution, 

the impact on power is modest. The most extreme departures from uniform accrual are 

given in the last three rows of Table 3.7 which represents a gradually increasing rate of 

accrual to a trial which starts recruiting very slowly. This shows that if we were to analyse 

the trial at the original time of analysis we would have significantly reduced power (> 5 %). 

One way of addressing this is by moving the planned time of analysis to the time point 

at which the planned number of events have been observed. The last column in the table 

illustrates the time at which these planned analyses can be performed while maintaining
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Figure 3-2: Accrual patterns in four MRC cancer trials
Observed accrual patterns are given by the dotted lines. The solid lines illustrate 
a uniform accrual pattern based on accrual as anticipated in the trial protocols
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the planned number of events and power for the trial. These results are in line with 

observations made by Lachin & Foulkes [71]. However, the impact of the accrual pattern 

on power will also depend on the shape of the survival distributions. If there is an early 

peak in the hazard, early events, and hence patients accrued early on in the trial, are 

more influential.

3.6 D iscussion

Sample size calculations are necessary for all randomised controlled trials. They are 

particularly complex for trials with survival-type endpoints because they usually involve 

assessments and input of a number of parameters including: the control group survival 

distribution; the magnitude and form of the targeted difference to be detected; the rate 

of accrual of individuals to the study; the length of follow-up of individuals after accrual 

closure; and the potential for (time-related) dilution of any effect through, for example, 

loss to follow-up or cross-over. All of these parameters can have an important impact on 

the trial size needed. We have presented a general approach to sample size calculations 

for trials which allows for all these sources of variability. The methodology and associated 

software allow the user to specify, at the design stage, the use of a general family of logrank 

tests, including the Tarone &; Ware and Harrington &; Fleming families. Furthermore our 

Stata program allows for the specification of non-local alternatives by approximating 

the logrank test statistic Q using a scaled noncentral x 2 on k — 1 degrees of freedom. 

Simulations have, however, shown that this brings only minor improvements in accuracy 

since the method already performs well under local alternatives with more extreme designs 

(Figure 3-4).

We note a slight underlying difference between our approach and much of what has 

gone before. Sample size calculations based on Freedman [41] or Schoenfeld [114] as given 

in Equation 2.3 assume that the number at risk and hence the number of events are a 

constant for a given hazard ratio, power and significance level. However, the number of 

events given by ART will vary slightly even for small changes such as a different accrual 

rate in one of the periods since the number at risk is not treated as constant over the 

course of the trial but instead is calculated for each of the periods.

Simulation results show that our method works well in a variety of situations. These 

results also indicate that the adjustments particularly for non-proportional hazards, non- 

uniform accrual and cross-over may be substantial in terms of power and sample size.

51



Concave patient accrual

-

c\i

8 16A20
unit recruitment period 

Distribution param eter (gamma)
----------  uniform ------------ -0.5
  -1  -2

_ _ _ _ _  _ 3    - 4

-5 ---------- -6

Figure 3-3: Concave exponential patient accrual patterns

Entry distribution Power Additional follow-up

7 for R =  5, T =  9 required for 90% power
0 90.0 % 0
-0.5 89.4 % 0.25
-1 90.0 % 0.5
-2 87.4 % 0.75
-3 86.2 % 1
-4 85.6 % 1.25
-5 85.1 % 1.5
-6 84.6 % 1.75

Table 3.7: Impact on power and length of trial of concave recruitment pattern
7  - exponential scale parameter, Power is that for N=634 at length of accrual (R) five 
years and follow-up (T-R) four years. All calculations use a hazard ratio of 0.7, median 
survival of five years and a two-sided 5 % significance level
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Figure 3-4: Simulation results for power based on sample size
calculations using ART under local and non-local alternatives 
Trial set-up: equal allocation to both treatment arms, accrual =  two time peri­
ods, follow-up = two time periods. The dotted lines illustrate an approximate 95% Cl 
around 90% power. Results based on 100,000 replications
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Hence researchers should take particular care in specifying these parameters when de­

signing a trial. Of course, trials in which a large percentage of patients were expected to 

be lost to follow-up would be unlikely to be successful for other reasons. One would have 

to cast doubt on the validity of the trial’s results not only because of the loss of power but 

also because of the potential for bias if the missing outcome data due to loss to follow-up 

were associated with the outcome. The data in Table 3.3 are provided as a sensitivity 

analysis, and show that modest loss to follow-up may have only a minor effect on power 

and /  or required sample size. However, cross-over, which occurs frequently particularly 

in longer term trials, does not generate missing outcome data since our methods assume 

that the treatment groups would be compared as randomised on an intention-to-treat 

basis. Loss of power is then the primary concern since cross-over will lead to a dilution 

of the difference in the treatment effect between the randomised groups.

It may be very difficult to specify all these variables with reasonable accuracy before 

the start of the trial. In this situation two approaches are very helpful. First, as one 

design stage, it is probably useful and prudent to perform sensitivity analyses varying 

these parameters to assess the impact of modest changes in them, to assess the robustness 

of the design under realistic departures from the design specified. Second, as the trial 

accumulates individuals and data, the design specifications can be checked against the 

real accumulating data. If there are important departures from these the impact on the 

trials operating characteristics (particularly the power) can be formally calculated and 

the trial can be potentially amended. For example, if during the course of the trial we find 

that cross-over from one treatment to another is greater than anticipated, then we may 

argue that a smaller difference than that originally specified in the alternative hypothesis 

should be targeted. In this case the sample size of the trial may be amended. We note 

that such ‘administrative’ amendments are perfectly acceptable during the course of the 

trial, as long as any decisions to change the trial size are made independently of, and 

preferably blind to, the estimate of the treatment difference currently being observed 

within the trial.

Furthermore our software may be used for the design of multi-arm trials where the 

primary question concerns a comparison of each experimental arm with the control. Con­

sider a three-arm trial, i.e. two experimental arms and one control, with an overall type 

I error probability of 5%. After applying a Bonferroni adjustment allowing for multiple 

comparisons and a correlation of 0.5 between the two test statistics the sample size can 

then be calculated in ART using a two-arm design with a type I error of 3.5% [107]
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and multiplying this by 1.5 to get the correct sample size for a three-arm trial. This 

calculation assumes a randomisation of 1 :1 :1 .
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C hapter 4

ART - Analysis of resources for 

trials

4.1 Introduction

Royston & Babiker [101] presented a menu-driven Stata program for the calculation of 

sample size or power for complex clinical trial designs under a survival time or binary 

outcome. This program allows for multi-arm trials with up to six treatment arms, an 

arbitrary time-to-event distribution, non-proportional hazards, unequal patient alloca­

tion, non-uniform rates of patient entry, loss to follow-up and cross-over of patients from 

their allocated treatment to an alternative treatment arm. In the present chapter, the 

program is updated to operate under the new Stata 8  dialog interface. Additionally, its 

name has been changed to ART - Analysis of Resources for Trials. We report here 

some further improvements to the software, such as allowing for the input of a one-sided 

significance level and the calculation of sample size for non-inferiority trials.

To recapitulate, for survival-time outcomes, the main assumption is that treatment 

groups will be compared using the logrank test. Computations are carried out according 

to the asymptotic distribution of the logrank test statistic Q. Here Q is defined as 

U'V~l U , where U is the vector of the total observed minus the expected number of 

events in each of the k treatment groups in the design except for the control and V  is 

the covariance matrix of U. A full report on the methodology and its performance in 

particular with respect to loss to follow-up, non-proportional hazards and cross-over is 

given in the previous Chapter 3 as well as in [7].
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For binary outcomes a normal approximation to the binomial distribution is assumed. 

The program gives sample sizes which are slightly lower than those provided by the Stata 

command sampsi since it does not use a continuity correction.

4.2 N ew  design of menu and dialogs

All features are available from the newly designed ART menu and associated dialogs. As 

before, on completion of the calculations the command line that generated the results will 

be displayed in the Review window. For reproducibility of the calculations we suggest 

that the user opens a log-file before executing the commands via the dialog which will 

hence save the command line. This log-file can then be edited to produce a do-file to 

repeat the calculations if desired.

When axtmenu has been executed using axtmenu on, a new item ART will appear on 

the system menu bar under User. This menu may be turned off by typing artmenu off. 

ART contains the following two items:

Survival outcomes Sets up all design parameters including advanced options such 

as loss to follow-up and cross-over for survival time trials

Binary outcomes Sets up design parameters for trials with a binary outcome under 

a simple design

Since no considerable changes have been made to the Binary outcomes facility this 

chapter will concentrate on the changes made to Survival outcomes and readers are 

referred to the original article by Royston & Babiker [101] for further information on 

trials with binary outcomes. At any stage the user may obtain further information on 

the use of the menu by clicking on the ? button.

4 .2 .1  Survival ou tcom es - panel 1

Figure 4-1 illustrates the new dialog window for Survival outcomes. Panel 1 requires 

the input of the basic trial set-up. The main change from the old dialog is the input of 

the survival/failure probabilities. These can now be input by either specifying median 

survival in a particular period or by filling in the cumulative probabilities at the end of 

periods as illustrated in Figure 4-1. Furthermore, the actual time units of periods may 

be specified, such as years, 6  months, quarters, months etc.. The choice of these does not
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have any impact on the sample size calculations themselves but is displayed in the final 

output to remind the user of the timescale assumed.

ART - ANALYSIS OF RESOURCES FOR TRIALS - S u rv iv a l o u tc o m e s

Panel 1 | Panel 2 | Panel 3 1 Advanced options j

Set-up

Number of periods |11 Number of groups

Time unit («1 period) [GMonths _▼] Alpha (2-sided) 

Median survival in period [~

[6.05

f o J ~Power or N

Baseline survival /  cumulative failure probabilities [0.23 0.2875 0.3594 0.4492 0.5615 0.6320 

At the end of period(s' |2  4 6 81011

Options

(* Specify power 

(• Specify survival probabilities 

r  Non-inferiority desgn

C  Specify sample size 

C  Specify failure probabilities 

l~  One-sided alpha

S t f t OK Cancel Submit

Figure 4-1: A completed Panel 1 screen for survival outcomes

4.2 .2  S u rv ival ou tco m es - p an e l 2

Hazard ratios for each treatment group relative to group 1 as well as allocation ratios 

may be entered on Panel 2, as illustrated in Figure 4-2. This needs to be done for the 

number of groups specified on Panel 1. Only one value per treatment group needs to 

be entered for the hazard ratio if these are assumed constant over time. In the case of 

non-proportional hazards, one value may be entered for each period of the trial. For 

example, if the number of periods has been set at 11 in Panel 1, 11 hazard ratios may 

be entered in Panel 2 for each of the groups. If for a given group fewer hazard ratios are 

entered than the number of periods, the remaining hazard ratios are taken to have the 

same value as the last specified hazard ratio. In addition, if no hazard ratio is specified 

for a particular group, its value in a given period is taken to be the geometric mean of 

the hazard ratios specified for the same period across all the groups for which a value has 

been entered. When a test for trend is chosen, the dose may be input for each treatment 

group.
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■  ART ANALYSIS OF RESOURCES FOR TRIALS - S u r v iv a l o u tc o m e s

Panel 1 P * 1®12 | Panel 3 1 Advanced options |

Required treatment arm set-up 

Choose treatment group:

Group 2 (required)
Group 3 
Group 4 
Group 5

Hazard ratios

Enter relative to the control distribution

Allocation ratio

Default: equal allocation for a l groups

Group 1 | l Group 1 |1

Dose

l~  Trend

OK Cancel Submit

Figure 4-2: Panel 2 screen completed for a two arm trial

4 .2 .3  S urv ival ou tco m es - pan e l 3

Panel 3, which is illustrated in Figure 4-3, requires the input of patient recruitment options

and the selection of the analysis method from the dropdown list. The inputs are similar
*

to those of the original dialog. By default, calculations will be run using equal weights 

over the periods. If this is not the case, unequal weights may be entered, e.g. 12 2, for 

each of the periods over which recruitment takes place. As before, steady recruitment 

using the uniform distribution is assumed as a default. If exponential accrual is chosen 

instead, the rate needs to be entered in the Exponential accrual box.

The default method of computation is the unweighted logrank test under local alter­

natives. This implies that sample sizes are derived under the assumption that hazard 

ratios between treatment groups are not far from one. However, simulations provided 

in Chapter 3 have shown that the improvements in terms of accuracy gained by com­

puting sample size under distant alternatives are minimal. Sample sizes derived through 

computations under local alternatives will be slightly conservative for hazard ratios < 

0.5.
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ART ANALYSIS OF RESOURCES FOR TRIALS S u r v iv a l o u tc o m e s

Panel 1 | Panel 2 Panel 3 | Advanced options

Patient recruitment 

Duration [cf

(• Equal weights over periods

(  Unequal weights:

Proportion recruited at start 

<• Uniform accrual 

1 Exponential accrual:

Q

Model Options 

(•  Local alternatives Distant alternatives

Method of sample size calculation | logrank, unweighted _^J

I-  Additional details in output Save using filename [

OK Cancel Submit

Figure 4-3: A completed Panel 3 screen illustrating input of recruitment options

4.2 .4  S u rv ival ou tco m es - ad v an ced  o p tio n s

The last part of the dialog window for ART shown in Figure 4-4 allows the input of loss 

to follow-up and cross-over for each of the treatment groups in the trial as specified in 

Panel 1 in a similar manner to the input of survival probabilities and hazard ratios in 

Figures 4-1 and 4-2.

Both loss to follow-up and cross-over need to be entered as a cumulative distribution. 

The user may then choose to Specify target group on cross-over or to Specify 
hazard ratios post-withdrawal. The first option assumes that patients withdrawing 

from treatment of a particular group will receive the treatment regimen of the target 

group and hence take on that hazard after crossing over. If the second option is chosen 

a post-withdrawal hazard ratio function relative to the hazard of the control arm failure 

time distribution needs to be entered for each arm that is subject to cross-over. Similar 

to the hazard ratios between groups entered in Panel 2 (see Figure 4-2) as many values 

as there are periods may be entered. If the number of values entered is less than the 

number of periods, then the last hazard ratio value applies to the remaining periods. 

This option is favourable over the first if patients withdrawing from allocated treatment 

over the course of the trial are expected to do much worse than either treatment group 

for example.
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ART - ANALYSIS OF RESOURCES FOR TRIALS - S u m v a l  o u tc o m e s

Panel 1 | Panel 2 1 Panel 3 Advanced op»iom | 

Choose treatment group: Loss to follow-up 

Enter cumulative distribution
Group 2 
Group 3 
Group 4 
Group 5

Group 1 10.05

At the end of period(s)

Group 1 flT

Withdrawal from allocated treatment 

Enter cumulative distribution At the end of period(s)

Group 1 |0.01 0.021 0.0331 0.04641 0.0G Group 1 [2 4 6 8 1 0

Enter post withdrawal hazard ratios, or target 
groups on cross-over <• Specify target group on cross over

Group 1 [2 Specify hazard ratios post withdrawal

OK | Cancel | Submit

Figure 4-4: Advanced options for survival outcomes

4.3 Optima

Optima is a clinical trial currently running in the UK, Canada and the US which is 

designed to determine the optimal management of patients with HIV infection for whom 

first and second line highly active antiretroviral therapy (ART) has failed. Patients are 

randomised equally between standard (< 4 drugs) - and mega (> 4 drugs) - ART. The 

assumptions for sample size calculation, based on earlier data on similar patients, were 

as follows: The standard-ART cumulative event rate in year 1 is 23% with a 25% annual 

increase thereafter until the end of the study and cross-over from mega- to standard-ART 

is 5% in year 1 and decreases by 50% every year thereafter. The hazard ratio is 0.7 and 

loss to follow-up at 5.5 years is 5% with drop-in from standard- to mega-ART at 1% 

in year 1 (increasing by 10% every year thereafter). Furthermore a significance level of 

5% with 4.5 years accrual and one year minimum follow-up under a power of 80% were 

assumed. Under these assumptions our program predicts that a sample size of 490 with 

318 expected events will be sufficient to detect a clinically relevant difference between the 

treatment groups. In comparison, if loss to follow-up and cross-over are not adjusted for 

we arrive at a sample size of 379 with 248 expected events.

If this trial had been designed with 90% power, as is quite frequently done in practice, 

we would find a difference of 29.1% in sample size between adjusted and unadjusted 

calculations, i.e. an increase in sample size due to adjustment for loss to follow-up and
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cross-over from 508 to 656 patients, and an increase from 332 to 425 required events 

which translates to a difference of 28.0%.

The output given below corresponds to the inputs illustrated in Figures 4-1 - 4-4 

and may be obtained upon pressing the OK or Submit buttons. The main improvement 

from the previous version concerns the level of detail available in the output in terms of 

the parameters used for the sample size calculation such as the accrual method and the 

development of event probabilities assumed in each treatment arm over the number of 

periods chosen.

ART - ANALYSIS OF RESOURCES FOR TRIALS (version 1.0.5, 6 July 2005)

A sample size program by Abdel Babiker, Patrick Royston & Friederike Barthel, 
MRC Clinical Trials Unit, London NW1 2DA, UK.

Type of trial 
Statistical test assumed 
Number of groups 
Allocation ratio

Total number of periods
Length of each period
Cum. event probs per period (group 1)

Cum. event probs per period (group 2)

Number of recruitment periods 
Number of follow-up periods 
Method of accrual 
Recruitment period-weights

Hazard ratios as entered (groups 1,2) 
Hazard ratios per period (group 1)

Hazard ratios per period (group 2)

Superiority - time-to-event outcome 
Unweighted logrank test (local)
2

Equal group sizes 

11

6 months
0.123 0.230 0.259 0.287 0.324 0.359 

0.406 0.449 0.509 0.561 0.632
0.087 0.167 0.190 0.211 0.240 0.268 
0.306 0.341 0.392 0.438 0.503

9
2

Uniform

1 1 1 1 1 1 1 1 1 0 0

1, 0.7
1.000  1 .000  1 .000  1.000  1.000  1.000  

1.000  1 .000  1.000  1.000  1.000  

0.700 0.700 0.700 0.700 0.700 0.700 
0.700 0.700 0.700 0.700 0.700
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Alpha
Power (designed)

0.050 (two-sided) 

0.800

Total sample size (calculated) 825
Expected total number of events 287

Values given below apply to each group at the end of the trial

Unadjusted event probs (groups 1,2) 0 .632, 0 .503

Unadjusted loss to follow-up probs 0,.050, 0,.050

Unadjusted cross-over probabilities 0,.068, 0,.098

Expected proportions of event 0..392, 0..303

Expected proportions lost to follow-up 0..022, 0..024

Expected proportions of cross-over 0..026, 0..072

The first part of the output gives an overview of the trial parameters chosen by the 

user at the time of filling in the dialog menu. A detailed display of the cumulative event 

probabilities in the treatment groups and the hazard ratios over each of the periods in 

the trial allow the user to check that the trial design was input correctly. Sample size and 

number of events needed for the trial design are given towards the end of that ouput.

The second part of the output appears only if the Additional details in output 
option is checked. It provides further information regarding the expected performance in 

all treatment groups by the end of trial, in particular with regards to loss to follow-up 

and cross-over proportions in all arms.

Furthermore, the user may save probabilities and hazard ratios used in the calculations 

to a new file by filling in the Save using filename box.

4.4 Comparison w ith other available software

Several sample size programs are currently available which provide calculations for those 

trials with survival-type data which are to be designed and analysed using the logrank
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C o s t S l a t  i sl  i c a l  

p a c k a g e  

n e e d e d

l o g r a n k  

s a i n p i e  

s i / e

f l e x i b l e

a c c r u a l

n o n  - 

u n i for m 

a c c r u a l

n o n  - 

p r o p ,  

h a z a r d s

l o s s

l o

f o l l o w -11 p

f l e x i b l e  

l o s s  l o  

f o l l o w - u p

A R T Er e e S t a t a / ✓ / / / /

c p o w e r F r e e 11 / /

C l i n i c a l  T r i a l s  

D e s i g n  P r o g r a m  ( v .  1)

$ 2 9 9 n o n e / / /

E G R E T  S I Z  ( v .  1) $ 4 6 5 n o n e / / / /

n o t  b y  g r o u p

E x - S a m p l e  ( v .  3 . 0 ) $ 1 2 5 n o n e / /

N C S S  P A S S  ( 2 0 0 4 ) $ 8 9 9 . 9 5 n o n e / / / / /

N Q u e r y  a d v i s o r  ( v .  5 . 0 ) $ 9 9 5 n o n e / / /

N s u r v  ( v .  2 . 2 ) $ 1 4 0 n o  n e / / / /

n o t  b y  g r o u p

P O W E R $ 1 0 n o n e / /

P o w e r  fa P r e c i s i o n  ( v .  2) $ 9 9 5 n o n e / / / / / /

P S  P o w e r F r e e n o n  e / /

S c h o e n  f e l d Er e e n o n e / /

S I Z E F r e e S A S / / / / /

no t  b y  g r o u p

Si  at  i st  i c a

P o w e r  A n a l y s i s  ( v .  (i)

€ 6  1 9 Si  al  i sl  i ca / /

U n i f y P o w  ( v .  2 0 0 2 . 0 8 . 1 7 a  ) Er e e S A S / /

c r o s s  - 

o v e r  

d e s i g n s

in n ll i - 

a r m  

d e s i g n s

s a i n  p i e  

s i z e

R e s  ni l  s 

nil  m b c r  

o f  e v e n t s

p o w e r

M e l  h o d o l o g y  

a u l  h o r s

A R T / / / / ✓ Ha r t  l i el  e l  al .  ( 2 0 0 5 )

c p o w e r  ( 1 0 / 0 3 / 2 0 0 4 ) / / E a c h i n  fa E o u l k e s  ( 1 9 8 6 )  [71]  

S c  h o c  n f e  Id ( 1 9 8 3 )  [ 114]

( T i l l i c a l  Tri al s  

D e s i g n  P r o g r a m  ( v .  1)

/ / F r e e d  in a n  ( 1 9 8 2 )  [41]  

R u b i n s t e i n  e l  al .  ( 1 9 8 1 )  [ 104]

E G R E T  S I Z  ( v .  1) / ✓ ✓ S e l f  e l  a l .  ( 1 9 9 2 )  [ 120]

E x - S a m p l e  ( v .  3 . 0 ) / S c h o c n f e l d  fa R i c h t e r  ( 1 9 8 2 )  [ 115]

N C S S  P A S S  ( 2 0 0 4 ) / ✓ L a c h i n  fa E o u l k e s  ( 1 9 8 6 )  [71]

N Q u e r y  a d v i s o r  ( v .  5 . 0 ) ✓ / / I . a k a l o s  fa L a n  ( 1 9 9 2 )  [72]

N s u r v  ( v .  2 . 2 ) / E a c h i n  fa E o u l k e s  ( 1 9 8 6 )  [71]

P O W E R  ( v .  1 . 4 ) / ✓ S c h o c n f e l d  fa R i c h t e r  ( 1 9 8 2 )  [ 115]

P o w e r  fa P r e c i s i o n  ( v .  2) / / S c h o c n f e l d  ( 1 9 8 3 )  [ 114]  

E a k a l o s  ( 1 9 8 8 )  [73]

P S  P o w e r  ( v .  2 . 1 . 3 0 ) / S c h o c n f e l d  fa R i c h t e r  ( 1 9 8 2 )  ( 115)

S e h o e n f e l d  ( 0 3 / 0 5 / 2 0 0 1 ) / / S c h o c n f e l d  ( 1 9 8 3 )  [114]

S I Z E  ( 2 6 / 0 6 / 1 9 9 6 ) / / / / E a k a l o s  ( 1 9 8 8 )  [73]

St  at  i st  i c a

P o w e r  A n a l y s i s  ( v .  6 )

/ S c h o c n f e l d  ( 1 9 8 3 )  [ 114]

U n i f y P o w  ( v .  2 0 0 2 . 0 8 . 1 7 a  ) / / S e l f  e t  al .  ( 1 9 9 2 )  [ 120]

Table 4.1: Properties of available sample size programs
Disclaimer: the features and costs of programs mentioned in this table were, as
far as the author is aware, correct at the time of writing. The author is happy to change 
any information on the programs as necessary
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test. Table 4.1 displays a large selection of these. Those which are identified as ’Free’ 

in Table 4.1 are available for download over the internet free of charge and the rest are 

commercially available. Most of the programs, as is illustrated in Table 4.1, provide 

calculations under the logrank test and allow for the incorporation of accrual and follow- 

up times. Many also allow ‘loss to follow-up’ expressed as a proportion of patients lost 

by the end of the trial. However, most methods do not provide adjustments for non- 

uniform accrual of individuals into the trial, non-proportional hazards, cross-over (from 

one treatment to the other) and multi-arm trials. The program SIZE perhaps comes 

closest to ART in achieving all these aims. However, SIZE does not allow for non-uniform 

accrual into the trial nor does it allow for more than two arms in a trial. Furthermore, 

at least in the simulations we have performed, the adjustment provided for most of these 

parameters in SIZE can lead to slightly overpowered designs. In terms of software needs 

ART requires an installation of Stata while SIZE requires SAS.

4.5 Conclusions

The new design of the dialog menu exploiting features introduced in Stata 8 and more 

detailed output are the main improvements to ART. In addition, the sample size calcu­

lations may now be performed for non-inferiority designs. This option may be specified 

on Panel 1 (see Figure 4-1) while all other parameters are input in the same way as de­

scribed above. Furthermore, the program now allows for the choice of a one-sided alpha 

which may also be specified on Panel 1. Finally, the help files have been updated. In 

some instances the user may want to run several calculations with similar parameters and 

in this case does not require the header given in the output for each of the calculations. 

To suppress this output the option nohead may be added at the end of the command line. 

Our approach and the associated ART software also provides sample size calculations in 

the context of trend tests on dose/response studies.

In summary, users should find the new version easier to use and more informative 

than the first release. The validity of the calculations has been checked via extensive 

simulation studies of which some details are provided in the previous Chapter 3 and in 

Barthel et al. [7].

Further work includes the extension of the methods described in Sections 3.2 and 3.3
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by allowing periods of different lengths to the requirements of multi-stage trial designs, 

for example as described by Royston et al. [103] and in Chapters 5 - 7 .  In addition, we 

may consider to relax the assumption of tied events.
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C hapter 5

Surrogate markers and 

m ulti-stage trials - a review

5.1 Introduction

With the new advances in molecular biology and the ever increasing identification of new 

molecular targets for therapy, potential cancer agents are increasingly becoming available. 

However, inevitably for a variety of practical reasons only a limited number of patients 

can be entered into clinical trials in order to establish efficacy. An increasing desire in a 

variety of disease areas for new and promising drugs to be approved for marketing as soon 

as possible has led to approval being based on intermediate outcome measures, such as 

biomarkers, rather than on long-term clinical outcome measures. In this context several 

authors including Ellenberg & Fleming [31] have explored the use of surrogate outcomes 

in order to reduce the length of trials as well as the possibility of multi-stage designs [110] 

[141] which allow the testing of several agents in one trial.

