The interaction between the HPV E1^E4 protein and the cell cytoskeleton

A thesis submitted to the University of London for the degree of doctor of philosophy

Peter Laskey

Division of Virology
National Institute for Medical Research
The Ridgeway
Mill Hill
London
UK
2006
Acknowledgments

I would like to thank several people for their assistance for the duration of this research project.

Firstly I would like to thank my supervisor John Doorbar for initially selecting me for the project and his continual input throughout the duration of the work.

I am enormously grateful to Clare Davy and Pauline McIntosh for their continual assistance in the form of technical advice, and in the proof-reading of this manuscript.

I would also like to thank the other lab members and colleagues at the NIMR, Qian Wang, Deb Jackson, Woei Ling Peh, Rina Sorathia, Papia Das, Kate Sullivan, Ken Raj, Katie Copeland and Vivian Bechtold for their continual support and assistance in all areas of the project over the past few years, and for making the whole experience so enjoyable.

I am also very grateful to Rudolph Leube (Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55128 Mainz, Germany), Bishr Omary (Department of Medicine, Palo Alto VA Medical Centre, Palo Alto, California 94304, USA) and Karl Sotlar (Institute of Pathology, University of Tuebingen, Germany) for supplying materials and reagents used in this study.

In addition to this I would like to say a special thanks to Alex Bolton, Nick Dennis, Chris How, and Bex McKay (my extended family) for moral support and keeping me sane over all these years, without whom things would be a whole lot less fun.

I would finally like to thank my parents for turning me in to a scientist from a ridiculously young age; turns out all those books on dinosaurs and how stuff works paid off in the end.... If only I learnt how to spell proper to.
Abstract

Papillomaviruses are small DNA viruses, which cause benign and malignant lesions in the differentiated epithelium of mammals and birds. A small subset of human papillomaviruses (HPV's), have been identified as the etiological agent of cervical cancer, with HPV 16 being found in over half of all cases. The HPV 16 E1^E4 protein is expressed late in the virus lifecycle. The protein can induce cell cycle arrest through an interaction with CyclinB/Cdk, and this is thought to facilitate viral genome amplification. E1^E4 can also associate with the cytokeratin network leading to its collapse, although this function is poorly understood.

The work described in this thesis shows that E1^E4's ability to bind to keratins is conserved amongst different members of the α HPV group, and to a lesser extent amongst members of the more distantly related γ-group. When expressed in SiHa cervical epithelial cells, 16 E1^E4 induced the collapse of affected keratin 8/18 network, and lead to the formation of Mallory body-like structures. Western blotting and immuno-precipitation revealed that the E1^E4/keratin association results in keratin phosphorylation and ubiquitination. 16 E1^E4 increases in abundance towards the epithelial surface, and coincides with keratin disruption in the upper epithelial layers. Immuno-fluorescence and biochemical analysis of HPV 2 and 16 lesions support the idea that keratin phosphorylation and ubiquitination may also occur in vivo. An effect of 16 E1^E4 on keratin dynamics was apparent when YFP-16E1^E4 was followed in monolayer cells by time-lapse microscopy. Although filament polymerisation and migration are not necessarily disrupted by 16 E1^E4, it appears that the progressive accumulation of E1^E4 can lead to filament stabilization, and eventually to keratin network disruption.
Contents

Acknowledgments ...2

Abstract ..3

Contents ..4

Figure Index ..10

Abbreviations .. 12

1 Introduction ..14

1.1 Viruses ...14
 1.1.1 Virus discovery ...14
 1.1.2 What is a virus? ..14
 1.1.3 Papillomaviruses ...15
 1.1.4 Classification of papillomaviruses ..16
 1.1.5 Papillomavirus transmission ..18
 1.1.6 Papillomavirus infection ..19

1.2 Site of infection ...20
 1.2.1 The epithelium ...21

1.3 Papillomavirus related pathologies ...23
 1.3.1 Animal papillomas ...23
 1.3.2 Rabbit models ...25
 1.3.3 Bovine models ..25

1.4 Pathologies associated with human papillomavirus infections26
 1.4.1 Cutaneous pathologies in humans ..26
 1.4.2 Epidermodysplasia verruciformis ...26
 1.4.3 Mucosal Cancers ...27

1.5 Papillomavirus models ...28
 1.5.1 Monolayer cell culture ...28
 1.5.2 Epithelial raft cultures ..28
 1.5.3 Xenographs ..29
 1.5.4 Clinical samples ..30
 1.5.5 Animal models ...30

1.6 Overview of Papillomavirus lifecycle ..30
 1.6.1 Papillomavirus virions ...31
 1.6.2 Viral genome organisation ..33
 1.6.3 Control of viral genome transcription ...35

1.7 Papillomavirus proteins ..35
 1.7.1 Early gene expression ..36
 1.7.2 The Role of the E7 in the papillomavirus lifecycle36
 1.7.3 E7 overrides tumour suppressor pathways ...36
 1.7.4 E7 and the retinoblastoma protein ..37
 1.7.5 The role of the E6 protein ...38
 1.7.6 The E6 protein ..38
 1.7.7 E6 prevents apoptosis by interacting with the tumour suppressor protein ...39
1.7.9 E6 can inhibit multiple apoptotic pathways... 39
1.7.10 The role of E6 in immune evasion.. 40
1.7.11 E6 proteins interact with and degrade PDZ domain proteins 41
1.7.12 The HPV E5 protein ... 41
1.7.13 The functions of the E5 protein... 41
1.7.14 The role of E5 in immune evasion.. 42
1.7.15 The E5 protein plays a role in preventing apoptosis............................. 42
1.7.16 E5 induces cell cycle modification... 43
1.7.17 The E1 protein... 44
1.7.18 The role of E1 in viral genome replication.. 44
1.7.19 The role of E1 in viral genome transcription ... 45
1.7.20 The E2 protein... 45
1.8 Late gene expression ... 46
1.8.1 Papillomavirus capsid proteins... 46
1.8.2 Functions of the L1 and L2 proteins during early lifecycle events 47
1.8.3 Functions of the L1 and L2 proteins during late lifecycle events 47
1.9 Papillomavirus E1^E4 proteins... 48
1.9.1 Characteristics of E1^E4 proteins .. 48
1.9.2 Multimerisation of E1^E4 proteins ... 49
1.9.3 Proteolytic cleavage of E1^E4 ... 49
1.9.4 Phosphorylation of E1^E4 proteins .. 50
1.9.5 E1^E4 Functions... 50
1.9.6 Genome amplification/replication.. 50
1.9.7 HPV 16 E1^E4 interacts with a putative RNA helicase 51
1.9.8 E1^E4's role in virion release ... 52
1.9.9 E1^E4 interacts with the cytokeratin network 52
1.9.10 E1^E4 disrupts the cornified cell envelope .. 53
1.9.11 HPV 16 E1^E4 interacts with mitochondria inducing apoptosis 54
1.10 Papillomaviruses and cancer .. 54
1.10.1 HPV genome integration ... 55
1.10.2 Other risk factors linked to cervical cancer ... 57
1.11 HPV management .. 57
1.11.1 Cervical screening ... 57
1.12 Papillomavirus vaccines ... 58
1.12.1 Papillomavirus therapies ... 59
1.13 Virus release mechanisms .. 59
1.13.1 Lytic exit strategies .. 60
1.13.2 Exit through secretary pathways ... 60
1.13.3 Lytic viral egress .. 61
1.13.4 Papillomavirus virion release ?? .. 61
1.14 Aims ... 62
2 Materials and Methods ... 63
2.1 Materials .. 63
2.1.1 Suppliers of reagents ... 63
2.1.2 Media and buffers .. 64
2.2 Molecular biology techniques .. 65
2.2.1 DNA constructs used ... 65
2.2.2 Details of the E. coli strain used ... 65
2.2.3 Culture of E. coli .. 65
2.2.4 Long term storage of E. coli cultures .. 65
Contents

2.2.5 Preparation of electrocompetent *E. coli* .. 66
2.2.6 Transformation of *E. coli* by plasmid DNA ... 66
2.2.7 Purification of plasmid DNA using commercially available kits 66
2.2.8 Purification of DNA on a CsCl gradient ... 66
2.2.9 Quantification of DNA .. 68
2.2.10 Agarose gel electrophoresis ... 68
2.2.11 Digestion of DNA with restriction endonucleases 68
2.2.12 Treatment of plasmid DNA with alkaline phosphatase 69
2.2.13 Polymerase chain reaction (PCR) ... 69
2.2.14 Ligation of insert into vector .. 70
2.2.15 Colony selection following ligation ... 70

2.3 Cell culture techniques ... 71
2.3.1 Cell lines ... 71
2.3.2 Routine cell culture .. 72
2.3.3 Long term storage of cells .. 72

2.4 Cell transfection and infection techniques ... 73
2.4.1 DNA transfection ... 73
2.4.2 Infection of cells with adenovirus ... 73

2.5 Biochemical and cell biology techniques ... 73
2.5.1 Antibody techniques .. 73
2.5.2 Sample preparation from cells prior to immunoprecipitation and/or gel electrophoresis ... 75
2.5.3 Sample preparation from tissue sections prior to immunoprecipitation and/or gel electrophoresis ... 77
2.5.4 Immunoprecipitation techniques .. 77
2.5.5 Gel electrophoresis and protein analysis .. 79

2.6 Staining and imaging techniques ... 81
2.6.2 Imaging techniques .. 82

3 Conservation of function between E1^*E4* proteins .. 87
3.1 Aims ... 87
3.2 Introduction .. 87
3.2.1 Methods used to classify papillomaviruses .. 87
3.2.2 Virus evolution ... 88
3.2.3 The nature of Papillomavirus phylogeny ... 90

3.3 Results ... 91
3.3.1 E1^*E4* protein sequence alignments ... 91
3.4 The association of E1^*E4* proteins to the cytokeratin network 94
3.4.1 The effect of fixation on E1^*E4* and cytoskeletal filament networks ... 95
3.4.2 Association of E1^*E4* proteins to the cytokeratin network 95
3.4.3 The association of E1^*E4* proteins to microtubules 97
3.4.4 γ-group proteins colocalise well with microtubules 100
3.4.5 Association of E1^*E4* proteins to mitochondria 100
3.4.6 The association of E1^*E4* with Cyclin B ... 103

3.5 Discussion ... 106

4 The effect of 16 E1^*E4* on keratins in SiHa cells ... 112
4.1 Aims .. 112
4.2 Introduction ... 112
4.2.1 The cell cytoskeleton .. 112
4.3 Intermediate filaments ... 114
4.3.1 Keratin polymerisation .. 115
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 Keratin filament organisation</td>
<td>115</td>
</tr>
<tr>
<td>4.3.3 Keratin-associated proteins</td>
<td>116</td>
</tr>
<tr>
<td>4.4 Biochemical modifications to keratins</td>
<td>116</td>
</tr>
<tr>
<td>4.4.1 Mitotic reorganisation of the keratin network</td>
<td>117</td>
</tr>
<tr>
<td>4.4.2 Keratin modifications during apoptosis</td>
<td>118</td>
</tr>
<tr>
<td>4.4.3 Keratin turnover and ubiquitination</td>
<td>118</td>
</tr>
<tr>
<td>4.5 Keratins and disease</td>
<td>119</td>
</tr>
<tr>
<td>4.5.1 Stress-stimulated phosphorylation of the keratin network</td>
<td>119</td>
</tr>
<tr>
<td>4.5.2 Mallory bodies</td>
<td>120</td>
</tr>
<tr>
<td>4.5.3 Keratin mutations linked to disease</td>
<td>120</td>
</tr>
<tr>
<td>4.6 The association of E1^E4 with keratin</td>
<td>121</td>
</tr>
<tr>
<td>4.7 Results</td>
<td>122</td>
</tr>
<tr>
<td>4.7.1 Keratin association with E1^E4 in SiHa cells</td>
<td>122</td>
</tr>
<tr>
<td>4.7.2 E1^E4 can collapse multiple types of keratin network when expressed in HaCat cells</td>
<td>124</td>
</tr>
<tr>
<td>4.7.3 E1^E4 expression patterns in the presence of multiple different keratin polypeptides</td>
<td>127</td>
</tr>
<tr>
<td>4.8 E1^E4 association induces the phosphorylation of keratins</td>
<td>129</td>
</tr>
<tr>
<td>4.9 E1^E4 association induces the phosphorylation of keratins</td>
<td>129</td>
</tr>
<tr>
<td>4.9.1 E1^E4 and Cyclin B1 colocalise in aggregates</td>
<td>132</td>
</tr>
<tr>
<td>4.9.2 Is the recruitment of the cyclin B/CDK1 complex to keratin responsible for keratin phosphorylation?</td>
<td>135</td>
</tr>
<tr>
<td>4.9.3 Linking keratin Phosphorylation to E1^E4 binding</td>
<td>139</td>
</tr>
<tr>
<td>4.9.4 M2 E1^E4 maintains a weak affinity for keratin network</td>
<td>141</td>
</tr>
<tr>
<td>4.10 Characterisation of E1^E4 and keratin complexes</td>
<td>141</td>
</tr>
<tr>
<td>4.10.1 Western blot analysis of the wild type and mutant 2 E1^E4</td>
<td>141</td>
</tr>
<tr>
<td>4.10.2 E1^E4 expression in SiHa cells induces high molecular weight keratin ladders</td>
<td>144</td>
</tr>
<tr>
<td>4.10.3 Keratin specific western blots of HaCat cell lysate</td>
<td>145</td>
</tr>
<tr>
<td>4.10.4 E1^E4 association increase levels of keratin phosphorylation</td>
<td>147</td>
</tr>
<tr>
<td>4.10.5 The effect of E1^E4 keratin-binding on the solubility of both proteins</td>
<td>147</td>
</tr>
<tr>
<td>4.11 Does the association of E1^E4 to keratins induce their ubiquitination</td>
<td>151</td>
</tr>
<tr>
<td>4.11.1 The ubiquitin- proteasome system</td>
<td>151</td>
</tr>
<tr>
<td>4.12 E1^E4 aggregates colocalise with ubiquitin</td>
<td>153</td>
</tr>
<tr>
<td>4.13 Pro tease some inhibitors enhance E1^E4 induced keratin laddering</td>
<td>153</td>
</tr>
<tr>
<td>4.13.1 Immunoprecipitation of keratin, ubiquitin and E1^E4</td>
<td>157</td>
</tr>
<tr>
<td>4.13.2 E1^E4 and keratin can be immuno-precipitated from E1^E4 infected SiHa cells</td>
<td>159</td>
</tr>
<tr>
<td>4.13.3 Ubiquitin probed IPs</td>
<td>159</td>
</tr>
<tr>
<td>4.13.4 Keratin IPs from E1^E4 and β-Gal infected SiHa cells</td>
<td>160</td>
</tr>
<tr>
<td>4.13.5 Cleavage of ubiquitin chains by isopeptidase</td>
<td>164</td>
</tr>
<tr>
<td>4.13.6 Build up of E1^E4 induced ubiquitinated keratins results in proteasome inhibition</td>
<td>166</td>
</tr>
<tr>
<td>4.14 Discussion</td>
<td>168</td>
</tr>
<tr>
<td>5 The association of E1^E4 with keratin in vivo</td>
<td>172</td>
</tr>
<tr>
<td>5.1 Aims</td>
<td>172</td>
</tr>
<tr>
<td>5.2 Introduction</td>
<td>172</td>
</tr>
<tr>
<td>5.2.1 Effects of epithelial differentiation on keratins networks</td>
<td>172</td>
</tr>
<tr>
<td>5.2.2 Reasons for studying HPV2 and HPV16 in parallel</td>
<td>173</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>173</td>
</tr>
</tbody>
</table>
5.3.1 Types 2 and 16 E1^E4 can be seen to colocalize with keratins in vivo 173
5.3.2 Types 2 and 16 E1^E4 proteins may reduce levels of keratin in vivo.. 177
5.3.3 E1^E4 may induce keratin phosphorylation in vivo178
5.3.4 E1^E4 expression induces altered ubiquitin localization in vivo179
5.4 E1^E4 induced effects on keratin and ubiquitin in the virus life cycle...... 186
5.4.1 Elevated levels of E1^E4 coincide with the loss of MCM staining and the
onset of L1 expression...187
5.4.2 Quantitative analysis of HPV 16 E1^E4 levels by confocal microscopy
..191
5.5 Western Blot analysis of HPV2 lesions..192
5.5.1 The differential processing of HPV2 E1^E4 in lesions.......................195
5.5.2 Keratin species found in normal and HPV 2 infected epithelium197
5.5.3 Ubiquitin Western blots from tissue ...199
5.5.4 Ubiquitin–keratin coimmunoprecipitation from lesions200
5.6 Discussion ..203
5.6.1 Future experiments ...206
6.1 Introduction ..208
6.2 Keratin dynamics ..208
6.2.1 Time-lapse studies of keratin dynamics..208
6.2.2 Keratin network formation and turnover is dependent on both
microtubules and actin networks ..209
6.3 Green florescent protein (GFP) ...211
6.4 Basis of time-lapse imaging ..213
6.4.1 Phototoxicity ..213
6.5 Results ..214
6.5.1 Production and characterisation of a 16^E1^E4 YFP fusion protein ...214
6.5.2 YFP-E1^E4 analysis by confocal microscopy216
6.5.3 Expression of YFP-E1^E4 in SW13 cells ...216
6.6 Initial time-lapse strategies ..220
6.7 GFP keratin 13 transfected into SiHa cells ..221
6.7.1 Formation of keratin filaments at the cell cortex can be observed in GFP
K13 transfected SiHa cells ...223
6.7.2 E1^E4 does not initially disrupt filament formation223
6.8 Tracking of the inward directed migration of GFP keratin 13 and YFP-E1^E4
filaments in SiHa cells ...224
6.8.1 Rates of filaments migration observed in GFP keratin 13 labelled SiHa
cells...226
6.8.2 Rates of filaments migration observed in YFP-E1^E4 labelled SiHa
cells...229
6.9 Fluorescence recovery after photobleaching (FRAP)230
6.9.1 FRAP analysis of GFP labelled keratin filaments231
6.10 FRAP analysis of GFP keratin 13 labelled filaments in SiHa cells232
6.10.1 FRAP analysis of YFP-E1^E4 in SiHa cells reveals rates of recovery
varies in different structures..235
6.10.2 Fixation of E1^E4 expressing cells with paraformaldehyde demonstrates
that E1^E4 stabilises keratin filaments..240
6.11 Discussion ...241
7 Final Discussion ..245
7.1 Specific functions are conserved to different degrees between divergent E1^E4 proteins .. 245
7.2 The disruption of keratins in vivo and in vitro ... 247
7.3 The involvement of the conserved LLXLL motif in keratin disruption 249
7.4 The timing of keratin disruption may be important for completion of the virus lifecycle ... 250
7.5 The hypothesis of E1^E4-induced keratin filament stabilisation can help to explain the differences observed in vivo and in vitro .. 251
7.6 In summary .. 255
AppendixI ... 256
AppendixII .. 257
AppendixIII .. 258
AppendixIV .. 259
References .. 260
Figure 5.1 HPV 16E1^E4 and keratin colocalisation can result in the disruption of the keratin network in cervical epithelium ... 174
Figure 5.2 HPV 2E1^E4 and keratin colocalisation results in the disruption of keratin in cornified tissue .. 175-176
Figure 5.3 HPV 16 E1^E4 expression may induce type 1 keratin phosphorylation in cervical epithelium ... 180
Figure 5.4 HPV 16 E1^E4 expression may induce type 2 keratin phosphorylation in cervical epithelium ... 181
Figure 5.5 16 E1^E4 expression induces a build up of cytoplasmic ubiquitin 183
Figure 5.6 Type 2 E1^E4 expression induces ectopic ubiquitin expression 184-185
Figure 5.7 Low levels of E1^E4 can be detected extending well into MCM positive regions, whereas very high levels are expressed at the surface of the tissue 188
Figure 5.8 HPV 16 E1^E4 expression precedes L1 staining, and very high levels of E1^E4 coincide with cytoplasmic build up of L1 ... 189
Figure 5.9 HPV2 E1^E4 staining precedes L1 expression ... 190
Figure 5.10 Quantitative analysis of E1^E4 levels reveals that high levels of expression coincide with specific events in the virus lifecycle 193-194
Figure 5.11 E1^E4 expression in tissue coincides with altered keratin 14 species... 196
Figure 5.12 Keratin 10 and silver stain analysis of HPV 2-infected and normal skin .. 198
Figure 5.13 In vivo keratin-ubiquitin co-immunoprecipitation 201-202
Figure 6.1 Mechanisms behind keratin filament formation and dynamics 210
Figure 6.2 The structure of the Green florescent protein (GFP) 212
Figure 6.3 Cloning and identification of the YFP-E1^E4 fusion protein 215
Figure 6.4 Functionality of YFP-E1^E4 as determined by immunofluorescence in SiHa cells .. 217-218
Figure 6.5 Expression of YFP-16E1^E4 in SW13 cells demonstrates that it is unable to associate with mitochondria ... 219
Figure 6.6 Formation of keratin filaments can be observed in GFP keratin 13 transfected SiHa cells .. 222
Figure 6.7 YFP-E1^E4 can be observed to assemble into filaments at the edge of the cell .. 225
Figure 6.8 Tracking of keratin and E1^E4 in SiHa cells revealed inward directed movement of both YFP-E1^E4 and GFP keratin ... 227
Figure 6.9 Average inward velocities of GFP keratin 13 and YFP-E1^E4 labelled keratin filaments in SiHa cells .. 228
Figure 6.10A FRAP analysis of Keratin in SiHa cells ... 233
Figure 6.10B Keratin filaments are highly dynamic and in a continual state of flux ... 234
Figure 6.11A FRAP analysis of filamentous E1^E4 in SiHa cells 236
Figure 6.11B E1^E4 association to keratin stabilises keratin filaments 237
Figure 6.12 FRAP analysis of E1^E4 aggregates in SiHa cells 238
Figure 6.13 Recovery rates of E1^E4 filaments and aggregates 239
Figure 6.14 E1^E4 protects keratin filaments from disruption caused by paraformaldehyde fixation .. 242
Figure 7.1 The mechanism of E1^E4 induced keratin network disruption 253
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>APES</td>
<td>Aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>AVP</td>
<td>Adenovirus protease</td>
</tr>
<tr>
<td>β-Gal</td>
<td>β-galactosidase</td>
</tr>
<tr>
<td>BPV</td>
<td>Bovine papillomavirus</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CCE</td>
<td>Cornified cell envelope</td>
</tr>
<tr>
<td>cdc</td>
<td>cell division cycle</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin dependant kinase</td>
</tr>
<tr>
<td>CFP</td>
<td>Cyan fluorescent protein</td>
</tr>
<tr>
<td>CIN</td>
<td>Cervical intraepithelial neoplasia</td>
</tr>
<tr>
<td>COPV</td>
<td>Canine oral papillomavirus</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic effect</td>
</tr>
<tr>
<td>CRPV</td>
<td>Cottontail rabbit papillomavirus</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DMBA</td>
<td>Dimethylbenz(α)anthracene</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dimethylpimelimidate</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxyribonucleoside triphosphates</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ECFP</td>
<td>Enhanced cyan fluorescent protein</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>E4-DBP</td>
<td>E4-DEAD box binding protein</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>Em</td>
<td>emissions</td>
</tr>
<tr>
<td>EM</td>
<td>Electron microscopy</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>ETOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>EV</td>
<td>Epidermodysplasia verruciformis</td>
</tr>
<tr>
<td>Ex</td>
<td>Excitation</td>
</tr>
<tr>
<td>EYFP</td>
<td>Enhanced yellow fluorescent protein</td>
</tr>
<tr>
<td>FRAP</td>
<td>Fluorescence recovery after photobleaching</td>
</tr>
<tr>
<td>FAB</td>
<td>Fragment antibody</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>H and E</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>HCMV</td>
<td>Human cytomegalovirus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus</td>
</tr>
</tbody>
</table>
Abbreviations

h Hours
HRP Horseradish peroxidase
HSPGs heparin sulphate proteoglycans
IF Intermediate filament
ICTV International Committee on Taxonomy of Viruses
Ig Immunoglobulin
kb Kilobase
kDa Kilo Daltons
LCR Long control region
MAPK Mitogen-activated protein kinase
MBP Maltose binding protein
MCM Mini-chromosome maintenance
MeOH Methanol
MHC Major histocompatibility complex
mRNA Messenger ribonucleic acid
MWCO Molecular weight cut off
NaAc Sodium acetate
NaCl Sodium chloride
NIMR National Institute for Medical Research
NLS Nuclear localisation sequence
NZW New Zealand white
ORC Origin recognition complex
ori Origin of replication
PBS Phosphate buffered saline
PCNA Proliferating cell nuclear antigen
PCR Polymerase chain reaction
PEN Penicillin
PDGF Platelet-derived growth factor
PKA Protein kinase A
PML Promyelocytic leukaemia protein
PV Papillomavirus
QLM Quantitative laser module
RNA Ribonucleic acid
rAd Recombinant adenovirus
r.t. Room temperature
SCC Squamous cell carcinoma
SDS Sodium dodecyl sulphate
STREP Streptomycin
TAD Transactivation domain
TEMED N,N,N,N'-Tetramethylethylenediamine
TRAIL Tumour necrosis factor-related apoptosis-inducing ligand
TRIS Tris hydroxymethylaminomethane
URR Upstream regulatory region
UV Ultraviolet
VLP Virus-like particle
YFP Yellow fluorescent protein
1 Introduction

1.1 Viruses

1.1.1 Virus discovery
Viruses have been responsible for countless disease outbreaks throughout human history. Epidemics of smallpox have killed countless millions; an outbreak of flu in 1918 is estimated to have killed 40 million people worldwide. The concept of a pathogen was first thought up back in 1880 when Robert Koch and Louis Pasteur published their now famous germ theory. It wasn’t until 1892 that Pasteur identified the agent responsible for rabies which he referred to as a virus (Latin for poison) (reviewed in (Mendelsohn, 2002). A few years later in 1892, Dmitri Iwanowski was able to demonstrate that extracts of diseased tobacco plants which passed through ceramic filterers smaller than any known bacteria, were able to transmit disease. The magnitude of Iwanowski’s discovery was not made clear until 1898 when Martinus Beijerinick referred to tobacco mosaic virus as contanium vivum fluidium (soluble living germs), so identifying viruses as a distinct new form of pathogen (Fields, 2001).

1.1.2 What is a virus?
Viruses are obligate intracellular parasites and lack the ability to replicate independently, hence are not considered to be living organisms. A virus is a microscopic particle that contains nucleic acid wrapped in a protein coat. The nucleic acid can be single or double stranded RNA or DNA depending on the virus type. The protein coat is typically made from repeating units of proteins which assemble into capsids. Viruses infect host cells where they unpack their genetic material and hijack the cells transcriptional and translational machinery in order to replicate and package more viral genomes which are released as new virions.
1.1.3 Papillomaviruses

In 1907 it was discovered that common warts could be transmitted by cell free filtrates thus identifying the infectious agent as a virus (Ciuffo, 1907). Since then much has been learnt about papillomaviruses. Papillomaviruses consist of a large family of non-enveloped double stranded DNA viruses, with genomes of approximately 8 kb in size. Papillomavirus infections have been found in a wide variety of higher vertebrates, causing benign and malignant lesions of the epithelium (reviewed in (Doorbar, 2006; Laimins, 1996; Zur Hausen, 1996). Despite many variations, papillomaviruses all share a few key similarities. Papillomaviruses are highly tissue and host specific, virus lifecycle completion requires differentiating epithelium, viruses also share a common genome organisation and protein expression sequence.

The first papillomavirus to be identified in animals was the cotton tail rabbit papillomavirus (CRPV) identified in 1933 (Shope, 1933). Since then papillomaviruses have been identified in a wide variety of animals including ungulates (Koller et al., 1971; Koller et al., 1972), cats, dogs (Chambers et al., 1959) and cetaceans (Lambertsen et al., 1987; Van Bressem et al., 1999a; Van Bressem et al., 1999b). More recently papilloma viruses have been identified in a few species of birds (O'Banion et al., 1992; Tachezy et al., 2002). To date over 100 human papillomaviruses (HPVs) have been identified (reviewed in (de Villiers et al., 2004). Although papillomaviruses have been identified in a wide variety of animal PVs show a high degree of species specificity and lack the ability to complete a productive life cycle when cross species infections occasionally occur (Howley, 1996).
1.1.4 Classification of papillomaviruses

Papillomaviruses were first classified according to the location and the pathology of the lesions they induced. As more research was done and new viruses discovered, classification switched to techniques based on the nucleotide sequence homology of the highly conserved genes E1, E6 and L1 (Chan et al., 1992; Chan et al., 1995b). Since then there have been several reworkings of the classification system (Villiers de, 2001). The current classification system recognised by the international committee on the taxonomy of viruses states, that for papillomaviruses to be described as from the same genera they must share >60% identity in their L1 ORF. Isolates that are to be described as from the same species must share between 60-70 % L1 sequence homology. Isolates described as PV types, must have 71-89 % conservation within the L1 sequence. Viruses with 2-10 % sequence variation can be called subtypes whereas isolates with L1 sequence variations of less that 2 % can be defined as variants (de Villiers et al., 2004).

For the current papillomaviridae phylogenetic tree see (Fig 1.1)

Phylogenetically grouped viruses tend to share evolutionary related hosts (α papillomaviruses infect primates, δ papillomaviruses infect ungulates). The current papilloma taxonomy does however have its limitations. Phylogenetically grouped viruses can have very divergent characteristics and do not necessarily share tissue tropism, lesion morphology or risk of neoplastic progression.
Figure 1.1 The papillomavirus phylogenetic tree
Figure shows the current papillomaviridae phylogenetic tree and contains sequences of 118 papillomavirus types. L1 ORF sequences were analyzed and used to construct the tree. The numbers at the ends of each branch identify an HPV type. C-numbers refer to candidate HPV types. All other abbreviations refer to animal papillomavirus types. The outer most semicircular symbols identify papillomavirus genera e.g. the genus alpha-papillomaviruses. The numbers in the inner circles refer to papillomavirus species.

Image taken from (de Villiers et al., 2004).
1.1.5 Papillomavirus transmission

Productive papillomavirus lesions shed newly formed virions into the environment. Unlike blood born viruses such as HIV which degrade within minutes in hostile environments, PV virions are stable for prolonged periods, and appear resistant to desiccation allowing them to remain infectious in hostile environments for substantial periods of time (Roden et al., 1997). Cutaneous lesions typically produce more virions than mucosal types. HPV2 infection which causes verrucas, are thought to be transmitted by contact with contaminated surfaces such as changing room floors.

In contrast to cutaneous subtypes, some mucosal tropic viruses appear to produce smaller lesions with virions being shed into the mucosal secretions and spread by direct contact. Epidemiological studies show that many mucosal viruses are passed on by sexual transmission (Sargent, 1992; Schiffman et al., 1993). A number of studies have been able to find a direct correlation between the prevalence of infection and the number of sexual partners (Frega et al., 2003). Some genital HPV types are rarely detected in people before they become sexually active (a fact which may cause controversy when targeting a future HPV vaccine).

Genital contact can lead to infection of oral mucosa by anogenital tropic HPV’s (Panici et al., 1992). Recent studies have revealed an increase in the prevalence of HPV-induced oral carcinomas that may be linked to changing sexual behaviour (Kreimer et al., 2004). In addition to this, genital infections can be passed from mother to child during labour causing laryngeal infections. The appearance of genital lesions in non sexually active individuals suggests non-sexual transmission is also possible (Dunne et al., 2005; Frega et al., 2003; Handley et al., 1993).
Some viruses cause large lesions which produce a large number of virions, and can regress in a matter of months, which suggests a burst-like strategy of transmission. In contrast many sexually transmitted mucosal viruses cause inapparent infections that persist for years.

1.1.6 Papillomavirus infection
Papillomaviruses are thought to infect mitotically active cells in the basal compartment of the epithelium with viruses gaining access to these cells through micro-wounds in the skin. The α6 integrin receptor has been proposed as a candidate for virion cell recognition (Evander et al., 1997). Subsequent studies have revealed that neither HPV11 nor BPV viruses like particles (VLPs) require α6 integrin to bind cells (Joyce et al., 1999; Sibbet et al., 2000). More recent work has suggested that heparin sulphate proteoglycans (HSPGs) are required for PV infection (Bousarghin et al., 2005; Giroglou et al., 2001a).

HSPGs are found on the surface of most cells as well as in the extracellular matrix (Oksala et al., 1995). The HSPG, syndecan-1, has been identified as a candidate receptor for HPV infections in vivo (Shafti-Keramat et al., 2003). Furthermore, studies have shown that lactoferrin is able to inhibit HPV16 VLPs from entering cells. Lactoferrin is found in many bodily secretions and is known to inhibit herpesvirus and poliovirus from infecting cells by blocking heparin sulphate (Drobni et al., 2004). Conflicting studies have confirmed that heparin sulphate is required for the infection of many cell lines, but are not required for the infection of natural host cells (keratinocytes) (Patterson et al., 2005). A new as yet unidentified receptor component uniquely secreted into the basal extracellular matrix by keratinocytes which can facilitate infections that cannot be inhibited by heparin has recently been identified.
(Culp et al., 2006). The study also suggested that heparins sulphate binding may attach virions into wounds and that virus then use this second receptor to identify target cells.

After binding to cells it is thought that the papillomavirus can be endocytosed by a clathrin dependent pathway (Day et al., 2003). This work was further supported by the finding that chlorpromazine, an inhibitor of the clathrin pathway was able to inhibit internalisation of both BPV and HPV16 VLPs. Interestingly the half-life of adsorption was found to be 4 h, verses 5-15 min for a typical ligand (Day et al., 2003). These finding were confirmed in a second study which suggested that papillomaviruses infection is a slow process and remains susceptible to neutralisation hours after adsorption (Culp et al., 2004). Mechanisms down stream of virus endocytosis may also be involved in tissue tropism. The virions lacking the L2 protein are 100 times less infectious (Holmgren et al., 2005). L2 is required for egress of papillomavirus genomes from endosomes (Kamper et al., 2006) and transport of the viral genome into the nucleus (Yang et al., 2003b). These findings suggest that papillomavirus tissue specificity may be regulated at multiple levels including binding, entering and intracellular transport.

1.2 Site of infection

All papillomaviruses cause infections of mucosal and/or cutaneous epithelium. The skin is composed of three separate layers: the hypodermis, the dermis and the epidermis. The hypodermis is the lowest layer made of adipose and connective tissue and also contains the skins vascular infrastructure. The dermis is the principal mechanical barrier of the skin and contains smooth muscle, neurons and a network of elastic fibres that give the skin its elasticity. The epidermis (a type of epithelium) is the outer most layer of the skin and is composed of keratinised, stratified squamous epithelium. Skin epithelia can
be divided into two types, cutaneous and mucosal. Cutaneous epithelium covers most of the human body and forms a tough barrier against external insult and desiccation. Mucosal epithelium covers oral, anal and genital sites; and is moist with less mechanical strength (Alberts, 2002).

1.2.1 The epithelium
The epithelium is composed of several cell types, the principal of these being keratinocytes. In addition to these, dendritic cells are also present and are responsible for immuno-surveillance of the skin. Cutaneous epidermis also contains melanocytes which are involved in pigment production. The epidermis forms a protective barrier that is continually replacing itself as dead cells slough off from the surface. As cells move through the epithelium they undergo a process of differentiation, changing in morphology, protein expression and function (Fig 1.2). The basal layer is one cell thick and contains mitotically active cells continually producing daughter cells to replace those shed from the surface (Walker et al., 2003). Basal cells are anchored to the basal lamina by hemi-desmosomal connections. Keratinocytes in the basal layer express a simple keratin 5 and 14 network (see Chapter 4 for further information).

The parabasal layer, also referred to in cutaneous epithelium as the spinous layer is defined as the first cell layer above the basal layer. Parabasal cells contain a mixed population of cells some maintaining expression of basal keratin with others expressing differentiation-specific keratins 1/10 (cutaneous) and 4/13 (mucosal) networks. Cells also begin to adhere to each other more tightly by up-regulating cadherins and integrins responsible for cell-cell adhesion junctions (Garrod, 2004; Nakano et al., 2005). Cells in cutaneous epithelium undergo terminal differentiation to form the granular layer so called because of the presence of keratohyalin granules (Swanbeck et al., 1965).
Chapter I Introduction

Cornified Layer
Granular Layer
Spinous Layer
Basal Layer

Figure 1.2 The organisation of squamous epithelial tissue

Two distinct types of epithelial tissue exist referred to mucosal and cutaneous epithelium. The basal layer of epithelium consists of largely undifferentiated mitotically active cells. In cutaneous epithelium (A) cells of the spinous layer become progressively less mitotically active and increasingly robust as they up-regulate desmosomal connections and keratin expression. The granular layer is only a few cells thick and acquired its name due to the presence of keratohyalin granules which contain loricrin and profilaggrin (the filaggrin precursor). The upper cornified layers are composed of dead cells surrounded by a cornified envelope and have lost intracellular organelles. In mucosal tissue (B) the layers are referred to as the parabasal, intermediate and superficial layers. Mucosal tissue organisation is similar but lacks granular cells, a cornified layer is generally much thinner. Mucosal epithelium is moist and is not required to protect the underlying tissue from desiccation.
Keratohyalin granules contain filaggrin precursors and loricrin. Filaggrin is a keratin associated protein that cross-links keratin filaments to form thick fibres increasing their resistance to mechanical stress (Lynley et al., 1983).

Cornified cells are only found in cutaneous epithelium, and consist of flattened metabolically inactive cells lacking organelles. Cells in the cornified layer are surrounded by a shell of protein laid down under the cell membrane, and commonly referred to as the cornified cell envelope (CCE). The CCE is composed of a network of highly cross-linked proteins, the main component of which is loricrin. The proteins in the CCE are linked by intermolecular isopeptide bonds formed by the enzyme transglutaminase. As cells reach the surface of the skin, desmosomal connections are lost and dead cells slough off into the environment (Fuche et al., 1994).

1.3 Papillomavirus related pathologies
Papillomaviruses are known to cause a wide variety of epithelial lesions in humans and animals. The lesions vary in severity from inapparent flat warts to the large horn like structures caused by cotton tail rabbit papillomavirus (CRPV). Papilloma related pathologies are further complicated by the ability of some PV infections to induce malignancies (Fig 1.3).

1.3.1 Animal papillomas
A recent attempt to find more by a group in Sweden involved a trip to the local zoo. Armed with skin swabs, the group managed to identify 53 new putative animal papillomaviruses in healthy animals (Antonsson et al., 2002). It has recently been suggested that most mammals may harbour papillomaviruses although not all infections result in visible lesions (de Villiers et al., 2004). These sections will discuss
Figure 1.3 The papillomavirus causes a variety of lesions with varying pathologies in many different vertebrates
Image A shows HPV 2 induced flat wart of the hand, (B) shows an HPV 1 induced lesions of the foot (B). (C) HPV 16 causes an inapparent flat wart of the cervix, such lesion can spontaneously regress but can also progress into cervical cancers (D) (images taken from (Gross and Barrasso, 1997). Papillomaviruses can infect a variety of different animal, some of which cause debilitating lesions such as cottontail rabbit papillomavirus (CRPV) (E)(image taken from (www.lafayette.edu/~hollidac/jacksforreal.html). (F) Bovine papillomaviruses (BPV’s) can cause a variety of lesions in cattle (BPV2 pictured) some of which can result in epithelial malignancies (image taken from www.duke.usask.ca/~misra/virology/stud/2002/wart/spesies.html).
some of the more commonly encountered animal papillomaviruses which are commonly used as laboratory models.

1.3.2 Rabbit models
Rabbit models have been invaluable tools in the study of papillomaviruses. Rabbits are small, easy to breed animals that (as no papillomavirus have yet been identified in laboratory rat or mouse strains) offer the most convenient research tool. CRPV causes large horn-like structures in its natural host, which can regress, persist or induce malignancies (see Fig 1.3). CRPV is unable to complete its lifecycle in New Zealand white (NZW) rabbits and often causes carcinomas representing a valuable model of carcinogenesis (Christensen et al., 2000). The link between papilloma infections and malignancies was made in CRPV long before the association was made in humans (reviewed in (Campo, 2002). CRPV has also been used to investigate the role of the immune system in clearing infections (Hopfl et al., 1995). The first papillomavirus vaccine trials were also conducted on rabbits and demonstrated that both prophylactic and therapeutic vaccines may be viable (Breitburd et al., 1995; Leachman et al., 2000; Xiao et al., 1996).

1.3.3 Bovine models
To date several BPVs have been identified belonging to two distinct branches of the papillomavirus phylogenetic tree. BPV 1 and 2 cause cutaneous and penile warts in cattle that can become so severe that infected animals have to be destroyed (see Fig 1.3). Interestingly BPV1 & 2 can cause abortive infections in horses, deer, mules and hamsters which can result in sarcoid carcinomas (Koller et al., 1972; Lancaster et al., 1977). The BPV-1 model has been used to identify some of the functions of papillomavirus proteins and their interactions with the host cell (Band et al., 1993; Campo, 2002; Day et al., 2003; Ham et al., 1991; Ustav et al., 1991).
BPV4 causes lesions of the oral mucosa with the potential to induce malignancies. A high incidence of cancer in cattle grazing on bracken ferns was first noticed in the late 1970's (Jarrett, 1980). It has since been demonstrated that brackens contain immunosuppressant and carcinogenic compounds which can cause malignancies in BPV4 infected cattle (Campo et al., 1992). The same phenomenon has been observed in humans, with mucosal HPV infection developing into carcinomas of the oesophagus after consuming bracken (Nagao et al., 1989). BPV4 were used extensively in the early development of papillomavirus vaccines (Campo et al., 1993; Campo et al., 1994).

1.4 Pathologies associated with human papillomavirus infections

1.4.1 Cutaneous pathologies in humans
To date over 100 complete HPVs genomes have been sequenced and several hundred more putative sequences identified (de Villiers et al., 2004). The majority of papilloma infections are asymptomatic with dozens of papilloma DNA sequences showing up in the skin of healthy individuals (Antonsson et al., 2000). This finding suggests that papillomaviruses are a part of the natural floral and fauna of human skin. Some papillomaviruses are known to be responsible for a number of clinically significant conditions. HPV1 are frequently associated with common warts of cutaneous epithelium found on the hands (Fig 1.3). HPV6 and 11 are the causative agent of genital warts (Walboomers et al., 1999). HPV 2 cause deep plantar warts (verrucas) of the foot (Fig 1.3). Most HPV infections will spontaneously regress after a few months although HPV DNA can commonly be detected long after the lesion has disappeared (Hsu et al., 2003; Sarian et al., 2005; Schiffman et al., 2002).

1.4.2 Epidermodysplasia verruciformis
Despite the connection between animal papilloma infections and cancer having been known about for several years it wasn’t until the late 1970s that the link between HPV
and human cancers was discovered (Jablonska et al., 1978; Orth et al., 1977). The discovery was made in patients with the rare genetic condition epidermodysplasia verruciformis (EV) (Jablonska et al., 1978; Lutzner et al., 1980). EV patients have an increased susceptibility to papilloma infections and suffer from flat scaly warts and pigmented macula like lesions caused by HPV 5 and 8. Sun exposed EV lesions undergo neoplastic progression to non-melanoma skin cancer in approximately 50% of EV patients (Jablonska et al., 1994). EV type HPV DNA has also been found in non-myeloma skin cancers of non EV patients, although the role of HPV infections in these cancers is currently uncertain. There is some limited evidence linking HPV 5 and 8 infections with psoriasis, although the role of the virus in this inflammatory skin condition is at present unclear (Favre et al., 1998; Wolf et al., 2004).

1.4.3 Mucosal Cancers
Cervical cancer is the second most prevalent cancer in women globally and is responsible for ~275,000 deaths annually (Ferlay et al., 2001; Parkin et al., 2005). A sub-set of papilloma viruses which infect mucosal epithelium and cause inapparent flat warts (Fig 1.3), and which are commonly referred to as the high risk papillomaviruses are the etiological agent of cervical cancer (Munoz et al., 1994; Walboomers et al., 1999). The most common is HPV 16, which is detected in over 50% of cases (Munoz et al., 2003). Other high risk papillomaviruses commonly found in mucosal cancers (including oral and anal sites) include HPV 18, 31, 33, 35 and 42. As well as causing cervical cancers, high-risk papillomavirus DNA has been found in cancer of the oral mucosa (Kreimer et al., 2004; Kundu et al., 1995)
1.5 Papillomavirus models
The papillomaviruses require differentiated epithelium for productive infections. This makes the virus challenging to study in the laboratory. Over the years many different systems have been used to study various aspects of the virus lifecycle.

1.5.1 Monolayer cell culture
Unlike human immunodeficiency virus (HIV) and influenza, to date papillomavirus have not been made to replicate successfully inside monolayer cell culture systems. Despite this, such systems are an invaluable tool and are commonly used to study the function of individual viral proteins. The effect of viral proteins on host cell mechanisms such as the cell cycle has revealed a huge amount in recent years and allowed the identification of possible therapeutic targets for future drugs. Draw-backs of such experiments are that proteins expressed in such systems are not under endogenous promoter control and are commonly over-expressed, which may result in the reporting of interactions which do not occur in vivo.

