Ceramic Variability and Change: A perspective from Great Lakes Africa

Doctorate of Philosophy (PhD)
Volume I

Ceri Zaria Ashley

Institute of Archaeology, University College London

October 2005
Abstract

This thesis explores the dynamic role of archaeological ceramics through an examination of variability and change within communities of Great Lakes Africa, in the first and early-mid second millennia AD. It will be argued that ceramic evidence presents a multifaceted archaeological resource, providing detailed empirical evidence of variation and anthropogenic patterning, as well as a powerful insight into wider social, cultural and economic structures of the past. Despite this acknowledged importance, it is believed that Great Lakes ceramic studies have historically failed to capitalise on this potential, and continue to portray ceramic phenomena as passive correlates of fixed and immutable social identities. It is suggested that this dormant role for ceramics emanates from a wider reliance on narrow culture historical models of archaeology, in which society is viewed as discretely bounded, internally homogenous and lacking in self determination and will. Ceramic variability therefore, is typically seen as co-terminous with these putative social boundaries, and ceramics have thus become proxy indicators for wider archaeological 'cultures'. Drawing on a range of theoretical approaches from material culture studies, ethnoarchaeology, and from wider modelling in archaeology and anthropology, this thesis argues that such an approach is unduly simplistic, and masks the depth of empirical diversity as well as restricting interpretive scope. In response to this situation this thesis proposes an alternative approach to ceramic evidence, emphasising diversity and variability, and thus, by extrapolation, social diversity and variability as well.

This alternative approach to ceramic variability, is applied in an examination of a substantial new body of ceramic data from the northern shores of Victoria Nyanza, a previously poorly documented area, which is typically regarded as a geographical and conceptual 'periphery', in discussions of Great Lakes social and political dynamics. Five case study areas have been identified within this region, and individually investigated for micro scales of patterning. By selecting this specific geographical area, and this localised scale of analysis, this study is re-centring attention on the 'hidden' or 'forgotten' communities of the Great Lakes. As a result, research findings have provided unprecedented evidence of ceramic variability, identifying internal variation within known ceramic typologies as well as completely new ceramic phenomena. Interpreting these ceramic patterns, this thesis proposes local, site-specific explanations (inter-community contact, regional variation) as well as exploring macro, diachronic patterns that suggest a slow decline in the role and prominence of ceramic technology, linked to a speculated decline in domestic authority.

This thesis concludes with some speculation on future research directions and potential.
Table of Contents

Title Page 1
Abstract 2
Table of Contents 3-6
List of Figures 7-9
Acknowledgements 10

Chapter One: Ceramic Variability and Change: background and objectives

Chapter 1
Global Approaches to Archaeological Ceramics 12
African Approaches to Archaeological Ceramics 13
Ceramics in the Great Lakes 21
Defining the Framework of Investigation 26
Structure of the Thesis 31

Chapter Two: Reviewing Evidence of the Great Lakes Past

Chapter 2 34
Terminology and Structure 34
The ‘Early Iron Age’: 500BC-AD1000 36
- Linguistics, Origins and Identity 36
- Dating 41
- Distribution 45
- Subsistence Economies 48
- Socio-Political Organisations 52
- Technology 55
The Second Millennium AD- the ‘Late Iron Age’ 58
- Transition and Change 59
- Fragmentation and Regionalisation 63
- Political Centres of Western Uganda 63
- The Victoria Nyanza Basin 67
Comments and Conclusion 71

Chapter Three: Explanatory Frameworks for the Great Lakes

Chapter 3 73
Approaches to Identity and Social Boundaries from Archaeology and Anthropology 74
Chapter Four: Approaches to Ceramics

Chapter 4

- A History of Ceramic Research in the Great Lakes
- Impact and Implications of Great Lakes Ceramic Research
- Ceramic Research in Southern Africa
- East and South: A Comparison
- Alternative Archaeologies of Ceramics
- Ethnoarchaeology
- Luo Ceramics and Micro-styles
- Pottery Technology in Cameroon
- Theories of Ceramics and Variability
- Style
- Technology

Proposing an Alternative Approach to Ceramics in the Great Lakes

Chapter Five: Theory to Practice: Designing a Methodology

Chapter 5

- Research Questions and Ceramic Answers
- Selection of Analytical Variables
- Interpretive Application of Ceramic Variables
- Devising the Analytical Strategy
- Site Type
- Stratigraphic Integrity
- Associated Evidence
- Ceramic Types
- Design Criteria
- Procedure for Analysis of Ceramics
- Recording Procedure
- Procedure
- Statistic Manipulation and Results
Chapter Six: Research Findings from the Northern and Western Lake: Case-studies 1-3

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study 1: Bugala Island, Kalangala District, Uganda</td>
<td>169</td>
</tr>
<tr>
<td>- Entebezamikusa</td>
<td>170</td>
</tr>
<tr>
<td>- Lutoboka</td>
<td>176</td>
</tr>
<tr>
<td>- Sozi</td>
<td>182</td>
</tr>
<tr>
<td>- Malanga Lweru</td>
<td>183</td>
</tr>
<tr>
<td>- Kasenyi Bumangi</td>
<td>193</td>
</tr>
<tr>
<td>Case-Study 2: The Entebbe Peninsula, Mpigi and Wakiso Districts Uganda</td>
<td>194</td>
</tr>
<tr>
<td>- The Entebbe Figurine Assemblage</td>
<td>196</td>
</tr>
<tr>
<td>- Buloba</td>
<td>196</td>
</tr>
<tr>
<td>- WPT Entebbe</td>
<td>199</td>
</tr>
<tr>
<td>- Lulongo</td>
<td>200</td>
</tr>
<tr>
<td>- Hippo Bay Cave</td>
<td>204</td>
</tr>
<tr>
<td>- Luzira Head Assemblage</td>
<td>211</td>
</tr>
<tr>
<td>Case-study 3: Ssi-Bukunja Sub-County, Mukono District, Uganda</td>
<td>222</td>
</tr>
<tr>
<td>- Luka</td>
<td>223</td>
</tr>
<tr>
<td>- Namusenyu</td>
<td>228</td>
</tr>
<tr>
<td>- Sanzi</td>
<td>229</td>
</tr>
</tbody>
</table>

Chapter Seven Research Findings from the Northeastern Lake: Case studies 4 and 5

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-study 4: Siaya and Lolui</td>
<td>240</td>
</tr>
<tr>
<td>- Haa</td>
<td>243</td>
</tr>
<tr>
<td>- Usenge 3</td>
<td>247</td>
</tr>
<tr>
<td>- Lolui Island</td>
<td>259</td>
</tr>
<tr>
<td>Case-study 5: Lower Nyakach Location, Nyando District, Kenya</td>
<td>264</td>
</tr>
<tr>
<td>Wadh Lang’o</td>
<td>264</td>
</tr>
<tr>
<td>Kansyore</td>
<td>273</td>
</tr>
<tr>
<td>Elmenteitan</td>
<td>274</td>
</tr>
<tr>
<td>Urewe</td>
<td>277</td>
</tr>
<tr>
<td>Middle Iron Age</td>
<td>280</td>
</tr>
</tbody>
</table>
Chapter Eight: Ceramic Variability in Northern Victoria Nyanza

Chapter 8 284
Defining the Chronological Boundaries 285
C2nd – C8th AD and Urewe Ceramics 288
- Ceramic Evidence: Definition and Typology 288
- Socio-functional Applications 290
- Contact Urewe and MIA 295
- Non-ceramic Evidence 297
- Comment 303
Q9th – C15th AD 304
C9th-C10th AD and the Lutoboka Group (Lutoboka, Sozi, Sanzi, WPT Urewe, Deolved Urewe) 304
- Ceramic Evidence: Definition 304
- Socio-functional Roles 307
- Non-Ceramic Evidence 308
C11th-C15th AD and Entebbe Bearing Sites 311
- Ceramic Evidence: Definition 312
- Socio-Functional Roles 313
- Non-Ceramic Evidence 316
- Identity 319
Conclusion 320

Chapter Nine: Concluding Comments and Future Directions

Chapter 9 322
- Multi-vocality and the Periphery 322
- Variability and Localisation 323
- Long-term History and Diachronic Change 324
Future Directions? 325

Figures, Appendices, Bibliography

Figures 327
Appendix 1: Vessel volumes 425
Appendix 2: Bukeri Kanywa 427
Bibliography 429
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Childe’s culture history of eastern Europe</td>
<td>327</td>
</tr>
<tr>
<td>1.2</td>
<td>Map of the Great Lakes</td>
<td>328</td>
</tr>
<tr>
<td>1.3</td>
<td>Map showing sites mentioned in the text</td>
<td>329</td>
</tr>
<tr>
<td>1.4</td>
<td>Dimple-based ceramics from Urewe</td>
<td>330</td>
</tr>
<tr>
<td>1.5</td>
<td>Aerial view of Bigo</td>
<td>330</td>
</tr>
<tr>
<td>1.6</td>
<td>Desmedt map of Group W ceramic dispersal</td>
<td>331</td>
</tr>
<tr>
<td>1.7</td>
<td>C19th illustration showing naval battle between Buganda and Bavuma</td>
<td>332</td>
</tr>
<tr>
<td>1.8</td>
<td>Map showing case-study areas</td>
<td>333</td>
</tr>
<tr>
<td>2.1</td>
<td>Map showing Greenberg Bantu language origin</td>
<td>334</td>
</tr>
<tr>
<td>2.2</td>
<td>Map showing Guthrie Bantu language nucleus</td>
<td>334</td>
</tr>
<tr>
<td>2.3</td>
<td>Map showing Oliver Bantu language dispersal model</td>
<td>335</td>
</tr>
<tr>
<td>2.4</td>
<td>Map showing Huffman EIA dispersal</td>
<td>335</td>
</tr>
<tr>
<td>2.5</td>
<td>Map showing distribution of Urewe bearing sites</td>
<td>336</td>
</tr>
<tr>
<td>2.6</td>
<td>Photograph showing Rangong Rockshelter</td>
<td>337</td>
</tr>
<tr>
<td>2.7</td>
<td>Illustration showing decorated furnace bricks</td>
<td>338</td>
</tr>
<tr>
<td>2.8</td>
<td>Illustration showing Kabuye furnace</td>
<td>339</td>
</tr>
<tr>
<td>2.9</td>
<td>Illustration showing iron artefacts from Kansyore</td>
<td>339</td>
</tr>
<tr>
<td>2.10</td>
<td>Map showing distribution of 2nd millennium sites</td>
<td>339</td>
</tr>
<tr>
<td>2.11</td>
<td>Map of Ntusi</td>
<td>340</td>
</tr>
<tr>
<td>2.12</td>
<td>Photograph of Ntusi bauogero</td>
<td>340</td>
</tr>
<tr>
<td>2.13</td>
<td>Photograph showing Luzira Head</td>
<td>340</td>
</tr>
<tr>
<td>2.14</td>
<td>Illustration showing Entebbe figurine</td>
<td>341</td>
</tr>
<tr>
<td>3.1</td>
<td>Map showing Phillipson’s ceramic distributions in eastern and southern Africa</td>
<td>342</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of Hiernaux & Maquet’s Type B and C ceramics</td>
<td>343</td>
</tr>
<tr>
<td>4.2</td>
<td>Chart showing Posnansky time-line for Uganda</td>
<td>344</td>
</tr>
<tr>
<td>4.3</td>
<td>Illustration showing Kwale ceramics</td>
<td>345</td>
</tr>
<tr>
<td>4.4</td>
<td>Chart showing Huffman’s model of ceramic co-traditions</td>
<td>346</td>
</tr>
<tr>
<td>4.5</td>
<td>Photograph showing ceramic firing near Ng’iya</td>
<td>346</td>
</tr>
<tr>
<td>4.6</td>
<td>Illustration showing ceramic production process, southern Cameroon</td>
<td>347</td>
</tr>
<tr>
<td>5.1</td>
<td>Kansyore ceramic typology</td>
<td>348</td>
</tr>
<tr>
<td>5.2</td>
<td>Photograph showing coil fracture</td>
<td>348</td>
</tr>
<tr>
<td>5.3</td>
<td>Elmenteitan ceramic typology</td>
<td>349</td>
</tr>
<tr>
<td>5.4</td>
<td>Urewe ceramic typology</td>
<td>349</td>
</tr>
<tr>
<td>5.5</td>
<td>Devolved Urewe ceramic typology</td>
<td>350</td>
</tr>
<tr>
<td>5.6</td>
<td>MIA ceramic typology</td>
<td>351</td>
</tr>
<tr>
<td>5.7</td>
<td>Entebbe ceramic typology</td>
<td>351</td>
</tr>
<tr>
<td>5.8</td>
<td>Festoon ceramic typology</td>
<td>352</td>
</tr>
<tr>
<td>5.9</td>
<td>Roulette decorated ceramic typology</td>
<td>352</td>
</tr>
<tr>
<td>5.10</td>
<td>Illustration showing rim codes</td>
<td>353-355</td>
</tr>
<tr>
<td>5.11</td>
<td>Illustration showing decoration codes</td>
<td>356-357</td>
</tr>
<tr>
<td>5.12</td>
<td>Illustration showing vessel form codes</td>
<td>358</td>
</tr>
<tr>
<td>5.13</td>
<td>Illustration showing base code</td>
<td>358</td>
</tr>
<tr>
<td>5.14</td>
<td>Sample of completed fabric recording sheet</td>
<td>359</td>
</tr>
</tbody>
</table>
5.15 Sample of completed total sherd recording sheet 360
5.16 Sample of completed reconstructable recording sheet 360
6.1 Map showing case-study 1, Bugala 361
6.2 Illustration showing 'Kwale-like' sherd from Entebezamikusa 362
6.3 Photograph of Lutoboka 362
6.4 Illustration of ceramics from Lutoboka 363-364
6.5 Illustration of ceramic associated with Entebbe figurine 365
6.6 Illustration of ceramic from Lolui 365
6.7 Photograph of cairn, Malanga Lweru 365
6.8 Illustration showing Entebbe ceramic handle, Malanga Lweru 366
6.9 Illustration showing 'Entebbe-style' ceramics from Malanga Lweru 366
6.10 Photograph showing glass beads from Malanga Lweru 367
6.11 Map showing case-study 2 – Entebbe peninsula 368
6.12 Illustration showing ceramic from WPT 369
6.13 Photograph of Lulongo 369
6.14 Illustration of Urewe sherd from Lulongo 369
6.15 Photograph of Hippo Bay Cave 370
6.16 Illustration showing ceramics identified by Brachi at Hippo Bay Cave 370
6.17 Illustration showing Entebbe and Festoon ceramic from Hippo Bay Cave 371
6.18 Photographs showing Luzira Head and body fragments 372-374
6.19 Illustration of figuine fragment associated with Luzira Head 375
6.20 Illustrations of ceramics from Luzira 376-377
6.21 Photograph of one of the Lydenburg Heads, South Africa 378
6.22 Map showing case-study 3 – Ssi-Bukunja 379
6.23 Illustration showing carinated Urewe bowl, Luka 380
6.24 Photograph of Namusenyu 380
6.25 Illustration of Stone Impressed ceramic, Namusenyu 381
6.26 Illustration of Urewe sherd from Namusenyu 381
6.27 Photographs of Sanzi 381-382
6.28 Photograph of tuyere and slag rich hearth, Sanzi 382
6.29 Illustrations of Urewe ceramics from Sanzi 383
6.30 Illustration of WPT Urewe vessel from Sanzi 383
6.31 Illustrations of Lutoboka ceramics from Sanzi 384
6.32 Illustration of Sozi sherd from Sanzi 385
6.33 Illustration of Sanzi ceramics from Sanzi 385-386
6.34 Illustration of Entebbe ceramic from Sanzi 387
7.1 Map showing case-studies 4 and 5 388
7.2 Illustration showing MIA vessel from survey in Yala river valley 389
7.3 Illustration showing ceramics from Nowa River assemblage 390-391
7.4 Photograph of Haa 392
7.5 Photograph of Kansyore vessel from Haa 392
7.6 Plan of ceramic concentration in Unit A, Usenge 3 393
7.7 Photographs showing examples of fabric U1 and U5 ceramics, Usenge 3 394
7.8 Illustrations showing decorated U4 fabrics (Urewe) from Usenge 3 395
7.9 Map of Lolui Island 396
7.10 Illustrations of Urewe ceramics from rock-shelter, Lolui 397
7.11 Photograph of repaired Urewe vessel 398
7.12 Photograph of repaired Tswana beer pot 398
7.13 Illustration of Devolved Urewe, Lolui 399
7.14 Photograph of cairn under excavation, Lolui 399
7.15 Illustrations of ceramics from cairn excavation, Lolui 400
7.16 Photograph of Wadh Lang’o 401
7.17 Section drawing of Unit A, Wadh Lang’o 402
7.18 Section drawing of Unit B, Wadh Lang’o 403
7.19 Photograph of half-sectioned hearth, Unit A Wadh Lang’o 404
7.20 Drawing of Wadh Lang’o sections showing ceramic distribution 405
7.21 Illustration of Kansyore ceramics, Wadh Lang’o 406
7.22 Illustration of Elmenteitan ceramics, Wadh Lang’o 407
7.23 Illustration of ceramics from Deloraine 408
7.24 Illustration of Urewe ceramics, Wadh Lang’o 409
7.25 Illustration of MIA ceramics, Wadh Lang’o 410
7.26 Illustration of Gatun’ang’a ceramics 411
8.1 Chart showing radiocarbon chronology 412
8.2 Chart showing site chronology 413
8.3 Illustration of collar-necked Urewe jar from Ruhimangyarga 414
8.4 Photograph of Bagishu beer drinking pot 414
8.5 Map showing distribution of new Urewe bearing sites 415
8.6 Photograph showing view of Victoria Nyanza from Namusenyu 416
8.7 Map showing distribution of multi-component sites 417
8.8 Photograph showing rapids in Nzoia at Siiror 418
8.9 Illustration comparing Urewe, WPT Urewe and Devolved Urewe ceramics 419
8.10 Map showing distribution of Lutoboka group bearing sites 420
8.11 Illustration of Urewe vessel found during survey of the banks of the Nile 421
8.12 Map showing distribution of Entebbe bearing sites 422
8.13 Photograph of ‘transition’ sherd, Kansyore 423
9.1 Photograph of Entebbe sherd for residue analysis 424
Acknowledgements

This research would not have been possible without the help and support of a number of different individuals and institutions. My PhD was funded by the Arts and Humanities Research Board with additional assistance from the British Federation of Women Graduates. Funding for field research was provided by the Tweedie Exploration Fellowship, the Tessa and Mortimer Wheeler Memorial Fund, Institute of Archaeology Awards, Oxford Radiocarbon Accelerator Dating Service, UCL Graduate School, the Central research Fund of the University of London, with additional logistical support, hospitality and assistance provided by the British Institute in Eastern Africa.

I have been fortunate to have benefited from the advice, insight and support of a number of individuals, who include Dr. Andrew Reid, Dr. Paul Lane, Professor Merrick Posnansky, Dr. Rachel MacLean, Dr. Carolyn Thorp, Dr. Marie-Claude Van Grunderbeek, Daryl Stump, Dr. Darla Dale, Dr. Renata Walicka Zeh, Dr. Kevin MacDonald and Dr. Bill Sillar. Additionally I am grateful to Oula Seitsonen, Sada Mire, Jane Humphris and Paul Harvey who gave me full access to their research findings, and to Gemma Gaitskell Phillips and Eduardo Albuquerque-Reus for assistance with Appendix 1.

Many other have also contributed to this research less formally, and I would like to particularly thank Juno Davidson, Sara Bevan, Sara Jones, Helen Dawson, Chaz Morse, Jago Cooper, Lindsay Spencer, Camilla Briault, George Koutas, Borja Legarra Herero, Anna Stellatou, Stephen Bell, Marcos Martinon Torres, Esther Roberts and Manon Jones for their friendship, and particularly for their hospitality and sofa-beds.

I would like to thank David Jones for tirelessly proof-reading drafts. Also I would like to thank my mother, Gwennllian Ashley, for providing me with a home during the writing up of this thesis, and showing remarkable fortitude during this period.

This work would certainly never have been possible without the fantastic support from colleagues and friends in Kenya and Uganda, who made the whole research worthwhile and thoroughly enjoyable. I would like to thank Frederick Odeke, the late Peter Bisasso, Kennedy Gitu, Emmanuel Ndziema, Habiba Chirchir, Dismas Ongwen, Pamela Khanakwa, all the staff of the BIEA, particularly the Manowiti crew (Phillip Owiti, Stephen Mano), Emmanuel Jackasewa, Michael Odhiambo, Joyce Akinyi, the Buganda and Usenge excavation teams and Mulu Muia. To Gilbert Otuyo I would to extend special thanks for all his assistance, advice and hilarious friendship.

Finally I would like to acknowledge the generosity of Andrew Reid and Paul Lane, who have given me full access to their research findings, and made this thesis possible. Andrew Reid has also had the onerous duty of guiding me through the writing of this thesis, and I am particularly grateful for his direction and advice.
Chapter One
Ceramic Variability and Change: background and objectives

"Archaeology without potsherds is unthinkable"
(Barley 1994: 9)

As Barley suggests, ceramics have played a prominent and pivotal role in archaeology, from early antiquarians (Trigger 1989: 51) to modern ethnoarchaeologists (David & Kramer 2001). Nevertheless, despite this longevity of research attention, ceramic studies remain intriguing, equivocal and highly rewarding to archaeology. This relationship between archaeology and ceramics has been a complex and varied one, fluctuating in accordance with theoretical and methodological approaches, yet providing one of the fundamental empirical and interpretive backbones to archaeological discourse in later prehistory. This thesis seeks to explore this dynamic and revolving relationship.

The value of ceramics to archaeology lies in the physical materiality of pottery, as well as in its interpretive potential. Fired clay is a highly durable material which is impervious to most of the post-depositional degradation processes inherent in archaeology (water, organic break-down, erosion), and as such, is a ubiquitous resource to the researcher of ceramic using periods. Furthermore, the malleability and plasticity of raw clay means that manifold forms, features and decorations can be effected by the potter, rendering the objects highly distinctive and variable, and thus useful to the archaeologists seeking to identify anthropogenic patterning. However, perhaps more importantly, archaeologists have long recognised the potential of ceramics to articulate wider social practice. Through the intrinsic variability of ceramics, past societies were able to project a range of social meanings and expressions through their pottery, from silent, even unconscious, intra-community discourse, to overt statements of social belonging, ethnicity and identity. Ceramics are not merely
mundane utilitarian objects; they are imbued with meanings and resonance that uniquely reflect the societies in which they were created and used.

This capacity to embody social experiences has made ceramics invaluable. Nevertheless, despite this eminence, there has been much dissonance in the way ceramics are interpreted and used in archaeology, and in spite of the centuries of research, there is little consensus in the application of archaeological ceramics. In order therefore, to explore the role of ceramics in the current research, it is necessary to look back at historical representations and applications.

Global Approaches to Archaeological Ceramics
Ceramic evidence came particularly to prominence with the emergence of culture historicalism. The growth of nascent states and romantic nationalism in late 19th Europe brought a concomitant desire to forge collective identities through the propagation of socio-cultural unity and consciousness (Shennan 1994: 7; Trigger 1989: 174-86). From this context culture history emerged, fulfilling the criteria through the creation and explanation of localised and culture-specific histories, which could be used to consolidate and justify nationalist identity and authority. This rhetoric for example, was used to tremendous effect in the post 1871 unification of Germany (Härke 1994: 53-56; Jones 1997: 16), where the highly influential archaeologist, Gustav Kossinna, developed his model of 'Settlement Archaeology'. A pioneer of culture history, Kossinna's Settlement Archaeology sought to define past social groups through the identification of replicating material culture patterns in the archaeology, following the belief that social groups actively engaged in like customs and practices would inevitably produce and utilise homologous artefacts (Jones 1997: 16; Trigger 1989: 163-167).

It was however the work of Gordon Childe that popularised a culture historical approach to the past, especially within Anglophone debate (Childe 1929, 1935; Green
1981; Jones 1997; Trigger 1980, 1989, 1994). Drawing on the influences of Kossinna, Childe perpetuated the essential notion that archaeologically detectable assemblages of diagnostic features and artefacts could be correlated with discrete and meaningful past sociological entities. The basic archaeological building block of these formulations was the *archaeological culture*, regarding which Childe (1956: 123, cited in Shennan 1994: 5) stated;

"[A] culture must be distinguished by a plurality of well defined diagnostic types that are repeatedly and exclusively associated with one another, and, when plotted on a map, exhibit a recognisable distribution pattern"

This definition clearly emphasises the polythetic nature of Childe's vision of culture, in which the contemporaneity of numerous and diverse objects and features is essential. Furthermore, not only should these diagnostic traits, or *type fossils* (Childe 1935: 1) be rigidly structures and bounded in their mutual association and co-occurrence, but they should also reflect discrete and tangible geographical borders. Within these packages of *type fossils*, or 'cultures', Childe accorded differing interpretive roles to certain categories of artefacts. As such, the mundanity of homemade pottery and the idiosyncrasies of personal ornamentation and burial practices would be highly resistant to change, and would therefore act as a useful marker of identity and social continuity (Childe 1929: vii; see also Trigger 1980: 40, 1989: 170-171). The utilitarian value of tools and weaponry on the other hand, were perceived to surpass local boundaries, and superior technologies would have quickly diffused across social barriers, and could therefore be used as archaeological indicators of social contact and interaction (ibid).

Furthermore, according to the pre-requisite Childean notions of replication and recurrence, archaeological cultures were implicitly regarded as homogenous and constant, passively existing in a condition of socio-cultural stasis. To propel society

1 It should be noted that discussion here is limited to European theoretical paradigms rather than north America. It is noted that quite discrete patterns of activity were manifest in north America regarding the implementation of culture history (e.g. Lyman et al 1997)
from this dormancy, Childe saw migration and diffusion as the primary catalysts of change (Trigger 1989: 172). The natural status quo could thus be inverted by contact with an outside group, be it through military aggression and take-over or through silent trade (Childe 1929: vii), whose introduction of new practice, set an inexorable and deterministic path towards social upheaval or adaptation.

Juxtaposing naturally conservative and passive societies with isolated pockets of radical innovation, culture historians gradually built up interconnected webs of archaeological cultures, which ebbed and flowed across the prehistoric landscape (see Fig. 1.1).

Culture history remained the prevailing paradigm in archaeology until the “loss of innocence” (Clarke 1973) in the 1950s and 1960s and particularly the polemical and scathing backlash of Lewis Binford (1962, 1965), against what he saw as the ‘normativism’ of culture history. In his pejorative projection of normativism, Binford described the limitations of culture history’s search to identify localised and historically specific norms, typically through the description of material culture patterning. New, or Processual archaeology, transcended such descriptive particularism, and sought instead to understand how and why communities were manifested as they were, rather than simply describing them. In the search to understand the mechanics and rationale of past societies, Processualists perceived society as an integrated web of systems, adapting to environmental pressures (physical, social environments), and striving to create the most effective and efficient system. Within this rhetoric, societies were inherently predictable as they were united in the same trajectory towards effective adaptation.

For Binfordian Processualism, ceramics were integrally tied to normative applications, and the description and projection of material culture as anthropomorphic archaeological cultures, and were thus often ignored or sidelined. Less reactionary perspectives however soon re-engaged with material culture, and following the seminal work of Wobst (1977), material manifestations of variability were soon
integrated into a systemic paradigm, which regarded such variability as active projections of the self and the self as part of society. From the passivity of material culture variability during culture history, ceramics were re-invigorated as pro-active and dynamic agents, working within the system to efficiently communicate meaning as effectively as possible; material culture variability was thus an adaptation to social circumstance, and as such was a tool to facilitate the ordering and structuring of the wider social system.

The 1980s saw the emergence of the post-processualist school of thought, which reacted to the positivism and extreme nomotheism of Processualism, by reverting to historical specificity and detail (e.g. Hodder 1985). However, unlike the precepts of culture history, post-processualism moved far beyond the passivity and stasis of culture history, and instead perceived society as inherently dynamic and innovative. As such, society was not unified and homogenised as culture history projected, but was instead a fusion of multiple pasts and identities. In this avowal of multi-vocality, post-processualism also recognised the multiple voices of the modern archaeological commentators; Shanks and Tilley (1987: 107-108) described archaeological investigation as a fourfold hermeneutic, in which the present was separated from the past by four stages of experience and understanding. Each individual was located within a quartet of hermeneutic circles within which they negotiated the past; as individuals in contemporary society, as archaeological researchers, as voyeurs in alien societies of the past, and as investigators across time. Each hermeneutic defined and negotiated the archaeological response, and as such;

"The fourfold hermeneutic involved in any and all forms of archaeology undermines any attempt to fix for once and all the manner in which the past should be understood in terms of methodological rules for procedure. It rather requires the use of a multivalent pluralities of approaches"

(Shanks & Tilley 1987: 108)

Following this rhetoric, the individual is conditioned by their hermeneutic circles, and thus, as past societies must be regarded as essentially variable and diverse, modern
commentators must also be afforded interpretive breadth. This extreme post-
processualism has instigated critical reaction and allegations of hyper-relativism (e.g.
Thomas 1994: 351-354). Nevertheless, the fundamental notion of social flux and
variability remains a powerful dogma.

Ceramics and material culture re-entered the debate once more, and particularly
through the effects of post-processual ethnoarchaeology, came to the forefront of
debate. The early defining work of Hodder (1982) in eastern and southern Africa was
crucial to this development, and saw research which argued that material culture was
neither the passive reflector of society that culture history envisaged, and nor was it
necessarily the active and adaptive agent of information exchange that Wobst
portrayed. Instead, material culture was a multifaceted entity, in which communities
could message explicit ethnic belonging (e.g. ceramics in Lake Baringo - ibid) or could
engage in hidden, silent discourse between intra-community age and gender groups
(e.g. Hodder1991).

As these discussions illustrate, ceramics have been prominent in the search for social
patterning, regardless of the conflicting theoretical models. The essential plasticity and
morphological potential of ceramics has made it a crucial tool in discussion of spatio-
temporal variability, and its apparently indexed relationship to past social
manifestations, whatever their form, has ensured a prominent place in the interpretive
milieu. Yet as the preceding discussion has demonstrated, the precise role and meaning
of ceramics in archaeology remain open to debate. Indeed, following a post-processual
model of reasoning, no universal role can ever hope to be defined, and instead each
scenario will produce unique results. The study of ceramics in archaeology therefore,
remains a highly relevant and pertinent research concern, providing a basic tool for
elucidating empirical patterning, as well as a conceptual resource in the exploration of
wider society.

Like all other analytical variables, ceramic evidence can therefore be seen to be highly
influenced by wider theoretical paradigms. Indeed, the putative relationship between
ceramics and abstract social meaning has perhaps accorded ceramics a greater role in discussion of social constructs, and has thus resulted in a concomitant susceptibility to the effects of such social modelling, making them more prone to broader conceptual shifts in interpretation. In order to explore ceramic manifestations and meanings, it is crucial therefore to also fully appreciate the wider theoretical context in which ceramic studies are couched. Ceramic evidence cannot be seen as simply empirical 'facts' devoid of subjective theorisation; it must be recognised that they are in fact 'theory laden', and that their archaeological interpretation is deeply imbued by wider models of explanation and understanding.

This thesis seeks to explore the role and application of archaeological ceramics, and particularly the interpretive application of ceramics as social media. In order therefore, to achieve a balanced and informed evaluation of these phenomena, it is essential to approach the topic holistically, addressing the specifics of the Great Lakes situation through a wider lens of sub-Saharan African experience and theoretical influences. The following section will therefore briefly review continental research trajectories and ceramic applications, prior to exploring the particularities of the Great Lakes.

African Approaches to Archaeological Ceramics

African archaeology, like the rest of the discipline, has paid great heed to ceramics and their potential interpretive role, particularly in discussion of later periods, often termed the 'Iron Age' in sub-Saharan Africa, when ceramic commodities were in widespread use. However, unlike the brief review of theoretical applications listed above, sub-Saharan Africa has followed a discrete research trajectory of its own, resulting in somewhat differing ceramic applications to those currently popular in global discourse. In comparison to western European and north American theory, processualism and post-processualism have had a much diminished impact in sub-Saharan Africa. This is perhaps curious as several important areas of these theoretical discourses have emanated from African based research projects; behavioural archaeology related to east African hominins has been integral to processual archaeology (Plummer 2005), whilst much of the ethnoarchaeology conducted by
Hodder and his students, which led the way for post-processualism, was also carried out in Africa (e.g. Donley 1987; Hodder 1982; Lane 1987; Moore 1986; Welbourne 1984). Nevertheless, whilst specific projects have been explicitly problematised around processual or post-processual rhetoric, the wider, more general, impact on African archaeology has arguably been limited. Instead, culture history remains the staple, bread-and-butter, archaeology for much of sub-Saharan Africa, particularly for the ‘Iron Age’ periods. As such, there is an enduring emphasis on cultural sequencing and ordering within these periods, and the identification of packages of archaeological traits across time and space.

Stahl (2001) has recently recognised this widespread phenomenon, and in deconstructing its influence, has explored how the conceptual models of change are tangibly manifest into practical archaeology. For Stahl, five key research themes, which embody a culture historical outlook, are found to repeatedly recur across the breadth of sub-Saharan discourse;

"[A]rchaeological interpretations of Africa’s past were shaped by the following modal characteristics. (1) Although archaeologists were ostensibly interested in process, they were preoccupied with change between, rather than within, blocks of time (i.e., transitions between discrete ages/stages). Within these blocks, emphasis was primarily on statics – thus attempts to depict lifestyles of prehistoric cultures took the form of normative accounts, much like ethnographic snapshots. (2) An interest in economics underwritten by a progressive evolutionary agenda focused attention on the origins of technologies...(3) The primary unit of analysis was the site, although sites were typically viewed as representative of larger units, loosely equivalent to the cultures/tribal entities described by ethnographers. (4) Though the scale of society varied through time, the emphasis in any given period... was on the most complex societal forms, effectively winnowing simple societies out of archaeological scenarios...And (5) the study of spatial connections between geographical areas was conditioned by an interest in diffusion of key traits like agriculture or food production"

(Stahl 2001: 14-15, original emphases)

Stahl’s depiction is of course generalised, and there are many exceptions to this perspective. However, on a gross level, there seems much validity in her assertions, a
point that is recognised by many other researchers who recognise the pervading influence of culture history (e.g. papers in Robertshaw 1990a; Ucko 1993) and also the research questions she has emphasised (e.g. Musonda 1991; Posnansky 1982; Shaw 1990; Wandibba 1998: 194-5).

This deviation from the precepts of western theoretical orientation is not inherently problematic. Indeed the arbitrary imposition of western discourse on African contexts is highly problematic and should be avoided (Andah 1994, 1995; Schmidt 1995); there is no a priori reason why African archaeology should take its lead from western approaches, and rather Africa should celebrate its uniqueness by enriching global discourse through presenting a dynamic alternative (Lane 2001). Nevertheless, as Stahl and others argue, the continued application of culture historical rhetoric in sub-Saharan Africa is also problematic, and inheres the discipline with an inappropriate paradigmatic approach, which both restricts interpretive breadth and discourse, and also promotes a worrying projection of past African societies as static and timeless.

Returning to the themes Stahl has outlined above, the culture historical goals are evident in the search to identify culture units, or “snapshots”, and to trace their origins, technologies and periods of interaction and change. These foci privilege certain areas of discourse, particularly periods of profound change and transformation (technological revolutions, population diffusion, ethno-linguistic origins) at the expense of less dramatic and gradual development or adaptations. As a result, societies are only of interest at the axes of such upheaval, and the intervening periods are typically relegated. As a corollary, by implicitly seeking change, there is a tendency to generalise the intervening period, and to homogenise chronological experience under the unified banner of the “snapshot” culture. Society, as with all culture history is portrayed as inherently dormant and conservative, and only through the impact of major transformation (technological advancement, population influx) is it capable of levering itself from its natural state of torpor. In African archaeology, as with the criticisms of European culture history levelled by processualists and post-processualists, society is reduced down to a generalised picture of its ‘normative’ existence (see above), and is
CHAPTER ONE: CERAMIC VARIABILITY AND CHANGE

...stripped of the multi-vocality, diversity and self determination that post-processualism espouses. This is both an intellectually restrictive model of society for the abstract academic discourse, but is also a highly pejorative projection of past societies as stagnant and impassive. In the context of sub-Saharan Africa, this is an especially unfortunate projection of the past, as it both mirrors some of the iniquities of colonial dogma that sought to deprecate indigenous achievement, but it also projects a stale picture of the past in a continent where archaeology is often the primary, if not the only, means to access deep-time histories.

Within these applications of African culture history, ceramics have historically played a central role. The apparent relationship between ceramic variability and social definition is of course central to this prominence, and following the old culture historical adage of ‘pots equal people’, ceramic evidence has been used as one of the principal marks of past culture units, or Stahl’s culture ‘snapshots’. Ceramic studies are thus the agents of culture historical rhetoric, bolstering the conceptual paradigms through material and empirical manifestations. As a ubiquitous archaeological artefact, which is often undiscriminating in distribution (i.e. present in a range of sites from domestic to industrial, ephemeral to permanent), ceramics are often one of the few elements to unify discrete sites/features. Through this apparent capacity to materialise culture historical identifies, ceramic studies have often absorbed much of the prevailing culture historical rhetoric. Therefore, as with Stahl’s research foci, ceramic studies in culture historical Africa have tended to emphasise intra-cultural homogeneity and stasis. Furthermore, following the precepts of culture historical variation, change in ceramic phenomena is typically associated with dramatic social upheavals, very often in the form of new population influx (diffusion) or major internal revolution. Ceramics therefore, are one of the principal tools of culture history in Africa, and have in many ways come to represent a physical materialisation of the culture historical rhetoric and past archaeological ‘cultures’.

However, just as concerns have been evinced regarding the continued application of culture historical derived models, researchers in Africa are also slowly beginning to
critique the transferral of culture historicalism to ceramic studies, with researchers from across the continent expressing reservations (e.g. Hall 1984b; McIntosh 1995; Ndoro 1995; Pikirayi 1997, 1999, 2002; Stewart 1993). These researchers have articulated concerns in the manner with which archaeological ceramics are used to reify perceptions of the archaeological culture, which result not only in the perpetuation of the culture historical paradigm, but also the reduction of ceramics to simple and passive isomorphic indicators of generic cultural identity.

It is clear therefore, that in Africa, as elsewhere, the study of archaeological ceramics is inherently influenced and structured by wider conceptual modelling and understanding. In the case of much of sub-Saharan Africa 'Iron Age' studies, ceramics have assumed the role as agents of the prevailing culture historicalism, and have come to materialise the identities of past communities just as European archaeology anthropomorphised the beakers of the early Bronze/Copper Age into the 'Beaker folk' (e.g. Langmaid 1978: 17-18). Furthermore, it has been suggested that the continuation of this rhetoric in sub-Saharan Africa is both empirically problematic and socially inappropriate.

Ceramics in the Great Lakes

Thus far this Chapter has purposefully maintained a generalised scope of discussion, re-emphasising how the specifics of ceramic studies must be seen both in their regional context, but most importantly within the wider sphere of intellectual discourse, both specifically ceramic-orientated and more general. In the remainder this introductory chapter however, the specifics the current research project will be outlined, and the particularities of the Great Lakes situation discussed for the first time (see Fig. 1.2-1.3).

As with the rest of archaeology, ceramics are crucially important in the Great Lakes. And like much of the rest of sub-Saharan Africa, the prevailing theoretical paradigm remains culture history, which has impacted heavily in the practice of ceramic analysis and interpretation. In order to understand these influences and foci it is worth briefly reviewing the history of archaeological research in this area to date.
Early pioneer researchers in the Great Lakes were by and large, interested in the Stone Ages and tracing the stages of Early Man (e.g. Cole 1954; see also de Maret 1990; Robertshaw 1990b). However, alongside these endeavours, there were occasional forays in the Late(r) Stone Age (LSA), some of which were also associated with the ceramic using period (e.g. Boutakoff 1937 (see also Nenquin 1967b); O’Brien 1939; Van Riet Lowe 1952; Wayland 1934a). Briefly re-directing attention away from their pre-eminent Stone Age researches, Leakey et al (1948) for example, uncovered an assemblage of buried whole ceramics in Siaya district of western Kenya, tentatively attributing them to an ‘Iron Age’ and terming them ‘Dimple-based ware’ on account of a diagnostic basal indentation (see Fig. 1.4). It was not long before these cautious attributions were formalised by early professional archaeologists in the area, with the work of Hiernaux & Maquet (1957, 1960; see also Hiernaux 1954, Nenquin 1959), and radiocarbon dates of AD250±100 and AD300±80 from Ndora and Cyamakuza, providing absolute dates for Dimple-based ware (Hiernaux 1968: 507). In Uganda, Posnansky’s work also led to a 14C date of AD1025±150 for Nsongezi (Crane & Griffin 1962), and also the proposed renaming of Dimple-based ware as Urewe ware (Posnansky 1967; see also Posnansky 1961a,b,d).

Hiernaux and Posnansky were also instrumental in proposing a relationship between the ‘Iron Age’ Urewe ceramics and the linguistically attested spread of Bantu language speakers. Hiernaux first proposed the connection at the Panafircan congress in Léopoldville in 1959 (de Maret 1990: 128-9) although it was Posnansky who first quantified the notion in a published model (1961a). This early connection spawned a tide of ‘Bantu archaeology’ in the 1960s and 1970s with the British Institute of History and Archaeology in Eastern Africa (subsequently renamed the British Institute in Eastern Africa – BIEA) establishing a Bantu Studies Research Project (BSRP) that sought to investigate the “origins and early migrations of the Bantu” (Soper 1971a: 1) through physical evidence of ‘Iron Age’ archaeology (Chapman 1967; Fagan & Lofgren 1966a,b; Pearce & Posnansky 1963; Soper 1969, 1971b,c,d; Soper & Golden 1969; Sutton 1968a). The Bantu question quickly spread beyond Urewe ceramics and the Great
Chapter One: Ceramic Variability and Change

Lakes, and became a focal point for sub-continental debate from KwaZulu Natal northwards (e.g. Huffman 1970; Phillipson 1976,1977).

Alongside investigation of Urewe ceramics, and the so-called Early Iron Age (EIA) 'Bantu package' (Hall 1987), research was also taking place on the Late(r) Iron Age, which had been first identified by Hiernaux & Maquet (1957, 1960) and their correlation of L'Age du fer recent with roulette decorated ceramics, or Type B ceramics. In Uganda, this latter part of the Iron Age was also identified with a number of large sites in western Uganda with earthen ramparts. Bigo bya Mugenyi for example (see Fig. 1. 5), was intensively investigated and used as the model for the 'Bigo culture', which was thought to represent early social complexity, possibly the precursor to pre-colonial kingdoms (e.g. Posnansky 1961, 1969; Shinnie 1960; see also Wayland 1934b).

Following this wave of “intellectual optimism” (Phillipson 2002: 182) in the early post-colonial era, the tenor of archaeological research shifted in the late 1970s and 1980s, with a dawning realisation that the relationships between archaeology and linguistics were not so simple, and that it could be politically problematic to correlate political complexity with royal foundation myths. Instead, the period saw a shift towards targeted thematic debate, particularly the advent of iron-smelting, with substantial projects in Buhaya, Rwanda and Burundi, which identified large concentrations of furnaces associated with Urewe ceramics and the ‘EIA’. Within these investigations there was a new drive to source the origins of this iron-technology, with a range of increasingly early dates in the first millennium BC produced by Schmidt (1978, 1981) and Van Grunderbeek (1982; Van Grunderbeek et al 1983). These determinations afforded the argument that metallurgy was independently invented in the Great Lakes, rather than the result of diffusion from Meroë (e.g. Van Noten 1979). Another debate that emerged from this context was the question of the technological skill evidenced, with Schmidt & Avery (1983) for example, arguing for independent invention of air-preheating in Buhayan iron production (although see Eggert 1987; Rehder 1986). The whole issue of early iron-working has been one of the most significant debates in Great
Chapter One: Ceramic Variability and Change

Lakes archaeology, and continues to focus attention to the present (e.g. MacLean 1998; Schmidt 1997a, b, 1998; Van Grunderbeek et al 2001).

Alongside this concentration on ‘EIA’ metallurgy, the late 1980s also saw political peace in Uganda after years of turmoil, and the BIEA initiated a new venture to re-examine the ‘LIA’ earthwork sites of western Uganda (Reid 1990, 1991, 1996; Reid & Meredith 1993; Robertshaw 1991b, 1994, 1997, 2001; Robertshaw et al 1997; Sutton 1993, 1998). Associated with roulette decorated ceramics, excavated sites such as Ntusi, Munsa, Kasunga, Kibengo and Mubende have provided dates in the Cl1th to Cl6th as well as insight into early manifestations of political complexity, founded on varying power bases from pastoralism (Ntusi) to exotic goods (Munsa) and religion (Mubende). This area has remained a fruitful debate, with Robertshaw in particular exploring issues of authority and also the relationship of these sites to oral history and environmental conditions (Robertshaw 1999, 2000, 2003, Robertshaw & Taylor 2000; Taylor et al 1999, 2000).

Apart from these major projects in western Uganda, research in other parts of the Great Lakes has stagnated somewhat in the recent period. The turmoil of post-genocide Rwanda, Burundi and the Democratic Republic of Congo has naturally stemmed research in these regions, and many others seem wary of the often problematic relationship between ‘EIA’ archaeology and Bantu linguistics (although see MacLean 1994/5, 1996a, b, 1998 for important exceptions).

Modern understanding of the Great Lakes is therefore somewhat uneven, with well-explored focal centres in Rwanda, Burundi and Buhaya for the ‘EIA’, and the western Ugandan earthwork/population centres for the ‘LIA’. Nevertheless, despite these imbalances, a widely agreed sequence has been extrapolated with ‘EIA’ communities generally accepted as having appeared in the Great Lakes in the mid first millennium BC, apparently bringing with them iron-working and probably sedentary agricultural economies, and possibly (probably?) Bantu languages. These communities, which are typically identified through the ubiquitous Urewe ceramic, are seemingly superseded
at the turn of the first millennium AD, when a new roulette decorated ceramic appears, and there is an apparent shift from the montane or lacustrine fertile lands of the ‘EIA’, to the grasslands of western Uganda, and a definable political shift towards hierarchy and emergent complexity (e.g. Reid 1994/5). Although there is disagreement regarding the precipitate to this change, whether it be in situ revolution (e.g. Reid 1996: 621; Robertshaw & Taylor 2001: 13-14) or the demographic influx of new, Nilotic speaking groups (Connah 1991; Desmedt 1991), it is widely recognised that the C11th AD heralds dramatic and widespread changes (e.g. Phillipson 2002, 2005; Sutton 1993).

Many of the hallmarks of African culture historicalism highlighted by Stahl can be recognised in this brief history. A concern for origins and early socio-technological manifestations is evidenced by the overwhelming discussion of the ‘Bantu question’. The question of Bantu speaking communities also touches on the emphasis on transformation and change, as does debate on the ‘EIA’/‘LIA’ transitions. Thematic attention to technology and social complexity is reflected in the detailed and influential investigations of early iron-smelting and the ongoing work in the Ugandan earthwork sites respectively. Above all, underlying these themes and conceptual foci, is the essential foundation brick of the unified and unchanging archaeological culture (the ‘EIA’ or the ‘LIA’), which is largely built upon variability in Urewe and roulette decorated ceramics respectively. Ceramics are therefore the mortar that binds together the archaeological culture. As such, they can also be viewed within culture historical precepts of uniformity and homogeneity; there is little or no space for intra-ceramic variation (e.g. Soper 1971b: 14).

This summary is of course something of a harsh declamation, prone to subsume a long history of research under a single explanatory rubric. Indeed, it will become evident throughout this thesis that there are important exceptions to this trend, with researchers often eschewing either the generalising tendencies of culture historicalism (e.g. Robertshaw 1999, 2003; Reid 1996; Van Grunderbeek et al 1983) or taking thematic discourse away from the typical avenues of attention (e.g. salt-working – Connah 1991, 1996). Nevertheless, in accordance with the preceding discussion of Africa-wide
experience, it remains arguably the case that, overall, there is a continued reiteration of culture history, both in the conceptual modelling of social experience, and also in the particular manner in which ceramics are viewed and employed.

Although ceramics are a central variable in discussion, there has been little specific and targeted research attention to ceramics in the recent decades; rather ceramic analysis has evolved as a tool of chronology and diagnostic identification. Hall's comments regarding the procedure of ceramic analysis are as apt for the Great Lakes as they were to the southern African context he was referring to:

"[E]stablishing a culture-sequence based on pottery typology is a routine procedure that comes before hypothesis and interpretation: a part of basic methodology rather than a problem-orientated activity"

(Hall 1984b: 262)

Stewart (1993) is the only paper to directly target the conceptual arena of ceramic evidence in the Great Lakes, and whilst she and a limited number of other researchers (e.g. Karega-Münene 2002, 2003; Wandibba 1998, 2003) who have briefly commented on the role of ceramics in eastern Africa are clearly unhappy with current application, none have proposed concrete alternatives, or have undertaken new ceramic research following a more problematised and critically aware framework.

This thesis therefore seeks to amend this lacuna, through a detailed and comprehensive analysis of extant evidence, theoretical and methodological approaches and practice, as well as the practical assessment of a new body of ceramic data. Through this holistic examination, current approaches can be critically evaluated, particularly against the backdrop of wider theoretical models and ceramic studies, as well as empirically tested against a substantial body of raw data.

Defining the framework of investigation

Culture history through its documented focus on a relatively narrow range of research concerns, tends to leave considerable gaps in archaeological discourse. Three key
excluded areas have been identified; geographical gaps, chronological gaps and conceptual gaps.

- **Geographical gaps** - as the history of Great Lakes research has shown, certain key geographical areas have been subject to sustained research attention, e.g. iron-working centres of Rwanda, Burundi and Buhaya, and western Ugandan earthwork sites. This imbalance is a by-product of sustained concentration on these key research themes. Other areas, by contrast, are either intermittently known, or archaeologically 'empty', through lack of investigation.

- **Chronological gaps** – through an emphasis on origins and dramatic social change, research has often been directed at ‘beginnings and ends’ without much conceptual interest directed at intervening periods. Considering for example, that Urewe ceramic communities were present for c.1300 years this seems unfortunate and mis-representative. Slow cumulative diachronic change is accorded little attention (although see Schmidt 1997a; Van Grunderbeek et al 1983, who through their density of data are able to attempt more nuanced histories). This is a typical side effect of culture history which sees society as inherently static.

- **Conceptual gaps** – Through the effects of the empirical lacunae noted above, two key conceptual areas of discourse are therefore omitted. 1) by focusing on specific geographic and thematic areas of study, a subjective ‘core’ is thus created. Through this emphasis on the core, the periphery is inherently prejudiced, and the voices that are projected from archaeology are inevitably representative of this core experience. This has the effect of privileging certain economic or political structures (in this case iron-working and population centralisation) at the expense of less obvious or imposing niches (see Stahl previously). In a post-processualist sense, multi-vocality is suppressed, as a single voice is allowed to dominate communication, and society at the fringe is ignored. 2) through reiterating the rhetoric of the snapshot ‘culture’, internal variation is subsumed. In effect, anomalous ‘noise’ is filtered out, and a single coherent picture of society is instead promulgated. Together these
two influences succeed in reducing the potential breadth and scope of past human experience under a single homogenised core.

The above represent serious lacunae, and as argued previously, have the effect of both reducing the interpretive potential of archaeology, and also projecting society in a negative and shallow light.

In order therefore, to address these gaps and explore a potentially new face (or faces) of the Great Lakes past, this thesis will assume the following objectives;

- **Selection of Research Area**

In order to circumvent existing geographical and thematic biases, the current research will target a relatively unknown area of the Great Lakes. This brings the twin advantages of substantively increasing the empirical knowledge of an unknown area, as well as affording the opportunity to work with a conceptual blank canvas. Moreover, by operating within this relatively unknown area, there is the opportunity to bring forward an insights into the ‘periphery’ of Great Lakes experience, and thus add a new voice to discussion.

The area selected is the northern shore and hinterland of Victoria Nyanza, crossing between Uganda and Kenya. The cross-border nature of this analysis is also significant because it emphasises the need for international collaboration, and also the arbitrariness to archaeology of modern political borders. This work represents one of the few such cross-border investigations (see also Desmedt 1991).

Furthermore in the selection of this particular area of study another interesting and potentially potent variable is brought forward; Victoria Nyanza. Although the collective name ‘The Great Lakes’ suggests a deep and integral concern with the lakes themselves, this has rarely been the case in archaeology, where lakes are more often treated as dehumanised and passive backgrounds to land-based activities. It is notable for example that maps showing population spread, invariably follow land corridors...
Chapter One: Ceramic Variability and Change

(e.g. Desmedt 1991; see Fig. 1: 6). Experience from recent history however undermines such a perspective; the Buganda kingdom for example had a highly complex and equivocal relationship with Victoria Nyanza, often seeing island communities as a destabilising threat, e.g. war with the Bavuma (R. Reid 1998, 2002; see Fig. 1.7). Nevertheless, the lake was also accorded an important ritual and sociological significance, as evidenced by c. 75% of Bugandan shrines being located on the lake (A. Reid pers. comm.), and the concurrence of the Luganda name for the Lake, Nalubaale, with the collective term for the powerful deities, Lubaale (see also Kenny 1982 for discussion of origin myths on the eastern coast). Economically, the lake has also been a powerful factor, not just for its natural aquatic resources like fish; cross-lake trade is also recorded in the historical period, trading everything from slaves to salt (Kenny 1979; Mutoro 1998: 199-200). Wider debate in archaeology has long accepted the maritime/aquatic zone as one of human activity (e.g. Evans 1977), and more recently island archaeology and the discussion of “island-scapes” (Broodbank 2000) has become a popular focus of activity. Although African archaeology is slowly coming to terms with this idea (Mitchell 2004; see also e.g. Abungu 1998; Chami 2000; Chittick 1984; Horton 1996), this has been exclusively in salt-water contexts. By selecting a research area within and around Victoria Nyanza (two island locales are investigated), an exciting new analytical variable is added to the discussion.

-Chronological Scale

As discussed above, the traditional emphasis on beginnings and ends (origins and change) has often resulted in the side-lining of internal change and gradual evolution. Moreover, through the combined emphases on change, and the culture historical penchant for diffusion as a transformative mechanism, society is often viewed in layers of superimposed archaeological ‘cultures’. Thus roulette decorated ceramic users ‘replace’ Urewe using communities. Within these cultural strata, change is seen to herald the laying down of a new pristine layer, as total social replacement is envisaged, and existing culture extinguished. Although researchers have become more wary of diffusion in recent years, there is nonetheless an underlying emphasis on change as a profound disruption of the extant social equilibrium, and thus if the strata do not
represent new demographic influences, they are nevertheless portents of new world orders.

This thesis seeks to try and break down these impermeable boundaries between 'strata' or 'cultures', and instead to try and access more long-term perspectives through examining cumulative trends and patterns. This serves the twin goals of looking at internal diachronic variation, and also helps diffuse the stark and absolute boundaries between the 'EIA' and the 'LIA' engendered by the culture historical projection of social boundedness.

- Peripheries

By privileging core geographical areas or thematic foci, the preceding discussion has argued that alternative or hidden experiences are obscured. In order to re-centre the scale of analysis to the previously peripheral areas, the selection of a new geographical area is of paramount importance (see above). Additionally however, this thesis will also promote the archaeologies of less prominent communities. This can be achieved through the exploration of a range of sites, including ephemeral of transient occupations which are often sidelined, as well as specifically examining localised phenomena through a regionally focused scale of analysis. Five case-study areas will be detailed (see Fig. 1.8), and within each, the archaeology of the immediate area is considered, and new findings placed within these micro-contexts. By telescoping the scale of analysis, larger centres of research and experience (e.g. western Ugandan earthwork sites) are removed from the interpretive equation, and instead small-scale local dynamics are instead emphasised. The sometime over-whelming role of extant research centres is thus reduced, and the tendency to generalise understanding around these experiences is removed.

- Homogenisation

The issues of homogenisation cuts across all the above points, as it emanates from the normalising of geographical, chronological and social experiences under the unifying rubrics of the archaeological 'culture'. The single most important goal therefore, is to
actively seek, identify and explore variability in all its guises. Variability in archaeology can of course be manifest in a multitude of ways. However, previous research in the Great Lakes region has suggested that many of the traditional sources of such archaeological evidence, for example organic evidence or spatial organisation, are often either entirely missing, or obscured by questions of bioturbation (e.g. Marshall 2000; Reid 1994/5; Young & Thompson 1999). The primary evidential source therefore is ceramics. It is therefore fundamental to fully appreciate the role and application of ceramics within this area, and also to develop appropriate methodologies to suitably analyse the research data, laying an emphasis on both the recognition of variability and its potential interpretive meanings.

In order to explore the relationship of ceramic evidence to past societies, this thesis will therefore focus on a specific area of the Great Lakes region, emphasising the long-term and localised histories of five case study areas. Within this study, ceramics already associated with the ‘Iron Ages’ will be considered (Urewe, roulette decorated ceramics), and any other manifestations that are found to be contemporaneous. In so doing, the wider role of ceramic evidence will be thoroughly investigated, particularly in its relationship to extant empirical understanding of the region, and also the construction of models of social behaviour and organisation.

Structure of the Thesis

This thesis therefore combines critical review of extant research and conceptual modelling, as well as the practical analysis of a significant new body of ceramic evidence, and its subsequent interpretation and testing against existing and proposed models.

Following on from the themes introduced in this opening chapter, early chapters will focus on more detailed reviews of extant work. Chapter 2 will situate the reader more fully within current understanding of the Great Lakes past, emphasising empirical data and collating previous research. This includes archaeology, but also incorporates evidence from a range of sister discipline such as linguistics and palaeoecology.
Chapter 3, will follow closely from the current introductory chapter, by developing discussion of wider theoretical and conceptual approaches to archaeology in the Great Lakes, showing how broader research environments are highly influential to the specifics of the present research. Chapter 4 will then focus the scale of analysis more closely on ceramics, continuing the theme or review by looking at how ceramic evidence from the Great Lakes has been treated in the past, and how it might be more profitably addressed in the present work, particularly through recourse to wider discussion of literature relating to ethnoarchaeology, style and technology.

The second cluster of chapters relates to the new data-set under consideration here, with Chapter 5 making the leap from theory to practice, by proposing a research methodology for the implementation of models and concepts derived from the preceding review chapters. Chapters 6 and 7 will detail the evidence collected, detailing information from three different research projects carried out between 1999 and 2004. The first of these is the authors own work in Nyanza and South Nyanza, Kenya, which was carried out in late 2003/early 2004, when investigation was carried out in Ugenya and Nyakach Locations. This work was conducted through permission of the Kenyan Ministry of Education, Science and Technology (permit No. 13/001/33C295/2) and in conjunction with Mr Frederick Odede, National Museum of Kenya Archaeologist for Western Kenya. Further evidence from Kenya is derived from collaboration with Dr. Paul Lane (BIEA), and his research project *Settlements and Landscape Histories in Nyanza Province, Western Kenya*, which carried out survey and excavation in a number of locales in Siaya between 1999 and 2003. New material from Uganda has been sourced from Dr. Andrew Reid’s (UCL) research in Buganda, which conducted major research seasons between 2000 and 2003. In this research, over 400 new archaeological sites were identified and over 20 individually excavated. I am extremely grateful to Dr’s Reid and Lane for generously allowing me access to all their research findings and also for inviting me to join their research teams. Additional information is derived from analysis of archive collections held in the National Museum of Kenya, the Uganda Museum and the British Museum, and I am particularly grateful to the late Peter Bisasso for assistance in Kampala. Professor
Merrick Posnansky also invited me to join a renewed analysis of archaeological material from Lolui, and kindly provided access to the site archive (see also Posnansky et al in press).

Chapters 6 and 7 will therefore detail the relevant evidence from these combined research projects, reviewing existing evidence from each case-study area, before presenting the new material on a case-by-case way. Chapter 8 will draw together the findings from the case-studies, and particular seek to integrate these results into a chronological history of the northern shores of Victoria Nyanza. Finally, Chapter 9 will briefly review this new data, particularly in relation to wider conceptual models discussed in earlier chapters, before finally making some suggestions for future research.
Chapter Two
Reviewing Evidence of the Great Lakes Past

Following the brief introduction to the archaeology of the Great Lakes given in Chapter 1, the present Chapter will provide a more detailed review of extant research, focusing particularly on empirical evidence. However, as Chapter 1 has already demonstrated, archaeology is not the sole discipline of relevance here, and therefore insight from related disciplines such as linguistics, history, oral history, physical anthropology and palaeoecology will also be interwoven into the archaeological discourse.

Terminology and Structure
Chapter 1 has already introduced terms such as the LSA, EIA and LIA which have been widely used to demarcate archaeological phenomena in the Great Lakes (and elsewhere). However, dissatisfaction with these epochalistic terms has been hinted at by the use of parentheses. It is therefore vital that the implications of such terms are understood before the present terminological approach is developed. This processes of defining archaeological epochs or periods also has implications for how the present discussion will be formatted, and therefore brief mention will also be made of how this Chapter is structured.

Given the largely European training of many of the pioneers of archaeology in sub-Saharan Africa, it is unsurprising that the basic structure of terminology is fundamentally derived from Thomsen’s Three Age system (Trigger 1989) and the technological progression from the Stone Ages to the Iron Ages (in the absence of an intervening Bronze Age in Africa). In the Great Lakes, Leakey et al (1948) tentatively proposed an Iron Age date for the Dimple based [Urewe] ceramics found at Urewe/Yala Alego in Siaya, Kenya, whilst Hiemaux and Maquet (1957, 1960) formalised the chronological sequence somewhat with their definition of *L’Age du fer ancienne* and *L’Age du fer recent*. Later, Soper (1971b) proposed the ‘Early Iron Age
Industrial Complex' as a term, and directly related it to the spread of Iron and Bantu language speakers. Van Noten (1979) meanwhile suggested the 'Interlacustrine Early Iron Age Industrial Complex' as a means of distinguishing it from other east African traditions. However, the basic notion of the Early Iron Age, or EIA, has become deeply entrenched and ingrained. By extrapolation, the Late or Later Iron Age is the period that follows the EIA, usually post AD1000 (Phillipson 1993), and whilst it is less formally defined, it is nonetheless equally established as an epoch. This basic division has held sway for decades, both in the Great Lakes, and across eastern and southern Africa. However, in the last decade or so, attitudes have started to turn against such definitions for a number of reasons (Sinclair et al 1993). Pwiti (1996:17) for example, in discussing Zimbabwe, has argued that the term overly centres iron-working at the cost of other economic strategies. De Maret (1996) has overcome this bias by using the term 'stone to metal' ages, which has important advantages as it doesn't privilege either technology. Pwiti however, has emphasised farming as the primary defining criterion, proposed Early and Late Farming Communities (see also Segobye 1994). Maggs (1992) meanwhile, following similar arguments and concerns, has recognised inappropriate connotations with the use of 'farmers', particularly in South Africa, where it "tends to evoke the image of someone (usually white and male) driving around the veld in a bakkie" (ibid: 131), and has instead suggested 'agriculturists' (see also Maggs & Whitelaw 1991). Others have been wary of the very use of European-derived terms, with Phillipson re-terming the EIA for eastern and southern Africa as the 'Chifumbaze complex' named after a rockshelter site in Mozambique (Phillipson 1993).

However whilst the essential tenets of the arguments noted above are valid and highly appropriate, there are still concerns that these new terms still perpetuate the essential chronological distinctions; although advocating new terminology, the proponents are not encouraging a change in chronological definition. Thus an essential and abrupt disjunction between Early Farmers/agriculturists/Chifumbaze communities and Late Farmers/Agriculturists is maintained. This is a slightly problematic premise for the current thesis, which has an avowed aim of looking at long-term histories as part of a single continuum (see Chapter 1), and therefore none of the preceding terms will be
used in forthcoming discussion. Instead, a shifting system of terms will be used where collective nouns are required, defining archaeological affiliation (e.g. Urewe using communities), chronological phases (communities of the late first millennium) or geographical associations (Great Lakes communities).

It must however be recognised that preceding discussion has been dominated by the more traditional EIA/LIA distinctions. Therefore in an evaluation such as this Chapter, it is temporarily acceptable to maintain the extant system of ordering, in order to demonstrate how archaeology has been structured in the past. As such, the remainder of this Chapter will be separated into reviews of the EIA and LIA, with key themes from each period addressed individually.

The 'Early Iron Age': 500BC-AD1000

Following Hiernaux and Posnansky's early association between the spread of Bantu languages and the EIA (see Chapter 1), the archaeology of this period has been integrally tied up into a 'Bantu package' (Hall 1987) of apparently linked socio-economic features that include the advent of sedentism, incipient agriculture and iron-working, and of course Bantu languages. This 'package deal' is principally recognised in archaeology by the diagnostic and ubiquitous ceramic, Urewe, even if direct evidence for the other features is not always forthcoming.

Linguistics, Origins and Identity

As demonstrated in Chapter 1, by the 1950s and 1960s, the spectre of the Bantu expansion as a mechanism for socio-political explanation, was coming to the fore. This search for origins and ethno-linguistic identity precipitated some of the greatest levels of archaeological exploration (e.g. the BSRP), and to this day is one of the defining topics of debate within this period (e.g. Eggert 2005)

The concept of the 'Bantu' as a defined and bounded linguistic entity had been present in academic discourse since Bleek's recognition in the 1860s of mutual intelligibility amongst southern African languages, and his coining of the collective term 'Bantu',
from the widespread term meaning ‘people’ (e.g. Guthrie 1962a: 9). Following the remarkable levels of inter-language cognation, Meinhof proposed a single parent language – Ur-Bantu, leading Johnston to propound the theory that a single source for this parent language could be found in the Benue delta, in the north-western extremity of modern day Bantu language distribution (Phillipson 2002: 180). However it was with the pan-African linguistic classificatory work of Joseph Greenberg that the modern debate took light, when he categorised Bantu languages as part of the wider Niger-Congo language family, and like Johnston, posited an original homeland in western Cameroon prior to language dispersal across the sub-continent (Eggert 2005: 303; see Fig. 2.1). Greenberg was not specifically concerned with the historical implications of his findings (Phillipson 2002: 180), but his results were rapidly employed in historical reconstruction, with Murdock for example, using them to posit his racialist history of African peoples (Murdock 1959).

Malcolm Guthrie entered the debate in the 1960s with a long awaited linguistic study that explicitly addressed Bantu genesis (Guthrie 1962a,b). Applying the principle of sound-shift over time (Guthrie 1962a: 110), Guthrie identified 2300 word roots of which 100 core roots analogous to the Swadesh list, were correlated to the parent proto-Bantu language, and were termed the ‘General Bantu Index’. Roots from 28 test languages were then compared to this Index and the degree of association calculated (1962b:274). As a result, Guthrie proposed an ellipsoid shaped band across the savannahs south of the central African rainforest as an alternative Bantu homeland, with subsequent secondary dispersal east and west termed proto-Bantu A and B (see Fig. 2.2).

The implications of such linguistic research were not lost on prehistorians, with Posnansky for example recognising that this linguistic spread correlated well with archaeological patterns across eastern and southern Africa (Posnansky 1961a; see also Chapter 1 and de Maret 1990 for discussion of Hiernaux’s contribution). The historian Roland Oliver (1966) soon followed with the first attempt to actively engage in specific multi-disciplinary modelling, trying to reconcile both Greenberg and Guthrie’s results to a fourfold migration, originating with Greenberg’s North-western homeland,
subsequently moving to Guthrie’s savannah and thence migrating out in waves (see Fig. 2.3). This secondary dispersal from the southern savannah was argued to be a south to north movement, however it was not long before Soper (1971b), an integral player in Oliver’s BSRP, soon went on to undermine this south to north model, with new \(^{14}\)C dates and the first comprehensive comparison of ceramic phenomena within ‘Bantu Africa. Dividing Great Lakes Urewe from its nearby, and morphologically similar neighbours of Kwale and Lelesu ceramics, he then went on to suggest that Urewe was the typological parent ceramic of the ancient Bantu speakers, with subsequent elements of the Urewe style diffusing through the sub-continent in waves of migration.

By now the Bantu expansion was part of a wider sub-continental debate, pulling in research from southern African and Zambia, which, with the linguistic pendulum swinging back to Greenberg and a north-western origin, led to a new series of models of archaeological spread. Huffman (1970) utilising the ceramic data like Soper, argued for the extreme similarity of the eastern and southern ceramics, and therefore the likelihood that they had only diverged from a parent very recently. According to his model of ceramic ‘co-traditions’, this dispersal was rapid, and akin to “pellets from a shotgun” spraying across the sub-continent (Huffman 1970: 17; see Fig. 2.4). Phillipson (1976,1977) working from a Zambian context was more broad in his perspective and recognised differences between east and west, and proposed instead successive ‘Streams’ of dispersal. Initially spreading from a Cameroonian source, an eastern stream spread from the Great Lakes down the eastern flank of the continent, with a slightly later western stream (originating from an area south of the forests), following a southerly path down the west central zone, later mixing with peripheral eastern Stream, before finally intermeshing in southern Africa. Although many have been critical of the ‘Streams’, as Phillipson (2002: 183) notes, there has been continued application of this dispersal mechanism, and for the Great Lakes, his essential thesis of the region as a secondary point of dispersal remains the accepted explanation.
Throughout this engagement between archaeology and comparative linguistics there were repeated allegations of tautological reasoning and circular arguments, as scholars were unable to make informed assessments of the sister discipline, and were instead forced to accept colleagues interpretations at face value (Eggert 2005; Guthrie 1962b: 273; Phillipson 1976). Moreover, as debate progressed, “acritical” (Phillipson 1976: 65) acceptance of linguistic sources became so engrained in archaeological explanation, and vice versa, that it was impossible to distinguish what arguments were archaeologically derived and which linguistically. A few dissenting voices (e.g. Gramly 1978, Lwanga Lunyiigo 1976; Onyango-Abuje 1980) were critical of the de facto correlation between Bantu language speakers and the EIA complex, and particularly scornful of the notion of migration as the only mechanism for change. Lwanga Lunyiigo (1976: 285) for one, witheringly described the emergence of the Bantu “bursting through the equatorial forests (probably to the blaring of trumpets)”, postulating in situ development and invention instead. Crucially however, these early commentators who moved away from the simplistic ‘conquering migration’ model, and usefully critiqued the naïve extant models, were roundly ignored, refusing as they did to accept the founding notion that the Bantu language speakers had come originally from west central Africa.

Rejection of these alternative histories meant that by the 1980s the ‘Bantu expansion’ model had become dogma in archaeology. In Ehret & Posnansky’s edited volume on *The Archaeological and Linguistic History of Africa* (1982), a substantial portion of the book was given over to Bantu Africa. Indeed, so confident was Ehret (1982) he produced a summary chapter of widely accepted facts in the history of the Bantu language spread and distribution. So entrenched was the notion of the Bantu migrations, that the validity of the very notion ceased to be questioned, and instead the mode of dispersal was the hot topic. Previously two loose models of spread had been indirectly proposed; Soper’s (1971b) continuous wave of advance model and Huffman’s (1970) “cataclysmic” wave of advance model (Collett 1982: 182). Collett, writing in Ehret & Posnansky’s volume, tested two different hypothetical models of spread – continuous and discontinuous, using shifting variables of initial populations (100,500,1000), land
carrying capacities (1,5,15,19 people per sq km), and annual population growth (2,3,5,4%). He found that the selection of variables affected the efficacy of the hypotheses differently; thus population size affected the efficacy of the discontinuous wave of advance, but not the continuous wave of advance. In general however, he favoured the discontinuous model which was much faster and correlated well with available radiocarbon dates of the time. Moreover, the discontinuous model also tallied with his notions of the socio-political context of dispersal, in which fission within the natal unit would result in budding of new communities far away from the core and its immediate periphery. Van Bakel (1981) also briefly hypothesised on demographic spread, using lower population sizes and annual rates of population growth. He calculated that a small population (20 people) could cover the modern distribution of Bantu language speakers, with an annual growth rate of less than 1%. Problematically for archaeology, he thus reasoned that such ancestor populations would be difficult to recognise in the archaeological record. However, as Collett (1982: 192-193) recognised, these demographic exercises are seriously flawed by crucial variables that are not taken into account, such as the varying environmental conditions to be encountered.

By the 1990s, discussions of linguistic identity of early communities had altered in focus once more, with a shift in some areas at least, towards local dynamics and experience rather than continental debates. Vansina's seminal book, *Paths in the Rainforest* (1990) developed the local histories of Bantu language speaking groups and their neighbours in and around the central African rainforests, using glottochronology to give timescale. The Great Lakes too have been subject to such nuanced region-specific investigation with the work of David Schoenbrun (e.g. 1993, 1998). Using an innovative re-conceptualisation of the Swadesh list, specifically seeking socio-culturally and economically meaningful roots rather than generic and non-specific terms, Schoenbrun has been able to present a rich and textured picture, addressing issues of agriculture (1993), gender (1996), authority and well-being (1998). Furthermore, following the influence of Ehret (1998), Schoenbrun has also tracked loan words from non-Bantu languages and has been able to reconstruct socio-linguistic interactions. Thus he proposes that cereal cultivating Central and Eastern Sudanic
populations were already present in the Great Lakes when the first Bantu language speakers arrived. These different linguistic groups met and engaged in positive exchange, sharing mutual resources, gradually merging together with the Bantu languages emerging as the lingua franca of the heterogeneous societies.

This long history of linguistic and archaeological research shows fluctuating perceptions, arguments and opinions, and clearly demonstrates how central the whole Bantu question has been for the very development and continuation of the topic. However, despite the recent criticisms of simplistic models of migration as the sole mechanism for change (e.g. Eggert 2005), there is still a pervading sense that semantics and nuances aside, Great Lakes communities at this time were the product of a serious socio-political upheaval akin to population change (e.g. Phillipson 2002: 184). Whilst this is no longer explicitly correlated with the Bantu 'hordes', there is an enduring sense that Bantu speakers must have been involved, even if few are willing to go so far as to openly state the case (see Chapter 3 for further discussion).

Dating

There is currently broad consensus that 500BC-AD1000 marks the chronological scope of the 'EIA' (e.g. Clist 1987; Phillipson 1993; Schmidt & Childs 1985). This range however, is not universally accepted (Van Grunderbeek 1992), and it is worthwhile reviewing this chronology.

