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Abstract

Designers of clinical trials today face a number of different challenges. In a number of
disease areas several treatments become available at any one time with only a limited
number of patients available for investigation purposes. Furthermore, in disease areas
such as HIV and cancer the pressure is high to find effective treatments quickly. Due
to the recent advances in the human genome project more and more interaction effects
between a treatment under study and the genetic make-up of a patient may be successfully
analysed.

This thesis aims to evaluate existing tools for the design and analysis of clinical trials
with a time-to-event outcome and provide extensions in areas where existing tools do
not perform satisfactorily. Particular emphasis is placed on sample size calculations for
multi-arm and multi-stage trials and other complex mechanisms such as loss to follow-up
and patient withdrawal from allocated treatment. Furthermore, advances are made in
the area of treatment-covariate interactions, particularly in terms of analysis tools for
such interactions.
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Title: Professor
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Chapter 1

Introduction

1.1 The context of the research

Clinical trials are scientific investigations that examine and evaluate safety and efficacy
of therapies in human subjects. Trials therefore carry a responsibility both to ensure the
welfare of their participants and to be publicly accountable. If trials are to be successful
and achieve their aim of improving healthcare for the public at large, then they need to
be practical and relevant. This calls for trial designs which allow us to answer the right

questions as quickly and efficiently as possible.

In the last 20 years there has been a major increase in our basic understanding of
many diseases based on a revolution in molecular sciences. This has inevitably fuelled
great hope in our potential to cure many serious diseases, such as cancer, HIV and heart
disease. However, in a report in March 2004 the US Food and Drug Administration have
identified a slowdown, rather than expected acceleration, in innovative medical therapies
reaching patients [39]. As a consequence there is increasing concern that the hoped-
for advances in improving survival and quality of life in many major diseases may not

materialise.

Two factors are highlighted as being involved in this downturn including the high cost
of bringing a new product to the market, estimated to be of the order of one billion US
dollars, and the fact that most new treatments are not effective. The FDA have estimated

that only approximately 8% of therapies entering Phase I trials reach the market.

This has happened despite the fact that in the last 10 years biomedical research

spending has more than doubled in real terms in the private sector internationally and in
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the public sector in the USA. There have also been corresponding increases in research
spending in the public sector in many countries in Europe. The FDA, in their report,
emphasise the need for new approaches to reject ineffective therapies and continue testing
the promising ones as rapidly and as reliably as possible. In this thesis we present some

new methods that aim to achieve this goal.

1.2 Organisation and overview

This thesis is essentially divided into four main parts. The first part (Chapters 2 to 4)
deals with the issues surrounding sample size for trials with survival type endpoints and
extensions to non-uniform survival, multiple arms, loss to follow-up, non-proportional
hazards and cross-over. The second part (Chapters 5 to 7) concentrates on multi-stage,
multi-arm trials with intermediate endpoints. In Chapter 8, the third part, the impact of
the variability in accruing events on the total trial time is examined both in a standard
parallel group trial setting as well as in the multi-stage, multi-arm trials introduced in
Chapters 5 to 7. Finally, we concentrate on the analysis of treatment-covariate interac-

tions in the fourth part of this thesis (Chapter 9).

The results of many randomised clinical trials are inconclusive, often because insuffi-
cient numbers of patients were included. In Chapter 2 we consider the need to estimate
sample sizes realistically with particular emphasis on aspects which may reduce the power
of a trial in time-to-event situations. In Section 2.2 the development of sample size for-
mulae for these types of trials over the years is examined. Extensions to more than one
experimental arm in comparison with a control are described in Section 2.3 while Section

2.4 introduces more complex censoring situations.

We present a general framework for sample size calculation in survival studies based
on comparing two or more survival distributions using any one of a class of tests including
the logrank test in Chapter 3. The fundamentals of this method originated from work
done by Professor A. Babiker. Incorporated within the method are the possible presence
of non-uniform staggered patient entry, non-proportional hazards, loss to follow-up and
treatment changes including cross-over between treatment arms which are discussed in
Section 3.3. Further extensions to the methodology such as non-local alternatives for the
logrank test are also considered. Their validity is explored using simulation studies in

Section 3.4.
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The sample size framework described in Chapter 3 has been implemented in the freely
available program ART (Analysis of Resources for Trials) for Stata which is discussed in
Chapter 4. Our investigations suggest that ART is the first software to allow incorporation
of all these elements. Characteristics of ART and other sample size programs available

to the public are compared in Section 4.4.

In phase II / III cancer trials, it is undesirable to stop a study early when the test
treatment is promising. On the other hand, it is desirable to stop the study as early as
possible when the test treatment is not effective or only likely to be minimally effective.
Consequently, we propose a multi-stage design to determine at particular points during
the trial whether a study drug holds sufficient promise to warrant further testing. In
addition, it may not always be appropriate or possible for a randomised trial of a new
treatment to be conducted on the clinical endpoint of primary interest. As a consequence,
replacing the clinical endpoint of primary interest, such as overall survival, with a surro-
gate variable, which can be measured earlier, more frequently, easier and with lower costs,
has been frequently advocated [31] [91] [29] [111] [136] [59] [23]. The lively and some-
times adversarial debate surrounding the use of surrogate markers is reflected in Chapter
5. Section 5.2.2 outlines the often cited Prentice criterion for a surrogate marker and the
discussion surrounding its use. Further approaches to the validation of surrogate markers
are examined in Sections 5.2.3 and 5.2.4. The second part of the chapter concentrates on
multiple stage designs, starting from the early literature concerning sequential designs in

Section 5.3.1.

Through a series of empirical illustrations and discussions Chapter 6 formulates our
approach to combining intermediate markers, which do not have to fulfill the stringent
criteria of the Prentice criterion, and a multi-arm, multi-stage selection design. This
provides an extension to the two-stage design proposed by Royston et al. [103]. The
main aims of this design are to quickly reject any new therapies unlikely to provide an
advantage over control in the primary outcome measure as early and reliably as possible,
while continuing with those therapies which are likely to provide an advantage over control
on this measure. Section 6.2 deals with the extension of the design to more than two
stages with consideration of the calculation of overall power and significance level for
the trial. Necessary changes to the correlation structure are considered in Section 6.2.7.
Assumptions underlying the design are examined in Section 6.3. Section 6.4 provides two
actual trial examples employing the extension to more than two stages in cancer, one of

which has just started patient accrual.
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In Chapter 7 we discuss the performance of the design, and in particular its imple-
mentation in Stata, using simulation studies. For this purpose, the literature surrounding
bivariate exponential distributions is surveyed in Section 7.2 and a new bivariate exponen-
tial distribution based on the bivariate normal distribution is proposed. The assessment
of the robustness of the design also covers the occurrence of 'shocks’ to the design in

Section 7.4, such as the mis-specification of key parameters at the planning stage.

Chapter 8 seeks to explore possible strategies to preempt the inherent variability in
trial time and / or the number of events. Such variability, especially in the case of trial
time, has a direct impact on the time at which the primary analysis can be carried out
and as a consequence may have an impact on the overall cost of the trial. Furthermore,
the variability in the length of the first stage in a two-stage trial is important for the
viability of the design as outlined in Chapter 6. We provide tools to assess the variability
at the beginning of the trial in Section 8.3 as well as update these estimates throughout
patient and event accrual in Section 8.4. A Stata tool is available which implements these

methods.

The objective of a statistical interaction investigation is to assess whether the joint
contribution of two or more factors is the same as the sum of the contributions from each
factor when considered alone. An interaction test can be used to investigate whether
the effectiveness of treatment is homogenous across groups of patients with different
characteristics [123]. It is therefore important in the interpretation and inference of trial
results. Interaction tests are introduced in Section 9.2 of Chapter 9. The following Section
9.3 illustrates the analysis of interaction using two substudies from cancer trials. A new
Stata tool to aid the analysis and interpretation of treatment-covariate interactions is

presented in Section 9.4.

Our conclusions are presented in Chapter 10.
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Chapter 2

Sample size calculations for trials
with time-to-event outcomes - a

review

2.1 Motivation

Many researchers reach the end of their study to find out that they cannot make the
conclusions with the reliability that they were hoping to, because their study did not
have enough “power”. This is not a simple problem to fix, but it is a simple problem
to avoid. The power of a study is the ability of a study to demonstrate the targeted
difference if in fact it does exist. The frequency of the event being studied, the size of
the effect or the difference that is to be detected, the design of the study, and the sample
size all affect the power of a study. The magnitude of this power will also depend on
the choice of test used to analyse the data. Sample size is the easiest of these factors to
modify. Thus, to avoid the disappointment of findings that one cannot draw conclusions

from, sample size calculations must be performed at the design stage of any study.

In this chapter we are exploring sample size calculations in particular for survival
type studies and their extensions to include more than two treatment arms as well as
particular censoring situations. Parameters that underlie every one of those calculations
are the power, the level of significance (Type I error rate), the underlying event rate and
the size of the treatment effect sought [67]. Without taking account of the particular

study setting, i.e. cohort, case-control, clinical trial, or the outcome measure used, we
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can represent the underlying structure of sample size calculations using a flow-chart as

illustrated in Figure 2-1.

2.2 Sample size formulae and their development over the

years

Since the 1960s many papers have been published on the subject of sample size calcula-
tions for clinical trials. The idea of achieving maximum power of tests with the minimum
sample size possible has remained central over the years. Due to the huge variety of
possible calculations, several books and papers, such as ’Sample size tables for clinical
studies’ by Machin & Campbell [81] have attempted to bring some of these together. This
section mainly concentrates on sample size calculations for survival analysis, however, we

will also refer to some of the other developments.

One of the earlier sample size tables was published by Halperin et al. [55] and is based

on the sample size

v = Hz1-aVI2P(1 = P)] + 21-5V/[pE(L ~ Pi) + Po(L = pe)]}? 2.1)
(pc — pE)?

where pc and pg are the anticipated T-year cumulative event rates in the control and
experimental group respectively, p = %(pE + pc) and 21—, and 2g are normal deviates
corresponding to a one-sided significance level a and power 1 — 3. The assumptions are
that i) there is no loss to follow up and ii) no non-event deaths occur. The event times
in each treatment group follow an exponential model and the event rate for the control

group is based on earlier studies.

George & Desu [50] consider a comparison of the number of patients required derived
under an exact distribution of the test statistic and a normal approximation when the
time-to-event is being studied. One of the main differences to later papers is that whilst
survival times are assumed to be exponential, accrual is based on the Poisson distribution
instead of the uniform. Again, no censoring is assumed to occur. Using simulations, the
authors have found that sample sizes based on the normal approximation, which is based

on the logarithmic transformation, is accurate. This is given by

4(zl—a + 21_3)2

N =
In’A

(2.2)
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Figure 2-1: Flow chart to illustrate generic sample size structure
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where 21, and zg are defined as above and A denotes the hazard ratio in favour of the

experimental group.

Schoenfeld [113] and Freedman [41] were among the first to propose sample size for-
mulae for comparing two survival distributions using the logrank test while taking into
account administrative censoring. Their formulae are based on the asymptotic expecta-
tion and variance of the logrank statistic. Between 1981 and 1983 Schoenfeld et al. [114]
[113] [115] published three papers on sample size calculations and nomograms based on

the logrank test. These are centered around the formula

_ (21—a/2 +21-8)"
= 2 A)0p( =) (23)

where 2;_q, 23 and A are defined as above, 1 denotes the probability of not being
censored by the end of the trial and p gives the proportion of patients allocated to the
control treatment group. This formula assumes proportional hazards. The main difference
between the two approaches by Freedman and Schoenfeld is that the formulation by
Schoenfeld results in slightly lower estimates for the number of patients needed. In
addition, Schoenfeld takes account of the presence of administrative censoring which
occurs due to some patients not having experienced an event by the end of the study.
Freedman encourages that modifications should be made allowing for withdrawal rates

but does not consider the effect on sample sizes. He suggests to use

(14 ¢)(z1-a + 21-8)*(1 + 9A)?

N = - A(1 —pe) + (- pa)]

(2.4)

where pc and pg are again the survival rates in the two groups and ¢ is the allocation

ratio of patients to the control and experimental group.

Gail [45] considered the relative efficiency of using a test of proportions as opposed
to the logrank test for sample size calculations with survival outcomes. Assumptions he
made in this assessment were no withdrawals, local proportional hazards and uniform
accrual rates. He found that in situations such as cardiovascular disease trials where
treatment was administered relatively quickly in comparison to survival times a sample
size calculation based on a test of proportions resulted in an efficiency close to one.
However, in the case of cancer or other trials where the accrual period exceeds mean
survival time, a proportions based sample size calculation led to a 39% larger sample
size requirement compared to the logrank based requirements. At the same time the

efficiency of the proportions test can drop to 72% or less in such a setting. In conclusion,
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power calculations specifically tailored to the logrank test should be used for studies with
a total duration comparable to the mean survival time, if one intends to employ the

logrank statistic for analysis purposes.

A comprehensive review of the sample size literature centering around testing the
difference in proportions for two sample trial designs was published by Sahai & Khurshid
[106]. They give formulae for various conditional and unconditional tests starting with
Fisher’s exact test. In addition to that they offer practical advice on how to use the
formulae for clinical readers. Due to its volume readers are referred to their paper for

further details of the sample size requirements.

The papers cited so far which have concentrated on survival outcomes have assumed
an exponential survival distribution. Heo et al. [58], however, considered the Weibull
model in their paper which would be more appropriate in the case of ageing research.
This is due to the fact that the assumption of constant hazards breaks down when the
follow-up time is long relatively to the life span of the study subjects and therefore the
Weibull assumption would make the model more flexible. Calculations for the sample
size are closely based on the Schoenfeld derivations [114] under the logrank test. The

required sample size is then given by

_ (21-a + 21—/3)2
N = Fmdreni - p) (2:5)

for parameters defined as before and k denoting the shape parameter of the Weibull
distribution. Hence in the case of k=1 we arrive at the exponential case and therefore

Schoenfeld’s formula 2.3.

2.3 Extensions to more than two treatment arms

Many trials today evaluate more than one experimental treatment group against standard
therapy, as several promising treatment regimens become available at the same time and
limited patient numbers are an issue. Makuch & Simon [82] have noted that the heuristic
use of sample size formulae for two groups is inadequate in these cases. If we multiply the
formula designed for two treatment arms by the required number of experimental arms
we do not take into account multiple comparisons made in the analysis of the trial. A
possible simple modification would be to take account of the multiple comparisons in the

significance level used. Since the late 1980s a few authors have been suggesting different
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ways of approaching this problem.

Day & Graham [27] published a nomogram approach for trials in which the main
method of analysis is ANOVA. They developed a new difference parameter, defined as
the standard deviation of the expected treatment group means divided by the standard
deviation of the measurements. This approach is quite simple to use since the nomograms
are arranged as straight lines which makes reading off the required sample size much easier
than in previous publications. Examples are given in the comparison of two, three and
four groups and also in the case of a factorial design. In addition, reference is made
to ordinal responses. However, a drawback of this method is that it only allows for
equal group sizes. There are scenarios though when unequal allocation ratios may be
beneficial. One example of this is the case where drugs are investigated for which only a
small amount of prior information is available. In this case it is desireable to use unequal
randomisation in order to find out more about the treatment. Another reason may be the
very high cost of a particular treatment arm. If there is only a fixed sample size available
for recruitment, unequal randomisation may confer large financial savings with limited

impact on power.

For the case of survival endpoints both Ahnn & Anderson [1] and Liu & Dahlberg [77]
have generalised an approach by Makuch & Simon. Both papers hence extend the logrank
test sample size calculations derived by Schoenfeld [114] to the case of k treatment arms.
Furthermore, Ahnn et al. consider the case of dose-response settings using Tarone’s trend
test and a stratified sample size calculation. Whilst Ahnn et al. base their work around
the fact that the test statistic has a non-central chi-squared statistic, Liu & Dahlberg take
the route of Fisher’s least significant difference. The findings by Liu & Dahlberg suggest
that their sample size derivation has the most power in the case where all treatment
arms are at least as good or better than the control arm. If the hazards are more evenly
spread between the treatment arms and the control group, then the power decreases with
the sample size being inadequate to detect such differences. Simulations run by Ahnn &
Anderson show that their sample size is fairly accurate for the case of three arms even
if the alternatives are far from the null hypothesis. A further generalisation to unequal

allocations was derived by Halabi & Singh [54].
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2.3.1 Global comparisons of treatment arms

All of the above sample size calculations for more than two treatment arms as well as those
provided by Barthel et al. [7], which are described in more detail in the next chapter, were
derived for a global alternative hypothesis. This means that in a trial setting in which
patients are randomised to one of K treatment groups, labelled k = 1,2, ..., K, and Ag(t)
is the hazard function in treatment group k (k = 1, ..., K'), the null hypothesis of equality
of the K survival distributions can be expressed as Hy : A1(t) = A2(t) = ... = Ak (t). The
global alternative hypothesis H; : A\x(t) # \(t) for at least one k # I (1 < k,l < K)

states that for at least one pair of study arms the hazards are different at time ¢.

Such a global alternative hypothesis is used in a variety of trial settings. PACES [96]
was a patient preference trial conducted in the USA which considered a comparison of
placebo, acetaminophen (paracetamol) or celecoxib. Patients were randomised to each of
the treatment arms and then crossed over to a different arm after a period of 6 weeks.
At the end of treatment, patients were then queried about their preference between the
two treatment periods. The trial also assessed efficacy using the WOMAC score. Sample
size was calculated based on a global comparison of the treatment arms. Subsequently,
pairwise comparisons were also conducted and reported due to the significant result in
the global comparison. Thus the global analysis served as a trigger for any other com-
parisons which would only be conducted if the global result was positive. Wolmark et
al. [144] also considered three treatment arms (in this case all active agents) for the
treatment of Dukes’ B and C Carcinoma of the Colon. In this case the trial was powered
on pairwise comparisons of the treatment arms but a global comparison was reported.
Both the pairwise and global comparisons were not significant. Sample size for a pair-
wise comparison of more than two treatment arms may be calculated using any of the
methods in Section 2.3 above. We then need to account for the fact that more than one
pairwise comparison is conducted by using a reduced nominal significance level through,
for example, a Bonferroni adjustment on the heuristic approach of using the formula for
the two treatment group situation and multiplying the required number of patients per
treatment group by the number of groups to be compared. The resulting sample size will

be more conservative than that for the global comparison.

Another setting in which a global comparison of more than two treatment arms is often
used is that of a comparison of several doses of the same treatment. In a briefing paper

the FDA reports efficacy and safety of three TNF blocking agents [38]. Efficacy for the
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different agents was assessed for different doses and results from a global comparison are
reported. When doses are compared there is usually an intrinsic order in the treatments
which can then be expressed in an ordered global alternative hypothesis, i.e. Hy : A\1(t) <
Ao(t) < ... < Ak(t). A modified ordered logrank test as well as sample size requirements
are provided by Liu et al. [79]. Resulting sample size requirements will be less conservative
than those given by Ahnn & Anderson [1]. Further discussion of the different testing

strategies in multi-dose experiments is provided by Bauer et al. [9].

2.4 Treatment of more complex censoring situations

So far the sample size calculations cited have either not taken account of censoring at
all or have included right censoring at the end of the follow-up period only. In practice,
clinical trials pose far more complex censoring situations such as loss to follow-up, non-
compliance and lag times. We define a patient as lost to follow-up if he/she does no
longer provide trial data after randomisation due to circumstances such as moving to a
different area. In contrast to this a patient is labelled as being non-compliant if he/she
remains available for follow-up but no longer adheres to the treatment regimen he/she was
randomised to at the beginning of the trial. In addition, in some trials the proportional
hazards assumption may break down and different models have been suggested in order

to take that into account in the sample size calculations.

Schork & Remington [116] suggested that loss to follow-up and non-adherence should
be taken into account when determining the sample size. In their paper they consider
a trial with a single treatment control comparison, a binary outcome variable and a
relatively long period of observation. They examine the impact on sample size using
subject shifting patterns between the treatment group and the control and demonstrate
that the sample size can be expressed as a function of the frequency with which these
patterns occur. For the case of loss to follow-up they suggest the estimation of the
expected proportion at the beginning of the study which should then be added to the

total sample size.

Lachin & Foulkes [71] extended an earlier sample size approach by Lachin [70] to non-
uniform entry, loss to follow-up, failure to comply with treatment and stratified analyses.
They furthermore suggested that whenever sample size calculations are employed, these
should take account of the worst case scenario in terms of the hazard ratio and censoring.

Non-uniform entry is based on a concave entry distribution (lower rate of intake than
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expected) such as the truncated exponential. They found that in this case a substantial
increase in sample size is required to compensate for a small reduction in power. For the
case of loss to follow-up they use exponentially distributed loss to follow-up hazard rates
which are independent of those for mortality. Findings suggest that the effect on sample
size is roughly proportional to the addition of these. Noncompliance was considered for
the case where patients stop taking treatment as required but are not lost to follow-up.
The assumption here is that patients who are non-compliant in one group will then be
subject to the hazard ratio in the other group for the entire study. This leads to slightly

conservative estimates.

Further extensions were provided by Yateman & Skene [146] who modelled patient
entry as a piecewise linear function as an alternative to uniform entry. In addition they
modelled survival and loss to follow-up distributions using piecewise exponential distrib-

utions.

The use of discrete Markov chains for modelling censoring was suggested by Lakatos
[72] [73] in two papers. He proposes a method which takes account of the lag in the
effectiveness of medication and one which takes account of non-proportionality of the
hazards. Whilst the first paper only considers a binomial model, the second also provides
extensions to the logrank test and the Tarone-Ware class of statistics. Markov Chains
are modelled as follows: In order to assign probabilities to the transition matrices a step
function with a jump at the end of each year is used. However, this can be modelled
to include jumps at quarterly rates or the like. Accrual is modelled so that all patients
are assumed to enter the trial at the beginning and are then administratively censored in
accordance with accrual rates. When considering non-compliers, a decision needs to be
made about how to treat these in the trial. Considerations to be taken into account are
an analysis based on intention-to-treat, which would mean that non-compliers are not to
be considered as censored, and whether one allows non-compliers to reenter treatment.
Comparisons were also made between the proportional hazards and two types of lag
models. A computer program based on these methods was suggested by Shih [121]. In
addition she introduced prior distributions to express the uncertainties surrounding the

parameters in the model.

Further extensions of this model to more than two treatment groups were made by
Ahnn & Anderson [2] and a combination with their earlier approach for more than two

treatment groups was sought. They show that this model can be especially useful where
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unexpected events occur during the course of a trial, such as an advanced stage cancer

trial where noncompliance takes place due to unexpected toxicity.

2.5 Conclusions

Over the course of this chapter we have presented developments in sample size calculations
in particular for studies with a survival type outcome. All of these fit into the framework
set out in the flow-chart in Figure 2-1. In particular, as the next chapter will show,
patients lost to follow-up or not adhering to the allocated treatment, e.g. crossing over
to receive the regimen of the other treatment group, while still being analysed under
intention-to-treat, can have a significant effect on the power of a trial and hence allowance

for this scenario should be made in sample size calculations.

Chapters 3 and 4 will introduce the Stata program ART (Analysis of Resources for

Trials) which incorporates all of the above sample size issues.
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Chapter 3

Evaluation of sample size and
power for multi-arm survival trials
allowing for non-uniform accrual,
non-proportional hazards, loss to

follow-up and cross-over

3.1 Introduction

The logrank test is probably the most commonly used tool for designing and analysing
clinical trials with a survival time outcome. The planning of such a trial must take
into account not only the proposed method of analysis but also circumstances not usu-
ally encountered in other types of experiments. Patient accrual into a trial is staggered
which means that patients enter the trial sequentially over an accrual period. Also, when
complete, it is commonly followed by a fixed period during which patients are under ob-
servation for events but no new patients are entered. Further, administrative censoring
occurs with some patients not experiencing an event by the time the trial ends. Usually,
the statistical analysis of such a trial will consist of a test of the null hypothesis that
there is no difference in survival between the treatments at a given significance level and

power.

We present a general framework for sample size calculation in survival studies based
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on comparing two or more survival distributions using any one of a class of tests in-
cluding the logrank test. Incorporated within this framework are the possible presence
of non-uniform staggered patient entry, non-proportional hazards, loss to follow-up and
treatment changes including cross-over between treatment arms. The framework is very
general in nature and is based on using piecewise exponential distributions to model the
survival distributions. We illustrate the use of the approach and explore its validity using
simulation studies. These studies have shown that not adjusting for loss to follow-up,
non-proportional hazards or cross-over can lead to significant alterations in power or
equivalently, a marked effect on sample size. The approach has been implemented in
the freely available program ART (for Stata). Our investigations suggest that ART is
the first software to allow incorporation of all these elements. Further extensions to the

methodology such as non-local alternatives for the logrank test are also considered.

In Section 3.2 we provide an outline of the underlying multi-arm sample size method
used in this chapter. Section 3.3.1 illustrates our approach to staggered entry and loss
to follow-up based on piecewise exponential distributions which also allows for non-
proportional hazards. We propose an incorporation of treatment changes in Section
3.3.2. The performance of the method incorporating all these elements is demonstrated
using simulation results in Section 3.4 and trial examples in Section 3.5. A discussion is

provided in Section 3.6.

3.2 Multi-arm trials

Consider a trial setting in which a population of N patients are randomised to one of
K treatment groups, labelled £ = 1,2, ..., K, and the K treatments are to be compared
globally in terms of time to failure using a (weighted) logrank test. If A\k(t) is the hazard
function in treatment group k (k = 1, ..., K), then the null hypothesis of equality of the
K survival distributions can be expressed as Hp : A1(t) = A2(t) = ... = Ag(t). The global
alternative hypothesis Hy : A\g(t) # Ai(t) for at least one k # | (1 < k,l < K) means
that for at least one pair of study arms the hazards are different at time t. Let Ag(t)
be the log hazard ratio in group k relative to group 1, that is Ag(t) = log[Ak(t)/M(2)]
(k=2,...,K). Further, let A (t) = (A2 (t),..., Ak (t))'. For the remainder of this section
assume that A = A(t).

The logrank test is based on a comparison between the observed and expected numbers

of events under Hy. Let t; < ... < t,, be the distinct failure times, such as deaths or
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disease progressions, and assume no ties. Let O,’c be the observed number of events in
group k at time t; ( j = 1,...,m). Let ri(t;) be the number of patients at risk in group k
at time ¢;. The expected number of events e(t;;.) in group k at time ¢; depends on the

event history and on whether Hy or the more general H; is assumed. Under Hy we have

simply
ex(t;;0) = %ﬂ
> nilts)
=1
[89] whereas under Hj, ’
ety ) = 7))

> " rits) exp(A(t;))

=1
[24]. For comparing group k with group 1, the logrank test is based on the distribution

under Hy of the observed minus the expected number of events, that is on

m

Uk =) W(t;)[O} — ex(t;;0)]
j=1
where W (t;) is a weight function [24]. The standard logrank test has W (t;) = 1. Weights
according to Tarone & Ware [130] and Harrington & Fleming [56] may be found in

Appendix B.

The global logrank test statistic @ is based on the vector U = (Uy,...,Uk)" and is

defined as the quadratic form
Q=UVv(0)'U

where V'(0) is the covariance matrix of U under Hy (see Expression B.1 in Appendix B).
Since U is asymptotically distributed as multivariate Normal N (0, V (0)) under Hy the
distribution of @ is central x2 on K — 1 degrees of freedom [22].

To derive the sample size we consider a sequence of local alternatives to the null
hypothesis, i.e. that A(t) is of the order O(N~1/2) [113]. Thus a higher sample size will
be required the closer Ag(t) is to 1. The resulting formula performs best under hazard
ratios which are not too far from one, e.g. for hazard ratios around 0.6 - 1.67. Under
local alternatives () approximately follows a non-central chi-squared distribution on K —1

degrees of freedom [22] with non-centrality parameter

T=NMV(0)'M (3.1)
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where
M = (My(A), ..., Mk (A))

and

My (A) = E(Ux|H:)

1

VN

Further details on the calculation of M and E(Ui|H1) may be obtained in Appendix
B. The value of the non-centrality parameter T needs to be obtained for a given power
1 — B and significance level « either from the chi-squared tables provided by Hayman et
al. [57] or a statistical package. The required sample size is then obtained by solving
Equation 3.1 for N replacing V(0) and M by their asymptotic values (see Appendix B).
For the simple case of the logrank test under proportional hazards (Ag independent of t)

and no treatment changes N is given by

Kt

N = — — (3.2)
YERY (A2 -2 > Al
k=2 k=2 q=2<,

whereby v is defined as the probability of not being censored by the end of the trial [1].
When evaluating Expression 3.2 for two treatment groups only we arrive at Schoenfeld’s

formula 2.3.

A better approximation of the distribution of Q) for more distant alternatives is given

in Appendix C.

3.3 Implementation

The framework underlying the calculations incorporating staggered patient entry, loss
to follow-up, cross-over and non-proportional hazards requires the total trial time to
be split into several periods. For tractability these are taken to be of equal length.
Hence we can examine the number of patients at risk and the occurrence of events in all
groups separately for each period. The length of each period may depend on the amount
of knowledge available about patient characteristics at the planning stage of the trial.
In some instances, for example, we may have a lot of information about the survival
distribution in the control group in which case one month long periods are advantageous.
Furthermore modelling the survival distributions over each of the periods allows us to take

non-proportional hazards into account. This is not only important for overall survival
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which may have non-constant relative hazards due to, for example, time delays in the
effect of treatment but also cross-over which may vary over the course of the trial. For
instance, patients may change their treatment or drop out towards the end of a long

study, particularly if the frequency of follow-up visits declines.

3.3.1 Staggered patient entry and loss to follow-up

We define T as the total number of periods in the trial, i.e. T is the sum of the number
of periods of accrual and follow-up. Each of these periods is of equal length. Patients
are accrued over the periods 1 to R where R < T. Define FZ(t) as the cumulative
distribution function of recruitment time. For example, F&(t) may be represented as
a piecewise truncated exponential of the form given by Cox & Oakes (p. 178) [24] or a
uniform distribution, depending on which type of entry mechanism is deemed to be more
appropriate. The number of patients NNV is then accrued using an exponential or uniform
process. Furthermore FX(t) is allowed to have a point mass F%(0) at zero, allowing
one to specify a certain proportion of patients randomised before the start of the first
period of the trial. This proportion may vary between 0 and 100% of the total number
of patients. Figure 3-1 illustrates the accrual pattern in a trial consisting of five periods
where accrual takes place during the first four periods only. Additionally, a proportion
of patients has been recruited before the start of the trial. The accrual pattern itself is
uniform during each of the periods, however, it is not constant over the whole course of

the accrual period.

Under the derivation of the probability 1 of not being censored given by Schoenfeld
[114] patient entry occurs over the accrual period resulting in administrative censoring
times after completion of planned follow-up, i.e. at t = T. However, in most trials some
patients are lost to follow-up due to other reasons. This means that the observed survival
time for each patient will be the minimum of the time to event, time to loss to follow-
up or time to termination of the trial. It is assumed that time to loss to follow-up is
independent of survival times. We define S£(t) as the survivor function of time to loss
to follow-up and SE(t) as the survivor function of failure times where k = 1,2, ..., K.
Assume that SE(t) has been adjusted for cross-over, i.e. treatment changes (see Section
3.3.2). Both S,f (t) and S,ﬁ‘(t) can be approximated by piecewise exponential distributions
with hazards ex; and py; (treatment k, period ¢) respectively where ¢t € [0,7]. Denote

the probability density functions associated with SP(t) and SE(t) by fZ(t) and fE(2)
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Fr(t)

Figure 3-1: Cumulative distribution function of accrual over five periods of a trial with a
point mass at zero
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respectively. According to Yateman & Skene [146] the density for time to loss to follow-

up is of the form

Py €xp{—pig1t} 0<t<1
L i1
K (1) = . : . (3.3)
ki eXP{Z[J(#k,jH =t ) — gt i-1<t<i, i=2,.,T
=1

and the density for time to failure can be expressed in a similar manner.