1.5.2 Epithelial raft cultures
Epithelial raft cultures can be produced by seeding HPV-infected keratinocytes onto a fibroblast containing medium such as a collagen gel. The keratinocytes are grown at a liquid air interface where they undergo differentiation. Such systems require medium containing specific growth factors, serum and high calcium. The medium is absorbed though the tissue via capillary action producing a gradient which causes the keratinocytes to differentiate, (Chow et al., 1997; Flores et al., 1999). Raft cultures are technically demanding and hard to establish, but are currently the method of choice for the study of HPV lifecycle. It is possible to produce fully differentiated tissue, complete with cornified layer, in the laboratory. Such systems will support productive papilloma infections including virion production and release (Flores et al., 1999). A major
advantage of such systems is the ability to study human rather than animal viruses. Cells containing mutant genomes can also be cultured in this system, allowing the role of individual or mutant proteins to be assessed with regards to the virus lifecycle (Dollard et al., 1992; Steenbergen et al., 1998; Wilson et al., 2005). The major draw back of raft cultures is that the tissues lack an immune system so cannot be used in studies interested in the resolution of infection.

1.5.3 Xenographs
The species specificity of papilloma virus infections means that viruses will only produce productive infections in the correct tissue of their natural hosts. This fact makes the study of HPV infections very challenging as deliberately infecting humans with pathogens is ethically unacceptable. The discovery of two strains of immuno-compromised mice incapable of rejecting xenotransplants, provided a new model for use in papillomavirus research. Experiments in athymic (nude) mice showed that HPV11 infected human foreskin and cervical tissue grafted under the kidney capsule, were capable of supporting productive viral infections (Bryan et al., 2001; Kreider et al., 1986; Stoler et al., 1990). Experiments that involved challenging skin from different areas of the human body to determine the tissue tropism of HPV 11, were conducted using the kidney capsule model (Kreider et al., 1987), which was later used with foetal skin to study HPV 1 infections (Kreider et al., 1990). Severe combined immunodeficiency mice SCID (Bosma et al., 1983) suffer from a defective adaptive immune system, and are also capable of supporting human tissue grafts (Renz et al., 1996). These provide another valuable model for the study of HPV infections. SCID mice have been shown to be capable of supporting productive high risk HPV infections such as with HPV16 that has been introduced into the animal by grafting infected foreskin keratinocytes onto the backs of the mice. Infections in SCID mice are
morphologically comparable to naturally occurring infections and produce correctly packaged infectious virions (Bonnez et al., 1993; Brandsma et al., 1995).

1.5.4 Clinical samples
Clinical samples are ultimately the most important source of data on HPV infections, as they are caused by the viruses of interest in their natural hosts (Humans). Despite this due to ethical and legal barriers, researchers in the United Kingdom struggle to gather samples of interest, and usually can only access material collected from patients having problematic lesions surgically removed. Many lesions are left to regress naturally or treated with topical agents such as salicylic acid or imiquimod (Micali et al., 2004). As such most of what is known about high risk viruses like HPV 16, comes from CIN lesions where the virus life cycle has already begun to fail (Middleton et al., 2003). It may well be that these viruses favour foreskin over cervical sites but as such lesions are not of medical significance and are difficult to obtain for study. Another limitation is that human infections cannot be artificially manipulated by researchers, so cannot be used in knock out or mutant studies.

1.5.5 Animal models
Animal models offer another source of valuable information as they can be used to study papilloma infections in their natural hosts. Animal models have been used to study latency and regression of papilloma lesions as well as the role played by the host immune system in resolving infections. None of the other laboratory systems offers these possibilities, and as a result of this animal models have played an invaluable role in the development of papillomavirus vaccines (Campo, 2002).

1.6 Overview of Papillomavirus lifecycle
The papillomavirus replication depends on finding the correct type of differentiating epithelium tissue in a permissible host for completion of its productive lifecycle. An
infection begins when a virus particle gains access to mitotically active cells in the basal layer of the epithelium (Egawa, 2003). Once inside a suitable host cell the genome is uncoated and the virus genome appears to undergo an initial round of replication in the nucleus with infected cells containing between 10-200 copies of the viral DNA (De Geest et al., 1993). It is presumed that the expression of the early proteins E1 & E2 are required for this to occur although expression levels are such that no viral protein can be detected in basal cells (Ozbun et al., 1998b; Wilson et al., 2002). Expression of the E6 and E7 proteins then cause infected cells to undergo several rounds of replication to produce a pool of infected cells capable of viral production (reviewed in Doorbar, 2006). The E6 & E7 proteins override barriers to, and apoptosis associated with unsanctioned cell cycle entry, by interacting with cellular checkpoint proteins including RB and p53 (Dyson et al., 1989; Scheffner et al., 1990; Werness et al., 1990). The viral genome then undergoes a second round of replications to produce multiple copies of the viral genome for packaging. All the early proteins including E1^E4 and E5 are believed to be required for genome amplification (Fehrmann et al., 2003; Peh et al., 2004). L1 and L2 capsid proteins are expressed after genome amplification allowing assembly of virions (Ozbun et al., 1998a). Newly formed virus particles then shed from the surface of the epithelium as terminally differentiated cells slough off (Fig 1.4).

1.6.1 Papillomavirus virions
Papillomavirus virions are non enveloped structures approximately 55nm in diameter (Kirnbauer et al., 1992). The virion contains a single circular double stranded histone bound DNA molecule. The viral genome is contained within a protein capsid composed of the viral proteins L1 and L2 with a stoichiometry of 1:5 (Belnap et al., 1996). The proteins associate into 72 rosette-like capsomeres, which
Chapter 1 Introduction

Micro wound

Figure 1.4 The papillomavirus lifecycle
The papillomavirus lifecycle begins when viruses infect cells of the basal layer, which they are thought to do through a micro wound in the skin. The virus begins to express E1 and E2 which are involved in an initial burst of viral genome amplification. Expression of the E6 and E7 proteins induce proliferation of infected cells and increase the number of cell that can be used to produce progeny virions. Higher in the epithelium E1, E2 and E1^E4 levels increase allowing viral genome amplification to occur. The viral capsid proteins L1 and L2 are expressed towards the surface of the epithelium after genome amplification, allowing packaging of genomes. Newly formed infectious virions are though to be shed from the surface of the epithelium as terminally differentiated cells slough off into the environment.
self-assemble into an icosahedral shaped protein coat (Howley et al., 2001; Zur Hausen, 1996)

1.6.2 Viral genome organisation
All papillomaviruses share a highly conserved genomic organisation. Genomes are made of double stranded circular DNA approximately 8 kb in size (see Fig 1.5). RNA is transcribed from a single strand of the DNA in polycistronic transcripts. RNA transcription and splicing varies depending on the position of the cell within the differentiated epithelium. The viral genome is divided into two regions referred to as the early (E) and Late (L) genes (Howley et al., 2001). Early genes are transcribed in the low and mid regions of the epithelium and are involved in genome maintenance and amplification, regulation of viral transcription, immune-evasion, and preventing apoptosis of infected cells. The late genes are transcribed in upper terminally differentiated layers of the epithelium and encode the viral capsid proteins (reviewed in Doorbar, 2005; O'Brien et al., 2002). The viral genome also contains a non-coding region sandwiched between the L1 and E6 ORF's, referred to as the long control region (LCR), or the upstream regulatory region (URR). The LCR contains sequences involved in transcriptional regulation including binding sites of viral transcription factors such as the viral protein E2 (Dong et al., 1999; Spalholz et al., 1985; Spalholz et al., 1988). The LCR also contains the viral origin of replication (ORI) and has binding sites for the viral replication initiator E1 as well as several cellular proteins (Frattini et al., 1994; Waldeck et al., 1984). Viral LCR's vary in length and may play a role in the tissue selectivity of some papillomaviruses (Sailaja et al., 1999). Experiments have also been able to demonstrate the transcriptional activity of transcription factors present in keratinocytes but not fibroblasts, supporting the hypothesis that events down stream of viral adsorption are responsible for tissue selectivity (Offord et al., 1990).
Figure 1.5 The HPV 16 Genome

The HPV 16 genome consists of a molecule of double stranded DNA approximately 8kb in size. Eight genes are encoded and are located on the same strand, in some cases, open reading frames partially overlap. The genome contains two main promoters the early promoter P97, and the late promoter P670. The LCR is a non coding region and contains sequences involved in the regulation of viral gene transcription.
1.6.3 Control of viral genome transcription
Control of viral protein expression is regulated by several mechanisms these include
differential transcription and splicing of polycistronic mRNAs, varying proteins, protein
levels and protein isoforms encoded. Transcription from the viral genome can be
divided into two main stages, events under control of the early promoter and those
controlled by the differentiation dependent promoter. The changeover results in a major
shift in RNA transcripts (Ozbun et al., 1997; Ozbun et al., 1999; Wettstein et al., 1987).
The P97 promoter located in the LCR is thought to be the first active viral promoter and
is regulated by both viral and cellular factors specific to epithelial cells (Taniguchi et al.,
1993). Both E2 and E6 have been shown to act as transcriptional activators and
repressors regulating one another’s expression (Cripe et al., 1987; Sanders et al., 1994;
Stubenrauch et al., 1998). Early viral mRNA transcripts encode E1, E2, E6 and E7
(Higgins et al., 1992; Sherman et al., 1992b). The late promoter activity is under the
control of differentiation-dependent transcription factors (Geisen et al., 1996; Spink et
al., 2005). Late viral mRNAs encode the E1^E4, E5, L1 and L2 proteins, expression of
which is heavily influenced by differential splicing of transcripts (Barksdale et al.,
1995; Danos et al., 1985; Doorbar et al., 1990a; Hummel et al., 1995; Sherman et al.,
1992a).

1.7 Papillomavirus proteins
Papillomaviruses express relatively few proteins (usually 8 although isoforms increase
this), with expression profiles following a differentiation-dependent sequence. Recent
research suggests that L1, L2, E1 and E2 are the core ancestral proteins with the other
viral proteins being acquired at different stages from different sources through history
(Garcia-Vallve et al., 2005). As well as controlling protein expression, protein functions
is also believed to be modulated in a differentiation-dependent manner by
multimerisation, phosphorylation, proteolytic cleavage, altered cellular localisation and
the expression of splice variants (Grand et al., 1989; Knight et al., 2004; Vaeteewoottacharn et al., 2005). This modulation allows single proteins to perform multiple functions at varying stages throughout the virus life cycle. The current understanding of papillomavirus proteins suggest that they are multifunctional, existing in a complex dynamic state of equilibrium with one another.

1.7.1 Early gene expression
The early genes are expressed in the basal, parabasal and mid layers of infected epithelium. Expression of these genes results in the forced proliferation of infected cells and the blocking of apoptotic pathways triggered by host cell responses. Early genes also regulate the transcription of viral and cellular genes, as well as the maintenance and replication of the viral genome (reviewed in (Doorbar, 2005). In addition to this early genes have been shown to play a role in immune evasion by down regulation and miss-localising cellular systems involved in immune surveillance (reviewed in (O'Brien et al., 2002; Zhang et al., 2003).

1.7.2 The Role of the E7 in the papillomavirus lifecycle
Papillomavirus genomes do not encode any polymerase enzymes and so viruses need to hijack the host cells replication machinery for viral genome replication to occur (Melendy et al., 1995). The primary role of the E7 protein is to force quiescent cells back into cell cycle which increases the multiplicity of infected cells and allows viral genome amplification to occur at the required region of infected epithelium.

1.7.3 E7 overrides tumour suppressor pathways
Early work using the animal model system CRPV showed that the E7 gene is required for papilloma formation resulting from hyperproliferative growth of epithelium (Brandsma et al., 1991). Expression of HPV 18 E7 has been shown to be necessary and sufficient to induce quiescent differentiated keratinocytes to re-enter the cell cycle in
raft culture, demonstrating the importance of E7 in perturbing differentiation of the inducible infected epithelium (Cheng et al., 1995). Latter studies conducted in raft systems using HPV 16 E7 knockout genomes showed that E7 is required for virus genome amplification and late gene expression (Flores et al., 2000). E7 mRNA transcripts and protein have been found in HPV 16 and 18 transformed cell lines and are believed to be required for the maintenance of the malignant phenotype (Smotkin et al., 1986). E7 has since been shown to induce cell proliferation via an association with the tumour suppressor retinoblastoma protein (pRB) and in the case of E7s from high risk viruses this results in its degradation (Boyer et al., 1996; Dyson et al., 1989). A similar mechanism has also been reported to occur with the E1A SV40 protein (Chellappan et al., 1992).

1.7.4 E7 and the retinoblastoma protein
E7 has been shown to associate with pRB causing the release of the transcription factor E2F resulting in initiation of S-Phase. Under normal circumstances pRB binds E2F but stimulation of mitogen activated pathways results in the phosphorylation of pRb by cyclin dependant kinases (CDK’s) CDK4 and 6 leading to the release/activation of E2F (reviewed in (Dyson, 1998). Upon release E2F activates the transcription of genes required for S phase entry, including DNA polymerase α, thymidine kinase, minichromosome maintenance proteins (MCMs) and cyclins A and E (reviewed in (Herwig et al., 1997). Antibodies against these proteins can be used as surrogate makers of E7 expression. E7 proteins from low risk viruses typically have a reduced in their affinity for pRb and a reduced ability to transform cells in vivo (Gage et al., 1990; Heck et al., 1992).
1.7.4.1 pRB independent effects of the E7 Protein
E7 has been demonstrated to override other pRB independent cell cycle inhibitor pathways by interacting with members of the pocket family of proteins p107 and p130. E7 associates with and induces transactivation of the AP1 transcription factors Fos and Jun (Antinore et al., 1996). E7 proteins have also been shown to have the capacity to stimulate cell proliferation independently of pocket proteins by interacting with and deactivating the inhibitors of cyclins A, and E p21 and p27, which are capable of blocking PCNA mediated DNA replication (Funk et al., 1997; Jones et al., 1997). The ability of E7 to stimulate proliferation is supported by the finding that E2 can suppress HeLa cell growth by repressing the transcription of the constitutively active E6/E7 promoter (Nishimura et al., 2000)

1.7.5 The role of the E6 protein
The main objective of the E6 protein appears to be to block apoptotic pathways activated in cell undergoing unsanctioned entrance into the cell cycle as result of the expression of E7, in order to allow viral genome replication to occur.

1.7.6 The E6 protein
The E6 protein is found in most PVs (with the exception of some ungulate and bird viruses). It is one of the two major transforming proteins and expression is maintained during neoplastic progression, E6 is expressed at low levels in during productive infections. Four different splice variants of the E6 protein are thought to exist (reviewed in (Myers, 1995) and are believed to play a role in modulating E6 function and E7 levels (Pim et al., 1999; Smotkin et al., 1989; Stacey et al., 1995).

1.7.7 E6 prevents apoptosis by interacting with the tumour suppressor protein p53
All E6 proteins are believed to associate with and modulate the function of members of the p53 tumour suppressor protein family. p53 is a major cellular tumour suppressor
commonly referred to as the guardian of the genome, and triggers cell cycle arrest followed by apoptosis upon detection of defective or unsanctioned DNA replication (Lane, 1992). p53 acts as an upstream sensor protein and functions by modulating the transcription of other genes involved in tumour suppressor pathways (Hofseth *et al*., 2004). E6 is able to modulate p53 activity by direct association and by inducing its degradation. Only E6 proteins from high risk viruses cause 26S -proteasome mediated degradation of p53 (Crook *et al*., 1991; Li *et al*., 1996; Pim *et al*., 1994; Scheffner *et al*., 1994).

1.7.8 E6 and the ubiquitin system

E6 has been shown to mediate p53 degradation via the E6 associated protein (E6-AP). E6-AP was found to be a member of the E3 ubiquitin ligase protein family, a domain in the C-terminus of the protein was later used to identify E3 activity in a number of seemingly unrelated proteins, now termed homologous E6AP C- terminus proteins (HECT’s) (Huibregtse *et al*., 1995). Ubiquitination is an essential cellular process affected by a multi-enzyme cascade involving classes of enzymes known as E1s (ubiquitin-activating enzymes), E2s (ubiquitin-conjugating enzymes / Ubcs), and E3s (ubiquitin-protein ligases) (Scheffner *et al*., 1995). E6 acts as a bridging adaptor redirecting E6 AP to a substrate (p53) which under normal circumstances would have no affinity for it. This same adaptor mechanism of redirecting E3 ubiquitin ligases to target cellular proteins for degradation has since been identified in a number of other viruses including HIV and adenovirus (Margottin *et al*., 1998; Querido *et al*., 2001).

1.7.9 E6 can inhibit multiple apoptotic pathways

Alpha group HPV E6 proteins also have the ability to inhibit differentiation-dependent apoptosis induced by the Bcl-2 pro-death domain protein family (Magal *et al*., 2005). As with p53, E6 has been shown to bind directly to the Bcl-2 member, Bak, resulting in
its degradation. This observation suggests that E6 proteins are able to inhibit multiple apoptotic pathways. Bak expression is abundant in normal differentiated epithelium but significantly reduced in HPV induced carcinomas. As with p53, E6 proteins from high risk viruses have an increased ability to promote ubiquitination and 26S proteasome mediated Bak degradation (Thomas et al., 1999). Both p53 and Bak-induced apoptotic pathways would be activated in response to E7-induced cell proliferation; by deactivating these pathways the virus gains total control of the infected cell (Butz et al., 2003; Horner et al., 2004; Ilves et al., 2003). Finding a novel way of knocking-out E6 activity allowing reactivation of p53 would be a very efficient way of treating HPV induced carcinomas (Cho et al., 2002). This approach is currently under investigation using siRNA, peptides and intra body technology to target E6, and has been shown to induce apoptosis in the HPV transformed cell line (Griffin et al., 2006; Putral et al., 2005; Sterlinko Grm et al., 2004).

1.7.10 The role of E6 in immune evasion
E6 has been shown to play a role in immune evasion through an ability to down regulate proteins involved in cell-cell adherens junctions. E-cadherin mediates calcium dependent cell-cell focal adhesions between keratinocytes and Langerhan cells (epithelial antigen presenting cells) (Tang et al., 1993). Expression of E6 has been demonstrated to down regulate surface expression of E-cadherin. Loss of E-cadherin in turn results in decease in the number of Langerhan cells in lesions (Matthews et al., 2003). Some evidence also suggests that loss of E-cadherin renders cell less susceptible to apoptosis (Ferreira et al., 2005). The loss of E-cadherin also increases the risk of tumours invading the underlying tissue and has been observed in a number of cancers (Hirohashi, 1998; Oka et al., 1992).
1.7.11 E6 proteins interact with and degrade PDZ domain proteins
Expression of E6 has been show to cause mislocalisation and induce proteasome mediated degradation of certain PDZ domain proteins (Kiyono et al., 1997; Lee et al., 2000). PDZ domains are involved in protein-protein interactions and are commonly found in trans-membrane receptors. PDZ proteins known to be affected by E6 include Dlg, MAGI 1-3 and MUPP1, which are believed to be involved in the regulation of cell growth and polarity (Gardiol et al., 1999; Lee et al., 2000; Thomas et al., 2001). HPV genomes propagated in raft culture systems expressing mutant E6s unable to interact with PDZs show a reduction in viral genome copy number and in the growth of cells. Interestingly no change was detected in the expression level of PDZ domain proteins (Lee et al., 2004).

1.7.12 The HPV E5 protein
E5 is a hydrophobic, membrane-bound protein, with weak transforming properties (DiMaio et al., 2001; Horwitz et al., 1988). E5 is primarily localised to the endoplasmic reticulum (ER) but can also be found in the Golgi apparatus and plasma membrane (Conrad et al., 1993; Disbrow et al., 2005). Despite sharing the same name and general hydrophobicity, E5 gene products vary greatly between different papillomaviruses groups (Garcia-Vallve et al., 2005). Interestingly 4 different isoforms of E5 exist in A group viruses, with the α-isoform being found in all viruses associated with cervical cancer (Bravo et al., 2004). The position of the E5 ORF within the genome also varies between viruses, suggesting that the virus may have acquired “E5” genes from different sources at different times throughout history (Garcia-Vallve et al., 2005).

1.7.13 The functions of the E5 protein
The transforming properties of the E5 protein vary dramatically between viruses; the E5 protein of BPV1 is a true oncogene and serves as the major viral transforming protein
(DiMaio et al., 1986). In contrast transformation of cells by HPV16 E5 requires the presence of E7 and expression of E5 is not maintained in HPV 16 transformed cancers. E5 is encoded in all polycistronic viral mRNA transcripts except those encoding the capsid proteins, suggesting it is required throughout the virus lifecycle (Baker et al., 1996; Fehrmann et al., 2003).

1.7.14 **The role of E5 in immune evasion**
Low levels of E5 expressed in the basal layer of infected epithelium are thought to enable the virus to shield infected cells from the immune-system. Immune evasion is thought to be achieved by reducing detection of infected cells from cytotoxic T lymphocyte (CTL)-mediated clearance by reducing surface expression of major histocompatibility class I complexes, HLA-A and HLA-B (Ashrafi et al., 2002; Ashrafi et al., 2005; Marchetti et al., 2002; Zhang et al., 2003). MHC proteins cycle to and from the cell surface allowing them to pick up/bind foreign (viral) antigens which can then be presented to the immune system. Infected cells displaying viral antigens on their surface alert the immune system to the presence of a pathogen and are stimulated to induce apoptosis by T-cells, thus preventing the spread of the infection. Viruses that establish long-term infections in their hosts have evolved a number of methods to interfere with MHC activities (Lilley et al., 2005). The E5 protein has been shown to affect the maturation process of MHC proteins which are retained in the Golgi apparatus (Ashrafi et al., 2005; Marchetti et al., 2002).

1.7.15 **The E5 protein plays a role in preventing apoptosis**
The expression of the viral proteins E2 and E7 can promote apoptosis preventing the virus from completing its lifecycle. To combat this, the virus uses both E5 and E6 proteins. Upon discovery by the immune system, CTLs would force infected cells to undergo FAS and TRAIL (tumour necrosis related-factor apoptosis-inducing ligand)
mediated apoptosis. Studies have shown that expression of HPV 16 E5 desensitizes cells to these apoptotic pathways (Kabsch et al., 2002b; Kabsch et al., 2004). Interestingly HPV16 E5 was shown to sensitize cells to osmotic stress-induced apoptosis (Kabsch et al., 2002a) which may aid virion release in mucosal infections.

1.7.16 E5 induces cell cycle modification
E5 is also thought to play a role in the genome amplification phase of the virus life cycle. Studies conducted on E5 knockout HPV 35 genomes in an organotypic raft culture system showed that loss of E5 resulted in a reduction of late viral gene expression, suggesting that E5 may play a role in stimulating late life cycle events. A reduction in the levels of the cell cycle regulators cyclin A and B was also observed indicating that E5 may also affect the cell cycle (Fehrmann et al., 2003). HPV 16 E5 has also been shown to cooperate with E7 to stimulate cell proliferation and late gene expression (Bouvard et al., 1994). A third study suggested that the HPV 16 E5 protein plays a quantitative role in the virus lifecycle with E5 knockout raft cultures having a 2 fold decrease in the number of suprabasal cells undergoing DNA synthesis (Genther et al., 2003). E5 is believed to promote cell cycle progression through interactions with the epidermal growth factor (EGF) and platelet derived growth factor (PDGF) receptors. E5 has been shown to cause a 2-5 fold increase in EGF receptor density and enhance signal transduction, rendering cells hypersensitive to ligand stimulation (Straight et al., 1993).

Contradicting studies have suggested that receptor density is not affected and that cell proliferation is stimulated by an amplified signal cascade (Gu et al., 1995; Leechanachai et al., 1992; Ziegert et al., 2003). Several studies have also shown that the E5 gene is dispensable and that normal productive infection can occur in its absence (Brandsma et al., 1992; Genther et al., 2003).
1.7.17 The E1 protein
The E1 gene sequence is highly conserved throughout papillomaviruses suggesting that its function is vital to the virus. The E1 protein consists of two globular domains separated by a linker region (Enemark et al., 2000). All E1 proteins contain a nuclear localisation signal, a DNA binding domain in the N-terminus, and ATP-dependent DNA helicase activity in the C-terminus. E1 is believed to be expressed in the lower and mid levels of the epithelium at very low levels as it cannot be detected in tissue (Ozbun et al., 1998b). Experiment have shown E1 to be essential for maintenance and amplification of viral genomes (reviewed in Wilson et al., 2002).

1.7.18 The role of E1 in viral genome replication
In vitro experiments have shown that E1 at high levels is capable of binding to and initiating replication of DNA (Kuo et al., 1994; Santucci et al., 1995; Seo et al., 1993a; Seo et al., 1993b). E1 binds DNA forming multiple hexameric complexes with ATP-dependant helicase activity (Yang et al., 1993). In vivo the protein is expressed at such low levels that this is thought unlikely to occur unaided. Experiments have been able to demonstrate that in the absence of the E2 protein, E1 associates non-specifically to DNA (Sanders et al., 2000). Co-expressing E1 and E2 results in the recruitment of E1 to the viral origin of replication (ORI) where it assembles into hexamers. E1 is thought to bind cooperatively with E2 to the E1 binding site, located adjacent to the E2 binding site (Mohr et al., 1990). It is believed that the binding of E1 and E2 to the ORI causes the DNA to wrap which in turn allows the recruitment of a further two E1 molecules. E2 is then displaced from the complex by the competitive binding of ATP to the E1 C-terminus (Sanders et al., 1998). E1 has been shown to form bi-hexameric complexes known to be required for the bidirectional DNA synthesis observed in HPV DNA replication. Interestingly E1 shares considerable homology with the SV40 large T antigen which has similar properties (Melendy et al., 1995). Interestingly it has been
Chapter 1

Introduction

suggested that SV40 small T antigen may be a functional homolog of the cellular MCM proteins which form the hexameric helicase complexes required for cellular DNA replication, these finding may shed light on E1 function (Chong et al., 2000; Gomez-Lorenzo et al., 2003; Patel et al., 2000).

1.7.19 The role of E1 in viral genome transcription
E1 has been shown to modulate the binding of the viral transcription factor E2 in a concentration dependent manner. The E1 protein of BPV has been shown to represses E2-mediated transactivation from the early promotor p89 (Ferran et al., 1998; Sandler et al., 1993). The equilibrium between occupancy of the E1 and E2 binding sites may switch the viral genome from a transcriptionally active state to a replicative state.

1.7.20 The E2 protein
The E2 protein is highly conserved throughout papillomaviruses and is involved in replication, genome maintenance, and in the control of viral transcription. The protein is comprised of two globular domains connected by a linker region. The N-terminus contains a trans-activating domain and the C-terminus is a DNA-binding and dimerisation domain (Giri et al., 1988; McBride et al., 1988). As with other papillomavirus proteins E2 protein function appears to be modulated by both proteolytic cleavage and phosphorylation (Hubbert et al., 1988; McBride et al., 1989).

1.7.20.1 Vegetative viral genome replication and maintenance
The E2 protein has been demonstrated to play a role in viral genome replication through an interaction with the E1 protein. Two E2 binding sites are located adjacent to the viral ORI (Sverdrup et al., 1995). The loading of E2 onto these sites allows the specific recruitment of the viral helicase E1 to the viral ORI, which in turn allows genome amplification to occur (Sverdrup et al., 1994; Sverdrup et al., 1995). Another function
of E2 is to ensure even distribution of viral genomes into daughter cells, which is mediated by E2s ability to bind viral genomes onto the mitotic spindles (Bastien et al., 2000; Ilves et al., 1999).

1.7.20.2 E2 and transcription regulation

Initial transcription of the viral genes is controlled by cellular transcription factors binding the LCR, this is then modulated by E2 in a concentration-dependent manner (Sanders et al., 1994; Stubenrauch et al., 1994). Occupancy of the four E2 binding sites in the LCR is the principal mode of transcription modulation, although a direct interaction with other cellular protein also occurs (Li et al., 1991). The significance of E2’s role in transcriptional regulation is still unclear with some studies suggesting that the protein’s role in transcription is only secondary to its role in genome maintenance (Bechtold et al., 2003; Stubenrauch et al., 1998). Truncated and modified forms of E2 have been identified in several HPVs and are believed to dimerise to full-length E2, but due to their lack of a trans-activating domain are thought to act as a repressor (Doorbar et al., 1990b; Lambert et al., 1987; Stubenrauch et al., 2000).

1.8 Late gene expression

Late genes are involved in viral genome packaging and possibly virion release. E1^E4 is believed to play a role throughout the virus lifecycle but is only expressed at high levels at late time points. As the work in this thesis is primarily interested in these later roles of E1^E4, the description of the protein has been included in this section.

1.8.1 Papillomavirus capsid proteins

The papillomavirus expresses two capsid proteins L1 and L2. L1 and L2 expression is controlled by the late differentiation-dependent promoter. Both proteins are expressed in the upper layers of infected epithelium after viral genome amplification has occurred (Ozbun et al., 1998a). L1 is the major and L2 the minor capsid protein. They combine
with a stoichiometry of 5/1 to form rosette structures, with 72 rosettes making up the viral capsid (Baker et al., 1991). Both proteins have an NLS motif located in the C-terminus comprising of a cluster of basic amino acids (Zhou et al., 1991a). It is thought that the NLS allows the proteins to enter the nucleus via interactions with members of the karyopherin receptor family (Fay et al., 2004; Merle et al., 1999).

1.8.2 Functions of the L1 and L2 proteins during early lifecycle events
L1 has been shown to associate with heparin sulphate and is involved in initial virus entry into uninfected cells (Joyce et al., 1999). Once the virus has gained access to cells, L2 has been shown to facilitate transport of viral DNA to the nucleus via interaction with β-actin. Deletion of the actin binding domain (amino acids 25-45) significantly reduces the infectivity of HPV 16 pseudo virions (Yang et al., 2003a).

1.8.3 Functions of the L1 and L2 proteins during late lifecycle events
L2 is synthesised prior to L1, and is transported into the nucleus where it accumulates in Promyelocytic leukaemia (PML) bodies, in which it is believed that viral genome amplification and packaging occurs (Florin et al., 2002; Swindle et al., 1999). L2 is known to be responsible for the recruitment of L1 and E2 to the PMLs (Day et al., 1998; Florin et al., 2002). It has been postulated that the recruitment of E2-bound DNA may facilitate selective packaging of the viral genome. The L1 protein associates into pentamers in the cytoplasm of infected cells, and these are recruited to the ND10s following the L2 induced release of SP100 (Florin et al., 2002; Okun et al., 2001). Both the N and C terminus domains of L2 interact with L1 pentamers, and are required for virus encapsulation (Okun et al., 2001).
Chapter 1 Introduction

1.9 Papillomavirus E1^E4 proteins
The E1^E4 proteins are encoded by a spliced mRNA comprising the first few amino acids of the E1 ORF (5 in the case of HPV16 E1^E4) spliced onto the gene product of the E4 ORF (Doorbar et al., 1987; Doorbar et al., 1988a; Nasseri et al., 1987). The E1^E4 ORF lies within a region of the E2 ORF that codes for the linker domain (see Fig 5.5). Analysis of viral mRNA transcripts suggests that the protein is expressed throughout the virus lifecycle, although the E1^E4 protein can only be detected by indirect immuno-fluorescence in upper layers of the epithelium (Doorbar et al., 1992; Peh et al., 2002). It has been suggested that build up of E1^E4 is caused by an increase in transcription from the differentiation-dependent promoter (Hummel et al., 1992), although it is conceivable that protein stabilisation or reduced turnover may also be involved.

1.9.1 Characteristics of E1^E4 proteins
E1^E4 proteins are typically small proteins varying in size from 88 to 134 amino acids for HPV18 and ROPV respectively. There is very little sequence homology shared between E1^E4 proteins from different genera, suggesting that they have undergone significant evolution/mutation when compared to other papillomavirus proteins (Narechania et al., 2005) (see Chapter 3). Despite this, some features are commonly observed. Most E1^E4 proteins contain a proline rich region and a region of charged residues and many, (specifically α-group E1^E4s) also contain a leucine cluster (reviewed in (Doorbar, 1996). Another commonly observed feature is a well conserved C-terminal region believed to be involved in self association (Ashmole et al., 1998; Bryan et al., 1998).
1.9.2 Multimerisation of E1\(^{\alpha}\)E4 proteins
HPV1 E1\(^{\alpha}\)E4 has been shown to form stable trimers or tetramers (Doorbar et al., 1996) and the capacity of HPV16 E1\(^{\alpha}\)E4 to form dimers and hexamers has also been reported (Roberts et al., 1997; Wang et al., 2004). Mutation of a cysteine in HPV16 E1\(^{\alpha}\)E4 (conserved in A9 E1\(^{\alpha}\)E4s) destabilised multimers, leading to dissociation following SDS gel electrophoresis. The cysteine mutation did not prevent self-association suggesting that disulphide bond formation alone is not responsible for multimerisation (Ashmole et al., 1998; Roberts et al., 1997). The lack of cysteine residues in some E1\(^{\alpha}\)E4 proteins, as well as the ability of some multimers to survive treatments in strong reducing environments suggests that disulphide bonds are not essential for multimerisation.

1.9.3 Proteolytic cleavage of E1\(^{\alpha}\)E4
Proteolytic cleavage of E1\(^{\alpha}\)E4 has previously been observed resulting in an increase in truncated protein isoforms towards the surface of the epithelium (Breitburd et al., 1987). The exact reason for truncation is not properly understood although to date it has been observed in HPV 1 and 16 E1\(^{\alpha}\)E4 proteins (Doorbar et al., 1997; Rogel-Gaillard et al., 1992a). The distribution of truncated E1\(^{\alpha}\)E4s suggests processing may be differentiation-dependent. This may provide the virus with an additional way to modulate protein function by modifying the phenotype of the infected cell to favour virus synthesis or virus release throughout the virus lifecycle.

An N-terminally truncated form of HPV 16 E1\(^{\alpha}\)E4 has previously been suggested from immunofluorescence studies although its precise role is still unclear (Doorbar et al., 1997). A truncation of HPV 1 E1\(^{\alpha}\)E4 has also been reported \textit{in vitro} and \textit{in vivo}. Truncated isoforms of the protein also appear to be more abundant at the surface of lesions. Truncation of the protein was shown to remove the ability to associate with
cytokeratins and displays an altered cellular distribution (Doorbar et al., 1988b; Roberts et al., 2003; Rogel-Gaillard et al., 1992b).

1.9.4 Phosphorylation of E1^E4 proteins

Phosphorylated forms of E1^E4 have been detected in HPV 1, 11 and 16 (Bryan et al., 2000b; Das, 2005; Grand et al., 1989; Wang et al., 2004). HPV 1 E1^E4 was noted to become phosphorylated by protein kinase A (PKA) in vivo. In addition to this the phosphorylation state of the protein was shown to increase towards the surface of the lesion (Breitburd et al., 1987). It was also reported that a second unidentified kinase was likely to be involved in the phosphorylation. HPV 11 E1^E4 has been shown to be phosphorylated in vitro by PKA and mitogen activated protein kinase (MAPK) at consensus kinase motifs in the central region of the protein. There is also strong evidence of phosphorylation of HPV11 occurring in vivo. Sequence analysis has also identified putative phosphorylation sites in other E1^E4 proteins (Peh, 2002). Computational analysis of HPV 16 E1^E4 has identified putative MAPK, CDK and PKA phosphorylation motifs and recent work has shown these sites to be phosphorylated in vitro as predicted (Das, 2005). As yet little is known about the role phosphorylation plays in modulating α-group E1^E4 function, although it has been suggested that it may function as a differentiation-dependent protein switch between a role in genome amplification and a role to one of viral egress (Bryan et al., 2000b).

1.9.5 E1^E4 Functions

1.9.6 Genome amplification/replication

The role that E1^E4 plays in viral genome amplification was first identified in HPV1 lesions where it was noticed that high levels of E1^E4 coincided with viral genome amplification (Breitburd et al., 1987). Since then studies on E1^E4 knock-out CRPV lesions have shown E1^E4 to be essential for viral genome amplification and late gene
expression (Peh et al., 2004). The role of HPV 16 and 31 E1\(^\text{E4}\) in genome amplification have also been demonstrated in organotypic raft cultures suggesting this function is conserved to varying degrees in E1\(^\text{E4}\) proteins from unrelated HPV types (Nakahara et al., 2005; Wilson et al., 2005). Interestingly, the study investigating HPV 16 E1\(^\text{E4}\) suggested that it was also required for genome maintenance in addition to amplification, suggesting that the protein may play a role in early life cycle events. HPV 1, 16 and 18 E1\(^\text{E4}\) proteins have been shown to cause G2/M cell cycle arrest when expressed at high levels in epithelial cells (Davy et al., 2002; Nakahara et al., 2002). The purpose of E1\(^\text{E4}\)-induced cell cycle arrest is believed to be to produce a favourable environment for virus genome amplification in which the virus hijacks active cellular replication machinery. The presence of the viral proteins E1 and E2, probably allows the virus to circumvent the cellular DNA replication licensing system (Madine et al., 1995) allowing multiple rounds of viral genome replication to occur in the absence of cellular DNA replication. Two threonine residues located in the proline rich domain of HPV 16 E1\(^\text{E4}\) have been shown to be essential for mediating cell cycle arrest (Davy et al., 2002). E1\(^\text{E4}\) was shown to associate with, and cause the retention of, the active cyclin B1/CDK1 complex in the cytoplasm (Davy et al., 2005). Interestingly mutation of a single threonine in a similar region of HPV1 E1\(^\text{E4}\) also prevents cell cycle arrest from occurring. Cyclin B1 was not observed in HPV1 E1\(^\text{E4}\) expressing-cells and it was suggested that the protein induce G2/S phase arrest by preventing the accumulation of the complex (Knight et al., 2004). Interestingly Cyclin B is abundant in E1\(^\text{E4}\) expressing cells \textit{in vivo} (Davy et al., 2005).

1.9.7 HPV 16 E1\(^\text{E4}\) interacts with a putative RNA helicase

E1\(^\text{E4}\) may also have a putative role in the regulation of gene expression, as a yeast two-hybrid screen demonstrated that HPV 16 E1\(^\text{E4}\) has the ability to interact with a
novel DEAD box protein, E4-DEAD box binding protein, (E4-DBP) (Doorbar et al., 2000). E4-DBP is predominantly located in the nucleus but has also been demonstrated to shuttle between the nucleus and cytoplasm. Although no role has been attributed to E4-DBP, DEAD box proteins are known to be involved in the processing, stability and transport of RNA molecules (Tanner et al., 2001). Papillomaviruses are heavily dependent on RNA processing for regulation of gene expression and the virus is also believed to be able to alter host cell transcription (Baker et al., 1996; Lehr et al., 2002). It has been speculated that E1\(^{+}\)E4 interactions with E4-DBP may allow the virus to control both processes (Doorbar et al., 2000).

1.9.8 E1\(^{+}\)E4's role in virion release
The exact role E1\(^{+}\)E4 plays in virion release is unclear. The expression time frame and location of abundant E1\(^{+}\)E4 strongly suggests that it may be involved in virion release. This hypothesis is supported by a number of studies into the function of the protein which have shown that the ability of HPV 1, 11, 16 and 31 E1\(^{+}\)E4's to associate with and in some cases disrupt components of the cell cytoskeleton and CCE that form the mechanical barrier of the skin (Brown et al., 2000; Doorbar, 1991; Pray et al., 1995a; Roberts et al., 1993; Wang et al., 2004)

1.9.9 E1\(^{+}\)E4 interacts with the cytokeratin network
The cytokeratins found in differentiated keratinocytes in the upper layers of the epithelium provide a tough mechanical barrier which protects the underlying tissue from desiccation and external insult. As well as providing a protective barrier for host tissue they also present the virus with an obstacle through which newly made virions must pass if they are to infect new hosts. Keratin filaments are composed of type 1 (acidic) and type 2 (basic) keratins that polymerise with specific partners at a stochometry of 1/1 (discussed in more depth in Chapter 4) (reviewed in (Coulombe et al., 2002). HPV 1, 2
and 16 E1^E4 proteins have been shown to associate with keratins, HPV 2 and 16 E1^E4's association causes keratin filament network to collapse. HPV 16 E1^E4 contains an N-terminal leucine cluster (YPLLXLL) that is highly conserved through α-group E1^E4 proteins and is known to be involved in keratin association (Roberts et al., 1994; Roberts et al., 1997). Experiments have demonstrated that a heavily truncated N-terminal 16 E1^E4 peptide containing the leucine cluster is sufficient to localise GFP to keratin filaments (Wang et al., 2004). Later experiments showed that HPV 16 E1^E4 was able to bind directly to keratin 18 (a type 1 keratin) but not its type 2 partner keratin 8 (Wang et al., 2004). The ability of HPV 16 to cause cytokeratin network collapse is also affected by the E1^E4 C-terminus, which is involved in multimerisation. It has been suggested that multimerisation of E1^E4 may cause filament collapse through cross linking, although this model is brought into question when it is considered that monovalent Fab antibody fragments are also able to induce similar network collapse (Waseem et al., 2004).

1.9.10 E1^E4 disrupts the cornified cell envelope
As well as associating to keratins HPV 11 and 59 E4 have been demonstrated to associate with and disrupt the cornified cell envelope (CCE) (Brown et al., 2004; Bryan et al., 2000a). The CCE forms a robust shell of proteins around cells in the upper layers of cornified epithelium providing mechanical strength and resistance to desiccation. The CCE is composed of proteins such as loricrin, involucrin, keratins and small proline rich proteins, cross-linked by N-(γ glutamyl) lysine isopeptide bonds, created by transglutaminase (Kalinin et al., 2001). Transglutaminase is activated by the high calcium environments encountered towards the surface of differentiated epithelium (Agardh et al., 2005). Interestingly activation of calcium-dependent PKC is required for late viral gene expression in organotypic raft cultures, suggesting that the formation of
the CCE and E1^E4 expression are dependent on the same differentiation signal (Pray et al., 1995a). Immuno-fluorescence analysis showed cells expressing HPV 11 E1^E4 lack detectable loricrin and keratin 10. EM data also demonstrated that CCEs were up to 65% thinner and displayed morphological aberrations in the presence of HPV11 E1^E4. HPV 11 infected, E1^E4 positive cells were also shown to be more fragile. HPV11 E1^E4 could be co-purified with the CCE. Experiments showed E1^E4 to be disulphide bonded to components of the CCE (Brown et al., 2000; Bryan et al., 2000a; Bryan et al., 2001). Further experiments demonstrated that levels of loricrin mRNA transcripts were reduced suggesting that cell reinforcement systems may be affected by protein-protein interactions and at a transcriptional level (Lehr et al., 2002). In natural HPV 1 lesions, cells expressing E1^E4 also showed lower levels of loricrin and filaggrin, indicating that the CCE may be targeted by diverse papillomaviruses (Doorbar et al., 1996).

1.9.11 HPV 16 E1^E4 interacts with mitochondria inducing apoptosis

HPV 16 E1^E4 has been shown to associate with mitochondria when expressed at high levels in vitro. Mitochondrial association was seen to occur after association with, and collapse of the cytokeratin network. Association of E1^E4-with mitochondria resulted in the formation of perinuclear aggregates, loss of membrane potential and apoptosis. It was suggested that E1^E4-induced apoptosis in the terminally differentiated layers of the epithelium may facilitate virion release (Raj et al., 2004).

1.10 Papillomaviruses and cancer

The link between cervical cancer and papillomavirus infections was first made in the early 80’s(Reid et al., 1982). Why only a few papillomaviruses have the ability to cause malignancies is still not understood clearly. Cervical neoplasias are graded using the cervical intraepithelial neoplasia (CIN) scale ranging from CIN I to CIN III. As tissue
progresses to CIN I a slight thickening of the mitotically active compartment occurs and by CIN III, differentiation in the tissue is lost and the entire epithelium can be mitotically active. Invasive cancer begins when transformed cells breakthrough into the dermis and invade the underlying tissue. Typically only 10% of CIN I lesions will progress to CIN II with the rest spontaneously regressing. A significant percentage of CIN III lesions may progress to invasive cancers. Lesions typically take years to progress from CIN I through to invasive cancers, suggesting there are a series of stages that cells go through before cancers develop (Arends et al., 1998; Murthy et al., 2000).

1.10.1 HPV genome integration

One factor found to significantly increase the chances of neoplastic progression is viral genome integration into the host cell DNA (Vernon et al., 1997). In productive viral infections, the viral genome is maintained as an episome. Although integration can occur at various sites in the host cells DNA, the integration site in the viral genome remains relatively well conserved and results in the disruption of the of E1^E4 and E2 ORF. While integrating viral DNA stands a chance of disrupting cellular oncogene and does sometimes occur, the effect of restructuring viral DNA is well understood. Disrupting E1^E4 expression may prevent cyclin B1 mediated arrest from occurring. Loss of E2 expression results in the up-regulation of the HPV early promoter resulting in higher expression of the viral oncogenes E6 and E7 (Jeon et al., 1995a; Jeon et al., 1995b). Integration events appear to occur more frequently, with high risk viruses suggesting that certain DNA sequences may be partly responsible for their high risk status (Kessis et al., 1996). The discovery of invasive cancers with exclusively episomal viral DNA shows that although integration plays a role in neoplastic progression it is not a prerequisite (Matsukura et al., 1989). The finding of integrated
genomes in low grade lesions also suggests that secondary factors are important in malignant progression.

1.10.1.1 The role of HPV proteins in neoplastic progression

The HPV E6 protein is expressed in all cervical carcinomas and HPV transformed cell lines. Loss of E6 expression is sufficient to reactivate dormant tumour suppressor pathways inducing apoptosis in HeLa cells (Goodwin et al., 2000). E6 proteins disrupt p53 function that normally guards cells against acquiring genetic mutations by arresting mitotic cells and/or activating apoptotic pathways following the detection of DNA damage. Prolonged expression of E6 can allow cells to accumulate genetic damage, which would not otherwise be permitted. Cells expressing E6 have been shown to withstand irradiation without undergoing cell cycle arrest or apoptosis (Kessis et al., 1993; Storey, 2002). Resistance to apoptotic stimulation also makes cells more susceptible to genetic damage induced by exposure to environmental carcinogens (Kjellberg et al., 2000).