The first absolute date from the Great Lakes EIA came from the oft-excavated Nsongezi rockshelter in 1962 (Crane & Griffin 1962: 201) when a hearth from the underlying LSA deposit gave a terminus ante quem for the upper, Urewe-rich layer, of AD 1025±150. This turn of the millennium date was crucial in defining initial chronologies, as all 'Iron Age' activity had to be crammed into a following millennium (Posnansky 1967, 1968)1. However, dates soon emerged from Rwanda and Burundi in the C2nd-C4th AD (Hiernaux 1968), as well as those generated by the BSRP (e.g. Soper 1969), which

1 In many cases the dating for archaeological phenomena (e.g. Luzira Head) have yet to be critically re-evaluated since Posnansky's early time-lines, despite the significant increases in dates and substantial temporal re-evaluation.
shifted focus to the early-mid first millennium AD. The Nsongezi date soon came to be regarded as a terminal date, if not an entirely aberrant one (Clist 1987).

With the pioneering archaeometallurgical activity of Schmidt in Tanzania and Van Grunderbeek in Rwanda and Burundi, also came drastically new and early radiocarbon dates which pushed the archaeological remains back into the BC era. For Schmidt this activity went back as far as 550BC as he rejected earlier dates (N894-1250±120 BC, N897-1080±110BC, N899-1470±120BC) on the grounds that they came from old wood and natural burning episodes (Schmidt 1978: 179-180; see also Clist 1987: 45). He did however, vociferously endorse the cluster of mid first millennium BC dates and another cluster at the end of the first millennium BC (Schmidt 1978). Van Grunderbeek with a similar assemblage of dates took a different stance, supporting early first millennium BC dates and even those as far back as the sample from Muguza I which dates to 1665±205 BC. More recently this date from Muguza has been rejected, citing old wood (Van Grunderbeek et al 2001: 82). However Van Grunderbeek et al continue to assert the authority of other early dates (Rwiyange I 1230±145 BC, Mubuga V 1210±145 BC, Rwiyange I 905±285 BC – Van Grunderbeek et al 2001: 276), and indeed uses Schmidt's early dates from Buhaya in support of her argument, regardless of the fact the excavator himself rejected them (Schmidt 1997a: 197-180).

Despite Van Grunderbeek's assertions, and the fact that she has conducted the most up to date review of extant dates (Van Grunderbeek 1992), there remains widespread scepticism of the pre 550BC dates (Clist 1987; MacLean 1996a: 44-46; Wandibba 1998). MacLean (1996a: 45) for instance, notes the lack of individual assessment of each date in Van Grunderbeek (in comparison to Clist (1987) and also her selective applications of error margins. For instance, sample Hv 11143 from Gasiza I gave a date of 685±95 BC which Van Grunderbeek interprets as 810BC and continues to use as the earliest evidence for iron-smelting (Van Grunderbeek 1992: 68; Van Grunderbeek et al 2001: 276). Yet, as MacLean (1996a: 45) points out, this is at the oldest extent of the 1 sigma range, and if a 2 sigma range is applied any date between c1000 and 520BC is applicable. Furthermore, recent research from palaeoecology has indicated that
volcanic activity was taking place c3000BP, prompting Taylor et al (1999: 313) to suggest that charcoal dates from that period need not be anthropogenic, and may be related to natural, lava induced burning. Therefore, with the exception of Van Grunderbeek, there is a general acceptance that an incipient date for the EIA can be placed around 550BC (Clist 1987; MacLean 1996; Phillipson 1993; Reid 1994/5).

The next cluster of dates sits in the late centuries BC in both Buhaya and the Rwandan/Burundian highlands and are clearly associated with iron-working technologies (Schmidt & Childs 1985; Van Grunderbeek et al 1983). From this period, there is an apparent consolidation of society, with the widest distribution and density of dates found in the early and mid centuries AD (including the first dates from Kenya and Uganda). Clist (1987) however, in the most detailed and critical examination of radiocarbon dates, is wary of many of these dates. For instance he argues that the date (sample N784) AD290±125 for site 14A in Chobi sector is not directly associated with Urewe bearing deposits, being recovered in levels 5 and 6 whilst the Urewe pottery is found in level 4. MacLean (1996a: 45), in a recent dating review, refutes this, arguing that Urewe is also found in level 5 therefore substantiating the connection. On reflection it is difficult to determine the relative validity of these arguments; although Urewe is strictly speaking found in layer 5, there is a sharp decline from layer 4 and moreover, there is also a sudden appearance of stone tools in level 5 (Soper 1971: 81). Clearly the transition from level 4 to level 5 reflects a change in material culture, and whether the Urewe ceramics in level 5 are the result of post-depositional mixing or not is impossible to now determine. There must however, remain some doubt in regard to the absolute veracity of this relationship. Similarly, Clist (1987: 47) questions the three dates Soper (1969) retrieved from Urewe and Yala Alego as the association between diagnostic artefacts and the samples is very low (graded D and E according to Clist’s scale of A-E). However he accepts them in toto as they overlap sufficiently. Thus whilst this ‘core’ EIA timescale of the early/mid 1st millennium AD is rarely questioned, there are still concerns about a number of the individual samples and their reliability.
The terminal dates for Urewe are perhaps even more rarely examined and evaluated. After the bulk of dates falling in the early to mid 1st millennium AD (even disregarding those problematic ones discussed above), there is a sharp decline in the number of dates in the period c AD800-1000 even though this period is included in the traditional timeframe of the EIA. In Rwanda and Burundi it is acknowledged that a new smelting and ceramic tradition emerged in the C8th AD (Van Grunderbeek 1982; Van Grunderbeek et al 1983) yet Van Grunderbeek maintains the presence of Urewe using communities until as late as C15th (Van Grunderbeek 1992). She refers to sample Hv-10875 AD1380±110 from Mirama II which she gives a calibrated date of AD1400, citing the (contested) Nsongezi date in support. Interestingly she does not cite her own nearest date (Hv-12923) of AD770±90 BP from Mubuga III, and instead uses a very old date from Nsongezi which has been subject to considerable criticism (Clist 1987; MacLean 1996a) and which Clist regards as only accepted by "hard-core aficionados" (1987: 46). Excepting these two very late (and contested) dates, the nearest dates from Rwanda/Burundi are from the C7th AD (from Mutwarubona Ly-2268 AD570±170 BP) leaving a considerable hiatus between that and the rogue Mirama III date; a hiatus that is slightly filled by sites deemed to be 'Age du fer recent' (Van Grunderbeek 1992).

Outside this area, there is only one other date in the terminal 1st millennium AD; Makongo in Buhaya which Schmidt dates to the C10th AD (Schmidt 1978: 291). This site, which is located on the shore of the Lake and is, according to Schmidt, the settlement of late and demographically reduced communities eking out a bare existence, is also associated with roulette decorated ceramics, which are otherwise believed to have first appeared in the early second millennium AD (Desmedt 1991; Phillipson 1993). Thus there is a good possibility that this date is associated with the roulette decorated pottery using communities rather than Urewe, or that it is from a hybrid intermediate Urewe/roulette phase, rather that the Urewe/EIA phenomenon proper. Thus queries can be raised regarding all the 'late' dates either on the grounds of basic veracity and reliability, or on the grounds of association. The last reliable dates definitely associated with the Urewe/EIA tradition are therefore in the C7th – C8th AD.
There is therefore, no compelling evidence to indicate a continuation of the archaeological phenomena witnessed and often described as the EIA, any later than the late-mid first millennium AD. This is particularly important as current generalised explanation of chronology in this region consider the EIA to continue until it is arbitrarily terminated by the beginning of the ‘LIA’ (see Chapter 1). This radiocarbon hiatus is not therefore reflected in the current archaeological sequencing of the area, which has thus far failed to either recognise or ‘fill’ this gap. It is suggested that this omission is partly the result of an over emphasised concern with ‘origins’ (see Chapter 1) and thus the controversy relating to the early dates. A further point to emerge from the foregoing discussion of dating is lacunae in the regional coverage, with all extant dates from Uganda and Kenya for example, subject to discussion and query (Clist 1987).

These enquiries into dating, and the growth of an absolute time-frame have naturally affected understanding of the process of spread and distribution of these early communities across the Great Lakes. On local levels, it seems apparent that earliest activity was located in the south-western area of the Great Lakes in Rwanda, Burundi and Buhaya. Later in the first centuries AD there seems to have been a spread in activity (see Fig. 2.5), with Urewe/EIA sites being recovered as far north as Chobi, southeast around Victoria Nyanza at Chole (Kwekason 2005; Soper & Golden 1969), and in western Kenya at Gogo Falls (Robertshaw 1991a) and the Urewe type sites at Siaya (Leakey et al 1948). There is a general perception that Iron Age activity was initiated later in western Kenya (Phillipson 1977) than in other regions of the Great Lakes as it constituted both a geographically peripheral area, and was harder to settle due to the pre-existing presence of Cushitic speaking pastoralists (the so-called Pastoral Neolithic, but see Karega-Munene (2000, 2003).

Distribution

Despite a coverage of c400,000 sq km over the whole Great Lakes region, EIA activity is not evenly spread, and shows preferential selection of particular environmental conditions for settlement. A predilection for riverine/lacustrine settlement was
identified early in the development of the topic (Posnansky 1961a); an observation that has generally been borne out by subsequent research (e.g. MacLean 1994/5, 1996a,b; Reid 1994/5). Schmidt (1997: 412) however, has argued against this generalisation, citing sites between the Mulelezi River and the Karagwe depression which are located 2km from the nearest river. This however seems a little pedantic, and what is probably more appropriate to note is the fact that although direct access to water is perhaps not always immediate, sites are located in water rich regions; thus in the Victoria Nyanza hinterland (Buhaya sites) or in major river valleys (Kansyore, Urewe, Gogo Falls). The high rainfall, access to permanent water sources and the alluvial deposits left by these aquatic resources, render these areas very fertile and rich, with ideal conditions for incipient and pioneer agriculture. These circumstances seem to have attracted early settlers, and it is the marked preference for these fecund environments that simplify and assist agriculture, which should be noted.

There is compelling evidence for this argument from a number of detailed and systematic surveys. MacLean (1994/5, 1996a,b) in her survey of south-eastern Uganda and the Rakai area found that sites with Urewe ceramics were universally located within low-lying, densely vegetated and fertile regions, whilst the LSA sites were found on higher, more exposed rocky ground, with sparse plant life. The major exception to this trend are the clusters of sites found in the Central Highlands of Rwanda and Burundi (Van Grunderbeek 1982; Van Grunderbeek et al 1983, 2001; Van Noten 1979, 1983) which are located in low montane environments that are richly forested and vegetated. However Reid (1994/5: 307) notes that these environments are not intrinsically different to those of the low lying regions, as both are well watered (by rainfall in the montane contexts) and fertile enough to encourage unskilled and unsure early farmers. Indeed Van Grunderbeek et al (2001: 275) also remark that these are the easiest areas for incipient farmers to settle within the local area. Of equal importance in this argument for selective settlement is negative evidence. Neither Reid (1990,1991), nor Robertshaw (1994), found significant Urewe/Urewe-related material, in their surveys of the western Ugandan grasslands, despite the density of their surface
coverage (Reid 1991; Robertshaw 1994). This is significant as these western areas are
drier and better suited to pastoralism than cultivation, and thus supports the notions of
early environmental selections linked to agrarian pursuits.

Areas that have been subject to intensive archaeological scrutiny such as the Rwanda,
Burundi and Buhaya, can also give insights into the local dynamics of settlement
change. Van Grunderbeek et al (2001: 273) record the shifting of activity from the low
montane areas to lower ground following the onset of drier conditions.
Palaeoecological research in the Rukiga Highlands also records a phase of soil
degradation from c2200 BP which the writers attribute to the effects of anthropogenic
land clearance as a result of populations growth and also wood collection for iron-
smelting (Taylor & Marchant 1994/5: 294; see also Jolly et al 1997; Taylor et al 1999,
2000). As with the results from Van Grunderbeek et al's (2001) work, highlands were
the first to be cleared and only into the 1st millennium AD were the lower altitudes
affected. Their explanation again fits with a general model of landscape optimisation
with the shift to lower, harder to cultivate ground, only taking place in the later stages
of occupation. Schmidt (1997a) also records a sequence of occupational movement in
Buhaya with early settlement on the ridges away from the swamps, and later in the
mid first millennium AD a re-settlement further west towards the residually fertile
Lake Ikimba region following the onset of an arid period. This shift coincides with
evidence from palynology elsewhere in the region (see above and Taylor et al 2000:
532). However as Robertshaw & Taylor (2000: 10) also note, Schmidt is basing his
settlement chronology on a single radiocarbon determination from the Lake Ikimba
region which is not directly related to the pollen cores used to argue for aridisation.

In general, initial settlement seems to have either been in the low montane regions or in
lake basins/river valleys where early settlement would have been assisted by ideal
conditions for incipient agriculture provided by the high rainfall and rich soils. Over

2 Schmidt (1997a) claims that substantial remains of EIA material have been recovered from Mubende
Hill. However Robertshaw has categorically rejected this claim (Robertshaw & Taylor 2000: 13). Reid
(pers. comm.) asserts that only 78 Urewe sherds were found in total, none of which came from sealed
deposits, single component locales
time and into the first millennium AD, environmental conditions changed towards
drier weather which, possibly with the added effects of over-populations and
industrial metallurgical activity, led to soil degradation and the necessity of movement
to less fertile/lower montane environments. However, there is a continuing problem of
directly associating the archaeological evidence with the palynological data that
indicates environment change, as cores often come from swamps and lake-beds where
archaeological investigation is hampered (although see Taylor, Lejju & Robertshaw
2003 as an important, albeit more recent, exception). Thus whilst the general correlation
of settlement with richly fertile regions is supported by archaeology in conjunction
with broad trends from historical geography, there are still issues with local levels of
finer resolution.

Subsistence Economies

Subsistence economies are not an area of research that has previously received much
attention. Poor organic preservation has been a major factor in this gap (Young &
Thomson 1999); even on projects that specifically targeted archaeobotanical
information, such as Gogo Falls (Robertshaw 1991a), were hindered by the poor quality
of data. Additionally however, there has been a general lack of interest in such studies.
As Marshall comments in her archaeological review of pastoralism in east Africa
(which incidentally credits the Great Lakes with just two lines of text, such is the
dearth of data);

“This is partly because iron-using pastoralists are less
archaeologically visible than stone-using pastoralists, and partly
because the focus of archaeological research in the Iron Age is on
Bantu origins and ceramics, rather than the subsistence data”
(Marshall 2000: 205; see also Neumann 2005: 263)

Despite this deficiency of direct evidence, EIA communities are repeatedly presented
as cultivators and stock keepers, an interpretation that is largely based on inference
and indirect evidence. It is worthwhile therefore reviewing these diverse sources of
evidence in order to make an assessment.
Direct evidence for agriculture and cultivation is limited to the recovery of sorghum and finger millet pollen at Kabuye in Butare (Rwanda) by Van Grunderbeek et al (1983: 42). However both MacLean (1996: 47) and Reid (1994/5: 305) have both queried this evidence based on the small size of the samples, the difficulty of identifying the genus, and the high possibility of contamination from modern crops. Van Grunderbeek et al (2001: 271) have recently rejected these criticisms, and stated that the samples were sourced from uncultivated land thus ruling out the chance of modern contamination through bioturbation. Nevertheless, the challenge of small samples and problematic identification has not been answered. Indirect evidence for cultivation has also been gleaned from distribution information, where it is argued that the preference shown for lush and fertile environments (see above) indicates positive selection of lands that are most suitable for cultivation (Reid 1994/5).

Palaeoecological data has also been widely applied, with results that indicate prehistoric episodes of land clearance and deforestation, which is inferred to be the result of swidden agriculture. Taylor & Marchant (1994/5) found evidence of a decrease in taxa beginning c 2,200BP in the Rukiga Highlands evidence, with evidence of diminishing hardwoods and forest taxa. The impact of human agency was again proposed by Taylor et al (1999) where results from Kabata swamp in SW Uganda showed disturbed and degraded soils appearing c 2500 BP, which they tentatively associated with early farming disruption. As noted previously these indirect palaeoecological sources are problematic because of the lack of direct association with the archaeology. Nevertheless, there is considerable combined evidence to indicate environment change during crucial periods of history, which may have been caused by agricultural clearing (see also Stager et al 2003 for discussion of diatom records).

Linguistic data is another indirect source of evidence of agriculture. David Schoenbrun’s (1993, 1994/5, 1998) work is particularly important in this regard as he targeted agrarian change as a key research goal. Thus, Proto Great Lakes Bantu speakers, the progenitors of Great Lakes Bantu communities, are credited with an existing knowledge of root-cropping, particularly yams, which would have grown
easily in forest environments (Schoenbrun 1993, 1998; see also Reid 1994/5: 310). Subsequently as Great Lakes Bantu speakers moved into the Great Lakes, Schoenbrun argues, on the basis of loan-words, they would have encountered pre-existing communities of Central Sudanic speakers. These communities would have introduced them to sorghum and millet cropping, with other lesser presences of Sog Eastern Sudanian and Tale Cushitic speakers introducing new domesticates such as beans. Great Lakes Bantu speakers would have interacted and merged with these groups and borrowed their subsistence technologies, resulting in diverse and eclectic food sourcing.

Recently the prospect of the banana playing a central role in past staple food-stuffs has been raised. Uganda is the largest modern consumer of banana and the second largest producer (www.inibap.org), and the damp and fertile conditions found throughout the Great Lakes are ideal for the growth of banana. As such, the past role it played has recently come under investigation (Reid 2000, 2001a,b). Although Oliver, back in 1966, suggested that the introduction of the banana from south-east Asia was a precipitate to Bantu language growth and population spread, this idea was generally ignored. Only recently with the recovery of Musa phytoliths dating to the mid first millennium BC from Cameroon, has the prospect of deep-time banana cultivation become possible (Mbida et al 2001). The identification of these phytoliths however have been questioned (e.g. Vansina 2003) as the domesticated Musa very closely resembles the wild Ensete and many remain sceptical. Schoenbrun (1998: 80-81) for example, only identifies a prominent role for banana related vocabulary c.1000AD, and thus a date much earlier than this is queried. Nevertheless, it is a potentially important food source that perhaps should be borne in mind for future consideration.

these are the excavations by Gabel (1969) there must be some doubt of the association of the faunal remains; the sites are multi-component, with apparently mixed deposits of Urewe, LSA microlithic technology and Luo ceramics. MacLean (1996: 47) believes that the most compelling evidence for animal husbandry for this period comes from the Tongo rockshelter in the Democratic Republic of Congo (Misago & Shumbusho 1992). Unfortunately only a short excavation report in Nyame Akuma is available which reports evidence of domestic cattle and ovicaprids (see also Van Neer 2000). An alternative subsistence picture is presented from Kawezi in eastern Democratic Republic of Congo where Van Noten (1979: 69) records only wild fauna.

Once again the linguistic evidence presents a richer picture of the role of animals. Ehret (1998: 133) has argued that Early Mashariki communities (the precursor to Bantu language speaking communities) already had limited knowledge of small stock keeping, increasing their skills when they moved into the Great Lakes and encountered autochthonous Sudanic communities who were skilled pastoralists. However it was not until the beginning of the second millennium AD that the fluorescence of cattle terminology exploded into the Bantu vocabulary, indicating that previous communities were not dedicated or specialist animal herders (Schoenbrun 1993: 19-20).

Fishing is an obvious, if often overlooked, source of protein for early communities. Schmidt (1997a) postulates that the apparent preference for river and lake locations suggests an exploitation of the natural aquatic resources therein (see also Reid 1994/5: 310; Posnansky 1961a). The only possible direct evidence comes from the Kanam shell midden sites in South Nyanza, where largely Kansyore ceramics were found in association with dense concentrations of shell and fish bones (Robertshaw et al 1983). Urewe ceramics were also found within the shell matrix, but in such small quantities, it was impossible to determine the nature of the association.

The evidence summarised above clearly demonstrates the very limited amount of direct archaeological evidence available for discussion of subsistence strategies. More detailed is the circumstantial evidence such as that from palaeoecology and linguistics.
However, these sources need to be treated with caution and not used as a substitute for archaeological data. Palaeoecological evidence for example, tends to relate to general trends and is not directly provenienced from relevant archaeological locales. Similarly, the rich picture portrayed by the linguistic research needs to be dealt with circumspectly, and we must be wary of compensating for the archaeological vacuum by placing undue weight on historical linguistics. This is an easy trap to fall into, as has been demonstrated by the preceding discussion on origins and language, particularly in the light of the detailed and textured subsistence orientated studies of Schoenbrun. Schoenbrun has for example, based much of his premise of mixed agriculture in the Great Lakes on the proposed presence of Eastern and Central Sudanic speakers prior to the appearance of Bantu language speakers. Yet as Robertshaw and Taylor note, this has

"yet to be identified archaeologically; a rather surprising phenomenon that is becoming increasingly difficult to explain away as stemming from a paucity of research"

(Robertshaw & Taylor 2000: 13)

This is a prescient reminder that linguistics is not a panacea to archaeological ills, and that archaeological arguments must be primarily substantiated by archaeological data.

Socio-political Organisation

This is yet another arena of research that is poorly understood. Evidence for the social structure of communities of the first millennia BC and AD is split into physical evidence of the domestic sphere (as opposed to industrial/technological), and interpretations of political institutions based on extrapolations from the wider corpus of research.

The so called ‘domestic zone’ is almost non-existent in archaeological understanding of the Great Lakes in this period. In the whole region there are a paltry four potential living floors; at Kasoga II in Southern Uganda (MacLean 1996: 71), at Kemondo Bay in Buhaya and dated to 170 BC (Schmidt & Childs 1985), at Bukavu (Van Noten 1979: 69), and in Mirama II where a moulded mud hearth was found (Van Grunderbeek 1982).
Even these floors provide scant insight into the spatial layout of settlement, being largely incomplete and unrelated to other archaeological phenomena that might contextualise them, prompting Reid (1994/5: 304) to declare that it is “premature for the archaeologists to talk of the ‘Urewe house’, let alone the ‘Urewe settlement’”. In spite of, or perhaps because of, this dearth, archaeologists have often been content to see ceramics as markers of domestic sites instead. Van Noten for instance (1983) has divided sites into industrial and domestic locales on the respective presences of iron-smelting debris and ceramics. However, it is argued that this is a simplistic association to make, as ceramics are multi-functional and multi-faceted artefacts, which can equally be found in ‘industrial’ contexts, and thus suggesting the basic dichotomy is inappropriate.

A potential source of evidence regarding social space and settlement comes from rock shelters in the region. Reviewing the data, it is apparent that there is a high incidence of Urewe ceramics being recovered in rockshelter sites, including Nsongezi (Pearce & Posnansky 1963), Ruhimangyarga, Mukinanira, Kamboza (Van Noten 1983), Tonga (Misago & Shumbusho 1992), Lolui (Posnansky 1967) Rangong, Randhora and Nyaidha (Gabel 1969; see also Fig. 2. 6). These sites are usually dismissed as hunter-gatherer sites where goods from farming/iron-working communities (such as Urewe pottery) have been exchanged or collected, and are not evidence of in situ Urewe using occupation. However, the repeated occurrence of such artefacts in these locations, and often in substantial quantities, suggests that perhaps this was active selection on the part of the Urewe users. If this was the case, this calls into question certain preconceptions of Urewe using communities as sedentary agriculturalists living in agglomerated settlements; these sites do not indicate long-term, nucleated settlement, nor are they suited to agriculturalists being devoid of storage space and/or refuges for cattle. It is possible therefore that a re-thinking of the domestic/settlement organisation is necessary, and that these early communities may have been more mobile and/or varied in their choice of habitation.
The final direct source on the social landscape is the recovery of a burial associated with Urewe ceramics in the Tongo rockshelter in the eastern Democratic Republic of Congo (Misago & Shumbusho 1992). This is the only direct evidence of an Urewe using individual, and it is hard to expand much more on the significance of the context of recovery, or nature of burial, as only a brief report exists. However, it again suggests an important role for rockshelters among Urewe using communities and also hints at a ritual life hitherto undiscovered.

Despite this scant socio-domestic evidence, hypotheses regarding socio-political organisation have been forwarded, based on combined evidence from other sources. However, as Reid (1994/5: 305) has noted, the pictures presented are often divergent, prompting a review here. Van Grunderbeek et al (1983) posited dispersed settlements located in isolated pockets within the low montane environment, engaged in subsistence and artisanal activities such as metallurgy, charcoal production and pottery. Schmidt (1997a) on the other hand, who is the only other commentator with a sufficient density of sites to hazard interpretation, has postulated a sequence of increasing technical complexity (in iron), leading to concomitant social complexity. According to Schmidt, early pioneers occupied diffuse settlements with low density and incipient metallurgical skills until cAD200, but from AD200 to AD400 lineage and clan based organisations consolidated socio-technical positions with an emerging system of social ranking based on differential access to key resources like refractory clays and technical expertise. By the post AD400 period, this differentiation had been amalgamated into standardised production that Schmidt has termed “factory sites”, bringing with it social centralisation and emergent complexity.

These two pictures clearly differ substantially; the picture presented by Van Grunderbeek et al accords better with the generalised model of pioneer small scale farmers adopted by many commentators (Phillipson 1993; Posnansky 1961a). Indeed, Schmidt's more grandiose explanations has drawn criticism, with Reid (1994/5: 306) suggesting that the density of metallurgical evidence may be a result of gradual accumulation over time as furnaces are abandoned after single-use, rather than
concentrated contemporaneous activity. Also, Schmidt's (1997a) more recent treatise on the Buhaya phenomenon draws heavily on comparative linguistics, particularly Schoenbrun's work, to 'people' the archaeometallurgical picture, he can perhaps be accused of falling into the trap of placing undue reliance on a linguistic chronology. Nevertheless, whilst some of Schmidt's methodological approaches may be problematic, it is here suggested that they are not, a priori, incompatible with the general picture. This combined socio-cultural phenomenon of iron-working and Urewe ceramics, lasted for at least 1300 years, and was present across c 400,000 sq km; to argue for a single, monolithic socio-political format is preposterous. It is instead argued that social structures changed in relation to time and place as communities consolidated or fractured. In Buhaya, conditions may have been uniquely suitable for concentrated iron production and thus emergent social ranking. Nevertheless, on a wider scale, the lack of key raw materials (ore, charcoals, refractory clays) may have meant that such a socio-political trajectory was simply untenable. In nearby Rakai for example, no evidence for smelting was found, despite intensive and iron-focused survey (MacLean 1996a). Thus whilst Buhaya may have been a centre of growing social complexity, this does not imply that this was a unilinear path shared by the entire region. We cannot always recognise this elusive element of socio-political organisation, but it is necessary to recognise the potential for variability and difference, and thus be wary of imposing generalising models.

Technology

With the exception of the Bantu language domain, the technical expertise and knowledge of these communities is the best documented element of the archaeological corpus of knowledge. This research however is limited in scope, being unevenly split into iron-working and ceramic production.

Research into archaeological ceramics from this period has identified a single unifying tradition, Urewe ware. It is a distinctive and well executed ceramic first identified in western Kenya by Leakey et al (1948), a publication that still remains seminal in its typological definition (see also Van Grunderbeek 1988). Originally termed 'Dimple-
based ware' on account of the pronounced dimple on the base, the remaining distinguishing features are the bevelled rims and the elaborate and often complex range of incised decoration, producing a ware of high quality and evident artisanal skill (although see Posnansky (1967,1973) for a lesser quality version from Lolui).

Urewe, which is found throughout the time period and across the whole area, is the single unifying feature that holds the whole concept of the 'Early Iron Age' together. As such it has become a crucial diagnostic tool for the researcher, often coming to represent the whole 'EIA package', and acting as a fossil directeur or a “calling card of a Bantu presence” (Chretien 2003: 52). However, beyond its basic recognition and typological description, the ceramic itself plays little further role in archaeological investigations, and its socio-economic role as a specialist craft and social object is largely unexplored (although see MacLean 1998 for a rare exception). This appears to be a factor of prevailing culture historical paradigms where ceramics act as identificatory tags, rather than the powerful social messagers proposed by more recent research (e.g. David, Sterner & Gavua 1988). This is a central concern of the present thesis, and will be discussed in more detail in Chapter 4.

Iron-smelting is a far better documented and explored technology, to the extent that it contributes to global archaeological debates on technology and technical origins (Avery & Schmidt 1986; Schmidt & Avery 1983). There is sustained evidence for iron-working for this period, with both Buhaya and Butare (from the Kinyarwanda meaning 'iron ore' – Van Grunderbeek et al 2001: 273), particularly showing evidence of concentrated iron-smelting activity. At Butare, 20 furnace sites have been excavated within a 20km radius of Butare town, and Schmidt identified ‘factory sites’ in Buhaya (Schmidt 1997a; Van Grunderbeek et al 2001: 273). Elsewhere however, little or no evidence remains for such levels of density, or even indeed even for smaller scale iron-smelting. This could be the accident of preservation as furnaces are friable. However, targeted archaeometallurgical survey by MacLean in Rakai (1996: 56-69), near to Buhaya, failed to produce any iron-working sites at all. This hiatus suggests that perhaps iron-working and production was not uniformly or evenly practised, and
instead was subject to areas of specialisation or concentration. If this was the case, it must raise further questions regarding the application of a term such as ‘Iron Age’, as well as the appropriateness of regarding this wider EIA phenomenon as essentially united and homogenous.

The technology of Great Lakes iron smelting is well known (e.g. Hiemaux & Maquet 1957, 1960; Raymaekers & Van Noten 1986; Schmidt 1978; Schmidt & Childs 1985; Van Grunderbeek et al 1983, 2001; Van Noten 1979, 1983), with detailed descriptions of morphological variations in furnaces and associated artefacts/features. In general, bowl furnaces were used, with conical superstructures sometimes built of brick (see Fig. 2.7), and occasionally decorated. Bellows heated the furnace through sun-baked clay tuyeres, and the non slag-tapping furnaces were often filled with grasses and reeds at the base for the slag to trickle through and separate from the bloom. Schmidt & Avery (1983) have also argued that the technological expertise was sufficiently advanced to have invented the technique of pre-heating the tuyeres, and thus the air within them, to increase the smelting temperatures by up to 600°, thereby making the smelt faster, more efficient, and capable of extracting a higher bloom yield from the ore. This pre-heating is believed to have taken place through the tuyeres being placed deep into the furnace, as evidenced by slag wetting/vitrification present on up to 40% of the tuyere. As a result the furnace end of the tuyeres apparently heat up within the furnace, thus also heating the air that passed through it before it reached the flames (Schmidt 1997b: 167). This argument has been widely critiqued (Eggert 1987; Rehder 1986; Woodhouse 1998), as the tuyeres show limited evidence of pre-heating, and even if they had heated up, it has been argued that the stored heat would not have been sufficient to affect the outcome of the smelt (e.g. Rehder argues that the increase might be as little as 22°).

The socio-symbolic element of smelting, so evident in ethnographically collected instances of sub-Saharan technology (e.g. Reid & MacLean 1995; Schmidt 1997b), is also suggested during this period. ‘Medicine pots’ have been discovered at the base of furnaces, which according to ethnographic evidence, are receptacles for special herbs
and artefacts that will aid the smelt and ensure success. At Kabuye II for example, a buried pot was clearly found beneath the furnace (Van Noten 1979: 65-66; see Fig. 2.8).

In contrast to the concentrated attention on the technology of smelting and production, little interest is directed at the end products of this technology – the iron objects made from this raw bloom. Finds from sites that have yielded iron artefacts (e.g. Urewe/Yala Alego, Kansyore Island; see Fig. 2.9) have tended to be overlooked, or considered to be later and thus intrusive. This gap in research is intriguing; with all the attention lavished on the production process, the socio-economic roles of the artefacts are ignored or are left to vague conjecture, with a general, unspecified assumption that iron bloom was used to make ‘tools’, that helped improve agricultural productivity. Along with the generalised inference of efficient iron ‘tools’ comes the corresponding implication that pre-existing lithic technologies became redundant and obsolete. Nevertheless, numerous sites with Urewe ceramic components are also associated with lithics (e.g. Gogo Falls, Nsongezi, Kansyore Island, Kanam middens, Masangano, Randhora, Rangong, Nyaidha). However, these are usually assumed to be the products of depositional mixing with earlier LSA hunter-gatherer debris, rather than the effects of ‘advanced’ Iron Age peoples. Recent research from the well stratified site of Wadh Lang’o however, has revealed lithics from un-mixed Urewe ceramic layers (Seitsonen 2004; see also Nenquin 1967b for discussion of Masangano), casting doubt on the previous dichotomy of Iron/Stone Age technologies. This is an important finding and needs to be assimilated into wider understanding of the so-called ‘Iron Age’, showing as it does, that the shift to iron was not universal or absolute, and that a third ‘forgotten’ technology needs to be considered in future discussion.

The Second Millennium AD – the ‘Late Iron Age’

This second section details communities of the second millennium AD, specifically the early to middle centuries. The whole millennium (up until the advent of the ‘historical’ period in the late C19th) is often termed the ‘Late Iron Age’ in deference to an apparent

3 More detailed consideration of the findings from Wadh Lang’o will be considered later in the discussion of new data in Chapter 6.
shift in social, economic and political practices that distinguish it from the Early Iron Age (e.g. Phillipson 1993). In contrast to the perceived homogeneity of small-scale farming communities of the EIA, the LIA witnesses the fragmentation of the pan-Great Lakes pattern, and the development of local manifestations, that most notably, develop into the fledgling states of the C16th. This important political trajectory has dominated research on the Great Lakes in the LIA (see Chapter 1), prompting major excavation projects and stimulating important research that addresses key issues of socio-political development and economic bases (Reid 1991, 1996; Robertshaw 1991b,1999,2000,2004; Sutton 1993, 1998).

This process of regionalisation also narrows down the scale of the current discussion, reducing the focus from the whole of the Great Lakes region, to specific contexts pertinent to the research area of this thesis. Thus, following broader discussions of the nature of the ‘EIA/LIA’ change and transition, summaries of research from two areas will be made; the Victoria Nyanza basin (i.e. including the present research area, and the better-known Ugandan grassland polity/earthwork sites.

Transition and Change

The division of the Iron Age into the earlier and later periods is structured around an apparently dramatic shift covering all aspects of existence; a “plethora of social, political and economic changes” (Taylor et al 2000: 531).

Typically though, the primary tool of the archaeologist in identifying this later period, is once again ceramic style. From the well crafted and ornate Urewe in the first millennium, there is significant shift to larger, coarser wares which are decorated with a fibre or wooden roulette that has been rolled across the surface to give a uniform effect. This roulette decorated ceramic is important, for whilst the archaeological patterns of the Great Lakes during this period are generally emphasising localisation and independent development, the roulette technique is found across the region. In a sense then it thus unifies the diverse communities of the period sufficiently to be subsumed under a single rubric of the ‘LIA’. In the Rwanda and Burundi this ceramic
style has been found at Akameru and Cyinkomane, and dated to the 9th AD (Van Noten 1983). In western Uganda a slightly later date of the 11th – 12th AD has been recorded at Munsu and Ntusi (Reid 1996; Robertshaw 2001; Robertshaw & Taylor 2001). With the exception of Van Grunderbeek who sees the Urewe tradition continuing alongside the roulette style until AD 1400 (see above), there is a general belief that roulette ceramics replaces the Urewe tradition around the turn of the millennium (Phillipson 1993). Moreover, the very distinct ceramic morphologies and styles of the two wares has prompted the concomitant assumption that these are independent technological fabrications, not related to each other, and produced by different people. Drawing on the wider, continental, distribution of the roulette technique, an original source north of the Great Lakes has been postulated, with the Nilotic speaking producers spreading the ware as they migrated into the Lakes region (Desmedt 1991; Soper 1985; see Fig. 1.6).

Archaeological survey has also shown a striking change in settlement dynamics and environmental selection (see Fig. 2.10). The previously settled well watered ground of the first millennium sites have apparently been abandoned, as the population shifts to drier lands, often dominated by open grasslands (e.g. Ntusi). As a result of detailed and systematic survey in western Uganda, Reid and Robertshaw (Reid 1990; Robertshaw 1994; see also Connah (1996) for details of survey around Lake Albert) have shown minimal occupation during the first millennium AD, but a fluorescence of activity in the early centuries of the second millennium. This shift in environmental exploitation appears to have had a direct impact on the economic base of these communities; with the drier grasslands encouraged pastoralism. This is particularly noticeable at the site of Ntusi where dense middens of cattle bones were recovered (Reid 1996; Sutton 1993, 1998). These new subsistence economies seem to have facilitated novel political systems, with wealth accumulated and stored through cattle, as well as a range of other features, such as control of elite goods including glass beads found at Munsu (Robertshaw 1997). Differential access to such resources seems to have

4 Although it should be noted that this determination represents a single date from two poorly reported site.
5 Schmidt however does record some continuity of settlement in Buhaya into the second millennium AD.
prompted social ranking and distinction, which developed into the centralisation of authority and influence. By the C16th this political trajectory was manifest in the presence of multiple complex polities interacting and vying for power (see below for more detailed discussion).

These dramatic changes at the beginning of the second millennium AD have long been recognised by scholars working in the area (e.g. Posnansky 1961,1966), and have prompted considerable debate on the architects of such change. It is perhaps unsurprising given the pre-eminence of culture history as an explanatory rhetoric in the late colonial/early Independence eras, that scholars of that time should turn to migration and diffusion as mechanisms for social change. In this search for new influences, a number of early commentators (e.g. Posnansky 1966) also employed oral histories from the extant Great Lakes kingdoms to help identify the origins of those great states. Many of these oral traditions attributed their genesis to the mysterious Cwezi dynasty, and the founder, Ndahura. Moreover this foundation legend was intricately tied to the LIA sites of western Uganda, with Mubende Hill for example, venerated as the birthplace of Ndahura himself. As such, the appearance of the Cwezi, and new and dynamic force, was associated with the dramatic archaeological shift between the EIA and the LIA, prompting a new archaeological impetus to try and validate these relations through renewed research at the earthwork sites (see discussion in Schmidt 1990: 258-264). Tied into these correlations of the Cwezi with the advent of the LIA was the post-Independence search for historical legitimacy of the Kingdoms as appropriate and valid power structures (e.g. Posnansky 1966). Nevertheless, it soon became apparent following systematic research at earthwork sites, as opposed to speculative interpretation, that the relationship between oral history and archaeology was not so clear; Posnansky (1969) for example, a proponent of the Cwezi/LIA connection in 1966 revised his opinions following his own work at Bigo in 1969. Since this time, this correlation has lost currency, with a number of scholars critically reviewing evidence, and finding little indication of relationship (Schmidt 1990).
Political instability hindered research in the Great Lakes, especially Uganda in the 1970s and 1980s, but since the re-initiation of BIEA research on the political centres of western Uganda (see Chapter 1), little work has directly tackled this issue of origins. Perhaps as a result of the pejorative applications of ethnocentric research, modern scholars seem understandably wary of engaging in a topic that comes with so much political baggage. However, whilst the big 'origins' papers are no longer written (although see discussion of Desmedt (1991) below), scholars are still forced to address this fundamental issue, albeit if only briefly. Sutton (1993) for example, in his synthesis of the 'Antecedents of the Interlacustrine Kingdoms' only extends his historical sourcing back to the sites of the early second millennium AD, and only briefly tackles the question of the antecedents of those sites themselves (1993: 60-62). In this short discourse he reiterates the major shift from Urewe to roulette ceramics and also the distribution change, but is reticent about the causes for this, acknowledging that it may be an influence from the north, but neither actively supporting nor denying it (1993: 60).

Others have been more critical of the notion of migration and the importation of a “fully fledged political system by outsiders on an indigenous population" (Reid 1996: 621), with Robertshaw & Taylor recently arguing for more in situ development out of the pre-existing social institutions of the first millennium AD (2001: 13-14, see also Taylor et al 2000: 532). In support of this they cite ceramic analysis by Meredith (1988) from western Ugandan sites such as Munsa, which show apparently transitional ceramics, with typological characteristics from both Urewe and roulette decorated styles (see also footnote 53 in Sutton (1993). Additionally, linguistic evidence from Schoenbrun (1993, 1998) is applicable, showing a C11th fluorescence of specialist cattle terms within the Great Lakes Bantu languages. This is used to support the notion that indigenous Bantu-speaking Great Lakes communities were dictating and initiating these changes rather than allochthonous Nilotic speakers. The exception to this (quiet) movement away from migration and external origins is the work of Desmedt (1991). In this paper, the only one of the modern era to directly address issues of origins and

6 This is perhaps particularly pertinent in regard to the genocidal ethnic cleansing witnessed in the area in the 1990s.
transition, Desmedt emphatically asserts the diffusion of roulette decoration technologies from southern Sudan. Moving, according to Desmedt, as part of the migration of Southern Nilotic speakers, it was the influx of these populations into western Uganda that precipitated the path towards political complexity.

The impetus for change remains confusion. Many are critical of Desmedt, but at the same time few researchers are willing to specifically address the topic in their research foci. The confusion is well demonstrated by the ambivalence of Phillipson's (1993: 225) comments in a popular text-book, in which he notes possible Nilotic influences, but is unclear as to whether he accepts or rejects these sources.

Fragmentation and Regionalisation

Part of this process of state-building so emphasised in the literature of this period, is the fragmentation of the pan-Great Lakes experience and the development of localised socio-political and cultural trajectories. This section will therefore consider the evidence available for the specific geographical area of concern to the present study, the Victoria Nyanza lake basin. However, before this is attempted, a review of the better studied western Ugandan centres will be made, both in order to contextualise the lake experience, and to demonstrate the unequal balance of research attention.

Political Centres of Western Uganda

As the detailed and systematic surveys of western Uganda referred to above have shown, this area was subject to a population inundation in the early centuries of the second millennium AD. Concentrated activity at this early stage seems to have centred around the site of Ntusi in Mawogola (see Fig. 2.11), which has been the subject of intensive excavation in recent years (Reid 1990, 1991, 1996; Reid & Meredith 1993; Sutton 1993, 1998). Covering an area of c100 hectares this is the largest of all the grassland sites, and shows the highest concentration of artefacts as well. Two great mounds, termed the male and female mounds, have been excavated, showing dense cattle bone and ceramic debris. Other features on the landscape include a large scraped earth depression, the *bwoogero* (see Fig. 2.12), as well as domestic evidence for houses.
and storage pits. Dated from the C11th to C15th AD, Ntusi and its hinterland represents a crucial source of data for discussion of political transition and development.

Survey around Ntusi conducted by Reid (1991) shows that this large site dominated its contemporaneous landscape, with numerous smaller satellite settlements located in its hinterland, prompting Reid (1996: 623) to describe it as a “two-tiered settlement hierarchy”. This evidence of settlement ranking strongly suggests the development of centralised authority, as does the construction of the *bwogero* which must have required central organisation in order to clear the estimated 30,000 m³ of earth (Reid 1996: 623). These indications of social inequality have naturally prompted a search for the sources of such authority and social stratification, with cattle and pastoralism emerging as a major political factor. Across the site, and also in the satellite settlements, cattle remains abound, indicating both how suited the drier grassland sites are to cattle-keeping, and also how quickly this enterprise had become entrenched in the economic structure of these communities (80-90% faunal remains were cattle - Reid 1996: 624). Reid has suggested that varying herd profiles found in different contexts are potentially indicative of social coercion and tribute giving, although he also draws on wider historical evidence of pastoralism to suggest that cattle ownership and control may have been a primary political tool (ibid). Nevertheless, the evidence from Ntusi does not replicate the exclusive, niche pastoralism found in later/historical populations (e.g. Spencer 1998), and there is abundant evidence for agriculture playing a significant role. As Reid (1996: 626) comments; “Women were still able to use their ability to grow crops as a platform for the negotiation of power”.

The central role of crops is demonstrated by grindstones, ceramic abrasion patterns (Reid & Young 2000), grain harvesting knives, as well as deep storage pits, that indicate not only the importance of crops, but that sufficient surplus were available for long-term storage strategies to be in place. This evident richness of food resources may have played a central role in power structuring, with access and control of food allowing individuals or associations to assume importance and control. Direct evidence of such power brokering has been suggested by the data from the two mounds, which
have been interpreted as the debris from communal feasting (although see Sutton 1993); with feasting being seen as a mechanism for public display of wealth, or negotiation of unequal relationship (e.g. Dietler & Hayden 2001).

More recently, Robertshaw (2003) has applied Blanton’s theory of dual processualism to explain political institutions in the Great Lakes at this time. Referring to the Ntusi manifestation, he has proposed an exclusionary power strategy wherein the ostentatious possession of rare and elite goods is a signal to the community of unequal access and ownership, the disequilibrium of which causes unbalanced relationships. In support he refers to the occasional presence of trade items such as cowrie shells and glass beads, as well as evidence from excavation of an ivory workshop. Indeed Reid (1996) also notes that although exotic trade items are generally scarce, there is a disproportionate quantity recovered from Ntusi itself compared to the outlying sites, thus possibly reiterating its position at the centre of the local power constellation. Although Robertshaw seems to see an essential dichotomy between exclusionary and corporate strategies (as maintained by wealth expressed in agricultural and pastoral surplus), it is highly likely that evolving dynamics were in play here, resulting in differential, and potentially composite, expressions of power and authority, rather than a single encompassing model. What is not in question is the significance of this site as an expression of emergent social complexity and statehood.

The decline of Ntusi is somewhat ambiguous. Sutton sees an apex in the C13th with a degeneration thereafter which Robertshaw & Taylor (2001) have linked to climate change and increasing aridity; Reid (1996) meanwhile asserts that the sites enjoyed its apogee in the C15th immediately prior to its abandonment. What is clear however, is that on a regional scale, the power balance was shifting in the later centuries of Ntusi’s existence. Just as Mawogola experienced a population explosion in the immediate centuries of the second millennium, so too did new areas north of the Katonga River, where sites with roulette decorated ceramics were also identified during survey (Robertshaw 1994). However these sites were smaller than Ntusi; Munsa for example, later notable for its earthworks, shows no such monumentalism in this early period.
(Robertshaw 1997). Indeed, during the hegemony of Ntusi, no other site in the wider region was able to challenge it in terms of size or complexity. As Ntusi declined however (following the Robertshaw/Sutton chronology), other centres of population concentration such as Munsa, emerged north of the Katonga River in the 1200-1450 period (Robertshaw & Taylor 2001). Although smaller than Ntusi, there was clear political dynamism at these sites, with Robertshaw (2003) arguing that the need to attract followers was the principal politico-economic concern (cf Kopytoff 1987). As such, applying Kopytoff’s model of the Internal African Frontier, novel and innovative inducements had to be constructed to attract the populous, resulting in diverse adaptations; religion or ‘creative power’ (Schoenbrun 1998 In Robertshaw & Taylor 2001: 16) at Mubende Hill, elite goods during the early days of Munsa, and simple agricultural productivity and provision of surplus at Kasunga.

These inventive solutions laid the foundations for the much discussed earthworks of the mid second millennium. Building on the foundations created by such diverse political mechanisms, power and influence began to be consolidated, and by the C15th and C16th this was manifested in sufficient corporate influence to construct and maintain major public monuments. The epitome of such activity is the site of Bigo; long established as one of the principal monuments of the time, the impressive banks and ditches of Bigo measure c10km in total length and offer an indication of the social cohesion and structure in place at this time (Sutton 1998). Robertshaw (2003) has seen this period as generally ordered by a corporate power structure as there is less visible social differentiation, and instead greater evidence of agricultural hording and storage suitable for politically motivated distribution. The inter-relationship between these varying centres of power is hard to assess; peer rivalry as well as interaction have been suggested, and it is likely that a single model is not applicable here. Rather that political dynamics ebbed and flowed prompting changing relations and contacts.
By c 1600 these sites had been largely abandoned and new political momentum was developing towards the pre-colonial kingdoms encountered by early visitors in the C19th. Nevertheless the probable place that these archaeological states played in establishment and development of the kingdoms was crucial (Chretien 2003; Wrigley 1996)

The Victoria Nyanza Basin

As the foregoing discussion demonstrates, the western Ugandan sites have drawn substantial archaeological attention during this time period. The same cannot be said for the Victoria Nyanza hinterland where there are serious lacunae in the understanding of this area at this time. This dereliction is partly a result of the concentration of effort on the western sites (see Chapter 1). Not only have resources been directed at these investigations, central to regional understanding of the EIA/LIA transition is the belief that former EIA landscapes were depopulated as the political dynamic shifted interest and probably people, to the western Ugandan plains. As such, the specific niche environments, such as the Lake, so favoured in the first millennium, became peripheral to the primary arena of activity. This void is of course of central concern to the present study, and was a defining factor in the development of the research goals (see Chapter 1). With these considerations in mind, it is therefore useful to summarise any potential extant data that might help fill this apparent vacuum, and lay the foundations for the present research.

This reviewing exercise soon reveals that whilst general explanation has relegated this ecozone to a barren archaeological periphery, there are a number of unexplained and/or ignored phenomena that may assist the present reconstruction.

The first of these is the Entebbe ceramic phenomenon. Entebbe pottery was first recognised by Marshall (1954) at Pumping Station Point on the Entebbe peninsula, with a later excavation by Brachi (1960) at Hippo Bay Cave, also on the Entebbe peninsula. Typological research clearly showed the distinctive style of Entebbe pottery, with no

7 Although Mubende Hill continued to be regarded as a sacred site, with the shrine to Ndahura still active in the present era.
direct morphological similarities to known wares, either archaeological or modern/historic. The vessels were large to very large hemispherical bowls, with heavily thickened rims that seemed to result from the folding over of the lip. Decoration was principally by roulette and inside the vessel there were often bands of parallel scoring, probably effected with a comb. Aside from two brief un-attributed illustrations of Entebbe pottery found during survey on Bugala and Bugaia islands (Fagan & Lofgren 1966a; Nenquin 1971), Merrick Posnansky, is the only other researcher to further discuss Entebbe pottery, recognising it on Lolui Island (1973), and also placing it within a regional chronology and an interpretive framework (1967). Drawing on initial comments by Brachi (1960), Posnansky for example supported the notion that the makers of Entebbe ceramics may have been specialist lake communities, as extant sites to date had all been found in lacustrine contexts. Proposing a late second millennium AD date based on a relative ceramic sequence, Posnansky also suggested that Entebbe pottery was perhaps a devolution from the earlier Urewe ceramics (Posnansky 1973). However, since Posnansky’s work, no further research has been carried out, and the ware has been consigned to the modern/historic period (e.g. Desmedt 1991: 188).

This lack of ongoing attention is unfortunate, for re-appraising Posnansky’s chronology it is evident that he was using the erroneous C11th date from Nsongezi as his *terminus ante quem* for the whole ‘Iron Age’ sequence. Thus, the Entebbe phenomenon was necessarily pushed to the historical limit as the whole Urewe/EIA package had to be accommodated first, with roulette decorated ceramics (including Entebbe), coming in a later period. Posnansky’s later work on the subject (e.g. 1973) seems to indirectly place the Entebbe material in an earlier phase, making typological correlations with Urewe. However, the never published volume on Lolui meant that an up-dated sequence was never forthcoming (although see Posnansky et al in press). Potentially Entebbe pottery may therefore fall into this second millennium AD chronological gap, and moreover, if early commentators were correct, may represent past niche exploitation of the lacustrine environment.
Posnansky's work on Lolui also prompted him to argue for a 'Devolved Urewe' style of ceramic (1967, 1973). This ceramic resembles the distinctive Urewe in many of its component features, including bevelled rims and incised decoration. However the devolved Urewe is noticeably different in the quality of production and manufacture, with coarse sandy fabric and uneven and poorly executed standards of decoration. Posnansky argued that the recovery of such material on the island of Lolui, where traditional Urewe ceramics were also found, suggested *in situ* devolution and degradation of the existing ceramic skills, rather than intra-Urewe regional variation or an entirely new phenomenon (1973: 578). For him this indicated temporal change, and as such, the devolved Urewe may fit into the post-Urewe vacuum of the second millennium AD. Once again, the lack of detailed reporting has reduced the wider impact of such results, as well as a general disinclination to recognise intra-stylistic variation (Soper 1971b: 14).

On the Kenyan side of the Lake, another ceramic style has drawn attention. Termed Middle Iron Age (MIA), Robertshaw (1991a) first identified this ceramic type in his excavations of Gogo Falls and sites in the vicinity. So named because it possesses certain typological similarities to the EIA Urewe, MIA retains the faceted/bevelled rims as well as incised decoration. However, once again the quality of execution is poorer, and the morphological range is more limited, with decoration almost exclusively restricted to a band of crude oblique incised lines around the rim, and only simple bevelled (two or three facets) rims. This typological association to, and yet clear overall distinction from, Urewe ware, suggested to Robertshaw that the new ceramic may have been a later evolution from the parent facies. He therefore tentatively ascribed it as MIA, although he acknowledged there were no stratigraphic or chronological indications that it was later. Since this original identification, this ceramic has been barely discussed, and it remains an enigma with no direct evidence of date or socio-cultural association. If however, Robertshaw's hunch is correct and this ceramic post-dates the Urewe tradition, then its recovery from lake basin contexts may make it a candidate to fill the archaeological vacuum of this time. Wandibba has recognised Wabukhe ceramics from Bungoma (Wandibba 1990) as well as Kisii soft ware.
However, the current distribution of these ceramics is limited and falls outside the current research area. The next attested ceramic activity is that association with the arrival of Luo communities in the C16th (Ogot 1967)

The final potential, and even more tenuous sources, are two discoveries of mysterious figurines (Posnansky & Chaplin 1968; Wayland et al 1933). The Luzira Head (see Fig. 2.13), a humanistic figure with enlarged head and face associated with torso fragments, was discovered with ceramic fragments in a buried cache during the clearing of ground within the Luzira prison (Wayland et al 1933). Very little is known of the head, beyond a short report which briefly describes the associated ceramics. Within this assemblage roulette decorated sherds are listed, prompting Wayland et al to accord the head a recent/historic date, and suggest that it may have been part of the ritual paraphernalia of a Buganda period shrine. There are however, no living traditions of human representation, and “plastic arts are a rarity” (Posnansky 1995: 140), thus making this explanation somewhat problematic. Moreover, at this very early date, Wayland et al were working prior to the establishment of the most basic ceramic typologies and radiocarbon dating. Indeed, Posnansky (1995: 140) tentatively promotes an early second millennium date for aspects of the Luzira assemblage, although he is wary of committing such a date to the figurine itself. The early excavation date, and the unique figurine, warrant a modern re-evaluation of the data; an assessment that may prove to be useful here.

The second example is the Entebbe figurine (Posnansky & Chaplin 1968; see Fig. 2.14), which can at least be loosely tied into a partially-understood lattice of archaeological ceramics, through its association with Entebbe pottery. The figurine, a small ceramic cylinder with male and female genital features, was found accidentally during the digging of garage foundations on the Entebbe peninsula in 1964. Again unique in its figurative representation, its association with Entebbe ceramics may tie it into a web of lake based activity at this time.
The foregoing discussion shows then the scarcity of data pertaining to this area at this time. Furthermore, it amply demonstrates the lack of recent engagement with the topic, and the failure to assimilate the existing information from earlier periods into modern and revised chronologies. As a result, the phenomena detailed here sit anomalously within the broader corpus of evidence, with no place in the sequence and no concern for their interpretive potential.

Comments and Conclusion

This review has been an important exercise in detailing and assessing both the quantity and quality of empirical data, as well as recording and examining wider research trends that have defined the modern discipline (see Chapter 1). Some of the most important points to emerge from these discussions are summarised below.

The Early Iron Age Period;

- **The pan-Great Lakes model of homogeneity is untenable** – Evidence from discrete areas shows varying patterns in settlement, distribution, technology, and site selection, as does the (scant) evidence for socio-political structure and organisation.
- **Diachronic homogeneity is also untenable**
 The generalised model for this period takes no account of diachronic change, yet this is evidenced by variations in local settlement, techno-economic and social dynamics.
- **There is an exaggerated emphasis on origins and linguistic identity**
 Even after the decline of the big ‘Bantu’ debate, this is a topic that still haunts and stifles other research, and places undue and uncritical emphasis on comparative linguistics, sidelining archaeological evidence and alternative debates.
• **There are serious research lacunae in the archaeological coverage of this period**
 There is minimal data available for such topics as subsistence economies, settlement organisation, socio-politics and even elements of the supposedly well covered technological spectrum

• **The period AD800-1000 has been under-represented**
 A major void in this knowledge is the terminal stages of the ‘EIA’, where a research hiatus has failed to identify or explore the archaeological gaps of this period.

• **The ‘Iron Age’ terminology has been shown to be unrepresentative**
 With only limited evidence for iron-production in specific and discrete locales and an Urewe using society that also continues to use lithic technology, the application of ‘Iron Age’ as an encompassing term seems misguided. Additionally, alternative proposals such as ‘Farming Communities’ also seem problematic as there is limited evidence of such cultivation/domestication and further insights that suggest continued exploitation of wild resources.

The Late Iron Age

• **The ‘EIA’/‘LIA’ transition is problematic.**
 In the past this change has been integrally associated with problematic explanatory paradigms (e.g. migration), the long-term impact of which has been a modern disinclination to engage with the topic. As with the hiatus in AD800-1000, there is a widespread gap in understanding of this crucial period of transition and change.

• **There is a serious gap in understanding of the Lake Victoria Basin in the second millennium AD**
 Archaeological emphasis has focused almost exclusively on the emerging complexity present in the large population centres of the west. As a result other areas without complex political dynamics have been relegated and become peripheral to debate (see Chapter 1).
Chapter Three

Explanatory Frameworks for the Great Lakes

Chapter 1 has already shown how a broader appreciation of research environments, and particularly theoretical approaches to the construction of archaeological entities, has had a powerful role in defining and influencing all aspects of related archaeology, including ceramic research. Chapter 2 however, has also shown that archaeological endeavour in the Great Lakes is not solely conditioned by archaeological research and evidence, and that a raft of associated disciplinary influences are also prominent.

The following discussion therefore will continue the theme of theoretical review and evaluation instigated in Chapter 1, and discusses theoretical constructions of society and identity from wider experience in anthropology and archaeology. Following this broad scope, a more detailed discussion of conceptual influence on the archaeological understanding of the Great Lakes will be made. This includes extended coverage of culture history, as introduced in Chapter 1, but also identifies the historical relevance of racial modelling and physical anthropology, as well as the more recent impact of linguistics, as noted in Chapter 2. This historical depth is important as it helps understand long-term research trajectories, and how and why modern archaeological understanding is so formulated. Having contextualised historical approaches, discussion will shift to recent perspectives, showing how there is a growing dissatisfaction amongst researchers of eastern Africa with the way archaeological entities have been typically structured in the past. Finally this Chapter will draw on these discussions, and broader experience across Africa, to develop a more appropriate and viable theoretical approach to past societies in the Great Lakes.
Approaches to Identity and Social Boundaries from Archaeology and Anthropology

It is important to gain some sense of the broader contexts of theoretical research, therefore, prior to targeted discussion of Africa and the Great Lakes, a more general overview of approaches from anthropology and archaeology will be made.

Anthropological Perspectives

The doctrine of racial universalism and pre-destination has historically played a very powerful role in anthropological projections of society (see later for detailed discussion). However, the seminal work of Barth on ethnicity in the late 1960s (Barth 1969a,b; see also the work of Edmund Leach - Kuper 1983) initiated a profound process of re-assessment and re-orientation. Barth's (1969b) discourse on the nature and maintenance of ethnic boundaries revoked notions of the fixed and defined barriers containing a constant and unchanging cultural population, and instead presented social boundaries as inherently permeable, and crucially, largely existing in relational context to an 'other'. As such, the "flow of personnel" across boundaries (Barth 1969b: 9-10) mediated the relationships between communities, using the connections to assert and re-assert the differences that under-pinned the ethnic identity; in order for society to maintain a boundary, it had to bounded against a tangible 'other'. Unlike traditional models of social exclusivity, ethnicity did not exist for Barth in a vacuum;

"[W]e are led to imagine each group developing its cultural and social form in relative isolation, mainly in response to ecological factors...This history has produced a world of separate people...which can legitimately be isolated for description as an island to itself"

(Barth 1969b: 11)

By recognising the impact of ethnic flow and contact, Barth re-figured ethnicity not as the pre-determined physical constant of race, but as an essentially socially motivated phenomenon, that was employed to organise and structure communities to mutual advantage. Ethnicity thus became self-determined and governed and not genetically
received or arbitrarily maintained; “that is to say, it is not so much the group which endured as the idea of the group” (Banks 1996: 12).

Barth’s view of ethnicity accords well in many respects with the Instrumental approach to anthropological identity. Instrumentalism sees social belonging and membership as a human response to circumstance, targeted around maximisation of advantage, frequently economic advantage (Banks 1996). Of relevance here is the work of the Manchester School of anthropology led by Gluckman and his students, and their focus on eastern and southern African societies in the immediate post-colonial era (Banks 1996; Kuper 1983). Deconstructing the colonial model of tribalism (which matches closely with the closed, immutable form of culture historical identity encountered in the Great Lakes), the Manchester School examined the post-colonial phenomenon of urbanisation and multi-ethnic communities. By allowing the diverse communities a voice for the first time following colonial era suppression, identity was shown to be multi-faceted and consciously negotiated by the stakeholders.

The second major theoretical trend in post-war anthropology of identity is Primordialism, which, stemming from the works and influence of Geertz, recognises the ties and bonds of consanguinity and belonging as the essential factor behind communal identification and belonging (Banks 1996). This inherent notion of belonging prompts mutual support, co-operation and cohesion. In a sense although Barth’s work strongly envisaged instrumentalist advantage as a major deciding factor in ethnic constructs, he was also an oblique supporter of primordialism; identifying ethnicity and ethnic belonging as superordinate to all other forms of identity such as age or gender (Banks 1996: 13). A third less prominent approach has also been forwarded; situational ethnicity, which Nagato (1974) for example, has identified in the fluctuating ethnicities in place in George Town, Penang, Malaysia. She has discussed how the inter-mingling of Chinese, Malay, Indian and Arab communities vacillates according to a range of circumstances. Describing “ethnic fictions” Nagato (1974) has recorded how ethnicity can oscillate between economic concerns (e.g. acquiring a taxi license) to ceremonial affiliations, as the individual re-invents their identity according
to situation. Similar in some respects to Instrumentalism, Nagato's situational ethnicity does not however follow the assimilationist model, wherein a single dominant group assimilates the lesser ethnicities, and instead ethnicity ebbs and flows back and forth.

Thus although there is no consensus on the precipitates to ethnic identity and the rationale behind its maintenance, anthropological researches in this field since the work of Barth have increasingly recognised that society and identity is self-determining and conscious, and is capable of shifting across supposed ethnic barriers and boundaries.

Archaeology

Archaeological approaches to identity and social boundaries have of course not remained static since the apogee of culture historical rhetoric in the first half of the C20th. The 1960s saw the rise of Processual archaeology and the goal of transcending historical specificity to identify nomothetic laws and process in the archaeological records, and charting how society worked as a system adapting to its environment. Allied questions of identity and culture with a culture historical model, and was thus reticent to prolong debate on these topics. However as Jones notes (1997: 27) others were more pragmatic in recognising the usefulness of normative archaeology as an initial descriptive resource, which could then be used as a basis for exploration of process.

"While the simple narration of events is not an explanation, it is a necessary preliminary. We are not obliged to reject Croce's statement (quoted in Collingwood 1946: 192): 'History has only one duty: to narrate the facts', but simply to find it insufficient. The first, preliminary goal of an archaeological study must be to define the culture in question in time and space. Only when the culture has been identified, defined and described is there any hope of 'taking it apart' to try and reach some understanding of how it came to have its own particular form" (Renfrew 1972: 17, cited in Jones 1997: 27)
Post-processual archaeology of the 1980s returned in a sense to the particularistic historicalism of culture history, although from a far more fluid approach, imbued by relativism and multi-vocality. Identity within these precepts has been explored, particularly through the equivocal relationship of social identity with material culture, and the undulating correspondence between the two (e.g. Miller 1985; see also detailed discussion in Chapter 4). More recently, the question of ethnicity itself has asserted itself on the wider thematic agenda, with targeted discussions of identity construction in archaeology (e.g. Emberling 1997; Jones 1997; Shennan 1989; Stark 1998). Furthermore, the modern era of archaeology implicitly recognises the invalidity of the simple homogenised ideal of social belonging and identity, with a growing tide of discourse on intra-ethnic identities and influences. Emberling (1997: 295) recognises the "shift... from viewing culture as a whole to focusing on sub-groups of people."

Gender archaeology is an obvious example, as archaeology since the 1970s has developed increasingly complex approaches to the manifestations and fluctuations of gender as a dynamic and precipitating factor in the creation of social consciousness (e.g. Gero & Conkey 1991; Gilchrist 1999). Age and childhood represents another sub-category of identity (Derevenski 1997), and archaeology has even begun to engage in queer theory (Dowson 2000). More recently the question of the individual in society as an active protagonist has been reiterated through agency studies (e.g. Dobres & Robb 2005; Dornan 2002), which place the actor within a dialectical relationship with their context (or *habitus* to follow Bourdieu (1977).

Archaeology therefore, has embraced the essential notion of heterogeneity and vibrant internal differentiation, and turned its back on the simplistic and one-to-one relationships of past culture history, that indiscriminately moulded the human experience into a single cast.
Influences in the Archaeological Construction of Society in the Great Lakes

Unlike the preceding general discussion, the major conceptual influences in the Great Lakes have come from questions of race and racial thinking, linguistics and culture history (see also Chapter 1). Together these themes have formed an influential triumvirate, which has dominated the definition and direction of archaeological discourse.

Race, Physical Anthropology and Colonial Ideology

Although racial modelling is now no longer countenanced by serious archaeology (although see discussion in Keita & Kittles 1997; Kittles & Keita 1999), historically it has been a powerful concept, with a long-lasting legacy for the discipline, particularly through the influence of physical anthropology.

Issues of race, and racial identity, have of course had a devastating influence throughout European engagements with Africa, and unsurprisingly this impact has been felt in archaeology. Enlightenment reasoning of the C18th had reduced Africans or the ‘negroids’ to a sub-human species in order to justify and accommodate slavery (Sanders 1969), and by the time of early European exploration to eastern Africa in the C19th, Darwinian models of social evolution had relegated Africans to a primordial ‘rung of the evolutionary ladder, as primitive barbarians lost in the ‘Dark Continent’ (Stahl 1993: 238). Within these formulations, racial identity was a fixed and absolute criterion, which was strictly ordered and demarcated according to principles of racial purity. Racial identity pre-determined existence and behaviour, and variation could only occur with the admixture or miscegenation of two races inter-breeding to produce a racial hybrid, in whom features of both races would be present, the inferior race diluting the attributes of the superior one (MacGaffey 1966; Sanders 1969). As the explorer Stanley commented (Stanley 1890 II: 355, cited in Reid 2003);

“[T]he Semitic became tainted with Negro blood, the half-cast tribes intermarried again with the primitive race, and became still more degraded in feature and form”
So ingrained were these notions of racial pre-determination that not only were biological differences explained through racial identity, even culture was seen to be dictated by racial belonging. Thus issues such as political organisation and, economic activity were regarded as direct correlates of physicality, and ‘universalist’ concepts of race (MacGaffey 1966).

Such applications of race and racist doctrine were of course integrally linked to political machinations and imperial ideology, which manipulated racial identity to underwrite its own hegemonic role. Through enforcing the notion of racial hierarchy and African inferiority and backwardness, European imperialism was creating a moral justification for its expansion and aggrandisement. By denigrating African indigenes, colonialism could be morally justified as an evangelical mission to bring civilisation to barbarous and un-godly peoples of Africa (note for example the powerful role of the Church in propagating racial distinctions – Chrétien 2003).

In the Great Lakes, like the rest of Africa, race was an influential dogma, and from the incursion of the first European explorers to the Great Lakes, explicitly racialist explanations were propounded, often formulated around the notorious and ubiquitous Hamites. Named after the biblical Ham, and believed to be his descendents, the Hamites were portrayed as light-skinned, essentially Indo-European peoples, originating in north-east Africa, and responsible for the majesty and magnificence of the ancient Egyptian civilisations (Howe 1998). These Hamitic peoples were believed to have spread across the continent, bringing civilisation and order to the wild and savage ‘negro’ populations, and as in the case of Egypt, were responsible for all signs of pre-colonial complexity and development therein (Howe 1998: 115-121). As Seligman famously commented, “The civilisations of Africa are the civilisations of the Hamites (Seligman 1957 [1930]: 85).

1 It is interesting to note that originally Ham was portrayed as a dark-skinned and disreputable character (Sanders 1969), but his public identity was later inverted to provide a face-saving formula to help explain such phenomena as ancient Egyptian civilisation.
Speke, as one of the earliest outside visitors to the Great Lakes, encountered the might of the Buganda kingdom, and impressed by the centralised authority and state organisation (roads, army, navy) was prompted to attribute this imposing political structure to the influence of the Hamitic Galla (Sanders 1969: 528; see also Reid 2003). The power and influence of such racial thinking is incredible but not so surprising in the contexts of early imperial expansion. However, the Hamites and racist doctrine became entrenched within the colonial ideology as well; Cole (1954) and Huntingford (1963) for example, were keen advocates well into the 1950s and 1960s, with Huntingford crediting the Hamites, or “hagioliths” with the construction of Rift Valley stone enclosures.

Professional archaeologists of the late colonial and early independence eras however often vigorously denied the racist dogmas in place²; Sutton (1968b) for instance, the excavator of the stone enclosures Huntingford referred to, even going so far as to add an appendix to a paper on the Settlement of East Africa, disclaiming the Hamites. Nevertheless, despite these sea-changes in academic opinion, it is arguably the case that aspects of a racial ordering of society were still present through the continuing work on physical anthropology. Principal amongst this were the archaeological studies of Jean Hiemaux, a medical doctor (de Maret 1990: 128), also engaged in researches in archaeology and physical anthropology (in Rwanda, Burundi and the Democratic Republic of Congo, most notably in collaboration with E. Maquet). Hiemaux was very keen to identify physical traits and groupings in the past and present communities of the area (Hiemaux 1956, 1968, 1974), looking at a range of sources including archaeological inhumations and cemetery evidence. However in the absence of human remains providing direct evidence of physicality, Hiemaux was also content to make extrapolations from inorganic archaeological evidence and analogy to modern communities. Thus, despite a lack of human remains associated with roulette decorated ceramics (probably of the early second millennium AD), Hiemaux & Maquet (1957, 1960; see also Hiemaux 1956) nonetheless engaged in extensive discussion of the

² See also the efforts of early professional archaeologists in Rhodesia/Zimbabwe where Caton Thomson particularly was instrumental in the deconstruction of the myths surrounding the origins and builders of Great Zimbabwe (Caton Thomson 1935)
'Renge' people, comparing them in stature (short, stocky) and socio-economic orientation (farming), with modern Hutu populations of the area.

Race and physical anthropology have thus been very powerful and influential factors in historical projections of society in the Great Lakes, and these notions of physical and social pre-determination can be seen to have certain (diluted) correlations, with the culture historical precepts of bounded and unified archaeological cultures discussed in Chapter 1. However the colonial promotion of apparent past racial distinction and definition also helped establish a precedent for viewing society, and particularly ethnic groups, as essentially immutable and distinct, divided from other groups by unbridgeable physical, cultural and even economic gaps. This conceptualisation spread beyond mere academic discourse, and as we have seen, the features and history of past communities such as the Renge were projected forward onto the modern Hutu identity, and vice versa. Chrétien (2003) for example, has argued that such physical projections had the dangerous effect of helping vitrify ethnic identities, and may even be seen as contributory factor to the devastating ethnic tensions of the early 1990s.

Linguistics

As the discussion above demonstrates, racial approaches to social identity held great sway for a long period, particularly during early expansion and colonial eras. However since the advent of the post-Independence era and professional archaeology, the precepts of explicitly racial thinking have been largely rejected, and it is arguably the case that linguistic evidence and insight has stepped forward to fill the gap in archaeology's search for past social identities. Whilst early notions of social structures were governed by racial divides and ordering, from the 1960s a new wave of research re-aligned identity with linguistic affiliation and belonging. As has been seen in Chapter 2, linguistic discourse and their application to historical research has been an incredibly fruitful debate, which in its apogee in the 1960s and 1970s dominated discussion. And it is not only the 'Bantu question' that has been influential; the impact of Nilotic, Southern Cushitic and Khoisan speakers have also been brought to bear on
discussion of the Great Lakes communities of the past (e.g. Ambrose 1982; Desmedt 1991; Ehret 1998; Schoenbrun 1998).

However, as also noted in Chapter 2, the relationship between linguistics and archaeology has not been a simple one, and has been fraught with recriminations of tautological reasoning, circular arguments and “wishful thinking” (Eggert 2005: 316). Archaeology in particular, has been seen to have used linguistics as a crutch to support its indifferent or intermittent data; or as Eggert (paraphrasing Posnansky 1976: 630) puts it, “archaeologists were willing to trim their sails to the linguistic wind” (Eggert 2005: 309). In a recent review of the ‘Bantu Problem’, Eggert (2005) has charted the pendulum like effect of scholarship in these fields, as theories and models of Bantu expansion swing round according to the latest findings. Chapter 2 has already recounted the pendulum swing in linguistics from Greenberg to Guthrie and back to Greenberg again, which sucked archaeology and history in its wake, with scholars such as Oliver (1966) attempting to arrange compound historical models around the (relative) sequences of linguistics (see also Flight 1988). Such reversals are however not unprecedented and Eggert has been scathing about researchers such as Phillipson’s (1976, 1977) self-defeating circular relationship with Heine’s linguistics in the 1970s, and Vansina’s (1995) more recent retraction of the ‘Bantu Expansion’ as a viable model, despite endorsement a mere 5 years previously (Eggert 2005: 312).

This problematic relationship has been deconstructed by Nurse (1997: 379) in a review of linguistic evidence as an historical tool. In this he identified three key areas of concern in the apparently symbiotic relationship between Bantu language speakers and ‘EIA’ archaeology;

- **Phylogenetic Language Trees**: the deconstruction of linguistic history into a language tree affords only mono-genesis of languages (i.e. one parent influence) and also papers over the gaps in intermediate levels of language history (i.e. the branches between the proto-language and the modern descendents) creating arbitrary branches that reflect absolute change rather
than gradual shift (see also Vansina 1995: 180; “language differentiation is a process, not an event”).

- Uncritical acceptance: there is a tendency on both sides to unquestioningly accept the models of the other, frequently without the capacity to critically evaluate the validity of respective evidence.

- “Spotty” Archaeological Coverage: uneven archaeological research means that disparate entities and findings are often linked together under generalising rubrics despite spatio-temporal gaps and distinctions.

There have of course been long-term critics of the too-close relationship between linguistics and archaeology, and particularly the frequent reliance of archaeology on linguistics to provide a comprehensive model of society and social change. Whilst early critics (e.g. Gramly 1978; Lwanga-Lunyiigo 1976; Onyango-Abuje 1980) were largely ignored (see Chapter 2), as Nurse’s comments shows, there has been a continuing dissatisfaction with the way archaeology engages with linguistics (Eggert 2005; Kiriama 1993; see also Robertson & Bradley 2000 for a highly critical deconstruction of the role of Bantu linguistics in southern Africa archaeology).