Let s be the time at which a patient is accrued and F(s) be the entry distribution
function with properties as described above. We can express the distribution of time on
the study or potential exposure time as F®(T — s) [71] [146] where T — R < T —s< T,
i.e. T — s is the administrative censoring time. In order to calculate the probability 1
of not being censored which is required to arrive at the sample size in Equation 3.2 we
derive the proportion HkE of patients experiencing an event in treatment group k over the
duration of the trial. The probability that the event of a patient is observed is given by
the integral of the probability that the event occurs at time ¢ and the patient has not
been lost prior to that time. These probabilities then need to be summed over all possible

exposure times, that is
T

P = [ T - )SE) FE o) (3.4)
0

Hence the proportion of patients not censored by the end of the trial is given by ¢ =
K K

Z pkl'IE whereby px denotes the probability of being randomised to group k and Z Pk =

k=1 k=1
1.

3.3.2 Cross-over

In our context we use cross-over to describe a patient who changes from the designated
therapy regimen to that of another treatment group but remains available for follow-up.
Analysis of the trial data under intention-to-treat is envisaged. This situation may arise
in HIV or cancer trials where patients might, for example, change from a more intensive
therapy to the therapy of the standard arm due to toxicity. Furthermore, we allow for
patients changing to a treatment regimen not part of any of the treatment groups in the
trial. In contrast to the method of Lakatos [73], as implemented by Shih in the SIZE
program [121], patients crossing over from one treatment to another are not allowed to

return to their original treatment in our derivation. This is a conservative assumption

41



but it allows direct calculation of S£(t) adjusted for cross-over.

We calculate the distribution of time to failure adjusted for cross-over. This is nec-
essary for the calculation of 7 in Appendix B since there is no closed form for N under
non-proportional hazards due to cross-over. Let tg and tc be times to failure and cross-
over respectively, with corresponding survivor functions SZ(t) and S{(t) and density
functions f£(t) and fC(t) respectively. The hazard function of tg if cross-over occurs at

time tc is

M, (teltc) = Xo(t); t<tc

= )\a(t) ) tZtC

where A,(t) and Ap(t) are the hazard functions for failure before and after cross-over

respectively. Then,

SE@) = / P{T >t} fC(tc)dtc
0

i
—~

t
exp|— / M (ulte)du] € (¢ )dtc
5

o

tc t

= Sf(t)SkC(t) + /exp[-— //\b(u)du—- /)\a(u)du]fc(tc)dtc

0 0 to

where SF(t) is the survivor function in the absence of cross-over, i.e. SE(t) = P{T >
t|tc = oo}. The numerical evaluation of the above integrals is facilitated by the piecewise

exponential assumption of the distributions of time to failure and cross-over.

3.4 Simulation results

To evaluate the performance of our method in terms of attaining pre-specified power, and
in particular its implementation in our sample size program ART (Analysis of Resources
for Trials) [101] [8] as described in more detail in Chapter 4, simulations were performed
in Stata 8. Design specifications for all sets of simulations were two years of accrual, two
years of follow-up, equal allocation to both treatment arms, uniform accrual, exponential
survival and one year median survival in the control group. Furthermore, sample sizes

were calculated for 90% power with a two-sided significance level a = 0.05. In Tables 3.1
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- 3.6 the simulated power is based on 5000 simulated trials which gives an approximate
standard error of 0.4% and hence an approximate confidence interval around 90% power
from 89.2% to 90.8%. All tables give simulation results for the adjusted and unadjusted
sample size calculation. Hence they provide a comparison with the approach of Schoenfeld
since the unadjusted sample size given is equivalent to sample size calculated using his
Formula 2.3. Furthermore, simulations based on the sample sizes given by Shih’s sample
size program SIZE [121] were conducted and results from these are provided in each of
the appropriate tables. Initial calculations for a trial without loss to follow-up, non-
proportional hazards or cross-over show that sample sizes derived using SIZE are higher
than sample sizes given by our method if the event rate is high, whereby our method
gives power as desired. In a trial with a desired hazard ratio of 0.6 SIZE will give 2.5%
higher sample size than ART for an event rate of 50% in the control arm whereas the

difference between the methods will be only 0.5% if the control arm event rate is 10%.

3.4.1 More than two treatment arms

The results displayed in Table 3.1 illustrate simulation studies for trials with three treat-
ment arms. Two experimental arms were simulated with a hazard ratio of HR1 and
HR?2 in comparison to the control arm respectively. All three arms were then analysed
in a global logrank test. We can observe that power is maintained within the confidence

bounds for all hazard ratio combinations.

3.4.2 Tied events

The derivation of sample size in Section 3.2 relies on the assumption of no tied events. We
wanted to investigate how robust the calculations are to tied events occurring during the
trial. In order to create tied events event times were rounded to two and three decimal
places. This creates datasets with 37% and 2% of tied events respectively on average.
The results are illustrated in Table 3.2. From these it is apparent that the calculations

are robust to tied events.

3.4.3 Loss to follow-up

Table 3.3 outlines the simulations run for loss to follow-up. Time to loss to follow-up

was simulated using an exponential distribution with a hazard calculated under a certain
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proportion of loss to follow-up by the end of the trial. ¥ and I14 give the percentage of

loss to follow-up assumed to have occurred in each treatment arm by the end of the trial.

From the power calculations under unadjusted sample size it is evident, at least under
this model, that only high rates of loss to follow-up, i.e. 50% in both treatment arms,
will lead to an important loss in power if they are not taken into account at the planning
stage. This is because patients lost to follow-up over the course of the trial can still
provide important and useful information if they are not lost at a very early stage. We
need to be aware, though, that the estimate of the hazard ratio will only be unbiased if
the reason for loss to follow-up is unrelated to the performance of the treatment regimen
they are lost from. Nevertheless, under this assumption our approach performs well within
the confidence interval around 90% power for all parameter combinations and generally
slightly better than calculations according to SIZE. This comparison was not available
for unequal proportions of loss to follow-up in the group since SIZE does not allow for
that. Hence, while both methods allow for flexible calculations of loss to follow-up over
the periods, SIZE does not allow for differing rates in each of the groups. Results for

differing trial duration and allocation ratios were observed to be similar.

3.4.4 Non-proportional hazards

Simulation results under non-proportional hazards are displayed in Table 3.4. In this case
the hazard in the experimental arm was changed for each patient after having survived
two years in the trial which led to a change in the overall hazard ratio from HR1 to HR2.
This was simulated by first assigning a probability to whether patients experienced an
event before the time of changing hazard, i.e. at two years after a patient had entered a
trial. If no event had been experienced, the exponential survival distribution was adapted
to incorporate a change in hazards after this point causing a change in the hazard ratio
from HR1 to HR2. These situations may occur when a treatment is very effective in the
beginning but patients experience a levelling off of the treatment effect, which in turn
brings the survival curves closer together over time or if, such as in a trial comparing
surgery followed by chemotherapy with surgery alone, the two treatments have similar
hazards in the beginning which then diverge over time. Unadjusted simulations were run
by taking the first of the two hazard ratios (HR1) given in the table to calculate N.
Another column of the table illustrates the impact on power and sample size by taking

the arithmetic mean of the two hazard ratios when calculating the sample size required
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Parameters Analysis using
global logrank test

HR1 | HR2 N Power
0.6 09 | 344 90.7
0.7 0.8 | 714 89.9
0.8 0.7 | 714 90.4
0.9 0.6 | 344 90.1
0.8 0.8 | 1357 90.1

Table 3.1: Simulation results for three treatment groups
HR1 - hazard ratio in favour of first experimental group in comparison with con-
trol, HR2 - hazard ratio in favour of second experimental group in comparison with
control, N - sample size calculated for 90% power, Power - power achieved through
simulation with sample size N

Parameters 2 % tied 37% tied
events events
HR N Power N Power
0.6 206 90.0 206 90.1
0.7 408 90.1 408 90.1
0.8 10151 90.4 | 1015] 90.4
0.9 4454 | 90.5 | 4454 | 90.5

Table 3.2: Simulation results for tied events
HR - hazard ratio in favour of experimental group, N - sample size calculated for 90%
power, Power - power achieved through simulation with sample size N

Parameters Adjusted for loss Unadjusted SIZE
to follow-up
HR|Iy [II3 | N Power N | Power | % dif N| N | Power | % diff N
071 O 0 408 90.0 408 90.0 0.0 415 91.1 + 1.7
08] 0 0 | 1029 89.5 1029 | 89.5 0.0 1029 | 89.5 0.0
07 5 | 20 | 424 | 89.9 408 | 889 | -39 | n/a | n/a n/a
07120 ]| 5 | 424 90.3 408 | 88.9 -39 n/a n/a n/a
07] 5 5 | 414 89.6 408 | 89.1 - 1.5 423 | 90.9 + 2.2
071 20 | 20 | 433 90.8 408 | 87.7 - 6.1 447 | 90.5 + 3.2
0.7 ] 30 | 30 | 448 89.7 408 | 874 -9.8 466 | 90.6 + 4.0
0.7] 40 | 40 | 466 90.3 408 85.1 - 14.2 489 91.9 + 4.9
0.7 ] 50 | 50 | 487 89.7 408 83.3 -19.4 516 91.2 + 6.0
0.8 ] 30 | 30 | 1112 90.3 1015 | 86.8 - 9.6 1154 | 91.3 + 3.8
0.8 ] 40 | 40 | 1155 90.0 1015 | 86.7 - 13.8 1209 | 91.0 + 4.7
0.8 | 50 | 50 | 1206 89.6 1015 | 83.5 - 18.8 1276 | 91.0 + 5.8
Table 3.3: Simulation results for loss to follow-up

HR - hazard ratio in favour of experimental group, II{ - proportion lost to follow-
up in control group by the end of the trial, II¥ - proportion lost to follow-up in
experimental group by the end of the trial, N - sample size calculated for 90% power,
Power - power achieved through simulation with sample size N, % diff N - change in
sample size relative to adjusted use of ART for loss to follow-up in percent, i.e. % diff in
N = ( Adjusted / Unadjusted * 100 ) - 100, n/a - option not available in the program
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Parameters Adjusted for Unadjusted Adjusted using

non-proportional arithmetic mean
hazards

HR1 | HR2| N Power N | Power | % dif N| N | Power | % diff N
0.6 0.9 | 274 89.9 206 | 80.9 -33.0 |619] 998 | + 1259
0.6 0.8 | 249 90.1 206 | 85.3 -20.9 | 408 } 98.6 + 63.9
0.6 0.7 | 227 90.1 206 | 87.0 -10.2 | 285 | 95.8 + 25.6
0.7 0.8 | 458 90.2 408 85.6 -123 | 619 96.7 + 35.2
0.8 0.7 | 869 89.3 1015 | 93.7 + 16.8 | 619 | 78.2 -29.8
0.8 0.6 | 749 89.9 10151 96.9 4+ 355 | 4081 67.3 - 46.6
Parameters SIZE

HR1 | HR2 | N [ Power | % dif N
06 | 09 ]281] 90.1 + 2.6
06 | 0.8 | 255 ] 89.9 +24
06 | 0.7 ]232] 908 + 2.2
0.7 1 0.8 1466 90.5 + 1.8
0.8 | 0.7 |82 90.5 + 1.5
08 | 06 | 761 ] 90.0 + 1.6

Table 3.4: Simulation results for non-proportional hazards
HR1 - hazard ratio in favour of experimental group for first two years in trial,
HR2 - hazard ratio after two years in trial, N - sample size calculated for 90% power,
Power - power achieved through simulation with sample size N, % diff N - change in
sample size relative to adjusted use of ART for non-proportional hazards in percent, i.e.
% diff N = ( Adjusted / Unadjusted * 100 ) - 100

for the trial.

We can observe from the simulation results that if sample size is calculated assuming
proportional hazards in a situation where hazards vary over time, this can lead to signifi-
cant over- or underestimation of sample size depending on the direction of the evolution of
the hazard ratio over time. Furthermore, we can observe that already for a small change
in the hazard ratio, from 0.7 to 0.8 for example, a loss in power of more than 4% occurs

(compared to unadjusted calculations) if this change is not adjusted for.

3.4.5 Cross-over

In order to investigate the performance of our method when cross-over is expected to
occur (Table 3.5), time to cross-over was simulated using the exponential distribution
in the experimental group similar to the simulations looking at loss to follow-up. Thus
patients were simulated to cross over to the other treatment group at a certain time in
the trial if they had not experienced an event before that time. Following such an event,

patients would then continue to follow the hazard of the treatment group they had crossed
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over to. Hence, cross-over occurred with probability Hg, which is given as a percentage

of patients in the tables.

The simulation results illustrate that adjusting for cross-over becomes particularly
important as we approach 20% cross-over in one of the treatment arms (or 10% in both
arms) if time to cross-over follows an exponential distribution. We have found that as
cross-over from both arms increases, ART gives more conservative sample size estimates
than SIZE. This may be due to the different assumptions underlying their calculations
whereby patients are allowed to change treatment groups more than once over the course

of the trial under SIZE.

3.4.6 Multiple adjustments

We furthermore evaluated the performance of the sample size approach under the presence
of non-proportional hazards, loss to follow-up and cross-over in one trial as illustrated
in Table 3.6. These scenarios were designed in the same way as the separate simulation
studies for loss to follow-up, non-proportional hazards and cross-over. In this case, pa-
tients in the experimental treatment group were subjected to a change in hazards after
two years if they had not had an event, been lost to follow-up or crossed over to the

control arm before that point in time.

Apart from the assessment of performance in terms of power attained, a further
objective was to assess whether the effect of these adjustments is additive in terms of
power and sample size. The simulation results convey that the difference in terms of
sample size between adjusting for loss to follow-up, non-proportional hazards and cross-
over and not adjusting for any can be vast, in some cases as extreme as 63%. Similarly,
actual power achieved may be nearly 20% less than the nominal power of 90%. In other
situations, we can observe in the table that the presence of non-proportional hazards
may offset the effect of cross-over in terms of power achieved. This situation arises if
we designed the trial for a constant hazard ratio which was higher than the hazard ratio
obtained by the end of the trial due to a decrease of the hazard in the experimental group

over time.
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Parameters Adjusted for cross-over Unadjusted SIZE
HR|OV |5 ] N Power N | Power | % dif N| N | Power | % diff N
06} 0O 5 | 212 90.0 206 | 8838 -29 217 | 91.2 + 24
06] 0 10 | 218 89.9 206 | 88.2 -5.8 224 1 90.8 + 2.8
06 0 | 20 | 232 90.1 206 | 86.1 - 12.6 238 | 90.4 + 2.6
06] 0 | 30 | 248 90.7 206 | 84.2 - 204 256 | 90.7 + 3.2
07] 0 | 30 | 489 90.5 408 | 83.6 -19.9 502 | 90.9 + 2.7
08] 0 | 30 | 1213 90.1 1015 | 84.2 -19.5 | 1240 | 90.2 + 2.2
09} 0 | 30 | 5312 89.4 4454 | 84.0 -19.3 | 5429 | 90.6 + 2.2
0.7] 10 | 10 | 458 90.0 408 | 87.0 - 123 467 | 90.5 + 2.0
07| 20 | 10 | 490 91.0 408 | 85.3 - 20.1 499 | 91.0 + 1.8
0.7] 30 | 10 | 527 91.7 408 | 83.3 -29.2 537 | 92.0 + 1.9
0.7] 20 | 20 | 522 90.9 408 | 84.1 - 279 530 | 92.2 + 1.5
0.7] 30 | 30 | 606 91.7 408 | 78.1 - 48.5 609 | 91.4 + 0.5

Table 3.5: Simulation results for cross-over

HR - hazard ratio in favour of experimental group, HIC - proportion crossing over to
different treatment regimen from control group by the end of the trial, N - sample size
calculated for 90% power, Power - power achieved through simulation with sample size
N, % diff N - change in sample size relative to adjusted use of ART for cross-over in
percent, i.e. % diff in N = ( Adjusted / Unadjusted * 100 ) - 100

Parameters Adjusted Unadjusted

HR1|HR2 [Nf I |OY |5 | N | Power | N | Power | % diff N

0.6 0.7 30 |30 |0 20 | 274 | 90.8 206 | 80.7 - 33.0

0.6 0.7 30 130 | O 30 | 291 89.2 206 | 78.2 -41.3

0.6 0.8 30 130 10 20 | 296 | 89.5 206 | 76.4 - 43.7

0.6 0.8 30 130 jO 30 | 313 | 90.0 206 | 74.8 - 51.9

0.6 0.9 30 130 |O 20 ] 319 | 89.9 206 | 754 - 54.9

0.6 0.9 30 |30 | O 30 | 337 | 89.6 206 | 71.9 -63.4

0.8 0.6 30 30 |O 20 | 964 | 90.1 1015 | 91.6 - 5.0

0.8 0.6 30 {30 JO 30 | 1036 | 89.8 1015 | 88.8 -21

0.6 0.8 20 |20 |10 |10 | 292 | 90.5 206 | 78.9 -41.7

0.6 0.8 20 |20 10 |20 | 308 | 90.9 206 | 76.6 - 49.5

0.6 0.8 20 |20 J20 J20 |331 |914 206 | 74.8 - 60.7
Table 3.6: Simulation results for loss to follow-
up, non-proportional hazards and Cross-over combined

HR 1 - hazard ratio in favour of experimental group for first two years in trial,
HR 2 - hazard ratio after first two years, IIIL - proportion lost to follow-up in control
treatment group by the end of the trial, II{ - proportion crossing over to different
treatment regimen from control group by the end of the trial, N - sample size calculated
for 90% power, Power - power achieved through simulation with sample size N, %
diff N - change in sample size relative to adjusted use of ART for loss to follow-up,
non-proportional hazards and cross-over in percent, i.e. % diff in N = ( Adjusted /
Unadjusted * 100 ) - 100
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3.5 Non-uniform accrual

We examined the accrual pattern of four cancer trials conducted by the MRC and com-
pared these with a uniform pattern. The results are illustrated in Figure 3-2. For each
trial recruitment per calendar month is plotted. The solid line illustrating uniform accrual
was derived from the length of the accrual period as originally defined in each trial proto-
col. In TEO8 (ISRCTN: 6475197) [18] actual and uniform accrual differed by four months,
in BR11 (EORTC 26951) [21] by 19 months and in CR08 (ISRCTN: 79877428) [20] by
seven months. Recruitment in CH03 (ISRCTN: 62576956) [19] was never completed.
Fitting an exponential entry pattern with a scale parameter of —1 to the recruitment of
TEO8 mirrors its actual process more closely. ART allows the user to specify a certain
fraction of patients to have been accrued before the start of the trial. BR11 is a trial
where this facility was needed as nearly half of the patients required had already been
entered by the EORTC (European Organisation for Research and Treatment of Cancer)
before recruitment opened at the MRC. Hence in order for this trial to accurately calcu-
late the projected end of recruitment one not only needs to take into account the actual
accrual pattern but also the point mass at zero of the cumulative distribution function of

recruitment time.

The impact of a concave exponential accrual pattern, i.e. an exponential entry pattern
with a negative exponent, is further examined in Figure 3-3 and Table 3.7. Results in
Table 3.7 were obtained by conducting ’what if’ calculations in ART. Underlying all
trial scenarios is a hazard ratio of 0.7, a median survival of five years and a two-sided
5% significance level. Comparisons were then made with a uniform recruitment pattern
(Figure 3-3). Power was calculated for each trial for a sample size of 634 (the sample size
needed under a uniform recruitment pattern) using the same trial length as in the uniform
case, i.e. nine years, under exponential accrual with scale parameter «. This illustrates
that unless the recruitment pattern deviates substantially from the uniform distribution,
the impact on power is modest. The most extreme departures from uniform accrual are
given in the last three rows of Table 3.7 which represents a gradually increasing rate of
accrual to a trial which starts recruiting very slowly. This shows that if we were to analyse
the trial at the original time of analysis we would have significantly reduced power (>5%).
One way of addressing this is by moving the planned time of analysis to the time point
at which the planned number of events have been observed. The last column in the table

illustrates the time at which these planned analyses can be performed while maintaining
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Figure 3-2: Accrual patterns in four MRC cancer trials

Observed accrual patterns are given by the dotted lines. The solid lines illustrate
a uniform accrual pattern based on accrual as anticipated in the trial protocols
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the planned number of events and power for the trial. These results are in line with
observations made by Lachin & Foulkes [71]. However, the impact of the accrual pattern
on power will also depend on the shape of the survival distributions. If there is an early
peak in the hazard, early events, and hence patients accrued early on in the trial, are

more influential.

3.6 Discussion

Sample size calculations are necessary for all randomised controlled trials. They are
particularly complex for trials with survival-type endpoints because they usually involve
assessments and input of a number of parameters including: the control group survival
distribution; the magnitude and form of the targeted difference to be detected; the rate
of accrual of individuals to the study; the length of follow-up of individuals after accrual
closure; and the potential for (time-related) dilution of any effect through, for example,
loss to follow-up or cross-over. All of these parameters can have an important impact on
the trial size needed. We have presented a general approach to sample size calculations
for trials which allows for all these sources of variability. The methodology and associated
software allow the user to specify, at the design stage, the use of a general family of logrank
tests, including the Tarone & Ware and Harrington & Fleming families. Furthermore our
Stata program allows for the specification of non-local alternatives by approximating
the logrank test statistic ) using a scaled noncentral x2 on k — 1 degrees of freedom.
Simulations have, however, shown that this brings only minor improvements in accuracy
since the method already performs well under local alternatives with more extreme designs

(Figure 3-4).

We note a slight underlying difference between our approach and much of what has
gone before. Sample size calculations based on Freedman [41] or Schoenfeld [114] as given
in Equation 2.3 assume that the number at risk and hence the number of events are a
constant for a given hazard ratio, power and significance level. However, the number of
events given by ART will vary slightly even for small changes such as a different accrual
rate in one of the periods since the number at risk is not treated as constant over the

course of the trial but instead is calculated for each of the periods.

Simulation results show that our method works well in a variety of situations. These
results also indicate that the adjustments particularly for non-proportional hazards, non-

uniform accrual and cross-over may be substantial in terms of power and sample size.
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Concave patient accrual

o

0 2 A _ 6 8 1
unit recruitment period

Distribution parameter (gamma)

—————————— uniform  ----------—--0.5
-1 -2
S5 e -6

Figure 3-3: Concave exponential patient accrual patterns

Entry distribution Power Additional follow-up

7 for R=5T =9 required for 90% power
0 90.0 % 0

-0.5 89.4 % 0.25

-1 90.0 % 0.5

-2 87.4 % 0.75

-3 86.2 % 1

-4 85.6 % 1.25

-5 85.1 % 1.5

-6 84.6 % 1.75

Table 3.7: Impact on power and length of trial of concave recruitment pattern
7 - exponential scale parameter, Power is that for N=634 at length of accrual (R) five
years and follow-up (T-R) four years. All calculations use a hazard ratio of 0.7, median
survival of five years and a two-sided 5 % significance level
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Local alternatives

Non-local alternatives

2 3 4 5 6 7 8

HR
Figure  3-4: Simulation results for power based on sample size
calculations using ART under local and non-local alternatives
Trial set-up: equal allocation to both treatment arms, accrual = two time peri-

ods, follow-up = two time periods. The dotted lines illustrate an approximate 95% Cl
around 90% power. Results based on 100,000 replications
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Hence researchers should take particular care in specifying these parameters when de-
signing a trial. Of course, trials in which a large percentage of patients were expected to
be lost to follow-up would be unlikely to be successful for other reasons. One would have
to cast doubt on the validity of the trial’s results not only because of the loss of power but
also because of the potential for bias if the missing outcome data due to loss to follow-up
were associated with the outcome. The data in Table 3.3 are provided as a sensitivity
analysis, and show that modest loss to follow-up may have only a minor effect on power
and / or required sample size. However, cross-over, which occurs frequently particularly
in longer term trials, does not generate missing outcome data since our methods assume
that the treatment groups would be compared as randomised on an intention-to-treat
basis. Loss of power is then the primary concern since cross-over will lead to a dilution

of the difference in the treatment effect between the randomised groups.

It may be very difficult to specify all these variables with reasonable accuracy before
the start of the trial. In this situation two approaches are very helpful. First, as one
design stage, it is probably useful and prudent to perform sensitivity analyses varying
these parameters to assess the impact of modest changes in them, to assess the robustness
of the design under realistic departures from the design specified. Second, as the trial
accumulates individuals and data, the design specifications can be checked against the
real accumulating data. If there are important departures from these the impact on the
trials operating characteristics (particularly the power) can be formally calculated and
the trial can be potentially amended. For example, if during the course of the trial we find
that cross-over from one treatment to another is greater than anticipated, then we may
argue that a smaller difference than that originally specified in the alternative hypothesis
should be targeted. In this case the sample size of the trial may be amended. We note
that such ‘administrative’ amendments are perfectly acceptable during the course of the
trial, as long as any decisions to change the trial size are made independently of, and
preferably blind to, the estimate of the treatment difference currently being observed

within the trial.

Furthermore our software may be used for the design of multi-arm trials where the
primary question concerns a comparison of each experimental arm with the control. Con-
sider a three-arm trial, i.e. two experimental arms and one control, with an overall type
I error probability of 5%. After applying a Bonferroni adjustment allowing for multiple
comparisons and a correlation of 0.5 between the two test statistics the sample size can

then be calculated in ART using a two-arm design with a type I error of 3.5% [107]
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and multiplying this by 1.5 to get the correct sample size for a three-arm trial. This

calculation assumes a randomisation of 1:1:1.
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Chapter 4

ART - Analysis of resources for

trials

4.1 Introduction

Royston & Babiker [101] presented a menu-driven Stata program for the calculation of
sample size or power for complex clinical trial designs under a survival time or binary
outcome. This program allows for multi-arm trials with up to six treatment arms, an
arbitrary time-to-event distribution, non-proportional hazards, unequal patient alloca-
tion, non-uniform rates of patient entry, loss to follow-up and cross-over of patients from
their allocated treatment to an alternative treatment arm. In the present chapter, the
program is updated to operate under the new Stata 8 dialog interface. Additionally, its
name has been changed to ART - Analysis of Resources for Trials. We report here
some further improvements to the software, such as allowing for the input of a one-sided

significance level and the calculation of sample size for non-inferiority trials.

To recapitulate, for survival-time outcomes, the main assumption is that treatment
groups will be compared using the logrank test. Computations are carried out according
to the asymptotic distribution of the logrank test statistic ). Here @ is defined as
U'V~IU, where U is the vector of the total observed minus the expected number of
events in each of the k treatment groups in the design except for the control and V is
the covariance matrix of U. A full report on the methodology and its performance in
particular with respect to loss to follow-up, non-proportional hazards and cross-over is

given in the previous Chapter 3 as well as in [7].
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For binary outcomes a normal approximation to the binomial distribution is assumed.
The program gives sample sizes which are slightly lower than those provided by the Stata

command sampsi since it does not use a continuity correction.

4.2 New design of menu and dialogs

All features are available from the newly designed ART menu and associated dialogs. As
before, on completion of the calculations the command line that generated the results will
be displayed in the Review window. For reproducibility of the calculations we suggest
that the user opens a log-file before executing the commands via the dialog which will
hence save the command line. This log-file can then be edited to produce a do-file to

repeat the calculations if desired.

When artmenu has been executed using artmenu on, a new item ART will appear on
the system menu bar under User. This menu may be turned off by typing artmenu off.

ART contains the following two items:

Survival outcomes Sets up all design parameters including advanced options such

as loss to follow-up and cross-over for survival time trials

Binary outcomes Sets up design parameters for trials with a binary outcome under

a simple design

Since no considerable changes have been made to the Binary outcomes facility this
chapter will concentrate on the changes made to Survival outcomes and readers are
referred to the original article by Royston & Babiker [101] for further information on
trials with binary outcomes. At any stage the user may obtain further information on

the use of the menu by clicking on the ? button.

4.2.1 Survival outcomes - panel 1

Figure 4-1 illustrates the new dialog window for Survival outcomes. Panel 1 requires
the input of the basic trial set-up. The main change from the old dialog is the input of
the survival/failure probabilities. These can now be input by either specifying median
survival in a particular period or by filling in the cumulative probabilities at the end of
periods as illustrated in Figure 4-1. Furthermore, the actual time units of periods may

be specified, such as years, 6 months, quarters, months etc.. The choice of these does not
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have any impact on the sample size calculations themselves but is displayed in the final

output to remind the user of the timescale assumed.

ART - ANALYSIS OF RESOURCES FOR TRIALS - Survival outcomes

Panel 1 | Panel 2 | Panel 3 1 Advanced options j
Set-up
Number of periods [11 Number of groups
Time unit («1 period) [GMonths v Alpha (2-sided) [6.05
Median survival inperiod [~ Power or N fod~

Baseline survival / cumulative failure probabilities [0.23 0.2875 0.3594 0.4492 0.5615 0.6320

At the end of period(s' 24681011
Options
(* Specify power C  Specify sample size
(* Specify survival probabilities C  Specify failure probabilities
r  Non-inferiority desgn I~ One-sided alpha
S lft OK Cancel Submit

Figure 4-1: A completed Panel 1 screen for survival outcomes

4.2.2 Survival outcomes - panel 2

Hazard ratios for each treatment group relative to group 1 as well as allocation ratios
may be entered on Panel 2, as illustrated in Figure 4-2. This needs to be done for the
number of groups specified on panel 1. Only one value per treatment group needs to
be entered for the hazard ratio if these are assumed constant over time. In the case of
non-proportional hazards, one value may be entered for each period of the trial. For
example, if the number of periods has been set at 11 in Panel 1, 11 hazard ratios may
be entered in Panel 2 for each of the groups. If for a given group fewer hazard ratios are
entered than the number of periods, the remaining hazard ratios are taken to have the
same value as the last specified hazard ratio. In addition, if no hazard ratio is specified
for a particular group, its value in a given period is taken to be the geometric mean of
the hazard ratios specified for the same period across all the groups for which a value has

been entered. When a test for trend is chosen, the dose may be input for each treatment

group.
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m  ART ANALYSIS OF RESOURCES FOR TRIALS - Survival outcomes
Panel 1 P*I®I2 | Panel 3 1 Advanced options |

Required treatment arm set-up

Choose treatment group:

Group 2 (required)

Group 3

Group 4

Group 5

Hazard ratios Allocation ratio

Enter relative to the control distribution Default: equal allocation for al groups
Group 1 |1 Group 1 |1

Dose

1~ Trend

OK Cancel Submit

Figure 4-2: Panel 2 screen completed for a two arm trial
4.2.3 Survival outcomes - panel 3

Panel 3, which is illustrated in Figure 4-3, requires the input of patient recruitment options
and the selection of the analysis method from the dropdown list. The inputs are similar
to those of the original dialo*g. By default, calculations will be run using equal weights
over the periods. If this is not the case, unequal weights may be entered, e.g. 12 2, for
each of the periods over which recruitment takes place. As before, steady recruitment
using the uniform distribution is assumed as a default. If exponential accrual is chosen

instead, the rate needs to be entered in the Exponential accrual box.

The default method of computation is the unweighted logrank test under local alter-
natives. This implies that sample sizes are derived under the assumption that hazard
ratios between treatment groups are not far from one. However, simulations provided
in Chapter 3 have shown that the improvements in terms of accuracy gained by com-
puting sample size under distant alternatives are minimal. Sample sizes derived through
computations under local alternatives will be slightly conservative for hazard ratios <

0.5.
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ART ANALYSIS OF RESOURCES FOR TRIALS Survival outcomes Q
Panel 1 | Panel 2 Panel 3 | Advanced options

Patient recruitment

Duration [ef Proportion recruited at start

(+ Equal weights over periods < Uniform accrual

( Unequal weights: 1 Exponential accrual:

Model Options

(+ Local alternatives Distant alternatives

Method of sample size calculation  |logrank, unweighted N
F Additional details in output Save using filename [

OK Cancel Submit

Figure 4-3: A completed Panel 3 screen illustrating input of recruitment options
4.2.4 Survival outcomes - advanced options

The last part of the dialog window for ART shown in Figure 4-4 allows the input of loss
to follow-up and cross-over for each of the treatment groups in the trial as specified in
Panel | in a similar manner to the input of survival probabilities and hazard ratios in

Figures 4-1 and 4-2.