A further function seemingly unique to high risk viruses is their ability to target cellular proteins for degradation. Interactions between high risk E6 and E7s with their target proteins result in the degradation of RB and p53. This process is tightly regulated in normal viral infections, and the upregulation of these proteins as a result of genome integration accentuates this affect resulting in a higher risk of cancer (Sherman et al., 1996).

As with E6 and E7, the HPV E5 protein has transforming properties and is commonly referred to as an oncogene (DiMaio et al., 2001), although the exact extent of its involvement in neoplastic progression is unclear. E5 is known to have oncogenic
properties such as the ability to stimulate anchorage independent growth of cells in vitro via its interaction with growth receptors (Leechanachai et al., 1992). Unlike E6 and E7, E5 is rarely detected in invasive cancers and this gene is commonly lost during the integration process (Stoler et al., 1992).

1.10.2 Other risk factors linked to cervical cancer
Although the presence of high risk viral DNA is though to be essential for the development of squamous cell carcinoma (SCC), it is clear that other factors play a significant role. Additional risk factors include duration between puberty and menopause (oestrogen exposure), use of the contraceptive pill, genetic predisposition, immuno-suppression (especially after organ transplants), smoking, obesity, exposure to environmental carcinogens and secondary infection such as HIV and chlamydia (Brisson et al., 1994; Daling et al., 1992; Kjellberg et al., 2000; Lacey et al., 2003; Luesley et al., 1994; Moreno et al., 2002; Munoz et al., 1997; Peng et al., 1991).

1.11 HPV management
1.11.1 Cervical screening
Cervical cancer is the second most prominent female cancer (after breast cancer) globally responsible for >250,000 deaths annually (Parkin et al., 2005). In some western nations it has dropped to one of the most common female cancers due to the success of screening programs (Boyle et al., 2005). The relatively long period between hyperplasia and invasive cancer (~4 years) means that potentially problematic lesions can be detected and destroyed before they progress. The current cervical screening program is based on the Papanicolaou staining technique and involves the detection of abnormal cells based on their morphology alone (Warner et al., 1989). The introduction of cell proliferations markers such as PCNA, Ki67, MCM, and p16 may revolutionise
screening in the next couple of years (Doorbar et al., 2005; Dray et al., 2005; Freeman et al., 1999; Keating et al., 2001; Nieh et al., 2005; Williams et al., 1998).

1.12 Papillomavirus vaccines
There are currently two different lines of vaccine research; these can be described as prophylactic and therapeutic. Prophylactic vaccines generate neutralising antibodies to virus capsid proteins preventing infections from occurring, whereas therapeutic vaccines work by stimulating the adaptive immune system in order to clear existing infections.

Recent research has demonstrated that papilloma vaccines are highly subtype specific and provide little if any protection against closely related viruses making a comprehensive cervical cancer vaccine unlikely in the near future (Giroglou et al., 2001b). The most promising line of research into a prophylactic vaccine using VLP's consisting of L1 and L2 from both HPV 6, 11, 16 and 18 (Stanley, 2005; Yang et al., 2005; Zhou et al., 1991b). A recent breakthrough was made when large scale clinical trials results showed it to provide 100% protection against acquiring new infections (Harper et al., 2006; Koutsky et al., 2002; Mao et al., 2006; Villa et al., 2005) and the vaccine is now considered ready for FDA approval. Although the target groups is currently undecided, it has been suggested that the vaccine should be targeted at young girls between the ages of 11-13 before they become sexually active, as will provide less protection to those already infected with high risk viruses (Short et al., 2006; Soubeyrand et al., 2005). Despite this success, many questions are left unanswered. The vaccine is still relatively expensive to manufacture and it is not known how long protection lasts so its economic viability remains to be seen (Garnett et al., 2000). Another unknown factor is whether infections by other high risk viruses will become
more prevalent if HPV 16 and 18 infections are eradicated. The ability of the virus to evolve when placed under selective pressure also remains to be seen.

Work on therapeutic vaccines has looked at the early virus proteins E1, E2, E5, E6 & E7. E6 and E7 based vaccines have been shown to provide some protection against subcutaneously seeded tumour cells (Meneguzzi et al., 1991). The holy grail of research, a vaccine that could not only prevent infection but also treat lesions as well as associated tumours is still some way off.

1.12.1 Papillomavirus therapies
Despite the recent success of the new vaccine much remains to be done to find new therapies to treat pre-existing papilloma infections. At present there are very few therapeutic options available for the treatment of lesions and these are relatively primitive. The most commonly used treatment involves removal or destruction of infected tissue. Salicylic acid is currently used to burn away HPV 2 infected tissue in verrucas. Persistent cervical lesions can be ablated using cryotherapy, loop electrosurgical excision procedure or surgical excision. More recently some new products such as imiquimod cream have come onto the market. Imiquimod is an immunomodulatory cream that induces the production of cytokines increasing lesion clearance times (Beutner et al., 1998). Although primarily intended for use on genital warts, Imiquimod has recently been trialled against other cutaneous papilloma infections with some success (Harwood et al., 2005).

1.13 Virus release mechanisms
Viruses have evolved many mechanisms to identify, access and replicate inside specific host cells and numerous mechanisms have also developed to allow progeny virions to escape infected cells. The mechanism by which viruses exit their host cells depends on
the final configuration of the mature virion, intended route of viral transmission and the intended duration of virus infection. Enveloped viruses must pass through a host cell membrane to acquire their lipid coats, whereas non-enveloped viruses have evolved different exit strategies. Virus release mechanisms can be divided into three main categories; budding, exit via secretory pathways, and cell lysis. Cell lysis should not be confused with cytopathic effect (CPE), which is commonly observed during viral egress from infected cells and is induced by a build up of toxic viral proteins and disruption of normal cell function.

1.13.1 Lytic exit strategies
The T4 bacteria phage has a simple exit strategy using the viral enzyme lysozyme to cleave open cell walls and membranes of infected cells, allowing new virions to be released into the environment (Fischetti, 2005). Viruses of eukaryotic hosts have to control virion release more carefully, depending on whether chronic or transient infections are to be established. Viruses intent on establishing chronic infections control virion release and CPE-induced cell lyses so as minimise detection by the immune system and excessive damage to host tissue. Transient infections such as with influenza tend to use more explosive infection strategies resulting in significant CPE and tissue damage. The high rate of virion release enables such viruses to out pace host immune responses (Smith et al., 2002).

1.13.2 Exit through secretary pathways
Simian virus 40 (SV40) belongs to the Polyomaviridae family of non enveloped viruses which escape from cells without inducing cell lysis. Newly made virions are concentrated in intracellular vesicles, from where they are transported to the cell surface and released by membrane fusion event. Release of SV40 can be blocked by treating cells with the inhibitor of intracellular vesicular transport monensin (Clayson et al.,
Vaccinia virions are shed by endocytosis and CPE induced lysis, and virions shed by different methods are distinct with the exocytosis-released virions being membrane bound and more infectious.

1.13.3 Lytic viral egress
Adenovirus is also a non-enveloped virus whose release is generally believed to require host cell lysis (Zhang et al., 1994). Infection results in disruption of vimentin prior to viral gene expression by rapid reaction to viral adsorption (Belin et al., 1987). The adenovirus E1B protein also disrupts the vimentin filament network. Collapse of vimentin filaments results in the formation of perinuclear bundles (Janoff et al., 1991).

The adenovirus also has the ability to disrupt keratin filaments using the adenovirus protease (AVP). Unlike the papillomavirus this is caused by enzymatic cleavage of keratin 18 at amino acid 74 resulting in headless keratin molecules unable to polymerise (Chen et al., 1993) AVP requires actin as a co factor for proteolytic cleavage of keratins (Brown et al., 2002). In addition to disrupting the cell cytoskeleton, adenovirus structural proteins are also toxic to cells enhancing CPE and possibly aiding virion release (Pettersson et al., 1969). Adenoviruses appear to use CPE as a mechanism of virion release although CPE is aided by specific proteins which purposefully disrupt host cell systems that may interfere with virion release.

1.13.4 Papillomavirus virion release ??
To date very little is known about the papillomavirus release mechanisms. Egress of mature papillomavirus virions occurs at the surface off terminally differentiated epithelium and so is not directly linked to viral pathology. It has been assumed that virions are released into the environment as terminally differentiated cell slough off from the surface. This model may be true to a certain extent but it is probable that keratinized cells with cornified envelopes would not provide a good vehicle for virion
distribution and would more likely function to encapsulate virions (Luby-Phelps, 1994; Seksek et al., 1997). It has previously been shown that the E1^E4 protein associates with and disrupts keratin filaments in vitro and in vivo (Doorbar et al., 1991; Roberts et al., 1994; Sterling et al., 1993a; Wang et al., 2004). HPV 11 E1^E4 has also been shown to disrupt and weaken cornified cell envelopes (Brown et al., 2004; Bryan et al., 2000a; Bryan et al., 2000b). The dramatic upregulation of E1^E4 towards the cell surface also points to it playing a role in virus egress. By disrupting and degrading the cytokeratin network the virus is likely to increase cell fragility, allowing fragmentation of terminally differentiated keratinocytes and the release of virus particles. This effect would likely be enhanced by direct physical contact.

1.14 Aims
The aims of this thesis are threefold.

1. To examine the mechanism by which HPV 16 E1^E4 induces keratin filament collapse in undifferentiated cells grown in monolayer culture (in vitro), and to determine the fate of affected keratins.

2. To relate these findings to the events which follow E1^E4 binding to keratins in vivo during natural infections in differentiated epithelium.

3. To establish the extent to which E1^E4-keratin interactions persist amongst HPV’s of distinct evolutionary origin, in an attempt to provide an insight into the role of the E1^E4 proteins during productive HPV infections.
2 Materials and Methods

2.1 Materials

2.1.1 Suppliers of reagents
Except where specified, or in the exceptions given below, reagents were obtained from Sigma-Aldrich Company Ltd. (Poole, UK) or VWR International Ltd. (Lutterworth, UK).

Agarose, ammonium persulfate (APS), ethidium bromide (EtBr), sodium dodecyl sulfate (SDS) and N, N, N', N'-tetramethylethylenediamine (TEMED) were obtained from Bio-Rad Laboratories Ltd. (Hemel Hempstead, UK). Foetal calf serum (FCS) was obtained from Perbio Science UK Ltd. (Cramlington, UK). EMPIGEN BB™ was obtained from Calbiochem, VWR International Ltd. ECL reagents, rainbow molecular weight markers, glutathione sepharose 4B and protein G sepharose beads were obtained from Amersham Pharmacia Biotech UK Ltd. (Little Chalfont, UK). Ultra Pure ProtoGel® acrylamide was obtained from National Diagnostics Ltd. (Hull, UK). Restriction endonucleases and Complete Protease Inhibitor Cocktail Tablets were obtained from Roche Diagnostics Ltd. (Lewes, UK). Phospho-specific keratin antibodies (8250, 3055, LJ4 and 2D6) were kindly provided by Bishr Omary.
Chapter 2 Materials and Methods

2.1.2 Media and buffers

<table>
<thead>
<tr>
<th>Name</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x Phosphate buffered saline (PBS)</td>
<td>1% (w/v) NaCl, 0.025% (w/v) KCl, 0.14% (w/v) Na$_2$HPO$_4$, 0.025% (w/v) KH$_2$PO$_4$. The pH was adjusted to 7.4 with concentrated HCl.</td>
</tr>
<tr>
<td>1 x Tris-borate-EDTA (TBE)</td>
<td>1.21% (w/v) Tris base, 0.62% (w/v) boric acid, 0.19% (w/v) EDTA. pH 8.0.</td>
</tr>
<tr>
<td>2 x Laemmli buffer</td>
<td>4% (w/v) SDS, 20% (w/v) glycerol, 0.12M Tris, 1mM DTT PH 8, containing a trace of bromophenol blue</td>
</tr>
</tbody>
</table>

Table 2.1 General buffers

<table>
<thead>
<tr>
<th>Name</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luria-Bertani medium (LB)</td>
<td>1% (w/v) Tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl. The pH was adjusted to 7.0 with 5 N NaOH.</td>
</tr>
<tr>
<td>LB agar</td>
<td>LB medium containing 2% Bacto agar (Difco Laboratories Ltd., Detroit, USA).</td>
</tr>
<tr>
<td>Selective LB media</td>
<td>LB medium or LB agar containing antibiotics [50 mg/l ampicillin (Amp) or kanamycin (Kan)].</td>
</tr>
<tr>
<td>2 x TY medium</td>
<td>1.6% (w/v) Tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl. The pH was adjusted to 7.0 with 5 N NaOH.</td>
</tr>
</tbody>
</table>

Table 2.2 E. coli growth media

<table>
<thead>
<tr>
<th>Name</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin-Versene</td>
<td>0.8% (w/v) NaCl, 0.02% (w/v) KCl, 0.12% (w/v) Na$_2$HPO$_4$, 0.02% (w/v) KH$_2$PO$_4$, 0.01% (w/v) EDTA, 0.01% (w/v) trypsin, 0.001% (w/v) phenol red.</td>
</tr>
<tr>
<td>Medium A</td>
<td>DMEM (Sigma) containing 10% (v/v) FCS (unless otherwise indicated), 0.01% (w/v) streptomycin and 0.006% (w/v) penicillin.</td>
</tr>
<tr>
<td>Time-lapse medium</td>
<td>CO$_2$ Independent Medium (Gibco) containing 10% (v/v) FCS, 0.01% (w/v) streptomycin, 0.006% (w/v) penicillin and 10 mM ascorbic acid.</td>
</tr>
<tr>
<td>Cell freezing solution</td>
<td>FCS containing 10% (v/v) dimethyl sulfoxide (DMSO).</td>
</tr>
</tbody>
</table>

Table 2.3 Cell culture media and reagents
2.2 Molecular biology techniques

2.2.1 DNA constructs used
In cell culture wild type HPV 16E1\(^{\text{E4}}\) was expressed by transfection of the pMV11.16E1\(^{\text{E4}}\) construct (Davy et al., 2002) and by infection with recombinant adenovirus containing the rAD16E1\(^{\text{E4}}\) construct (Doorbar et al., 2000). M2 E1\(^{\text{E4}}\) was expressed by infection with recombinant adenovirus containing the rM2 rAdM2 construct (Wang et al., 2004). The T22A, T23A mutant of E1\(^{\text{E4}}\) was expressed by transfection of the pMV11 E1\(^{\text{E4}}\) T22A, T23A expression vector (Davy et al., 2002). β\text{gal} was expressed by infection of recombinant adenovirus containing the rAD β–gal construct (fourrier1999). HPV 2, 4, 18 31, 35, 45 and 65 E1\(^{\text{E4}}\) proteins were expressed by the transfection of the pcDNA 3 expression vectors kindly provided by Dr Heather Griffin, National institute for medical research, London. pYFP-E1\(^{\text{E4}}\) was produced by cloning wild type E1\(^{\text{E4}}\) into the pEYFP-C1 (Clonetech).

2.2.2 Details of the E. coli strain used

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH5α</td>
<td>deoR end A1, gyrA96, hsdR17(r, mK+), recA1, relA1, supE44, thi-1, Δ(lacZ YA- argF169) φ80δ lacZ ΔM15, F-, λ-</td>
<td>Clontech (Basingstoke, UK)</td>
</tr>
</tbody>
</table>

2.2.3 Culture of E. coli
Cells were grown in LB medium containing suitable selective antibiotics to prevent loss of plasmids. Cultures were incubated at 37 °C either on agar plates or in liquid medium with 200 rpm shaking.

2.2.4 Long term storage of E. coli cultures
E. coli cultures were stored for prolonged periods as glycerol stocks. Glycerol stocks were prepared by mixing equal volumes of mid-log cultures with 50 % (v/v) sterile glycerol. Solutions were mixed by inversion and stored at -70 °C.
2.2.5 Preparation of electrocompetent *E. coli*

E. coli cells (DH5α) were grown in LB medium at 37 °C with vigorous shaking to an A₆₀₀ value of 0.5. All subsequent steps were carried out at 4 °C. Cells from 200 ml of culture were harvested by centrifugation at 4000g for 10 min in 250 ml centrifuge tubes (Corning, UK) using a J6 centrifuge (Beckman Coulter UK Ltd.). Cells were resuspended in 200 ml ice-cold ddH₂O. Cells were then centrifuged and resuspended three more times as above, but resuspension was performed sequentially in ddH₂O (100 ml), then 10 % glycerol (4 ml) and then 10 % glycerol (200 µl). The final cell suspension was stored in aliquots at -70 °C.

2.2.6 Transformation of *E. coli* by plasmid DNA

Approximately 100 ng of DNA was used to transform 40 µl of electrocompetent *E. coli* cells in a 0.2 cm cuvette using a Gene Pulser (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) with the following settings: 1.5 kV, 25 µF, 200 Ø. Cells were recovered by suspension in 1 ml of S.O.C. medium (Invitrogen Ltd., Paisley, UK) and incubation at rt. in the absence of an antibiotic. Cell suspension (100 µl) was then spread onto an LB agar plate containing a suitable selective antibiotic and incubated overnight at 37 °C.

2.2.7 Purification of plasmid DNA using commercially available kits

Plasmid DNA was purified from *E. coli* using the Wizard® Plus Miniprep DNA Purification System (Promega UK Ltd., Southampton) or a Plasmid Maxi Kit (QIAGEN Ltd., Crawley, UK), in accordance with the manufacturer’s instructions.

2.2.8 Purification of DNA on a CsCl gradient

Plasmid DNA that was prepared as described above and which gave poor results following transfection was purified on a CsCl gradient as follows. Bacteria containing plasmid DNA were streaked onto a suitable selective LB agar plate. A single colony
was transferred into 5 ml of selective LB medium and incubated overnight at 37 °C with shaking. A 1:1000 dilution of this was used to inoculate 400 ml of selective LB medium. Following incubation as above, cells were harvested by centrifugation as described in Section 1.2.4. The cell pellet was suspended in 4 ml of Buffer 1 (50 mM glucose, 25 mM Tris base, 10 mM EDTA, pH 8). Lysozyme solution (1 ml) was added to a final concentration of 5 mg/ml and the suspension was incubated for 5 min at r.t. Buffer 2 (0.2 M NaOH, 1 % SDS; 10 ml) was added and the lysate was incubated for 5 min on ice. Buffer 3 (3 M potassium acetate, 11.5 % (v/v) acetic acid; 7.5 ml) was added and the solution mixed immediately and incubated for 5 min on ice. The solution was cleared by centrifugation at 10000g for 15 min at 4 °C in a JA20 rotor using a J25 centrifuge (Beckman Coulter UK Ltd.). Propan-2-ol (13.5 ml) was added to the cleared supernatant, which was incubated for 5 min at r.t and centrifuged again as before. The nucleic acid pellet was washed with 70 % ethanol, air dried, resuspended in 4.95 ml of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and incubated at 60 °C until pellet dissolved. This DNA solution was added to a tube containing 5.25 g of CsCl and 50 µl of 10 mg/ml EtBr. The solution was added to a 5.1 cm Quick-Seal® ultracentrifuge tube (Beckman Coulter UK Ltd.) and centrifuged in a VTi 65.2 rotor using a Beckman L-90K ultracentrifuge at 200,000 g overnight at 20 °C. The DNA band was collected using a syringe and needle. EtBr was removed by washing repeatedly with CsCl saturated propan-2-ol. Absolute ethanol was added to a final concentration of 75 % (v/v) and the DNA was precipitated by centrifugation 10000g for 15 min at 4 °C in a JA20 rotor using a J25 centrifuge. The pellet was washed in 70 % (v/v) ethanol, air-dried and resuspended in 0.5 ml TE buffer. An equal volume of equilibrated phenol chloroform was added, to obtain an aqueous phase the samples were vortexed for 10 s and centrifuged (10000 g, 2 min). The upper layer was removed into an equal volume of
phenol:chloroform:isoamylalcohol (24:24:1) and an aqueous phase obtained as before. To remove traces of phenol a final extraction was performed with an equal volume of chloroform. The aqueous phase was collected and ethanol precipitated and the DNA pellet dissolved in 500 µl endonuclease-free water.

2.2.9 Quantification of DNA
DNA concentrations were assayed using an Ultrospec™ 3300 pro UV/Visible Spectrophotometer (GE Healthcare UK Ltd., Chalfont St.Giles, UK). DNA solutions were diluted 1:500 and their A_{260} value measured. It was assumed that an A_{260} of 1.0 was equal to a DNA concentration of 50 µg/ml.

2.2.10 Agarose gel electrophoresis
PCR products and plasmids were separated on 1.5 % or 1 % agarose gels, respectively. Gels were buffered with 1 x TAE and contained 1 mg/ml EtBr. Samples were mixed with 1/10 volume their volume of 10 x loading buffer (50 % glycerol, 0.5 % bromophenol blue and 0.4 % (w/v) xylene cyanol). Electrophoresis was carried out at a constant voltage of 80 V, limiting to 200 mA. DNA bands were visualised using transmitted UV illumination and compared to DNA markers (New England Biolabs Ltd., Hitchin, UK) of known molecular mass. Images were captured using a Kodak Image station 440 and digital science software ID software (Perkin Elmer Life sciences, Ltd., Cambridge)

2.2.11 Digestion of DNA with restriction endonucleases
DNA was digested with the appropriate restriction endonuclease in 1 x reaction buffer (according to the manufacturer’s recommendation); BSA was added when required. DNA (0.05-5 µg) was digested with 5 U of enzyme in a total volume of 40 µl for 1 h at 37 °C. Enzyme was heat inactivated at 60 °C for 5 min.
Chapter 2 Materials and Methods

2.2.12 Treatment of plasmid DNA with alkaline phosphatase
To prevent self-ligation of endonuclease-digested plasmid DNA, the linearized vectors were dephosphorylated at their 5' ends. Approximately 5 µg of vector was incubated with 5 U of calf intestinal alkaline phosphatase (Roche Diagnostics Ltd., Lewes, UK) in a total volume of 80 µl buffer for 1 h at 37 °C.

2.2.13 Polymerase chain reaction (PCR)

2.2.13.1 Primer design
A set of forward and reverse primers was designed to be complementary to the E1^E4 target gene sequence. Additional nucleotide sequences were added in order to encode a Kozak start site (Alberts, 2002) (forward primer only) and to incorporate restriction sites (Hind III, BamH I). PrimerSelect software (DNASTAR Inc., Madison, USA) was used to predict and minimize the formation of primer dimers and hairpin loops. Primers were obtained from Oswel Research Products Ltd. (Romsey, UK).

AAG AAG G /AA GCT T /AC CAT GGC TGA TCC TGC AGC -forward
Hind III E4

ATC ATT GTG ATG TGG GTA TC /CCTAGG/ TGG TGG -reverse
E4 BamH I

2.2.13.2 PCR reaction mix
Reagents used per 25µl reaction:

Template DNA 100 ng
Deoxyribonucleotides (dNTPs) 2.5 mM each
10 x PCR buffer (ABgene) 2.5 µl
MgCl₂ (ABgene) 2.5 mM
Forward primer 10 pmol
Reverse primer 10 pmol
Taq Gold polymerase (ABgene) 1µl

The total volume was made up with ddH₂O.
2.2.13.3 PCR conditions
PCR was performed on a PTC-200 DNA Engine Thermal Cycler (MJ Research, GRI, Braintree, UK) using the following program: 1 min at 94 °C (DNA denaturation) followed by 1 min at 54 °C (primer annealing) followed by 1 min at 72 °C (DNA elongation). This cycle was repeated 30 times and followed by a final DNA elongation step of 10 min at 72 °C. A heated lid was used throughout.

2.2.13.4 Purification of PCR product
Following separation on a 1% agarose gel, the PCR reaction products were purified using the QIAquick Gel Extraction Kit (QIAGEN Ltd., Crawley, UK) in accordance with the manufacturer’s instructions.

2.2.14 Ligation of insert into vector
Following restriction endonuclease digestion, the concentrations of the insert and vector were determined by gel quantification on a 1% agarose gel using a low DNA mass ladder (Invitrogen Ltd., Paisley, UK). The insert was ligated with 0.5 μg of vector at a 6:1 molar ratio, using 40 U of T4 DNA ligase (New England Biolabs Ltd., Hitchin, UK) in a total volume of 20 μl, and by incubation at 4 °C for 16 h, according to the manufacturer’s instructions.

2.2.15 Colony selection following ligation
Ligation reactions were used to transform E.coli as described in Section 2.2.6. To select colonies containing a correctly orientated insert, individual colonies were picked and used to inoculate 2.5 ml of LB, containing a suitable selective antibiotic. Overnight cultures were subsequently screened by PCR and restriction digest to assays. A PCR reaction was then carried out to determine the presence of an insert; reactions were carried out as described in Section 2.2.12. Reaction products were run on a 1% agarose gel. Reactions resulting in a 300 bp band in the gel indicated the presence of insert in
Chapter 2 Materials and Methods

the culture. The plasmid was prepared by miniprep as described in Section 2.2.7. Plasmid was digested as described in Section 2.2.11 and the reactions run on a 1% agarose gel to check for the presence of insert. Colonies with a positive result in both these assays were selected. DNA was prepared from these colonies as described in Section 2.2.7.

2.3 Cell culture techniques

2.3.1 Cell lines

2.3.1.1 SiHa cells
SiHa cells (Friedl et al., 1970) are a transformed cervical epithelial cell line derived from a tumour containing integrated HPV16 genomes. SiHa cells constitutively express E6/E7 but lack E1^E4 expression due to loss of the E1^E4 ORF caused by integration of the viral genome. This cell type gives high efficiency infection with recombinant adenoviruses (rAd).

2.3.1.2 AK8 & AK13 cells
Both cell lines were derived from a vulva carcinoma cell line and were kindly provided by Rudolph Leube (Windoffer et al., 1999); (Strnad et al., 2001). AK8 cells were stably transfected with ECFP-human keratin 8 plasmid and express a ECFP-tagged 8/18 keratin network. AK13 cells were stably transfected with an EGFP-human keratin 13 plasmid. Both cell lines are grown in 1 μg/ml geneticin every fourth passage to maintain expression levels.

2.3.1.3 HaCaT cells
HaCaT cells are a human keratinocyte cell line which was obtained following the transformation of normal skin cells by culturing in calcium-rich medium (Boukamp et
HaCaT cells express numerous keratin subtypes, including K8/18 and K5/14, and also K1/10 and K5/13, which are differentiation-dependent.

2.3.1.4 SW13 C2 and T7K cells
The SW13 C2 cell line was derived from a human adrenal tumour (Hedberg *et al.*, 1986). This cell line lacks expression of any intermediate filament networks but contains intact microtubule and actin cytoskeleton networks. The SW13 T7K cell line also expresses a functional keratin 8/18 network. These cell lines could be transfected and rAd infected.

2.3.2 Routine cell culture
Unless otherwise stated, cells were grown in medium A in flasks of surface area 75 cm2 at 37 °C and 5 % (v/v) CO$_2$. Cells were grown to 80 % confluence before being subcultured. To do this, cells were washed in 2 ml trypsin/versene then 2 ml fresh trypsin/versene was applied to the cells for approximately 5 min at 37°C until they became detached from the flask. Trypsin was quenched by the addition of 5 ml of medium. Cells were routinely split 1/20 into a new flask containing 10 ml of medium.

2.3.3 Long term storage of cells
Cells were detached from the flask as described above and harvested by centrifugation at 2500 g for 5 min at r.t. Cells were suspended in 5 ml cell freezing solution (FCS containing 10 % DMSO) and divided into 1 ml aliquots which were then wrapped in 5 layers of paper tissue. Tubes were then transferred to a -70 °C freezer for 16 – 24 h. After freezing, cells were transferred to liquid nitrogen for long term storage.
2.4 Cell transfection and infection techniques

2.4.1 DNA transfection
Cells were seeded onto glass cover slips in the wells of a 24 well plate at a density of 3x10⁴ cells in 0.5 ml medium per well and grown for 24 h as described in Section 2.3.2. Cells were then transfected using GeneJuice® transfection reagent (Novagen, Nottingham, UK) in accordance with the manufacturer’s instructions using vectors prepared as described in section 2.2.1.

2.4.2 Infection of cells with adenovirus

2.4.2.1 G1/S phase synchronization of SiHa cells
To arrest SiHa cells at the G1/S phase boundary prior to rAd infection, 70% confluent flasks of SiHa cells were grown in low-serum medium (medium A containing 0.5% (v/v) FCS) for 48 h. Cells were then treated with trypsin (Section 2.3.2) and grown in 90 mm dishes at a density of 5x10⁵ cells per dish in 5 ml medium A containing 2 μg/ml aphidicolin. Cells were released from this block after 24 h by washing 3 x in 5 ml of sterile PBS and incubation in medium A.

2.4.2.2 Adenovirus infection of SiHa cells
Adenovirus was applied to SiHa cells at a multiplicity of infection of 100 virus particles per cell in 5 ml of medium A for 24 h medium was then removed and the cells were washed twice with 5 ml PBS and incubated in fresh medium A. Time points were measured from the point of rAd addition to cells.

2.5 Biochemical and cell biology techniques

2.5.1 Antibody techniques

2.5.1.1 Preparation of phage antibody
The B11 Fab antibody was purified from the periplasmic space of E. coli as follows. An overnight culture of E. coli, transformed with pUC119His.6myc containing an HPV 16
immunoglobulin gene (Doorbar et al., 1997), was set up in 10 ml 2 x TY medium containing 1 % glucose. This was used to inoculate two flasks each containing 1.5 l TY medium and 0.1 % glucose. Cells were grown at 37 °C to an A_{600} value of 0.8, induced with 1 mM IPTG and grown for 3 h at 30 °C. Cells were harvested by centrifugation in a Beckman J6 centrifuge at 2000 g for 15 min at 4 °C. They were gently suspended in ice-cold resuspension buffer (0.6 M sucrose, 1 mM EDTA, 30 mM Tris, pH7.9) and left for 20 min on ice. Cells were then centrifuged in a Beckman JA20 rotor at 5000 x g for 10 min at 4 °C and the supernatant was reserved on ice. The pellet was resuspended in ice-cold 5 mM MgSO_{4} and incubated for 20 min on ice. Cells were centrifuged once more as before, the supernatant was combined with the previous one and this preparation (termed the “periplasmic prep”) was stored at -20 °C. If either supernatant was cloudy then it was centrifuged at 5000 g as above until all particulate material had been removed. Ni-NTA Agarose resin (QIAGEN) was centrifuged at 200 g for 5 min at 4 °C in a bench top centrifuge. The ethanol was removed and discarded and the beads were washed in 10 ml of binding buffer (0.5 M NaCl, 5 mM imidazole, 20 mM Tris, pH7.9) by centrifugation as before. Washed beads were added to the periplasmic prep and put on an end over end rotator at 4 °C for 1 h to allow binding. Beads were centrifuged as before and the supernatant discarded. The beads were resuspended in 80 ml of binding buffer and placed on the end over end rotor for a further 10 min followed by centrifugation as before. The resin was then washed twice more in 30 ml binding buffer by resuspension and centrifugation as before. Beads were resuspended in 30 ml of binding buffer and then transferred to a Poly-Prep column (Bio-Rad Laboratories Ltd.). The excess buffer was allowed to run through and the column was washed with a further 5 ml buffer. The antibody was eluted with 6 ml of elution buffer (0.5 M NaCl, 1 M imidazole, 20 mM Tris, pH7.9), immediately transferred to prepared dialysis tubing
(Pierce SnakeSkin™, 7000Da cut-off, Perbio Science UK Ltd.) and dialysed overnight against 3 l of PBS at 4 °C. The PBS was changed for another 3 l and dialyzed for a further 3 h. The final solution was snap frozen and stored at -20 °C.

2.5.1.2 Conjugation of phage antibody to Alexa Fluor® 488

The protein concentration in the antibody preparation was determined by taking the A_{280} value as described in Section 2.2.9. The solution was then concentrated in an Amicon® Ultra-15 Centrifugal Filter Device (Millipore Ltd., Watford, UK; MWCO 10000) to a concentration of 2 mg/ml. The protein was then labelled using the Molecular Probes™ Alexa Fluor® 488 Labelling Kit (Invitrogen Ltd.) in accordance with the manufacturer’s instructions.

2.5.2 Sample preparation from cells prior to immunoprecipitation and/or gel electrophoresis

2.5.2.1 Treatment of cells with proteasome inhibitors

Cells were infected with 16E4 or β-gal rAd as described in Section 2.4.2.2. Cells were treated with either 10 μM ALLN (Calbiochem, VWR International Ltd.), 10 μM of MG132 (Sigma-Aldrich Company Ltd.) or 5 μl of vehicle (DMSO) 18 h prior to harvesting.

2.5.2.2 Harvesting cells treated with proteasome inhibitors

Cells were washed twice in PBS and the plates were inverted and blotted dry on clean tissue. Lysis buffer (1 % (w/v) SDS/PBS 150 μl per plate) was added and the cells scraped off with a cell scraper. Genomic DNA was digested from lysate by the addition of Benzonase (125 U/Plate) Novagen, Merck Biosciences Ltd., Nottingham, UK).

2.5.2.3 Treatment of cell lysate with isopeptidase

SiHa cells were seeded in a 90 mm dish at a density of 5×10^5 cells/dish. Cells were infected with rAd as described in Section 2.4.2.2 24 h after seeding. Cells were
harvested 48 h post infection by incubation in 1 mM EDTA in PBS followed by cell scraping and centrifugation at 2500 g for 5 min at r.t. The pellet was suspended in 400 µl of reaction buffer (25 mM HEPES pH 7.5, 10 mM DTT, 0.5 % NP40 (v/v)) and the resulting cell lysate was treated with 0.5 µl Benzonase (125U) and placed on ice for 30 min, mixing every 10 min during the incubation. Isopeptidase (4 U, Calbiochem) was added to 5 µl of reaction buffer and incubated at r.t. for 15 min. Cell lysate (2 µl) was added and the mixture incubated at r.t. for 20 min. The mixture was boiled for 5 min in Laemmlli buffer and the proteins were separated on a 12 % SDS-PAGE gel and visualized by western blot (Section 2.5.5). To determine the extent of the reaction treated and untreated control samples were probed with a ubiquitin antibody. Successful reactions were determined by significant redistribution of ubiquitin bands.

2.5.2.4 Cell fractionation
SiHa cells were fractionated according to solubility in different detergents. Following rAd infection and harvesting (see Section 2.5.2.2) the cell pellet was suspended in 200 µl of lysis buffer (1 % (v/v) NP40, 0.5 µl Benzonase (125U) and 25 mM Complete Protease Inhibitor Cocktail in PBS). The cell lysate was incubated with rotation for 1 h at 4 °C and then centrifuged at 10000 g for 10 min at 4 °C. The supernatant (the “NP-40 fraction”) was reserved. The pellet was suspended in 200 µl PBS containing 1% EMPIGEN BB™ (v/v) and 25 mM Complete Protease Inhibitor Cocktail by vigorous pipetting, and incubated with rotation as before. The extract was centrifuged as before and the supernatant (the “Empigen fraction”) was reserved. The remaining protein pellet was suspended in 200 µl of 9 M urea (the “urea fraction”). All fractions were stored at – 20 °C.
2.5.3 Sample preparation from tissue sections prior to immunoprecipitation and/or gel electrophoresis

2.5.3.1 Sectioning lesions using a cryostat
HPV lesions stored under liquid nitrogen were defrosted and fixed in acetone for 3 min at -20 °C. Following 5 min rehydration in 20 ml distilled water they were placed in a plastic mould and covered in OCT compound (VWR International Ltd.). OCT compound was solidified by dipping the mould into absolute ethanol cooled to -78 °C with solid CO$_2$. The block was then crudely trimmed using a razor blade and left a further 10 min in the cryostat (Leica JUNG CM3000). A piece of moistened filter paper was attached to a cryostat chuck by immersion in chilled ethanol, OCT compound was applied to this and the lesion attached by solidifying the OCT compound in chilled ethanol. The chuck was mounted into the cryostat and excess OCT compound was removed with a razor blade. Slices (20 μm) were taken through each lesion from top to bottom. Sections were collected in pairs using forceps pre-cooled on dry ice; each pair was stored at -80 °C in a 1.5 ml microcentrifuge tube.

2.5.3.2 Protein extraction from lesions
Sectioned lesions were defrosted and 40 μl of protein extraction buffer (1 mM DTT, 10 % (w/v) SDS in PBS) added to each tube. Following 2 min incubation with 0.5 μl Benzonase (125U) at 4 °C, the protein was solubilized vigorously using a pipette. Samples were boiled for 20 min before SDS-PAGE (Section 2.5.5).

2.5.4 Immunoprecipitation techniques

2.5.4.1 Covalent coupling of antibody to protein G sepharose beads
Protein G sepharose beads (50 μl) were equilibrated by washing in binding buffer (1 % NP-40 / PBS) and centrifuged 3000 g for 5min to remove ethanol (two washes were performed). For antibody coupling, equilibrated beads were suspended in 1 ml of binding buffer and antibody was added. The mixture was rotated for 1 h at 4 °C to allow
antibodies to bind. Beads were washed twice in 1 ml 0.2 M sodium borate (pH 9.0) by centrifugation as before. Beads were suspended in 1 ml of this buffer and 20 µl were taken for analysis. Solid dimethyl pimelimidate (DMP) was added to a concentration to 20 mM. The mixture was rotated for 30 min at r.t. and 20 µl were taken for analysis. The reaction was stopped by washing the beads once in 1 ml of 0.2 M ethanolamine (pH 8.0) by centrifugation as before followed by suspension in 1 ml fresh ethanolamine buffer and rotation for 2 h at 4 °C. Beads were then washed twice in 1 ml PBS by centrifugation as before, suspended in 1 ml of PBS containing 0.01 % (w/v) sodium azide and stored at 4 °C.

2.5.4.2 Analysis of antibody coupling efficiency
Beads were removed prior to and after the addition of the covalent cross linking agent DMP, as described above. They were boiled for 5 min in 2 volumes of Laemmli buffer, and separated by SDS-PAGE and stained with Coomassie Brilliant Blue R-250 as described in Section 2.5.5. Coupling was deemed successful if antibody heavy chains could not be detected after the addition of DMP.

2.5.4.3 Immunoprecipitation
SiHa cells were grown in 90 mm dishes and infected with rAd as described in Section 2.4.3. They were harvested 24 h post infection in 200 µl of lysis buffer (1 % (w/v) SDS in PBS), treated with 0.5 µl Benzonase (125 U) and centrifuged at 13000 g for 10 min. Supernatant (50 µl) was mixed with 950 µl binding buffer (1 % (v/v) NP-40 in PBS), incubated at 4 °C on an end over end rotator for 1 h and centrifuged at 13000 g for 10 min at 4 °C to remove any precipitated protein. The supernatant (950 µl) was mixed with 5 µg antibody and allowed to bind on an end over end rotator as before. Equilibrated protein G sepharose beads (Section 2.5.4.1; 50 µl) were added to the mixture, which was rotated for 1 h at 4 °C. Following centrifugation at 1000 g for 2 min
Chapter 2 Materials and Methods

at r.t. beads were suspended in 1 ml of binding buffer, this wash was repeated 4 times. The proteins were eluted by boiling in 20 µl Laemmli buffer (-DTT) for 5 min at 95 °C and visualised by SDS-PAGE and western blot (Section 2.5.5).

2.5.4.4 Immuno precipitation using antibodies coupled to protein G sepharose beads
Beads that had been coupled to antibodies were washed 3 times in binding buffer and suspended in 1 ml of binding buffer as described in Section 2.5.4.1. Cell lysates and beads were incubated with rotation for 3 h at 4°C. Beads were then washed and treated as described in the previous section.

2.5.5 Gel electrophoresis and protein analysis

2.5.5.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE)
Gels were cast in Mini-PROTEAN® II gel apparatus (Bio-Rad Laboratories Ltd.) according to the table below. Samples were loaded onto gels and separated by electrophoresis in gel running buffer (25 mM Tris pH 8.3, 200 mM glycine, 0.1 % SDS) at 150 V and 200 mA until the dye front reached the end of the gel. Rainbow™ Molecular Weight Markers (Amersham Pharmacia Biotech UK Ltd.) were used to determine the mass of separated proteins.

<table>
<thead>
<tr>
<th>Water</th>
<th>12 %</th>
<th>15 %</th>
<th>Stack gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProtoGel® (30 % acrylamide, 0.8 % bis-acylamide)</td>
<td>4.0 ml</td>
<td>5.0 ml</td>
<td>1.7 ml</td>
</tr>
<tr>
<td>1.5 M Tris (pH 8.8)</td>
<td>2.5 ml</td>
<td>2.5 ml</td>
<td>-</td>
</tr>
<tr>
<td>1.0 M Tris (pH 6.8)</td>
<td>-</td>
<td>-</td>
<td>1.25 ml</td>
</tr>
<tr>
<td>10 % SDS</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>10 % APS</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>4 µl</td>
<td>4 µl</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Table 2.4 Polyacrylamide gel recipes

2.5.5.2 Silver staining of SDS-PAGE gels
Gels were fixed in 50 % (v/v) methanol for 30 min, incubated in 0.019 % (w/v) sodium thiosulfate solution for 1 min and briefly washed three times in ddH₂O. Gels were then
Chapter 2

Materials and Methods

incubated with staining solution (0.37 % (w/v) formaldehyde, 0.26 % (w/v) silver nitrate) for 8 min and briefly washed three times with ddH₂O. Bands were visualized using developing solution (2 % (w/v) sodium carbonate, 0.016 % (w/v) formaldehyde, 0.004 % (w/v) sodium thiosulfate). The staining reaction was stopped with 1 % (v/v) acetic acid.

2.5.5.3 Coomassie blue staining of SDS-PAGE gels
SDS-PAGE gels were incubated in Coomassie blue stain (0.25 % (w/v) Coomassie Brilliant Blue R-250, 50% (v/v) methanol, 10 % (v/v) acetic acid) for 30 min with shaking. Gels were rinsed three times in ddH₂O and incubated in destain solution (50 % (v/v) methanol, 10 % (v/v) acetic acid) overnight with shaking, a tissue being placed in the container to soak up excess dye.

2.5.5.4 Transfer of proteins to membranes (western blotting)
Protein from gels was transferred to Immobilon-P membrane (Millipore Ltd.) using a Mini Trans-Blot® (Bio-Rad Laboratories Ltd.) at 150 V, 200 mA for 2 h in transfer buffer (25 mM Tris-HCl pH 8.3, 200 mM glycine, 20 % (v/v) methanol). Membranes were blocked by incubation with Marvel solution (5 % (w/v) Marvel (Premier International Foods Ltd., Spalding, UK) in PBS) overnight at 4 °C.

2.5.5.5 Detection of protein on membranes
Primary and secondary antibodies were diluted in Marvel solution before use (see antibody table “Table- 2.5”). Membranes were incubated in primary antibody for 1 h at r.t., rinsed in PBS and washed three times in PBS containing 0.1 % (v/v) TWEEN® 20 (Sigma-Aldrich Company Ltd.) for 5 min at r.t. This process was repeated using the appropriate secondary antibody. Binding of the secondary antibody was visualized using the ECL ™ Western blotting analysis system (Amersham Biosciences Ltd., Little
Chalfont, UK) followed by exposure to Kodak MXB X-ray film (Xograph Imaging Systems Ltd., Tetbury, UK).

2.6 Staining and imaging techniques

2.6.1.1 Antibody staining of cells grown on cover slips
Cells that had been grown on and either transfected or infected on cover slips (see Section 2.4) were washed twice in PBS, fixed in 100 % methanol for 2 min at -20 °C and washed twice in PBS. They were then blocked in 300 µl of blocking solution (2 % (w/v) BSA in PBS) for 1 h. Antibodies were diluted (see “Table 2.5.”) in staining solution (1 % (v/v) FCS in PBS). Cover slips were inverted and each was placed on a 50 µl drop of primary antibody on a sheet of sealing film and incubated in a darkened humidified chamber for 1 h at r.t. They were then washed once in PBS containing 0.1 % (v/v) TWEEN® 20 and three times in PBS. If required, cover slips were incubated in a second primary antibody and then washed as before. They were then incubated in a solution of secondary antibody(s) containing 1µg/ml DAPI as above. They were washed as before, rinsed in distilled water, blotted dry and mounted on a 5 µl drop of Citifluor™ (Agar Scientific Ltd., Stansted, UK) on a microscope slide.

2.6.1.2 MitoTracker staining of cells grown on cover slips
Cells were transfected on cover slips as described in Section 2.4.1. Medium was removed 30 min prior to fixation and replaced with 500 µl medium containing MitoTracker Red (Molecular Probes™, Invitrogen Ltd.) diluted 1/4000 from stock (1 µM in DMSO stored -20 °C). Cells were incubated in 5 % CO₂ for 30 min at 37 °C before being fixed with methanol and stained as above.
2.6.1.3 Antibody staining of formalin fixed paraffin embedded tissue sections

Formalin fixed paraffin embedded tissue sections were given three 5 min washes in xylene, rehydrated in graded ethanol (100 %, 80 %, 50 % and then 30 % (v/v), sequentially; 5 min in each) and washed in PBS. They were then heated in a microwave on high power for 18 min in phosphate citrate buffer (0.05 M sodium phosphate, 0.025 M citric acid, pH 6.0). The sections were allowed to cool on the bench for 5 min before two 5 min washes in PBS. The sections were then blocked for 2 h in 10 % (v/v) normal goat serum (Dako Ltd., Ely, UK) in PBS. Antibody solutions were prepared as in Section 2.6.1.1. Sections were wiped to remove excess blocking solution, 50-200 µl of primary antibody was applied to the tissues, and the slides were placed in a darkened humidified chamber overnight at 4 °C. They were then washed three times for 5 min in PBS containing 0.1 % (v/v) TWEEN® 20. The incubation was repeated with a second compatible (i.e. rabbit and mouse) primary antibody solution; sections were washed again and subsequently incubated, with Alexa 488 and 594 conjugated secondary antibodies containing 1 µg/ml DAPI, washing after each incubation as before. The slides were then rinsed in distilled water and mounted in Citifluor using an appropriately sized cover slip.