However despite the growing concerns about the correlation of archaeological patterns with linguistics ones (“[A]nd of course, pots do not speak” (Nurse 1997: 361), the last couple of decades has nevertheless seen continued application of linguistic evidence for archaeological modelling (e.g. Ambrose 1982; Desmedt 1991). Moreover, despite the general decrease in linguistic reliance and increasing wariness and scepticism, there remains an under-current of linguistic modelling and influence, although not so explicit as it used to be. Identity for example is rarely openly debated as this sails too close to the racial or linguistic discourse. Nonetheless, there are often implicit assumptions that continue to formulate society around the idea of the bounded linguistic models previously scorned. Phillipson (2005) for example, in the latest edition of his ubiquitous text-book *African Archaeology*, is initially unwilling to directly correlate the Chifumbaze complex with Bantu language speakers;
"There can be little doubt that the Urewe sites represent a sharp discontinuity in the local archaeological record, but we are not yet in a position to estimate the extent to which this was due to rapid in situ development or to contact with other regions."

(Phillipson 2005: 251)

Yet a mere ten pages later, is content to state,

"The view that the people responsible for the Chifumbaze complex were the first local speakers of Bantu languages is widely accepted....but has not gone undisputed ...particularly by those who have paid relatively little attention to linguistic studies."

(Phillipson 2005: 261)

And,

"We may conclude that there is strong circumstantial evidence that the beginning of farming in central, eastern and southern Africa was connected with the dispersal of people who spoke Bantu languages."

(Phillipson 2005: 264)

In these statements (see also Phillipson 2002), there is a clear indication that not only does the author continue to employ linguistic identity as a substitute for tangible archaeological projections of identity, but he is also perpetuating the notion of migration and dispersal as the primary mechanisms for change.

Although linguistic evidence has been pilloried in the more recent archaeological literature for its strangulating effects on archaeology (e.g. Eggert 2005; Vansina 1995: 173-175), this however is an unfair judgement on modern linguistic studies, which have moved far beyond the narrow confines of early models of mass demographic spread and the 'Bantu expansion'. Chapter 2 has briefly mentioned the work of David Schoenbrun and Christopher Ehret in this regard, representing a new wave of linguistic discourse, firmly rooted in what Nurse (1997) describes as the sociological approach, which seeks to examine how communities existed, and why they changed, rather than just structuring uni-dimensional family trees.
"The main determinants of whether a language lives or dies does not lie in its linguistic structure but rather in local political, economic and sociological circumstances"

(Nurse 1997: 373)

The works of Schoenbrun and Ehret have looked specifically at cultural vocabulary reconstruction (Schoenbrun 1998) and linguistic borrowing (Ehret 1998) to document a range of influences within the Great Lakes of this period. Southern Cushite, Central Sudanian, Sog and Khoisan speakers have all being identified as well as Bantu language speakers, together bringing different socio-economic practices, which loanwords show moved fluidly across linguistic boundaries. To this picture of dynamic fusion and interaction, the recent work of Bostoen (2005) can also be added, who, applying the 'words and things' method (although see Bostoen 2004) has looked specifically at ceramic vocabulary (raw material terms, forming verbs, vessel names, production verbs) across eastern and central Africa, showing how flexible ceramic terms are according to their circumstance, spreading through linguistic borders or independently innovating.

Archaeology has not however always been capable or willing to acknowledge such nuanced explorations of social boundaries and identity from linguistics. In the Great Lakes, Reid has embraced the more complex linguistic models, especially of Schoenbrun to the investigation of political complexity at Ntusi (e.g. Reid 1996; see also Reid & Schoenbrun 1994). Robertshaw similarly working on the great earthwork sites of Munsu, Kibengo and Mubende has been more circumspect (e.g. Robertshaw & Taylor 2000: 13, see Chapter 2), yet endorses the essential notion of variability and social interaction (e.g. Taylor et al 2000: 530-531; Robertshaw & Taylor 2000: 16). Otherwise however, particularly in studies relating to the first millennium AD, there is little or no impetus to look at the social diversity projected by recent linguistics.

The enduring popularity and application of linguistic evidence in archaeology therefore built initially on a preceding reliance on racial models of identity. This relationship highlights the difficulty archaeology has historically had in creating an independent, archaeologically-defined, perception of social identity and boundaries;
archaeology has relied instead on sister disciplines to 'flesh out' perceptions of the past, and provide a more human face, even if that 'face' sometimes subsumes archaeological evidence. Although there is outwardly a greater degree of scepticism in the borrowing of linguistic models, and much has changed since the linguistic euphoria of the 1960s and 1970s, there is a continuing, albeit often unacknowledged, reliance on linguistic correlations.

This is particularly concerning as modern linguistic studies have now moved far beyond the outmoded view of linguistic identity typically appropriated by archaeology, and linguists are no longer content to project simple notions of unidimensional societies, and rather employ sophisticated conceptual approaches that recognise a plurality of socio-linguistic influences. Archaeology then, is not only continuing to rely unduly heavily on linguistic evidence, it is also continuing to appropriate outdated linguistic models, and often failing to appreciate the rich resource of modern works, such as that of Schoenbrun in the Great Lakes. Thus whilst modern linguistic evidence is pointing to a diverse and dynamic past for the Great Lakes during this period, archaeology has tended to reify the old-fashioned notion of socio-linguistic boundedness and uniformity.

Culture History

Although Chapter 1 introduced the tenets of culture history, it is nonetheless still important to explore the impact of this explanatory rationale in some detail here.

Unsurprisingly, early professional archaeologists trained in Europe brought the prevailing explanatory models of culture history with them to Great Lakes discourse. Although, as we have seen, Hiemaux employed physical anthropology as well, his seminal work with Maquet in Rwanda, Burundi and the Democratic Republic of Congo adhered to an essential culture historical model, identifying discrete archaeological cultures through ceramics, furnaces and distribution patterns (see also Nenquin 1967). In Anglophone eastern Africa, Posnansky’s pioneering work was also structured around the organising principles of Childean polythetic culture history, building
regional cultures on a spatio-temporal map, complete with speculations about economy, society and culture (e.g. 1965, 1966, 1967, 1968). Although ceramics often formed the backbone of these cultures (e.g. Posnansky 1961a), Posnansky was acutely aware of the need for empirical depth and range, prior to the definition of a discrete entity:

"The description of an assemblage of sherds and a comparison to the finds from other archaeological horizons would warrant only the definition of a "ware" unless there was associated evidence such as earthworks, houses, and evidence of precise economic activity"
(Posnansky 1967: 577)

Subsequently, following this early fluorescence of research from the late 1950s to 1960s, wider archaeological debate encountered a well documented culture history, and an engagement with Processual archaeology practices (e.g. Binford 1962, 1965) that denigrated the narrow empiricism of culture history, and argued for a re-orientation towards universal patterning. In the Great Lakes in particular, and eastern Africa in general, there was a slow take-up of such arguments, with partial exponents such as Soper applying Processual inspired ceramic methodology (see Chapter 4). Many scholars, however, continued to maintain a broadly culture historical outlook, in their search for archaeological patterning, in what was still a relatively blank canvas (e.g. Phillipson 1977). The enduring popularity and importance of linguistic contributions (see above) supported these methods, as there was a continued search for the material manifestations of the communities identified through historical linguistics. By the 1980s the shift in focus to more targeted themes such as archaeometallurgy (e.g. Schmidt 1978, 1980, Schmidt & Childs 1985) meant that the wider issues of identity and social construction got somewhat sidelined. Nevertheless, the archaeological culture remained the essential organisational and conceptual unit. Many of the papers in Ehret & Posnansky's (1982) edited volume (discussed in Chapter 2) implicitly reiterate this status quo, with Ambrose for example forming discrete patterns of archaeological activity across eastern Africa (particularly the Rift Valley), and correlating these with the perambulations of past socio-linguistic groups (primarily the Southern Cushites).
For Ambrose (1982: 107) there is an "intuitively obvious rule" that "[T]here is, in most instances, a correlation among language, culture and material culture"

Such an approach remains deeply rooted in archaeological mantra to the present day. Although the relationship is not so clearly expressed, there is an understated, even perhaps unconscious, acceptance that material culture, particularly ceramics, can be used as a direct index for discrete social identities. Indeed, it is arguably the case that culture history as a model of society has become so ingrained and entrenched, that it is no longer perceived as a theoretical model, open to criticism and debate, and rather has become a theory-free organisational tool, and function of methodology. Furthermore, there has been a process of essentialisation since the early Childean inspired works of Posnansky and Hiemaux & Maquet; instead of envisaging societies through a polythetic range of evidential sources, recent culture histories have frequently the relationship to a binary correlation of pots and people. Poor preservation of organic and spatial architecture is partly responsible for the reduction of complex relationships to simple isomorphic correlations. However, there must be serious concerns with the essential validity of this equation (see below and Chapter 4).

Phillipson for example, once again in his recent revised text-book (2005), reiterates a sense of this essentialised relationship between ceramics and identity, with a map of eastern and southern Africa showing the distribution of ceramic types, implicitly correlating these distributions with discrete social boundaries (see Fig. 3.1). As noted above, Desmedt (1991) has also reinforced the relationship between ceramics and ethno-linguistic identity with her portrayal of roulette decorated ceramic users as migrating Nilotic language speakers moving into the area. Moreover, in her recourse to migration as a mechanism for ceramic change, Desmedt has also retreated back to one of the primary culture historical models of change (see Chapter 1).

There are of course exceptions to this trend. Van Grunderbeek et al (1983, 2001; see also Van Grunderbeek 1988) employ a far more nuanced and textured approach to social experience; identifying specific practice pertinent to the local environment (e.g. low
montane arboreal small-community co-existence) and employing multiple tools for discussion (zooarchaeological, petrography, archaeometallurgy). The works of Reid (1991, 1996) and Robertshaw (1994, 1997) in the western Ugandan earthwork sites are also noteworthy for the specific and targeted projects that look at local-scale dynamics, which do not seek to generalise; even in generalising discussion Robertshaw for example (2003), still identified multiple political factors and influences. However, alongside these examples, there is a more prevalent and insidious endorsement of simplistic culture historical rhetoric that continues to portray passive and homogenous societies changing only through the effect of migrations and diffusion. The power of these models can be detected through the empirical evidence presented in Chapter 2; despite the longevity and wide distribution of the Urewe ceramic phenomenon (c1300 years, 400,000 km²), there is still a pervading notion that these are unified and unchanging communities linked across huge spatio-temporal divides; although divested of the ‘Bantu’ tag, this still remains an archaeological ‘package’ that has yet to be unpacked.

Combined Effects of the Triumvirate

There is a distinct line of continuity between racial approaches and linguistic ones, both in their projection of society as pre-determined and homogenous and in their appropriation by archaeologists to fill the ‘identity’ gaps in the archaeological record. Together with the essential building block of culture history, archaeological explanations of this period and area have continually reinforced notions of stasis, social passivity as well as fundamental boundedness and discretion (see also Chapter 1). As the richer Childean culture history of the 1960s is subsumed by a narrowly simplistic model that arbitrarily equates pots with people, there is a concomitant narrowing of attitudes towards social expression and innovation, leaving little or no room for internal diversity or variation.

Alternative Perspectives from Eastern Africa?

Discussion from a perspective of global theory therefore shows major paradigmatic shifts in archaeology and anthropology, and a decided movement away from culture
historical notions of society as fixed and immutable. Like the recent experiences of linguistics in the Great Lakes, society is instead seen as plural, multivalent, dynamic and capable of fluctuating internally and also in response to outside communities or pressures. This perspective accords well with the research goals and intentions defined in Chapter 1, where the need to uncover hidden or forgotten perspectives from the periphery of archaeological understanding was highlighted. Nevertheless, examining the situation in the Great Lakes, it is clear that there is a continued emphasis on culture history, couple with the additional legacy of racial and linguistic based modelling. The cumulative effect has been the growing essentialisation of archaeological approaches, and recourse to the simple ‘pots equal people’ rhetoric.

Therefore, as with arguments made in Chapter 1, it is suggested that current culture historical formulations are unduly restrictive and inappropriate, and in light of the current review of linguistics and wider research experience, require severe evaluation and re-conceptualisation. This recognition is not unprecedented. Indeed there are a growing number of researchers engaged in work in the Great Lakes and eastern Africa, who have voiced similar dissatisfaction, and urged more critically engaged and problematised approaches for the future.

Stewart (1993: 29) for example, in an incisive historiography of Great Lakes ceramic research was abrasive on the subject of approaches to identity and correlations with ceramics, and the “telescoped understanding of ethnic relations” as an unchanging constant. Lane (2004) has more recently recommended greater fluidity in approach to identity in western Kenya and the Rift Valley, modifying Alexander’s ‘Frontier’ model (Alexander 1978, 1984) to show varying boundaries between societies (particularly the impact of farming communities), which fluctuate according to circumstance, shifting between solid defended barriers and loose permeable boundaries. Karega-Münene (1996, 2002, 2003) in some ways pre-empted Lane’s suggestions by arguing that the multi-component sites of western Kenya (containing Kansyore, Elmenteitan, Urewe and MIA ceramics using occupations) were evidence not of discrete and demarcated episodes of exploitation, but represented flowing and inter-acting diachronic relations.
Unfortunately, Karega-Munene's arguments were undermined by mixed deposits at Gogo Falls, and assertions by the original excavator (Robertshaw 1991a) that precise stratigraphic relations could not be ascertained. Nevertheless, Karega-Munene has been instrumental in his promotion of variegated and dynamic past societies; “In short, diversity may have been the norm rather than the exception” (Karega-Munene 1996: 252)

Beyond the immediate area of the Great Lakes concerns have also been raised in the wider eastern Africa arena, with Kusimba & Kusimba (2005) in a general overview of east African archaeology, arguing that residual colonial attitudes to ethnic labelling have helped retain narrow and rigid archaeological conceptions of society and social interaction. As such, the “rigid mosaic” should now “become an ever-shifting kaleidoscope” (Kusimba & Kusimba 2005: 412). On the coast, Abungu (1998) has been critical of the north-south migration arguments for explanation of Swahili spread, and Chami (2002) has raised concerns about the pervading influence of racial or culture historical models which divide debate on Swahili communities between ‘orientalists’ and ‘Africanists’. Kiriama (1993) who had already raised concerns about the Bantu expansion model (see Chapter 2), has more recently (Kiriama 2005) re-explored Kwale ceramic phenomena explicitly with the intention of seeking internal variability, and deconstructing the notion of unilinear models of development for Kwale ceramic users (see also DiBlasi 1979, 1980 and his identification of Kwamboo ceramics). However, despite these important leads, Great Lakes archaeology continues to reify society into the typical homogenising model of culture history.

The situation in the Great Lakes is however not unprecedented, and many commentators across Africa have recorded concerns with theoretical modelling (see Chapter 1). As Stahl (2001: 12) notes, “Africanist archaeologists have historically eschewed theory” (see also Connah 1998; Posansky 1982; Robertshaw 1990a; Schmidt 1995; Shaw 1989; Sinclair et al 1993; Ucko 1993). Hall (2002) recognised these issues, and particularly the enduring impact of culture historical empiricism;
"[T]he tendency never to return from the materiality of evidence and its minutiae does have the particular consequence of stifling any tradition of reflective practice. It is as if the evidence continually 'speaks for itself', irrespective of the historical and social contexts"
(Hall 2002: 457)

There are therefore numerous precedents from the wider literature, as well as insights derived from the reviews made in this thesis, that a substantial re-evaluation and re-orientation of archaeological approaches to identity are in order.

Towards an Alternative Framework?

In order to develop a more rigorous and rewarding conceptual model, it is essential that this theoretical projection also be rooted in the practicalities of specific context and circumstance, thereby making it both critically appropriate, but also practically viable. The following section will therefore review the theoretical and practical demands on archaeology, before proposing an alternative framework to be employed in this thesis.

"Does African Archaeology Need Theory?"

The late Bassey Andah (1994: 101) posed this question in his discussion of "relevant theory" (ibid: 96) for African archaeology, and, like the references noted above, he recognised that conceptual modelling was often inadequate in Africa. However, he also urged extreme caution and perspicacity in the borrowing of extant Western models, or the development of new rhetoric (see also Andah 1995). Wider research in eastern Africa has shown how fruitful the relationship between African evidence and global theory can potentially be; e.g. Hodder's post-processual rhetoric may be traced back to ethnoarchaeological research in the Lake Baringo region (see Chapter 4; see also Moore 1986). However, whilst there are excellent precedents for the engagement of world theory with eastern African archaeology, these examples are specific to their situation and should not be arbitrarily emulated and replicated. As Hall argues;

"There is no reason why the West's postprocessual theories should become the paradigm for archaeology in Africa, or why African
archaeology should not foster a strongly empirical tradition of research that serves to define its own intellectual identity."

(Hall 2002: 456)

Therefore, although preceding discussion has been critical of extant models and approaches in the Great Lakes, it is recognised that simply imposing 'trendy' global theory is no automatic panacea, and models should be specifically developed in harmony with their context; intellectual, socio-political and logistical.

Indeed, there is a considerable weight of argument that suggests that the transferral of Western based archaeological to sub-Saharan Africa is problematic. As well as recognising the enduring role of culture history in Africa Stahl (2001) for instance, has also argued that models derived from Euroamerican experience are also prominent in Africa. Referring to Dennel's term the "Big Sequence" (Dennel 1990, cited in Stahl 1999: 39), Stahl notes the dominating concern in Africa with Eurocentric notions of complexity, such as the manifestation of states, urbanism and metallurgical advancement, to the direct detriment of more 'African' institutions, such as acephalous societies (see also Chapter 1). Using the notion of the 'circle of we' (Stahl 2005: 8-10), she has cogently argued that by reiterating this linear model of western based progression, anything outside that stereotype remains in the domain of the 'other' and is thus conceptually disadvantaged. In order to re-establish equanimity and celebrate the achievements of the African past, it is necessary for archaeologist to deconstruct the existing mind-set of 'we' and instead expand 'we' to incorporate and celebrate the African 'other'. In order to do this, it is necessary to re-configure attitudes, and shed the trappings of Western experience, to develop appropriate appreciation of alternative experience (see also Chapter 1 and the need to move away from the 'core' experiences).

Andah (1994, 1995), is perhaps more strident in his rejection of Western based theories of society, arguing that their continued application represents nothing less than intellectual neo-colonialism (see also Schmidt 1995). For him, the African past must be wrenched back from Western hegemony – both the hegemony of Western scholars, and particularly from the hegemony of Western 'scientific' discourse;
"For African archaeology to be liberated from the shackles of colonialism it has to become an historical science that distances itself from the present discipline, which studies illusory entities and reduces human beings to mere chessboard pieces, as if they were part of an organic world totally under the control of the physical and mathematical laws of Science and Nature"

(Andah 1994: 107)

Although Andah’s views appear to primarily be a reaction to Processual ‘Science’, and are sometimes extreme and almost isolationist (see also Ucko 1994: 4), his perspective echoes the statements made in Chapter 1, in which specific and localised long-term histories were espoused, rather than the homogenised and dehumanised meta-cultures of preceding work. Andah’s work (see also 1995) also raises the critical issues of perspective, juxtaposing emic and etic values. For him, etic value judgements have dominated too long, and it is the time of the emic to come to the fore, and to conceptualise society not as part of ‘Science’ and global models of behaviour, but as a more internally constructed, socially determined entity, that is inherently variable and elastic, reacting from within to its wider natural and social environments. A ‘bottom up’ approach is thus desirable, in which abstract grand theories or hypotheses are avoided (see e.g. Processual hypothetico-deductivism), and instead the particularities of the situation dictates the modelling. This notion harks back to the earlier quite from Hall (2002: 457) in which “the strong empirical tradition” of Africa “defines its own intellectual identity”. However the key difference with the current projection is that this empirical data is not left in the quasi-theoretical vacuum of culture history, and is instead actively used to model perceptions of past entities based on the specifics of localised experience (see Chapter 1). Such a perspective is not so far removed from some of the tenets of post-processualism, in which the idiosyncrasy of social experience and historicity is emphasised through a plurality of varied pasts.
Archaeology in Great Lakes Society

In building a framework for conceptual modelling, it is essential that abstract theoretical ideas are fully integrated with the realities of practice.

In this sense, post-processualism has also taught the valuable lesson that it is imperative that archaeologists recognise that their discipline exists within a varying and demanding modern context (the fourfold hermeneutic of Shanks & Tilley 1987; see also Chapter 1). As such, the demands of socio-political context must be assimilated as well.

"Who expects me, for instance, to spend hours on end trying to digest the thoughts and ideas advanced in such publications as Analytical Archaeology...which offer no immediate solution to my country's problems? Do I need to engage in unravelling archaeological problems through application of theories that are of no immediate relevance to solving our pressing cultural, social and scientific difficulties?"

(Musonda 1990: 18)

If we take the lead of Musonda (see also AAR editorial 1990; Sowunmi 1991), it is no longer possible to distance archaeology from its socio-political climate; a recognition that is arguably more potent in sub-Saharan Africa, where archaeology must justify its very existence against a back-drop of poverty and economic problems. Archaeological planning therefore must take responsibility for providing a discourse that is useful and relevant not just to the academic audience, but also to the wider popular audience (see also Miller 1980).

"One of the most critical issues facing archaeology in Africa...today is the need to perform research on problems that are significant to the historical self-identity of living people, particularly those descended from the prehistoric and historic populations we study. As anthropologists we cannot continue to perpetuate Western paradigms that militate against local historical sensibilities"

(Schmidt 1983: 63)
Although Schmidt comments are a reaction to Processual dogma that denied historicity, his arguments are still valid twenty years later, and reiterate the need for social applicability in the definition of archaeological models. Trigger (1984) has in the past identified ‘colonialist’, ‘nationalist’ and ‘imperialist’ inspired archaeological ideologies. As Trigger (1984, 1990) has also noted, these applications have historically been powerful in Africa, with ‘nationalist’ archaeology often being linked to culture history and the development of national identity and historical narratives. In a sense this answers the call for archaeologies that speak to the community at large, providing coherent and understandable deep-time histories. However, as Trigger also notes (ibid), nationalist archaeologies are too explicitly in the hands of political manipulation and machination, and also subsume minority voices under the nationalist rhetoric of unification (e.g. see Ucko 1983). With the stated aim here of looking beyond the ‘core’ archaeological narrative and instead seek to recognise such minority voices (see Chapter 1), such a stance cannot be acceptable here. Nevertheless, the essential notion of social relevance for archaeology is important, and this research believes that national archaeologies can be enriched by the addition of additional, alternative voices, which empower both local senses of history, and also help develop a nuanced and textured picture of the national past.

It is also important to recognise the influence of physical constraints in the development of appropriate archaeologies; issues which whilst perhaps far removed from abstract thought, must nevertheless be incorporated if the modelling is to have any relationship to the reality of the practical experience. One of the key concerns here is the question of archaeological coverage and knowledge. As the discussions in Chapter 2 have amply shown, the execution of archaeological research in the Great Lakes has been sporadic, and frequently focused around centres of density (Rwanda, Burundi, Buhaya, earthwork sites) and that coverage of the area is, as Nurse puts it, “spotty” (Nurse 1997: 379; see also above). As such, there is often the need to first build essential spatio-temporal frameworks that appeal more to the empirical understanding than to a conceptual one. Nevertheless, without these essential building blocks upon which to frame more complex discussion, debate is futile. In the particular area of
northern Victoria Nyanza, there is only irregular coverage, and almost nothing relating to the second millennium AD (see Chapter 2). As such, research in Buganda in particular, is working on a blank canvas that requires the rudiments of a sequential framework to be established before the complexities of inter-relationship can be teased out. This is a frequent problem in non-Western archaeologies where there is often only a limited history of archaeological investigation; a situation that can in some respects justify the empiricism of culture history. As Paddaya comments in regard to Indian archaeology;

“In the case of regions which are still archaeologically terra incognita the application of the culture-historical approach has enormous significance. In those areas where a skeletal framework is already available, perspectives developed by processual and post-processual archaeologies are particularly useful”

(Paddaya 1994:139)

There is thus a fundamental need to establish archaeological essentials (chronology, distribution) before moving to more complex discussion.

The Great Lakes are additionally compromised by issues of archaeological preservation (see also Chapter 2). This is particularly manifest in poor organic (Young & Thompson 1999) and spatial preservation, and as such, a limited range and volume of data is likely to be available for interpretation. In this regard it is also important to address issues of stratigraphy and site formation. Previous investigations in the area have suggested that sites will either be deeply stratified, multi-component sites (e.g. Gogo Falls or Nsongezi) or shallow sites, probably indicative of ephemeral occupation (e.g. Chobi, Kansyore). Both scenarios raise challenges as the deeply stratified sites are frequently mixed (e.g. see Gogo Falls – Robertshaw 1991a), thus confusing the strata and associated data. Additionally, such sites can be very difficult to excavate within a limited time period, as the depth of deposit means that only small sondages can be dug, thus providing limited opportunity for horizontal spatial analysis. At the more ephemeral sites, natural forces such as wind, water and bioturbation frequently mix and re-distribute deposits, rendering spatio-temporal investigation impossible, and
potentially introducing alien elements (e.g. old wood for 14C). It is essential to recognise therefore that the physical nature of the archaeology in this area of the Great Lakes will probably severely curtail the depth of evidence and thus the interpretive potential.

In acknowledging these restrictions, two possible avenues are available. First, the physical problems of preservation could be overcome by re-locating investigation to less disturbed regions. However, as this would likely entail a return to the core areas, where preservation and site density are better, this option is completely self-defeating. Instead, it is argued that it is better to embrace these situations, and recognise that the very problem they present, make the insights all the more worthwhile and important, as previous work has often overlooked the ephemeral or difficult sites, and thus helped reiterate the essential divide between the well studied, well preserved core, and the marginal, ephemeral periphery. Just as ‘off-site’ archaeology of the 1970s and 1980s provided a new dimension to understanding of past activity (e.g. Foley 1981), this research can similarly add new conceptual depth, with its investigation of the social and physical periphery. Through prior understanding and prediction of such conditions, a flexibility of approach can be developed, which looks more laterally for evidence and insight, and recognises the importance of not simply creating theoretically sound models, but also practically viable research agendas.

Towards a Framework for Great Lakes Societies

From the preceding discussion of theoretical, logistical and socio-political factors, three key concerns emerge (see also Chapter 1);

1. Historical Specificity – this need, identified by Andah (1994,1995) demands that society be conceptualised not under the rubric of generalisation, or as “chessboard pieces”, but rather as dynamic, diverse and self-determining entities. This tallies with concerns outlined in Chapter 1 and here with the current use of culture history.

2. Multivocality – through following a model of historicity and specificity (see above), the over-riding concerns of culture history with homogenisation and
normalisation can be deconstructed, and internal variation can be highlighted instead. This rejuvenation can help create exciting, varied and plural pasts, with relevance to academic audiences, through the re-balancing of existing research biases, but also importantly, for wider, popular consumption, through providing details of local history. For example, one of the key research goals of Reid’s project in Buganda, upon which this thesis draws, is the search for antecedents and long-term origins of the modern Buganda kingdom.

3. Empirical Framework - as well as these important conceptual ideals listed above, it is vital that this approach also recognises the reality of context and environment. As such it is imperative that a secure foundation of empirical basics is also established (chronology, distribution, patterning), both in order to tackle 1 and 2, but also a resource for future research. The current research, which so often works in almost completely unknown archaeological areas, cannot hope to build a definitive picture of past activity within the limited time available here. Instead it is recognised that the evidence to be detailed in this thesis can only hope to be the first steps towards more comprehensive and detailed understandings.

Acknowledging these concerns, it is surprising that in some respects culture history remains a relevant and useful organisational model upon which to develop. As such, culture history provides a functional and practical framework in which to structure the essential empirical sequence (where, when, what), a finding that is perhaps unsurprising considering how useful culture history has been to situations of incipient archaeology on a global level (e.g. see Paddaya 1994 above). More unusually however, it is also recognised that culture history is potentially useful as an explanatory device, particularly in the context of mass audiences. This particularly so as culture history helps create a tangible and easily understandable narrative history. Post-processualism, which although providing an alternative historical based model, is less accessible for mass audience, as it relies on multiple deconstructions of the archaeological ‘text’. This is not to suggest that the public are incapable of appreciating
complex notions of multiple interpretations, simply that culture history provides a more immediate and clear indication of historical sequence and development, which can then be used as a future frame of reference for more varied interpretations. It is also relevant to note that in the search for post-processual 'text', detailed evidence is needed to build up the nuances of variation and depth; evidence which may not necessarily be forthcoming in an area with poor preservation (see above).

Nonetheless, despite these practical advantages, as Chapter 1 and discussion above have shown, the explanatory rhetoric that current culture history espouses is inherently problematic and unsuitable, and actively restricts and retards archaeological discourse. This contradiction between the practicality of culture history, and intellectual applicability of post-processualism however, is not unbridgeable. It is argued that, following the recommendations of researchers such as Andah, a new flexible conceptual approach to human behaviour and social manifestations be adopted here. Within such an outlook, society is regarded as self-determining, variable and inherently capable of fluctuating, particularly in a dynamic relationship to others (see also Lane 2004). As such, the interpretive tenets proposed are closely allied to the demands of post-processualist plurality and multi-vocality (see also recent linguistic approaches). However, the impracticality of post-processualist methodology is overcome by recourse to the organisational structure of culture history, in which these experiences are founded on solid, empirical data. Culture history thus provides the practical framework for dealing with new archaeological data, whilst post-processualist inspired rhetoric directs interpretation towards fluid and varied perceptions of society.

In a sense the ideas suggested here are a 'back to basics' approach which recognise the centrality of building secure empirical foundations from which interpretation and theoretical modelling can develop. The crucial change is in the way that past societies are perceived, eschewing the restrictive and narrow idea of the passive and torpid archaeological culture, and instead emphasising vibrancy and self-determination. De
Maret (2005) recounts a somewhat similar situation in the archaeology of central Africa;

"Provocatively one can say that over the last 30 years our archaeological knowledge of the last 2,000 years in this area has decreased – that we know less today than we thought we did three decades ago."

(de Maret 2005: 423-424)

This decline in understanding, he argues, is the combined effect of a rejection of early speculative models derived from simple linguistics and the drawing of connections between scant archaeological phenomena, and the growing realisation that, like the Great Lakes region, society cannot be collapsed down into simple formulae, and that society is far more varied and diverse. There is thus a need in both the Great Lakes and central Africa to firmly ground debate in the empirical, so interpretation can built upon a secure evidential basis, in order to substantiate a change in the perception of society that recognises its inherent complexity and dynamism.
Chapter Four
Approaches to Ceramics

Following the discussion of wider conceptual modelling and definition made in Chapter 3, the present Chapter will focus on specific ceramic-orientated discussion. As ceramics form the backbone of this thesis, a comprehensive appreciation of available ceramic evidence and interpretation is essential. Furthermore, in order to suitably analyse and interpret the ceramic evidence to be detailed in Chapters 6 and 7, it is vital that an appropriate framework for ceramic analysis is developed. This Chapter will therefore evaluate current approaches to ceramics (including comparative examples from southern Africa), and, in the light of wider discussion of ceramic and material culture theory, propose a model for future practice.

A History of Ceramic Research in the Great Lakes

The development and evolution of ceramic analysis has, unsurprisingly, been heavily predicated upon wider circumstantial influences and historical contingencies. As has demonstrated in Chapters 1 and 3, direct socio-political contexts and global archaeological dogma contrive to dictate and influence research, and the case of ceramics in the Great Lakes is no exception.

In general early pioneer researchers were largely more focused on lithic remains and the reconstruction of human evolution, than mundane ceramics. However, within these investigations there are isolated instances of peripheral ceramic data also being recorded, as in the case of O'Brien and Van Riet Lowe's excavations at Nsongezi which were primarily orientated towards the LSA deposits, but also briefly noted the 'Wilton Neolithic' and 'Protohistoric' periods (O'Brien 1939; Van Riet Lowe 1952; see also Boutakoff 1937; Leakey 1935). Slightly later publications based on excavations and discoveries of the 1930s (Lanning 1957; Smolla 1957) recorded ceramics in more
focused detail, however it is with the work of Leakey et al (1948) in Kenya and Hiernaux and Maquet (e.g. 1957, 1960) in Rwanda, Burundi and the Democratic Republic of Congo, that true discussion of archaeological ceramics began. Although the Leakeys were synonymous with Stone Age research, as Robertshaw (1990b: 82) notes, Mary Leakey increasingly directed her attention to later prehistory from the 1940s onwards. Collaborating with Archdeacon Owen, this resulted in the discovery of 'Dimple-based' ware from the Siaya sites of Urewe, Yala Alego and Ngí'ya, and the development by Leakey of a 'Dimple-based' ware typology. Still applied as a defining typology (Stewart 1993: 23; see also Van Grunderbeek (1988) for a further typology), Leakey et al identified four key variables. Dimple-based ceramics were restricted in form to bowls and globular jars, typically with bevelled or faceted rims, and with a diagnostic thumb-sized dimple on the exterior of the base. Decoration was also distinctive, with heavy incidence of incised decoration, primarily in bands of horizontal or diagonal lines at the rim/neck, but also with a wide range of ornate motifs, pendant designs or so-called 'covering patterns' (Leakey et al 1948).

Hiernaux and Maquet's (157, 1960) work in Kivu, Rwanda and Burundi soon substantiated this typology, and also clearly demonstrated a positive association of Dimple-based ceramics with iron-working debris. Furthermore, deep stratification at the site of Nyirankuba allowed the development of a pottery sequence, with two further distinct ceramic types identified. Following this phasing, Dimple-based ceramics were termed ceramic Type A and assigned to the earliest period of iron production, roulette decorated ceramics Type B and associated with the Later Iron Age and possibly also the mythical Renge farming people recorded in oral history. Type C pottery was less well represented and defined, being a mixture of rouletting and incision, and was assigned to the most recent Later Iron Age period, and speculatively believed to be the material remains of incoming Tutsi elites, being finer in fabric and execution than Type B (see Fig. 4.1).

Early research was thus naturally dominated by description, as researchers attempted to qualify unknown archaeological phenomena, and this descriptive drive continued
into the 1960s (e.g. Posnansky 1967). However with only two distant pockets of investigation, there was also a new incentive to link disparate ceramic assemblages and build relative sequences. Thus surveys (Fagan & Lofgren 1966a,b; Nenquin 1971) and excavations across the wider region (Brachi 1954; Chapman 1967; Gabel 1969; Marshall 1960; Pearce & Posnansky 1963; Posnansky 1961; Soper 1971d; Soper & Golden 1969; Sutton 1968a) started to construct diachronic maps of distribution. Posnansky was instrumental to this process, generating empirical data but also collating evidence into a wide pan-regional ceramic sequence (1961a). Still the most comprehensive and encompassing attempt at multi-period regional synthesis (Stewart 1993; although see Nenquin (1967) and Soper (1987) for more local perspectives), Posnansky (1967) proposed ceramic time-lines and phasing (see Fig. 4.2). Furthermore, his work also strove to place the ceramic data within a socio-cultural context. Thus, he speculated on possible lacustrine specialisation for Entebbe ceramic users, communities of Urewe using farmers, and the association of emergent social complexity and statehood with the roulette ceramics (1961, 1966, 1967, 1968).

Since Hiemaux (de Maret 1990: 128-129) and Posnansky (1961a: 185) had made the early conceptual leap between Dimple-based ceramics and Bantu materiality, the search for 'Bantu archaeology' dominated research agendas (e.g. the BSRP). Although a member of the BSRP and an early proponent of the Bantu question in archaeology, Posnansky was nonetheless cautious in his ascription of discrete socio-cultural identity to the makers of the newly re-named Urewe ware (e.g. Posnansky 1968). However, wider research overtook and subsumed this caution, and the correlation of ceramics with past socio-linguistic identity became an accepted absolute. Hiemaux in particular was key to this transformation. Through his work with Maquet (1957, 1960) and individually (1962, 1968), Urewe ceramics were identified as intrusive to the pre-existing LSA cultures (Hiemaux 1962: 384), and were easily correlated with the linguistic dispersal of a new culture of Bantu speaking peoples. Moreover, this incursion was traced physically, with Hiemaux (1968) taking the next step of linking human remains found with pottery as physiological evidence of past populations. Parallel research on the Renge (associated with ceramic Type B) was able to go further
in defining the physical anthropology of the past communities, as preserved osteological remains afforded precise measurements and definitions. Particularly using human remains from the site of Ruli (Hiernaux & Maquet 1960: 12-16), which were associated with pottery type B, Hiernaux was able to propose that the Renge farmers were heavily built, and not dissimilar to the modern Hutu populations. Others may not have gone to the physiological extreme that Hiernaux did (e.g. Nenquin 1967: 652), nevertheless, by the end of the 1960s there was an implicit acceptance of the notion that past ceramics could be tangibly linked to distinct socio-linguistic and even physical / groups.

As we have seen in Chapter 1 and 3, much of this research was conducted in a global archaeological climate of culture historicalism, and it is unsurprising that so many fundamental tenets of this rhetoric are present (archaeological cultures, migration). Ceramic style was thus unequivocally and directly associated with past socio-ethnic, and particularly linguistic groups, and in the case of the physical anthropology of Hiernaux, literally anthropomorphised into physical/racial types as well. Implicit in this, is also the belief that as each ceramic represented a discrete human population, the process of ceramic change reflects a concomitant process of human change and replacement. By correlating these ceramics with discrete ethnic groups, a succession of ethno-linguistic change is postulated. It should however be appreciated that Hiernaux & Maquet (1957) and also Nenquin (1967b) were very conscious of the fact that Urewe ceramics were frequently found in association with/at the same sites as LSA tools. They regarded this as evidence of contemporaneity and contact, a fact that was not appreciated by British researchers who tended to pigeonhole the order of succession. These ideals are of course pivotal to traditional Childean culture history, as is the parallel acceptance that until such population change, society is static and impregnable. Thus past Great Lakes communities were formalised into sequential blocks of discrete and distinct social, physical and linguistic types, represented in the archaeology by corresponding ceramic types.
Curiously, this reliance on the essential features of culture history continued into the 1970s, even though researchers such as Soper and Huffman were embracing more processual analytical approaches to ceramics. The growing corpus of ceramic data clearly demonstrated remarkable levels of stylistic similarity between dispersed ceramics from eastern and southern Africa, and attention was directed at trying to explain the degrees of relationship within the context of the migrating Bantu. Soper had already developed local categorisations for ceramics in eastern Africa, using evidence from Victoria Nyanza to the Pare Mountains to identify three discrete ceramics types, Urewe, Lelesu and Kwale, all of which belonged to the 'Early Iron Age Industrial Complex' (1971c, 1973 – although the original paper was presented in 1965 at Panafrikan Congress; see also Fig. 4.3). Using simple comparative statistics based on relative percentages of key features such as form, rim, decoration and base, Soper proposed that Urewe was the original parent ceramic, Lelesu was a later deviant from north west-central Tanzania and Kwale a further devolution found on the Kenyan and Tanzanian coasts.

However by 1971 (1971b), he had also expanded his scope to consideration of ceramics from the southern half of Africa as well. With a larger body of data, he developed a more rigorous analytical procedure which revolved around attribute analysis. Fifty different diagnostic attributes were extrapolated from the complete corpus of data (e.g. globular jar forms), and the degrees of relationship between each ceramic group determined by the level of correlation in these selected attributes. As some ceramic types possessed more of these diagnostic attributes than others (e.g. Urewe has 42 whilst Uitkomst only 12), Soper devised a way to normalise the comparison through comparing square roots. Thus Nkope pottery possesses 31 of the attributes, Ziwa 25, 19 of which they hold in common. Calculating the relationship between them, the following formula was used

\[
\frac{19 \text{ [attributes in common]}}{\sqrt{31} \text{ [attributes in Nkope]} \times \sqrt{25} \text{ [attributes in Ziwa]}} \times 100 = 68.4\%
\]
Comparing sixteen ceramic types he proposed three geographical groupings of attribute association; north-east including Urewe, Lelesu and Kwale, central including Kapwirimbwe and Kalundu and southern including Gokomere and Ziwa. Nevertheless, despite this shift away from more intuitive approach to analysis, Soper is clearly not convinced by the inherent validity of his results;

"...it is best to view this calculation of resemblance only as an interesting exercise providing some support for the pattern of resemblance deduced on other [intuitive] grounds. It is certainly not an objective comparison providing firm results in its own right"

(Soper 1971b: 6)

Underlying this Processual-inspired approach is a degree of scepticism and a continuing reliance on normative culture historical models; change is still couched in the ‘wave’ migration model (ibid: 29) of Bantu spread.

Whereas Soper seemed to regard the attribute analysis as an “interesting exercise” and gives little theoretical justification to his new methodology, Huffman was much more explicit in his application of trait analysis (Huffman 1970) and the conceptual rationale behind it. Clearly seeing ceramics as a direct parallel to language;

"Because ceramic change has a closer analogy to linguistic diversity than to biological diversity, when one tradition splits up, the resulting traditions maintain many related traits and only gradually drift further apart"

(Huffman 1970: 4)

Huffman extends the analogy by deconstructing the ‘language’ of the ceramics, i.e. its key stylistic and morphological attributes, and uses their similarity and change over time to assess levels of association. Aping lexicostatistical approaches which trace verb roots and language components, Huffman identified formal and decorative variables in six ceramic styles (Urewe, Kwale, Kalambo, Kapwirimbwe, Kalundu and Gokomere) and plotted their diachronic distributions. Behind this endeavour was the desire to test what he terms the Dimple-based/Channelled ware continuum (ibid: 3-4; see Fig. 4.4). According to this model, the levels of similarity between ceramics in the east and the
south were accounted for by the gradual devolution of style over space and time from
the Urewe homeland of the Great Lakes. Thus, the Channelled wares of Zambia which
resembled Urewe in so many ways, but were missing other key features such as the
dimple, were regarded as a link in the chain to the Gokomere pottery of Zimbabwe,
which looks a lot less like Urewe. Espousing a deeply systemic attitude to ceramic
change, Huffman took issue with this model, arguing that ceramic change was
predictable and regular and therefore later ceramic manifestations in the Great Lakes
should also resemble Gokomere ceramics of Zimbabwe if they had a mutual source
(ibid: 4). Rejecting an organic model of change, he instead identified two discrete ‘co-
traditions’. Typological difference between ceramics of the north (Urewe, Kwale) and
those of the south (Kalundu etc) created discrete entities that could not trace an
immediate common ancestry (i.e. Urewe was not the parent of the southern group).
Instead, continuing the linguistic analogy, he proposed two secondary centres of
dispersal (cf Guthrie 1962a,b), from whence the different ceramic traditions rapidly
dispersed (1970: 17). A curious mixture of Processual archaeology, with emphatic belief
in the predictability and comparability of change in both ceramics and language, and
also culture historicalism, with the continued emphasis on migration as a precipitate to
change, Huffman’s work was crucial to the process of broadening of debate to cut
across eastern and southern Africa.

Keeping within more traditional normative parameters, the growing delineation of
ceramic styles and sequences was also assisting wider talk of contact, change and
interaction on more local levels. Phillipson, whilst working outside of the immediate
Great Lakes area (1976) was central to the internal definition of the so-called
Channelled wares in Zambia, demonstrating that they were distinct from the Great
Lakes Urewe, and therefore a separate (albeit regionally linked) research concern.
Within the Great Lakes themselves Van Noten (1979) reviewing extant data for the
‘Early Iron Age’, argued that there was too much internal variation within Urewe
ceramics to warrant a single classificatory definition. Instead he proposed 6 regional
sub-divisions, which with Urewe, fall within the broader umbrella ‘Early Iron Age
Industrial Complex’ (ibid: 76). Whilst the notion of internal variability is intrinsically
important (see Chapter 1; also Nenquin 1967; Posnansky 1967). Van Noten's recommendations have not been adopted. Both Stewart (1993: 8) and Van Grunderbeek (1988: 13) have critiqued Van Noten's uncritical re-cycling of extant published data without review (e.g. 1979: 64, 72), and also regard the new sub-divisions as too narrowly pedantic and thus un-representative.

Ceramics of the later periods (second millennium AD) were not subject to much attention during the 1960s and 1970s (Lanning 1972). However, through the association of ceramics to the fluorescence of investigation related to the earlier Bantu phenomenon, archaeological ceramics became entrenched in the interpretive scope of Great Lakes researchers. Whereas scholars from earlier periods were tentative in their ascriptions of discrete socio-ethnic identities to ceramic manifestations (e.g. Nenquin 1967: 657), and often wary of the theoretical validity of such simplistic isomorphic relationships (Posnansky 1968), by the late 1970s and early 1980s, the notion of archaeological ceramics representing discrete communities of the past was barely questioned. Phillipson's iconic map of "Groups and streams of the Early Iron Age Industrial Complex" (1977: 105; see also Fig. 3.1) which shows ceramic distribution, typifies the sense. Similarly, papers in the 1982 edited volume by Ehret & Posnansky are imbued with the implicit and often unspoken assumption that ceramic definitions correlate with past societies (e.g. Ambrose 1982: 107; Soper 1982: 238). However, having embedded this association in the interpretive mantra, the 1980s heralds a sharp decrease and hiatus in ceramic orientated analysis in the Great Lakes that continues, to an extent, to the current period.

The decline of the Bantu question as a research goal (see Chapters 2 and 3) reduced the status of ceramics as markers of past ethno-linguistic groups, and an overall theoretical apathy (see Chapter 3), hindered more dynamic investigations of the roles of material culture and communication. Instead, there was a return from the brief flirtation with processual methodology and rhetoric, to an easy and simple descriptive approach (e.g. Van Noten 1983). Indeed, Schmidt clearly rated the role of ceramics so low that in all his publications on Buhaya (e.g. Schmidt 1978, 1981; Schmidt & Childs 1985), there is
only one instance of ceramics being illustrated (Schmidt 1980; although see also 1978 for a single photograph of a vessel). There are of course important exceptions to this pattern, with research by Collett & Robertshaw, Van Grunderbeek and Desmedt worth reviewing here.

Working with ceramics from the Kenyan Rift Valley and South Nyanza (including Kansyore, Urewe and Pastoral Neolithic ceramics), Collett & Robertshaw (1980, 1983) continued in the quasi-processualist vein of Huffman, with trait analyses of four groups of variables; decorative layout, decorative motifs, vessel form, and decorative techniques (1983: 109). A Brainard-Robinson concordance co-efficient was used and then the results equalised for percentage comparison (ibid: 113), producing a dendogram of relative relationships which apparently showed four discrete clusters of assemblages (ibid: 119). Later toning down the trait analysis rhetoric, Robertshaw (1991a) in his discussion of ceramics at the multi-period site of Gogo Falls structured his variables into ‘types’ based on the most frequently occurring combinations. Out of 447 reconstructible vessels he identified 82 distinct types, split between Oltome (Kansyore), Urewe, Elmenteitan, MIA and Akira ceramics.

More ‘ethnoarchaeological’ (Stewart 1993: 27) in her approach, Van Grunderbeek (1988; see also Van Grunderbeek et al 1983) has produced the only major synthesis of Urewe ceramics since the original Leakey et al (1948) definition. Following Van Noten’s proposal of six sub-Urewe variants, Van Grunderbeek explicitly sought to explore intra-Urewe variability (1988). Collating data from sites in Rwanda, Burundi and the Democratic Republic of Congo, Van Grunderbeek recognised substantial variation in ceramic manifestations. Her results were mixed, with pan-tradition patterns that showed general trends (e.g. approximately 60% of the forms were usually globular jars) and site-specific patterns that showed local variation (1988: 47-49). However, the combined data did not mesh sufficiently for subtler diachronic or regional distinctions. Unfortunate as this empirical result was, possibly the more important element of Van Grunderbeek’s work was her methodology. Unlike previous researchers, her range of analytical variables included technological make-up and style, citing for instance,
previous thin-section analysis (Van Grunderbeek et al. 1983) which compared ceramic raw materials used in ancient and modern ceramics. Furthermore by reverting to the perhaps more traditional comparative analysis, she was not restricted by the ‘types’ or selective variables of Robertshaw, and was thus in a position to record a greater range of variability and difference.

With the exception of Van Grunderbeek, research on the ‘EIA’ ceramics declined somewhat with the demise of the Bantu question, although in the 1980s and 1990s discussion of later ceramics from the second millennium came increasingly to the fore for the first time.

“la période récente de l’âge métallurgique au Rwanda n’a donc guère attiré l’attention des chercheurs”

(Desmedt 1991: 162)

Whilst Soper (1985) had produced a much-needed technological definition of roulette decoration from a continental perspective, and ethnoarchaeology was becoming increasingly nuanced and exciting with the work of Herbich (1987) on modern Luo roulette ceramics, it was Desmedt’s (1991) paper on the origins and history of the roulette ceramics that is most pertinent and notable here. Previously, roulette decorated ceramics had typically been disregarded as recent or modern (e.g. Posnansky 1967) or only vaguely categorised. Indeed the last paper prior to Desmedt to exclusively explore roulette decorated pottery in the Great Lakes was Lanning’s 1972 paper (see also Hiernaux & Maquet 1957, 1960). Whereas Soper (1985) had focused primarily on technical definition for a continental audience, Desmedt tackled the conceptual issue of ceramic change and transition in the Great Lakes, both the shift from Urewe using communities to rouletted ceramic users, as well as internal changes within rouletted ceramics. Complicating matters somewhat by her introduction of an alternative terminology to Soper’s (roulette W, X and Y), Desmedt nevertheless traced patterns right across the Great Lakes, in an unprecedented cross-border investigation.
According to her, early roulette ceramics of the C8th AD onwards, termed Type W (roulette nonée, including Soper’s TGR and KPR) were the product of Southern Nilotic speaking pastoralists moving from southern Sudan east of Victoria Nyanza and then around the south of the Lake up into Rwanda, but not as far as Uganda. To this population movement Desmedt attributed the initial LIA changes, with later communities using X roulette ceramics (roulette tressée à quatre brins) and Y roulette ceramics (roulette torsadée fine), gradually moving into the area at the beginning of the second millennium AD. She associated these X and Y using groups with western Nilotic speakers migrating southwards through Uganda from southern Sudan, defining three internal sub-variations of style. Central to Desmedt’s explanation of ceramic change is the correlation of ceramic types with historically recorded socio-ethnic groups. Thus Type W was associated with progenitor Tutsi/Hima groups whilst X and Y associated with farming Renge or Hutu ancestors. Desmedt has been heavily criticised, both on empirical grounds (Robertshaw 1994; Schoenbrun 1993) and on conceptual grounds (e.g. Stewart 1993), particularly her application of socio-ethnic tags to the ceramic phenomena. Indeed Stewart (1993: 32) has gone so far as to suggest that Desmedt’s work is part of a Belgian research continuum directly from Hiemaux, which places undue emphasis on ethnicity and race as part of modern power relations.

Ongoing BIEA supported research on the earthwork sites of western Uganda has not yet produced detailed empirical discussion of ceramic findings yet (although see Meredith 1988). Robertshaw (1994) has however continued his earlier methodological technique by conducting attribute analysis on ceramics from survey in Bunyoro and nearby areas. Modifying his variables to decorative technique, rim profile, decorative motifs and placement of decoration he was forced to reduce the number of variables in order to accommodate them within the SPSS programme and to create meaningful patterns (e.g. variables that occurred in fewer than 7 assemblages were disqualified). The resultant clustering allowed him to propose a five phase spatio-temporal sequence from the C11th to the C19th AD. Although the more localised level of analysis afforded greater details and chronological nuance, Robertshaw’s sequence was broadly co-terminous with Desmedt’s. Other important research on roulette ceramics comes from
the work of Connah (1996) at Kibiro, who also broadly accepted Desmedt's findings, but also noted her lack of attention to Carved Wooden Roulettes (CWR). Excavation at the salt gardens of Kibiro and local survey allowed Connah to identify c100 CWR and propose an early to mid second millennium AD date, thus coeval with Desmedt's types X and Y (see also Hiemaux & Maquet 1968 for earlier investigation at Kibiro).

As the last few paragraphs demonstrate, clear patterns and trends in ceramic research are not apparent in the last few decades, and instead fragmented work has been carried out. There has of course continued to be a stream of descriptive work as part of broader site descriptions (e.g. Karega-Munene 2002; MacLean 1996a; Sutton 1993, 1998), however there has been little continuous debate or critical reaction. Isolated instances of new methodology has been reported with Reid & Young (2000) exploring abrasion marks on roulette ceramics from Ntusi as evidence of functional application, and Wandibba (1983) conducting limited petrographic analysis of 'Iron Age' ceramics (see also Langdon & Robertshaw 1985 for analysis of Pastoral Neolithic pottery). Ethnoarchaeological research has meanwhile flourished in some areas (Dietler & Herbich 1989, 1994, 1998; Grace 1996; Herbich 1987; Wandibba 2003) however such research has not been assimilated by prehistoric investigations (see later for discussion). Currently critical discussion of ceramic analysis, and the interpretive implications for such research, is almost non-existent within Great Lakes archaeology.

Impact and Implications of Great Lakes Ceramic Research

The foregoing review clearly demonstrates the central role of ceramics in the Great Lakes, and it is no exaggeration to say that they constitute the single most ubiquitous research variable, defining the very temporal parameters of study. The intention of this discussion here is to gauge the impact of such research and assess its usefulness and propriety.

It is evident that throughout the history of research, variations on the culture-historical theme have been the primary explanatory rhetoric that has dominated the discipline.
(see Chapter 3). The early Childean culture history of Posnansky increasingly moved towards a narrower definition, which placed less emphasis on the wider contextual evidence, and was willing to substitute ceramic data as a *fossile directeur*. In effect, ceramics became a shorthand for a wider raft of socio-economic features, or what Sutton (1993) has described as the ‘package deal’. As Chapter 1 and 3 argued, this is a potentially dangerous policy, which leads to the homogenisation of past social experience, and the reifying of diverse communities under a single defining rubric. As the critical review of extant research in Chapter 2 has also demonstrated, this is an inaccurate representation, as substantial spatio-temporal variation exists within the archaeological communities in regard to their subsistence economies, settlement patterns and technological capabilities.

There are clearly then serious issues and concerns with the continued application of a narrowly culture historical approach to ceramic analysis. Most worrying is the fact that these strictures often seem to be unconsciously implemented, following an intuitive and unquestioning approach based on what Karega-Münene (2003: 31) has described as "Hunches". However, the few valiant attempts to move away from this instinctive archaeology also pose problems. As discussed above, a small number of researchers have adopted more rigorously structured methods for the analysis of ceramics, particularly applying principles of Processual archaeology. Early proponents such as Soper and Huffman emphasised valued quantification and sought macro-relationships, with later work by Robertshaw and Collett continuing the process of analytical transparency with attribute analyses on a more localised scale of investigation. Yet despite the conscious and admirable move away from intuitive processes of reasoning, these researches pose their own limitations and issues. Central to all these examples is the definition of variables, and the creation of repeating ‘types’. This process of variable analysis is inherently selective as variables are arbitrarily defined as ‘useful’ or ‘irrelevant’, based on pre-conceptions of ceramic meaning. Whilst such selective processes are inevitable and unavoidable, there is however no recognition that the very axis of variability on which the research is founded, are inherently subjective, and the fantasy of objectivity and strict scientific rigour are maintained. Thus Robertshaw
(1994) reduces his variables in order that they may be accommodated within the statistical programme, yet his selective criteria are not explored conceptually, or the interpretive ramifications stated. Thus by excluding variables that occur in less than 7 sites, he is reducing the scope of analysis to macro scales of variation rather than micro ones. This arbitrary selection of meaningful data therefore creates certain patterns, which other variables perhaps would not.

A second issue of concern is the translation of these patterns of variables into 'types' of the most oft-recurring features. These processes help define the ceramics, however they also create impenetrable taxonomic edifices based on frequency rather than diversity. The creation of ceramic 'types' for example, encourages the generalisation of analysis and evidence into generic patterns, rather than the more cumbersome projections of multi-dimensional phenomena. A final concern with Processual influenced research are the mechanisms for calculating relationship. These formulae give useful and clearly understandable mathematical quantification of relationship, usually in percentage form. However, the mathematical process of achieving such numbers if often far from clear. As with the global criticisms of Processual archaeology and its explicitly 'scientific' dogma, it is easy to be overwhelmed by Robertshaw's application of the "Brainard-Robinson coefficient", and to accept his results without being able to suitably query, understand or evaluate his process of calculation. This is not to suggest that archaeology must be simplistic and avoid complex concepts and methods, simply that researchers must explain the implications of methodological procedure and selection and how the outcome is affected.

The foregoing discussion has hopefully demonstrated that there are serious concerns with the way ceramic analysis is conducted in the Great Lakes region, showing especially how it is integrally linked to the restrictive models of culture history critiqued in Chapter 3. It is also hopefully apparent what a central and defining role ceramic data and interpretation play in understanding the archaeology of the region. It is perhaps surprising therefore that so little critical reaction or response has been evinced to the use and application of ceramic data. Even debate during the 1970s on
the big ‘Bantu question’ was aimed principally at the results gained rather than the methods applied. Stewart (1993) is alone in her historiographical review of archaeological ceramics in the Great Lakes, and has been highly critical and questioning about both the theoretical and methodological rhetoric employed, arguing like here, that residual culture history has had a negative and restricting effect, creating inaccurate correlations between ceramics and socio-linguistic stereotypes. This rare critique is slowly being joined by recent commentators who are increasingly expressing dissatisfaction with the interpretive mantra employed in ceramic analysis.

Karega-Mūnene (1996, 2002: 7, 2003: 30-31) in his discussion of Pastoral Neolithic ceramics has also been critical of the assumed direct relationship between such pottery and racial/linguistic types, particularly the identification of Cushites. He argues that not only is the relationship tenuously evidenced, but it also creates a restrictive framework which “pigeonholes...[past societies] into molds based in modern ethnic groups” (Karega-Mūnene 2003: 31). Lane has expressed similar reservations in regard to both Pastoral Neolithic and Urewe ceramics (Lane 2004; see also Kusimba & Kusimba 2005: 401,413), and has particularly described the use of ceramics as fossile directeurs, or “proxy indicators” (Lane 2004: 246-247) for other, unverified socio-economic features. On a larger scale of analysis, Vansina believes archaeologists have been “mesmerized” by the relationship of Urewe ceramics to Bantu-linguistic spread, arguing that the relationship is “illusory” (Vansina 1995: 194). However, despite these emerging critiques, none of the researchers have either proposed viable alternatives or attempted to implement more problematised and theorised programmes of ceramic research, and the practice of ceramic analysis in this region continues to go unchecked.

Ceramic Research in Southern Africa

There are clearly serious issues and concerns with the manner in which ceramics are employed in archaeology in eastern Africa, and particularly the Great Lakes. However it is the case that many of the issues raised here are part of a wider, sub-continental malaise that is not restricted to eastern Africa. Southern Africa in particular, with its corresponding early colonial history and later emphasis on the Bantu dynamic, shows
closely analogous processes of ceramic reasoning and interpretation. A brief examination of southern African research is therefore appropriate, providing a broader continental context for eastern African research, and also as a comparative resource. This latter point is important, as it is arguably the case that ceramic studies in southern Africa are more explicit in their methodological approach, and more pronounced in the interpretive rubric. Furthermore, the political contexts of research, both during apartheid and in the post-apartheid era, have rendered archaeological interpretations more socio-politically meaningful and powerful, and thus have often polarised opinion and sentiment, and thereby prompted greater critical debate. Although such extremism is intrinsically problematic, it has spotlighted the roles and impact of ceramic research, and thus provides a useful comparative mirror for eastern African investigation, where the processes are less explicit and the result less dramatic. In effect, the underlying processes that are evident in eastern Africa are thrown into sharp relief by contrast to southern Africa, and provide a cautionary tale for ignoring the effects of ceramic analysis and interpretation.

As in eastern Africa, and indeed any archaeological landscape that is terra incognita (see Paddaya 1994 in Chapter 3), early southern African research concentrated on description and definition of artefacts and site features. Caton-Thompson working on Great Zimbabwe was a committed advocate of ceramics as the “loyal friend, [that] alone tells us a straightforward tale” (Caton-Thompson 1931: 190, cited in Hall 1984b: 265), although it was not until Schofield (1948) that a specific ceramic volume was produced, in which he created the first comprehensive typological definition for ceramics from across southern Africa. Both researchers were working within a broadly normative framework, but it was with the appointment of Roger Summers to the Rhodesian Museum that a truly Childean approach to archaeology was instigated (Hall 1984a). Trained by Childe at the Institute of Archaeology in London, Summers sought to place ceramics and ceramic experience in a wider socio-cultural and economic context, evidenced for example, by his endeavour to look at prehistoric mining (Summers 1950). This emphasis on context and the whole social package was continued in the later work of Robinson (1966) and Garlake (1973).
By the 1970s a new initiative in ceramic research was instigated by Huffman (see also above), heralding what Hall (1983) has described as the beginnings of the 'American school of thought'. Directly concerned as we have seen, in the search for pan-regional cultural interactions and relationships, Huffman continued to explore early manifestations and spread of the Bantu language speaking groups. Unlike Summers or Robinson however, he stayed away from the wider Childean cultural package, and instead focused on ceramic evidence as a direct correlate of social identity. He rejected the intuitive descriptive approach to ceramics of his colleagues, and advocated explicit and transparent quantificatory methodology to determine precise levels of relationship. Central to this was the application of core-concept analysis in the late 1970s (e.g. Huffman 1978). This process deconstructed ceramic design and decoration into concepts of style, for example a core concept might be a band of oblique incised lines at the neck with areal motifs on the shoulder. The relative incidences of such concepts within an assemblage were then calculated on a disproportional presence/absence scale to indicate specific levels of affinity. Thus a ±30% presence within the unit assemblage would score 10 points, ±10% = 1 point and an absence = 0 points. Each ceramic assemblage was then compared bilaterally with all others in the study area, using the following formula, where m = the degree of relationship between any two collections as expressed in a percentage.

\[M = \frac{\text{common score}}{\text{maximum possible score}} \times 100\% \]

By 1980 Huffman was also applying this system to modern ethnographic assemblages where the levels of relationship were known, in order to test the validity of the process. Although his research (1980) showed mixed results with some variables, or core concepts, being more accurate than others, Huffman's faith in the process did not seem to diminish (e.g. 1989).

In terming Huffman's work the 'American approach' Hall is clearly recognising influences from the Processual archaeology of north America, and specifically the
impact of the classificatory-historical approach (Hall 1983) and the work of Robert Dunnell (1971). For Dunnell, the core-concept represents the denotata that links the ideational realm (i.e. the inherent systematics that dictate human activity) with the phenomenological one (i.e. the material, tangible expression). Thus, ceramics and their core-concepts represent a specific grammar that communicates abstract notions of human experience into material representations. By understanding the grammar, the researchers can translate the meanings and access the systems of society. Described by Trigger (1989: 366) as "narrowly empiricist", Dunnell's concept of society goes beyond Binfordian positivism, and seeks to distance archaeology from the social sciences and ethnographic analogy, and to narrow (arbitrarily) the interpretive scope to allegedly predictable and quantifiable fields, in a form of extreme systemic nomotheism. This notion that the archaeological data or core-concepts form predictable and conventionalised patterns has led Pikirayi (2002: 90) to critically compare them to a text (not in the post-processual, post-modernist sense), for which the reader (or archaeologist) needs only to obtain the key, to decipher the absolute meaning. As such, this paradigm is strongly predicated on the notion that archaeological classifications represent real and meaningful past categorisations, rather than just analytical and taxonomic tools of the researchers.

"these meanings and identities are constructed and manipulated through classification or re-classification, and presented to the reader as if they were genuine material culture categories"

(Pikirayi 2002: 90)

Past material manifestations are thus believed to be structured around a rigid and demarcated grammar of expression.

The methodological impact of such reasoning is easy to discern in Huffman's work. His application of core concept analysis emphasises the need for analytical clarity and quantification, as does his belief in the implicit power of ceramics to communicate a distinct and accurate social message or meaning: "Theoretically, ceramic style can be studied as a system with almost universal components because of the nature of the medium" (Huffman 1972: 125). Huffman's work however, has drawn criticism from
numerous commentators (see Pikirayi above; see also Pikirayi 1997, 1999). Hall (1983) has been especially critical of the methodological application of the core concept analysis, arguing that multi-dimensional clustering needs to be employed rather than bilateral comparison. Indeed the essential validity of Huffman's empirical results must be questioned following his own admittance of inaccuracy; in the testing of his methodology against known ethnographic samples (Huffman 1980), divergent results were produced. Moreover, Huffman's 'core concepts' have not remained constant over the years, and as he has switched his selection of 'important' variables, the concomitant results have shifted accordingly; thus an earlier assertion of the level of relationship between Mambo and Toutswemogala ceramics (Huffman 1980: 13) had to be amended four years later (Huffman 1984: 30). Ndoro (1996: 793) has also levelled another methodological criticism at this work, arguing that Huffman fails to explain how and why his mathematical and quantificatory processes are meaningful or appropriate (see also discussion of Brainard-Robinson co-efficient above).

Perhaps more powerful that Huffman's analytical procedure has been his impact on interpretive rhetoric, which whilst drawing criticism and condemnation (Hall 1983, 1984a, 1984b; Lane 1994/5; Pikirayi 1999, 2002; Robertson & Bradley 2000), nonetheless remains highly influential. Unlike north American followers of the classificatory-historical approach, Huffman persisted in retaining many trappings of culture historicism, especially in his explanation of collective ceramic manifestations and their relationship to past communities. For Huffman, a discrete ceramic assemblage was clearly analogous to a distinct and discrete past community; a diagram of ceramic sequences in Zimbabwe clearly demonstrates this, as the "genetic affinities between the [ceramic] phases" is evidenced (Huffman 1982: 360). Moreover, these socio-ceramic groups were usually couched within specific ethno-linguistic categories; "Iron Age archaeology is Bantu archaeology" (Huffman 1982: 145; cited in Hall 1984a: 463). This correlation however, between the Iron Age and Bantu language speakers was widespread at the time (see Chapters 2 and 3); what distinguishes Huffman, was his singling out of modern linguistic communities as the descendents of such past ceramic producing groups. The Leopards Kopje ceramic producers of the C11th AD were thus
“Shona-speakers” (Huffman 1980: 30). Indeed this creation of ethno-linguistic identity for past societies extends beyond ceramics, and is evidenced throughout Huffman’s more recent work on ‘culture systems’. Thus the use of architecture and space in the Zimbabwe sites is directly correlated with modern spatial organisation among the Shona of Zimbabwe (Huffman 1986, 1996).

This use of ethnographic analogy has raised numerous concerns (e.g. Lane 1994/5, 2005). Through correlating past ceramic types with modern ethno-linguistic groups Huffman is perpetuating an essential precept of culture historicalism, namely the pigeonholing of past communities into rigidly defined entities. As Hall comments:

“This allows the archaeological record to be seen as a run of static period-convenient slots for ethnographic units”

(Hall 1984a: 463)

This raises the perhaps more serious issue of Huffman’s concepts of time and social change. By promoting the direct historical approach wherein modern community practices and beliefs are directly correlated with communities of the archaeological past, Huffman is implicitly suggesting that both sets of communities were/are incapable of change. On purely empirical grounds this is problematic as communities are reified under a single explanatory model, apparently valid for long periods of time, with little consideration given to internal variation. However, more contentiously, this theoretical approach portrays modern communities (such as the oft referenced Shona) as timeless and ahistorical. Implicit in such a view is the belief that communities are incapable of advancing or developing over time, and are instead passive regurgitators of social norms. As Huffman alarmingly comments;

“for until the advent of the European, there has probably not been any major change in economy and technology by the Iron Age people for 2000 years”

(Huffman 1972: 78, cited in Hall 1983: 54)

Moreover, in the political contexts of apartheid South Africa or pre-Independence Zimbabwe, such a stance has unfortunate correlations with the minority governments’
policy of tribalism and ethnic classification as a means of restricting and dividing the majority population. This sense of the universally impassive and latent society is reiterated in examining Huffman’s notions of change. Once again, despite his Processual credentials, Huffman propounds an essentially normative explanation of change, presenting a picture of interrupted stasis. Just as communities are naturally dormant, change is effected through dramatic upheaval as society is precipitated from one state of being to an entirely new one. Thus transformation is both abrupt and profound, in what Huffman has termed a process of discontinuous change (e.g. 1970). In ceramics this is manifest in the linear transition from one facies to another. The impetus for such change follows the typical normative explanation and is couched in terms of new, outside influences, usually the migration of peoples (e.g. Huffman 1989). Somewhat tautologically, the effects of such migration are frequently evidenced by new ceramic styles, thus completing the culture historical circle, and also precluding the possibility of intra-community change.

This essentially conservative and politically pejorative projection of human dynamics has drawn severe criticism, especially as we have seen from Martin Hall (Hall 1983, 1984a, 1984b). Since the mid to late 1980s however, Huffman has changed the focus of his research from ceramics to explore wider culture systems and transcendental patterns of social cosmology and structure, as epitomised in his research on the Central Cattle Pattern (e.g. 1998). This research is not without its critics (see especially Lane 1994/5), however the focus of discussion has largely moved away from ceramics (although see Calabrese 2000). This however has the negative effect of allowing ceramic studies to go largely unquestioned and un-queried. As a result, researchers such as Huffman continue to espouse the narrow and restrictive ceramic rhetoric that Hall so cogently critiqued, yet without making explicit the theoretical dogma inherent (e.g. Huffman 1998). Two recent papers (Huffman 2002, 2004) clearly demonstrate the continuing influence of Huffman’s rubric. In examining the histories of the Sotho-

1 Although it should be noted that Huffman has explicitly claimed that internal change is a ‘normal’ process. For example, Huffman’s widely cited models of socio-spatial organisation, the Central Cattle Pattern and the Zimbabwe Cattle Pattern sees in situ transition from small kin-based farmers (CCP) to social complexity and centralisation in the ZCP (e.g. Huffman 1986).
Tswana and Nguni respectively Huffman has shed much of his classificatory-historical methodology, but retains the essential precepts of ceramic correlation to linguistic groups (e.g. 2002: 3; 2004: 84), migration as a precipitate to change (e.g. 2002: 8; 2004: 88) and the continuing prevalence of ethnographic analogy. Thus the presence of raised bumps on both Nguni pots and far distant Baganda smoking pipes indicates to Huffman (2004: 84) that there is an essential relationship between the geographically dispersed phenomena, probably a mutual origin in deep time.

The widespread impact of Huffman’s work should not be underestimated. Hall (1983) has argued that the personal status and prominence of Huffman as the primary researcher of ‘Iron Age’ archaeology in the south, has ensured that not only does his work often go unqueried, but his impact has also been influential leading to emulative approaches (e.g. Evers 1988; Whitehall 1997; Van Waarden1998;). This pre-eminence and overt theoretical position has led to an almost monopoly of the period; ‘Iron Age’ ceramics have become synonymous with Huffman. Those who do not fall into his school of thought have tended to move into other arenas of discourse (e.g. Hall 2002; Pwiti 1996), or to ignore ceramics within ‘Iron Age’ contexts (e.g. Segobye 1994). Whilst other avenues of research are of course encouraged, ceramic data cannot be forgotten, and it is reassuring that a few scholars are following Hall’s lead in the 1980s and explicitly examining the use (and abuse) of ceramic evidence (e.g. Ndoro 1996; Pikirayi 1997, 1999, 2002). However, with the exception of Pikirayi, few researchers are proposing realistic alternative to Huffman’s typologies, methodologies and explanation, and he retains a stranglehold over ceramic studies in southern Africa.

This brief discussion of ceramics in southern Africa has consciously focused on the exploits of Huffman, both for the purposes of brevity, and because he represents the most influential researcher in the field. Although his work has become less dogmatic and processually methodological in later years, he maintains many of the fundamental interpretive precepts that have dictated interpretation since the earliest research. Clearly there are close parallels between the ceramic research undertaken in eastern Africa and the Great Lakes. However, whilst much of Great Lakes research has
arguably been implicit and intuitive, debate in southern Africa has been far more explicit and detailed and has also included a strong element of self-critique which is largely absent in eastern Africa. In this sense Huffman’s work in southern Africa has been instrumental to the externalisation of research concepts and structure, and thus has been central to the dynamic research environment. It is hoped therefore that the current review will afford useful comparison with Great Lakes research, primarily through highlighting issues and concepts that are hidden or obscured in eastern Africa, and demonstrating their potential impact through examples of explicit implementation further to the south.

East and South: A Comparison

As the preceding discussion illustrates, there are a remarkable number of parallels in the manner in which ceramics are approached, treated and understood in eastern and southern Africa. Principally this is manifest in the continuing reliance on the parables of culture history, with its essential tenets of ‘pots equal people’ and change through migration, permeating the entire system. Moreover, there is a parallel tradition of Processual archaeology inspired approaches applying a veneer of methodological rigour and transparency through core-concept or attribute analysis, and the creation of ceramic ‘types’ for the inevitable translation into ethno-linguistic ‘types’. Concomitant to these practical similarities are comparable issues of interpretive propriety and methodological applicability. Both areas show seriously flawed traditions of ceramic analysis. However, the present analysis of southern African practice has hopefully drawn into sharper relief the less overt and explicit approaches of Great Lakes analysis. Whilst the extensive scholarship of Huffman has been widely critiqued, and many are wary of his uncompromising and dogmatic rhetoric, the force of his personality and work has importantly brought debate to the fore. Unlike eastern Africa where the problems of ceramic analysis are brushed under the carpet like a guilty secret, in southern Africa his extremes of interpretation have generated some response (though many would still argue not enough). This discussion of more extreme ceramics, is also intended to demonstrate the serious pitfalls associated with pushing data to the culture historical limit. The evidence has demonstrated how narrow culture historical rubric
Chapter I: Approaches to Ceramics

suppresses innovation, variation and application. However, it is also clear from the examples of southern Africa that these restrictions can move beyond the mere academic realm, and begin to impact on the contemporary, with serious socio-political implications. The pejorative representation of past communities as torpid and languorous creates unacceptable correlation with modern analogies, and has, as Hall has demonstrated, perpetuated racist notions of tribe and dormant ethnicity. The association between archaeology and politics is not so explicit in eastern Africa, however it is a potentially explosive relationship, with stereotyped projections of identity and belonging clearly an emotive and potentially destructive issue in post-genocide Great Lakes.

It is clear that the role of ceramics, both their interpretive conceptualisation and practical analysis, require severe evaluation.

Alternative Archaeologies of Ceramics

"Is there any correlation between material culture patterning and identity? Does artefact variability provide a key for reconstructing past social boundaries? Asking these perennial questions feels sometimes like speaking of werewolves and vampires: a typical "do you believe in?" kind of issue, one that we might consider when relaxing with friends or colleagues, but tend to set aside the moment we come back to proper scientific work"

(Gosselain 2000: 187)

Having critiqued ceramic approaches in eastern Africa, is it possible that we can exorcise the demon of pots and people, and move from the supernaturally simplistic to something more meaningful and viable? If we cannot, then this thesis would terminate here. However, this section will argue that there are alternative, less restrictive approaches to ceramics and material culture, and that by expanding the research scope to include broader theoretical and methodological resources, there is ample evidence to
show how a more textured and nuanced approach to ceramics in the Great Lakes can be achieved.