Both loss to follow-up and cross-over need to be entered as a cumulative distribution.
The user may then choose to Specify target group on cross-over Or t0 Specify
hazard ratios post-withdrawal. The first option assumes that patients withdrawing
from treatment of a particular group will receive the treatment regimen of the target
group and hence take on that hazard after crossing over. If the second option is chosen
a post-withdrawal hazard ratio function relative to the hazard of the control arm failure
time distribution needs to be entered for each arm that is subject to cross-over. Similar
to the hazard ratios between groups entered in Panel 2 (see Figure 4-2) as many values
as there are periods may be entered. If the number of values entered is less than the
number of periods, then the last hazard ratio value applies to the remaining periods.
This option is favourable over the first if patients withdrawing from allocated treatment
over the course of the trial are expected to do much worse than either treatment group

for example.
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ART - ANALYSIS OF RESOURCES FOR TRIALS - Sumval outcomes
Panel 1 | Panel 2 1 Panel 3 Advanced opriom |

Choose treatment group: Loss to follow-up

Enter cumulative distribution
Group 2

Group 3 Group 1 10.05
Group 4 At the end of period(s)
G 5

roup Group 1 AT
Withdrawal from allocated treatment
Enter cumulative distribution At the end of period(s)
Group 1 [0.01 0.021 0.0331 0.04641 0.0G Group 1 246810

Enter post withdrawal hazard ratios, or target .
<+ Specify target group on cross over
groups on cross-over

Group 1 [2 Specify hazard ratios post withdrawal

OK Cancel | Submit

Figure 4-4: Advanced options for survival outcomes

4.3 Optima

Optima is a clinical trial currently running in the UK, Canada and the US which is
designed to determine the optimal management of patients with HIV infection for whom
first and second line highly active antiretroviral therapy (ART) has failed. Patients are
randomised equally between standard (< 4 drugs) - and mega (> 4 drugs) - ART. The
assumptions for sample size calculation, based on earlier data on similar patients, were
as follows: The standard-ART cumulative event rate in year 1 is 23% with a 25% annual
increase thereafter until the end of the study and cross-over from mega- to standard-ART
is 5% in year 1 and decreases by 50% every year thereafter. The hazard ratio is 0.7 and
loss to follow-up at 5.5 years is 5% with drop-in from standard- to mega-ART at 1%
in year 1 (increasing by 10% every year thereafter). Furthermore a significance level of
5% with 4.5 years accrual and one year minimum follow-up under a power of 80% were
assumed. Under these assumptions our program predicts that a sample size of 490 with
318 expected events will be sufficient to detect a clinically relevant difference between the
treatment groups. In comparison, if loss to follow-up and cross-over are not adjusted for

we arrive at a sample size of 379 with 248 expected events.

If this trial had been designed with 90% power, as is quite frequently done in practice,
we would find a difference of 29.1% in sample size between adjusted and unadjusted

calculations, i.e. an increase in sample size due to adjustment for loss to follow-up and
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cross-over from 508 to 656 patients, and an increase from 332 to 425 required events

which translates to a difference of 28.0%.

The output given below corresponds to the inputs illustrated in Figures 4-1 - 4-4
and may be obtained upon pressing the OK or Submit buttons. The main improvement
from the previous version concerns the level of detail available in the output in terms of
the parameters used for the sample size calculation such as the accrual method and the

development of event probabilities assumed in each treatment arm over the number of

periods chosen.

ART - ANALYSIS OF RESOURCES FOR TRIALS (versiomn 1.0.5, 6 July 2005)

A sample size program by Abdel Babiker, Patrick Royston & Friederike Barthel,

MRC Clinical Trials Unit, London NW1 2DA, UK.

Type of trial Superiority - time-to-event outcome
Statistical test assumed Unweighted logrank test (local)
Number of groups 2

Allocation ratio Equal group sizes

Total number of periods 11

Length of each period 6 months

Cum. event probs per period (group 1) 0.123 0.230 0.259 0.287 0.324 0.359
0.406 0.449 0.509 0.561 0.632

Cum. event probs per period (group 2) 0.087 0.167 0.190 0.211 0.240 0.268
0.306 0.341 0.392 0.438 0.503

Number of recruitment periods 9

Number of follow-up periods 2

Method of accrual Uniform

Recruitment period-weights 11111111100

Hazard ratios as entered (groups 1,2) 1, 0.7

Hazard ratios per period (group 1) 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
Hazard ratios per period (group 2) 0.700 0.700 0.700 0.700 0.700 0.700
0.700 0.700 0.700 0.700 0.700
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Alpha 0.050 (two-sided)

Power (designed) 0.800
Total sample size (calculated) 825
Expected total number of events 287

Unadjusted event probs (groups 1,2) 0.632, 0.503
Unadjusted loss to follow-up probs 0.050, 0.050
Unadjusted cross-over probabilities 0.068, 0.098
Expected proportions of event 0.392, 0.303
Expected proportions lost to follow-up 0.022, 0.024
Expected proportions of cross-over 0.026, 0.072

The first part of the output gives an overview of the trial parameters chosen by the
user at the time of filling in the dialog menu. A detailed display of the cumulative event
probabilities in the treatment groups and the hazard ratios over each of the periods in
the trial allow the user to check that the trial design was input correctly. Sample size and

number of events needed for the trial design are given towards the end of that ouput.

The second part of the output appears only if the Additional details in output
option is checked. It provides further information regarding the expected performance in
all treatment groups by the end of trial, in particular with regards to loss to follow-up

and cross-over proportions in all arms.

Furthermore, the user may save probabilities and hazard ratios used in the calculations

to a new file by filling in the Save using filename box.

4.4 Comparison with other available software

Several sample size programs are currently available which provide calculations for those

trials with survival-type data which are to be designed and analysed using the logrank
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Cost Statistical logrank flexible non - non - loss flexible
package sample recrual uniform prop. to loss to
needed size accrual hazards follow-up follow-up

ART Free Stata v v v v v v
cpower Free R v v
Clinical Trials $299 none v v v
Design Program (v. 1)
EGRET SIZ (v. 1) $465 none v v v v
not by group
Ex-Sample (v. 3.0) $125 none v v
NCSS PASS (2004) $899.95 none v v v v v
NQuery advisor (v. 5.0) 8995 none v v v
Nsurv (v. 2.2) $140 none v 4 v v
not by group
POWER $10 none v v
Power & Precision (v. 2) $995 none v v v v v v
PS Power Free none v v
Schoenfeld Free none v v
RIVA Free SAS s v v v v
not by group
Statistica €619 Statistica v v
Power Analysis (v. 6)
UnifyPow (v. 2002.08.17n ) Free SAS v v
cross - multi - Results Methodology
over arm sample number power authors
designs designs size of events
ART v v v v v Barthel et al. (2005)
cpower (10/03/2004) v v Lachin & Foulkes (1986) [71)
Schocenfeld (1983) [114]
Clinical Trials v v Freecdman (1982) [41}
Design Program (v. 1) Rubinstein et al. (1981) [104)
EGRET SIZ (v. 1) v v v Self et al. (1992) [120]
Ex-Sample (v. 3.0) v Schoenfeld & Richter (1982) (115]
NCSS PASS (2004) v v Lachin & Foulkes (1986) (71}
NQuery advisor (v. 5.0) v v v Lakatos & Lan (1992) [72)
Nsurv (v. 2.2) v Lachin & Foulkes (1986) [71]
POWER (v. 1.4) v v Schoenfeld & Richter (1982) [115)
Power & Precision (v. 2) v v Schoenfeld {1933) [114)
Lakatos (1988) [73]
PS Power (v. 2.1.30) v Schoenfeld & Richter (1982) [115)
Schoenfeld (03/05/2001) v v Schoenfeld (1983) [114]
SIZE (26/06/1996) v v v v Lakatos (1988) (73]
Statistica v Schoenfeld (1983) [114]
Power Analysis (v. 6}
UnifyPow (v. 2002.08.17a ) 4 v Sell et al. (1992) [120]
Table 4.1: Properties of available sample size programs

Disclaimer:

the features and costs of programs mentioned in this table were, as

far as the author is aware, correct at the time of writing. The author is happy to change
any information on the programs as necessary
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test. Table 4.1 displays a large selection of these. Those which are identified as 'Free’
in Table 4.1 are available for download over the internet free of charge and the rest are
commercially available. Most of the programs, as is illustrated in Table 4.1, provide
calculations under the logrank test and allow for the incorporation of accrual and follow-
up times. Many also allow ‘loss to follow-up’ expressed as a proportion of patients lost
by the end of the trial. However, most methods do not provide adjustments for non-
uniform accrual of individuals into the trial, non-proportional hazards, cross-over (from
one treatment to the other) and multi-arm trials. The program SIZE perhaps comes
closest to ART in achieving all these aims. However, SIZE does not allow for non-uniform
accrual into the trial nor does it allow for more than two arms in a trial. Furthermore,
at least in the simulations we have performed, the adjustment provided for most of these
parameters in SIZE can lead to slightly overpowered designs. In terms of software needs

ART requires an installation of Stata while SIZE requires SAS.

4.5 Conclusions

The new design of the dialog menu exploiting features introduced in Stata 8 and more
detailed output are the main improvements to ART. In addition, the sample size calcu-
lations may now be performed for non-inferiority designs. This option may be specified
on Panel 1 (see Figure 4-1) while all other parameters are input in the same way as de-
scribed above. Furthermore, the program now allows for the choice of a one-sided alpha
which may also be specified on Panel 1. Finally, the help files have been updated. In
some instances the user may want to run several calculations with similar parameters and
in this case does not require the header given in the output for each of the calculations.
To suppress this output the option nohead may be added at the end of the command line.
Our approach and the associated ART software also provides sample size calculations in

the context of trend tests on dose/response studies.

In summary, users should find the new version easier to use and more informative
than the first release. The validity of the calculations has been checked via extensive
simulation studies of which some details are provided in the previous Chapter 3 and in

Barthel et al. [7].

Further work includes the extension of the methods described in Sections 3.2 and 3.3
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by allowing periods of different lengths to the requirements of multi-stage trial designs,
for example as described by Royston et al. [103] and in Chapters 5 - 7. In addition, we

may consider to relax the assumption of tied events.
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Chapter 5

Surrogate markers and

multi-stage trials - a review

5.1 Introduction

With the new advances in molecular biology and the ever increasing identification of new
molecular targets for therapy, potential cancer agents are increasingly becoming available.
However, inevitably for a variety of practical reasons only a limited number of patients
can be entered into clinical trials in order to establish efficacy. An increasing desire in a
variety of disease areas for new and promising drugs to be approved for marketing as soon
as possible has led to approval being based on intermediate outcome measures, such as
biomarkers, rather than on long-term clinical outcome measures. In this context several
authors including Ellenberg & Fleming [31] have explored the use of surrogate outcomes
in order to reduce the length of trials as well as the possibility of multi-stage designs [110]

[141] which allow the testing of several agents in one trial.

During the course of this chapter we will first give an overview of the statistical debate
surrounding the validation of surrogate markers. Following that, a short introduction to
the medical aspects of the debate and the practical use of surrogate markers, especially in
the case of cancer, HIV and cardiovascular disease trials, is given. The second part of the
chapter considers sequential methods and two-stage selection designs in particular. We
conclude the chapter on a combination of both methods, i.e. the integration of surrogate

markers into multi-stage selection designs.

67



5.2 Surrogate Markers

5.2.1 Introduction

According to Ellenberg [31] “investigators use surrogate endpoints when the endpoint of
interest is too difficult and/or expensive to measure routinely and when they can define
some other, more readily measurable, endpoint, which is sufficiently well correlated with
the first to justify its use as a substitute’. Surrogate markers or intermediate endpoints
have received ever increasing attention during the past 20 years and their use in clinical
trials has been the subject of much debate. First and foremost this debate centres around

the question of how to define and validate such markers [91] [29] [111] [136] [59] [23].

ICH Guidelines on Statistical Principles for Clinical Trials state that ’In practice, the
strength of the evidence for surrogacy depends upon 1) the biological plausibility of the
relationship, 2) the demonstration in epidemiological studies of the prognostic value of
the surrogate for the clinical outcome and 3) evidence from clinical trials that treatment

effects on the surrogate correspond to effects on the clinical outcome’ [87].

5.2.2 The Prentice criterion

The most often cited definition of a surrogate marker was given by Prentice [99] in 1989
and is known as the Prentice criterion. This defines a surrogate marker as ’a response
variable for which a test of the null hypothesis of no relationship to the treatment groups
under comparison is also a valid test of the corresponding null hypothesis based on the true
endpoint’. Thus the surrogate variable is required to capture any relationship between
the treatment under consideration and the true endpoint employed. Mathematically this

can be expressed using some function fp

fo{t;5(), A}=fp {t; S(t)} (5-1)

where for a conditional probability distribution S(t) a surrogate for the primary endpoint
D should be able to capture the dependence of D on treatment A. Hence the surrogate
variable is required to be fully sensitive to any treatment difference in true endpoint rates
and the treatment under consideration should not be allowed to influence the endpoint

of interest via a mechanism unrelated to the surrogate. His operational criteria require
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that

e the treatment has a significant impact on the surrogate endpoint
e the treatment has a significant impact on the primary endpoint

the surrogate has a significant impact on the primary endpoint

the full effect of treatment upon the primary endpoint is captured by the surrogate

Thus an important drawback of this method is that evidence from trials with nonsignifi-
cant treatment effects may not be used, even though these trials may be consistent with

a desirable relationship between both endpoints [84].

Prentice considers papers by Ellenberg & Hamilton [31] and Wittes et al. [143] in
order to see how their choice of surrogate variables compare with his criterion. Ellenberg
& Hamilton have suggested progression free survival as a possible surrogate to survival
for cancer trials. Hence an event will in this case be defined as either disease progression
or death. This marker may be difficult to validate in terms of the Prentice criterion since
this would involve a comparison of death rates among these patients with corresponding
rates for a comparable group of patients without a prior cancer diagnosis. Wittes et al.
have proposed the use of markers such as blood cholesterol in trials of cholesterol lowering
drugs. These, however, do not fulfill the criterion if a new intervention reduces the risk
rate for the surrogate by some pathway unrelated to the development of a fatal event.
One apparent problem with the Prentice approach is that it is very restrictive and thus

rarely applicable in practice.

Nevertheless, many authors since then have employed the Prentice criterion in an at-
tempt to validate the choice of surrogate endpoints. Freedman & Graubard [42] employed
the Prentice criterion in order to validate surrogate markers in the context of chronic dis-
eases. They reproduced Prentice’s mathematical expression, however, in this case for a
binary endpoint A, i.e. A = 0,1. Furthermore they suggested the following procedure

which may be used to authenticate a surrogate endpoint:

‘Step A Test for interaction between intermediate endpoint and treatment. If a sig-
nificant interaction is found there is strong evidence against [the] criterion (...) and the

procedure may stop.

Step B If there is no significant interaction, adopt a no interaction model and test

for a treatment effect. If there is a significant treatment effect there is strong evidence
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against [the] criterion (...).’

If a significant interaction term can be found in Step A, then that means that there
is strong evidence against the Prentice criterion and we would therefore stop at this step.

In a linear logistic regression setting, Step B would mean that the linear logistic model

will be adopted
p(D =1|S = si, A= j)

o D =15 =5,, A=

)]=u+0j+7‘j (5.2)

where o is some parameter in the model and 7; is taken to represent the jth treatment
effect. One problem with this validation is that in the case of a statistically significant
result, the Prentice criterion will be rejected. However, if the result is not statistically

significant, one cannot assume that the criterion is fulfilled.

Begg & Leung [10] also criticize the Prentice approach. Central to their argument are
the standardised mean treatment effects on D and S respectively, and the correlation p
between them. They point out that under the Prentice criterion, ’the standardized effect
of the treatment on the surrogate end point must be greater than the standardized effect
of the treatment on the true end point by a factor that is proportional to the inverse of
the correlation coefficient’ p. They propose a new conceptual framework which centres
around two principles. The first generally states that the gold standard is represented by
the analysis based on the true endpoints. The second principle states that the validity of
a surrogate end point should be measured using the probability that trial results which
are stipulated from the surrogate marker are ’concordant’ with results which would have
been obtained had the true primary endpoint been used. The criterion for concordance is
arbitrary. One possible definition of concordance would be that both results based upon

S and D are significant or not at the 5% level.

Fleming et al. [37] acknowledge in their paper that the Prentice criterion is often
of little practical use. However, instead of providing a new measurement they suggest
that instead of using surrogate endpoints, one should use auxiliary ones. The auxiliary
variables do have a relationship with the treatment and the endpoint of interest but are
not used as supplements. Instead, they are used to provide information on missing data
from the endpoint of interest. One example is the use of biological marker data such
as performance status, immune function and weight change which may provide small
improvements in the efficiency of unbiased treatment effect estimates on the primary
endpoint. Two approaches to their use employing ideas based on augmented score and

augmented likelihood methods are outlined. Nevertheless, from the research they have
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conducted they conclude that only very modest gains can be made from the use of such

"auxiliary’ variables.

5.2.3 Proportion Explained and Relative Effect

As the Prentice criterion is somewhat idealistic, Freedman et al. [42] suggest to measure
the proportion of treatment effect explained (PE). A way of estimating this proportion

is given by

Bs

PE=1-
B

(5.3)

where B¢ and 3 are the estimates of the treatment effect on the final endpoint with and
without an adjustment for the surrogate variable calculated from a logistic regression.
This approach is also employed by Lin et al. {76]. For a variable satisfying the Prentice

criterion this proportion would then be expected to be equal to one.

Methods to simplify the calculations associated with the derivation of the confidence
intervals around the PE are described in Chen et al. [15]. Their procedure allows the
calculation of treatment effects before and after adjustment for the surrogate simultane-
ously from a single model. The original methods as proposed by Lin et al. [76] require
the estimation of the PE from two separate models which is computationally demanding.
Estimates derived using Chen et al. are numerically comparable to the conventional ones.
In addition and more importantly the new procedure may also be applied in the setting
of multiple-covariate models for the decomposition of the overall treatment effect. This

allows the comparison of PE among several surrogate markers.

A significant problem with this approach is that the confidence intervals tend to be
very wide. Two other problems are that the proportion explained is not well calibrated
as a measure of a proportion and that the measurement is not unique. We could therefore

use an alternative measurement

PA=1—E%%%%%% (5.4)

where 24 is defined as a measurement of the log odds ratio of disease given exposure.
The differences in these two measurements range from 0% to 23.69% for varying values

of B¢ [74]. Lin et al. point out that the employment of this variance formula and
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the extension they developed requires much larger trials or meta-analyses since precise
estimation requires a large value of the ratio of the treatment effect relative to its standard
error. Daniels & Hughes [25] further criticize this idea. They highlight another major
problem: Should competing mechanisms of action be in operation, the proportion of
treatment effect is an erroneous concept since it can take values outside the range from
zero to one. Furthermore, PE will tend to be unstable when f is close to zero, a situation

that could occur in practice [84].

Buyse & Molenberghs [13] extend the criticism of the proportion explained and go on
to develop a new approach which centres around the relative effect RE. If A is defined to
be the treatment, RE is the effect of A on D relative to that of A on S, and y; which is
the association between S and D after adjustment for A. An intuitive approach for RE

is given by

B

RE(T,A,S) = 5 (5.5)

where «, B and + are given by the logistic models

P(S; =1|A;), _

n(BE o)) = Hap + ol

and

P(D; = 1}A;),
and

P(D; = 1|5;

(5D, = 0[S;)

respectively. RE can then be interpreted as linking the surrogate and true end point
on the population averaged level and 7, as describing the subject-specific association
between them. As in the case of PE however, the number of observations should be large
for RE to be of practical value and hence a meta-analysis is often needed. Two problems
associated with RE are the width of its confidence intervals and the fact that it might
change with the strength of the association between A and the outcomes itself. Another
drawback is that RE is model dependent in its definition. Buyse & Molenberghs have
illustrated the use of the RE in their paper employing a study by the Pharmacological
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Therapy for Macular Degeneration Study Group run in 1997. Here the effect on vision
was tested in two groups of patients, one receiving interferon a and the other a placebo.
Buyse & Molenberghs compare the primary endpoint, loss of at least three lines of vision
after one year, to the surrogate endpoint of loss of at least two lines of vision after six
months. Since their initial analysis fails to provide evidence that the full effect of A on D
is mediated through S they then look to compare the proportion explained and relative

effect.

PE | RE
Estimate | 0.45 | 0.94
95% CI, | -0.30 | 0.20
95% CIy | 4.35 | 3.15

Table 5.1: PE and RE with respective confidence intervals for macular degeneration study
[74]

Table 5.1 illustrates the width of the confidence intervals around the estimates in this
context. We can see that the confidence intervals are very wide for both these approaches.
In addition, the confidence interval for PE includes negative values which by definition

should not be the case.

5.2.4 Meta-analysis and the degree of correlation between surrogate

marker and primary endpoint

As a single trial provides a single estimate of effect sizes on the primary endpoint and
a surrogate outcome measure, much attention has been paid to the use of meta-analysis
and the degree of correlation between the treatment effect on the surrogate marker and
the primary endpoint of interest [143] [64]. Daniels & Hughes [25] use a meta-analytical
approach based on Bayesian methods and using bootstrap analysis. They illustrate this
method utilizing data from 15 trials in order to explore the association between treatment
differences on the development of AIDS or death and the CD4 count. A non-parametric
bootstrap is then employed to estimate the correlation between the estimators of the
treatment difference on the log hazard ratio for survival and on change in CD4 count.
Non-informative priors were placed on the fixed effects and regression coefficients. Three
different priors, DuMouchel, shrinkage and a flat prior, were used for the between-study
variance. Results from all three of these were similar and showed that CD4 count does

not seem to be a good surrogate marker.

Gail et al. [43] discuss the strengths and weaknesses of the meta analytical approach
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as employed by Daniels & Hughes and extend it. As had already been pointed out by
Daniels & Hughes, it may be difficult to specify a joint distribution for D and S and
hence Gail et al. introduce separate marginal models for both. However, there are still a
number of difficulties with this approach. Firstly, it can be difficult to define the category
of drug studies to which a particular study belongs. The parameters of these studies
may not only differ due to disparities in drugs used but also because the populations
are different. Secondly, it may be the case that there are too few studies with enough
reliable information on S and A. Thirdly, individual level data is needed to estimate the
distributions which may not be possible to obtain. Fourthly, the precision of estimated
treatment effects is limited in a meta-analytical setting. Lastly, the approach by Gail et

al. does not include survival analysis.

Lewis has explored this issue further in his thesis [74]. In order to capture the asso-
ciation and dependence of surrogate marker and primary endpoint he uses measures for
subject and trial level correlations. Subject level correlation is defined as ’the product
moment correlation between the treatment effect on the surrogate variable and the treat-
ment effect on the final endpoint estimated from individual patient data, within a specific
randomised trial.’ Trial level correlation (TLC) on the other hand is referred to as ’the
correlation between the treatment effect on the surrogate variable and the treatment effect
on the final endpoint at the trial level estimated from individual summary parameters from

a number of randomised trials.” Mathematically this relationship can be expressed as

ZZ l[ﬂb;% N ﬂfsgﬁ]
= (5.6)

TLC
P (N-1)

where ,B’b and ,Bfg represent the true treatment effect on the final and surrogate endpoint
respectively and o and 4 are the variances representing the sample variation of the treat-
ment effect on the surrogate variable and the treatment effect on the final endpoint. Total

sample size is given by N. The means E and ,B_S are given by

and



Lewis’ approach does not aim to attain the Prentice criterion but instead is designed to
be easily interpretable. He illustrates this approach in a binary setting and goes on to

extend it to the meta-analytical approach.

Downsides of the meta-analytic framework are described in Molenberghs et al. [84].
They point out that the modelling exercise increases in complexity as the need arises
for a joint, hierarchical model for the surrogate and true endpoints. Furthermore, a
different model is needed depending on the type of outcome. As a consequence, they
introduce a unified theory which avoids the different specifications of trial level surrogacy

and individual level surrogacy.

5.2.5 The use of surrogate markers

There are varying views as to what extent surrogate markers should be employed. Ellen-
berg & Hamilton [31] note that whilst they feel that promising surrogate markers exist in
the context of cancer clinical trials, use of these should not preclude long-term survival
follow-up. While some randomized studies have demonstrated differences in response
rates without any apparent differences in survival time tumour response is often used as
a surrogate measure in conjunction with survival as the primary endpoint. The choice
of surrogate marker also depends upon the patient population in the study. In a popu-
lation in which a full recovery is possible surrogates such as disease free survival may be
employed. Tumour response is only feasible if all patients have measurable tumour size.
Another problem that requires attention regarding the choice of surrogate measures is
that whilst a certain treatment may seem beneficial with regard to response in the short
run the benefits may be outweighed by adverse long-term effects such as toxicity. Wittes
et al. [143] state that whilst a primary endpoint measures the clinical benefit, a surrogate

really measures the disease process.

Four potential problems with surrogate markers that are correlated with the endpoint
of interest were identified by Fleming [36]. Firstly a surrogate end point may not involve
exactly the same pathophysiologic process that results in the clinical endpoint. Secondly,
the treatment may only affect the pathway mediated through the surrogate endpoint or
thirdly, pathways which are independent of the surrogate. Lastly, the treatment may also
affect the true clinical endpoint by unintended mechanisms of action which are indepen-

dent of the disease process.

Koopmans [68] controversially proposed that surrogate endpoints and biomarkers
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should be used as support for proof of effectiveness and that clinical endpoints such
as survival can be investigated after the drug’s introduction. On the other hand, he does,
however, point out that often surrogate markers such as response rate are not scientifically
substantiated. He also proposes that quality of life should be used as a surrogate marker.
The rationale behind this is that often, especially in the case of cancer, patients will not
recover fully and drugs should therefore aim to improve their remaining life. This is a
difficult issue though since it is not very clear whether patients really do prefer symptom

relief to prolongation of survival.

Ellenberg [30] highlights another important advantage of surrogate endpoints. She
believes that since trials using surrogates are conducted quicker, they are less likely to
be affected by extraneous factors such as dropouts or other forms of non-compliance,
and competing risks. Ellenberg raises three issues, which may play a role in deciding on
whether to use a surrogate marker. The first one is that the magnitude of the treatment
effect on the surrogate should be regarded as being important. Hence, the potential of a
surrogate marker is much greater if the effect on it is substantial. Secondly, consideration
should be paid to the duration of the effect. Lastly, assessments should be made depending
on the severity of the disease as this gives an indication of how quickly a trial needs to
be conducted. According to Ellenberg the main problem with the use of surrogates arises
when a treatment is not being compared with a placebo but instead when two active
treatments are being compared since in this case the biological activity is not the main

interest of the study.

Fleming et al. [37] have adopted the theory of the two-stage carcinogenesis model
advocated by Moolgavkar & Knudson [85]. Based on this approach, they believe that
disease promoter endpoints might prove to be good surrogate endpoints. An example of
this would be HIV-specific humoral and cellular immune responses in the development
of HIV vaccine trials. For cancer trials they suggest that the use of surrogates such
as performance status, weight change, immune function, and toxicity data might be
beneficial. However, they ask for caution and illustrate, using the example of cardiac
arrhythmia and chronic granulomatous disease, that highly misleading conclusions can

be obtained using biological markers as replacement endpoints.

Cancer
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Kelloff et al. [62] aim to provide a possible strategy for the application of surrogate
markers in the area of cancer chemoprevention development. This strategy involves the
identification, validation and use of phenotypic biomarkers and genotypic biomarkers as
surrogate markers for cancer incidence. The surrogate end points they propose to use are
biomarkers such as proliferation and differentiation indices, gene and chromosome damage
and serum biomarkers. Much attention of this paper is paid to the clinical problems
in identifying and monitoring these markers, whereby they define the gold standard of
surrogate marker validation to be a comparison with cancer incidence reduction. Kelloff
et al. believe that through the use of surrogate endpoints the lengths of Phase II and
Phase III studies can be reduced to less than 3 years. Kelly [63] also proposes the use
of biomarkers such as the PSA (prostate-specific antigen) level but he warns that these
need to be used cautiously as some agents have shown to be affecting the PSA level
independently of affecting cell growth. He therefore proposes a model in which several
agents are tested for PSA level effects and the best is then selected to undergo further

testing (see Section 5.3.3).

Day & Duffy [26] have illustrated the use of surrogate endpoints in screening for breast
cancer. They come to the conclusion that the use of surrogates in this case leads to a
threefold decrease of the variance of the hazard and the availability of results 10 years
earlier than through the use of the true endpoint mortality. The surrogate used here is
that of predicted mortality which is validated in the paper using the Prentice criterion.
Another benefit of the use of predicted mortality perceived by the authors is that of
greater expected information contributed by each patient. This is because predicted
mortality provides information on the continuous probability of death of each patient

whereas mortality is only a binary outcome.

Kelsen [64] concentrates on a meta-analysis run by Buyse & Molenberghs investigating
the assessment of colorectal cancer drugs using surrogates. The critical issue at hand here
is whether an objective response to treatment is merely associated with better survival, or
whether tumour regression (partial or complete) itself lengthens survival. This question
has to date not been answered satisfactorily. This means that if we rely on response rate
as a surrogate marker, we can reduce drug assessment times substantially but such results
need to be treated with caution. It highlights the fact that surrogate markers do not only

need to satisfy statistical criteria but also need to be assessed for their biological validity.

A paper by Fleming [35] discusses surrogate markers currently in use in cancer and
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AIDS trials. First of all he distinguishes between surrogates used in Phase II and III
of trials, since in the first case the primary objective is to establish biological activity
whereas in the latter case emphasis is put on evaluating the role a treatment should have
in clinical practice. In cancer trials, emphasis has been placed on tumour response as
a surrogate for survival. Fleming illustrates that this approach is very unsatisfactory
in the colorectal cancer setting. However, despite the limitations of tumour response
and biological markers as surrogate endpoints, Fleming does acknowledge their value in
providing information. He also believes that the reliability of such surrogate markers will

improve as we learn more about the disease process.

HIV / Aids

Fleming [35] describes the case of CD4 counts, which have been widely used as a surrogate
for the onset of AIDS or death, but for which it has lately been established that they are
not reliable enough. This was found out during the conduct of a comprehensive collection
of trials by the June 1993 National Institute of Health sponsored SOTA conference.
Here the effect of treatment on primary endpoint and CD4 count was compared and
the relationship between CD4 count and survival found to be very unsatisfactory [35].
Fleming has looked at 13 different trials where data on both CD4 count and survival has
been collected. He found that there was a very high false positive rate of treatment effect
on CD4 count when comparing it to the treatment effect on survival. Furthermore he
deduces that if the treatment difference in terms of CD4 count is indeed large, then a

prediction on outcome in survival terms is more accurate.

Similar observations concerning the use of CD4 count as a surrogate are made by Lewis
[74] in his thesis. He used data from a meta-analysis originally conducted by Daniels &
Hughes [25] and found that the CD4 count is not particularly strongly associated with
the treatment effect on the event of AIDS or death for individual trials at the individual
subject level. In fact, his results indicate that the intervention effect on the onset of
AIDS or death is only approximately % of the intervention effect on CD4 count. Out
of 20 studies, only five predicted a significant intervention effect on the onset of AIDS
or death over the course of two years. In two cases out of those the prediction intervals

were, however, too wide.
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Cardiovascular diseases

O’Connor et al. [86] define four types of endpoints in relation to cardiovascular disease
trials. The main endpoint is death; a nonfatal event endpoint is one that a patient wants
to avoid such as myocardial infarction or stroke, a true clinical endpoint describes a
specific symptom which the patient can feel or which influences his quality of life and a
surrogate endpoint is one which the patient cannot feel but which is correlated with death.
To date it has not been possible to find a surrogate that correlated perfectly with the
main endpoint. O’Connor et al. propose to combine nonfatal or surrogate endpoints with
number of deaths in the analysis, thus achieving a higher number of events. However,
they also point out that this can be problematic since if the event rate for the surrogate
is substantially higher than the event rate for death, any true effect on death may be
camouflaged. One example of this is the Dilated Cardiomyopathy trial. Here, death
and the need for transplantation were combined. Since transplantation was the largest
contributor to the reduction in death, the trial results would have been seriously flawed

had those two end points not been analysed separately in the end.