2.6.2 Imaging techniques

2.6.2.1 Low power microscopy

Low power images of tissue sections were acquired using a Labophot II microscope (Nikon Ltd., Kingston-upon-Thames, UK). Images were acquired using a SenSys monochrome camera using IPLab imaging software (Roper Scientific, Marlow, UK). Three colour images were produced using the software to overlay separate channels.
2.6.2.2 Confocal microscopy
Cells images were acquired using a Leica DMRXE upright microscope (Leica Microsystems Ltd., Milton Keynes, UK) and a 100 x objective lens, unless otherwise stated. Specimens were scanned using the following excitation (ex) and emission (em) wavelengths: DAPI, ex 359 nm, em 395-520 nm; Alexa-488, ex 488 nm, em 505-685 nm; Alexa-594, ex 568 nm, em 595-710 nm; Cy5, ex 647 nm, em 655-725 nm. Fluorophores were excited sequentially to reduce cross channel bleed through and to allow maximum emission detection. Specimens were scanned with 0.5 µm intervals between Z sections with 4 accumulations per frame. Images are presented as an overlay projection of all frames, resulting in a composite image, or as an individual optical section when examining fine structures.

2.6.2.3 Quantitative confocal microscopy
To quantify protein expression levels (using fluorescence), samples were stained using identical concentrations of both primary and secondary antibodies. Image colour was adjusted using the overglow-underglow function; where possible, gain and overglow were adjusted to remove all off scale pixels (green pixels have grey scale values <0, blue pixels have grey scale values >255. When this was not possible, settings were set to give the lowest fluorescence at which an image could be obtained. Fluorescence intensities were analysed using built-in software (Leica. Microsystems Ltd.).

2.6.2.4 Time-lapse microscopy
Cells were seeded at 3x10^5 cells per dish in 60 mm glass bottom dishes (MatTek Corporation, Ashland, USA). Cells were grown for 24 h (medium A) before being transfected with EYFP16E4 using Genejuice (Section 2.4.1). Medium was replaced 12-24 h after transfection with 2 ml of warmed time-lapse medium. The cells were transferred to the chamber of a DeltaVision microscope (Olympus Ltd., London, UK)
that had been preheated to 37 °C. The cells were left to equilibrate for at least 1 h then imaged using a 100 x lens at Bin 1.

2.6.2.5 Fluorescence recovery after photobleaching (FRAP)
FRAP experiments were performed on living cells plated as described previously using a DeltaVision microscope equipped with a 488 nM Quantifiable Laser Module (QLM). The beam expander was set to position 1 and the Laser spot centred using a target cell. During centring, the laser intensity was set to 12 % for the minimum spot size. Targets were then aligned using the pre-adjusted cross hairs. Targets were bleached by a 0.05 s pulse with the laser set at 25 % power. Subsequent images were captured using softWoRx® QLM software (Applied Precision®, LLC, Marlborough, UK). Bleached targets were then tracked using a custom built patch (provided by Dan Zue NIMR) in ImageJ and then exported to and analyzed using Microsoft® Office Excel software.
<table>
<thead>
<tr>
<th>Antigen</th>
<th>Antibody</th>
<th>Raised in</th>
<th>Supplier</th>
<th>Western Blot</th>
<th>Immunohistochemistry/Immunocytochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV 16E4</td>
<td>TVG402</td>
<td>Mouse</td>
<td>In House</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>High risk HPV E1^E4's</td>
<td>TGV405</td>
<td>Phage</td>
<td>In House</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pan Keratin Ab cocktail (C2562)</td>
<td>(C2562) C-11, PCK-26, KS-90, Ks-1A3, M20, A53-B/A2</td>
<td>Mouse</td>
<td>Sigma</td>
<td>1/1000</td>
<td>1/200</td>
</tr>
<tr>
<td>Pan Keratin</td>
<td>Ab8797</td>
<td>Rabbit</td>
<td>abcam</td>
<td>-</td>
<td>1/1</td>
</tr>
<tr>
<td>Keratin 5 & 8</td>
<td>Cam5.2</td>
<td>Mouse</td>
<td>MRC</td>
<td>1/100</td>
<td>1/10</td>
</tr>
<tr>
<td>Keratin 18</td>
<td>Cy-90</td>
<td>Mouse</td>
<td>Sigma</td>
<td>1/1000</td>
<td>1/200</td>
</tr>
<tr>
<td>Keratin 1</td>
<td>LH1</td>
<td>Mouse</td>
<td>ICRF</td>
<td>-</td>
<td>1/10</td>
</tr>
<tr>
<td>Keratin 1</td>
<td>NCL-CK1</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 4</td>
<td>NCL-CK4</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 5</td>
<td>LH8</td>
<td>Mouse</td>
<td>ICRF</td>
<td>-</td>
<td>1/10</td>
</tr>
<tr>
<td>Keratin 5</td>
<td>NCL-CK5</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 16</td>
<td>LL.025</td>
<td>Mouse</td>
<td>ICRF</td>
<td>-</td>
<td>1/10</td>
</tr>
<tr>
<td>Keratin 10</td>
<td>NCL-CK10</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 10</td>
<td>K0199-12</td>
<td>Mouse</td>
<td>US Biological</td>
<td>1/100</td>
<td>-</td>
</tr>
<tr>
<td>Keratin 13</td>
<td>NCL-CK13</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 14</td>
<td>LL.001</td>
<td>Mouse</td>
<td>ICRF</td>
<td>-</td>
<td>1/10</td>
</tr>
<tr>
<td>Keratin 14</td>
<td>NCL-11002</td>
<td>Mouse</td>
<td>Novacastra</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Keratin 14</td>
<td>C9097-14B</td>
<td>Mouse</td>
<td>US Biological.</td>
<td>1/200</td>
<td>-</td>
</tr>
<tr>
<td>L437</td>
<td>L437</td>
<td>Mouse</td>
<td>Omary MB.</td>
<td>1/1000</td>
<td>1/100</td>
</tr>
<tr>
<td>3055</td>
<td>3055</td>
<td>Rabbit</td>
<td>Omary MB.</td>
<td>1/2000</td>
<td>1/1000</td>
</tr>
<tr>
<td>2D5</td>
<td>2D6</td>
<td>Mouse</td>
<td>Omary MB.</td>
<td>1/1000</td>
<td>1/1000</td>
</tr>
<tr>
<td>8250</td>
<td>8250</td>
<td>Rabbit</td>
<td>Omary MB.</td>
<td>1/2000</td>
<td>1/1000</td>
</tr>
<tr>
<td>IB4</td>
<td>IB4</td>
<td>Mouse</td>
<td>Omary MB.</td>
<td>1/1000</td>
<td>1/1000</td>
</tr>
<tr>
<td>α Tubulin</td>
<td>B012</td>
<td>Mouse</td>
<td>Sigma</td>
<td>-</td>
<td>1/250</td>
</tr>
</tbody>
</table>

85
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Code</th>
<th>Species</th>
<th>Vendor</th>
<th>Dilution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>α Mouse A488</td>
<td>A-11029</td>
<td>Goat</td>
<td>Molecular Probes</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>α Rabbit A488</td>
<td>A-11034</td>
<td>Goat</td>
<td>Molecular Probes</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>α Mouse A594</td>
<td>A-11032</td>
<td>Goat</td>
<td>Molecular Probes</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>α Rabbit A594</td>
<td>A-11037</td>
<td>Goat</td>
<td>Molecular Probes</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>α Goat A594</td>
<td>A-11058</td>
<td>Donkey</td>
<td>Molecular Probes</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>α Mouse HRP</td>
<td>NA931</td>
<td>Goat</td>
<td>Amersham</td>
<td>1/2000</td>
<td>-</td>
</tr>
<tr>
<td>α Rabbit HRP</td>
<td>NA934</td>
<td>Donkey</td>
<td>Amersham</td>
<td>1/2000</td>
<td>-</td>
</tr>
<tr>
<td>α Rat A594</td>
<td>A-21211</td>
<td>Rabbit</td>
<td>Molecular Probes</td>
<td>1-200</td>
<td></td>
</tr>
<tr>
<td>HPV2 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/750</td>
</tr>
<tr>
<td>HPV11 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>HPV1 E4</td>
<td>-</td>
<td>Rat</td>
<td>In House</td>
<td>-</td>
<td>1/500</td>
</tr>
<tr>
<td>HPV1 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/500</td>
</tr>
<tr>
<td>HPV18 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/500</td>
</tr>
<tr>
<td>HPV 4 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/750</td>
</tr>
<tr>
<td>HPV65 E4</td>
<td>-</td>
<td>Rabbit</td>
<td>In House</td>
<td>-</td>
<td>1/750</td>
</tr>
<tr>
<td>Mitochondria Mtco2</td>
<td></td>
<td>Mouse</td>
<td>RDI</td>
<td>-</td>
<td>1/100</td>
</tr>
<tr>
<td>Cyclin B GNS11</td>
<td></td>
<td>Mouse</td>
<td>Neomarkers</td>
<td>-</td>
<td>1/200</td>
</tr>
<tr>
<td>MCM7 47DC141</td>
<td></td>
<td>Mouse</td>
<td>Neomarkers</td>
<td>-</td>
<td>1/150</td>
</tr>
<tr>
<td>GAPDH MAB374</td>
<td></td>
<td>Mouse</td>
<td>Chemicon</td>
<td>1/2000</td>
<td>-</td>
</tr>
<tr>
<td>Ubiquitin Sc-8017</td>
<td></td>
<td>Mouse</td>
<td>Santa cruze</td>
<td>1/200</td>
<td>1/100</td>
</tr>
<tr>
<td>Ubiquitin Z0458</td>
<td></td>
<td>Rabbit</td>
<td>DAKO</td>
<td>1/2000</td>
<td>1/500</td>
</tr>
</tbody>
</table>

Table 2.5 Antibodies
Chapter 3 Conservation of function between E1^E4 proteins

3 Conservation of function between E1^E4 proteins

3.1 Aims
The E1^E4 protein is a complex protein with multiple and varying functions, the purposes of which are not yet fully understood. The aim of this study was to use immunofluorescent staining to determine whether the known functions of the HPV 16 E1^E4 protein (mitochondrial, keratin and cyclin B binding) are conserved in other high risk α-group E1^E4 proteins. The properties of HPV 2 E1^E4, and α–group virus that causes benign cutaneous infections, was also investigated to determine if viruses with mucosal and cutaneous tropism from the same genera behave in the same fashion. In addition to these viruses, it was decided to investigate whether the E1^E4 proteins from an evolutionary distant branch of the phylogenetic tree share functions with α-group E1^E4 proteins. The closely related HPV types 4 and 65 γ-group viruses, which cause benign cutaneous infections, were included in the study in order to determine whether they shared any functions with each other, the cutaneous HPV2 E1^E4 protein or other α-group E1^E4 proteins. It is hoped that the finding of this study will help to better understand the role of the E1^E4 protein in the virus lifecycle.

3.2 Introduction

3.2.1 Methods used to classify papillomaviruses
Initial attempts to classify papillomaviruses have investigated tissue tropism, hybridisation and restriction enzyme mapping in order to characterise different isolates (O'Banion et al., 1987). More accurate classifications were achieved using DNA sequence data (Cole et al., 1987). The first comprehensive papillomavirus classification was achieved by amplifying a fragment of the L1 open reading frame of different papillomaviruses and comparing the DNA sequences (Chan et al., 1995b). Several classifications have since followed, resulting in papillomaviridae phylogenetic trees.
with similar topologies. The currently recognised classification system includes 118 papillomavirus types which have been classed into genera (de Villiers et al., 2004) (see Fig 1.1). In addition to this, resent classification strategies have investigated whole genome alignments, which have suggested that genomes may have evolved in a modular fashion and that the high risk papillomaviruses may be more closely related than previously thought (Garcia-Vallve et al., 2005).

3.2.2 Virus evolution

Papillomaviruses have been detected in both mammals and birds, (Chan et al., 1992; de Villiers et al., 2004) and appear extremely species specific. This suggests that papillomaviruses arose in an ancestor common to mammals and birds, suggesting that these viruses are approximately 200 million years old (Chan et al., 1995b) (Fig 3.1). Since their emergence, papillomaviruses appear to have mutated remarkably slowly, making them a valuable tool for tracking animal evolution and population migration (Ho et al., 1993; Ong et al., 1993; Scherneck et al., 1983). Although modern papillomaviruses display very limited abilities to jump species (productive infections were achieved from chimp to pigmy-chimp cross infections and non-productive cross infections from cow to horse (Lancaster et al., 1977; Van Ranst et al., 1992)), papillomaviruses appear not to have truly co-evolved with their hosts for two reasons. Virus phylogeny does not mirror host phylogeny accurately, breaking with Fahrenholz’s rule\(^1\), and therefore indicating that cross infections may have occurred though history (Chan et al., 1995a), although re-classifications may change this. Selection pressure exerted on a host by a parasite is negligible when compared to the selective pressure exerted on the parasite by the host (Jermy, 1984). Therefore viral evolution should be

\(^1\) Cospeciation is the process whereby one population speciates in response to and in concert with another, and is a consequence of the associates dependence on its host for its survival.
Figure 3.1 Mammalian evolution
Diagram shows the evolution of mammals and birds from a common ancestor over 200 million years ago. The spread of closely related papillomaviruses (see Fig 1.1) identified throughout the animal kingdom is shown. The branch containing the gamma, pi, omikron and xi viruses is the most divergent throughout the animal kingdom indicating that they may be the most ancient groups. The distribution of viruses in the branch containing the mu, lambda, kappa and lotta group viruses makes it possible to speculate an age of approximately 110 million years when hosts last shared a common ancestor (Benton and Ayala, 2003). Alpha group virus distribution is limited to primates, hinting at a more recent emergence. Data from (Antonsson and Hansson, 2002; Bossart et al., 2002; de Villiers et al., 2004; Jacobson et al., 1982; Tachezy et al., 2002; Villiers de, 2001).
Chapter 3 Conservation of function between E1^E4 proteins

described as sequential evolution with the virus being forced to evolve to accommodate modifications in biochemical mechanisms in the host (Bernard et al., 1994; Chan et al., 1997; Chan et al., 1995b).

3.2.3 The nature of Papillomavirus phylogeny
Papillomavirus isolates are currently classified into 118 distinct species and, although genetic drift does occur within species, it appears to be limited. Misclassification of papillomaviruses has occurred in the past, for example, HPV55 and HPV64 are now known to be variants of HPV44 and HPV35, respectively. Interestingly, the drift in HPV18 and 16 genomic sequences can be used to track prehistoric migrations of human populations (Ho et al., 1993; Ong et al., 1993). Despite these variations, papillomaviruses appear to remain a relatively discrete phylogeny of viruses compared to viruses such as retroviruses which show vast diversification due to high mutation rates (Alberdi Leniz et al., 2004; Bartolo et al., 2005; Ciccozzi et al., 2005).

3.2.3.1 Papillomavirus mutation rates
The discrete nature of papillomavirus phylogeny is likely due to them having a mutation rate comparable to that of their hosts, (1bp/several thousand years (de Villiers et al., 2004)). This low mutation rate is partly due to papillomaviruses lacking any viral polymerase enzymes, which makes them reliant on high fidelity host cell DNA polymerases. The slow mutation rate is surprising considering that viral DNA replication occurs in cells expressing E6 and E7, which are usually associated with genetic instability (Banks et al., 1987; Bedell et al., 1989; Brusa et al., 2003; Hawley-Nelson et al., 1989). This may suggest that viruses are under constant selective pressure from sources such as the host immune responses. Various attempts to classify papillomaviruses in the past have used genes which show comparatively high levels of homology. The E4 gene sequence is of little use to taxonomists due to the lack of
homology shared between different virus subtypes. This suggests that the E4 gene may be a hotspot for the accumulation of mutations in the papillomavirus genome (Narechania et al., 2005).

This work is part of an ongoing collaboration with other lab members (Woei Peh and Heather Griffin) whose aim is to characterise the function of the E1^E4 proteins from phylogenetically diverse papillomaviruses. Protein sequences were analysed and compared using a protein alignment tool and by observing immunostaining patterns in cell culture. HPV 16, 18, 31, 35 and 45 are all high risk mucosal tropic α-group viruses and were detected with the TVG405 antibody. HPV 2 is a cutaneous tropic α-group virus detected using a specific polyclonal antibody, and HPV 4 and 65 are both cutaneous tropic γ-group viruses, also detected using specific polyclonal antibodies.

3.3 Results

3.3.1 E1^E4 protein sequence alignments
E1^E4 gene sequences for HPV 1, 2, 4, 16, 18, 31, 35, 45 and 65 were obtained from the HPV sequence website (http://hpv_web.lanl.gov/), and analysed using the Edit sequence program (DNASTAR incorporated, USA) and MultAlin sequence alignment software (http://prodes.toulouse.inra.fr/multalin/multalin.html). Alignments were performed using the E1^E4 protein sequences from the α or γ genus alone, and also from the μ genus sequence (Fig 3.2).

All α-group E1^E4 proteins investigated appear to share an N-Terminal leucine cluster (LLXLL) (Fig 3.2 A and C red arrows), which was previously shown to be required for cytokeratin association (Roberts et al., 1997; Wang et al., 2004). α-group proteins also
Figure 3.2 Sequence alignments of HPV E1\Large E4 proteins

HPV E1\Large E4 sequences aligned using MultAlin software. (A) α group sequence alignments. Note islands of sequence homology at the C and N terminus (black arrows) and the YPLLXLL domain (red arrows) as well as a proline rich region (blue arrows).

(B) γ group sequence alignments show very high sequence homology throughout the entire protein length. The red arrows indicate the region used in the charge distribution table. (C) There is considerable heterogeneity between the α, γ and μ group E1\Large E4 proteins. The green arrows indicate the leucine cluster in HPV1 E1\Large E4.
Chapter 3 Conservation of Function between ElA4 Proteins

α Group sequence alignments

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
</tr>
</tbody>
</table>

γ Group E1^E4 sequence alignments

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MFLKIPRLHIPPPPSTLRNNSYPGPPP-PRTPKLPSRRHLLEGGNRTGPRP</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>MFLKIPRLHIPPPPSTLRNNSYPGPPP-PRTPKLPSRRHLLEGGNRTGPRP</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α, γ & μ Group sequence alignments

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>RAPPEVPITRYPLLSLHQSTY</td>
<td>STPPHEPFPKCAFAQRPRGPR</td>
<td>RPL</td>
<td>DHEOLTIVSSRASSTVSLTHSFQ</td>
<td>---</td>
<td>RLL</td>
<td>QVT</td>
<td>KDGNVYVYR</td>
<td>RRL</td>
<td>M10LIHDL</td>
<td>YLKLQLK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consensus

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Chapter 3 Conservation of Function between Elα4 Proteins

Conservation of function between Elα4 proteins
Chapter 3 Conservation of function between E1^E4 proteins

share a proline rich region and a hydrophobic C-Terminal region thought to be involved in multimerisation (Bryan et al., 1998; Wang et al., 2004). A leucine cluster (Fig 3.2 C, green arrows) can also be seen in HPV 1 E1^E4, which has also been demonstrated to bind keratin (Roberts et al., 1994). Interestingly, the leucine cluster is absent in other closely related viruses, COPV, ROPV and CRPV, and although “leucine rich regions” are present in these proteins, they have not yet been shown to be involved in keratin association (Woei Peh, personal communication). The γ-group E1^E4 proteins lack a leucine cluster motif but do contain a proline rich region in the centre and hydrophobic motifs in the C-terminus. In addition to this, γ-group proteins contain a glutamic acid cluster in their central region, the purpose of which is unknown. HPV1 E1^E4 shares sequence homology with both the α and γ-group proteins depending on how alignments are performed suggesting that it may share features with both types of E1^E4 proteins (Fig 3.2, C).

3.4 The association of E1^E4 proteins to the cytokeratin network

HPV type 1 and 16 E1^E4s have all previously been shown to associate with the cytokeratin network via the leucine cluster. HPV 16 (α-group) cause an apparent collapse of the keratin network whereas HPV1 E1^E4 (μ-group) appears to bind keratins transiently before forming large cytoplasmic and nuclear inclusion granules (Roberts et al., 1994; Rogel-Gaillard et al., 1992b). To determine whether other HPV E1^E4 proteins have the ability to associate with and disrupt the keratin network, SiHa cells were transfected with E1^E4 expression vectors and subsequently analysed by immunostaining. SiHa cells are a cervical cancer cell line and so were considered to be a suitable model for investigating the properties of the high risk α-group E1^E4 proteins. It is notable that the cutaneous tropic types 2, 4 and 65 may behave differently
when expressed in differentiated cutaneous keratinocytes. Attempts to express the proteins in HaCat cells failed due to the difficulties encountered in transfecting the cells.

3.4.1 The effect of fixation on E1^E4 and cytoskeletal filament networks
To determine the optimum fixation conditions for visualising E1^E4 and cytoskeletal filament, SiHa cells were fixed with either ice cold methanol (2 min) or 5 % (w/v) paraformaldehyde (5 min). Cells were subsequently stained for keratins (C2562 pan-keratin antibody) or microtubules (B512) and DNA (DAPI) and analysed by confocal microscopy. Cells fixed with methanol contained sharp and clearly defined keratin filaments and microtubules (Fig 3.3 B, D and F). No clear keratin filaments or microtubules could be observed in cells fixed with paraformaldehyde, suggesting that this fixation process destroys filaments (Fig 3.3 A, C and E). Transfected SiHa cells revealed that all the α-group proteins tested were able to produce sharp filamentous staining patterns when fixed with both methanol and paraformaldehyde (see Fig 6.14). Because of the differences observed in keratin and microtubule staining patterns, α-group E1^E4's were fixed with methanol in all experiments. Fixation protocols had a significant effect on the staining patterns observed for γ type E1^E4 proteins. Paraformaldehyde fixation resulted in a sharp E1^E4 filamentous staining pattern. Filaments could also be observed after methanol fixation but were significantly less apparent (compare Fig 3.4 D, (methanol) with Fig 3.7 S, (paraformaldehyde)). As a result of this finding, cells transfected with γ-group proteins were fixed using both methods and the findings are discussed in the following sections.

3.4.2 Association of E1^E4 proteins to the cytokeratin network
SiHa cell transfected with α-group E1^E4 expression vectors were fixed with methanol
Figure 3.3 The effect of methanol and paraformaldehyde fixation on keratin and microtubules
SiHa cells were fixed with either methanol (-22 °C, 2 min) or paraformaldehyde (rt, 5 min) and subsequently stained for keratins or microtubules (red) and DNA (DAPI, blue). Paraformaldehyde fixation disrupted the filamentous appearance of both keratins and microtubules (A, C, E). Both microtubules and keratin filaments remained intact after methanol fixation (B, D, F). Scale bars denote 5 μm.
and stained for E1^E4, keratin (C2562) and DNA (DAPI). All α-group E1^E4 proteins investigated were shown to associate with the cytokeratin network in SiHa cells (Fig 3.4). E1^E4 staining had a variety of different structures including filaments bundles and aggregates. The majority of these structures colocalised with keratins suggesting that the association of α-group E1^E4 proteins to the keratin network induces the collapse of the affected network. This may suggest that a similar keratin bundling mechanism is conserved throughout α-group E1^E4 proteins regardless of tissue tropism.

Cells transfected with HPV 4 or 65 E1^E4 were fixed with either methanol or paraformaldehyde. Cells fixed with methanol contained weakly filamentous E1^E4 that partially colocalised to the keratin network in some cells (Fig 3.4 D-F, W-Y). Not all E1^E4 filaments co-stained with keratins (arrow Fig 3.4D-F), suggesting that γ-group E1^E4 proteins associated with a second filament network. Perinuclear keratin filament collapse was not observed to occur with 4 or 65 E1^E4. Cells transfected with HPV 4 or 65 E1^E4 fixed with paraformaldehyde contained significantly sharper E1^E4 filaments (see Fig 3.5) that did not colocalise with keratins filaments (data not shown), which were destroyed during the fixation process (see Fig 3.3). This finding suggests that keratin association may be a feature common to α-group E1^E4 proteins but not necessarily γ-group E1^E4's.

3.4.3 The association of E1^E4 proteins to microtubules
Having determined that γ-group E1^E4 proteins may be associated with cytoskeletal filaments other than keratin, the association of E1^E4 filaments to actin and microtubules was investigated (for further information on both see section 4.2.1).
2E1^E4 Merge E1^E4 DAPI Keratin

A B C

4E1^E4

D E F

16E1^E4

G H I

18E1^E4

J K L
Figure 3.4 HPV E1\(^{+}\)E4 proteins have the capacity to associate with and disrupt keratin filament networks.
SiHa cells transfected with HPV E1\(^{+}\)E4 expression vectors and stained for keratin (red), E1\(^{+}\)E4 (TVG405, green) and DNA (DAPI, blue). All α-group E1\(^{+}\)E4 proteins demonstrated the ability to associate to and disrupt cytokeratin filament networks. HPV 4 and 65 E1\(^{+}\)E4's colocalised to keratin but to a lesser extent than the α-group. Non keratin-associated E1\(^{+}\)E4 filaments were visible with HPV 4 (arrow D-F). Scale bars denote 5 μm.
Neither α nor γ-group proteins were found to associate with actin filaments, which were visualised using phalloidin (Data not shown). SiHa cells were transfected with E1^E4 expression vectors and fixed as described in section 3.4.1 before being stained for E1^E4 and α-tubulin (B512). High power confocal images were taken and individual optical slices closely examined. α-group E1^E4 proteins did not show any evidence of colocalisation with microtubules (Fig 3.5).

3.4.4 γ-group proteins colocalise well with microtubules.

The γ-group HPV 4 and 65 E1^E4 proteins were both observed to colocalise perfectly with microtubules. In addition to colocalisation, γ-group E1^E4 proteins appeared to cause an increase in microtubule filament thickness (up to 300 nm compared to 23 nm in the absence of E1^E4). γ-group E1^E4 association also appeared to prevent disruption of microtubules by paraformaldehyde fixation, since intact microtubules were observed in E1^E4-containing cells but were not detected in the neighbouring E1^E4-negative cells (Fig 3.5 S-X). Unlike α-group proteins, which caused the collapse of the associated keratin network, no microtubule collapse was observed at time points up to 72 hours.

3.4.5 Association of E1^E4 proteins to mitochondria

In addition to associating with the cytoskeleton, HPV 16 E1^E4 has previously been reported to interact with mitochondria (Raj et al., 2004). Healthy mitochondria appear as punctate structures in the cytoplasm, possessing either a concave shape or appearing as long interconnected tube-like structures. Mitochondria are highly dynamic organelles capable of undergoing both fusion and fission events in response to changing intracellular environments (Otsuga et al., 1998; Yaffe, 1999). It was reported that mitochondria in HPV 16 E1^E4-expressing cells reorganise into a large perinuclear
Figure 3.5 The association of E1\(^{\gamma}\)E4 proteins with microtubules
SiHa cells transfected with \(\alpha\)-group HPV E1\(^{\gamma}\)E4 expression vectors fixed with methanol and stained for \(\alpha\)-tubulin (red), E1\(^{\gamma}\)E4 (TVG405, green) and DNA (DAPI, blue). Images of \(\alpha\)-group E1\(^{\gamma}\)E4 proteins with a filamentous appearance show that filaments do not colocalize (A-R). Microtubules are unaffected by the expression of \(\gamma\)-group E1\(^{\gamma}\)E4 proteins. SiHa cells transfected with \(\gamma\)-group E1\(^{\gamma}\)E4 proteins were fixed with paraformaldehyde (S-X), \(\gamma\)-group E1\(^{\gamma}\)E4 proteins colocalised with and protect microtubules against paraformaldehyde mediated disruption (note, no microtubules are observed in neighbouring cells). Microtubule filament morphology is also altered by 4 and 65 E1\(^{\gamma}\)E4 expressions. Scale bars denote 5 \(\mu\)m.
bundle. E1/E4-associated mitochondria also lose membrane potential, which may induce apoptosis. It was also shown that the leucine cluster is essential for mitochondrial association. As the leucine cluster is conserved throughout α-group E1/E4 proteins, it was decided to investigate whether other E1/E4 proteins also colocalise with mitochondria.

SiHa cells were transfected with E1/E4 expression vectors, and mitochondria were labelled with mitotracker red (Molecular Probes) prior to fixation with methanol (α-group) or paraformaldehyde (γ-group), and staining for E1/E4 (different fixation procedures did not affect mitochondrial staining patterns). At 24 hours all α-group E1/E4 proteins were observed to localise with and cause disruption of mitochondria (Fig 3.6). All α-group E1/E4's appeared to behave in a similar fashion and displayed a mixed population of filamentous, bundled and speckled patterns. Mitochondrial association was not observed in all cells but increased in frequency at later time points (Data not shown). Both small punctate (mitochondrial shaped) and larger perinuclear (presumably keratin associated) E1/E4 structures were observed to co-stain with mitochondria. This finding may suggest that on some occasions E1/E4 associates to individual mitochondria, whereas on other occasions mitochondria become associated to the collapsed keratin bundles. γ-group E1/E4 proteins did not display any detectable mitochondria associations, suggesting that these proteins lack the ability to associate with mitochondria.

3.4.6 The association of E1/E4 with Cyclin B
HPV 16 E1/E4 has previously been reported to induce cell cycle arrest (G2) by sequestration of the cyclin B CDK 1 complex into the cell cytoplasm (Davy et al.,)
Figure 3.6 The association of E1^E4 proteins with mitochondria
SiHa cells were transfected with α-group E1^E4 expression vectors and stained with mitotracker red (Molecular Probes, red) before being fixed with methanol and stained for E1^E4 (TGV405, green) and DNA (DAPI, blue). All α-group E1^E4 proteins were seen to colocalize with mitochondria (A-R). SiHa cells transfected with γ-group E1^E4 expression vectors were treated in the same way but fixed with paraformaldehyde (S-X). Differential fixation procedures did not affect mitochondria staining (compare A-R with S-X). No co-localization was seen to occur between 4 or 65 E1^E4 and mitochondria. Scale bars denote 5 μm.
Chapter 3 Conservation of function between E1^E4 proteins

2005). The ability of the α and γ-group E1^E4 proteins to associate with cyclin B was investigated. SiHa cells were transfected with E1^E4 expression vectors, and cells were fixed at 24 or 48 h post-transfection with methanol (α-group) or paraformaldehyde (γ-group), and stained for E1^E4 and cyclin B (GNS11). HPV 16, 18, 31, 35 and 45 E1^E4 could all be observed to colocalise with cyclin B in SiHa cells (Fig 3.7 D-R). No HPV 2 E1^E4 /cyclin B double positive cell could be located at either time point in SiHa cells (Fig 3.7 A-C). This result may suggest that the association with HPV 2 E1^E4 is weaker or that HPV 2 E1^E4 may behave in a similar fashion to HPV 1 E1^E4 which has been reported to block cell cycle by preventing cyclin B accumulation in the cell (Knight et al., 2004). Although the association of type 16 E1^E4 to cyclin B is well characterised further studies using synchronised cells may be required to determine the existence of the interaction between other α-group E1^E4 proteins and cyclin B.

HPV 4 and 65 E1^E4 proteins were not observed to colocalise with cyclin B (Fig 3.7 S-X). In cells that stained positive for both proteins, cyclin B accumulated in the nucleus. Weak colocalisation between cyclin B and 4 E1^E4 was observed in apoptotic cells (determined by fragmented nuclei, observed in DAPI stain (see inlay Fig 3.7 T)). These results suggest that unlike α-group proteins, γ-group E1^E4 proteins lack the ability to associate with or inhibit the build up of cyclin B.

3.5 Discussion
All HPV E1^E4 proteins investigated in this study were shown to have a conserved ability to associate with and disrupt the components of the cell cytoskeleton. Whereas α-group proteins associated with the cytokeratin network, γ-group proteins appeared to preferentially associate with microtubules although some evidence of partial keratin
Figure 3.7 Association of E1EE4 proteins to cyclin B
SiHa cells transfected with α-group E1EE4 expression vectors were fixed with methanol and stained for cyclin B (GNS-11, red) E1EE4 (green) and DNA (DAPI, blue). Cyclin B colocalisation could be seen with HPV 16, 18, 31, 35 and 45 (D-R). HPV 2 E1EE4 was not observed to colocalize with cyclin B and double positive cells could not be found (A-C). SiHa cells transfected with γ-group E1EE4 expression vectors were treated in the same way but fixed with paraformaldehyde. No colocalisation between 4 or 65 E1EE4 was observed (except in apoptotic cells arrow S-T (inlay shows cells nucleus T)), cyclin B could be seen to accumulate in the nucleus of some cells HPV 4 or 65 E1EE4 indicating that nuclear import was unaffected. Scale bars denote 5 μm.
colocalisation was observed. The α-group E1^E4 proteins showed no sign of colocalising to microtubules in SiHa cells, whereas γ-group proteins showed preferential colocalisation to microtubules. It has since been discovered that when expressed in the NIKS cell line, (containing keratins 5, 14, 13), HPV 4 and 65 E1^E4 can associate with keratins in addition to microtubules (personal communication, woei Peh). These findings mean that cellular factors (most probably the expression of native keratin subtypes) influence the ability of the γ-group E1^E4 proteins to associate with different components of the cell cytoskeleton. The α group viruses are found in both mucosal and cutaneous sites, γ-types only infect cutaneous sites, so in vivo are perhaps more likely to behave as they do in NIKS.

E1^E4 proteins from both groups caused the disruption of affected cytoskeletal filaments, and to filament collapse in the case of the α-group proteins, which presumably affects filament function. HPV 4 and 65 E1^E4 were shown to protect microtubules from paraformaldehyde induced disruption whereas 16 E1^E4 was able to protect keratin filaments against paraformaldehyde disruption (see Fig 6.14). These findings may suggest some form of stabilisation or cross-linking between E1^E4 proteins and cytoskeletal components. Both α and μ-group E1^E4 proteins (HPV 1,11,16) have previously been shown to have the ability to multimerise via a C-terminal motif (Ashmole et al., 1998; Bryan et al., 1998; Roberts et al., 1997; Wang et al., 2004). In the case of HPV16 E1^E4 multimerisation is believed to aid filament reorganisation (Wang et al., 2004) and it is tempting to speculate that HPV 4 and 65 E1^E4 proteins may cause microtubules stabilisation by a similar process.
Chapter 3 Conservation of function between $E1^4$ proteins

All the α-group proteins investigated have demonstrated the ability to associate with and aggregate mitochondria whereas γ-group $E1^4$ proteins did not. To determine whether this ability is unique to all α-group viruses and absent in all γ group proteins would require the investigation of additional virus subtypes. Although the purpose of this function remains unclear, it has been reported to induce apoptosis, which may aid virus release (Raj et al., 2004). α-group viruses are only found in primates suggesting that they may be a more recently evolved group. If this is the case then mitochondrial association may be a more recently evolved function that offers an evolutionary advantage to this group of viruses.

HPV 16 is known to induce cell cycle arrest via its ability to sequester active cyclin B into the cytoplasm (Davy et al., 2000; Davy et al., 2005). This is the likely mechanism for $E1^4$ induced cell cycle arrest, since active cyclin B/CDK complexes are required to enter the nuclease for cell cycle progression. In this chapter it has been shown that HPV 18, 31, 35, and 45 $E1^4$ proteins also colocalise with cyclin B in the cytoplasm. This observation suggests that these proteins may be able to induce cell cycle arrest by a similar mechanism. This was not apparent in cells expressing the other α $E1^4$ protein HPV 2 $E1^4$. Instead HPV 2 $E1^4$ expressing cells contained low levels of cyclin B. It is therefore possible that HPV 2 $E1^4$ inhibits the build up of cyclin B in the absence of colocalisation as has been reported for the μ-group HPV1 $E1^4$ protein (Knight et al., 2004).

HPV 4 and 65 do not appear to colocalise with cyclin B. Cells that contain both $E1^4$ and cyclin B showed cyclin B accumulation in the nucleus, suggesting that these proteins did not inhibit cyclin B build up or cause cytoplasmic sequestration. It is not
known whether HPV4 and 65 E1^E4 cause cell cycle arrest, however, both proteins were shown to affect microtubules, which in itself may disrupt the cell cycle. Cells arrested in this way by inhibitors such as taxol usually contain restructured chromatin (Barboule et al., 1997; Jordan et al., 1996). Condensed chromatin could not be observed in cell expressing HPV 4 and 65 E1^E4, indicating that if cell cycle arrest has occurred, it may be through some other pathway.

In summary, these data suggest that ability to disrupt elements of the cytoskeleton is a conserved function that is common to all the E1^E4 proteins investigated. The α-group proteins were shown to localise selectively to the cytokeratin network, which is believed to affect cell integrity and aid virion release. The γ-group protein have the ability to affect both keratin and microtubules depending on the environment in which they are expressed, which gives them the potential to affect both the cell cycle and the cell integrity. These findings suggest that although E1^E4 functions appear to vary between different virus subtypes, the ability to interact and disrupt the cell cytoskeleton is highly conserved in distantly related viruses.
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells

4 The effect of 16 E1^E4 on keratins in SiHa cells

4.1 Aims
Although the association between the HPV E1^E4 proteins and keratins has been known for some time, the purpose and outcome of the interaction is still not clearly understood. This work follows on from the study in Chapter 3, and aims to gain a better understanding and significance of the interaction between E1^E4 and keratins.

4.2 Introduction

4.2.1 The cell cytoskeleton
To understand the purpose of the E1^E4-keratins interaction, it is necessary to understand how the cell cytoskeleton functions in order to comprehend how the systems are being targeted by the virus. Due to the complex way in which the different components of the cytoskeleton interact, a brief overview of cytoskeletal structures has been included. The cytoskeleton is composed of a series of filament networks that are responsible for intracellular transport, cell motility and protection against mechanical damage. The cytoskeleton is composed of three distinct filament networks, the macro filaments (microtubules), micro-filaments (actin) and intermediate filaments (keratins and others), each of which has distinct properties and perform a variety of different functions. Microtubules are composed of 2 subunits, \(\alpha \) and \(\beta \) tubulins, that polymerise into hollow, cylindrical, polar filaments, 24 nm in diameter (Fig 4.1A). Microtubules originate from a single point in the cell referred to as the microtubule organising centre (MTOC), which is located in the centrosome, and are involved in intracellular transport. Microtubules exist in a state of flux referred to as dynamic instability, and can polymerise from one end whilst depolymerising from the other, producing an effect referred to as treadmilling, which can facilitate intracellular transport. Micro-filaments are formed from actin homo-polymers, and form polar filaments 5-7 nm
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells

Figure 4.1 Polymerisation of cytoskeletal filament networks
Figure shows the polymerisation of microtubules, actin and keratin filaments. Microtubules dimerise before polymerising to form hollow polar filaments ~24 nm in diameter (A), image taken from (www.cellbio.utmb.edu). Actin monomers form polar homopolymers after shedding profilin (B) image taken from (www.academic.brooklyn.cuny.edu). Keratin filaments form non polar filaments by the dimerisation of type I and type II subunits. Type I and type II keratin rod domains twist round one another to from dimers which spontaneously assemble into staggered tetramers. Protofibrils are 4 tetramers thick, four protofibrils assemble into an intermediate filament (C). Image taken from (www.biology.iupui.edu).
in diameter (Fig 4.1). Actin filaments form a network beneath the plasma membrane and function to link membrane-bound/associated proteins to cytoplasmic proteins and play a key role in cell motility. Both micro and macro filaments utilise specific motor proteins and can be targeted by various pharmacological agents that act to stabilise or destabilise/depolymerise filament networks (Alberts, 2002).

4.3 Intermediate filaments

The final components of the cytoskeleton are the intermediate filaments (IFs). IFs are distinct from the other two filament networks for a number of reasons. IFs display a remarkable level of heterogeneity; to date over 50 different human IFs proteins have been identified. Despite this, individual proteins are highly conserved throughout the animal kingdom (Markl et al., 1998a; Markl et al., 1998b). IFs appear to be more recently evolved than microtubule or actin filament systems, and can be found throughout metazoan phyla (Stuurman et al., 1998). Several different types of IF have so far been identified. These include acidic and basic keratins, desmin, vimentin, lamins, and neurofilaments. IFs all form non-polar polymers, with filaments ~10nm thick. Unlike the microtubule and actin filament networks, IFs have no known associated motor proteins and are not thought to be involved in intracellular transport although may be involved in cell migration (Long et al. 2006). IFs are not housekeeping proteins and genes encoding cytoplasmic IFs are expressed in a cell type specific or differentiation-dependent fashion (Coulombe et al., 2000). IFs are significantly more stable than microtubules and actin, forming insoluble networks. Cells lacking IFs are more likely to undergo apoptosis or rupture when exposed to mechanical stress (Takahashi et al., 1999)
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells

4.3.1 Keratin polymerisation
All keratins contain head and tail domains connected by a long α-helical rod domain, ~310 amino acids in length, comprised of long heptad repeats containing leucine or hydrophobic residues at positions “a” and “d” of the helix. Keratins form stable, non-covalent, obligate heteropolymers with specific binding partners. The type II keratin, K8, forms a network with its type I binding partner, keratin 18 in hepatocytes and simple epithelium. Keratins K5 and 14 form a network in undifferentiated basal epithelial cells, K4/13 in differentiated mucosal epithelium and K1/10 in differentiated cutaneous epithelium (reviewed in (Coulombe et al., 2002)). Polymers are formed when the rod domain of types I and II keratins twist round one another to form parallel coiled-coil dimers. Dimers assemble into staggered tetramers, which form the basic building blocks of filaments. Keratin intermediate filaments are composed of blocks of tetramers, 8 units thick, forming filaments ~10nm in diameter (Fig 4.1C). The keratin polymerisation process results in a very flexible fibre, which has tremendous tensile strength, giving cells the ability to resist damage. Experimental evidence suggests that head and tail domains do not play a part in the polymerisation process (reviewed in (Fuchs, 1994)). Various conserved phosphorylation sites have been identified in both domains. It has been suggested that the tail domain may make a significant contribution to the elasticity of keratin filaments (Coulombe et al., 2000).

4.3.2 Keratin filament organisation
The properties of the keratin filament network, is thought to be regulated in a number of different ways. Rheological studies investigating the mechanical properties of keratin filament suspensions have provided some interesting information about the nature with which keratin filaments interact with one another. The elastic properties of keratin IF suspensions cannot be entirely explained by steric forces (a simple solution of tangled/overlapping filaments in solution would not behave in such a way).
Interestingly the properties of keratin IF suspensions are very comparable to those of F-actin filaments in the presence of exogenous cross-linking proteins. This finding suggests that keratins filaments may be able to interact (cross-link) with one another in the absence of other proteins (Ma et al., 1999). An innate cross linking ability would significantly increase the mechanical strength of the network formed. Expression of different keratin monomers also alters keratin filament network architecture (Coulombe et al., 1989). Keratin networks have demonstrated the ability to relocate and reorganise in cells during processes such as wound healing, cell migration and mitosis (Paladini et al., 1996).

4.3.3 Keratin-associated proteins
Unlike other filament networks, keratins appear to have no associated motor proteins. To date only three cellular keratin-specific binding proteins have been identified (Coulombe et al., 2000). These are filaggrin and trichohylin, both of which are found in differentiated epithelium. These proteins are believed to play a role in altering keratin network architecture as cells differentiate, in order to increase their mechanical strength (Hamilton et al., 1991). The keratin network is reorganised during mitosis, the process is regulated by phosphorylation and the 14.3.3 protein is though to bind phosphorylated keratins modulating their solubility (Liao et al., 1996). Another keratin-associated protein is plectin, which acts as a cytoskeletal cross-linking protein that attaches the keratin network to microtubules and actin filaments (Seifert et al., 1992). As well as associating with structural proteins, keratins have been reported to associate with a number of signalling proteins (reviewed in (Paramio et al., 2002)).

4.4 Biochemical modifications to keratins
Keratins are known to undergo a number of different biochemical modifications including phosphorylation, glycosylation and ubiquitination. These modifications are
involved in reorganising the keratin network and are invoked by mitosis, apoptosis, stress and differentiation-dependant stimuli. Although 20 different keratins have been identified to date, the majority of research has focused on keratins 8 and 18 which are simple epithelial types.