Material culture studies from archaeology and anthropology provide an incredibly rich resource. As such, there is a long and complex history of research which cannot be fully justified by the current limitations of space. However, what will be attempted here is a selective and brief history which selects pertinent research areas and topics, exploring their implications for, and applicability to, the current situation. The following sections will therefore initially detail two case studies from eastern and central African ethnoarchaeology, demonstrating the diversity of material culture meaning and roles. Following these insights, two key research areas will be discussed; style and technology. The intention here is to slowly bridge the gap between the dynamic reality of ethnoarchaeology and the restrictions posed by deep time archaeology.

Ethnoarchaeology

Ethnoarchaeology as a sub-discipline (David & Kramer 2001: 2) of archaeology has a long and fruitful history. Its widespread appeal and usefulness has resulted in its appropriation as a research strategy for the major schools of thought in archaeology (David & Kramer 2001: 18-31), and prompted its own research issues and agenda. Although definition varies (David & Kramer 2001: 12), ethnoarchaeology is essentially a mechanism for exploring archaeological manifestations and processes through archaeologically problematised ethnographic research. New or Processual archaeology quickly realised the potential of such study, with Binford (1978) using ‘Middle Range Theory’ to bridge the gap between systems theory and archaeological reality. Following the rhetoric of systems theory, society was structured and determined by predictable behaviour in response to environment (social and natural), with human experience being the extrasomatic adaptive reactions to that environment. Through examining living ‘systems’ predictive models of human behaviour could be developed, which would have universal applicability across time and space according to comparable environmental conditioning. A shift in perspective in the 1980s was
precipitated by the growth of interpretive or post-processual archaeology, and a more reflexive relationship between humans and their socio-cultural and environmental context.

Throughout this history ceramic researches have played a central role, constituting 15% of the total ethnoarchaeological research undertaken between 1968 and 1998 (David & Kramer 2001: 17,20,25,29). From Kramer's defining paper of 1985, ceramic ethnoarchaeology has been an essential source in discussion of trade, exchange and particularly crafts, craft specialisation and production networks. In 2000 a special volume of the *Journal of Archaeological Method and Theory* was dedicated to ceramic ethnoarchaeology, with Hegmon (2000) identifying social boundaries and change as the two areas of greatest research potential in ceramic ethnoarchaeology. These investigative realms are clearly integrally linked to the present topic, which seeks exactly such insights, and neatly brings us back to the experience of ethnoarchaeology in Africa.

Indeed, the potential role of ceramic ethnoarchaeology has already been obliquely identified by both Karega-Münene (2003: 30-31) and Lane (2004), whose brief critiques of ceramic analyses in eastern Africa have tentatively proposed ethnoarchaeology as a panacea to current interpretive ills. Neither however has gone beyond brief recognition of this important resource, with Karega-Münene directing attention to the work of Wandibba (2003) yet without proposing definite archaeological applications. These suggestions seem highly relevant even if somewhat belated; more ethnoarchaeology is conducted in Africa than any other continent (David & Kramer 2001; see also Agorsah 1990; Atherton 1983; MacEachern 1996), yet the appreciation of it in mainstream archaeology is often low. Eastern Africa has been intimately involved with this research with the pioneering home-range models of Glynn Isaac and Hadza foraging strategies representing important processual applications of ethnoarchaeological data (e.g. Plummer 2005). However probably more famous is the post-processual work of Hodder and his students whose research on architecture and space (Donley 1987; Moore 1986) and material culture (Hodder 1982; Welbourn 1984) have been seminal to
the definition of the modern discipline. Yet despite this evident variety of theoretical rhetoric and diverse subject domains, ethnoarchaeology has generally failed to engage with the main discipline (e.g. Robertshaw 1990b), or perhaps more appropriately, archaeologists have failed to appreciate its worth.

Ethnoarchaeology is of course not the solution some might hope for; it is equally troubled by conceptual issues and practical applications as any other field of research. Whilst Atherton’s (1983) review of ethnoarchaeology in Africa seems content to advocate its use as the proverbial “cautionary tale” (Kramer 1985: 97) in “stripping off of unrealized ethnocentrisms and in the expansion of interpretive abilities” (Atherton 1983:76), others are more circumspect. Agorsah (1990) is wary of the un-checked projection of modern African ethnoarchaeological evidence into prehistoric pasts and the abuse of Africa as the “laboratory or testing ground for ideas that have been generated elsewhere” (Agorsah 1990: 191). MacEachern takes up the point and warns of the dangers of ethnoarchaeological analogy and the creation of an ahistorical Africa of living fossils.

“There is a continuing danger that the academic investigation of recent African lifeways for the purposes of gaining understanding of the practices of past societies (Africa and otherwise) contributes to the historical objectification of Africans, the “analysis” of African communities as sequences of vanished pasts”

(MacEachern 1996: 244)

This question of ethnographic analogy is an important one; the simplistic application of the direct historical approach not only restricts empirical results but is implicitly pejorative in projecting notions of a static past and present for Africa (e.g. Lane 2005). Therefore the current use of ethnoarchaeological evidence will avoid such a pitfall, and is explicitly aimed at demonstrating potential interpretive patterns rather than dictating predictive models. In this sense, whilst the two case studies to be detailed hereafter are from eastern and central Africa, the selection of these choices was made for their wider theoretical and methodological significance, rather than geographical specificity.
Two case studies will therefore be briefly presented, one from Kenya and one from Cameroon. The choice is openly subjective and ceramic orientated, and is not a reflection of the wider ethnoarchaeological research trajectory; topics have been chosen as they are felt to best display critical arguments, and provide a useful jumping off point for the ensuing discussion.

Luo Ceramics and Micro-styles

This case study lies within the current research area of Victoria Nyanza, detailing the innovative work of Michael Dietler and Ingrid Herbich on ceramic traditions amongst Luo communities of Nyanza in western Kenya (Dietler & Herbich 1989, 1993, 1994, 1998, Herbich 1987; Herbich & Dietler 1989; see Fig. 4.5). Ceramic production is a strong and vibrant economic activity with an estimated c1% of the population producing ceramics (Dietler & Herbich 1989: 28), and an annual production rate of 15,000 vessels for the potters of the Siaya market community (Dietler & Herbich 1989). Within this widespread tradition very particular styles and patternings are evidenced, which show specificity to the immediate socio-cultural context.

The Luo community is structured around kinship and lineage bonds, with virilocal settlement as sons live in their paternal compound until their own children are married/grown up (Dietler & Herbich 1989). New wives therefore are assimilated into the familial compound and are subject to the authority of their mother-in-law or senior wives in instances of polygamy. The re-settlement of a new wife into her husband's family compound prompts a profound process of re-socialization as she is indoctrinated into the customs and practices of the family/kin group. Included within this process of re-socialization are the arts of ceramic production; when a woman arrives at her new home any existing ceramic skills she may possess are rejected, and she is subject to a re-learning process that replicates the local traditions of the 'potter community' (Herbich & Dietler 1987: 150). This strict process of social assimilation has led to what Dietler & Herbich have described as 'micro-styles' as compound communities define their own distinctive ceramic process and product (Herbich 1987: 195-199).
In identifying these micro-styles the authors have followed the rubric of the *chaîne opératoire* and recognised micro-styling throughout the process of production and manufacture as well as in the final end result. Briefly, the *chaîne opératoire* is a model that sees all aspects of the operating chain, or production sequence as being deeply embedded within the wider social, economic, cultural and political contexts, and is thus as responsive to social pressure or change as other more traditional analytical variables such as decoration. Rejecting the notion that technology is functionally predicated and environmentally determined, the *chaîne opératoire* recognises style in the choices made at every stage of the process, and sees those choices as being socio-culturally determined. Following this rubric, Dietler and Herbich identified significant variation throughout the *chaîne opératoires* of various Luo communities as well as in the final phases of morphological forming and decoration. Thus neighbouring potter communities using the same clay source at Ngiya were applying different processing treatments, despite the same chemical and geological composition of their raw material (Dietler & Herbich 1998: 253). Grog tempering, for instance, was used among many of these groups, in an overtly cultural choice, as it was seen to continue the lifespan of the old/broken pots used in the grog, and thus would enhance the power of the new vessels as they were imbued with experience.

Crucially for the purposes of the current study, these micro-styles, which might easily be identified as discrete groupings within the archaeological record, were found not to tally with ethno-linguistic boundaries, or even indeed with intra-community clan boundaries. Rather, the micro-styles were dynamic representations of internal community discourse, and the significance of their symbolic differentiation lay within the contexts of production rather than the context of consumption.

“Where decoration does appear to play some function communicative of individual or group identity, it is almost entirely confined to the context of production: it involves relations among potters in networks of daily personal interaction”

2 This distinction between contexts of production and contexts of consumption is one that Dietler & Herbich (1994: 461) make very clear, and promote as a prerequisite to understanding ceramic variation.
Style (in its broadest of permutations including technology) is therefore the manifestation of local inter-potter discourse. Thus whilst the mother-in-law dictates the essential parameters for expression, a popular young wife may be subject to emulation by her peers, or rivalry between co-wives result in overt statement of stylistic difference. This lack of ethno-linguistic symbolism is also evident when the context of consumption is also considered; buyers at the Luanda market on the Luo/Luyia ethnic boundary, do not perceive ethnic connotations in the vessels, and Luo and Luyia alike are willing to buy and use the same style, even though in other areas of life significant conflict and rivalry exists between the two ethnic communities (Dietler & Herbich 1994: 466).

Dietler and Herbich’s ethnoarchaeology among the Luo provides a stark alternative to ceramics as passive envoys of ethno-linguistic identities. Rather a complex and multifaceted process of intra-community, and often intra-familial discourse is in place, so specific and personal, that it looses its resonance once it reaches the market place. Another important concern to emerge from this work is the multiplicity of expressions of style and cultural choice; aesthetic phenomena are no more imbued with sociological significance than the crushed grog that tempers the body of the vessel. The centrality of production as a dynamic arena for ongoing social expression is reiterated by Dietler & Herbich’s adoption of Bourdieu’s habitus as an explanatory context (e.g. Dietler & Herbich 1998). Within this rhetoric, the whole environment of production and creation is integrated into a holistic social context which is neither ahistorical nor spatio-temporally specific; the traditions and trends of past activity and social norms are interwoven with the dynamics of modern particularity, with innovation, change and diversity embedded within a long-term past. As Dietler & Herbich succinctly put it

"one of its [habitus] most attractive features is that as the “generative principles of regulated improvisations” (Bourdieu 1977: 78), it allows the perception of how practice reproduces and transforms structures as it adjusts to demands”

(Dietler & Herbich 1998: 247)
The transformative powers of agency are thus couched within the underlying principles of practice. Within Luo potter communities this manifests as the traditions instilled by senior women (practice) are reinterpreted by junior women (agency).

Pottery Technology in Cameroon

Working with c100 potters from 21 different ethnic groups in Cameroon, who speak 7 different languages (Gosselain 1998: 85), Gosselain conducted detailed interviews and on-site observation (Gosselain 1992a,b, 1994, 1998a, 2002; Gosselain et al 1996). Moreover, unlike the other case study presented here, Gosselain also initiated a series of scientific and structural tests to quantify physical properties in the ceramic, including the temperatures during firing (Gosselain 1992a; see also Livingstone-Smith 2001) and granulometric properties (1994). In a hugely impressive data resource, Gosselain has, like Dietler & Herbich, emphasised the *chaîne opératoire* of production rather than the end phenomenon (see Fig. 4.6).

For Gosselain central to his application of the *chaîne opératoire* as a defining model is the debate between style and function, or the wider nature versus culture conflict which has dogged archaeology (1998: 78-80). According to the traditional dichotomous relationship, whilst style is idiosyncratic and expressive, function is curtailed and proscribed by functional restriction and environmental determinism. Rejecting the easy distinction, Gosselain argues from the French school of technical systems (Lemonnier 1993b; see also David & Kramer 2001: 13), that function and technology cannot be predicatively modelled, and are instead highly subject to the diversities of socio-cultural influence (see also above for definition). Compiling the *chaîne opératoires* for multiple potters Gosselain (1998) showed that each stage of the process (raw material procurement, processing etc) there were many possible means of proceeding, and that at each stage the potter was making a choice, albeit perhaps unconsciously. These choices were shown to be culturally governed as the physical properties of the clay were interchangeable and indistinguishable (see also Livingstone Smith 2000). Thus
different potters using the same sources would add varying tempering materials, and yet produce functionally consistent clay. This interchangeability was highlighted by in an experiment where a potter was able to successfully build a pot, despite the fact the clay had been processed by a neighbour according to an alternative system of processing (1992b: 556).

Despite the rich diversity at each stage of the manufacturing process, Gosselain was able to identify certain characteristic stages that tallied well with wider socio-cultural boundaries, particularly linguistic ones. Most consistent in its linguistic patterning was the forming or ‘fashioning’ stage of the process, which was found to accurately reflect language distributions. Explaining the phenomenon, Gosselain argued that the fashioning of ceramic vessels was a more deeply rooted and embedded stage of the process, and therefore less susceptible to superficial change. The physical shaping and forming of the clay, he argued, was an almost unconscious action, or what he terms “psycho-motor schemata” (1992b: 572), and was predicated on rooted motor actions that naturalise the process. The pedagogical process is central to this; as the teacher explains the process, she verbally describes the requisite actions, but also shows by example (1998: 94). Thus a teacher will take an apprentice’s hands into her own during the fashioning, guiding the motor actions. Such a process becomes so deeply embedded it becomes unconscious. Gosselain provides a telling example of two sisters who were taught by their mother, but later moved away from each other to marry. Whilst their outward chaîne opératoires replicated those of the communities in which they lived, their fashioning mechanism was identical and also distinct to that normally used by their immediate communities. The close correspondence between fashioning style and language also emanates from the teaching structure, as most potters are taught by their mothers or nearby relatives/neighbours, who naturally fall within the same linguistic group (1998: 71-77). Thus the intra-community vertical transmission process, which is restricted to local, intra-linguistic transmission, maintains boundaries, particularly in the context of the fashioning mechanism, which is inherently more conservative and less prone to change.
Gosselain has continued this theme of differential susceptibility to change and transmission in his later work, exploring the theme of technological saliency in an expanded enquiry on the relative frequencies of roulette decoration and fashioning techniques across sub-Saharan Africa (Gosselain 1998b; 2000, 2001; Gosselain & Livingstone Smith 2005). Once again the fashioning stage is argued to be more ‘personal’ and thus more guarded and maintained. He notes for example, a clustering of coil-built technologies around the Great Lakes, reflecting apparently the linguistic unity inherent. Less conservative and stable is the evidence from the roulette decoration, which shows a huge spread from west to east in a linear band bordering the Sahelian region. Arguing that the roulette technology is both very visible and more technologically superficial, and thus not requiring specific training, he has posited a rapid and widespread diffusion of the idea of rouletting rather than an ethno-linguistic or population spread. The ease of application, transportability and replicability of roulette has prompted him to comment

"Roulette decoration, like cellular phones, rubber tires, Chinese teapots or any other popular and widely spread item, could have been borrowed or imitated by people...who diffused widely, without necessarily entailing migration or major cultural change"

(Gosselain 2000:198-199)

Gosselain’s work, with its immense research scope and data rich foundation, is a highly important interpretive resource and useful insight into ceramic behaviour, particularly the comparisons between technological and decorative behaviour.

Theories of Ceramics and Variability

The selected ethnoarchaeological case studies demonstrate a rich and complex role for material culture, and especially ceramics, in the projection, creation and reflection of multiple social norms, overt messaging and silent discourse. The diversity of applications belie the picture presented by archaeological study of ceramics in the Great Lakes, which have been shown to be subsumed under a single explanatory paradigm that instinctively correlates variability with concurrent variability in socio-linguistic identity and belonging. Additionally, the preceding discussion of
ethnoarchaeology also prompts a re-evaluation of the analytical variables employed in the Great Lakes ceramic research; unlike the work of Gosselain and Dietler & Herbich, the technology of the ceramics produced is not generally considered a relevant variable, and the morphology of decoration and form dominate analysis.

There is clearly a great deal more to ceramic variation than being simply a passive correlate of ethnic identity.

In order to explore the potential implications and archaeological applications of ceramic variability, 2 key themes that both emerge from the preceding case-studies and are responsible for major research agendas in archaeology, will be considered. These are Style and Technology. This bipartite division requires some explanation. It is recognised that such a separation is reminiscent of one of the key organising principles behind New-inspired approaches to material culture (Dietler & Herbich 1998: 237). From such a perspective Technology is dictated by environmental or physical constraints such as resources or weather, and are subject to what Gosselain (1998) has pejoratively termed “the Laws of Nature”. Style then, is perceived to be the “residual” element left when such proscribed factors are removed, and is deemed to be the non-adaptive expression of social meaning. This fragmentation of data comes back to the essential nature versus culture debate, with Technology falling on the side of nature and Style on that of culture. By opting to follow these distinctions in the current discussion, it may seem that this thesis is endorsing these divides through replication. However, this is not the case, and the current structure derives in part from logistical considerations wherein the history of research, as hinted above, has separated these components, creating parallel discourse trajectories that rarely overlap. Thus the French inspired anthropology of technology (Lemonnier 1993b) has only recently impacted on mainstream Anglo-American discourse on Style, and the distinction remained active for a long period of time. The following discussion, although it is essentially divided for ease of presentation and clarity, will cross-cut the imposed

3 Van Grunderbeek (1988; Van Grunderbeek et al 1983) is the only researcher in this field to explicitly look at fabric and forming technologies (although see also Langdon & Robinson 1985; Wandibba 1983, for related petrographic analyses).
boundaries, and eventually demonstrate that a more holistic approach to ceramic data is the most fruitful. In effect, by following the conventions of discourse, the fallacy of these arbitrary boundaries between style and technology will be demonstrated from within.

Style

Historically style is one of, if not the, most important interpretive variables in the discussion of material culture variability, particularly for ceramics. It has spawned its own history of research (e.g. Conkey 1990; Conkey & Hastorf 1990; Hegmon 1992; Plog 1983) and has developed its own vocabulary; style has been emblemic, assertive (Wiessner 1983), isochrestic, iconological, vernacular, instrumental (Sackett 1990), stochastic (Franklin 1986 in Hegmon 1992: 523) and displays both panache and protocol (MacDonald 1990 in Hegmon 1992: 523). Style moreover, has transcended theoretical barriers, and eased from a position of eminence in culture history, to systemic functionalism, and even on into the dialectical semiotics of post-processualism (Conkey 1990). Central to this importance has been the widespread perception that style is a powerful medium for the creation, maintenance and communication of abstract social expression. These notions are clearly borne out by the examples from the preceding ethnoarchaeological case studies, which show style to be a multi-faceted entity, capable of multiple applications and manifestations. Yet, as discussion of Great Lakes applications has already shown, style is often perceived in unidimensional terms, and predictively modelled around socio-linguistic identity. Such limited and restrictive uses casts style and its interpretive centrality in a negative

4 The overall definition of style is a complex variable, influenced by the theoretical and research agendas of the practitioners involved. Some have adopted specific definitions, such as the processual identification of style as a non-adaptive 'extra' (Trigger 1989: 298), others have been frankly tautological in their circular definition of their own research agendas (Wobst 1977), whilst others have been inclusive in seeing style as a way of doing something, or choice (Hegmon 1992). This is a rich debate in its own right. For the purposes of the present discussion, Style is here determined in a very conservative manner akin to the processual and culture historical manner, being that which is additional and does not immediately serve a utilitarian role, frequently manifested in decoration. This both accords with much of the past history of style, and also correlates with perceptions of Style in Great Lakes ceramics. This is not a view that is endorsed, but rather a terminology that is temporarily employed for clarity of discussion

5 Discourses on style have followed different trajectories in lithic analyses, where it seems as if the very materiality of the artefacts and lack of extraneous decoration has led to a closer relationship with the schools of technological style and anthropology. Here the focus will be on style studies as epitomised by ceramic research
light, and following Sackett, style can be seen to have; “exercised a kind of tyranny over the thinking of archaeologists” (Sackett 1990: 34)

Sackett’s almost polemical backlash to decorative style is extreme, and few would deny the importance of style in material culture studies. However, what Sackett’s perspective demonstrates is that without critical response, style can suffocate interpretation, with superficial and simplistic definitions. This is arguably the case in the Great Lakes where style has dominated archaeological definitions of ceramics, yet is not subject to informed discourse; archaeological discussion of eastern African ceramics rarely troubles to define and deconstruct its use of style, despite its centrality (although see Helm 2000). The following therefore, will briefly discuss some of the key arguments in the theories of style in archaeology, providing a critical background for the present research, as well as insights for the development of appropriate theories and methodologies.

Culture history placed style to the fore in discussions of material culture. Employing the typical style vs. function dichotomy, Childe for instance saw decoration on ceramics as essentially expressive and idiosyncratic, and not conscribed by the demands of technology or functionality (Childe 1929: vii; see also Chapter 1). According to Childe unlike other variables such as material, form or artefact design, style was not prone to rapid changes effected by increasing technological efficiency; it was beyond the utilitarian realm, and was not therefore likely to be affected by advancing technologies or the vagaries of emulation and borrowing. As such style was perceived to be a constant, which through its idiomatic nature was intrinsically variable, and therefore reflective of nuanced expressions of social belonging. This essentially is the model of style (as decoration) that continues to be applied in Great Lakes archaeology.

The essential style/function divide continued into the early period of the Processualists, with Binford’s bringing a wariness of style as something that could not be readily placed within the rigid model of adaptive systems of behaviour (Binford 1962). Instead,
style was perceived as the tangible projection of self and belonging, broadly analogous to normative archaeology’s use of style to indicate identity, and thus largely shunned by early Processualists. This apparent distrust and rejection of style as a useful tool in the de-tangling of human systems was soon buried by a new wave of processual inspired archaeologists who took their cue from Martin Wobst’s seminal *information exchange* paper (Wobst 1977). Adopting a functionalist perspective, Wobst rejected the notion of style as passive and peripheral ephemera, and instead integrated style into the systemic web as an active and conscious medium of societal messaging, through the exchange of information. Style then was the transfer of socially meaningful messages, and was thus an intrinsic part of the “extra-somatic means of adaptation” espoused by Binford (Binford 1962: 250). Using the examples of folk costume from Yugoslavia, Wobst developed predictive models for the behaviour of such style, following the fundamental tenets of the adaptive processual model, namely maximisation of resource and environmental efficiency. Thus most effort would be invested in stylistic objects that were highly visible and ostentatious, such as head­dresses which were worn in mixed ethnic meetings and were visible from a long­distance.

Subsequent research undermined Wobst’s predictive models for the behaviour of style; the preceding examples from Dietler & Herbich (e.g. 1989) has demonstrated that the superficial decoration on Luo pots means nothing to the purchasers in the market place, and are only communicative on hidden, intra-community levels. However, despite the inadequacies of Wobst’s models, his work remains formative because it heralded a widespread perception of style as an active rather than passive agent. The impact of this shift is identifiable across the theoretical spectrum, with processual inspired scholars (e.g. Conkey 1990; Wiessner 1983) as well as post-processualists ones (e.g. Hodder 1982).

Polly Wiessner has been one of the most influential researchers to take up the mantle of Wobst’s information exchange theory (1983, 1988). She developed the essential

6 Wobst himself did not expand upon his original doctrine despite its huge theoretical impact.
premise into more specific models of stylistic behaviour and expression. 'Emblemic style' was defined as the manifestations of group identity and belonging, and was thus subject to imposed stylistic parameters to ensure collective cohesion and meaning. 'Assertive style' meanwhile was more individualistic and idiosyncratic and expressed personal meaning or statement. Applying these definitions to San arrowheads, Wiessner (1983) demonstrated that different manifestation of style could message different audiences. Wiessner's work has also been important for her exchanges with James Sackett, another influential commentator on style (Sackett 1985; Wiessner 1985). For Sackett (e.g. 1990), the active style school of thought placed undue emphasis on conscious and deliberate uses of style for communication, as in the case of Wiessner's San arrowheads. He instead argued that there were cases in Wiessner's study where no conscious messaging was taking place, and instead the communication of meaning was an instinctive unconscious act, and merely fell within the mental template of 'how something is done' (Sackett 1985). Sackett terms this emphasis on aggressive messaging 'iconological' style and argued that instead background, or 'vernacular' style, was also in place, acting as the latent, sub-conscious communication that underpins social identity and structure (1990: 41). The strength of such subliminal communication is underscored by an example from Cameroon, where David, Sterner & Gavua (1988) recognised that the decoration of pottery was part of a propagandistic reiteration of social mores and structure through hidden daily communication on an intra-community level

"Designs on pottery, far from being "mere decoration", art for art's sake, or messages consciously emblemic of ethnicity, are low-technology channels through which society implants its values in the individual - every day at mealtimes"

(David, Sterner & Gavua 1988: 379)

Indeed the validity of Sackett's views have been absorbed by Wiessner, who recognises such latent communication in a later response (Wiessner 1988: 58). Nevertheless, it should be emphasised that the exchange is two-way as Sackett has similarly come to

7 See also Franklin's (1986) Stochastic Style which is broadly analogous to Assertive Style, and also MacDonald's (1990) stylistic Protocol (Emblemic) and Panache (Assertive) (cited in Hegmon 1992: 523)
accept that active and conscious, or iconological messaging, is also a powerful force (Sackett 1990: 39), demonstrating a rich and fruitful exchange of ideas, and a greater level of integration of the passive/active schools of thought than typically projected.

Sackett’s wider role in style theory is also important to review here. Framing his discussion within the mantra of ‘isochrestic variation’ (1990: 35), Sackett is in fact wary of the very term style, and prefers to look not at the behavioural characteristics of style, but rather where style “resides” (Sackett 1990: 35). Isochrestism, which is translated as ‘equivalent in use’ (1990: 33), or more colloquially, ‘how to skin a cat’, is an encompassing paradigm that defines style as the making of choices or selection when functionally or technically equivalent alternative are available. As such, Sackett has been critical of the limitations of traditional style definitions, what he terms ‘adjunct’ style (1990: 34), which typically relegates style to superficial decoration;

“...isochrestism is not a model likely to attract the average ceramicist, who is prone to see style exclusively in the play of decoration”
(Sackett 1990: 34)

Instead, Sackett proposes a more holistic approach to style which incorporates the act of creation and manufacture as well as the material correlates of those choices.

“For ethnicity lies as much in the manner in which a Chinese cook butchers a chicken as in a Mao jacket or a Ming vase”
(Sackett 1990: 42, my italics)

Clearly this is a rhetoric that has close correlations with the work of Gosselain and Dietler & Herbich and these authors acknowledge intellectual debts to this element of isochrestism.

The rich exchanges and debate in theories of style in archaeology have in the past tended to occupy positions of polemical extremity, with the passive/active and style/function divisions. However, as with the rapprochement between Wiessner and Sackett, it is now broadly recognised that no single explanatory model has universal
application, and that indeed the search for such a constant is futile (Hegmon 1992: 53). Instead there is a growing acceptance that style is an amorphous entity that is contingent on circumstance and context, and can play multiple roles, communicate to multiple audiences, singly or collectively. The preceding examples from ethnoarchaeology hint at the rich diversity of stylistic expression, and also the fallacy of pigeonholing style. Gosselain’s isochrestism of the unconscious psycho motor schemata for example, is at odds with the iconological communication of Luo ceramic production as one woman consciously sends messages to her neighbour.

Hopefully, the preceding discussion has demonstrated that style and theories of style need to be treated with caution and respect, and not arbitrarily imposed without critical engagement with the diversities and multiplicities of stylistic manifestation.

Technology
The preceding discussion of style in archaeology has demonstrated that in recent years there has been a move to look beyond formal or decorative style, and to adopt a more inclusive approach that recognises the ‘stylistic’ input of technology and the processes of production (e.g. Sackett 1990). This breakdown of boundaries has been an important conceptual leap that has bridged the stultifying style/technology divide (e.g. Dunnell 1978), with evidence from the ethnoarchaeology cases showing how steeped in social practice the process of technology and technological choices are, and thus how rich technology as an interpretive resource can be. Reviewing the research history on technology, it is clear that Pfaffenberger’s optimism of 1992 when he declared technology was “poised for a comeback” (Pfaffenberger 1992: 491), was well founded, and the growing convergence of Anglo-American ‘Anthropology of Technology’ (Pfaffenberger 1992; Stark 1998) and the French ‘Technique et Culture’ (Lemonnier 1993; Stark 1998) schools represents an exciting period of technology research. These research histories will therefore be briefly explored here as they pose an important background to wider material culture debate, and also more specifically, a broader contextualisation for east African ceramic studies, where it is arguably the case that
approaches to technology are often rooted in pre-1960s tradition or what Pfaffengerer describes as the 'Standard View'.

Pfaffengerer (1992) provides a fascinating picture of 19th and early culture historical views of technology, portraying the 'Standard View' of technology, where technology is a universal, rational, de-humanised process, rooted in the belief that 'Man' was predictably advancing through the stages of development from good to better and even better, following the rubric that "Necessity is the mother of invention" (1992: 494). This "common-sense view of technology" continues to hold huge intellectual sway, especially in areas where the very notion of technology and its socio-cultural role is not sufficiently or explicitly reviewed and critiqued (e.g. in Great Lakes ceramic studies).

On a wider level, the wave of Processual archaeology had a strange impact on material culture and technology studies. Whilst there was an eagerness to firmly place archaeology within the Modernist realm of adaptive advancement (Pfaffengerer 1992: 495), there was nonetheless a wariness to engage with material culture discourse, which was frequently seen as a residue from the culture historical normativism (Dunnell 1978; Stark 1998). Technology being so predictable was 'boring' and too self-explanatory to initiate complex theoretical musings (Stark 1998). Nevertheless, there were considerable advances made by processual inspired researcher, notably the work of Schiffer which explored the behavioural chain behind technological production (e.g. Schiffer & Skibo 1997). However this belated engagement was also part of a wider trend in Anglo-American theory to embrace the "seriously ill patient" (Pfaffengerer 1992: 492) of technology once more, and assist the process of recuperation. Heather Lechtman (1977) for example, discussed technological style in an innovative examination of Andean metallurgy (although as Stark 1998 has argued, her research came from an essentially normative position which contrasted with Schiffer's processualism).

By 1992 Pfaffengerer had written a high profile critical historiography of technology in anthropology and archaeology emphasising the interpretive potential of
technological researches and critiquing the widely held 'Standard View' (see also Quilici-Pacaud 1993). He refuted the notions that technology was environmentally contingent, structured in an evolutionary chain towards unilinear 'progress' and also that technology was distinct from style and thus distinct from socio-cultural influences. Others soon followed the lead of Pfaffenberger with an important publication in 1998 on *The archaeology of social boundaries* (Stark 1998) which contained a number of papers that addressed technological manifestations, including papers by Gosselain and Dietler & Herbich discussed above (see also MacEachern 1998). Today technology is accepted as an intellectual means to an end, and not the static repressive topic it was; a Sillar & Tite edited special volume of Archaeometry in 2000 included papers that ranged in topic from the technology of Andean dung use (Sillar 2000) to Cameroonian potters (Livingstone Smith 2000). It is now widely recognised that technology is not predicated by the natural environment or functional necessity, and instead is also prone to cultural pressures and mores. As Pfaffenberger concludes; “culture, not nature, defines necessity” (Pfaffenberger 1992: 496)

In rejecting the Standard View of technology, Pfaffenberger (1992: 497) proposes an alternative approach that recognises that material culture cannot stand alone and must be considered in tripartite with *technique* which defines the modes of production, and also *socio-technical organisation* which is the organising structure of society that allows the *technique* to be employed. This emphasis on the process and social construction of process as opposed to the epiphenomenal concern with the end products, the artefacts, strikes a chord with the francophone approach to technology. The recognition that technology is a product of its socio-cultural environment and decision making, has long been recognised in French theory of technology, with Leroi-Gourhan deriving inspiration from Mauss in the 1940s with his discussion of the *chaîne opératoire* (Stark 1998: 5). The rubric of the *chaîne opératoire* states that technology and action are deeply embedded and entrenched in the particularities of social context to make them uniquely distinctive and useful to the researcher. By following the *chaîne opératoire* or operating chain, the cumulative process of selection and choice reveals a multi-layered
interpretive resource, revealing the textured idiosyncrasies that structure the society and thus the choices made.

Since Leroi-Gourhan in the 1940s the impact of such studies of technology has been great. The essential advantage of living communities for anthropology and ethnoarchaeology allows a close investigation of the decision making process, and thus a nuanced insight into the complete process. Although the impact of francophone theories of technology on Anglo-American thought have been limited in the past due to a reluctance to read French, since the 1980s a growing number of European researchers have presented their research in English as well (e.g. see papers in Lemonnier 1993a). Lemonnier has been crucial to this process of dissemination, with both individual research in Papua New Guinea (Lemonnier 1993c), and commentary papers. Opening the volume *Technological Choices: Transformations in material cultures since the Neolithic*, Lemonnier (1993b: 1) presents two very telling, but different examples of culturally arbitrary technological choices. In one, 1930s British RAF pilots continually employed the gliding approach to landing despite the high incidence of accident or injury compared with other methods. In the second, Alu warriors shun shields as they see this military protection hampering their canoe paddling capacity, despite its obvious defensive worth. Very different in background and context, these two examples clearly show the continuing cultural choice in the application of technology, in these cases in the face of ‘common-sense’ perceptions, which avow to the merit of alternative techniques. However as Lemonnier also notes (1993b: 7-8), these technologically rich researches are frequently anthropological or ethnoarchaeological in their scope, and it is only rarely that deeper time contexts are attempted. Pétrequin (1993) for instance, in the only truly archaeological paper in the 1993 volume, is able to reconstruct a Neolithic chaîne opératoire in the Alps because of phenomenal levels of organic preservation in the lacustrine environment, thus allowing him to “place the bar of difference very high indeed” (Pétrequin 1993: 61).

8 The abject failure of the majority of Anglo-American researchers to engage with French language research has prompted White to suggest that had English translations been available 20 years earlier, there may never have been the style vs. function debate at all (White 1993: xviii, cited in Stark 1998: 7)
Thus the limitations and realities of archaeological research contexts must also be appreciated when discussing technological choices and processes (see Chapter 3).

The archaeological study of technology has thus advanced from the evolutionary simplism of the early C20th through an intellectual hiatus, and now emerged as a mature and considered area of research that has wide applications both empirically and theoretically. In eastern Africa however, the record for technological research is somewhat different, and shows a particular sparsity in regards to ceramic orientated research; one of the key areas of focus for wider discussion of technology (e.g. Van der Leeuw 1993). Iron-smelting on the other hand has a good history of positive engagement with both the process of production as well as recognising the social role of production. Ethnographic and ethnoarchaeological studies have clearly shown the rich symbolism of smelting across Africa (Childs 1994; Childs & Herbert 2005; Childs & Killick 1993) and in the Great Lakes, where processes of technological transformation are integrated with social transformations such as pregnancy and birth (Reid & MacLean 1995; Schmidt 1997b). Importantly, also, the lessons from historical experience are used in long-term archaeological histories (e.g. MacLean 1998; Mapunda 2003; Schmidt 1978, 1998). However this strong history of inclusive approaches to iron technology has not spread to the discussion of ceramics, which with iron-technology represents the twin bases of almost all post-Stone Age research. Unlike other areas of ceramic research, the definition of fabric type is not standard procedure, with an implicit notion that as ceramic production is probably local, there is little worth in such a pursuit as it can contribute little to pan-regional comparisons (although see Van Grunderbeek 1988; Van Grunderbeek et al 1983). This approach is symptomatic of the wider malaise discussed in Chapter 2, where macro analysis is favoured over localised, micro-scales. Rare ‘scientific’ investigations of ceramic technology have taken place (e.g. Langdon & Robertshaw 1985; Wandibba 1983), but with the important exception of Childs (1989) whose petrographic analysis is linked to iron-smelting furnaces and tyuere production, the impact of these researches have been minimal (see also again southern Africa where only limited studies are made, e.g. Jacobsen et al
In sum, technology as an archaeological resource holds a rich potential, yet in Great Lakes ceramic studies it has been more or less ignored.

Proposing an Alternative Approach to Ceramics in the Great Lakes

Reviewing the evidence and insight presented in this chapter certain points regarding the nature of ceramic research in the Great Lakes have become clearer. Ceramics undeniably play a central and defining role in the prehistory of the region. Although specifically ceramic orientated research is rare, the centrality of ceramic research is reflected in the ubiquity of ceramics in all other types of publication; thus ceramic analysis is essential to excavation reports (e.g. Robertshaw 1991a) and as a fundamental diagnostic tool for more thematic topics (e.g. Karega-Münene 2002, 2003). Yet despite this importance, this chapter has argued that ceramics barely register in the theoretical scope of many if not most researchers. Instead, ceramic data is imbued with a priori assumption regarding behaviour and meaning, which are typically formulated in the old pots equal people adage. Little or no recognition or acknowledgement is made of the alternative perspectives on material culture presented by both wider world theory, and more importantly, ethnoarchaeological research undertaken within the very area. Instead ceramics remain in an unchanging relationship with archaeological interpretation, and have become so central and fundamental that they have ceased almost to be recognised as active social tools and artefacts, and are instead theoretically invisible.

Central to this apathy towards ceramics is the enduring and endemic problem of a narrowly culture historical theoretical legacy, which trades on simplistic constants and norms, without critically evaluating the validity of application. Instead of informed critique and evaluation about the interpretive and conceptual precepts, the brand of culture history in place in the Great Lakes encourages unquestioning acceptance of lazy and simplistic concepts. Ceramic variability within this framework, is unequivocally dependent on socio-ethnic or linguistic boundaries and identities. Change when it occurs is absolute and definitive, and often attributed to the novel
effects of outside influences, with even the migration explanation still finding currency. Moreover, within this pre-ordained interpretive structure, narrow notions of the role and application of ceramic data pervade; ceramic evidence is limited to diachronic markers or proxy indicators, with little or no recognition for the active social agency of ceramics themselves, or their socio-functional roles. Ceramic analysis therefore has stagnated under the enduring culture historical legacy, and the early engagements with the polythetic Childean culture history of Posnansky, or the explicitly theorised ceramic methodology of Soper, have declined into tired old dogma that is barely recognised let alone critiqued.

In order to move on from this impasse, it is necessary to assimilate the lessons from ethnoarchaeology and wider material culture theory, and to re-ignite the debate on the role and position of ceramics in Great Lakes archaeology. Certain re-evaluations are demanded;

- **Pots do not equal People**

 As evidence from the ethnoarchaeological case studies particularly show, variability in ceramics can be the effect of multiple factors from intra-community discourse to functional demands. There is a clear tendency to associate such variability in the Great Lakes with ethno-linguistic boundaries, probably as a result of the overwhelming concern with historical linguistics (see Chapter 3). This simplistic rubric is no longer tenable

- **Ceramic Classification: Emic vs. Etic**

 Ceramics cannot be simply perceived as passive proxy indicators for socio-economic or chronological evidence. It must be recognised that ceramic evidence is an independently rich source of insight into the structure and organisation of the socio-domestic realm. Approaches to classification must move from a highly

9 This criticism of migration is not intended to suggest that migration per se is an invalid concept. Indeed it is acknowledged that historically attested migrations have taken place, incorporating the mass movement of people, such as the varying movement following the break-up of the Zulu empire (e.g. Collett 1987) or Luo migrations in eastern Africa (Ogot 1967). Nevertheless, it is argued that migration on such a scale is relatively rare, and therefore cannot be assumed, and that alternative, less drastic models of change must also be acknowledged.
etic approach that centres archaeological classification and spatio-temporal ordering, to a more emic approach, which appreciates the roles of ceramics within communities.

Implementation of these changes require a change in methodological approach:

- **Seek Variability**

 In order to avoid the pitfalls of a restrictive culture historical approach that subsumes data into homogenised culture units, it is necessary that research explicitly seeks to identify and embrace variability (see Chapter 1).

- **Maximisation of Data**

 Following the search for variability and diversity it is necessary that all available interpretive resources are utilised. As such, following theories of the *chaîne opératoire*, technological style and meaning should be sought as a useful source of additional evidence to more traditional morphological and decorative style. This process of data maximisation is especially important in the context of poor spatial and organic preservation, where ceramics are a prime if not sole, source of information (see Chapter 3).

The foregoing statements are perhaps not novel; in many ways they represent sentiment that has been prevalent through wide swathes of European and North American archaeology for a long period of time. However, they gain resonance and importance when placed in the context of the Great Lakes and eastern African archaeology, where wider research implications are rarely assimilated.
Chapter Five

Theory to Practice: Designing a Methodology

Chapter 4 has demonstrated what a rich and diverse archaeological resource ceramics can be and also that a new approach to Great Lakes ceramics must be adopted here; an approach that recognises and celebrates the varying roles and manifestations of ceramics, and how the variations can be recognised through a range of formal attributes, from style to technology.

Unfortunately however, despite recognising this interpretive breath and wealth, it is also recognised that evidence from archaeology is often circumscribed by conditions of preservation and retrieval (see Chapter 3). Lemonnier (1993b: 8) for example, notes the harsh truth that ethnoarchaeology and anthropology are able to present such rich and textured pictures of past activity because of their unrivalled access to living informants, able to explain the selective pressure or attitudes. Archaeology is not usually so gifted. As discussed in Chapter 3, the Great Lakes, and particularly the specific research area (northern Victoria Nyanza), is not particularly well understood archaeologically, with large areas of terra incognita. Moreover, local environmental conditions mitigate against good archaeological preservation, and artefacts therefore come with little contextual information. As such, despite reference in Chapter 4 to the usefulness of the chaîne opératoire model, the reality of preservation renders the reconstruction of many of these stages impossible; forming and manufacturing processes for example, are difficult to determine because vessels are so rarely found complete, and contextual information which might help explain the process (tools, spatial organisation) are typically missing or absent.

This Chapter therefore, seeks to balance the intellectual goals outlined in Chapter 4 with the practical reality of Great Lakes archaeology, and show how the transition
from abstract theory to ceramic practice can be made, and how the available evidence can be used most effectively.

Research Questions and Ceramic Answers

In order to best utilise the ceramic evidence, it is worthwhile briefly reviewing the research objectives outlined in Chapter 1, so that an appropriate methodological format can be developed. These are:

1. selection of a previously unknown and peripheral research area with no *a priori* interpretive models to restrict understanding
2. investigation of long-term ceramic histories
3. localised scales of analysis
4. emphasis on recognising and celebrating variability.

1-3 represent questions of scale (temporal, geographical and conceptual). Point 4 however, deals with the minutiae of the actual data itself, and the retrieval and organisation of that data, so that it is able to address the objectives raised in 1-3.

As Chapter 2 has demonstrated, there is variability inherent in a range of archaeological phenomena from the Great Lakes at this time, including issues such as site distribution, subsistence, and social organisation. However as Chapter 2 has also demonstrated, questions of preservation have impacted severely on many of these issues, and coverage is often sparse or intermittent. Ceramic evidence meanwhile, by virtue of its relative indestructibility, represents a more reliable resource, which as shown by Chapter 4, also has the capacity to inform on a range of past social, economic and cultural facets. Therefore, whilst contextual evidence from new sites presented in Chapters 6 and 7 will be detailed, it is recognised that the primary focus of variability discussion will be centred on ceramic data.

Following the arguments made in Chapter 4, two guiding principles have been identified
• **Holistic Analysis** – from discussion of the ethnoarchaeological case studies, it is recognised that ‘style’ is a multi-faceted entity, and that culturally conditioned choice and expression can be manifest in a range of variables, from decoration to raw material sourcing. This analysis therefore must recognise such breadth and assimilate as much data as possible from all aspects of ‘style’.

• **Social Role** – Chapter 4 has shown that ceramics are important media in the creation, reflection and maintenance of social discourse and meaning, and that by exploring their place within society it is possible to understand something of the wider society itself. This is an aspect of research that is noticeably absent in extant approaches to Great Lakes ceramics, which rarely examine social applications of pottery, and instead tend to focus on their archaeological role as diachronic markers or proxy indicators instead. This thesis will therefore emphasise the socio-functional roles of ceramics as much as the evidence will allow it (i.e. in the absence of contextual information, such as spatial evidence).

Selection of Analytical Variables

Having identified the specific objectives of the ceramic analysis, it is necessary to identify the analytical variables and sources of evidence that can best answer the research goals proposed. Unfortunately, practical reality is once more a factor in these decisions, as analytical and interpretive returns must be balanced with issues of time, resources and usefulness. With only a single researcher constrained by limitations of time, the collection of evidence must be prioritised to give maximum returns for the investment of resource. For example, whilst the measurement of full vessel profile and size are very useful, particularly in the reconstruction of function and holding capacity, these variables are too unevenly preserved for systematic investigation or sustained attention.
The following therefore is an examination of all the major analytical variables typically used in ceramic studies, assessing each variable for interpretive application, usefulness, and collection strategy and practical feasibility. The Prehistoric Ceramics Research Group guidelines (1995) are used as the interpretive foundation of these discussions (see Clark 1983; Gibson & Woods 1997, Rice 1987; Rye1981; see also David 1972; Senior et al 1995; Shott 1996; Skibo et al 1997)

<table>
<thead>
<tr>
<th>Method of collection</th>
<th>Application of data</th>
<th>Ease of collection</th>
<th>Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric</td>
<td>Macroscopic</td>
<td>Moderate – requires site by site definition of fabric types as sourcing likely to be local</td>
<td>Good – comparison of different technological profiles for multiple purposes</td>
</tr>
<tr>
<td></td>
<td>identification of fabric types- inclusions, matrix, colour, firing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-function & use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-social expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Visual identification of marks</td>
<td>Variable – depends on visibility method – e.g. wheel made easier to identify</td>
<td>Low - experience suggests little visual evidence of technique - diff techniques indistinguishable</td>
</tr>
<tr>
<td>technique</td>
<td>-technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>Visual identification from surface treatment (e.g. leatherhard burnish)</td>
<td>Variable – often dependent on other data, such as decorative effects</td>
<td>Low-moderate Often unclear what particular level of drying</td>
</tr>
<tr>
<td></td>
<td>-technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firing</td>
<td>Visual identification of oxydisation/ unoxydisation on surfaces and section</td>
<td>Good – discouloration easy to identify</td>
<td>Low – high probability that mixed oxydising/ unoxydising atmosphere ubiquitous bonfire firing, so little diagnostic data</td>
</tr>
<tr>
<td></td>
<td>-technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Metric recording of weight with scales</td>
<td>Good – simple weighing</td>
<td>Moderate – useful for intra- and inter-site comparison if comparable sites, but poor pres. hinders use</td>
</tr>
<tr>
<td></td>
<td>-depositions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-depositions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Counting</td>
<td>Good – simple</td>
<td>Moderate – as with weight</td>
</tr>
<tr>
<td></td>
<td>-depositional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-depositional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form</td>
<td>Recognising orientation of rim sherds and matching to recorded variations</td>
<td>Moderate - Some initial skill to orientate sherds, but easy once mastered</td>
<td>Good – however only viable for rim sherds</td>
</tr>
<tr>
<td></td>
<td>-technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-function & use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-social expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim</td>
<td>Recognising orientation of rim sherds and matching to types</td>
<td>Moderate – some initial skill to orientate sherds, but easy once mastered</td>
<td>Good – however only viable for rim sherds</td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-function & use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-social expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim Diameter</td>
<td>Orientating rim sherds on rim chart</td>
<td>Moderate - good – simple analytical aid (rim chart) with some practice easy to</td>
<td>Good –however only viable for rim sherds over certain size (c. 3-4cm)</td>
</tr>
<tr>
<td></td>
<td>-production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-function & use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Rim</td>
<td>Orientating rim sherds on rim chart with percentages marked</td>
<td>- qualifying accuracy of rim diameter (higher %, greater incidence of accuracy) -depositional/post depositional processes</td>
<td>Good</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Body thickness</td>
<td>Measuring of broken cross-section</td>
<td>-production systems</td>
<td>Good</td>
</tr>
<tr>
<td>Girth</td>
<td>Measurement in relation to rim chart Measurement by profile thingy (check name)</td>
<td>-production systems -function</td>
<td>Moderate – rim chart easy to use if vessel broken in right area, if not requires machine thingy</td>
</tr>
<tr>
<td>Base diameter</td>
<td>See girth</td>
<td>-production systems -function</td>
<td>Moderate – see girth</td>
</tr>
<tr>
<td>Height</td>
<td>Simple measurement, but only possible with complete vessel</td>
<td>-production systems -function</td>
<td>Good – if vessel complete</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface treatment</td>
<td>Visual identification of surface treatment – e.g. burnish, polishing</td>
<td>-technology -production systems -function</td>
<td>Good-moderate – depending on how clear the effect is (e.g. post-depositional abrasion may distort effect)</td>
</tr>
<tr>
<td>Decoration</td>
<td>Visual identification of decorative effects</td>
<td>-production systems -social expression (-technology, -function)</td>
<td>Good</td>
</tr>
<tr>
<td>Post-Production/Use-life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>Archaeobotanical examination of contents residues left on interior of vessels</td>
<td>-function</td>
<td>Low – requires specialist archaeobotanist</td>
</tr>
<tr>
<td>Re-use</td>
<td>Varies – may be question of contextual deposition (e.g. use as building material) or morphology (e.g. bead grinders)</td>
<td>-function</td>
<td>Highly variable–entirely dependent on actual re-use rather than disposal and therefore a rarer possible variable</td>
</tr>
<tr>
<td>Abrasion</td>
<td>Visual identification of abrasion marks on surface(s) of vessel</td>
<td>-function -depositional processes</td>
<td>Moderate –good</td>
</tr>
</tbody>
</table>

Table 5.1 showing interpretive application of ceramic variables
Interpretive Application of Ceramic Variables

As Table 5.1 shows, there are three pertinent interpretive applications of the ceramic data; function and use, production systems and social expression\(^1\). To these we can also add identification and definition of ceramic phenomena (including the technological profiling), which is an important additional goal that serves both the elucidation of the other three, and is an important empirical contribution for future research(ers) in an academic context of restricted extant knowledge (see Chapter 3). The transition of raw data to useful interpretive applications will be discussed here:

- **Identification and Definition** – Almost all collected variables can contribute to the identification of ceramic patterning, and the interplay of technological, morphological and decorative features can be dynamically integrated to develop a multi-dimensional picture of ceramic manifestations.

- **Function and Use** – this is a neglected element of ceramic evidence in current discussions; as argued previously (see above), there is a tendency to forget the actual living application of ceramics, and instead to abstract them from their contexts and use them simply as identificatory tools of the archaeologist (see Chapter 3). Therefore this is an important area of research that must be actively examined. Variables such as form and rim indicate vessel shapes that are functionally suitable for certain activities (e.g. plates are not suited to storage of liquid), whilst ratio variables such as height, diameter and girth can help reconstruct the size and volume of vessels, indicating the scales of use (individual, familial, communal). However, as discussed above many of these size variables are unavailable because of poor preservation. Furthermore, assessment of function based on form is problematic as it is often based on inference and ‘common sense’ explanations. Nevertheless, despite these cautions, these variables should be considered wherever possible, even if only to make coarse distinctions between vessels suited for liquid and solid goods.

\(^1\) There are of course other applications of ceramic data, e.g. for site depositional processes and settlement organisation. However, the limitations of the contextual data, and the demands of the stated research objectives (see Chapter 1), restrict the potential applications, which are principally to those listed here.
• **Production systems and socio-economic organisation of manufacture** – This is the extrapolation of evidence relating to the wider social structure that ordered ceramic production, and that ensured the ceramic production systems developed in their specific formats. Initial identification of the system of production lies at the heart of this endeavour, and following the tenets of the *chaîne opératoire* approach discussed in Chapter 3, this structure can be traced throughout the production sequence, showing the individual processes of selection and choice. Relevant variables here would include fabric, manufacturing technique, drying, firing and various surface treatments. Questions of standardisation can be explored through ratio data such as wall thickness and rim diameter. Other means of accessing socio-economic evidence, is to look at the wholesale investment of effort, translating the *chaîne opératoire* into stages and levels of investment. Feinman et al (1981) have usefully detailed the ‘production step method’ which uses such an approach, qualitatively showing differential levels of investment.

• **Social expression** – this is the typical mainstay of ceramic analysis and interpretation, and applies ceramic evidence to discuss issues of identity, belonging, expression and communication. Decorative effects are typically employed here as *the* key variable, reflective of idiosyncratic expressions of personal or group meaning. However, as discussed in Chapter 4, technological profiling is also pertinent here.

Collating the arguments and evidence presented here, and noting the demands of time, the following variables have been selected for both their interpretive potential and relative simplicity of collection:

Fabric type, Weight, Number, Vessel Form, Rim style, Rim Diameter, Body thickness, Decoration – on lip, rim, body and interior of vessel, and Surface Treatment
Devising the Analytical Strategy

In order to develop a viable analytical strategy, it is necessary to try and predict the variables that must be accommodated.

Site Type

The nature of the assemblages varies highly according to the site type and the associated collection of material

- **Survey Site** – over 400 sites were discovered during survey, differing greatly in the circumstances of discover. Differences in variables such as survey design, environmental visibility can significantly influence coverage (e.g. Bower 1986; MacLean 1996a: 49-72; Orton 2000: 67-100; Plog et al 1978; Reid 1991: 145-157; Robertshaw 1991). However, in the present research context with restrictions on space, survey details cannot be properly accommodated, and therefore selective use of results will be only used to provide a background profile for the different case studies.

- **Excavation Sites** – evidence from 13 new excavation sites are recorded in this thesis. However, these sites can vary substantially in both size and nature;
 - Single-component site – only a single occupational/cultural phase is recognised (e.g. Entebezamikusa)
 - Multi-component site – more than one occupational phase is recognised (e.g. Wadh Lang’o)

- **Archive Site** – In addition to the new data generated by recent research projects, evidence from previous research has also been incorporated. This may be the result of re-analysing published collections (e.g. Lolui), or may represent the recovery of an unpublished collection from the museum archives (e.g. WPT site from Entebbe or the Nowa River survey from Kisumu). Frequently, associated contextual evidence for these assemblages has been lost, thus placing restrictions on spatio-temporal interpretation, and typically an enforced analysis of ceramics devoid of context.
Stratigraphic Integrity

Within the range of site types listed above, considerations of stratigraphy and contextualisation are also critical. Experience of research in the Great Lakes suggests that environmental and climatic conditions are not conducive to stratigraphic preservation; therefore the potential effects of severe bioturbation must be factored into research design (see Chapter 3).

- Poorly stratified sites – two factors are relevant here
 - Sites with deep yet mixed stratigraphy – the opportunity for diachronic investigation is reduced, and is especially problematic in multi-component sites where the inter-relationships of different phases of occupation cannot be determined (e.g. Gogo Falls Robertshaw 1991a).
 - Sites with shallow deposits – minimal preservation of deposits is often recorded in the region (e.g. Chobi - Soper 1971d), causing issues of post-depositional erosion and artefact mixing and movement.

- Well stratified sites – although rare, well preserved sites afford the opportunity for examining temporal variation, especially in multi-component sites where different phases of occupation are evidenced (e.g. Wadh Lang’o). Such sites must be thus accorded due research attention and focus.

Associated Evidence

Levels of associated information available to interpretation also vary greatly. For example, soil acidity is not been conducive to organic preservation, and there is very limited potential for archaeobotanical or zooarchaeological evidence (e.g. Young & Thompson 1999). Additionally without deep and secure stratigraphy, there is little or no point in attempting radiocarbon dating or environmental analyses without secure provenance.

Ceramic Types

As well as dealing with numerous sites spread across a wide geographical and temporal range, it is clear from the literature review of Chapter 2 that a multitude of different ceramic types may potentially be encountered during analysis. This has a
profound impact upon the research design as the structure of the analysis must be suited to accommodate a wide level of morphological variation. Each known ceramic type that might be encountered is therefore briefly reviewed here. This description also serves a dual purpose as it can act as a summary of known typology for later comparative reference. Although past applications of ceramics have been criticised in Chapter 4, it is nevertheless important that the current research optimises the extant evidence, and uses these essential typologies as the foundation to the present ceramic framework.

Kansyore Ceramics (see Fig. 5.1)

Sometimes termed Oltome (Collett & Robertshaw 1980, 1983), Kansyore ceramic is made from a coarse and sandy bodied fabric which frequently fractures along the lines of the coil-break (see Fig. 5.2). Forms are typically of hemispherical or closed mouth bowls with tapering rims, although squared and rounded rims also occur to a lesser extent (Chapman 1967; Mosley & Davison 1992; Robertshaw 1991; Soper 1987). Decoration is intense, frequently covering the entire body of the vessel, with a range of linear stab and drag impressed decoration, forming panels of horizontal, vertical and circular/curvilinear lines. The impressions may have been made with small sticks or perhaps shell and/or fish bones. Kansyore pottery is found in association with a typical LSA microlithic industry, and sites are nearly always found in close proximity to water, particularly river rapids, which seems to account for the densities of aquatic food resources found (e.g. shell middens at Kanam-Kanjera - Robertshaw et al 1983; or fish bone middens at Siror - Dale 2000). Kansyore bearing sites are found throughout the eastern Great Lakes region, in the Victoria Nyanza basin and on the banks of its tributaries, e.g. Kansyore on the Kagera River. Dating is problematic as few reliably provenanced absolute dates exist, and a range of 8,400-2400BP is currently in circulation, although it is recognised that further dating is necessary (Kusimba & Kusimba 2005).

2 These summaries (which list the principal typological references) are also an opportunity to review extant understanding of some archaeological phenomena that fall outside the primary concerns of the present research (temporal and geographical) and therefore were not detailed in Chapter 2.
Elmenteitan Ceramics (see Fig. 5.3)
Part of the Pastoral Neolithic tradition of the central Rift Valley, Elmenteitan ceramics have been recovered as far west as South Nyanza at Gogo Falls (Karega-Münkene 2002, 2003; Robertshaw 1991a), and may therefore be recovered during this research. Co-terminous with a lithic tradition of the same name, Elmenteitan pottery bearing sites date from c 3300-1300BP (Karega-Münkene 2002: 25), and are typically associated with cattle-keeping economies (although see Karega-Münkene 2002: 18-119, 2003: 19, 25, who argues for a more mixed economy). Ceramic are usually open or hemispherical bowls with tapering rims and occasional lugs and spouts for pouring. Decoration is scant and is usually confined to the upper neck/body with incised check patterns or oval punctate/incised motifs. Surface polishing/burnishing is relatively frequent, and the vessel walls are moderately thin and well fired.

Urewe Ceramics (see Fig. 5.4)
A well made and highly crafted ceramic, with evident levels of manufacturing investment, Urewe vessel forms typically include a range of bowls (closed mouth, hemispherical, open bowls) and globular jars with everted necks, with Van Grunderbeek (1988) suggesting an overall ratio of jars to bowls of 60:40. Occasional other forms exist such as the beaker style from Siaya (Leakey et al 1948), two carinated shoulder vessel from Buhaya and Nyirankuba (Hiernaux & Maquet 1960: 47; Schmidt 1980), and collared jars from Rwanda (Nenquin 1967b). Rims are diagnostically bevelled with up to 8 bevels or flutes, whilst bases are frequently dimpled, hence the original 'Dimple-based' term. Decoration is very variable, being typically incised in a wide palette of horizontal banding and cross-hatching (usually at the rim) or with hanging or pendant motifs and occasional 'covering pattern'. There is a high degree of decorative variability and idiosyncrasy as well as clear skills in execution. Burnishing and/or slipping are recorded.

Devolved Urewe (see Fig. 5.5)
Only recorded once, on Lolui Island by Merrick Posnansky (Posnansky 1967, 1973; Posnansky et al in press), this ceramic is highly reminiscent of Urewe proper, but is
Chapter Five - Theory to Practice: Designing a Methodology

notably poorer in quality of production and execution than the original. Posnansky records coarse and grainy fabric, uneven forms with reduced bevelling and dimpling, and simpler and less ornate decoration. He argues that the devolution is caused by insular isolation and a degeneration of skills over time, although no absolute dates exist.

Middle Iron Age (MIA) (see Fig. 5.6)
MIA has only been recorded twice (at Gogo Falls and survey site GtJb11 - Robertshaw 1991a), and like Devolved Urewe, is undated and only tentatively placed later than Urewe ceramics in a relative sequence. So far restricted to South Nyanza, Robertshaw recognised typological similarities between MIA and Urewe, although like Devolved Urewe the quality of execution and typological range is more limited. Vessels are typically of a straight necked/slightly everted jar form with two or three bevels and a band of vertical/oblique slashed incisions around the rim. No intact base has been recovered.

Entebbe Ceramic (see Fig. 5.7)
Identified in the 1950s and 1960s on the Entebbe peninsula (Brachi 1960; Marshall 1954), and subsequently largely forgotten (although see discussion of Entebbe chronology - Posnansky (1967), Entebbe pottery is distinctive, with typically large or very large spherical to slightly closed-mouth bowls. Rims are bulbously thickened, with Twisted String Roulette (TGR) decoration on the lip and rim. Inside the vessel and below the roulette on the exterior are parallel incised lines, which appear to have been effected by dragging a toothed comb across the surface of the wet clay. The fabric is light in colour, buff to white grey, with coarse quartz inclusions.

Festoon Ceramics (see Fig. 5.8)
Found at Hippo Bay Cave on the Entebbe peninsula in association with Entebbe ceramics (Brachi 1960), Festoon pottery resembles Entebbe in form and rim style, although is smaller in size. Decoration is located on the rim and is of linear
impressed/punctate design of triangular hanging pendants. Very few sherds exist for comparison.

Western Ugandan Roulette Decorated Ceramics (see Fig. 5.9)

Although Entebbe pottery is decorated with roulette, this category refers more specifically to the roulette decorated ceramics found in association with the emergent political centres of western Uganda (Ntusi, Munsa etc). The earliest dated presence of such ceramics is C11th, slightly later than the appearance of roulette in Rwanda (Van Noten 1983). Unfortunately detailed excavation reports are not widespread, however, unpublished data from Ntusi (Reid forthcoming) and Mubende Hill (Meredith 1988) show broadly analogous typological patterning, with necked jars (short to medium length, straight to everted) and open and (hemi)spherical bowls. Reid classifies intra-formal difference according to size (rim diameter) demonstrating the analogous forms have a range of sizes, e.g. spherical bowls with diameters of 15cm to 50cm diameter. Rims are rounded, beaded and often bulbously exaggerated, and decoration is frequently found at the rim and neck (although sometimes covering the entire body) and is typically TGR and Knotted Strip Roulette (KPR) in panels or herringbone effects. Additionally paint, often red, is applied post rouletting and is evident is stripes of colour or finger marks as all-over washes.

Further Categories

The preceding has detailed the types of morphologies and styles likely to be encountered in ceramic collections based on current knowledge. However, in designing an analytical methodology it must be recognised that this is a poorly researched area of the Great Lakes, and it is likely that new, previously unrecorded ceramic styles will be encountered. Therefore it is essential that the present analysis is able to assimilate such new data into its design structure.

There are then several factors which render the conditions of research and analysis highly variable and heterogeneous. It is essential therefore that the research design is aware of these variabilities and is able to accommodate the range and scope of
manifestations. The key concern is thus flexibility of approach, which combines the scope of known phenomena, and is also suitably adaptable to accommodate new and unknown elements.

Design Criteria

As demonstrated above, the idealistic goals of archaeological dreams must be tempered by the realities of circumstance and logistical viability. Indeed logistical reality raises the fact that five case study areas are being investigated in two different countries, including 13 newly excavated sites and 5 archival sites, with a total of over 25,000 sherds individually handled (excluding the 400+ survey sites discovered by Reid and Lane's projects), and all this analysis has to be carried out by a single researcher with a limited time period available. This physical and temporal constraint has meant that certain areas of applied analysis could simply not be accommodated within the present research; further petrographic analysis of clay fabrics for example would be very useful, yet the time for such procedures was simply not available.

Having thus reviewed the intellectual demands and the logistical and contextual restrictions, it is clear that compromise must be struck, and that the key to this relationship must be flexibility both of intellectual outlook, and also of methodological application. Translating these requirements into practical criteria for the design of a ceramic analysis procedure, four key concerns emerge.

- **Transferability and Compatibility** – considering the range of variables that dictate the eventual manifestation of the assemblages in question, it is essential that a single and inclusive analytical format is developed, which afford comparison of diverse sources of data.
- **Maximisation** – as ceramics constitute the most numerous interpretive resource available in contexts of generally poor artefactual and ecofactual preservation, it is essential that collection of available ceramic data is maximised (within the confines of time and money). As such, it is no longer

3 Important help was provided by Ms Habiba Chirchir (University of Nairobi) who acted as a research assistant in the analysis of the Kenyan material.
acceptable to solely examine morphology and decorative style; technological profiling must be fully integrated into the research design.

- **Optimisation** – linked to the issue of maximisation, is the question of optimising of available resources and a regard for efficiency of results. As such, the research design must be practically applicable, easy to use in different contexts (museums, field stations), and able to prioritise the data sources that will provide a greater volume of meaningful information.

- **Integratability** – although alternative sources of archaeological evidence are often scarce in these contexts, in order to enrich debate, it is crucial that where associated data and insight is available (e.g. subsistence economy), the ceramic component must be fully integrated with wider evidence for a more encompassing perspective.

Procedure for Analysis of Ceramics

Following the design criteria set out above, a procedure for analysis of ceramics has been devised.

Organising Principle

In accordance with the need to optimise data collection, a hierarchy of ceramic data has been identified, within which sherds are graded on the potential they have to provide meaningful data (i.e. data useful for interpretation). Sherds/artefacts capable of addressing complex research questions are highlighted, and separated for greater levels of detailed analysis. Those that cannot contribute are only minimally analysed. This method helps ensure a maximisation of results within a restricted time frame. Two tiers within this hierarchy have been established; *total sherd analysis* and *reconstructable sherd analysis*. Within this system, all sherds are recorded at the total sherd analysis stage (recording basic variables such as quantity and weight), and reconstructable sherds were removed for further individual study. Reconstructable sherds are recognised as those that are sufficiently whole or near-complete that a confident prediction of the nature of the complete vessel can be made.
Recording Procedure

In keeping with the demands, the need for transferability of data across both Total and Reconstructable levels of analysis, and the compatibility of data across different assemblages, it is recognised that a unified system of recording is required. The nature of the data affects the systems for recording.

Ratio Data – These data refer to variables which follow a pre-determined and universal scale of variation, e.g. measurements. Here these include counting of sherds, weighing of sherds and measuring rim diameter and body thickness. These data are recorded following the conventions of the metric system.

Nominal Data – Nominal data are those which are defined by attribution to a known type, or as Shennan (1997: 9) describes it, “it involves no more than giving names to the different categories”. This is the most frequent and typical form of archaeological data and represents the bulk of the data encountered here. However the process of “giving names” requires some clarification;

Nominal data here refers to Form, Rim, Decoration (all), surface treatment, typological attribution and execution quality. As the descriptions of Great Lakes ceramics above show, there are a wide range of potential variables to be encountered within these elements. Therefore it is essential that this range is both accommodated in a format that is both easy and simple to use (optimisation), but also fully reflects the inherent variability. A system of numeric and alphabetical codes was therefore established. Each numeric referent relates to a morphological element, e.g. ‘thickened rims’ or ‘bowls’ with the alphabetic suffix denoting the specific manifestation of that element, e.g. ‘bulbous thickened rim’ or ‘hemispherical bowl’. A code sheet for each component variable (e.g. bowls) is established upon which there is space for the addition of new numeric elements or alphabetic variants. This approach has the advantage that codes for each component variable are immediately attributable to a group (the numeric code), but are also capable of carrying very specific morphological data that aids...
discussion of variability and difference (the alphabetic suffix). Code sheets for vessel for, rim morphology, decoration and bases were therefore devised (see Figs. 5.10-13)

Fabric Categories – Following the criteria set out previously and the need for a holistic methodological approach, and a maximisation of data, the full integration of technological data is essential. However, as noted above, a number of variables such as manufacturing process and vessel size are beyond the preservational scope of this material. Therefore, the primary source of technological information is the identification and profiling of fabric used in production. This is useful to the continuing identification of diagnostic patterning, particularly in discussions of socio-economic conditioning and productive investment. Preceding researches that have looked at this variable (Van Grunderbeek et al 1983) as well as ethnoarchaeological insights (see examples from Chapter 4), indicate that there is a plentiful supply of suitable local raw materials, and therefore fabric patterning is typically site or local area specific. This has implications for its recording, as new profiling of fabric technology needs to be potentially undertaken at every site/assemblage. A strategy was therefore devised, to carry out preliminary examination of ceramics in each site/assemblage to identify the unique fabric categories present, prior to the commencement of full analysis.

The criteria for identifying fabric categories was based on the criteria established by the PPRC handbook and include the following variables; colour, firing conditions, texture, structure of fresh break, inclusions (shape, quantity, composition, size), with further comments made on possible cultural/typological associations. Each identified fabric group was recorded on a standardised sheet (see Fig. 5.14) which would be added to during the process of analysis if new sub-variables or additional comments were recognised. For instance, it was sometimes found that as analysis proceeded, what initially appeared to be distinct fabric categories actually represented variations within the same continuum. With the ‘open’ recording sheet, these additional comments were thus added as analysis progressed. This approach then initially favours the more conservative policy of ‘splitting (PCRG 1995) which records as much variation as
possible (see also Chapter 1). However, it is recognised that splitting can lead to pedantic sub-divisions, and thus fabrics were ‘lumped’ (PCRG 1995) following the recognition of inter-connection.

Procedure

Total Sherd Analysis

Each bag was emptied and all sherds larger than 2cm x 2cm were separated. Those less than 2cm² were weighed together and then separated into five standard decorative groups – undecorated, roulette decorated, incised decoration, comb decorated and stab and drag decorated, individually counted and the number entered into the recording sheet (see Fig. 5.15). Sherds over 2cm² were divided into fabric categories (in accordance with the previously defined fabric types for each site/assemblage). Within each fabric category, any reconstructable sherds were removed, and the remainder then counted according to the above decorative categories.

This phase of the analysis was designed to retrieve basic quantitative data for the entire bag, and to remove the majority of the sherds which could only provide minimal information from further analysis. However, it was recognised that important general trends could still be recorded through the quantification of decorative formats, hence the separation according to decorative technique. This significant variable was selected as previous experience and research has demonstrated that these categories often reflect chronological trends, and moreover rarely overlap stylistically. For example, stab and drag decoration is almost exclusively associated with Kansyore LSA, roulette decoration with the 2nd millennium AD/Entebbe ceramics, and incised decoration closely correlates with Urewe. Thus general trends can be identified effectively and swiftly through this simple and straightforward separation.

Reconstructable sherds

Reconstructable sherds were analysed individually recording the following variables; fabric type, form, rim style, rim diameter, body thickness, decoration on the a) lip, b)neck, c)body, d)interior, surface treatment, cultural attribution and quality of
execution. If a sherd was felt to be of particular significance, it was drawn in an accompanying notebook and/or photographed, with the relevant cross reference being recorded (see Fig. 5.16).

Statistical Manipulations and Results

With over 25,000 sherds recorded, a considerable volume of data was generated. It was therefore essential that the procedure for storage and manipulation of this data was both compatible and capable of answering the research questions set out previously.

Microsoft Access was selected as the computer programme in which to carry out this process, and was favoured over Excel as it allowed multiple ‘Querying’ of the data, asking questions of any element of the data-set. The query principle means that any aspect of the data can be compared, contrasted and correlated with any other, thereby fulfilling the requirements of variability and holistic analysis that cross-references multiple variables.

Structure and Definition of the Database

As noted in Chapter 1, evidence for this ceramic database comes from the work of three different research projects, and it is therefore worthwhile briefly reviewing the nature of the evidence, and how it will be structured.

Five case-studies will be made in total (see Fig. 1.8), drawing on both the recent work of Reid, Lane and the author, and in each case, the case study will describe any past research and the histories of the recent work. Within each case-study every excavated site will be examined individually, defining key research goals and aims on a site-site by level. It should however be noted that this work does not represent a comprehensive record of the research undertaken by Reid and Lane, and has selected sites and topics of relevance to the current research framework (see Chapter 1). Thus historic period data is not considered here. This work also omits full excavation records, except for brief background information; these data will be separately addressed by the researchers. Furthermore, with the limitations of time and space, it is
impossible to discuss the relevance of the complete survey data, and survey sites will only be used to develop the contextual knowledge of each case-study. The survey sites chosen by the author for mention do not therefore represent the complete survey record, and are a partial indication of result.
Chapter Six

Research Findings from the Northern and Western Lake: Case-studies 1-3

Data for case-studies 1-3 comes from the recent work of Andrew Reid (Institute of Archaeology, UCL) and his *Bananas and Iron in Buganda* project, which was carried out between 2000 and 2003, and represents the first comprehensive and systematic archaeological investigation of Buganda. I am very grateful to Dr. Reid for allowing me full access to the research findings and results. Additional information comes from archival work carried out in the collections of the Uganda Museum and the British Museum.

Wider discussion of the interpretive significance of the data will later be made in Chapter 8.

Case Study 1: Bugala Island, Kalangala District, Uganda

Bugala is the largest island in the Sese Island archipelago (see Fig. 6.1), and lies 6km from the mainland at its closest point. Of the 15 major islands, previous archaeological research (Fagan & Lofgren 1966a) briefly surveyed 4 of them (Bugala, Bufumira, Bubeke and Bukasa), where Fagan and Lofgren found evidence of MSA, LSA and 'Iron Age' activity. The later ('Iron Age') material consisted of occasional Urewe and Entebbe sherds, earthworks and abandoned field systems. Depopulated by the colonial sleeping sickness regulations (Hoppe 1997), the islands were slowly re-populated.

Initial survey was undertaken by Reid’s team in 2002 which prompted reconnaissance excavations and also a return to the island in 2003 for further work. In total 37 new sites were identified and 5 excavated. Examination of the survey material shows a clear presence of Urewe using communities at 13 survey locales, as well as 11 Entebbe
pottery find-sites and 2 additional ‘unknowns’. The remainder are deemed to be modern/historic and of no further significance here.

The primary research goals of this exercise are to establish patterns of behaviour and activity, particularly in regard to the lacustrine nature of the area. This will provide an important comparative resource for other case-studies, and may help understand systems of settlement and island/lake movement.

Entebezamikusa

Identified during survey in 2002, Entebezamikusa was subject to two seasons of excavation in 2002 and 2003 with nine excavation units covering an area of 31sqm revealing an average of 70cm of buried deposit. The results from the nine excavation units show that there is a comparable stratigraphy across the site, with a single horizon of archaeological activity overlain by c30cm of sterile overburden.