During the course of this chapter we will first give an overview of the statistical debate 

surrounding the validation of surrogate markers. Following that, a short introduction to 

the medical aspects of the debate and the practical use of surrogate markers, especially in 

the case of cancer, HIV and cardiovascular disease trials, is given. The second part of the 

chapter considers sequential methods and two-stage selection designs in particular. We 

conclude the chapter on a combination of both methods, i.e. the integration of surrogate 

markers into multi-stage selection designs.
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5.2 Surrogate Markers

5.2 .1  In trod u ction

According to Ellenberg [31] ’investigators use surrogate endpoints when the endpoint of 

interest is too difficult and/or expensive to measure routinely and when they can define 

some other, more readily measurable, endpoint, which is sufficiently well correlated with 

the first to justify its use as a substitute ’. Surrogate markers or intermediate endpoints 

have received ever increasing attention during the past 20 years and their use in clinical 

trials has been the subject of much debate. First and foremost this debate centres around 

the question of how to define and validate such markers [91] [29] [111] [136] [59] [23].

ICH Guidelines on Statistical Principles for Clinical Trials state that ’In practice, the 

strength of the evidence for surrogacy depends upon 1) the biological plausibility of the 

relationship, 2) the demonstration in epidemiological studies of the prognostic value of 

the surrogate for the clinical outcome and 3) evidence from clinical trials that treatment 

effects on the surrogate correspond to effects on the clinical outcome ’ [87].

5.2 .2  T h e P ren tice  criterion

The most often cited definition of a surrogate marker was given by Prentice [99] in 1989 

and is known as the Prentice criterion. This defines a surrogate marker as ’a response 

variable for which a test of the null hypothesis of no relationship to the treatment groups 

under comparison is also a valid test of the corresponding null hypothesis based on the true 

endpoint’. Thus the surrogate variable is required to capture any relationship between 

the treatment under consideration and the true endpoint employed. Mathematically this 

can be expressed using some function fo

f D {t - ,S( t ) ,A}=fD {t;S(t)}  (5.1)

where for a conditional probability distribution S(t) a surrogate for the primary endpoint 

D  should be able to capture the dependence of D  on treatment A.  Hence the surrogate 

variable is required to be fully sensitive to any treatment difference in true endpoint rates 

and the treatment under consideration should not be allowed to influence the endpoint 

of interest via a mechanism unrelated to the surrogate. His operational criteria require
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that

• the treatment has a significant impact on the surrogate endpoint

• the treatment has a significant impact on the primary endpoint

• the surrogate has a significant impact on the primary endpoint

•  the full effect of treatment upon the primary endpoint is captured by the surrogate

Thus an important drawback of this method is that evidence from trials with nonsignifi­

cant treatment effects may not be used, even though these trials may be consistent with 

a desirable relationship between both endpoints [84].

Prentice considers papers by Ellenberg & Hamilton [31] and Wittes et al. [143] in 

order to see how their choice of surrogate variables compare with his criterion. Ellenberg 

h  Hamilton have suggested progression free survival as a possible surrogate to survival 

for cancer trials. Hence an event will in this case be defined as either disease progression 

or death. This marker may be difficult to validate in terms of the Prentice criterion since 

this would involve a comparison of death rates among these patients with corresponding 

rates for a comparable group of patients without a prior cancer diagnosis. Wittes et al. 

have proposed the use of markers such as blood cholesterol in trials of cholesterol lowering 

drugs. These, however, do not fulfill the criterion if a new intervention reduces the risk 

rate for the surrogate by some pathway unrelated to the development of a fatal event. 

One apparent problem with the Prentice approach is that it is very restrictive and thus 

rarely applicable in practice.

Nevertheless, many authors since then have employed the Prentice criterion in an at­

tempt to validate the choice of surrogate endpoints. Freedman &, Graubard [42] employed 

the Prentice criterion in order to validate surrogate markers in the context of chronic dis­

eases. They reproduced Prentice’s mathematical expression, however, in this case for a 

binary endpoint A, i.e. A = 0,1. Furthermore they suggested the following procedure 

which may be used to authenticate a surrogate endpoint:

’Step A Test for interaction between intermediate endpoint and treatment. I f  a sig­

nificant interaction is found there is strong evidence against [the] criterion (...) and the 

procedure may stop.

Step B I f  there is no significant interaction, adopt a no interaction model and test 

for a treatment effect. I f  there is a significant treatment effect there is strong evidence
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against [the] criterion

If a significant interaction term can be found in Step A, then that means that there 

is strong evidence against the Prentice criterion and we would therefore stop at this step. 

In a linear logistic regression setting, Step B would mean that the linear logistic model 

will be adopted

( s - 2 )

where ctj is some parameter in the model and Tj is taken to represent the jth  treatment 

effect. One problem with this validation is that in the case of a statistically significant 

result, the Prentice criterion will be rejected. However, if the result is not statistically 

significant, one cannot assume that the criterion is fulfilled.

Begg & Leung [10] also criticize the Prentice approach. Central to their argument are 

the standardised mean treatment effects on D  and S  respectively, and the correlation p 

between them. They point out that under the Prentice criterion, ’the standardized effect 

of the treatment on the surrogate end point must be greater than the standardized effect 

of the treatment on the true end point by a factor that is proportional to the inverse of 

the correlation coefficient’ p. They propose a new conceptual framework which centres 

around two principles. The first generally states that the gold standard is represented by 

the analysis based on the true endpoints. The second principle states that the validity of 

a surrogate end point should be measured using the probability that trial results which 

are stipulated from the surrogate marker are ’concordant’ with results which would have 

been obtained had the true primary endpoint been used. The criterion for concordance is 

arbitrary. One possible definition of concordance would be that both results based upon 

S  and D  are significant or not at the 5% level.

Fleming et al. [37] acknowledge in their paper that the Prentice criterion is often 

of little practical use. However, instead of providing a new measurement they suggest 

that instead of using surrogate endpoints, one should use auxiliary ones. The auxiliary 

variables do have a relationship with the treatment and the endpoint of interest but are 

not used as supplements. Instead, they are used to provide information on missing data 

from the endpoint of interest. One example is the use of biological marker data such 

as performance status, immune function and weight change which may provide small 

improvements in the efficiency of unbiased treatment effect estimates on the primary 

endpoint. Two approaches to their use employing ideas based on augmented score and 

augmented likelihood methods are outlined. Nevertheless, from the research they have
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conducted they conclude that only very modest gains can be made from the use of such 

’auxiliary’ variables.

5 .2 .3  P ro p ortion  E xp lained  and R ela tive  E ffect

As the Prentice criterion is somewhat idealistic, Freedman et al. [42] suggest to measure 

the proportion of treatment effect explained (PE). A way of estimating this proportion 

is given by

where and are the estimates of the treatment effect on the final endpoint with and 

without an adjustment for the surrogate variable calculated from a logistic regression. 

This approach is also employed by Lin et al. [76]. For a variable satisfying the Prentice 

criterion this proportion would then be expected to be equal to one.

Methods to simplify the calculations associated with the derivation of the confidence 

intervals around the PE are described in Chen et al. [15]. Their procedure allows the 

calculation of treatment effects before and after adjustment for the surrogate simultane­

ously from a single model. The original methods as proposed by Lin et al. [76] require 

the estimation of the PE from two separate models which is computationally demanding. 

Estimates derived using Chen et al. are numerically comparable to the conventional ones. 

In addition and more importantly the new procedure may also be applied in the setting 

of multiple-covariate models for the decomposition of the overall treatment effect. This 

allows the comparison of PE among several surrogate markers.

A significant problem with this approach is that the confidence intervals tend to be 

very wide. Two other problems are that the proportion explained is not well calibrated 

as a measure of a proportion and that the measurement is not unique. We could therefore 

use an alternative measurement

P A - l  rexP(2fe )  ~ f54)
1 exp(2/3) -  1 1 ( ’

where 2fi is defined as a measurement of the log odds ratio of disease given exposure. 

The differences in these two measurements range from 0% to 23.69% for varying values 

of /3s [74]. Lin et al. point out that the employment of this variance formula and
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the extension they developed requires much larger trials or meta-analyses since precise 

estimation requires a large value of the ratio of the treatment effect relative to its standard 

error. Daniels & Hughes [25] further criticize this idea. They highlight another major 

problem: Should competing mechanisms of action be in operation, the proportion of 

treatment effect is an erroneous concept since it can take values outside the range from 

zero to one. Furthermore, PE will tend to be unstable when (5 is close to zero, a situation 

that could occur in practice [84].

Buyse & Molenberghs [13] extend the criticism of the proportion explained and go on 

to develop a new approach which centres around the relative effect RE. If A  is defined to 

be the treatment, RE is the effect of A  on D relative to that of A  on 5, and 7 Z which is 

the association between S  and D after adjustment for A. An  intuitive approach for RE 

is given by

RE(T,A,  S) = — (5.5)
a

where a , and 7  are given by the logistic models

, ,P(Si  = l\Ai)^ , „
P (S i  =  0|j4*) “  MAD +

and

and

H P{Di '=O\A)) ~ ^ AD + 0Ai

, ,P(Z>, = 1|S;K , „
P(Di =  0|Sj) ~  ^SD

respectively. RE can then be interpreted as linking the surrogate and true end point 

on the population averaged level and 7 ^ as describing the subject-specific association 

between them. As in the case of PE however, the number of observations should be large 

for RE to be of practical value and hence a meta-analysis is often needed. Two problems 

associated with RE are the width of its confidence intervals and the fact that it might 

change with the strength of the association between A  and the outcomes itself. Another 

drawback is that RE is model dependent in its definition. Buyse &; Molenberghs have 

illustrated the use of the RE in their paper employing a study by the Pharmacological
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Therapy for Macular Degeneration Study Group run in 1997. Here the effect on vision 

was tested in two groups of patients, one receiving interferon a  and the other a placebo. 

Buyse &; Molenberghs compare the primary endpoint, loss of at least three lines of vision 

after one year, to the surrogate endpoint of loss of at least two lines of vision after six 

months. Since their initial analysis fails to provide evidence that the full effect of A  on D  

is mediated through S  they then look to compare the proportion explained and relative 

effect.

P E R E
E stim ate 0.45 0.94
95% C IL -0.30 0.20
95% Clu 4.35 3.15

Table 5.1: PE and RE with respective confidence intervals for macular degeneration study 
[74]

Table 5.1 illustrates the width of the confidence intervals around the estimates in this 

context. We can see that the confidence intervals are very wide for both these approaches. 

In addition, the confidence interval for PE includes negative values which by definition 

should not be the case.

5.2 .4  M eta-an a lysis  and th e  d egree  o f  corre la tion  b e tw een  surrogate  

m arker and prim ary en d p oin t

As a single trial provides a single estimate of effect sizes on the primary endpoint and 

a surrogate outcome measure, much attention has been paid to the use of meta-analysis 

and the degree of correlation between the treatment effect on the surrogate marker and 

the primary endpoint of interest [143] [64]. Daniels &; Hughes [25] use a meta-analytical 

approach based on Bayesian methods and using bootstrap analysis. They illustrate this 

method utilizing data from 15 trials in order to explore the association between treatment 

differences on the development of AIDS or death and the CD4 count. A non-parametric 

bootstrap is then employed to estimate the correlation between the estimators of the 

treatment difference on the log hazard ratio for survival and on change in CD4 count. 

Non-informative priors were placed on the fixed effects and regression coefficients. Three 

different priors, DuMouchel, shrinkage and a flat prior, were used for the between-study 

variance. Results from all three of these were similar and showed that CD4 count does 

not seem to be a good surrogate marker.

Gail et al. [43] discuss the strengths and weaknesses of the meta analytical approach
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as employed by Daniels & Hughes and extend it. As had already been pointed out by 

Daniels & Hughes, it may be difficult to specify a joint distribution for D  and S  and 

hence Gail et al. introduce separate marginal models for both. However, there are still a 

number of difficulties with this approach. Firstly, it can be difficult to define the category 

of drug studies to which a particular study belongs. The parameters of these studies 

may not only differ due to disparities in drugs used but also because the populations 

are different. Secondly, it may be the case that there are too few studies with enough 

reliable information on S  and A. Thirdly, individual level data is needed to estimate the 

distributions which may not be possible to obtain. Fourthly, the precision of estimated 

treatment effects is limited in a meta-analytical setting. Lastly, the approach by Gail et 

al. does not include survival analysis.

Lewis has explored this issue further in his thesis [74]. In order to capture the asso­

ciation and dependence of surrogate marker and primary endpoint he uses measures for 

subject and trial level correlations. Subject level correlation is defined as ’the product 

moment correlation between the treatment effect on the surrogate variable and the treat­

ment effect on the final endpoint estimated from individual patient data, within a specific 

randomised trial. ’ Trial level correlation (TLC) on the other hand is referred to as ’the 

correlation between the treatment effect on the surrogate variable and the treatment effect 

on the final endpoint at the trial level estimated from individual summary parameters from 

a number of randomised trials. ’ Mathematically this relationship can be expressed as

(5.6)

where filD and [3ls  represent the true treatment effect on the final and surrogate endpoint 

respectively and a and S are the variances representing the sample variation of the treat­

ment effect on the surrogate variable and the treatment effect on the final endpoint. Total 

sample size is given by N. The means and are given by

i=1

and

i=l

\0n-PD Ps-Ps
T L C  _  1 L  6_________

P ( N - 1)
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Lewis’ approach does not aim to attain the Prentice criterion but instead is designed to 

be easily interpretable. He illustrates this approach in a binary setting and goes on to 

extend it to the meta-analytical approach.

Downsides of the meta-analytic framework are described in Molenberghs et al. [84]. 

They point out that the modelling exercise increases in complexity as the need arises 

for a joint, hierarchical model for the surrogate and true endpoints. Furthermore, a 

different model is needed depending on the type of outcome. As a consequence, they 

introduce a unified theory which avoids the different specifications of trial level surrogacy 

and individual level surrogacy.

5 .2 .5  T h e  use o f  surrogate m arkers

There are varying views as to what extent surrogate markers should be employed. Ellen- 

berg & Hamilton [31] note that whilst they feel that promising surrogate markers exist in 

the context of cancer clinical trials, use of these should not preclude long-term survival 

follow-up. While some randomized studies have demonstrated differences in response 

rates without any apparent differences in survival time tumour response is often used as 

a surrogate measure in conjunction with survival as the primary endpoint. The choice 

of surrogate marker also depends upon the patient population in the study. In a popu­

lation in which a full recovery is possible surrogates such as disease free survival may be 

employed. Tumour response is only feasible if all patients have measurable tumour size. 

Another problem that requires attention regarding the choice of surrogate measures is 

that whilst a certain treatment may seem beneficial with regard to response in the short 

run the benefits may be outweighed by adverse long-term effects such as toxicity. Wittes 

et al. [143] state that whilst a primary endpoint measures the clinical benefit, a surrogate 

really measures the disease process.

Four potential problems with surrogate markers that are correlated with the endpoint 

of interest were identified by Fleming [36]. Firstly a surrogate end point may not involve 

exactly the same pathophysiologic process that results in the clinical endpoint. Secondly, 

the treatment may only affect the pathway mediated through the surrogate endpoint or 

thirdly, pathways which are independent of the surrogate. Lastly, the treatment may also 

affect the true clinical endpoint by unintended mechanisms of action which are indepen­

dent of the disease process.

Koopmans [68] controversially proposed that surrogate endpoints and biomarkers
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should be used as support for proof of effectiveness and that clinical endpoints such 

as survival can be investigated after the drug’s introduction. On the other hand, he does, 

however, point out that often surrogate markers such as response rate are not scientifically 

substantiated. He also proposes that quality of life should be used as a surrogate marker. 

The rationale behind this is that often, especially in the case of cancer, patients will not 

recover fully and drugs should therefore aim to improve their remaining life. This is a 

difficult issue though since it is not very clear whether patients really do prefer symptom 

relief to prolongation of survival.

Ellenberg [30] highlights another important advantage of surrogate endpoints. She 

believes that since trials using surrogates are conducted quicker, they are less likely to 

be affected by extraneous factors such as dropouts or other forms of non-compliance, 

and competing risks. Ellenberg raises three issues, which may play a role in deciding on 

whether to use a surrogate marker. The first one is that the magnitude of the treatment 

effect on the surrogate should be regarded as being important. Hence, the potential of a 

surrogate marker is much greater if the effect on it is substantial. Secondly, consideration 

should be paid to the duration of the effect. Lastly, assessments should be made depending 

on the severity of the disease as this gives an indication of how quickly a trial needs to 

be conducted. According to Ellenberg the main problem with the use of surrogates arises 

when a treatment is not being compared with a placebo but instead when two active 

treatments are being compared since in this case the biological activity is not the main 

interest of the study.

Fleming et al. [37] have adopted the theory of the two-stage carcinogenesis model 

advocated by Moolgavkar & Knudson [85]. Based on this approach, they believe that 

disease promoter endpoints might prove to be good surrogate endpoints. An example of 

this would be HIV-specific humoral and cellular immune responses in the development 

of HIV vaccine trials. For cancer trials they suggest that the use of surrogates such 

as performance status, weight change, immune function, and toxicity data might be 

beneficial. However, they ask for caution and illustrate, using the example of cardiac 

arrhythmia and chronic granulomatous disease, that highly misleading conclusions can 

be obtained using biological markers as replacement endpoints.

Cancer
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Kelloff et al. [62] aim to provide a possible strategy for the application of surrogate 

markers in the area of cancer chemoprevention development. This strategy involves the 

identification, validation and use of phenotypic biomarkers and genotypic biomarkers as 

surrogate markers for cancer incidence. The surrogate end points they propose to use are 

biomarkers such as proliferation and differentiation indices, gene and chromosome damage 

and serum biomarkers. Much attention of this paper is paid to the clinical problems 

in identifying and monitoring these markers, whereby they define the gold standard of 

surrogate marker validation to be a comparison with cancer incidence reduction. Kelloff 

et al. believe that through the use of surrogate endpoints the lengths of Phase II and 

Phase III studies can be reduced to less than 3 years. Kelly [63] also proposes the use 

of biomarkers such as the PSA (prostate-specific antigen) level but he warns that these 

need to be used cautiously as some agents have shown to be affecting the PSA level 

independently of affecting cell growth. He therefore proposes a model in which several 

agents are tested for PSA level effects and the best is then selected to undergo further 

testing (see Section 5.3.3).

Day & Duffy [26] have illustrated the use of surrogate endpoints in screening for breast 

cancer. They come to the conclusion that the use of surrogates in this case leads to a 

threefold decrease of the variance of the hazard and the availability of results 10 years 

earlier than through the use of the true endpoint mortality. The surrogate used here is 

that of predicted mortality which is validated in the paper using the Prentice criterion. 

Another benefit of the use of predicted mortality perceived by the authors is that of 

greater expected information contributed by each patient. This is because predicted 

mortality provides information on the continuous probability of death of each patient 

whereas mortality is only a binary outcome.

Kelsen [64] concentrates on a meta-analysis run by Buyse & Molenberghs investigating 

the assessment of colorectal cancer drugs using surrogates. The critical issue at hand here 

is whether an objective response to treatment is merely associated with better survival, or 

whether tumour regression (partial or complete) itself lengthens survival. This question 

has to date not been answered satisfactorily. This means that if we rely on response rate 

as a surrogate marker, we can reduce drug assessment times substantially but such results 

need to be treated with caution. It highlights the fact that surrogate markers do not only 

need to satisfy statistical criteria but also need to be assessed for their biological validity.

A paper by Fleming [35] discusses surrogate markers currently in use in cancer and
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AIDS trials. First of all he distinguishes between surrogates used in Phase II and III 

of trials, since in the first case the primary objective is to establish biological activity 

whereas in the latter case emphasis is put on evaluating the role a treatment should have 

in clinical practice. In cancer trials, emphasis has been placed on tumour response as 

a surrogate for survival. Fleming illustrates that this approach is very unsatisfactory 

in the colorectal cancer setting. However, despite the limitations of tumour response 

and biological markers as surrogate endpoints, Fleming does acknowledge their value in 

providing information. He also believes that the reliability of such surrogate markers will 

improve as we learn more about the disease process.

HIV /  Aids

Fleming [35] describes the case of CD4 counts, which have been widely used as a surrogate 

for the onset of AIDS or death, but for which it has lately been established that they are 

not reliable enough. This was found out during the conduct of a comprehensive collection 

of trials by the June 1993 National Institute of Health sponsored SOTA conference. 

Here the effect of treatment on primary endpoint and CD4 count was compared and 

the relationship between CD4 count and survival found to be very unsatisfactory [35]. 

Fleming has looked at 13 different trials where data on both CD4 count and survival has 

been collected. He found that there was a very high false positive rate of treatment effect 

on CD4 count when comparing it to the treatment effect on survival. Furthermore he 

deduces that if the treatment difference in terms of CD4 count is indeed large, then a 

prediction on outcome in survival terms is more accurate.

Similar observations concerning the use of CD4 count as a surrogate are made by Lewis 

[74] in his thesis. He used data from a meta-analysis originally conducted by Daniels &; 

Hughes [25] and found that the CD4 count is not particularly strongly associated with 

the treatment effect on the event of AIDS or death for individual trials at the individual 

subject level. In fact, his results indicate that the intervention effect on the onset of 

AIDS or death is only approximately ^  of the intervention effect on CD4 count. Out 

of 20 studies, only five predicted a significant intervention effect on the onset of AIDS 

or death over the course of two years. In two cases out of those the prediction intervals 

were, however, too wide.
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Cardiovascular diseases

O’Connor et al. [86] define four types of endpoints in relation to cardiovascular disease 

trials. The main endpoint is death; a nonfatal event endpoint is one that a patient wants 

to avoid such as myocardial infarction or stroke, a true clinical endpoint describes a 

specific symptom which the patient can feel or which influences his quality of life and a 

surrogate endpoint is one which the patient cannot feel but which is correlated with death. 

To date it has not been possible to find a surrogate that correlated perfectly with the 

main endpoint. O’Connor et al. propose to combine nonfatal or surrogate endpoints with 

number of deaths in the analysis, thus achieving a higher number of events. However, 

they also point out that this can be problematic since if the event rate for the surrogate 

is substantially higher than the event rate for death, any true effect on death may be 

camouflaged. One example of this is the Dilated Cardiomyopathy trial. Here, death 

and the need for transplantation were combined. Since transplantation was the largest 

contributor to the reduction in death, the trial results would have been seriously flawed 

had those two end points not been analysed separately in the end.

Possible surrogate markers that have been proposed in the past for various studies are 

hospitalisation, left ventricular mass, ejection fraction, ventricular volumes and maximal 

oxygen consumption. Still, results on correlation between these surrogate endpoints and 

the main endpoint have been inconsistent as has been shown in the Cooperative North 

Scandinavian Enalapril Survival Study and the Veterans Administration Vasodilator- 

Heart Failure Trial.

5.3 M ultiple stage trial designs

This section is concerned with multi-stage trial designs. In general, in this type of design 

patients are accrued over a period of time after which they are analysed. At this point 

a stopping rule is applied which decides whether the trial will continue accruing patients 

and move to the next stage or terminate early. The main aim is to reduce the number 

of patients required for the trial as well as to reach a conclusion earlier than in a stan­

dard parallel group design. This is facilitated by the scope for stopping a trial early for 

inferiority and /  or superiority of an experimental treatment over the control regimen.

Depending on the type of design, information on the effectiveness of treatments is 

accumulated over all stages in the trial or separately for each stage. However, for trials
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with a survival-type endpoint, the first method is generally employed. This leads to a 

level of correlation between the test statistics after each of the stages.

Early on designs were based on sequential methods which are described in Section 

5.3.1. These evolved to two-stage and selection designs as outlined in Sections 5.3.2 

and 5.3.3. Other adaptations such as the change of the originally envisaged endpoint or 

recalculation of the sample size during the course of the trial have also been examined. 

Issues with these types of adaptive designs are dealt with in Posch et al. [97]. However, 

these are not relevant to this thesis and will therefore not be examined at this point.

5.3 .1  Sequen tia l m eth od s

When conducting a clinical trial, the ethical approach is to involve the smallest number 

of patients possible and use data from these to conduct a valid analysis. Data from many 

clinical trials is often collected over a comparatively long period of time which gives us

scope to stop the trial early in case there are strong indications for or against a certain

arm of the trial. This requires the sequential design of a clinical trial since the data need 

to be analysed at time points during the planned course of the trial. Such methods can 

also be very flexible in how they are employed as they do not require the same number 

of subjects in each successive analysis step nor the same number of subjects in each arm. 

The earliest published account of a sequential clinical trial appeared in 1954 by Kilpatrick 

& Oldham [66] and was designed for a comparison of bronchal dilators. During the 1950s, 

60s and 70s there were regular but few accounts of such trials.

It needs to be emphasized that the interim analyses conducted determine only whether 

stopping should take place but they do not provide a complete interpretation of the data. 

In a sequential design setting the reasons due to which the trial may be discontinued 

include the following:

1) The experimental treatment is obviously worse than the control

2) The experimental treatment is obviously better than the control

3) There is little chance that the experimental treatment is better 

Reasons for continuation of the trial may include:

1) A moderate advantage of the experimental treatment appears to be possible. Such an 

advantage may be clinically worthwhile and thus it is important to estimate its magnitude
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as well as we can

2) The event rate observed is low and thus more patients are needed to achieve the desired 

power [135]

There are two main types of sequential procedures which can be identified. The first 

one is known as the ’boundaries approach’ which includes the sequential probability ratio 

test and the triangular test and the second derives from a ’repeated significance testing’ 

approach. Sebille and Bellissant [119] have conducted a comparison of these methods 

using simulation studies. They come to the conclusion that all methods satisfactorily 

maintain type I and II error rates whilst the triangular test approach seems to be the 

most satisfactory with regard to substantial reductions in sample size required. Two 

examples of the conduct of a trial using a triangular test are given in Whitehead [140]. 

One is an immunosuppression trial conducted at the Fred Hutchinson Cancer Research 

Center in Seattle and the other a survival study of inoperable lung cancer conducted 

at the Queen Elizabeth Hospital in Birmingham. In both cases the trial was stopped 

early due to inferiority of the experimental treatment and thus resulted in a significant 

reduction in sample size. Figure 5-1 illustrates the sample path from each interim analysis

with each circle relating to one analysis point. We can see that at the last interim analysis 

the sample path has crossed the lower boundary of the Christmas tree correction (inner 

dotted lines) and hence it can be concluded that the experimental treatment is inferior 

to the control.