4.4.1 Mitotic reorganisation of the keratin network

The phosphorylation of keratins was first shown by 2D gel electrophoresis (Gilmartin et al., 1980). Mitotic arrest has been demonstrated to induce phosphorylation and glycosylation of keratin 8 and 18 in hepatocytes, during which time keratin filaments depolymerise and form numerous small inclusion bodies (Chou et al., 1993a). Type II keratins become phosphorylated during mitosis at the highly conserved motif Ser-73 residue by p38 mitogen-activated protein kinase (MAPK) in tissues and cultured cells (Ku et al., 2002a; Liao et al., 1997; Toivola et al., 2002). Phosphorylation of keratin 8 at Ser 23 and 431 appears to occur upon stimulation of the EGF receptor and during mitotic arrest, and is thought to be facilitated by mitogen activated protein kinase (MAPK), and CDC2 kinase (Ku et al., 1997b). A major physiological phosphorylation site on the type 1 keratin K18, Ser 52, is part of a consensus site for cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase, S6 kinase and PKC and becomes phosphorylated during interphase thereby facilitating filament reorganisation (Ku et al., 1994). The soluble pool of keratin is not differentially phosphorylated, suggesting that interaction with other cellular factors is responsible for the inhibition of keratin polymerisation in the cytosol (Chou et al., 1993b). It has since been discovered that the 14-3-3 protein bind to keratin 18 upon phosphorylation at Ser-33, and act as solubilzation co-factor (Ku et al., 1998; Liao et al., 1996). The binding of 14-3-3 to the cytokeratin network has been demonstrated to modulate keratin filament solubility and mitogenic progression (Ku et al., 2002b).
4.4.2 Keratin modifications during apoptosis

Phosphorylation of Keratin 18 at Ser-53 precedes cleavage by caspases 3, 6 and 7 in a conserved, non-alpha-helical region. The caspase recognition site in keratins is conserved in lamins and other IF proteins, but interestingly, type II keratins seem to be remarkably resistant to apoptosis induced proteolysis (Caulin et al., 1997). The M30 epitope of keratin 18 becomes exposed upon caspase cleavage resulting in a 26kDa fragment becoming apparent in apoptotic cell lysates (Leers et al., 1999). Caspase cleavage of keratin 14 and 19 also produces low molecular weight fragments (Ku et al., 2001). Keratin 10 appears to lack a caspase cleavage site, which may reflect its role in terminally differentiated epithelia where the integrity of the K1/10 network is important. Despite being degraded during apoptosis, keratins have been shown to play a vital role in regulating cellular responses to pro-apoptotic signals. Studies have shown that cells expressing a keratin 8/18 network are more resistant to TNF and Fas-mediated apoptosis than those that lack keratins. Resistance is thought to occur by the binding of downstream signalling molecules such as TRADD and Raf-1 (Inada et al., 2001; Ku et al., 2004). Knock out/in studies have demonstrated that cells show greater sensitivity to pro-apoptotic signalling in the absence of keratins (Marceau et al. 2004). This suggests that as well as providing mechanical strength to cells, keratins also allow the cell to survive in stressful environments in which it would normally undergo apoptosis.

4.4.3 Keratin turnover and ubiquitination

The ubiquitination of keratins was first identified in Mallory bodies (see section 4.5.2) formed in mice (Ohta et al., 1988). Since then it has been demonstrated that keratins are ubiquitinated and then degraded via the proteasome as part of keratin network turnover. The ubiquitination of keratins is thought to be regulated in part via phosphorylation. The phosphorylation of K8 at Ser-23, 73 and 431 protects against, but does not prevent, ubiquitination whereas the link between phosphorylation of K18 and ubiquitination,
remains unclear (Ku et al., 2000). Interestingly, herpes simplex virus type 2 (HSV 2), which also infects epithelial tissue, is believed to trigger the degradation of cytokeratins with a viral kinase US3. This kinase has been demonstrated to induce phosphorylation of keratin 17, which in turn leads to its ubiquitination and degradation. Knock out studies have demonstrated a difference in cytopathic effects in the absence of the kinase (Murata et al., 2002).

4.5 Keratins and disease
Keratins are known to play a role in a number of diseases, with mutations in keratins causing skin and liver pathology. Studies of these conditions have lead to a much better understanding of overall keratin function.

4.5.1 Stress-stimulated phosphorylation of the keratin network
It has long been evident that the phosphorylation state of keratins can modulate keratin function and may be involved in keratin associated diseases. An early study was able to show the dephosphorylation of keratins in cells stressed by culturing them in the presence of acrylamide (Eckert et al., 1988). Since then further studies appear to suggest that the opposite is true and that keratins become increasingly phosphorylated in stressed cells. Experiments in mice investigating liver damage resulting from the ingestion of the hepatotoxin griseofulvin, have shown that under these circumstances, keratins become hyper-phosphorylated and form Mallory bodies (Cadrin et al., 1995; Chou et al., 1993b). Stress-mediated phosphorylation of Ser-73 on keratin 8 byPKC delta has been shown to regulate disassembly of keratin intermediate filaments. Keratins have also been shown to be phosphorylated in cells that have been exposed to shear and hypoxic stresses, resulting in the collapse of the affected network (Omary et al., 1998; Ridge, 2004; Ridge et al., 2005).
4.5.2 Mallory bodies
A number of different stresses can lead to the formation of perinuclear keratin aggregates referred to as Mallory bodies (keratin aggresomes). Mallory bodies are characterised by the presence of hyperphosphorylated and ubiquitinated keratins that can be visualised as high molecular weight keratin “smears” following SDS gel electrophoresis (Bardag-Gorce et al., 2002; Ohta et al., 1988); (Fausther et al., 2004; Nakamichi et al., 2005). A number of proteins that associate with the mis-folded or collapsed keratin networks in Mallory bodies have also been identified, including Hsp70, Hsp25 and p62 (Fausther et al., 2004; Janig et al., 2005; Zatloukal et al., 2002). Mallory body formation can be mimicked by feeding mice the phosphatase inhibitor, okadaic acid, which causes keratin networks to collapse into perinuclear aggregates that contain multiple phospho-keratin species. Mallory body formation can also be induced in other ways, e.g. by feeding mice griseofulvin, treating cells with proteasome inhibitors and over-expressing a single keratin species (Bardag-Gorce et al., 2004; Cadrin et al., 1995; Nakamichi et al., 2002). Mallory bodies are believed to form in order to clear misfolded and/or hyperphosphorylated, ubiquitinated keratins when the proteasome system becomes overloaded (Riley et al., 2003). As part of this process, cells use microtubules to sweep up keratins into perinuclear aggregates located at the microtubule organising centres (Riley et al., 2003). Aggresome formation has also been reported to result in proteasome inhibition (Bence et al., 2001; Bennett et al., 2005).

4.5.3 Keratin mutations linked to disease
Mutations in specific keratins have been linked to a number of clinical conditions. Transgenic mice over-expressing a human keratin 18 with a mutation in the highly conserved arginine 89, develop chronic hepatitis and show a predisposition to drug-induced liver damage (Ku et al., 1995; Ku et al., 1996). The phosphorylation of keratins is believed to protect against hepatotoxicity hence mutations in keratins may render
some individuals more susceptible to liver damage induced by toxic stress (e.g. binge drinking) (Ku et al., 1996; Ku et al., 2005; Stumptner et al., 2000). The disfiguring skin disease epidermolysis bullosa simplex (EBS), is an inherited disease caused by a mutations in either keratin 5 or 14 (Coulombe et al., 1991; Lane et al., 1992). The mutations prevent correct keratin polymerisation resulting in a fragile epidermis that is prone to blistering and damage. EBS may provide some insight as to why the papilloma viruses have evolved to target keratins at a specific point in the virus life cycle (discussed later).

4.6 The association of E1^E4 with keratin

The association between keratin and the E1^E4 protein was first observed in keratinocytes expressing HPV16 E1^E4, where it was noticed that the E1^E4 protein had a filamentous staining pattern. E1^E4s were shown to colocalize with keratin filaments but not actin, microtubules or nuclear lamins (Doorbar et al., 1991). Later work showed that HPV1 and 31 E1^E4 proteins also had the capacity to associate with cytokeratins (Pray et al., 1995b; Roberts et al., 1994). Whereas HPV 16 and 31 appear to be capable of binding to and collapsing the cytokeratin network, HPV 1 E1^E4 appears to associate transiently with keratins before forming large cytoplasmic inclusion bodies with no resulting disruption of keratin networks (Rogel-Gaillard et al., 1993). Mutational analysis was able to demonstrate that the conserved N-terminal YPLLXLL motif present in HPV 16 and other α-group viruses (see Fig 3.2) is responsible for its association with keratins (Roberts et al., 1997). HPV 1 contains an N-terminal LLGLL motif which can be lost due to N-terminal processing (Doorbar et al., 1996; Roberts et al., 1994; Roberts et al., 1997; Roberts et al., 2003). The ability of HPV 16 to colocalize directly to keratin filaments has also been observed by immunoelectron microscopy (Sterling et al., 1993b). More recent work has demonstrated that a region at the C-
terminus of 16E1^E4 may be responsible for modulating cytokeratin collapse (Roberts et al., 1997; Wang et al., 2004). Coimmuno-precipitation studies have demonstrated that HPV 16 has the capacity to bind directly to keratin 18 but not its type II binding partner keratin 8. It has also been shown that the E1^E4-keratin association is not just an in vitro phenomenon but it also occurs in vivo (Doorbar et al., 1997; Wang et al., 2004). From this data it has been hypothesised that E1^E4 may induce keratin filament disruption in vivo by multimerising on keratin filaments in order to aid viral egress.

4.7 Results

4.7.1 Keratin association with E1^E4 in SiHa cells
E1^E4 has previously been reported to associate with keratin networks in cells. To observe this, SiHa cells were infected using the recombinant adenovirus (rAD) HPV 16 E1^E4 expression system (Doorbar et al., 2000) before the cells were fixed and stained with antibodies raised against keratins (C2562) and E1^E4 (TVG405) at 12, 24 and 48 h post transfection. The staining patterns observed varied in appearance depending on the time after infection, and could be divided into 3 distinct groups. At 12 h post infection most cells showed a distinct filamentous pattern that colocalised almost exclusively with keratin filaments (Fig 4.2 A-C). At 24 h E1^E4 is observed to colocalise with keratins in a filamentous pattern in various states of collapse, (Fig 4.2 D-F). E1^E4 association caused the keratin filaments to appear bundled together into thicker filaments, an event that presumably precedes their collapse. When collapse occurred, keratins were found to form perinuclear bundles or cage-like structures that can wrap around the nucleus. A third punctate staining pattern was manifested as multiple E1^E4
Figure 4.2 Effect of E1\(^\text{E4}\) on keratin networks
Images show SiHa cells infected with the rAD E1\(^\text{E4}\) expression system, fixed 24 h post infection and stained for DNA (DAPI-blue), keratin (C2562-red) and E1\(^\text{E4}\) (TVG405-green). E1\(^\text{E4}\) displays three different staining patterns. E1\(^\text{E4}\) is commonly filamentous in appearance and colocalises with keratin filaments (A-C). E1\(^\text{E4}\) expression leads to the collapse of associated keratin networks into perinuclear bundles (D-F). Cells also commonly contain non filamentous E1\(^\text{E4}\) bodies which are not always keratin associated, keratin networks appear intact in some of these cells (G-I). Scale bars denote 5 \(\mu\text{m}\).
structures, including condensed perinuclear aggregates as well as more discreet cytoplasmic structures. This staining pattern increased in frequency at later time points (Fig 4.2 G-I). The perinuclear E1\(^{\text{A}}\)E4 structures always co-stained with keratins, whereas the smaller more diffuse structures did not. It is known that E1\(^{\text{A}}\)E4 has the capacity to associate with mitochondria so it was decided to investigate whether the diffuse E1\(^{\text{A}}\)E4 structures colocalise with mitochondria (see section 4.8). When taken together, these data suggest that E1\(^{\text{A}}\)E4 is capable of forming multiple keratin-associated structures, not all of them being filamentous.

4.7.2 E1\(^{\text{A}}\)E4 can collapse multiple types of keratin network when expressed in HaCat cells.

It is not known whether E1\(^{\text{A}}\)E4 can disrupt or induce modifications to other keratin networks such as 5/14 or 4/13, which are encountered in vivo. To determine whether E1\(^{\text{A}}\)E4 could interact with and disrupt these keratins E1\(^{\text{A}}\)E4 was expressed HaCat cells. HaCat cells express a keratin network that contains keratins 5, 14, 8, and 18, as well as the differentiation-dependent 4, 13, 1 and 10 keratins (Breitkreutz et al., 1991; Breitkreutz et al., 1993).

HaCat and SiHa cells were infected with rAD E1\(^{\text{A}}\)E4, fixed and stained for E1\(^{\text{A}}\)E4 (TVG405) and specific keratins (antibodies from Novocastra). SiHa cells stained positive for keratin 8 and 18; were negative for keratins 4, 5, 10 and 14; approximately 10% of SiHa cells were found to express keratins 4 and 13 (not shown); and HaCat cells stained positively for keratins 4, 5, 8, 10, 13, 14 and 18. All keratins in HaCat cells appear to colocalize with E1\(^{\text{A}}\)E4 and be remodelled in the same fashion following E1\(^{\text{A}}\)E4 association (Fig 4.3). This data must not however be over-interpreted as the different keratins form a single inter-connected network. In addition to this, the differentiation-dependent keratins 4, 13, 1 and 10 may not be modified in the same way.
Chapter 4

The effect of E1\(^{+}\)E4 on Keratins in SiHa Cells

Figure 4.3 E1\(^{+}\)E4 expression in HaCat cells

HaCat cells infected with rAD E1\(^{+}\)E4, were fixed 24 h after infection and stained for E1\(^{+}\)E4 (TVG405-Green), keratin specific antibodies (Novacastra, red) and DNA (DAPI-Blue). Keratin staining shows that E1\(^{+}\)E4 appears to have the capacity to associate with and disrupt keratins 4, 5, 8, 10, 13, 14 and 18 (A-U). Scale bars denote 5 μm.
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells
as networks at the surface of terminally differentiated epithelium. These observations suggest that 16 E1A E4 may associate with multiple keratin subtypes.

4.7.3 E1A E4 expression patterns in the presence of multiple different keratin polypeptides

HaCat and SiHa cells were infected with rAD E1A E4, fixed 12, 24, 48, and 72 h post infection and stained for E1A E4 (TVG405) and keratin (C2562). E1A E4 co-localised with keratin in both cell types and produced similar staining patterns. E1A E4 expressed in SiHa cells induced keratin 8/18 networks to collapse rapidly, leading to the formation of perinuclear bundles by 24 h. This is apparent from the rapid decrease in filamentous E1A E4 staining and the corresponding rapid increase in collapsed and aggregate staining patterns observed at 24 h (Fig 4.4 A). HaCat cells appear to be significantly more resistant to keratin network collapse due to the expression of greater keratin levels or different keratin subtypes. Unlike SiHa cells, intact filament networks could be observed in HaCat cells 72 h post infection (~35% of cells) (Fig 4.4 B). Both cell lines contained keratin-associated E1A E4 aggregates that increased in frequency with time. The graphs for both cell lines indicate that the frequency of collapsed keratin bundles levels off with time, whereas aggregates continue to increase in frequency suggesting that they may be at the end point for the collapsed structures (Fig 4.4).

4.8 The association of E1A E4 with mitochondria and keratin in SiHa cells

HPV 16 E1A E4 has previously been shown to associate with mitochondria, although the purpose of the E1A E4 mitochondrial interaction is as yet unknown (Raj et al., 2004). Using keratin and E1A E4 antibodies in conjunction with a mitochondrial stain the relationship between E1A E4 aggregates, keratin and mitochondria was investigated. SiHa cells were infected with rAD E1A E4 or rAD β-gal, treated with mito-tracker (Molecular Probes), fixed with methanol 24 h post infection, and stained for E1A E4
Chapter 4 The effect of E1A E4 on Keratins in SiHa Cells

Figure 4.4 The temporal distribution of different E1A E4 structures in HaCat and SiHa cells.

Cell count data for SiHa and HaCat cells infected with rAD E1A E4 and stained for E1A E4 and keratin (100 cells counted / time point) for filaments, bundles and aggregates for examples refer to Fig 4.2. Graph A shows a decrease in the number of SiHa cell with filamentous E1A E4 over time, cells with filamentous E1A E4 drop to 2% by 72 h. In contrast 30% of HaCat cells maintain filamentous E1A E4 at 72% indicating a greater resistance to network collapse. Both populations show and increase in collapsed keratin bundles at later time points with curves flattening at ~48 h, with SiHa cells peaking at 50% and with HaCat only 36% (A-B). Cells containing E1A E4 associated keratin aggregates continue to increase up to 72 h indicating E1A E4 aggregates to be at an end point.
Chapter 4 The effect of E1AE4 on Keratins in SiHa Cells

(TVG405) and keratin (C2562). Cells were examined using high power confocal microscopy. In the absence of E1AE4, keratins form a filamentous network throughout the cytoplasm, with mitochondria existing as punctate structures (Fig 4.5 A-C). Triple-stained cells show that E1AE4 frequently causes mitochondria and keratin to collapse together (Fig 4.5 D-G). All cellular keratins appear to be bound by E1AE4 although not all E1AE4 is keratin associated (Fig 4.5 H arrow). Non keratin-associated E1AE4 was observed to colocalize with mitochondria (Fig 4.5 compare H with I). The binding of E1AE4 to mitochondria and keratins resulted in the reorganization and colocalisation of mitochondria to keratin bundles. Furthermore, all detectable E1AE4 was observed to localise to either mitochondria or keratin, with very little unbound protein being present. The examination of SiHa cells containing filamentous E1AE4 showed that E1AE4 can selectively bind to keratins without affecting mitochondria (Fig 4.6 A-D) as previously reported (Raj et al., 2004). Conversely in cells containing E1AE4 aggregates (Fig 4.6 E-K), E1AE4 associates with both keratin and mitochondria and in some cases these aggregates can be observed in the absence of keratin network saturation or collapse. It is thought likely that keratin saturation and network collapse occur prior to aggregate formation allowing E1AE4 to associate with mitochondria. E1AE4 production may possibly cease allowing keratin networks to reform. The higher frequency of cells exhibiting aggregate staining at later time points makes this seem probable (see Fig 4.4).

4.9 E1AE4 association induces the phosphorylation of keratins

Keratin networks become highly phosphorylated as a result of normal cell cycle progression during mitosis and apoptosis, and reorganise into multiple aggregate like structures (Ku et al., 1994; Ku et al., 1998; Ku et al., 2002b). The observation of similar structures in E1AE4-expressing cells prompted us to investigate the
Figure 4.5 The association of E1\(^+\)E4 to keratin and mitochondria

Example of a SiHa cell stained for keratin (C2562) and mitochondria (Mitotracker-red), the two systems do not colocalize, keratins form cytoplasmic filament networks and mitochondria exist as punctuate structures (A-C). In the presence of E1\(^+\)E4 (TVG402-blue) mitochondria and keratin collapse together, (D and J). All keratin is bound by E1\(^+\)E4 although not all E1\(^+\)E4 is keratin associated (H arrow). E1\(^+\)E4 not associated to keratin is be bound to mitochondria (I arrow). Scale bars denote 5 \(\mu\)m.
Chapter 4 The effect of E1\(^+\)E4 on Keratins in SiHa Cells

Figure 4.6 E1\(^+\)E4 associated to keratin and mitochondria selectively
SiHa cells infected with rAD E1\(^+\)E4, fixed 24 h after infection and stained for keratin (C2562-green), mitochondria (Mitotracker-red) and E1\(^+\)E4 (DAPI-blue). E1\(^+\)E4 can be seen to associate to keratin without affecting mitochondria (A-D). Cells containing E1\(^+\)E4 aggregate structures (E-K) E1\(^+\)E4 can be observed to associate to both keratin (inlay J) and mitochondria simultaneously (arrows E-K) in the absence of keratin network saturation or collapse (E-K). Scale bars denote 5 µm.
phosphorylation state of keratins in the presence of E1^E4. SiHa cells were infected with rAD 16 E1^E4, fixed 24 h after infection and stained with one of four phospho-specific anti-keratin antibodies (LJ4 [K8, ser-73], 2D6 [K8, ser-431], 3055 [K18, ser-52] and 8250 [K18, ser-33]). Cells infected with a β-gal recombinant adenovirus expression vector were used as a negative control. The population of β-gal infected cells showed a small percentage of strongly phospho-keratin positive cells. This subset of cells could be divided into two populations consisting of apoptotic and mitotic cells (identified though DAPI staining) (Fig 4.7) (Ku et al., 1997b; Ku et al., 1998; Ku et al., 2002a; Liao et al., 1997; Toivola et al., 2002). The 3055 antibody exhibited a low level of mitochondrial background staining in SiHa cells (data not shown). At 24 h post infection ~ 50% of E1^E4-positive cells reacted strongly with phosphor-specific keratin antibodies (Fig 4.8). E1^E4 associated with both collapsed keratin bundles and filamentous keratin but the majority of these cells did not cross react with phospho-specific keratin antibodies. Cells that contained E1^E4 aggregate structures, all stained strongly with phospho-specific keratin antibodies (see Fig 4.9). The observation that keratin bundle formation can occur in the absence of phosphorylation (not shown) and that filament phosphorylation is not necessarily a consequence of keratin collapse (see Fig 4.8), may suggest that phosphorylation is a stress response induced by the association of E1^E4 to filaments. These findings suggest that the formation of keratin associated E1^E4 aggregates may occur as a direct result of keratin phosphorylation.

4.9.1 E1^E4 and Cyclin B1 colocalise in aggregates

It is known that HPV16 E1^E4 has the ability to sequester the cyclin B/CDK 1 complex into the cytoplasm (Davy et al., 2005). It is also know that the cyclin B/CDK 1 complex can phosphorylate keratin 18 (K18-Ser33) during M phase (Zhou et al., 1999). In
Figure 4.7 Phospho-specific keratin antibodies react with mitotic and apoptotic SiHa cells

SiHa cells infected with β-gal rAD were stained for phosphorylated keratin, (K8 PO4 ser-431(2D6), PO4 ser-73 (LJ4), or K18 PO4 ser-33 (8250) (red) and DNA (DAPI-blue). Apoptotic/mitotic status of cells was determined by DAPI stain (see inlays A-C). (A-B) LJ4 and 2D6 reacted strongly with cytoplasmic structures in both mitotic and apoptotic cells. (C) 8250 produced strong cytoplasmic staining in mitotic cells. Cells with normal nuclei showed little reactivity with the phospho-specific keratin antibodies. Scale bars denote 5 μm.
Figure 4.8 E1^E4 binding induces multi-site phosphorylation of type I and II keratins

SiHa cells infected with rAD E1^E4 were fixed 24 h post infection and stained for E1^E4 (TVG405-green), phospho specific keratin antibodies (K8 PO_4 ser-431 (2D6), PO_4 ser-73 (LJ4), K18 PO_4 ser-33 (8250) PO_4 ser-52 (3055)) (red) and DNA (DAPI-Blue). The keratin 18 PO_4 ser-52 antibody (3055) appeared to cross react with mitochondria (J-L). The association of E1^E4 to keratin filaments resulted in the phosphorylation of affected keratin structures. Scale bars denote 5 μm.
addition to being phosphorylated during the cell cycle, the accumulation of this phospho-keratin isoforms has also been observed during toxin induced Mallory body formation (Fausther et al., 2004). Double staining for E1^E4 and cyclin B, demonstrated that less than 10% of cells with filamentous E1^E4 showed visible co-localization (not shown). By contrast, cyclin B could be seen to colocalize with ~90% of E1^E4 aggregates. These structures were also observed to contain phosphorylated keratin (Fig 4.9). The collapse of keratins may concentrate cyclin B staining making it easier to visualise. Conversely sequestration of cyclin B to keratin filaments by E1^E4 may result in keratin phosphorylation promoting aggregate formation.

4.9.2 Is the recruitment of the cyclin B/CDK1 complex to keratin responsible for keratin phosphorylation?

Having established that both keratin phosphorylation and cyclin B-E1^E4 colocalisation predominate on E1^E4-keratin aggregates, it was decided to investigate whether the association of the cyclin B/CDK1 complex was involved in keratin phosphorylation. To examine this, a mutant E1^E4 (T22A, T23A) which is unable to sequester cyclin B into the cytoplasm was utilised. This mutation is not predicted to affect the association of E1^E4 with keratins (Davy et al., 2002). It was hypothesized that if cyclin B/CDK 1 was involved in the phosphorylation of E1^E4-associated keratin, this mutant would be unable to sequester cyclin B and may therefore affect cyclin B-dependent keratin phosphorylation. Immunostaining using the panel of phospho-specific keratin antibodies revealed that all four keratin sites still underwent phosphorylation including keratin 18 ser-33, which is a known in vitro substrate of the cyclin B/CDK 1 complex (Ku et al., 1998). These data indicate that recruitment of the cyclin B/CDK1 complex by E1^E4 is not essential for the phosphorylation of these sites in the E1^E4-associated keratin networks (Fig 4.10).
Figure 4.9 E1\^E4 aggregates contain highly phosphorylated keratin and Cyclin B
SiHa cells infected with rAD E1\^E4 were fixed 24 h post infection and stained for E1\^E4 (TVG405, green) keratin (C2562, red) and DNA (DAPI, blue). E1\^E4 aggregates contain keratin (A-C). Cells stained for Cyclin B (GNS11-red) reveal that almost 100\% of E1\^E4 aggregates also contain Cyclin B (D-F). E1\^E4 aggregates also react strongly with phospho-specific keratin antibodies (K8 PO_ser-431 (2D6), PO_ser-73 (LJ4), and K18 PO_ser-33 (8250), (red) (G-I). scale bars denote 5 \(\mu\)m.
Figure 4.10 An E1^E4 mutant with a reduced affinity for Cyclin B maintains the ability to induce keratin phosphorylation

SiHa cells transfected with a mutant (T22A, T23A) E1^E4 expression vector were fixed 24 h post transfection and stained for E1^E4 (TVG405-green), keratin (C2562-red) and DNA (DAPI-Blue). The mutant E1^E4 maintained its ability to bind and disrupt keratin filament networks as previously reported (A-C). Staining with phospho specific keratin antibodies (K8 PO4 ser-431 (2D6), PO4 ser-73 (LJ4), K18 PO4 ser- 33 (8250) PO4 ser-52 (3055)-(red)) showed that (T22A, T23A) E1^E4 maintained the ability to induce multiple keratin phosphorylation events (D-O). 3055 produces background mitochondrial staining (M-O). Scale bars denote 5 μm.
Chapter 4
The effect of E1 \& E4 on Keratins in SiHa cells
Chapter 4 The effect of E1\(^{\text{E4}}\) on Keratins in SiHa Cells

This finding was further supported by a second experiment that looked at E1\(^{\text{E4}}\) expression in SiHa cells held under aphidicolin block using an established protocol (Davy

et al., 2005). SiHa cell were synchronised at G1/S using low serum and aphidicolin and then infected with rAD E1\(^{\text{E4}}\). One population was then released from the aphidicolin block 6 h post infection whereas the other remained under the block.

The cells were fixed and stained for E1\(^{\text{E4}}\) and keratin, at 24 h post infection. The population released from the aphidicolin block had twice as many of E1\(^{\text{E4}}\)/keratin aggregates when compared to the blocked population. Despite the difference in E1\(^{\text{E4}}\)'s appearance, E1\(^{\text{E4}}\)-associated keratin structures in both populations stained positively with all four phosphor-specific keratin antibodies suggesting that the G1/S phase cell cycle arrest did not prevent E1\(^{\text{E4}}\)-induced keratin phosphorylation of these sites. The increased frequency of E1\(^{\text{E4}}\)/Keratin aggregates in the released population may be attributable to higher levels of kinase activity at later points in the cell cycle (reviewed in (Stark et al., 2004), which may promote aggregate formation. These findings suggest that keratin phosphorylation may be a stress induced response to E1\(^{\text{E4}}\) binding and that it is not necessarily linked to the proteins ability to disrupt the cell cycle.

4.9.3 Linking keratin Phosphorylation to E1\(^{\text{E4}}\) binding

To investigate the relationship between keratin phosphorylation and E1\(^{\text{E4}}\) binding, a second mutant (M2 E1\(^{\text{E4}}\)), lacking the LLKLL motif, which has been shown to be involved in E1\(^{\text{E4}}\) binding keratin, was utilised (Roberts et al., 1994; Wang et al., 2004). M2 E1\(^{\text{E4}}\) has a greatly reduced ability to bind to and collapse keratin networks and is unable to associate with mitochondria (Raj et al., 2004). SiHa cells infected with an M2 rAD E1\(^{\text{E4}}\) expression vector (Doorbar et al., 2000) were fixed 24 h post infection and stained for E1\(^{\text{E4}}\) and Keratin. M2 E1\(^{\text{E4}}\) formed large irregular condensed structures that showed almost no keratin (Fig 4.11 A-C) (see next section).
Figure 4.11 M2 E1\(^{\sim}\)E4 a keratin binding mutant show very little keratin phosphorylation.

SiHa cells infected with rAD M2 E1\(^{\sim}\)E4 were fixed 24 h post infection and stained for E1\(^{\sim}\)E4 (TVG405-green) keratin (C2562-red) and DNA (DAPI-blue). M2 E1\(^{\sim}\)E4 did not form filamentous structure commonly observed with wild type E1\(^{\sim}\)E4 although, a few partially filamentous globules were observed (arrow F). No keratin reorganisation was observed to occur in cell expressing M2 E1\(^{\sim}\)E4 at 24 h (A-C). Staining of cells with TVG405 (Green) and phospho specific keratin antibodies (K8 PO\(_4\) ser-431 (2D6), PO\(_4\) ser-73 (LJ4) and K18 PO\(_4\) ser-33 (8250) red) overlay images show that expression of M2 E1\(^{\sim}\)E4 did not induce phosphorylation of cyto keratin networks (D-F). Scale bars denote 5 \(\mu\)m.
Phosphorylated keratin was not observed using any of the four phospho-specific antibodies in cells expressing M2 E1\(^E4\) (Fig 4.11 D-F). These data indicate that a direct interaction between keratin and E1\(^E4\), or that the resultant network reorganisation is required for keratin phosphorylation to occur.

4.9.4 M2 E1\(^E4\) maintains a weak affinity for keratin network

Having noticed during the earlier experiment that M2 appeared to have a very limited ability to localise to keratins in SiHa cells, it was decided to perform a time course experiment to see if the association altered over time. SiHa cells were infected with rAD M2 E1\(^E4\), fixed at 12, 24, 48, 72 h after infection and stained for keratin (C2562) and E1\(^E4\) (TVG405) (Fig 4.12). At 12 h very little M2 E1\(^E4\) could be seen in the cells. By 24 h visible levels had built up, with cells comprising of a mixed population that showed both diffuse and condensed staining patterns (Fig 4.12 A-C). Interestingly a few stretched-globular structures that weakly colocalize with keratin were also observed (Fig 4.12 D-F). Between 48-72 h keratin colocalisation increased resulting in disruption and bundling of keratins (Fig 12 G-I). Unlike wild type E1\(^E4\), M2 never displays a purely filamentous pattern and forms condensed structures which displays weak keratin colocalisation which increases over time, eventually resulting in network disruption only at late time points.

4.10 Characterisation of E1\(^E4\) and keratin complexes

4.10.1 Western blot analysis of the wild type and mutant 2 E1\(^E4\)

SiHa cells were infected with rAD β-gal, wild type or M2 E1\(^E4\) expression vector and harvested at 12, 24 or 48 h post infection. The lysates were separated on a 15% SDS/PAGE gel and transferred to a nitrocellulose membrane then probed for E1\(^E4\) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (used as loading control) (Fig 4.13). β-gal infected extracts did not contain E1\(^E4\)-reactive bands. Wild type E1\(^E4\)
Figure 4.12 Build up of M2 E1^E4 in SiHa cells results in keratin filament disruption
SiHa cells infected with rAD M2 E1^E4 were fixed 24, 48, and 72 h after infection and stained for E1^E4 (TVG405-Green), keratin (C2562-red) and DNA (DAPI-Blue). M2 E1^E4 displays a variety of different patterns. At early time points cells contain both diffuse and globular M2 E1^E4 with few filamentous structures and little keratin colocalisation (A-F). Keratin staining builds up in M2 E1^E4 structures and by 72 h M2 E1^E4 the majority of cellular keratin is found to localise with M2 E1^E4 resulting in the disruption of networks (G-I). Scale bars denote 5 \mu m
Chapter 4 The effect of E1\(^{\Delta}E4\) on Keratins in SiHa cells

A. 20.1kDa 14.3kDa

E4 M2 (3-Gal 12 24 48 48 E1\(^{\Delta}E4\) GAPDH

B. 220kDa 97kDa 66kDa 45kDa

K18 High K18 Low GAPDH

C. 220kDa 97kDa 66kDa 45kDa

K8 High K8 Low GAPDH

Figure 4.13 Western blot characterisation of wild type and M2 E1\(^{\Delta}E4\) expression and keratin species in SiHa cells over a 48 h time course

A shows the build up of wild type and M2, E1\(^{\Delta}E4\) in rAD infected SiHa cells 12, 24 and 48 h post infection (probed with TVG402). Wild type E1\(^{\Delta}E4\) expression can be detected 12 h post infection and continues to build up between 24 and 48 h. M2 expression cannot be detected at 12 h, but by 48 h expression has dramatically increased and is approximately comparable to that of wild type protein. The right most lane contains β-gal infected SiHa extract and demonstrates that TVG402 does not react with other cellular proteins. Blot B shows extracts probed for keratin 18 (CY-90). Low exposures show high molecular weight keratin 18 species in the wt E1\(^{\Delta}E4\) lanes, higher exposures reveal the presence of keratin ladders. At 48 h, high levels of M2 E1\(^{\Delta}E4\) expression do not result in the formation of keratin ladders, and are comparable to the β-gal population. C shows extracts of SiHa cells infected with wt or M2 E1\(^{\Delta}E4\) or β-gal rAD at 12, 24 and 48 h post infection probed for keratin 8 (Cam 5.2). Low exposures of the blot reveal little difference between the three groups. Higher exposures show high molecular weight keratin 8 species present in the wt-E1\(^{\Delta}E4\) lanes. Keratin 8 and 18 blots of extracts from M2 and β-gal infected cells appear comparable at all time points. All blots were re-probed with GAPDH as a loading control.
could be detected at 12 h and ran as 2 bands. The top band has been shown to result from the phosphorylation of E1\(^{\text{AE4}}\) (Wang et al., 2004). At later time points, the levels of protein increased significantly with additional E1\(^{\text{AE4}}\) species also being observed. These are believed to be caused by multimerisation of the protein (Wang et al., 2004). By comparison M2 E1\(^{\text{AE4}}\) was not detectable at 12 h post infection, and levels were only comparable to wild type at latter time points. By 24 h M2 can be detected at low levels and appears as a single band, however by 48 h M2 levels have increased greatly and additional high molecular weight species are also detectable. This observation suggests that the association of E1\(^{\text{AE4}}\) to keratin may stabilise the protein allowing levels to accumulate.

4.10.2 E1\(^{\text{AE4}}\) expression in SiHa cells induces high molecular weight keratin ladders

SiHa extracts (as used in section 4.10.1) were separated on a 10% SDS/PAGE gel, Western blotted and probed for either a keratin 8 or 18 and GAPDH. The keratin blots showed that all three cells extracts were comparable at 12 h (Fig 4.13 B and C). At later time points additional high molecular weight keratin 18 species are clearly visible in the E1\(^{\text{AE4}}\) extracts (Fig 4.13 B) as previously reported (Wang et al., 2004). No increase in high molecular weight keratin 18 species is observed in the M2 E1\(^{\text{AE4}}\) or \(\beta\)-gal extracts at these time-points. The emergence of high molecular weight keratin 18 species coincided with an increase in E1\(^{\text{AE4}}\) levels (Fig 4.13A), suggesting that the two are linked. Despite high expression levels at 48 h (Fig 4.13 A) abundant M2 E1\(^{\text{AE4}}\) does not result in the formation of keratin ladders. Extracts were also probed for keratin 8 (Fig 4.13 C). High molecular weight keratin 8 species were also observed in wild type E1\(^{\text{AE4}}\) extracts at 24 h but not \(\beta\)-gal or M2 E1\(^{\text{AE4}}\) extracts. However, they were much less intense than the keratin 18 species and could not be detected at 48 h due to loss of cells (Fig 4.13 C).
A build up of low molecular weight keratin 8 and 18 species was observed in both M2 and β-gal extracts over this time period. These species were less intense in E1^E4 extracts. At late time points wild type E1^E4-expressing cells undergo keratin collapse and apoptosis both of which cause cells to float off the plate (the extent of cell loss can be determined by strength of GAPDH bands) (also see Fig 4.18). Low molecular weight keratins bands observed in M2 E1^E4 and β-gal at late time points may be caused by caspase cleavage of keratin (Caulin et al., 1997; Ku et al., 1997a; Oshima, 2002; Schutte et al., 2004). The lack of low molecular weight keratins (see arrows Fig 4.13 B and C) may indicate that E1^E4 expressing cells detach from the plate prior to the initiation of apoptosis. Alternatively apoptosis may only be initiated in cells which have lost their keratins as mitochondrial association (previously linked to apoptosis (Raj et al., 2004)) is usually observed after keratin collapse. High molecular weight keratin species may be induced by glycosylation or ubiquitination.

4.10.3 Keratin specific western blots of HaCat cell lysate
To examine whether E1^E4-association could induce biochemical modifications to keratins other than K18/8, HaCat cells were infected with either wild type or M2 E1^E4 rAD. Cells were harvested 12, 24, 48, 72 and 96 h post infection. Expression of wild type and M2 E1^E4 in HaCat cells was comparable to SiHa cells with M2 levels building up more slowly over time (Fig 4.14 A). Lysates were separated on a 10% SDS/PAGE gel and probed with keratin specific antibodies. Keratin 8 and 18 blots were comparable to those from SiHa cells with high molecular weight species being observed in both (Fig 4.14 B). Keratin 10 blots were weak and it is possible that this keratin species is not abundant in HaCat (data not shown). No high molecular weight keratin species could be observed in keratin 13 blots. Weak high molecular weight keratins 4
Chapter 4 The effect of E1′E4 on Keratins in SiHa cells

Figure 4.14 Affect of wild type and M2 E1′E4 or different keratin subtypes in HaCat cells

HaCat cell infected with wild type or M2 E1′E4 rAD were harvested 12, 24, 48 and 72 h (24, 48, 72 and 96 h for M2) post infection. Extracts were separated on a 10% SDS PAGE gel probed for E1′E4 (TVG402). Blots revealed that M2 builds up more slowly than wild type protein. Extracts separated on 10% SDS/PAGE gels were probed with subtype specific keratin antibodies (K8 cam5.2, K18 Cy-90, K14-LL001, K13-NCLCK13. An increase in high molecular weight keratin 8 and 18 species was observed in E1′E4 extracts. Levels of M2 E1′E4 are low at 24 h time points but greatly increase by 48 hr (A). M2 E1′E4 does not cause an increase in keratin high molecular weight keratins species (B). Keratin 13 blots revealed no differences between wild type and M2 E1′E4 extracts with not detectable high molecular weight keratin. Both the keratin 4 and 14 blots showed some evidence of additional high molecular weight species by 72 hr in the E1′E4 lanes.
and 14 bands could be detected at late time points in wild type E1\(^E4\) extracts (Fig 4.14C), apparent loss of K14 in M2 lanes was due uneven loading (loading control not shown). Although the data are inconclusive it does not rule out the possibility of E1\(^E4\) inducing biochemical modifications to the more robust differentiation-dependent keratins.

4.10.4 E1\(^E4\) association increase levels of keratin phosphorylation

Earlier immunofluorescence experiments were able to show that the association of E1\(^E4\) to keratin resulted in the multi-site phosphorylation of the affected network (see section 4.9). This result was confirmed by western blot analysis of the SiHa extracts used in section 4.10.1. Extracts probed with the four phospho-specific antibodies (described in section 4.9), revealed that cells infected with E1\(^E4\) show elevated levels of keratin phosphorylation at 24 h (Fig 4.15). At 24 h post infection M2 expressing cells did not show elevated levels of keratin phosphorylation and were comparable to the \(\beta\)-gal population. By 48 h post-infection phosphorylation levels in all populations were elevated (data not shown). This may be due to apoptosis/cell stress associated with adenovirus infection. These data confirm that the association of E1\(^E4\) with keratin facilitates keratin phosphorylation.

4.10.5 The effect of E1\(^E4\) keratin-binding on the solubility of both proteins

We have shown that M2 maintains an ability to associate with and disrupt keratin filaments although the rate of disruption was significantly reduced. In addition to this its expression does not induce biochemical modification to keratins. Fractionation experiments were conducted to determine whether M2 had the capacity to affect keratin solubility as has previously been reported for wild type E1\(^E4\) (Wang et al., 2004). Wild type E1\(^E4\), M2 and \(\beta\)-gal infected SiHa cells were harvested from the plate using
Chapter 4

The effect of E1A E4 on Keratins in SiHa cells

Figure 4.15 E1A E4 expression increases levels of phosphorylated keratin 8 and 18

SiHa cells infected with β-gal, wild type or M2 E1A E4 rAD were harvested at 12 and 24 h post infection (same extracts used in fig 4.13). Extracts were probed with phospho specific keratin antibodies IB4 [K18, PO4 ser 33], 3055 [K18, PO4 ser 52], LJ4 [K8, PO4 ser 73] and 2D6 [K8, PO4 ser 431]. Blot A shows extracts probed for K8, PO4 ser 73 the antibody reacts with E1A E4 extracts at 12 h the signal increases at 24 h, M2 and β-gal extracts are negative. Blot B shows E1A E4 extracts contain significantly more K8, PO4 ser 431 at 24 h than β-gal or M2 extracts. Blot C shows extracts probed for K18, PO4 ser 33 the lower band which corresponds to keratin 18 is significantly stronger in E1A E4 extracts (upper bands in C and D may be antibody reacting with an unidentified cellular protein).
PBS/EDTA, these cells were then pooled with the media from the plate, containing detached and apoptotic cells, cells were subsequently pelleted by centrifugation. Pellets were then resuspended, and incubated at 4°C for one hour with agitation sequentially in 1% NP40 (soluble fraction), 1% empigen (partially soluble fraction) and 9 M urea (insoluble fraction). The fractions were then analysed by SDS Page (see Fig 4.16).

No reduction in keratin solubility was observed with M2 E1^E4 population which were comparable with the β-gal control population, where keratin levels are low in the urea fraction at all time points. These findings suggest that despite associating with keratins a later time points M2 E1^E4 does not effect their solubility in the same manner as wild type E1^E4.

In cells expressing wild type E1^E4, keratin 18 solubility distribution shifts, being weaker in the NP40 fraction and higher in the urea fraction when compared to the β-Gal and M2 expressing populations. The higher molecular weight keratin species are found exclusively in the insoluble (urea) fraction (Fig 4.16.B).

The way in which the experiments were conducted (1 h incubations) may have exaggerated the solubility of each fraction, as keratin is usually seen predominantly in the empigen fractionation. This data show that keratin solubility is reduced, in E1^E4 expressing cells but is not affected by M2 E1^E4.

Wild type E1^E4 fractionates predominantly to the empigen fraction (Fig 4.16 A). At early time points the phosphorylated form of the proteins is present exclusively in the empigen fraction however at later time points it is also observed in the urea fraction.
Chapter 4 The effect of E1A E4 on Keratins in SiHa cells

Figure 4.16 Fractionation of E1A E4, M2 and keratins from SiHa cells
SiHa cells infected with wild type and M2 E1A E4 or β-gal were harvested. Proteins was extracted sequentially in 1%NP40, 1% empigen and 9 M urea and probed for keratin 18 or E1A E4. E1A E4 is predominantly found in the empigen fraction. High molecular weight (phosphorylated) E1A E4 is predominantly found in the empigen fraction. M2 E1A E4 is more soluble and expressed at very low levels at 24 h, at later time points M2 is evenly distributed through the three fractions (A). Wild type E1A E4 expression induces a solubility shift in keratin causing a decrease in the NP40 fraction and a significant increase in the urea fraction. High molecular weight keratin species are only found in the urea fraction. M2 E1A E4 does not cause a shift in keratin solubility and is comparable to the β-gal fractionation (B).
This distribution contrasts dramatically with M2 E1^E4. At 72 h despite associating to keratins, M2 is distributed equally between the three fractions and significantly the phosphorylated form of the protein (see 4.10.1) exhibits no fraction preference (Fig 4.16 A). These data suggest that keratin binding reduces E1^E4 solubility, furthermore the phosphorylated form of E1^E4 is exceptionally insoluble, in the presence of keratin.

4.11 Does the association of E1^E4 to keratins induce their ubiquitination
It has previously been shown that keratins become ubiquitinated during Mallory body formation and as part of normal protein turn-over, resulting in their subsequent degradation via a proteasome-dependent pathway (Ku et al., 2000). Experiments using proteasome inhibitors demonstrated a build up of both phosphorylated and ubiquitinated keratins suggesting that proteasome mediated degradation plays a role in the turnover of cytokeratin networks in vivo (Ku et al., 2000). The accumulation of hyperphosphorylated and ubiquitinated keratins is also seen during some disease processes resulting in the formation of Mallory bodies (see section 4.5.2). Previous experiments have shown that expression of E1^E4 induces keratin phosphorylation (Fig 4.8) and the formation of multiple high molecular weight keratin species (Fig 4.13). A series of experiments were carried out to determine whether E1^E4 induces the ubiquitination of keratins in a manner similar to that seen during Mallory body formation.

4.11.1 The ubiquitin-proteasome system
The proteasome is a large cytosolic proteolytic complex that is involved in the selective degradation of proteins which are selectively targeted for degradation by the covalent conjugations of multiple ubiquitin molecules. Proteasome-mediated degradation is involved in multiple cellular processes including protein turnover as well as the
degradation of cell cycle regulators and misfolded proteins. The ubiquitin proteasome system is commonly subverted by viruses, which override cellular processes by targeting specific proteins for proteasome mediated degradation (reviewed in (Shackelford et al., 2005). To target a substrate for degradation, an activating enzyme, E1, transfers ubiquitin to a carrier E2 enzyme, and this in turn tags ubiquitin on to the targeted substrate with the help of E3 enzymes. Substrate recognition is primarily carried out by E3 enzymes. Ubiquitin is usually conjugated onto a lysine on the target protein and can perform several different functions depending on the manner in which the poly-ubiquitin chain is constructed. Conjugation of ubiquitin molecules to an existing ubiquitin chain at lysine 48 or 29 signals degradation (a minimum chain length of four is required for proteasome mediated degradation) whereas the addition to ubiquitin lysine 64 on certain proteins has been demonstrated to trigger DNA repair and transcription factor activation (reviewed in (Pickart, 2001). Mono-ubiquitination of proteins has been linked to endocytosis, histone regulation and virus budding (reviewed in (Hicke, 2001). The ubiquitination of misfolded proteins can serve to recruit chaperones in an attempt to rescue them. If proteins are successfully refolded ubiquitin chains are removed by the enzyme isopeptidase, but if unsuccessful, proteins are degraded, and it has been suggested that ubiquitinated keratins may undergo this process (Janig et al., 2005).