Possible surrogate markers that have been proposed in the past for various studies are
hospitalisation, left ventricular mass, ejection fraction, ventricular volumes and maximal
oxygen consumption. Still, results on correlation between these surrogate endpoints and
the main endpoint have been inconsistent as has been shown in the Cooperative North
Scandinavian Enalapril Survival Study and the Veterans Administration Vasodilator-

Heart Failure Trial.

5.3 Multiple stage trial designs

This section is concerned with multi-stage trial designs. In general, in this type of design
patients are accrued over a period of time after which they are analysed. At this point
a stopping rule is applied which decides whether the trial will continue accruing patients
and move to the next stage or terminate early. The main aim is to reduce the number
of patients required for the trial as well as to reach a conclusion earlier than in a stan-
dard parallel group design. This is facilitated by the scope for stopping a trial early for

inferiority and / or superiority of an experimental treatment over the control regimen.

Depending on the type of design, information on the effectiveness of treatments is

accumulated over all stages in the trial or separately for each stage. However, for trials
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with a survival-type endpoint, the first method is generally employed. This leads to a

level of correlation between the test statistics after each of the stages.

Early on designs were based on sequential methods which are described in Section
5.3.1. These evolved to two-stage and selection designs as outlined in Sections 5.3.2
and 5.3.3. Other adaptations such as the change of the originally envisaged endpoint or
recalculation of the sample size during the course of the trial have also been examined.
Issues with these types of adaptive designs are dealt with in Posch et al. [97]. However,

these are not relevant to this thesis and will therefore not be examined at this point.

5.3.1 Sequential methods

When conducting a clinical trial, the ethical approach is to involve the smallest number
of patients possible and use data from these to conduct a valid analysis. Data from many
clinical trials is often collected over a comparatively long period of time which gives us
scope to stop the trial early in case there are strong indications for or against a certain
arm of the trial. This requires the sequential design of a clinical trial since the data need
to be analysed at time points during the planned course of the trial. Such methods can
also be very flexible in how they are employed as they do not require the same number
of subjects in each successive analysis step nor the same number of subjects in each arm.
The earliest published account of a sequential clinical trial appeared in 1954 by Kilpatrick
& Oldham [66] and was designed for a comparison of bronchal dilators. During the 1950s,

60s and 70s there were regular but few accounts of such trials.

It needs to be emphasized that the interim analyses conducted determine only whether
stopping should take place but they do not provide a complete interpretation of the data.
In a sequential design setting the reasons due to which the trial may be discontinued

include the following:

1) The experimental treatment is obviously worse than the control
2) The experimental treatment is obviously better than the control
3) There is little chance that the experimental treatment is better

Reasons for continuation of the trial may include:

1) A moderate advantage of the experimental treatment appears to be possible. Such an

advantage may be clinically worthwhile and thus it is important to estimate its magnitude
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as well as we can

2) The event rate observed is low and thus more patients are needed to achieve the desired

power [135]

There are two main types of sequential procedures which can be identified. The first
one is known as the ’boundaries approach’ which includes the sequential probability ratio
test and the triangular test and the second derives from a ’repeated significance testing’
approach. Sebille and Bellissant [119] have conducted a comparison of these methods
using simulation studies. They come to the conclusion that all methods satisfactorily
maintain type I and II error rates whilst the triangular test approach seems to be the
most satisfactory with regard to substantial reductions in sample size required. Two
examples of the conduct of a trial using a triangular test are given in Whitehead [140].
One is an immunosuppression trial conducted at the Fred Hutchinson Cancer Research
Center in Seattle and the other a survival study of inoperable lung cancer conducted
at the Queen Elizabeth Hospital in Birmingham. In both cases the trial was stopped
early due to inferiority of the experimental treatment and thus resulted in a significant

reduction in sample size. Figure 5-1 illustrates the sample path from each interim analysis

with each circle relating to one analysis point. We can see that at the last interim analysis
the sample path has crossed the lower boundary of the christmas tree correction (inner
dotted lines) and hence it can be concluded that the experimental treatment is inferior

to the control.

5.3.2 Two-stage design based on Ellenberg and Eisenberger

Wieand & Therneau [141] base their two-stage designs upon a discussion by Ellenberg
& Eisenberger in 1984. Ellenberg & Eisenberger had presented a two-stage plan for
dichotomous or survival outcomes where the time-point of interest was short relative to
the accrual period. The main benefit of this plan was the reduction in sample size with
only a negligible loss of power. However, they did not give details at the meeting as
to how the loss in power may be determined. Their design and the following designs
based on it use the same outcome for the first and second stage of the trial. Wieand
& Therneau propose a design saying that ’the two-stage rule is to observe n patients
on each treatment and stop if at that point the response rate for the test treatment is

the same or worse that that for the control treatment.’ If this is not the case then the
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Figure 5-1: Triangular test for inoperable lung cancer study [140]

trial will be continued and a traditional analysis conducted. Underlying their power
calculations is the binomial distribution from which they deduce that there is a minimal
effect on the power of the study under their two-stage plan, however, the loss of power
does increase as the fixed sample power is increased from 0.8 to 0.9. Whilst Ellenberg &
Eisenberger computed their sample sizes under the assumption of the Fisher-Irwin exact
test, Wieand & Therneau have computed these using an unconditional statistic. Taking
pc to represent the response rate of a control treatment and pg the response rate of a

test treatment, they use

_ 0.5(za + z1-g)?
~ [B(pc) — B(pg))?

N (5.7)

to calculate the sample size, where 2N is the total sample size needed, 2;_, and 2z are
normal deviates corresponding to a one-sided significance level a and power 1— 3 and the
angular transformation B(x) = arcsinv/X. Several modifications of this formula have
also been suggested depending on the type of stopping rule used. These formulations
lead on average to sample sizes at around % of those for fixed sample sizes. Wieand &
Therneau propose to use this design in the case where tumour response or some other

binary outcome is of interest.
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Thall et al. [134] propose a two-stage design for use in a randomised clinical trial
with dichotomous outcomes which is also based on the design suggested by Ellenberg &
Eisenberger in 1984. They have aimed to minimize sample sizes after placing constraints
on the type I and type II errors. The design is as follows: In Stage 1 2NV, patients are
equally allocated to E, experimental treatment, and C, control. Xg, and X¢; denote

the binomial success counts and é&; denotes the difference in the sample proportions for

i=1,2.
— _ (XE1+ Xc1)
pP1= 2N, (5-8)
and
~ (Xei+ X1+ Xe2+ Xe2)
_ 5.9
p. 5N (5.9)
where

N=Ny+Nyandg=1-p

in general. The cut-offs y; and y; are chosen so as to maintain the pre-specified type I

and type II error rates. We continue to Stage 2 iff

01

1= —T1>H (5.10)
(253q1/N1)?

otherwise Hj is accepted and the trial terminated. In Stage 2, an additional 2Ny patients

are randomised equally to E and C. 7w denotes the Stage 1 sample proportion. If

_ {7!'61 + (1 - ’/T)(Sz}

A A
(2p.4./N)=

> Y2 (5.11)

Hyj is rejected, otherwise, accept Hy. Thall et al. then optimize the procedure to obtain
minimal sample sizes whilst employing normal approximations to the binomial and nu-
merical approximations. They deduce that there are substantial savings in sample size
if the trial is terminated early, i.e. after Stage 1, compared with the fixed sample size
approach. The main difference to the earlier design by Ellenberg & Eisenberger is that
size and power are pre-defined for a given alternative, and the sample size is minimized

under the constraints.
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Simon [124] presented a similar design, however, this time for a Phase II clinical trial.
His design is optimal in the sense that it achieves the lowest possible sample size in the
case where the trial is terminated early. Early termination of the trial can only occur
if the experimental drug has activity below a certain cut-off point pg. In this case the
null hypothesis is accepted. Acceptance of Hy after the first stage is not permitted. The
design illustrated is based upon the cumulative binomial distribution. Simon defines the

expected sample size to be

E(N) =N; + (1 - PET)N2 (5.12)

where Njand N, denote the sample size at Stages 1 and 2 respectively and

PET = B(r1;p, V1)

denotes the probability that r) or fewer responses are observed in Stage 1 and hence
the trial is terminated then. He goes on to determine optimal designs for pre-specified
error probabilities and concurrs that the optimal two-stage design does not necessarily
minimize the maximum sample size N subject to the error probability constraints. A
comparison of possible optimal and minimax designs can be found in his paper. The
minimax design seems to be more attractive in the case where the expected sample size
is small and accrual rates are low. A reason for that is that under the optimal design
this will coincide with a very small first stage. However, in the case of heterogeneous
populations this may not be desirable. He continues with a comparison of his designs to
those of other authors such as Fleming, coming to the conclusion that his design achieves
lowest expected sample sizes for several error combinations, but points out that a major
problem with such comparisons is that two designs are often not equivalent with regard
to the error probabilities. An extension of this method to a Bayesian decision-theoretic

setting is provided by Jung et al. [61].

Following on from Simon, Chen & NG [16] use his optimal and minimax designs and

apply them to a flexible setting. They define the expected sample size

E(N)= N;+ (1 - PET)(N2 — Ny) (5.13)
the average probability of early termination (APET), the average total probability of

84



rejecting treatment (ATPRT) and the Average expected sample size (AEN). The flexible
design allows the ATPRT to be between 1 — o and 3. Therefore, when applying this to
the design of a head and neck cancer trial the expected sample size is reduced compared
to the one under Simon’s fixed design for the minimax option. Under the optimal design
option, both calculations give nearly the same answers. One disadvantage of this design
is that it does not allow for early termination of the trial if there is a long run of failures
at the start. To combat this problem, a range of three-stage designs have been suggested,
for example Ensign et al. (1994) [32]. Here the sample size is very closely linked to the

power 1 — 3 of the study, i.e.

E(N)(p) = N1+ No{1 - B;1(p)} + N3{1 — B1(p) — B2(P)} (5.14)

However, since all of these designs are for Phase II studies, they deal with comparatively

small sample sizes and therefore are not practical for our Phase III trials.

5.3.3 Two-stage selection designs

So far only designs to compare one experimental treatment to a control have been in-
troduced. Nevertheless, two-stage designs can be used to select a promising treatment
from a number of different treatments. At the same time they retain the advantage of
reduced sample size identified in sequential designs, especially when most of the agents
are observed to have little or no activity. Central to all of these designs is that we start
with several experimental treatments out of which, in comparison with the control, the
most promising is chosen [105] [124] [34]. ’Multiple stage plans are specified by the number
of units examined at each stage, the number of stages, and the acceptance points and the

rejection points associated with each stage’ [117).

One such design which can be used to decide between several experimental treatments
of interest was proposed by Thall et al. [133]. A year before that Thall et al. published
a paper employing a two-stage design for pilot studies [132]. The central idea to both
papers is that the highest success rate among the experimental treatments is identified.
This is advantageous from an ethical viewpoint since exposure to ineffective therapies
is minimized while resources may be allocated to test more treatments compared to the
standard parallel two-arm designs. Methodology of the second paper is now described. If

the success rate of the best experimental treatment falls below a certain cut-off value than
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the trial is terminated. If it is above this value, the trial proceeds to Stage 2, where the
'best’ experimental treatment is compared to a control. The advantages of this design are
that it has both high power and a high probability of termination should no experimental
treatment be superior to the control. The type of trials considered here are based in a
binomial setting with either success or failure as a possible outcome. Expected sample

size depends in this case on the success probabilities and has been identified as

E(N) = kNy + m2N; (5.15)

where 7 is the probability of continuing to Stage 2. In addition to the overall power,
Stage 2 power may be specified. Whilst the binary assumption may be relaxed, a major
problem with this approach could stem from the fact that decisions need to be made on
observations relatively soon after treatment commences. Care also needs to be taken in
determining the cut-off for Stage 1 since if this is too high possible improvements on the
control may be missed. It is therefore most favourable in the case where at least one
treatment is expected to display a significant advantage. This design may be adapted by

including the control in the first stage.

A similar design was suggested by Schaid et al. [110]. The main differences to the
design described above are that it allows for more than one experimental treatment to
be taken forward to Stage 2 and that in the case of a substantial survival advantage of
one of the experimental treatments over the control the trial may also be terminated
early. Hence two boundaries y; and y2 are identified before the start of the trial with
y2 being the upper boundary identifying a substantial survival advantage. In the case
of this design y; is based on clinical judgement rather than optimization. Each of the
experimental treatments are being compared to the control which calls for the definition
of a to be the pairwise alpha-error for each comparison. Schaid et al. have identified the

expected total sample size as being

k
E(N) = (k+ 1)Nipo+ ) _{Na(j + 1) + Ni(k — j)}p; (5.16)
j=1
where V] is the sample size in Stage 1, Na the sample size in Stage 2, py the probability
of stopping accrual at the first stage and p; the probability that accrual will continue for

the standard treatment and j of the experimental treatments. The design is then termed

optimal if it achieves the lowest expected total sample size when the null hypothesis is true
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given a and (1 — ). During the course of Monte-Carlo simulations using a FORTRAN
program the authors found that ’the rule offers the largest reduction in E(N) when
the deaths are occurring quickly relative to the accrual rate and when there are several

experimental treatments’.

Liu et al. [78] have criticized the above approach in that they do not believe that it fits
into a cancer trial setting. According to the authors treatments for cancer are usually first
tested on advanced tumour patients and once a promising treatment has been identified
this is then compared to a control using patients which are relatively early in their disease
stage. Hence they believe that a design which allows for the progression of more than one
experimental treatment into the second stage is at odds with this approach. Instead they
propose a design which has a fixed sample size, giving no possibility of an excessive number
of patients and only allowing the progression of at most one experimental treatment into
the second stage. This approach is based upon the Cox model and they advocate the

usage of it in Pilot studies.

To circumvent the problem that Liu has pointed out above, Simon et al. [126] have
chosen to only use patients from the second stage in their analysis after Stage 2. They
have studied two possible types of design, one that includes the control in the first stage
and one that does not [132] [133]. The authors believe that these types of designs are
most applicable when it is very unlikely that there will be more than one treatment that is
better than the control and when the patient numbers available are too small to evaluate

more than one experimental regimen.

The above approaches by Thall et al. [133] and Schaid et al. [110] are generalised by
Stallard & Todd [128] in two ways. Firstly, through the use of the efficient score as a test
statistic the method becomes applicable to binary, normally distributed or failure time
responses and furthermore allows the incorporation of covariate information at both the
interim and final analyses. Secondly, they consider a sequential trial setting in which a
number of interim analyses comparing the selected and control treatments are performed.
However, it is required that at most one experimental treatment is selected at the first
interim analysis. Thus if there is a group of treatments which are superior to the control
and one wishes to select the best out of those, this method is not applicable since it would

be desirable to only drop ineffective treatments at an early stage.

5.4 Surrogate markers and two-stage designs combined
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In this thesis we propose the combination of both surrogate markers and a multi-stage
design. Suggestions of such a combination have been made by a few authors. Kelly [63]
emphasizes the need for this combination when he says that 'Only with the appropriate
selection of disease state, trial design, and endpoints will we be able to select the most

promising regimens to move forward’.

Flandre & O’Quigley [34] have considered this type of design. Their definition of
surrogacy is ’a response variable of prognostic value obtained during follow up, which
indicates an objective progression of disease’. Using this definition, they closely follow

the Prentice criterion. Their design is as follows:

Stage 1: all patients are followed to the primary endpoint and information on the surro-
gate is collected in order to evaluate the strength of the relationship between surrogate

endpoint and survival
Stage 2: follow up is terminated when patients reach the surrogate event.

The validity of the surrogate variable is tested using a standard likelihood ratio test.
Information collected during the first stage consists of either survival time and the sur-
rogate variable or just survival time, depending on whether the surrogate event occurs
before the death of a patient or not. Because of the way in which this trial is designed,
Stage 1 could either be part of the trial or an earlier trial could be used. The survivorship
model presented is based upon an earlier model developed by Slud & Rubinstein [127].
The authors give two examples of trials for resected lung cancer from which the sample
sizes N7 and N, of Stages 1 and 2 were drawn a posteriori. Relapse has been considered
as a time-dependent surrogate endpoint. The main problem with the approach is that
it is based upon the Prentice criterion which, as described above, is very rarely satisfied
in practice. What we also find problematic is the use of the surrogate endpoint in the

second stage. We therefore propose a design as illustrated in the next chapter.

5.5 Summary

A growing number of trials today employ surrogate markers, either to complement the
information available or to replace the primary endpoint at one stage in the trial. Recent
trials have, however, shown that this can be a dangerous practice as often the relationship

between treatment, surrogate marker and primary endpoint has not been well established.
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A very prominent example of this is the use of CD4 counts as a surrogate marker for
death in the case of HIV clinical trials. Methods such as the Prentice criterion, the
proportion explained or the relative effect, and measures of correlation founded in meta-
analysis aim to provide a basis for the establishment of such a relationship, if it exists.
Today many authors have recognized that the Prentice criterion is very rarely attainable
in practice. Nevertheless, this does not make it obsolete but instead provides an ideal
situation which every surrogate/primary endpoint relationship should be compared to. A
good surrogate should satisfy two properties. Firstly, the surrogate endpoint must predict
the primary endpoint on an individual patient level. Secondly, the effect of a treatment on
a surrogate endpoint must predict the effect of that treatment on the primary endpoint.
Unfortunately, we are rarely in this position for most of our common diseases. However,
whenever employing surrogate endpoints we need to be cautious since any evidence of
a relationship between the surrogate and primary endpoint will have been derived from

earlier trials. In some cases the strength of this relationship may change when a new

therapy regimen is used.

With the arrival of new advances in molecular biology and the ever increasing knowl-
edge about our organism, potential agents which may improve patient outcomes are in-
creasingly becoming available. Methods such as two-stage selection designs are therefore
necessary in order to get the new drugs to the patients as soon and as safely as possible.
Once a relationship has been established between the effect of treatment on the primary
endpoint and on the surrogate, surrogate markers incorporated into the two-stage design

could, in principle, provide a significant reduction in both trial time and sample size.
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Chapter 6

A multi-stage design

6.1 Introduction

Royston et al. [103] proposed a design employing an intermediate outcome in the first
stage of a two-stage trial with multiple research arms. Such an intermediate outcome
is not required to be a perfect surrogate for the final outcome in the Prentice sense but
rather it is essential that the effect sizes of the new treatment on the intermediate and
final outcome measures are related. The main aims are to reject as quickly and reliably
as possibly any new therapies that are unlikely to show a worthwhile effect in terms of
the primary outcome measure and to continue testing those therapies which are likely to

show such an effect.

The design itself is based on eliminating inferior treatments at an early stage, and
hence allowing through to the second stage only those treatments which show a predefined
degree of advantage against the control treatment. In the first stage, the experimental
arms are compared pairwise with the control according to the intermediate outcome
measure. Treatment arms that survive this comparison then enter a second stage of
patient accrual which culminates in pairwise comparisons against the control based on
the primary endpoint. An example of such a trial with four experimental arms and one

control over two stages is given in Figure 6-1.

The overall operating characteristics in this design are computed from the Stage 1
and 2 type I and II error rates as well as the correlation between treatment effects on
the intermediate and primary outcome measures. An important assumption is that the

log hazard ratios on the intermediate and primary outcome follow a bivariate Normal
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Two-stage trial design
Based on Royston et al. (2003)

Example: 5 arms. 2 stages
Stage 1
Control Experimentalarms

C E 1 E 2 E 3 E 4

Analysis using intermediate endpoint
2 arms d opped)

Stag e 2

X E 2 E 3

Analysis using primary endpoint

All analyses conducted in pairwise com parisons
with control using logrank test

Figure 6-1: Two-stage design based on Royston et al.

distribution. We may estimate this correlation from previous trials.

Recently ICONS, a trial comparing several ovarian cancer treatments, which employs
this methodology, has been conducted at the Medical Research Council, London, together
with collaborators in the USA, Italy and Australia. Furthermore, a number of trials in
a variety of cancer sites are currently in the planning stages. However, two of these,
STAMPEDE and ICONG6, require more than one stage using the intermediate endpoint
which has led to the work presented in this chapter. More information on these two trials
is provided during the course of this chapter. This extension is important especially when
dealing with new agents in cancer trials because very little is known about the effect of
these drugs, both on their own and in conjunction with chemotherapy agents for example.
Thus we want to allow for very early looks at which we can reject agents which show either

no promising or even an adverse effect.

Thus, in this chapter the 2003 design is extended to allow for more than two stages
in the trial. Mathematical details for the calculation of sample size in the two-stage as
well as the extension to the multi-stage setting are provided in Section 6.2. An analysis

of some of the assumptions underlying the calculations is provided in Section 6.3.
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6.2 Extension to more than two stages

Assume that the principal outcome measure in a clinical trial is a definitive time-related
disease-related event D; commonly this would be death. In this trial design we also wish
to observe a time-related intermediate outcome I, such as progression free survival. This
outcome [ is assumed to precede D and is an intermediate outcome for D with respect to
the therapeutic effects of interest. However, we do not require I to be a surrogate for D
in the Prentice [99] sense; we only need the two outcomes to be correlated, and thus we
call it an ’intermediate outcome’. Further details on this correlation are given in Section

6.2.7. For a detailed discussion of composite intermediate endpoints see Chen et al. [17].

Suppose that k experimental treatments Ej, ..., B are to be compared with a control
treatment C. Let (Aj,Ap) be the log hazard ratios for pairwise comparisons of an ex-
perimental treatment with control under the intermediate and primary outcome measures
respectively where i = 1,...,s — 1 and s gives the total number of stages in the trial. The

hypotheses for a multi-stage trial are then as follows for each treatment arm:

Hy: (Ap,Ap, . Ar_,Ap) = (A9, AY,, ..., A, ,AY)

and

Hy: (Ap, Apyy . Ap,_y, Ap) = (O], AL, .., AL, AD)
An experimental treatment is deemed advantageous iff A},- < A(I’i and Ay < 1, where

i=1,...,s—1,aswellasA})<A% and Ap < 1.

Define ey, as the total number of I events in the control arm after Stage 7 in the trial
and ep as the total number of D events in the control arm. The trial then proceeds in s

stages as outlined:

Stage 1 to Stage s-1

1. Define a critical value for the rejection of Hy, dy,, so that an experimental treatment
E will pass to Stage ¢ + 1 if the estimate of the log hazard ratio Z: is found to be

smaller than Indy,.

2. Randomise N; patients, ¢ = 1,...,s — 1, between the control and k experimental

arms. Patients are distributed using an equal allocation ratio in most cases. Nj
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needs to be sufficient to expect ey, I events in the control arm.

3. Compute the hazard ratios using the Cox proportional hazards [92] for the I event
once ej, events have been observed in the control arm and compare this with the

value of dj, to decide whether the experimental treatment arm will pass to the next

stage.

Stage s

1. Define a critical value for the rejection of Hy, §p, so that E is deemed to be superior

to the control if the estimate of the log hazard ratio ZL\) is found to be smaller than

anD.

2. Randomise an additional Np patients to both the control and each experimental

treatment arm carried over into Stage s.

3. Compute hazard ratios for D again using the Cox proportional hazards once ep

events have been observed among the control arm.

The event numbers are cumulative across all stages. Assumptions made during the
course of this approach are the proportionality of the hazards and the standard multi-

variate normal distribution of the log hazard ratios.

6.2.1 Sample size and power calculations

The overall type I error probability, the probability of falsely rejecting Hy, within this

framework is given by

a = P(A;, <Inéy,An <Inéy,,...,Ar_, <Ind;,_,,Ap < Indp|Ho)

= Qs(za“)zayzs'"’ zajs_l)zaD’R)

where ®,(.) denotes the standard multivariate Normal distribution function and z,, and
Zap, are normal deviates corresponding to a one-sided significance level a. The standard

multivariate density function is given by

fo(@0, @1, ., Tp) = (2m) " PHD/2|d(4)| /2 exp(—%)
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Here Q = z' Az and A is a symmetric matrix of s rows and columns which is defined as the
inverse of the correlation matrix R since the standard multivariate normal distribution

has unit variance. Thus

3

( 1 pi2 - pis
Al—R= P11 .. po L
(Ps1 Ps2 - 1]

In this model the correlation matrix R depends upon three things in particular. Firstly,
it is dependent upon the time at which e;, events have been accrued in the control
arm during Stage i. Secondly, the interval between that time point and the point in
time at which ep events have occurred is of importance. Lastly, there will be a built-in
correlation if event I is a composite which includes D. One example of this would be the

use of progression free survival as an intermediate marker.

Assuming that we have specified the type I error, power and the log hazard ratios
Arp,Ap in all stages, we need to calculate the cut-off §;, as well as the number of control
arm events needed in all stages. It is intuitive that Indj, should lie between A(}i and
A}. Let ®~! denote the standard Normal distribution function and ((o‘}i)?', (6%)2) the
variances of the estimated log hazard ratios (Zl\, , Z;) under Hy. Hence by definition for
all stages where I is the outcome

_ lnéh - A(I),

Zo L T 0'(1)
i

= (I)_l(ali)

and
Inép — AY
Zap = D 5 D _ (I)—-l(aD)
op

We define the overall power across all stages to be 1 — 8

1-8 = P(Ar, <Inéy, AL, <Inéy,,..,A_, <Indj,_,,Ap < Inép|Hy)
= (I)m(zl—ﬂl,-’zl—512’""zl—ﬂzs_l’zl—ﬁu’R) (6.1)

Let ((a}i)2,(ab)2) denote the variances of the estimated log hazard ratios (ZI\,,ZB)
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under H;. Again by definition for all stages where I is the outcome
Iné I, — A}i
o,

= 21 -A)) (62)

Zl_ﬁli

and

Inép — AL _
21-8, = _%b—g =& '((1-B)p)

[103]. The quantities (1 — 8), and (1 — §)p may be interpreted as the probability of an
effective new treatment passing to the next stage when the alternative hypothesis is true
and the power of the final significance test at Stage s respectively. As all s tests need
to be passed, the overall power cannot exceed (1 — )y, or (1 — 38)p. Following a similar

argument, the overall type I error may not exceed either ay, or ap.

According to Tsiatis, 1981, [137] we can approximate the variance under Hy using the

following formula

2
(09)% = (01,)* = o (6.3)
and
(0%)? = (0h)? = =
€D

where the es are the number of intermediate and primary outcome measure events re-
quired. Using this approximation and the type I and II error formulae given above we

can calculate the number of events as

o =2 _ 2
7092 T (ol)?

Following an argument similar to Royston et al. [103], who evaluate the above expression

for the two-stage case, we find that

finally
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2(2ay, — 214, )"
611. = (A}z — A(I)i)z (64)

and
e 2(ZQD - zl-,BD)2
D =
(B =85

(6.5)

6.2.2 Relationship between number of events and trial time

After the trial has been launched, patients will be recruited gradually over time. If none
of the experimental arms passes to the next stage, recruitment (but not necessarily follow-
up) will cease. In the case where one or more experimental arms pass on to the next stage
we assume that recruitment will continue at the same rate as in Stage 1. All available
patients are then randomised between the remaining arms. This means that the more
arms continue to the next stage the fewer patients each arm will receive and hence the

longer and more expensive the trial will be.

Define R(t) as the number of patients recruited to the control arm by time t. We can

now take
dR
T‘(t) = Et— (66)

to represent the instantaneous recruitment rate of patients. The expected number of

control arm survival events at time ¢ in a simple parallel group trial is then given by
t
e(t) = / F(t - u)r(u)du 6.7)
Jo

where F(t) =1 — S(t), S(t) being a survivorship function in the control group [103]. We

At

assume this survival distribution to be exponential, i.e. S(t) = e™*, since this is often

used in sample size derivations and allows for tractability. If we set r(t) = r with r being

a constant, i.e. assuming a constant recruitment rate, we arrive at the expression

et) = /(; [1—S(t—u)|r(u)du
= /t[l - e_’\(t'“)]rdu
Jo t
= r / [1 — e~ AE=w)dy
Jo

= rlu-— %e_’\(t_“)]f)
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Figure 6-2: Accrual to control arm in a two-stage trial
Hence
1—e M
e(t) =r(t- -—/\———) (6.8)

We now consider the total trial duration tp which is the time at which ep events are
accrued in the control arm. Let ¢t; denote the time at which in a two-stage trial Stage
1 terminates, that is, the time to accrue e; I-events in the control arm. Assume that
the (constant) recruitment rates per arm per unit time are 7y and 72 in Stages 1 and 2
respectively where r9 > ry. Furthermore, let Fp(t) be the distribution function for D-
events in the control arm. Considering Figure 6-2 we can see that ep may be calculated
in two separate integrals. The first one calculates the area under the triangle from 0 to
tp and up to the first arrow, the second integral calculates the area of the smaller triangle

lying above that. Thus combining this knowledge with Expression 6.7 above we get

tp tp—tr
ep =" Fp(tp —u)du+ (rg — 1) * / Fp(tp —tr — u)du
Jo 0

[103]. Since S(t) is assumed to follow an exponential distribution the formula calculated
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above may be modified to give

D tp—tr
ep = 1 ./Ot [1-S(tp — u)ldu+ (r2 — 1) *./0 1—-S(tp —tr — u)]du

1
= nifu— e O+ (rp = )u = ge N0t

1 — e—2ptD 1 — e—D{tp—tr)
= Tl(tD—T)+(T2‘T1)(tD—tI— py ) (6.9)

The number of intermediate endpoint events needed is then given by

1 —e MU

Al )

er =ri(tr —

We can extend this derivation to multi-stage trials with more than two stages to give

tp

tp—tn
ep = 1 FD(tD—u)du+(r2——r1)*/ Fp(tp —t;, —u)du+ ...
JO 0
tD—tIs—l

+(7's - "'s-—l) * / FD(tD =t — u)du
0

1 —_ e—ADtD 1 — e_AD(tD'—'tll)
= rl(tD— )+(7‘2—-7‘1)(tD—t11 - )+
/\D /\D
1— e~ p(tp=tr,_,)
+(’I"3 - Ts—l)(tD - tls—l - )‘
D

Since we take k to represent the number of experimental treatments used in the study,
Stage 1 will consist of k£ + 1 treatments. Now we assume that the rate of accrual in Stage

1 will be equal to the rate of accrual in Stage 2 of our study [103]. Hence

(k‘ + 1)’!‘1 = (kz + 1)7‘2

where k; is the number of experimental treatments at Stage 2 of the trial. This holds for

all s stages of the trial. Thus the total number of patients needed in the trial is given by

(k+ 1)ritp (6.10)

6.2.3 Algorithm used for Stata program

Since Formulae 6.4 and 6.5 for the number of events e;, and ep are based on an estimate
of the variance under Hy, they will slightly underestimate the true sample size needed

to achieve power 1 — 3. Hence the computer program available for Stata is based on the
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following algorithm in order to adjust for this:

1. Calculate the number of control I events e;, needed based on Formula 6.4.

2. Calculate the critical log hazard ratio Indy, = A(}i + 2oy, * (-ﬂ)

811.
3. Calculate the time t;, needed to run the trial until the end of Stage i using Section

6.2.2

4. Calculate the number of events in the experimental arm(s) ej under H; by the end

of Stage ¢ using an exponential survival distribution

5. Calculate power for Stage ¢ which can be achieved under e, and ej,

(a) If power is less than needed, replace ey, by e;, + 1 and rerun Steps 2. to 5.

(b) If power is as desired, terminate the algorithm

6.2.4 Other accrual mechanisms

Section 6.2.2 has employed a uniform recruitment pattern to aid calculations. However,
in a number of instances it is more appropriate to assume a different recruitment pattern
(see Chapter 3, Section 3.5), such as an exponential accrual path. An example of such
recruitment curves is given in Figure 3-3. Taking r(u) as exponential with parameter a

gives

t
e(t) = /e_‘"‘[l — e MWy
0

1 _ 1 e a—
au - ae au—A(t u)]f]
1 A —at 1 —At

= —=——te e

a a(A—a) +)\—a

Another possibility is to take r(u) as piecewise linear, i.e.