5.3 .2  T w o-stage  design  based  on  E llen b erg  and  E isen b erger

Wieand & Therneau [141] base their two-stage designs upon a discussion by Ellenberg 

& Eisenberger in 1984. Ellenberg & Eisenberger had presented a two-stage plan for 

dichotomous or survival outcomes where the time-point of interest was short relative to 

the accrual period. The main benefit of this plan was the reduction in sample size with 

only a negligible loss of power. However, they did not give details at the meeting as 

to how the loss in power may be determined. Their design and the following designs 

based on it use the same outcome for the first and second stage of the trial. Wieand 

& Therneau propose a design saying that ’the two-stage rule is to observe n patients 

on each treatment and stop if at that point the response rate for the test treatment is 

the same or worse that that for the control treatment.’ If this is not the case then the
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Figure 5-1: Triangular test for inoperable lung cancer study [140]

trial will be continued and a traditional analysis conducted. Underlying their power 

calculations is the binomial distribution from which they deduce that there is a minimal 

effect on the power of the study under their two-stage plan, however, the loss of power 

does increase as the fixed sample power is increased from 0.8 to 0.9. Whilst Ellenberg & 

Eisenberger computed their sample sizes under the assumption of the Fisher-Irwin exact 

test, Wieand & Therneau have computed these using an unconditional statistic. Taking 

P C  to represent the response rate of a control treatment and p c  the response rate of a 

test treatment, they use

0.5(za +  Zj-g)2 
[ B ( p c ) - B ( p EW

to calculate the sample size, where 2N  is the total sample size needed, Z \-a and zp are 

normal deviates corresponding to a one-sided significance level a  and power I — (3 and the 

angular transformation B(x) = a rc s in \/^ . Several modifications of this formula have 

also been suggested depending on the type of stopping rule used. These formulations 

lead on average to sample sizes at around |  of those for fixed sample sizes. Wieand & 

Therneau propose to use this design in the case where tumour response or some other 

binary outcome is of interest.
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Thall et al. [134] propose a two-stage design for use in a randomised clinical trial 

with dichotomous outcomes which is also based on the design suggested by Ellenberg & 

Eisenberger in 1984. They have aimed to minimize sample sizes after placing constraints 

on the type I and type II errors. The design is as follows: In Stage 1 2N\  patients are 

equally allocated to E,  experimental treatment, and C, control. X e{ and denote 

the binomial success counts and 8{ denotes the difference in the sample proportions for 

i = 1,2.

( X e i + X c i ) / c
^  =  — m —  (5-8)

and

~  ( X e i  +  X c i  +  X e 2 +  X c 2 ) , K m
P~ = --------------- 2N - (5-9)

where

N  = N\ + N 2 and q = 1 — p

in general. The cut-offs y\ and y2 are chosen so as to maintain the pre-specified type I

and type II error rates. We continue to Stage 2 iff

Zi  =   r > VI (5-10)
(2p. iq. i /Ni )  2

otherwise Ho is accepted and the trial terminated. In Stage 2, an additional 2A^ patients 

are randomised equally to E  and C. n denotes the Stage 1 sample proportion. If

{ir6i  +  ( 1  -  7t)<52 }  , *
Z>2 = ----------------- i----  > 2/2 (5.11)

(:2p..q../N)i

Ho is rejected, otherwise, accept Ho. Thall et al. then optimize the procedure to obtain 

minimal sample sizes whilst employing normal approximations to the binomial and nu­

merical approximations. They deduce that there are substantial savings in sample size 

if the trial is terminated early, i.e. after Stage 1, compared with the fixed sample size 

approach. The main difference to the earlier design by Ellenberg &; Eisenberger is that 

size and power are pre-defined for a given alternative, and the sample size is minimized 

under the constraints.
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Simon [124] presented a similar design, however, this time for a Phase II clinical trial. 

His design is optimal in the sense that it achieves the lowest possible sample size in the 

case where the trial is terminated early. Early termination of the trial can only occur 

if the experimental drug has activity below a certain cut-off point po- In this case the 

null hypothesis is accepted. Acceptance of H\ after the first stage is not permitted. The 

design illustrated is based upon the cumulative binomial distribution. Simon defines the 

expected sample size to be

E(N)  = Ah +  (1 -  P E T ) N 2 (5.12)

where Ah and N2 denote the sample size at Stages 1 and 2 respectively and

P E T  = B{r  i;p,Ah)

denotes the probability that n  or fewer responses are observed in Stage 1 and hence 

the trial is terminated then. He goes on to determine optimal designs for pre-specified 

error probabilities and concurrs that the optimal two-stage design does not necessarily 

minimize the maximum sample size N  subject to the error probability constraints. A 

comparison of possible optimal and minimax designs can be found in his paper. The 

minimax design seems to be more attractive in the case where the expected sample size 

is small and accrual rates are low. A reason for that is that under the optimal design 

this will coincide with a very small first stage. However, in the case of heterogeneous 

populations this may not be desirable. He continues with a comparison of his designs to 

those of other authors such as Fleming, coming to the conclusion that his design achieves 

lowest expected sample sizes for several error combinations, but points out that a major 

problem with such comparisons is that two designs are often not equivalent with regard 

to the error probabilities. An extension of this method to a Bayesian decision-theoretic 

setting is provided by Jung et al. [61].

Following on from Simon, Chen & NG [16] use his optimal and minimax designs and 

apply them to a flexible setting. They define the expected sample size

E(N)  = Ni  +  (1 -  P E T ) ( N 2 -  Ni)  (5.13)

the average probability of early termination (APET), the average total probability of
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rejecting treatment (ATPRT) and the Average expected sample size (AEN). The flexible 

design allows the ATPRT to be between I -  a  and f t  Therefore, when applying this to 

the design of a head and neck cancer trial the expected sample size is reduced compared 

to the one under Simon’s fixed design for the minimax option. Under the optimal design 

option, both calculations give nearly the same answers. One disadvantage of this design 

is that it does not allow for early termination of the trial if there is a long run of failures 

at the start. To combat this problem, a range of three-stage designs have been suggested, 

for example Ensign et al. (1994) [32]. Here the sample size is very closely linked to the 

power 1 — /? of the study, i.e.

E(N)(p) = N i +  iV2{l -  f t  (p)} +  iV3{l -  f t  (p) -  ft(p )}  (5.14)

However, since all of these designs are for Phase II studies, they deal with comparatively 

small sample sizes and therefore are not practical for our Phase III trials.

5.3 .3  T w o-stage  selection  designs

So far only designs to compare one experimental treatment to a control have been in­

troduced. Nevertheless, two-stage designs can be used to select a promising treatment 

from a number of different treatments. At the same time they retain the advantage of 

reduced sample size identified in sequential designs, especially when most of the agents 

are observed to have little or no activity. Central to all of these designs is that we start 

with several experimental treatments out of which, in comparison with the control, the 

most promising is chosen [105] [124] [34]. ’Multiple stage plans are specified by the number 

of units examined at each stage, the number of stages, and the acceptance points and the 

rejection points associated with each stage’ [117].

One such design which can be used to decide between several experimental treatments 

of interest was proposed by Thall et al. [133]. A year before that Thall et al. published 

a paper employing a two-stage design for pilot studies [132], The central idea to both 

papers is that the highest success rate among the experimental treatments is identified. 

This is advantageous from an ethical viewpoint since exposure to ineffective therapies 

is minimized while resources may be allocated to test more treatments compared to the 

standard parallel two-arm designs. Methodology of the second paper is now described. If 

the success rate of the best experimental treatment falls below a certain cut-off value than
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the trial is terminated. If it is above this value, the trial proceeds to Stage 2, where the 

’best’ experimental treatment is compared to a control. The advantages of this design are 

that it has both high power and a high probability of termination should no experimental 

treatment be superior to the control. The type of trials considered here are based in a 

binomial setting with either success or failure as a possible outcome. Expected sample 

size depends in this case on the success probabilities and has been identified as

E(N)  = k N x + n2N2 (5.15)

where n is the probability of continuing to Stage 2. In addition to the overall power, 

Stage 2 power may be specified. Whilst the binary assumption may be relaxed, a major 

problem with this approach could stem from the fact that decisions need to be made on 

observations relatively soon after treatment commences. Care also needs to be taken in 

determining the cut-off for Stage 1 since if this is too high possible improvements on the 

control may be missed. It is therefore most favourable in the case where at least one 

treatment is expected to display a significant advantage. This design may be adapted by 

including the control in the first stage.

A similar design was suggested by Schaid et al. [110]. The main differences to the 

design described above are that it allows for more than one experimental treatment to 

be taken forward to Stage 2 and that in the case of a substantial survival advantage of 

one of the experimental treatments over the control the trial may also be terminated 

early. Hence two boundaries y\ and y2 are identified before the start of the trial with 

?/2 being the upper boundary identifying a substantial survival advantage. In the case 

of this design y\ is based on clinical judgement rather than optimization. Each of the 

experimental treatments are being compared to the control which calls for the definition 

of a  to be the pairwise alpha-error for each comparison. Schaid et al. have identified the 

expected total sample size as being

k
B(N)  = (k + 1 )N lP0 +  (j + 1) + N i { k -  j ) }Pj (5.16)

J = 1

where A/j is the sample size in Stage 1, N 2 the sample size in Stage 2, po the probability 

of stopping accrual at the first stage and pj the probability that accrual will continue for 

the standard treatment and j  of the experimental treatments. The design is then termed 

optimal if it achieves the lowest expected total sample size when the null hypothesis is true
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given a  and (1 -  ft). During the course of Monte-Carlo simulations using a FORTRAN 

program the authors found that ’the rule offers the largest reduction in E(N)  when 

the deaths are occurring quickly relative to the accrual rate and when there are several 

experimental treatments

Liu et al. [78] have criticized the above approach in that they do not believe that it fits 

into a cancer trial setting. According to the authors treatments for cancer are usually first 

tested on advanced tumour patients and once a promising treatment has been identified 

this is then compared to a control using patients which are relatively early in their disease 

stage. Hence they believe that a design which allows for the progression of more than one 

experimental treatment into the second stage is at odds with this approach. Instead they 

propose a design which has a fixed sample size, giving no possibility of an excessive number 

of patients and only allowing the progression of at most one experimental treatment into 

the second stage. This approach is based upon the Cox model and they advocate the 

usage of it in Pilot studies.

To circumvent the problem that Liu has pointed out above, Simon et al. [126] have 

chosen to only use patients from the second stage in their analysis after Stage 2. They 

have studied two possible types of design, one that includes the control in the first stage 

and one that does not [132] [133]. The authors believe that these types of designs are 

most applicable when it is very unlikely that there will be more than one treatment that is 

better than the control and when the patient numbers available are too small to evaluate 

more than one experimental regimen.

The above approaches by Thall et al. [133] and Schaid et al. [110] are generalised by 

Stallard & Todd [128] in two ways. Firstly, through the use of the efficient score as a test 

statistic the method becomes applicable to binary, normally distributed or failure time 

responses and furthermore allows the incorporation of covariate information at both the 

interim and final analyses. Secondly, they consider a sequential trial setting in which a 

number of interim analyses comparing the selected and control treatments are performed. 

However, it is required that at most one experimental treatment is selected at the first 

interim analysis. Thus if there is a group of treatments which are superior to the control 

and one wishes to select the best out of those, this method is not applicable since it would 

be desirable to only drop ineffective treatments at an early stage.

5.4 Surrogate markers and tw o-stage designs com bined
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In this thesis we propose the combination of both surrogate markers and a multi-stage 

design. Suggestions of such a combination have been made by a few authors. Kelly [63] 

emphasizes the need for this combination when he says that ’Only with the appropriate 

selection of disease state, trial design, and endpoints will we be able to select the most 

promising regimens to move forward

Flandre & O’Quigley [34] have considered this type of design. Their definition of 

surrogacy is ’a response variable of prognostic value obtained during follow up, which 

indicates an objective progression of disease’. Using this definition, they closely follow 

the Prentice criterion. Their design is as follows:

Stage 1: all patients are followed to the primary endpoint and information on the surro­

gate is collected in order to evaluate the strength of the relationship between surrogate 

endpoint and survival

Stage 2: follow up is terminated when patients reach the surrogate event.

The validity of the surrogate variable is tested using a standard likelihood ratio test. 

Information collected during the first stage consists of either survival time and the sur­

rogate variable or just survival time, depending on whether the surrogate event occurs 

before the death of a patient or not. Because of the way in which this trial is designed, 

Stage 1 could either be part of the trial or an earlier trial could be used. The survivorship 

model presented is based upon an earlier model developed by Slud &; Rubinstein [127]. 

The authors give two examples of trials for resected lung cancer from which the sample 

sizes Ni  and JVjj of Stages 1 and 2 were drawn a posteriori. Relapse has been considered 

as a time-dependent surrogate endpoint. The main problem with the approach is that 

it is based upon the Prentice criterion which, as described above, is very rarely satisfied 

in practice. What we also find problematic is the use of the surrogate endpoint in the 

second stage. We therefore propose a design as illustrated in the next chapter.

5.5 Summary

A growing number of trials today employ surrogate markers, either to complement the 

information available or to replace the primary endpoint at one stage in the trial. Recent 

trials have, however, shown that this can be a dangerous practice as often the relationship 

between treatment, surrogate marker and primary endpoint has not been well established.



A very prominent example of this is the use of CD4 counts as a surrogate marker for 

death in the case of HIV clinical trials. Methods such as the Prentice criterion, the 

proportion explained or the relative effect, and measures of correlation founded in meta­

analysis aim to provide a basis for the establishment of such a relationship, if it exists. 

Today many authors have recognized that the Prentice criterion is very rarely attainable 

in practice. Nevertheless, this does not make it obsolete but instead provides an ideal 

situation which every surrogate/primary endpoint relationship should be compared to. A 

good surrogate should satisfy two properties. Firstly, the surrogate endpoint must predict 

the primary endpoint on an individual patient level. Secondly, the effect of a treatment on 

a surrogate endpoint must predict the effect of that treatment on the primary endpoint. 

Unfortunately, we are rarely in this position for most of our common diseases. However, 

whenever employing surrogate endpoints we need to be cautious since any evidence of 

a relationship between the surrogate and primary endpoint will have been derived from 

earlier trials. In some cases the strength of this relationship may change when a new 

therapy regimen is used.

With the arrival of new advances in molecular biology and the ever increasing knowl­

edge about our organism, potential agents which may improve patient outcomes are in­

creasingly becoming available. Methods such as two-stage selection designs are therefore 

necessary in order to get the new drugs to the patients as soon and as safely as possible. 

Once a relationship has been established between the effect of treatment on the primary 

endpoint and on the surrogate, surrogate markers incorporated into the two-stage design 

could, in principle, provide a significant reduction in both trial time and sample size.
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Chapter 6

A m ulti-stage design

6.1 Introduction

Royston et al. [103] proposed a design employing an intermediate outcome in the first 

stage of a two-stage trial with multiple research arms. Such an intermediate outcome 

is not required to be a perfect surrogate for the final outcome in the Prentice sense but 

rather it is essential that the effect sizes of the new treatment on the intermediate and 

final outcome measures are related. The main aims are to reject as quickly and reliably 

as possibly any new therapies that are unlikely to show a worthwhile effect in terms of 

the primary outcome measure and to continue testing those therapies which are likely to 

show such an effect.

The design itself is based on eliminating inferior treatments at an early stage, and 

hence allowing through to the second stage only those treatments which show a predefined 

degree of advantage against the control treatment. In the first stage, the experimental 

arms are compared pairwise with the control according to the intermediate outcome 

measure. Treatment arms that survive this comparison then enter a second stage of 

patient accrual which culminates in pairwise comparisons against the control based on 

the primary endpoint. An example of such a trial with four experimental arms and one 

control over two stages is given in Figure 6-1.

The overall operating characteristics in this design are computed from the Stage 1 

and 2 type I and II error rates as well as the correlation between treatment effects on 

the intermediate and primary outcome measures. An important assumption is that the 

log hazard ratios on the intermediate and primary outcome follow a bivariate Normal
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Figure 6-1: Two-stage design based on Royston et al.

distribution. We may estimate this correlation from previous trials.

Recently ICON5, a trial comparing several ovarian cancer treatments, which employs 

this methodology, has been conducted at the Medical Research Council, London, together 

with collaborators in the USA, Italy and Australia. Furthermore, a number of trials in 

a variety of cancer sites are currently in the planning stages. However, two of these, 

STAMPEDE and ICON6, require more than one stage using the intermediate endpoint 

which has led to the work presented in this chapter. More information on these two trials 

is provided during the course of this chapter. This extension is important especially when 

dealing with new agents in cancer trials because very little is known about the effect of 

these drugs, both on their own and in conjunction with chemotherapy agents for example. 

Thus we want to allow for very early looks at which we can reject agents which show either 

no promising or even an adverse effect.

Thus, in this chapter the 2003 design is extended to allow for more than two stages 

in the trial. Mathematical details for the calculation of sample size in the two-stage as 

well as the extension to the multi-stage setting are provided in Section 6.2. An analysis 

of some of the assumptions underlying the calculations is provided in Section 6.3.
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6.2 Extension to  more than two stages

Assume that the principal outcome measure in a clinical trial is a definitive time-related 

disease-related event D ; commonly this would be death. In this trial design we also wish 

to observe a time-related intermediate outcome / ,  such as progression free survival. This 

outcome I  is assumed to precede D and is an intermediate outcome for D  with respect to 

the therapeutic effects of interest. However, we do not require I  to be a surrogate for D 

in the Prentice [99] sense; we only need the two outcomes to be correlated, and thus we 

call it an ’intermediate outcome’. Further details on this correlation are given in Section 

6.2.7. For a detailed discussion of composite intermediate endpoints see Chen et al. [17].

Suppose that k experimental treatments E\, . . . ,Ek  are to be compared with a control 

treatment C. Let (A7i, A d ) be the log hazard ratios for pairwise comparisons of an ex­

perimental treatment with control under the intermediate and primary outcome measures 

respectively where i = 1,..., s — 1 and s gives the total number of stages in the trial. The 

hypotheses for a multi-stage trial are then as follows for each treatment arm:

H0 : (A / l ,A /2>...,A / ,_1,A D) =  (A ^ .A J ,....,A ? ._ „ A ? ,)

and

Hi : (A7l, A /2,..., A/s_: , AD) =  (A7l, A /2, ..., A)b 1 , AJj)

An experimental treatment is deemed advantageous iff A}. < A®. and A 7i < 1, where 

i = 1,..., s — 1, as well as A ^ < A°D and A d < 1-

Define e7i as the total number of I  events in the control arm after Stage i in the trial 

and eo as the total number of D  events in the control arm. The trial then proceeds in s 

stages as outlined:

Stage 1 to Stage s-1

1. Define a critical value for the rejection of Ho, S7i, so that an experimental treatment 

E  will pass to Stage i -f 1 if the estimate of the log hazard ratio A 7i is found to be 

smaller than In Sii .

2. Randomise Ni patients, i =  l , . . . ,s  — 1, between the control and k experimental 

arms. Patients are distributed using an equal allocation ratio in most cases. Ni
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needs to be sufficient to expect I  events in the control arm.

3. Compute the hazard ratios using the Cox proportional hazards [92] for the I  event 

once ei{ events have been observed in the control arm and compare this with the 

value of 5it to decide whether the experimental treatment arm will pass to the next 

stage.

S tage s

1. Define a critical value for the rejection of Hq, 5d, s o  that E is deemed to be superior 

to the control if the estimate of the log hazard ratio A d  is found to be smaller than 

In SD.

2. Randomise an additional No  patients to both the control and each experimental 

treatment arm carried over into Stage s.

3. Compute hazard ratios for D again using the Cox proportional hazards once eo 

events have been observed among the control arm.

The event numbers are cumulative across all stages. Assumptions made during the 

course of this approach are the proportionality of the hazards and the standard multi­

variate normal distribution of the log hazard ratios.

6.2 .1  Sam ple size and  pow er ca lcu lation s

The overall type I error probability, the probability of falsely rejecting Ho, within this 

framework is given by

a = P{A/j < In6jx, A/2 < ln<5/2, ..., A/s_1 < ln ^ /a_1,A /) <ln<S£>|i/0)

where $ s(.) denotes the standard multivariate Normal distribution function and zaj and 

ZaD are normal deviates corresponding to a one-sided significance level a. The standard 

multivariate density function is given by

f s{x o ,xu ...,xp) = (27r)-(p+1)/2|d(A)|1/2exp(—2 )
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Here Q =  x' Ax  and A  is a symmetric matrix of s rows and columns which is defined as the 

inverse of the correlation matrix R  since the standard multivariate normal distribution 

has unit variance. Thus

A~l = R  — I

1 P\2

P21 1

Pal Ps2

Pis

P2i

1

In this model the correlation matrix R  depends upon three things in particular. Firstly, 

it is dependent upon the time at which eii events have been accrued in the control 

arm during Stage i. Secondly, the interval between that time point and the point in 

time at which ep events have occurred is of importance. Lastly, there will be a built-in 

correlation if event I  is a composite which includes D. One example of this would be the 

use of progression free survival as an intermediate marker.

Assuming that we have specified the type I error, power and the log hazard ratios 

A i^ A d in all stages, we need to calculate the cut-off 5i{ as well as the number of control 

arm events needed in all stages. It is intuitive that ln ^ r should lie between A9 and
1 i i

A}.. Let 4>_1 denote the standard Normal distribution function and ((o'/.)2, (cr^)2) the 

variances of the estimated log hazard ratios (A/{, A#) under Ho. Hence by definition for 

all stages where I  is the outcome

\n8Ii -  A°j
' C X I .

Gh

and

ZC*d ~
\n5D -  A°rD

D

We define the overall power across all stages to be 1 — ^

1 - /5  =  P ( A i1 < ln<S7l, A/2 < ln£/2, ..., A / ^  < l n ^ / ^ ,  A D < \nSD\Hi)

—  , 2l-/3/2 , •••, Zl~ P ia_ l > z l~ P D i R ) (6-1)

Let {{cr].)2, (vp)2) denote the variances of the estimated log hazard ratios (A j^ A d )
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under H\. Again by definition for all stages where I  is the outcome

*i-ft.
In &ii ~  A).

(6 .2)

and

[103]. The quantities (1 — /?)/. and (1 — fi)o may be interpreted as the probability of an 

effective new treatment passing to the next stage when the alternative hypothesis is true 

and the power of the final significance test at Stage s respectively. As all s tests need 

to be passed, the overall power cannot exceed (1 — (3)ii or (1 — (3)d - Following a similar 

argument, the overall type I error may not exceed either a i i or a p.

According to Tsiatis, 1981, [137] we can approximate the variance under Ho using the 

following formula

where the es are the number of intermediate and primary outcome measure events re­

quired. Using this approximation and the type I and II error formulae given above we 

can calculate the number of events as

Following an argument similar to Royston et al. [103], who evaluate the above expression 

for the two-stage case, we find that

(6.3)

and

« ) 2 =  ( ^ ) 2 =  j -

2 2

Zoti. Zl -0 I.

finally
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(6.4)

and

(6.5)

6 .2 .2  R ela tion sh ip  betw een  num ber o f  ev en ts  and  tr ia l t im e

After the trial has been launched, patients will be recruited gradually over time. If none 

of the experimental arms passes to the next stage, recruitment (but not necessarily follow- 

up) will cease. In the case where one or more experimental arms pass on to the next stage 

we assume that recruitment will continue at the same rate as in Stage 1. All available 

patients are then randomised between the remaining arms. This means that the more 

arms continue to the next stage the fewer patients each arm will receive and hence the 

longer and more expensive the trial will be.

Define R(t) as the number of patients recruited to the control arm by time t. We can 

now take

to represent the instantaneous recruitment rate of patients. The expected number of 

control arm survival events at time t in a simple parallel group trial is then given by

where F(t) =  1 — S(t), S ( t ) being a survivorship function in the control group [103]. We

used in sample size derivations and allows for tractability. If we set r(t) =  r with r being 

a constant, i.e. assuming a constant recruitment rate, we arrive at the expression

(6 .6)

(6.7)

assume this survival distribution to be exponential, i.e. S(t) = e Xi, since this is often

r[u -  l e “ A(‘' u)]k 
A
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Figure 6-2: Accrual to control arm in a two-stage trial

Hence

e(t) =  r( t -  (6.8)

We now consider the total trial duration to  which is the time at which eo  events are 

accrued in the control arm. Let tj denote the time at which in a two-stage trial Stage 

1 terminates, that is, the time to accrue ej /-events in the control arm. Assume that 

the (constant) recruitment rates per arm per unit time are r\ and V2 in Stages 1 and 2 

respectively where r 2 > r\. Furthermore, let Fo(t) be the distribution function for D- 

events in the control arm. Considering Figure 6-2 we can see that eo  may be calculated 

in two separate integrals. The first one calculates the area under the triangle from 0 to 

to  and up to the first arrow, the second integral calculates the area of the smaller triangle 

lying above that. Thus combining this knowledge with Expression 6.7 above we get

r t D  r t D — t i

eD = r i /  FD(tD ~ u)du 4- (r2 -  n) * /  FD(to -  tj  -  u)du 
Jo Jo

[103]. Since S(t) is assumed to follow an exponential distribution the formula calculated
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above may be modified to give

r t o  r t D - t l

ep = r 1 [1 — S( tp  — u)\du {r2 — r\) * / [1 -  S(tp  — £/ -  u)]du
Jo Jo

= n [ u -  +  (r2 -  ri)[u -A A
1 _  p - ^ D t D  1 _  p  A/)(£/} t l )

= ri( tD  7--------) +  (r2 ~ n ) ( t p  -  t i    ) (6.9)
Ad

The number of intermediate endpoint events needed is then given by

i _  p — ^ i t i

e / =  »•!(*/----------  )

We can extend this derivation to multi-stage trials with more than two stages to give 

r t o  r t D — t n

£d = r i Fp(tp — u)du -I- (7*2 — ri) * / Fp(tp  — — u)du +  ...
Jo Jo

t D - U ' - x

+(^s ~ ^s-i) * Fp(tD ~ tia-1  ~ u)du
o

I  _  g -A D t D  I  _  g -A D i t D - t l x )

= n ( t D   --------) + (r2 -  n ) { tD -  th ------------   ) +  ...
Ad Ad

I  _  e ~ x D ( t D - t i a _ l )

+ (rs -  rs- i ) ( tD -  tIa_x ---------------— -------- )

Since we take k to represent the number of experimental treatments used in the study, 

Stage 1 will consist of k +  1 treatments. Now we assume that the rate of accrual in Stage 

1 will be equal to the rate of accrual in Stage 2 of our study [103]. Hence

(k +  l)r i =  (k2 +  1 )r2

where k2 is the number of experimental treatments at Stage 2 of the trial. This holds for 

all s stages of the trial. Thus the total number of patients needed in the trial is given by

(k + l )r \ tD (6.10)

6.2 .3  A lgorith m  used  for S ta ta  program

Since Formulae 6.4 and 6.5 for the number of events ej{ and ep  are based on an estimate 

of the variance under H o , they will slightly underestimate the true sample size needed 

to achieve power 1 — /?. Hence the computer program available for Stata is based on the
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following algorithm in order to adjust for this:

1. Calculate the number of control I  events eji needed based on Formula 6.4.

2. Calculate the critical log hazard ratio In 5^ = Aj. +  za i. *

3. Calculate the time needed to run the trial until the end of Stage i using Section

6 .2.2

4. Calculate the number of events in the experimental arm(s) ej. under H \  by the end 

of Stage i using an exponential survival distribution

5. Calculate power for Stage i which can be achieved under e/t and e*j.

(a) If power is less than needed, replace e/{ by eji +  1 and rerun Steps 2. to 5.

(b) If power is as desired, terminate the algorithm

6 .2 .4  O ther accrual m echanism s

Section 6.2.2 has employed a uniform recruitment pattern to aid calculations. However, 

in a number of instances it is more appropriate to assume a different recruitment pattern 

(see Chapter 3, Section 3.5), such as an exponential accrual path. An example of such 

recruitment curves is given in Figure 3-3. Taking r(u) as exponential with parameter a 

gives

e(t)
o

a a(A — a) A — a

Another possibility is to take r{u) as piecewise linear, i.e.

a\ +  b\r 0 < r < R\

a-2 + b2 r Ri < r < R 2

r(u) =  <

a j  4- bjr R j - i  < r < R j
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This expression may then be fed back into the derivation of e(t). Figure 6-3 gives examples 

of such accrual patterns with a target accrual of 103 patients.