The proteasome is composed of 2 separate components, a 19S regulatory domain, and the 20S proteolytic domain. The 19S regulatory domain consists of a base and a lid domain and is located at either one or both ends of the 20S proteolytic complex producing the 26 or 30S proteasome, respectively. The 19S regulatory domain recognises target proteins by way of their poly ubiquitin chains, which it removes
before unfolding proteins and directing them to the pore of the 20S subunit where proteolysis occurs. The proteolytically active sites are located within the lumen of the cylindrical 20S complex to (reviewed in (Dahlmann, 2005)).

4.12 E1^E4 aggregates colocalize with ubiquitin.
The first experiment was designed to determine whether any E1^E4 structures colocalised with ubiquitin. SiHa cells infected with E1^E4 were double stained for E1^E4 and ubiquitin. In cells containing E1^E4 with a filamentous pattern, ubiquitin staining was diffuse and did not colocalize with E1^E4 (Fig 4.17 A-C). This staining pattern was also observed in neighbouring E1^E4 negative cells (Fig 4.17 D-G). Cells containing E1^E4 collapsed keratin bundles/aggregates contained diffuse ubiquitin staining, however, the dense E1^E4 structures reacted strongly with ubiquitin antibodies (Fig 4.17 D-J). Interestingly this pattern is similar to that observed in figure 4.9 where dense E1^E4 structures also reacted strongly with phospho-specific keratin antibodies (Fig 4.6). This observation suggests that dense E1^E4/keratin structures may have characteristics in common with Mallory bodies, which also contain hyperphosphorylated and ubiquitinated keratins (Cadrin et al., 1995; Ohta et al., 1988; Stumptner et al., 2000)

4.13 Proteasome inhibitors enhance E1^E4 induced keratin laddering
To establish whether high molecular weigh keratin species were indeed ubiquitininated experiments were conducted with a proteasome inhibitor which prevented the degradation of ubiquitinated proteins. SiHa cells were treated overnight with either ALLN (an inhibitor of the chymotryptic-like activity of the proteasome) (10 μM in 5 μl of DMSO) or with vehicle (5 μl DMSO). Cells were harvested and lysate separated on a 12% SDS/PAGE gel western blotted and probed for ubiquitin (Sc-8017) (Fig 4.18). The
Figure 4.17 Dense E1E4 structures colocalise with ubiquitin
SiHa cells infected with rAD E1E4 were stained for E1E4 (TVG405-green), ubiquitin (Z0458-red) and DNA (DAPI-Blue). E1E4 with a filamentous staining patterns does not colocalise well with ubiquitin (A-C), in contrast dense bundles and E1E4 aggregates react strongly with ubiquitin antibodies (D-J). Neighbouring E1E4 negative cells show a diffuse ubiquitin staining pattern (D-G). Scale bars denote 5 μm.
Chapter 4

The effect of E1^E4 on Keratins in SiHa cells

Figure 4.18 Effects of proteasome inhibitors on E1^E4 and Keratin

SiHa cells treated overnight with the proteasome inhibitor ALLN, or vehicle (DMSO) overnight extracts were probed for ubiquitin (Sc-8017). Blot A shows an increase in high molecular weigh ubiquitin species in the treated population, suggesting inhibition of the proteasome. SiHa cells infected with E1^E4 or β-gal and treated with ALLN or vehicle were harvested by collecting supernatant (S) and plate (P) fractions and SDS lysates were probed for keratin 18 (CY-90), E1^E4 (TVG402) and GAPDH (loading control). High molecular weight keratin species were significantly enhanced by the addition of proteasome inhibitors in both P and S E1^E4 fractions. Higher exposures of the blots also revealed the presence of high molecular weight keratin species in the ALLN treated P fraction of β-gal cells (photoshop enhanced panel B*). Treatment of cells with ALLN was also observed to increases high molecular weight E1^E4 species although no laddering was observed (top panel B).
treated lysate showed an increase in high molecular weight ubiquitinated species (Fig 4.18 A). This result suggested that as expected, the ALLN was inhibiting the breakdown of high molecular weight ubiquitin reactive protein species. The proteasome inhibitor ALLN was employed to determine whether E1^E4 association induced keratin ubiquitination. SiHa cells were infected with either E1^E4 or β-gal rAD, and harvested 24 h after infection, one population was treated overnight with the proteasome inhibitor ALLN, and the second population was treated with vehicle (DMSO). Culture media from plates was collected and centrifuged to produce a pellet from the supernatant population (S) which was subsequently lysed in 1%SDS/PBS; cells adhering to the plate were then harvested by direct lysis in 1%SDS/PBS (fraction P). Cell lysate was separated on a 12 % SDS/PAGE gel and probed for keratin, E1^E4 and GAPDH (Fig 4.18B). Loading controls revealed that the β-gal population contained more cells in the P fraction than the S fraction. Whilst the E1^E4 population contained an even number of cells in the P and S fractions due to the properties of E1^E4 (apoptosis induction and keratin disruption) which can cause cells to float off. The blots revealed a significant increase in high molecular weight keratin. Species in both ALLN treated E1^E4 fractions. The emergence of a weak high molecular weight keratin species can also be seen in the ALLN treated β-gal P population (Fig 4.18.B*). Due to the large number of ubiquitin reactive species, in these cell extracts (Fig 4.18A) it was not possible to use ubiquitin blots to identify different ubiquitin reactive bands in E1^E4 and β-gal samples (see Fig 4.21). These experiments were repeated using a second proteasome inhibitor MG132, and similar results were observed (data not shown).

It has previously been reported that treatment with proteasome inhibitors induces the formation of high molecular weight keratin 18 species formed by ubiquitination (Ku et al., 2005).
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells

al., 2000). This data supports the hypothesis that the E1^E4-induced keratin ladders are caused by ubiquitination. In addition to seeing an increase in high molecular weight keratin species, both of the ALLN-treated fractions contain an additional E1^E4 band pointing to the stabilisation/reduced turnover of E1^E4 multimers. These high molecular weight species have previously been demonstrated to be caused by multimerisation (Wang et al., 2004), although the possibility of E1^E4 ubiquitination cannot be ruled out.

4.13.1 Immunoprecipitation of keratin, ubiquitin and E1^E4

To determine if any of the high molecular weight E1^E4 or keratin species enhanced by the addition of proteasome inhibitor were ubiquitinated; immuno-precipitation experiments were conducted. The aim was to determine if any immuno-precipitated E1^E4 or keratin bands reacted with ubiquitin or whether ubiquitin immunoprecipitations could pull down any E1^E4 or keratin species. Initial experiments failed to pull down anything due to excessive levels of SDS, and it was also noticed that heavy and light chain antibody contamination in the regions of interest could hinder the identification of ubiquitinated proteins. Samples lysed in 1% SDS or 9 M urea/0.1% NP40 contained insoluble species of interest (data not shown), without inhibiting antibody binding (Fig 4.19.A). To reduce antibody contamination, antibodies were covalently cross-linked to beads using dimethyl pimelimidate (DMP). Cross-linking antibodies to beads significantly reduced heavy and light chain contamination making IP blots easier to interpret (Fig 4.19.B). Using samples lysed in 1% SDS and cross-linked antibodies, it was possible to successfully IP E1^E4, keratin 18 and ubiquitin from E1^E4 infected SiHa cell lysates (Fig 4.19 see below).
Chapter 4 The effect of E1\(^{+}\)E4 on Keratins in SiHa cells

Figure 4.19 Immunoprecipitation of E1\(^{+}\)E4, ubiquitin and keratin

E1\(^{+}\)E4-infected SiHa cell were harvested in 10\% SDS, 1\% SDS or 9M urea. Proteins could be IP'ed from 1\% SDS or urea extracts but contained significant heavy and light chain antibody contamination when probed for E1\(^{+}\)E4 (A). Cross-linking antibodies to beads with DMP resulted in a significant decrease in the presence of heavy and light chain released from beads as shown by coomassie stain (B). E1\(^{+}\)E4-probed E1\(^{+}\)E4 IP shows that 4 species were pulled down. In the absence of antibody no E1\(^{+}\)E4 was present, whereas in the absence of sample, only antibody contamination is observed (C). E1\(^{+}\)E4, keratin and ubiquitin IP’s probed for keratin 18, demonstrate that keratin 18 was only present in keratin IP lane (D). E1\(^{+}\)E4, keratin and ubiquitin IP’s probed for ubiquitin showed ubiquitin IP’s capture multiple high molecular weight ubiquitin species (E). The E1\(^{+}\)E4 IP lanes does not contain any ubiquitin cross reactive bands. The keratin IP lane contains high molecular weight ubiquitin cross reactive bands (keratin IP E).
4.13.2 E1^E4 and keratin can be immuno-precipitated from E1^E4 infected SiHa cells

SiHa cell lysate, E1^E4-IPs and controls were separated on a 15 % SDS/PAGE gel western blotted and probed for E1^E4 using TVG402 (Fig 4.19 C). In addition to the main band at ~12 kDa multiple high molecular weight E1^E4 species were also observed. Some of these species have previously been shown to be enhanced by the addition of proteasome inhibitors (Fig 4.18). This experiment showed that E1^E4 species can be immuno-precipitated using this approach. The control lanes (no sample or no antibody) showed that in the absence of antibody no E1^E4 is present, and that in the absence of sample additional bands present were due to antibody contamination (Fig 4.19.C).

The L2A1 antibody precipitated keratin 18, however, neither the ubiquitin nor E1^E4 IPs contained keratin cross-reactive species (Fig 4.19 D). Although keratin has previously been reported to co-IP with E1^E4 (Wang et al., 2004), it is unlikely that the interaction is preserved in the 1% SDS required to solubilise high molecular keratin species. Antibody contamination prevented identification of keratin cross-reactive species in the ubiquitin IP.

4.13.3 Ubiquitin probed IPs

To establish if any E1^E4 or keratin species were ubiquitinated, E1^E4 and keratin IPs were probed with a ubiquitin antibody. The ubiquitin blot demonstrates that the ubiquitin IP was successful and had pulled down multiple high molecular weight ubiquitin-reactive proteins. No clear ubiquitin reactive species was identified in the E1^E4 IP lane. The high molecular weight E1^E4 species present in the E1^E4-probed E1^E4 IP (Fig 4.19C) were not detected by the ubiquitin antibody, confirming that they are probably caused by multimerisation as previously suggested (Wang et al., 2004) and...
Chapter 4 The effect of E1^E4 on Keratins in SiHa Cells

not E1^E4 ubiquitination. Several ubiquitin reactive bands were detected in the keratin IP lanes. This result strongly suggested that ubiquitinated keratin species were present in E1^E4 expressing SiHa cell lysate. High molecular weight keratin species have previously been demonstrated to be induced by wild type but not M2 E1^E4 (Fig 4.13). Furthermore, high molecular weight species were enhanced by the addition of proteasome inhibitors (Fig 4.18). These data suggested that they may be induced by ubiquitination.

4.13.4 Keratin IPs from E1^E4 and β-Gal infected SiHa cells
Having generated evidence to suggest that the high molecular weight keratin bands induced by the expression of E1^E4 are caused by ubiquitination (Fig-4.19E), the extent of ubiquitination of both K8 and 18 was further investigated using ubiquitin probed keratin IPs. Extracts from both β-gal and E1^E4 infected SiHa cells harvested 48 h post infection were immuno-precipitated using both L1A2 and the pan keratin antibody (C2562). Due to the problems encountered in earlier experiments with high molecular weight antibody contamination, the amount of antibody used for each immuno-precipitation was further reduced. Lanes containing antibody and no sample showed that antibody contamination had been virtually eliminated. IPs were probed for ubiquitin (Fig 4.20 A and C) and then re-probed for keratin 18 (Fig 4.20 B and D). Control lanes revealed a number of low molecular weight ubiquitin species adhering to the beads (Fig 4.20 C). These ubiquitin contamination bands were of lower molecular weight than those observed in the keratin immuno-precipitations. In addition to this, low molecular weight ubiquitin bands were not present in the keratin immuno-precipitation lanes suggesting that the coupling of antibodies to beads reduced this background.

GAPDH blots of extracts showed that comparable amounts of proteins had been used in each IP (Fig 4.20B). Keratin blots of extracts showed that comparable amounts of
Figure 4.20 E1A/E4 and β-gal Keratin IP’s

Extracts from SiHa cells infected with β-gal and E1A/E4 rAD and harvested 24 h post infection were IP’ed for keratin (C2562 (A) and L2A1 (C)) and probed for ubiquitin (A and C). Blots were then re-probed for keratin 18 (B and D). The lane containing antibodies and no sample shows negligible heavy and light chain antibody contamination. Only the E1A/E4 keratin IP lane contains detectable ubiquitin reactive species (3 min exposure). E1A/E4 and β-gal extracts were also probed for keratin 8 and 18 species (A). The same membrane was re-probed for keratin 18 demonstrating keratin IP’s were successful but that only the E1A/E4 IP lane contained high molecular weight keratin species (10 s exposure). Keratin 8 and 18 blots were also re-probed for GAPDH to demonstrate sample equal loading (B). A second keratin IP was performed on the same extracts using the L2A1 keratin antibody and probed for Ubiquitin. The lane containing no sample showed little, heavy or light chain antibody contamination. IP’s preformed without antibodies produced weak low molecular weight background bands but were clear in the region of interest. Ubiquitin reactive keratin species were only present in the E1A/E4 keratin IP lane and not the β-gal lane (3 min exposure). E1A/E4 sample was also run on the same gel and probed for keratin 8 and 18 to aid the identification of bands (C). The membrane was re-probed for keratin 18 which was only present in IP lanes not the control lanes (10 s exposure). High molecular weight keratin 18 species were only present in the E1A/E4 lane with bands matching some ubiquitin reactive species (D). Ubiquitin blots (3 min exposure) were aligned with keratin 18 re-probes (10 s exposure) preformed on the same membrane, some bands aligning perfectly (arrows). E1A/E4 samples probed for keratin 8 and 18 are included for reference (E).
Chapter 4 The effect of E1’E4 on Keratins in SiHa cells

A. Probe Ubiquitin K8 K18

B. Probe K18 re-probe K8 K18

C. Pan keratin IP Extracts

D. IP Extracts

E. Probe Ub Keratin
keratin were present in each IP and that keratin ladders were only present in E1^E4 extracts (Fig 4.20 A-B). β-gal IP lanes contained virtually no ubiquitin-reactive bands (Fig 4.20 A and C). Multiple ubiquitin reactive species (ladders) were present in E1^E4 keratin IP lanes. Both L2A1 and the pan keratin antibody IPs produced comparable bands. In particular when using the L2A1 antibody several prominent bands could be clearly observed in the ubiquitin-probed E1^E4 extracts (Fig 20 C). Ubiquitin-reactive bands were an identical size as prominent high molecular weight keratin 18 species (Fig 4.20 A and C).

Both blots were washed and re-probed for keratin 18. The re-probe showed that both L2A1 and C2562 antibodies had pulled down keratin 18 (below ubiquitin reactive ladders) from β-gal and E1^E4 extracts. Keratin IPs from E1^E4 extracts also contained multiple high molecular weight keratin species. When the keratin and ubiquitin blots were overlaid, bands matched perfectly (Fig 4.20 E). Furthermore, ubiquitin bands had to be exposed for 3 min to visualise, when re-probed for keratin, blots only required 10 s exposures to visualise bands. Very high molecular weight keratin species/ladders were more apparent when blots were probed for ubiquitin than when probed for keratin. This finding is likely due to the fact that high molecular weight keratin species are poly-ubiquitinated so contain multiple ubiquitin reactive epitopes. These data have clearly identified a number of keratin species present only in E1^E4 expressing cells, suggesting that keratin 18 may be significantly more ubiquitinated than its type 2 binding partner keratin 8. This finding is interesting when it is considered that HPV 16 E1^E4 has been shown to bind specificity to keratin 18 (Wang et al., 2004).
4.13.5 Cleavage of ubiquitin chains by isopeptidase

Having identified ubiquitinated keratin species by immuno-precipitation, we decided to confirm the result using an alternative approach. Instead of purifying the species of interest it was decided to try and deplete them using the enzyme isopeptidase. The enzyme cleaves isopeptide bonds and liberates ubiquitin chains from proteins, so rescuing them from proteolysis (see section 4.11.1). SiHa cell were infected with wild type E1^E4 rAD and treated for 12 h with the proteasome inhibitor, ALLN, in order to prevent turnover of ubiquitinated species prior to harvesting with PBS/EDTA. Cell pellets were resuspended in 200 μl of isopeptidase buffer and gently lysed using 0.5 % (v/v) NP40 and 1 μl of benzonase. To determine the activity of the isopeptidase, 2 μl of sample was treated with vehicle (buffer), or 1 or 2 μl of activated isopeptidase, with sample volumes being adjusted using isopeptidase buffer, prior to incubation at room temperature for 20 min. Samples were mixed with loading buffer, separated on a 10 % SDS/PAGE gel and probed for ubiquitin (Fig 4.21A). The blot showed that 1 μl of enzyme had very little effect on the sample, whereas 2 μl appeared to cause a significant reduction in the number of high molecular weight ubiquitin species suggesting that the enzyme had cleaved ubiquitin chains from proteins (Fig 4.21). To probe the keratin species of interest present in E1^E4 expressing cells, 2 μl of lysate was incubated with 3 μl of enzyme or buffer and treated as previously described. Membranes were then probed for keratin 18. Low exposures of the blot revealed that keratin loading was comparable for both samples. Higher overnight exposures were required to show a detectable reduction in high molecular weight keratin species in the treated sample. This result shows that the treatment of cellular extracts with the ubiquitin cleaving enzyme isopeptidase removes high molecular weight keratin bands produced in the presence of...
Chapter 4 The effect of E1 E4 on Keratins in SiHa cells

Figure 4.21 Isopeptidase cleavage of ubiquitin from keratin
SiHa cells were infected with E1 E4 rAD, harvested in isopeptidase buffer and treated with vehicle (buffer), 1 or 2 μl of isopeptidase, and probed for ubiquitin. Lysate treated with 2 μl of enzyme show reduced high molecular weight ubiquitin species (A). Lysate treated with vehicle (-) or 3 μl isopeptidase (+) and probed from keratin 18 revealed that treated extract contain fewer high molecular weight keratin species (B top panel), short exposure demonstrated comparable keratin loading (B lower panel).
Chapter 4 The effect of E1E4 on Keratins in SiHa Cells

E1E4. This result further supports the argument that the keratin laddering observed in E1E4 positive cells is caused by the ubiquitination of keratin.

4.13.6 Build up of E1E4 induced ubiquitinated keratins results in proteasome inhibition

E1E4 expression induces the build up of phosphorylated and ubiquitinated keratin species, these keratin modifications have also been observed in conditions that lead to Mallory body formation (keratin aggresomes) (Ohta et al., 1988; Yuan et al., 1998). Aggresome formation has previously been reported to result in proteasome inhibition (Bence et al., 2001). Using both wild type, and M2 E1E4 that does not modify keratin, the activity of the proteasome was monitored by looking at levels of protein ubiquitination over time. Lysates from SiHa cells infected with wild type or M2 E1E4 were harvested at 12, 24, 48 and 72 h post infection (24, 48, 72 and 96 h for M2), before being separated on a 12% SDS/PAGE gel and probed for ubiquitin. Blots contained multiple high molecular weight ubiquitin-reactive species. High molecular weight species increased in strength at 48 and 72 h post infection in E1E4 but not the M2 lanes, with the band at ~8 kDa corresponding to free ubiquitin, indicating comparable sample loading. Due to the number of high molecular weight species it was impossible to identify individual ubiquitinated keratin species in the 60-100 kDa region of interest (Fig 4.22 C). The dramatic increase in the number of high molecular weight ubiquitin species is comparable to what is observed after the addition of proteasome inhibitors (see Fig 4.18). The data presented here suggests that E1E4 expression may cause the build up of ubiquitinated keratins and result in the formation of keratin aggresomes.
Chapter 4 The effect of E1\(^{\alpha}\)E4 on Keratins in SiHa cells

A.

wt E1\(^{\alpha}\)E4 M2

12 24 48 72 24 48 72 96

\[\text{E1}^{\alpha}\text{E4}\]

B.

- K18

220kDa

97kDa

65kDa

45kDa

30kDa

20kDa

14.4kDa

Ubiquitin

Figure 4.22 E1\(^{\alpha}\)E4 induced ubiquitinated keratin accumulation results in Proteasome inhibition.

Blots of extracts from wild type and M2 E1\(^{\alpha}\)E4 rAD infected SiHa cells harvested 12, 24, 48 and 72 h post infection (24, 48, 72 and 96 h in the case of M2). Blots show that both E1\(^{\alpha}\)E4 and ubiquitinated keratin species increase with time blots A and B. The same extracts probed for ubiquitin reveal an increase in high molecular weight ubiquitin species 48 and 72 h post infection in wild type E1\(^{\alpha}\)E4 lanes C.
4.14 Discussion
The aim of this study was to determine the effect of the E1^E4 keratin interaction on keratin. The data generated suggest that HPV16 E1^E4 has the capacity to bind to and reorganise multiple types of keratin network in monolayer cell culture. It was also possible to demonstrate that the association of E1^E4 with keratin induces biochemical modifications that include phosphorylation and ubiquitination.

Immunofluorescence experiments demonstrated that the association of E1^E4 with multiple types of keratins can cause their collapse into various types of structures. E1^E4 appears to selectively target keratin networks, and when keratins become saturated, the excess E1^E4 then associates with mitochondria, which appears to result in their colocalisation with keratin bundles as previously reported (Raj et al., 2004). In addition to bundles, E1^E4 formed aggregates that interacted simultaneously with both keratin and mitochondria in some cases in the absence of keratin network collapse. This may be explained by the hypothesis that keratin networks have collapsed and then reformed, and that E1^E4 expression may have ceased. This is supported by the finding that E1^E4 aggregates are observed more frequently at later time points. In addition to this, E1^E4 aggregates were shown to contain Cyclin B, hyperphosphorylated keratin and ubiquitin.

Phosphorylation of keratin filaments is known to promote the formation of keratin aggregates and it was hypothesised that the recruitment of the cyclin B/CDK1 complex by E1^E4 may be partly responsible for keratin phosphorylation. Experiments with mutant E1^E4s demonstrated that phosphorylation of keratin required a direct association with E1^E4 but was not necessarily dependent on the ability of E1^E4 to
Chapter 4 The effect of E1\(^{\text{E4}}\) on Keratins in SiHa Cells

sequester cyclin B to keratins. E1\(^{\text{E4}}\) aggregates were observed less frequently in cells arrested at G1/S with aphidicolin, suggesting that their formation may be promoted by S-G2 progression through cell cycle, this may be due to a elevated kinase activity later in the cell cycle (reviewed in (Stark et al., 2004).

Western blot analysis confirmed the presence of highly phosphorylated keratins and the formation of high molecular weight keratin ladders. Keratin laddering has previously been shown to be caused by ubiquitination (Ku et al., 2000). Attempts to observe biochemical modifications to keratins 1/10, 5/14 and 4/13 were only partially successful with possible modification observed in K4 and K14. This may not be a significant finding as relative levels of keratins were not determined. HaCat cells are known to down regulate keratin 10 when grown in low calcium media (Kee et al., 2001). Keratin 10 is known to induce cell cycle arrest (Paramio et al., 1999), so it is possible that cells down-regulate other differentiation dependant keratins making it hard to identify modified species.

Fractionation experiments showed that E1\(^{\text{E4}}\) expression decreases the solubility of keratin and demonstrated that high molecular weight keratin species are very insoluble. Furthermore, it was noticed that there may be a connection between the increase in high molecular weight keratin species and a depletion of soluble keratins: it still remains to be determined which is the cause and which is the effect.

Several different approaches were taken to identify E1\(^{\text{E4}}\)-induced ubiquitination of keratins. Immuno-staining demonstrated that ubiquitin colocalises with E1\(^{\text{E4}}\) aggregates. Treatment of E1\(^{\text{E4}}\)-infected cells with proteasome inhibitors caused a
significant build up of high molecular weight keratin species. Proteasome inhibition has previously been shown to induce a build up of ubiquitinated keratins (Ku et al., 2000). In addition to this, proteasome inhibition induced a build up of high molecular weigh (presumably multimeric) E1^E4 species, suggesting that the two may connected.

Immuno-precipitation of ubiquitin and E1^E4 was able to show that the E1^E4 protein itself appears not to be targeted by the ubiquitin system whereas keratin is. Keratin immuno-precipitation demonstrated that significantly higher levels of ubiquitinated keratins were present in E1^E4 cells than β-gal infected control cells. The identification of ubiquitinated keratin was further supported by the finding that keratin ladders could be depleted by enzymatic cleavage of ubiquitin chains by isopeptidase.

The previously identified, highly conserved LLXLL domain that has been reported to be essential for keratin association appears to have a more complex function (Roberts et al., 1994; Wang et al., 2004). Experiments showed that E1^E4 has a reduced affinity for keratin in the absence of this domain, but still maintains a limited ability to bind to and reorganise keratin networks. Interestingly, in the absence of the LLXLL motif, the E1^E4 protein loses its ability to induce a keratin solubility shift, or biochemical modifications. The finding that M2 E1^E4 had little effect on keratin has additional significance as it demonstrates that biochemical modifications to keratin are induced by E1^E4 as a result of the direct association of the protein to keratin. The M2 protein is predicted to maintain its cell cycle arrest ability (Nakahara et al., 2005) for which keratin association is not required (Davy et al., 2005), suggesting that E1^E4-induced cell cycle arrest is not responsible for the observed modifications to keratin. This
finding suggests that the mechanisms for targeting keratin networks may be highly conserved throughout α-group E1^E4 papillomavirus proteins.

These data when combined, suggest that E1^E4 expression in monolayer cells induces the formation of keratin aggresomes, with proteasome inhibition appearing to occur as a result of accumulation of ubiquitinated keratin. Protein aggresome formation has previously been reported to induce proteasome inhibition (Bence et al., 2001; Bennett et al., 2005), although this has not been experimentally demonstrated for Mallory bodies. The mechanism by which E1^E4 induces biochemical modifications of keratin still remains to be identified. Some evidence suggests that E1^E4 multimerises on keratin filaments (Wang et al., 2004). Although E1^E4 multimerisation has been linked to keratin network collapse (Wang et al., 2004) it has been previously demonstrated that monomeric Fab antibodies can associate with keratins and also induce network collapse (Waseem et al., 2004), suggesting that other mechanisms cannot be ruled out. In addition to this, it is known that a variety of non-specific cell stress events can collapse keratins inducing the formation of Mallory bodies (Cadrin et al., 1995; Nakamichi et al., 2002; Yuan et al., 1998). Because of this it is important to further understand the mechanisms behind E1^E4-induced keratin aggresome formation, in order to better understand how the protein affects keratin networks in vivo. It remains to be seen whether keratin network collapse/reorganisation, phosphorylation and subsequent ubiquitination, observed in undifferentiated cells grown in monolayer culture can be observed in vivo.
5 The association of E1^E4 with keratin in vivo

5.1 Aims
Previous work has shown that the expression of E1^E4 in undifferentiated cells grown in monolayer culture results in its association to the cytokeratin network, which in turn causes the reorganisation and collapse of the affected network (Doorbar et al., 1991). Work presented in the previous chapter was able to show that E1^E4-induced keratin collapse causes the phosphorylation and ubiquitination of keratins resulting in formation of Mallory body-like aggregates. Keratins expressed at the surface of terminally differentiated epithelium are already highly modified and so it remains to be seen whether any of these E1^E4-induced effects can be observed in vivo. This chapter aims to identify the effects of E1^E4 on keratin in vivo and to determine whether E1^E4 maintains the capacity to associate with and disrupt keratins networks. It also aims to establish whether E1^E4 can induce biochemical modifications such as the phosphorylation and ubiquitination of native keratins.

5.2 Introduction

5.2.1 Effects of epithelial differentiation on keratins networks
As cells move up the epithelium they undergo the process of terminal differentiation, during which time keratins are modified in several ways. Keratin 5/14 networks expressed in basal cells are down-regulated, and the differentiation-dependent keratins, 4/13 in mucosal epithelium, or 1/10 in cutaneous epithelium are expressed. Towards the surface of the tissue, keratins undergo additional modifications which make the networks even more robust. These form a mechanical barrier which protects the underlying tissue from external insult. Keratin filaments have been shown to become disulphide bonded to one another in the upper layers of the epithelial tissue as it undergoes terminal differentiation (Sun et al., 1978). Another differentiation dependent
protein, filaggrin, exists as a polyprotein precursor and is activated by proteolytic cleavage. The filaggrin monomers bind and cross-link keratin filaments thus forming aggregated keratin fibres that provide additional strength to the networks (reviewed in (Presland et al., 2000)).

5.2.2 Reasons for studying HPV2 and HPV16 in parallel.
Due to the small size of HPV 16 lesions, their limited E1A E4 expression, and the difficulty in acquiring frozen HPV 16 lesions that are required for later experiments, HPV 2 (verrucas) and HPV 16 lesions have been examined in parallel. HPV 2 lesions are considerably larger, and express significantly more E1A E4, making them easier to work with. Frozen HPV 2 lesions (obtained from Northampton chiropody school) were used for western blot analysis, as formalin-fixed proteins cannot be resolved by SDS/PAGE (due to the covalent bonds that result from formalin treatment). Both type 2 and type 16 are α-group papillomaviruses, whose E1A E4 proteins contain the LLXLL motif required for keratin targeting. In Chapter 3 the proteins were shown to behave in a broadly similar fashion, both disrupting keratin networks and so HPV2 E1A E4 was predicted to be a suitable substitute model for HPV 16E1A E4 in vivo.

5.3 Results
5.3.1 Types 2 and 16 E1A E4 can be seen to colocalize with keratins in vivo
It was decided to investigate whether type 2 E1A E4 associates with keratins in vivo as has previously been reported to occur for type 16 (Doorbar et al., 1997; Wang et al., 2004). Types 2 and 16 lesions were triple stained for DNA, E1A E4 and keratin. The association of both HPV 16 (Fig 5.1) and 2 E1A E4 (Fig 5.2) with keratin filaments was observed in a sub-set of cells in lesions. Furthermore this ability of keratin antibodies to recognise E1A E4-associated keratin filaments suggests that E1A E4 association does not
The association of E1/E4 with keratin in vivo

Figure 5.1 HPV 16 E1/E4 and keratin colocalisation can result in the disruption of keratin networks in cervical epithelium. Paraffin-embedded, formalin-fixed, normal (A-C) and HPV 16-infected (D-F) cervical epithelia, were stained for keratin (C2562, red), DNA (DAPI, blue) and HPV16 E1/E4 (TVG405, green). (A-C) Normal cervical epithelium does not cross-react with E1/E4-specific antibodies and contains a solid, unbroken keratin stain in the upper layers of the tissue. (D-F) Infected tissue expressing E1/E4 displays a damaged keratin stain (see arrows in D-F). (G-I) Cells expressing filamentous E1/E4 could be found as previously reported (Wang et al., 2004). High magnification images (J-L) of cells containing filamentous E1/E4 (large arrow in G-I) reveals that individual E1/E4-associated keratin filaments can be identified, showing that E1/E4 association to filaments does not mask keratin antibody epitopes. Reorganisation of keratins to the edge of the cells can also be observed in some cells (small arrows G-I). Scale bars denote 5 μm.
Merge DAPI & E1^E4 Keratin

A Normal
B
C

D Verruca
E
F

G
H
I

J
K
L

M
N
O
The association of E1+E4 with keratin \textit{in vivo}

Figure 5.2 HPV 2E1+E4 and keratin colocalisation results in the disruption of keratin networks in cornified tissue.

Paraffin-embedded, formalin fixed, normal (A-C) and HPV 2-infected (D-R) foot skin, was stained for keratin (C2562, red), DNA (DAPI, blue) and HPV2 E1+E4 (rabbit polyclonal, green). (A-C) Normal cornified foot skin (20 X objective) does not react with HPV2 E1+E4 antibodies and contains an unbroken keratin stain throughout the tissue. (D-F) Image of HPV 2-infected skin shows E1+E4 expression in an HPV2 lesion. Image produced by stitching together multiple images (using 20 x objective). (G-I) High power images reveal that HPV 2 can be observed to associate with keratin filaments in tissue, without masking keratin antibody epitopes (arrows G-I). The cornified layer of an HPV 2 lesion (40 x objective) displays perforated keratin staining in regions expressing E1+E4. (J-L) E1+E4 colocalises with keratin “holes.” Neighbouring regions lacking E1+E4 expression display a solid unbroken keratin stain. (G-I) Keratin staining is commonly found to be reduced in intensity and reorganised to the edge of the cell in E1+E4-positive cells. Note that E1+E4-negative regions of the cell do not stain with keratin (arrows M-O). (P-R) Regions towards the surface of infected tissue appeared to be torn and damaged, which frequently contain high levels of E1+E4 (arrows, P-R). Scale bars denote 5 \textmu m.
necessarily mask keratin antibody epitopes (see Fig 5.1G-L). These data indicate that keratin association is a strategy employed by both mucosal-and cutaneous-tropic α-group papillomaviruses. Although it was possible to identify cells in which E1E4 and keratin colocalised, there was little evidence of cytokeratin collapse occurring, in contrast to the situation found in vitro. A few cells lower down in the epithelium of some lesions could be found showing some signs of partial reorganisation (not shown) (Doorbar et al., 1997; Wang et al., 2004) but no keratin aggregates were observed. A sub-population of both HPV 2 and 16 cells appeared to show relatively bright fluorescent ring-like keratin structures, suggesting that the keratins have partly reorganised to the edge of cells (see Fig 5.1 G-I, 5.2 M-O). Unlike cells in vitro, no E1E4 aggregate structures were observed in tissue. These data suggest that although keratin collapse may occur infrequently, its rarity suggests that it is unlikely to be E1E4's primary mode of action.

5.3.2 Types 2 and 16 E1E4 proteins may reduce levels of keratin in vivo

Although type 2 and 16 E1E4 proteins could be observed to localise with keratin in some cells, the absence of strong keratin staining in cells expressing abundant E1E4 was observed significantly more frequently. HPV 16 lesions with gaps in the keratin staining were frequently observed. Keratin "holes" colocalised with areas of high E1E4 expression (Fig 5.1 D-F). Normal cervical epithelium did not react with 16 E1E4 antibodies and displayed solid keratin staining throughout (see Fig 5.1 A-C). The same was observed in HPV 2-infected E1E4 positive tissue where keratin staining appears to be reduced or absent from the tissue in regions with high levels of E1E4 expression (Fig 5.2 J-O) (also see Appendix I). In a region of cornified tissue expressing a well defined column of E1E4, the E1E4-positive region appears as holes in the
keratin stain (Fig 5.2 J-O). In the adjacent E1^E4-negative region the keratin staining is continuous and unbroken. These data show that in regions with high levels of E1^E4 expression, keratins appears to be reorganised giving the tissue a perforated appearance, suggesting an E1^E4 induced effect on the keratin integrity. It is conceivable that the apparent reduction in keratin is caused by E1^E4 masking of keratin epitopes. Although this theory cannot be ruled out, the same reduction is observed in HPV 16 tissue when a rabbit polyclonal pan-keratin antibody (Novocastra) was used (data not shown). Furthermore, the C2562 pan keratin antibody contains a cocktail of pan-specific monoclonal antibodies and should be able to recognise multiple keratin epitopes. That E1^E4-associated keratin filaments can be observed in some cells in lesions, suggests that binding does not result in keratin epitope masking. In addition to this observation, E1^E4 association to keratin filaments in vitro does not result in keratin epitope masking (see Fig 4.2 J-L and 4.3 G-I). It was also observed that nucleated cells containing E1^E4 structures at the periphery of cells did not contain keratin staining in E1^E4-negative regions towards the centre of the cell as observed in the neighbouring tissue, (see Fig 5.2 M-O). In addition to these observations, expression of HPV16 E1^E4 was shown to be able to induce polyubiquitination of keratins (see Chapter 4), which is known to promote their degradation (Ku et al., 2000). When combined these data suggest that the observed E1^E4 effect on keratin staining is caused primarily by the reorganisation and/or loss of keratin rather than epitope masking.

5.3.3 E1^E4 may induce keratin phosphorylation in vivo

Although E1^E4 could be seen to induce keratin phosphorylation in vitro, it is not possible to say for certain if this is not a stress response that results from E1^E4 build-up, or whether it is in some other way related to keratin collapse or reorganisation. To determine if E1^E4 association induced phosphorylation of keratins in vivo, normal and
infected cervical epithelium was stained with the panel of phospho-specific antibodies (described in section 4.9).

The phospho-specific antibodies used in earlier experiments were raised against keratins 8 and 18, not keratins 4 and 13 that are expressed at the surface of cervical epithelium, and so it was not certain that they would react with tissue. However both the 8250 [K18 PO4 ser-33] and 2D6 [K8 PO4 ser-431] antibodies did react with 16 E1^E4-positive sections of infected epithelium (Fig 5.3 and 5.4). The 3055 [K8 PO4 ser-52] and LJ4 [K8 PO4 ser-73] antibodies did not react with proteins in formalin fixed cervical tissue (data not shown). Neither of the antibodies reacted with normal, uninfected cervical epithelium (Fig 5.3 and 5.4 A-C). A subset of cells containing high level E1^E4 reacted with the phospho-specific antibodies (Fig 5.3 and 5.4, D-F). Furthermore, phospho-specific antibody staining was observed to colocalise with E1^E4 (Fig 5.3 and 5.4, G-I) as previously reported to occur in vitro (see section 4.9). These data suggest that E1^E4 association with keratin networks in infected epithelium may result in the phosphorylation of keratins in a subset of cells in vivo. These data must not be over interpreted as it has not yet been proven that these antibodies will react with keratin 13. Despite this it is thought that the staining may be genuine as sections were restained and found to express keratins 8 and 18 (not shown). Keratin 8/18 network has been reported to be expressed in cervical tissue, with increasing frequency as tissue differentiation is lost during neoplastic progression, and are commonly found in cervical tumours (Martens et al., 1999; Smedts et al., 1990).

5.3.4 E1^E4 expression induces altered ubiquitin localization in vivo
The association of HPV 16 E1^E4 to the keratin network in SiHa cells causes affected keratin network to become highly phosphorylated and ubiquitinated (see Chapter 4). At
Chapter 5

The association of E1^E4 with keratin in vivo

Figure 5.3 HPV 16 E1^E4 expression may induce type 1 keratin phosphorylation in cervical epithelium

Normal or HPV 16-infected, cervical epithelium was stained for 16 E1^E4 (TVG405, green) and DNA (DAPI, blue) type 1 keratin phospho Ser-33 (8250, red). Normal cervix did not react with TVG405 or 8250 (A-C) (tissue surface marked by line). 8250 (K18-PO4ser 33) reacted with a subset of E1^E4-positive cells towards the surface of infected tissue (D-F). High magnification images taken on a confocal microscope showed that 8250 staining colocalises with E1^E4 (G-I). Scale bars denote 20μm.
Figure 5.4 HPV 16 E1^E4 expression may induce type 2 keratin phosphorylation in cervical epithelium

Normal or HPV 16-infected, cervical epithelium was stained for 16 E1^E4 (TVG405, green) and DNA (DAPI, blue) type 2 keratin phospho-Ser-431(2D6, red). Normal cervix did not react with either TVG405 or 2D6 (A-C) (tissue surface marked by line). 2D6 (K8-PO4ser-431) reacted with a subset of E1^E4 positive cells towards the surface of infected tissue (D-F). High magnification images taken on a confocal microscope showed that 2D6 staining colocalises with E1^E4 (G-I). Scale bars denote 20μm.
present it is unclear whether these biochemical modifications are linked to keratin network collapse, which is rarely observed in vivo. It was decided to investigate whether E1^E4 disruption of keratins in vivo results in their subsequent ubiquitination, as a first step lesions were double stained for E1^E4 and ubiquitin. Previous studies investigating the location of ubiquitin in epithelia have shown that mitotically active cells in the basal layer are strongly immunopositive for ubiquitin, (Sato et al., 1997). Immunostaining of normal cervical epithelium with ubiquitin antibodies produced a discreet pattern which reduced in intensity towards the surface of tissue (Fig 5.5 A-C). In HPV 16-positive cervical tissue this pattern is also observed and continues during low level E1^E4 expression (Fig 5.5 D-F). Closer to the surface in a sub-set of cells with high levels of 16 E1^E4, a cytoplasmic build up of ubiquitin was observed (Fig 5.5 D-F). Furthermore some ubiquitin staining was observed to colocalize with E1^E4 (Fig 5.5 G-I). The same pattern was observed with two ubiquitin antibodies; a polyclonal (DAKO, not shown) and a monoclonal (Santa-Cruz, used in Fig 5.5). Sections were also stained with rabbit serum, and no staining was observed (data not shown). This finding supports the hypothesis that E1^E4-expression induces increased ubiquitination of certain cytoplasmic proteins or a relocation of certain nuclear proteins.

HPV 2 E1^E4 expression was also observed to alter ubiquitin expression in vivo. In normal tissue ubiquitin staining was predominantly nuclear but could be detected in the cytoplasm of cells in the basal layer. Cytoplasmic ubiquitin staining is lost in the mid-layers of the epithelium (Fig 5.6 A-C), and staining could not be detected in E1^E4-negative regions of the cornified layer (Fig 5.6 O-R, see phase image(P) for tissue borders) as has been reported previously (Sahin., 2001). E1^E4 expressed in the mid and lower layers coincided with a cytoplasmic build up of ubiquitin in a sub-set of cells,
Figure 5.5 16 E1^E4 expression induces a build up of cytoplasmic ubiquitin
In normal cervical epithelium stained for 16 E1^E4 (TVG405, green) and ubiquitin (Sc-8017, red) (A-C), ubiquitin has a discreet staining pattern, reducing towards the surface of the tissue. In infected tissue ubiquitin staining is initially nuclear (small arrows). Towards the surface in regions expressing high levels of E1^E4, ubiquitin staining appears in the cytoplasm of a sub-population of cells (big arrows D-F). Higher magnification images reveal that the cytoplasmic ubiquitin colocalises with E1^E4 staining (G-I). Scale bars denote 20µm
Figure 5.6 Type 2 E1^E4 expression induces ectopic ubiquitin expression
Normal and HPV2-infected foot skin was stained for E1^E4 (green), ubiquitin (Sc-8017, red) and DNA (DAPI, blue). (A-C) Nuclear and cytoplasmic ubiquitin staining is seen in mitotically active cells towards the basal layer. (D-I) Cells expressing E1^E4 in the lower layers also contain cytoplasmic ubiquitin which colocalises with E1^E4 in some cells (white line indicates basal layer D-F). (J-N) In the mid layers ubiquitin staining decreases and becomes nuclear, but some E1^E4-positive cells maintain elevated levels of cytoplasmic ubiquitin. (N) A quantitative image (blue pixels denote region of greatest intensity, green the lowest) shows E1^E4 positive cells contain higher levels of ubiquitin than surrounding cells. (O-R) Multiple 20 x images were stitched together to produce a composite image of the cornified layer of an HPV 2 lesion. Ubiquitin staining is normally absent from the cornified layer but is maintained in some regions when E1^E4 is present.
Chapter 5 The association of E1^E4 with keratin in vivo

with E1^E4 and ubiquitin colocalising in most but not all of these cells (Fig 5.6 D-N). E1^E4 induced cytoplasmic build up of ubiquitin did not inhibit nuclear ubiquitin staining, but could also be detected in cells lacking nuclear staining (large arrows Fig 5.6 J-N). Quantitative confocal images of ubiquitin showed that E1^E4-positive cells generally had higher ubiquitin levels than surrounding cells (Fig 5.6 N). Ubiquitin staining in the cornified layer varied between lesions, with some containing few E1^E4 and ubiquitin-positive cells (see Appendix II). In some lesions however, ubiquitin staining extended into the cornified layer colocalised strongly with E1^E4-positive cells (Fig 5.4 O-R). These findings suggest that both HPV 2 and 16 E1^E4 expression may induce ectopic localisation of ubiquitin in lesions. This may be due to E1^E4 induced ubiquitination of keratins, although this is not the only explanation. Virus infections commonly subvert the ubiquitin system (reviewed in (Shackelford et al., 2005), with the E6 protein being a good example, and it may be that other HPV proteins are involved. In addition to this, events such as wound healing (due to infiltration of immune cells) (Kondo et al., 2002) and UV stress (Sahin., 2001) can alter the ubiquitin reactivity of the epithelium, indicating that there may be several explanations other than the ubiquitination of keratins that may be the cause of these observations.

5.4 E1^E4 induced effects on keratin and ubiquitin in the virus life cycle

So far this work has been able to show an apparent loss or redistribution of keratin which coincides with E1^E4 expression (section 5.3.2). Furthermore, it has been possible to show an altered ubiquitin staining pattern in lesions, which suggest that E1^E4 expression may be inducing the ubiquitination of cytoplasmic proteins. It was decided to use other markers of virus-life cycle progression in order to determine at what stage these events were occurring. Loss of the proliferation marker, mini chromosome maintenance 7 (MCM-7), was used to identify the end of early life-cycle...
events (Middleton, 2003), and an L1 antibody was used to identify the cells that have established capsid protein production (Doorbar et al., 1997; Peh et al., 2002). The objective of this was to determine the point in the virus life-cycle where the high-level expression of E1^E4 that is necessary for keratin reorganization occurs.