4
a; + bir O0<r<Rk
as+bar Ry <r <Ry

aj+bjr Rj_1<r<R;
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This expression may then be fed back into the derivation ofe(?). Figure 6-3 gives examples

of such accrual patterns with a target accrual of 103 patients.

Linear patient entry

120 n
B 100
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time
uniform
Figure 6-3: Piecewise linear patient accrual patterns

1 - al and bl are equal to one in first time increment and increase by one in
each increment, 2 - al and bl are equal to two in first time increment and increase by
two in each increment thereafter, 3 - al and bl are equal to three in first time increment
and double in each increment thereafter, uniform - uniform patient entry pattern starting
at 11in first time increment

6.2.5 Stopping accrual at a pre-specified time-point

So far we have assumed that recruitment may continue until the end of the trial, if needed.
However, there may be situations where it is more appropriate to stop recruiting to the
trial earlier on and after that only follow patients up. This allows one to restrict the
required sample size. Furthermore, when implementing these sample size calculations in
a computer program such as Stata, the following derivations are needed to account for
those treatment arms which do not proceed on to the next stage, i.e. to which no further

accrual takes place, but which are still being followed up.

Let t* denote the time at which accrual is stopped. Starting from a two-stage trial
only, there are two possible scenarios to consider. First we will look at the case ¢* > ¢|
where #j denotes the end of the first stage. Here we only need to consider the primary

outcome measure as the trial will proceed as before until the end of Stage 1. Denote the
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number of patients at risk at t* by Np(0,t*)

Np(0,t*) = (# patients recruited by t*) — (# events by t*)
= (# patients recruited by t;) + (# patients recruited between t,t*)
—(# events by t*)

= rit"+(rp—r)(t* —t;1) —ep(0,t*)

where
Fp(t* Fp(t* —t
ep(0,t*) = ry(t* )\( )) (rg — ) (t* —t; — ___._(_)T__ll)

which relates back to Formula 6.9. The probability of an event in the time interval
between t* and tp is given by Fp(tp — t*) and hence the number of events in this time

interval is given by

ep(t*,tp) = N(t*,tp)

The total number of events up to tp is then given by

ep(0,t*) + ep(t*,tp)

The second case to consider is t* < t;. First we derive the number of patients at risk

based on the of primary outcome events

Np(0,t*) = rit* —ep(0,¢*)
T

— 1 *

The number of events in the interval 0 to t* is given by

_ FD(t*))
AD

eD(O, t*) =7 (t'l

and

* Ir * *
ep(t*, tp) = :\—-II;FD(t VFp(tp — t*)

For the intermediate events the number of patients at risk is given by

,
Ni(0,t%) = -)TII-F,-(t*)
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and

61(0, t*) = Tl(t* — F%')')
1

as well as

er(t*,tr) = %F,(t*)F,(t, —t%)

This framework is easily extended to more than two stages. For the case that t* > t,_,

we have that

Np(0,t*) = rit* + (re —m)(t* —tr,) + ... + (1s — 76—1)(t* — t1,_,) — ep(0,t*)

and
Fp(t* . Fp(t* —t
eD(O,t*) = Tl(t*-—- l;( ))—+—(r2—r1)(t —-t; - D()‘ ]1))+...
D D
Fp(t* —t
s = et —ty,_, — T2 Hem)
D
as well as

ep(t*,tp) = N(0,t*)Fp(tp — t*)

For t* < tg,_, we define m as the number of stages in between ¢t* and s. Hence

ND(O, t*) = Tlt* + (7‘2 - 'rl)(t* - tll) + ...+ ('rs—m+1 - Ts_m)(t* — tI"_m) — 8D(0, t*)

and
. Fp(t* . Fp(t* —t
ep(0,t*) = m(t* - [/)\; ))+(T2—7‘1)(t —th—‘D(TDL))'*'m
Fp(t* —t,_.
Hammir = et = by, — 22 ezl
D
as well as

ep(t*,tp) = Np(0,¢") Fp(tp — t7)

The number of events for the intermediate endpoint can be derived in a similar manner

at all s — 1 stages.
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6.2.6 Probability of research arms continuing recruitment in Stage i

When planning a multi-stage trial it is important at the outset to consider the poten-
tial number of research arms in each of the stages. This allows the implementation of

safeguards for the cost and length of the trial.

When dealing with two stages only, we can calculate the probability of a research arm
progressing into the second stage using the Binomial distribution. In this case we are
calculating the probability of k£ or more research arms out of the total number of arms
in Stage 1 progressing into Stage 2 when the probability of ’success’ for a single research

research arm is given by ay under Hp and 1 — 3; under H;. Thus under Hyp
P(k > z) ~ Bin(k,ay)

and under H;
P(k > z) ~ Bin(k,1 - 8;)

However, these probabilities do not take the correlation between the hazard ratios for
the experimental arms compared with control into account. This exists since the same
control arm is used in each comparison. Furthermore, there is the correlation between
the log hazard ratios after each stage which should be taken into consideration. If an
experimental arm has passed the hurdle after Stage 1, it is more likely to have a sig-
nificant result in comparison with the control arm after Stage 2. Hence we compared
probabilities calculated using the Binomial distribution with simulation results based on
100,000 replications. The significance level a was taken as 0.05 and 0.025 in Stages 1
and 2 respectively. In addition, power is taken to be 95% in the first stage and 90% in
the last. For the simulation set-up the hazard ratio under H; for all experimental arms
compared to control was set at 0.752. This hazard ratio is based around the ICONS
trial described in Section 7.3.1. These simulation set-ups are described in more detail in
Chapter 7. Results from these studies are given in Tables 6.1 and 6.2. In general, the
binomial approximation performs pretty well. However, we can observe that the results
from the simulation studies give a flatter distribution of the probabilities over the number

of arms in Stage 2 of the trial.

An extension of this idea to more than two stages needs to take into account that in
order for a research arm to progress into Stage 3 it needs to have progressed from Stage

1 to Stage 2 already. Hence the number of ’successes’ in Stage 3 is dependent on the
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Approx. prob. of k experimental arms reaching Stage 2
k (# arms) 0 1 2 3

Under Hj calculated | 0.857 | 0.135 | 0.007 | 0.000
Under Hp simulated | 0.778 | 0.156 | 0.051 | 0.015
Under H; calculated | 0.000 | 0.007 | 0.135 | 0.858
Under H; simulated | 0.005 | 0.026 | 0.105 | 0.864

Table 6.1: Probabilities for number of experimental arms reaching Stage 2 of a two-stage
trial

Experimental arm 2
Under Hyg Under H;
Experimental arm 3 E-;perirnental arm 3
Under Hg | Under H; | Under Hg | Under H;
Exp. arm 1 | Under Hp 0.778 0.056 0.057 0.013
Under H; 0.056 0.013 0.014 0.005

Table 6.2: Probabilities for zero experimental arms reaching Stage 2 of a two-stage trial
from simulation results run on 100,000 replications while varying the simulation of the
experimental arms under HO and H1

number of ’successes’ in Stage 2. The same argument follows for Stages 4, 5, etc.. This is
illustrated in the decision tree in Figure 6-4. Hence if k; denotes the number of treatment

arms in a given stage and z is the number of ’successes’
P(ks = :13) = P(ks = l‘lks_l Z x, ...,k'g Z (E)

Each of these probabilities may be calculated using the binomial distribution. As an
example consider a trial run in three stages with three experimental arms and one control.
The significance level a was taken as 0.25, 0.1 and 0.025 in Stages 1, 2 and 3 respectively.
In addition, power is taken to be 95% in the first two stages and 90% in the last. Using
Figure 6-4 we can calculate the probability of having two arms in Stage 3 under H; using

the Binomial distribution as follows

P(ka = 2) = P(kg = 2“62 = 3) *P(kz = 3) +P(k3 = 2|k2 = 2) * P(kg = 2)
= 0.859 x0.134 + 0.134 * 0.9025

= 0.237

The complete results are displayed in Table 6.3. The table also gives probabilities calcu-
lated from simulation studies using 100,000 replications. For the simulation set-up the
hazard ratio under H; was set at 0.752 for all arms in all three stages. The results indi-

cate that while the calculations for the probabilities using the binomial distribution and
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P

Stage 1 Stage 2 Stage 3

Figure 6-4: Decision tree for a multi-stage trial with three experimental arms and three
stages

decision tree approach are not exact, they are a good indication of what might happen
in a trial setting. However, there are some important differences for small probabilities.
For example, under Hy the calculated probability of 3 arms reaching Stage 3 is zero but

in the simulation setting we still observed three arms in Stage 3 in 1% of trials.

6.2.7 Estimation of the correlation matrix

In order to estimate the correlation matrix R needed for the calculation of the overall
type I error and power defined in Section 6.2.1 we bootstrapped patient data from the
previously conducted trial ICON3. Estimates of the log hazard ratio for trials with more
than two stages were obtained by dividing ICON3 into several periods at which the hazard
ratio for the intermediate outcome was calculated. The elements of R were then estimated

using the bootstrap results and are based on 1,000 replications. Table 6.4 illustrates the
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Approx. prob. of k experimental arms reaching Stage 2
k (# arms) 0 1 2 3
Under Hy calculated | 0.422 | 0.422 | 0.141 | 0.016
Under Hy simulated | 0.528 | 0.251 | 0.145 | 0.075
Under Hj calculated | 0.000 | 0.007 | 0.134 | 0.859
Under H; simulated | 0.014 | 0.052 1 0.166 | 0.768

Approx. prob. of k experimental arms reaching Stage 3
k (# arms) 0 1 2 3

Under Hj calculated | 0.928 | 0.042 | 0.000 | 0.000
Under Hjy simulated | 0.803 | 0.141 | 0.044 | 0.012
Under H; calculated | 0.001 | 0.025 | 0.237 | 0.737
Under H; simulated | 0.027 | 0.085 | 0.214 | 0.673

Table 6.3: Probabilites for number of experimental arms reaching Stages 2 and 3 of a
three-stage trial

InAy, | InAp, | InAy | InA;, | InA | InAp | InAp
lnAIl 1
InAr, 10.6772 | 1
InA,, | 0.5692 | 0.8182 | 1
InAy, ] 0.5155 ] 0.7292 | 0.9054 | 1
InAy, ] 0.4671 | 0.6781 | 0.8369 | 0.9230 | 1
InAp, | 0.2799 | 0.4407 | 0.5504 | 0.6106 | 0.6785 | 1
InAp 10.2024 | 0.3099 | 0.3902 | 0.4386 | 0.4786 | 0.6625 | 1

Table 6.4: Bootstrap results for correlation matrix P based on ICON3 results
InA;, gives the log hazard ratio for the intermediate outcome after 50, 100, 150, 200,
250 and 500 I events and 830 D events in the control group respectively, InAp gives the
log hazard ratio for the primary outcome based on the full dataset available from the

study

results. Figure 6-5 illustrates these results graphically. Hence we can see that the strength
of correlation increases the closer the log hazard ratios lie together in terms of numbers
of intermediate and primary events in the control arm. Additionally, we can see that
for stages with I outcomes it is not sufficient to assume a correlation of one, i.e. perfect
correlation between the stages. Another important observation is that the test statistics
for early stages based on I events in the control arm have a low correlation with the test
statistic at the end of the trial. Therefore, in very early stages in such a trial treatments

should not be rejected unlesss they are shown to be worse than control.

In addition, Figure 6-5 demonstrates that an assumption of bivariate normality be-
tween the hazard ratios is reasonable. These plots show the ellipsoidal swarm of points
which is characteristic of the bivariate Normal distribution (Rice, p. 82 [100]). This is
very apparent in the plot for the relationship between a log hazard ratio after 200 and

250 I events.
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Figure 6-5: Joint distributions of the log HR for D and I events - illustrating strength of
correlation at varying time points

This analysis also illustrates the difficulty in choosing an adequate specification of
the correlation matrix. Hence more trials would need to be analysed to obtain a clearer
picture in different disease areas. However, the choice of this matrix is important in order

to calculate overall power and significance level of a multi-stage trial.

In order to see the impact on overall power and significance level of specifying a certain

correlation structure we varied R in a three-stage trial three times to get

1 06 0.6

Ri = 06 1 0.6
06 06 1

1 06 05

R2= 06 1 0.7
05 07 1
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o overall | Power overall
R; } 0.0086 88.7%
Ry ] 0.0102 88.8%
R3 | 0.0123 89.3%

Table 6.5: Overall power and significance level a under different correlation structures
a Stage 1 = 0.25, a Stage 2 = 0.05, a Stage 3= 0.025, power for all stages = 0.95%

and
1 06 03

R3=106 1 09
03 09 1

The resulting impact on overall power and significance level is illustrated in Table 6.5. It
is apparent that varying the correlation structure has very little impact on overall power.
The impact on overall significance level is more apparent but still not very large. Results

from an extensive simulation study are illustrated in Section 7.4.3.

6.3 Investigation of assumptions

6.3.1 Variance of the log hazard ratio

The calculations for sample size in a multi-stage trial using the Stata program whose

algorithm is given in Section 6.2.1 centre around an approximation for the variance of

the log hazard ratio given by

1
var(A) = e_ll + P (6.11)

where e; and ey are the number of events in the first and second treatment group respec-
tively [92]. Hence we decided to investigate whether this relationship breaks down at any

point.

Simulations were performed in Stata 8. Design specifications for all sets of simulations
were two years of accrual, two years of follow-up, uniform accrual, exponential survival
and one year median survival in the control group. The probability p of being allocated
to the control treatment group was varied between %, %, % and %412 and the hazard ratio
was varied between 0.5, 0.7 and 0.9 in favour of the experimental treatment group. The
variance estimate given in Expression 6.11 was calculated as well as an estimate from the
Cox model available from Stata. In Figure 6-6 the mean difference for the variance esti-

mates is based on 10,000 simulated trials. This difference is also illustrated in percentage
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terms in Figures 6-7 and 6-8. As sample sizes come close to zero simulations become less
robust due to small sample issues and variance values shoot off the scale. Hence, some

observations have been omitted for small values of N.

From the tables it is apparent that for high N, e.g. 1000 patients (and thus a high
number of events), there is little difference between either calculation of variance. How-
ever, lower sample sizes, which result in 40 events or less, do display a greater degree
of disparity between Equation 6.11 and the variance given by the Cox model. This is
important since the multi-stage trials may in some cases have stages where less than 40
events are accrued per stage. Future work may hence include an improvement of this

variance approximation.

6.3.2 Exponential survival

The derivation of the sample size calculations given above as well as their implementa-
tion in Stata 8 rely on exponential survival distributions. This assumption is common
to many sample size formulae for time-to-event outcomes, such as Schoenfeld [114] and
Freedman [41], as it eases calculations and is applicable in many trial settings. In some
trial situations the assumption of exponential survival patterns, however, may not be
appropriate. Ignoring this may then lead to underpowered trials as events come in later
than expected. An example of a trial in breast cancer is given in Figure 6-9. In this
case the actual survival distribution follows a flatter pattern than the single exponential
distribution during the first year. After that, the rate of death increases, causing both
curves to cross during year 4. One possible solution to this problem would be the imple-
mentation of a piecewise exponential distribution. This follows the Kaplan-Meier curve
very closely in this example. The implementation of this methodology in the case of
parallel group trials was described in Chapter 3. Further work is required to incorporate

it into the multi-stage framework.

Another option would be to allow the user to read in the actual survival distribution
for the control group taken from previous trials. By transforming this into the cumulative
hazard function, working out the required sample size and other quantities on that time
scale and then transforming back to the original scale, the above calculations would then
still be valid, regardless of the form of the actual distribution. After transforming to the
cumulative hazard function a model needs to be found which fits this function closely. Two

methods were explored for the ICONS trial. In the first instance a fractional polynomial
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Figure 6-6: Overview of difference in variance under approxima-
tion and from Cox model - for hazard ratios 0.5, 0.7 and 0.9

mean difference - mean difference between variance calculated under approxima-
tion and from Cox model, p - probability of being allocated to control treatment group,
N - number of patients, based on 10,000 replications
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Figure 6-7: Detail of % difference in variance under approximation and from
Cox model for N between 100 and 1000 - for hazard ratios 0.5, 0.7 and 0.9
% mean difference - mean difference in percent between variance calculated under ap-
proximation and from Cox model, p - probability of being allocated to control treatment
group, N - number of patients, based on 10,000 replications
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Figure 6-8: Detail of % difference in variance under approximation and from
Cox model for N between 10 and 100 - for hazard ratios 0.5, 0.7 and 0.9
% mean difference - mean difference in percent between variance calculated under ap-
proximation and from Cox model, p - probability of being allocated to control treatment
group, N - number of patients, based on 10,000 replications
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Figure 6-9: Trial example for non-exponential survival



regression was fit. The results suggest that a fractional polynomial of degree 2 with
power 0 and -1 has the best fit (deviance = -3454.249). This is illustrated in Figure 6-10.

An alternative is to fit a spline function. In this case we compared the fit of a Weibull

0 500 1000 1500 2000 2500

Figure 6-10: Using fractional polynomials (dotted line) to follow the path of the Nelson-
Aalen estimate (solid line) of the cumulative hazard

(one degree of freedom) with that of a function with three degrees of freedom. As is

apparent in Figure 6-11, the function with three degrees of freedom is more appropriate.

However, the piecewise exponential method may be preferable since it will allow
a greater degree of flexibility, for example, it provides for the incorporation of non-

proportional hazards.

6.4 Trial examples

6.4.1 ICONG6

ICONG6 is a proposed multi-stage, multi-arm clinical trial in ovarian cancer. The main

objectives of this trial are to compare the efficacy of each experimental arm consisting
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Figure 6-11: Using spline functions to follow the path
of the Nelson-Aalen estimate of the cumulative hazard

HH1 - spline with one degree of freedom (Weibull), HH3 - spline with three de-
grees of freedom

of chemotherapy plus a biological agent with the reference arm of chemotherapy alone
in patients with relapsed ovarian cancer. Efficacy is to be compared through analysis of
overall survival at the final stage and progression free survival at the intermediate stages.
Possible design characteristics are given in Table 6.6 for a trial being conducted over three

stages. Overall power and significance level were calculated with a correlation structure

R
1 06 05
06 1 0.7
05 07 1

Corresponding sample size and time requirements for several possible scenarios are illus-

trated by Table 6.7.
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Stage Difference to | ¢ « power | # events required
be detected in control arm

I HR | 0.70 091 | 0.25 | 95% 94

II HR | 0.70 0.84 | 0.05 | 95% 181

III HR | 0.75 N/A | 0.025 | 95% 330

Overall | Pairwise 0.010 | 89%

Table 6.6: ICONG6 design characteristics

Design | # arms # patients in reference arm and accrual Total | Total Time

in stage period (years) in stage N

I II III

IJIIJII|N time | Add. N | time | Add. N | time accrual | analysis
1 41010 191|191} - - - - 764 1.91 1.91
2 41212 191 | 1.91 | 158 2.70 | 260 4.00 | 1600 | 4.00 4.77
3 413 ]2 191 ) 1.91 | 123 2.83 | 234 4.00 | 1600 | 4.00 5.18
4 41414 J191]191 | 101 2.92 | 208 5.00 | 2000 | 5.00 5.90

Table 6.7: ICONG6 scenarios - sample size and trial time by stage

The first stage in this design may be used to identify compounds which demonstrate
sufficient activity and have acceptable toxicity. This is similar to a Phase II trial. For all
scenarios given in Table 6.7 it was decided that the total accrual time should not exceed
four years, except if all arms go through to Stage 3, in which case accrual is to be stopped
after five years. This provides a safeguard on the number of patients to be accrued in
total. In addition, all calculations assume that 400 patients may be accrued to the trial

per calendar year.

6.4.2 STAMPEDE

STAMPEDE is a multi-stage, multi-arm trial in men with prostate cancer conducted
at the MRC Clinical Trials Unit. This trial aims to assess three alternative classes of
treatments in men starting androgen suppression. Five experimental arms are compared
with a control of androgen suppression alone in five stages. In this case the first stage is
used as a randomised pilot phase carried out to confirm feasibility and safety of treatments
when used in combination with androgen suppression. Stages 2 to 4 are a randomised
comparison of compounds shown to be safe using the intermediate outcome measure of
failure free survival. The final analysis is then carried out in Stage 5 as a comparison of
all those arms carried over from Stage 4 with the control based on overall survival as the
primary outcome measure. Hence in terms of the multi-arm, multi-stage design and its

calculations we are only dealing with four stages.
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Stage Difference to I ) a power | # events required | Expected total
be detected in reference arm # patients

I Pilot | n/a | n/a | n/a | n/a n/a 210

II HR 075 |]1.00]0.5 95% 115 1200

II1 HR ]0.75 [0.92]0.25 | 95% 225 1800

v HR ]0.75 ]10.89]0.1 95% 350 2400

\% HR ]0.75 | n/a | 0.025 | 90% 440 3200

Overall | Pairwise 0.017 | 84%

Table 6.8: STAMPEDE design characteristics

The operating characteristics and resulting number of events required at the end of
each stage are illustrated in Table 6.8. A similar correlation structure R to that for

ICONG6 above was used to calculated overall power and significance level, i.e.

1 06 05 04
06 1 07 07
05 07 1 038
04 07 08 1

R=

This is based on the discussion of the correlation matrix in Section 6.2.7. As we can see
in Table 6.8 high levels of the significance level a were chosen for Stages 2 to 4. The aim
here is to avoid rejecting a potentially promising treatment arm too early on in the trial
while at the same rejecting any treatments which are worse than the critical value §. Due
to the parameter values chosen a treatment will therefore pass from Stage 2 to Stage 3 if
it shows any beneficial effect in comparison with the control arm. A higher significance
level early on in the trial also means that we will not have to wait too long for the first

comparisons while maintaining a reasonable power.

6.5 Discussion

The methodology presented in this chapter aims to address the pressing need for new
additions to the ’product development toolkit’ for clinical trials to achieve reliable results
more quickly. The approach has two distinguishing characteristics: we compare many
new therapies at once against a control treatment and we reject ineffective therapies on
the basis of an intermediate outcome measure, by a randomised comparison of each new

arm against the control.

A design first introduced by Royston et al. [103] has been extended to more than
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two stages. The underlying assumptions were examined and further improvements to the

methodology were suggested particular in the area of non-exponential survival.

The calculation of overall Type I and II errors in this methodology depends upon
the ability to adequately specify the correlation structure between the intermediate and
primary outcomes. While some progress has been made in this area using studies on
ovarian cancer with two survival-type outcomes, other cancer types and other outcome
measures still require further work. Hence we propose to examine the correlation be-
tween the intermediate outcome measure and the final outcome measure, using already

completed studies, to assess the likely ranges to help design multi-stage trials.

One area of criticism raised at presentations of this methodology is the potential
introduction of bias. This may arise because treatments are selected at one or more
interim stages and the trial is sequentially monitored. Both of these could lead to an over-
estimation of the treatment effect at the end of the trial. While the original publication
states that such bias is avoided by reporting treatment effects for those treatments which
were dropped early at the end of the trial also, this issue warrants further examination. In
an academic setting such as ours patients on treatments which are not taken forward into
the next stage would still be followed up and analysed at the end of the trial. However,
if this design were taken to a pharmaceutical setting where economic considerations are
more pressing, such treatment arms could potentially be disregarded in the final analysis

which may then lead to bias in the estimates for the dropped treatment arms.

These types of trials are complex to set up since negotiations may need to be held with
many stakeholders, perhaps for example many companies and several national groups in
order to allow a number of different experimental treatments arms to be tested at once.
Furthermore, patients could be deterred by the more complex design, though that has not
been the experience to date. In addition a design such as this will require more training

for participating physicians and research staff.
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Chapter 7

Robustness of multi-stage trials

7.1 Introduction

This chapter provides an assessment of the validity of the sample size calculations for
multi-stage trials as illustrated in Chapter 6 using simulation studies. In particular, we

wish to investigate the performance of the implementation of the methodology in Stata.

2 Stage Trial Designs

Stage 1 _]Stagc 2 | Further options |

set-up

Numbet of arms |5 Overall accrual (1000
Survival probability 0.5 Survival time [1-5

Alpha (one-sided) jo.05 Omega (power) (0 95

Arms

Hazard ratio under HO fl~ Hazard ratio under HI [0.75
Allocation ratio i / Design for one stage only

© O OK Cancel I Submit

Figure 7-1: Two-stage sample size program designed for Stata 8

Parameters of key importance are the power and significance level in each stage and in the
trial overall. In this context, the literature concerning bivariate exponential distributions
is reviewed and a bivariate exponential model based on an extension to the bivariate

standard normal distribution introduced. Furthermore, assumptions of the sample size
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method are investigated and 'shocks’ to the model explored.

7.2 Bivariate exponential distributions

We wish to simulate patients who experience disease progression, e.g. tumour growth
in cancer, and death at a certain time point. These time points need to be randomly
generated and there is a correlation between time to progression, X, and time to death,
Y, for each patient. Since both time to progression or death and time to death are
assumed to follow an exponential distribution in the derivation of the sample size formula
in Chapter 6 it is convenient to require that both time to progression and time to death
stem from a bivariate exponential distribution with marginal exponential distributions.
As shown by Fréchet [40] this bivariate exponential distribution will not be unique; indeed
he has proven that for a given marginal distribution there exist infinitely many bivariate
distributions which can be defined by these margins. The desired properties for our

bivariate exponential distribution are as follows:

e proportional hazards and X and Y both follow exponential marginal distributions
e min(X,Y) ~ Exponential
® 0<pxy<=<1

In the following we examine the properties of some of these distributions. We assess

whether these are applicable to our framework and introduce our model.

7.2.1 Gumbel

Gumbel [53] gave one of the first introductions to bivariate exponential models whereby
he analysed the properties of two bivariate distributions with exponential margins. Up to
that point most bivariate distributions studied were based around the normal distribution
with concentric ellipses forming the curves of equal probability densities and straight line
regression curves which intersect at the origin. Gumbel’s bivariate exponential density

functions are given by

F(z,y)=1—€e% —e¥ 4 e 2 ¥ 02y (7.1)
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forx >0,y >0, where 0 < 4 <1, and
F(z,y) =(1-e*)(1—€e Y1+ ae "7 (7.2)

where —1 < a < 1. For the first distribution as defined by the density function in
Equation 7.1 the conditional expectation of one variable, X or Y, decreases to zero with
increasing values of the other. The coefficient of correlation p(z,Y’) is a function of the
parameter

el/6

p= -—T Ei(-—d_l) - 1

whereby Ei(—67!) represents the exponential integral of —6~!. The correlation p is in
this case never positive and lies in the interval —0.4 < p < 0. In the case of the second
distribution, Equation 7.2, the conditional expectation of one variable, X or Y, increases
or decreases with increasing values of that variable, X or Y, whereby this depends on the
sign of the correlation. Here the correlation lies in the interval —0.25 < p < 0.25 and is

a function of a such that

P=Z

Due to the range of the correlation coefficients both these distributions are not applicable

to our simulation problem.

7.2.2 Marshall and Olkin

While the derivations of the bivariate exponential distributions by Gumbel were not
motivated by one particular practical problem, Marshall & Olkin [83] decided to obtain
a multivariate exponential distribution based on ’'fatal shock models’. Three different
methods of derivation all leading to the same distribution are provided in their paper,
whereby the first two are based around the ’shock models’ and the last on the requirement
that residual life is independent of age which is known as the loss of memory property
(LMP). These different derivations underline the wide range of possible uses of their

distribution. The density function common to all three derivations is given by
F(z,y) = exp|[—A1z — Aoy — A12 max(z, y)] (7.3)

for ,y > 0 whereby X and Y follow exponential marginal distributions with para-

meters A\; and Ao respectively. This density is often referred to in the literature as
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BV E(A1, A2, A12). However, the BV E allows for the possibility that X = Y occurs
with positive probability. This property arises since the distribution has both an ab-
solutely continuous and a singular part whereby the singular part is a reflection of the
fact that X = Y. Hence according to Theorem 3.1 of their paper if density F(z,y) is
BV E(A1, A2, A12) and A = Aj + A2 + Aj2 then

A1t A
)

Fale,y) + 22 F,(z,y) (7.4)

F(z,y) 3

with the absolutely continuous part of the density

A
exp [~ A1z — Aoy — A2 max(, y)] — ———— exp [~ Amax(z,y)] (7.5)

Fo(z,y) = N

A
A1+ Ao

and the singular part given by
Fs (:B, y) = exp [_’\ max(x, y)] (76)

In the context of 'shock models’ this situation may arise when failure is caused by a shock
felt by both items or if an essential input fails which is common to both items. In our
situation it is difficult to imagine a situation where such an event may arise since the

detection of disease progression and death are unlikely to occur in the same instance.

Still, the density provides a correlation between X and Y which is in the range 0 <
p <1 and can be calculated as
A12

pP= (7.7)

where A = A1 + A2 + Aj2. Another useful property of the distribution is that min(X,Y)
follows an exponential distribution with parameter A and min(X,Y) is independent of
X — Y. This is illustrated by simulation studies in Figure 7-2. The distribution also
retains the loss of memory property (LMP). It was proven by Block & Basu [12] that
the only absolutely continuous bivariate distribution with exponential marginals and the
LMP is a bivariate distribution with independent exponential marginals. Hence we need
to sacrifice the LMP if we want to obtain a distribution which is absolutely continuous

and has correlation in the range 0 < p <1 as required for our simulations.
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7.2.3 Downton

The bivariate exponential distribution defined by Downton [28] was motivated by the
BV E, however, he required absolute continuity of the density in his derivation. The
model itself is based on successive damage whereby the damage is supposed to accumulate
until it reaches a level sufficient to cause failure in the component. Downton assumes that
a single component receives successive shocks with times between these being independent
identically distributed random variables. This leads to the joint density function of the

two marginally exponential distributed component lifetimes as

o) = % exp (_l“lftﬁ?y) Io {2\/ (/lw_l;;zwy)} (78)

with g, > 0 and 0 < p < 1. This density is a special case of the bivariate gamma

distribution as discussed by Kibble [65].

However, it can be shown that min(X,Y) is not exponential, although it is stated
in the paper to be a close approximation through simulation studies. Our own studies
illustrated in Figure 7-3 show that while a histogram of the actual min(X,Y’) follows the
exponential distribution relatively well, its backtransformation to a uniform does not.
Downton’s paper provides a comparison with the bivariate exponential distribution by
Marshall & Olkin in terms of the effect of the correlation on both the mean and variance
of the smaller and larger of the two variables. We can note that while the effect of an
increasing correlation is linear on the mean under the ’fatal shock model’ it follows a
more gradual path in the case of the ’successive damage model’ whereby the mean of the
larger variable decreases with increasing correlation and the mean of the smaller variable
increases with increasing correlation. The effect on the variance of the two variables is
very similar under both models, however, it is interesting to note that the effect of the
correlation on the larger variable is to cause an initial rise in the variance in the ’fatal

shock model’ while the variance gradually decreases under the ’successive damage model’.

7.2.4 Sarkar

Another potential bivariate exponential model for our simulation studies was provided by
Sarkar [108] under the name of ACBV E» (Absolutely Continuous BVE). This distribution
is closely based on the BV E in its properties, however, the requirement was for it to be

absolutely continuous as the name suggests. Hence the LMP needs to be abandoned as
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explained above. Apart from that it retains the properties of the BVE that X and Y
are marginally exponential and that the min(X,Y’) is again exponential. If X and Y are
ACBV E3(A1, A2, A\12) where Ay > 0, A2 > 0 and Aj2 > 0 then the density function is
given by

exp {—(A2 + A12)y} {1 — [1 —exp(=A1y)] *[1 —exp(-Mz)]'**} 0<z<y

exp {—(A1 + Ai2)z} {1 — [1 —exp(—Xoz)] 7*[1 — exp(—Agy)! '} z>y>0
(7.9)

F(:E, y) =

where v = A12/(A1 + A2). If A2 = 0, X and Y are independent. Furthermore, the cor-
relation is in the range 0 < pgyp(X,Y) < pacpvE,(X,Y) < 1 whereby pgyp(X,Y) =
PacBvE,(X,Y)iff X and Y are independent. Simulation results show that the maximum
absolute discrepancy for a given parameter combination A(A1, A2, A\12) between this dis-
tribution and the BV E is 1/16. One important drawback of this distribution is, however,

that it is difficult to simulate from it.