Linear patient entry

120 n

T3 100

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9
Time

uniform

Figure 6-3: Piecewise linear patient accrual patterns
1 - a l and bl are equal to one in first time increment and increase by one in 
each increment, 2 - a l and b l are equal to two in first time increment and increase by 
two in each increment thereafter, 3 - al and bl are equal to three in first time increment 
and double in each increment thereafter, uniform - uniform patient entry pattern starting 
at 1 in first time increment

6.2 .5  Stopping accrual at a pre-specified tim e-p o in t

So far we have assumed that recruitment may continue until the end of the trial, if needed. 

However, there may be situations where it is more appropriate to stop recruiting to the 

trial earlier on and after that only follow patients up. This allows one to restrict the 

required sample size. Furthermore, when implementing these sample size calculations in 

a computer program such as Stata, the following derivations are needed to account for 

those treatment arms which do not proceed on to the next stage, i.e. to which no further 

accrual takes place, but which are still being followed up.

Let t* denote the time at which accrual is stopped. Starting from a two-stage trial 

only, there are two possible scenarios to consider. First we will look at the case t* > t\  

where tj denotes the end of the first stage. Here we only need to consider the primary 

outcome measure as the trial will proceed as before until the end of Stage 1. Denote the
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number of patients at risk at t* by N d (0, t*)

N d ( 0 ,  t*) = (#  patients recruited by t*) — (#  events by t*)

=  (#  patients recruited by t j ) -f (#  patients recruited between tj,t*) 

—(#  events by t *)

= rit* + (rD -  ri){t* -  £/) -  eD(0,t*)

where

eD(0,<*) =  n ( f  -  + (r2 -  n )(t*  - 1, -  M L J lL)

which relates back to Formula 6.9. The probability of an event in the time interval 

between t* and to  is given by Fd ^ d — t*) and hence the number of events in this time 

interval is given by

gd{^*^d ) = N(t* ,to)

The total number of events up to to  is then given by

e£>(0, t*) +  eo(t*, to)

The second case to consider is t* < £/. First we derive the number of patients at risk 

based on the of primary outcome events

N D(0,t*) =  rtf* -  eD(0t t*)

=  £****>

The number of events in the interval 0 to t* is given by

eD( 0 , n  = r 1( f - ^ p - )

and

*d) =  T—FD(t*)FD(tD -  t*)

For the intermediate events the number of patients at risk is given by

N,(  0 , f )  =

1 0 1



and

as well as

e ,(0 ,«*) = n(f* -  F‘̂

e , ( f , t , )  =  -p-F,(t*)F/ ( t , - f )  
A/

This framework is easily extended to more than two stages. For the case that t* > tja_1 

we have that

N D(0,t*) = rxt* +  (r2 -  n)(t* -  th ) +  ... +  (ra -  -  th _x) -  eD(0,t*)

and

eB ( 0 , f )  =  n ( f  -  ^ 1 )  +  (r2 -  r , ) ( f  -  t h -  f p ( t * +  ...
A D

+ (rs -  r s_ i)(t -  i /a_1 ---------- — --------)

as well as

eD( t \ t D) = N (0 , t ' )F D(tD -  f )

For t* < ts8_1 we define m  as the number of stages in between t* and s. Hence

N D(0,t*) = rrf* +  (r2 - r i ) ( i*  -  th ) +  ...+  (rs_m+i -  ra- m)(t* -  tIn_m) -  eD(0,t*)

and

eD(0 , f )  =  n (t*  -  ^ 1 )  +  (ra -  n )(t»  -  th  -  F g (t* ~ h ) ) +  ...
A d  A d

+ V s - m + l  r s -m )V '  t la -m  \  )
A D

as well as

=  N d ( 0 ,  « * ) F d ( 4 d  — O

The number of events for the intermediate endpoint can be derived in a similar manner 

at all s — 1 stages.

1 0 2



6 .2 .6  P ro b a b ility  o f  research  arm s con tin u in g  recru itm en t in  S tage i

When planning a multi-stage trial it is important at the outset to consider the poten­

tial number of research arms in each of the stages. This allows the implementation of 

safeguards for the cost and length of the trial.

When dealing with two stages only, we can calculate the probability of a research arm 

progressing into the second stage using the Binomial distribution. In this case we are 

calculating the probability of k or more research arms out of the total number of arms 

in Stage 1 progressing into Stage 2 when the probability of ’success’ for a single research 

research arm is given by aj  under Ho and 1 — (3j under H\.  Thus under Ho

P(k > x) ~  Bin(k , <*/)

and under H i

P(k > x) ~  Bin(k,  1 — (3j)

However, these probabilities do not take the correlation between the hazard ratios for 

the experimental arms compared with control into account. This exists since the same 

control arm is used in each comparison. Furthermore, there is the correlation between 

the log hazard ratios after each stage which should be taken into consideration. If an 

experimental arm has passed the hurdle after Stage 1, it is more likely to have a sig­

nificant result in comparison with the control arm after Stage 2. Hence we compared 

probabilities calculated using the Binomial distribution with simulation results based on 

100,000 replications. The significance level a  was taken as 0.05 and 0.025 in Stages 1 

and 2 respectively. In addition, power is taken to be 95% in the first stage and 90% in 

the last. For the simulation set-up the hazard ratio under H\  for all experimental arms 

compared to control was set at 0.752. This hazard ratio is based around the ICON5 

trial described in Section 7.3.1. These simulation set-ups are described in more detail in 

Chapter 7. Results from these studies are given in Tables 6.1 and 6.2. In general, the 

binomial approximation performs pretty well. However, we can observe that the results 

from the simulation studies give a flatter distribution of the probabilities over the number 

of arms in Stage 2 of the trial.

An extension of this idea to more than two stages needs to take into account that in 

order for a research arm to progress into Stage 3 it needs to have progressed from Stage 

1 to Stage 2 already. Hence the number of ’successes’ in Stage 3 is dependent on the
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Approx. prob. of k experimental arms reaching Stage 2
k (#  arms) 0 1 2 3
Under Hq calculated 0.857 0.135 0.007 0.000
Under Ho simulated 0.778 0.156 0.051 0.015
Under H\  calculated 0.000 0.007 0.135 0.858
Under H\ simulated 0.005 0.026 0.105 0.864

Table 6.1: Probabilities for number of experimental arms reaching Stage 2 of a two-stage 
trial

Experimental arm 2
Under Ho Under Hi

Experimental arm 3 Experimental arm 3
Under Ho Under Hi Under Ho Under Hi

Exp. arm 1 Under Ho 0.778 0.056 0.057 0.013
Under Hi 0.056 0.013 0.014 0.005

Table 6.2: Probabilities for zero experimental arms reaching Stage 2 of a two-stage trial 
from simulation results run on 100,000 replications while varying the simulation of the 
experimental arms under HO and HI

number of ’successes’ in Stage 2. The same argument follows for Stages 4, 5, etc.. This is 

illustrated in the decision tree in Figure 6-4. Hence if hi denotes the number of treatment 

arms in a given stage and x  is the number of ’successes’

P(ks = x) = P{ks = x\ka- \  > x ,..., k2 >  x)

Each of these probabilities may be calculated using the binomial distribution. As an 

example consider a trial run in three stages with three experimental arms and one control. 

The significance level a  was taken as 0.25, 0.1 and 0.025 in Stages 1, 2 and 3 respectively. 

In addition, power is taken to be 95% in the first two stages and 90% in the last. Using 

Figure 6-4 we can calculate the probability of having two arms in Stage 3 under H\ using 

the Binomial distribution as follows

P(k3 =  2) =  P(k3 = 2\k2 = 3) * P(k2 =  3) +  P{k3 = 2\k2 = 2) * P(k2 = 2)

=  0.859 * 0.134 +  0.134 * 0.9025

=  0.237

The complete results are displayed in Table 6.3. The table also gives probabilities calcu­

lated from simulation studies using 100,000 replications. For the simulation set-up the 

hazard ratio under H\ was set at 0.752 for all arms in all three stages. The results indi­

cate that while the calculations for the probabilities using the binomial distribution and
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3

3

Stage 1 Stage 2 Stage 3

Figure 6-4: Decision tree for a multi-stage trial with three experimental arms and three 
stages

decision tree approach are not exact, they are a good indication of what might happen 

in a trial setting. However, there are some important differences for small probabilities. 

For example, under Ho the calculated probability of 3 arms reaching Stage 3 is zero but 

in the simulation setting we still observed three arms in Stage 3 in 1% of trials.

6 .2 .7  E stim a tio n  o f  th e  correlation  m atrix

In order to estimate the correlation matrix R  needed for the calculation of the overall 

type I error and power defined in Section 6.2.1 we bootstrapped patient data from the 

previously conducted trial ICON3. Estimates of the log hazard ratio for trials with more 

than two stages were obtained by dividing ICON3 into several periods at which the hazard 

ratio for the intermediate outcome was calculated. The elements of R  were then estimated 

using the bootstrap results and are based on 1,000 replications. Table 6.4 illustrates the
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Approx. prob. of k experimental arms reaching Stage 2
k (#  arms) 0 1 2 3
Under Ho calculated 0.422 0.422 0.141 0.016
Under Ho simulated 0.528 0.251 0.145 0.075
Under H\  calculated 0.000 0.007 0.134 0.859
Under H\ simulated 0.014 0.052 0.166 0.768

Approx. prob. of k experimental arms reaching Stage 3
k (#  arms) 0 1 2 3
Under Ho calculated 0.928 0.042 0.000 0.000
Under Ho simulated 0.803 0.141 0.044 0 .0 1 2

Under H\ calculated 0 .0 0 1 0.025 0.237 0.737
Under H\ simulated 0.027 0.085 0.214 0.673

Table 6.3: Probabilites for number of experimental arms reaching Stages 2 and 3 of a 
three-stage trial

lnA7l lnA / 2 lnA / 3 lnA / 4 lnA / 6 lnA#
InA/, 1

lnA / 2 0.6772 1

lnA /3 0.5692 0.8182 1

lnA /4 0.5155 0.7292 0.9054 1

lnA /5 0.4671 0.6781 0.8369 0.9230 1

lnA / 6 0.2799 0.4407 0.5504 0.6106 0.6785 1

lnAD 0.2024 0.3099 0.3902 0.4386 0.4786 0.6625 1

Table 6.4: Bootstrap results for correlation matrix P based on IC0N3 results
lnA7i gives the log hazard ratio for the intermediate outcome after 50, 100, 150, 200, 
250 and 500 I events and 830 D events in the control group respectively, InAp  gives the 
log hazard ratio for the primary outcome based on the full dataset available from the 
study

results. Figure 6-5 illustrates these results graphically. Hence we can see that the strength 

of correlation increases the closer the log hazard ratios lie together in terms of numbers 

of intermediate and primary events in the control arm. Additionally, we can see that 

for stages with I  outcomes it is not sufficient to assume a correlation of one, i.e. perfect 

correlation between the stages. Another important observation is that the test statistics 

for early stages based on I  events in the control arm have a low correlation with the test 

statistic at the end of the trial. Therefore, in very early stages in such a trial treatments 

should not be rejected unlesss they are shown to be worse than control.

In addition, Figure 6-5 demonstrates that an assumption of bivariate normality be­

tween the hazard ratios is reasonable. These plots show the ellipsoidal swarm of points 

which is characteristic of the bivariate Normal distribution (Rice, p. 82 [100]). This is 

very apparent in the plot for the relationship between a log hazard ratio after 2 0 0  and 

250 I  events.
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Figure 6-5: Joint distributions of the log HR for D and I events - illustrating strength of 
correlation at varying time points

This analysis also illustrates the difficulty in choosing an adequate specification of 

the correlation matrix. Hence more trials would need to be analysed to obtain a clearer 

picture in different disease areas. However, the choice of this matrix is important in order 

to calculate overall power and significance level of a multi-stage trial.

In order to see the impact on overall power and significance level of specifying a certain 

correlation structure we varied R  in a three-stage trial three times to get

R i  =

R2 =

1 0.6 0.6

0.6 1 0.6

0.6 0.6 1

1 0.6 0.5

0.6 1 0.7

0.5 0.7 1
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ex. overall Pow er overall
Ri 0.0086 88.7%
R 2 0.0102 88.8%
Rz 0.0123 89.3%

Table 6.5: Overall power and significance level a  under different correlation structures 
a  Stage 1 =  0.25, a  Stage 2 =  0.05, a  Stage 3= 0.025, power for all stages =  0.95%

and
1 0.6 0.3

0.6 1 0.9

0.3 0.9 1

The resulting impact on overall power and significance level is illustrated in Table 6.5. It 

is apparent that varying the correlation structure has very little impact on overall power. 

The impact on overall significance level is more apparent but still not very large. Results 

from an extensive simulation study are illustrated in Section 7.4.3.

6.3 Investigation o f assum ptions

6 .3 .1  V ariance o f  th e  log hazard ratio

The calculations for sample size in a multi-stage trial using the Stata program whose 

algorithm is given in Section 6.2.1 centre around an approximation for the variance of 

the log hazard ratio given by

var(A) = -i- 4- (6.11)ei e2

where e\ and e2 are the number of events in the first and second treatment group respec­

tively [92]. Hence we decided to investigate whether this relationship breaks down at any 

point.

Simulations were performed in Stata 8. Design specifications for all sets of simulations 

were two years of accrual, two years of follow-up, uniform accrual, exponential survival 

and one year median survival in the control group. The probability p of being allocated 

to the control treatment group was varied between , f  and and the hazard ratio 

was varied between 0.5, 0.7 and 0.9 in favour of the experimental treatment group. The 

variance estimate given in Expression 6.11 was calculated as well as an estimate from the 

Cox model available from Stata. In Figure 6-6 the mean difference for the variance esti­

mates is based on 10,000 simulated trials. This difference is also illustrated in percentage
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terms in Figures 6-7 and 6-8. As sample sizes come close to zero simulations become less 

robust due to small sample issues and variance values shoot off the scale. Hence, some 

observations have been omitted for small values of N.

From the tables it is apparent that for high N,  e.g. 1000 patients (and thus a high 

number of events), there is little difference between either calculation of variance. How­

ever, lower sample sizes, which result in 40 events or less, do display a greater degree 

of disparity between Equation 6.11 and the variance given by the Cox model. This is 

important since the multi-stage trials may in some cases have stages where less than 40 

events are accrued per stage. Future work may hence include an improvement of this 

variance approximation.

6 .3 .2  E x p o n en tia l survival

The derivation of the sample size calculations given above as well as their implementa­

tion in Stata 8 rely on exponential survival distributions. This assumption is common 

to many sample size formulae for time-to-event outcomes, such as Schoenfeld [114] and 

Freedman [41], as it eases calculations and is applicable in many trial settings. In some 

trial situations the assumption of exponential survival patterns, however, may not be 

appropriate. Ignoring this may then lead to underpowered trials as events come in later 

than expected. An example of a trial in breast cancer is given in Figure 6-9. In this 

case the actual survival distribution follows a flatter pattern than the single exponential 

distribution during the first year. After that, the rate of death increases, causing both 

curves to cross during year 4. One possible solution to this problem would be the imple­

mentation of a piecewise exponential distribution. This follows the Kaplan-Meier curve 

very closely in this example. The implementation of this methodology in the case of 

parallel group trials was described in Chapter 3. Further work is required to incorporate 

it into the multi-stage framework.

Another option would be to allow the user to read in the actual survival distribution 

for the control group taken from previous trials. By transforming this into the cumulative 

hazard function, working out the required sample size and other quantities on that time 

scale and then transforming back to the original scale, the above calculations would then 

still be valid, regardless of the form of the actual distribution. After transforming to the 

cumulative hazard function a model needs to be found which fits this function closely. Two 

methods were explored for the ICON3 trial. In the first instance a fractional polynomial
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Figure 6-6: Overview of difference in variance under approxima­
tion and from Cox model - for hazard ratios 0.5, 0.7 and 0.9
mean difference - mean difference between variance calculated under approxima­
tion and from Cox model, p - probability of being allocated to control treatment group, 
N - number of patients, based on 10,000 replications
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Figure 6-7: Detail of % difference in variance under approximation and from
Cox model for N between 100 and 1000 - for hazard ratios 0.5, 0.7 and 0.9 
% mean difference - mean difference in percent between variance calculated under ap­
proximation and from Cox model, p - probability of being allocated to control treatment 
group, N - number of patients, based on 10,000 replications
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Figure 6-8: Detail of % difference in variance under approximation and from
Cox model for N between 10 and 100 - for hazard ratios 0.5, 0.7 and 0.9 
% mean difference - mean difference in percent between variance calculated under ap­
proximation and from Cox model, p - probability of being allocated to control treatment 
group, N - number of patients, based on 10,000 replications
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Figure 6-9: Trial example for non-exponential survival



regression was fit. The results suggest that a fractional polynomial of degree 2 with 

power 0 and -1 has the best fit (deviance = -3454.249). This is illustrated in Figure 6-10. 

An alternative is to fit a spline function. In this case we compared the fit of a Weibull

o

0 500 1000 1500 2000 2500
t

Figure 6-10: Using fractional polynomials (dotted line) to follow the path of the Nelson- 
Aalen estimate (solid line) of the cumulative hazard

(one degree of freedom) with that of a function with three degrees of freedom. As is 

apparent in Figure 6-11, the function with three degrees of freedom is more appropriate.

However, the piecewise exponential method may be preferable since it will allow 

a greater degree of flexibility, for example, it provides for the incorporation of non- 

proportional hazards.

6.4 Trial exam ples

6.4.1 IC O N 6

ICON6 is a proposed multi-stage, multi-arm clinical trial in ovarian cancer. The main 

objectives of this trial are to compare the efficacy of each experimental arm consisting
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Figure 6-11: Using spline functions to follow the path
of the Nelson-Aalen estimate of the cumulative hazard 
HH1 - spline with one degree of freedom (Weibull), HH3 - spline with three de­
grees of freedom

of chemotherapy plus a biological agent with the reference arm of chemotherapy alone 

in patients with relapsed ovarian cancer. Efficacy is to be compared through analysis of 

overall survival at the final stage and progression free survival at the intermediate stages. 

Possible design characteristics are given in Table 6.6 for a trial being conducted over three 

stages. Overall power and significance level were calculated with a correlation structure 

R
1 0.6 0.5

0.6 1 0.7

0.5 0.7 1

Corresponding sample size and time requirements for several possible scenarios are illus­

trated by Table 6.7.
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Stage Difference to 
be detected

5 a power #  events required 
in control arm

I HR 0.70 0.91 0.25 95% 94
II HR 0.70 0.84 0.05 95% 181
III HR 0.75 N/A 0.025 95% 330
Overall Pairwise 0.010 89%

Table 6.6: IC0N6 design characteristics

Design # arms #  patients in reference arm and accrual Total Total Time
in stage period (years) in stage N

I II III
I II III N time Add. N time Add. N time accrual analysis

1 4 0 0 191 1.91 - - - - 764 1.91 1.91
2 4 2 2 191 1.91 158 2.70 260 4.00 1600 4.00 4.77
3 4 3 2 191 1.91 123 2.83 234 4.00 1600 4.00 5.18
4 4 4 4 191 1.91 101 2.92 208 5.00 2000 5.00 5.90

Table 6.7: IC0N6 scenarios - sample size and trial time by stage

The first stage in this design may be used to identify compounds which demonstrate 

sufficient activity and have acceptable toxicity. This is similar to a Phase II trial. For all 

scenarios given in Table 6.7 it was decided that the total accrual time should not exceed 

four years, except if all arms go through to Stage 3, in which case accrual is to be stopped 

after five years. This provides a safeguard on the number of patients to be accrued in 

total. In addition, all calculations assume that 400 patients may be accrued to the trial 

per calendar year.

6 .4 .2  S T A M P E D E

STAMPEDE is a multi-stage, multi-arm trial in men with prostate cancer conducted 

at the MRC Clinical Trials Unit. This trial aims to assess three alternative classes of 

treatments in men starting androgen suppression. Five experimental arms are compared 

with a control of androgen suppression alone in five stages. In this case the first stage is 

used as a randomised pilot phase carried out to confirm feasibility and safety of treatments 

when used in combination with androgen suppression. Stages 2 to 4 are a randomised 

comparison of compounds shown to be safe using the intermediate outcome measure of 

failure free survival. The final analysis is then carried out in Stage 5 as a comparison of 

all those arms carried over from Stage 4 with the control based on overall survival as the 

primary outcome measure. Hence in terms of the multi-arm, multi-stage design and its 

calculations we are only dealing with four stages.
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Stage Difference to 
be detected

4 a power #  events required 
in reference arm

Expected total 
#  patients

I Pilot n/a n/a n/a n/a n/a 210
II HR 0.75 1.00 0.5 95% 115 1200
III HR 0.75 0.92 0.25 95% 225 1800
IV HR 0.75 0.89 0.1 95% 350 2400
V HR 0.75 n/a 0.025 90% 440 3200
Overall Pairwise 0.017 84%

Table 6.8: STAMPEDE design characteristics

The operating characteristics and resulting number of events required at the end of 

each stage are illustrated in Table 6.8. A similar correlation structure R  to that for 

ICON6 above was used to calculated overall power and significance level, i.e.

1 0.6 0.5 0.4 ^

0.6 1 0.7 0.7

0.5 0.7 1 0.8

0.4 0.7 0.8 1 )

This is based on the discussion of the correlation matrix in Section 6.2.7. As we can see 

in Table 6.8 high levels of the significance level a  were chosen for Stages 2 to 4. The aim 

here is to avoid rejecting a potentially promising treatment arm too early on in the trial 

while at the same rejecting any treatments which are worse than the critical value S. Due 

to the parameter values chosen a treatment will therefore pass from Stage 2 to Stage 3 if 

it shows any beneficial effect in comparison with the control arm. A higher significance 

level early on in the trial also means that we will not have to wait too long for the first 

comparisons while maintaining a reasonable power.

6.5 D iscussion

The methodology presented in this chapter aims to address the pressing need for new 

additions to the ’product development toolkit’ for clinical trials to achieve reliable results 

more quickly. The approach has two distinguishing characteristics: we compare many 

new therapies at once against a control treatment and we reject ineffective therapies on 

the basis of an intermediate outcome measure, by a randomised comparison of each new 

arm against the control.

A design first introduced by Royston et al. [103] has been extended to more than
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two stages. The underlying assumptions were examined and further improvements to the 

methodology were suggested particular in the area of non-exponential survival.

The calculation of overall Type I and II errors in this methodology depends upon 

the ability to adequately specify the correlation structure between the intermediate and 

primary outcomes. While some progress has been made in this area using studies on 

ovarian cancer with two survival-type outcomes, other cancer types and other outcome 

measures still require further work. Hence we propose to examine the correlation be­

tween the intermediate outcome measure and the final outcome measure, using already 

completed studies, to assess the likely ranges to help design multi-stage trials.

One area of criticism raised at presentations of this methodology is the potential 

introduction of bias. This may arise because treatments are selected at one or more 

interim stages and the trial is sequentially monitored. Both of these could lead to an over­

estimation of the treatment effect at the end of the trial. While the original publication 

states that such bias is avoided by reporting treatment effects for those treatments which 

were dropped early at the end of the trial also, this issue warrants further examination. In 

an academic setting such as ours patients on treatments which are not taken forward into 

the next stage would still be followed up and analysed at the end of the trial. However, 

if this design were taken to a pharmaceutical setting where economic considerations are 

more pressing, such treatment arms could potentially be disregarded in the final analysis 

which may then lead to bias in the estimates for the dropped treatment arms.

These types of trials are complex to set up since negotiations may need to be held with 

many stakeholders, perhaps for example many companies and several national groups in 

order to allow a number of different experimental treatments arms to be tested at once. 

Furthermore, patients could be deterred by the more complex design, though that has not 

been the experience to date. In addition a design such as this will require more training 

for participating physicians and research staff.
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C hapter 7

R obustness o f m ulti-stage trials

7.1 In trod u ction

This chapter provides an assessment of the validity of the sample size calculations for 

multi-stage trials as illustrated in Chapter 6 using simulation studies. In particular, we 

wish to investigate the performance of the implementation of the methodology in Stata.

2 S ta g e  T r ia l  D e sig n s

S tage  1 j S tage  2 | Further options |

Arms

Hazard ratio under HO fl~ 

Allocation ratio fT"

set-up

Numbet of arms |5 Overall accrual (1000

Survival probability |0 .5 Survival time | l -5

Alpha (one-sided) jo. 05 Om ega (power) (o 95

H azard ratio under H1 |o .75  

f  D esign for one s tage  only

© O OK Cancel I Submit

Figure 7-1: Two-stage sample size program designed for Stata 8

Parameters of key importance are the power and significance level in each stage and in the 

trial overall. In this context, the literature concerning bivariate exponential distributions 

is reviewed and a bivariate exponential model based on an extension to the bivariate 

standard normal distribution introduced. Furthermore, assumptions of the sample size
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method are investigated and ’shocks’ to the model explored.

7.2 Bivariate exponential distributions

We wish to simulate patients who experience disease progression, e.g. tumour growth 

in cancer, and death at a certain time point. These time points need to be randomly 

generated and there is a correlation between time to progression, X , and time to death, 

Y,  for each patient. Since both time to progression or death and time to death are 

assumed to follow an exponential distribution in the derivation of the sample size formula 

in Chapter 6  it is convenient to require that both time to progression and time to death 

stem from a bivariate exponential distribution with marginal exponential distributions. 

As shown by Fr6chet [40] this bivariate exponential distribution will not be unique; indeed 

he has proven that for a given marginal distribution there exist infinitely many bivariate 

distributions which can be defined by these margins. The desired properties for our 

bivariate exponential distribution are as follows:

• proportional hazards and X  and Y  both follow exponential marginal distributions

• min(X, Y)  ~  Exponential

•  0  <  Px,Y  <  1

In the following we examine the properties of some of these distributions. We assess 

whether these are applicable to our framework and introduce our model.

7.2 .1  G um bel

Gumbel [53] gave one of the first introductions to bivariate exponential models whereby 

he analysed the properties of two bivariate distributions with exponential margins. Up to 

that point most bivariate distributions studied were based around the normal distribution 

with concentric ellipses forming the curves of equal probability densities and straight line 

regression curves which intersect at the origin. Gumbel’s bivariate exponential density 

functions are given by

F(x,y)  = l - e ~ x -  e~y + e- x- y~Sxy (7.1)
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for x  > 0 , y > 0 , where 0  < 5 < 1 , and

F(x,  y) = (1 -  e~x){\ -  e~y)[l +  ae~x~v] (7.2)

where — 1 < a < 1 . For the first distribution as defined by the density function in 

Equation 7.1 the conditional expectation of one variable, X  or Y,  decreases to zero with 

increasing values of the other. The coefficient of correlation p ( x , Y ) is a function of the 

parameter S
e1/6

whereby Ei(—5_1) represents the exponential integral of — <5_1. The correlation p is in 

this case never positive and lies in the interval —0.4 < P <  0. In the case of the second 

distribution, Equation 7.2, the conditional expectation of one variable, X  or Y , increases 

or decreases with increasing values of that variable, X  o i Y ,  whereby this depends on the 

sign of the correlation. Here the correlation lies in the interval —0.25 < P <  0.25 and is 

a function of a  such that
a

Due to the range of the correlation coefficients both these distributions are not applicable 

to our simulation problem.