5.4.1 Elevated levels of E1^E4 coincide with the loss of MCM staining and the onset of L1 expression

The onset of E1^E4 staining has previously been reported to coincide with the loss of MCM staining. The overlapping layers containing E1^E4-MCM double positive cells is believed to be where viral genome amplification occurs (Middleton, 2003; Peh et al., 2004). HPV 16 lesions stained with MCM and E1^E4 at low exposures show a few double positive cells at the lowest points of E1^E4 expression (Fig 5.7 A-D). Over-exposing the images (E1^E4 still does not appear in adjacent regions (Fig 5.7E)) reveals low-levels of E1^E4 penetrating deeper into the tissue and shows a significant number of double positive cells (Fig 5.7 F). MCM-E1^E4 double positive cells generally contain lower levels of E1^E4 than those with keratin loss and altered ubiquitin distribution, suggesting that these events may occur after viral DNA amplification has occurred.

To determine at what point in the epithelium the viral capsid proteins are expressed, tissue sections were stained for L1. The antibody produced clean staining and did not react with normal tissue (data not shown). In HPV 16 lesions, L1 expression could be detected in the upper layers of the tissue, with the exact location depending on the timing of E1^E4 expression, which typically preceded L1 expression by a few cell layers as previously reported (Doorbar et al., 1997; Peh et al., 2002). L1 expression begins in cells with moderate levels of E1^E4 and was confined to the nucleus (Fig 5.8 A-F). Towards the surface of the tissue, coinciding with high levels of E1^E4, L1 can
Chapter 5 The association of E1^E4 with keratin \textit{in vivo}

Figure 5.7 Low levels of E1^E4 can be detected extending well into MCM positive regions, whereas very high levels are expressed at the surface of the tissue. HPV16-positive cervical lesions were stained for DNA (DAPI, blue) E1^E4, (TVG405, green) and MCM7 (47DC141, red). (A-B) MCM staining is nuclear; expression is lost towards the middle of the lesion. (C-D) Low exposures suggest E1^E4 and MCM double positive cells are rare, with only a few cells being visible. (E-F) However longer exposures of the image suggest that E1^E4 may be expressed closer to the basal layer and may extend several layers into the MCM-positive region. Very high levels of E1^E4 are expressed at the surface of the tissue (above the white line) moderate levels extend deeper into the tissue (between the white and yellow lines) and very low levels are detectable deeper in the tissue and extend several cell layers into MCM positive regions (between the yellow and red lines).
Figure 5.8 HPV 16 E1^E4 expression precedes L1 staining, and very high levels of E1^E4 coincide with cytoplasmic build up of L1

HPV 16-positive Cervical lesions were stained for E1^E4 (TVG405, green) and L1 (CamVir1, red) and DNA (DAPI, blue). Images show that E1^E4 staining is exclusively cytoplasmic (A & D) and precedes L1 expression by several cell layers (A-C). L1 staining is initially nuclear but becomes increasingly cytoplasmic in the final few layers of the tissue, coinciding with elevated levels of E1^E4 (D-F). Close up of area shown by box in E (G-I) clearly shows particulate L1 staining in cytoplasm (large arrows, G-I) at the cell surface whereas L1 is located in the nucleus in underlying cells (small arrow G-I).
Figure 5.9 HPV2 E1^E4 staining precedes L1 expression
HPV 2 lesions were stained for HPV2 E1^E4 (polyclonal, green), L1 (Cam Vir 1, red) and DNA (DAPI, blue). E1^E4 expression preceded L1 expression by several layers (A-C). High magnification images of cells in the lower layers (small arrow A-C) reveal that L1 expression was initially nuclear (G-I). In cells towards the surface of the tissue (big arrow A-C), L1 expression becomes cytoplasmic and can be observed to colocalize with E1^E4 (D-F).
be observed in the cytoplasm where it may colocalize with E1^E4 (Fig 5.8 D-I). These data suggest that very high levels of E1^E4 are only initiated when virion assembly is complete and mature virions are released from the nucleus ready for release. As with HPV 16, HPV2 tissue stained for L1 indicated that E1^E4 expression precedes L1 (Fig 5.9 A-C) (also see Appendix III) as previously reported (Peh et al., 2002). In the lower regions of the HPV2 lesion L1 is expressed in the nucleus and does not localise with E1^E4 (Fig 5.9 G-I). In higher layers of HPV2 lesions, L1 can be observed to localize with E1^E4 in the cytoplasm (see Fig 5.9 D-F).

The observations made in this section suggest that in HPV 16 lesions, E1^E4 expression levels are altered towards the surface of the tissue, allowing the protein to perform different tasks at specific points of the virus lifecycle. Low level expression appears to be sufficient for genome amplification whereas higher E1^E4 levels coincided with L1 expression. Interestingly, type 16 E1^E4 levels appear to elevate towards the surface after completion of virion assembly (coinciding with altered L1 localisation). In HPV 2 and 16 lesions, L1 expression was also observed to move from the nucleus into the cytoplasm where it colocalises with E1^E4 towards the surface of the tissue.

5.4.2 Quantitative analysis of HPV 16 E1^E4 levels by confocal microscopy

Earlier experiments appeared to show a gradual build up of 16 E1^E4 through the epithelium, with keratin loss and ubiquitin relocation only being observed in a sub-population of cells with high levels of E1^E4 expression towards the surface of the infected tissue. In order to quantify levels of E1^E4 expression, confocal images of lesions double stained for E1^E4 and keratin, ubiquitin or L1 were analysed using a quantitative function in the Leica confocal software. Lines starting at, and perpendicular to, the surface of the tissue were drawn across each image; the fluorescence intensity for
The association of E1^E4 with keratin *in vivo*

Each channel was then plotted along the line (Fig 5.10). Plots revealed significant increase in E1^E4 levels close to the surface of the tissue. The point at which the fluorescence increase occurred depended on the depth of E1^E4 expression in the tissue and varied in thickness. In addition to this, a decrease in keratin levels was observed to coincide with the elevation of E1^E4 levels (Fig 5.10 A) no such decrease was observed in normal tissue (Fig 5.10 B). Furthermore, an increase in ubiquitin also coincide with elevated levels of E1^E4 (Fig 5.10 C). L1 staining showed that L1 expression precedes the elevation in E1^E4 levels and that the relocation of L1 appears to coincide with a further increase in E1^E4 (Fig 5.10 E). These data suggest that a significant increase in E1^E4 levels may be linked to the reorganisation of keratin, ectopic ubiquitin expression and relocation of the L1 viral capsid protein in the upper regions of lesions. These data add weight to the hypothesis that E1^E4 expression is not just a simple on or off process, but that expression is purposefully regulated by the virus as it approaches the surface of infected tissue, and that this follows viral genome amplification and virion production. If these findings are correct then this indicates that E1^E4 may perform a final function in the terminal phase of viral life cycle following virion assembly to aid virion release.

5.5 Western Blot analysis of HPV2 lesions

In order to determine whether E1^E4 induces biochemical modifications to cytokeratins *in vivo*, proteins extracts from HPV2 infected and normal foot tissue were analysed by western blot. Frozen, HPV2-infected tissue (verucas), surgically removed from patients with problematic lesions, was used for the study. Frozen, normal skin taken from patients post-mortem, was used as a negative control. Frozen tissue was sectioned from top to bottom using a cryostat. Proteins extracted from the sections were probed for E1^E4, keratins 10 and 14, and ubiquitin. Eighteen lanes of verruca tissue were loaded...
Figure 5.10 Quantitative analysis of E11-E4 levels reveals that high levels of expression coincide with specific events in the virus lifecycle.

Confocal images of HPV 16 lesions stained for E11-E4 (TVG405, green), DNA (DAPI, blue) and either keratin (C2562, A and B), ubiquitin (Sc-8017, C and D) or L1 (camvir 1, E) (red), were analysed quantitatively using the area quantitate function in the Leica confocal software. Eight lines were drawn from the surface of the tissue to the lowest point and the fluorescence intensity measured (on a 250-point grey scale) of the green (graphs A1-E1) and red (graphs A2-E2) channels along the lines. Graphs A1, C1, and E1 show levels of E11-E4 increasing towards the surface of the tissue, before spiking at the surface (E11-E4 spikes denoted by black arrows). Graph B1 and D1 show very low levels of fluorescence in E11-E4 negative tissue with no increase in fluorescence towards the surface (note y-axis scale bar max of 30). A reduction in keratin fluorescence coincides with the onset of high levels of E11-E4 (A1-A2). No decrease in keratin levels is observed towards the surface in normal tissue (B2). A peak in ubiquitin fluorescence is observed towards the surface and coincides with the elevated E11-E4 levels (C1-C2). No surface increase in ubiquitin is observed in E11-E4 negative tissue (D1-D2). E11-E4 expression precedes L1 expression (E1-E2), but L1 expression (*) precedes the elevation in E11-E4 levels (**).
Chapter 5: The association of E1-E4 with keratin in vivo

E1^E4 Surface

Ubiquitin

Red channel Surface

Keratin

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2
(from lowest layer to surface) whilst just 9 lanes of normal skin were loaded, due to the differences in thickness of the two samples. Successful top to bottom sectioning of lesions was determined by expression profiles of keratins 10 and 14. Increasing keratin 10, which coincided with decreasing levels of keratin 14, was taken to indicate surface tissue. To refer to the lowest layers as the basal layer would be inaccurate due to the folds in the tissue (papillae) caused by the virus, and this causes the distance between the surface and basal layer to vary significantly throughout the tissue (see Fig 5.2 D-F) (for expression profiles of E1^E4, keratin, ubiquitin and L1 in the lesion used in these experiments see Appendix I-III). Loading controls also presented a significant challenge as protein levels generally alter with differentiation. Proteins known to be expressed at significant levels at the surface of terminally differentiated epithelium are either viral (and hence cannot be used in normal tissue) or are known or suspected to be affected by viral gene expression (e.g. filaggrin, keratin, loricrin) (Brown et al., 2000; Lehr et al., 2002; Lehr et al., 2003). Because of this, these experiments aimed to look at the presence or absence of different keratin species (specifically keratin ladders), in relation to the presence of E1^E4, and by comparing the relative strength of individual keratin bands to the major keratin band which, would be used as a crude indicator of loading.

5.5.1 The differential processing of HPV2 E1^E4 in lesions
Protein extracts from normal tissue did not contain any HPV2 E1^E4-reactive bands (not shown). Slices from the lower layers of HPV2 lesions did not contain detectable levels of the E1^E4 protein. E1^E4 became visible in lane 5 and appeared as one band ~15kDa in size (Fig 5.11 A). A second lower band began to appear in lane 7 and increased in strength for a further two lanes, then remained present to the surface of the tissue. Lane 10 contained a further band ~28kDa in size, which also appeared to continue to be present to the surface of the tissue. A possible fourth band ~17 kDa in
Figure 5.11 E1^E4 expression in tissue coincides with altered keratin 14 species
A top-to-bottom sectioned HPV2-lesion was analysed by western blot for expression of HPV 2 E1^E4 and keratin species. (A) E1^E4 cannot be detected in the lowest layers, but is initially expressed as a single band in lane 5. A second lower band appears in lane 7. A third band ~28kDa in size becomes visible in the middle of the tissue in lane 10. (B) Blots performed on lysates of a second lesion suggest the presence of a fourth lower molecular weight E1^E4 species ~10 kDa in size. (C-D) Keratin 14 (C^0997-14B) blots show multiple bands in both normal (C) and infected tissue (D). Little variation in low molecular weight (less than 51 kDa) keratin species was observed between normal and infected tissue. A high molecular weight band (~88 kDa) is observed in both normal and infected tissue and appears to increase in strength relative to total keratin in lanes 6-13 coinciding with the build up of E1^E4 levels (see blot A).
size is also observed in lanes 12 and 16. Earlier experiments that failed to correctly orient the tissue, conducted on a larger lesion revealed a fifth lower band ~10kDa in size (see Fig 5.11 B). Although specific E1^E4 bands were not identified, it is speculated that if HPV 2 processing is similar to HPV 16 it is possible that the major doublet may be caused by phosphorylation (Wang et al., 2004). The lower band may be caused by N-terminal truncation as has previously been reported for HPV1 and HPV 16 (Doorbar et al., 1988b; Doorbar et al., 1996; Doorbar et al., 1997). The upper band may be due to multimerisation as has been reported to occur to HPV 1 and 16 E1^E4 (Doorbar et al., 1996; Wang et al., 2004). Although increasing E1^E4 levels may allow identification of minor species, these data indicate that HPV2 E1^E4 may be differentially processed towards the surface of the tissue, supporting the hypothesis that the protein performs different roles that may be linked to the various stages of the virus life cycle.

5.5.2 Keratin species found in normal and HPV 2 infected epithelium

Protein extracts from verruca and normal skin were probed for keratin 10 and 14 to look for evidence of E1^E4-induced biochemical modifications. Keratin 14 blots from normal and infected tissue show a major band at ~51kDa. A number of additional lower molecular weight bands were also found in normal and infected tissue. Close examination of multiple exposures of the blots could not distinguish a difference in low molecular weight species between normal and infected tissue. Keratin 14 expression weakened towards the surface of the tissue indicating top-bottom sectioning was successful. Two high molecular weight species ~61 and ~88 kDa in size were observed in infected and normal tissue (Fig 5.11C-D). A 92 kDa species (possibly a type I and II keratin dimer), was also observed in keratin 10 blots (Fig 5.12 C), the band was stronger in relation to the main (51 or 58 kDa) band in infected tissue. Interestingly the observed increase in strength of this band in lane 5 coincided with the onset of E1^E4 expression
Chapter 5

The association of E1-E4 with keratin *in vivo*

Figure 5.12 Keratin 10 and silver stain analysis of HPV 2-infected and normal skin

Top to bottom sectioning was performed on normal (A) and HPV 2-infected (B) skin, and extracts were probed for keratin 10 (K0199-12). Keratin levels increase towards the surface of normal tissue. An increase was less apparent in the infected issue due to folds in the tissue (A-B). Multiple low molecular weight keratin 10 species were detected in both normal and infected tissue. Higher exposures of the blots show a ~92 kDa band (arrow C) present in infected tissue, which could not be detected in normal tissue. Silver-stained gels of mid and surface regions from normal and infected tissue shows a 90kDa band (D*) is picked up in verruca but is absent from normal tissue, despite more tissue being loaded in the normal lane (D).

Figure 5.12 Keratin 10 and silver stain analysis of HPV 2-infected and normal skin
(see Fig5.11 A). Skin and verruca samples were processed simultaneously by boiling in laemmli buffer and DTT suggesting the increase was not due to a difference in sample preparation. Keratin 10 was expressed at increasing levels towards the surface of both infected and normal tissue. Three major bands could be detected in the keratin 10 blots, the major band being ~58 kDa in size the weaker bands were smaller, possibly breakdown products. Infected tissue also contained a band ~ 92 kDa in size which was more apparent in HPV2-infected tissue (Fig 5.12 A-C). This finding was supported in a silver-stained gel, which contained a band in the 90k region that was significantly stronger in HPV 2 samples (Fig 5.12 D). Keratin western blots were unable to identify a significant difference in keratin species between normal and infected tissue. A possible increase in strength of the ~88 and 92 kDa bands was observed in keratins 14 and 10 blots respectively, between infected and normal tissue, although the significance of this is as yet unclear.

5.5.3 Ubiquitin Western blots from tissue
In order to determine if any of the keratin species described in the previous section could be attributed to ubiquitination, extracts from normal and infected tissue were probed for ubiquitin. Ubiquitin blots were predicted to be easier to interpret than keratin blots due to the abundance of keratin and the relative scarcity of ubiquitinated proteins in epithelial tissue. However, ubiquitin blots proved to be problematic and were difficult to optimise, suggesting that very low levels of ubiquitin are present in samples. Free ubiquitin (8kDa) bands were observed in both samples, however due to the low levels of ubiquitin no other specifies could be detected before antibody background burnt out the blots (data not shown). On one occasion it was possible to identify a single band ~ 60 kDa in size in HPV2 extracts, (see next section). Although this may represent a mono-ubiquitinated keratin species, it was not possible to draw significant conclusions from
these experiments. Some of the problems encountered during theses experiments were subsequently resolved and are discussed in the next section.

5.5.4 Ubiquitin-keratin coimmunoprecipitation from lesions

In a final attempt to identify ubiquitinated keratin species *in vivo*, immunoprecipitations were attempted on protein extracts of slices taken from the mid layers of the tissue. Slices were boiled in 1% (w/v) SDS/PBS and immunoprecipitations performed using the pan keratin antibody (C2562) and a keratin 14-specific antibody (C9097-14B). To reduce light chain antibody contamination samples were subsequently boiled in laemmli buffer without DTT. The keratin 14 antibody was shown to have pulled down keratin 14 (Fig 5.13 D), whereas the C2562 antibody did not (data not shown). Lanes without antibody demonstrated that uncoupled beads bound protein, producing background. Interestingly earlier ubiquitin blots were restricted by the amount of protein that could be loaded into wells. Non-specific binding of protein to beads allowed the concentration of protein from samples, producing good ubiquitin blots. These control lanes lacking antibody, show low molecular weight ubiquitin species present in both normal and infected tissue (more low molecular weight ubiquitin was observed in the verruca sample Fig 13 A). In addition to this a possible ubiquitin smear starting at ~60 kDa (which is consistent with a ubiquitinated keratin 14 ladder) was observed in verruca but not in normal skin. Ubiquitin reactive bands were not observed in the pan specific keratin IP lanes indicating that the coupling of antibodies to beads inhibits non specific binding (Fig 5.13 A). Keratin 14 blots performed on samples, suggested that more protein had been loaded into the normal skin lane (see Fig 5.13 B) indicating that the verruca sample may contain elevated levels of free and conjugated ubiquitin (or reduced keratin levels). In addition to this, lanes containing sample blotted for keratin revealed that the low molecular weight keratin species described in section 5.5.3 were not present
A. Pan Keratin Antibody IP

<table>
<thead>
<tr>
<th>Probe</th>
<th>Ubiquitin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Verruca</td>
</tr>
</tbody>
</table>

B. Keratin 14 Antibody IP

<table>
<thead>
<tr>
<th>Probe</th>
<th>Ubiquitin</th>
<th>K14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Verruca</td>
<td>Verruca</td>
</tr>
</tbody>
</table>

C. V N
Chapter 5 The association of E1-E4 with keratin in vivo

Keratin 14

Figure 5.13 In vivo keratin-ubiquitin co-immunoprecipitation
Keratin was immunoprecipitated from a protein solution produced by boiling microtome sections from the mid layers of normal and infected skin in 1% (w/v) SDS/PBS. IPs were performed using a pan specific keratin antibody (C2562) (A) or a keratin 14-specific antibody (KOI99-12) (B) and probed for ubiquitin (Sc-8017). Lanes containing antibody only reveal that the high molecular weight bands observed in IP lanes are caused by antibody contamination (A and B). Un-conjugated beads incubated with sample produced low molecular weight ubiquitin bands that were not observed on antibody-conjugated beads (A*). Verruca samples also contained a second ubiquitin reactive species ~60 kDa (A**). The pan-keratin antibody did not IP any detectable ubiquitin reactive species from either sample (A). The keratin 14 antibody may have pulled-down species from both samples (arrows B). Verruca sample probed for ubiquitin shows low levels of ubiquitin present in the sample (verruca lane, blot B). After image enhancement (C) the verruca sample could be seen to contain an additional band (B). Extracts probed for keratin 14 reveal multiple high molecular weight species. Although normal skin extracts contained more keratin 14, a ~60 kDa band (same as IPed ubiquitin-reactive species) is stronger in the verruca sample (B*). Blot B was re-probed for keratin 14; verruca and normal IP lanes both contained keratin 14, although significantly more protein had been pulled down from the normal sample (D).
in the absence of DTT indicating them to be disulphide linked species (see Fig 5.11 B). Weak ubiquitin reactive bands may have been pulled down by the keratin 14 antibody. Bands were absent in both controls lacking sample and C2562 IP lanes which, failed to pulled down keratin. Furthermore, low molecular weight (8 kDa) ubiquitin-reactive background bands (Fig 5.13 A) were not present in either immuno-precipitation, which may suggest that the ubiquitin reactive bands in keratin 14 immuno-precipitation lanes were pulled down by antibody and were not caused by non specific binding. An additional high molecular weight ubiquitin reactive band was detected in the verruca lane (Fig 5.13 C). While these experiments have failed to conclusively identify ubiquitinated keratins in vivo, initial data suggest further investigations may be worth while. Optimisation of immunoprecipitations or more sensitive techniques such as mass spectroscopy may be required to provide a definitive answer.

5.6 Discussion
The data generated in this study suggest that E1^E4 maintains its capacity to associate with and disrupt keratins in vivo. Despite this finding, several differences were observed between E1^E4-positive cells in vivo and in vitro. Firstly E1^E4-expression in vivo rarely leads to perinuclear collapse of keratin networks or the formation of E1^E4 aggregates as seen in vitro, suggesting that this is not its primary mode of action. However, E1^E4 association to keratins in vivo does appear to result in the disruption/reorganisation of networks, possibly leading to the loss or degradation of affected networks. Although epitope masking cannot be ruled out, it is thought to play a minor role for a number of reasons as discussed earlier in this chapter (see section 5.3.2).
In addition to causing the loss of keratin staining, a subset of HPV 16 E1\(^{\text{E4}}\) positive cells near the surface of lesions cross-reacted with the phospho-specific keratin antibodies, 8250 and 2D6. These data must be viewed with some caution as keratins 4/13 and 5/14 do not contain identical epitopes to those to which the antibodies were raised, although this does not rule out the possibility of E1\(^{\text{E4}}\)-induced keratin phosphorylation occurring in vivo. Interestingly both of the sites on keratins that are observed to become phosphorylated in the presence of E1\(^{\text{E4}}\) are linked to cell cycle arrest (Ku et al., 1997b; Ku et al., 1998), suggesting that E1\(^{\text{E4}}\)'s role in G2 arrest by cytoplasmic sequestration of the cyclin B1/CDK1 complex (Davy et al., 2005) may promote keratin reorganisation.

Furthermore, cells expressing high-levels of HPV 16 E1\(^{\text{E4}}\) were found to contain altered ubiquitin profiles, with ubiquitin staining appearing in the cytoplasm of E1\(^{\text{E4}}\) positive cells at the surface of tissue, whereas normal tissue only contained low level nuclear staining in the upper epithelial layers. HPV 2 lesions also contain altered ubiquitin profiles, with cells close to the basal layer containing cytoplasmic ubiquitin as has been previously reported (Sahin., 2001; Sato et al., 1997). Levels of ubiquitin appeared to be especially high in E1\(^{\text{E4}}\) positive cells. In addition to this in some lesions, E1\(^{\text{E4}}\) positive cells continued to stain for ubiquitin into the cornified layer where no ubiquitin staining is detected in normal skin (Sahin. 2001). Although it is tempting to speculate that this is due to E1\(^{\text{E4}}\)-induced ubiquitination of keratins, there are also a number of other possible explanations for these observations including the activity of other viral proteins, cell stress and infiltration of immune cells (Kondo et al., 2002; Sahin., 2001; Shackelford et al., 2005).
Chapter 5 The association of E1^E4 with keratin *in vivo*

Data generated in this study also pointed to multiple levels of HPV 16 E1^E4 being present in tissue, which may correspond to different events in the virus lifecycle. Work on mRNA transcripts suggests that HPV 16 E1^E4 may be expressed in the basal layer of cells (Baker *et al.*, 1996; Sherman *et al.*, 1992b; Wilson *et al.*, 2005). If this is the case, then initial levels are too low to be detected by immuno-fluorescence. The onset of detectable levels of E1^E4 occurs shortly before MCM expression is lost, allowing viral genome amplification to occur in a sub-population of cells (reviewed in (Doorbar, 2005)). Loss of MCM expression is followed by an elevation in E1^E4 levels, which in turn was shown to coincide with L1 expression, this may signify the onset of genome packaging. Only after this has occurred does E1^E4 expression move into the final stage, with protein levels building up further. In this population of cells E1^E4 can be seen to induce keratin loss and to colocalize with ubiquitin. In addition L1 relocates from the nucleus to the cytoplasm (possibly following nuclear envelope breakdown), suggesting that matured virions may be ready for release. This indicates that keratin disruption only occurs at the final stage of the virus lifecycle perhaps in order to facilitate egress of newly assembled virions. Keratin disruption must be carefully timed, as premature initiation could result in an EBS-like condition (Ishida-Yamamoto *et al.*, 1991; Lane *et al.*, 2004; Werner *et al.*, 2004), with infected epidermis being shed prior to the completion of the virus lifecycle. The hypothesis of multiple functions of 16 E1^E4 is supported by parallel observations made in HPV2 lesions.

HPV2 E1^E4 is differentially processed in different regions of the tissue, although the identity of each band was not confirmed, if processing is similar to 16 E1^E4 it is possible to speculate as to the identity of each band. These data would indicate that HPV2 E1^E4 may initially be expressed as a doublet containing a phosphorylated form.
In higher layers of the epithelium, multimerisation occurs possibly instigating keratin disruption as previously suggested (Wang et al., 2004). An N-terminally cleaved form may also exist. Although its locations is uncertain, it may appear towards the surface of the tissue as previously seen with HPV 1E1^E4 (Breitbart et al., 1987).

Western blot analysis of keratins from normal and HPV 2-infected tissue proved to be challenging. Because of the great abundance keratin in terminally differentiated epithelia tissue, the heterogeneous nature of HPV2 infections and the diffuse nature of E1^E4 expression in lesions, western bots are not a suitable method for confirming E1^E4-induced drop in keratin levels. Both keratin 10 and 14 appeared to contain high molecular weight species (possibly a dimer) that may have been enhanced by the presence of E1^E4. This observation is interesting when compared with data generated in chapter 6 which suggests that E1^E4 may stabilise keratin filaments. Despite the use of several different approaches no conclusive evidence of ubiquitination of keratin species was found. Although this does not rule out this as a possible mechanism of action of E1^E4 in vivo, more sensitive approaches such as mass spectroscopy may be required to resolve this issue.

5.6.1 Future experiments

In order to identify keratin and ubiquitin reactive species of interest, bands from a silver-stained gel could be sent of for analysis by N-terminal sequencing or mass spectroscopy analysis. It is hoped that the results would show whether E1^E4 induces biochemical modifications to keratins in vivo. It is also hoped to be able to acquire frozen HPV 16 sections expressing sufficient E1^E4 to perform top-to-bottom sectioning so as to look for modified keratin species. In addition to this it is hoped that
use of a laser dissection microscope may also be used to conclusively determine whether E1^E4 induces keratin loss.

Finally, in order to establish the true effect of E1^E4 on epidermal integrity, it is hoped to use HPV raft cultures and E1^E4 knockout viruses currently under development in the lab. If raft cultures can be produced expressing high levels of E1^E4 it may be possible to stress the surface of the tissue and quantify tissue fragility.
6 The effect of E1^E4 on cytokeratin network dynamics

6.1 Introduction
Having established that E1^E4 is able to disrupt keratins and induce biochemical modifications in vitro and potentially in vivo (see chapters 4 and 5), time lapse experiments were conducted to better understand the mechanism by which this process occurs. The association of E1^E4 to keratin networks in vitro results in their collapse to the perinuclear region, a phenomenon that is rarely observed in vivo. This study aimed to analyse the effect of E1^E4 on individual processes involved in the formation and turnover of the keratin network.

6.2 Keratin dynamics
Keratins provide mechanical strength to the cell whilst remaining highly dynamic in order to avoid interference with cellular processes such as mitosis, migration and wound healing. Cytokeratins were initially believed to form relatively stable cytoplasmic filament networks, but the possibility of a dynamic cytokeratin network was suggested when it was noticed that filaments disassemble during cell division (Aubin et al., 1980; Lane et al., 1982). The dynamic nature of keratin filament networks was first shown in the early nineties in a study that monitored the incorporation of biotin-labelled keratins microinjected into living cells. Incorporation of biotinilated keratins was observed within 15 min of injection. By 1.5-2 hours post infection extensive network labelling was observed suggesting that complete network turnover had occurred (Miller et al., 1991; Miller et al., 1993).

6.2.1 Time-lapse studies of keratin dynamics
Keratin network dynamics have been extensively studied by time-lapse microscopy, which has been able to identify individual processes involved in the turnover of keratin
networks. Keratin movement is an ATP-dependent process that can be inhibited by the addition of sodium azide and 2-deoxy-D-glucose (Windoffer et al., 1999). Work investigating the recovery of dismantled filament networks after mitosis showed that network formation is energy dependent, occurs at the cell cortex (Fig 6.1B), and requires both the actin and microtubule filament networks (Windoffer et al., 2001). The phosphorylation state of keratins plays an important role in regulating network stability. Keratin network disintegration, which mimics mitotic disruption can be induced by treating cells with phosphatase inhibitors. This network disintegration is rapid and reversible, and recovers after the removal of inhibitors (Strnad et al., 2002).

6.2.2 Keratin network formation and turnover is dependent on both microtubules and actin networks
Recent studies have demonstrated that keratin filament assembly occurs almost exclusively at the cell cortex and that from here, the assembled filaments migrate towards the centre of the cell (Fig 6.1 A). The inward directed movement of newly formed keratin filaments and their precursors occurs at a rate of ~0.05-0.3 μm/min depending on the cell line being studied (Windoffer et al., 1999; Yoon et al., 2001). This movement is dependent on the actin cytoskeleton and can be inhibited by treating cells with cytochalasin (Werner et al., 2004; Woll et al., 2005). It has also been demonstrated that very few subunit exchanges occur along filaments as they migrate inwards (see Fig 6.1B). Once filaments migrate into the central region of the cell, they fuse with keratin bundles, where they are dismantled, the subunits are then transported back to the edge of the cells (Windoffer et al., 2004). This movement is rapid (~18μm/min) and involves the transport of keratin particles to the edge of cell, which is facilitated by microtubules (Woll et al., 2005). This outward-directed movement of keratin particles can be inhibited by microtubule depolymerising agents such as nocodazole. Analyses of multiple keratin subtypes (K5, 8, 13, 14 and 18) has
Figure 6.1 Mechanisms behind keratin filament formation and dynamics.
Diagram A shows the simplified two step model which highlights the major aspects of cytokeratin filament network assembly (from left to right), and disassembly (right to left) during mitosis. Granules at the centre of the cell are not depicted they do not directly contribute to network formation. Granule extension and ligation occurs during assembly vs. filament fragmentation and aggregate formation which occurs during disassembly. Radial filament extension and filament thinning occurs during network formation conversely filament retraction and thickening occurs during disassembly. FRAP analysis on keratin filaments of PK18-5 cell demonstrates the differential recovery of central and peripheral cytokeratin filaments (white line indicates cell edge) (B). The first image shows the region prior to bleaching (green line indicates path of laser). Note the recurrence of fluorescence predominantly at the peripheral region where inward moving filaments can be distinguished. Image taken from (Windoffer et al., 2004).
revealed that basic keratin dynamics appear to be neither subtype-specific or cell type dependent (Woll et al., 2005; Yoon et al., 2001).

6.3 Green florescent protein (GFP)

GFP was isolated from the crystal jelly fish *Aequorea victoria* in the 1960’s and first cloned in the mid eighties (Charbonneau et al., 1985). GFP does not itself produce fluorescent light; this role is performed by the enzyme luciferase, which produces ATP-dependent chemiluminescence with a wavelength of 369-475 nm. GFP functions to alter the fluorescence emissions spectrum, allowing *Aequorea victoria* to emit green light with a wavelength of 508nm (reviewed in (Shimomura, 2005). In the laboratory GFP functions as a biological fluorophore and can be observed by excitation with an artificial light source such as a UV lamp or laser. The GFP protein contains a chromophore at its centre (Fig 6.2B) that has the ability to absorb light energy of specific wavelengths, this energy is then re-emitted by the molecule at a longer wavelength (fluorescence). The GFP protein catalyzes the formation of its own chromophore, which is contained within the centre of a beta-barrel structure formed by 11 beta strands (Fig 6.2A) (Phillips, 1997; Yang et al., 1996). Since its discovery, GFP has been an invaluable tool in biological research, allowing the labelling and real-time monitoring of biological molecules in their natural environments. Many different GFP mutants have since been produced conferring various properties on the protein e.g. enhanced GFP (EGFP) fluoresces at a higher intensity and resists photobleaching when compared with wild type GFP. Monomeric and pH sensitive variants have also been produced. In addition, single amino acid mutations resulting in shifts in the absorbance and emission spectra have been generated resulting in yellow florescent protein (YFP) and cyan florescent protein (CFP) (reviewed by(Chudakov et al., 2005).
Chapter 6 The effect of E1/E4 on cytokeratin network dynamics

8.6.1 Structures of Green-fluorescent protein (GFP)

GFP exists as a dimer in solution at low ionic strengths. The protein is formed from eleven strands of β-sheet (green) which form the walls of a cylinder (A). Short segments of helices (blue) cap the top and bottom of the β-can and provide a scaffold for the fluorophore (B) held near geometric centre of the can. Images taken from (Yang, Moss, and Phillips, 1996)

Figure 6.2 The structure of the Green florescent protein (GFP)

GFP exists as a dimer in solution at low ionic strengths. The protein is formed from eleven strands of β-sheet (green) which form the walls of a cylinder (A). Short segments of helices (blue) cap the top and bottom of the β-can and provide a scaffold for the fluorophore (B) held near geometric centre of the can. Images taken from (Yang, Moss, and Phillips, 1996)
6.4 Basis of time-lapse imaging
To collect valid time-lapse data several factors must be taken into consideration. These include the depth of focus required, the duration of the experiment and the brightness of the subject. The frequency and duration of events determines the interval between frames. Some events occur frequently and rapidly, and are relatively easy to image. Events that occur rapidly but infrequently are much more challenging to film. It can be difficult to keep individual filament structures in focus, especially in rounded cells, where there is a lot of scope for movement in the Z-plane (Windoffer et al., 1999). Dynamic objects are more likely to drift in and out of the plane of focus and require a greater depth of focus, which is obtained by increasing the number of Z sections, followed by merging to form a composite image. Subjects with low-intensity fluorescence require longer exposures times. Conversely, bright subjects can be imaged using shorter exposure times and by using neutral density filters to further reduce light intensity. Increasing the intensity, duration and frequency of exposure of samples to light increases the chances of corrupting the data by inducing phototoxic cell damage. The selection of fluorophore can also influence the phototoxicity incurred during imaging. For example, blue fluorophores such as CFP require shorter wavelength (higher energy) excitation sources resulting in more rapid accumulation of photo damage. Time-lapse imaging using multiple fluorophores requires a greater number of exposures and hence will increase phototoxic cell stress. All these factors must be taken into account when designing time-lapse experiments in order to generate valid data. As many of these factors are initially unknown and time-lapse experiments require a considerable amount of optimisation in order to establish a practical system.

6.4.1 Phototoxicity
Phototoxicity is a problem that is commonly encountered during time-lapse experiments. Phototoxicity and photobleaching are two distinct phenomena.
Phototoxicity results from the generation of free radicals by the exposure of cells to high energy light sources. Free radicals are chemically reactive species with lone pair electrons that are produced by the breaking of chemical bonds by high energy ultraviolet light. As free radicals accumulate in cells they react with bio-molecules and disrupt biological processes and this in turn can alter cellular dynamics leading to apoptosis, and distorts experimental data (Juven et al., 1985). Phototoxicity can be minimised by reducing the duration and intensity of the light pulses used to excite fluorophores (Black, 2004; Juven et al., 1985; Neumann et al., 1999; Satoh et al., 1996). Addition of antioxidants such as ascorbic acid, which mop up free radicals can also be used to reduce phototoxicity (Neumann et al., 1999).

6.5 Results

6.5.1 Production and characterisation of a 16^E1^E4 YFP fusion protein
The YFP-E1^E4 fusion protein was produced by cloning E1^E4 from the existing MV11 vector, and ligating it into the pEYFP-C1 vector (Clonetec, see appendix IIII for vector map). This resulted in a YFP protein with E1^E4 attached to its C-terminus. The PCR reaction produced a 300 bp E1^E4 fragment (Fig 6.3 A), which was ligated into the vector and transformed into bacteria. Clones were screened by both endonuclease restriction digestion and PCR (Fig 6.3B). To ensure that the pYFP-E1^E4 construct expressed a functional protein, SiHa cells were transfected with the construct. Cells lysates were analysed by western blots, which were probed with an E1^E4-specific antibody (TVG 402). Extracts were shown to contain an E1^E4 reactive band of approximately 40 kDa which is consistent with a fusion between E1^E4 (12 kDa) and YFP (27kDa) (Fig 6.3 C). Separation on a 10 % gel showed that the band was composed of a doublet, suggesting that phosphorylation may occur as with wild type protein.
Figure 6.3 Cloning and identification of the YFP-E1\(^{+}\)E4 fusion protein

The YFP-E1\(^{+}\)E4 fusion protein was produced by cloning E1\(^{+}\)E4 from pMV11 HPV 16 E1\(^{+}\)E4 vector (Raj, 2004). PCR products were ~300 bp in size and only present in lanes containing template (A). PCR products were ligated into the pEYFP-C1 vector (Clonetech) and electroporated into DH5\(\alpha\) cells. Positive colonies were identified by PCR screening (B). Wild type and YFP-E1\(^{+}\)E4 clones were transfected into SiHa cells and lysates analyzed by western blotting. Blots were probed with the E1\(^{+}\)E4 specific antibody (TVG402). Wild type E1\(^{+}\)E4 produced 2 bands ~12 kDa in size as previously reported. The YFP-fusion protein was ~40 kDa in size (C) and found to contain 2 bands when separated on a 10 % gel (arrow).
6.5.2 YFP-E1^E4 analysis by confocal microscopy

The behaviour of the YFP-E1^E4 protein was compared to wild type E1^E4 by high resolution confocal microscopy. SiHa cells were transfected with pYFP-E1^E4 and fixed 24 h post transfection with methanol. Transfected cells were stained for keratin, mitochondria, or cyclin B (Fig 6.4). Cells expressing YFP-E1^E4 contained the same E1^E4 structures found in cells expressing wild type protein (filaments, bundles and aggregates) which fluoresced without being stained, indicting that conjugation to 16E1^E4 did not disrupt the function of the YFP protein (Fig 6.4 A-C). In addition, the various YFP-E1^E4 structures all colocalised with keratin (Fig 6.4 D-F). SiHa cells transfected with the empty YFP vector showed that when not bound to E1^E4, YFP was diffuse throughout the cell and did not colocalise with keratin (Fig 6.4 G-I). YFP-E1^E4 also colocalised with cyclin B, with colocalisation being more frequently observed in E1^E4 aggregates (Fig 6.4 M-O) as seen with wild type E1^E4. YFP-E1^E4 did not colocalize with mitochondria, even in cells where E1^E4 displayed a mitochondria-like pattern (Fig 6.4 J-L). This data suggests that YFP-E1^E4 behaves in a similar manner to the wild type protein, except for its inability to associate with mitochondria.

6.5.3 Expression of YFP-E1^E4 in SW13 cells

To confirm that YFP-E1^E4 was incapable of associating with mitochondria; the construct was expressed in cells lacking cytokeratin networks. YFP-E1^E4 was transfected into SW13 T7K and SW13 C2 cell lines (C2 lack keratin networks, T7K cells express a K8/18 network). In SW13 T7K cells YFP-E1^E4 expression produced results similar to those in SiHa cells, producing filaments, bundles and aggregates that co-stained with keratin (see Fig 6.5 G-L). Expression of YFP-E1^E4 in SW13 C2 cells resulted in a diffuse pattern that did not appear to colocalize with mitochondria (see Fig 6.5 A-F).
Figure 6.4 Functionality of YFP-E1^E4 as determined by immunofluorescence in SiHa cells

SiHa cells were transfected with pYFP^E1^E4 and fixed with methanol 24 h post-transfection before being stained for DNA (DAPI, blue) and either keratin (C2562), cyclin B (GNS 11) or mitochondria (mitotracker, used prior to fixation) (red). YFP-16E1^E4 produced a variety of structures including filaments bundles and aggregates (A-C). YFP-E1^E4 associated to and disrupted keratin filaments (D-F). SiHa cells transfected with empty YFP vector, demonstrated that YFP was diffuse and did not associate to keratin (G-I). YFP-16E1^E4 could not be observed to associate with mitochondria (J-L). YFP-16E1^E4 maintained the ability to associate with cyclin B (M-O). Scale bars denote 5 μm.
Chapter 6

The effect of E1-E4 on cytokeratin network dynamics

A, B, C: DAPI & YFP-E1^E4
D: Merge
E: DAPI & YFP-E1^E4
F: Keratin
G, H: DAPI & YFP
I: Keratin
J, K: DAPI & YFP-E1^E4
L: Mitochondria
M, N: DAPI & YFP-E1^E4
O: CyclinB
Figure 6.5 Expression of YFP-16E1^E4 in SW13 cells demonstrates that it is unable to associate with mitochondria

The ability of YFP E1^E4 to associate with mitochondria was established by transfecting pYFP-16E1^E4 into C2 (K-ve) and T7K (keratin 8 & 18) SW13 cells. Cells were fixed 24 h post-transfection and stained for DNA (DAPI, Blue) and either keratin (C2562) or mitochondria (mitotracker added prior to fixation) (red). In the absence of keratin (SW13 C2 cell line) YFP E1^E4 was unable to bind mitochondria or form solid structures resulting in a diffuse cytoplasmic pattern (A-F). When expressed in SW13 T7K cells YFP E1^E4 was exclusively located to keratin (G-L). Scale bars denote 5 μm.
Chapter 6 The effect of E1AE4 on cytokeratin network dynamics

This data suggested that the fusion protein was incapable of forming solid structures in the absence of keratin.

6.6 Initial time-lapse strategies

Initial time-lapse experiments were carried out to observe both YFP-E1AE4 and CFP-keratin simultaneously using the AK-8 cell line expressing a CFP-tagged keratin 8/18 network (kindly provided by Rudolph Leube). The aims were to determine how robust the cells were, to observe E1AE4 behaviour in cells, and to determine the rate at which E1AE4 accumulates on keratin networks. Initial experiments showed that cells frequently drifted out of the plane of focus, suggesting that long duration movies may not produce usable data. Although YFP-E1AE4 was exclusively localised to the CFP keratin filaments, the network in the AK-8 cell line could not be clearly visualised, and only poor resolution images were obtained (this was also noted by Rudolph Leube, personal communication). Over the time frame required to observe E1AE4-induced keratin collapse, significant phototoxic effects were observed despite increasing time-lapse intervals. Cells were observed to ball up and fluorescent keratin formed into aggregates in the absence of E1AE4, indicating the initiation of apoptosis (Caulin et al., 1997). The narrow margin between YFP-E1AE4 and phototoxicity-induced cytokeratin network collapse, meant that it was not possible to distinguish between the effects of E1AE4 and phototoxicity using this approach. Two colour imaging required double the number of exposures which contributed further to phototoxic damage. This problem was compounded by the use of CFP which requires short wave (high energy) excitation wavelengths. From these initial experiments it was concluded that long duration two colour imaging experiments were not possible to carry out due to high levels of phototoxic damage. In addition to this, the CFP cell line produced poor quality images.
Having been unable to produce usable data using the initial approach, it was decided to transfect YFP-E1^E4 into SiHa cells and to focus on the effect of YFP-E1^E4 on keratin network dynamics over a 1-2 hour frame using the AK 13 cell line as a control (Windoffer et al., 1999). The GFP labelled keratin 13 networks expressed in this cell line were significantly sharper to visualise than the K8/K18 networks expressed in AK-8 cells. Both the process of keratin filament formation and the migration of individual filaments towards the centre of the cell could be captured using the available imaging systems. After generating data in this cell line it was discovered that although dynamics occurred at the same rate as previously reported for AK13 cells (Windoffer et al., 1999) the rates of movement varied between different cell lines (Yoon et al., 2001). As a result of this discovery a third strategy was investigated.

6.7 GFP keratin 13 transfected into SiHa cells

At the time of acquiring the AK8 and AK-13 cell lines, a GFP labelled keratin 13 plasmid (pHK13AP.EGFP) was also provided by Rudolph Leube. This plasmid was transfected into SiHa cells to investigate keratin filament formation and to allow the monitoring of keratin network dynamics in the same cellular background. SiHa cells express a keratin 8 and 18 network and so a GFP labelled keratin 8 or 18 would have been preferable. In addition to keratin 8/18, around 10 % of SiHa cells also express keratin 13 (see chapter 4), and so it was uncertain whether expressed GFP-K13 protein would be able to incorporate into keratin filaments in SiHa cells. To examine this, SiHa cells were transfected with the plasmid and stained for keratin (C2562). Transfected cells expressed high levels of the protein, and displayed various phenotypes. Fluorescent keratin aggregates (Fig 6.6 D-F) and filamentous structures were observed in cells (Fig 6.6 A-C), GFP-K13 filaments were indistinguishable from endogenous filament network (Fig 6.6 A-C). Cells were observed at 12 and 24 h post transfection; a
Figure 6.6 Formation of keratin filaments can be observed in GFP keratin 13 transfected SiHa cells

SiHa cells transfected with GFP-Keratin 13 plasmid (Windoffer and Leube, 1999) fixed with methanol and stained for keratin (C2562 red) and DNA (DAPI blue). GFP keratin 13 could be seen to incorporate into keratin networks in a sub population of cells (A-C), whereas it formed aggregate structures in others (D-F). (G-L) When GFP-keratin 13 is transfected into live cells, filaments could be seen to form from diffuse fluorescent material at the edge of the cell (*). Scale bars denote 5 μm.
greater number of filamentous cells were observed at 24 h. Although a GFP keratin 8 or 18 label would have been a more logical choice, from these observations it was decided that this system could be used as a control model to determine the affects of E1^E4 on keratin filament formation, migration and turnover in SiHa cells.