Early indications from the total and reconstructable sherd levels of analysis, suggest this is an Urewe ceramic using site. Total sherd data for example shows the exclusive use of an incised decorative technique with reconstructable sherd data show consistent exploitation of a restricted suite of fabrics and formal features, including such diagnostics as bevelled rims. This pattern is constant across the units and sequence and the site can therefore treated as a single component assemblage. One radiocarbon date was recovered, which falls within the early phase of Urewe using community presence in Uganda.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date BP</th>
<th>Calibrated date (2 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pta-9030</td>
<td>1890±60 BP</td>
<td>AD 85 (141) 238</td>
</tr>
</tbody>
</table>

Table 6.1 showing radiocarbon determination from Entebezamikusa

Indeed, this date represents the earliest radiocarbon determination from an Urewe site for the whole of Uganda, and furthermore is amongst the earliest outside the clutch of very early BC dates from Buhaya, Rwanda and Burundi. As with many, Urewe using

1 A number of sites record the co-occurrence of these different ceramic traditions
sites, spatio-temporal distinctions and analysis are untenable because of a lack of features and post-depositional mixing. As such, the research goals for this site will centre on the nature of the ceramic manifestation, and compare this with known phenomena.

Ceramic Analysis

Following the conceptual position outlined in Chapter 4, and the methodology outlined in Chapter 5, analysis is divided into technological and morphological profiles of the assemblage.

Technological Profile

Three fabric types have been recognised in the assemblage, B3, B4 and B5. These categories have been structured around island-wide types, as restricted access to raw materials produce island types rather than site-specific profiles. Thus the prefix ‘B’ is used here, which denotes ‘Bugala’. The properties of each fabric are listed below.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Physical properties and effect</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Dark grey-black to orange – uneven firing. Soft, fine-grained matrix, soapy texture. Angular quartzite inclusions (<5%), <1mm</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>B4</td>
<td>Dark grey-black to orange – uneven firing. Soft fine-grained matrix. Angular white quartzite inclusions (10-20%), gen. 1-3mm but occasional 3-5mm</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>B5</td>
<td>Bright orange fabric, almost inclusion free, with soft, friable matrix</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
</tbody>
</table>

Table 6.2. showing fabric categories

B5 represents something of an anomaly with very few inclusions, and perhaps represents a clay reliant solely on primary inclusions (i.e. not anthropogenically added). B5 however is the rarest of the fabrics, being only minimally represented. B4 is the most abundant (50%), followed by B3 (37.5%) and B5 (12.5%). Similarity in both the matrix and inclusions in fabrics B3 and B4 suggests analogous sourcing; similarities that also suggest this are local, and thus, island-based sourcing. However, different quantities and levels of processing of inclusions have resulted in different physical properties and effects, B4 being a coarser fabric compared with B3.
Post-depositional erosion has caused destruction of ceramic surfaces and therefore little can be said of the forming and production processes.

Morphological Composition

Fifty eight reconstructable vessels were recovered, with three major vessel forms dominating the assemblage; globular jars with everted necks (50%), hemispherical bowls (28%) and open bowls (17%) with a lesser number of closed bowls (3%) and straight-necked jars (2%). These forms correspond with the forms as laid down by the Leakey et al (1948) Urewe typology, and also broadly correlate with Van Grunderbeek's (1988) 60:40 ratio of jars to bowls. If we tally this distribution with the fabric groups (see below), it would appear that there are some particular inter-relations;

<table>
<thead>
<tr>
<th></th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>Outlier^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jar</td>
<td>21%</td>
<td>52%</td>
<td>21%</td>
<td>6%</td>
</tr>
<tr>
<td>Hem. bowl</td>
<td>44%</td>
<td>38%</td>
<td>12%</td>
<td>6%</td>
</tr>
<tr>
<td>Open bowl</td>
<td>70%</td>
<td>20%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Closed bowl</td>
<td>50%</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Straight neck jar</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 6.3 showing distribution of forms (n=58)

The jars favour the coarser B4 with a (relatively) high proportion using the enigmatic B5. Hemispherical bowls are split fairly evenly between the finer grained B3 and coarse B4, and B3 is clearly being favourably selected for the open bowls. The few dimpled bases found also seem to show a preference for the finer grained fabrics (B3, B5) with two of them being of B3 and one of B5.

As might be expected from an Urewe tradition assemblage, the diagnostic bevelled rims dominate (86%), with a lesser presence of simpler rounded (5%) and squared rims (9%). However, if these rim categories are then subdivided into simple and complex rims, following the notion of increased investment of effort, a more variegated pattern

^2 'Outlier' here refers to rare ceramics that do not fit into the identified groups, and which are too few to warrant individual groupings
emerges. Simple bevelled rims (2 bevels), which require a relatively rudimentary technique of pinching the rim between thumb and forefinger to gain the double-facet effect, can be differentiated from more complex examples, where multiple bevels (3 or more) are created, thus giving a slightly more textured picture of variability.

<table>
<thead>
<tr>
<th></th>
<th>Simple bevel</th>
<th>Simple Rounded/Square</th>
<th>Complex bevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jar</td>
<td>69%</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>Hemisph. bowl</td>
<td>19%</td>
<td>25%</td>
<td>56%</td>
</tr>
<tr>
<td>Open bowl</td>
<td>20%</td>
<td>0%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Table 6.4 showing distribution of rims (n=58)

These results show similar a pattern to that of the fabric/form relationship; the jars once again favour the less complex option involving less investment of effort (simple rims, simple clay processing), the hemispherical bowls are split between the two, and the open bowls overwhelmingly favour the complex bevel (as they did the finer-grained and better sorted fabric B3). So there is again a distinction in the levels of energy and time invested relative to form.

Another curious result that emerges from this rim data is the morphology of the two closed bowls. Both examples of this form have a complex bevel with multiple grooving (see Fig. 6.2). The angle of the rim is unusual being recurved creating a very high carination; a style that is more generally associated with Kwale ceramics of the Kenyan and Tanzanian coast and hinterland (Soper 1971c; see Fig. 4.3). These isolated finds, well away from the known distribution of Kwale suggests that no direct association between the two should be assumed. Instead, it is suggested, considering the close typological relationship already identified between Urewe and Kwale (see Chapter 4), that these finds at Entebezamikusa represent a parallel and independent innovation at this site, and thus reflects an example of localised intra-Urewe variation.
The degenerative effect of surface erosion on the ceramics particularly hinders exploration of decoration. However, some level of analysis is possible using unaffected sherds, which show lips are consistently plain, whilst the rim area shows the greatest level of decoration;

<table>
<thead>
<tr>
<th></th>
<th>plain</th>
<th>Horiz. incised</th>
<th>Oblique incised</th>
<th>Circular incised</th>
<th>Cross-hatch</th>
<th>herringbone</th>
<th>punctate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jar</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hem bowl</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Open bowl</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.5 showing distribution of decoration (n= 43)

The decorative effects present fall into typical Urewe styles, with an emphasis on incised decoration, and particularly the horizontal bands and cross-hatched patterning.

Interestingly however, the decoration also shows unequal evidence of decorative investment relative to form, with open bowls having the highest proportion of decoration (67%), closely followed by the hemispherical bowls (64%) whereas the jars are restricted to a 17% decorative incidence. This idea of ranked stylistic investment mirrors the results from the fabric and rim data, which also show imbalanced levels of investment (fine vs. coarse fabrics, simple vs. complex bevels).

Comments and Discussion

Although this site cannot contribute to spatio-temporal lacunae in understanding of the domestic archaeology of Urewe using communities of the 1st millennium AD, useful insights still emerge from the analysis of the ceramics alone.

Technologically, it is highly likely this is a locally produced assemblage, utilising local raw materials from the island. This technological insight, as well as the relative abundance of Urewe survey sites on the island (see above) indicates a close relationship

1 Unfortunately the effects of erosion have also hindered consideration of vessel size as the disintegration of the matrix results in unreliable rim diameters and incorrect vessel wall measurements.
with the island landscape rather than fleeting or ephemeral exploitation. Therefore, it can be argued that the early date generated by 14C is related to a relatively settled and sustained occupation of the island. This is significant, as it demonstrates that even at this early stage, Urewe using communities were exploiting the wider lake environment and capable of negotiating water-borne transport.

To summarise the preceding ceramic results, it seems apparent that an imbalanced relationship exists between the vessel forms and the varying scales of energy input and levels of morphological detail. Although fewest in number, open bowls show the highest level of sustained investment and effort, with emphasis on the finer grained fabric (B3) that requires heightened processing, more complex rim styles and the greatest volume of surface decoration. Hemispherical bowls have a mixed composition with approximately half to two thirds showing the features of the finer, high investment ceramic. Jars meanwhile, despite being the most frequent form, show the lowest incidence of such marks of investment, with a predominance of fabric B4, simple rims and only a 17% incidence of decoration.

These differences may be fruitfully explored through examining potential socio-functional applications. With an open form that precludes storage or cooking, the open bowls are most likely to be associated with the serving and consumption of food or the presentation of small items. In this sense therefore, their likely public role and high visibility perhaps explains the levels of investment imbued in them. Hemispherical bowls are highly adaptable and can be used for cooking, short term-storage and serving, and it is therefore perhaps not surprising that there is a mixture of high and low investment, arguably proportionate to their specific roles as utilitarian cooking vessels (fabric B4, 2 bevels, plain) or public bowls (B3, complex bevels and herringbone rim decoration for example). Most curious are the jars, which like the open bowls are restricted in their functional capacities, being best suited for the storage and pouring of liquids. These constitute the most frequent vessel type (both here and in wider studies – e.g. Van Grunderbeek 1988), and we must therefore assume a central utilitarian role for them. However, despite this centrality, jars are not subject to the same levels of
investment seen in the open or hemispherical bowls, and it might therefore be assumed that they are not imbued with the same level of social (and productive) investment.

What role these jars play precisely, is intriguing. Their forms are clearly focused on liquid storage, and in the high quantities found here, must represent an important component of the ceramic repertoire. Long-term mass storage also seems to be unlikely with the moderate sizes of the vessels (18-24cm diameter). It is possible therefore that some sort of liquid such as water or even beer and milk was important. Whilst the precise applications can only be speculated at this stage, it is nonetheless clear that Urewe production was orientated around essential liquid storage and/or consumption, which in this case was a mundane element not worthy of extra technological or morphological investment.

Conclusion
In conclusion, this represents an important Urewe using site for a number of reasons. At a basic empirical level, Entebezamikusa has provided the earliest date for an Urewe using site in Uganda. Moreover, this early date demonstrates that communities were already accessing lacustrine resources and settling on offshore islands, and therefore presumably in possession of maritime technologies. This has implications as it suggests well organised communities actively appropriating and colonising the land. In this regard, it is notable that other island sites such as those on Buvuma, Bugaia (Nenquin 1971), Chole (Soper & Golden 1969) and Lolui (see later and Posnansky et al in press) also have Urewe remains, although all undated.

On a ceramic orientated level, results from this site start to hint at local manifestations (e.g. Kwale-like sherds) and also show how an assemblage can be broken down so that initial socio-functional observations can be made.

Lutoboka
Lutoboka lies on the beach east of Kalangala Town, and was located in 2002 when local sand harvesting exposed archaeological ceramics eroding out of a section (see Fig. 6.3).
Three 1m x 1m test excavations were dug at the edges of the harvesting pit where the deposits were undisturbed, and revealed sterile sand deposits of c60cm before a thin lens of charcoal and ceramic, c2-5cm thick, lying on top of a further sterile sand layer. This shallow deposit indicates temporally restricted exploitation of the site, suggestive of ephemeral and short term settlement. In this regard it may be useful to look at the location and context of the site, which lies close to the lakeshore and in a sheltered bay, and perhaps speculate that the site may represent a mobile, or seasonally intermittent, fishing group, settling in a position suitable for exploiting the nearby aquatic resources.

Despite the limited activity at the site, radiocarbon analysis was carried out on the charcoal because of the importance of the ceramic finds. Two dates were retrieved

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date BP</th>
<th>Calibrated Date (2 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pta-9019</td>
<td>1130±35 BP</td>
<td>AD 902-932; 945 (977) 995</td>
</tr>
<tr>
<td>Pta-9018</td>
<td>1320±50 BP</td>
<td>AD 676 (706) 780</td>
</tr>
</tbody>
</table>

Table 6.6 showing radiocarbon determinations from Lutoboka

Although the dates do not overlap they generally represent a late first millennium AD date, the discrepancy is possibly caused by old wood, or as suggested intermittent use of the site over time.

Ceramic evidence is limited but intriguing as the material doesn’t fall into any of the known traditions detailed in Chapter 5. Preliminary examination however, indicates internal typological consistency, supporting the notion of discrete short-term occupation/exploitation of the site. Research will therefore examine this rare example of a well-preserved ephemeral site, and also to discuss the patterns of activity particularly in light of an unknown ceramics tradition. Moreover, as this site falls into the terminal Urewe/ late first millennium hiatus, it will provide a useful insight into this poorly represented period of Great Lakes history identified in Chapter 2.
Ceramic Analysis

The limited archaeological contexts resulted in a small total ceramic assemblage of just 35 sherds. As a result all the sherds collected from survey (i.e. those that had fallen from the eroding sections) were also analysed with those from excavation.

Technological Profile

All the ceramics from Lutoboka, barring 1 vessel, were made from a single fabric type, B2. The exception is from an unknown fabric outlier and will be discussed separately.

<table>
<thead>
<tr>
<th>Physical properties and effects</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2 Light brown – grey brown, mixed oxydised/unoxydised. 10-20% angular quartzite inclusions, 1-5mm</td>
<td>Incised</td>
<td>Lutoboka</td>
</tr>
</tbody>
</table>

Table 6.7 showing fabric category

The colouring of the matrix and inclusions are consistent with those found elsewhere on the island (see Entebuzamikusa), and again suggest local sourcing of raw materials. Perhaps as a result of the extremely sandy context of deposit, much of the pottery was heavily eroded, so that surface patina is sometimes completely absent.

Morphological Composition

13 reconstructable sherds were recovered, in total. The morphological features do not comply with any established ceramic typology used in this region (see Fig. 6.4).

The vessel forms are restricted to flared mouth bowls (50%) and hemispherical bowls (42%) with a single closed mouth bowl which will be discussed separately (see also fabric outlier mentioned above). Two bases have been recovered, one of which is flattened, and one which is curved with a small flattening at the apex. Rims are varied in their permutations but are essentially double faceted rims that are bevelled or leaf shaped. Decoration is hard to assess because of erosion. However where present, it is

4 This might sound problematic, but as the lens of archaeological activity was so thin and there was no other material culture (archaeological or modern) in the area, it can be fairly confidently stated that all these artefacts are directly associated.
exclusively incised and located on the rim, with horizontal bands of multiple grooves (27%), or (enclosed) bands of incised chevrons (27% - the remaining 46% are eroded and impossible to determine). The closed mouth bowl is an exception to all these patterns, with a squared rim, and a double band of closely incised cross-hatched decoration and linear punctuate impressions reaching c.2cm down the rim (see Fig. 6.4h).

Comments and Discussion

Whilst the archaeological evidence at Lutoboka is admittedly limited, this is nonetheless an important collection. The evidence presents an assemblage that does not directly conform to any acknowledged ceramics tradition in the region, and lies within the hiatus period identified in Chapter 2 for the terminal 1st millennium AD. Moreover, despite the small size of the collection there is sufficient internal stylistic consistency and integrity to recognise this as a discrete and distinct phenomenon, rather than as series of aberrations. It is therefore important to try and place the Lutoboka phenomenon within a broader sequence, helping to develop a more fine-grained diachronic archaeological map of the local area.

The first step is to try and find any possible parallels or connections within the extant record. This results in two partial matches; within the Entebbe figurine assemblage, and in the unpublished Lolui material (Posnansky & Chaplin 1968; Posnansky et al in press). The Entebbe figurine assemblage is typically associated with roulette decorated pottery (including Entebbe ware). Re-examination of the publication (Posnansky & Chaplin 1968) however, also reveals a chevron incised style that closely resembles the Lutoboka material (see Fig. 6.5). Deemed to be recent (c 1800-1825) because of its association with roulette decorated pottery, and an early reliance on the erroneous Nsongezi radiocarbon date (see Chapter 2), the Entebbe figurine and associated chevron decorated ceramic has been largely ignored and forgotten by archaeology.

The second example comes from the island of Lolui, where illustrations from a forthcoming paper (Posnansky et al) show another instance of this style of ceramic
with loose chevron incisions (see Fig. 6.6). Like the Entebbe figurine assemblage, this example of the ceramic comes from a mixed assemblage that includes Entebbe pottery, and Posnansky's 'Devolved Urewe' (see Chapter 2, 5, and also Chapter 7). The recovery of these parallel examples of a chevron decorated pottery, which closely resembles that of Lutoboka, and come from widely dispersed locales across the northern shore of Victoria Nyanza, demonstrates that the Lutoboka occurrence is not a localised, island-specific mutation, and reiterates the notion that it is a discrete ceramic style worthy of individual consideration. Furthermore, the location of parallel examples at lakeshore sites in Entebbe and Lolui, further supports the earlier suggestion that Lutoboka activity may have been linked to lake-bound economy.

Having established the veracity of Lutoboka ceramics as an independently valid research concern, it is necessary to try and further contextualise these ceramics into the wider framework of Great Lakes ceramics and archaeology. This leads to a clear typological association with Urewe pottery. All the diagnostic features of the Lutoboka ceramics can be found within the Urewe tradition, with similar forms, facetted rims and the panels of incised decorations (Leakey et al 1948). Nevertheless this is not Urewe ware as the accepted terminology dictates; the formal range is too limited, the rims do not follow through to the stylistic permutations of bevelling, and the decoration is too stylistically restricted and crudely executed. Typical Urewe, is a complex and highly variable commodity that shows a diversity of manifestations – the Lutoboka style has a greater simplicity of expression. The Lutoboka typology is undoubtedly linked to the wider phenomena of the Urewe tradition, but yet is discretely different and independent.

In trying to understand this inter-relationship, it is useful to return to the radiocarbon dates recovered from Lutoboka. Although these dates do not overlap, they indicate a late first millennium AD date, which places the Lutoboka activity towards the end of the Urewe-using spectrum, and into the all important C8th - C10th hiatus discussed in Chapter 2. The assemblage thus starts to gain resonance and importance, as it becomes clear that Lutoboka ceramics are closely linked to Urewe, and yet fall outside its
terminal chronology. Two key points emerge. Immediately we have evidence that the apparent hiatus in overall activity at this time is inaccurate, and that occupation of this area continues. Moreover, the transmission of certain typological ceramic features into this post-Urewe period strongly hints towards a concomitant continuity in population and settlement. The notion of lacustrine depopulation in the 2nd millennium AD, and of demographic replacement by outside communities (see also Chapters 2 and 3), are thus seriously compromised. Furthermore, through correlation with the Entebbe figurine assemblage and Lolui, Lutoboka also provides a proxy date for these hitherto un-dated phenomena, thus also cautiously extending this ‘post-Urewe’ activity across a large swathe of the northern lake shore. Limited then as this data set is, it is nonetheless already challenging pre-existing archaeological sequences for the area, and providing all important data to plug the chronological gap.

Conclusion

Although this is an unprepossessing archaeological entity, with just 35 artefacts and only an isolated lens of archaeological deposits, it is proving to be an important empirical and interpretive resource. Its significance can be summarised thus

- Introduction of a new ceramic style, henceforth termed Lutoboka pottery, which may represent a post-Urewe evolution of ceramics.
- The site falls into the identified archaeological gap of late 1st millennium AD, which coupled with evidence of possible continuity of Urewe features into Lutoboka ceramics, suggests a concomitant continuity of settlement and population in contrast to the extant picture of depopulation.
- The location of Lutoboka ceramics (thus far) in exclusively lacustrine locales suggests a focus on the lake – here hypothesised as an economic exploitation as well as a settlement preference.
- The anomalous closed mouth bowl sherd from Lutoboka does not fit into the Lutoboka definition, and therefore needs to be further investigated to assess its archaeological position – whether as an isolated phenomenon or part of the wider post-Urewe dynamic.
Sozi

Identified during survey in 2002, Sozi is a narrow rockshelter site located close to the beach, where a 1m x 1m test excavation unit was dug close to the boundary of the drip line of the rock overhang. Within the shelter archaeological activity was identified in a buried deposit associated with both ceramics and grinding stones, and possibly also a stone line dividing 'internal' from 'external' space.

Preliminary ceramic examination indicates an assemblage not dissimilar to that of nearby Lutoboka. Research goals therefore are geared towards comparative typological and contextual analysis.

Ceramics Analysis

Like Lutoboka, the ceramic assemblage from Sozi is very restricted with just 36 sherds weighing 0.255kg. Considering these restrictions, all sherds from both survey and excavation are considered together.

Technological Profile

All sherds conform to the previously encountered fabric B2

Morphological Composition

10 Reconstructable sherds were recovered, which show many close similarities with the examples found at Lutoboka. Five flared mouth bowls and one restricted flared mouth bowl were recovered, with squared and double facetted rims, and grooved and chevron incised decoration on the rim. As well as these examples which perfectly match the Lutoboka style, another example of the anomalous closed mouth bowl found at Lutoboka was also recovered, once again with interspersed cross-hatching and horizontal punctate. In addition a roulette decorated rim with thickened lip that falls within an Entebbe ware style was found.
Comment and Discussion

This is clearly a limited assemblage that holds restricted interpretive potential. However, the assemblage importantly re-affirms the status of the Lutoboka ceramics as a discrete and definable phenomenon. Moreover, the intriguing closed mouth bowl found in Lutoboka, which was typologically distinct from the main assemblage, was also replicated here. This strongly suggests that whilst the closed bowl is stylistically discrete from the general Lutoboka facies, it forms part of the same 'package' of ceramic activity. Henceforth, this style of ceramic will be termed 'Sozi'. Intriguingly also, a single sherd of the Entebbe pottery group was also found, raising the possibility that this discrete ceramic tradition was also temporally connected.

Further points to consider here are the proximity to the Lake which supports the previously mooted idea of a lacustrine focus, and also the direct context of recovery in a rockshelter. It is unlikely that such a small rockshelter would have been permanently settled by sedentary communities, reiterating the notion of ephemeral settlements, possibly of fishing groups, as posited in relation to Lutoboka.

Malanga Lweru

Malanga Lweru was discovered during survey in 2002, and was subsequently excavated in both 2002 and 2003 with three different areas of artefact concentration found; Malanga Lweru 1-3.

Five excavation units were dug, ranging in size and covering a total surface area of 52 square metres. Excavation showed a consistent stratigraphic sequence across the site that can be summarised as an overburden of sterile topsoil, covering the primary cultural deposit.

In addition, a concentration of piled stone cairns was found slightly north-east of Malanga Lweru (see Fig. 6.7). Excavation of these features showed few diagnostic artefacts (1 Entebbe sherd, grindstones), although the sequence suggests original construction of the cairns on the same ancient land-surface as the rest of the Malanga
Lweru site. It is tentatively argued therefore that these features are directly associated with the wider activity at Malanga Lweru.

Initial ceramic examination shows a primarily Entebbe assemblage, but with smaller elements of Urewe and Lutoboka pottery. The research aims here then will be the definition of the principal ceramic activity on site; i.e. Entebbe ceramics, which have previously been poorly characterised and interpreted.

Two 14C determinations were recovered from Malanga Lweru.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date BP</th>
<th>Calibrated Date (2 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pta-9021</td>
<td>1470±60 BP</td>
<td>AD 583 (637) 661</td>
</tr>
<tr>
<td>Pta-9010</td>
<td>2420±50 BP</td>
<td>502-462; 427 (406)394 BC</td>
</tr>
</tbody>
</table>

Table 6.8 showing radiocarbon determinations

Both these results seem unlikely for the site of Malanga Lweru, lying within a timeframe usually associated with Urewe using communities rather than Entebbe. Indeed Pta-9010 is similar to the earliest established dates for Urewe using communities which are restricted to Buhaya, Rwanda and Burundi. Although four Urewe sherds were found at Malanga Lweru these are unlikely to represent meaningful site occupation, and it is therefore suggested that the two dates retrieved are unfortunately erroneous, being too early for consideration in relation to a predominantly Entebbe bearing site.

Ceramic Analysis

Nearly 1300 sherds were collected from the Malanga Lweru sites, 56 of which were deemed reconstructable.

Technological Profile

Three fabric types are present in the assemblage, B1, B2 and B3, although there is an overwhelming domination by B1, which constitutes 94% of the assemblage by weight.
and 96% by number. B2 and B3 have already been encountered at Entebezamikusa and Lutoboka, and B1 can be summarised thus;

<table>
<thead>
<tr>
<th>Physical properties and effects</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 Soft & friable variable coloured (buff-grey white to yellow-orange brown), angular quartz inclusions (1-3mm), c.15-20%</td>
<td>TGR, Comb scoring</td>
<td>Entebbe</td>
</tr>
</tbody>
</table>

Table 6.9 showing fabric properties

The raw materials used are similar to those encountered elsewhere on the island, and are again consistent with the idea of local sourcing. Furthermore, microscopic analysis of sample sherds showed shell fragments and sponge spicules in the clay matrix of B1. This is good direct evidence of lake clay sourcing, as sponge spicules are the siliceous particles present in freshwater sponges, and can be found in ceramics either as a result of decayed sponge matter in the clay deposits, or as purposeful addition of sponge as a tempering material (Adamson et al 1987; Brissaud & Houdayer 1986). Both processes indicate a freshwater source with a maximum distribution distance from lake/rivers of 10km being postulated (MacDonald pers. comm.). In the present context, this is almost certain proof of local lacustrine production.

Morphological Composition

Three different ceramic traditions are present in this assemblage, and as with the attribution from Entebezamikusa and Lutoboka, fabrics B3 and B2 can be correlated with Urewe and Lutoboka ceramics respectively. These ceramics will be discussed later.

The bulk of this assemblage (38 reconstructables) is however, overwhelmingly, of the B1 fabric, which Total Sherd analysis has shown to be associated with TGR and comb-scored decoration, consistent with an Entebbe pottery attribution. This attribution is supported when the morphological diagnostics of the reconstructable sherds are also broken down. Thus the vessel forms are dominated by closed mouth (71%) and hemispherical bowls (21%) with a much lesser degree of collar-necked bowls (5%) and
open bowls (3%) (see later discussion of ‘Entebbe-style’ collar neck and open bowls). It must be assumed that bases are rounded as no bases are distinguishable from the rounded body sherds. A single handle has been found, representing the first instance of such an addition (see Fig. 6.8).

The diagnostic thickened Entebbe rims are present in abundance. However, unlike Hippo Bay Cave and Pumping Station Point where Brachi (1960) and Marshall (1954) found very rounded and curved thickened rims, the Malanga Lweru ones tend to favour a more squared lip. These squared styles are principally 5j, 5h and 5k, although as the table below shows there are limited instances of the more rounded 5a and 5b (as well as simpler, un-thickened rounded (3a) and squared rims (1b,2a; see Fig. 5.10).

<table>
<thead>
<tr>
<th></th>
<th>5a</th>
<th>5b</th>
<th>5h</th>
<th>5i</th>
<th>5j</th>
<th>5k</th>
<th>1b</th>
<th>2a</th>
<th>3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clsd bowl</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hem.bowl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diam. Av</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>26cm</td>
<td>31cm</td>
<td>25cm</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Diam.range</td>
<td>18-36+</td>
<td>24-36+</td>
<td>18-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. Rim thickness</td>
<td>2.3</td>
<td>1.2</td>
<td>1.3</td>
<td>3.27</td>
<td>3.91</td>
<td>2.26</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Rim. thick. range</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>2-5.1</td>
<td>3.2-4.4</td>
<td>1.5-3.2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 6.10 showing distribution of rim

On initial examination there appears to be an indexed relationship between 5k rims and hemispherical bowls. However this is merely a by-product of rim morphology as the 5k rim is a narrower version of the 5i rim, and thus does not possess the thickened internal overhang that helps restrict the orifice of the vessel from a hemispherical to closed mouth shape. This difference in rim thickness between 5i and 5h rims, is clear from measuring the rim at its thickest point; thus a complete 5i rim can reduce the diameter of the vessel by up to 10.2cm changing the form from a hemispherical bowl to a relatively closed mouth bowl.

These thick rims are proportionate to the overall sizes of the vessels where diameter measurements consistently show large to very large bowls. The diameter
measurements (which only record the internal diameter) show substantial vessels. However, it should also be noted that by accounting for the thickness of the rims there could be an additional c10cm on the mouth diameter (i.e. up to 46+cm). Furthermore, by accommodating the curvature of the spherical bowl shape, the width at the widest point of the vessel (i.e. shoulder) is greater still, perhaps up to a further 10cm across (i.e. up to c.56cm). This size-range must have implications for manoeuvrability and function.

Interestingly however, as Table 6.10 shows, there are a number of vessels within this assemblage without the characteristic thickened rim and instead have fairly non-descript rounded or squared rims (2a, 3a). These vessels might superficially be regarded as outside the Entebbe typology, missing as they are one of the key diagnostic traits. However, in every other respect these ceramics match the wider pattern (fabric, form, size) and it should therefore be recognised that this ‘simpler’ rimmed form is also an integral component of the wider typology.

Decoration on Entebbe ceramics is restricted to TGR or comb-scoring. Decoration on the lip is heavy with a 91% incidence of TGR (diagonal, herringbone) or horizontal comb-scoring. Unsurprisingly the narrower rims on the hemispherical bowls (5k) tend to favour the simpler diagonal TGR whilst the broader rims of the closed bowls allow the space for the more complex composite herringbone effects. Decoration decreases on the rim and body of the vessels, but those that are, utilise the same techniques of TGR and comb-scoring. Decoration on the interior of the vessel, another diagnostic of Entebbe ceramics, has a relatively high incidence, with 49% being decorated by comb scoring in a range of panels and bands.

This description of the ceramic conforms to the scant typological description of Entebbe pottery available from Brachi (1960) and Marshall (1954), with analogous forms, thickened rims, size, fabric composition and decoration. Additional insights however, have come from the previously unrecorded squared thickened rim styles (5k, 5j), the simpler round/squared rims (rims 3a, 2a), and the presence of a single handle. In
summary then, whilst there are internal variations, this element of the assemblage conforms closely to the existing Entebbe typology, providing a much needed level of detail and analytical structure that assists the growing definition of the ware.

A small number of sherds (5 reconstructable) show close correlations with this broader definition of Entebbe in terms of fabric and decorative techniques, yet differ in other respects, demanding individual attention (see Fig. 6. 9). Made from the same B1 fabric, these examples possess a greater range of vessel forms (2 hemispherical bowls, 1 open bowl and 2 collar-necked bowls) and are also missing the characteristic thickened rims, having simpler squared or rounded rims instead. Decoration continues to utilise the same decorative techniques of TGR and comb scoring, yet they are applied in such a way to give quite different effect (swirling comb-scoring, thin bands of TGR) and in different locations (e.g. roulette on the interior). The continuity in decorative techniques/tools is significant, as no other tradition in the Great Lakes uses the comb-scoring effect. Thus, although there are differences, especially in form, rims and decorative format, the similarities in fabric technology and decorative techniques are too close for coincidence, and must indicate direct association. A new, intra-Entebbe style is therefore posited, which intriguingly, shows a high level of variability from the parent model, with more diversity in a mere 5 sherds than in the rest of the typical Entebbe assemblage. This ceramic is therefore temporarily termed Entebbe-style to explain the relationship.

In addition to these Entebbe/Entebbe-style ceramics, small quantities of Sozi (5 sherds) and Lutoboka ceramics (2 sherds) have also been found, and conform to the typology established above. The exception to this is a new form of a large closed mouth jar that otherwise conforms to the Lutoboka typology. Curiously also there are 4 sherds that seem to fall under an Urewe style. This association is difficult to determine as they are not highly diagnostic and therefore might be part of a Lutoboka assemblage (which has already been shown to have stylistic similarities with Urewe), or may be a discrete Urewe phenomenon.
A final, non-ceramic, element that needs to be mentioned here is the recovery of a small number of snapped cane glass beads which must originally have come from the eastern African coast as trade goods (see Fig. 6.10). Similar beads from Ntusi have been recovered, which give a loose proxy date of C13th – C14th AD, and thus later than the contested 14C date. Finished iron artefacts (e.g. spear heads) were also recovered, and like the glass beads, these goods are probably ‘exotic’, as there is only slight evidence (undated) for iron-working on Bugala (Reid survey). No other site on the island produced such material (metal and glass beads), and it might therefore be tentatively suggested that there was a connection between the community of Malanga Lweru and a wider trading/exchange network.

Comments and Discussion
Malanga Lweru represents an important empirical addition to our sum of knowledge regarding Entebbe pottery and its users. With so few sites previously excavated this is a useful opportunity to refine typology, and also to begin a process of placing the ceramic within their wider socio-economic and chrono-spatial contexts.

Previous research at the type sites of Pumping Station Point and Hippo Bay Cave (Brachi 1963; Marshall 1954) and to a lesser extent at sites with isolated, though often un-recognised, illustrations of Entebbe sherds (Fagan & Lofgren 1966; Nenquin 1972; Posnansky et al in press; Posnansky & Chaplin 1968) has suggested that the Entebbe assemblage is one that is relatively restricted in its morphological scope with a limited range of formal and stylistic expression. Whilst the evidence from Malanga Lweru has increased the range of variation known (e.g. different rim variations), it has perpetuated the sense that this is a highly consistent and undifferentiated ceramic type.

Viewing the assemblage from the perspective of functionality, it is notable that this homogeneity, particularly in forms and rims, does not permit much function-specific variation. In essence, this assemblage comprises large wide-mouthed bowls, which afford easy access to their contents. This focused concentration on a single morphological shape strongly suggests specific adaptation and specialist use. However
this 'specialist use' is very difficult to determine from the available ceramic evidence. The wideness of the vessel mouth argues against long-term storage strategies where evaporation or spillage would be an issue, whilst the incurved/overhanging rims do not recommend pouring. The ease of access to the contents might therefore suggest cooking; however the sheer size of the vessels would not encourage easy movement or handiness. Calculation of average capacities of Entebbe vessels suggest a bowl with a mouth diameter of 40cm would have a holding capacity of 48 litres (see Appendix 1), and even a much more modest vessel of 25cm diameter (in fact ‘small’ by Entebbe standards), would have a capacity of 7.5litres, rising sharply as the diameter increases.

This bulkiness indicates that the functional requirement of the bowl demands stability and lack of movement, as well as easy access to the contents. Possible explanation might therefore include storage of goods that do not spill – e.g. dried fish, clay, iron ore, root crops, general belongings, or perhaps short-lived liquid commodities such as milk or beer. One possible supporting factor for beer [and milk?] is that the internal striations created by the comb-scoring may be useful for the cultivation of bacteria that encourage fermentation. This element of the decorative make-up is often completely hidden from the public view – especially if the vessel is full, and therefore suggests a role that is more functionally utilitarian than socially expressive.

Whatever the current difficulties in determining specific function\(^5\), it is still important to recognise that this is not a ceramic strategy that readily admits the typical ceramic applications of long-term storage, cooking, preparation or serving. It must therefore be assumed that alternative mechanisms are in place for this (e.g. baskets, skins) and that ceramic vessels are linked to a specific suite of activities that remain consistent and important right across the known distribution of the northern lake. A second suggestion that emerges from these observations, particularly of size, is sense of permanency and continuity of settlement. Such cumbersome vessels are not readily transported and are not suited to a mobile economy. Although transport by lake would reduce the burden of movement, Entebbe pottery would remain awkward to handle

\(^5\) In the future it is hoped that a programme of residue analysis can assist the understanding of precise functional application.
even in a boat. Tentatively then, on the basis of size, it is suggested that Malanga Lweru may have been a fairly settled community of long-term occupation (perhaps in contrast to the Hippo Bay Cave rockshelter site).

The above arguments relate to the typical Entebbe components of the assemblage, however the 5 Entebbe-like sherds are clearly more varied in their manifestations and therefore suggest greater diversity in socio-functional applications. Formally there are vessels suitable for cooking and serving (the hemispherical bowls) as well as liquid storage (collared bowls). Moreover these five vessels are much smaller than the archetypal Entebbe, and are therefore more manageable and appropriate for movement and individual use. These variants occur in very small quantities within the wider assemblage, and this scarcity is important. There are two possible explanations for this; the Entebbe-style pottery is stratigraphically intrusive from later/earlier periods, or that they serve specific socio-functional roles within the wider Entebbe using community. If they are chronological variants, this evidence demonstrates the evolution of the ceramic tradition, and presumably the socio-functional roles of that pottery, as different forms are used. On the other hand, if they are intra-Entebbe variants, the scarcity hints at specific and possibly restricted use and access. On the evidence of 5 sherds at an admittedly mixed site neither option can be eliminated, and must here be simply recorded and remembered for future discussion and reference.

The presence of Sozi and Lutoboka ceramics at this site once again re-affirms their independent statuses, as well as their inter-connectedness and apparent depositional symbiosis. However, what also seems apparent from Malanga Lweru is that both these ceramic types are also found in direct association with Entebbe pottery.

An explanation for this co-occurrence is potentially found in the site’s wider location. Situated on an island, the occupants of this site must, by its very nature, have been familiar with lake movement and transport. It has already been suggested that Sozi and Lutoboka ceramic manufacturers were linked into a lake system; Brachi (1960) moreover, made the suggestion that Entebbe using communities may have displayed
predilection for lacustrine areas in their choice of settlement locale, a notion that have been borne out so far by the present research. In this regard it is perhaps significant that special finds from Malanga Lweru (glass beads and iron objects) show evidence for trading. The recovery of such objects suggests involvement in regional trade, and perhaps with the growing evidence for a lacustrine affinity, and that trade may have been facilitated though water-borne transport.

The glass beads are also useful here as a proxy dating guide in the absence of reliable 14C dates, providing an early-mid second millennium date by association. This fits within the gap in our knowledge of this area in the 2nd millennium AD.

Recovery of Entebbe from the nearby cairns also seems to support the association with the main Malanga Lweru site. There are moreover, recorded instances of cairns on Lolui which are also associated with Entebbe ceramics (Posnansky et al in press), suggesting that such monuments are part of the wider Entebbe users cultural landscape.

Conclusion

This is a useful site for a number of reasons

1. It helps refine the Entebbe typology by showing previously unrecorded variations which will contribute to the long-term goals of this thesis of exploring wider patterns of variation and diversity.

2. As the known Entebbe sites grow, and the analysis is specifically problematised, this site is contributing to the understanding of the socio-functional role of these ceramics, and thus understanding the wider social structure of Entebbe pottery producing societies as well as its age-range.

3. This assemblage has shown the direct association of Entebbe pottery with Sozi and Lutoboka ceramics and suggested that together they may be part of a lake wide network of social and economic communications and trade.
These results are evidently partial and do not completely answer key research questions stated in this thesis. Nevertheless, this composite assemblage is an important foundation base for further discussion.

Kasenyi Bumangi

Located in the Lakeshore, the site of Kasenyi Bumangi was identified by survey in 2002 and subject to limited test excavation in the same year. A single 1m x 1m test pit was dug with a stratigraphic sequence that follows that found at other sites on the island, with a buried cultural deposit overlying a gravely natural sub-soil.

Preliminary ceramic examination suggests a small but recognisably Entebbe ceramic assemblage. Research aims at Kasenyi Bumangi will therefore be restricted by the size of the assemblage, but yet can explore how the ceramic typology at Kasenyi Bumangi tallies with the existing evidence of Entebbe using communities from the island (and further afield).

Ceramic Analysis

This assemblage was relatively small with 126 sherds in total, 7 of which were reconstructable.

Technological Profile

Fabric B1 is again in use here, with sherds showing microscopic evidence of spicules that once more indicates a local source. There is however a possible additional inclusion of grog as a temper, however as the sample is so small, it is difficult to determine the consistency of such a feature.

Morphology

Vessel forms are split into 4 hemispherical bowls and 3 closed mouth bowls, with typical Entebbe thickened rims, TGR and comb-scored decoration.
This is clearly an Entebbe assemblage. However, significantly, this Entebbe assemblage differs from that of Malanga Lweru. At Kasenyi Bumangi the rounded thickened rims are favoured (5b and 5c), as at other published Entebbe sites (Brachi 1960; Marshall 1954) rather than the squared thickened rims found at Malanga Lweru.

Comments

Although this is a small assemblage, it crucially shows that there is intra-Entebbe differentiation within the small and bounded area of the island. Therefore, it cannot be argued that the squared Entebbe rims from Malanga Lweru are a regional deviant that is in exclusive use on the island; and that other explanations must be considered in wider discussion of the Entebbe variability, such as chronology or functionality.

Case-Study 2: The Entebbe Peninsula, Mpigi and Wakiso Districts, Uganda

Colonial governance and settlement on the Entebbe peninsula (see Fig. 6.11) ensured a greater level of research attention to this area than elsewhere, with early excavations around the peninsula by Marshall (1954) and Brachi (1960). However the amateur nature of some of these researches is reflected by Brachi’s work at Hippo Bay Cave, which he excavated over a period of two years as a weekend hobby, often leaving the units open for months at a time. Nevertheless, despite the often haphazard research methodology, significant findings emerged, which are worthwhile briefly reviewing here.
Marshall (1954) and Brachi’s (1960) work brought to light the Entebbe ceramic phenomenon, as well as Festoon ceramics from Hippo Bay Cave. Brachi speculated that these were the remnants of relatively late occupation (late second millennium AD) and that there might have been a particular affinity between the producers of these ceramics and lacustrine environments. Since then, as has been shown in Chapter 2, little attention has been directed at the Entebbe ceramic phenomenon, although the present work has already suggested greater antiquity for the phenomenon than previously supposed (see Case study 1). Also forgotten somewhat has been the recovery in 1929 of the Luzira Head and in 1962 of the Entebbe figurine. Both were accorded a late/historic date, based mainly on an assumed relationship with the Buganda kingdom, and have thus fallen from interest, though as we have seen from the preceding discussion of Lutoboka, it is also likely that the Entebbe figurine, at least, is considerably older. Therefore, whilst the original scholars saw little antiquity in the ceramic remains they recovered, the current indications suggest a richer history of greater depth, which could be important in the discussion of late first – early second millennium communities in this area.

Recent survey work carried out by Reid also substantiated the general patterns emanating from preceding research, easily re-locating sites (Hippo Bay Cave) as well as identifying new locales. In total, survey around the coast identified 3 new sites worthy of note here, one Entebbe bearing site, one site with Entebbe and Urewe ceramics and one site with a mixed Entebbe assemblage (Lulongo – see below). This pattern fits with existing knowledge, but also adds a previously un-recognised Urewe ceramic element.

Research goals and questions therefore will seek to explore and understand the patterns of activity across the peninsula, and where relevant into its hinterland, particularly in regard to the apparently rich Entebbe using communities. Furthermore, less well represented elements (earlier Urewe using communities) or unresolved issues (Luzira Head) will also be considered, to try and develop a fuller picture of long-term
activity. In order to maximise results, recent research evidence will be considered in conjunction with archival data from both publications and assemblages held in the Uganda Museum store.

In total 3 archival sites will be considered (the Entebbe figurine site, Buloba, WPT Entebbe), along with more detailed discussion of the Luzira Head assemblage, preserved in entirety in the British Museum. Additionally, detailed analysis of the newly excavated sites of Lulongo and Hippo Bay Cave will be included.

The Entebbe Figurine Assemblage

Found during the digging of garage foundations for the Geological Survey, the Entebbe figurine is a ceramic cylinder, scored with diagonal incised lines on the shaft, and with abstracted male and female genital features (Posnansky & Chaplin 1968; see Fig. 2.14). Although no contextual data is now available (records lost), the figurine was found with ceramic sherds, including Entebbe pottery and chevron decorated bowls which resemble those found at Lutoboka. Clearly seeing the abstracted figurine as a ritual object, Posnansky & Chaplin (1968) argued that the assemblage probably represented the buried or destroyed remains of a shrine, possibly destroyed during the C19th by the military aggrandisement of Kabaka Kamanya, who sought to disempower independent religious authorities. Posnansky & Chaplin were of course using the aberrant Nsongezi date as a *terminus post quem* and thus placed Entebbe ceramics (and roulette decorated ceramics in general) in the late/historic period. However since the re-establishment of the local chronological sequence (Clist 1987), and also in light of the present discoveries on Bugala, it is argued that the Entebbe figurine assemblage should be re-dated to the late first to early second millennium AD, thereby bringing a new and previously unidentified ritual component to our understanding of communities of that time.

Buloba

Buloba lies 8km west of Kampala on the Mityana road above a major tributary swamp of Victoria Nyanza, and a surface scatter of ceramics collected by an unknown teacher
from the local Teachers Training College was deposited in the Uganda Museum. Posnansky (1961a: 195) briefly mentions the site as associated with Entebbe ceramics, however no further research has been undertaken. In addition to the museum collection, a visit to the actual locale in the grounds of the Buloba Teachers Training College was made by Reid in 2004, adding further samples, with over 250 sherds held in total. This return to the original site was prompted by the recognition that the ceramics from Buloba matched the enigmatic ‘Entebbe-style’ ceramics found at Malanga Lweru on Bugala.

To recap, at Malanga Lweru, 5 anomalous sherds were recovered which although displaying the comb-scored decorative effect, differed fundamentally from the rest of the more typical Entebbe assemblage, with a greater range of rim and formal morphologies. Unlike the diagnostic Entebbe thickened rims on spherical bowls, this ceramic, temporarily termed ‘Entebbe-style’, showed squared rims (some with incised lips) on a range of forms that included closed mouth bowls, collar-necked bowls and an open bowl. Constituting just over 13% of the total reconstructable assemblage, it was speculated that these variants might represent spatial, temporal or functional distinction, although no particular explanation was favoured.

The assemblage from Buloba closely resembles this original Entebbe-style template (despite the small quantities at Malanga Lweru), adding further variants in the form of rounded and occasionally tapered rims, and flared mouth bowls/beakers as an additional form6.

The evidence from Buloba clearly reiterates the morphological pattern witnessed at Malanga Lweru, both validating it as a discrete ceramic phenomenon, and also pressing the issue of relationship to the better represented Entebbe ceramics. As noted at Malanga Lweru, critical to this discussion is the greater range of vessel forms found in the Entebbe-style ceramics; forms that afford a greater range of functional

6 Much of the qualitative analysis of the recent collection from Buloba Teachers Training College was carried out by C. Awori (Kyambogo University) and A. Nalubiri (Makerere University) to whom I am grateful for their assistance.
applications including storage of liquids and dry goods, food preparation, cooking and public presentation. Significantly also in this regard, the 'Entebbe style' ceramics are much smaller in size, thereby allowing greater mobility and thus versatility. At Malanga Lweru it was speculated that this inherent functional variability might represent a specific, function-orientated, element of a wider, encompassing, Entebbe tradition; a specialist range of vessel for specific tasks. The greater volume of evidence from Buloba does not seem to substantiate this assertion as only one identifiable Entebbe sherd was recovered in the whole assemblage, arguing that typical Entebbe ceramics had little or no role within the Buloba community. The positions therefore have been reversed, and it is the so-called Entebbe-style that is in the overwhelming majority. This discovery prompts a return to spatio-temporal variation as the possible precipitate(s) to variation, and here there is more supporting evidence. Reid's survey evidence from further inland in Kabasanda Sub-County to the west of Buloba, has also evidenced analogous Entebbe-style ceramics (at Sseta, Saza, Butoro Buganaiza) with only a single Entebbe sherd (from Mirembe area) found. Compared with the Bugala case study, where only 1 site with 5 sherds was investigated, this is a remarkable density of clustering (see also Lulongo below).

Therefore, it can be argued, on the basis of available evidence, that the 'Entebbe-style' ceramic, which will hereafter be termed Buloba ceramics, is probably a local variant divided from the main Entebbe production system by space, and perhaps also by time. This emphasis on spatial discretion is also supported by examination of the environmental distribution of Buloba. Unlike all other Entebbe bearing sites which lie within 7km of the lake, Buloba and the Kabasanda survey cluster lie considerably further away from the lakeshore (c.20km), although right on the fringe of satellite swamps. Therefore it is argued that spatial distinction accounts in great part for the differences identified, although it is also recognised that temporal factors may be relevant as well. However, at this stage we cannot access relevant dates. Indeed the original notion of functional differences cannot be rejected; there is clearly a functional difference in the repertoire of ceramics in Buloba, which must indicate different utilitarian demands on the vessels to those in place in the typical Entebbe, perhaps a
functional difference wrought by a combination of environment, social context or distance.

WPT Entebbe

The third and final archive collection is completely un-researched and un-documented, and was only discovered through examination of the collections held in the Uganda Museum. However, unlike Buloba, WPT Entebbe was subject to systematic excavation with both ceramics and charcoal samples being collected. Therefore, whilst this site is enigmatic in its research history (it is unclear who was the excavator), it can at least be assigned to period post the radiocarbon revolution and also post 1963 when the curatorship of Professor Merrick Posnansky, who has no recollection of the site (Posnansky pers. comm.), ended. Despite its mysterious past, the site can be fairly accurately located to the Water Pumping Tank area of the Entebbe peninsula (Marshall (1954) had already conducted research around the Water Pumping Station), and thus lies in the heart of the current research area.

Although contextual information is missing, this site is nonetheless of interest and potential significance here because of the unusual manifestation of its ceramics. Superficially very closely allied with the typical Urewe typology, the ceramics from WPT possess many of the diagnostic features of Urewe ceramics, with globular jars (80% of reconstructables), hemispherical bowls (20%) and incised decoration (see Fig. 6.12).

<table>
<thead>
<tr>
<th>Vessel Forms</th>
<th>Body sherd fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jar + xhatch</td>
<td>Bowl + xhatch</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 6.12 showing ceramic features

Rims are additionally bevelled, usually with two facets, in keeping with the established Urewe typology (Leakey et al 1948). However, despite this initial conformity to the

7 The quantification here is only intended as a loose guide to the typological features present; the selection policy is unknown (and probably was limited to feature sherds as there are no plain body sherds in the assemblage) and therefore the scope for quantitatively representing the assemblage is limited.
typology of Urewe ceramics, there is a tangible difference in style of execution and overall effect. Unlike Lutoboka, where many of the Urewe components are present but the overall effect is less finished and polished, the material from WPT maintains an exceptionally high quality of execution, consistent with the Urewe tradition. Nevertheless, there are differences in detail. Cross-hatching, which clearly dominates the decorative palette here, has additional horizontal incisions, which are not typically encountered in Urewe. As a result, in order to accommodate this extra component without crowding, lines are slightly further apart even continuing onto the lip of the rim to create the nicked rim effect. The body sherds also indicate the continuity of this incised decoration onto the body of the vessel, suggesting by their quantity a large areal effect, which whilst found in Urewe (e.g. Leakey et al's covering pattern) is much rarer and usually quite varied in decorative scope.

These distinctions may seem almost entirely superficial and minimal, and it is indeed the case that much of the difference is identified through subjective ‘feel’ and impression. Yet I would maintain there are tangible differences from the typical Urewe assemblage that may also be supported by the (relative) lack of bevelling and the high level of intra-assemblage homogeneity; Urewe assemblages of this size typically have a higher proportion and range of bowls as well as a greater range of decorative styles.

Assuming this is meaningful difference, this assemblage represents another element to the Urewe using community and its systems of production. The excellent quality of the ware is maintained, yet there is a level of variation that is sufficient to signal productive dissent from the parent template. Once again without further evidence we can only speculate on the possible spatio-temporal factors, or even socio-cultural precipitates, that might encourage such visible differentiation.

Lulongo

Identified and excavated in 2001, Lulongo lies directly on the shores of the Entebbe peninsula, and was noted because deep erosional gulleying had exposed buried deposits and also brought artefacts to the surface (see Fig. 6.13). Three units were
excavated to a maximum of 60cm depth, with a comparable stratigraphic sequence that showed archaeological activity focused in a buried dark-brown humic cultural deposit and orange brown gravely natural subsoil. The erosion had also affected stratigraphic security, rendering the site inappropriate for spatio-temporal analysis.

Ceramics are relatively common from surface collections, though rarer from excavated contexts, and indicate a range of ceramic traditions including Urewe, Entebbe, Buloba, Lutoboka and Festoon. Lulongo was one of the first assemblages to be analysed and as such the full analytical procedure was not in place. Later, the problems of stratigraphic resolution did not admit a renewed investment of analytical effort (e.g. issues of optimisation – see Chapter 5), and the following analysis is therefore more limited in its scope than others, and gives only simple description rather than quantified definition. Nevertheless, with such a range of ceramics on site, potentially important information is available, and the research questions must revolve around what the ceramic evidence can add to the known interpretation of each ceramic type, and whether further technological and morphological relationships between the ceramics can be established.

Ceramic Analysis
Five distinct clusters of ceramics were immediately recognisable in this assemblage, and each will be examined in turn.

Urewe ceramics are present in small quantities and largely fall within the typical parameters of the established typology, with globular jars and bowls decorated with cross-hatched incised decoration and bevelled rims. However, there is a single sherd that is unlike any other so far encountered; although possessing the globular jar form with bevelled and cross hatched rim, the body of the vessel is decorated with raised ridges of clay pinched between finger and thumb to make vertical features not unlike corn-rows (see Fig. 6.14). This single sherd is admittedly isolated in recovery, however it remains intriguing as the manner of decoration is so unlike any other encountered in the Urewe tradition; i.e. eschewing the incised technique for the _applied_ technique. This
is a conceptual change, and it requires a change of approach (or 'motor actions' – see Gosselain in Chapter 4), from a principally extractive method that removes clay from the body of the vessel (akin to a wood-working technique – Soper 1971), to an additive process that applies new pieces of clay to an existing body. For the present this can only serve as an instance of intra-Urewe variation, worthy of note for further comparison.

The second group of ceramics are those that might be termed the *comb and roulette technique* group. Within this group three different clusters of ceramic vessels are recognised, united by their homologous tool-kit, but differentiated in other morphological and technological effects.

First amongst these is the Entebbe pottery, recognised from literature and previous case studies. Constituting a significant element of the overall assemblage, a sample of this fabric shows a similar make-up to other known examples with coarse quartzite temper and also sponge spicules, in keeping with the lake-side locale. The morphology follows the 'traditional' style encountered elsewhere on the peninsula by Brachi (1960), Marshal (1954)1 and in this thesis, with rounded thickened rims, comb-dragged interiors and TGR rim decoration (i.e. no squared rims).

The second ceramic style present is that of Festoon ceramics, identified by Brachi at Hippo Bay Cave (1960). Rare among collections from the wider Lake regions, these sherds are also relatively rare within this assemblage. According precisely with the definition given by Brachi, the Festoon sherds encountered here are of medium-large spherical to closed mouth bowls, with rounded thickened rims and hanging triangular pendants of comb-pressed dots. With the exception of the decoration, this morphology tallies exactly with that of the Entebbe ceramics, and the two might be inter-changeable. Interestingly in this regard, it is notable that the clay fabric used in both clusters is also analogous, with the same light coloured matrix tempered with quartzite. Therefore, it can be argued that Entebbe and Festoon ceramics in this region
are mere deviants from the same technological and morphological process, separated only by decorative effect (although not decorative tool).

The third cluster within this comb and roulette group is a group of sherds that conform closely to Buloba. That is, the forms are of closed mouth bowls with collared necks and squared rims, decorated on the lip, neck and shoulder. As with the examples from Malanga Lweru and Buloba, the comb-dragging effect has been used, again with a range of swirling and varied effects, as has narrow bands of TGR. The recovery of this ceramic type at Lulongo reiterates the preceding argument from Buloba, that this ceramic represents a regional variant.

Ceramics consistent with the Lutoboka type found on Bugala are the fifth ceramic group identified in this assemblage. Once again the diagnostic chevron incised decoration is present. However whereas on Bugala the forms tended to be beaker like bowls with lightly flared rims, here the vessels are dominated by closed mouth bowls which were only a minority presence on Bugala.

Comments and Discussion

This is an interesting assemblage for the range of ceramic manifestations it contains, each distinct in its own right, but yet also linked to the other through a series of morphological and technological threads.

There is a clear association between the Entebbe and Festoon ceramics, linked in every respect (technology, form, rim, size) except decoration. However here also, there is a link in the tool-kit utilised, with both forms of vessel using a comb, whether to create a scored effect (Entebbe) or impressed one (Festoon). It can therefore, be safely argued that these ceramics are not distinct, and are part, rather, of the same productive continuum. This recognition has important implications both for the typological definitions of these ceramics, and also for the socio-functional applications of the ceramics. The Festoon variant is found exclusively in this local area (see also Hippo Bay Cave –Brachi 1960), and can therefore be added to the growing picture of
heterogeneity and ceramic regionalisation. It is also interesting to note that the only typological area where the Festoon differs from the traditional Entebbe manifestation is in the decoration and superficial effects. The ubiquitous spherical form is once again maintained, reinforcing the suggestion made previously (see Malanga Lweru), that this conservativeness of form indicates a very specific function, so indelibly linked to the ceramic, that no deviation can be accommodated. Once again, the actual functional application is unclear, but the picture of function orientated production is developing.

Also of interest in regard to the growing picture of the Entebbe group of ceramics is the evidence of Buloba which once again shows a presence at a site within a very defined area (Entebbe and periphery), re-asserting the preceding argument that this is a localised variation.

Conclusion
This is perhaps a somewhat frustrating site, as it clearly holds great potential to explore the inter- and intra-dynamics of ceramic producing communities, yet we are tied once again by contextual restraints. Nevertheless, this site has importantly shown that Festoon is a regional variant of the Entebbe tradition, apparently analogous in function (as evidenced by physical similarities). Also, whilst the precise inter-play of Entebbe with Buloba remains intriguing, the evidence from Lulongo reiterates the notions of regionalisation, adding another site to the local concentration of Buloba Entebbe.

Hippo Bay Cave
Located on the south-western tip of the Entebbe peninsula, Hippo Bay Cave is a rock shelter site, just 35m from the lakeshore and only 2.7m above water level. Lying in the overhang of laterite cliff, the shelter was probably eroded by lake waters in an earlier period when the lake level was higher. Previously excavated in the late 1950s (Brachi 1960), the site was revisited in 2001. The goal of this modern investigation was to retrieve analogous data through more rigorous and controlled excavation, and crucially, to collect radiocarbon samples for absolute dating (see Fig. 6.15).
Three excavation units were dug reaching a maximum depth of 80cm. According to Brachi, his excavation demonstrated a single concentrated layer of human activity and occupation, a pattern that seems to have been borne out by the recent research.

The stratigraphic integrity of these deposits however, cannot be entirely assured. Brachi's excavation methodology unfortunately left units open during intermittent research over a period of some 2 years, resulting in severe section collapse. This disturbance is clearly evident in the modern Unit C where a gun cartridge was retrieved from a depth of 65-75cm, prompting speculation that this unit was located on or near Brachi's spoil heap. As a result, caution must be taken in discussion of occupational sequencing and site development.

Nevertheless, despite the difficulties of potential disturbance, during excavation particular care was taken to collect charcoal samples from well sealed contexts (under stones, sherds etc) and two radiocarbon dates have been received.

<table>
<thead>
<tr>
<th>Samples No.</th>
<th>Date BP</th>
<th>Calibrated date (2 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pta-9007</td>
<td>2750±60 BP</td>
<td>910(834)812 BC</td>
</tr>
<tr>
<td>Pta-9023</td>
<td>510±80 BP</td>
<td>AD 1409(1433)1469</td>
</tr>
</tbody>
</table>

Table 6.13 showing radiocarbon determinations

Previously, Brachi had proposed a date no more than 200 years old (1960: 70), a notion that was later supported by Posnansky* in his regional sequence (1967). The dates retrieved here are clearly out of synch and require some examination. The C9th BC date seems far too early to be applicable; it predates even the earliest Urewe dates (see Chapter 2), and is far from the accepted boundaries of the second millennium AD for roulette decorated ceramics (including Entebbe). It may however be part of a LSA Kansyore era occupation, as one of the sherds illustrated by Brachi (1960: 66, fig 4: 5) is believed by Soper & Golden (1969: 40; see also MacLean (1996: 66) to be Kansyore). The C15th AD date however, fits within the general chronological definition for roulette

* Indeed it is a moot point whether it was not Posnansky himself who originally proposed this date; he was involved in the excavations at Hippo Bay Cave (Posnansky pers. comm.) and is also credited by Brachi (1960:70) with the writing of the conclusion of the 1960 paper.
ceramics, but crucially, is considerably older than the pre-existing C18th–C19th date previously accorded to Entebbe ceramics by Brachi & Posnansky. This represents strong indication that the Entebbe ceramic phenomenon is much earlier than previously supposed, and in this instance at least, fills a mid-second millennium gap in our knowledge.

As the preceding work on Bugala has demonstrated, substantial variation has indicated a more complex situation than originally imagined, and it is therefore a primary goal of this analysis to understand the precise pattern of activity at the original type-site. In this regard it is also particularly important to develop definition of lesser understood ceramic phenomena (e.g. Festoon) and, in the absence of reliable stratigraphy, to examine the physical and morphological relationships between them.

Ceramic Analysis

Both evidence from Brachi and the present excavation suggest a concentrated period of occupation. Unfortunately as a result of the mixing and disturbance detailed above, it proved impossible to establish a fine-grained settlement sequence, and as such, all ceramics will be examined together as a single assemblage. Additionally, the excavations from 2001 did not produce a large quantity of diagnostic ceramic finds, perhaps as result of the primary deposits being previously removed by Brachi. Therefore, in order to increase the available evidence, a sample of 21 reconstructable sherds from the original excavation, stored in the Uganda Museum, have been added to the assemblage. Nevertheless, this is very much a partial analysis without full access to all excavated material, and, like Lulongo, must be more curtailed in the specific quantificatory analyses.

Brachi identified several different ceramic styles in the Hippo Bay Cave assemblage, including Entebbe, Festoon (then the only known site containing it), 'water jars', and two fragments of black burnished ware. With the exception of the black burnished
ware which is believed to date from c1850, all other ceramics are represented in the present analysis (see Fig. 6.16).

Entebbe Ceramics

As with other examples of Entebbe ceramics analysed, the fabric make-up is distinctive being chalky in texture and heavily tempered by coarse and angular quartzite chunks

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Description</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBC1</td>
<td>Orange-brown, soft, chalky texture, quartzite inclusions, 1-3mm, 10-15%, fine sand, 5%</td>
<td>TGR, comb scoring</td>
<td>Entebbe</td>
</tr>
<tr>
<td>HBC2</td>
<td>Brown-orange brown, moderately compact and hard fabric with quartzite inclusions, 10-15%, 1-2mm.</td>
<td>TGR, comb</td>
<td>Entebbe style</td>
</tr>
</tbody>
</table>

Table 6.14 showing fabric properties

The vessel shape is uniformly of closed mouth spherical bowls with thickened rims and moderate to wide mouth diameters.

<table>
<thead>
<tr>
<th>Rim style</th>
<th>Quantity</th>
<th>Diameter range</th>
<th>Diameter Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5b — internally thickened and rounded</td>
<td>4</td>
<td>26-29cm</td>
<td>27cm</td>
</tr>
<tr>
<td>5c — internally thickened with a flattened inside face</td>
<td>2</td>
<td>34-40cm</td>
<td>37cm</td>
</tr>
<tr>
<td>5i — internally thickened with a squared lip</td>
<td>1</td>
<td>Impossible to determine</td>
<td>n/a</td>
</tr>
<tr>
<td>5m — internally thickened in a rounded, overhanging style</td>
<td>1</td>
<td>32cm</td>
<td>32cm</td>
</tr>
</tbody>
</table>

Table 6.15 showing distribution of rims and vessel sizes

Heavy decoration is present with either TGR or herringbone comb-scoring on the lip, herringbone/plain TGR on the rim with horizontal or wavy bands of comb dragged lines underneath. The interiors also have the diagnostic comb-scoring. The only exception is the 5i rim which only has TGR on the lip. Otherwise this is an archetypal assemblage, fitting, unsurprisingly, with the typology developed at this site and elsewhere on the Entebbe peninsula (Brachi 1960; Marshall 1954).
Festoon

Brachi (1960) in the sole discussion and recording of this ceramic, suggested that it was morphologically related to Entebbe ceramics, a supposition that has already been formalised by this research (see Lulongo). The evidence from Hippo Bay Cave supports this with the use of the same fabric technology as that used in Entebbe ceramics (HBC2), as well as the analogous forms (hemispherical bowls) and rims (see Fig. 6.17).

<table>
<thead>
<tr>
<th>Rim</th>
<th>Quantity</th>
<th>Diameter range</th>
<th>Diameter Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>2</td>
<td>16cm (1 x unknown)</td>
<td>16cm</td>
</tr>
<tr>
<td>5b</td>
<td>4</td>
<td>12-14cm</td>
<td>13.3cm</td>
</tr>
</tbody>
</table>

Table 6.17 showing distribution of rims and vessel sizes

The size range of the Festoon sherds is however slightly smaller than that usually encountered in the characteristic large Entebbe bowls.

The main area of discrepancy though, as found at Lulongo, is decoration; Festoon ceramics are once again characterised by comb-pressed parallel lines with hanging pendant triangles rather than the roulette and comb-scored decoration of the Entebbe ceramics.

Festoon-Entebbe

Although the above discussion has indicated a small divergence between Entebbe and Festoon in decorative style, there are further sherds that reinforce the close relationship between Entebbe and Festoon with evidence of decorative features from both styles. Form and rim follow the essential model (hemispherical bowls and thickened rims), and are consistent with the smaller sizes of the Festoon vessels for example. However, the decoration is a mixture of Entebbe features (TGR on the rim and comb-dragging on the interior), and Festoon (hanging triangular pendants). It is therefore once again argued that the relationship between Festoon and Entebbe is so close that they can be regarded as different elements of the same tradition.
'Water Jars'

Four reconstructable 'water jars' (Brachi 1960) were examined and showed perhaps the most surprising results of the whole assemblage. Initially assumed to be modern/historic from the published details, which showed significant difference in water jar morphology to the Entebbe-Festoon tradition, there are in fact areas of crossover between the styles. Most notably, the water jars are made of fabric HBC2 which characterises both the Entebbe-style and Festoon ceramics. Additionally there is TGR decoration on the rim which mirrors the technique and location of Entebbe decoration. In contrast however, the vessels are straight collar necked jars with un-thickened squared rims. This profile replicates that of Buloba closely, with only the comb-scored patterning found at Buloba, absent from the Hippo Bay Cave 'Water jars'. Therefore, it is posited (based on technological and morphological profile) that the 'water jars' actually represent yet another example of Buloba.

Comment & Discussion

Although the stratigraphic resolution which indicates a single-component site cannot be assured, evidence from the ceramic data strongly suggests connected ceramic styles and technologies. Therefore, taking these two sources in conjunction, the different components of this assemblage must be cautiously regarded as contemporaneous and thus considered together. This has interesting implications for the ongoing examination of ceramic function and application.

Unlike other Entebbe dominated assemblages, the Hippo Bay Cave collection shows a much greater range of variability. The large, heavy closed mouth bowls of Entebbe are present. However, along with the related Festoon ceramics, there is a distinct sub-category of smaller vessels within the assemblage. The diminution in size is particularly notable as one of the defining characteristics of Entebbe is the consistently large size. Assuming this large size is tied into the function and use of the vessel, the change in the scale of the vessel suggests a concomitant change in the social application of the vessels. This could be a decrease in the scale of the function, perhaps moving from communal to personal use, or even a complete change in the function. Indeed the
smaller mouthed Entebbe/Festoon ceramics would be suitable for cooking and even perhaps storage of resources, being less likely to lose the contents through spillage.

In toto this is an interesting assemblage that shows a level of internal variation that is becoming more common, despite the apparent conservativeness of the parent Entebbe type.

In trying to understand this variation the question of contemporaneity and dating are of course paramount, and in the absence of good stratigraphic data is always going to be open to contestation. However as hinted during discussion of Lulongo, there is growing cumulative strength from the repeated association together of this repertoire of ceramics (Entebbe, Festoon, Buloba). The co-occurrence of discrete ceramic types at a site does not of course indicate coeval production; the deeply stratified multi component sites of western Kenya (e.g. Gogo Falls) are testament to that. However, in the current situation there are connections (technological, stylistic, morphological) which link the discrete ceramics in a web of association. Furthermore, if we look at ceramic quantities, it is clear that typical Entebbe dominates the assemblage here, with much lesser quantities of Festoon and Buloba. This indicates that these are minority ceramics that do not play a central utilitarian role. Therefore, it is tentatively argued that these are contemporaneous phenomena, and together represent both a meeting of local ceramic variation (Buloba) and also socio-functional discretion (Festoon fitting the smaller, individual scale, suitable for everyday cooking etc).

Frustrating then as the lack of context is, the whole issue of Entebbe using communities is becoming more interesting and exciting when the traditional ceramic is juxtaposed next to sub-variants, showing both the inherent intellectual importance of seeking variation, and also how such variation can begin to explore changing production sequences and socio-functional roles for these ceramics.
Luzira Head Assemblage

This is an archive assemblage held in the collections of the British Museum since 1931, and was subject to re-analysis in early 20059 (see Fig. 2.13). Originally discovered in 1929 in the grounds of the Luzira Prison, the material was collected by the resident Geologist, E.J. Wayland (there being no national archaeologist in Uganda) and published in 1933 (Wayland et al 1933). At the site, Wayland found artefacts buried in three deep anthropogenically cut pits, containing seven fragments of ‘figurine’ with ceramics and lithics. These figurine fragments depict stylised human figures with solid cylinder bodies, extending arms and fore-shortened legs. The most distinctive fragment was the Head, which constituted a hollow ceramic vessel upon which human features, including protruding eyes, nose, lips and chin had been applied. Initially believed to ‘fit’ onto one of the body fragments (Wayland et al 1993: fig.2), Braunholtz (1936) later argued that it fitted to an alternative body fragment. Re-examination indicates that both arguments were incorrect and that the Head does not match any of the other body fragments found in association. Indeed, none of the fragments were found match each other, and all appear to be from discrete figurines (see Figs. 6.18-20).

With no extant or historical traditions of representational art in Uganda (e.g. Lugira 1970) this discovery was intriguing and prompted an examination of the associated artefacts to try and explain the phenomenon. Burkitt (in Wayland et al 1933) argued that the lithics were associated with a middle Pleistocene land surface which had been disturbed by the digging of the pits. The ceramics meanwhile, which weren’t illustrated, were regarded by Braunholtz as being no more than “a few centuries old” (Wayland et al 1933: 29). This definition was made as he identified roulette decorated ceramic in every one of the three pits, a decorative tradition which was still current and therefore considered historic. No explanation for the meaning of the pits and their contents was offered.

This portrayal of the Luzira Head collection was all that existed until 1995 when the British Museum loaned the Head and a body fragment to the Royal Academy of Arts.

9 I am grateful to Heidi Cutts and Julie Hudson (both British Museum) for their assistance during the analysis of this assemblage.
in London for its *Africa: Art of a Continent* exhibition (Phillips 1995). Merrick Posnansky, the former curator of the Uganda Museum who had unsuccessfully requested the Head be repatriated in the 1960s (Posnansky pers. comm.), wrote the catalogue entry, cautiously suggesting that elements from the site might date as far back as the early second millennium AD (Posnansky 1995). However, he also suggested the destruction of the site occurred in the C19th once again as a result of Kabaka Kamanya’s military aggression (see also Posnansky & Chaplin 1968; and above for similar explanation of the Entebbe figurine). Aside from this brief reference (see also Posnansky & Chaplin 1968) and public display, the Luzira Head has been all but forgotten, and even in Uganda, where it represents a unique example of pre-colonial art, it does not have a wide public profile.

In 2002 a re-reading of the original Wayland et al record by Reid suggested that the assemblage might be worthwhile re-examining in the current context. Particularly notable was the fact that despite Braunholtz emphasising the roulette decorated ceramic, there was also;

> “thick bases, one of which is slightly concave.... Ornamentation...the commonest marking being series of parallel horizontal grooves... cross-hatching, punched dots”

(Wayland et al 1933: 28)

These descriptions hinted at a ceramic assemblage that might have affinities to the Urewe or Lutoboka style. Initial examination was therefore conducted by Reid in 2002, with Reid and the author carrying out systematic analysis in 2005.

Site Definition

Excavation details from the original discovery indicate deposition in three discrete pit features. Unfortunately however, it is now impossible to distinguish the precise provenience of the artefacts because associated records have been lost. Furthermore, an active shrine site was encountered during the original work and its artefacts collected and sent with the Luzira Head to the British Museum. Whilst the shrine artefacts are typically easy to distinguish being of muscovite rich clay and heavily tempered with
mica, there must also remain the possibility that any other artefacts in the immediate vicinity of the pits might have been 'hoovered up', so to speak, into the collection. The impossibility of distinguishing pit from pit means that the entire assemblage will be examined together, with all attempts being made to remove any modern (shrine) or intrusive material from the analysis. Another point that must also be emphasised in regard to the ceramic patterns that may emerge, is the unknown collection policy; it is unknown for example whether all sherds or just the diagnostic ones were collected.

Initial appraisal of the ceramics confirms the original suspicion that this assemblage is more closely tied to an Urewe tradition one than to the modern/historic roulette decorated traditions of the Baganda. Collating all the sherds into the Total level of analysis, the gross overall trend clearly shows a propensity for incised decoration at the expense of any of the other major techniques, with only one roulette decorated sherd found in total.

However, whilst initial impressions and the table above confirm an Urewe like assemblage (emphasis on incised decoration), it was also apparent the nature of the Urewe ceramics differed from the standard morphology and style, and represented another case of Urewe variation.
The research questions therefore must define and analyse these ceramic vessels and explore their variability, before attempting to understand the nature of the relationship of ceramic sherds to the figurine fragments. If indeed the two elements are contemporaneous then the Luzira Head is potentially 1000 years older than previously believed.