7.2.5 Normal bivariate exponential (NBVE)

Due to the difficulty to simulate from those distributions described above which do hold
the properties found to be critical for our simulation studies, we derived the model de-
scribed in the following. So far we have found no literature references for this approach.

A number of closely related distributions are described in Patil et al. [93].

The bivariate exponential model we chose for our initial simulation studies is based

on a transformation of the bivariate standard normal distribution with pdf defined as

flu,v,p) = m exp {—ﬁ(tﬁ — 2puv + 112)} (7.10)

We first simulate U and V from a bivariate standard normal distribution. By definition

U and V then follow marginal standard normal distributions [100], i.e.
U~ N(0,1)

and

V ~ N(0,1)

By first transforming these into uniform random numbers A and B and then taking the
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logarithm

X:—Mm*%
and
Y=—mm*%

we obtain X and Y which are marginally exponential distributed with parameters A; and
A2 and retain the range for the correlation of the bivariate standard normal distribution.
The functional form may be found by using a Jacobian transformation, i.e. by treating
X and Y as a transformation of U and V. Hence this approach will be referred to as
NBVE. Since U and V have correlation 0 < py, < 1, the transformed variables X and
Y will also have correlation 0 < px y < 1. However, although the min(X,Y’) is close to
an exponential distribution, it is not exactly exponential as simulation studies illustrated

in Figure 7-4 have shown.

The approximation appears to be sufficient though for an initial assessment of the
robustness of the sample size calculations when we compare it to simulation results of the

BVE as given in Figure 7-2.

7.3 Performance of the methodology

7.3.1 Simulation designs

Our simulations studies were conducted in Stata 8 and results are based on 5000 replica-
tions of each trial set-up. We simulated time to progression and time to death as variables
X and Y stemming from the NBV E as explained above. Progression free survival time
was then taken as min(X,Y’). Results for the significance level a are obtained from sim-
ulations run under the null hypothesis, i.e. with a hazard ratio of one. In order to make
our scenarios as realistic as possible we based the parameters around those of ICONS.
This is a trial in ovarian cancer recently conducted at the MRC in collaboration with
centres in the USA, mainland Europe and Australia using the two-stage design with four
experimental arms and one control arm. Sample size and number of event requirements
for this trial are illustrated in Figure 7-5 for one experimental arm going through to Stage

2 only.
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7.3.2 General comments on the calculation of power

In all of the tables we provide a calculation of pairwise power for each stage separately
as well as an estimate of overall power in the trial. The pairwise power for Stage 2 is

conditional on that treatment arm having passed to Stage 2.

Pairwise power in Stage 1 is calculated for each comparison of an experimental arm
with the control by counting the number of times that the x? statistic is greater than its
reference value from the x? tables. From this we then subtract the number of times that
the hazard ratio is greater than one and divide the result by the number of repetitions

used in each dataset, i.e.

#(* > xia) —#(HR>1)
#(repetitions)

Powerl =

This resulting power should be the same or close to the power calculated by using Formula
6.2 in Chapter 6. We will get a very similar result if we count the number of times that
the hazard ratio is smaller than the cut-off § under the alternative hypothesis H;, divide

by the number of repetitions and subtract that from one, i.e.

(#(HR <6) — #(HR > 1))
#(repetitions)

Powerl alternative =1 —

Pairwise conditional power for Stages 2 and 3 is calculated in a similar way to power
for Stage 1 but we need to subtract the number of times that the arm was stopped at the
previous stage from the number of repetitions, i.e.

#0* >xi_o) —#(HR > 1)
#(repetitions) — #(arms stopped)

Power2|arm passed to Stage 2 =

Overall power after Stage 2 or Stage 3, which is the probability that the log hazard
ratio is smaller than the cut-off in all Stages under Hj, is obtained in the same way as
Power2 without subtracting the number of trials stopped. This result should be close to

overall power calculated through Formula 6.1 in Chapter 6.

We illustrate the above description with an example which corresponds to the second

line of results in Table 7.3. In this case we get for Stage 1 that

4675 — 2
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or
305 — 2

5000 = 0.939

Powerl alternative =1 —

For conditional power in Stage 2 the example gives

4610 — 306

and overall power may be calculated as

4610 — 306
Power overall = 000 = 0.861

The significance level may be obtained in a similar manner from the simulation

datasets.

7.3.3 One stage only

This set of simulations was run to assess the performance of the program for designing a
standard parallel group trial, i.e. using the first stage calculations of the program only.
Our aim was to find out whether target power and significance level are attained for a
variety of trial scenarios. Hence the simulation sets included variations of the hazard
ratio (HR), accrual rates of patients per unit time, and target power to ascertain that
there is no particular combination which performs best / worst. All calculations were
designed to achieve a 5% one-sided significance level a. Since results in Tables 7.1 and
7.2 are based on 5000 replications, these have a standard error of approximately 0.4%
and hence a confidence interval around the nominal power of 90% ranging from 89.2 to
90.8%. Similarly, the confidence interval around a significance level of 5% ranges from

4.2 to 5.8%. Median survival in the control treatment group was taken to be one year.

We can observe that target power is maintained for all scenarios as displayed in Table
7.1. Since the approximation of the variance of the log hazard ratio as given in Formula
6.3 in Chapter 6 is derived from the Cox proportional hazards test, we also explored
whether using that test instead of the logrank test in our simulation studies would give

us similar results. However, the resulting power was almost identical.

Results for the significance level are also encouraging. As Table 7.2 illustrates, the

significance level is robust to variations in target power.
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HR | accrual rate | p N target power | power

0.6 700 0.5 ] 596 90 89.8

0.6 800 0.5] 638 90 90.3

0.6 900 05] 674 90 90.2

0.6 1000 0.5 1 706 90 89.2

0.7 1000 0.5 ] 1022 90 89.6

0.8 1000 0.5] 1718 90 89.8

0.9 1000 0.5 | 4494 90 90.2
Table 7.1 Simulation results for power for one
stage only, one control and one experimental group

HR - hazard ratio in favour of experimental group in comparison with control, ac-
crual rate - rate of patients accrued per unit time, p - probability of being allocated to
control treatment group, N - sample size calculated for target power and 5% significance
level, power - power achieved through simulation with sample size N

HR | accrual rate | p N target power | target & | «

0.6 700 0.5 ] 424 70 5 4.6

0.6 700 0.5 496 80 5 5.1

0.6 700 0.5 ] 596 90 5 4.8

0.6 700 0.5 ] 686 95 5 5.3

0.6 800 0.5] 638 90 5 4.8

0.6 900 05| 674 90 ) 5.5

0.6 1000 0.5 | 706 90 5 4.8

0.7 1000 0.5 | 1022 90 5 5.1

0.8 1000 0.5 | 1718 90 5 4.8

0.9 1000 0.5 | 4494 90 5 4.9
Table 7.2: Simulation results for the significance level for
one stage only, one control and one experimental group

HR - hazard ratio in favour of experimental group in comparison with control, ac-
crual rate - rate of patients accrued per unit time, p - probability of being allocated to
control treatment group, N - sample size calculated for target alpha and 90% power, « -
significance level achieved through simulation with sample size N

7.3.4 Two arms

Our next performance assessment was based around a two-stage trial where we have one
experimental and one control treatment group in both stages of the trial. The main
concern was again the robustness of power and the significance level in a variety of trial
settings. One particular focus here was on the assessment of overall power and significance

level achieved.

Time to progression and time to death were simulated as correlated exponentials from
the NBVE model. In all simulated datasets median survival for the progression free
survival time was taken to be one unit of time and median survival for overall survival

was set at two units of time. In addition, the correlation p between the primary and
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intermediate outcome was fixed at 0.6. We refer the reader to Section 7.4.3 for the

impact of variations in p on both power and the significance level.

For the analysis of power the accrual rate in Stages 1 and 2 was varied as well as target
power after Stage 2. The significance level was taken as fixed at 5% in Stage 1 and 2.5%
in Stage 2. As Table 7.3 shows power in Stage 1 is below the confidence bounds while
power in Stage 2 is close to the nominal power though it overshoots in some cases. Overall
power is slightly lower than estimated by the program which is given at approximately
87% if we have a power of 95% in Stage 1 and 90% in Stage 2. However, we do not expect
to get exact results with these simulations since min(X,Y") is only close to an exponential
distribution in the bivariate exponential distribution NBVE. Again, we ran a second set
of simulations using the Cox proportional hazards test for analysis instead of the logrank

test. These results are given in Table 7.4. In general, this provides no improvement.

HR accrual accrual N1 N2 target power | target power 2 power overall power
rate 1 rate 2 power 1 power 2 program overall
0.752 700 700 1290 1424 95 92.9 L] R1.5 78.4 76.2
0.752 700 700 1290 1689 95 93.5 90 91.7 R7.4 R6.1
0.752 700 700 1290 1913 95 93.8 95 96.2 91.6 90.6
0.752 700 1000 1290 1476 95 93.7 80 80.6 78.4 75.9
0.752 700 1000 1290 1824 95 93.4 90 91.3 R7.4 RH.7
0.752 700 1000 1290 2106 95 93.6 95 96.3 91.6 90.5
0.752 1000 700 1494 1620 95 93.3 80 82.1 78.4 77.0
0.752 1000 700 1494 15438 95 93.4 90 92.3 87.4 86.7
0.752 1000 700 1494 2060 95 93.4 95 96.2 91.6 90.3
0.752 1000 1000 1494 1670 95 92.9 L1} 81.2 784 75.9
0.752 1000 1000 1494 1974 95 93.4 90 91.6 87.4 86.0
0.752 1000 1000 1494 2233 95 93.8 95 95.8 91.6 90.4

Table 7.3: Simulation results for power for two stages, one control and one experimental

group
HR - hazard ratio in favour of experimental group in comparison with control, accrual

rate - rate of patients accrued per unit time, N - sample size calculated for target power
and 5% and 2.5% significance level in Stages 1 and 2 respectively, power - power achieved
through simulation with sample size N, power overall program - overall power as given
by sample size program

Simulation sets to assess the robustness of the significance level focused on variations
in the rate of patient accrual in Stages 1 and 2 as well as variations in the significance
levels of Stages 1 and 2. Power was fixed at 95% and 90% in Stage 1 and 2 respectively.
Results from this analysis are displayed in Table 7.5. Overall it is apparent that the
significance level is more robust than power. The significance level is nearly always

within the confidence intervals of the corresponding target level. The only exception is
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HR accrual accrual N1 N2 target power 1 target power 2 power overall power
rate 1 rate 2 power 1 power 2 program overall
0.752 700 700 1290 1424 95 93.2 80 R&1.3 78.4 76.3
0.752 700 700 1290 1689 95 92.9 90 91.6 87.4 85.5
0.752 700 700 1290 1913 95 93.3 95 96.4 91.6 90.4
0.752 700 1000 1290 1476 95 93.4 30 R8l.1 78.4 76.2
0.752 700 1000 1290 1824 95 92.7 90 91.5 87.4 85.5
0.752 700 1000 1290 2105 95 93.3 95 96.7 91.6 90.7
0.752 1000 700 1494 1620 95 93.2 30 82.1 78.4 77.1
0.752 1000 700 1494 1848 95 93.5 90 91.9 87.4 86.5
0.752 1000 700 1494 20560 95 92.9 95 96.1 91.6 90.3
0.752 1000 1000 1494 1670 95 93.6 30 80.1 78.4 75.4
0.752 1000 1000 1494 1974 95 93.2 90 91.0 37.4 85.2
0.752 1000 1000 1494 2233 95 94.0 95 95.9 91.6 90.8
Table 7.4:  Simulation results for power for two stages, one control and

one experimental group, analysed wusing Cox proportional hazards test
HR - hazard ratio in favour of experimental group in comparison with control, ac-
crual rate - rate of patients accrued per unit time, N - sample size calculated for target
power and 5% and 2.5% significance level in Stages 1 and 2 respectively, power - power
achieved through simulation with sample size N, power overall program - overall power
as given by sample size program

when a significance level of 50% is to be attained in the first stage, however, this may be

due to the difficulty in obtaining an accurate estimate of the x? statistic in this case.

HR | accrual | accrual | N1 | N 2 | critical | target | alpha 1 | target | alpha 2
rate 1 | rate 2 HR alpha 1 alpha 2
0.752 700 700 872 | 987 0.92 25 25.3 25 24.9
0.752 700 700 872 | 1310 | 0.92 25 25.5 10 9.7
0.752 700 700 872 | 1509 | 0.92 25 25.4 5 5.0
0.752 700 700 606 | 987 1.00 50 49.0 25 24.6
0.752 700 700 1024 | 1024 | 0.90 15 15.4 25 25.1
0.752 700 1000 | 1024 | 1411 | 0.90 15 14.8 10 9.8
0.752 | 1000 700 1194 | 1447 ] 0.90 15 15.0 10 9.8
0.752 | 1000 1000 | 1194 | 1539 | 0.90 15 14.4 10 9.9

Table 7.5: Simulation results for alpha for two stages, one control and one experimental

group
HR - hazard ratio in favour of experimental group in comparison with control, accrual

rate - rate of patients accrued per unit time, N - sample size calculated for target alpha
and 95% and 90% power in Stages 1 and 2 respectively, alpha - significance level achieved
through simulation with sample size N

7.3.5 More than two stages

Following the extension of the design as outlined in Chapter 6 we wanted to assess the

robustness of those extensions for a three-stage trial with one experimental arm and one
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control. Our main aim was to assess the robustness of power using the logrank test. In
addition, simulation runs were conducted using the Cox proportional hazards test for

analysis.

In this case, time to progression, X, and time to death, Y, were simulated using the
NBVE model. However, in this set of simulations both Stage 1 and Stage 2 used time to
progression free survival as the outcome and Stage 3 was simulated using time to death.

Thus events obtained by taking min(X,Y) were employed for analysis in Stages 1 and 2.

The results displayed in Table 7.6 were obtained by stopping each stage after the
required number of events for that stage had been reached, whereby the number of I-
events were counted for the first two stages and the number of D-events for the final
stage. A further approximation, however, enters these results since as illustrated using
correlation results from ICON3 (Chapter 6, Table 6.4) the strength of the correlation
between the log hazard ratios for progression free survival and overall survival may change
between Stages 1 and 2. These changes have not been taken into consideration in the
calculations for the results illustrated since they are not easily quantifiable and depend
on the disease area. Required power for Stages 1 and 2 was 95% and a significance level
of 10%, 5% and 2.5% was desired for Stages 1, 2 and 3 respectively. The correlation
between the test statistics after each of the stages was set at 0.6. Median survival was
fixed at one unit of time for progression free survival and two units of time for overall

survival.

Table 7.6 shows that in general power for Stage 1 in this design is slightly lower than
desired, while both Stages 2 and 3 are overpowered. However, considering the approx-
imations made in the simulation studies, we believe that these results are satisfactory.
Results obtained by using the Cox proportional hazards test as shown in Table 7.7 are
again not significantly better. In addition we may observe that the overall power does

not decrease significantly by adding an extra stage.

7.4 ’Shocks’ to the design

When assessing the robustness of a certain design, we not only want to know how it
performs under optimum conditions but also test which situations may cause it to falter.
This allows us to safeguard against these circumstances when applying the methodology

in practice. In the following three likely situations are considered.

129



accrual accrual accrual N1 target powerl N 2 targel power2 N3 target powerd overall
rate 1 rate 2 rate 3 powerl power2 power3 power
700 700 1000 11238 95 93.1 1291 95 97.7 1476 80 31.5 74.8
700 700 1000 1128 95 93.0 1291 95 97.5 1824 90 92.1 84.2
700 700 1000 1123 95 93.6 1291 95 97.3 21056 95 96.7 88.9
700 1000 1000 1128 95 92.8 1351 95 97.4 1529 80 51.3 74.0
700 1000 1000 1128 95 94.0 1351 95 97.3 1863 90 92.2 85.2
700 1000 1000 1128 95 92.8 1351 95 97.6 2137 95 96.1 37.8
1000 700 1000 1134 95 93.4 1445 95 97.1 1626 80 81.4 74.6
1000 700 1000 1134 95 93.6 1445 95 97.3 1939 90 92.0 84.5
1000 700 1000 1134 95 94.0 1445 95 97.4 2203 95 96.4 89.0
1000 1000 1000 1134 95 93.8 1495 95 97.6 1670 30 80.5 74.3
1000 1000 1000 1134 95 93.3 1495 95 97.4 1974 90 92.0 84.5
1000 1000 1000 1134 95 93.0 1495 95 97.0 2233 95 96.3 87.9

Table 7.6: Simulation results for power for three stages, one control and one experimental

group
accrual rate - rate of patients accrued per unit time, N - sample size calculated for target

power and 10%, 5% and 2.5% significance level in Stages 1, 2 and 3 respectively, power -
power achieved through simulation with sample size N

7.4.1 Number of arms in Stage 2

When designing a two-stage trial we need to estimate the number of arms carried over into
Stage 2 in order to arrive at a sensible sample size estimate. Thus we ran an investigation
into the impact on power of a mis-specification of the number of arms in Stage 2 of the

trial.

Trials were simulated with up to three experimental and one control treatment arm
and a similar set of parameters as before. Hence median time to progression or death
was taken as one year and median time to death as three years with hazard ratios in
both cases at 0.752 in favour of the experimental arm under H;. Furthermore an accrual
rate of 900 patients per year was assumed for both stages and a correlation of p=0.6
between the two test statistics. Sample size was calculated for trials with at most three
experimental arms in Stage 2. Thus in some cases the number of simulated experimental
arms exceeded the number of experimental arms assumed in the sample size calculations

in Stage 2 and vice versa.

Figure 7-6 illustrates the impact on power at the end of Stage 2 and overall power.
The upper and lower lines indicate the confidence interval around the nominal power of
90%. We can observe that there is a near linear relationship in terms of power whereby
we only achieve power within the confidence interval if the actual number of arms in

Stage 2 corresponds to the number of arms that the sample size was calculated for.
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accrual accrual accrual N1 target powerl N2 target power?2 N3 target powerd overall
rate 1 rate 2 rate 3 powerl power? powerd power
700 700 1000 11238 95 93.0 1291 95 97.5 1176 30 81.5 74.7
700 700 1000 1128 95 94.2 1291 95 97.1 1824 90 91.4 84.1
700 700 1000 1128 95 93.6 1291 95 97.0 2105 95 96.1 88.1
700 1000 1000 1128 95 93.3 1351 95 96.7 1529 80 83.5 76.2
700 1000 1000 1128 95 93.3 1351 95 97.1 1863 90 91.8 83.8
700 1000 1000 1128 95 93.2 1351 95 97.1 2137 95 96.2 88.0

1000 700 1000 1134 95 93.8 1445 95 97.2 1626 30 32.0 75.4

1000 700 1000 1134 95 93.5 1445 95 97.1 1939 90 92.0 84.2

1000 700 1000 1134 95 94.1 1445 95 97.3 2203 95 96.2 83.9

1000 1000 1000 1134 95 93.1 1495 95 97.3 1670 30 31.4 74.6

1000 1000 1000 1134 95 93.5 1495 95 97.3 1974 90 91.8 84.3

1000 1000 1000 1134 95 93.6 1495 95 97.1 2233 95 96.7 88.6

Table 7.7:  Simulation results for power for three stages, one control and
one experimental group, analysed under Cox proportional hazards test
accrual rate - rate of patients accrued per unit time, N - sample size calculated
for target power and 10%, 5% and 2.5% significance level in Stages 1, 2 and 3
respectively, power - power achieved through simulation with sample size N

In order to have a spectrum of sample size requirements we urge the user to run the
sample size program using different scenarios. In addition, it is possible to obtain an
estimate of the probability of the number of arms in the stages by ticking this option on

the program menu.

7.4.2 The actual accrual rate

During the conduct of ICONS it was observed that the actual accrual rate for Stage 1 was
faster than that which was used for the original sample size calculations. This meant that
accrual for Stage 2 was started before a Stage 1 analysis could be run as the necessary
number had not been observed by the time that patients for Stage 1 had been accrued.
Therefore, arms which were stopped after the first Stage (in this case all) had had too
many patients accrued to them. Hence we wanted to know the impact of a lower or higher
than anticipated accrual rate on either the number of events accrued in the control arm
by the predicted end of Stage 1 or the time by which the required number of events would

be accrued in Stage 1.

Figure 7-7 illustrates the impact of the actual accrual on both number of events
and time. In this figure the solid line gives the calculated number of events needed in the
control treatment arm and the predicted time needed to run Stage 1 under an anticipated

accrual rate of 900 patients per year. The underlying parameters were the same as in
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Section 7.4.1 with p = 0.6. The relationship between the rate of accrual and the number
of events or the total length of Stage 1 appears to be near linear in both cases, whereby the
relationship with time experiences more of a levelling off towards higher rates of accrual.
We may say that a 10% change in the accrual rate causes a change of approximately 5%

in either the number of events or time.

7.4.3 Impact of correlation on power

In all the simulation sets in the previous sections we have taken the correlation between
the Stage 1 and Stage 2 test statistics to be a fixed number, usually 0.6. However, we
now wanted to assess whether a) the strength of the correlation coefficient has an impact
on power and b) whether mis-specifying the correlation at the trial planning stage has an

impact on power in a two stage trial.

Simulation studies for which the results are illustrated in Figures 7-8, 7-9 and 7-10
were run using a hazard ratio of 0.752 in both stages. Also, as before the median survival
time for progression free survival was taken to be one unit of time and median survival
for overall survival was fixed at two units of time. The target power for Stage 1 was set at
95% and at 90% for Stage 2. Furthermore, the significance level to be attained in Stage
1 was set at 5% and at 2.5% in Stage 2.

There is no obvious relationship between the strength of the correlation coefficient
and overall power as illustrated in Figure 7-8. However, from this figure we may say that
power in Stage 2 increases as the correlation coefficient reaches 0.4 and above. From
Figure 7-9 we can observe that mis-specifying the correlation coefficient appears to have
no effect on power. In general in this figure, however, power appears to be higher for a
correlation coefficient of 0.8. The results for the significance level as depicted in Figure
7-10 also show no particular influence of the correlation coefficient. In most cases the
pattern appears random apart from the results for an actual correlation of 0.8 and the
significance level at Stage 2. In this case the significance level appears to decrease with
an increasing specified correlation coefficient. However, these results do not fall outside

the confidence bounds.

In general the strength of the correlation coefficient is important for the design as a
whole though as running a trial with a low correlation between the two test statistics

may be dangerous.

132



7.5 Rejection sampling

In order to improve our simulation studies we investigated the use of rejection sampling.
As Figure 7-4 shows, the minimum of the two exponential distributions is not exactly
exponentially distributed when we sample from the NBVE. This is especially apparent
in the transformation to the uniform as illustrated in the density histogram. If the
distribution was exact, all density bins would have a height of one. The shape of the
transformation and the degree of variation from the uniform varies for different values of

median survival as illustrated in Figure 7-11.

The principle of the rejection sampling method is that a distribution function f(z) is
approximated by another distribution function h(z) which is easier to calculate, and then
a correction is made by randomly accepting values with a probability p(z), and rejecting
z values with a probability 1 — p(z) [46]. For our purposes, the algorithm is therefore as

follows:

1. Draw z and y from the NBV E, create z = min(z, y)

2. For this z evaluate whether to reject or not, i.e. whether the density is greater than

one

3. If we need to reject z, resample x and y from NBV E and re-evaluate new z

Using this algorithm, we reproduced Figure 7-4 to get the improved Figure 7-12.
However, while there are improvements for the distribution of min(X,Y’), these come at
a high cost. The simulations to obtain Figure 7-12 took over four days, compared to two

minutes without rejection sampling.

There were also problems with the algorithm running infinitely in some simulation
cases. Hence we relaxed the rejection criterium to reject z only if the density of a particular
bin was greater than 1.02. This number was arrived at by simulating 100,000 observations
from a uniform(0,1) distribution and plotting the resulting histogram. Variations in
density between 0.98 and 1.02 could be observed. Using this relaxed criterion, we arrive

at Figure 7-13 in just over 90 minutes.

Thus, simulations to assess power on 5,000 replications would take 625 days, compared
to an average of 15 minutes before. These times will increase for parameter combinations

which result in further diversions from the uniform as illustrated in Figure 7-11. The

133



method is therefore highly inefficient in terms of computer time and would be impractical

for large scale simulation studies.

7.6 Discussion

Overall the simulations have shown that the sample size calculations underlying the multi-
stage model perform satisfactorily. Particular attention needs to be paid to the accrual
rate and a sensitivity analysis to the number of arms in Stage 2 (and the following stages),
with the first potentially leading to problems with the feasibility of a Stage 1 analysis

and mis-specification in the second area causing over- or underpowered studies.

Future work in this area could include a set of simulations using the BV E or Downton
method for simulating time-to-event data in order to assess whether the calculations are
robust under these assumptions also. The use of correlated frailty models may also be
considered. A good introduction to their application is given by Wienke [142]. These were
originally developed for the analysis of bivariate failure time data in which two associated

random variables are used to characterise the frailty effect for each pair.
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Figure 7-2: Assessment through

min(X,Y) as given by the BVE
based on 100,000 replications
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Figure  7-3: Assessment  through  simulation  studies  of  whether

min(X,Y) as given by Downton follows an exponential distribution
based on 100,000 replications, median survival of one year for progression-free sur-
vival and three years for death
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Figure 7-4: Assessment  through simulation studies of  whether
min(X,Y) as given by NBVE follows an  exponential distribution
based on 100,000 replications, median survival of one year for progression-free sur-
vival and three years for death

TWO-STAGE TRIAL DESIGN version 1.0.0, 17 March 2004

A sample size program for two-stage trial designs by Patrick Royston s
Friederike Barthel based on P Royston, M Parmar s W Qian 2001

OPERATING CHARACTERISTICS

Alpha<ls> Power HR |HO HR |[HI Crit. HR Duration
STAGE 1 0.0640 0.945 1.000 0.752 0.873 2.849
STAGE 2 0.0250 0.981 1.000 0.752 0.874 1.660
Overall 0.0110 0.934 4.509

SAMPLE SIZE AND NUMBER OF EUENTS

CTAC't 4 an. M
Overall Control Exper. Overall Control Exper.
Arms 5 1 4 2 1 1
Acc. rate 1000 200 800 1000 500 500
Patients* 2850 570 2280 4509 1400 3109
Events** 1089 253 836 1467 426 1041

* Patients and events at Stage 2 are cumulative from Stage 1
** Events are for I-outcome at Stage 1, D-outcome at Stage 2

Figure 7-5: Sample size requirements for [CONS5 as output by Stata program
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Figure 7-6: Influence on average power of mis-specifying number of arms in Stage 2
power stage 2 - average power over all arms for Stage 2, overall power - average power
over all arms for the whole trial, arms designed - number of experimental arms in Stage
2 that trial was designed for (i.e. that sample size was calculated for), actual number of
arms - actual number of experimental arms that have gone through to Stage 2
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7-7: Influence of mis-specifying accrual on number of mean
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average number ofevents obtained by projected end of Stage1 under ac-
of accrual, time - average time taken to accrue requirednumber of patients for
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time
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Figure 7-8: Relationship  between power and  correlation  coefficient

power stage 1 - power for Stage 1 with 95% confidence intervals, power stage 2 -
power for Stage 2 with 95% confidence intervals, overall power - overall power for the
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Figure 7-9: Relationship  between mis-specified correlation and power

specified rho - correlation used for sample size calculations, actual rho - correla-

tion used in simulations, power stage 2 - power for Stage 2, overall power - overall power
for the trial
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Figure 7-10: Relationship  between mis-specified correlation and alpha

specified rho - correlation used for sample size calculations, actual rho - correla-
tion used in simulations, alpha stage 1 - significance level for Stage 1, alpha stage 2 -
significance level for Stage 2
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Figure 7-12: Improvement of min(X,Y) as given by NBVE using rejection sampling
based on 100,000 replications, median survival of one year for progression-free survival
and three years for death
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based on 100,000 replications, median survival of one year for progression-free sur-
vival and three years for death
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Chapter 8

Sample sizes for time-to-event
outcomes: implications of the

variability in events and time

8.1 Introduction

Sample sizes for trials with a time-to-event outcome are usually derived using three main
components: i) the given total duration of the trial consisting of accrual and follow-up
time, ii) the survival distribution for the control treatment and iii) the hazard ratio which
we hope to see in the experimental arm(s). These lead to the calculation of the number of
events as a fixed quantity. Early examples of such sample size calculations were given by
George & Desu [50] and Freedman [41]. The following formula given by Schoenfeld [114]
forms the basis of most of our calculations. For a given log hazard ratio A, a probability
¥ of not being censored and a probability p of being allocated to the control treatment

group the required sample size is given by

(zl—a/2 + 21—3)2

N =
A%p(1 - p)

(8.1)

where z;_,/9 and 21_g are the normal deviates corresponding to a two-sided significance

level a and type II error probability 1 — 3 respectively.

Korn & Simon [69] examine the problems with the above approach of treating either
the number of events or trial time as a fixed quantity. Their analysis of the situation is

taken from the perspective of a data monitoring committee. Difficult decisions will have
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to be made if the variability in the length of the trial or the number of events accrued by
a certain time point are not taken into account at the planning stages. In particular they
focus on the problems arising if accrual is slower than expected or events accrue slower
than anticipated. In these cases modifications to the design need to be contemplated
since the trial will have less than the designed power by the time it is meant to be
analysed. Gould [52] focuses on the subject of sample size re-estimation in particular
whereby sample size is adjusted on the basis of variability. He proposes that the sample
size needed for a trial depends on the significance level and power, the magnitude of the

log hazard ratio A and the variability of the response variable, i.e.
sample size = variance x f(error rates)/A*

where

f(error rates) = (242 + 25)? x inflation factor

Gould’s approach is aimed at dealing with group sequential designs, where the inflation
factor is expected to be greater than one. For the standard parallel group trials he
proposes it should equal unity. One option suggested by Gould to protect from interim
adjustments is to overpower the trial initially. In order to do this, however, one needs to
have an idea of the inherent variability of the trial parameters and its effect on power.
He suggests not to adjust a trial unless the increase in sample size would be equal to or
greater than 33%. While we can avoid the power problem by pre-specifying the number
of events to be attained, we need to be aware, however, that this does cause variability in

terms of the resources of the trial since the trial duration now becomes a random variable.

This chapter seeks to explore possible ways to assess the potential inherent variability
in trial time and / or number of events and provides tools to assess the variability at
the beginning of the trial as well as update these estimates throughout patient and event

accrual.

8.2 Literature approaches

This topic has so far received very little attention in the literature apart from the angle
of sample size re-estimation. We have hence not been able to locate any papers which

provide a comprehensive a-priori assessment of the variability in events or time for time-
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to-event type trials. Shuster [122] considers the topic from the perspective of trials with
low event rates. She recommends fixing the number of events rather than the number
of patients and models the distribution of the number of events in the treatment group
using an unconditional binomial distribution. Sample sizes are then obtained through an

iterative solution.

The use of internal pilot studies to assess variability is discussed by Birkett & Day
[11]. This primarily addresses the problem of differing patient groups in preceding trials as
compared to the current trial. In this setting the first few patients entering the study are
used to assess variability and then act as a basis for the overall sample size calculations.
However, as the authors point out, this is not a feasible solution in studies where we have
long treatment periods and events only start to accrue at a relatively late time-point after
enrollment, as for example in many Cancer or HIV trials. Additionally, this approach is

problematic since we usually need to know sample size in advance for practical reasons.

8.3 Analysis of variation at the planning stage

We first concentrate on assessing the amount of variability in total trial time at the outset
of the trial. We derive the most simple case mathematically in Section 8.3.1 while the
rest of the analysis and programming concentrates on simulation studies. The reason for
this, as Section 8.3.1 illustrates, is that the resulting distribution is complex and does not

lend itself easily to extensions.

8.3.1 Modelling the distribution

Graphs of the distribution of the total length of the trial as displayed in Figure 8-1
suggest an underlying approximate normal distribution. In the following we derive the

exact distribution of time to required numbers of events.