7.2 .2  M arshall and O lkin

While the derivations of the bivariate exponential distributions by Gumbel were not 

motivated by one particular practical problem, Marshall & Olkin [83] decided to obtain 

a multivariate exponential distribution based on ’fatal shock models’. Three different 

methods of derivation all leading to the same distribution are provided in their paper, 

whereby the first two are based around the ’shock models’ and the last on the requirement 

that residual life is independent of age which is known as the loss of memory property 

(LMP). These different derivations underline the wide range of possible uses of their 

distribution. The density function common to all three derivations is given by

F(x,  y) = exp[-Aix -  \ 2y -  Ai2  max(x, y)] (7.3)

for x , y  > 0 whereby X  and Y  follow exponential marginal distributions with para­

meters Ai and A2 respectively. This density is often referred to in the literature as
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B V E ( \ \ ,  A2 , A12). However, the B V E  allows for the possibility that X  — Y  occurs 

with positive probability. This property arises since the distribution has both an ab­

solutely continuous and a singular part whereby the singular part is a reflection of the 

fact that X  = Y.  Hence according to Theorem 3.1 of their paper if density F(x,y)  is 

B V E ( Ai, A2 , A12) and A = Ai +  A2 +  A12 then

F(x,y)  = Al ^  X2Fa(x,y)  +  ^ F a(x,y)  (7.4)

with the absolutely continuous part of the density

Fa(x, y) =  A exp [-X\x  -  \ 2y -  X12 max(x, y)} -  - ~ ; 2 - exp [-A max(x, y)] (7.5)
Ai + A2 Ai 4- A2

and the singular part given by

Fs(x, y) = exp [-A max(x, y)] (7.6)

In the context of ’shock models’ this situation may arise when failure is caused by a shock 

felt by both items or if an essential input fails which is common to both items. In our 

situation it is difficult to imagine a situation where such an event may arise since the 

detection of disease progression and death are unlikely to occur in the same instance.

Still, the density provides a correlation between X  and Y  which is in the range 0 < 

p < 1 and can be calculated as

< ” >

where A =  Ai -I- A2 +  A12. Another useful property of the distribution is that min(AT, Y)  

follows an exponential distribution with parameter A and min(AT, Y)  is independent of 

X  — Y.  This is illustrated by simulation studies in Figure 7-2. The distribution also 

retains the loss of memory property (LMP). It was proven by Block & Basu [12] that 

the only absolutely continuous bivariate distribution with exponential marginals and the 

LMP is a bivariate distribution with independent exponential marginals. Hence we need 

to sacrifice the LMP if we want to obtain a distribution which is absolutely continuous 

and has correlation in the range 0  < p < 1 as required for our simulations.
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7 .2 .3  D ow n to n

The bivariate exponential distribution defined by Downton [28] was motivated by the 

B V E ,  however, he required absolute continuity of the density in his derivation. The 

model itself is based on successive damage whereby the damage is supposed to accumulate 

until it reaches a level sufficient to cause failure in the component. Downton assumes that 

a single component receives successive shocks with times between these being independent 

identically distributed random variables. This leads to the joint density function of the 

two marginally exponential distributed component lifetimes as

/ ( a , „) =  exp J0 /  V  ( ^ 1^ )  I  {7.8)

with f i > 0 and 0 < p < 1. This density is a special case of the bivariate gamma 

distribution as discussed by Kibble [65].

However, it can be shown that min(X, Y)  is not exponential, although it is stated 

in the paper to be a close approximation through simulation studies. Our own studies 

illustrated in Figure 7-3 show that while a histogram of the actual min(X, Y)  follows the 

exponential distribution relatively well, its backtransformation to a uniform does not. 

Downton’s paper provides a comparison with the bivariate exponential distribution by 

Marshall &; Olkin in terms of the effect of the correlation on both the mean and variance 

of the smaller and larger of the two variables. We can note that while the effect of an 

increasing correlation is linear on the mean under the ’fatal shock model’ it follows a 

more gradual path in the case of the ’successive damage model’ whereby the mean of the 

larger variable decreases with increasing correlation and the mean of the smaller variable 

increases with increasing correlation. The effect on the variance of the two variables is 

very similar under both models, however, it is interesting to note that the effect of the 

correlation on the larger variable is to cause an initial rise in the variance in the ’fatal 

shock model’ while the variance gradually decreases under the ’successive damage model’.

7 .2 .4  Sarkar

Another potential bivariate exponential model for our simulation studies was provided by 

Sarkar [108] under the name of ACBVE<i (Absolutely Continuous BVE). This distribution 

is closely based on the B V E  in its properties, however, the requirement was for it to be 

absolutely continuous as the name suggests. Hence the LMP needs to be abandoned as
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explained above. Apart from that it retains the properties of the BVE that X  and Y 

are marginally exponential and that the min(X, Y) is again exponential. If X  and Y are 

A C B V E 2 ( \  1 , ^ 2 , A12) where Ai > 0 , A2 > 0  and A12 > 0  then the density function is 

given by

F(x,y)  = <
exp{ —(A2 +  Ai2 )s/} {1 -  [1 - exp( -Xi y ) ]  " [1  -  exp(-A ix)]1+t/} 0 < x < y

exp {-(A i +  A12)x} {1 -  [1 -  exp(-A 2x)]_I/[l -  exp(-A 2 3/)]1+,/} x > y > 0
(7.9)

where v = Ai2 /(Ai +  A2 ). If A12 = 0, X  and Y  are independent. Furthermore, the cor­

relation is in the range 0 < P b v e ( X , Y ) < Pacbve2(X,  Y) < 1 whereby pBy E(X,Y)  — 

P a c b v e 2{ X ,  Y) iff X  and Y  are independent. Simulation results show that the maximum 

absolute discrepancy for a given parameter combination A(Ai, A2 , A12) between this dis­

tribution and the BVE is 1/16. One important drawback of this distribution is, however, 

that it is difficult to simulate from it.

7.2 .5  N orm al b ivariate  exp o n en tia l (N B V E )

Due to the difficulty to simulate from those distributions described above which do hold 

the properties found to be critical for our simulation studies, we derived the model de­

scribed in the following. So far we have found no literature references for this approach. 

A number of closely related distributions are described in Patil et al. [93].

The bivariate exponential model we chose for our initial simulation studies is based 

on a transformation of the bivariate standard normal distribution with pdf defined as

f { u ' V ' p )  = 2V (TV )eXP {“2(1^7)(“2 “ 2 p U V  + w2)} (7'10)

We first simulate U and V  from a bivariate standard normal distribution. By definition 

U and V  then follow marginal standard normal distributions [100], i.e.

U ~ N (  0,1)

and

V  ~  N( 0,1)

By first transforming these into uniform random numbers A and B and then taking the
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logarithm

X  = -  ln(A) * -i- 
M

and

Y  = - l n ( B )  *
A2

we obtain X  and Y  which are marginally exponential distributed with parameters Ai and 

A2 and retain the range for the correlation of the bivariate standard normal distribution. 

The functional form may be found by using a Jacobian transformation, i.e. by treating 

X  and Y  as a transformation of U and V. Hence this approach will be referred to as 

N B V E .  Since U and V  have correlation 0 < py y  < 1, the transformed variables X  and 

Y  will also have correlation 0 < P x y  — 1- However, although the min(X, Y)  is close to 

an exponential distribution, it is not exactly exponential as simulation studies illustrated 

in Figure 7-4 have shown.

The approximation appears to be sufficient though for an initial assessment of the 

robustness of the sample size calculations when we compare it to simulation results of the 

BVE as given in Figure 7-2.

7.3 Perform ance o f the m ethodology

7.3 .1  S im u lation  d esigns

Our simulations studies were conducted in Stata 8  and results are based on 5000 replica­

tions of each trial set-up. We simulated time to progression and time to death as variables 

X  and Y  stemming from the N B V E  as explained above. Progression free survival time 

was then taken as min(X, Y).  Results for the significance level a  are obtained from sim­

ulations run under the null hypothesis, i.e. with a hazard ratio of one. In order to make 

our scenarios as realistic as possible we based the parameters around those of ICON5. 

This is a trial in ovarian cancer recently conducted at the MRC in collaboration with 

centres in the USA, mainland Europe and Australia using the two-stage design with four 

experimental arms and one control arm. Sample size and number of event requirements 

for this trial are illustrated in Figure 7-5 for one experimental arm going through to Stage 

2  only.
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7.3 .2  G eneral com m en ts on  th e  ca lcu lation  o f  pow er

In all of the tables we provide a calculation of pairwise power for each stage separately 

as well as an estimate of overall power in the trial. The pairwise power for Stage 2 is 

conditional on that treatment arm having passed to Stage 2.

Pairwise power in Stage 1 is calculated for each comparison of an experimental arm 

with the control by counting the number of times that the x 2 statistic is greater than its 

reference value from the \ 2 tables. From this we then subtract the number of times that 

the hazard ratio is greater than one and divide the result by the number of repetitions 

used in each dataset, i.e.

„  , # (x 2 >  X 2i - a ) -  >  1)Power1 = ----------—------- —---------------
# ( repetitions)

This resulting power should be the same or close to the power calculated by using Formula

6.2 in Chapter 6 . We will get a very similar result if we count the number of times that 

the hazard ratio is smaller than the cut-off 5 under the alternative hypothesis H \ , divide 

by the number of repetitions and subtract that from one, i.e.

Power 1 alternative = 1 -  ( # ( * * < * ) - # ( * * > ! ) )
# ( repetitions)

Pairwise conditional power for Stages 2 and 3 is calculated in a similar way to power 

for Stage 1 but we need to subtract the number of times that the arm was stopped at the 

previous stage from the number of repetitions, i.e.

p  „  o t  O # ( x 2 >  >  1)Power2\arm passed to Stage 2 =
# ( repetitions) — #  (arras stopped)

Overall power after Stage 2 or Stage 3, which is the probability that the log hazard 

ratio is smaller than the cut-off in all Stages under i / i ,  is obtained in the same way as 

Power2 without subtracting the number of trials stopped. This result should be close to 

overall power calculated through Formula 6.1 in Chapter 6 .

We illustrate the above description with an example which corresponds to the second 

line of results in Table 7.3. In this case we get for Stage 1 that

  O
Powerl = — =  0.935

5000
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or

Power1 alternative = 1

For conditional power in Stage 2 the example gives

Power 2 =

and overall power may be calculated as

Power overall =

The significance level may be obtained in a similar manner from the simulation 

datasets.

7 .3 .3  O ne s ta g e  on ly

This set of simulations was run to assess the performance of the program for designing a 

standard parallel group trial, i.e. using the first stage calculations of the program only. 

Our aim was to find out whether target power and significance level are attained for a 

variety of trial scenarios. Hence the simulation sets included variations of the hazard 

ratio (HR), accrual rates of patients per unit time, and target power to ascertain that 

there is no particular combination which performs best /  worst. All calculations were 

designed to achieve a 5% one-sided significance level a. Since results in Tables 7.1 and

7.2 are based on 5000 replications, these have a standard error of approximately 0.4% 

and hence a confidence interval around the nominal power of 90% ranging from 89.2 to 

90.8%. Similarly, the confidence interval around a significance level of 5% ranges from

4.2 to 5.8%. Median survival in the control treatment group was taken to be one year.

We can observe that target power is maintained for all scenarios as displayed in Table 

7.1. Since the approximation of the variance of the log hazard ratio as given in Formula

6.3 in Chapter 6  is derived from the Cox proportional hazards test, we also explored 

whether using that test instead of the logrank test in our simulation studies would give 

us similar results. However, the resulting power was almost identical.

Results for the significance level are also encouraging. As Table 7.2 illustrates, the 

significance level is robust to variations in target power.
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HR accrual rate P N target power power
0 .6 700 0.5 596 90 89.8
0 .6 800 0.5 638 90 90.3
0 .6 900 0.5 674 90 90.2
0 .6 1 0 0 0 0.5 706 90 89.2
0.7 1 0 0 0 0.5 1 0 2 2 90 89.6
0 .8 1 0 0 0 0.5 1718 90 89.8
0.9 1 0 0 0 0.5 4494 90 90.2

Table 7.1: Simulation results for power for one
stage only, one control and one experimental group
HR - hazard ratio in favour of experimental group in comparison with control, ac­
crual rate - rate of patients accrued per unit time, p - probability of being allocated to 
control treatment group, N - sample size calculated for target power and 5% significance 
level, power - power achieved through simulation with sample size N

HR accrual rate P N target power target a a
0 .6 700 0.5 424 70 5 4.6
0 .6 700 0.5 496 80 5 5.1
0 .6 700 0.5 596 90 5 4.8
0 .6 700 0.5 6 8 6 95 5 5.3
0 .6 800 0.5 638 90 5 4.8
0 .6 900 0.5 674 90 5 5.5
0 .6 1 0 0 0 0.5 706 90 5 4.8
0.7 1 0 0 0 0.5 1 0 2 2 90 5 5.1
0 .8 1 0 0 0 0.5 1718 90 5 4.8
0.9 1 0 0 0 0.5 4494 90 5 4.9

Table 7.2: Simulation results for the significance level for
one stage only, one control and one experimental group 
HR - hazard ratio in favour of experimental group in comparison with control, ac­
crual rate - rate of patients accrued per unit time, p - probability of being allocated to 
control treatment group, N - sample size calculated for target alpha and 90% power, a  - 
significance level achieved through simulation with sample size N

7 .3 .4  T w o arm s

Our next performance assessment was based around a two-stage trial where we have one 

experimental and one control treatment group in both stages of the trial. The main 

concern was again the robustness of power and the significance level in a variety of trial 

settings. One particular focus here was on the assessment of overall power and significance 

level achieved.

Time to progression and time to death were simulated as correlated exponentials from 

the N B V E  model. In all simulated datasets median survival for the progression free 

survival time was taken to be one unit of time and median survival for overall survival 

was set at two units of time. In addition, the correlation p between the primary and
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intermediate outcome was fixed at 0.6. We refer the reader to Section 7.4.3 for the 

impact of variations in p on both power and the significance level.

For the analysis of power the accrual rate in Stages 1 and 2 was varied as well as target 

power after Stage 2. The significance level was taken as fixed at 5% in Stage 1 and 2.5% 

in Stage 2. As Table 7.3 shows power in Stage 1 is below the confidence bounds while 

power in Stage 2 is close to the nominal power though it overshoots in some cases. Overall 

power is slightly lower than estimated by the program which is given at approximately 

87% if we have a power of 95% in Stage 1 and 90% in Stage 2. However, we do not expect 

to get exact results with these simulations since min(X, Y)  is only close to an exponential 

distribution in the bivariate exponential distribution NBVE. Again, we ran a second set 

of simulations using the Cox proportional hazards test for analysis instead of the logrank 

test. These results are given in Table 7.4. In general, this provides no improvement.

H R a c c r u a l a c c r u a l N 1 N 2 t a r g e t p o w e r  1 1a r g e t p o w e r  2 p o w e r  o v e r a l l p o w e r

r a l e  1 r a t e  2 p o w e r  1 p o w e r  2 p r o g r a m o v e r a l l

0 . 7 5 2 7 0 0 7 0 0 1 2 9 0 1 4 2 4 9 5 9 2 . 9 8 0 8 1 . 5 7 8 . 4 7 0 . 2

0 . 7 5 2 7 0 0 7 0 0 1 2 9 0 1 0 8 9 9 5 9 3 . 5 9 0 9 1 . 7 8 7 . 4 8 0 . 1

0 . 7 5 2 7 0 0 7 0 0 1 2 9 0 1 9 1 3 9 5 9 3 . 8 9 5 9 0 . 2 9 1 . 0 9 0 . 0

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 1 4 7 0 9 5 9 3 . 7 8 0 8 0 . 0 7 8 . 4 7 5 . 9

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 1 8 2 4 9 5 9 3 . 4 9 0 9 1 . 3 8 7 . 4 8 5 . 7

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 2 1 0 5 9 5 9 3 . 0 9 5 9 0 . 3 9 1 . 0 9 0 . 5

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 1 0 2 0 9 5 9 3 . 3 8 0 8 2 . 1 7 8 . 4 7 7 . 0

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 1 8 4 8 9 5 9 3 . 4 9 0 9 2 . 3 8 7 . 4 8 0 . 7

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 2 0 5 0 9 5 9 3 . 4 9 5 9 0 . 2 9 1 . 0 9 0 . 3

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 1 0 7 0 9 5 9 2 . 9 8 0 8 1 . 2 7 8 . 4 7 5 . 9

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 1 9 7 4 9 5 9 3 . 4 9 0 9 1 . 0 8 7 . 4 8 0 . 0

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 2 2 3 3 9 5 9 3 . 8 9 5 9 5 . 8 9 1 . 0 9 0 . 4

Table 7.3: Simulation results for power for two stages, one control and one experimental 
group
HR - hazard ratio in favour of experimental group in comparison with control, accrual 
rate - rate of patients accrued per unit time, N - sample size calculated for target power 
and 5% and 2.5% significance level in Stages 1 and 2 respectively, power - power achieved 
through simulation with sample size N, power overall program - overall power as given 
by sample size program

Simulation sets to assess the robustness of the significance level focused on variations 

in the rate of patient accrual in Stages 1 and 2  as well as variations in the significance 

levels of Stages 1 and 2. Power was fixed at 95% and 90% in Stage 1 and 2 respectively. 

Results from this analysis are displayed in Table 7.5. Overall it is apparent that the 

significance level is more robust than power. The significance level is nearly always 

within the confidence intervals of the corresponding target level. The only exception is
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H R a c c r u a l a c c r u a l N 1 N 2 t a r g e t p o w e r  1 t a r g e t p o w e r  2 p o w e r  o v e r a l l p o w e r

r a l e  1 r a l e  2 p o w e r  1 p o w e r  2 p r o g r a m o v e r a l l

0 . 7 5 2 7 0 0 7 0 0 1 2 9 0 1 4 2 4 9 5 9 3 . 2 8 0 8 1 . 3 7 8 . 4 7 6 . 3

0 . 7 5  2 7 0 0 7 0 0 1 2 9 0 1 0 8 9 9 5 9 2 . 9 9 0 9 1 . 6 8 7 . 4 8 5 . 5

0 . 7 5 2 7 0 0 7 0 0 1 2 9 0 1 9 1 3 9 5 9 3 . 3 9 5 9 6 . 4 9 1 . 6 9 0 . 4

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 1 4 7 6 9 5 9 3 . 4 8 0 8 1 . 1 7 8 . 4 7 6 . 2

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 1 8 2 4 9 5 9 2 . 7 9 0 9 1 . 5 8 7 . 4 8 5 . 5

0 . 7 5 2 7 0 0 1 0 0 0 1 2 9 0 2 1 0 5 95 9 3 . 3 9 5 9 6 . 7 9 1 . 6 9 0 . 7

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 1 6 2 0 9 5 9 3 . 2 8 0 8 2 . 1 7 8 . 4 7 7 . 1

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 1 8 4 8 9 5 9 3 . 5 9 0 9 1 . 9 8 7 . 4 8 6 . 5

0 . 7 5 2 1 0 0 0 7 0 0 1 4 9 4 2 0 5 0 9 5 9 2 . 9 9 5 9 6 . 4 9 1 . 6 9 0 . 3

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 1 6 7 0 9 5 9 3 . 6 8 0 8 0 . 1 7 8 . 4 7 5 . 4

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 1 9 7 4 9 5 9 3 . 2 9 0 9 1 . 0 8 7 . 4 8 5 . 2

0 . 7 5 2 1 0 0 0 1 0 0 0 1 4 9 4 2 2 3 3 9 5 9 4 . 0 9 5 9 5 . 9 9 1 . 6 9 0 . 8

Table 7.4: Simulation results for power for two stages, one control and
one experimental group, analysed using Cox proportional hazards test 
HR - hazard ratio in favour of experimental group in comparison with control, ac­
crual rate - rate of patients accrued per unit time, N - sample size calculated for target 
power and 5% and 2.5% significance level in Stages 1 and 2 respectively, power - power 
achieved through simulation with sample size N, power overall program - overall power 
as given by sample size program

when a significance level of 50% is to be attained in the first stage, however, this may be 

due to the difficulty in obtaining an accurate estimate of the x 2 statistic in this case.

HR accrual accrual N 1 N 2 critical target alpha 1 target alpha 2

rate 1 rate 2 HR alpha 1 alpha 2

0.752 700 700 872 987 0.92 25 25.3 25 24.9
0.752 700 700 872 1310 0.92 25 25.5 10 9.7
0.752 700 700 872 1509 0.92 25 25.4 5 5.0
0.752 700 700 606 987 1 .0 0 50 49.0 25 24.6
0.752 700 700 1024 1024 0.90 15 15.4 25 25.1
0.752 700 1 0 0 0 1024 1411 0.90 15 14.8 10 9.8
0.752 1 0 0 0 700 1194 1447 0.90 15 15.0 10 9.8
0.752 1 0 0 0 1 0 0 0 1194 1539 0.90 15 14.4 10 9.9

Table 7.5: Simulation results for alpha for two stages, one control and one experimental 
group
HR - hazard ratio in favour of experimental group in comparison with control, accrual 
rate - rate of patients accrued per unit time, N - sample size calculated for target alpha 
and 95% and 90% power in Stages 1 and 2 respectively, alpha - significance level achieved 
through simulation with sample size N

7.3 .5  M ore th a n  tw o stages

Following the extension of the design as outlined in Chapter 6  we wanted to assess the 

robustness of those extensions for a three-stage trial with one experimental arm and one
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control. Our main aim was to assess the robustness of power using the logrank test. In 

addition, simulation runs were conducted using the Cox proportional hazards test for 

analysis.

In this case, time to progression, X , and time to death, Y,  were simulated using the 

NBVE model. However, in this set of simulations both Stage 1 and Stage 2 used time to 

progression free survival as the outcome and Stage 3 was simulated using time to death. 

Thus events obtained by taking min(X, Y)  were employed for analysis in Stages 1 and 2.

The results displayed in Table 7.6 were obtained by stopping each stage after the 

required number of events for that stage had been reached, whereby the number of I- 

events were counted for the first two stages and the number of D-events for the final 

stage. A further approximation, however, enters these results since as illustrated using 

correlation results from ICON3 (Chapter 6 , Table 6.4) the strength of the correlation 

between the log hazard ratios for progression free survival and overall survival may change 

between Stages 1 and 2. These changes have not been taken into consideration in the 

calculations for the results illustrated since they are not easily quantifiable and depend 

on the disease area. Required power for Stages 1 and 2 was 95% and a significance level 

of 10%, 5% and 2.5% was desired for Stages 1, 2 and 3 respectively. The correlation 

between the test statistics after each of the stages was set at 0.6. Median survival was 

fixed at one unit of time for progression free survival and two units of time for overall 

survival.

Table 7.6 shows that in general power for Stage 1 in this design is slightly lower than 

desired, while both Stages 2 and 3 are overpowered. However, considering the approx­

imations made in the simulation studies, we believe that these results are satisfactory. 

Results obtained by using the Cox proportional hazards test as shown in Table 7.7 are 

again not significantly better. In addition we may observe that the overall power does 

not decrease significantly by adding an extra stage.

7.4 ’Shocks’ to  the design

When assessing the robustness of a certain design, we not only want to know how it 

performs under optimum conditions but also test which situations may cause it to falter. 

This allows us to safeguard against these circumstances when applying the methodology 

in practice. In the following three likely situations are considered.
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a c c r u a l a c c r u a l a c c r u a l N 1 t a r g e t p o w e r  1 N 2 t a r g e t p o w e r 2 N 3 t a r g e t p o w e r 3 o v e r a l l

r a t e  1 r a t e  2 r a t e  11 p o w e r  1 p o w e r 2 p o w e r 3 p o w e r

7 0 0 7 0 0 1 0 0 0 1 1 2 8 0 5 9 3 . 1 1 2 9 1 9 5 9 7 . 7 1 4 7 6 8 0 8 1 . 5 7 4 . 8

7 0 0 7 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 0 1291 9 5 9 7 . 5 1 8 2 4 9 0 9 2 . 1 8 4 . 2

7 0 0 7 0 0 1 0 0 0 1 1 2 8 95 9 3 . 6 12 9 1 9 5 9 7 . 3 2 1 0 5 9 5 9 6 . 7 8 8 . 9

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 2 . 8 1 3 5 1 9 5 9 7 . 4 1 5 2 9 8 0 8 1 . 3 7 4 . 0

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 4 . 0 1 3 5 1 9 5 9 7 . 3 1 8 6 3 9 0 9 2 . 2 8 5 . 2

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 2 . 8 1 3 5 1 9 5 9 7 . 6 2 1 3 7 9 5 9 6 . 1 8 7 . 8

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 4 1 4 4 5 9 5 9 7 . 1 1 6 2 6 8 0 8 1 . 4 7 4 . 6

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 6 1 4 4 5 9 5 9 7 . 3 1 9 3 9 9 0 9 2 . 0 8 4 . 5

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 9 5 9 4 . 0 1 4 4 5 9 5 9 7 . 4 2 2 0 3 9 5 9 6 . 4 8 9 . 0

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 8 1 4 9 5 9 5 9 7 . 6 1 6 7 0 8 0 8 0 . 5 7 4 . 3

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 95 9 3 . 3 1 4 9 5 9 5 9 7 . 4 1 9 7 4 9 0 9 2 . 0 8 4 . 5

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 95 9 3 . 0 1 4 9 5 9 5 9 7 . 0 2 2 3 3 9 5 9 6 . 3 8 7 . 9

Table 7.6: Simulation results for power for three stages, one control and one experimental 
group
accrual rate - rate of patients accrued per unit time, N - sample size calculated for target 
power and 10%, 5% and 2.5% significance level in Stages 1 , 2  and 3 respectively, power - 
power achieved through simulation with sample size N

7.4 .1  N u m b er  o f  arm s in S tage 2

When designing a two-stage trial we need to estimate the number of arms carried over into 

Stage 2 in order to arrive at a sensible sample size estimate. Thus we ran an investigation 

into the impact on power of a mis-specification of the number of arms in Stage 2  of the 

trial.

Trials were simulated with up to three experimental and one control treatment arm 

and a similar set of parameters as before. Hence median time to progression or death 

was taken as one year and median time to death as three years with hazard ratios in 

both cases at 0.752 in favour of the experimental arm under H\. Furthermore an accrual 

rate of 900 patients per year was assumed for both stages and a correlation of p=0.6 

between the two test statistics. Sample size was calculated for trials with at most three 

experimental arms in Stage 2. Thus in some cases the number of simulated experimental 

arms exceeded the number of experimental arms assumed in the sample size calculations 

in Stage 2 and vice versa.

Figure 7-6 illustrates the impact on power at the end of Stage 2 and overall power. 