Ceramic Analysis

Analysis of fabric technology indicated that there were four fabric groups present, the dominant one, LZ1 showing considerable internal variability.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Description</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZ1</td>
<td>Soft buff, white porous fabric, unox core, 5-10% shell(?) c5% quartzite (1-3mm),</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>LZ1a</td>
<td>As LZ1 but fewer inclusions, <5%</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>LZ1b</td>
<td>As LZ1, but black in colour – differential firing?</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>LZ1c</td>
<td>As LZ1 but with additional mica temper</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>LZ1d</td>
<td>As LZ1 but with additional grog temper</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>LZ2</td>
<td>Bright pink in colour with few inclusions, <5% quartzite</td>
<td>Incised</td>
<td>?</td>
</tr>
<tr>
<td>LZ3</td>
<td>Black brown fabric, compacted texture, c10% quartzite (1-2mm)</td>
<td>Incised</td>
<td>?</td>
</tr>
<tr>
<td>LZ4</td>
<td>Soft buff-brown porous fabric, 25% quartzite, 1-3mm</td>
<td>Roulette</td>
<td>Entebbe</td>
</tr>
</tbody>
</table>

Table 6.18 showing fabric properties

Fabrics LZ2-LZ4 have a very limited representation in the Total assemblage (7%) which is replicated in the reconstructable sherds (4%). LZ2 is only represented by a single rounded base, LZ3 by a sherd with raised appliqué bumps and LZ4 by a diagnostic Entebbe rim and a thickened base which also seems characteristic of Entebbe ceramics. Therefore, it is argued that these fabrics are so poorly represented (7% of total reconstructable sherds) they reflect either intrusive elements or relate to the shrine. In support of this notion is the recovery of a single Stone Impressed sherd which is historical in date, although not part of the shrine ceramic profile (see Namusenyu below). Discussion therefore will be limited to LZ1 ceramics.
The rationale for dividing the LZ1 fabric group into five different sub-variants also needs some explanation. The majority of the LZ1 fabric sherds fall into the typical parent fabric LZ1 (70% of total sherds, 75% of reconstructable), however there is sufficient internal variability to record as distinct those fabrics that differ in firing conditions and inclusion volume and composition. For these examples the basic template (LZ1) and recipe is maintained, but with more subtle internal variation. This is a compromise between ‘lumping’ and ‘splitting’ (PCRG Guideline 1995; see Chapter 5) which allows the wider trends to be observed but not at the expense of the all important internal variability (see Chapter 1). Therefore, despite the overall similarity in fabric composition, it is notable that in certain ceramics quite different inclusions are being applied. As will be demonstrated below, there is no real distinction in the relation of fabrics to form, so we might discount a function-orientated bias. However, having discussed the importance of such ‘technical style’ in Chapter 4, it might be suggested that more than one ‘potter-community’, to borrow Dietler & Herbich’s term, is active here; different communities following the essential morphological pattern and utilising the same essential raw materials, yet adding different gestures (the inclusions) that create a more idiosyncratic effect.

Ceramic Morphology

The vessel forms identified in the assemblage present an intriguing picture; they generally conform to the shapes present in characteristic Urewe assemblages, yet the proportions are unusual and other, unexpected forms are also represented (see Fig. 6.20).

<table>
<thead>
<tr>
<th>Forms</th>
<th>LZ1</th>
<th>LZ1a</th>
<th>LZ1b</th>
<th>LZ1c</th>
<th>LZ1d</th>
<th>Diameter Range</th>
<th>Diameter Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hemi)spherical Bowl</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>14-40cm</td>
<td>25 cm</td>
</tr>
<tr>
<td>Open Bowls</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Closed Bowl</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11-15</td>
<td>13</td>
</tr>
<tr>
<td>Flared mouth Bowl</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>14-32</td>
<td>24</td>
</tr>
<tr>
<td>Indeterminate Bowl</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

215
Characteristic forms that might be expected include the ubiquitous globular jar (31%) and the range of bowls; hemispherical (17%), and the lesser open (2%) and closed (6%) bowls. What is surprising is the number of flared mouth vessels (35%) which register a similar mouth diameter to the more typical hemispherical bowls, and therefore might be seen as a direct functional replacement within the repertoire (the essential shapes of the bowls are analogous; the difference is only manifest in the rim). This more unusual flared mouth bowl (not found in the Urewe typology), is not dissimilar to the shapes encountered at Lutoboka and related sites on Bugala. At Luzira for the first time however, the open, multi-functional, flared-mouth bowls and hemispherical bowl (such as those encountered in Lutoboka), are accompanied by the distinctive globular jars, which afford a new function of storing and serving liquid.

Identifiable base fragments are present in small numbers with two dimpled examples. However, unlike the typical small, neat dimple of Urewe, one of the examples here measures 8cm in diameter, creating a quite different effect, more akin to a flattened base (see Fig. 6.20d).

Rim morphology also continues the theme of subtle difference from the typical Urewe template, with fewer bevelled rims than might be expected, and simple bevels (2-3 facets) where they occur.

<table>
<thead>
<tr>
<th>Forms</th>
<th>2 bevels</th>
<th>3 bevels</th>
<th>4 bevels</th>
<th>Squared</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemispherical Bowl</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Closed Bowl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Open bowl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Flared mouth Bowl</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate Bowl</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Globular jar</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6.20 showing rim distribution
Indeed, as the Table demonstrates, bevelled rims are largely restricted to the globular jars (74% of all bevels are on jars), with various bowls favouring the simpler rounded or squared effects.

This distinction between bowls and jars is maintained when the decorative distribution is examined. No decoration was recorded on the lips of the vessels, with the majority of the available evidence coming from the rim decoration.

<table>
<thead>
<tr>
<th></th>
<th>Plain</th>
<th>Horiz incised</th>
<th>x-hatch incised</th>
<th>Chevron incised</th>
<th>Finger pinched</th>
<th>Vertical Incised</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemispherical Bowl</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Open Bowls</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Closed Bowl</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flared mouth Bowl</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate Bowl</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Globular jar</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.21 showing distribution of decoration

There is a clear distinction here, with the cross-hatched decoration being the exclusive domain of the globular jars, and bowls, particularly the flared mouth bowls, favouring horizontal incised decoration. The only other form of decoration found on the jars is an intriguing sherd with lines of finger pinched impressions on the body of the vessel. Not entirely unlike the technique that might have been applied to create the corn-row effect found on the Lulongo sherd (see above), this is another indication of the unusualness of this assemblage, as an entirely new plastic technique is employed alongside the traditional extractive incised one.

In total this is an assemblage that is superficially consistent with the Urewe tradition, but upon closer examination shows a number of distinctions. Rim and vessel morphology have been discussed, but it is also clear that the more subjective sphere of

10 One indeterminate bowl and one globular jar had fractured at this point making observation of rim decoration impossible
quality also distinguishes the collection. Unlike the ornate and well-finished Urewe, there is simplicity to the execution wherein ornamentation such as complex bevels or dimpled bases are removed from the system. Additionally, closer examination of the decoration shows less precise and regular effects in favour of more haphazard design; the cross-hatched decoration for instance is not complete with only irregular left to right incision (see Fig. 6.20a).

These distinctions are more recognisable as there are 7 sherds within the assemblage which show the expected levels of technological and morphological accomplishment of Urewe, with dimpled bases decorated by concentric incised circles, narrow bands of fully cross-hatched incision and increased number of bevels (6.20e-f).

It is argued that these seven examples fall within the extant definition of Urewe ceramics, and that the majority of the assemblage whilst still clearly linked by technology (same fabric in use), morphology and style, are different enough for specific note and attention. The overall similarities to the Lutoboka ceramics have already been noted (flared mouth forms, horizontal incised lines, and execution quality). However, the current assemblage should not be subsumed under that name, for in the Luzira collection there is a greater range of forms (jars as well as bowls) and decorative effects (cross-hatching, horizontal lines), which more closely tie this assemblage to the known Urewe template. Perhaps a better term to describe this assemblage is Devolved Urewe, taking the lead from Posnansky's work on Lolui. Following his criteria, Devolved Urewe represents a ceramic that is indubitably tied to the Urewe tradition in style and morphology, but is nonetheless noticeably coarser in its execution and more restricted in range.

Comments and Discussion of Ceramics

This is an important assemblage for the new insights it provides to the growing appreciation of the diversity and variability of the Urewe ceramic phenomenon. As with the case in Lutoboka and Posnansky's Devolved Urewe from Lolui, there is less emphasis on the quality of execution and end-product, so much so, that direct
comparison with typical Urewe demonstrates the discrepancy (see above). Placing this phenomenon within the wider sequence, the similarities with Lutoboka tentatively suggest a late first millennium date; significantly after the latest Urewe dates in the C8th AD. The co-existence of the two ceramics (Urewe and Devolved Urewe) at Luzira might seem to mitigate this, but it is possible that the evidence here shows a ceramic tradition in transition. Indeed, despite the typical Urewe ceramic presence, I would be wary of according a date any earlier than the late first millennium AD because so few typical Urewe sherds are evidenced; this is primarily a Devolved Urewe assemblage.

Assessing the assemblage in terms of application and use, it is interesting to note that the full ranges of functional vessels of the typical Urewe ceramic are present here. Although there is a smaller percentage of jars than found in other assemblages (e.g. Van Grunderbeek (1988) found an average of c60%), the adapted flared mouth bowl can double up as both a multi-functional cooking vessel and a liquid pouring form, through virtue of its flared rim. This pattern is in contrast to the Lutoboka assemblages found elsewhere which whilst replicating the flared mouth form, do not contain the full range of variability, notably the jars and open plates. Therefore, whilst the Lutoboka ceramic is perhaps a close correlate of this collection, consideration of the functional applications of the Luzira material shows closer affinities with the Urewe model. This supports the notion of a ceramic, rather than a community in transition (the late first millennium date), as the socio-functional roles of the ceramic have remained the same, despite changes in execution.

Relationship to the Figurine fragments
Clearly the question of the relationship of the ceramics assemblage to the figurine fragments is crucial to further contextualised discussion of the two phenomena. This immediately poses a conundrum, for whilst a late first millennium AD has been speculated for the ceramics, Wayland et al (1933) suggested a C18th–C19th date for the figurine.
The contextual details of discovery have been lost with no original excavation records. Nevertheless, whilst Wayland was not an archaeologist by profession, he was both passionately interested in the discipline (e.g. Wayland 1934a,b), and was also an experienced geologist fully able to appreciate stratigraphic relationships. Therefore, we may tentatively assume that as Wayland placed these artefacts in direct stratigraphic association, this must be an accurate estimation of relationship. However, to assist this process and provide external validation, it was decided to examine the technologies evidenced in the figurine fragments as a comparative resource to the ceramic profile. After all, production of the figurines is simply the application of clay technology for a different end-product.

Significantly the composition of the fabric used to make the figurine fragments tallied with those of the LZ1 fabric group which has already been shown to characterise the ceramic assemblage. Like the ceramics, the figurines were light in colour but with a distinctive unoxidised core and tempered with quartz inclusion and occasionally small quantities of mica (LZ1c; see Fig. 6.18d). The proportions of these inclusions (which occur locally – Wayland et al 1933) match those of the ceramics, and notably are quite different to the shrine site material or the anomalous LZ2-LZ4 fabrics. This correlation argues that analogous production systems were used in the manufacture of both the ceramics and the figurines, and therefore by extrapolation, they were contemporaneously created by the same productive community. In addition to this strong technological evidence of association, can be added a level of stylistic parody. Although the techniques used by the makers of the Luzira figurines largely employ the additive technique of appliqué, at the neck of the Head and body fragments, bands of diagonal incised patterning are evident which mirror both the technique and effects found in the associated ceramics (see fig 6.18a-b).

It is therefore argued on the basis of contextual association, style and crucially technology, that the two clay traditions are linked, and derived from the same essential productive community.
Significance?

Through association with wider ceramic evidence presented in preceding examples, a new proxy date for the Head and body fragments is achieved (from Lutoboka), which pushes back the chronological boundary into the late first millennium, over seven hundred years earlier than previously supposed (although see Posnansky’s (1995) cautious early second millennium AD date). This re-dating has profound implications for our understanding of the site and its role within society. It can no longer be feasibly suggested that the site existed intact as a shrine until the destructive efforts of Kabaka Kamanya in the C19th. Neither can it be denied that the Head and associated figurine fragments are more than simply mundane and utilitarian ceramic pieces; the exceptional (and thus far unique), manifestation of the figurative art in an ancient Great Lakes community, must indicate super-natural meaning and significance. This argument is augmented by evidence from the Entebbe figurine, which previous discussion now shows to be broadly contemporaneous with the re-dated Luzira Head. Both phenomena fall well outside the typical boundaries of Great Lakes ceramic manifestations and can in no way perform daily subsistence-orientated functions. The inescapable alternative is that these are both evidence of cosmolgy and systems of belief and ritual. Although we cannot now understand these rituals, this is the first time that such abstract meaning has been recognised in the Great Lakes at such an early date, and can only enrich understanding of the communities of the period.

The only other possible correlates of such figurative art are the Lydenburg Heads from Mpumalanga in South Africa, where 7 ceramic heads were discovered buried in pits (Evers 1982; Whitelaw 1996; see Fig. 6. 21). Although clearly separated by a geographical hiatus of several thousand miles, there are surprising correlations between the two phenomena. Both are made of up-turned hollow pots with applied and plastic decoration, both have protruding facial features and both have the bands of incised lines on the neck mentioned above. A re-dating of the Lydenburg Heads by Whitelaw (1996) has also proposed a late first millennium AD date, and whilst it is useless to speculate on the possible relationship, if any, between the two, the
similarities remain intriguing, and requires recognition, if not full endorsement of cultural association.

Conclusion

This re-assessment has painted a startling new picture of both the Luzira Head assemblage as well as the sociological implications it has for understanding of communities on the Entebbe peninsula in the late first millennium AD. Through associating the figurines with the ceramics, a whole new vista of socio-ritual life has been revealed for this period, which is further enriched by the association with the Entebbe figurine site. Importantly also, through examination of the ceramic assemblage, yet another facet of the Urewe ceramic phenomenon has been exposed, apparently showing a changing productive system which simplifies the complex process, yet does not seem to herald substantive functional-utilitarian roles.

Case-study 3: Ssi-Bukunja Sub-County, Mukono District, Uganda

This third case-study area lies to the east of Kampala, and focuses on the peninsula which forms the western shores of the Nile estuary/gulf at Jinja (see Fig. 6. 22). Although Mukono District has never been archaeologically investigated before, the nearby islands of Buvuma and Bugaia were subject to some survey and excavation in the late 1960s and 1970s (MacFarlane 1967; Nenquin 1971). These investigations showed Stone Age activity up to the LSA and also ceramics which can now be identified as Entebbe and Urewe (Nenquin 1971), possibly associated with stone terracing and field systems (McFarlane 1967). Kiyaga-Mulindwa (2004) has also recently conducted survey and excavation along the banks of the Nile, arguing for a presence of “EIA and pre-EIA pottery” with 14C dates in the mid 1st millennium AD (Kiyaga-Mulindwa 2004: 46-47).

Sustained survey and excavation in Ssi-Bukunja was carried out by Reid’s team in 2000, 2001, 2002 and 2003. These investigations confirmed the presence of Urewe and Entebbe using communities in the area (11 Urewe bearing sites, 1 Entebbe site). Three
of these sites were excavated and will be discussed here, Luka, Namusenyu and Sanzi, all of which show evidence of Urewe using community occupation.

Luka

Situated on high ground more than 5km from the lakeshore, the site of Luka was fortuitously found by Peter Bisasso within the compound of our camp in Ssi, when Urewe sherds were found eroding out of the ground. Limited excavation was undertaken in 2003. Excavation centred on a visible ceramic concentration which was found to be sourced to a sub-circular shallow pit (c1.75m diameter) of dark grey ashy loam fill. No other archaeological features or finds were found in the vicinity, and the pit was regarded as a discrete and isolated locus of activity. Despite the erosional impact of repeated sweeping and clearing of the compound, large numbers of the sherds were found to re-fit together, often to near complete vessels. This indicates that the vessels that were placed within the pit were often semi-complete to complete at the time of deposition. From this we can assume both a rapid depositional process and potentially also, purposeful and deliberate placement of whole vessels within the pit. This suggests that the normal process of discard following breakage was not followed as the vessels remain functional, and that alternative precipitates for deposition need to be sought. As seen previously, other Urewe ceramic sites typically have isolated sherds in mixed association, and do not possess the levels of vessel compatibility witnessed here. The only other site with such evidence of vessel completeness are the original Urewe type-sites in Siaya (Leakey et al 1948), where Archdeacon Owen records that the complete vessels were found in pits, sometimes capped by stones, the pressure of which may have caused the breakage. These ‘caches’ as Owen described them, were interpreted as selective deposition either for symbolic reasons or for reasons of vessel preservation. Although the level of preservation at Luka does not match the phenomenal remains for Urewe, there are key parallels in terms of context and vessel wholeness.
Ceramic Analysis

A total of 457 sherds were collected, of which 14 reconstructable vessels were refitted. Not all sherds were used in the reconstructions; however those that remained were plain body sherds which could not be easily reconstructed without considerable investment of time, which was not available.

Technological Profile

All sherds correspond to three fabric types.

<table>
<thead>
<tr>
<th>Fabric Type</th>
<th>Physical Properties and Effects</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Fine-grained red-orange matrix, unox core, 5-10%, 1mm quartzite inclusions</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>L2</td>
<td>Red-brown matrix with black-red soft inclusions, 10-15%, 1-3mm grog</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
<tr>
<td>L3</td>
<td>Brown-black fine grained matrix, few inclusions, <5%, 1mm quartzite</td>
<td>Incised</td>
<td>Urewe</td>
</tr>
</tbody>
</table>

Table 6.22 showing fabric properties

The composition of these fabrics is fairly typical of Urewe ceramics being generally well sorted and capable of producing a smooth and even surface. However what is interesting to note, is that within this relatively small assemblage, three distinct fabric traditions are present, notably the different tempering agents from quartzite to grog. It is cautiously proposed therefore, that the ceramics from this pit may have been derived from more than one community/potting co-operative, and that the discovery of all three in association may indicate inter-community contact (see also Luzira).

Morphological Composition

Despite the differences in fabric composition, there is little real distinction when the fabrics are correlated with vessel form.

<table>
<thead>
<tr>
<th>Fabric Type</th>
<th>Jar</th>
<th>Open Bowls</th>
<th>Carinated Bowl</th>
<th>Dimple Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>L3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.23 showing distribution of forms (n=14)
Although there are differences in the fabrics, with L1 clearly the best represented, the overall pattern across the fabric categories, is of a focus on jars and open bowls. This is an interesting distribution as both forms are functionally specific, and the more adaptable hemispherical or closed bowls, which are also found within the Urewe typology, are completely absent. The only such bowl found was a closed mouth bowl with carinated shoulder (see Fig. 6.23). This is only the third recorded instance of such a vessel form being found in the whole Great Lakes, the others being from Buhaya (Schmidt 1980) and Nyirankuba (Hiernaux & Maquet 1960). Furthermore, this form does not correspond with the other hemispherical/closed bowl styles which are made adaptable through their open mouths and easy access to the interior; the angle of the carination creates a narrow mouth of c.10-12cm diameter, which does not afford easy access.

Like form, rim style does not seem to be predicated upon fabric (or indeed form)

<table>
<thead>
<tr>
<th></th>
<th>double bevel</th>
<th>triple bevel</th>
<th>double bevel variant</th>
<th>Range (cm)</th>
<th>Average (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jar</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>15-28</td>
<td>19.28</td>
</tr>
<tr>
<td>Open bowl</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>18-30</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Table 6.24 showing distribution of rims (rim on carinated bowl is missing – see fig. 6.24)

Thus whilst typical bevelled rims are maintained throughout, these are relatively simple bevels with no more than three facets. The rim diameters are fairly predictable, with the plates recording the higher average.

Although the carinated bowl does not have an intact rim, it is clear from the available form that the rim could be no more than 12cm in diameter, though probably measuring slightly less at 10cm.

Decoration is limited to the rims of the vessels, but shows a high incidence (86%), all of which is incised.
Jars are clearly restricted to cross-hatched decoration, whilst the rest have a wider range, which is essentially limited to horizontal incisions, with or without hanging pendants. These hanging pendants are absolutely typically characteristic of Urewe (e.g. see Leakey et al 1948) and distinguish the complex decorative style from the simpler and more widely found plain horizontal lines (e.g. Luzira).

Comments and Discussion
Although this is a limited assemblage from more of a context than a site per se, it has certain important characteristics and elements that make it an important interpretive resource.

Luka is notable for two primary reasons; its depositional context and its morphological composition in regards to socio-functional roles. The depositional context, has been discussed above, and suggests rapid deposition in a non-domestic context.

Morphological data also indicates an intriguing pattern. Unlike all other encountered Urewe assemblages, there are no closed or hemispherical bowls in the Luka collection. Previous discussion has suggested that these forms are highly adaptable and suitable for a range of activities, notably cooking and food preparation. The forms however that are present, the open bowls and jars, are not similarly multi-functional, and are morphologically predicated towards the specific functions of liquid storage/pouring (jars) and food serving respectively (open bowls). The carinated bowl, as discussed above is also not suitable for cooking, and was more likely to act as a container for small liquid/semi liquid goods like soups or stews. This combined formal composition is suggestive of an assemblage geared towards consumption and presentation of foodstuffs, rather than their storage, preparation or cooking. This supports the
depositional notion that this is not a normal domestic context, associated with mundane household activities, and rather represents a discrete sphere of activity. The high levels of decoration as well as the relatively complex styles (the hanging pendants) demonstrate that this assemblage is also one of a high quality of execution and craftsmanship.

Bringing together these two strands of investigation, it appears that a specific activity centred on ostentatious consumption is being enacted, and that the debris from such an act is being consciously de-commissioned and deposited in a discrete locale. This explicit and structured activity falls beyond the realm of daily existence, and is thus suggestive of activity imbued with symbolism and extra-ordinary meaning. Feasting and consumption are frequently used as a mediator or consolidator of social status and power (e.g. Dietler & Hayden 2001), as food is used as a currency of influence, and it is perhaps such activity that is represented here. Dietler (2001) discusses the ‘commensal politics’ of feasting, as unequal relationships are created through the giving and accepting of food at a feast. However, the disjunction of the Luka material from the domestic context, and the limited size of the assemblage do not suggest such large scale communal feasting and we perhaps need to look at more abstract and symbolic expressions of food consumption. As in the case of the Luzira Head, it possible that this is a ritual statement, as food vessels are symbolically deposited in the ground in specific pit contexts, perhaps acting as libations and offerings. This of course is impossible to substantiate. However, with the precedent of Urewe sites in Siaya, and the growing evidence from the Luzira Head site, this notion of belief is gaining validity.

Conclusion

This is a fascinating site for the evidence it shows of specific and deliberate deposition of high quality food/drink/serving vessels, raising a tantalising picture of Urewe user’s cosmology and ritualised activity.

11 Such ostentatious ‘feasting’ might be evidenced by the midden mounds at Ntusi, which Reid has interpreted as the by-product of episodes of communal consumption (Reid 1996)
Namusenyu
Namusenyu is a rockshelter site lying on a small promontory of land that juts into the lake c10km south-west of the village of Ssi (see Fig. 6.24). Approximately 15m from the lakeshore, the shelter is carved from a protective overhanging cliff that shelters occupants from rain and wind, and lies c 5m above lake level. The site was identified during survey in 2001 when a test excavation revealed up to 1.3m of buried deposit, prompting a return to the site for further excavation in 2002.

The site was specifically revisited in 2002, as test excavations the previous season had shown two discrete ceramic traditions; Urewe and a previously un-recorded style, now termed Stone Impressed ware (Joyce 2003; see Fig. 6.25). Renewed excavation tried to determine the stratigraphic positions and potential relationships of these two phenomena. However, this process was hampered by clearly mixed and disturbed deposits that obscured stratigraphic definition. General trends indicated greater Urewe ceramics towards the base of the excavations, nevertheless Stone Impressed pottery was also found throughout. This association was problematic as a study of the Stone Impressed material was made as part of a BA dissertation by Tony Joyce of the Institute of Archaeology, UCL (Joyce 2003), which confirmed a relatively recent date for this ceramic. Citing a German ethnographic study from Buvuma Island (Jensen 1969), Joyce was able to demonstrate that the distinctive ceramics were made by Bavuma, probably including those displaced by the British during the colonial sleeping sickness evacuations (Hoppe 1997). An ethnoarchaeological study by Benjamin (2001) for another BA dissertation at the Institute of Archaeology, UCL, also showed that the characteristic stone impressed decoration was still active amongst potters of Bavuma descent within the Mukono region.

As a result, despite the mixing and bioturbation present at the site, it can be confidently stated that at least two temporally discrete phases of occupation of the rockshelter are evidenced. Urewe ceramics are dated no later than the end of the first millennium AD, whilst Stone Impressed ceramics are clearly modern/historic and can thus be associated with uppermost deposits which included recent material such as plastic netting. The
following ceramic analysis and discussion is therefore limited to the earlier, Urewe using phase of occupation.

Ceramic Analysis

13 Reconstructable vessels were identified from the non-Stone Impressed assemblage, all of which conform to the Urewe typology. All are jars, with fairly simple rims of two or three bevels. Mouth diameters average at 20.3cm with a total range of 14cm-33cm. Decoration is also quite typical with 62% of rims decorated with incised cross-hatching, one of which also contains horizontal internal grooving, with the remaining 38% being plain. Evidence for decoration on the body is greatly reduced due to fracturing at the neck, however there is another instance of the vertical raised ridges of finger pinching, exactly mirroring the style found at Lulongo (see Case-study 2; see Fig. 6.26).

Comment and Discussions

This site is useful despite the limited assemblage and the problems of stratigraphy. Site location indicates Urewe using communities occupying a small rock shelter, whilst the minimal ceramic assemblage suggests short-term occupation. This is significant, as neither factor supports the pre-existing notion of Urewe communities engaged in settled farming lifestyles (see Chapter Two), and instead portrays a much greater level of mobility and economic variability, perhaps linked by proximity, to the aquatic resources of the Lake.

Sanzi

The site of Sanzi lies c.1km across the bay from Namusenyu. Similarly coastal, Sanzi is an open site, although currently concealed by dense forest, which only revealed the presence of an archaeological site within it, when ceramics were found on the lake-beach following logging related erosion (see Fig. 6.27).

Site Definition

Excavation in 2001 and 2002 revealed a moderately large site (although the exact boundaries could not be determined due to thick forest cover), with archaeological
deposits buried underneath c.30cm of sterile overburden. Anthropogenic activity seems to have been limited to a 30-40cm thick horizon, within which only one discrete feature is discernible (see below). Despite the sealing sterile layer overlying this cultural deposit, it is clear that the archaeological stratigraphy is seriously compromised, particularly by the dense vegetation and long-term bioturbation.

The only exception to this mixing is a small concentration of stones, ceramics, slag and tuyere found in the northernmost end of Unit D (see Fig. 6.28). Tentatively interpreted as a metal-working area, possibly forging, this is the only instance of defined archaeological activity (see below for further discussion). The remaining archaeology is spatially and temporally indistinguishable.

The issue of stratigraphic disturbance is highlighted by the results gained from radiocarbon dates analysed at CSIR Pretoria

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Radiocarbon age (yrs BP)</th>
<th>Southern Hemisphere Calibrated Dates(^\text{12}) (2 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pta-9015</td>
<td>4590±70</td>
<td>3366(3348)-3276, 3240-3108 BC</td>
</tr>
<tr>
<td>Pta-9025</td>
<td>2700±60</td>
<td>839(815)-797 BC</td>
</tr>
<tr>
<td>Pta-9028</td>
<td>2850±60</td>
<td>1018(941)-897 BC</td>
</tr>
<tr>
<td>Pta-9030</td>
<td>1170±60</td>
<td>AD 869(899)-987</td>
</tr>
<tr>
<td>Pta-9036</td>
<td>3920±100</td>
<td>2477(2343)-2202 BC</td>
</tr>
</tbody>
</table>

Table 6.26 showing radiocarbon determinations

With the exception of (Pta-9030) the remainder of the dates come from the early first - fourth millennia BC - well before the accepted time-frame for Urewe ceramic using communities (Urewe ceramics represent the earliest possible ceramic found at the site). It is therefore assumed that these are erroneous dates not associated with human activity, but brought into contact with the archaeological deposits through bioturbation - such bioturbation is not difficult to envisage considering the activity of root actions from the overlying vegetation. The one date that does fall within the commonly

\(^{12}\) The southern hemisphere calibration was recommended by Pretoria. As the site sits close to the equator both curves are viable; however the prevailing weather is from the southern hemisphere prompting the Pretoria lab to recommend the southern calibration curve.
accepted timeframe is Pta-9030, which provides a date in the late first millennium AD. This sample was recovered in direct association with a piece of ceramic, and therefore has more secure provenience than the others.

Taking Pta-9030 as the chronological indicator, this immediately suggests a site at the terminal cusp of the Urewe using tradition, and into the period which preceding research (e.g. Lutoboka) has suggested was characterised by a decline in ceramic skill, and a hybridisation of styles. This certainly seems to be case at Sanzi where a range of ceramic related activity is evidenced.

Indeed, it is immediately obvious from the total sherd level of analysis that almost all the decorative techniques encountered so far, are present at Sanzi.

Table 6.27 showing decoration techniques

Rouletted decoration is less well represented, especially KPR/CWR, immediately indicating that this is an assemblage that predates the widespread introduction of multiple roulette techniques in the mid second millennium AD. The higher presence of TGR compared with KPR/CWR can be accounted for by the co-occurrence of comb-dragged decoration, which together reflects an Entebbe ceramic component to this collection. However, in addition to this Entebbe element and the previously mentioned Urewe ceramics, the collection from Sanzi also includes examples of many of the newly identified ceramics encountered in this thesis, including Lutoboka, Sozi and WPT
Urewe. Furthermore, a new and apparently locally discrete phenomenon, Sanzi ceramic, has also been identified\(^\text{13}\).

Sanzi however remains a frustrating site; juxtaposing such a rich ceramic assemblage with such poor contextual data results in tantalising interpretive potential which cannot be realised. It is impossible for example, to look at the inter-relationships between the different ceramic groups, and even questions of function are curtailed as there is no indication of what might have constituted the range of contemporaneous vessels. Unlike other sites encountered in this thesis where stratigraphic evidence is also poor, Sanzi is not dominated by a single ceramic type (e.g. Entebbe ceramics at Malanga Lweru) on which attention can be focused, and instead is a diverse mix of varying ceramics which cannot be ranked in importance or significance.

Research questions therefore are necessarily limited to trying to define each ceramic experience, with the hope that later, macro-discussion (Chapter 8) can use the evidence more fruitfully in discussions of wider typology, distribution or correlation.

Ceramic Analysis

The issues and problems relating to interpretive data are heightened by the lack of clear distinction or patterning in the use and distribution of ceramic fabrics at Sanzi. Although seven different fabrics were recognised during analysis, only one (S1) seems to be typologically discrete (Entebbe ceramics). The other six are found to be uniformly mixed across the typological spectrum. Moreover, Fabrics S2-7 are constitutionally very similar, being graded on the relative density of inclusions and the overall effect on texture. It is therefore very difficult to establish whether these differentiations represent gradations on the same sliding scale, or whether there are meaningful technological distinctions. Experience at other sites encountered in this research showed much clearer boundaries. However, I am wary of attributing all the fabrics to the same productive technology, considering especially the typological variation and

\(^{13}\) Reid (2002) has previously mentioned ‘Sanzi’ ceramic, particularly in reference to two large jars found in 2001, incised with crude chevron panels. The current definition encompasses Reid’s earlier attribution, but will expand the limited definition to include more commonly encountered typological features.
potential for diachronic variation. Therefore, whilst it is recognised that there appears to be close technological relationships between all the ceramics (excepting S1 and Entebbe), this is regarded as a speculative observation.

Only ceramics from Unit D will be detailed here. Unit D is the largest of the Units (25 sq m) and is regarded as evidentially representative, having produced 72% of the total ceramic data. This selection is also a factor of time restrictions as the Sanzi assemblage was analysed over two seasons, and only in the second season was full fabric analysis carried out on a partial (Unit D) sample. 3,337 sherds over 2cm², weighing over 36kg, were analysed from Unit D, including 92 reconstructable sherds. Six different typological clusters were identified.

Urewe

42 reconstructable Urewe sherds were examined, all of which conformed to the established formal range (see Fig. 6.29)

<table>
<thead>
<tr>
<th>Form</th>
<th>Percentage</th>
<th>Diameter range</th>
<th>Diameter Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemispherical bowl</td>
<td>10%</td>
<td>14-19cm</td>
<td>17cm</td>
</tr>
<tr>
<td>Open bowl</td>
<td>32.5%</td>
<td>8-41cm</td>
<td>24cm</td>
</tr>
<tr>
<td>Closed bowl</td>
<td>15%</td>
<td>12-21cm</td>
<td>17cm</td>
</tr>
<tr>
<td>Jar</td>
<td>25%</td>
<td>15-23cm</td>
<td>18cm</td>
</tr>
<tr>
<td>Indeterminate bowl</td>
<td>17.5%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 6.28 showing distribution of forms and vessel sizes (n=42)

Somewhat unusually there is a higher proportion of bowls to jars (75:25) than is often encountered (e.g. Van Grunderbeek 1988). However this occurrence is not exceptional (e.g. Mirama II, Van Grunderbeek pers.comm.), but what is unusual is the very high proportion of open bowls – the single most common form. As a rule this is normally the least common form, and one might speculate that Urewe users at Sanzi placed a high emphasis on serving vessels (see also Luka). However as discussed above, the lack of contextual data makes this suggestion merely speculative.
Typically rims are bevelled (53%) or squared (21%), rounded (21%) or tapered (5%) with no decoration on the lips of the vessels, but a high incidence of rim decoration (95%). Decorative technique is primarily incised (88%) although rocker-stamping, punctate and red slip also occur (12%). Certain decorative effects seem to favour certain forms with 44% of all jars cross-hatched at the rim, 83% of open bowls horizontally incised and 50% of closed bowls horizontally incised. Only three vessels showed decoration on the body (7%)

In total this is a very characteristic Urewe assemblage with only perhaps some variation in the high number of open bowls present.

WPT Urewe

Just three cases of this ceramic were encountered and were marked out for individual attention following the remarkable likeness to the Urewe variant found at WPT on the Entebbe peninsula (see Fig. 6.30). At Sanzi, all three examples were globular jars with the distinctive 3-line cross-hatching on the rim also found at WPT. However in addition, body fragments were found at Sanzi which showed extensive incised bands radiating from a central circle, covering the shoulder and waist of the vessel. As with the original WPT site, the ceramics here are of a very high quality and quite distinct both from the typical Urewe and also from the more poorly executed Urewe derivatives found (e.g. Lutoboka, Sanzi – see below and previously).

Lutoboka

16 reconstructable vessels (see Fig. 6.31), broadly conforming to the Lutoboka typology developed on Bugala were found at Sanzi and are split between hemispherical bowls (31%), closed bowls (63%) and a single example of a collared bowl (6%). This formal range is unusual and different to that encountered on Bugala, where hemispherical or flared mouth bowls dominated, and no closed bowls were recovered at all. Rims however, are similarly squared or rounded (75%), with a new squared rim form that slightly overhangs on the interior found on four of the closed bowls. Like Bugala, decoration is concentrated on the rim/shoulder with all examples decorated either with
bordered bands of incised chevron decoration (62.5%) or with a new more abstracted version of the incised chevron. In these instances the oblique incised lines are made more fluid and random, sometimes even taking on a pseudo-foliate shape (see Fig. 6.31b).

Although the assemblage from Sanzi brings significant new morphological and stylistic additions to the Lutoboka typology, it is argued that the association between the Sanzi material and the material from the Bugala sites (Lutoboka, Malanga Lweru, Sozi) and the Entebbe figurine site is justified; there are too many common features (morphological, decorative) for coincidence. With only limited assemblages available from preceding sites, the new variants found at Sanzi may simply represent a widening appreciation of the whole typological range. Alternatively, the variants found here may represent localised diversification. At this point it is impossible to determine which is the case.

Sozi

Sanzi equals Malanga Lweru with the highest number of Sozi ceramics at a single site, although with just 5 examples (see Fig. 6.32). As with the Bugala examples (see also Lutoboka and Sozi), closed bowls were present (2 examples). However, in contrast to the Bugala sites, 3 of the Sozi vessels are S-shaped jars; a form that has not been previously encountered. Rims replicate those found previously, being squared and with a range of 16-28cm in diameter. Also unusually, the jars have decoration on the lip, in the same form of diagnostic cross hatching, a feature that is both absent from the Bugala examples and the more typical closed bowls found at Sanzi. Decoration of the typical cross hatching is present on all examples (as on Bugala).

Although the Sozi component of the Sanzi assemblage is admittedly small, its repeated appearance across such a large geographic distribution reinforces the argument for its recognition as a distinct ceramic phenomenon. The identification of a radically new form (S-shaped jars) in what is otherwise a very conservative typology is interesting. However, as with the identification of new forms in Lutoboka ceramics at Sanzi, it is
impossible to determine whether it is a regional phenomenon or whether it is simply
the result of a growing understanding of typological definition.

Sanzi

This new ceramic category encompasses Reid's preceding use of the term, which he
applied to two instances of very large collared jars (40+cm diameter) incised with
irregular chevron and horizontals bands (Reid 2002; see also Fig. 6.33). These two
examples are rare both for their size and their level of decoration. However, with
increased data it is apparent that they fall within a wider cluster of ceramics with
analogous forms and rims, albeit smaller and less decorated (see Fig. 6.33). The name
Sanzi has thus been maintained although now applied to an increased repertoire of
ceramics.

Twenty one examples of Sanzi ceramic have been recovered (excluding Reid's two
extant examples which come from Unit B), 86% of which are collared jars, with the
remainder being hemispherical bowls. With an average diameter of just 24cm, it is
clear that the majority of the Sanzi ceramics are considerably smaller than Reid's
original examples, and that these represent exceptions rather than the rule. In addition
to the distinctive form, Sanzi ceramics are also distinguishable for their range of rims
styles which varies along the theme of squared overhanging lips (62% of rims -
variation is identified by the thickness of the overhanging lip) or plain squared lips
(38%). Rims are also noticeable for the high incidence of decoration on the lip of the
vessel (76%) with a range of incised (cross hatch, vertical, oblique) and punctate
decoration. Decoration decreases on the rim of the vessel with just 33% decorated (all
narrow bands of vertical incised lines) and similarly onto the body, where there is only
an occasional occurrence.

This ceramic represents a new style with distinctive features and internal consistency.
Entebbe

As mentioned above, Entebbe ceramics are the only ceramics in this assemblage to hold a symbiotic relationship with a discrete fabric type, S1. This fabric is noticeably coarse in texture with heavy quartz inclusions, yet with a light coloured chalky clay matrix (see Fig. 6.34). This conforms very closely with other instances of Entebbe ceramic fabrics, although no lake-sourced spicules were found in the sample examined.

Five vessels were recovered, all hemispherical bowls (33-40cm diameter, average 37cm) with the squared versions of the diagnostic thickened rims (see Malanga Lweru). All are decorated with TGR on the lip and rim, two with additional finger impressions on the rim. Only one vessel shows the diagnostic comb-dragging on the interior, although total sherd analysis shows this was a more common feature on body sherds (see Table 6.27). In total, the Entebbe ceramics conform to a typical model first identified at Malanga Lweru, being of the squarer rimmed shape than the more rounded ones found by the original excavators on the Entebbe peninsula (Brachi 1960; Marshall 1954)

The Entebbe ceramics found at Sanzi demand further consideration however, by virtue of being found in association with the only feature at the site; the iron-working locale. As noted previously, this was a concentration of iron working debris (slag, tuyere) around a small stone hearth with Entebbe ceramics in association. Associated research at Bukeri Kanywa in Buwunga District, Uganda, also tentatively postulated possible Entebbe ceramics related archaeometallurgical activity (Humphris 2004)14. Following the experiences at Bukeri Kanywa where Humphris's compositional analysis suggested there may have been a relationship between the Entebbe ceramics and the furnace related tuyere, this evidence perhaps adds support to the notion that Entebbe using communities were also actively engaged in metal-working.

14 Bukeri Kanywa was also excavated by Reid, with Humphris carrying out an archaeometallurgical examination for her MA thesis at the Institute of Archaeology, UCL. Unfortunately however, recent disturbance meant that iron-working remains could not be tied to the ubiquitous Entebbe ceramic found in the vicinity, and the study was therefore omitted from this thesis. Humphris however conducted a comparison of tuyeres recovered with a sample of the Entebbe pottery (using XRF) which suggested a possibly linked programme of raw material sourcing, with particularly notable quantities of Kaolin in both the ceramics and the tuyeres (See Appendix 2).
Comment and Discussion

Although stratigraphically compromised there are some broader contextual extrapolations that can be attempted. Archaeological activity, for instance, is restricted to a single discrete horizon which is both sealed by an overlying sterile deposit and also shows no indication of recent disturbance (e.g. modern/historic ceramics such as the Stone Impressed found at nearby Namusenyu). On a broader level therefore, it can be argued that the activity evidenced at Sanzi is probably temporally quite closely grouped. This notion of association, despite the diversity of ceramic styles, may also be supported by the shared ceramic fabrics, although the difficulty of distinction still remains an issue.

Assuming that the activity evidenced is temporally related (be it contemporaneous or continuous/succeeding settlement), then the late first millennium AD radiocarbon date is a useful point of departure. There is a substantial Urewe ceramic component which is both distinctly Urewe and also distinct from the other (later) variants found in this research (WPT, Devolved Urewe). As no Urewe bearing site in the Great Lakes regions is reliably later than the C8th AD (see Chapter 2), it is suggested that this might represent a late Urewe period phase of occupation (up to C8th AD), prior to the development/appearance of the other ceramic types. Following this period of activity, it is suggested that the other ceramic phenomena came into use, probably without a hiatus of settlement. Although the details of the succeeding sequence cannot be attempted, wider evidence of association argues that there was a very close temporal relationship between many of the identified ceramic groups. As has been shown on Bugala, Entebbe, Lutoboka and Sozi have a close contextual relationship (being found together at Malanga Lweru, Lutoboka, Sozi) and also dated to the late first millennium AD. Moreover, the remaining ceramic groups identified at Sanzi seem to possess morphological similarities/associations with these ceramics that also indicates relationship. It is argued that Sanzi and the WPT Urewe are part of the same lake-wide trend that sees an explosion of new ceramic styles, often derivative of the Urewe template, during this late first millennium period. Thus, Sanzi ceramics with their incised decoration and jar form are continuing some of the key typological features of
Urewe ceramic, and like Lutoboka ceramics, creating a distinct morphology, which is yet reminiscent of the earlier Urewe.

In conclusion, it is suggested that Sanzi represents one of the most ceramically rich sites encountered in this research, which, even without absolute contextual security, is argued to reflect a late first millennium fluorescence in ceramic activity, which moves away from the high quality, labour intensive Urewe template, to looser and more localised interpretations of the Urewe style. This appears to happen in tandem, or be closely related temporally, with the lacustrine Entebbe phenomenon, which in the case of Sanzi, may be directly associated with iron-working evidence.
Chapter Seven

Research Findings from the Northeastern Lake:
Case-studies 4 and 5

This Chapter acts as a sister to Chapter 6, and records the research findings from work carried out in the northwest area of Victoria Nyanza, detailing results from case-studies 4 and 5.

Case-study Four: Siaya and Lolui

The boundaries of the case-study area require some initial explanation (see Fig. 7.1). The Siaya District of western Kenya covers a huge area, and not all this region is subject to archaeological scrutiny here. Rather, a small number of key sites will be detailed with wider information from Siaya District used to contextualise the archaeological background. The majority of the evidence comes from sites in the Nzoia and Yala river valleys, in Yimbo, Alego and Ugenya Locations, though with additional information from Uyoma and Seme Locations and Kisumu District. The decision to include Lolui island, which actually lies in Bugiri District, Uganda, has been made as the Siaya coast is the closest landmass to the island, and it seems futile to follow archaeologically arbitrary national boundaries.

Case-study 4 stretches from Lolui island, far out in the lake 25km from land, through Siaya District and the lakeshore savannah plateau at c1200m above sea level, rising gently to the Nandi escarpment, at c. 1800m above sea level. Four great artery rivers descend through this landscape, feeding the lake with the waters of the Western Highlands. Heavily populated, with some of the greatest densities of settlement anywhere around Victoria Nyanza (up to 600ppkm² - Ogot 1967: 131), the area is primarily occupied by Nilotic Luo speaking communities, whose oral history attest to their arrival in the area in the C16th (Ogot 1967: 152).
Archaeological research in the area has a relatively long history\(^1\), the area being the home of one of the pioneers of Kenyan prehistory, Archdeacon Owen. Although primarily concerned with Stone Ages, there is a line of continuity from Owen’s work on the ‘Kombewan’ culture (Cole 1954; Owen 1938) to McBrearty’s investigations on the MSA at Muguruk (McBrearty 1988). Gabel (1969) later excavated 6 rockshelters along the north Winam Gulf coast (Seme and Kisumu District) finding microlithic industry debris dating from C\(^4\)th BC- C\(^1\)st BC. More recently Mosley & Davison (1992) have identified Kansyore ceramics from surface collection at Ugunja on the Nzoia River (Ugenya Location) with Dale subsequently excavating the site, as well as nearby Siror (Dale 2001; pers. obs). Archaeological occupation apparently continued into the first millennium AD, with one the most enduringly important clusters of Urewe bearing sites for the whole of the Great Lakes found on the banks of the Yala river near Ngiya in Alego (Leakey et al 1948). No less than the type-site from which Posnansky derived the ‘Urewe’ name, and Leakey et al the essential typology, Owen was once again instrumental in the discovery and excavation of the locales (Yala Alego, Ngiya, Urewe, Magari, Suludhi, Kathomo and Aluala Valley) and the most complete Urewe assemblage ever found. Excavated from apparently anthropogenically cut features and sometimes capped with stones, Owen cautiously suggested that the remains from Urewe I, Yala Alego and Magari may have been the deliberate burial of caches of ceramics, hence the recovery of 32 complete or near complete vessels (Leakey et al 1948; see also Chapter 6 and discussion of Luka). Soper (1969) returned to the area and retrieved radiocarbon date of 400±235 ad from Yala Alego, with Clist (1987) accepting a general C\(^5\)th AD date due to overlap with related dates. Gabel’s (1969) dates from the rock-shelters may tenuously be relevant here as he also recovered small quantities of Urewe ceramics in the three Seme rockshelters (Rangong, Randhora, Nyaidha). However, as Gabel’s deposits seem mixed (with Luo ceramics throughout) there can be no confidence in his significantly earlier BC dates, which would represent the earliest Urewe-related dates outside the Buhaya/Rwanda/Burundi heartland.

\(^1\) The research history of Lolui will be dealt with separately in discussion of the site, as this is integral to the present work.
Three different phases of research will be detailed here. Excavation was carried out by myself (with the assistance of Mr. F. Odede, NMK Archaeologist for Western Kenya) at Haa (SASES No. GpJh17, Ugenya Location) with limited survey of the environs (MOEST No. 13/001/33C295/2) in December 2003-January 2004. Paul Lane’s (BIEA) research project ‘Settlements and Landscape Histories in Nyanza Province, Western Kenya’ carried out numerous surveys and excavation between 1999 and 2003, of which the excavation of Usenge 3 is of primary significance here. I am very grateful to Dr. Lane for allowing me to collaborate on this project, both as Assistant Director and also affording full access to the finds. The final work relates to initial investigations carried out by Professor Merrick Posnansky (UCLA) on Lolui island in the 1960s, which has been subsequently revised by myself and Dr. Andrew Reid (UCL) for a forthcoming publication (Posnansky et al in press).

Survey Results

In addition to the three excavation reports to be detailed, recent surveys are also relevant here, adding additional contextual information for regional understanding.

As might be expected from previous research in the region, surveys along the Yala and Nzoia rivers revealed Kansyore bearing sites. These included a series of shell middens around the shore of Lake Sara, one of which Usenge 1 was excavated in 2002 (pers.obs; see also Lane 2004). Similarly, Lane’s teams also recognised Urewe sherd scatters at Lake Sara (Usenge 3 – see discussion below) and also, unsurprisingly, along the Yala river close to the original Leakey et al sites. However, in addition to these expected discoveries, sites with two additional ceramic types were also encountered.

Middle Iron Age ceramics (MIA) have previously only been recognised in South Nyanza District in the Gogo Falls vicinity (Robertshaw 1991a), and it was therefore notable that four different MIA find-spots in the Yala river valley should be identified by Lane’s team. This included a single vessel find-spot with the most complete MIA vessel yet identified, which was found eroding out of the roadside complete and unbroken except for its absent base (see Fig. 7.2). The second previously unrecognised
ceramic component was the recovery of Entebbe sherds from the Yimbo coastline where two find-spots were encountered. This represents the first positive discovery of Entebbe ceramics in Kenya, and again seems to reiterate the coastal preference of Entebbe ceramic users (subsequently Entebbe sherds have also been recovered a little further south in Uyoma Location - Oteyo pers.comm.).

A single archive site, found in the store of the National Museum of Kenya in Nairobi seems to embody much of this recently found diversity. The Nowa River collection (Gqjc 17), made by Dennis Kean-Hammerson, comes from the east bank of the Nowa river where it joins the Winam Gulf at Otongola, just a few kilometres west of Kisumu. Un-researched/published, the only contextual data comes from Kean-Hammerson notes in which it is stated that the material was collected following the digging of house foundations. This assemblage reveals a rich collection of Entebbe, MIA, Lutoboka and Sozi ceramics (see Fig. 7. 3). Unfortunately the site could not be re-located for further investigation. Nevertheless, the recovery of ceramics now familiar from the Ugandan experience, suggests that the rich diversity identified there, was also present in areas further east in Kenya. It is perhaps no surprise that the Nowa River site is once again located in a lacustrine environment, this unusual collection being potentially explained through water-borne contact and exchange with communities to the west.

Haa (SASES No. GpJh17), Ugenya Location, Siaya District

The site of Haa was identified in June 2000 as part of Darla Dale’s doctoral research into LSA Kansyore sites in the region (Dale 2001). Two local collaborators, Michael Odhiambo and Emmanuel Jackosewa identified the site whilst taking part in the excavation of the nearby site of Siror, and a surface collection was made (Dale 2001). In October 2003 the site was revisited by the author as part of a feasibility survey and another surface collection confirmed the presence of Urewe and Kansyore ceramics. With the permission of Dale, the site was revisited in December 2003-January 2004 for excavation.
Site Definition

Located on the northern bank of the Nzoia River, upstream from Ugunja town in Ugenya Location, the site sits at a rapid filled bend in the river, and covers c 200m x 400m. Only partially cultivated, the site is open and grass covered, rising sharply from the river edge to a gently sloping summit, before falling away again to the west and the boundary set by a tributary stream (see Fig. 7.4).

With only limited time available to excavate this extensive site, a strategy was devised to maximise knowledge of the wider occupation, whilst still achieving detailed and controlled excavation of a limited area. Therefore a single excavation unit 4m x 2m was excavated in the southeast of the site, midway between the summit slope and the river cliffs, whilst a series of Shovel Test Pits (STP) were excavated across the length of the site.

Excavation revealed a relatively homogenous matrix of loose black brown silty loam with 10-20% stones. As excavation progressed it became apparent that mixing of deposits had taken place. This was the result of surface cultivation, and also the effects of modern burials, of which three inhumations were encountered within a 4m x 2m area. These generalised and localised episodes of stratigraphic disturbance render spatio-temporal distinction and analysis futile.

The thick grass cover extending across the site meant that it was impossible to carry out detailed surface survey and collection. Therefore a sub-surface survey strategy of STP's was employed to test the archaeological deposits across the site. STP's have been notably employed in the American Southwest (e.g. Plog et al 1978), and more recently on Pemba Island by Fleisher (Pers obs; Fleisher and LaViolette 1999) and involves a strategy of digging pits at regular intervals to assess the buried deposits. This basic strategy was adopted here, however the pits were formalised into 50cm x 50cm sondages which were dug in 10cm spits, with individual artefacts collection and stratigraphic recording made every spit. Nine STP's were dug in total, indicating a broadly analogous stratigraphy to that of Unit A, with up to 90cm of deposit at the
thickest point. In-the-field analysis of the artefacts extracted from these STP's confirmed the presence of Urewe and Kansyore ceramic traditions, although Urewe ceramics were found to be in a small minority. These Urewe finds tended to be located in the upper spits, and the uneven distribution was again argued to be the result of surface activity and agriculture. The Kansyore deposits meanwhile were found in greater abundance, and lay deeper in the stratigraphic sequence. These Kansyore related deposits appeared to be well preserved in areas, with conjoining sherds and in association with rich contextual data such as dense concentrations of fish bone (see Fig. 7.5).

As the sites is to be subject of continued investigation by Dale regarding the Kansyore related activity, research attention will here focus on the Urewe ceramic component exclusively.

Ceramic Analysis

Although 7 fabric categories were recognised, only two, H3 and H4, were identified as relating to the Urewe ceramic component.

A total of 22 sherds of this group were collected from excavation, representing less than 1% of the assemblage. However this includes 17 reconstructable sherds which correlate closely with the known Urewe criteria.

<table>
<thead>
<tr>
<th>Physical Properties and Effects</th>
<th>Decoration</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3 Light brown-buff fabric with unox core, fine-grained well sorted matrix, 15-20% quartzite/mica inclusions and shell, 1-3mm, high inclusions sometimes causing surface to crack</td>
<td>? incised?</td>
<td>Urewe</td>
</tr>
<tr>
<td>H4 Light coloured buff fabric, unox core, fine-grained matrix, quartzite/mica inclusions, 1-2mm (2-5%)</td>
<td>? incised?</td>
<td>Urewe</td>
</tr>
</tbody>
</table>

Table 7.1 showing fabric properties

With such small quantities it is difficult to make value assessments on the variation found, and it is likely that the two fabrics identified here are part of a single sliding
scale, dependent on the relative quantities of inclusions, and may therefore be considered part of a single productive system. The sourcing of raw materials at the site is interesting however, with a range of inclusions that notably include shell. This component clearly indicates sourcing from an aquatic environment, with the Nzoia River as the obvious candidate.

Vessel forms are divided into globular jars (63%), open bowls (25%) and hemispherical bowls (12%). These typical Urewe forms are complemented by bevelled rims (82% - up to five bevels), squared rims (6%), and rounded rims (12%). Rim mouth diameters cannot be accurately averaged with such a small sample, however the jars have a size range of 12-28cm.

There is a low degree of decoration with only 35% of the reconstructable sherds decorated. These show typical Urewe incised decoration, but have fairly simple motifs with single lines of punctuates, incised horizontal lines, cross-hatching and herringbone incision.

Discussion and Comment
With such a small assemblage sweeping interpretations are precarious. However, it is clear that this represents a typical Urewe tradition component, consistent with established typology in all its formal and morphological features. Significantly this tallies with styles found in the nearby Urewe type-sites.

It is unfortunate that this site which originally appeared to hold so much potential for diachronic examination of settlement should be so disturbed, particularly so in regard to the upper (Urewe bearing) layers. This is a disappointing failing as discussion continues to focus on the nature of the relationship between Urewe and Kansyore using communities, with Karega Munene (2002,2003) arguing for co-existence at Gogo Falls in South Nyanza (2002) despite Robertshaw’s (1991a) claims that the site was too mixed for such interpretive security. It is only hoped that future investigations of the site are able to discuss specifically Kansyore related questions, as the lower deposits
clearly show good stratigraphic integrity, as evidenced by the reconstruction of an \textit{in situ} broken pot, and thus positive research potential.

Usenge 3, Yimbo Location, Siaya District

Identified in November 2000 by Dr Paul Lane during archaeological prospection survey around the shores of Lake Saru, an inland satellite lake of the nearby Victoria Nyanza, Usenge 3 was subject to initial sounding by STP in 2002, which revealed a depositional sequence that contained Kansyore, Urewe and Luo ceramics. The site was therefore revisited in November 2003 for controlled excavation.

Site Definition

Lying within modern agricultural fields, the site sits on a low, gentle mound on the northwest shore of Lake Saru, following the contour of an earlier and higher lakeshore. To the east, the site drops a few metres to the marshy and reedy edge of Lake Saru, which represents the shallow delta of the River Yala as it joins Victoria Nyanza a few kilometres downstream. On the opposite bank of Usenge 3 is Got Ramogi, a rocky outcrop which oral history attests as the location of the first settlement of the southward migrating Luo who now occupy the region (Ogot 1967).

Three excavation units were dug; one 3m x 5m unit (unit A) and two 2m x 2m (units B & C). Units B and C unfortunately indicated mixed deposits with no clear stratigraphic boundaries; unit C being further disturbed by an intrusive child burial of recent age. Unit A however was found to contain intact stratigraphy and features, prompting the following depositional interpretation: upper layers were found to be associated with modern/historic activity including a series of shallow pits and fills and possible metal-working. Below these deposits was a reddish brown clayey silt deposit with a small number of intact spatial features that included an \textit{in situ} baked clay pot-stand and ceramic/bone concentrations/middens (see Fig. 7. 6). The lowermost deposits were clearly demarcated by a concentration of shell-supported matrix containing ceramic and bone, including a discrete pit/fill feature containing burnt human remains which may represent a cremation. Time limitations unfortunately barred the completion of
excavation, and the shell deposits were only superficially exposed before being covered in plastic sheeting for future research.

Adding preliminary in-the-field assessments of ceramic evidence to help understand the occupational sequence, it is clear that there is distinct vertical sequence of ceramics that correlates with the stratigraphic divisions outlined above, with the upper layers (shallow pits fills/archaeometallurgy) associated with historical Luo ceramics, the middle deposits (clay pot stand, ceramic concentrations) with Urewe ceramics, and the lowermost deposits (shell supported matrix) with Kansyore ceramics.

Radiocarbon

Four samples of charcoal were submitted to Beta Analytic for AMS dating, with the following results.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Conventional 14C age</th>
<th>2 sigma calibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-186498</td>
<td>170±40 BP</td>
<td>AD1950-1890</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AD1910-1950</td>
</tr>
<tr>
<td>Beta-190746</td>
<td>1560±40 BP</td>
<td>AD 410-600</td>
</tr>
<tr>
<td>Beta-190747</td>
<td>3310±40 BP</td>
<td>1690-1500 BC</td>
</tr>
<tr>
<td>Beta-186499</td>
<td>3240±70 BP</td>
<td>1680-1390 BC</td>
</tr>
</tbody>
</table>

Table 7.2 showing radiocarbon determinations

Sample (Beta-186498) was taken from upper levels in association with Luo ceramics, and gives a date that is consistent with oral historically attested settlement of the area by the Luo in the second half of the second millennium AD.

Sample (Beta-190746) was taken from the Urewe ceramic concentration providing a date broadly comparable with Soper’s (1969) dates for the nearby Urewe type-sites.

Samples (Beta-190747, Beta-186499) were taken from the very lowest levels associated with the Kansyore ceramics, and provided broadly analogous dates in the mid second millennium BC, well within the extant timeframe of 8,000-2,400BP for Kansyore using communities (Kusimba & Kusimba 2005).
These absolute dates provide a useful sequence that supports in-the-field interpretations of multiple occupancy of the site as well as sustained occupational hiatuses between settlement phases. Moreover, they provide an important contribution to the corpus of absolute dates for the wider region, as there are problems of stratigraphic security with many of the existing Urewe dates in Kenya (Clist 1987), and the Kansyore phenomenon has a fluid and diverse age range which is still open to query (Karega-Mùnene 2002, 2003; Kusimba & Kusimba 2005; Robertshaw 1991a).

Faunal Analysis

Preliminary results from faunal analysis conducted by Ms. Sada Mire (SOAS) have also provided important insights into the subsistence economy at Usenge 3. Lower deposits associated with Kansyore ceramics and dated to the 2nd millennium BC show exploitation of a range of wild fauna, notably swamp-dwelling species (hippo, sitatunga, terrapin), in addition to ovicaprines, fish and Thomsens gazelles. Urewe bearing deposits have a not dissimilar faunal profile with fish once more prominent as well as swamp dwelling creatures (sitatunga, terrapin). Wild mega-fauna are also evidenced by the astragalus of a water buffalo. However, there is evidence of greater exploitation of domesticates, with ovicaprines again identified as well as bos taurus for the first time.

This faunal profile is extremely interesting and prescient, as it is rare to have such densities of well preserved bone, or to have secure stratigraphic resolution to ensure confident contextual association. The evidence of the Kansyore using economy is notable as it shows the presence of ovicaprines (i.e. domesticates) in a community that is nominally believed to be a hunter-gatherer. This is an issue that has been under debate for some time; Karega-Mùnene (2002, 2003) for example, has argued for the presence of domesticates amongst Kansyore using communities, but has received little support in his assertions. The evidence presented here, which can be securely linked stratigraphically, seems to support his argument.
Evidence from the Urewe using deposits are also interesting, for, as noted in Chapter 2, there is very little direct information for subsistence economies of these communities. The present evidence therefore seems to suggest a mixed wild/domesticate faunal profile, contrasting with previous assumptions on the prominence of domesticates (e.g. Phillipson 1977; 1993) and also differing to Van Noten’s experience of wild fauna at Kawezi.

Nevertheless, despite the evidently rich resource present at Usenge 3, current research goals mean that attention must focus on the Urewe bearing deposits and consider the Kansyore and Luo bearing layers no further, both being temporally outside the remit of this thesis. In this regard, the site prompts certain research agendas and foci. As noted in Chapter 2, very little is known of the ‘domestic’ experience of Urewe using societies, largely because so little remains of the settlement archaeology. At Usenge 3, the excellent stratigraphic integrity means that a very secure chronological context can be used to frame the archaeological experience, which unusually for Urewe bearing sites (see Chapter 2), shows discrete settlement features (rubbish middens, a pot stand). This is intrinsically important and helps to develop the picture of occupation at the site as a sedentary and sustained, and, despite the relative scarcity of architectural features, the site also represents a major contribution to wider Great Lakes understanding of this domestic realm.

The principal research attention here however is of course the ceramics and how these ceramics can be played into the framework established by associated evidence. This prompts the enigmatic discovery that the ceramics are quite unlike the typical Urewe style, or indeed the recently identified related ceramics of Lutoboka and Devolved Urewe found by this thesis in Uganda (see Chapter 6). As with Devolved Urewe, the ceramics for Usenge 3 are of a poorer quality in terms of technological and stylistic execution, yet as the chrono-stratigraphic framework detailed above has shown, they are demonstrably earlier than the Lutoboka/Devolved Urewe experiences on Bugala or at Luzira, which are here dated to the late 1st millennium AD. Therefore, the goals of
the ceramic research will be to examine the specifics of this ceramic phenomenon, and
explore how it impacts on wider notions of Urewe using communities.

Ceramic Analysis
A total of over six and a half thousand sherds were examined from the Urewe bearing
layers of Unit A, of which 5,350 measured less than 2cm² and were therefore analysed
no further.

Technological Profile
The remainder were separated into five different fabric categories with the following
physical properties.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Physical properties</th>
<th>Phys effects</th>
<th>Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Buff brown, quartzite grains 1-5mm (10%), sand, <1mm (10-15%)</td>
<td>Surface cracking</td>
<td>plain</td>
</tr>
<tr>
<td>U4</td>
<td>Black brown compact fabric, quartzite grains <1-2mm (5%) & sand, <1mm (5%)</td>
<td>Smooth</td>
<td>Plain, incised</td>
</tr>
<tr>
<td>U5</td>
<td>Buff brown, friable, quartzite pebbles 1-8mm (25%), poorly sorted</td>
<td>Surface Cracked</td>
<td>plain</td>
</tr>
<tr>
<td>U8</td>
<td>Brown - brown black, quartzite sand & grains, 1-1mm (5%)</td>
<td>Sandy, uneven</td>
<td>Plain</td>
</tr>
<tr>
<td>U9</td>
<td>Bright red-orange, quartz grains & sand,<1-1mm (2-5%)</td>
<td>uneven</td>
<td>Plain, incised</td>
</tr>
</tbody>
</table>

Table 7.3 showing fabric properties

Quantitative analysis (of total sherds) shows that there were two major fabrics in use, U1
(57%) and U5 (30%) with lesser fabrics U4 (4%), U8 (4%) and U9 (5%). Fabrics U1 and
U5, which dominate (87%), have similar compositional make-ups, physical effects and
properties, and can only be distinguished by the volume and size of the inclusions, and
may therefore represent two ends of a single fabric continuum. In both U1 and U5 the
volume of inclusions is noticeably high, and has affected the physical properties of the
ceramic. Surfaces are cracked where the clay matrix has disintegrated around coarse
inclusions, and in some instances inclusions larger than the thickness of the vessel wall
have been encountered (average wall thickness 0.7cm, inclusions up to 8mm), resulting
in quartzite chunks protruding through the surface of the vessel. This physical effect is
important to note as it suggests a chaîne opératoire, or producing community who are fairly un-skilled in the basics of pyrotechnology. As such, an essential element of the chaîne opératoire is balancing raw materials so that the fabric is neither too plastics (few inclusions) or not plastic enough (many inclusions). In the former the clay is liable to shrinkage or even melting, and in the second, the internal bonds between the matrix and inclusions is not sufficiently strong to prevent fracture. An excellent example of the latter are the coil breaks frequently witnessed in Kansyore ceramics, where the bond between each coil is undermined by the sandy fabric (see also Fig. 5.2). Tempering, through the addition of coarse inclusions, is usually advantageous as it adds strength to the plastic matrix, and can help increase thermal shock. However, in this case, the level of tempering is excessive, so the physical advantages and undermined by the sheer weakness of the fabric which does not bond adequately (see Fig. 7.7).

Therefore, from these discussions of fabric, it can be suggested that the ceramic producers at Usenge 3 were perhaps relatively inexperienced or technologically unaware.

Morphology

262 reconstructable vessels were recovered from Unit A, with analysis of vessel form showing all the typical shapes associated with the Urewe typology present.

<table>
<thead>
<tr>
<th></th>
<th>U1</th>
<th>U4</th>
<th>U5</th>
<th>U8</th>
<th>U9</th>
<th>Diam. Range</th>
<th>Diam. Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hem. Bowls (n=116)</td>
<td>56%</td>
<td>3%</td>
<td>31%</td>
<td>2%</td>
<td>8%</td>
<td>5-36cm</td>
<td>24cm</td>
</tr>
<tr>
<td>Open bowls (n=10)</td>
<td>70%</td>
<td>10%</td>
<td>20%</td>
<td>0</td>
<td>0</td>
<td>16-32cm</td>
<td>26cm</td>
</tr>
<tr>
<td>Closed bowls (n=42)</td>
<td>43%</td>
<td>5%</td>
<td>45%</td>
<td>0</td>
<td>5%</td>
<td>14-32cm</td>
<td>21cm</td>
</tr>
<tr>
<td>Jar (n=64)</td>
<td>52%</td>
<td>12%</td>
<td>30%</td>
<td>1%</td>
<td>5%</td>
<td>7-36cm</td>
<td>26cm</td>
</tr>
<tr>
<td>Indeterm. (n=30)</td>
<td>77%</td>
<td>3%</td>
<td>17%</td>
<td>0</td>
<td>3%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 7.4 showing distribution of forms (n=262)
The overall jar to bowl ratio is 28:72 (excluding the indeterminate vessel shapes). This statistic is surprising as in other cases jars are more typically dominant, or are at least present in parity with bowls (e.g. see Entebzamikusa; see also Van Grunderbeek 1988). However, Table 7.4 masks some important internal variation in relation to individual fabric distributions.

<table>
<thead>
<tr>
<th></th>
<th>Hemispherical bowl</th>
<th>Open bowl</th>
<th>Closed bowl</th>
<th>Jar</th>
<th>Indeterminate form</th>
<th>Ratio Jar:bowl</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1 (n=146)</td>
<td>44%</td>
<td>5%</td>
<td>12%</td>
<td>23%</td>
<td>16%</td>
<td>27:73</td>
</tr>
<tr>
<td>U5 (n=16)</td>
<td>44%</td>
<td>2%</td>
<td>24%</td>
<td>24%</td>
<td>6%</td>
<td>25:75</td>
</tr>
<tr>
<td>U4 (n=81)</td>
<td>25%</td>
<td>6%</td>
<td>13%</td>
<td>50%</td>
<td>6%</td>
<td>53:47</td>
</tr>
<tr>
<td>U8 (n=3)</td>
<td>67%</td>
<td>0</td>
<td>0</td>
<td>33%</td>
<td>0</td>
<td>33:67</td>
</tr>
<tr>
<td>U9 (n=16)</td>
<td>56%</td>
<td>0</td>
<td>19%</td>
<td>19%</td>
<td>6%</td>
<td>20:80</td>
</tr>
</tbody>
</table>

Table 7.5 showing fabric distributions in relation to form.

As Table 7.5 shows, whilst fabrics U1,5,8 and 9 broadly correspond in formal frequencies and jar:bowl ratios, fabric U4 shows a quite different profile. U4 fabric, unlike the site trend, does replicate the more typical distributions of jars and bowls, with a small majority of jars.

Vessel size ranges, as evidenced by rim diameter, are consistent with other measurements recorded previously, and suggest a moderate sized range of vessels consistent with small-medium group use (i.e. neither large enough to suggest communal nor small enough to suggest individualistic).

Bases are rare, with only 4 recognisable bases in total (the remainder presumably being undifferentiated from the body sherds); two U5 sherds show general rounded bases, one U1 base shows a rough irregular dimple which contrasts to a U4 sherd with a small neat dimple (1cm diameter) surrounded by concentric incised circles.

Bevelled rims are found in abundance, with an incidence between 78% and 90% depending on form. However, these are simple bevelled rims of 2 or 3 bevels (77% of
reconstructable), occasionally 4 facets, and exceptionally a single 8 bevelled rim from a U4 fabric vessel.

With regard to decoration, the assemblage is dominated by plain vessels; 96% of reconstructable vessels are plain, rising to 98.5% of total body sherds

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Plain</th>
<th>Horiz. Inc.</th>
<th>Oblique inc.</th>
<th>x-hatch</th>
<th>punctate</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>142</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>U4</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>U5</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U9</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7.6 showing decorative distribution (n=261 – impossible to determine decoration on one example)

As the table 7.6 shows, as well as the general paucity of decoration, there is also a small range of decorative effects. As such, this decorative profile is very unlike extant Urewe typology, which usually includes high incidence of decoration, as well as a range of effects within the definition.

However, within the vessels that are decorated, there is a significantly higher incidence of decoration on the finer grained fabric U4, with 45% of all fabric U4 sherds being decorated compared with 2.8% of fabric U1 and just 1.3% of fabric U5 (see Fig. 7. 8). Fabric U4 moreover, has the greatest range of decorative effects, and is clearly a more technologically appropriate fabric for decoration with its smaller and sparser inclusions that create a more even matrix for incision.

The ceramics found at Usenge 3 therefore superficially fit into the extant Urewe typology. However, at every stage of the chaîne opératoire, from the beginning (raw material mixing and processing) to the end (decoration), there are significant distinctions that render it a unique assemblage, prompting questions about the reasons for such variation.
Comment and Discussion

Preceding discussion of fabrics, and particularly reconstruction of the economic structure of production, has already suggested that the ceramic producing community at Usenge 3 was not particularly skilled or knowledgeable in pyrotechnology and the process of ceramic manufacture. Evidence of morphology also shows that key embellishments, typically diagnostic of Urewé ceramics, are either not attempted (decoration, bases) or replicated in simpler manner (bevelled rims). This combined evidence presents a physical picture of a ceramic that differs from the parent template, but more importantly, argues for an associated socio-economic community who were missing the habitual skills of established potters, or who were unable to afford the economic investment of potter semi-specialism, and the associated periods of training/apprenticeship. This contrasts with other Urewé assemblages found during this research, where the inherent quality and standard of execution of the ware is one of the distinguishing hallmarks, and argues for the widespread (semi)-specialism of the potters.

Another important point of difference between the Usenge 3 ceramic pattern and other Urewé collections can also be found in the formal composition of the assemblage. As noted, Van Grunderbeek found an average ratio of 6:4 between jars and bowls of all types, a ratio that has been largely replicated with some small deviation, in the assemblages encountered in this thesis. At Entebezamikusa in Chapter 6 it was speculated that the widespread domination of Urewé ceramics by jars must indicate a central role for liquid commodities, perhaps through cooking, but more likely through the storage and serving of such goods as water, beer or milk. At Usenge 3 meanwhile, jars represent only 28% of the entire assemblage, less than half the number typically encountered. This discrepancy is notable, because it must reflect the functional application of the assemblage as a whole, and shows a heightened role for bowls, particularly the hemispherical bowl. The hemispherical bowl, which alone constitutes exactly 50% of the total, has been argued elsewhere to be a multi-functional vessel, with an open mouth that affords easy access to the contents, and therefore suitable for cooking, storage, and the serving of goods. Here it is also possibly significant that jars
sizes are generally larger than at other Urewe sites encountered, with an average of 26cm compared with 17cm at Entebezamikusa and 19cm at Wadh Lang'o (see below and Chapter 6). By increasing the mouth diameter, access to the jar contents is increased, and thus the range of functional applicants grows accordingly. The Usenge 3 assemblage therefore, does not show the same level of functional specificity as typical Urewe assemblages, and seems to favour multi-purpose vessels, all of similar sizes. On a wider level, this shift in ceramic application can be attributed to broader behavioural distinctions and difference. Whilst Urewe using communities across the Great Lakes focus ceramic activity on liquids, the community at Usenge 3 seems to follow a quite different behavioural template, relegating liquid-bearing vessels to a minority role, thereby indicating that the liquid goods themselves do not enjoy the prominence they do in other Urewe using communities.

These differences are significant, and reflect not only a difference in the economics of ceramic production, but also a fundamental divergence in the way ceramics are used within society, and thus possibly also, a fundamental distinction in subsistence economies as well. It is therefore argued that the community evidenced at Usenge 3 is quite distinct from those typically associated with Urewe ceramics.

The reasons for such differentiation are not immediately clear. With such evidenced disjunction, an important initial step must be to establish whether there is any remaining meaningful connection between the ceramics at Usenge 3 and the extant Urewe, and whether in fact the distinctions are so great that a new ceramic type needs to be recognised. This notion, whilst initially tempting, is not however, substantiated by the evidence. There is too much overlap in morphological attributes to be mere chance, and the correlation must indicate some level of relationship. Moreover, there is also further compelling evidence from within the assemblage to reiterate this association. During preceding discussion, it has been argued that vessels made from the U4 fabric follow a different template to those of the U1/U5 element, which form the bulk of the assemblage. Collating the U4 manifestations, it is clear that these examples perfectly match the extant criteria for Urewe (jars, decoration, bevels, dimples), and
there is thus a discrete assemblage of typical Urewe ceramics within the wider Usenge 3 collection. This presence reaffirms the direct association of Usenge 3 with the wider Urewe using phenomenon.

So having reiterated the inter-locked relationship between Usenge 3 and the broader Urewe using experience, it is necessary to try and understand why such tangible internal differentiation is manifested. Many of the usual precipitates to variation can be ruled out (temporal, spatial, functional variation), however it is worth clarifying these arguments.

Temporal variation can be rejected as the 14C dates from Usenge 3 show that the Urewe ceramics are dated to the mid 1st millennium AD, i.e. well within the accepted time-frame for Urewe ceramic using communities, and also closely allied in date to the nearby Urewe type-sites. Spatial variation can also be ruled out for a similar reason; although Usenge 3 is located towards the eastern limit of Urewe ceramic distribution (see Fig. 2.5), as seen above, there are several precedents of typical Urewe bearings sites in the immediate area (Urewe type-sites, Haa). Functional differentiation has been vaguely mooted in discussion of fabric, with the argument that functional demands can influence the morphological, and especially the technological, character of a ceramic, perhaps in this case developing a ware suited to high temperatures (cooking on the fire). This suggestion may also be rejected however, as there is no distinction within the chaîne opératoire for different vessel forms. Thus it might be expected that open bowls and jars which are not suited for cooking or food preparation may be exempted from the current chaîne opératoire, and instead imbued with physical qualities suited to their function of serving and liquid storage (e.g. burnished surface to reduce porosity and leakage). This is not evident in Usenge 3, where all vessel forms are produced by the same chaîne opératoire, even if forms such as the jars (see above) are reduced in number.