Define Y as the time at which a patient is accrued which follows a uniform distribution,
i.e. Y ~ unif(0,t1) where t; denotes the time at which the accrual period ends. In
addition, define X as the survival time of a patient which is modelled using an exponential
distribution, i.e. X ~ Exp(\) where A\ = 1—0%5 in the control group with a being defined as
the median survival time. The log hazard ratio in favour of the experimental treatment
group is denoted by A, that is A = log(Ae/\) where ). is defined as the hazard in the

experimental treatment group. Furthermore assume that X and Y are independent of
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Figure 8-1: Distribution of time to required number of events based on 10,000 replications
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each other. Let the total trial time be given by t; + t2 where ¢ denotes the length of
the follow-up period after recruitment has terminated. The real time at which a patient

experiences an event is thus given by Z=X+Y.

As a first step we find the joint distribution for X and Y

fx,y) = fx(=)fr(y)

;’\;e"\x for control treatment group

K’\t—le“”/ (exp &) for experimental treatment group

This derivation requires independence of X and Y. We then need to find the distribution
for Z in both treatment groups. The derivation follows p. 93 of Rice [100]. Hence for the

control group the distribution function is given by

Falze) = [[ f(av)dody
R,

= 7/ f(z,y)dzdy
0

where R, denotes the set of all real numbers. We can then further define the limits since

we know that 0 <y <t; and 0 <z < z—1y. Thus

t1 z—y/\
Fro(z) = / Se~Ndody
0 0

.
0
_ 1 —Azl Ay h
- t1 ,:e /\e y 0
1 1 —Az( Aty
= ——= —1)+1
e (e ) +
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and

dFz.(z
fale) = L2l
= Lo 1
t1 t1
— __I__e—AZ(e/\tl 1)
131

for 0 < z < t; +t9. By a similar argument we can derive for the experimental group that

Fz,(2) = —%@—XI/{—éle‘—(erA>z(em‘l ~-1)+1

and

1 __» N
fz.(2) = el (epr)z(e(e"pr')"h ~1)
1

for 0 < 2 <ty +2s.

Let k denote the total number of events needed out of a total of N patients in the
trial. When considering the time to the required number of events we are in effect looking
at the time at which the kth patient experiences an event, i.e. the kth order statistic.

According to p. 101 in Rice [100] the density of the kth order statistic Z, is given by

N!
1Zw) = DN —#

FF ) L= F(2))

where f(z) and F(z) are as defined above for one treatment group only. However, for
two groups we need to take into account that the kth event may come from either group,
control or experimental. The event z < Z(;) < z + dz occurs if k — 1 observations are
smaller than z, one observation is in the interval [z, z + dz], and N — k observations are
greater than z + dz. This event may occur in either of the two treatment groups. The
probability of such an arrangement under an equal allocation ratio to both groups is given

in the control group by
F(2e)F*"Y(20) [1 — F(2)) % dz
and in the experimental group by
f(ze)kal(ze) 1- F(ze)]%_k dze
These events are mutually exclusive since if one of the groups provides the kth patient,
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the other will not be able to. However, this also applies to the previous (k — 1) events.
We therefore need to sum over all possible scenarios of allocating k events between the
two treatment groups. The two extreme scenarios are i) if £ < N/2 all events come from
one group and none from the other and ii) if £ > N/2 k events come from one group
and k — N/2 from the other. In order to express all scenarios, we assume that ¢ events
occur in one group and k — 7 in the other. Using the multiplication principle, we have if

k> N/2

wfz

(2)! (2)!

|
2 k-t (T k—i- ) (E —k+9)!

and if K < N/2

)' * (%{)' (8.2)
k — 1) '1' (£ -9 (k—i—-1)NN(F - k+9)!

”M*

such possible arrangements over the trial population as a whole. Hence the density of

Z) is then for k > N/2 given by
N
: (2)! :
yA =
T(Zw) ;(k NE=) h—i-D (X —k+i)

fFF1(2) [1 — F(20)] T dze

—_
o2
~—

*Fk“l(ze) 1- F(.ze)]%—'c dze
w(f(26) + f(22)) (8.3)

and similarly for & < N/2 using Equation 8.2. However, this distribution underlies
stringent simplifying assumptions, e.g. in reality the last patient needed may arrive just

before or after t; + ts.

The close resemblance of the distribution of time to a normal distribution as displayed
in Figure 8-1 may be explained by the similarities between the exact distribution of time to
the end of the trial as given in Equation 8.3 and a negative binomial distribution (Rice, p.
38 [100]). Just as in the case of a negative binomial distribution, the distribution of time
to the end of the trial will follow the normal approximation more closely as k increases,

i.e. as the number of events needed in the trial becomes larger.
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8.3.2 Simulation methods

A Stata 8 program varsim - simulation with an accompanying dialog was written
which analysis variability in events and time for both single stage parallel group trials
and multi-stage, multi-arm trials. One of the dialog menus and the program output are
given in Figure 8-2. This part of the program is based on simulations run using sample
sizes calculated for the input parameters. In the case of parallel group trials the sample
size is given by ART (Analysis of Resources for Trials) with calculations based on Barthel
et al. [7] which are described in more detail in Chapters 3 and 4. For multi-stage trials
simulations are run using sample size calculations based on an extension of Royston et al.
[103] as illustrated in Chapter 6. The user may specify trial parameters as well as the type
of analysis as illustrated on the dialog window in Figure 8-2. In general, tabular output
is given for the distribution of either time or events as well as the parameters chosen to
calculate sample size for the trial. Graphics then include a histogram, a boxplot and an

assessment of normality.

All of the possible simulation set-ups employ a uniform accrual mechanism and expo-
nential survival where the exponential distribution is parameterised using median survival
and the hazard ratio as specified by the user. The set-up for the survival distribution
in multi-stage trials is based on the Normal Bivariate Exponential (NBVE) distribution
whose characteristics are described in Chapter 7. Hence, as is described in that chapter,
simulation results are more accurate for the last stage of any trial than for the previous
ones. The program allows one to specify a wide range for the number of replications to be
used in the simulations; however, we recommend the use of 5,000 to 10,000 replications

to ensure sufficient accuracy and speed.

This simulation method may be extended to bring it in line with the options imple-
mented in ART as described in Chapter 4. This would then allow for more complex

survival functions, loss to follow-up and cross-over.

8.3.3 Some important results

Tables 8.1, 8.2 and 8.3 illustrate a simulation study of the variability in time for a parallel
group trial comparing a control with one experimental treatment. Common to all trials
are an accrual and follow-up time of two years. The hazard ratio in each of the trials

is given by HR and p denotes the probability of being allocated to the control treat-
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Figure 8-2: Output from Stata program Varsim - Simulation
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ment group. The trials were designed to attain 90% power and a 5% two-sided level of

significance. Results are based on 10,000 replications.

Tables 8.1, 8.2 and 8.3 consider four points of the distribution of time to required
number of events. Differences from the mean in % are given for each of these points. As
an example consider the 95% reference interval results for the first simulated trial with
a hazard ratio of 0.6 in Table 8.1. This reference interval refers to the range of values
between the 2.5 centile and 97.5 centile. The results indicate that this trial could take 54
instead of the expected 48 months at the upper 97.5% reference limit, an increase of half

a year.

All three tables contain results for different disease stages. Table 8.1 considers a trial
setting in advanced disease where most of the patients experience an event by the end
of the trial whereas Table 8.3 contains results for trials in early disease, in this case for
median survival time of 3 years. While the picture for variability in terms of time to
events looks similar in all three settings, we observe that the sample size increase needed
as median time to event increases is relatively large. Due to this large increase in sample
size percentage variability then remains roughly the same across all tables as the higher

sample size cancels out the higher variability introduced by a lower event rate.

p | HR | sample size | mean time | difference | % difference | difference | % difference
to analysis | at 2.5% at 2.5% at 97.5% at 97.5%

0.5 | 0.6 154 3.99 - 0.46 -114 0.52 13.0

1/3 | 0.6 167 4.01 - 0.46 -11.6 0.50 12.3

0.5 | 0.7 305 4.00 -0.34 -84 0.36 9.0

0.5 | 0.8 758 3.99 -0.22 -54 0.22 5.6

0.5 | 0.9 3327 4.00 - 0.10 -2.5 0.10 2.6

Table 8.1:  Simulation results for distribution of time to end of trial (or
analysis of trial results) in advanced disease i.e. median survival one year
p - allocation ratio, HR - hazard ratio in favour of experimental group, sample size -
sample size required for 90% power, difference at 2.5% - difference between mean time to
analysis and lower 2.5% reference limit around time to analysis

All tables illustrate that there is a relationship between the hazard ratio and the
variation in time. The main reason is that a hazard ratio close to one requires a much
higher number of patients than a hazard ratio of 0.6 for example and hence variability

decreases.

We also investigated the relationship between variability and power. Figure 8-3 dis-
plays both the relationship between the hazard ratio and variability as well as between

power and variability in more detail. One may observe that the coefficient of variation
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p | HR | sample size | mean time | difference | % difference | difference | % difference
to analysis | at 2.5% at 2.5% at 97.5% at 97.5%

0.5 )] 0.6 221 4.02 -0.44 -10.9 0.48 12.0

1/3 ] 0.6 235 4.02 -0.44 - 10.9 0.47 11.6

0.5 ] 0.7 431 3.99 -0.31 -78 0.33 8.2

0.5 ] 0.8 1054 4.00 - 0.20 -49 0.20 5.0

05109 4561 4.00 - 0.10 -24 0.10 2.4
Table  8.2: Simulation  results for distribution of time to end
of trial (or analysis of trial results), median survival two years

p - allocation ratio, HR - hazard ratio in favour of experimental group, sample
size - sample size required for 90% power, difference at 2.5% - difference between mean
time to analysis and lower 2.5% reference limit around time to analysis

p | HR | sample size | mean time | difference | % difference | difference | % difference
to analysis at 5% at 5% at 95% at 95%
0.5 ] 0.6 294 4.01 - 0.43 - 10.7 0.46 114
1/3 ] 0.6 310 3.99 - 0.43 -10.7 0.47 11.8
0.5 | 0.7 567 4.00 - 0.30 -7.5 0.32 8.0
05108 1378 4.00 -0.19 -4.8 0.20 5.0
051] 09 5992 4.00 - 0.09 -23 0.10 24
Table 8.3: Simulation results for distribution of time to end of trial (or

analysis of trial results) in early disease i.e. median survival three years
p - allocation ratio, HR - hazard ratio in favour of experimental group, sample size -
sample size required for 90% power, difference at 2.5% - difference between mean time to
analysis and lower 2.5% reference limit around time to analysis

decreases linearly with increasing power while there appears to be a relationship of expo-
nential decay between the coeflicient of variation and an increasing hazard ratio. This is
to be expected since an increase in power, similar to an increase in the hazard ratio, leads
to an increase in the sample size required for the trial. As we noted above, this increase

in sample size leads to a decrease in variability of the total trial time.

8.4 Updating estimates using trial data

Once a clinical trial has started accruing patients and events, trialists may wish to obtain
up-to-date estimates of the time by which the trial will have accrued the necessary number
of events. This may deviate from earlier estimates since these were likely to be based on
previous trial results, experimental data for the new treatment regimen or Phase II trials

and not the current trial.

Bagiella & Heitjan [5] consider the prediction of analysis times in the context of trials

with planned interim analyses. They introduce two model based approaches. The first
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is based on a point prediction of analysis time by extrapolating the cumulative mortality
into the future and selecting the date at which the expected number of deaths is equal to
the required number of events. The second method uses a Bayesian simulation scheme to
generate a predictive distribution of milestone times. Prediction intervals are then given
by the quantiles of that distribution. Drawbacks of their methods include potential bias
if the underlying accrual and failure time distributions differ from prior assumptions as

well as the assumption of a constant accrual rate.

We have developed a software tool varsim - trial update shown in Figure 8-4
which allows the user to input trial data accumulated so far and gain new predictions
for the trial parameters such as median time to event in the control group. This may
be carried out at several time points, since in the case of longer term trials incidents
such as increased advertising of a trial or competition from other trials may alter the trial
parameter estimates along the way. Updating the hazard ratio is, of course, not permitted.
Furthermore, a graphical tool allows to plot the changes in projected variability over the

course of the trial.

Initially, based on the parameters input by the user, the program runs through a
simulation study with 10,000 replications to obtain the reference intervals around the
initial estimates for the trial time. The control group dataset only is then analysed in
order to obtain up to date estimates of median survival. Using iterations a new total
trial time is obtained. In this case, sample size calculations based on Formula 8.1 are
employed due to increased speed compared to running the updates using ART. Following

this, new reference intervals for the updated trial time are calculated.

8.4.1 Point estimates

In the following we explore a few possible ways of incorporating trial information into
our parameter estimates. All variables are defined as described in Sections 8.1 and 8.3.1.
Figure 8-5 illustrates the process of updating the estimated trial time t; + t3. Circles
give point estimates with 95% reference intervals around them. At the end of the trial,
in this case at 33 months, we will have a point estimate only as this corresponds to a
calculation of trial time at the end of the trial itself. The point estimate at the start is
based on previous information only while the last point estimate at 33 months is based
on trial data only. Estimates in between are based on a combination of trial data and

prior information. This section considers the combination of prior information and trial
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Figure 8-5: Updated estimates for the required length of a trial using trial data

data using three different methods of weighting.

Weights

A crude way of assigning weights w; and wq to prior information and trial data respec-
tively is to assign a score to each of them depending on what percentage of the overall
number of events required has been obtained at the time of analysis. This loosely fol-
lows the method of Tan et al. [129]. Define apior as the estimate of median survival in
the control group obtained from prior information and agu:, as the estimate of median
survival in the control obtained by analying data on the present trial. Thus if we are

updating estimates for the median time to event a we get

Qestimated = W1Qprior + W2Qdata
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where the weights wy = 1 — wy and

# events obtained so far
Wo =
2 total # events

The reason for combining the estimates in that way is that early trial events may be
accumulated from patients who are sicker, and therefore may bias estimates of median
time to event. Overall, our parameters early on in the trial would be based on very
little information if we did not include prior knowledge. As the trial continues, more and
more weight is assigned to trial data and prior information becomes less influential. This

method has been implemented in our Stata program.

The above crude method may be improved upon by making the weight wy inversely
dependent on the variance of the estimates, e.g. the variance of the median time to event
a, and then still assigning w; = 1 — wy as the weight for prior information [3]. This
method may give a realistic and data dependent weighting structure, however, at the

same time wo may increase and then decrease again over the course of the trial.

A third possibility is to view the situation as a ’missing data’ problem [80]. In that
case we can use weights which are inversely related to the probability of the data being

observed similar to Preissler et al. [98].

Our initial simulation studies around the initial knowledge of the total trial time
provide us with the percentage variation on either side of the median total trial time. In
order to obtain reference intervals for each of the new estimates, this percentage variation
is reduced by the percentage amount of weighting wy. Thus if we define v as the percentage

variation on either side of the median total trial time we have

wo

100’

VUnew = Vold — ('Uold *

8.5 Conclusions

From the analysis conducted in this chapter it is apparent that it is important to take
into account the variability in trial duration since it may have a significant impact on the
total length of the trial. The distributions of both the variability in events and time are
wider for smaller trials. One approach in these situations may be to design for the lower
bound of the reference interval around the number of events to ensure adequate power

by the expected end of the study. Similarly, it makes sense in those cases to consider the
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upper bound of the reference interval around trial length to anticipate possible higher
trial costs and to ensure adequate funding in advance. This knowledge is of particular
importance in multi-stage trials where the stages itself are often relatively short and have
a smaller sample size. It is necessary to realise that this degree of variability already
arises if we have estimated all other parameters correctly when calculating sample sizes,

a scenario which in many instances proves not to be the case.

These methods may be extended to incorporate options provided in ART, such as loss
to follow-up and cross-over, as outlined in Chapter 4. Furthermore, it may be of interest
to examine the impact of non-uniform accrual on the variability, especially when initially
mis-specified. These are all likely to add uncertainty to the time at which the planned
number of events are likely to be observed. Explicit assessment of these may give a more

realistic and appropriate timeframe and sample size for studies.

The second part of the program currently utilises trial data from the control group
only. However, in a number of trials only the data from all groups as a whole may be
available due to issues of unblinding. Thus it may be useful to allow for the input of
the dataset as a whole in order to obtain an overall median survival. By assuming the
hazard ratio used for sample size calculations at the outset we may then calculate median

survival in the control group only and employ the tool as described above.
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Chapter 9

fintplot: Forest plots for

interaction

9.1 Motivation

During the course of examining a particular treatment in a trial setting we often want
to know the consistency of an observed relationship across two or more subgroups of
patients in the study. We might suspect that a treatment works better in older patients
compared with younger ones or that due to the genetic make-up of men and women there
is a difference in its effect on the two genders. In the medical literature this type of
heterogeneity is often referred to as synergy whilst in statistics we know it under the
name interaction [4]. Examining the relationship can be helpful later when developing
guidance on how to use that particular treatment in practice. One study that is currently
being conducted by the MRC Clinical Trials Unit seeks to identify an interaction of the
prevalence of the mutated gene p53 and the results of chemotherapy in colorectal cancer

patients.

As outlined by Shuster et al. [123], tests for such interactions can have two uses.
By retrospective analysis of possible interaction effects one can formulate interesting
hypotheses for future trials. In planning a prospective trial, one may incorporate a test
of an interaction effect if it is suspected that the therapies manipulate important factors
differently. Hence the analysis of interactions in a trial or study can either be of an

exploratory nature or consist of a test for interactions as defined in the protocol.

Our estimate of the interaction effect is based on a ratio of hazard ratios or a ratio
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Figure 9-1: Quantitative and qualitative interactions illustrated using Kaplan-Meier sur-
vival curves

of odds ratios derived from a 2*2 table as described in Section 9.4. The definition is
similar to that of Peterson et al. [94]. This ratio of hazard ratios describes quantitative
interactions. A Stata program has been designed in order to ease the visualisation of
interactions during the analysis of a clinical trial or study. It provides both numerical
and graphical output in the form of a forest plot for this purpose while giving a choice of

employing either the Cox proportional hazards model or logistic regression.

9.2 Treatment of interactions in the literature

Since it has been recognised that treatments might have different effects on subgroups
in a clinical trial, attention has been devoted to the development of tests for such inter-
actions. Most authors concentrate on one kind of interaction, either a quantitative or a
qualitative one. A good illustration of the differences was provided by Byar [14]. In the
case of a quantitative interaction, the magnitude of the treatment effect may vary with a
patient’s characteristics, however, the direction of the treatment effect will stay the same

as illustrated in the first panel of Figure 9-1. By contrast, with a qualitative interaction
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a change in the direction of the treatment effect is involved as the second panel of Figure

9-1 shows. This type of interaction is also often referred to as cross-over or a reversal.

Gail & Simon [44] presented a test for qualitative interactions based on likelihood
ratios. A more recent paper by Piantadosi & Gail [95] compared this likelihood ratio test
with a range test and they found that whilst the likelihood ratio test has greater power
when the new treatment is harmful in several subsets, the range test will have greater
power when the new treatment is only harmful in a few subsets. Both computations do,
however, indicate that even a very large trial would not have enough power to detect

statistically significant occurrences of cross-over.

An approach based on proportional hazards regression models was proposed by Thall
& Lachin [131]. The model was then applied to a clinical trial in prostate cancer in order
to find the optimal treatment for a patient’s set of covariates. Models based on pre-
stratification and non-stratification were derived. Another possible approach developed
by Uesaka [138] utilizes logarithmic generalised odds ratios. He states that even in the

case of a sample size of 20 patients, power would be high enough for this test.

Pan & Wolfe [90] generalised interaction tests to the more practical problem of detect-
ing an interaction effect which corresponds to a minimal treatment difference of clinical
significance. They grade possible interaction effects in three classes. The first is the
case where a treatment is superior to another across all subsets, which means that this
case includes quantitative interactions. In the second class we have a slight qualitative
interaction which means that one of the treatments is superior to the other across some
subsets and is only inferior by a small amount d for the remaining subsets. The third class
contains a severe qualitative interaction. In this case the reversal of treatment effects is
so great that even the addition of d to the addition of the effect of the inferior treatment
will not make it uniformly superior to the other across all subsets. Pan & Wolfe believe
that most trials will be able to detect the second class and hence the alternative hypoth-
esis should be that of a severe qualitative interaction. The test developed in their paper

centres around confidence intervals about a clinically significant interaction d.

The situation of 2*k factorial experiments was examined by Xiang et al. [145] whose
test statistic is based on a weighted residual sum of squares. In order to estimate the pa-
rameters of the test statistic they employe the Mantel-Haenszel and maximum likelihood

methods.

Bayesian subset analysis is suggested by Simon [125]. In his approach the subset
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specific treatment effects are being estimated as an average of overall differences and ob-
served within-subset differences. Following that the two components are weighted by an
a-priori estimate of the likelihood of qualitative treatment by subset interactions. Hence
this enables statisticians to incorporate an a-priori belief that qualitative interactions are
unlikely. Underlying the approach is the proportional hazards model and prior distri-
butions for the interaction effects are assumed to be normal and independent. Simon

outlines an application of gender/treatment interactions.

Caution regarding such tests was expressed by Byar [14], shortly after the design
by Gail & Simon [44] was made public. He believed that these tests need to take into
account the fact that multiple comparisons are being made, and that therefore we need
to ensure adequate power. Furthermore he suggests that interactions should be looked
at in the context of exploratory analysis rather than that of formal hypothesis testing.
Arguments such as this outline the need for rigorous sample size calculations to ensure
adequate power of the tests. One such sample size calculation is provided by Schmoor et
al. [112]. From their calculations we can deduce that ordinary sample sizes for a parallel
group trial would have to be multiplied by a factor of four under equal allocation ratios
both in the treatment and covariate groups in order to attain adequate power for such

interaction tests.

9.3 Analysis of trials with treatment-covariate interactions

present or suspected

The following analyses of trials with possible interaction effects were run to gain an
understanding of the magnitude of interaction effects and the best way to represent these.
Analyses were run using both the Cox proportional hazards model and the logrank test
as well as Kaplan-Meier survival curves. To run the formal interaction analysis, an

interaction variable of treatment and a covariate was created.

9.3.1 AXIS

From the AXIS trial 396 patients were selected to participate in this analysis. Sample
size for this study was restricted due to cost and practical issues. Patients which were
included in the analysis had to have been randomised before 1st January 1995 and had to

have curatively resectable Duke’s B or C tumours in primary colon cancer. The main trial
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compared the effect of postoperative portal vein infusion of fluorouracil (5FU) to the effect
of no infusion in patients who underwent a planned resection of colon or rectal cancer.
Due to cost and practical issues the number of patients in this study was restricted to
400 patients [6]. Apart from survival time in the two groups data was collected on LOH
at p53, DP1, D18S61and D18S851, nmifinal, DNA ploidy, sex, age and Duke’s stage B
or C. Furthermore, a combination variable was formed out of p53, D18561 and D18S851
and named hetany2. Hence the test for potential treatment-covariate interactions was
pre-specified in the protocol. This is generally desireable to avoid multiple testing issues.
If not pre-specified, interactions may be analysed for covariates which are thought to be

relevant but particular care has to be taken to adjust the type I error.

During the AXIS trial 171 out of 396 patients died. The overall hazard ratio of the
trial was observed to be 0.73 which indicates a reduction in the risk of death of 27%
following 5FU with a confidence interval ranging from 0.54 to 0.98 and a significance

level of 0.038.

We can identify hetany2, P53, D18S61, D18S851, nmifinal, DNA ploidy and Duke’s
stage as having potential interaction effects with treatment. Each of the first five variables
are split into three categories consisting of retained heterozygosity, loss of heterozygosity
and not informative. The distribution of patients among the categories for four of the

variables is portrayed in Table 9.1. Both D185S61 and D18S851 have very similar distrib-

Covariate | retained heterozygosity | loss of heterozygosity | N/A
hetany2 157 159 80
po3 40 93 250
nmifinal 279 89 28
Duke’s stage | 240 156 -

Table 9.1: Distribution of patients among categories for the covariates in AXIS

utions with the least number of patients in the first category and the other two categories
containing roughly equal numbers. DNA ploidy is split into the two categories of roughly
equal numbers. These discrepancies in the distribution of patients among the categories
call for caution in the later interpretation of the analysis due to a lack of power. The
Kaplan-Meier survival curves in Figure 9-2 for the combination of treatment and Duke’s
stage illustrate why we might suspect an interaction effect in this case. As we can see in
the graph, patients with Duke’s stage B generally have better survival rates regardless of
whether they are in treatment group 1 or 2 in comparison to patients with Duke’s stage

C.
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Kaplan-Meier survival estimates, by fu5 pduke
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Figure 9-2: Kaplan-Meier survival estimates, by treatment (fu5) and Duke’s stage (pduke)
in the AXIS study

While looking at possible interaction effects only the effect for hetany2 was found to
be significant at the 5% level (p-value 0.03) with a hazard ratio for the interaction effect
of 0.74 and a confidence interval ranging from 0.55 to 0.97. The Kaplan-Meier survival
curve for the interaction of hetany2 with treatment is illustrated in Figure 9-3. This plot
was created by multiplying the treatment and the covariate indicator and then plotting
the Kaplan-Meier survival curves for each of the three categories. We can see that one of
the categories (fu5 hetany2 = 1) lies above the other two and hence indicates a potential

interaction effect.

Kaplan-Meier survival estimates, by fuS_hetany2

0 1000 2000 3000
analysis time
fu5_hetany2 =-2 fu5_hetany2 =0
fu5_hetany2 =1

Figure 9-3: Kaplan-Meier survival estimates for interaction between treatment and het-
any2 (fu5_hetany2) in the AXIS study
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9.3.2 Glioma2

Glioma2 was a multicenter German-Austrian randomised trial conducted to test the stan-
dard therapy of Monotherapy with BCNU against a combined chemotherapy of BCNU
and VM26 in the context of brain tumours in adults. 447 patients were randomised be-
tween February 1983 and June 1988. In addition to survival times data was collected on
age, sex, Karnofsky-index, time from first symptom, grade of malignancy, type of surgical
resection, convulsia, cortisone, epilepsy, amnesia, organic psychosyndrome and aphasia.
Again the test for potential treatment-covariate interaction effects was pre-specified in

the protocol.

During the trial 274 out of 411 patients died. The overall hazard ratio of the trial was
observed to be 0.89 in favour of chemotherapy with a confidence interval ranging from
0.71 to 1.14 and a significance level of 0.38. Hence there was no evidence of a significant

improvement in survival depending on treatment.

We can identify the time from first symptom, grade of malignancy, Karnofsky index
and aphasia as possible interaction candidates. Investigation of these variables was done
by Ulm et al. [139] and Sauerbrei [109]. Each of these variables has been split into
two levels, with the Karnofsky index having two different level definitions. The grade of
malignancy and the second definition of the Karnofsky index show big discrepancies in
the numbers of patients present in each group. Therefore power for the comparison is

relatively low.

Kaplan-Meier survival curves suggest that there may be an interaction especially in
the case of grade of malignancy and the second specification of the Karnofsky-index as

illustrated in Figures 9-4 and 9-5 respectively.

When running a logrank test for each of the covariates alone as prognostic factors,
the differences between the categories in terms of survival were found to be significant at

the 5% level apart from in the case of grade of malignancy and aphasia.

The interaction of time from first symptom and treatment was found to be significant
at the 5% level (p-value 0.03) with a hazard ratio for the interaction term of 0.58 and a
confidence interval from 0.35 to 0.96 which is very wide. Similarly both specifications of
the Karnofsky index were found to have a significant interaction with treatment (p-values
of 0.002 and 0.031) and very similar interaction hazard ratios of 0.64 and 0.66 (CI 1: 0.49

- 0.82, CI 2: 0.49 - 0.89). The Kaplan-Meier survival curves for the interaction term also
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Kaplan-Meier survival estimates, by therapie x04
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Figure 9-4: Kaplan-Meier survival estimates, by treatment (therapie) and grade of ma-
lignancy (x04) in the Glioma2 study

Kaplan-Meier survival estimates, by therapie x07
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Figure 9-5: Kaplan-Meier survival estimates, by treatment (therapie) and Karnofsky
index (type 2) (x07) in the Glioma2 study

follow a very similar path, with the one for the Karnofsky index (type 1) shown in Figure
9-6.
The interactions of grade of malignancy and aphasia with treatment were, however,

not found to be significant (p-values 0.37 and 0.39).

9.3.3 Summary of main effects

Table 9.2 provides a summary of the main treatment effect in each trial and one of the
major interaction effects of treatment with a covariate. What is apparent is that having

done the main analysis we are interested in interaction effects of each of the levels of the
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Kaplan-Meier survival estimates, by therapie_x06
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Figure 9-6: Kaplan-Meier survival estimates for interaction between treatment and
Karnofsky index (type 1) (therapie x06) in the Glioma2 study

covariate with treatment alone. Furthermore, the graphical analysis using the Kaplan-
Meier survival graphs gives graphical representation of the magnitude of the effects but is
not entirely satisfactory. Hence we developed a Stata program to provide more detail for

the analysis of treatment-covariate interactions. This is explained in detail in the next

section.
Study Covariate Treatment effect Interaction effect
overall with covariate
AXIS hetany2 0.73 (0.54 - 0.98) 0.74 (0.55 - 0.97)

Glioma2 Karnofsky index (type 1) 0.89 (0.71 - 1.14) 0.64 (0.49 - 0.82)

Table 9.2: Summary of main effects together with a 95% confidence interval

9.4 Model and computation

A Stata 8 program and dialog were written to aid the visualisation of treatment-covariate
interaction effects in clinical trials. The program produces tabular output of the inter-
action effects as well as graphics. This and the following two sections describe first the
mathematical background for the calculations and then the program set-up. Two trial

examples are given at the end.

The model underlying the calculations is based on a 2*2 table for interactions as
illustrated in Table 9.3. For the Cox proportional hazard model we can see that the
hazard ratio between treatment = 1 and treatment = o, while the covariate is equal to

0, is A Similarly, we arrive at a hazard ratio of v between the covariate being equal to 1
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and 0, whilst treatment is equal to 0. We then define the ratio of hazard ratios (RHR)

as 7 which illustrates the interaction effect. This can be derived

RHR = =T (9.1)

A similar definition arises when looking at the logistic regression model since the para-
meters remain the same but we are dealing with odds ratios instead of hazard ratios. So

again we can employ Table 9.3 for illustration purposes and we define the ratio of odds

ratios (ROR) as 7.

Treatment = 0 | Treatment = 1
Covariate=0 | 1 A
Covariate=1 | v AuT

Table 9.3: 2*2 table for interaction effects

The table and graphics output by the program based on the Cox proportional hazards
model are computed using the Cox model as implemented in Stata. Let A denote the

treatment and Z a covariate of interest. The overall hazard is calculated using

h(t|A) = ho(t) exp(an A) (9.2)

where a; is defined as the coefficient for the treatment variable, while the hazards in the

two groups as well as the hazard for the RHR are based on the model

h(t|A, Z) = ho(t) exp(B1A + B2 Z + 12AZ) (9.3)

We can estimate A by 8; and v by 8,. The interaction term is given by 3,.

The logistic option employs logistic regression, again as implemented in Stata. The

overall treatment odds ratio is estimated using

exp(ag + a1 A)
1 + exp(ap + a1 A)

m(A) = (9.4)

The odds ratio in both levels of the covariate and the ROR are based on the following

model

_ _exp(y(4,2))
m(4,2) = 1+ exp(g(4, 2)) (9:5)

for

9(A,Z) = Bo+ B1A+ B2Z + B1oAZ (9.6)
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where S, is the coefficient on the constant term, 3;, ¢ = 1,2, are the coefficients on the

independent variables and ;2 denotes the coefficient for the interaction term.

The graphical output of this program is based on forest plots. A “forest plot” is a
pictorial presentation of the hazard or odds ratio with corresponding confidence intervals.
A more detailed description of forest plots and their history may be found in Lewis &

Clarke [75].