The upper and lower lines indicate the confidence interval around the nominal power of 

90%. We can observe that there is a near linear relationship in terms of power whereby 

we only achieve power within the confidence interval if the actual number of arms in 

Stage 2  corresponds to the number of arms that the sample size was calculated for.
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a c c r u a l a c c r u a l a c c r u a l N 1 t a r g e t p o w e r l N 2 t a r g e t p o w e r 2 N 3 t a r g e t p o w e r 3 o v e r a l l

r a t e  1 r a l e  2 r a t e  3 p o w e r  1 p o w c r 2 p o w e r 3 p o w e r

7 0 0 7 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 0 1291 9 5 9 7 . 5 1 4 7 6 8 0 8 1 . 5 7 4 . 7

7 0 0 7 0 0 1 0 0 0 1 1 2 8 9 5 9 4 . 2 1 2 9 1 9 5 9 7 . 1 1 8 2 4 9 0 9 1 . 4 8 4 . 1

7 0 0 7 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 0 12 9 1 9 5 9 7 . 0 2 1 0 5 9 5 9 6 . 1 8 8 . 1

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 3 13 5 1 9 5 9 6 . 7 1 5 2 9 8 0 8 3 . 5 7 6 . 2

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 3 1 3 5 1 9 5 9 7 . 1 1 8 6 3 9 0 9 1 . 8 8 3 . 8

7 0 0 1 0 0 0 1 0 0 0 1 1 2 8 9 5 9 3 . 2 1 3 5 1 9 5 9 7 . 1 2 1 3 7 9 5 9 6 . 2 8 8 . 0

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 8 1 4 4 5 9 5 9 7 . 2 1 6 2 6 8 0 8 2 . 0 7 5 . 4

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 95 9 3 . 5 1 4 4 5 9 5 9 7 . 1 1 9 3 9 9 0 9 2 . 0 8 4 . 2

1 0 0 0 7 0 0 1 0 0 0 1 1 3 4 95 9 4 . 1 1 4 4 5 9 5 9 7 . 3 2 2 0 3 9 5 9 6 . 2 8 8 . 9

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 1 1 4 9 5 9 5 9 7 . 3 1 6 7 0 8 0 8 1 . 4 7 4 . 6

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 5 1 4 9 5 9 5 9 7 . 3 1 9 7 4 9 0 9 1 . 8 8 4 . 3

1 0 0 0 1 0 0 0 1 0 0 0 1 1 3 4 9 5 9 3 . 6 1 4 9 5 9 5 9 7 . 1 2 2 3 3 9 5 9 6 . 7 8 8 . 6

Table 7.7: Simulation results for power for three stages, one control and
one experimental group, analysed under Cox proportional hazards test 
accrual rate - rate of patients accrued per unit time, N - sample size calculated 
for target power and 1 0 %, 5% and 2.5% significance level in Stages 1 , 2  and 3  

respectively, power - power achieved through simulation with sample size N

In order to have a spectrum of sample size requirements we urge the user to run the 

sample size program using different scenarios. In addition, it is possible to obtain an 

estimate of the probability of the number of arms in the stages by ticking this option on 

the program menu.

7.4 .2  T h e  actu a l accrual rate

During the conduct of ICON5 it was observed that the actual accrual rate for Stage 1 was 

faster than that which was used for the original sample size calculations. This meant that 

accrual for Stage 2 was started before a Stage 1 analysis could be run as the necessary 

number had not been observed by the time that patients for Stage 1 had been accrued. 

Therefore, arms which were stopped after the first Stage (in this case all) had had too 

many patients accrued to them. Hence we wanted to know the impact of a lower or higher 

than anticipated accrual rate on either the number of events accrued in the control arm 

by the predicted end of Stage 1 or the time by which the required number of events would 

be accrued in Stage 1 .

Figure 7-7 illustrates the impact of the actual accrual on both number of events 

and time. In this figure the solid line gives the calculated number of events needed in the 

control treatment arm and the predicted time needed to run Stage 1 under an anticipated 

accrual rate of 900 patients per year. The underlying parameters were the same as in
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Section 7.4.1 with p =  0.6. The relationship between the rate of accrual and the number 

of events or the total length of Stage 1 appears to be near linear in both cases, whereby the 

relationship with time experiences more of a levelling off towards higher rates of accrual. 

We may say that a 10% change in the accrual rate causes a change of approximately 5% 

in either the number of events or time.

7.4 .3  Im p act o f  correlation  on pow er

In all the simulation sets in the previous sections we have taken the correlation between 

the Stage 1 and Stage 2 test statistics to be a fixed number, usually 0.6. However, we 

now wanted to assess whether a) the strength of the correlation coefficient has an impact 

on power and b) whether mis-specifying the correlation at the trial planning stage has an 

impact on power in a two stage trial.

Simulation studies for which the results are illustrated in Figures 7-8, 7-9 and 7-10 

were run using a hazard ratio of 0.752 in both stages. Also, as before the median survival 

time for progression free survival was taken to be one unit of time and median survival 

for overall survival was fixed at two units of time. The target power for Stage 1 was set at 

95% and at 90% for Stage 2. Furthermore, the significance level to be attained in Stage 

1 was set at 5% and at 2.5% in Stage 2.

There is no obvious relationship between the strength of the correlation coefficient 

and overall power as illustrated in Figure 7-8. However, from this figure we may say that 

power in Stage 2 increases as the correlation coefficient reaches 0.4 and above. From 

Figure 7-9 we can observe that mis-specifying the correlation coefficient appears to have 

no effect on power. In general in this figure, however, power appears to be higher for a 

correlation coefficient of 0.8. The results for the significance level as depicted in Figure 

7-10 also show no particular influence of the correlation coefficient. In most cases the 

pattern appears random apart from the results for an actual correlation of 0 .8  and the 

significance level at Stage 2. In this case the significance level appears to decrease with 

an increasing specified correlation coefficient. However, these results do not fall outside 

the confidence bounds.

In general the strength of the correlation coefficient is important for the design as a 

whole though as running a trial with a low correlation between the two test statistics 

may be dangerous.

132



7.5 R ejection sam pling

In order to improve our simulation studies we investigated the use of rejection sampling. 

As Figure 7-4 shows, the minimum of the two exponential distributions is not exactly 

exponentially distributed when we sample from the NBVE. This is especially apparent 

in the transformation to the uniform as illustrated in the density histogram. If the 

distribution was exact, all density bins would have a height of one. The shape of the 

transformation and the degree of variation from the uniform varies for different values of 

median survival as illustrated in Figure 7-11.

The principle of the rejection sampling method is that a distribution function f ( x ) is 

approximated by another distribution function h{x) which is easier to calculate, and then 

a correction is made by randomly accepting values with a probability p(x),  and rejecting 

x  values with a probability 1 — p(x) [46]. For our purposes, the algorithm is therefore as 

follows:

1. Draw x  and y from the N B V E , create 2  =  min(:r, y)

2. For this 2  evaluate whether to reject or not, i.e. whether the density is greater than 

one

3. If we need to reject 2 , resample x  and y from N B V E  and re-evaluate new 2

Using this algorithm, we reproduced Figure 7-4 to get the improved Figure 7-12. 

However, while there are improvements for the distribution of min(X, V), these come at 

a high cost. The simulations to obtain Figure 7-12 took over four days, compared to two 

minutes without rejection sampling.

There were also problems with the algorithm running infinitely in some simulation 

cases. Hence we relaxed the rejection criterium to reject 2  only if the density of a particular 

bin was greater than 1.02. This number was arrived at by simulating 100,000 observations 

from a uniform ^0,1) distribution and plotting the resulting histogram. Variations in 

density between 0.98 and 1.02 could be observed. Using this relaxed criterion, we arrive 

at Figure 7-13 in just over 90 minutes.

Thus, simulations to assess power on 5,000 replications would take 625 days, compared 

to an average of 15 minutes before. These times will increase for parameter combinations 

which result in further diversions from the uniform as illustrated in Figure 7-11. The
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method is therefore highly inefficient in terms of computer time and would be impractical 

for large scale simulation studies.

7.6 D iscussion

Overall the simulations have shown that the sample size calculations underlying the multi­

stage model perform satisfactorily. Particular attention needs to be paid to the accrual 

rate and a sensitivity analysis to the number of arms in Stage 2 (and the following stages), 

with the first potentially leading to problems with the feasibility of a Stage 1 analysis 

and mis-specification in the second area causing over- or underpowered studies.

Future work in this area could include a set of simulations using the B V E  or Downton 

method for simulating time-to-event data in order to assess whether the calculations are 

robust under these assumptions also. The use of correlated frailty models may also be 

considered. A good introduction to their application is given by Wienke [142]. These were 

originally developed for the analysis of bivariate failure time data in which two associated 

random variables are used to characterise the frailty effect for each pair.
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Figure 7-2: Assessment through simulation studies of whether
min(X,Y) as given by the BVE follows an exponential distribution
based on 1 0 0 ,0 0 0  replications
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Figure 7-3: Assessment through simulation studies of whether
min(X,Y) as given by Downton follows an exponential distribution 
based on 1 0 0 ,0 0 0  replications, median survival of one year for progression-free sur­
vival and three years for death
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Figure 7-4: Assessment through simulation studies of whether
min(X,Y) as given by NBVE follows an exponential distribution 
based on 1 0 0 ,0 0 0  replications, median survival of one year for progression-free sur­
vival and three years for death

TWO-STAGE TRIAL DESIGN version 1.0.0, 17 March 2004
A sample size program for two-stage trial designs by Patrick Royston 8c 

Friederike Barthel based on P Royston, M Parmar 8c W Qian 2001

OPERATING CHARACTERISTICS
Alpha<lS> Power HR | HO HR | HI Crit. HR Duration

STAGE 1 
STAGE 2 
Overall

0.0640
0.0250
0.0110

0.945
0.981
0.934

1.000
1.000

0.752
0.752

0.873
0.874

2.849
1.660
4.509

SAMPLE SI ZE AND NUMBER OF EUENTS
C T A C 'r  4 P T f t P F  9

Overall Control Exper. Overall
o 1 NVjC. /m
Control Exper.

Arms 5 1 4 2 1 1
Acc. rate 1000 200 800 1000 500 500
Patients* 2850 570 2280 4509 1400 3109
Events** 1089 253 836 1467 426 1041
* Patients and events at Stage 2 are cumulative from Stage 1 
** Events are for I-outcome at Stage 1, D-outcome at Stage 2

Figure 7-5: Sample size requirements for ICON5 as output by Stata program
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Figure 7-6: Influence on average power of mis-specifying number of arms in Stage 2 
power stage 2 - average power over all arms for Stage 2, overall power - average power 
over all arms for the whole trial, arms designed - number of experimental arms in Stage 
2  that trial was designed for (i.e. that sample size was calculated for), actual number of 
arms - actual number of experimental arms that have gone through to Stage 2

138



600
—i---------1---------1---------r
800 1000 1200 1400

actual accrual

*-1 1 1--------------------------1—

600 800 1000 1200 
actual accrual

—r~ 
1400

Figure 7-7: Influence of mis-specifying accrual on number of mean
events accrued during Stage 1 and total duration of Stage 1

events - average number of events obtained by projected end of Stage 1 under ac­
tual rate of accrual, time - average time taken to accrue required number of patients for
Stage 1 under actual rate of accrual, actual accrual - actual rate of accrual per unit of 
time
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Figure 7-8: Relationship between power and correlation coefficient
power stage 1 - power for Stage 1 with 95% confidence intervals, power stage 2 - 
power for Stage 2 with 95% confidence intervals, overall power - overall power for the 
trial with 95% confidence intervals, rho - correlation coefficient between test statistics 
after Stages 1 and 2
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Figure 7-9: Relationship between mis-specified correlation and power
specified rho - correlation used for sample size calculations, actual rho - correla­
tion used in simulations, power stage 2  - power for Stage 2, overall power - overall power 
for the trial
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Figure 7-10: Relationship between mis-specified correlation and alpha
specified rho - correlation used for sample size calculations, actual rho - correla­
tion used in simulations, alpha stage 1 - significance level for Stage 1 , alpha stage 2 - 
significance level for Stage 2
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Figure 7-11: Assessment through simulation studies of shape
of uniform transformation of min(X,Y) using NBVE results 
based on 1 0 0 ,0 0 0  replications, a l - median survival for progression-free survival, 
a2  - median survival for overall survival
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Figure 7-12: Improvement of min(X,Y) as given by NBVE using rejection sampling 
based on 1 0 0 ,0 0 0  replications, median survival of one year for progression-free survival 
and three years for death
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Figure 7-13: Improvement of min(X,Y) as given by
NBVE using rejection sampling with relaxed criterion 
based on 1 0 0 ,0 0 0  replications, median survival of one year for progression-free sur­
vival and three years for death
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C hapter 8

Sample sizes for tim e-to-event 

outcomes: im plications of the  

variability in events and tim e

8.1 Introduction

Sample sizes for trials with a time-to-event outcome are usually derived using three main 

components: i) the given total duration of the trial consisting of accrual and follow-up 

time, ii) the survival distribution for the control treatment and iii) the hazard ratio which 

we hope to see in the experimental arm(s). These lead to the calculation of the number of 

events as a fixed quantity. Early examples of such sample size calculations were given by 

George & Desu [50] and Freedman [41]. The following formula given by Schoenfeld [114] 

forms the basis of most of our calculations. For a given log hazard ratio A, a probability 

i p  of not being censored and a probability p of being allocated to the control treatment 

group the required sample size is given by

_  (*1—<»/2 +  * l -  <?)2 . >
A 2ipp(l — p)

where ^i_ a /2  and z\-p  are the normal deviates corresponding to a two-sided significance 

level a  and type II error probability 1 — respectively.

Korn &; Simon [69] examine the problems with the above approach of treating either 

the number of events or trial time as a fixed quantity. Their analysis of the situation is 

taken from the perspective of a data monitoring committee. Difficult decisions will have
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to be made if the variability in the length of the trial or the number of events accrued by 

a certain time point are not taken into account at the planning stages. In particular they 

focus on the problems arising if accrual is slower than expected or events accrue slower 

than anticipated. In these cases modifications to the design need to be contemplated 

since the trial will have less than the designed power by the time it is meant to be 

analysed. Gould [52] focuses on the subject of sample size re-estimation in particular 

whereby sample size is adjusted on the basis of variability. He proposes that the sample 

size needed for a trial depends on the significance level and power, the magnitude of the 

log hazard ratio A and the variability of the response variable, i.e.

sample size = variance x /(error ra tes)/A2

where

/(error rates) =  (za / 2 4 - zp)2 x inflation /actor

Gould’s approach is aimed at dealing with group sequential designs, where the inflation 

factor is expected to be greater than one. For the standard parallel group trials he 

proposes it should equal unity. One option suggested by Gould to protect from interim 

adjustments is to overpower the trial initially. In order to do this, however, one needs to 

have an idea of the inherent variability of the trial parameters and its effect on power. 

He suggests not to adjust a trial unless the increase in sample size would be equal to or 

greater than 33%. While we can avoid the power problem by pre-specifying the number 

of events to be attained, we need to be aware, however, that this does cause variability in 

terms of the resources of the trial since the trial duration now becomes a random variable.

This chapter seeks to explore possible ways to assess the potential inherent variability 

in trial time and /  or number of events and provides tools to assess the variability at 

the beginning of the trial as well as update these estimates throughout patient and event 

accrual.

8.2 Literature approaches

This topic has so far received very little attention in the literature apart from the angle 

of sample size re-estimation. We have hence not been able to locate any papers which 

provide a comprehensive a-priori assessment of the variability in events or time for time-
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toevent type trials. Shuster [122] considers the topic from the perspective of trials with 

low event rates. She recommends fixing the number of events rather than the number 

of patients and models the distribution of the number of events in the treatment group 

using an unconditional binomial distribution. Sample sizes are then obtained through an 

iterative solution.

The use of internal pilot studies to assess variability is discussed by Birkett & Day 

[11]. This primarily addresses the problem of differing patient groups in preceding trials as 

compared to the current trial. In this setting the first few patients entering the study are 

used to assess variability and then act as a basis for the overall sample size calculations. 

However, as the authors point out, this is not a feasible solution in studies where we have 

long treatment periods and events only start to accrue at a relatively late time-point after 

enrollment, as for example in many Cancer or HIV trials. Additionally, this approach is 

problematic since we usually need to know sample size in advance for practical reasons.

8.3 Analysis o f variation at th e planning stage

We first concentrate on assessing the amount of variability in total trial time at the outset 

of the trial. We derive the most simple case mathematically in Section 8.3.1 while the 

rest of the analysis and programming concentrates on simulation studies. The reason for 

this, as Section 8.3.1 illustrates, is that the resulting distribution is complex and does not 

lend itself easily to extensions.

8 .3 .1  M od ellin g  th e  d istr ib u tion

Graphs of the distribution of the total length of the trial as displayed in Figure 8-1 

suggest an underlying approximate normal distribution. In the following we derive the 

exact distribution of time to required numbers of events.

Define Y  as the time at which a patient is accrued which follows a uniform distribution, 

i.e. Y  ~  unif(0,  t\) where t\ denotes the time at which the accrual period ends. In 

addition, define X  as the survival time of a patient which is modelled using an exponential 

distribution, i.e. X  ~  Exp(X) where A = in the control group with a being defined as 

the median survival time. The log hazard ratio in favour of the experimental treatment 

group is denoted by A, that is A =  log(Ae/A) where Ae is defined as the hazard in the 

experimental treatment group. Furthermore assume that X  and Y  are independent of
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each other. Let the total trial time be given by t\ +  £2 where £2 denotes the length of 

the follow-up period after recruitment has terminated. The real time at which a patient 

experiences an event is thus given by Z  = X  -I- Y.

As a first step we find the joint distribution for X  and Y  

f { x , y )  =  f x ( x ) f y { y )

■̂ e Xx for control treatment group

_A_e-Ax/(exp A) j or experimental treatment group

This derivation requires independence of X  and Y.  We then need to find the distribution 

for Z  in both treatment groups. The derivation follows p. 93 of Rice [100]. Hence for the 

control group the distribution function is given by

Fzc{zc) = j j  f{x,y)dxdy
'R z
00

= f f  f (x> y)dxdy

where R z denotes the set of all real numbers. We can then further define the limits since 

we know that 0 < y < £1 and 0 < x < z — y. Thus

t\ z-y
Fzc(zc) = 1 1 ^  ^-e~Xxdxdy

0 0

J H e Ax
z-y

dy
0

= K-ke~K‘~v)+Ti)dy
0

h  
1 1

e~Xz± exv - y  

A y 0

=  - 7 ~ r e - Xz(eM' -  1 ) +  1t\ A
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and

dFZc{z)f z c(zc) = dz
_  _Le A Z g A t i  Le Az

= —e-A2 (eAtl -  1 )

for 0 < z < t\ + 12- By a similar argument we can derive for the experimental group that

FZe(ze) = (eXP ^ -e~(«xPA)*(e(°xPA)fl -  1) +  1

and

for 0  < z < t\ + 1,2 .

f z e M  =  ~ ~ e  (exP A ) 2 ( e ( exP A ) t l  -  1 )  
11

Let k denote the total number of events needed out of a total of N  patients in the 

trial. When considering the time to the required number of events we are in effect looking 

at the time at which the kth  patient experiences an event, i.e. the kth  order statistic. 

According to p. 101 in Rice [100] the density of the kth  order statistic Z (*.) is given by

A(zw> = (fc -l)!^ -fc )!/(z)F*~1(2) [1 " F{z) ]N~k

where f ( z )  and F(z) are as defined above for one treatment group only. However, for 

two groups we need to take into account that the kth event may come from either group, 

control or experimental. The event z < Z^) < z dz occurs if k — 1 observations are 

smaller than z, one observation is in the interval [z, z +  dz], and N  — k observations are 

greater than z 4 - dz. This event may occur in either of the two treatment groups. The 

probability of such an arrangement under an equal allocation ratio to both groups is given 

in the control group by

f ( z c)Fk~'(zc) [1 -  F(zc)]%~k dzc 

and in the experimental group by

f ( z e)Flc~1{ze) [1 -  F{ze)]^~k dze 

These events are mutually exclusive since if one of the groups provides the kth patient,
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the other will not be able to. However, this also applies to the previous (k — 1 ) events.

We therefore need to sum over all possible scenarios of allocating k events between the 

two treatment groups. The two extreme scenarios are i) if k < N/2  all events come from

and k — N/2  from the other. In order to express all scenarios, we assume that i events 

occur in one group and k — i in the other. Using the multiplication principle, we have if

such possible arrangements over the trial population as a whole. Hence the density of 

is then for k > N/2  given by

and similarly for k < N/2  using Equation 8.2. However, this distribution underlies 

stringent simplifying assumptions, e.g. in reality the last patient needed may arrive just 

before or after t\ +  £2 -

The close resemblance of the distribution of time to a normal distribution as displayed 

in Figure 8-1 may be explained by the similarities between the exact distribution of time to 

the end of the trial as given in Equation 8.3 and a negative binomial distribution (Rice, p. 

38 [100]). Just as in the case of a negative binomial distribution, the distribution of time 

to the end of the trial will follow the normal approximation more closely as k increases, 

i.e. as the number of events needed in the trial becomes larger.

one group and none from the other and ii) if k > N/2  k events come from one group

k > N/2

(k -  «)!1! (f -  i)! { k - i -  1)!1! (f -  k + i)\

and if k < N/2

(k -  <)!H ( f  -  i)\ ( k - i -  1 )!1 ! ( f  - k  + i)\
(8 .2)

£
2

( k - i ) !  ( $ - » ) !  ( f c - i - l ) l ( f  - k  + i)\

*Fk~1(zc) (1 -  F(zc) } z - k dzc 

*Fk~l (ze) [1 -F (* e ) ]£ -* d 2 e

* { } ( z c)  +  / ( * e ) ) (8.3)
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8 .3 .2  S im u lation  m eth od s

A Stata 8  program varsim  -  sim ula tion  with an accompanying dialog was written 

which analysis variability in events and time for both single stage parallel group trials 

and multi-stage, multi-arm trials. One of the dialog menus and the program output are 

given in Figure 8-2. This part of the program is based on simulations run using sample 

sizes calculated for the input parameters. In the case of parallel group trials the sample 

size is given by ART (Analysis of Resources for Trials) with calculations based on Barthel 

et al. [7] which are described in more detail in Chapters 3 and 4. For multi-stage trials 

simulations are run using sample size calculations based on an extension of Royston et al. 

[103] as illustrated in Chapter 6 . The user may specify trial parameters as well as the type 

of analysis as illustrated on the dialog window in Figure 8-2. In general, tabular output 

is given for the distribution of either time or events as well as the parameters chosen to 

calculate sample size for the trial. Graphics then include a histogram, a boxplot and an 

assessment of normality.

All of the possible simulation set-ups employ a uniform accrual mechanism and expo­

nential survival where the exponential distribution is parameterised using median survival 

and the hazard ratio as specified by the user. The set-up for the survival distribution 

in multi-stage trials is based on the Normal Bivariate Exponential (NBVE) distribution 

whose characteristics are described in Chapter 7. Hence, as is described in that chapter, 

simulation results are more accurate for the last stage of any trial than for the previous 

ones. The program allows one to specify a wide range for the number of replications to be 

used in the simulations; however, we recommend the use of 5,000 to 10,000 replications 

to ensure sufficient accuracy and speed.

This simulation method may be extended to bring it in line with the options imple­

mented in ART as described in Chapter 4. This would then allow for more complex 

survival functions, loss to follow-up and cross-over.

8 .3 .3  Som e im p ortan t resu lts

Tables 8.1, 8.2 and 8.3 illustrate a simulation study of the variability in time for a parallel 

group trial comparing a control with one experimental treatment. Common to all trials 

are an accrual and follow-up time of two years. The hazard ratio in each of the trials 

is given by H R  and p denotes the probability of being allocated to the control treat-
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Figure 8-2: Output from Stata program Varsim - Simulation
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ment group. The trials were designed to attain 90% power and a 5% two-sided level of 

significance. Results are based on 10,000 replications.

Tables 8.1, 8.2 and 8.3 consider four points of the distribution of time to required 

number of events. Differences from the mean in % are given for each of these points. As 

an example consider the 95% reference interval results for the first simulated trial with 

a hazard ratio of 0.6 in Table 8.1. This reference interval refers to the range of values 

between the 2.5 centile and 97.5 centile. The results indicate that this trial could take 54 

instead of the expected 48 months at the upper 97.5% reference limit, an increase of half 

a year.

All three tables contain results for different disease stages. Table 8.1 considers a trial 

setting in advanced disease where most of the patients experience an event by the end 

of the trial whereas Table 8.3 contains results for trials in early disease, in this case for 

median survival time of 3 years. While the picture for variability in terms of time to 

events looks similar in all three settings, we observe that the sample size increase needed 

as median time to event increases is relatively large. Due to this large increase in sample 

size percentage variability then remains roughly the same across all tables as the higher 

sample size cancels out the higher variability introduced by a lower event rate.

p HR sample size mean time 
to analysis

difference 
at 2.5%

% difference 
at 2.5%

difference 
at 97.5%

% difference 
at 97.5%

0.5 0 .6 154 3.99 - 0.46 - 11.4 0.52 13.0
1/3 0 .6 167 4.01 - 0.46 - 1 1 .6 0.50 12.3
0.5 0.7 305 4.00 - 0.34 - 8.4 0.36 9.0
0.5 0 .8 758 3.99 - 0 .2 2 - 5.4 0 .2 2 5.6
0.5 0.9 3327 4.00 - 0 .1 0 - 2.5 0 .1 0 2 .6

Table 8.1: Simulation results for distribution of time to end of trial (or
analysis of trial results) in advanced disease i.e. median survival one year
p - allocation ratio, HR - hazard ratio in favour of experimental group, sample size - 
sample size required for 90% power, difference at 2.5% - difference between mean time to 
analysis and lower 2.5% reference limit around time to analysis

All tables illustrate that there is a relationship between the hazard ratio and the 

variation in time. The main reason is that a hazard ratio close to one requires a much 

higher number of patients than a hazard ratio of 0 .6  for example and hence variability 

decreases.

We also investigated the relationship between variability and power. Figure 8-3 dis­

plays both the relationship between the hazard ratio and variability as well as between 

power and variability in more detail. One may observe that the coefficient of variation
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p HR sample size mean time 
to analysis

difference 
at 2.5%

% difference 
at 2.5%

difference 
at 97.5%

% difference 
at 97.5%

0.5 0 .6 221 4.02 - 0.44 - 10.9 0.48 1 2 .0

1/3 0 .6 235 4.02 - 0.44 - 10.9 0.47 1 1 .6

0.5 0.7 431 3.99 - 0.31 - 7.8 0.33 8 .2

0.5 0 .8 1054 4.00 - 0 .2 0 - 4.9 0 .2 0 5.0
0.5 0.9 4561 4.00 - 0 .1 0 - 2.4 0 .1 0 2.4

Table 8.2: Simulation results for distribution of time to end
of trial (or analysis of trial results), median survival two years 
p - allocation ratio, HR - hazard ratio in favour of experimental group, sample 
size - sample size required for 90% power, difference at 2.5% - difference between mean 
time to analysis and lower 2.5% reference limit around time to analysis

P HR sample size mean time 
to analysis

difference 
at 5%

% difference 
at 5%

difference 
at 95%

% difference 
at 95%

0.5 0 .6 294 4.01 - 0.43 - 10.7 0.46 11.4
1/3 0 .6 310 3.99 - 0.43 - 10.7 0.47 1 1 .8

0.5 0.7 567 4.00 - 0.30 - 7.5 0.32 8 .0

0.5 0 .8 1378 4.00 - 0.19 - 4.8 0 .2 0 5.0
0.5 0.9 5992 4.00 - 0.09 - 2.3 0 .1 0 2.4

Table 8.3: Simulation results for distribution of time to end of trial (or
analysis of trial results) in early disease i.e. median survival three years 
p - allocation ratio, HR - hazard ratio in favour of experimental group, sample size - 
sample size required for 90% power, difference at 2.5% - difference between mean time to 
analysis and lower 2.5% reference limit around time to analysis

decreases linearly with increasing power while there appears to be a relationship of expo­

nential decay between the coefficient of variation and an increasing hazard ratio. This is 

to be expected since an increase in power, similar to an increase in the hazard ratio, leads 

to an increase in the sample size required for the trial. As we noted above, this increase 

in sample size leads to a decrease in variability of the total trial time.