Having rejected these key variables, which together account a large proportion of archaeological variation in material culture, it is necessary that a less orthodox
explanation is sought. Previous mention has been made of a recent paper by Lane (2004), which applying Alexander’s ‘Frontiers’ model, has argued that western Kenya during this period was undergoing a vibrant fusion of differing socio-economic communities (Urewe, Kansyore and Elmenteitan using), fluctuating in their contacts are inter-relationships. This notion of social flux has already been advanced in a less abstracted way by Karega-Münene (2002, 2003) in his discussion of social activity at the multi-component site of Gogo Falls, and it is argued that perhaps the ceramics from Usenge 3 are material evidence of such ‘frontier’ communities. The unskilled production and differential social roles for ceramics have already been argued to be evidence of a fundamentally different social template to the typical Urewe using community. It is therefore proposed that this disjunction emanates from the impact of Urewe using community practice on a pre-existing (aceramic?) hunter-gathering community. This would account for the poor habitual skills evidenced by the chaîne opératoire, as a new application of technology is borrowed but applied without the cumulative skills and craftsmanship that make the Urewe ceramics distinctive. Moreover, the continued use of lithic technology and exploitation of wild fauna may also support this notion, although it is recognised that these features are also important in communities who utilise typical Urewe ceramics as well. We may therefore tentatively describe the ceramics at Usenge 3 as ‘contact Urewe’.

In conclusion, Usenge 3 provides a unique insight into such ‘contact’ period societies, showing the fusion of differing social and economic adaptations and craft technologies. This is an important site not least for its new empirical perspective on first millennium communities, but also for the theoretical relevance it holds, demonstrating how more flexible approaches to identity and material culture can be a useful and important tool to understanding the varied pasts (see Chapter 1).
Lolui Island

The research documented here derives from original work undertaken by Professor Merrick Posnansky on the island in the 1960s, which drew on previous archaeological collections made by Mary Leakey in the 1920s (Lofgren manuscript) and also collaborative work as part of a wider Makerere University project to look at human activity and ecology on the island (Chaplin 1974; Hall & Gartlan 1966; Jackson & Gartlan 1965; Jackson et al 1965). Unfortunately the premature death of the co-coordinator Paul Temple, ended the collation of an edited volume, and the archaeological component conducted by Posnansky remained incomplete and only partially published (Posnansky 1966, 1967, 1973), until the recent revision of an original 1960s paper by Posnansky, in which the current author was involved (Posnansky et al in press). This renewed research interest has involved the re-assessment of the remaining site archive (much of which has been lost over the years) as well as examination of some of the excavated/collection ceramics. Unfortunately the depleted archive and also the partial nature of the ceramic assemblage has meant that the available data is incomplete, and certain research issues cannot be clearly resolved or defined; thus questions of precise archaeological provenience are inaccessible as are detailed quantificatory analysis and comparison of the ceramic record. Nevertheless, this island site remains an important interpretive resource, and the following will be a description of the available evidence (cf Posnansky et al in press; see Fig. 7.9).

Lolui island lies some 25km west of Siaya District, and is one of the most isolated islands in the whole Victoria Nyanza, its nearest neighbour, Sagitu island some 8km away. Roughly triangular in shape, the island is c.10km across with the southern half of the island dominated by a rocky landscape of thick vegetation, which evidences little or no past human activity (one modern fishing site has been recognised). The northern half of the island meanwhile is characterised by grasslands and granite tor outcrops in which past activity is immediately recognisable in the form of rock paintings, with associated rock gongs (see also Chaplin 1974; Jackson et al 1965). Also in the north and

2 I am very grateful to Professor Posnansky for bringing the whole archive over to London, and for allowing full access to its contents and also for helpful discussion of Lolui ceramics temporarily held in the Institute of Archaeology, UCL (now returned to Uganda Museum)
central part of the island piled rock cairns and upright stone lines have been identified, with large erosion gulleys also revealing buried artefacts. The earliest possible human activity dates from the Early Stone Age (ESA) with a possible handaxe recovered. More secure however is evidence of Middle Stone Age (MSA) activity, where tools of Nyanzan volcanic raw material indicate access to mainland resources, presumably sourced at a time prior to the establishment of Victoria Nyanza, when Lolui was connected to the Nyanzan savannah landscape. The subsequent lack of Late Stone Age (LSA) material can be attributed to the rapid insularisation of Lolui following the onset of wetter conditions c14,200BP (see Chapter 1; Stager et al 2003), and its lacustrine inaccessibility to LSA communities.

The first occupation of the ‘island’ then occurred with the appearance of Urewe using communities. This phase of occupation is most clearly seen evidenced by activity in rockshelters, one of which was excavated revealing a dark humic deposit in which at least 12 ceramic vessels were found, many of which were semi- to near complete. Prior to the specific discussion of ceramics, a brief note on the rock art is necessary, particularly its place in the wider occupational sequence. No MSA site in sub-Saharan Africa has been associated with such aesthetic expressions, (Marean & Assefa 2005). As such, the earliest feasible date for the rock art comes from the Urewe using period of occupation. Although no direct evidence exists to link the two phenomena, circumstantial evidence is fairly strong, with only Urewe ceramics found in association with the rock art shelters. Nevertheless, based on present evidence it is acknowledged that this postulated relationship can only be tenuous.

The Urewe ceramics found in the rock shelters, and on the island in general, conform closely to the parent model devised from Siaya (Leakey et al 1948) with typical forms including globular jars, open bowls, hemispherical bowls and even a possible beaker (albeit quite large – see Fig. 7.10) – a form that is rare other than at the Siaya type-sites. Detailed and intense decoration and the diagnostic bevelled rims and dimpled bases are also present. The quality of the vessel execution is sometimes exceptional, with

\[^3 \text{Unfortunately no } ^{14} \text{C dates exist for } \text{Lolui, so the sequence is naturally a relative one based on wider chronological association.} \]
high levels of aesthetic sense complementing technical ability to produce vessels of unique decoration and design. Indeed there is evidence that such vessels were also accorded a certain amount of status in the past, with evidence of repair on a heavily decorated and very fine open bowl (see Fig. 711). This example of repair, which to my knowledge is unique in the wider Urewe assemblage, shows that the vessel in its past use-life has broken in two, and been repaired by drilling three pairs of holes, one each side of the fault, so that the two halves may be tied or riveted together (see Fig. 7.12). Such a procedure indicates an un-willingness to simply discard the broken vessel, as is so often evidenced in ceramic debris, and a profound desire to prolong the life of the specific vessel. This is especially interesting as the fracture, even with its repair, would have made the vessel unsuitable for many utilitarian functions, e.g. heating on the fire when the string holding the sides together would burn away, or the holding of liquid or semi-liquid consumables, when the contents would slowly leak out. In effect, the functional role of the ceramic vessel is extremely curtailed by these repairs, yet its past users/owners still valued it sufficiently to carry out the repair and prolong its use. There is therefore, an implicit suggestion that this vessel (and probably others) held an extra-ordinary role within society, and was not merely a utilitarian commodity, but may have also held high socio-cultural status and meaning.

In trying to explore this possible role, it is useful to look at the wider contexts of recovery, which show that the ceramics found in the rockshelter are surprisingly complete and reconstructable, strongly indicating a high level of vessel integrity when they were deposited. As has been argued at Luka in Ssi-Bukunja, this is perhaps an indication of deliberate and purposeful deposition rather than the cumulative and random effects of midden debris build-up. In support of this notion is the fact that the rock-shelter itself is very narrow and awkward for access, and would certainly have been a very unfavourable location for sustained human occupation. Thus it can be tentatively argued that very specific processes of ceramic deposition were in place, including ceramics of arguably high status; a depositional process that was taking place away from the more typical domestic context. Supporting this idea of 'place' is the circumstantial evidence of the rock art and gongs. Whilst a direct association with
the rock art cannot be proved, the rock gongs are natural phenomena the musical qualities of which local communities would have come to recognise. Indeed, the rock gongs at this site possess a range of notes and are complex instruments (Jackson et al 1965). Taken together, the ceramic details and evidence of context begin to portray a process of deliberate and meaningful deposition in a very defined space, providing a rare, albeit oblique, insight into an aspect of socio-cultural action outside the bounds of mundane domesticity.

Lolui is also known for Posnansky’s early identification of intra-Urewe variability in the form of Devolved Urewe, and the notion of the poorer quality ceramic derivative of the true Urewe (see Fig. 7.13). This type of ceramic has been located from sources to the centre of the island, including the cairn field and also the erosion gulleys. Superficially this may appear to reflect discrete spatial distribution of the Urewe/Devolved Urewe ceramics across the island (rock shelter vs. cairns & gulleys). However, even the scant provenance data does show cross-over, with Devolved Urewe for example, also found in the rock-shelters (see Fig. 7.10), although more detailed spatial discussion cannot be attempted because of the lack of earlier research records.

As briefly reviewed in Chapters 2 and 5, Devolved Urewe is a poorly made ceramic in comparison to typical Urewe. Bowls predominate compared with a jar majority in other Urewe bearing sites (Van Grunderbeek 1988; see also Entebezamikusa and Luka above) and a smaller proportion of the vessels show the customary diagnostic embellishments; only 26% are bevelled (compared with 57% in the Lolui Urewe) and only 37% have the channelled decoration (compared with 60% in the Lolui Urewe). The overall effect is a ceramic, which by contrast with the typical Urewe from the island, appears much cruder in its execution, without the expected finesse and detail. In his original discussion of the Devolved Urewe phenomenon, Posnansky suggested that the degeneration of ceramic skills was the direct result of physical and cultural isolation and insularisation as the community lost contact with the productive core on the mainland, and so had to improvise and create a new ceramic production system. However, forty years later, and with the benefit of insight gained from the present
research (see Chapter 6), it is clear that the Devolved Urewe phenomenon is not an isolated occurrence restricted to the island of Lolui, and rather it is part of a wider chronological trend at the end of the first millennium AD towards simplified ceramic technologies. Indeed, the close relationship between the Lolui Devolved Urewe and other examples from the present Ugandan research, is demonstrated by the comparison of cross-hatched jars from Lolui and Luzira. In both cases the oblique hatching is more widely spaced than on the typical Urewe examples, and the second crossing incisions are incomplete and irregular. Thus it can be argued that diachronic factors are the cause for such change in ceramics, rather than local production dynamics.

This notion of continuing settlement after the recorded end of Urewe ceramic use (i.e. C8th AD), is also attested by further evidence from the cairn field area (see Fig. 7.14). At this location, c.3000 sherds have been recovered from a 28 sqm surface collection around two of the major cairns, with further sherds collected during the quadrant excavation of two of the cairns themselves. These ceramics, which can be directly associated with the construction of the cairns, include Devolved Urewe and also Lutoboka and Entebbe ceramics (see Fig. 7.15). Following the discoveries on Bugala and on the Entebbe peninsula, it is now argued that the recovery of these ceramics on Lolui indicates a continuity of settlement into the early second millennium AD at least, and also indicates the integration of permanent monuments into the repertoire of these ceramic using communities. On Bugala a similar situation was posited with the proposed relationship between Entebbe using communities at Malanga Lweru and the nearby cairn construction. The evidence here however, is more conclusive, with direct stratigraphic association clearly demonstrating that Entebbe/Lutoboka using communities were involved in the construction of these cairns (up to 2.5m high and 14m x 11m in size).

The cairns moreover, also provide another source of contextual evidence as c.30% of the stones used are discarded grindstones, strongly suggesting high levels of associated cereal processing. The nature (and intensity) of this cereal consumption is
perhaps further demonstrated by the identification of simple field lines and terraces, in which similar discarded grindstones are used, indicating some level of formalised agriculture. Similarly, rock outcrops in the same area show dense concentrations of grinding hollows, with up to 100 hollows per rock. Although the association between the diagnostic ceramics/cairns and the field systems/hollows is circumstantial, it is nonetheless compelling when it is remembered that there is no evidence of later post-Entebbe ceramics occupation, with the island only used intermittently by fishermen camping temporarily on the shores in the recent era.

In conclusion, whilst investigations of the island site of Lolui are hampered by incomplete records, a more general scale of analysis clearly demonstrates some very important research findings, notably the unusual and possibly symbolic deposition of Urewe ceramics. Furthermore, the continuity of settlement on the island into the 2nd millennium AD is attested. Moreover, this settlement is associated with rich contextual data for cereal agriculture and small-scale monumentality that contribute greatly to the growing understanding of wider socio-economic conditions of the time.

Case-study 5: Lower Nyakach Location, Nyando District, Kenya.

Research in this case study differs somewhat from the preceding cases, as only a single site, Wadh Lang’o, has been subject to investigation. Excavated over a two week period in early 2004 and in collaboration with Frederick Odede, the National Museums of Kenya Archaeologist for Western Kenya, the site is regarded as a crucial resource in debate on socio-economic interactions and contact south of the Winam Gulf.

The site was first identified as part of an impact assessment survey commissioned by KenGen and executed by the NMK in August 1999 (Oteyo 1999), in advance of the building of a 60Mw hydroelectric dam on the Sondu Miriu river. Subsequent investigations in 2000 and 2001 (Odede 2002; Onjala et al 1999; Oteyo & Onjala 2000) revealed up to 3.2m of undisturbed deposit, rich in artefacts and indicating a settlement sequence that spanned the LSA Kansyore through Elmenteitan, Urewe, MIA and historic Luo ceramic using communities (Onjala et al 1999). Nevertheless, despite
this history of research, no comprehensive site report or artefactual analysis has been produced (brief illustrations of artefacts occur in Odede (2002) and Onjala et al (1999), and Seitsonen (2004) has recently completed an MA thesis on the lithics from the 2001 excavations). Nor has the site been subject to absolute dating.

Commercial development of the site was temporarily halted by cessation of work on the associated dam. However, in late 2003/early 2004 there were indications that issues with the Japanese contractor Konoike had been resolved, and that work would re-commence shortly. It was therefore decided with Frederick Odede (the 2001 project director and NMK archaeologist with responsibility for the whole of western Kenya) that the site would be imminently threatened, and that another phase of rescue excavation was appropriate. This continued investigation of an already excavated site is justified by the excellent stratigraphic preservation and multi-faceted occupational deposits. As noted previously, questions of inter-relationship between different ceramic using communities have often been undermined by mixed stratigraphy at such multi-component sites (Robertshaw 1991a; see also Chapter 2). At Wadh Lang’o, the good preservation of discrete occupational phases overcomes this essential hurdle, and provides an unparalleled resource that can also contribute to a range of empirical questions (e.g. dating)

This richness of resource has resulted in access to a greater range of contextual information than has been available previously in this thesis (e.g. 14C dating, faunal analysis and lithic analysis). This case-study will therefore include this crucial associated data, providing a wider framework for the more specific analysis of the ceramics.

Site Definition
Located at an altitude of c 1200m, Wadh Lang’o is an open site (c300m x 200m) on the banks of the Sondu Miriu River, a permanent water source that rises in the Nandi Kipsigis highlands, which flows westwards before descending through a deep rocky gorge at Wadh Lang’o. At this point, the river turns northwards through a series of
rapids, before passing the narrow plateau of the site on its east bank, and then turning sharply westwards and continuing through the Nyakach plains until it reaches Victoria Nyanza some 20km away. The site is tightly bounded on its west by the river, its north by a seasonal stream and to the east and south by the outcropping of the foothills (see Fig. 7.16).

Two units, 2m x 2m were placed towards the south of the site, where previous research had shown the deepest and most complex occupational sequence (Odede 2002; Onjala et al 1999). Unit A was positioned approximately midway between the hill and the river, whilst Unit B was located some 15m upslope of Unit A (see Fig. 7.17-18).

Although there are some stratigraphic distinctions between the two units, there is a large degree of overlap, particularly in the lower deposits. Both units show a lowermost brown loamy silt (K - which included a piled stone cairn in Unit A), succeeded by three discrete ash deposits (PN1-3) that include phases of isolated burning consistent with hearths/fires. Deposits U in Unit A show a series of ashy layers interspersed with thin burnt lenses overlain by H, a hiatus deposit of clean sandy gravel. In Unit B meanwhile, there are no U deposits, but the (H) layer is much thicker and is not completely sterile, with anthropogenic activity in the lowermost 5-10cm (at the same stratigraphic level as U, i.e. overlying PN3). Overlying H in both units are deposits termed L which contains modern debris (e.g. plastic netting) associated with the recent occupation of the site by Luo communities (the site was only evacuated in 2000). Although there is clear evidence of spatial differentiation, with only two small units (4m² each) available for discussion, this is not an aspect of the site that can be fruitfully explored in the current context.

Although the uppermost deposits (L) show mixing and debris of recent activity (e.g. plastic), the lower deposits, K,U and PN1-3 are intact and undisturbed. This is clearly evidenced by discrete and localised features such as hearths being preserved (see Fig.

4 More accurately the northern stream bifurcates the site, with the majority of the site lying to its south and a small portion to its north. This northern section is only evidenced by surface scatter and has not been subject to test excavation, hence the more limited current definition of the site.
7. 19). Furthermore, the largely sterile H layer seals all those underlying it, indicating that there has been no disturbance below that layer from recent activity. H is sterile in Unit A, whilst in Unit B where H is not completely sterile, the upper 50cm are nonetheless sterile, showing no indications of disturbance from the surface, and it is only in the lowest 5-10cm that artefacts are evidenced. This site therefore shows unparalleled stratigraphic preservation.

The excavation evidence presented here seems to confirm extant interpretations of this site as one of multiple and sustained occupancy. Ceramic evidence similarly indicates discrete phases of ceramic production and use, with initial investigations identifying Kansyore, Elmenteitan, Urewe, MIA and Luo ceramics. Collating these ceramic sequences with stratigraphic distribution, some interesting and surprising patterns emerge (see Fig. 7. 20). In accordance with extant chronologies, Kansyore ceramics are found in the lowermost deposits, with a succeeding sequence of Elmenteitan, Urewe, MIA and Luo ceramics. However, the sequence is most notable for evidence of significant stratigraphic overlap between different ceramics.

- Kansyore and Elmenteitan: Upper levels of deposits K in Unit A show Kansyore and Elmenteitan ceramics in direct association
- Elmenteitan and Urewe: the uppermost 5-10cm of PN3 in Unit B revealed Urewe and Elmenteitan ceramics together
- Urewe and MIA: unlike Robertshaw’s (1991a) supposition regarding the degeneration of Urewe to MIA, both ceramics were found to be in direct association in upper layers of the U deposits of Unit A. Admittedly MIA appears later in the sequence than Urewe (which occurs in isolation first in U deposits). However they nevertheless overlap for a significant stratigraphic period.

This evidence of ceramic overlap cannot be simply attributed to mixing as the stratigraphy is so well defined and secure. Therefore, initial indications from ceramics
seem to suggest close temporal, if not social, relationships between the different ceramic producing/using communities evidenced at this site.

Associated Evidence
The unrivalled stratigraphic preservation found at Wadh Lang’o has encouraged further analysis of associated data by other researchers, and these sources will now be summarised and discussed, providing further nuances to the essential understanding of the site-history.

Lithic Analysis
Lithic analysis was undertaken by Oula Seitsonen as part of a Master of Arts thesis at the University of Helsinki (Seitsonen 2004). Utilising lithic remains from previous excavations undertaken by Odede (2002), Seitsonen’s work has provided fascinating results that complement the existing evidence. Separating the strata into three horizons, Seitsonen discussed Horizon 1 - Oltome associated lithics (equitable to the present K deposits), Horizon 2 - Elmenteitan related lithics (PN1-3) and Horizon 3 - Urewe related lithics (U and H in Unit B).

Oltome layers demonstrate a reliance on quartz as a raw material, being used to fashion a typically ‘non-descript’ (Robertshaw et al 1983: 34) microlith industry. Although quartz remains dominant throughout, towards the later levels of the Oltome horizon, other materials are more in evidence, notably chert.

Into horizon 2 and the Elmenteitan layers, there is a dramatic shift in raw material exploitation, with wholehearted reliance on obsidian, believed by Seitsonen to be sourced in Mount Eburru in the Rift Valley. Nevertheless, chert continues to be utilized to a lesser degree, with chert of similar colouration and properties to that found in the Oltome layers, leading Seitsonen to suggest a degree of continuity in raw material exploitation. Un-retouched utilized blades, pièces écaillés and microliths reflect the formal range, although microliths are once more in the majority.
Horizon 3, which is associated with Urewe ceramics, and thus nominally the so called 'Iron Age', also continues to employ a lithic technology, confirming the notion posed in Chapter 2 that a 'hidden' or 'forgotten' lithic industry continues to play a significant role, even in these later communities. Once again there is a reliance on obsidian as the raw material, and a microlith technology largely analogous to that associated with the Elmenteitan layers is maintained.

These findings have prompted Seitsonen to suggest that there is very clear evidence of association between the Elmenteitan and Urewe horizons, as evidenced by the continuity of a diagnostic lithic industry. He also notes that there is far greater disjunction between the Oltome lithics and the Elmenteitan lithics, which he interprets as indicative of significant socio-cultural fission and change. This is notably so, for as the raw material changes, the shift from quartz to obsidian requires a new productive 'template' and technique (see also Chapter 4 and discussion of Gosselain's 'psychomotor schemata'). Nevertheless, he also recognises that the apparent continuity in chert sourcing from Oltome to Elmenteitan may suggests a lower level of continuity.

These lithic results clearly complement the insights gained from stratigraphy and gross ceramic patterns. Once again the notion of inter-connected producing communities is reiterated, particularly the relationship between the producers of the Elmenteitan and Urewe horizons. The identified co-occurrence of Kansyore ceramics with Elmenteitan ceramics is not so well supported by the lithic data; however there remains a link between the two lithic horizons in their mutual exploitation of the same chert source.

Faunal Evidence

A recent MA dissertation produced by Paul Harvey (Institute of Archaeology, UCL), has examined the faunal remains recovered in these excavations (Harvey 2005). Like Seitsonen, Harvey also found indications of overlap in faunal procurement and consumption patterns.
Earliest, Kansyore associated fauna indicated a wide range of wild taxa being exploited. However, 46% of the sample was found to represent domesticated ovicaprines. This finding supports that of the Usenge 3 material which also recovered domesticates in association with Kansyore ceramics, and suggests that Karega-Münene's assertions that these nominal hunter-gatherer communities were also experienced herd managers, is validated.

Fauna associated with the Elmenteitan ceramics show a decrease in the quantity of wild animal exploitation (22%) and also the appearance of bos taurus for the first time. Ovicaprines also continued to be exploited.

Evidence relating to the Urewa bearing layers showed a high level of continuity from the Elmenteitan ones, with similar quantities of wild animal exploitation (21%), and also the continued presence of domesticates in the form of ovicaprines and bos taurus.

This is an important data-set as it helps clarify questions of subsistence economy, and particularly contributes to the debate on the economies of putative hunter-gatherer Kansyore users. Moreover, the similarities in faunal profile between the Elmenteitan and Urewa bearing deposits suggest, like the ceramics and lithics, some level of continuity.

Radiocarbon Dating

Grants from the Oxford Radiocarbon Accelerator Dating Service/Arts and Humanities Research Board and the Central Research Fund of the University of London, enabled this site to be dated for the first time, with 7 radiocarbon dates produced by ORADS.

Figure 7.20 shows the stratigraphic and 3D location of each sample, with the following determinations produced.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Date BP</th>
<th>Calibrated age range (2 sigma)</th>
<th>Strata dated</th>
</tr>
</thead>
<tbody>
<tr>
<td>OxA-14499</td>
<td>1449±28</td>
<td>AD 610-700</td>
<td>Unit A, Urewa/MIA</td>
</tr>
</tbody>
</table>
Table 7.7 showing radiocarbon determinations

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>Age</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OxA-14500</td>
<td>1484±26</td>
<td>AD 590-690</td>
<td>Unit A, Urewe/MIA hearth</td>
</tr>
<tr>
<td>OxA-14501</td>
<td>1741±28</td>
<td>AD 280-440</td>
<td>Unit A, Urewe</td>
</tr>
<tr>
<td>OxA-14502</td>
<td>1698±28</td>
<td>AD 300-470</td>
<td>Unit B, Urewe</td>
</tr>
<tr>
<td>OxA-14503</td>
<td>1746±28</td>
<td>AD 280-400</td>
<td>Unit B, mixed Urewe/Elmenteitan</td>
</tr>
<tr>
<td>OxA-14504</td>
<td>1742±27</td>
<td>AD 280-400</td>
<td>Unit B, mixed Urewe/Elmenteitan</td>
</tr>
<tr>
<td>OxA-14505</td>
<td>1819±28</td>
<td>AD 170-310</td>
<td>Unit B, earliest Elmenteitan</td>
</tr>
<tr>
<td>OxA-14506</td>
<td>1989±28</td>
<td>AD 1-120</td>
<td>Unit A, Kansyore</td>
</tr>
</tbody>
</table>

These dates represent an important empirical contribution to an archaeological area where absolute dating is scarce and also prone to issues of mixing and provenience. At Wadh Lang’o the deep and intact stratigraphy assures reliable sourcing thereby increasing the interpretive value of these determinations. Moreover, as the specific results show, there is both chronological sequencing according to stratigraphy (i.e. deeper deposits are older than shallower ones), and also good cross-referencing of dates (e.g. Unit A sample OxA-14504 is a control of OxA-14503 and dated to within 4 years, with both samples closely matching Ox-14501 which comes from the same stratigraphic level in neighbouring Unit B). These results show internal consistency and integrity, affording confidence in their interpretive accuracy.

Reviewing the interpretive implications for these dates, this sequence represents surprising and unusual results.

The Kansyore bearing deposit, which is here dated to the early first millennium AD seems to sit at the very terminal end of the known Kansyore using spectrum, possibly even later (e.g. Kusimba & Kusimba 2005, 8,00-2,400 BP) although it is recognised that this remains a poorly established sequence. Similarly the dates relating to Elmenteitan levels (OxA-14503 – OxA-14505) sit towards the end of the Elmenteitan timeframe (3,300 – 1,300BP), but at the same period (early centuries AD) that Robertshaw recognised Elmenteitan ceramics at nearby Gogo Falls (1991a: 163). (OxA-14504), which provides a terminal date for Elmenteitan ceramics, and also an initial presence of Urewe (coeval in Unit B), indicates that although there are deep deposits (PN1-3)
associated with Elmenteitan ceramics, there would seem to have been fairly rapid depositional accumulation, with an Elmenteitan associated occupation of perhaps less than a century. The rapid appearance of Urewe ceramics both in direct association with Elmenteitan (OxA-14504) and also in isolation (OxA-14501), seems to confirm the preceding suggestions of continuity and close temporal relationship, rather than inter-depositional hiatuses. The later dates in the mid first millennium (OxA-14499, OxA-14500) provide the first absolute dates for MIA ceramics (in association with Urewe), and interestingly shows that despite Robertshaw’s (1991) initial suggestion that MIA might post-date the Urewe phenomenon, MIA is in fact penecontemporaneous with Urewe, and also dated to a period well within the terminal timeframe for Urewe using communities. Thus MIA cannot be a post-Urewe development. This also contrasts with the insights from the Ugandan side of the Victoria Nyanza, where similar changes in ceramic (coarsening of fabrics and execution) are seen as later chronological deviations into the late 1st millennium AD (see Chapter 6). In sum, this sequence suggests a much more chronologically contained occupational sequence than might be expected, and also crucially, evidence for very close occupational and depositional succession, which strongly supports the notion of occupational continuity and chronological relationship between the different ceramic using communities.

Drawing on these varied evidential sources, it is evident that Wadh Lang’o is an important interpretive resource, which provides a rich and textured context for more detailed examination of the ceramic data. This wider discussion, particularly the results of radiocarbon dates, demonstrates that the entire occupational sequence falls within the remit of the present thesis, with both the Kansyore and Elmenteitan bearing deposits showing first millennium occupation, and also indications of direct association and relationship with the Urewe using communities. These parameters help define the specific research goals for ceramic analysis; in addition to the essential goal of defining the assemblages, ceramic analysis must endeavour to contribute to the preceding discussions of occupational inter-relationship, through examining detailed patterns of ceramic activity against the extant chronological and lithic data.
Ceramic Analysis

Eight fabric groups were identified during analysis, all except W2 apparently discrete to a specific ceramic tradition. W2 is something of an anomaly, not seemingly linked to any particular tradition, and used in both Ureuwe and Elmenteitan ceramics. This further supports the preceding notion of continuity and connection between the communities who produced and used these ceramics.

<table>
<thead>
<tr>
<th>Fabric</th>
<th>Physical properties & effect</th>
<th>decoration</th>
<th>Tradition</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Dark, unox with 15-20% quartzite 0.5-2.5mm, smooth</td>
<td>Roulette</td>
<td>Luo</td>
</tr>
<tr>
<td>W2</td>
<td>Buff-mustard oxydised sandy fabric, c.10% granules 1-3mm, hard & smoothed</td>
<td>Incised, stab-drag</td>
<td>Ureuwe & Elmenteitan</td>
</tr>
<tr>
<td>W3</td>
<td>Orange brown, unox core, blocky fracture, sand 5%, isolated quartzite grain 1-3mm, hard, burnished</td>
<td>incised</td>
<td>Ureuwe & Elmenteitan</td>
</tr>
<tr>
<td>W4</td>
<td>Black brown, uneven firing, c20% poorly sorted quartzite granules, 1-3mm. hard, smoothed surface</td>
<td>Incised</td>
<td>MIA & Ureuwe</td>
</tr>
<tr>
<td>W5</td>
<td>Black coarse fabric, c 40% quartzite grains 1-4mm, friable and cracked</td>
<td>plain</td>
<td>MIA?</td>
</tr>
<tr>
<td>W6</td>
<td>Hard, brown-mustard brown in section, mixed firing, sandy with quartz coarse sand 1-2mm (5-10%), smoothes/polished surface, v hard</td>
<td>Stab drag</td>
<td>Elmenteitan</td>
</tr>
<tr>
<td>W7</td>
<td>Brown with black/unox core, quartz coarse sand 1-2mm, (5%) and sand<1mm (primary inclusions?). hard, smoothed & polished</td>
<td>Stab drag</td>
<td>Elmenteitan</td>
</tr>
<tr>
<td>W8</td>
<td>Black, unox, grains 15-20% quartzite, [white cobwebs]. Friable and cracked</td>
<td>Stab drag</td>
<td>Kansyore</td>
</tr>
</tbody>
</table>

Table 7.8 showing fabric properties

Kansyore

Fabric use is restricted to U8, and shows the tell-tale coil fractures of Kansyore (see also Haa and Chapter 5), resulting from heavy tempering that produces a friable and coarse matrix. Forms are hemispherical or closed mouth bowls with a mouth diameter that varies little across the forms and has a range of 18-28cm with the majority in the 20-25cm range. This general rule is excepted by the remarkable find of a 2cm wide pipkin using the thumb pot production procedure (see Fig. 7. 21b). Duly decorated with small
punctate decoration and with a thumb size that indicates adult production, this cannot be explained as a child's play replica or toy, and must suggest a meaningful functional use/social role. This is the only known variation from the standard sized forms and production methods for Kansyore pottery as a whole.

As with nearby Gogo Falls, there is also evidence of distinctive and relatively rare spurred rims and also rim milling (see Fig. 7.21a), although the majority of rims are tapered and plain. Decoration is typical being a dense series of bands (linear, circular, irregular) of stab-dragged and punctate decoration, although there is a single example of red paint application, effected in diagonal stripes. This painted element is extremely unusual and is especially notable for the striped feature rather than the all-over wash effect (see Fig. 7.21c).

Overall this is a typologically unsurprising collection, which functionally seems geared towards multi-functionality as evidenced by the emphasis on all-purpose hemispherical bowls, and the lack of variety in both rim and size. Decoration shows greater differentiation and individuality, and perhaps suggests, in keeping with other Kansyore assemblages, a greater concern in the chaîne opératoire with decoration and expression, than with the identification of functional distinction through formal shape.

Elmenteitan

Elmenteitan ceramics are found in deposits PN1-3 (PN1 being the earliest) with the terminal stages of PN3 showing contemporaneous presences of Elmenteitan and Urewe ceramics (see Fig. 7.22). Stratigraphy shows three essential phases of activity (PN1-3) within which discrete and isolated activity occurs, typically hearths/burning episodes. The specific goals here then are to look at the Elmenteitan ceramics over time and establish any diachronic patterns, and particularly in the later periods to examine any relationship with the coeval Urewe ceramics.

Fabrics W6 and W7 are the primary fabrics associated with PN contexts, and show no discernible inter-context patterning or differentiation. Indeed they are both remarkably
similar being hard, well fired and capable of burnish/polish, with well sorted sandy inclusions, the only distinction being the colour as a result of oxydised (W6) and unoxydised (W7) firing conditions. The only other fabric present – W2 – is similarly coloured to W6 and close in texture. Elmenteitan ceramicists therefore seem to have utilised a limited range of fabric recipes, which only vary slightly.

Vessel forms cover a range of shapes, including hemispherical (45%), open bowls (10%), closed bowls (25%) as well as necked jar with an S-shaped rim (20%). This latter jar form is notable as extant evidence of Elmenteitan assemblages shows this is a very rare form in the local area; there are no examples at Gogo Falls, and only a small number at Ngamuriak (Robertshaw 1990c, 1991a). Correlating the distribution of forms to stratigraphy, there is clear vertical patterning in distribution.

Table 7.9 showing distribution of Elmenteitan vessel forms

As the table 7.9 demonstrates, whilst hemispherical bowls remain relatively constant throughout the sequence, the number of closed bowls decline markedly over time, with a concomitant growth in the unusual S-shaped jar, particularly in the explosion of the form in PN3.

This dramatic shift in formal selection over time correlates well with changes in the rim morphology, where there is a discernible shift from tapered rims to rounded ones.
Although this coincides with the increase of the necked jar/bowl, the change in rims does not co-vary with the change in form, and this rim trend is present on all vessel shapes. One interesting exception to this is a spouted rim found in PN2. This style is not uncommon in wider Elmenteitan assemblages, and indicates that whilst early layers do not have necked jars/bowls suitable for liquid pouring, alternative and clearly specialist adaptation have been made to the hemispherical bowls.

Decoration on the Elmenteitan ceramics typically consists of stab-dragged lines (straight, wavy) or contained motifs (lozenges, ovals). Although 82% of all reconstructable vessels showed some decoration, the overall visual effect is not imposing as the decoration is usually limited to a very small area of the form; only 10% of the assemblage is decorated in more than one location (lip, rim, body or interior).

<table>
<thead>
<tr>
<th>Form</th>
<th>Lip Dec</th>
<th>Rim Dec</th>
<th>Body Dec</th>
<th>Int. Dec.</th>
<th>Plain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemispherical bowl</td>
<td>31%</td>
<td>31%</td>
<td>9%</td>
<td>9%</td>
<td>20%</td>
</tr>
<tr>
<td>Plate</td>
<td>62%</td>
<td>0%</td>
<td>0%</td>
<td>13%</td>
<td>25%</td>
</tr>
<tr>
<td>Closed bowl</td>
<td>55%</td>
<td>35%</td>
<td>5%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Jar</td>
<td>0%</td>
<td>50%</td>
<td>25%</td>
<td>0%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Table 7.10 showing distribution of decoration.

Comments and Discussion

This Elmenteitan element of the Wadh Lang'o assemblage is interesting, particularly in regard to the variations over time, which is principally manifested in changing vessel forms. The particular appearance of the s-shaped jar is particularly intriguing. Whilst this form is not recorded locally, Sutton (1993b) in his investigations at Deloraine in the Rift Valley has recovered similar forms (see Fig. 7.23). Sutton recognises a similarity between the Deloraine ceramics and Elmenteitan ones, even though his radiocarbon determinations dated the Deloraine site to the late first millennium AD. Sutton thus speculates that the ceramics from Deloraine are an 'Iron Age' devolution of the pre-existing Elmenteitan ceramic tradition.
This is a potentially useful model to apply here. In addition to the dramatic change in forms witnessed within the Elmenteitan sequence, it is also notable that the change coincides with the appearance of Urewe ceramics. Following Sutton's model, these two occurrences can perhaps be connected, with the s-shape jar representing a local devolution in Elmenteitan ceramic, possibly in response to contact with Urewe users, and the transfer of some of their ceramic practices. It is perhaps notable in this regard that the globular jar with everted neck is a diagnostic component of the Urewe assemblage and found in great quantities (see discussion on Entebezamikusa and Usenge 3). If this is the case, the evidence from Wadh Lang'o provides another example of 'contact' communities fusing together (cf Usenge 3).

Urewe ceramics

As noted previously, Urewe ceramics appear in the sequence initially in association with Elmenteitan ceramics (Unit B) then in isolation (U), before finally existing in tandem with MIA ceramics towards the end of the U sequence.

W4 is the main fabric in use in this ceramic (70%), with lesser presences of W3 (21%) and W2 (9%). W4 is a coarser fabric than the fine-grained W3. Nevertheless, both the fine and coarse fabrics are subject to burnishing and are capable of producing the high quality lustre typically associated with Urewe.

Interestingly, there is a high incidence of bowls in this assemblage (74%), which as shown previously (see also Van Grunderbeek 1988) is unusual for Urewe ceramics, where jars are usually very prominent (see fig. 7.24).
Three dimpled bases and three flattened bases with circular decoration akin to the dimpled ones are recorded, suggesting that it must otherwise be assumed that the bases were rounded. Predictably the majority of the rims are bevelled (70% - up to 6 bevels) with the remainder being squared or rounded.

Vessel size is closely grouped, with hemispherical bowls and jars recording averages of 18.53cm (hemispherical bowls) and 18.07cm (jars). The other shapes are rarer making it harder to judge size ranges and averages, but with open bowls in the 16-25cm range.

Although decoration is one of the key diagnostics of Urewe, this assemblage was notable for the high incidence of plain vessels (34%). In the ceramics that were decorated, decoration was most often located on the rim (83%) with a lesser incidence on the body (8%) and lip (4%). This decoration is primarily incised, with more occasional punctuate decoration, often in conjunction with the incised. Typically cross-hatched incision is found on the rim, and very commonly on the jars (59% of all jars, 11% of bowls), whilst the bowls are often decorated with horizontal bands (41%), some of which are complex composites with hanging features that render them very ornate and visually impressive.

However the question of the high proportion of plain vessels is perhaps more important to note. For example, if the plain ceramics are subdivided from the wider Urewe ceramics, it is clear that certain micro-patterns are discernible. Thus whilst W2 is barely present in the wider Urewe component, it has a higher representation than the finer W3 in the plain category (W2 =21%, W3=12%, W4=67%) where the similarly coarse W4 dominates overall.

There is also a slight increase in the incidence of bowls in the plain sub-division with 84% being bowls, including all the closed bowls.

<table>
<thead>
<tr>
<th>Indeterminate bowls (n=9)</th>
<th>6%</th>
<th>6%</th>
<th>78%</th>
</tr>
</thead>
</table>

Table 7.11 showing distribution of forms
Table 7.12 showing distribution of form in plain Urewe

<table>
<thead>
<tr>
<th></th>
<th>Hem. bowl</th>
<th>Open bowl</th>
<th>Closed bowl</th>
<th>Neck bowl</th>
<th>Indet. bowl</th>
<th>Jar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>36%</td>
<td>4%</td>
<td>12%</td>
<td>16%</td>
<td>16%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Although the characteristic bevelled rims are present, they represent only 11% of the total (compared with 70% overall) with the majority being rounded (56%), tapered (30%) or squared (4%). Sizes also tend to be larger in the plain vessels with an overall average of 23.7cm average compared with the general average of 17.8cm.5

Thus it would seem that within the assemblage the higher than usual percentage of plain vessels also possess a slightly different collective profile to the decorated ones.

Comment & Discussion

Unlike the case of Devolved Urewe/Urewe relationship on Lolui, the internal differences recognised between the plain and decorated Urewe ceramics cannot be attributed to chronological change. Nor too can the differences witnessed in the plain Urewe be associated with the ‘Contact Urewe’ encountered at Usenge 3, where the distinctions were so profound and encompassing, that an alternative technological and productive system was argued for. At Wadh Lang’o there is too much cross-over (technologically and morphologically) for these to be discrete productive communities indicative of discrete social communities, and the evidence seems to point instead towards internal variation within a single producing and using community.

A similar situation has been posited at Entebezamikusa on Bugala where although surface erosion hindered analysis, it was suggested that differential socio-functional roles of vessels (public versus utilitarian) prompted differential productive investment. This not the precise case at Wadh Lang’o, where the full range of vessel forms are well represented in both plain and decorated examples, although the essential notion of functional difference may still be illustrative. It is notable for instance that there is a

5 Because of the small size of the sample which gave imbalanced sizes when allocated to form, an overall average was compared
higher than average percentage of hemispherical bowls in the plain Urewe which have previously been argued to hold multi-functional potential, and be particularly suited to open fire cooking. Closed mouth bowls also appear in the plain Urewe but not the decorated Urewe. This shape, which might be suitable for enclosing contents likely to spill (i.e. liquid based), is nevertheless unsuited to the serving of liquid as the small orifice restricts access and the form prohibits accurate pouring (unlike jars). Such a vessel might therefore be useful for cooking a soup or stew, but not for its public presentation or consumption. It is suggested therefore that this internal differentiation within plain and decorated Urewe is perhaps a factor of functional application, with a distinction between the 'fine' public wares of the decorated Urewe, and the 'coarse' domestic wares of plain Urewe, used for preparation and everyday utilitarian activity.

Interestingly however, typical notions of the socially inequalities associated with 'fine' versus 'coarse' wares, which usually portray the fine ceramics as elite, restricted access commodities, are undermined here, where there is a higher incidence of decorated Urewe than plain Urewe. It is perhaps the case that whilst differences were made in the productive sequence according to eventual function, this is not a distinction that holds particular socio-political resonance, and the finely made, public vessels of decorated Urewe are as equally accessible as the coarser and simpler plain Urewe. The decorated Urewe does not then appear to be a restricted access, elite good, but rather seems to be an everyday phenomenon, albeit functionally focused on certain (social?) elements of the everyday activity.

Middle Iron Age

MIA ceramics are found in association with Urewe in the upper layers of the U deposit.

MIA uses the same fabrics as the other Urewe styles, and in keeping with plain element, it tends to favour the coarser W4 and W2 as well as W3 to a lesser amount. Few bowls are recorded (26%) the remaining 74% being jars, primarily straight or only slightly everted necked jars (53% of total or 75% of jars; see Fig. 7.25). Rim styles reflect Urewe with bevelled rims being common (61%), rounded (22%) and squared (17%).
However unlike Urewe, these are limited to simple double bevels, without any of the multi-beveling. In terms of size MIA and Urewe are closely matched and comparable with jar averages of 18.6cm (MIA) and 19.8 (Urewe). Decoration is again similar to Urewe in its locational emphasis on the rim and the use of incised features. However, MIA decoration is distinctive in its repeated use of vertical/oblique incised gashes and rocker stamping on the rim. These decorative effects are much cruder than those of Urewe, being thicker and more uneven, and help contribute to a general impression of poorer quality execution.

Functionally this assemblage is interesting as it is dominated by a niche vessel shape (jar) that is not suitable for most cooking activities, and is instead good for storage of fine-grained artefacts like cereals or more likely for storing and serving liquid.

With little extant research on the MIA, the position of MIA within the wider socio-cultural and ceramic sequence is a crucial area of concern here. What the present evidence shows is that MIA ceramics are not the later, post Urewe phenomenon that Robertshaw (1991a) cautiously envisaged. Instead, the stratigraphy shows a degree of contemporaneity with Urewe, whilst the 14C shows close dates in the mid 1st millennium AD, well before the wider disappearance of Urewe ceramics. MIA ceramics must therefore be seen as a phenomenon within the wider Urewe using community, rather than a descendant of it.

In exploring this relationship it needs to be recognised that MIA ceramics are not simply another form of the Urewe sub-variation discussed above, despite the similarities in execution quality and fabric preference. There is a distinct and tangible typology for MIA, with the almost exclusive use of a distinctive straight necked jar (a form which is exceedingly rare in the Urewe typology) as well as its diagnostic decorative style. Therefore whilst there are undeniable morphological, technological and stratigraphic relationships to Urewe, MIA is sufficiently distinct to be regarded as a discrete phenomenon. The wider recovery of MIA across western Kenya (including north of the Winam Gulf for the first time – see case-study 4), clearly demonstrates this.

281
Chapter Seven Case-studies 4 and 5

is not a local phenomenon, and it is therefore argued that the MIA ceramic phenomenon is more likely to represent meaningful and widespread intra-community social, economic or cultural variation and difference.

Considering this theme of intra-community differentiation, it is worthwhile looking further at MIA as a broader phenomenon, noting the fact that it has a limited distribution in the Lake basin of western Kenya, and only substantial sites found south of the Winam Gulf (to the north only find-spots have been identified - e.g. Nowa River, Yala River). Moreover, Robertshaw (1990c: 196) recognised possible similarities between MIA and Gaturjang'a ceramics of the Rift Valley which are associated with the Pastoral Neolithic phenomenon (see Fig. 7. 26). It is therefore possible that the MIA ceramics represent another instance of social fusion as elements of the Rift Valley ceramic producing communities, expanded (like the Elmenteitan before them), into western Kenya, and into a dynamic relationship with Urewé using communities. On this theme, Robertshaw (1990c, 1991a) has already suggested that makers of Akira pottery (found in both Gogo Falls and the Rift Valley) represent specialist groups trading across the wider region.

Conclusion

Wadh Lang'o represents a vitally important site both for its excellent stratigraphy, ability to provide detailed and chronologically secure insights into local dynamics, and also for its wider role in discussing interactions between ceramic using communities.

Surprisingly, the radiocarbon evidence has shown a very closely linked occupational sequence, with total settlement spanning c.700 years, which, when tallied with lithic faunal, and ceramic data, indicating periods of profound overlap and contact. This is perhaps most notable in the evidence for Urewé/Elmenteitan using communities, where there is both stratigraphic evidence of association, and also indications of possible ceramic transfer. Similarly the Urewé and MIA ceramics have also been found to be directly related in some respects (technology) but not in others (morphology, style, function) and it has been argued that intra-community variability was in place. A
final example of intra-community variability comes from the plain/decorated Urewe components which have been identified as functional discretion within a single productive system.

In conclusion, this is an important site for the rich insight it provides to each of the ceramic production systems, which brought together, presents unparalleled evidence of sustained inter-ceramic using community contact and association.
Chapter Eight

Ceramic Variability in Northern Victoria Nyanza

Prior to this research, extant archaeologies of the ceramics from this region of the Great Lakes portrayed a relatively simple sequence of Urewe ceramic use in the first millennium AD, followed by a probable depopulation as emphasis shifted westwards in the second millennium AD. During this period roulette decorated ceramics are found in association with earthwork sites associated with emergent social complexity. The results from the work detailed here, change this perspective considerably.

Chapters 6 and 7 have demonstrated some of the rich range of archaeological evidence to be found on the shores and hinterland of northern Victoria Nyanza, with five case-study areas documenting 13 newly excavated sites, 5 re-investigated ceramic assemblages, over 400 new archaeological survey sites and a corroborated radiocarbon sequence that spans the mid first millennium BC to C15th AD. This research has explored a range of associated ceramic phenomena, probing well known ceramic traditions (Urewe), expanding debate on poorly known ones (Entebbe, Festoon, Devolved Urewe) and importantly adding previously unrecognised manifestations (Lutoboka, Sozi, Sanzi, WPT Urewe, Buloba). Additionally, although not the primary focus of this thesis, these Chapters have also documented associated evidence from fauna, lithics, spatial organisation, as well as figurative ceramics.

Furthermore, following the stated goals outlined in Chapter 1, and the results of empirical and conceptual reviews carried out in Chapters 2-4, this research has also addressed important gaps in archaeological understanding. This includes geographical and chronological lacunae (see Chapter 2), but also addresses conceptual issues of multi-vocality and plurality, which have been successfully achieved through the
emphasis on local, micro scales of analysis at the periphery of the known Great Lakes world.

As such, the task of the present Chapter is to unite these disparate strands in order to look coherently at the whole, and assess the wider interpretive implications. In order to explore such macro-patterning, this Chapter will look at diachronic trends. Having already examined the research results in their micro-context, the goal now is to extend these discussions across the spatial boundaries, using chronology as an anchor to compare manifestations.

Defining the Chronological Boundaries

The decision to structure discussion around a chronological sequence is not without its problems and issues, particularly the relative scarcity of reliable absolute dates upon which to hinge the sequence; only 7 of a total of 18 sites have \(^{14}\text{C}\) dates, the dating of one of which, Malanga Lweru, is also considered to be suspect and possibly associated with old wood (see Fig. 81). Nevertheless, through combining the evidence from dated sites with associated ceramic phenomena, proxy dates for analogous assemblages/sites can be achieved, and it is possible to build up a relative chronology that is founded on a few key absolute dates. Extant chronometric evidence from previous research can also assist in the demarcation of boundaries, drawing upon wider on experiences to help assess likely *termini ante quem* and *termini post quem*. Thus Urewe bearing deposits, which are relatively well dated by this work (Usenge 3, Entebezamikusa, Wadh Lang'o), can be compared with established chronologies created by Clist (1987) and Van Grunderbeek (1992) to support the likelihood that non-dated sites with Urewe deposits (Haa, Namusenyu, Luka, Lolui rock-shelter) probably date somewhere between C1\(^{st}\)-2\(^{nd}\) AD (i.e. the \(^{14}\text{C}\) date for Entebezamikusa and the earliest date for Uganda and Kenya) and the latest date known for Urewe ceramics in the C8\(^{th}\) AD (as defined by the Great Lakes chronology of Clist and Van Grunderbeek; see also Chapter 2).
These various sources of evidence have been collated into a timeline, which shows the absolute position of dated sites, as well as the postulated timeframes of undated sites, based on a relative ceramic assisted sequence (see Fig. 8.2).

Following this exercise, two broad clusters of discrete and dated activity have been recognised; C2nd - C8th AD and a later span of the C9th - C15th AD.

The period C2nd - C8th AD is associated with Urewe bearing sites, and its absolute chronology is moderately secure, with reliable and relatively plentiful ¹⁴C dates to superimpose on a quite well established extant chronology (see above and Chapter 2). The second phase of the C9th - C15th AD is less secure largely because this research represents the first ever systematic exploration of this period in north Victoria Nyanza, and there is no established pattern upon which to compare and correlate (see Chapters 1-2). Nevertheless, within this period there are two clusters of ¹⁴C dates; one in the C9th - C10th (dates from Lutoboka and Sanzi) and another in the C15th (Hippo Bay Cave) which sit at each end of the spectrum. Associated with these dates are various ceramic phenomena, with the Lutoboka date also providing a proxy for Lutoboka and Sozi ceramics found elsewhere, and Hippo Bay Cave a proxy for Entebbe ceramics. However, the distinction is not as clear cut as this; the Sanzi date for instance may be associated with all three ceramic types (Lutoboka, Sozi, Entebbe) in addition to WPT Urewe and Sanzi ceramics, whilst Devolved Urewe cannot be directly tied to any of the absolute dated sites. It is necessary therefore to try and untangle these relationships and build a provisional chronology to explain the sequence.

Three different types of ceramic assemblage have been recognised for this later period; those with one or more of Devolved Urewe, WPT Urewe, Lutoboka, Sozi and Sanzi

1 Malanga Lweru has an additional proxy date from its association with glass trade beads from the coast, analogous examples of which have been dated to the C13th -C14th in Ntusi (Reid 1996)

2 The Malanga Lweru ¹⁴C date from the mid-late first millennium AD has not been used here as it is believed to be unduly early for a largely Entebbe ceramic bearing site, and instead the proxy date from the glass beads has been used as a chronological guide for the bulk of the site. It is however acknowledged that the earlier ¹⁴C date may relate to the small number of associated Urewe ceramics also found at the site, and therefore may in fact be a reliable date that reinforces the proposed chronological boundaries for Urewe ceramics applied here. However, in the present circumstances with such a minimal presence of Urewe at Malanga Lweru this can only be a speculative notion.
ceramics (hereafter the Lutoboka group) those with any of the Lutoboka group and Entebbe, and those with just Entebbe ceramics. Therefore, as Figure 8.2 shows, a sequence has been established around the relative presence/absence of Entebbe ceramics. Whilst this internal chronological distinction has been largely based around 14C dates, additional extrapolations from ceramic morphologies have also assisted in the attribution of undated sites. As ceramics of the Lutoboka group all employ an incised decorative technique, not dissimilar to Urewe in stylistic effect, these ceramics have been placed in an earlier bracket of activity, closer to the terminal Urewe dates in C9th – C10th AD. Entebbe ceramics meanwhile, employ quite distinct decorative techniques, notably including roulette decoration; a technique that is not believed to have appeared in the Great Lakes before the beginning of the second millennium AD. Sites with Entebbe are thus attributed to the C11th to C15th AD.

Discussion therefore will sub-divide the C9th – C15th AD period into two phases; C9th – C10th AD and C11th – C15th AD. This second sub-division includes a period with no absolute dates at all (C11th – C13th), and the attribution of sites with both the Lutoboka group ceramics and Entebbe ceramics to this period is somewhat arbitrary until further chronological definition is available. Indeed it is openly recognised that this subdivision of the second period of investigation (C11th – C15th AD) is altogether somewhat subjective, with clear evidence that there is substantial crossover between the Lutoboka group of ceramics and Entebbe ceramics (repeated co-occurrence at sites), and that there is no clear dividing temporal, geographical or socio-cultural boundary between them, even if there are differences in ceramic technique. Indeed, it is believed that as future research progresses on this period of history, and the sequence is clarified, it will become evident that there is significant inter-relationship, if not symbiosis, between the ceramic traditions. However, on present evidence, some distinction must be recognised between sites with and without Entebbe ceramics, and the present chronometric data suggests a slightly later appearance for Entebbe ceramics than the Lutoboka group.
Thus although a chronological sequence is used as the foundation for this discussion, it is recognised that there are continuing concerns with the specifics of the relative sequence available. Moreover, it is acknowledged and emphasised that at least three sites transcend the chronological boundaries as defined here, with Sanzi, Malanga Lweru and Lulongo all possessing a ceramic sequence that spans Urewe to Entebbe. It is therefore reiterated that the boundaries defined here are fluid and not impermeable, with considerable evidence for continuity and cross-over; the application of chronological definition is merely a heuristic device to help structure interpretation and show gross diachronic patterns.

C2nd - C8th AD & Urewe Ceramics

Dated sites relating to this period include Entebezamikusa, Usenge 3 and Wadh Lang’o with the associated Urewe bearing sites of Luka, Namusenyu, Lolui rock-shelter, Haa and also the multi-component sites of Sanzi, Lulongo and Malanga Lweru. The related ceramics are Urewe and MIA, including Contact Urewe. Discussion will be divided into i) description of ceramic evidence and extrapolation of socio-functional roles and application, and ii) assessment of associated archaeological evidence.

Ceramic Evidence: Definition and Typology

Initial discussion will focus on Urewe ceramics, with attention later being directed at Contact Urewe and MIA.

Overall there is excellent fit between the Urewe ceramics encountered in this research and extant typologies; forms are analogous with open, hemispherical and closed bowls and globular jars, rims are diagnostically bevelled, bases characteristically dimpled, and the decoration shows not only the incised technique, but also the hallmark quality and variety of execution. Indeed, there are examples within this collected database which show exceptional levels of execution and typical Urewe style - the open bowl from Lolui for instance, displays a unique and complex decorative design (see Fig. 7.11). However, despite this general accordance with established typological parameters, the evidence presented here also shows subtle levels of internal variation.
Chapters 6 and 7 have for instance, noted the varying proportions of different features; thus the relative quantities of vessel forms can vary from site to site, e.g. higher incidence of bowls at Wadh Lang’o than Entebezmikusa. Importantly also, rare but unusual mutations have also been recognised. At Entebezmikusa two instances of a recurved rim vessel were found (the ‘Kwale-like’ vessels), whilst at Luka, a very rare carinated bowl was reconstructed, with only two other known parallel (see Hiernaux & Maquet 1960; Schmidt 1980). Perhaps the most notable variants were the plain Urewe ceramics found at Wadh Lang’o which showed the essential morphological features of Urewe but without the decoration or rim/base embellishments.

Although limited in number, these examples nonetheless demonstrate that there is intra-Urewe variation within the tradition, and that the typology must be fluid to accommodate these additional insights, as well as actively seek to understand the precipitates to such differentiation. Van Noten (1979), argued that there were at least six different sub-grouping of the ceramics, and whilst more recent researchers have questioned the empirical basis of his propositions (e.g. Stewart 1993: 8; Van Grunderbeek 1988: 13), there is ample evidence to demonstrate that a homogenised typology is not universally applicable. Nenquin (1967b) in his re-investigation of Ruhimangyarga notes the higher incidence of collared neck jars in Rwanda and Burundi (see Fig. 8.3), whilst the beaker form that Leakey et al (1948) defined as an essential vessel shape in the original typology, has yet to be found outside the Siaya heartland.

However, whilst actively recognising the scope for internal variability, the available evidence does not demonstrate substantial patterns of differentiation which might be linked to spatio-temporal influences (see also Van Grunderbeek’s (1988) inability to pattern variation in her overview of Urewe ceramics from Rwanda, Burundi and the Democratic Republic of Congo). Nevertheless, despite emphasis in this thesis on variability, the available Urewe evidence continued to indicate a highly integrated stylistic template which apparently pervades across time and space.
Socio-functional applications

The four main vessel forms recognised within the Urewe typology correspond with a fairly broad functional range of activities including cooking (hemispherical and closed bowls), serving (open bowls) and storage (jars, closed bowls). Previously noted by Van Grunderbeek (1988: 47-49) there is a very high relative incidence of jars within this formal composition, with volumes encountered here roughly correlating with Van Grunderbeek’s ratio of 6:4 (jars to bowls), although local deviation does occur. This emphasis is significant because it focuses on one of the most functionally specific vessels in the Urewe repertoire, with jars only really suited to the storage and serving of liquids. Although some of the larger mouthed vessels might possibly be used in cooking as well (rim diameters c24cm+) the majority of vessels fall into a smaller category (average 17cm) and are unsuited in shape (being too deep) for easy management of cooking contents. It must therefore be assumed that liquid goods played a central role in the Urewe-using domestic economy.

The size of the vessels is also significant for discussion of the scale of consumption, and helping to identify the social-political make-up of the ceramic users. Although there is some variation in the size ranges, the ceramics are rarely very large or very small, and are typically grouped in a ‘medium’ size range that might suit small-medium group consumption, or perhaps consistent with familial use. It has been estimated for example (see Appendix 1), that an average globular jar of 17cm diameter would have an 8.17 litre capacity. Although an increase in mouth diameter correlates with a sharp rise in vessel capacity, these forms are rarely much larger than 24cm, and therefore the capacities can still be considered to be moderate.

<table>
<thead>
<tr>
<th>Volume</th>
<th>6cm diameter</th>
<th>17cm diameter</th>
<th>30cm diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36 litres</td>
<td>8.17 litres</td>
<td>44.9 litres</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.1 showing Urewe jar vessel volumes (see Appendix 1)

The evidence presented in Chapters 6 and 7 however, have suggested that Urewe ceramics played more than a simple utilitarian functional role, and have explored the
idea that production and consumption of Urewe ceramics was perhaps imbued with further significance and socio-cultural meaning.

Throughout these discussions there has been repeated recognition of the level of productive investment in the Urewe ceramics, with every stage of the chaîne opératoire showing specialist skills, from the processing and creating of well sorted fabrics, to even and regular forming techniques, complex bevelled rims, dimpled bases, and the profound aesthetic execution exemplified in the decorative layout. All these features attest to the essential skills and capabilities of the producer, combining the pyrotechnical understanding that ensures strong functional vessels, to the decorative awareness that projects such distinctive visual impressions on all that behold them.

These levels of skill, and the concomitant investment of time and labour, suggest some degree of specialist ceramic production. Cumulative training of potters, probably through apprenticeships, would be required to master the varying skills, and build up an ability to replicate the established ceramic conventions. Moreover, low-level innovation, such as the varying decorative designs and layouts are also witnessed, suggesting essential skills tallied with informed innovation. The acquisition of these skills would have required sustained investment from both the teacher and pupil, and would have had the important side effect of taking these individuals away from other domestic activities. Thus, contextualising such level of productive investment, we can extrapolate a wider community who were sufficiently well established and self-sufficient to be able to afford not just ceramic producers, but semi-specialist producers who were producing goods that exceeded simple utilitarian-functional demands.

This is not to suggest that the producers of Urewe ceramics would have been full-time ceramic specialist or that communities were suitably demarcated and structured to support such specialism. Rather, that at certain times of the year (possibly during the dry season), potters would have been exempted from the subsistence cycle to work on their produce. Such a scenario is probably the case with most non-specialist/non-industrial ceramic producing communities found in archaeology. However, what
should be emphasised here, is that the quality of the ceramic product is such, that
additional time and effort must have been invested by the community as a whole. That
is, time additional to that required to make utilitarian vessels that serve a stated
practical function; time that may be archaeologically identified in the formal
embellishments (rims, bases) and decorative effects, as well as the overall skill of the
producer, which indicates long-term training and apprenticeship, rather than transient
production.

Through rebuilding the chaîne opératoire, it is thus possible to start to reconstruct wider
socio-economic structures in place within the broader community, suggesting a society
that is settled and economically structured, capable of long-term planning
(apprenticeship) and organisation.

Seen in this broader context, the ceramic evidence also seems however, to indicate an
additional, less tangible, social role for ceramics, which may help to access further
socio-cultural phenomena.

Discussing evidence from Luka and Lolui, it has been argued that the contexts of
recovery are too unusual for the day-to-day processes of domestic discard, with
deposition in an uninhabitable cave in the case of Lolui and in an isolated pit in the
case of Luka. The context of Luka deposition has also been compared with the pattern
found by Leakey et al (1948) in the Urewa type sites when whole vessels were found
buried in anthropogenic pits. In all three situations complete or near-complete vessels
were deposited; vessels which had not necessarily come to the end of their natural use-
life capacity. It has been suggested that these unusual forms of deposition may reflect a
deliberate and conscious process of burial, not linked to daily utilitarian function and
discard, and probably more likely linked to super-ordinary meaning and significance.
In support of this notion of extra-ordinary meaning is the evidence for repair on the
open bowl from Lolui. As discussed in Chapter 7, this open bowl shows clear signs of
repair (riveting/tying together the two halves) and thus a regard for prolonging the
use-life of the vessel, even though this repair severely impedes its possible functional
application. The utilitarian application of the vessel is thus seriously curtailed, and the post-breakage attention must be directed at some other role or significance within society. This, it is suggested, emanates from a profound and deep-rooted importance for ceramics within society, probably as paraphernalia of social communication, expression and discourse.

Exploring potential social roles for these ceramics it might perhaps be posited that Urewe ceramics represents an elite good, invested as it is with such socio-economic effort. Such a supposition might be especially supported by the recovery of plain Urewe at Wadh Lang’o which it was tentatively suggested might reflect a more low-key scale of production geared towards everyday use and relatively short life-spans. Comparing Wadh Lang’o plain Urewe with the more decorated Urewe, this relationship might easily be structured around a fine/coarse dichotomy, with concomitant notions of social inequality and rank. However appealing and tidy this interpretation is, quantitative analysis from Wadh Lang’o does not support this proposed binary opposition. The ‘elite’ fine-ware of decorated Urewe is actually found in greater quantities than the plain Urewe; an unlikely relationship if the Urewe actually represented an elite and restricted commodity, limited to a minority. Instead, it is believed that the ubiquity of Urewe ceramics at Wadh Lang’o and right across the Great Lakes region, as well as the dearth of alternative ceramics as possible ‘coarse’ or everyday wares, indicates a central and fundamental role for Urewe ceramics at all levels of social discourse.

As a social artefact as well as a utilitarian-functional one, the potential role of Urewe ceramics within society is intriguing. Others have briefly explored possible applications with Stewart (1993) suggesting that Urewe ceramics might represent an elite good, linking Urewe ceramics with iron-working and the highly symbolic and ritualised processes of metal production and consumption. As well as the current

3 It is of course possible that non-ceramic, organic artefacts (wooden bowls, baskets, animal skin containers) filled such ‘coarse’ and ‘everyday’ niches in the functional range, and that their poor preservation in the archaeological record masks a significant role. However, none of these artefacts would have been suitable for heating or exposure to a fire in the cooking process, and it must therefore be assumed that Urewe ceramics took this central and essential role within society.
evidence which argues against elite status (see above), MacLean (1998) has also rejected this role, arguing that Urewe ceramics are found much too widely, and often not in association with iron-working evidence, and cannot therefore be regarded as an iron-related status commodity. However, MacLean (1998) does also explore the socio-symbolic role of Urewe ceramics as a gendered alternative to iron-smelting; with both raw materials (clay/ore) passing through similar processes of physical transformation, men involved with iron-smelting on the one hand, and women with ceramic production on the other. The absolute attribution of archaeological evidence to a gendered activity is always problematic, particularly so in the present context of such poor associated data, and as such, some wariness of the gender divide must be evinced.

Nevertheless, MacLean's work does make the useful argument that domestic technologies (such as cooking or ceramic production) can be as important and meaningful as the more intermittent or irregular ones like iron-smelting. By seeking some parity for these actions, she has opened the door to the notion that meaning and significance can be displayed through everyday actions and processes. As David et al (1988; see also Chapter 4) argued in their ethnoarchaeological investigation of Mafa and Bulahay communities of Cameroon, ceramics were used as a means to reiterate social practice every day at mealtimes. It is therefore suggested that the level of socio-economic effort invested in the Urewe ceramic reflects an essential importance for the domestic realm, and the role of food production and consumption within it. Into this equation one might postulate an associated role for women as the (usual) householder and provider of food and sustenance, however, the more important trend to recognise is the centrality of the local, kin-based community and the domestic unit.

It is perhaps also notable that no ceramics during this period are specifically orientated towards ritual or socio-symbolic activity. During the later period (C10th–C15th), the Luzira Head and Entebbe figurine mark a new ritualised application of ceramic technology (see Chapter 6), and in more recent historical periods, ceramics are frequently designed for particular social functions, e.g. multi-spouted beer pots
produced by the Bagishu (see Fig. 8.4). Instead, it is possible that such super-ordinary meaning is embedded within ceramics used in the domestic realm.

Contact Urewe & MIA

The preceding has been a discussion of the ceramics found in this research which conform to an established Urewe template. However, as the evidence from Chapter 7 particularly demonstrates, Urewe is not the only ceramic in use during this period, and the following will discuss the significance of Contact Urewe and MIA ceramics.

Contact Urewe has only been found at Usenge 3, where it was recovered in direct association with Urewe and dated to the mid first millennium AD. It was distinguishable from Urewe by the coarse fabric used, overwhelming dominance of bowls, lack of/simple bevelled rims and bases, and a scarcity of decoration. These differences, manifested at every stage in the *chaîne opératoire*, prompted the argument that two discrete ceramic producing communities created the ceramics found at the site, the Contact Urewe dominating the assemblage, and Urewe proper representing just 6% of the collection.

Extrapolating out from the specific, and so far unique, *chaîne opératoire* of Contact Urewe, it was proposed that the differences in productive effect was the by-product of an alternative socio-economic situation to that usually encountered with Urewe ceramics. Unlike the semi-specialist producers proposed above for Urewe, the fundamental lack of pyrotechnical knowledge evidenced by the Contact Urewe at Usenge 3, suggested both a producing community who only had elemental understanding of the potting process, but also one which did not accord the same socio-cultural importance to ceramics, and thus did not seek to (semi) specialise its workers. Following Lane's (2004) application of 'Frontier Theory', it was posited that these productive distinctions emanate from aceramic hunter-gatherers coming into contact with Urewe using neighbours, emulating their ceramic technology, but only with only limited success. Thus although the essential morphology of the Urewe ceramic template is replicated, by comparing the respective *chaîne opératoires*, it has
been argued that completely different socio-economic and cultural attitude to ceramics were in place. As such, despite the superficial emulation, without the fundamental socio-cultural meaning of ceramics, evident in Urewe ceramic production and use, Contact Urewe could only be a hollow shadow. The insights from Usenge 3 therefore demonstrate the implicit importance of recognising the embeddedness of technology and ceramic production within their social context, and demonstrates how powerful cultural perception can be in the definition of past technological practices.

The other ceramic recovered from this period, MIA, remains an intriguing phenomenon. Identified by Robertshaw (1991) in South Nyanza, and given the name 'MIA' because of a perceived similarity to Urewe ceramics (Urewe being part of the 'EIA' tradition), the present research has increased its known distribution north of the Winam Gulf for the first time, and also explored it within a secure stratigraphic context at Wadh Lang' o, providing the first radiocarbon dates of mid first millennium AD. In contrast to Robertshaw's original tentative supposition that MIA post-dated Urewe (hence the 'degeneration' of the Urewe morphological features in MIA), MIA ceramic were found in direct association with Urewe ceramics from Wadh Lang'o, although appearing slightly later in the sequence than Urewe (i.e. Urewe ceramics initially, followed by coeval Urewe and MIA). Furthermore, the close relationship between Urewe and MIA at Wadh Lang' o was evidenced by the use of parallel fabric technologies, and cross-overs in formal shape and decorative techniques (jars with incised slashes at the rim dominate).

Nevertheless, despite the evidence of typological and technological overlap and direct stratigraphic association, MIA cannot be simply regarded an intra -Urewe variant (like the 'Kwale-like' vessels from Entebazamikusa noted above). This research has shown that MIA has a wider geographical distribution than previously known, and occurs in isolation, crucially without Urewe (see Fig. 7.2; see also site Gtjb11 - Robertshaw 1991: 194). Additionally a discrete internal typological consistency was identified, which revolves around jars (74% at Wadh Lang' o) with bands of vertical incised lines. MIA is bigger than simple micro-variation.
Thus, the evidence from MIA bearing sites, shows a ceramic that whilst essentially
discrete and stylistically contained, nonetheless enjoys close typological and
depositional relationships with Urewe. It is therefore tentatively suggested that MIA
might represent a discrete community of ceramic producers and users, living
alongside, and sometimes within, the Urewe using communities, engaged in close
interaction and sharing, but yet maintaining some distinction of ceramic. It is notable
for instance, that like the Contact Urewe, MIA is also noticeably less well finished and
ornamented than Urewe, suggesting once again, a producing community that does not
support extended productive investment. These social extrapolations from the MIA
chaîne opératoire, and comparison with the reconstructed socio-economic contexts for
Urewe production, suggest that there are fundamental differences in the respective
approaches to ceramics and their socio-political role, confirming the notion of
productive discord. Robertshaw (1990c: 196-197; see also fig 7. 26) postulated a possible
connection between MIA and Gatun’ang’a ceramics from the Rift valley based on
typological similarities. It is perhaps the case that influences from such communities
may have spread and become partially assimilated by the Urewe using communities in
this area of western Kenya.

In light of this evidence, new nomenclature is thus required for MIA ceramics, and
following conventions of naming after the original site of recovery, Gogo Falls ceramics
is suggested instead.

Non-ceramic Evidence
The data discussed here constitutes associated information gathered from sites
investigated. As discussed in Chapter 2 there are serious lacunae in the archaeological
understanding of domestic, socio-economic and political organisation of Urewe using
communities. Although still hampered by poor stratigraphic resolution, collating the
disparate sources together, associated evidence gathered here can help to build the
picture of the communities behind the Urewe production.
Chronology

This period of research represents one of the better dated phases under investigation in this thesis, with good dates from Usenge 3, Entebzamikusa and Wadh Lang’o. Entebzamikusa represents the earliest date for Urewé using communities outside the precocious heartlands of Buhaya, Rwanda and Burundi (see Chapter 2; Clist 1987; Van Grunderbeek 1992), and supports the notion of a fluorescence of activity in the early centuries AD (Schmidt 1997a). However perhaps more interesting are the dates from Kenya, where both Usenge 3 and Wadh Lang’o produced a cluster of later dates in the mid first millennium AD. These dates correlate well with extant dates from Soper’s programme of dating at Urewé/Yala Alego, which provided an aggregate date of C5th AD, as well as Robertshaw’s (1991a: 168) assertion that the absolute earliest terminus ante quem for Gogo Falls Urewé was the C3rd AD. Moreover, these relatively late dates seem to confirm the existing assertion (Phillipson 1977; Stewart 1993) that Urewé using communities appear later in western Kenya than they do in any other part of the Great Lakes. In support is evidence from Wadh Lang’o where ^14C evidence shows the site was (possibly continuously?) occupied by non-Urewé using communities (users of Kansyore & Elmenteitan ceramics) from c.AD1 until the appearance of Urewé users relatively late in the occupation sequence.

However, perhaps most significant of these results, is the evidence from Wadh Lang’o of continued occupation by Kansyore and Elmenteitan using communities from the beginning of the C1st AD, and the appearance of Urewé ceramic in the C5th AD, initially in direct association with the latter Elmenteitan bearing deposits. Through dating this co-eval presence, and the subsequent, Urewé only, deposits, it is evident that there is close temporal relationship between these phases of occupation. This chronological evidence, tied with the depositional co-occurrence, strongly indicates a close and linked relationship between the two ceramic producing communities, and like the evidence from Usenge 3 and its Contact Urewé, demonstrates another example of socio-cultural and economic fusion, as discrete ceramic using communities integrate.
Site Distribution and Selection

Distribution patterns show the presence of Urewe bearing sites in all case-study areas, and seem to confirm previous assertions that Urewe bearing sites tended to favour lush and fertile grounds close to permanent water sources (Reid 1994/5; see Fig. 8.5). Interestingly however, there is also a clear affinity with lacustrine locales, with both Bugala and Lolui islands producing Urewe bearing sites (see also Chole rockshelter on Chole Island - Soper & Golden 1969: 35-6,39,41). Whilst Bugala and Chole are relatively close to the mainland (c 5km offshore), Lolui is much further removed (c25km) and is moreover out of view from the Siaya coast. As such, it must be assumed that Urewe using communities had the capacity to move around the lake (boats, canoes), and in the case of Lolui, show fairly advanced off-shore navigation.