6.7.1 Formation of keratin filaments at the cell cortex can be observed in GFP K13 transfected SiHa cells

It was decided to investigate whether E1^E4 caused keratin collapse by disrupting keratin polymerisation and filament formation at the cell cortex. The process was first visualised by transfecting SiHa cells with the pHK13AP.EGFP plasmid. Diffuse fluorescent material at the edge of the cell edge was shown to condense and form filaments (Fig 6.6 G-L) with newly formed filaments migrating towards the centre of the cell (see Fig 6.8 A-C) (see movie GFP-K13) where they begin to fuse with centrally located keratin bundles. As filaments move inwards, diffuse fluorescent material condense behind the old filament, with new filaments gradually forming (small arrows Fig 6.8). These observations suggest that the pHK13AP.EGFP plasmid could be transfected into SiHa cells and used to observe keratin filament formation and migration, which occurs by a mechanism similar to that previously described (Windoffer et al., 1999; Windoffer et al., 2001).

6.7.2 E1^E4 does not initially disrupt filament formation

A reduction in soluble keratin in E1^E4-positive SiHa cells has previously been demonstrated using fractionation experiments (see Fig 4.16) (Wang et al., 2004). This data would seem to suggest that the keratin "escalator" system may be inhibited. It was previously suggested that this was a result of E1^E4 associating with the soluble pool of
keratin and linking it to the insoluble filaments by a process of cross-linking and/or multimerisation (Wang et al., 2004). During initial time-lapse analysis of cells, performed 24 h after transfection, no filament formation could be observed suggesting that the process of keratin polymerisation and filament formation was inhibited by E1^E4. However, analysis of SiHa cells 12 h after transfection with pYFP-E1^E4 shows that the build up of E1^E4 does not initially disrupt cytokeratin filament formation and subsequent inward translocation (Fig 6.7) (see movie YFP-E1^E4.1). In cells containing fine filamentous YFP-E1^E4 the process of filament formation could be observed. The formation of filaments from diffuse fluorescent E1^E4 occurred at the periphery of the cell, as observed in cells expressing fluorescently tagged keratin. Filaments joined with the existing filament network migrating towards the centre of the cell. The data was collected using 5 z sections giving a focal depth of 2 μm confirming that filament formation was indeed being observed and that the data could not be explained simply by filaments drifting into the plane of focus. This data demonstrates that E1^E4 can associate with the soluble pool of keratin without initially disrupting keratin polymerisation and filament formation.

6.8 Tracking of the inward directed migration of GFP keratin 13 and YFP-E1^E4 filaments in SiHa cells

To determine whether E1^E4 was able to affect keratin network dynamics by disrupting their association with other cytoskeletal components or otherwise, SiHa cells were transfected with pYFP-E1^E4 or pHK13ΔP.EGFP. 2-hour time-lapse movies were produced and the rate of inwards directed migration of filaments from the edge of the cell was determined. Data sets were analysed to quantify variation between YFP-E1^E4 and GFP-K13 network dynamics using the in-house tracking software GM view, developed by Gregory Mashanov (Mashanov et al., 2003; Mashanov et al., 2004). Ten
Figure 6.7 YFP-E1^E4 can be observed to assemble into filaments at the edge of the cell.
SiHa cells were transfected with pYFP-E1^E4 12 h prior to imaging on a Deltavision epifluorescence microscope. Diffuse YFP-E1^E4 at the edge of the cell was observed to assemble into filaments (marked by arrows). Filaments migrated towards the cell centre in a similar manner to that previously described for GFP labelled keratin filaments (Windoffer and Leube, 1999). Scale bar denotes 5 μm.
different identifiable objects at the edge of the cell were selected and tracked for each time point making a total of approximately 600 measurements /cell. Velocity values generated in GM view were double checked by frame to frame analysis of data sets in Softworks software (Applied Precision). To determine the effects of phototoxicity on data sets, 2-hour movies were split into three 40 min components and analysed separately in order to determine the cumulative effects of phototoxicity on dynamics. Average velocities were found to be stable over the 2 hour period (data not shown). Furthermore, cells appeared stable and did not show obvious signs of apoptosis, as observed in earlier recordings, suggesting that data was not being corrupted by phototoxicity.

6.8.1 Rates of filaments migration observed in GFP keratin 13 labelled SiHa cells.
The rate of inward movement of keratin filaments was determined by analysing time-lapse recordings of SiHa cells transfected with either GFP-K13 or YFP-E1^E4. The rate and uniformity of the movement was determined by analysing the average velocity and standard deviation values. Keratin filament migration was generally unidirectional (see Fig 6.8 A-C) (outward "pulses" of movements were occasionally observed see large arrow Fig 6.8 A-B) (see movie GFP-K13), the rate of which varied slightly from cell to cell and had an average velocity of 0.056 μm/min (with range of 0.03-0.084 μm/min) and an average standard deviation of 0.036 μm/ min (Fig 6.9A). New filament could be observed to form from diffuse material at the cell edge as the observed filament tracked inwards; demonstrating that filament turnover was ongoing (Fig 6.8 B small arrows) and indicating that phototoxicity was not affecting cells. Filament morphology appeared to be in a continuous state of flux with filaments stretching, condensing and fusing with one another. Filament mergers occurred in the perinuclear region of the cell sometimes forming large bundles, the morphology of which was also in a continual state of flux.
Chapter 6

The effect of E1A E4 on cytokeratin network dynamics

Figure 6.8 Tracking of keratin and E1A E4 in SiHa cells revealed inward directed movement of both YFP-E1A E4 and GFP keratin.

GFP-keratin 13 (A-C) or YFP-E1A E4 (D-E) was transfected into SiHa cells and time lapse movies were produced. Data was analysed with GM view, paths (track initiation points denoted by arrows) of ten objects per cell were recorded. Images (A & D) show cells at T0. GFP keratin was observed to track into the centre of the cell continuously with an average rate of ~0.06 μm/min (A-C). New filaments were observed to form behind old filaments as they tracked inwards (small arrows B). An outward spread of new filaments was also observed (large arrow A-B). Inward movement of YFP-E1A E4 filaments was observed in cells as network collapse occurred, no new fluorescent material is observed at the edge of the cell (E). Maximum velocities did not exceed and were comparable to those of keratin movement (compare track lengths). YFP-E1A E4 and GFP keratin networks both contained relatively static points moved that little in 2 h (red arrows). Scale bar denotes 5 μm.
Figure 6.9 Average inward velocities of GFP keratin 13 and YFP-E1\(^{\text{E4}}\) labelled keratin networks in SiHa cells

Graphs show the average velocity of GFP keratin 13 (A) or YFP-E1\(^{\text{E4}}\) (B) labelled keratin filaments in SiHa cells (5 cells/population) as they migrate from the edge into the centre of the cell (see Fig 6.8). Rates represent the average velocity of 10 objects per cell initiating at the cell edge and migrating inwards (see Fig 6.8), over the course of 2 hr using GM view tracking software, error bars represent the standard deviation. Average velocities of GFP keratin 13 and YFP-E1\(^{\text{E4}}\) labelled keratin networks in SiHa cells were 0.059 and 0.043 μm/min respectively.
Chapter 6 The effect of E1E4 on cytokeratin network dynamics

(see movie GFP-K13). These data indicated that GFP-K13 labelled filament networks in SiHa cells turnover at a rate comparable to those reported to occur in other cell lines (Windoffer et al., 2004; Yoon et al., 2001).

6.8.2 Rates of filaments migration observed in YFP-E1E4 labelled SiHa cells.

Data from SiHa cells transfected with YFP-E1E4 must be interpreted carefully as it is possible to come to a variety of different conclusions, depending on the population of E1E4 cells being studied. Very little inward motion was observed in cells with collapsed keratin networks. Cells with well spread filamentous E1E4 were selected for this study and the rates of E1E4 labelled filament movement was recorded. No new filament formation could be observed in cells undergoing collapse suggesting that this process has been disrupted at the point of network collapse (Fig 6.8 D-E) (see movie YFP-E1E4.2). YFP-E1E4 labelled filaments could also be observed to move inwards (Fig 6.8 D-E track lines) at a rate comparable to that observed for GFP-K13 labelled filaments (compare graphs A and B Fig 6.9). Inward movement had an average velocity of 0.043 \(\mu\text{m/min}\) (with a range of 0.019-0.072 \(\mu\text{m/min}\)) and a standard deviation of 0.029 \(\mu\text{m/min}\). Although GFP-K13 labelled networks contained some relatively static regions (red arrow Fig 6.8 A-C), these were generally more abundant in YFP-E1E4 networks, depending on the extent of network collapse (red arrows Fig 6.8 D-E), resulting in the reduced average velocities recorded. Points containing identifiable material 360\(^\circ\) around the cells were selected. Data could have been skewed by selectively analysing highly dynamic regions and is therefore open to interpretation. Dynamic regions (non-collapsed) moved at comparable velocities in both YFP-E1E4 and GFP-K13 transfected SiHa cells (YFP-E1E4 max 0.072 \(\mu\text{m/min}\), GFP K13 max 0.084 \(\mu\text{m/min}\) also, compare track lengths Fig 6.8 C and E).
Furthermore the usual complex shifting dynamics observed within normal keratin networks were not observed in E1^E4 associated networks. Filament stretching and mergers were not observed and filaments appeared to be of a uniform thickness. Individual filament junctions were stable over the 2 hour recordings (see Fig 6.10B and 6.11B). Dynamic regions of E1^E4 associated keratin filament moved inwards at a rate comparable to those observed in GFP-K13-labelled networks, suggesting that the association of E1^E4 to filaments appears not to disrupt the association to other components of the cell cytoskeleton responsible for keratin filaments dynamics. However, the association of E1^E4 appears to freeze dynamic alterations to the keratin network architecture that are apparent in normal keratin networks, possibly indicating the stabilisation of E1^E4 associated keratin filaments.

6.9 Fluorescence recovery after photobleaching (FRAP)

FRAP is a useful analytical technique that allows the study of protein diffusion and can provide data on protein-protein interactions in living cells. FRAP relies on the basic principal of photobleaching, which is where over stimulated fluorophores sustain photon-induced chemical damage and undergo covalent modification, destroying their fluorescent properties. Fluorophores can be photobleached with a brief pulse of bright light without damaging other cellular proteins (Prendergast, 1999). As lasers can be used to ablate fluorescence in localized regions within cells, fluorescence recovery can be monitored by time-lapse imaging to gain information on the kinetics and turnover of proteins within cells. It was hoped that such experiments would determine if keratin bound E1^E4 is in equilibrium with a diffuse population or whether keratin binding is a stable/irreversible event. In addition to this, by determining the E1^E4 recovery mechanism, it will be possible to determine if E1^E4 can bind polymerised keratin
filaments or whether it binds soluble keratin and is subsequently incorporated into networks during filament formation.

6.9.1 FRAP analysis of GFP labelled keratin filaments

Keratin FRAP has previously been performed by several researchers on cells expressing fluorescent tagged keratin chimeras in order to better understand keratin network turnover. Experiments involving the bleaching of bars perpendicular to keratin filaments estimated a recovery half life of approximately 100 ±30 min. Recovery was not uniform across the length of the bleached region with fluorescence extending out from fluorescent ends of the filament. These experiments also demonstrated that parallel filaments less than 1μm apart moved at different rates and in different directions demonstrating the complex nature of keratin filament dynamics (Yoon et al., 2001). A second study looked at the recovery of keratin filaments by bleaching wedge shaped regions at the periphery of cells. These experiments revealed very limited recovery in the central regions suggesting that limited subunit exchange occurs within polymerised filaments. Fluorescent recovery took place in a sub-membranous compartment, with diffuse fluorescent material forming new filaments which then migrated into the bleached region (see Fig 6.10 B). This observation was further supported by the bleaching of an entire cell and subsequent monitoring of a single unbleached peripheral filament. Little fluorescence reduction was detected over a 70 min period suggesting very limited release of fluorescent material into the soluble pool (Windoffer et al., 2004). Over a 200 min period, the filament migrated towards the centre of the cell where fluorescent levels began to decrease, suggesting a recycling of fluorescent material into the soluble fraction. A corresponding increase in the fluorescence of nearby centrally located filaments was not observed indicating that shed fluorescent subunits were not being incorporated into adjacent filaments. These observations
demonstrated that the turnover of a keratin filament does not occur by exchange of subunits along its entire length and throughout the cytoplasm but is confined to the cell cortex (Windoffer et al., 2004).

6.10 FRAP analysis of GFP keratin 13 labelled filaments in SiHa cells

Analysis of keratin FRAP was complicated by several factors including the duration and mechanism of recovery, and the highly dynamic nature of networks. Recovery of fluorescently tagged keratin in SiHa cells after the bleaching of perpendicular bars in cells occurs over more than 2 hours (Fig 6.10) (see movie GFP-K13). Fluorescence recovery occurred by a number of different processes. These include the migration of diffuse non-filamentous material into the bleached region. Unbleached filaments also migrated into the bleached regions as a result of normal network dynamics. Recovery was not uniform along the length of the filaments with limited recovery appearing to occur by bleached ends growing together to reform a fluorescent filament as previously reported (Yoon et al., 2001). Due to the complex mechanism of recovery, data was not analysed using the imageJ software patch software used to analyse YFP-E1\(^{\text{E4}}\) recovery, as it was only able to measure the uniform recovery of a single point and would not provide useful data on complex keratin recovery. Recovery of GFP-K13 labelled keratin networks in SiHa cells occurred at a similar rate and by comparable mechanisms as has been previously described in other cell lines (Windoffer et al., 2004; Yoon et al., 2001). Internal keratin network architecture is also in a continual state of flux, filament connection are not stable over the 2 h period of the recoding (Fig 6.10B) (see movie GFP-K13).
Figure 6.10A FRAP analysis of Keratin in SiHa cells
SiHa cells transfected with GFP Keratin 13 were subjected to FRAP analysis 24 h post transfection. Images were acquired (-1 s) before bars were bleached in cells (+1 s post bleach) (red arrow) using a 488 nm QLM module equipped delavision microscope. Fluorescence recovery was recorded for two hours after bleaching. Recovery was almost completed within two hours, but was not uniform over the bleached region. Recovery primarily occurred by the migration of new fluorescent filaments into bleached regions. The ongoing processes of filament synthesis at the periphery of cells was clearly visible (blue arrow) Scale bar denotes 5 μm.
Chapter 6: The effect of E1/E4 on cytokeratin network dynamics

Figure 6.10B keratin filament networks are highly dynamic and in a continual state of flux.
Figure shows enlarged images from figure 6.10, keratin network architecture is in a continual state of flux and no points or filament junctions are stable over a 2 h time frame.
6.10.1 FRAP analysis of YFP-E1\(^{+}\)E4 in SiHa cells reveals rates of recovery varies in different structures

It was hoped that understanding the binding of E1\(^{+}\)E4 to keratins would give insights into how keratin network disruption occurs. FRAP experiments were performed on cells containing both E1\(^{+}\)E4 filaments and aggregates. Recovery of E1\(^{+}\)E4 was not comparable to keratin in either time or mechanism. Furthermore, two separate rates of E1\(^{+}\)E4 recovery were observed, depending on the structures studied. SiHa cells transfected with YFP-E1\(^{+}\)E4 12 hrs prior to imaging which expressed E1\(^{+}\)E4 with a fine filamentous pattern were selected for the first set of experiments. Bars were bleached through cells and images taken every 2 min subsequently. Fluorescence returned to the bleached regions rapidly and almost complete recovery was deemed to have occurred within approximately 30 min (N = 16) (Fig 6.11 and Fig 6.13) (see movie YFP-E1\(^{+}\)E4.3). By monitoring fluorescence levels in unbleached regions it was possible to demonstrate that recovery was not due to new protein synthesis, as a comparable increase in fluorescence was not observed in control regions (Fig 6.13 C-D). Furthermore, unlike keratin, E1\(^{+}\)E4 recovery appeared to be relatively uniform across the bleached region suggesting a dynamic equilibrium between the bound and soluble populations of protein (Fig 6.11 A-B). The rapid uniform recovery of fluorescence suggests that E1\(^{+}\)E4 is able to bind, the polymerised filaments and the association is not dependent on keratin incorporation during filament formation at the cortex of the cell. Although the rates of recovery were consistent, there was a significant variation in the extent of recovery to pre-bleach levels, which ranged between 69% and 94% (Fig 6.13C and D). Fluorescence recovery occasionally involved an increase in protein synthesis during 2 experiments; a representative graph is also shown (Fig 6.13 E). This finding suggested that although a significant percentage of E1\(^{+}\)E4 binding to keratin is transient; a second populations may be irreversibly bound, or have a significantly
Figure 6.11A FRAP analysis of filamentous E1\(^4\)E4 in SiHa cells
SiHa cells transfected with YFP-E1\(^4\)E4 cell expressing filamentous E1\(^4\)E4 were subjected to FRAP analysis 12 h post transfection. Images were acquired (-1 s) before bars were bleached (red arrow) in cells (+1 s post bleach) using a 488 nm QLM module equipped deltavision microscope. Fluorescence recovery occurred in 30 min with recovery occurring uniformly over the bleached region (red arrow). Filament network architecture was not observed to alter significantly over two hours and multiple individual filaments were still detectable (Blue arrows) showing increased stability of E1\(^4\)E4 associated filaments. Scale bar denotes 5\(\mu\)m.
Chapter 6 The effect of E1^E4 on cytokeratin network dynamics

Figure 6.1B E1^E4 association to keratin stabilises keratin filament networks. Figure shows enlarged images from figure 6.11, the association of E1^E4 to the keratin network freezes network architecture over 2 h. Individual filament junctions are stable over 2 h (see arrows).
Chapter 6 The effect of E1 E4 on cytokeratin network dynamics

Figure 6.12 FRAP analysis of E1 E4 aggregates in SiHa cells
SiHa cells transfected with YFP-E1^E4 24 h prior to imaging, cells containing aggregates were subjected to FRAP analysis. Images were acquired (-1 s) before spots were bleached with a single laser pulse (+1 s post bleach) (red arrow) using a 488 nm QLM module equipped deltalvision microscope. Only limited fluorescence recovery was observed over a 2 h period. Small E1^E4 aggregate structures were highly dynamic and were observed to undergo rapid bidirectional translocation (blue arrow) scale bar denote 5 μm.
Figure 6.13 Recovery rates of E1+E4 filaments and aggregates
SiHa cells transfected with YFP E1+E4 and subjected to FRAP analysis. Data sets were analyzed in image J and revealed several different mechanisms of recovery (values denote grey scale ranging from 0-2500). E1+E4 aggregates (A-B) showed very little recovery over 2 h. Control unbleached regions (Pink) were stable over 2 h indicating that protein synthesis and photobleaching were not significantly affecting data sets. When disruption of data sets by focal drift occurred data was discarded (black arrows). Recovery analysis of filamentous E1+E4 produced smooth recovery curves that flatten out between 1500-2000 s. Unbleached control regions did not reflect recovery curves, suggesting that recovery was not due to additional protein synthesis (C-D). Significant increases in control regions (which mimicked recovery curves) were observed in some recordings suggesting protein synthesis may be involved in the fluorescence recovery during some experiments (E).
slower dissociation rate. The inhibition of internal dynamics of E1\(^{+}\)E4 associated filament architecture is also apparent as filament connections are stable over a 2 h period (Compare 6.10B and 6.11B). When FRAP experiments were performed on cells containing E1\(^{+}\)E4 aggregates and bundles, the results were significantly different (N=12). Early experiment attempted to look at the recovery of an E1\(^{+}\)E4 “keratin bundles” by bleaching a hole into the structures. Recovery of the bleached region could not be measured properly as the bleached regions were hidden from view, as the objects changed shape and folded in on themselves or rotated (see movie YFP-E1\(^{+}\)E4.4). When FRAP experiments were performed on E1\(^{+}\)E4 aggregates, aggregate morphology did not alter, furthermore virtually very little fluorescence recovery was observed to occur over a 2 hour period (Fig 6.12 and 6.13 A-B) (see movie YFP-E1\(^{+}\)E4.5). This lack of recovery suggests that E1\(^{+}\)E4 within aggregate structures is not in a dynamic state of equilibrium and may be irreversibly associated with collapsed keratins in Mallory body-like structures. The observation of two different E1\(^{+}\)E4 recovery rates suggests that the association of E1\(^{+}\)E4 to keratin filaments is initially transient, but stabilises over time.

6.10.2 Fixation of E1\(^{+}\)E4 expressing cells with paraformaldehyde demonstrates that E1\(^{+}\)E4 stabilises keratin filaments.

It has previously been speculated that E1\(^{+}\)E4 may induce keratin collapse by multimerisation or cross-linking (Wang et al., 2004). Data generated in this study has shown that E1\(^{+}\)E4 depletes the soluble pool of keratins over time (see Fig 4.16) and that keratin filament formation (but not subunit polymerisation) is inhibited, by E1\(^{+}\)E4 (see section 6.7.2). Furthermore, FRAP analysis has demonstrated that, although E1\(^{+}\)E4’s association to keratin is initially transient, E1\(^{+}\)E4 association appears to stabilise over time, possibly via a process of multimerisation as previously suggested (Wang et al., 2004). This process may result in the stabilisation of keratin filaments. To examine this hypothesis, SiHa cells were transfected with HPV 16 E1\(^{+}\)E4 and fixed with
paraformaldehyde, which disrupts keratin filaments (See Fig 3.3). E1E4-associated keratin structures were found to be resistant to paraformaldehyde induced disruption, whereas no filamentous keratin could be observed in E1E4 negative neighbouring cells (Fig 6.14). This observation supports the hypothesis that E1E4 association stabilises keratin filaments and may lead to the contrasting methods of keratin disruption observed \textit{in vitro} and \textit{in vivo}.

6.11 Discussion

The YFP-E1E4 fusion protein generated for this study was shown to behave in an identical fashion to the wild type E1E4 protein in all respects except that it lacked the ability to associate with mitochondria. For the purpose of this study this loss of function was beneficial as it was discovered that the protein was unable to form solid structures in the absence of keratin. This finding is significant as the LLXLL motif required for keratin binding is also required for the association with mitochondria (Raj \textit{et al.}, 2004), demonstrating that separate domains are required for mitochondrial and keratin association, or that binding occurs by a different mechanism and that the YFP-protein causes steric hindrance. Therefore, YFP-E1E4 may be used to investigate the apoptotic properties of E1E4 in the absence of mitochondrial association.

Initial experiments expressing YFP-E1E4 in AK 8 cells expressing CFP keratin were abandoned due to the poor resolution of keratin filament in the cells and the high levels of phototoxicity produced by multiple exposures of high energy excitation wavelengths required to visualise CFP.

The transfection of GFP keratin 13 into SiHa cells allowed the visualisation of the keratin network, which were found to behave as previously described (Windoffer \textit{et al.}, 2004).
Chapter 6 The effect of E1+E4 on cytokeratin network dynamics

Figure 6.14 E1+E4 protects keratin filaments from paraformaldehyde mediated disruption

SiHa cells were transfected with wild type E1+E4 and fixed with 5% paraformaldehyde (5 min) 24 h post transfection. Paraformaldehyde fixation does not disrupt the interaction between E1+E4 and keratin in either filamentous or condensed E1+E4 structures (A-C). Higher magnifications of these cells (regions indicated by arrows A) show that no intact keratin filaments can be observed in E1+E4 negative cells (D-F, region indicated by large arrow A), conversely E1+E4 associated keratin filaments (regions indicated by small arrow A) are intact and not disrupted by paraformaldehyde (G-I). Scale bars denote 5 \(\mu m \).
1999). Expression of YFP-E1\(^{\text{E4}}\) in SiHa cells demonstrated that E1\(^{\text{E4}}\) appears not to initially inhibit keratin polymerisation and filament formation. Despite this observation, at early time points, it would appear that keratin filament formation is disrupted at the point of keratin network collapse, for reasons that will be discussed later. E1\(^{\text{E4}}\) association did not appear to directly inhibit the inward directed motion of keratin filaments that appears to be responsible for the collapse and perinuclear location of collapsed keratin filaments (see Fig 6.8 and 6.9).

FRAP experiments demonstrated that E1\(^{\text{E4}}\) recovery occurs at a different rate and by a different mechanism than keratin recovery. E1\(^{\text{E4}}\) is able to bind to polymerised keratin filaments; this binding is initially transient. As E1\(^{\text{E4}}\) filaments collapse and E1\(^{\text{E4}}\) aggregate structures form, E1\(^{\text{E4}}\) binding appears to stabilise the keratin network. The percentage recovery of E1\(^{\text{E4}}\) fluorescence varies, suggesting that the percentage of stably bound E1\(^{\text{E4}}\) may increase at latter time points as filaments collapse. It is thought that the stable binding of E1\(^{\text{E4}}\) to keratins filaments may stabilise the filaments. This hypothesis is supported by the finding that E1\(^{\text{E4}}\) association is able to protect filaments against paraformaldehyde mediated disruption and by the observation that keratin filament architecture cannot be altered when it is E1\(^{\text{E4}}\) bound (see Fig 6.10B and 6.11B).

From observations made in this chapter it is possible to speculate about how E1\(^{\text{E4}}\) association with keratin can result in the two contrasting events seen \textit{in vivo} and \textit{in vitro}. Although initially transient, as E1\(^{\text{E4}}\) levels build up on keratin filaments and binding stabilises (possibly by multimerisation, as previously suggested) (Wang et al., 2004), it is possible that the concentration of E1\(^{\text{E4}}\) on keratin filaments may nucleate
multimerisation reactions. The binding of E1\(^{+}\)E4 stabilises the keratin filaments; which would prevent the disassembly of filaments as they migrate to the centre of the cell. Inhibition of filament disassembly would result in a depletion of the soluble keratin pool as observed in figure 4.16. As the pool is depleted no new materials are available for incorporation into new filaments (approximately 2 \(\%\) of total keratin is synthesised per h (Windoffer \textit{et al.}, 2004)), which are continually moved inwards by actin (Woll \textit{et al.}, 2005). This inward movement causes networks to pull away from the edge of the cell and collapse. It is likely that this process puts mechanical stress on filaments, which results in their becoming phosphorylated and ubiquitinated, as observed \textit{in vitro} (see chapter 4). The finding that keratin collapse occurs at the same rate as inward directed keratin migration, suggests that it is dependent on network dynamics, which explains why keratin filament collapse is rarely observed \textit{in vivo}. Differentiation-dependent cross-linking and modifications that keratins undergo within tissue probably inhibits inward keratin dynamics \textit{in vivo}. The build up of E1\(^{+}\)E4 \textit{in vivo} may also put stress on networks resulting in their disruption, whether this process results in keratin ubiquitination and subsequent degradation remains unclear.
7 Final Discussion

7.1 Specific functions are conserved to different degrees between divergent E1^E4 proteins

E1^E4 proteins from different HPV types are very divergent at the amino acid level, raising the question as to whether they perform a similar role in the virus life cycle and if so whether this achieved by similar modes of action. Preliminary analysis of E1^E4 proteins from several α-group HPV types (including HPV types 2, 16, 18, 31, 35 and 45), and two γ-group viruses (HPV 4 and 65), has shown that the E1^E4 proteins of all possess an ability to associate with the cell cytoskeleton. Several reports suggested that this function also extends to the E1^E4 proteins of the µ-group HPV viruses (Doorbar et al., 1996; Roberts et al., 1993; Rogel-Gaillard et al., 1992b). Despite this conserved ability, significant differences still exist between different groups. The α-group E1^E4 proteins are able to bind and disrupt the keratin networks of cells in culture, with the HPV 16 E1^E4 protein having the ability to bind and disrupt the keratin network expressed in HaCat cells in a keratin subtype independent manner. HPV 1 E1^E4, which is a µ-group HPV type, has been reported to bind keratins transiently, without inducing collapse, before forming aggregates (Doorbar et al., 1996; Roberts et al., 1993). The γ-group viruses, HPV 4 and 65 were shown here to bind to microtubules when expressed in SiHa cells but have since been shown to have the capacity to associate with the differentiation-dependent keratin 4/13 networks when expressed in NIKS cells, although no network collapse was observed (personal communication, Woei Peh).

The expression profile of E1^E4 proteins in lesions may explain the differences in keratin binding observed in vitro. The expression of HPV 16 E1^E4 in vivo varies in its
timing, and can occur before or after the first appearance of the differentiation-dependent keratin 4/13 network in lesions (personal communication, John Doorbar), with reorganisation of the assembled network occurring in the E1^E4-expressing cells. It appears that the α-group E1^E4 proteins may have evolved the ability to target and disrupt the terminally differentiated keratin network after formation (which may be reinforced by covalent cross linking), which is likely to be necessary considering the late onset of E1^E4 expression in the α virus lifecycle (Middleton et al., 2003; Peh et al., 2002). HPV 1 E1^E4 also has the ability to bind keratin but lacks the ability to collapse or reorganise pre-existing intact networks in vitro (Roberts et al., 1993). Interestingly HPV1 E1^E4 expression occurs much lower down in the epithelium, and the differentiation-dependent keratin 1/10 network does not establish itself in HPV 1 E1^E4-positive cells (Breitburd et al., 1987; Doorbar et al., 1997). This observation may indicate that HPV1 E1^E4 expression is able to disrupt the keratin 1/10 network as it is formed (and thus inhibits network assembly), possibly by preventing the polymerisation of K1/10 subunits.

The absence of differentiation-dependent keratins has also been observed in HPV 65 lesions (personal communication, John Doorbar), in which E1^E4 expression occurs close to the basal layer. Selective targeting of differentiation-dependent keratins by HPV 65 may allow early E1^E4 expression without compromising the mechanical integrity of the cells in these layers, which are expressing K5/14 networks, that are lost anyway during differentiation. If this hypothesis is correct, it may be that E1^E4 proteins maintain the ability to disrupt keratin networks by subtly different mechanisms, depending on the region of epithelium where late events are triggered.
Although the reasons for the cytokeratin interactions have not yet been conclusively demonstrated, it is reasonable to speculate that keratin disruption may facilitate virion release, and that the protein has a role that has been conserved during evolution. Although less well understood, the association with mitochondria was observed in all \(\alpha\)-group viruses examined, but not observed amongst the E1\(^{+}\)E4 proteins of the \(\gamma\)-group viruses, suggesting that this may be a more recently evolved function. By contrast Cyclin B association (as visualised by immunofluorescence) was not even conserved across all members of the \(\alpha\)-group viruses. In addition to this, the \(\gamma\)-group E1\(^{+}\)E4 proteins were shown to associate with microtubules in the absence of differentiation-dependent keratins. Amongst the viruses examined here, this function was unique to \(\gamma\)-group proteins. Although its purpose is unknown, it may facilitate cell cycle arrest in the absence of a cyclin-binding domain, in order to facilitate viral genome amplification. The fact that most functions are not conserved between E1\(^{+}\)E4 proteins from different phylogenetic groups suggests that the highly conserved ability of the E1\(^{+}\)E4 proteins to interact with keratins may be essential for the successful completion of the papillomavirus lifecycle.

7.2 The disruption of keratins *in vivo* and *in vitro*

The ability of the HPV 16 E1\(^{+}\)E4 proteins to disrupt keratins *in vitro* was further investigated in order to better understand the processes involved. The analysis of cells expressing keratin 4/13 networks would have been ideal for this work, but due to the limited amount of molecular information available on these networks SiHa cells expressing the better studied keratin 8/18 network were used instead.

E1\(^{+}\)E4 has previously been reported to induce the collapse of the keratin network in SiHa cells (Wang *et al.*, 2004). This ability has also been demonstrated in HaCat cells,
which express more robust, differentiation-dependent keratins. Although the network present in HaCat cells was more resistant to network reorganisation, collapse was in fact generally observed, suggesting that 16 E1^E4 has the ability to associate with and induce collapse of, multiple types of intact keratin network. This finding suggests that the lack of apparent network collapse in vivo cannot simply be attributed to the presence of certain types of keratin network and indicates that other factors may be responsible for the observed differences.

Western blotting and immunofluorescence studies were able to demonstrate the presence of highly phosphorylated keratins in vitro following E1^E4 expression. Some evidence that phosphorylated keratins accumulate in cells expressing 16 E1^E4 was also obtained from in vivo studies. However, the antibodies used in the study were specific for keratins 8 and 18, and it was uncertain whether the phosphorylation of differentiation-dependent keratins also took place. 2D gel electrophoresis of HaCat cell lysates and/or tissue extracts may be able to answer these questions. Western blotting analysis of cell extracts revealed that HPV 16 E1^E4 expression induced the formation of high molecular weight keratin ladders. The use of proteasome inhibitors, IP assays and isopeptidase demonstrated that the keratin ladders were caused by the ubiquitination of keratin species. The molecular mass of the ladders (which indicated conjugation of more than 4 ubiquitin molecules), coupled with the results from experiments using proteasome inhibitors, suggested that keratins were being targeted for proteasome-mediated degradation by E1^E4. Interestingly, the accumulation of ubiquitinated keratins, also appeared to induce proteasome inhibition, which has also been reported for other protein aggresomes (Bence et al., 2001; Bennett et al., 2005). Although it has been speculated that proteasome inhibition may occur in the presence of keratin
aggresomes (Janig et al., 2005), this has not previously been experimentally demonstrated. The effect on proteasome activity was not investigated in vivo, but such a function may allow the build up of viral proteins in the upper epithelial layers, and could play a role in the completion of virus life cycle. The immunofluorescence studies have also demonstrated that E1^E4 staining coincides with ectopic ubiquitin expression in HPV 2 and 16 lesions, but it was not possible to show conclusive evidence for keratin ubiquitination in vivo. Even so, initial experiments were able to identify the presence of a high molecular weigh ubiquitin species in extracts from lesions, and this now warrants further investigation.

7.3 The involvement of the conserved LLXLL motif in keratin disruption

Experiments using the mutant M2 16 E1^E4 protein, which lacks the highly conserved LLXLL keratin binding motif, demonstrated that although keratin binding was initially greatly reduced, the protein still maintained the ability to bind and disrupt the keratin network at later time points. Despite this ability to disrupt keratin networks, no elevation in keratin biochemical modifications was observed when compared to β-Gal control cells, even at late time points. Keratins undergo biochemical modifications during cell cycle progression (specifically increased phosphorylation (Liao et al., 1995)). Therefore, it is important to distinguish keratin modifications that may occur as a result of E1^E4-induced cell cycle arrest (Davy et al., 2002), from those induced by E1^E4's interaction with keratins. The work presented here suggests that keratin ubiquitination and phosphorylation are not a down-stream consequence of E1^E4-induced cell cycle arrest, but that it occurs as a result of the direct interaction between E1^E4 and keratins. Furthermore, it was noticed that the disruption of keratins by M2 E1^E4 occurred by a slightly different mechanism than was seen with the wild type protein. The percentage of M2 E1^E4 protein colocalising with keratin gradually
increased over time, and gradually damaged the networks. In contrast, wild type E1\(^\text{E4}\) appears to associate directly with keratin networks, saturating them and inducing network collapse. These observations may suggest that the mechanism of wild type E1\(^\text{E4}\) induced keratin disruption, which involves the highly conserved LLXLL motif, promotes the phosphorylation and ubiquitination of affected keratin. This observation may suggest that the LLXLL domain conserved throughout the \(\alpha\)-group E1\(^\text{E4}\) proteins, may specifically disrupt keratins in a manner that promotes the proteolytic degradation of affected networks.

7.4 The timing of keratin disruption may be important for completion of the virus lifecycle.

Quantitative imaging of HPV 16 lesions showed that E1\(^\text{E4}\) levels rise towards the surface of the tissue and that they correlate with specific events in the virus lifecycle. Relatively low levels of E1\(^\text{E4}\) were found in MCM-positive cells, where viral genome amplification has been reported to occur (Doorbar et al., 1997; Middleton et al., 2003). Significantly higher E1\(^\text{E4}\) levels were found to coincide with cells expressing the L1 capsid protein, where viral packaging is believed to occur. E1\(^\text{E4}\) levels appeared to rise still further after the onset of L1 expression, indicating the possible activation of additional protein functions. Cells expressing very high levels of E1\(^\text{E4}\) displayed low-level or disrupted keratin staining, and in some cases ectopic ubiquitin staining. This finding suggests that the keratin-disrupting function of E1\(^\text{E4}\) is carefully controlled by the virus, and is only activated after viral genome amplification and packaging has occurred. This timing may be important for the successful completion of the virus lifecycle, as keratin disruption could otherwise cause the untimely shedding of affected tissue as seen in the skin blistering disease EBS (Coulombe et al., 1991). The deregulation of E1\(^\text{E4}\) induced keratin damage could lead to blistering and skin damage, and may prevent successful completion of the virus lifecycle. Interestingly
HPV 2 lesions, which express E1^E4 and L1 much lower in the tissue than is seen in HPV 16 lesions, show a slightly different pattern of E1^E4 expression. HPV 16 lesions show relatively solid regions of E1^E4 expression but only at the surface of lesions, and it may be that its role is to damage the top few cell layers in order to allow the release of mature virions. HPV2 lesions show a much more sporadic presence of E1^E4-positive cells throughout the lesion. This may weaken individual cells in order to facilitate virion release, without significantly compromising the mechanical strength of the tissue. This may be particularly important, as the damaging of tissue normally subject to mechanical stress may cause infected sites to be shed away (i.e. blisters or ulcers may form exposing the dermis which cannot harbour the virus) before the virus has completed its lifecycle.

7.5 The hypothesis of E1^E4-induced keratin filament stabilisation can help to explain the differences observed in vivo and in vitro

Data generated by time lapse analysis of YFP-labelled E1^E4 was able to provide some insight as to the mechanism of E1^E4-induced keratin disruption, and may provide a partial explanation for the different patterns of keratin disruption that are seen in vivo and in vitro. The experiments showed that E1^E4 expression did not initially inhibit the formation of keratin filaments at the cell edge, suggesting that 16 E1^E4 does not necessarily directly inhibit keratin polymerisation. Following continued E1^E4 expression, filament formation eventually ceases at the point of keratin network collapse. E1^E4-associated keratin networks collapse inwards at a rate comparable to that observed for the inward movement of GFP-labelled keratin filaments. This indicates that E1^E4 association may not necessarily disrupt the inward movement of keratin filaments, which occurs through contacts with other components of the cytoskeleton (microtubules and actin) (Woll et al., 2005). FRAP experiments showed
that in cells containing GFP-keratin 13 labelled networks, fluorescence recovery of bleached regions took place over ~ 2h. The process involved new fluorescent filaments migrating into the bleached region, demonstrating that keratin subunits can only incorporate into filaments at the cell edge as previously reported (Windoffer et al., 2004). E1^E4 fluorescence recovery occurred by a different mechanism showing that E1^E4 can associate with polymerised keratin filaments and is not just incorporated during filament formation. Fluorescence recovery was uniform over the bleached region, suggesting that E1^E4 association to keratin is initially transient, with complete turn over occurring in approximately 30 min. By contrast, very little recovery was observed in E1^E4 aggregates over 2 h. Although the rate of recovery of filamentous E1^E4 was very consistent, the extent to which recovery restored to pre-bleach levels varied. These observations may suggest that E1^E4 is associated with keratin in two different states. E1^E4 is predominantly bound irreversibly (or with higher binding affinity) in keratin aggregates, whereas >50% of E1^E4 appeared to be transiently bound to filamentous structures. This finding is compatible with the hypothesis that 16 E1^E4 may multimerise or polymerise on keratin filaments (Wang et al., 2004) in order to cause keratin disruption towards the surface of the lesion. In undifferentiated cells, keratin networks are highly dynamic (Windoffer et al., 1999), and E1^E4 associates with and stabilises keratin filaments that migrate to the centre of the cell. High affinity / multimeric E1^E4 binding may prevent keratin filaments from disassembling and returning to the soluble factions (Fig 7.1). This would result in depletion of the soluble keratin pool as was observed in keratin fractionation experiments (seen in section 4.10.5 and (Wang et al., 2004)). Depletion of the soluble keratin fraction would eventually prevent the formation of new keratin filaments, causing networks to rip away from the
Figure 7.1 The mechanism of $16 \text{E}^1\text{E}^4$ induced keratin networks disruption

In a normal cell keratin tetramers (green) assemble into filaments at the cell edge, and gradually migrate towards the centre of the cells where they disassemble and are subsequently transported along microtubules back to the cell edge, where they are reincorporated into new filaments. As E^1E^4 (red) levels begin to elevate, keratin binding is transient and the cycle of keratin filaments formation is not initially disrupted. As E^1E^4 levels build up, binding begins to stabilise. This in turn stabilises keratin filaments which continue to migrate inwards. Stable E^1E^4 binding prevents keratin filaments from disassembling at the centre of the cell depleting the soluble pool of keratin that is required for new filament formation. When the soluble pool of keratin drops below a certain threshold, new filaments cannot form. Peripheral filaments continue to migrate inwards causing them to rip away from the cell edge. Keratins end up in peri-nuclear aggregates containing E^1E^4 and highly phosphorylated and ubiquitinated keratins.
edge of the cell as peripheral filaments continue to migrate inwards, leading ultimately to network collapse, as seen in vitro (Fig 7.1).

This hypothesis is supported by the finding that 16 E1^E4-binding protected the keratin network from paraformaldehyde-mediated disruption, which normally destroys the filamentous appearance of keratins as visualised by immunofluorescence staining. The ability of the 4 and 65 E1^E4 proteins to protect microtubules from paraformaldehyde-mediated disruption (see Fig 3.3 and 3.5) may indicate that cytoskeletal filament stabilisation is a conserved mechanism that is employed by E1^E4 proteins from evolutionary divergent viruses.

The same mechanism that is seen in vitro is also likely to be employed by E1^E4 in vivo, but due to the differentiation-dependant cross-linking modifications that reinforce keratin networks in vivo (e.g. filaggrin binding, disulphide bonding and transglutaminase linkage), it is likely that the networks are much less dynamic. This would explain why perinuclear keratin collapse is rarely observed in vivo. The observation that E1^E4 can occasionally cause perinuclear keratin reorganisation in vivo (Doorbar et al., 1997; Wang et al., 2004) may reflect the presence of poorly differentiated cells containing dynamic keratin networks. By contrast when keratin disruption observed in the upper layers of the epithelium, keratins are either undetectable suggesting that they may have been degraded, or are seen to reorganise to the cell periphery. The high affinity binding or multimerisation of E1^E4 on keratin filaments in vivo may put networks under mechanical stress which may damage networks and lead to their reorganisation. Reorganisation of filaments to the cell edge, as opposed to the perinuclear region, may also reflect the differentiation-dependent up-
regulation of desmosomes, which tightly anchor keratin networks to the epidermal junctions between cells (Arnemann et al., 1993; Presland et al., 2002). Expression of E1^E4 in a keratinocyte cell line such as NIKS, followed by differentiated in semi-solid methyl cellulose media, could be used to test this hypothesis.

7.6 In summary

This study has been able to demonstrate the ability of multiple E1^E4 proteins to interact with the cell cytoskeleton, and more specifically, the keratin network. This suggests a general need amongst papillomaviruses to disrupt keratin networks, which would otherwise present a barrier that hinders virion release (Dohner et al., 2005; Seksek et al., 1997). Keratin disruption has been observed to occur by different mechanisms (e.g. enzymatic cleavage (Chen et al., 1993) and phosphorylation followed by subsequent ubiquitination (Murata et al., 2002)), by other viruses infecting epithelial tissue. It is believed that the association of E1^E4 to keratin filaments may stabilise the affected filaments, possibly by E1^E4 multimerisation. *In vitro*, this results in the perinuclear collapse of the affected networks, and leads to the phosphorylation and ubiquitination of keratins. *In vivo* networks appear to reorganise to the edge of the cell and may be subsequently degraded, allowing progeny virions to be released into the environment.
Appendix I
Image shows the HPV 2 lesion used in section 5.5, that was cut in half; half was used for biochemical analysis and the other half was section and stained. Image shows lesion stained for keratin (red), E1\(^\varepsilon\)E4 (green) and DNA (DAPI, Blue). The image was created by taking multiple images on a deltavision microscope using a 20 X objective lens and stitching them together to produce a composite image of the lesion.
Appendix II

Image shows the HPV 2 lesion used in section 5.5, that was cut in half; half was used for biochemical analysis and the other half was section and stained. Image shows lesion stained for Ubiquitin (red), E1^E4 (green) and DNA (Blue). The image was created by taking multiple images on a deltavision microscope using a 20 X objective lens and stitching them together to produce a composite image of the lesion.
Appendix III

Image shows the HPV 2 lesion used in section 5.5, that was cut in half, half was used for biochemical analysis and the other half was section and stained. Image shows lesion stained L1 (red), E1/E4 (green) and DNA (Blue). The image was created by taking multiple images on a deltanvision microscope using a 20 X objective lens and stitching them together to produce a composite image of the lesion.
Appendix III

pEYFP-C1 Vector Information

Catalog #6005-1

Restriction map and multiple cloning site (MCS) of pEYFP-C1. All restriction sites are shown are unique. The XbaI and BclI sites (*) are methylated in the DNA provided by BD Biosciences Clontech. If you wish to digest the vectors with these enzymes, you will need to transform the vector into a dam+ host and make fresh DNA.

Appendix III

Plasmid map was obtained from

References

260

References

262

References

268
References

References

Vaccine Delivered by Live Attenuated Shigella flexneri Strain sh42. *Acta Biochim Biophys Sin (Shanghai)* 37, 743-750.