8.4 U pdating estim ates using trial data

Once a clinical trial has started accruing patients and events, trialists may wish to obtain 

up-to-date estimates of the time by which the trial will have accrued the necessary number 

of events. This may deviate from earlier estimates since these were likely to be based on 

previous trial results, experimental data for the new treatment regimen or Phase II trials 

and not the current trial.

Bagiella & Heitjan [5] consider the prediction of analysis times in the context of trials 

with planned interim analyses. They introduce two model based approaches. The first
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is based on a point prediction of analysis time by extrapolating the cumulative mortality 

into the future and selecting the date at which the expected number of deaths is equal to 

the required number of events. The second method uses a Bayesian simulation scheme to 

generate a predictive distribution of milestone times. Prediction intervals are then given 

by the quantiles of that distribution. Drawbacks of their methods include potential bias 

if the underlying accrual and failure time distributions differ from prior assumptions as 

well as the assumption of a constant accrual rate.

We have developed a software tool varsim -  t r i a l  update shown in Figure 8-4 

which allows the user to input trial data accumulated so far and gain new predictions 

for the trial parameters such as median time to event in the control group. This may 

be carried out at several time points, since in the case of longer term trials incidents 

such as increased advertising of a trial or competition from other trials may alter the trial 

parameter estimates along the way. Updating the hazard ratio is, of course, not permitted. 

Furthermore, a graphical tool allows to plot the changes in projected variability over the 

course of the trial.

Initially, based on the parameters input by the user, the program runs through a 

simulation study with 1 0 ,0 0 0  replications to obtain the reference intervals around the 

initial estimates for the trial time. The control group dataset only is then analysed in 

order to obtain up to date estimates of median survival. Using iterations a new total 

trial time is obtained. In this case, sample size calculations based on Formula 8.1 are 

employed due to increased speed compared to running the updates using ART. Following 

this, new reference intervals for the updated trial time are calculated.

8 .4 .1  P o in t e stim a tes

In the following we explore a few possible ways of incorporating trial information into 

our parameter estimates. All variables are defined as described in Sections 8 .1  and 8.3.1. 

Figure 8-5 illustrates the process of updating the estimated trial time t\ -F £2 - Circles 

give point estimates with 95% reference intervals around them. At the end of the trial, 

in this case at 33 months, we will have a point estimate only as this corresponds to a 

calculation of trial time at the end of the trial itself. The point estimate at the start is 

based on previous information only while the last point estimate at 33 months is based 

on trial data only. Estimates in between are based on a combination of trial data and 

prior information. This section considers the combination of prior information and trial
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Figure 8-5: Updated estimates for the required length of a trial using trial data 

data using three different methods of weighting.

W eights

A crude way of assigning weights w\ and to prior information and trial data respec­

tively is to assign a score to each of them depending on what percentage of the overall 

number of events required has been obtained at the time of analysis. This loosely fol­

lows the method of Tan et al. [129]. Define aWiOT as the estimate of median survival in 

the control group obtained from prior information and adata as the estimate of median 

survival in the control obtained by analying data on the present trial. Thus if we are 

updating estimates for the median time to event a we get

®estimated, =  "1̂ 1 dprior ”1“ W2 Q>data
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where the weights w\ = 1 — 11)2 and

#  events obtained so far 
W<1 total #  events

The reason for combining the estimates in that way is that early trial events may be 

accumulated from patients who are sicker, and therefore may bias estimates of median 

time to event. Overall, our parameters early on in the trial would be based on very 

little information if we did not include prior knowledge. As the trial continues, more and 

more weight is assigned to trial data and prior information becomes less influential. This 

method has been implemented in our Stata program.

The above crude method may be improved upon by making the weight W2 inversely 

dependent on the variance of the estimates, e.g. the variance of the median time to event 

a, and then still assigning w\ = 1 — W2 as the weight for prior information [3]. This 

method may give a realistic and data dependent weighting structure, however, at the 

same time W2 may increase and then decrease again over the course of the trial.

A third possibility is to view the situation as a ’missing data’ problem [80]. In that 

case we can use weights which are inversely related to the probability of the data being 

observed similar to Preissler et al. [98].

Our initial simulation studies around the initial knowledge of the total trial time 

provide us with the percentage variation on either side of the median total trial time. In 

order to obtain reference intervals for each of the new estimates, this percentage variation 

is reduced by the percentage amount of weighting W2 . Thus if we define v as the percentage 

variation on either side of the median total trial time we have

_ ( w^ \
V n ew  — V oid \V o ld  *  J Q Q'

8.5 Conclusions

From the analysis conducted in this chapter it is apparent that it is important to take 

into account the variability in trial duration since it may have a significant impact on the 

total length of the trial. The distributions of both the variability in events and time are 

wider for smaller trials. One approach in these situations may be to design for the lower 

bound of the reference interval around the number of events to ensure adequate power 

by the expected end of the study. Similarly, it makes sense in those cases to consider the
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upper bound of the reference interval around trial length to anticipate possible higher 

trial costs and to ensure adequate funding in advance. This knowledge is of particular 

importance in multi-stage trials where the stages itself are often relatively short and have 

a smaller sample size. It is necessary to realise that this degree of variability already 

arises if we have estimated all other parameters correctly when calculating sample sizes, 

a scenario which in many instances proves not to be the case.

These methods may be extended to incorporate options provided in ART, such as loss 

to follow-up and cross-over, as outlined in Chapter 4. Furthermore, it may be of interest 

to examine the impact of non-uniform accrual on the variability, especially when initially 

mis-specified. These are all likely to add uncertainty to the time at which the planned 

number of events are likely to be observed. Explicit assessment of these may give a more 

realistic and appropriate timeframe and sample size for studies.

The second part of the program currently utilises trial data from the control group 

only. However, in a number of trials only the data from all groups as a whole may be 

available due to issues of unblinding. Thus it may be useful to allow for the input of 

the dataset as a whole in order to obtain an overall median survival. By assuming the 

hazard ratio used for sample size calculations at the outset we may then calculate median 

survival in the control group only and employ the tool as described above.
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Chapter 9

fin tp lo t: Forest plots for 

interaction

9.1 M otivation

During the course of examining a particular treatment in a trial setting we often want 

to know the consistency of an observed relationship across two or more subgroups of 

patients in the study. We might suspect that a treatment works better in older patients 

compared with younger ones or that due to the genetic make-up of men and women there 

is a difference in its effect on the two genders. In the medical literature this type of 

heterogeneity is often referred to as synergy whilst in statistics we know it under the 

name interaction [4]. Examining the relationship can be helpful later when developing 

guidance on how to use that particular treatment in practice. One study that is currently 

being conducted by the MRC Clinical Trials Unit seeks to identify an interaction of the 

prevalence of the mutated gene p53 and the results of chemotherapy in colorectal cancer 

patients.

As outlined by Shuster et al. [123], tests for such interactions can have two uses. 

By retrospective analysis of possible interaction effects one can formulate interesting 

hypotheses for future trials. In planning a prospective trial, one may incorporate a test 

of an interaction effect if it is suspected that the therapies manipulate important factors 

differently. Hence the analysis of interactions in a trial or study can either be of an 

exploratory nature or consist of a test for interactions as defined in the protocol.

Our estimate of the interaction effect is based on a ratio of hazard ratios or a ratio
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Figure 9-1: Quantitative and qualitative interactions illustrated using Kaplan-Meier sur­
vival curves

of odds ratios derived from a 2*2 table as described in Section 9.4. The definition is 

similar to that of Peterson et al. [94]. This ratio of hazard ratios describes quantitative 

interactions. A Stata program has been designed in order to ease the visualisation of 

interactions during the analysis of a clinical trial or study. It provides both numerical 

and graphical output in the form of a forest plot for this purpose while giving a choice of 

employing either the Cox proportional hazards model or logistic regression.

9.2 Treatment o f interactions in th e literature

Since it has been recognised that treatments might have different effects on subgroups 

in a clinical trial, attention has been devoted to the development of tests for such inter­

actions. Most authors concentrate on one kind of interaction, either a quantitative or a 

qualitative one. A good illustration of the differences was provided by Byar [14]. In the 

case of a quantitative interaction, the magnitude of the treatment effect may vary with a 

patient’s characteristics, however, the direction of the treatment effect will stay the same 

as illustrated in the first panel of Figure 9-1. By contrast, with a qualitative interaction
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a change in the direction of the treatment effect is involved as the second panel of Figure 

9-1 shows. This type of interaction is also often referred to as cross-over or a reversal.

Gail & Simon [44] presented a test for qualitative interactions based on likelihood 

ratios. A more recent paper by Piantadosi &; Gail [95] compared this likelihood ratio test 

with a range test and they found that whilst the likelihood ratio test has greater power 

when the new treatment is harmful in several subsets, the range test will have greater 

power when the new treatment is only harmful in a few subsets. Both computations do, 

however, indicate that even a very large trial would not have enough power to detect 

statistically significant occurrences of cross-over.

An approach based on proportional hazards regression models was proposed by Thall 

&; Lachin [131]. The model was then applied to a clinical trial in prostate cancer in order 

to find the optimal treatment for a patient’s set of covariates. Models based on pre­

stratification and non-stratification were derived. Another possible approach developed 

by Uesaka [138] utilizes logarithmic generalised odds ratios. He states that even in the 

case of a sample size of 2 0  patients, power would be high enough for this test.

Pan &; Wolfe [90] generalised interaction tests to the more practical problem of detect­

ing an interaction effect which corresponds to a minimal treatment difference of clinical 

significance. They grade possible interaction effects in three classes. The first is the 

case where a treatment is superior to another across all subsets, which means that this 

case includes quantitative interactions. In the second class we have a slight qualitative 

interaction which means that one of the treatments is superior to the other across some 

subsets and is only inferior by a small amount d for the remaining subsets. The third class 

contains a severe qualitative interaction. In this case the reversal of treatment effects is 

so great that even the addition of d to the addition of the effect of the inferior treatment 

will not make it uniformly superior to the other across all subsets. Pan &; Wolfe believe 

that most trials will be able to detect the second class and hence the alternative hypoth­

esis should be that of a severe qualitative interaction. The test developed in their paper 

centres around confidence intervals about a clinically significant interaction d.

The situation of 2*k factorial experiments was examined by Xiang et al. [145] whose 

test statistic is based on a weighted residual sum of squares. In order to estimate the pa­

rameters of the test statistic they employe the Mantel-Haenszel and maximum likelihood 

methods.

Bayesian subset analysis is suggested by Simon [125]. In his approach the subset
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specific treatment effects are being estimated as an average of overall differences and ob­

served within-subset differences. Following that the two components are weighted by an 

a-priori estimate of the likelihood of qualitative treatment by subset interactions. Hence 

this enables statisticians to incorporate an a-priori belief that qualitative interactions are 

unlikely. Underlying the approach is the proportional hazards model and prior distri­

butions for the interaction effects are assumed to be normal and independent. Simon 

outlines an application of gender/treatment interactions.

Caution regarding such tests was expressed by Byar [14], shortly after the design 

by Gail &; Simon [44] was made public. He believed that these tests need to take into 

account the fact that multiple comparisons are being made, and that therefore we need 

to ensure adequate power. Furthermore he suggests that interactions should be looked 

at in the context of exploratory analysis rather than that of formal hypothesis testing. 

Arguments such as this outline the need for rigorous sample size calculations to ensure 

adequate power of the tests. One such sample size calculation is provided by Schmoor et 

al. [112]. From their calculations we can deduce that ordinary sample sizes for a parallel 

group trial would have to be multiplied by a factor of four under equal allocation ratios 

both in the treatment and covariate groups in order to attain adequate power for such 

interaction tests.

9.3 Analysis o f trials w ith  treatm ent-covariate interactions 

present or suspected

The following analyses of trials with possible interaction effects were run to gain an 

understanding of the magnitude of interaction effects and the best way to represent these. 

Analyses were run using both the Cox proportional hazards model and the logrank test 

as well as Kaplan-Meier survival curves. To run the formal interaction analysis, an 

interaction variable of treatment and a covariate was created.

9 .3 .1  A X IS

From the AXIS trial 396 patients were selected to participate in this analysis. Sample 

size for this study was restricted due to cost and practical issues. Patients which were 

included in the analysis had to have been randomised before 1st January 1995 and had to 

have curatively resectable Duke’s B or C tumours in primary colon cancer. The main trial
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compared the effect of postoperative portal vein infusion of fluorouracil (5FU) to the effect 

of no infusion in patients who underwent a planned resection of colon or rectal cancer. 

Due to cost and practical issues the number of patients in this study was restricted to 

400 patients [6 ]. Apart from survival time in the two groups data was collected on LOH 

at p53, DPI, D18S61and D18S851, nmifinal, DNA ploidy, sex, age and Duke’s stage B 

or C. Furthermore, a combination variable was formed out of p53, D18S61 and D18S851 

and named hetany2. Hence the test for potential treatment-covariate interactions was 

pre-specified in the protocol. This is generally desireable to avoid multiple testing issues. 

If not pre-specified, interactions may be analysed for covariates which are thought to be 

relevant but particular care has to be taken to adjust the type I error.

During the AXIS trial 171 out of 396 patients died. The overall hazard ratio of the 

trial was observed to be 0.73 which indicates a reduction in the risk of death of 27% 

following 5FU with a confidence interval ranging from 0.54 to 0.98 and a significance 

level of 0.038.

We can identify hetany2, P53, D18S61, D18S851, nmifinal, DNA ploidy and Duke’s 

stage as having potential interaction effects with treatment. Each of the first five variables 

are split into three categories consisting of retained heterozygosity, loss of heterozygosity 

and not informative. The distribution of patients among the categories for four of the 

variables is portrayed in Table 9.1. Both D18S61 and D18S851 have very similar distrib-

Covariate retained heterozygosity loss o f heterozygosity N /A
hetany2 157 159 80
p53 40 93 250
nmifinal 279 89 28
Duke’s stage 240 156 -

Table 9.1: Distribution of patients among categories for the covariates in AXIS

utions with the least number of patients in the first category and the other two categories 

containing roughly equal numbers. DNA ploidy is split into the two categories of roughly 

equal numbers. These discrepancies in the distribution of patients among the categories 

call for caution in the later interpretation of the analysis due to a lack of power. The 

Kaplan-Meier survival curves in Figure 9-2 for the combination of treatment and Duke’s 

stage illustrate why we might suspect an interaction effect in this case. As we can see in 

the graph, patients with Duke’s stage B generally have better survival rates regardless of 

whether they are in treatment group 1 or 2 in comparison to patients with Duke’s stage 

C.
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Kaplan-Meier survival estim ates, by fu5 pduke
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Figure 9-2: Kaplan-Meier survival estimates, by treatment (fu5) and Duke’s stage (pduke) 
in the AXIS study

While looking at possible interaction effects only the effect for hetany2 was found to 

be significant at the 5% level (p-value 0.03) with a hazard ratio for the interaction effect 

of 0.74 and a confidence interval ranging from 0.55 to 0.97. The Kaplan-Meier survival 

curve for the interaction of hetany2 with treatment is illustrated in Figure 9-3. This plot 

was created by multiplying the treatment and the covariate indicator and then plotting 

the Kaplan-Meier survival curves for each of the three categories. We can see that one of 

the categories (fu5_hetany2 =  1) lies above the other two and hence indicates a potential 

interaction effect.

Kaplan-Meier survival estim ates, by fu5_hetany2
8

8o

8O'

8d
0 1000 2000 3000

analysis time

fu5_hetany2 = -2   fu5_hetany2 = 0
fu5_hetany2 = 1

Figure 9-3: Kaplan-Meier survival estimates for interaction between treatment and het- 
any2 (fu5_hetany2) in the AXIS study
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9 .3 .2  G liom a2

Glioma2 was a multicenter German-Austrian randomised trial conducted to test the stan­

dard therapy of Monotherapy with BCNU against a combined chemotherapy of BCNU 

and VM26 in the context of brain tumours in adults. 447 patients were randomised be­

tween February 1983 and June 1988. In addition to survival times data was collected on 

age, sex, Karnofsky-index, time from first symptom, grade of malignancy, type of surgical 

resection, convulsia, cortisone, epilepsy, amnesia, organic psychosyndrome and aphasia. 

Again the test for potential treatment-covariate interaction effects was pre-specified in 

the protocol.

During the trial 274 out of 411 patients died. The overall hazard ratio of the trial was 

observed to be 0.89 in favour of chemotherapy with a confidence interval ranging from 

0.71 to 1.14 and a significance level of 0.38. Hence there was no evidence of a significant 

improvement in survival depending on treatment.

We can identify the time from first symptom, grade of malignancy, Karnofsky index 

and aphasia as possible interaction candidates. Investigation of these variables was done 

by Ulm et al. [139] and Sauerbrei [109]. Each of these variables has been split into 

two levels, with the Karnofsky index having two different level definitions. The grade of 

malignancy and the second definition of the Karnofsky index show big discrepancies in 

the numbers of patients present in each group. Therefore power for the comparison is 

relatively low.

Kaplan-Meier survival curves suggest that there may be an interaction especially in 

the case of grade of malignancy and the second specification of the Karnofsky-index as 

illustrated in Figures 9-4 and 9-5 respectively.

When running a logrank test for each of the covariates alone as prognostic factors, 

the differences between the categories in terms of survival were found to be significant at 

the 5% level apart from in the case of grade of malignancy and aphasia.

The interaction of time from first symptom and treatment was found to be significant 

at the 5% level (p-value 0.03) with a hazard ratio for the interaction term of 0.58 and a 

confidence interval from 0.35 to 0.96 which is very wide. Similarly both specifications of 

the Karnofsky index were found to have a significant interaction with treatment (p-values 

of 0.002 and 0.031) and very similar interaction hazard ratios of 0.64 and 0.66 (Cl 1 : 0.49 

- 0.82, Cl 2: 0.49 - 0.89). The Kaplan-Meier survival curves for the interaction term also
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Figure 9-4: Kaplan-Meier survival estimates, by treatment (therapie) and grade of ma­
lignancy (x04) in the Glioma2 study

Kaplan-Meier survival estim ates, by therapie x07
8

£
©

8
o

IQo

8
o

0 500 1000 1500
analysis time

therapie = 0/x07 = 0    therapie = 0/x07 = 1 |
therapie = 1/x07 = 0 therapie = 1/x07 = 1

Figure 9-5: Kaplan-Meier survival estimates, by treatment (therapie) and Karnofsky 
index (type 2) (x07) in the Glioma2 study

follow a very similar path, with the one for the Karnofsky index (type 1) shown in Figure 

9-6.

The interactions of grade of malignancy and aphasia with treatment were, however, 

not found to be significant (p-values 0.37 and 0.39).

9.3.3 Sum m ary o f m ain effects

Table 9.2 provides a summary of the main treatment effect in each trial and one of the 

major interaction effects of treatment with a covariate. What is apparent is that having 

done the main analysis we are interested in interaction effects of each of the levels of the
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Figure 9-6: Kaplan-Meier survival estimates for interaction between treatment and 
Karnofsky index (type 1 ) (therapie_x06) in the Glioma2 study

covariate with treatment alone. Furthermore, the graphical analysis using the Kaplan- 

Meier survival graphs gives graphical representation of the magnitude of the effects but is 

not entirely satisfactory. Hence we developed a Stata program to provide more detail for 

the analysis of treatment-covariate interactions. This is explained in detail in the next 

section.

S tudy Covariate T reatm en t effect 
overall

In te rac tion  effect 
w ith  covariate

AXIS hetany2 0.73 (0.54 - 0.98) 0.74 (0.55 - 0.97)
Glioma2 Karnofsky index (type 1) 0.89 (0.71 - 1.14) 0.64 (0.49 - 0.82)

Table 9.2: Summary of main effects together with a 95% confidence interval

9.4  M od el and com p u tation

A Stata 8  program and dialog were written to aid the visualisation of treatment-covariate 

interaction effects in clinical trials. The program produces tabular output of the inter­

action effects as well as graphics. This and the following two sections describe first the 

mathematical background for the calculations and then the program set-up. Two trial 

examples are given at the end.

The model underlying the calculations is based on a 2*2 table for interactions as 

illustrated in Table 9.3. For the Cox proportional hazard model we can see that the 

hazard ratio between treatment =  1 and treatment =  0 , while the covariate is equal to 

0, is A. Similarly, we arrive at a hazard ratio of v  between the covariate being equal to 1
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and 0, whilst treatment is equal to 0. We then define the ratio of hazard ratios (RHR) 

as r  which illustrates the interaction effect. This can be derived

(  X U T \

R H R  = =  r  (9.1)
( t )

A similar definition arises when looking at the logistic regression model since the para­

meters remain the same but we are dealing with odds ratios instead of hazard ratios. So 

again we can employ Table 9.3 for illustration purposes and we define the ratio of odds 

ratios (ROR) as r.

Treatment =  0 Treatm ent == 1
Covariate=0 1 A
C ovariate= l V A V T

Table 9.3: 2*2 table for interaction effects

The table and graphics output by the program based on the Cox proportional hazards 

model are computed using the Cox model as implemented in Stata. Let A  denote the 

treatment and Z  a covariate of interest. The overall hazard is calculated using

h(t\A) = ho(t) exp(a\ A) (9.2)

where a i is defined as the coefficient for the treatment variable, while the hazards in the 

two groups as well as the hazard for the RHR are based on the model

h(t\A, Z) = h0(t) exp(/3lA  +  fi2Z  +  (312AZ)  (9.3)

We can estimate A by and v by (32• The interaction term is given by (3l2.

The logistic option employs logistic regression, again as implemented in Stata. The

overall treatment odds ratio is estimated using

= e x p ^  +  a M )
1 -I- exp(a;o +  a \ A )

The odds ratio in both levels of the covariate and the ROR are based on the following 

model
^  exP( g ( A , z ) )

« A' Z) = i  + e x m A ,Z))  (9-5)

for

9{A,Z) = (30 +  fixA  +  fi2Z  4- P1 2 A Z  (9-6)
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where /30 is the coefficient on the constant term, (3^ i = 1 , 2 , are the coefficients on the 

independent variables and 2 denotes the coefficient for the interaction term.

The graphical output of this program is based on forest plots. A “forest plot” is a 

pictorial presentation of the hazard or odds ratio with corresponding confidence intervals. 

A more detailed description of forest plots and their history may be found in Lewis &; 

Clarke [75].

9.5 D esign of the dialog

The program may be invoked using the Fintplot menu and its associated dialog. On 

completion of the calculations Stata displays a table of output containing the overall 

treatment hazard ratio, the hazard ratio in both groups of the prognostic factor chosen and 

an estimate of the RHR or ROR for interaction. Furthermore, a forest plot is displayed 

using Stata 8 graphics. The program has an Overview dialog option which provides a 

forest plot of the overall treatment hazard or odds ratio and RHRs or RORs for up to 

five covariates with treatment. Calculations are performed in the ado files fintplot and 

f intplotk. The default method of analysis is the Cox proportional hazards model.

fintmenu can be executed by typing fintmenu on and a new item Fintplot will 

appear on the system menu-bar under User. This menu can be turned off again by 

typing fintmenu off.

9.5 .1  Forest p lot and ta b le  for in teraction

The following description will concentrate on the Fintplot - Detail dialog, however, 

the Fintplot - Overview dialog may be used in a similar manner. The dataset employed 

in the analysis needs to have been stset prior to using this menu if the Cox proportional 

hazards model is to be used and the covariate levels need to be binary. The User may 

decide on sensible binary levels for the covariates which are of further interest by first 

employing the Overview dialog.

The Fintplot - Detail dialog allows both the by and if options to be executed 

separately or at the same time. Variables used for the by option of the program need to be 

discrete and can be entered under Separate by observations. If the Cox proportional 

hazards model is chosen, the program also allows for stratification. The variable to be 

used for stratification needs to be entered under Stratify by observations which is
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also located in the by option part of the dialog window. In the case of the i f  option, 

the C reate button allows the easier construction of the logical argument. In addition, 

the confidence level may be set prior to running the program in the usual way using se t 

le v e l #. Lastly, if the log scale is preferred for the forest plot, one needs to tick the 

box for Log sca le  in the main dialog window. The table will remain unchanged by this 

option.

9.6 Examples

The examples given below illustrate the program by employing data from the Glioma and 

Low Infant Birth Weight studies. Caution needs to be observed in looking at the results 

as these were not tests for interactions predefined in the protocol.

9.6 .1  Forest p lot for an in teraction  o f  tw o d ifferent covariates w ith  

trea tm en t

The first example was run using the Glioma2 study described above. Further information 

on this study is available in an article by Ulm et al. [139].

The data was s t s e t  prior to running the main analysis. For this first run, we have 

decided to look at the possible interaction between treatment (Trt) and two different 

binary categorisations of the Karnofsky-index (x06 and x07). Figure 9-7 illustrates how 

we enter the information into the dialog window. The treatment variable should always 

be entered first. Upon pressing OK or Submit we obtain the output given in Figure 9-8.

The log hazard ratios and hazard ratios in both levels of the factor and the overall 

hazard ratio are given as well as confidence intervals. This output is split into both 

categorisations of the Karnofsky index (x06 and x07). Most importantly the second table 

for each categorisation gives the log RHR and RHR for the interaction between treatment 

and the Karnofsky index.

Figure 9-9 illustrates the forest plot output by the program for these interactions. Here 

the diamond shape gives the overall hazard ratio for treatment without differentiating by 

factor. The square shapes then display an estimate of the hazard ratios in the two groups. 

Lastly, the circle shape gives us the RHR for the interaction. When looking at the plot 

of therapie and x06 we can see that the confidence interval for the first level of x06 is
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■  FINTPLOT • DETAIL

Main j by | if/in 

Variables for test

■ W
Covariate 1 m
Covariate 2
Covariate 3 4 , i

P A > r

T reatment variable [therapie

Cox proportional hazards f  Logistic regression 

n  Log scale

© o OK Cancel Submit

Figure 9-7: Dialog window illustrating analysis of two interactions under Cox model

too wide for the table. It has hence been truncated at a value of 2.5. Both the tables 

and forest plots show that there is evidence of an interaction between treatment and the 

Karnofsky index with an RHR of 0.45 or 0.52 depending on the specification.

9.6.2 Forest plot o f an interaction o f one covariate w ith  treatm en t using  

both  by and log scale options

The data used in this example originates from a study of the Risk Factors Associated 

with Low Infant Birth Weight. Data collection took place at Baystate Medical Center 

in Springfield, Massachusetts during 1986. Information was gathered on the birth weight 

in grams (bwt), the age of the mother (age), the mothers weight in pounds at the last 

menstrual period (lwt), race (race), smoking status during pregnancy (smoke), history 

of premature labour (ptl), history of hypertension (ht), presence of uterine irritability 

(ui) and the number of physician visits during the first trimester (ftv). Birth weight in 

grams was the further split into a low birth weight (low) categorisation whereby l=birth  

weight < 2500 g. Further information on the analysis of this dataset is given in Hosmer 

& Lemeshow [60]. At the planning stage an interaction analysis was specified.