The selection of site locations by Urewe using communities shows some unusual patterns, with a significant proportion apparently selecting areas that would be unsuitable for sedentary small-scale agglomerations, as proscribed by earlier models of the ‘EIA’ package. Although sites such as Sanzi, Entebezamikusa, Malanga Lweru, Wadh Lang’o and Luka fit the model of large open sites suited to agricultural and pastoral exploitation of the surrounding land, Namusenyu and Lolui rockshelters (see also Rangong, Randhora and Nyaidha - Gabel 1969) are seemingly unsuitable for aggregated settlement. It has already been argued that Lolui rock-shelter may have constituted deliberate and symbolic deposition of ceramics not for utilitarian meanings (perhaps linked to the rock-art and/or rock gongs – see Chapter 7), as indeed has the isolated pit deposit at Luka. However Namusenyu, Rangong, Randhora and Nyaidha do not fit this pattern of super-ordinary deposition, with sites demonstrating a more typical midden character, of broken and fragmented artefacts. It is perhaps notable that in the case of Namusenyu the site is located close to the lake shore (see Fig. 8.6). With the evidence of lacustrine exploitation and familiarity demonstrated by the island sites, it is highly feasible that lacustrine rockshelters may have been temporary shelters for fishing camps. These sources of evidence seem to refute the notion of homogenous farming societies, settled in established communities, and instead presents a picture of varied occupational policies (permanent, transient), variegated economic exploitation.
(fishing, farming) and also selective and specialist use of sites for super-ordinary activity.

Another factor that must be recognised in discussion of site selection, is the high incidence of re-use of previously occupied sites. As well as those sites encountered in this thesis (Usenge 3, Haa, Wadh Lang’o) there is also good evidence from the wider literature (Gogo Falls, Nsongezi, Kansyore, Ugunja) of multi-component sites, with earlier Kansyore (all) or Elmenteitan (Gogo Falls, Wadh Lang’o; see Fig. 8.7) bearing deposits. This partiality for ‘revisiting’ the same locales may be linked to the advantageous situations of the locales; all sites (except Usenge 3) sit in river valleys close to permanent water sources and rapids which provide useful fish sources (Usenge 3 sits on Lake Saru/Yala River estuary, however there are no rapids; see Fig. 8.8). However, it is argued, based in part on the close temporal relationship between Urewe and Elmenteitan deposits at Wadh Lang’o, that there was an additional level of association and crossover that led to the re-exploitation of known sites. Even at sites with substantial temporal hiatuses between occupational phases (e.g. Usenge 3), precisely the same locale is used many centuries later, suggesting some level of enduring folk-memory and sense of place. As the evidence from Wadh Lang’o and Usenge 3 (and see also MacLean 1994/5, 1996a,b) have shown, the landscape is not denuded of existing communities with the appearance of Urewe users. Rather, there are diverse and contingent processes of adaptation, fusion and change (see also Lane 2004) which results in complex mosaics of interaction and mutual awareness/understanding.

Understanding the intra-dynamics of an Urewe using site is still as problematic as before (see Chapter 2). The only site discussed in this thesis to produce definite spatial features and arrangements is Usenge 3, where discrete ceramic middens were located close to an in situ baked clay pot-stand. This suggests some degree of settlement longevity as storage pots are given permanent stands, and debris is managed into defined areas of deposition. However, as argued above, Usenge 3 does not represent a ‘typical’ Urewe using site, and its wider application is therefore perhaps limited.
Subsistence

This continues to be a poorly understood area of Urewe-using community life (see Chapter 2). Some additional insights have been proposed by site distribution (fishing as well as farming), however, the most important addition to this debate is the faunal analyses carried out at Usenge 3 (by Sada Mire) and Wadh Lang'o (by Paul Harvey). What both these assemblages show is a mixed wild/domesticate economy and also the exploitation of a wide range of fauna, utilising local resources to the full (e.g. swampland animals at Usenge 3). Thus although the deposits at Usenge 3 have produced domesticated *bos taurus*, there is a continued parallel exploitation of large wild ungulates, notably water buffalo.

This admixture of wild and domesticated exploitation doesn’t fit with the traditional precept of dramatic subsistence shift towards domestication in Urewe using communities, and indicates instead (see also Van Nooten (1983) at Kawezi) more heterogeneous and adaptable societies.

Evidence of agriculture/plant exploitation is not yet documented from these researches, although it is hoped that archaeobotanical and phytoliths samples collected can be analysed in the near future. Nevertheless, perhaps on the basis of distribution of sites, it is possible to suggest a range of plant exploitation techniques, as the environmental conditions vary from place to place. Thus densely forested areas provide a stark ecological contrast to sparse open and rocky island locales.

Technology

Discussion of technology for this period of archaeology has been traditionally dominated by archaeometallurgical discourse (Chapter 2; see also e.g. Schmidt 1978; Raymaekers & Van Nooten 1986; Van Nooten 1979), however no evidence at all was found for such activity in any of the five case study areas. This scarcity cannot be coincidental (see also MacLean’s (1996a) failure to recover iron smelting remains in Rakai), and it is argued that this constitutes compelling evidence of the uneven
distribution of iron-working in the Great Lakes. Indeed, in contrast to the fecundity of evidence from Buhaya, Rwanda and Burundi research, there is not a single confirmed iron-working locale from this period, or associated with Urewe ceramics, from Uganda or Kenya. Instead, this research has shown a definite continuation of lithic working technologies, particularly evidenced in Kenya. Seitsonen’s (2004) thesis on Wadh Lang’o shows clear continuity of lithic traditions from Elmenteitan to Urewe bearing deposits, both reiterating the close relationship between the communities of ceramic users, as well as the enduring importance of lithic tools (no metal tools have been found in all this research). Seitsonen, re-examining Gabel’s (1969) published assemblages from the Kisumu rock shelters has moreover, suggested that the morphological make-up of the Gabel lithics is more akin to those associated with Elmenteitan and Urewe ceramics at Wadh Lang’o, than the earlier, posited LSA tradition. Thus it is possible that the few Urewe ceramics found at the sites were actually directly associated with the lithic tools (previously presumed to be associated through mixed deposits), once again re-affirming the importance of lithics during this period. As suspected in Chapter 2, there is a ‘forgotten’ lithic technology during this period, one which surely confirms, once and for all, that the term ‘Early Iron Age’ is nothing but a misnomer.

Identity, Contact and Inter-relationships

The identity of the producers of Urewe ceramics has been one of the most hotly contested and debated areas of study in the whole Great Lakes (if not eastern Africa). Tied in to historical linguistics, there is still a widely felt perception that Urewe producers can be largely correlated with Bantu language speakers (e.g. Phillipson 2002, 2005), and whilst the evidence presented in this thesis is not able to directly comment on ethno-linguistic identity or formulations, the archaeological insights can contribute to understanding of what types of communities were active at this time.

4 Ongwen (pers.comm.) has suggested that he has a furnace from Tororo which may be associated with Urewe ceramics. However the site is not dated and the ceramics are poorly associated and not convincingly Urewe.
Central to this is the evidence which can help deconstruct the notions of socio-cultural exclusivity and homogeneity, and instead promote internal diversity and dynamic socio-cultural interactions. The preceding evidence has noted the variability inherent within Urewe using communities, manifested in ceramic patterning (plain Urewe at Wadh Lang’o, ‘Kwale-like’ vessels at Entebezamikusa) as well as differences in site selection, technology and subsistence models. However, perhaps most significant in discussion of socio-cultural organisation, is the evidence from Kenya, which shows positive relationships between Urewe using communities and ‘others’. From Usenge 3 there is an insight into emulative interactions between Urewe-users and a putative hunter gatherer community, showing how ceramic production templates, as well as finished artefacts, can be transmitted across apparent social boundaries. At Wadh Lang’o, the evidence meanwhile shows continuity of settlement between Elmenteitan using communities and Urewe using ones, with ceramic co-occurrence (including possible formal influences from the Urewe template on the Elmenteitan one), as well as lithic and subsistence cross-over.

These sources are crucial in the development of socio-cultural understanding of Urewe using communities, showing how social responses varied according to circumstance and contingency. Moreover, through these insights into variegated and interactive communities, it is clear that the notion of absolute social replacement and ethnic exclusivity, which is so embedded in the ‘Bantu model’, is untenable and inappropriate. Instead, the evidence shows communities who selectively change, reformulate, borrow and share, and who collectively create a vibrant multi-cultural mosaic.

Comment
The evidence collected for this period of north Victoria Nyanza history shows that it is no longer acceptable to comfortably posit homogeneity and stasis. Instead, as the ceramic and associated evidence shows, communities were reacting to varying forces, both internal (socio-cultural norms and beliefs) and external (environment, neighbouring communities) in a multitude of ways.
C₉ᵗʰ – C₁₅ᵗʰ AD

The results from this period of research represent entirely original contributions to Great Lakes archaeology, the period never having been previously identified as discrete, with the area largely consigned to a peripheral role around an apparent core of activity in the western Uganda grasslands (see Chapter 1 and 2). However, as the contents of Chapters 6 & 7 clearly demonstrate, there is considerable archaeological activity in north Victoria Nyanza at this time, and the discussion will be divided into two phases, C₉ᵗʰ – C₁₀ᵗʰ AD and C₁₁ᵗʰ – C₁₅ᵗʰ AD, following the same format used for the discussion of the period C₂ⁿᵈ – C₈ᵗʰ AD.

C₉ᵗʰ – C₁₀ᵗʰ AD & the Lutoboka Group (Lutoboka, Sozi, Sanzi, WPT Urewe, Devolved Urewe)

The period under discussion here constitutes a ‘forgotten’ period, with previous researches tending to subsume these latter centuries of the first millennium AD under the blanket explanations of Urewe using communities. Chapter 2 suggested that the lack of viable ¹⁴C dates associated with Urewe using communities from this narrow window, was not a mere accident of recovery, and in fact represented a meaningful change in archaeological patterning. Whereas preceding histories of the area have tended to overlook this gap in radiocarbon dates, and assume continuity until the advent of ‘something else’ (see Chapter 1), in the form of roulette decorated ceramics in the C₁₁ᵗʰ, the present research has clearly shown a ceramic disjunction at this period, with a fluorescence of new and individual ceramic styles emerging. These include material from Lutoboka, Sozi, Sanzi, WPT Entebbe, Luzira, the Entebbe figurine site and the Nowa River site.

Ceramic Evidence: Definition

This fluorescence of ceramic evidence represents at least 4 completely new ceramic types identified by this research (Lutoboka, Sozi, Sanzi, WPT Entebbe) as well as
Devolved Urewe whose definition has been enhanced by recovery from Luzira and the Lolui cairn site.

Lutoboka ceramics contain a range of forms, including flared mouth and hemispherical bowls and closed bowls (the latter especially at Sanzi). Rims vary with crude double bevelling, squaring and rounding, but the most distinctive element is decoration, which typically constitutes a bordered band of chevron incised patterning, sometimes in the form of abstracted chevrons (e.g. Sanzi) and also horizontal incised lines (e.g. Lutoboka). This ceramic is found at Lutoboka, Sozi, Malanga Lweru, Entebbe figurine site, Lolui cairn site, Nowa River and Sanzi.

Sozi ceramics are very rare, with only a handful of sherds found at 7 different sites (Sozi, Lutoboka, Malanga Lweru, Sanzi, Nowa River and Luzira), but with a widespread distribution across the lake. Despite its scarcity, Sozi is still a highly distinctive ceramic and cannot be mistaken for any other ceramic, being typically of a closed bowl (although jar examples were found at Sanzi) with closely incised double bands of cross hatching and punctate on the rim, and a squared lip (in the jars cross hatching also appears on the lip).

Sanzi ceramics have thus far only been recovered at Sanzi, where they show straight necked jar forms with squared over-hanging and decorated lips, and panels of incised decoration (vertical incision, chevron) on the rim and shoulder of the vessels.

WPT Urewe is found at WPT Entebbe and Sanzi and is very close to Urewe in its typology (as the name suggests), showing a distinct emphasis on globular jars, and simple bevelled rims (2 bevels) with nicked lips. Distinguished mainly from Urewe by its decoration, WPT Urewe is invariably cross hatched at the rim, although the cross-hatching contains an additional horizontal hatch, and is also only lightly incised.

Devolved Urewe, which was initially defined by Posnansky (1967,1973), was found on Lolui cairn site, and in abundance in the Luzira Head assemblage. This ceramic is
distinguished from Urewe by an overall decline in productive quality and detail, with less regular forms or ornate decoration. The jar forms, for instance show incomplete cross-hatching at the rim, with the diagonals being intermittent rather than continuous. All of the above ceramics are clearly distinguishable and identifiable, being both distinct from the preceding Urewe ceramics and distinct from each other. Nevertheless, there are certain qualities and features that link them and attest to a fundamental relationship to each other and Urewe.

As discussed in individual case-studies in Chapters 6 & 7, there are key typological elements of cross-over between these ceramics and Urewe. The most obvious are of course WPT Urewe and Devolved Urewe which might possibly be confused for Urewe by the casual observer, but are distinguishable for the reduced quality of execution (Devolved Urewe) and more limited and specific decorative template (WPT Urewe; see Fig. 8.9). Less obvious in relationship to Urewe are Lutoboka, Sozi and Sanzi, which are missing many of the key morphological features (particularly the formal range). However, there is key correspondence in the repeated use of incised decoration (particularly the chevron/cross hatch motifs which occur in all three as well as Urewe) and also the simple faceting of rims reminiscent of bevels.

Thus although it is recognised that there is sufficient variation to warrant independent status, each ceramic of the Lutoboka group holds some typological relationship with the earlier Urewe template, strongly indicating some level of continuity and transfer from the C2nd – C8th AD period and into the C9th – C10th AD. Moreover, through this typological continuity and retention, each ceramic of the Lutoboka group similarly shows some degree of co-relationship and parallelism with the others; seemingly representing different chronological responses to the Urewe template.

In discussing this relationship with Urewe ceramics, it is particularly notable that the level of productive investment, as evidenced in productive detail, range and skill of execution, declines in all but the WPT Urewe. This change is tangible in comparison with earlier Urewe (leading Posnansky to coin the original term ‘Devolved’ Urewe),
and, following the rhetoric of the *chaîne opératoire*, must surely indicate a change in attitude towards ceramic and ceramic production, with society no longer able, or willing, to afford such specialisms.

Socio-functional Roles

The preceding discussion has suggested that the decline in productive investment seen in the Lutoboka group of ceramics compared with the Urewe ceramics indicates some level of concomitant socio-economic change. Further evidence of functional applications of the ceramics from this period seem to support this notion of disjunction. In comparison with the Urewe formal scope which covered a range of activities through functionally orientated vessels (storage, food preparation & cooking, serving), the ceramic forms of the Lutoboka groups are less varied, with usually a single form dominating each style. Thus, Lutoboka ceramics are typically hemispherical or flared mouth bowls (or closed bowls at Sanzi), Devolved Urewe and WPT Urewe are dominated by jars (as are Sanzi ceramics), with some additional hemispherical bowls, and Sozi is even more formally restricted, with almost exclusive use of closed mouth bowls (except at Sanzi where jars predominate). This restricted range further suggests a diminution in the social role of ceramics, as there is a decrease in function specificity, and generic forms such as the hemispherical bowl may be transformed into a multi-functional tool.

It is however, interesting to note that despite the apparent shift in practices of ceramic use, there remains a strong presence of jar vessels, which unlike the hemispherical bowls are functionally curtailed, and likely to be orientated around liquid storage and serving. This is particularly notable as these forms also show high incidence in the Urewe typology; an incidence which has been interpreted as indications of a prominent role for liquid based commodities within Urewe using communities. Thus although there is a changing pattern of ceramic use, apparently towards less specialist functions, there is nonetheless also evidence of some continuity of food/liquid practice, with a residual emphasis placed on the function specific jars.
Further evidence of apparent continuity of ceramic use is also evidenced by the scale of ceramic production, which like Urewe ceramics shows vessels in the medium size range, consistent with familial or small-unit consumption. Only two examples of larger scale vessels have been encountered at Sanzi (referred to by Reid 2002; see also Fig. 6.34) which would have had substantial carrying capacities in the region of 50+ litres. These are isolated phenomena however, which may, by their form and size, be attributable to water, or possibly beer, storage vessels.

Ceramics of the Lutoboka group therefore display intriguing evidence of both continuity and disjunction, with indications that whilst basic core practices from Urewe using communities may have remained the same (liquid (beer? milk?) consumption), and aspects of the ceramic typology continued into the period C9th – C10th AD, there is nevertheless a tangible shift in approaches to ceramics (decline in manufacturing quality), which attests to shifting socio-economic conditions that are no longer capable/willing to support semi-specialist ceramic production.

Non-Ceramic Evidence

Unfortunately there is only scant associated evidence from this time period, with no contextual features found at any of the sites investigated. However associated data can be explored on a macro-scale to aid discussion of patterning and manifestation.

Chronology

As discussed above, the ¹⁴C evidence from Lutoboka and Sanzi clearly indicate that this was a period of sustained and discrete archaeological activity in northern Victoria Nyanza, and that this activity cannot be subsumed under the blanket of Urewe using communities.

Site Distribution and Selection

On a large-scale of analysis, it is particularly notable that sites relating to this period and this suite of ceramics are largely limited to the western shores of Victoria Nyanza, with only the Nowa river site showing evidence of Lutoboka and Sozi ceramics (see
Fig. 8.10). This is significant because following the finding in Chapter 7 that Gogo Falls ware does not post-date Urewe (i.e. fall into the present C9th to C10th gap) as previously supposed, no other significant ceramic activity is as yet attested in western Kenya until the appearance of roulette decorated pottery associated with Luo communities in the C16th (Ogot 1967; Onjala 2003). Wandibba (1990: 73) has recognised Wabukhe pottery from Bungoma and dated this to 200-800 BP. However, the distribution of this ceramics does not currently overlap significantly with the present research area (see also Wandibba 1985). Thus it would seem that the relatively dense occupations of north western Victoria Nyanza on the Ugandan side, is not replicated on the eastern Kenyan shores, where there is an apparent hiatus of activity.

Moving back to the north western (Ugandan) distributions, it is clear that there also appears to be continuity in settlement locales, with sites from these periods continuing to occupy the low-lying fertile lands so favoured by Urewe using communities. It is notable for instance that Malanga Lweru and Sanzi both show Urewe occupation and Lutoboka group activity at the same location. However despite this settlement continuity, it is also possible that the latter Lutoboka group are also showing a greater preference for lacustrine locales than their predecessor Urewe users, with no Lutoboka group ceramics found from areas to the interior away from the coast. Reid's recent survey work in Buganda (which is not fully documented here; see also Reid 2000, 2001a,b, 2002) extends far inland, and recovered Urewe ceramics in all but one of the eight survey locations investigated, the exception being the rather drier area around Buwunga (east of Masaka), which was characterised by drier sandy soils (Reid pers.comm). Kiyaga-Mulindwa (2004) and Reid (e.g. see Fig. 8. 11) for example, both found substantial evidence for inland Urewe sites on the banks of the Nile. No sites with the Lutoboka group of ceramics were however found away from the lake. The initial speculation that the ephemeral site of Lutoboka was intrinsically linked to its lake-shore position and fishing potential, may therefore be substantiated by the wider lacustrine preference in Lutoboka using societies.
On a smaller scale of analysis, micro-patterning shows that whilst there are essential typological cross-overs between ceramics of the Lutoboka group (incised decoration, forms; see above), there are also discrete spatial patternings which are highly suggestive of regionalisation. Only Lutoboka and Sozi ceramics are spread across the whole spectrum of sites and regions\(^5\), whilst the others cluster discretely in specific areas. Thus WPT Urew e is restricted to the Entebbe and Ssi-Bukunja peninsulas, Devolved Urew e to the Entebbe peninsula and Lolui, whilst Sanzi ceramics are currently found only at Sanzi. Ceramics in this period therefore seem to be diversifying, in some cases according to region. This pattern is particularly noteworthy because during the Urew e using period, despite the widespread distribution, there was a fundamental conformity to an essential template. During the C9\(^{th}\) to C10\(^{th}\) however, this productive structure seems to have eroded away, allowing greater typological freedom, but also a decline in core skills as the sociological importance of ceramics degenerates.

Surprisingly, one of the best areas of associated evidence for this period comes from figurines that attest to symbolic or ritual beliefs and perceptions. This is notoriously one of the hardest areas of society to access archaeologically (e.g. Hawkes 1954), but evidence from the Luzira Head and Entebbe figurine assemblages are pertinent here. It has been argued in Chapter 6 that these ceramic figurines represent a dramatic new application of ceramic technology; an application that cannot be explained as mere extensions of the domestic ceramic produce, and must instead signify extra-ordinary meaning and activity. Representing the human form for the first time in Great Lakes ceramic history, these examples must have been powerful objects, probably steeped in cosmological belief. It can also be suggested that these are not simply generic representations of the human form, and may indeed emphasise the role of the individual in society for the first time. One might then argue that the representation of the individual comes as part of the changing socio-economic and political tide identified previously, which is shifting from the familial or domestic unit as the locus

\(^5\) Even these ceramics show evidence of possible discrete spatial patterning, with internal typological variation being manifest at particular sites. Thus the jar form of Sozi is only found at Sanzi, and likewise it is only at Sanzi that there is such a high incidence of closed bowls in the Lutoboka style.
of authority, to influence being invested in the individual. Wider ceramic trends may substantiate such a scenario, with the high status Urew ceramics attesting to the importance of familial (possibly feminine?) interests and scales of production, with the later, Lutoboka group ceramics reflecting the decline of this core domestic structure, as ceramic templates fragment and there is a loss of specialist ceramic skills.

Conclusion
This 'forgotten' period of Great Lakes history shows a dynamic phase of activity in north, and particularly coastal northwest Victoria Nyanza. Ceramic evidence demonstrates a low-lying level of typological and functional continuity, superimposed by dramatic fission and diversification, perhaps precipitated by changing socio-political structures, and a suggested shift from domestic authority to investiture of influence in limited individuals.

C11th – C15th AD & Entebbe Bearing Sites
Whilst C 9th to C10th AD can be seen as a 'forgotten' period of history, the present period has been simply ignored in this region of the Great Lakes, with investigation of emergent complexity and pastoral specialisation in the western Ugandan grasslands dominating previous archaeological focus (see Chapter 1). In this scenario, the appearance of dense and widespread communities in the previously unoccupied grassland areas, is typically regarded as a demographic shift, as the low-lying lush and fertile lands so favoured by the Urew using communities (i.e. the present area of research), are abandoned in favour of the drier grasslands more suited to pastoralism. The present research however, clearly shows the inaccuracy of this model, demonstrating a thriving archaeological picture, completely at odds with the notion of a de-populated periphery.

Sites from this period, and those associated with Entebbe ceramics include Malanga Lweru, Kasenyi Bumangi, Lulongo, Hippo Bay Cave, Sanzi, Buloba and the Nowa River site.
Ceramic Evidence: Definition

Although Brachi (1960), Marshall (1954) and later Posnansky (1967, 1968) recognised the Entebbe ceramic phenomenon (see also Fagan & Lofgren (1966a), Nenquin (1971) for unidentified illustrations of Entebbe ceramics recovered from survey), it was never really formally defined, being rather classified according to generic illustrations. With the present research increasing the number of known Entebbe bearing sites from 5 to 43 (including survey and excavation sites), it is now possible to clarify this basic definition. For previous researchers, the Entebbe vessel was a large hemispherical or closed mouth bowl with a thickened rim decorated by roulette, and a scored interior. This essential typology has remained valid, although now, it is possible to quantify these features as well as show a greater range of internal variability.

Fabrics in Entebbe ceramics remain remarkably consistent and indeed diagnostic across the area of distribution, with a characteristic formula of light coloured silty matrix supporting a relatively high incidence of coarse quartzite inclusions (2-5mm, 15-30%). Microscopic analysis has also shown the frequent presence of spicules from freshwater sponges that indicate raw material sourcing in lacustrine, riverine or swamp environments.

Vessel forms are incredibly conservative being entirely restricted to hemispherical or closed bowls, usually of a large to very large size, although rare occurrences of smaller vessels are manifest (e.g. Hippo Bay Cave). Bases of these vessels are probably usually rounded (i.e. indistinguishable from body sherds) although some thickened semi-pointed bases have been recovered (e.g. at Malanga Lweru). A single incidence of an applied handle has been found, also at Malanga Lweru. The forming technique used in the construction of these vessels is unclear, although the thickened rims appear to be created by the folding over of the body to increase thickness. These rims can be highly exaggerated in their thickness, sometimes measuring up to 5 times the thickness of the body wall (e.g. see Malanga Lweru).
Internal typological variation is principally manifested in rims and decoration.Whilst Brachi and Marshall only identified a rounded thickened rim as diagnostic, this research has demonstrated a range of rim morphologies, including variations on the rounded version, as well as a range of squared thickened rims. Additionally, vessels with un-thickened rims have also been attributed to the Entebbe typology by virtue of their fabric, form and decoration, and must be recognised that whilst thickened rims are a key diagnostic of the tradition, less ostentatious rims are also in use. Buloba ceramics for example, typically has un-thickened simple square rims. Decoration is primarily by roulette, usually TGR, however KPR has also been found6. Scoring is another characteristic surface treatment, and appears to have been effected by dragging a comb across the surface. This effect is usually found on the interior of the vessel in mixed panels of oblique scoring, but can also be found on the rim/body intersection below the rouletting where it takes the form of continuous horizontal scoring. In Buloba ceramics the comb-scored effect is used to create swirling patterns on the interior and exterior of the vessels. The relative quantities of these features (rim morphologies, decoration) vary from site to site.

Despite such evidence of variation, there is a high degree of overall uniformity and correlation, with Buloba ceramics perhaps the most different, and yet still retaining the same unique tool-kit (roulette and comb-scoring).

\textbf{Socio-Functional Roles}

The evidence from typology presents some interesting implications for discussion and investigation of function and role. Essentially the Entebbe typology shows a very conservative suite of vessels, fundamentally restricted by the limited forms and also the size of the vessels. Variation where it occurs, is largely limited to more superficial aspects of the morphology, such as rim shape and decoration, which do not impinge significantly on the utilitarian applications of the vessels. Thus the relative thicknesses or morphologies of the rims do not significantly alter the capability of the vessel to

6 The additional site of Bukeri Kanywa, which was not detailed here because of problems of stratigraphic disturbance, nevertheless produced a new Entebbe ceramic variant that employed KPR decoration and finger impressions (see Appendix 2)
contain its contents, afford the user access to its contents, or facilitate pouring and serving of its contents. The shape and sizes of the vessels however do directly constrain the possible functional applications.

Large hemispherical or closed mouth bowls are unsuited to many of the typical functions that we might associate with archaeological ceramics; the mouths are too wide and open for effective long-term storage (evaporation, spillage, access for vermin). Similarly, cooking and food preparation, which might be expected from such open, easy access vessels, would have been greatly hindered by the sheer size of the vessel; the average sized Entebbe bowl would have had a capacity of between 7.45 litres and 48 litres – an incredible weight to manoeuvre between the fire, preparation and consumption areas.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>14cm</td>
<td>1.87 litres</td>
</tr>
<tr>
<td>25cm</td>
<td>7.45 litres</td>
</tr>
<tr>
<td>40cm</td>
<td>48.09 litres</td>
</tr>
</tbody>
</table>

Table 8.2 showing volume of Entebbe bowls (see Appendix 1)

Yet in spite these restrictions of use, the frequency of the large spherical Entebbe form must attest to its central role within the community. Therefore, despite the form, which might perhaps in other circumstances be construed as a multi-functional shape, the size, scale and ubiquity of the vessels indicates a probably specialist and defined function within society. This specific function is however difficult to determine as there are no obvious functional features or contextual evidence to help situate the argument. Some tentative extrapolations can nevertheless be proposed. Most interesting in this regard is the internal scoring, which may be linked to function as they would be largely concealed from aesthetic gaze by the contents of the vessel and the thickness of the rims. Only one other case of such internal scoring has been identified in east African archaeological ceramics, with Olmalenge pottery from the Rift valley showing similarly intriguing internal surface treatment. Soper (1989: 14) declared that this scoring “suggested specialized function, but no convincing explanation of this has ever

7 It is hoped that a programme of residue analysis will be carried out soon, providing the first direct evidence of vessel contents and thus use.
been advanced”. Assuming then that the scoring is linked to function, it is possible that
the grooves are used to increase surface area, producing an abrasive surface and also
one in which residual particles might be easily trapped. Such features would be useful
in beer-brewing as vessels help break down the pulp both physically through abrasion
and also chemically, through trapped residual bacteria.

This notion of beer is of course speculative, however the scale of the vessels may
support this idea, with widespread ethnographic evidence from the Great Lakes of
communities negotiating power relations and societal structures through communal
beer drinking. With such large vessels, numerous individuals could drink from the
same pot either simultaneously through straws, or by filling cups from the bowl. The
large sizes of the vessels (48+ litres capacity) also suggest that these rituals of
consumption might have transcended the familial unit to the wider community, and
thus become important media for political displays of reciprocity and/or redistribution
economies in what Dietler (2001) has termed “commensal politics”. Indeed Dietler
notes the importance of such exchanges within modern Baganda and Luo of the Great
Lakes (ibid: 83, 95-103) whilst Schoenbrun (1998: 79-83) has suggested that linguistics
evidence identified banana beer in the Victoria Nyanza/Buganda region by around
1200AD and not later than 1500AD (i.e. contemporaneous with the period under
discussion).

This picture of a ceramic used for a limited purpose and on a communal scale is at
odds with both the Urewé using period, and also the evidence from the Lutoboka
group of ceramics, which show much greater formal ranges and smaller scales of use
(especially Urewé ceramics). Interestingly though, like the Lutoboka group of ceramics,
Entebbe pottery continues the technological trend of limited productive investment.
Indeed, it is arguably the case that Entebbe ceramics require even less productive effort
than the Lutoboka group, with unchanging forms, morphologies and decoration that is
implemented with a toolkit (roulette and comb) that require no prior skill or
artisanship. This evidence of productive simplification can perhaps be added to the
growing picture of the overall decline of the ceramic industry, and by extrapolation the
social role of the producers within that industry. Moreover, as the argument above has suggested, there is a definable shift in the Entebbe ceramics away from a domestic context and towards communal consumption, seemingly to support the notion of the disempowerment of the home and the domestic unit as the seat authority. Thus the degeneration of the ceramic industry, as the natural produce of the homestead, can be seen in direct proportion to the growing empowerment of external authorities, manifested outside the immediate domestic unit.

Non-Ceramic Evidence
Only one absolute date from Hippo Bay Cave is available for this period, providing a *terminus ante quem* of the C15th for Entebbe bearing sites. Although isolated this represents a crucial addition to empirical knowledge, clearly indicating that previous relative dates for Entebbe ceramics in the historic/modern period (e.g. Desm edt 1991: 118; Posnansky 1967), are simply untenable, and also providing an important chronological anchor that demonstrates that north Victoria Nyanza was not depopulated in the early/mid second millennium AD, and was instead the centre of a thriving community.

Site Distribution and Selection
On a macro-scale, the distribution of Entebbe ceramics provides dramatic and striking results (see Fig. 8.12) with all sites lying within 8km of the lakeshore, and usually very much closer (e.g. Hippo Bay Cave, Lulongo, Malanga Lweru, Kasenyi Bumangi, Nowa River, are all on the present lakeshore). The exception to this are sites with Buloba ceramics which are often found slightly more inland in the hinterland of Mpigi. Taken with the morphological differences, particularly the greater level of formal variation (which suggest concomitant diversity in functional application unlike Entebbe ceramics), this discrete pattern of distribution is seen as evidence of disjunction between Entebbe using communities of the lacustrine coast, and Buloba ceramic users further inland*. Therefore, it is argued that Entebbe using communities were specialist

* It is perhaps interesting to note that the area of Buloba distribution coincides with the early heartland of the Buganda kingdom; perhaps this early distinction may have eventually contributed to the development of local power politics.
lake-dwellers exploiting a niche lacustrine environment; it is notable for instance, that both islands investigated here (Lolui and Bugala - surely the most 'extreme' lacustrine environment), show evidence of significant Entebbe bearing sites (see also Buvuma and Bugaia - Nenquin 1971). This notion of the lake as a positive arena for social, political and economic interaction is frequently overlooked by archaeology, and instead the lake is often seen from a mainland perspective as a physical and psychological barrier (see Chapter 1). Evidence of Entebbe bearing sites, and also Lutoboka and Sozi bearing sites, seems to refute this notion.

Another pattern that emerges from macro-distribution maps, is the clustering of Entebbe sites to the west of the lake, with only a handful of locales identified on the Kenyan shores. Indeed all the recognised Entebbe bearing sites in Siaya are merely find-spots of single sherds; the only location with more than one sherd is the Nowa river site where Entebbe was found in association with a suite of Lutoboka group ceramics including Lutoboka, and Sozi9. This emphasis on the western lake was also recognised in discussion of Lutoboka group ceramics, and seems to both confirm the strong correspondence between these Lutoboka group and Entebbe ceramic types, and also the validity of the original distribution comment. This raises the intriguing fact that in the absence of Gogo Falls, Entebbe or Lutoboka ceramics in this area of western Kenya at this time, there is no extant evidence of ceramic traditions or archaeological activity in the early second millennium AD. This area is potentially an important area for future research.

On a smaller scale, distribution patterns are also telling, revealing discrete typological clustering that seem indicative of regional development and innovation in ceramics. Whilst the archetypal ceramic model as defined by Marshall (1954) and Brachi (1960) is found throughout the region, other stylistic discrepancies can be linked to specific areas. Buloba Entebbe as a regional manifestation has already been discussed, however it is also apparent that the distinctive Festoon style of ceramic (also part of the Entebbe typology) is also only found in the Entebbe peninsula environs

9 Personal communications from Gilbert Oteyo and Dismas Ongwen attest to the presence of Entebbe ceramics in Uyoma and Kanjera respectively, although it is not known in what quantities.
Site evidence

Associated evidence from the sites themselves can contribute to the reconstruction of society at this time. Both Lolui and Bugala islands have produced evidence of architecture and spatial organisation through piled rock cairns (Malanga Lweru, Lolui cairn site), with the researches from Lolui also identifying field systems and boundaries. Fagan & Lofgren (1966a) also found field systems on Bugala10, with additional evidence from Bugaia (McFarlane 1967) and also Ukara (Thornton & Rounce 1936), suggesting that such systems may have been widespread across the lake's islands. The cairns (which may represent field clearance), and the field systems suggest relatively complex and integrated land management policies as well as probable cultivation of cereals. This notion of cereal cultivation is supported by the recovery of numerous grindstones in association with these sites (see Lolui, Malanga Lweru), as well as the recognition of nearby grinding hollows (Lolui, Malanga Lweru, also found in an outcrop above Sanzi; see also Patz 1965).

These sources suggest some degree of settled, semi-agrarian communities, although it should also be recognised that sites such as Hippo Bay Cave and Sozi, which are located in rock-shelters, may not be so sedentary and may also reflect a more mobile aspect of the economy (perhaps as part of the lacustrine exploitation). Another source of data that also supports the notion of economically organised and structured communities is the associated evidence for metal-working. Although the relationship to Entebbe using communities is not direct, there is good circumstantial evidence from Sanzi to show that Entebbe ceramics are associated with a slag and tuyeres rich hearth11.

A final, linked source to this metal-working evidence, is the recovery from Malanga Lweru of finished iron artefacts and also glass trade beads from the east African coast. Both these commodities are unlikely to have been sourced on the island itself, and indicate that Entebbe using communities were also integrated into a pan-regional trade network. This wider network also stretched further to the west and the Ugandan

10 Unfortunately Reid's survey teams could not relocate these features in 2002 or 2003.

11 See also Bukeri Kanywa (see Appendix 2)
grasslands where analogous beads were found at Ntusi, Munsa and Kibiro (Connah 1996; Reid 1996; Robertshaw 1997), and were dated to the C11th to C15th AD. As well as providing a proxy date for Malanga Lweru, the beads must reflect considerable social worth through their scarcity; even at Ntusi which was believed to be a large population centre, such beads are extremely rare and associated with elite status and wealth. The recovery of such artefacts in association with Entebbe ceramics on the island site of Malanga Lweru, suggests that perhaps Entebbe using communities were also engaged in specialist trade partnerships, utilising the lake, and its swift transport networks, as a conduit for trade from one area to another. This notion of lake-borne trade is not unprecedented with later historical evidence attesting to cross-lake trade in salt, slaves and many other commodities in the pre-colonial Buganda kingdom (Kenny 1979; Mutoro 1998).

Identity

Although the period C11th to C15th has been distinguished from the preceding C9th–C10th, it has been emphasised that this distinction is somewhat arbitrary and is guided by current chronometric evidence rather than an implicit belief in the essential distinction. Rather, it has been argued that there is likely a close temporal and socio-cultural relationship between the users of the varying ceramics of these periods (Entebbe, the Lutoboka group). This notion seems to be substantiated by the extensive co-occurrence of the different ceramic assemblages, as well as by associated evidence which shows similar patterns of distribution with macro preference for lacustrine areas, particularly to the north west of Victoria Nyanza, as well as micro patterns of regional typological variation. Indeed it should be remembered that three sites, Malanga Lweru, Lulongo and Sanzi also have complete ceramic sequence from Urewe through the Lutoboka group and into the Entebbe using period. Therefore, it is once again argued that there is a high level of long term continuity and no indication of dramatic demographic change, either in terms of depopulation or influx of new peoples.
The appearance of Entebbe ceramics decorated with roulette, might, according to the doctrine of Desmedt (1991) and others, be an indication of large scale population takeover and cultural assimilation. However, Gosselain (1998b, 2000) has convincingly argued that the roulette is a highly mobile and transferable aspect of the ceramic technology, which through its high visibility and ease of replication and use, can move swiftly through communities without necessitating population movement (see Chapter 4). Moreover, Robertshaw (2001) has also recorded the recovery at Munsa of a ceramic vessel which reflects Urewe typology in all its morphological features (jar, dimpled base, bevelled rim) and yet is decorated with rouletting. A similar ‘transitional’ sherd was also identified during research at the Uganda Museum when a sherd from Kansyore was examined which showed typical bevelled rims and rocker stamped decoration, but was augmented by TGR decoration on the rim (see fig. 8. 13). These recoveries further reinforce the notion of localised ceramic transition, and the lack of major demographic change.

Conclusion

This period of Victoria Nyanza’s history is not a barren and peripheral one; this research has demonstrated for the first time not only archaeological activity, but also thriving communities, positively engaging with their immediate environment and capitalising on its assets (trade, transport, fishing, agriculture). Although there are no indications of dramatic demographic change from the Urewe using period, it is nonetheless recognised that the end of the first millennium AD and beginning of the second millennium was witness to substantial changes in the social organisation of Victoria Nyanzan communities. Through charting the chaîne opératoire of the different ceramic technologies, it has been shown that there is a sudden decline in productive expertise and investment in the post-Urewe period, which continues through until the C15th and is argued to reflect the disempowerment of the domestic realm as the seat of social authority and structure.

With this decline of ceramic skills comes a marked diversification of ceramic styles and manifestations, and a clear re-adjustment to a specialist lake-economy. This
specialisation may have engendered some level of inequality, as we see elite goods such as glass beads, and also figurative representation for the first time. It is perhaps no surprise that further to the west in the Uganda grasslands this period also shows upheaval as specialist pastoral economies emerge bringing nascent social complexity. On a wider, Great Lakes level, the evidence presented here supports the notion of social fragmentation and political change in the second millennium AD (see Chapter 2), with the present evidence of focused specialisation in Victoria Nyanza providing a dynamic alternative to the intellectual hegemony of the grassland sites and pastoralism (see Chapter 1).
Chapter Nine
Concluding Comments and Future Directions

This thesis has documented a significant new empirical contribution to Great Lakes archaeology, through the investigation and interpretation of a substantial new body of ceramic evidence. The success of this research however, lies in a reconceptualisation of how Great Lakes archaeology should address issues of social identity and construction, and also more specifically, how ceramic evidence can materially contribute to these processes. It has been argued that previous rhetoric has restrained the scope of interpretation by relying on narrow culture historical approaches, which emphasise stasis, homogeneity and social exclusivity. This thesis has instead endorsed a model of social diversity, dynamism and self-determination, in which societies are recognised as inherently variable, and archaeologists must therefore seek to both identify and celebrate this variability. Ceramics are a key resource in this regard, as their ubiquity in the archaeological record augments their crucial role as mediators and mirrors of social discourse and meaning. This research therefore, proposed and developed a policy of holistic ceramic analysis that maximised available data, so that questions of socio-functional role and structure could be addressed, as well as ones of taxonomic variability.

As Chapters 6-8 have demonstrated, implementation of these models and approaches has been highly successful, with evidence of a rich and textured past for northern Victoria Nyanza in the first and early-mid second millennium AD. The achievements of this work can be summarised thus;

1) Multi-vocality and the Periphery
Chapter 1 recognised a need to re-locate the focus of archaeological scrutiny away from pre-existing centres of research endeavour, and instead to expand the geographical and
conceptual scope by exploring the 'periphery'. The physical periphery was located in the poorly researched area of northern Victoria Nyanza. This area also represented a social periphery in extant explanations, particularly for example, in the second millennium AD, during which time it was believed to represent a de-populated hinterland, orientated around power constellations of the nascent states in western Uganda. Thus, by exploring the periphery, new histories could be heard and articulated, providing a dynamic alternative to the intellectual hegemonies of extant research foci. In addressing these imbalances, this research has achieved the following:

- Development of the archaeological sequence in a previously poorly understood region, or an archaeological terra incognita (see Chapter 3)
- Archaeological re-population of the region, as it is recognised that the research area possesses a distinctive and rich history of its own, presenting a dynamic alternative to societies of western Uganda.
- This dynamism includes evidence of social fusion and contact, with sites such as Usenge 3 and Wadh Lang'o suggesting the meeting different social 'frontiers' and the transfer of ceramics ideas and practice.
- This includes the identification of specialist lacustrine exploitation and utilisation of the niche lake environment, capitalising on lake-borne contact, transportation, resources and trade.

2) Variability and Localisation

Chapter 1 recognised that previous approaches to Great Lakes archaeology tended to emphasise pan-regional patterns and explanation (see also Chapter 3). In order to break down this homogenising meta-narrative, this research sought to highlight local scales of analysis, through the search for variability in, and between, discrete areas. This initially dictated the selection of the 'periphery' for research (see above), but also directed attention within this periphery, to the comparison of five distinct case-studies, each investigated for micro-patterning and meaning, with the following results
Varying patterns of localisation were identified, particularly in ceramic evidence (although see also site distributions), showing intra-ceramic variations (e.g. Contact Urewe, plain Urewe) as well as new ceramic phenomena (e.g. Lutoboka, Sozi)

- The identified variability was used to demarcate regional/local patterning, e.g. the discrete distributions of the sub-Entebbe variants, Festoon and Buloba.

- Evidence of variability was also used to extrapolate specific socio-functional meanings, e.g. super-ordinary deposition at Luka evidenced by unusual vessel form profile.

- Collating localised variability in a macro-scale, cumulative change and variations evidenced; e.g. fragmentation of the Urewe template with Lutoboka group ceramics.

3) Long-term History and Diachronic Change

Chapter 1 also recognised that one of the subsidiary effects of a reliance on culture history, is the emphasis on dramatic or sudden change at the expense of long-term histories or gradual transitions. This research therefore generally eschewed discussion of origins’, and defused discussion of ‘change’, through deconstructing the ‘EIA’ /’LIA’ boundary. Instead, a more fluid perception of change was envisaged, which emphasised cumulative developments. As such

- ‘Forgotten’ or ‘ignored’ periods of history were re-discovered, and found to represent important transitional phases, e.g. late first millennium AD and the emergence of the post-Urewe Lutoboka group phenomenon.

- Underlying diachronic continuity was attested rather than drastic demographic change, thus continuity and contact between different ceramic using communities was appreciated (e.g. Wadh Lang’o), as was the socio-functional continuity in application of ceramics (e.g. transmission of jar forms)
Gradual change explored, for example the slow decline of the ceramic craft from the high quality, high investment Urewe, to the generic, coarse Entebbe ceramics.

Periods of more abrupt transition are also recognised, e.g. early second millennium AD change and the appearance of the distinctive Entebbe ceramics, although the long-term perspective superimposes this on the pre-existing fragmentation of the ceramic craft within the Lutoboka group.

Future Directions?
Although this research has produced considerable and significant research findings, it is recognised that further research is required to clarify and expand the ideas and approaches presented here. As noted in Chapter 1 for example, this region has been so poorly investigated in the past, that sustained attention is still required to help develop the specific empirical foundation, as well as continuing the process of promoting notions of the periphery, multi-vocality and variability. A few suggested areas for future attention include:

Geographical coverage – in order to continue the process of exploring the periphery, it is recognised that large areas of northern Victoria Nyanza remain largely unknown. Bugiri District in Uganda, east of the Nile, may repay particularly attention in this regard, as it does not have the large population densities/population centres that other areas investigated do, and there is therefore greater potential for archaeological preservation. Moreover, with an extensive coastline and range of islands, this research might help refine understanding of lacustrine exploitation. Another area that has already been noted is western Kenya in the early second millennium AD (see Chapter 7 and 8) where this research has recognised a gap in extant understanding.

Methodological developments – this thesis recognised that pre-existing approaches to ceramic analysis tended to ignore technological variability and features, and this research was able to make some amends for this omission by systematically exploring fabric groupings and use. However, within the time-
frame available more detailed research was impossible, and it is thus suggested that future research should develop a programme of petrographic analyses, and also explore local raw material sources, so that possible questions of provenancing can be addressed. A second potential methodological development would be the initiation of residue analyses on archaeological ceramics (see Fig. 9.1). The research in Buganda and at Wadh Lang’o has already collected suitable sherds with intact residues, and it is hoped that these samples can be investigated by an archaeobotanist in the near future.

- Chapter 3 emphasised the importance of placing archaeological investigation within its wider social context, and integrating members of the community. In the past this has been implemented through site visits for schools and members of the community, as well as a new display in the Uganda Museum documenting the research from Buganda. However, future directions must continue and develop these practices.

Therefore, whilst this research has successfully augmented archaeological understanding of the Great Lakes, and helped re-define conceptual and methodological approaches to the past, and particularly ceramics, it is recognised that further research can only enhance understanding of this exciting and dynamic period of history.
Ceramic Variability and Change:
A perspective from Great Lakes Africa

Doctorate of Philosophy (PhD)
Volume II

Ceri Zaria Ashley

Institute of Archaeology,
University College London

October 2005
Fig. 1.1 Childe’s cultural history of eastern Europe showing interaction and connections between the discrete archaeological cultures (Childe 1929)
Fig. 1.2 Map of the Great Lakes region
Sites Mentioned in the Text

1. Kawezi
2. Tshamfu
3. Bukavu
4. Bishange
5. Tongo
6. Masangano
7. Gasiza
8-10. Kaboza, Mukanira, Ruhimangy arga
11-19. Nyirankuba, Butare, Cy amakuza, Gisagara, Kabyue, Ndora, Remera, Gahondo, Mutw arabona
20. Rwiyange
21. Muguba
22. Mirama
23. Ruhanga
24-26 kemondo Bay (KM sites), Makango, Rugamore Mahe
27, 28 Nsongezi, Kansy ore Island
29. Kasoga II
30. Bugala
31. Ntusi
32. Bigo
33. Mubende Hill
34. Munsa
35. Kasunga
36. Kibengo
37. Kibiro
38. Chobi
39-41 Entebbe figurine site, Hippo Bay Cave, Entebbe
42. Luzira
43. Nile V alley (Kiayga Mulindwa 2004)
44. Lolui
45. Ugunja
46-52 Urew e, Yala Alego, Ngia a, Magari, Suludhi, Kathomo, Aluala V alley
53-55 Rangong, Randhore, Ny aidha
56. Kanjera
57. Kanam
58. Gogo Falls
59. Chole Island

Fig. 1.3 Map showing sites mentioned in the text
Fig. 1.4 Dimple-based ceramics from Urewe (from Leakey et al 1948) showing diagnostic dimple and decoration (later re-named Urewe ware)

Fig. 1.5 Aerial view of Bigo, showing banks and ditches (from Sutton 1998)
Fig. 1.6 Dispersal map of Desmedt’s Group W ceramic users, showing movement around Victoria Nyanza, following land-passages (Desmedt 1991: 174)
Fig. 1. 7 C19th illustration showing naval battle between the Baganda and the Bavuma (Stanley 1888: 261)
Fig. 2.1 Map showing location of Greenberg’s postulated Bantu language homeland (1) in northwestern limit of modern Bantu language distribution (from Eggert 2005: 304)

Fig. 2.2 Map showing Guthrie’s Bantu language nucleus. Numbers indicate percentage of General Bantu Index reflexes still present in modern languages; the higher the number, the closer to the original nucleus (Guthrie 1962a: 16)
Fig. 2.3 Map showing Oliver's composite model of Bantu language expansion (Oliver 1966: 369)

Fig. 2.4 Map showing dispersal of 'EIA' communities according to Huffman (1989: 161)
Victoria Nyanza

Q Urew e bearing sites

Sites Include:

Kawezi Rwiyange Ruhanga
T shamfu Muguba Kemondo Bay (KM 2-3)
Bukavu Mirama Makango,
Bishange Butaleky a Rugamore Mahe
T onga Kansi Nsongezi
Masangano Kiruhura Kangs ore Island
Gasiza Mikw eti Kasoga II
Kaboz Maara Bugala
Mukinanira Gishuubi Chobi
Ruhamangy arga Rugobagoba Nile V alley (Kiayga
Nyi rankuba Rutare Mulindw a 2004)
Butare Sholi Loli
Cy amakuza Karavumba Ugunja
Gisagara KM150 Urew e
Kabyue Kiziw a YalaAlego
Ndora Ngoma Ngiy a
Remera Muganza Magari
Gahondo, Nkinda Suludhi
Mutw arubona Mugoni Kathomo

Fig. 2.5 Map showing distribution of Urew e bearing sites
Fig. 2.6 Rangong Rockshelter (Gabel 1969: 207)

Fig. 2.7 Decorated furnace bricks from Mutwarubona I (Raymaekers & Van Noten 1986: 70)
Fig. 2.8 Showing buried ‘medicine’ pot from iron-smelting furnace at Kabuye (Van Noten 1979: 66)

Fig. 2.9 Showing iron objects recovered from excavations on Kansyore Island (Chapman 1967: 6)
Fig. 2.10 Map showing distribution of second millennium AD sites
Figs. 2.11 -12 Map of Ntusi (from Reid 2002: 65), and view of cattle grazing in the Ntusi bwogero

Fig. 2.13 The Luzira Head (Phillips 1995: 140)
Fig. 2.14 three views of the Entebbe Figurine (Posnansky & Chaplin 1968: 646)
Fig. 3.1 Phillipson map showing ceramic distributions (Phillipson 2005: 258)
Type B ceramic from Gikoma

Type C ceramic from Nyirankuba

Fig. 4.1 showing examples of Hiernaux & Maquet's ceramic Types B and C (Hiernaux & Maquet 1960: 9, 70). Type A correlates with Urewe ceramic.
CHRONOLOGICAL SUMMARY

1. UGANDA

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750</td>
<td>First movement from N.E. of diio-Hamitic movements</td>
</tr>
<tr>
<td>1500</td>
<td>Surviving in East till last half of 2nd M. Cord-ruled wares (royal wares at capital sites)</td>
</tr>
<tr>
<td>1250</td>
<td>Foundation of hereditary kingdom</td>
</tr>
<tr>
<td>1000</td>
<td>Movement of Lwoo Nilotic groups disrupt 'Bucov' Kingdom (Bigo culture)</td>
</tr>
<tr>
<td>750</td>
<td>Hima-Tusi movements and arrival of Sanga cattle in drier short grass country</td>
</tr>
<tr>
<td>500</td>
<td>Arrival of planted agriculture (beginning of development of Uganda banana varieties)</td>
</tr>
</tbody>
</table>

Fig. 4.2 Multi-regional time-line for Uganda developed by Posnansky (Posnansky 1965: 22)
Fig. 4. Kwale ceramics (Soper 1989: 21)
Fig. 4.4 Huffman's projection of ceramic change according to this model of ceramic co-traditions (Huffman 1970: 4)

Fig. 4.5 Ceramic firing near Ng’iya by Luo potters (Herbich & Dietler 1989: 34)
Fig. 2. Some technical variants observed among south Cameroonian potters. Clay processing: 1. kneading; 2. pounding; 3. grinding wet clay; 4. grinding and sieving dry clay (note that some variants are sometimes combined or used in combination with mixing two clays and/or adding sand). Shaping: 1. Superimposition of thin coils with ring or spirally shaped bottom, 2. Superimposition and pinching of thick coils with spirally shaped bottom, 3. Internal crushing of thick coils with slab or spirally shaped bottom, 4. Drawing of a lump with clay variants in the subsequent addition of coils (note that the bottom of the vessel is sometimes pierced and completed after preliminary drying of the upper parts and that coils may also be added by superimposition and pinching), other variants in shaping techniques include the drawing of superimposed rings of clay, the drawing of a single ring of clay (+ crushed coils) and the pinching and drawing of a slab. Firing: 1. Bonfire with light fuel; 2. Bonfire with heavy fuel, 3. Depression surrounded with mud bricks, 4. Pit.

Fig. 4. 6 Different stages of the ceramic production sequence identified in southern Cameroon by Gosselain (Gosselain 2001: 98)
Kansyore Ceramic Typology

- Rims Tapered
- Bases Rounded or slightly pointed
- Decoration: Stab & drag
- Coil fracturing

Fig. 5.1 Simplified Kansyore ceramic typology (from Chapman 1967: figs. 8,9; Robertshaw 1991a: fig. 22)

Fig. 5.2 modern pot showing fracture along coil bonds
Elmenteitan Ceramic Typology

Decoration - incised,
Stab-drag
Panels or motifs

Forms - hemispherical
bowls, rare jars

Base - rounded

Spouts

Fig. 5.3 Simplified Elmenteitan ceramic typology (from Robertshaw 1990: figs. 9.2, 9.3; 1991: fig. 24)

Urewe Ceramic Typology

Forms - globular jars, open,
Closed & hemispherical bowls,
beaker

Bevelled rims

Incised decoration

Dimpled bases

Fig. 5.4 Simplified Urewe ceramic typology (from Hiernaux & Maquet 1960: fig. 15;
Leakey et al 1948: figs. 1-2, 9-11)
Devolved Urewe Ceramic Typology

Only identified on Lolui Island by Posnansky, Devolved Urewe is like Urewe in all its morphological features. However, the quality of execution is markedly poorer.

Illustrations from Posnansky (1968: fig. 1)

Fig. 5.5 Simplified Devolved Urewe ceramic typology
MIA Ceramic Typology

MIA ceramics have only been recognised by Robertshaw in the Gogo Falls vicinity and then only in small quantities. The typology is thus incomplete, although necked jars seem common with semi-bevelled rims and vertical gashes at the neck.

From Robertshaw (1991: fig.36)

Fig. 5.6 Simplified MIA ceramic typology

Entebbe Ceramic Typology

Thickened Rim

Roulette decorated rim

Comb scored interior decoration

Large closed or hemispherical bowls

Rounded base?

Fig. 5.7 Simplified Entebbe ceramic typology (from Brachi 1960: fig.3; Marshall 1954: fig. 3; Posnansky & Chaplin 1968: fig. 1)
Festoon Ceramic Typology

Only identified at Hippo Bay Cave, morphology is believed to replicate Entebbe, although with comb-impressed zig-zag decoration

Composite image, form derived from Marshall’s Entebbe ceramics (1954: Fig. 3), with Festoon sherd from Brachi (1960: Fig. 4)

Fig. 5.8 Simplified Festoon ceramic typology

Western Ugandan Roulette Decorated Ceramic Typology

Various sizes (small-v. large)
Spherical bowls, Deep bowls, Necked jars

Rounded or beaded rims

Roulette decoration,

Figure 5.9 Simplified western Uganda roulette decorated ceramic typology (from Posnansky 1961a: fig. 4; Soper 1985: fig. 3)
<table>
<thead>
<tr>
<th>1. Bevelled Rims</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 BEVELS</td>
<td>8</td>
<td>7 BEVELS</td>
<td>6</td>
<td>5 BEVELS</td>
</tr>
<tr>
<td>2</td>
<td>4 BEVELS</td>
<td>9</td>
<td>3 BEVELS</td>
<td>10</td>
<td>11 BEVELS</td>
</tr>
<tr>
<td>3</td>
<td>12 BEVELS</td>
<td>13</td>
<td>14 BEVELS</td>
<td>15</td>
<td>16 BEVELS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Squared Rims</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Rounded Rims</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Tapered Rims</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Thickened Rims</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Fig. 5.10 Recording codes for ceramic rims
1. Bevelled Rims

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

2. Squared Rims

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

3. Rounded Rims

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

4. Tapered Rims

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

5. Thickened Rims

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
</tr>
</tbody>
</table>

Fig. 5.10 continued
<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>l</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Beaded Rims</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.10 continued
<table>
<thead>
<tr>
<th>1. incised -parallel</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. incised vertical</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>3. incised oblique</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>4. incised circular</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>5. incised triangular</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>6. incised cross-hatch</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>7. incised random</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>9. comb dragged & impressed</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>10. herringbone</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>11. rocker stamp</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
</tbody>
</table>

Fig. 5.11 Recording codes for ceramic decoration
<table>
<thead>
<tr>
<th>303. punctate elongated</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>305. Bored (incomplete)</td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306. perforated</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307. punctate triangular</td>
<td>a</td>
<td>ΔΔΔ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401. red paint/slip</td>
<td></td>
<td>1 red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402. raised ridge</td>
<td>a</td>
<td>raised ridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403. Burnish</td>
<td>a</td>
<td>burnish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404. Finger impression</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>406. raised bump</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

Fig. 5.11 continued
Bowls

<table>
<thead>
<tr>
<th></th>
<th>1. hemispherical</th>
<th>1a spurred rim hemispherical</th>
<th>2. open bowl</th>
<th>3. closed bowl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4. flared mouth</th>
<th>5. shouldered closed bowl</th>
<th>6. Beaker</th>
<th>7. collared bowl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jars

<table>
<thead>
<tr>
<th></th>
<th>101. globular everted neck jar</th>
<th>102. straight neck jar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.12 recording codes for vessels forms

Bases

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.13 recording codes for ceramic bases
Fabric Record Sheet

<table>
<thead>
<tr>
<th>Fabric Number</th>
<th>UL</th>
<th>Site identified at</th>
<th>Usenge 3</th>
<th>Date</th>
<th>5/12/03</th>
</tr>
</thead>
</table>

General Description
Buff-orange brown, fabric generally uneven surface, reddish-brown stains, clay, and sand inclusions 1-5 mm (c.10%), sand inclusions 1 mm 10-15%, poorly sorted.

Definition
- Colour: exterior buff to orange brown
- Firing: exterior orange brown, interior orange brown
- Hardness: soft
- Texture: smooth
- Fracture: smooth

<table>
<thead>
<tr>
<th>Inclusions</th>
<th>Frequency</th>
<th>Sorting</th>
<th>Size</th>
<th>Shape</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td>5-10%</td>
<td>Poor</td>
<td>1-5 mm</td>
<td>Angular</td>
<td>Quartzite</td>
</tr>
<tr>
<td>Sand</td>
<td>10-15%</td>
<td>Moderate</td>
<td><1 mm</td>
<td>Sub-ang.</td>
<td>Quartzite</td>
</tr>
</tbody>
</table>

Related Information
- Contexts/source: Usenge 3 + Unit A
- Other occurrences: Unit B, C.
- Cultural associations/interpretations: Bevelled rims suggest Urnae/Urnae-like association
- Associated/related fabrics: Ut + more inclusion in Ut
- Samples (reference/thin section): sample for comparison.

Fig. 5.14 Example of completed fabric recording sheet for Usenge 3
Fig. 5.15 Example of completed total sherd recording sheet from Usenge 3

<table>
<thead>
<tr>
<th>Site</th>
<th>Unit</th>
<th>Context</th>
<th>Bag</th>
<th>Fabric</th>
<th>Weight</th>
<th>Reon (no)</th>
<th>Plain</th>
<th>Incised</th>
<th>Roulette</th>
<th>Stab-drag</th>
<th>Punctate</th>
<th>Comb</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usenge 3</td>
<td>A</td>
<td>020</td>
<td>2</td>
<td>misc</td>
<td>0.260</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.16 Example of completed reconstructable sherd recording sheet for Usenge 3

<table>
<thead>
<tr>
<th>Site</th>
<th>Unit</th>
<th>Context</th>
<th>Fabric</th>
<th>Form</th>
<th>Rim</th>
<th>Shoulder</th>
<th>Neck</th>
<th>Body</th>
<th>Int</th>
<th>Surf treatment</th>
<th>Coll ect</th>
<th>Excl</th>
<th>Ill. notecomment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usenge 3</td>
<td>A</td>
<td>020</td>
<td>1</td>
<td>l</td>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Du</td>
<td>Pow</td>
<td>Du</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Figure 6.1 Map showing Case-study 1 (Bugala) and sites mentioned in the text (courtesy of A. Reid)
Fig. 6.2 'Kwale-like' sherd from Entebzamikusa

Fig. 6.3 Photograph of Lutoboka showing depression caused by sand-harvesting
Fig. 6.4 showing ceramics from Lutoboka; a-c chevron decorated bowls, d various rim profiles, e base, f-g horizontal incised bowls, h anomalous sherd (see discussion)
Fig. 6.4 continued
Figure 6.5 sherds associated with the Entebbe figurine. a-c resemble style found at Lutoboka, d – Entebbe sherd.

Fig. 6.6 showing sherd from Lolui with chevron incised decoration similar to that found on Lutoboka ceramics (Posnansky et al in press)

Fig. 6.7 piled stone cairn from Malanga Lweru (photo courtesy A. Reid)
Fig. 6. 8 Entebbe ceramic handle from Malanga Lweru

Figure 6. 9 ‘Entebbe-style’ sherds from Malanga Lweru
Fig. 6. 10 glass beads from Malanga Lweru
Figure 6.11: Map showing case-study 2 (courtesy A. Reid)
Fig. 6.12 showing example of cross-hatched decoration from WPT, note particularly the additional horizontal incision.

Fig. 6.13 Lulongo. Note the severe erosion and proximity to the lakeshore (photo courtesy of A Reid)

Fig. 6.14 Urewe sherd from Lulongo showing typical form and bevelled rim, but unusual pinched decoration
Fig. 6.14 photograph showing Hippo Bay Cave under excavation 2001 (photograph courtesy of A. Reid)

6.16 ceramics from Hippo Bay Cave identified by Brachi; a – Entebbe ceramics, b – ‘cer jar’, c – Festoon, d – modern CWR decorated ceramics
Fig. 6.17 ceramics from 2001 excavation of Hippo Bay Cave; a – Entebbe ceramics, b – Festoon ceramic
Figure 6.18a showing Luzira Head in profile

Fig. 6.18b showing hollow, pot-like interior of Head. Note also diagonal incisions on neck
Fig. 6.18c showing body fragment from Luzira with torso and protruding arms supported by columns.

Fig. 6.18d detail of body fragment fracture, showing distinctive unoxidised core and mica inclusions.
Fig. 16.8e interior or body fragment showing coil-building technique
Fig. 6.19 detail of body fragment from Luzira, note the diagonal incisions at the neck, similar to those on the Head and also on the associated ceramics.
Fig. 6.20 ceramics from Luzira; a- cross-hatched jar, b-c horizontal incised bowls
Fig. 6.20 continued; d – wide dimpled base, e-f Urewe ceramics
Fig. 6.21 Example of one of the Lydenburg Heads from South Africa. Note the protruding facial features and the bands of diagonal incision on the neck (after Phillips 1995)
Figure 6.22 Map Showing Case-study 3 (courtesy A. Reid)
Fig. 6.23 showing carinated bowl from Luka (80% full size)

Fig. 6.24 photograph of Namusenyu rockshelter under excavation
Fig. 6. 25 Stone Impressed ceramic from Namusenyu (after Joyce 2003: 22)

Fig. 6. 26 Urewe sherd from Namusenyu showing distinctive corn-row decorations

Fig. 6. 27 photograph showing Sanzi under excavation 2001, note particularly the dense vegetation
Fig. 6.27 continued, photograph of Unit D, Sanzi, showing how roots have penetrated from overlying vegetation

Fig. 6.28 photograph showing hearth with tuyere and slag concentration, Sanzi
Fig. 6. 29 Urewe ceramics from Sanzi

Fig. 6. 30 WPT Urewe from Sanzi
Fig. 6. 31 Lutoboka ceramics from Sanzi
Fig. 6.32 Sozi ceramic from Sanzi (note the s-shaped jar)

Fig. 6.33 Sanzi ceramic
Fig. 6.33 continued, large Sanzi jar (see original reference in Reid 2002)
Fig. 6.34 Entebbe ceramic from Sanzi
Figure 7.1: Map showing case-studies 4 and 5
Fig. 7. MIA vessel recovered from Yala river valley during survey
Fig. 7.3 Ceramics from Nowa River assemblage; a – Lutoboka body sherd, b – Sozi ceramic.
Fig. 6.3 continued, large Entebbe rim sherd
Fig. 7.4 View of Nzoia River from Haa

Fig. 7.5 Reconstructed Kansyore pot from Haa
Fig. 7.6 Plan showing concentration of ceramics, Unit A, Usenge 3 (scale 1:20)
Fig. 7.7 Plain U1 and U5 fabric sherds from Usenge 3. Note the protrusion of the inclusions through the clay matrix.
Fig. 7.8 Decorated U4 fabric sherds showing from Usenge 3
Fig. 7.9 Map showing Lolui Island and location of archaeological sites
Fig. 7.10 Showing Urewe ceramics from excavation of a rockshelter site on Lolui. Note no. 2 which represents an example of Devolved Urewe, with identical cross-hatching effect to that found at Luzira (see)
Fig. 7.11 Open bowl from Lolui showing signs of repair. Note the pair of bored holes close to the rim.

Fig. 7.12 Modern Tswana beer pot showing riveting of two halves together to prolong life after breakage.
Fig. 7.13 Devolved Urewe vessel from Lolui erosion gulleys (after Posnansky 1967)

Fig. 7.14 Photograph showing Lolui cairn under excavation (after Posnansky et al in press)
Fig. 7.15 Showing ceramics from cairn excavation on Lolui. Note particularly no. 10 which is an example of Entebbe ceramic
Fig. 7.16 Photograph of Wadh Lang’o (looking southwest) under excavation, 2004
Figure 7.17 showing stratigraphic sequence
Figure 7.18 showing stratigraphic sequence
Fig 7. 19 Photograph showing half-sectioned hearth from PN2 in Unit A, Wadh Lang'o
Figure 7.20 showing stratigraphic and ceramic sequence
Fig. 7.21 Kansyore ceramics from Wadh Lang’o; a – spurred rim bowl, b – pipkin thumb-pot, c– rim milled bowl with striped red paint
Fig. 7. 22 Elmenteitan ceramic from Wadh Lang'o; a- s-shaped jar, b- open bowl with stab-dragged decoration on interior, c- spouted bowl.
Fig. 7. 23 S-shaped bowls from Deloraine, Rift Valley (after Sutton 1993b: 110)
Fig. 7. 24 Examples of Urewe ceramics from Wadh Lang'o
Fig. 7. 25 Examples of MIA ceramics from Wadh Lang’o showing characteristic jar forms and slashed incision decoration (example a is represented at 85% size).
Fig. 7.26 Example of Gatun’ang’a ceramic (after Robertshaw 1990c: 197)
Fig 8.1 Chart showing radiocarbon chronology
Fig. 8.2 Chart showing relative site chronologies
Fig. 8. 3 Urewe jar from Ruhimangyarga showing collared rim (after Nenquin 1967b: 262)

Fig. 8. 4 multi-spouted Bagishu beer vessel (after Barley 1994: 33)
Previously known Urewe bearing sites identified in this research (excavation only)

Fig. 8.5 Map showing distribution of new Urewe bearing sites
Fig. 8.6 Photograph showing view of Victoria Nyanza from Namusenyu
Fig. 8.7 Map showing location of multi-component sites
Fig. 8. View of rapids on Nzoia river at Siror
Fig. 8. Composite image comparing typological and stylistic characteristics of Urewe ceramics (examples a-b), WPT Urewe (c) and Devolved Urewe (d), showing the primary differences in cross-hatching layout, consistency and quality of execution.
Lutoboka group ceramic sites identified by this research (excavation only)

Sites
Lutoboka
Sozi
Malanga Lw eru
Lulongo
WPT Entebbe
Entebbe figurine site
Luzira Head site
Sanzi
Lolui
Nowa River

Fig. 8.10 Map showing distribution of Lutoboka group bearing sites
Fig. 8. 11 Example of Urewe ceramic vessel found during survey inland in the Nile valley
Previously known Entebbe ceramic sites

New Entebbe bearing sites identified in this research (survey & excavation)

Fig. 8.12 Map showing distribution of Entebbe bearing sites
Fig. 8.13 Composite, transitional sherd from Kansyore with combined Urewe features (rocker-stamped decoration, faceted rim) and later, second millennium roulette decoration.
Fig. 9.1 Entebbe sherd from Hippo Bay Cave showing internal residues, which can in the future be analysed for archaeobotanical insight.
Appendix 1: Calculating Volume of Urewe and Entebbe Vessels

Figure 1.1 showing calculation of Entebbe bowl volume
Fig. 1.2 showing calculation of Urewe jar volume
Appendix 2

<table>
<thead>
<tr>
<th>AREA</th>
<th>ARTEFACT</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>TiO2</th>
<th>MnO</th>
<th>CaO</th>
<th>MgO</th>
<th>Na2O</th>
<th>K2O</th>
<th>P2O5</th>
<th>SO3</th>
<th>V2O5</th>
<th>Cr2O3</th>
<th>NiO</th>
<th>CuO</th>
<th>ZnO</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKA</td>
<td>BUKE RI TUYERE</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.43</td>
<td>19.01</td>
<td>1.93</td>
<td>1.46</td>
<td>0.03</td>
<td>0.25</td>
<td>0.26</td>
<td>0.05</td>
<td>1.55</td>
<td>0.20</td>
<td>0.15</td>
<td>1920.00</td>
<td>8.20</td>
<td>39.60</td>
<td>32.40</td>
<td>118.90</td>
<td>470.00</td>
</tr>
<tr>
<td>MKA</td>
<td>BUKE RI ENTEBBE</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.83</td>
<td>17.58</td>
<td>3.32</td>
<td>0.97</td>
<td>0.03</td>
<td>0.09</td>
<td>0.37</td>
<td>0.36</td>
<td>2.57</td>
<td>1.13</td>
<td>0.20</td>
<td>296.00</td>
<td>105.30</td>
<td>24.10</td>
<td>29.10</td>
<td>63.90</td>
<td>480.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA</th>
<th>ARTEFACT</th>
<th>Nb2O5</th>
<th>Ba</th>
<th>La</th>
<th>Ce</th>
<th>Rb2O</th>
<th>SrO</th>
<th>ZrO2</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKA</td>
<td>BUKE RI TUYERE</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114.40</td>
<td>267.00</td>
<td>61.60</td>
<td>80.60</td>
<td>88.80</td>
<td>70.20</td>
<td>651.40</td>
<td>97.31</td>
</tr>
<tr>
<td>MKA</td>
<td>BUKE RI ENTEBBE</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>119.60</td>
<td>401.00</td>
<td>109.10</td>
<td>168.90</td>
<td>108.40</td>
<td>58.40</td>
<td>741.00</td>
<td>92.46</td>
</tr>
</tbody>
</table>

Fig. 2.1 XRF results comparing refractory ceramics and Entebbe ceramics, Bukeri Kanywa (Humphris 2004)
Fig. 2.1 Entebbe sherd from Bukeri Kanywa, showing KPR and finger impressed decoration.
Bibliography

Braunholtz, H.J. 1936 Pottery Figure from Luzira, Uganda. Man, Vol. 36: 71-72.

Gilchrist, R. 1999 Gender and Archaeology: contesting the past. London: Routledge

Jacobson, L. Huffman, T.N., van der Westhuizen, W.A., de Bruiyn, H. 1995 X-Ray Fluorescence and Microprobe Analyses on Pottery from the Northern and eastern Transvaal, South Africa and Southern Zimbabwe. KVHAA Konferenser 34: 49-61

Joyce, A. 2003 A characterisation of the pottery repertoire from the rock shelter site of Namusenyu, Lake Victoria, Uganda and its regional implication. Unpublished BA dissertation, Institute of Archaeology, UCL.

Jones, S. 1997 The Archaeology of Ethnicity: Constructing identified in the past and present. London: Routledge

Lane, P.J. 1994/5 The use and abuse of ethnography in Iron Age Studies of Southern Africa. Azania 29-30: 51-64.
Lane, P. 2001 African archaeology today. *Antiquity* 75: 793-796

Lane, P. 2004 The ‘moving frontier’ and the transition to food production in Kenya. *Azania* XXXIV: 243-264

MacLean, R. 1994/5 Late Stone Age and Early Iron Age settlement in the Interlacustrine region: a district case study. Azania 29-30: 296-302

Nenquin, J. 1959 Dimple-Based Pots from Kasai, Belgian Congo. Man 242: 153-155

Nenquin, J. 1967a Contributions to the Study of Prehistoric Cultures of Rwanda and Burundi. Tervuren: Annales du Musée Royal de L’Afrique Centrale No. 59

Nenquin, J. 1967b Notes on the Protohistoric Pottery Cultures in the Congo-Rwanda-Burundi Region. In W. Bishop & J.D. Clark (eds) Background to Evolution in Africa: 651-658

Posnansky, M. 1961b Dimple-based pottery from Uganda. Man 168: 141-142

Posnansky, M. 1961d Bantu Genesis. Uganda Journal ?: 86-93

Posnansky, M. 1967 The Iron Age in East Africa. In W. Bishop & J.D. Clark (eds) Background to Evolution in Africa: 629-649

Reid, D.A.M. forthcoming Ntusi ceramics

Reid, R. 2002 *Political Power in Pre-Colonial Buganda*. Oxford: James Currey

451
Robertshaw, P.T. 1991b Recent Archaeological Surveys in Western Uganda. *Nyame Akuma*, No. 36:40-46

Robertshaw, P.T. 1995 The Last 20,000 years (or Thereabouts) in eastern Africa: Recent Archaeological Research. *Journal of Archaeological Research*, vol 3, no. 1: 55-86.

Sillar, B. & Tite, M. (eds) 2000 *Archaeometry,* 42(1)

Smolla, G. 1957 Prähistorische Keramik aus Ostafrika. Tribus 6: 35-64

Soper, R. 1971e Resemblances between East African Early Iron Age Pottery and Recent Vessels from the North-eastern Congo. *Azania* VI: 233-241

Sutton, J.E.G. 1998 Archaeological Sites of East Africa: four studies. Azania XXXIII.

Van Grunderbeek, M-C. 1982 The Iron Age in Rwanda and Burundi. *Nyame Akuma*: 26-31

Van Grunderbeek, M-C., Roche, E. & Doutrelepont, H. 1983 *Le Premier Age du Fer au Rwanda et au Burundi, Archaeologie et Environment*. Brussels: Institut National de Recherché scientifique