9.5 Design of the dialog

The program may be invoked using the Fintplot menu and its associated dialog. On
completion of the calculations Stata displays a table of output containing the overall
treatment hazard ratio, the hazard ratio in both groups of the prognostic factor chosen and
an estimate of the RHR or ROR for interaction. Furthermore, a forest plot is displayed
using Stata 8 graphics. The program has an Overview dialog option which provides a
forest plot of the overall treatment hazard or odds ratio and RHRs or RORs for up to
five covariates with treatment. Calculations are performed in the ado files fintplot and

fintplotk. The default method of analysis is the Cox proportional hazards model.

fintmenu can be executed by typing fintmenu on and a new item Fintplot will
appear on the system menu-bar under User. This menu can be turned off again by

typing fintmenu off.

9.5.1 Forest plot and table for interaction

The following description will concentrate on the Fintplot - Detail dialog, however,
the Fintplot - Overview dialog may be used in a similar manner. The dataset employed
in the analysis needs to have been stset prior to using this menu if the Cox proportional
hazards model is to be used and the covariate levels need to be binary. The User may
decide on sensible binary levels for the covariates which are of further interest by first

employing the Overview dialog.

The Fintplot - Detail dialog allows both the by and if options to be executed
separately or at the same time. Variables used for the by option of the program need to be
discrete and can be entered under Separate by observations. If the Cox proportional
hazards model is chosen, the program also allows for stratification. The variable to be

used for stratification needs to be entered under Stratify by observations which is
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also located in the by option part of the dialog window. In the case of the if option,
the Create button allows the easier construction of the logical argument. In addition,
the confidence level may be set prior to running the program in the usual way using set
level #. Lastly, if the log scale is preferred for the forest plot, one needs to tick the
box for Log scale in the main dialog window. The table will remain unchanged by this

option.

9.6 Examples

The examples given below illustrate the program by employing data from the Glioma and
Low Infant Birth Weight studies. Caution needs to be observed in looking at the results

as these were not tests for interactions predefined in the protocol.

9.6.1 Forest plot for an interaction of two different covariates with

treatment

The first example was run using the Glioma2 study described above. Further information

on this study is available in an article by Ulm et al. [139).

The data was stset prior to running the main analysis. For this first run, we have
decided to look at the possible interaction between treatment (Trt) and two different
binary categorisations of the Karnofsky-index (x06 and x07). Figure 9-7 illustrates how
we enter the information into the dialog window. The treatment variable should always

be entered first. Upon pressing OK or Submit we obtain the output given in Figure 9-8.

The log hazard ratios and hazard ratios in both levels of the factor and the overall
hazard ratio are given as well as confidence intervals. This output is split into both
categorisations of the Karnofsky index (x06 and x07). Most importantly the second table
for each categorisation gives the log RHR and RHR for the interaction between treatment

and the Karnofsky index.

Figure 9-9 illustrates the forest plot output by the program for these interactions. Here
the diamond shape gives the overall hazard ratio for treatment without differentiating by
factor. The square shapes then display an estimate of the hazard ratios in the two groups.
Lastly, the circle shape gives us the RHR for the interaction. When looking at the plot

of therapie and x06 we can see that the confidence interval for the first level of x06 is
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m FINTPLOT - DETAIL
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Variables for test

m W
Covariate 1 m
Covariate 2
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Treatment variable [therapie
Cox proportional hazards f Logistic regression
n Log scale
© 0 OK Cancel Submit

Figure 9-7: Dialog window illustrating analysis of two interactions under Cox model

too wide for the table. It has hence been truncated at a value of 2.5. Both the tables
and forest plots show that there is evidence of an interaction between treatment and the

Karnofsky index with an RHR of 0.45 or 0.52 depending on the specification.

9.6.2 Forest plot ofan interaction of one covariate with treatment using

both by and log scale options

The data used in this example originates from a study of the Risk Factors Associated
with Low Infant Birth Weight. Data collection took place at Baystate Medical Center
in Springfield, Massachusetts during 1986. Information was gathered on the birth weight
in grams (bwt), the age of the mother (age), the mothers weight in pounds at the last
menstrual period (Iwt), race (race), smoking status during pregnancy (smoke), history
of premature labour (ptl), history of hypertension (ht), presence of uterine irritability
(ui) and the number of physician visits during the first trimester (ftv). Birth weight in
grams was the further split into a low birth weight (low) categorisation whereby I=birth
weight < 2500 g. Further information on the analysis of this dataset is given in Hosmer

& Lemeshow [60]. At the planning stage an interaction analysis was specified.

Hosmer & Lemeshow suggest splitting lwt into two categories (lwd) whereby 1 denotes

a weight of under 110 pounds. Furthermore they have investigated a possible interaction
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FINTPLOT version 1.0.0, 20 April 2004

A program to illustrate treatnent/covariate interactions using forest plots by
Friederike Barthei1 s Patrick Royston

DETAIL

-> interaction with x06

Factor InHR HR I95x Conf. Intervall
overall HR -.10629226 .89916182 .70907197 1.1402114
x06== .46974751 1.5995903 1.0625393 2.4080888
x06==1 -.44747156 .63924239 .32618748 1.2527484
Factor InRHR RHR [95%x Conf. 1Interval]
interaction -.80227556 .44830765 .27112886 .74127023

Analysed using Cox proportional hazards model

-> interaction with =x07

Factor InHR HR [95%x Conf. 1Intervall
overall HR -.10629226 .89916182 .70907197 1.1402114
x07== .0340827 1.0346702 .79335045 1.349394
x07== -.82794355 .43694692 .22492848 .84881476
Factor InRHR RHR [95X Conf. Interval]
interaction -.65781756 .51798057 .28376617 .9455104

Analysed using Cox proportional hazards model

Figure 9-8: Fintplot table output for Glioma study

between smoke and Iwd split by age. Hence we have decided to create a new variable
age5 which takes on the value 2 for age>25 and 1 otherwise. We will be using logistic
regression in this example. The dialog window is invoked as before; however, we now need
to enter an outcome variable for the events, which is low in this dataset. Furthermore we
tick the box for Logistic and Log scale. To split the data by age5 we need to switch
to the by option menu and enter age5 as a variable under separate by observations.
Figures 9-10 and 9-11 illustrate this. Once we press the ok or submit buttons we obtain

the output given in Figure 9-12.

This output can be read as in the first example, however, in this case we have a
split by AGES. The forest plot is illustrated in Figure 9-13. All symbols have the same
meaning as defined in Section 9.6.1. We can hence illustrate the potential influence of
other variables. The output from both the table and the forestplot suggest no evidence of

an interaction between smoking and weight at the last menstrual period when we separate
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Forest plot for interactions with treatment

treatment with Karnofskyl treatment with Karnofsky2

overall HR overall HR
m Kamofskv1=0 ) I Kamofsky2=0
Karnofskyl=1 Kamofsky2=1

Interaction interaction

1.5 2 3 1.5
HR/RHR HR / RHR

Figure 9-9: Forest plot for interaction of treatment with two categorisations ofthe Karnof-
sky index

the data by age5. However, the analysis is not very conclusive due to wide confidence
intervals which stem from the fact that there is only a small amount of data available in

each group.

9.7 Conclusions

It is becoming increasingly important to analyse the effect an intervention has across
different levels of a covariate in order to allow for more individual patient care. Hence we
have developed a Stata tool to express such interactions both quantitatively and visually
within a 2*2 table framework. It is flexible in the options it provides and operates under

either the Cox proportional hazards or the logistic regression model.
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© C OK Cancel Submit

Figure 9-10: Dialog window illustrating input of outcome variable for logistic regression

KHNIPLOT DETAIL
Main by Jiflin
Separate by observations
by [age5

Stratify by observations

© © OK Cancel Submit

Figure 9-11: Dialog window illustrating use of by option
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FINTPLOT

A program to illustrate treatment/covariate interactions using forest plots by

Friederike Bartbel 8 Patrick Royston

DETAIL

Response variable:

-> for age5==
Factor
overall OR
smoke==
smoke==
Factor

interaction

Response variable:

-> for age5==
Factor
overall OR
smoke==
smoke==
Factor

interaction

low

InOR
.5389965
.82198005
5.6333333
InROR

-.55801451

low

InOR
2.0918641
2.7725887
21.005128

InROR

-1.5293952

OR
1.7142857
2.275
279.59254

ROR

.57234432

OR

8.1

16
1.326e*09

ROR

.21666667

Analysed using logistic regression

Figure 9-12: Fintplot table output for Low Birth Weight study

Figure 9-13: Forest plot using logistic regression, log scale and by options for Low Infant

-2.5

Birth weight data set

version 1.0.0,

I95x Conf.

.71798501
.71135751
.00766853

195x Conf.

.09691536

I95x Conf.

2.2292439
2.4137899
1.709e-15

I95x Conf.

.0157211

Interval]
4.0930876
7.2757016
10193868

Interval]

3.3800424

Interval]

29.431503
106.05728
1.028e+33

Interval]

2.9860787

Forest plot with interaction for Iwd and smoke
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Chapter 10

Summary and forward look

10.1 Summary

Adequate sample size calculations are vital for the success of all randomised controlled
trials. They are particularly complex for trials with survival-type endpoints because they
usually involve prior estimates of a number of parameters including the control group
survival distribution, the magnitude of the targeted difference to be detected, the rate
of accrual of individuals to the study, the length of follow-up of individuals after accrual
closure and the potential for (time-related) dilution of any effect through, for example,
loss to follow-up or change of treatment. All of these parameters can have an important

impact on the trial size needed.

In the first part of the thesis in Chapters 3 and 4 we presented a general approach
to sample size calculations for trials which allows for all these sources of variability. This
approach is based on mathematical ideas and an earlier version of the sample size program
derived by Professor A. Babiker. During Chapter 3 and its accompanying paper [7] we
formulated the mathematical description of the approach. Simulation results show that
these calculations are accurate in a variety of trial settings. These results also indicate
that the adjustments particularly for non-proportional hazards, non-uniform accrual and

cross-over may be substantial in terms of power and sample size.

The main improvements made to the ART software over the course of Chapter 4 are the
new design of the dialog menu exploiting features introduced in Stata 8 and more detailed
output. In addition, the sample size calculations may now be performed for non-inferiority

designs. Thus users should find the new version easier to use and more informative than

180



the first release. Furthermore, a comparison with other software packages has shown that
this is the only widely available program to take into account all of the above mentioned

complexities.

In trials which are aimed at comparing treatments to treat diseases that are serious
and life-threatening such as cancer or HIV, surrogate endpoints are attractive since they
can be measured sooner and more easily than those which are considered the most valuable
clinical endpoints in such diseases: morbidity and mortality. We have presented statistical
methodology from the literature in Chapter 5 that aims to assess the strength of surrogate
markers for clinical endpoints, both within individual clinical studies and across clinical
studies. To be useful to investigators, surrogate endpoints should also result in a reduction
of either sample size or the duration of the study. The acceptance of surrogate endpoints in
clinical trials as the basis for drug approvals is recognised as carrying risks. These include
the risk that a treatment-induced effect on a surrogate endpoint will not correlate with
a clinical effect, resulting in an ineffective product proceeding to market if the analysis
at the end of the trial was based only on the surrogate endpoint. Therefore we propose
to use a primary outcome such as mortality for the final analysis and an intermediate

outcome for the analysis at intermediate stages.

The multi-stage, multi-arm methodology presented in the second part of the thesis,
specifically in Chapters 6 and 7, aims to address the pressing need to speed the process
of the evaluation of new therapies, particularly in cancer. This approach has two dis-
tinguishing characteristics: many new therapies are compared at once against a control
treatment and ineffective therapies are rejected on the basis of an intermediate outcome
measure, by a randomised comparison of each new arm against the control. This interme-
diate outcome measure is not required to be a perfect surrogate for the final outcome in
the Prentice sense [99] but rather it is essential that the effect sizes of the new treatment
on the intermediate and final outcome measures are related. In general, the main ad-
vantage of this approach is the ability to reject one or all of the experimental treatments
early. This means are that fewer patients need to be recruited, the trial takes less time

to run, there is increased flexibility in the design and costs are reduced.

In Chapter 6 the multi-arm, multi-stage design first introduced by Royston et al. [103]
was extended to more than two stages. This included the development of Stata software
for sample size calculations for this type of design. The underlying assumptions of the

design were examined and further improvements to the methodology were suggested,
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particularly in the area of non-exponential survival.

Chapter 7 provided a review of literature around bivariate exponential distributions
as well as an addition to the methodology in the form of the NBV E (Normal Bivariate
Exponential) distribution. This was necessary in order to facilitate the simulation of trials
with a progression free intermediate outcome and overall survival outcome. Simulation
studies illustrate the accuracy and robustness of the sample size calculations for the

multi-stage, multi-arm design in this chapter.

In the third part of the thesis in Chapter 8 we explored strategies to analyse the
inherent variability in trial time and / or number of events and provided a Stata tool
to assess the variability at the beginning of the trial as well as update these estimates
throughout patient and event accrual. We have shown that it may be beneficial to take
into account the variability in trial duration at the planning stage since it may have
significant impact on the total cost and practicality of the trial. This knowledge may be
of particular importance in multi-stage trials where the stages itself are often relatively
short and have a smaller sample size. It is necessary to realise that this degree of variability
already arises even if we have estimated all other parameters correctly when calculating

sample sizes.

It is becoming increasingly important to analyse potential treatment-covariate inter-
actions in order to allow for more targeted patient care. Thus it is of great interest to
observe whether the treatment effect is consistent across some demographic factors such
as age, gender, baseline disease severity, some prognostic factors, or previous medical
conditions and concomitant medications. Hence we have developed a Stata program with
which such interactions can be expressed and displayed both quantitatively and visually
within a 2*2 table framework. It is flexible in the options it provides and operates under
either the Cox proportional hazards or logistic regression model. This programme as well

as the underlying methods were described in the fourth part of the thesis in Chapter 9.

10.2 Extensions

10.2.1 Chapters 5 to 7

We have identified a number of areas in which the multi-stage, multi-arm designs may be

extended. These include the following:
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1. Assessing potential gains from earlier trials: A number of conventionally designed
recent trials have collected information both on an intermediate outcome and a
final outcome measure. We propose to reanalyse these studies to assess whether
using the multi-stage methodology we could have identified and ‘rejected’ ineffective
therapies, without inappropriately rejecting effective therapies. Hence we would
like to assess whether the use of emerging data on the intermediate outcome would
have allowed us to stop early in trials in which little or no effect on overall survival
was observed. Similarly, we wish to ascertain whether in studies with a positive
outcome on overall survival the trial would have been stopped early inappropriately
if data on the intermediate outcome measure had been used. Specifically, we could
assess whether employing our methodology in these studies would have reduced the

number of patients needed and saved time.

2. Extension to other outcomes: Hitherto, the methodology has been developed for
two correlated survival-type outcome measures. We propose to extend the method-
ology to cases in which the intermediate outcome is a binary or ordered categorical

endpoint, such as tumour response.

3. Assessing correlation among treatment effects: The calculation of overall Type 1
and II errors in multi-stage, multi-arm trials depends upon adequate specification
of the correlation of treatment effects on the intermediate and primary outcomes
at different time-points over the course of the trial. While some progress has been
made in this area using studies on ovarian cancer with two survival-type outcomes,

other cancer types and other outcome measures require further work.

4. Operating characteristics: So far work on the operating characteristics as outlined
in Chapter 6 has concentrated on the type I and II errors for comparing one exper-
imental arm with a control only. However, in order to determine the overall type
I and II errors for the design two main correlations need to be taken into account:
a) two or more analyses are conducted over time and b) two or more simultaneous
comparisons with control. Some preliminary work has been carried out in this area,
using the multivariate normal distribution of the treatment effects, which addresses

the first issue of these issues.

5. Bias in treatment-effect estimates: We need to consider whether ceasing further
randomisations to a research arm in a multi-stage, multi-arm trial and continuing

allocation to other arms may introduce bias in estimated treatment effects. The
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original publication [103] states that such bias is avoided by reporting treatment
effects for all treatments, irrespective of whether they were dropped early or not.
We will investigate this issue further from a methodological perspective and by

computer simulation.

. Practical issues in multi-stage, multi-arm trials: The first trial (ICONS, in ovarian
cancer) employing the two-stage design as outlined by Royston et al. [103] has just
been completed at the MRC Clinical Trials Unit. A further trial (STAMPEDE,
in prostate cancer) has been designed with an extension to more than two stages,
and is under way. To assess the practical impact of the approach and provide
guidance on undertaking these trials, we propose to examine the issues raised in

these multi-arm, multi-stage trials. These include:

(a) Patient information: How much information needs to be given in the patient
information sheet? What information should be given to the patients allocated

to an arm which is stopped early?

(b) Protocol / Statistical Analysis Plan: We propose to write a plan on ‘How
to describe a multi-stage multi-arm trial?’ in a protocol or trial proposal.

Furthermore, guidance on the statistical analysis plan is needed.

(c) End of Stage 1: There is currently a grey area between the end of Stage 1 in
terms of the number of events needed and the time of the actual analysis. A
similar discrepancy in times occurs at the end of the trial. Currently, recruit-
ment is stopped when the needed number of events have been accrued. This
may lead to overpowered trials. Hence the question arises of whether there is

an optimal time of stopping recruitment?

10.2.2 Chapter 8

We furthermore propose that the work described in Chapter 8 on the variability in total

trial time be extended to incorporate those trial design options provided in ART as

outlined in Chapter 4. The second part of the analysis of variability program currently

utilises trial data from the control group only. However, due to issues of unblinding trial

data before the final analysis, only the data from all groups as a whole may be available.

Thus it may be beneficial to allow for the input of the trial dataset as a whole in order

to obtain an overall median survival. By assuming the hazard ratio used for sample size

calculations at the outset we may then calculate median survival in the control group only
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and employ the tool as described above. A third area of extensions to this methodology
may be the use of spline functions as proposed by Royston et al. [102] to predict the

rest of the distribution from trial data available so far and subsequently calculate median

survival based on that information.
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Appendix A

Publications and prizes

The research in this thesis won the Fisher Memorial Trust bursary to attend and present
at the International Biometric Conference in Cairns in 2004. A poster based on research
in this thesis was awarded the Best PhD Poster Prize at the GSK BDS UK Statisticians’
and Programmers’ Conference, 2004. Furthermore, I was awarded the University College
London Momber Scholarship, 2003/2004, and the Costas Goutis Prize, 2004. Below
is a list of publications and conference presentations that have resulted from the work

described in this thesis.

A.1 Papers

1. F. M.-S. Barthel, P. Royston, A. Babiker. 2005. A menu-driven facility for complex
sample size calculation in randomized controlled trials with a survival or a binary

outcome: update. The Stata Journal: 5, 123-129.

2. F. M.-S. Barthel, A. Babiker, P. Royston, M. K. B. Parmar. 2006. FEvaluation
of sample size and power for multi-arm survival trials allowing for non-uniform
accrual, non-proportional hazards, loss to follow-up and cross-over. Statistics in

Medicine: accepted.

3. F. M.-S. Barthel, P. Royston. Graphical representation of interactions. The Stata

Journal: submitted.

4. F. M.-S. Barthel, P. Royston. multinorm: Multivariate normal probabilities. to be
submitted to The Stata Journal.
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A.2 Presentations

1. F. M.-S. Barthel, P. Royston, M. K. B. Parmar. 2005. Sample sizes for time-to-
event outcomes: implications of the variability in events and time. 26th Anniversary

Meeting of the SCT. Portland. Clinical Trials: 2 (Supp. 1), S31.

2. F. M.-S Barthel, P. Royston, M. K. B. Parmar. 2005. Designs for multi-stage multi-
arm clinical trials with survival outcomes — assessing robustness and practicality.

MANDEC Seminar. Manchester. invited.

3. F. M.-S. Barthel, P. Royston, M. K. B. Parmar. 2004. Designs for two-stage multi-
arm clinical trials with survival outcomes - assessing robustness and practicality.

GSK BDS UK Statistician’s and Programmers’ Conference 2004. Ware.

4. F. M.-S. Barthel, A. Babiker, P. Royston, M. K. B. Parmar. 2004. FEwvaluation of
sample size and power for multi-arm survival trials allowing for non-proportional

hazards, loss to follow-up and cross-over. ISCB 2004. Leiden. Abstract book: 87.

5. F. M.-S. Barthel, P. Royston, M. K. B. Parmar. 2004. Designs for multi-arm
clinical trials with survival outcomes - assessing robustness and practicality. ISCB

2004. Leiden. Abstract book: 141.

6. F. M.-S. Barthel, P. Royston, M. K. B. Parmar. 2004. Sample sizes for time-
to-event outcomes: implications of the variability in events and time. IBC 2004.

Cairns. Proceedings of the XXIInd International Biometric Conference.

7. F.M.-S. Barthel, P. Royston, M. K. B. Parmar. 2004. Designs for multi-arm clinical
trials with survival outcomes - assessing robustness and practicality. 6. Workshop

Adaptiv-sequentielle Verfahren. Mainz. Abstractheft.

8. F. M.-S. Barthel. 2004. Simulation results for two-stage multi-arm trials. Workshop

on the analysis of clinical trials incorporating treatment selection. Reading. invited.

9. F. M.-S. Barthel, A. Babiker, P. Royston, M. K. B. Parmar. 2004. FEvaluation of
sample size and power for multi-arm survival trials allowing for non-proportional
hazards, loss to follow-up and cross-over. Karlsruher Stochastik-Tage 2004. 6th
German Open Conference on Probability and Statistics. Abstracts and list of par-

ticipants: 153 - 154.
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Appendix B

Derivation of the non-centrality

parameter 7

This appendix provides further details on the calculation of the sample size N under
loss to follow-up, non-proportional hazards and cross-over as referred to in Section 3.2.
All variables are defined as described in Sections 3.2 and 3.3. This work is based on

fundamentals derived by Professor A. Babiker.

Let the observed numbers of events (O%, - O]K)’ have a multinomial distribution with

probability [ea(tj; A), ... ,ex(t;; A)]'. Define

My E(Ux|Hy)

() = 75

where the expectation of the logrank statistic Uy under the alternative hypothesis is given
by

m
E(U|Hy) =Y W(t;)[ex(t;; A) — ex(t;;0)]
i=1

and let M(A) = (Ma(A), ..., Mk (A))'. The covariance of U is structured as a (K — 1) x
(K — 1) matrix V(A) = (vx;) where

vir(A) =D [W(t;)Pex(t;; A)[0r — ex(tj; A)] (B.1)
j=1

for k,l = 2,..,K; and 6 = 1 if K = [,0 otherwise. According to the Central Limit
theorem [51], as N — oo, ((U/vV/N) — M(A)) is asymptotically distributed as multi-
variate normal N(0,V(A)/N), i.e. for large N, U/v/N is approximately distributed as
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N(M(A),V(A)). It follows that
Q=U(v(a)~'U
is distributed as non-central x% _, with non-centrality parameter
r = My M) = Nmay (va) M) (.2

and

Q=U'(V(0)"'U

is distributed as central x%_, under Hp [118]. Under local alternatives Hj, we can
replace V(A) by V(0) in the expressions for @ and 7 and so the logrank statistic Q is
approximately non-central x? with the non-centrality parameter given by Equation 3.1

in Section 3.2.

In order to calculate the sample size N we need to find M(A) and V(0) asymptotically
as N — oo. To do this we incorporate our knowledge about patient accrual, loss to follow-
up and cross-over into 7. Let F&(t), SE(t) and SL(t) follow the notation in Section 3.3.1.
Then the probability that a randomly selected patient is in group k and is still at risk of
failure at time ¢ is FR(T — t)Hy(t), where

Hi(t) = piS ()¢ (t) (B.3)

The limit of ex(t; A) as N — oo is given by

pelt; &) = DB (B.4)
Z Hy(t)A(t)
=1
Let
Pi (t) = FR(T — t)peSi () FE(2) (B.5)
and
K
V() = yE(t) (B.6)
=1
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If we let g(t) = limy_,00o W (t) then

M(A) — L

m

as N — oo. Furthermore

V)

—

1
N N—oo N |

[9(t)] P (t; A) [Ok

/gt)pktA —-p
0

k(£ 0)0 " (t)dt

— pu(t; AP ()t

Under the unweighted logrank test the weights are given by

9(t) =1

while Tarone & Ware weighting [130] has the form

K
t) = {F*T - )>_ peSE(6)SE®)]}/*

k=1

and Harrington & Fleming weighting [56] can be calculated as

g(t) =

K
> nSEOSER)

k=1

> peSE()
k=1
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Appendix C

An approximation to the
distribution of the logrank test
statistic () under more distant

alternatives

This work is based on fundamentals derived by Professor A. Babiker. In Appendix B,
the distribution of the logrank statistic, under local alternatives H;, was approximated
by that of @ replacing V(A) by V(0) leading to a non-central x? with K — 1 degrees of

freedom and non-centrality parameter
T=NM(A)V(0)'M(A)

More generally, the distribution of ) under H; can be approximated by one of two

methods:

The first is based on approximating the distribution of @ under H; by that of a

constant multiple of non-central x% _,(7) using the first two moments [118]
E(Q|H:) = tr(V(0)"'V(A)) + NM(AYV(0)"'M(A) (C.1)
and
V(Q|H1) = 2{tr(V(0)'V(A))? + 2NM(A)'V(0) "' M(A)V(0) "' M(A)} (C.2)
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to solve for the multiplying factor and the non-centrality parameter 7. This means that we
approximate the distribution of Q by that of cX where X ~ x% _ (7). Setting L = K — 1
and equating the right hand side of equations C.1 and C.2 with cE(X) and ¢*Var(X)

respectively, where X ~ x% _,(7) [33], we obtain
tr(V(0)"'V(A)) + NM(A)YV(0) ' M(A) = ¢(L + 1)

and

tr(V(0)"WV(A)2 + 2NM(A)V(0) ' M(A)V(0) "' M(A) = (L + 27)

Hence the non-centrality parameter of ) is then given by

o [0 = Lby) + /(8 — Lb1)® + by L(b — Lby)
b

where we define ag = tr(V(0)~1V(A)), go = M(A)'V(0)"IM(A), a1 = tr(V(0)"1V(A))2,
g = MA)YV(0)T'MA)WV0)TM(B)

bg = ag + Nqo and b; = a; + 2Ngq;. Using N as calculated under local alternatives as
a starting value we can then find N under distant alternatives iteratively such that it
satisfies the following equation

(K=1+41)

1 - B =nchi(K — 1,7, [invchi(K — 1, a)] 5o )

where nchi(L, T, z) is the value of the cumulative distribution function of a non-central
x? with L degrees of freedom and non-centrality parameter 7, at z. invchi(L,a) gives
the inverse of the cumulative distribution function of the central y? distribution with L

degrees of freedom at «.

The second method is based on sampling from () under H; by using the knowledge that
U/V/N is asymptotically multivariate normal with mean M(A) and covariance matrix
V(A). Under this method we obtain 10,000 replications of the vector U. For each of
these @ is calculated which gives us the empirical distribution for the quadratic form
under Hj. The power is then calculated by counting how many times () is greater than

invchi(K — 1, a). This second method is implemented in the sample size program ART.
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Appendix D

Overall power and significance
level using the multivariate

normal distribution

As outlined in Chapter 6 the overall power and significance level of a multi-stage trial
with s stages will follow a multivariate normal distribution ®,. In order to arrive at
the required sample size and other design characteristics for the s-stage trial the sample
size calculations described in that chapter were programmed in Stata 8. However, Stata
8 currently does not provide for a multivariate normal with s > 2. Hence we had to
provide such a program. For this purpose, the literature was surveyed, in particular
methods provided by Genz [47] [48] [49]. His methods were previously programmed and

evaluated in Fortran 77.

His first paper (1992) [47] on the subject provides a method for evaluating the general

multivariate normal cumulative distribution function as defined by

b1 b2 bs 1
F(a,b) = // /exp{—§gtz*{@}dg
\/IZI @)y o 4

where = (61,02, ...,0,)! and X is a s X s symmetric positive definite covariance matrix.
However, for our purposes we can set a; = ag = ... = a; = —00. The algorithm suggested

by Genz for the evaluation of the integral operates as follows:

i) Input ¥, a,b, &, and Nyax where € is defined as the error tolerance, o as the Monte-

Carlo confidence factor for the standard error e.g. 2.5 and Npyax limits the maximum
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number of repetitions allowed for the algorithm.
ii) Compute the lower triangular Cholesky factor C for X.

iii) Initialise Intsum = 0, N = 0 and Varsum = 0. Furthermore define d; = ®(a;/c1,1),

e; = ®(b1/c1,1) and f1 = e, — d;.
iv) Repeat:
a) Generate random uniform wy, wo, ..., ws—1 €[0, 1]

b) For i =2,3,...,s
yio1 = @ Ndisy +wi—1(ei1 — di—1))

- \
a; — Zl Ci,jYj

(3
J

di=0| ——
Cii

and

fi=(ei —di)fic1

c) Set N =N +1,
fs — Intsum

0 =
N
Intsum = Intsum + 6

(N —2)Varsum
N +6°

Error = avVarsum

Varsum =

Until Error < € or N = Npax
v) Output F = Intsum/N, Error and N.

This algorithm can be simplified for our purpose by setting d; = 0 since we assume

a; =—00,t=1,..,s.

The following example illustrates this approach using parameters which could be
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chosen for our multi-stage design. Let n = 4, a = (—00,—00,—00,—00) and b =

(0.5,0.25,0.1,0.05). Furthermore let

1 1 1 06
1 1 1 06
1 1 1 06
06 06 06 1

This means that we want to solve

0.5 0.25 0.1 0.05

Fla,b) = W[Q __i Zo __o/o exp{—50'5'8}d8

According to step ii) we first need to find the Cholesky decomposition for ¥. To derive

¥ = CCT we simply equate coefficients on both sides of the equation
ply eq q

(«511 12 o Sin )

C11 0 0 Ci1 €21 ... Cp
821 822 ... Son

c1 ¢ ... 0 0 c¢o9 ... cpo
831 832 ... S83n =

Chl Cn2 ... Cpn 0 0 ... cun
\Snl Sn2 Snn)

When solving for the unknown parameters fori =1,...,s and j =i+ 1, ..., s we get

i—1
ci = || 5a— D &
k=1

and i
(Sn -2 cjqu)
cji = k=1
Cig
Hence for our example

1 1 1 06 1 00 0 111 06
1 1 1 06| | 1 00 0 000 O
1 1 1 06| | t o0 o 000 O
06 06 06 1 06 0 0 08 000 08
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The first transformation of our integral then gives density

b'z(?_ll) ) b53(y1,y2) ) b (y1,y2,¥3)

% \
Fa) = o / (-2} [ exp(-2) [ exp(-%)

a ay(y1) ol (y1,¥2) aly (y1,92,y3)
where
i—1
a; — Y Cijy;
i=1
a;(yh---ayi—l) = =
and
i-1
bi = 2 cils
J:
bi(y1y - Yiz1) = p”

Y3
exp{—?}dg

Thus ] = d5(y1) = a(y1,y2) = a4(¥1,Y2,¥3) = —o0, by = 0.5, b5(y1) = b3(y1,y2) = 00

and bj(y1,y2,y3) = 0.0625 — 0.75y,. Following this step we can further transform the

integral to give
$(0.5) $(00) ®(00) <I>(0.0625—0..75<I>“‘(z1))

F(a,b) = / / / / dz

0 0 0

o

Finally, a third transformation gives

1 1_ 1' 1
F(a,b) = [ ®(0.5) [ ®(c0) [ ®(c0) [ ®(0.0625 — 0.750 1 (w,®(1))dw

= ®(0.5) | /1// $(0.0625 — 0.750 ! (w; ®(1)) | /1 dw
0 0

This integral may then be further evaluated using inbuilt Stata functions.

Instead of the Monte-Carlo algorithm method given above lattice rules may be used

as a more elegant way of evaluating the integral [48]. A further method is suggested in

Genz (2004) [49] for the special case of the trivariate normal density. This method is

based on Owen (1956) [88] who wrote the standard trivariate normal integral in terms of

a bivariate normal integral. Hence we could extend this method for s > 3, however, for

large s this does not provide a reduction in computation time.
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