Hosmer &; Lemeshow suggest splitting lwt into two categories (lwd) whereby 1 denotes 

a weight of under 110 pounds. Furthermore they have investigated a possible interaction
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F IN T P L O T version 1.0.0, 20 April 2004
A program to illustrate treatnent/covariate interactions using forest plots by 
Friederike Bart he 1  8c Patrick Royston

D E T A I L

-> interaction with x06
Factor InHR HR I95x Conf. Interval1
overall
x06==0
x06==l

HR -.10629226
.46974751
-.44747156

.89916182
1.5995903
.63924239

.70907197
1.0625393
.32618748

1.1402114
2.4080888
1.2527484

Factor InRHR RHR [95x Conf. Interval]
interaction -.80227556 .44830765 .27112886 .74127023
Analysed using Cox proportional hazards model
-> interaction with x07
Factor InHR HR [95x Conf. I nterval1
overall
x07==0
x07==l

HR -.10629226
.0340827
-.82794355

.89916182
1.0346702
.43694692

.70907197

.79335045

.22492848
1.1402114
1.349394
.84881476

Factor InRHR RHR [95X Conf. Interval]
interaction -.65781756 .51798057 .28376617 .9455104
Analysed using Cox proportional hazards model

Figure 9-8: Fintplot table output for Glioma study

between smoke and lwd split by age. Hence we have decided to create a new variable 

age5 which takes on the value 2 for age>25 and 1 otherwise. We will be using logistic 

regression in this example. The dialog window is invoked as before; however, we now need 

to enter an outcome variable for the events, which is low in this dataset. Furthermore we 

tick the box for Logistic and Log scale. To split the data by age5 we need to switch 

to the by option menu and enter age5 as a variable under Separate by observations. 
Figures 9-10 and 9-11 illustrate this. Once we press the OK or Submit buttons we obtain 

the output given in Figure 9-12.

This output can be read as in the first example, however, in this case we have a 

split by AGE5. The forest plot is illustrated in Figure 9-13. All symbols have the same 

meaning as defined in Section 9.6.1. We can hence illustrate the potential influence of 

other variables. The output from both the table and the forestplot suggest no evidence of 

an interaction between smoking and weight at the last menstrual period when we separate
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F orest plot for interactions with treatm ent

tre a tm en t with K arnofsky l tre a tm e n t w ith K arnofsky2
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Figure 9-9: Forest plot for interaction of treatment with two categorisations of the Karnof­
sky index

the data by age5. However, the analysis is not very conclusive due to wide confidence 

intervals which stem from the fact that there is only a small amount of data available in 

each group.

9.7  C onclusions

It is becoming increasingly important to analyse the effect an intervention has across 

different levels of a covariate in order to allow for more individual patient care. Hence we 

have developed a Stata tool to express such interactions both quantitatively and visually 

within a 2*2 table framework. It is flexible in the options it provides and operates under 

either the Cox proportional hazards or the logistic regression model.
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■  FINTPLOT - DETAIL

Main j by | if/in 

Variables for test

Covariate 4 A
Covariate 5
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Figure 9-10: Dialog window illustrating input of outcome variable for logistic regression

FINTPLOT DETAIL

Main by j jf/jn 

S ep arate  by observations 

by [age5

U

Stratify by observations

©  © OK Cancel Submit

Figure 9-11: Dialog window illustrating use of by option
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FINTPLOT version 1.0.0, 20 April 2004
A program to illustrate treatment/covariate interactions using forest plots by 
Friederike Bart be 1 8t Patrick Royston

DETAIL
Response variable: low
-> for age5==l 
Factor InOR OR I95x Conf. Interval]
overall OR
smoke==0
smoke==l

.5389965

.82198005
5.6333333

1.7142857
2.275
279.59254

.71798501

.71135751

.00766853
4.0930876
7.2757016
10193868

Factor InROR ROR 195x Conf. Interval]
interaction -.55801451 .57234432 .09691536 3.3800424
Response variable: low
-> for age5==2
Factor InOR OR I95x Conf. Interval]
overall OR
smoke==0
smoke==l

2.0918641
2.7725887
21.005128

8.1
16
1.326e*09

2.2292439
2.4137899
1.709e-15

29.431503 
106.05728 
1.028e+33

Factor InROR ROR I95x Conf. Interval]
interaction -1.5293952 .21666667 .0157211 2.9860787

Analysed using logistic regression

Figure 9-12: Fintplot table output for Low Birth Weight study

F orest plot with interaction for Iwd and  sm o k e

for age5==1 for age5==2

^ o v e r a l l  H R

-2.5 -1 5  -.5 0  .5 1.5 2.5 3.5 -2.5 -1 5  - 5  0 5  1.5 2.5 3.5
InO R  / InRO R  InO R  /  InR O R

Figure 9-13: Forest plot using logistic regression, log scale and by options for Low Infant 
Birth weight data set
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Chapter 10

Summary and forward look

10.1 Summary

Adequate sample size calculations are vital for the success of all randomised controlled 

trials. They are particularly complex for trials with survival-type endpoints because they 

usually involve prior estimates of a number of parameters including the control group 

survival distribution, the magnitude of the targeted difference to be detected, the rate 

of accrual of individuals to the study, the length of follow-up of individuals after accrual 

closure and the potential for (time-related) dilution of any effect through, for example, 

loss to follow-up or change of treatment. All of these parameters can have an important 

impact on the trial size needed.

In the first part of the thesis in Chapters 3 and 4 we presented a general approach 

to sample size calculations for trials which allows for all these sources of variability. This 

approach is based on mathematical ideas and an earlier version of the sample size program 

derived by Professor A. Babiker. During Chapter 3 and its accompanying paper [7] we 

formulated the mathematical description of the approach. Simulation results show that 

these calculations are accurate in a variety of trial settings. These results also indicate 

that the adjustments particularly for non-proportional hazards, non-uniform accrual and 

cross-over may be substantial in terms of power and sample size.

The main improvements made to the ART software over the course of Chapter 4 are the 

new design of the dialog menu exploiting features introduced in Stata 8 and more detailed 

output. In addition, the sample size calculations may now be performed for non-inferiority 

designs. Thus users should find the new version easier to use and more informative than
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the first release. Furthermore, a comparison with other software packages has shown that 

this is the only widely available program to take into account all of the above mentioned 

complexities.

In trials which are aimed at comparing treatments to treat diseases that are serious 

and life-threatening such as cancer or HIV, surrogate endpoints are attractive since they 

can be measured sooner and more easily than those which are considered the most valuable 

clinical endpoints in such diseases: morbidity and mortality. We have presented statistical 

methodology from the literature in Chapter 5 that aims to assess the strength of surrogate 

markers for clinical endpoints, both within individual clinical studies and across clinical 

studies. To be useful to investigators, surrogate endpoints should also result in a reduction 

of either sample size or the duration of the study. The acceptance of surrogate endpoints in 

clinical trials as the basis for drug approvals is recognised as carrying risks. These include 

the risk that a treatment-induced effect on a surrogate endpoint will not correlate with 

a clinical effect, resulting in an ineffective product proceeding to market if the analysis 

at the end of the trial was based only on the surrogate endpoint. Therefore we propose 

to use a primary outcome such as mortality for the final analysis and an intermediate 

outcome for the analysis at intermediate stages.

The multi-stage, multi-arm methodology presented in the second part of the thesis, 

specifically in Chapters 6 and 7, aims to address the pressing need to speed the process 

of the evaluation of new therapies, particularly in cancer. This approach has two dis­

tinguishing characteristics: many new therapies are compared at once against a control 

treatment and ineffective therapies are rejected on the basis of an intermediate outcome 

measure, by a randomised comparison of each new arm against the control. This interme­

diate outcome measure is not required to be a perfect surrogate for the final outcome in 

the Prentice sense [99] but rather it is essential that the effect sizes of the new treatment 

on the intermediate and final outcome measures are related. In general, the main ad­

vantage of this approach is the ability to reject one or all of the experimental treatments 

early. This means are that fewer patients need to be recruited, the trial takes less time 

to run, there is increased flexibility in the design and costs are reduced.

In Chapter 6 the multi-arm, multi-stage design first introduced by Royston et al. [103] 

was extended to more than two stages. This included the development of Stata software 

for sample size calculations for this type of design. The underlying assumptions of the 

design were examined and further improvements to the methodology were suggested,
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particularly in the area of non-exponential survival.

Chapter 7 provided a review of literature around bivariate exponential distributions 

as well as an addition to the methodology in the form of the N B V E  (Normal Bivariate 

Exponential) distribution. This was necessary in order to facilitate the simulation of trials 

with a progression free intermediate outcome and overall survival outcome. Simulation 

studies illustrate the accuracy and robustness of the sample size calculations for the 

multi-stage, multi-arm design in this chapter.

In the third part of the thesis in Chapter 8 we explored strategies to analyse the 

inherent variability in trial time and /  or number of events and provided a Stata tool 

to assess the variability at the beginning of the trial as well as update these estimates 

throughout patient and event accrual. We have shown that it may be beneficial to take 

into account the variability in trial duration at the planning stage since it may have 

significant impact on the total cost and practicality of the trial. This knowledge may be 

of particular importance in multi-stage trials where the stages itself are often relatively 

short and have a smaller sample size. It is necessary to realise that this degree of variability 

already arises even if we have estimated all other parameters correctly when calculating 

sample sizes.

It is becoming increasingly important to analyse potential treatment-covariate inter­

actions in order to allow for more targeted patient care. Thus it is of great interest to 

observe whether the treatment effect is consistent across some demographic factors such 

as age, gender, baseline disease severity, some prognostic factors, or previous medical 

conditions and concomitant medications. Hence we have developed a Stata program with 

which such interactions can be expressed and displayed both quantitatively and visually 

within a 2*2 table framework. It is flexible in the options it provides and operates under 

either the Cox proportional hazards or logistic regression model. This programme as well 

as the underlying methods were described in the fourth part of the thesis in Chapter 9.

10.2 Extensions

10.2 .1  C hap ters 5 to  7

We have identified a number of areas in which the multi-stage, multi-arm designs may be 

extended. These include the following:
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1. Assessing potential gains from earlier trials: A number of conventionally designed 

recent trials have collected information both on an intermediate outcome and a 

final outcome measure. We propose to reanalyse these studies to assess whether 

using the multi-stage methodology we could have identified and ‘rejected’ ineffective 

therapies, without inappropriately rejecting effective therapies. Hence we would 

like to assess whether the use of emerging data on the intermediate outcome would 

have allowed us to stop early in trials in which little or no effect on overall survival 

was observed. Similarly, we wish to ascertain whether in studies with a positive 

outcome on overall survival the trial would have been stopped early inappropriately 

if data on the intermediate outcome measure had been used. Specifically, we could 

assess whether employing our methodology in these studies would have reduced the 

number of patients needed and saved time.

2. Extension to other outcomes: Hitherto, the methodology has been developed for 

two correlated survival-type outcome measures. We propose to extend the method­

ology to cases in which the intermediate outcome is a binary or ordered categorical 

endpoint, such as tumour response.

3. Assessing correlation among treatment effects: The calculation of overall Type I 

and II errors in multi-stage, multi-arm trials depends upon adequate specification 

of the correlation of treatment effects on the intermediate and primary outcomes 

at different time-points over the course of the trial. While some progress has been 

made in this area using studies on ovarian cancer with two survival-type outcomes, 

other cancer types and other outcome measures require further work.

4. Operating characteristics: So far work on the operating characteristics as outlined 

in Chapter 6 has concentrated on the type I and II errors for comparing one exper­

imental arm with a control only. However, in order to determine the overall type 

I and II errors for the design two main correlations need to be taken into account:

a) two or more analyses are conducted over time and b) two or more simultaneous 

comparisons with control. Some preliminary work has been carried out in this area, 

using the multivariate normal distribution of the treatment effects, which addresses 

the first issue of these issues.

5. Bias in treatment-effect estimates: We need to consider whether ceasing further 

randomisations to a research arm in a multi-stage, multi-arm trial and continuing 

allocation to other arms may introduce bias in estimated treatment effects. The
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original publication [103] states that such bias is avoided by reporting treatment 

effects for all treatments, irrespective of whether they were dropped early or not. 

We will investigate this issue further from a methodological perspective and by 

computer simulation.

6. Practical issues in multi-stage, multi-arm trials: The first trial (ICON5, in ovarian 

cancer) employing the two-stage design as outlined by Royston et al. [103] has just 

been completed at the MRC Clinical Trials Unit. A further trial (STAMPEDE, 

in prostate cancer) has been designed with an extension to more than two stages, 

and is under way. To assess the practical impact of the approach and provide 

guidance on undertaking these trials, we propose to examine the issues raised in 

these multi-arm, multi-stage trials. These include:

(a) Patient information: How much information needs to be given in the patient 

information sheet? What information should be given to the patients allocated 

to an arm which is stopped early?

(b) Protocol /  Statistical Analysis Plan: We propose to write a plan on ‘How 

to describe a multi-stage multi-arm trial?’ in a protocol or trial proposal. 

Furthermore, guidance on the statistical analysis plan is needed.

(c) End of Stage 1: There is currently a grey area between the end of Stage 1 in 

terms of the number of events needed and the time of the actual analysis. A 

similar discrepancy in times occurs at the end of the trial. Currently, recruit­

ment is stopped when the needed number of events have been accrued. This 

may lead to overpowered trials. Hence the question arises of whether there is 

an optimal time of stopping recruitment?

10.2 .2  C hap ter 8

We furthermore propose that the work described in Chapter 8 on the variability in total 

trial time be extended to incorporate those trial design options provided in ART as 

outlined in Chapter 4. The second part of the analysis of variability program currently 

utilises trial data from the control group only. However, due to issues of unblinding trial 

data before the final analysis, only the data from all groups as a whole may be available. 

Thus it may be beneficial to allow for the input of the trial dataset as a whole in order 

to obtain an overall median survival. By assuming the hazard ratio used for sample size 

calculations at the outset we may then calculate median survival in the control group only

184



and employ the tool as described above. A third area of extensions to this methodology 

may be the use of spline functions as proposed by Royston et al. [102] to predict the 

rest of the distribution from trial data available so far and subsequently calculate median 

survival based on that information.
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A ppendix A

Publications and prizes

The research in this thesis won the Fisher Memorial Trust bursary to attend and present 

at the International Biometric Conference in Cairns in 2004. A poster based on research 

in this thesis was awarded the Best PhD Poster Prize at the GSK BDS UK Statisticians’ 

and Programmers’ Conference, 2004. Furthermore, I was awarded the University College 

London Momber Scholarship, 2003/2004, and the Costas Goutis Prize, 2004. Below 

is a list of publications and conference presentations that have resulted from the work 

described in this thesis.

A .l  Papers

1. F. M.-S. Barthel, P. Royston, A. Babiker. 2005. A menu-driven facility for complex 

sample size calculation in randomized controlled trials with a survival or a binary 

outcome: update. The Stata Journal: 5, 123-129.

2. F. M.-S. Barthel, A. Babiker, P. Royston, M. K. B. Parmar. 2006. Evaluation 

of sample size and power for multi-arm survival trials allowing for non-uniform 

accrual, non-proportional hazards, loss to follow-up and cross-over. Statistics in 

Medicine: accepted.

3. F. M.-S. Barthel, P. Royston. Graphical representation of interactions. The Stata 

Journal: submitted.

4. F. M.-S. Barthel, P. Royston. multinorm: Multivariate normal probabilities, to be 

submitted to The Stata Journal.
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A ppendix B

Derivation of the non-centrality 

parameter r

This appendix provides further details on the calculation of the sample size N  under 

loss to follow-up, non-proportional hazards and cross-over as referred to in Section 3.2. 

All variables are defined as described in Sections 3.2 and 3.3. This work is based on 

fundamentals derived by Professor A. Babiker.

Let the observed numbers of events (O2 ,..., O3K)' have a multinomial distribution with 

probability A), ... ,ek(tj\A)]'. Define

M*(A) = -~=E(U k\Hx)

where the expectation of the logrank statistic Uk under the alternative hypothesis is given 

by m
E(Uk\Hx) =  J 2 w ( t j ) [ e k (tr , A) -  e k ( t r ,0) }  

j = l

and let M(A) =  (M2 (A ),..., M k {A))' . The covariance of U is structured as a (K  — 1) x 

(K — 1) matrix V(A) =  (vm) where

rn
Vki(A) =  '^ \W { t] )]2ek{ty, A)[Ski A)] (B.l)

j =1

for k, I = 2,. . . ,K;  and dki = 1 if k = 1,0 otherwise. According to the Central Limit 

theorem [51], as N  — ► 0 0 , ((U/ y / N) — M ( A)) is asymptotically distributed as multi­

variate normal N(0, V(A) /N) ,  i.e. for large A, U/ y / N  is approximately distributed as
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N(Af(A), V(A)). It follows that

Q = U' (V(A))~1U

is distributed as non-central X/c-i with non-centrality parameter

t  = =  N M( A ) ' ( V ( A) ) ~ 1M( A) (B.2)

and

Q = U'(V(0))~1U

is distributed as central Xrr-i UIK̂er -^o [118]. Under local alternatives Hi,  we can 

replace V(A) by 1 (̂0) in the expressions for Q and r  and so the logrank statistic Q is

in Section 3.2.

In order to calculate the sample size N  we need to find M ( A) and V (0) asymptotically 

as N  —► oo. To do this we incorporate our knowledge about patient accrual, loss to follow- 

up and cross-over into r. Let F R(t), S R(t) and Sfc (t) follow the notation in Section 3.3.1. 

Then the probability that a randomly selected patient is in group k and is still at risk of 

failure at time t is F R(T — t)Hk(t), where

approximately non-central \ 2 with the non-centrality parameter given by Equation 3.1

Hk(t) = pkSk(t)Sg(t) (B.3)

The limit of ek(t; A) as N  —» oo is given by

Hk(t)Ak(t) (B.4)

Let

i , i ( t )  = F R( T - t ) p kSk( t ) f£( t ) (B.5)

and
K

(B.6)
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If we let g{t) = limj/v_+0o W(t)  then

oo
M{A)  -► ^lin^ - j =  Ig( t ) [pk(t; A) -  pk(t; 0)]if)E(t)dt

as N  —> oo. Furthermore

F(A)
N  N

(B.7)

OO
)im T7 llg{t))2pk{t\&)[Ski-Pi{t-,A])i>E{t)dt (B.8)
/ —>00 iV  J

Under the unweighted logrank test the weights are given by

9 (t) =  1

while Tarone & Ware weighting [130] has the form

K

g ( t )  =  { f r (t  -  t ) i Y , P k S k ( t ) s ? ( t ) \ y / 2
k=1

and Harrington &; Fleming weighting [56] can be calculated as

(  K

g ( t )  =  < k=1
K

k= 1

(B.9)

(B.10)

(B .ll)
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A ppendix C

An approximation to the  

distribution of the logrank test 

statistic Q under more distant 

alternatives

This work is based on fundamentals derived by Professor A. Babiker. In Appendix B, 

the distribution of the logrank statistic, under local alternatives H\,  was approximated 

by that of Q replacing P(A) by P(0) leading to a non-central \ 2 with K  — 1 degrees of 

freedom and non-centrality parameter

r  =  iVM (A)V(0)_1M(A)

More generally, the distribution of Q under H\  can be approximated by one of two 

methods:

The first is based on approximating the distribution of Q under H\  by that of a 

constant multiple of non-central Xk - i (t ) using the first two moments [118]

E(Q\Hi) = tr(V{ 0)~l V{A))  +  iV M (A )V (0)"1M (A) (C.l)

and

V(Q|Hi) =  2{tr(V(0)~'V(A))2 + 2 N M( A) ' V ( 0 ) - 1M ( A ) V ( 0 ) - 1M( A) }  (C.2)
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to solve for the multiplying factor and the non-centrality parameter r. This means that we 

approximate the distribution of Q by that of cX  where X  ~  X k-i (t )* Setting L = K  — 1 

and equating the right hand side of equations C .l and C.2 with c E ( X ) and c2V a r(X ) 

respectively, where X  ~  Xk - i (t ) [33], we obtain

*r(U(0)_1 V(A)) +  iVM (A)V(0)~1M (A) =  c(L +  r)

and

fr(VXO)"1 V(A))2 +  2NM(A) 'V(0)~1M(A)V(0)~1M( A)  =  c2(L +  2 r)

Hence the non-centrality parameter of Q is then given by

{(b2 -  Lb!) +  y/ ( 6 g  -  L 6 i ) 2  + -  L 6 Q
T bi

where we define ao = £r(U(0)_1V(A)), qo = M { X ) ' V (0)_1 M (A ), aq =  ir (y (0 )“ 1Vr(A))2,

qi = M (A )V (0)“ 1M (A)K(0)“ 1M(A)

b0 = ao +  Nqo and b\ = ai + 2Nq\. Using N  as calculated under local alternatives as 

a starting value we can then find N  under distant alternatives iteratively such that it 

satisfies the following equation

1 — (3 = nchi(K  — 1, r , [invchi(K — 1, a)]-^----- -—-)
oo

where nchi(L, r , z) is the value of the cumulative distribution function of a non-central 

X2 with L degrees of freedom and non-centrality parameter r , at 2 . invchi(L, a) gives 

the inverse of the cumulative distribution function of the central y2 distribution with L 

degrees of freedom at a.

The second method is based on sampling from Q under Hi by using the knowledge that 

U/y/N  is asymptotically multivariate normal with mean M ( A) and covariance matrix 

V(A).  Under this method we obtain 10,000 replications of the vector U. For each of 

these Q is calculated which gives us the empirical distribution for the quadratic form 

under Hi.  The power is then calculated by counting how many times Q is greater than 

invchi(K  — l ,a ) .  This second method is implemented in the sample size program ART.
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A ppendix D

Overall power and significance 

level using the m ultivariate 

normal distribution

As outlined in Chapter 6 the overall power and significance level of a multi-stage trial 

with s stages will follow a multivariate normal distribution <FS. In order to arrive at 

the required sample size and other design characteristics for the s-stage trial the sample 

size calculations described in that chapter were programmed in Stata 8. However, Stata 

8 currently does not provide for a multivariate normal with s > 2. Hence we had to 

provide such a program. For this purpose, the literature was surveyed, in particular 

methods provided by Genz [47] [48] [49]. His methods were previously programmed and 

evaluated in Fortran 77.

His first paper (1992) [47] on the subject provides a method for evaluating the general 

multivariate normal cumulative distribution function as defined by

b\ bi bs
F(a,b) = -  f  I  ... I  e x p f - l ^ E - ' g J d g

a i a-2

where 0 = (01 , #2 , •••, Qs)1 and E is a s x s symmetric positive definite covariance matrix. 

However, for our purposes we can set a\ = 0,2 — ... =  as = —0 0 . The algorithm suggested 

by Genz for the evaluation of the integral operates as follows:

i) Input E ,a,6 , £, a  and Nmax where e is defined as the error tolerance, a  as the Monte- 

Carlo confidence factor for the standard error e.g. 2.5 and Amax limits the maximum

193



number of repetitions allowed for the algorithm.

ii) Compute the lower triangular Cholesky factor C for E.

iii) Initialise Intsurn  =  0, N  =  0 and Varsum  = 0. Furthermore define d\ = 

ei = $(&i/cu ) and / i  =  e\ -  d\.

iv) Repeat:

a) Generate random uniform W\,W2 , e[0,1]

b) For i =  2 , 3 , s

Vi- 1  =  1 -  d i - i ) )

dt = <f>

=

and

fi = (ei d{)fi—\

c) Set N  = N  + I,
f s — In tsum  

S =  N -------

In tsum  — In tsum  +  S

(N  — 2)Varsum
Varsum  = --------------~------

N  + 62

Error = a y V a r s u m

Until Error < e or N  = 7Vmax

v) Output F  =  In tsu m /N , Error and N.

This algorithm can be simplified for our purpose by setting di = 0 since we assume 

ai = — oo, i — 1 , s.

The following example illustrates this approach using parameters which could be

/
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chosen for our multi-stage design. Let n = 4, a = (—0 0 , - 0 0 , - 0 0 , - 0 0 ) and b 

(0.5,0.25,0.1,0.05). Furthermore let

(  1 1 1 0.6 N

1 1 1 0.6

1 1 1 0.6

0.6 0.6 0.6 1

E =

This means that we want to solve

0.5  0.25 0.1 0 .05

FfcS-7H5F
— OO — OO — OO — OO

According to step ii) we first need to find the Cholesky decomposition for E. To derive 

E =  CC T we simply equate coefficients on both sides of the equation

(  sn  S12 ... Sin ^

S 2 1  S  2 2  . . .  S 2n

S31 s 32 ••• «3  n

(  cn  0 ..

C21 C22 ... 0

0 \ f CU C21 ... Cni ^

0 C22 ••• Cn2

y C n  1 Cj i2 . . .  Cn n  J  y 0 0 /y *’nl &n2 ••• Snn J

When solving for the unknown parameters for i =  1,..., s and j  — i +  1,..., s we get

C"ii —
\

i—i

E
k=  1

'ik

and
i — 1

&ji CjkCik
k=  1

-Ji

Hence for our example

(  1 1 1 0.6 ^
1 1 1 0.6

1 1 1 0.6

0.6 0.6 0.6 1

0 ^ f  1 1 1 0 .6  ^

0 0  0 0 0

0 0  0  0 0

0 .8  ) 0 0 0 p oc
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The first transformation of our integral then gives density

b\ *>2(1/1) ( 63(2/1,2/2) ( 64(2/1,2/2,2/3)
F(a,b) = —f= L =  I  exp { - y }  |  e x p { - ^ }  J  e x p { - ^ }  |  exp{-^-}dy

0 j  02(2/1) 03(2/1-2/2) 04(2 /1 -2 /2^ 3)

where
z-l

ai ~ cijVj 
j=1
Cn

i—1

— X/ ^J Vj 
j=l

and

Cii

Thus ai =  a'2(yi) =  a'3{yu y2) = 0 4 (3/1 , 3/2 , 2/3 ) =  -oo , &i =  0.5, &'2(?/i) =  V3{yu y2) = 0 0  

and 6 4 (2/1, 2/2 ,2/3) — 0.0625 — 0.75^i. Following this step we can further transform the 

integral to give
* (0.5) * ( 00) * ( 00) * ( 0 .0625- 0.7 5 * - 1 (21))

F(a,b) = J l l  j  dz
0 b 0 0

Finally, a third transformation gives

F(a,b) = j  $(0.5) j  $ ( 0 0 ) j  $ ( 0 0 ) j  $(0.0625 -  0.75$~1 (uji$(l))du/
0 0 0 0

1 1

= $(0.5) I J I  $(0.0625 — 0.75$- 1(u /i$(l)) |  dw 
’ o ’ 0

This integral may then be further evaluated using inbuilt Stata functions.

Instead of the Monte-Carlo algorithm method given above lattice rules may be used 

as a more elegant way of evaluating the integral [48]. A further method is suggested in 

Genz (2004) [49] for the special case of the trivariate normal density. This method is

based on Owen (1956) [8 8 ] who wrote the standard trivariate normal integral in terms of

a bivariate normal integral. Hence we could extend this method for s > 3, however, for 

large s this does not provide a reduction in computation time.
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