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Abstract

Whitehead's Theorem allows the study of homotopy types of two di
mensional CW complexes to be phrased in terms of chain homotopy types 
of algebraic complexes, arising as the cellular chains on the universal cover. 
It is natural to ask whether the category of algebraic complexes fully repre
sents the category of CW complexes, in particular whether every algebraic 
complex is realised geometrically. The case of two dimensional complexes 
is of special interest, partly due to the relationship between such complexes 
and group presentations and partly since, as was recently proved, it relates 
to the question as to when cohomology is a suitable indicator of dimension.

This thesis has two primary considerations. The first is the generalisa
tion to infinite groups of F.E.A. Johnson's approach regarding problems of 
geometric realisation. It is shown, under certain restrictions, that the class 
of projective extensions containing algebraic complexes may be recognised 
as the unit elements of a ring, with ring elements congruence classes of 
extensions of the trivial module by a second homotopy module. The real
isation property is shown to hold for the free abelian groups on two and 
three generators, and for the product of a cyclic group and a free group on 
a single generator.

Secondly, a reinterpretation is given of the well documented relation
ship between the congruence classes represented by Swan modules and the 
projective modules constructed via Milnor's connecting homomorphism 
and the relevant fibre product diagram. This relationship is shown to be 
typical of projective modules occurring in extensions of a two-sided ideal 
by a quotient ring, and we show that any two-sided ideal in a general ring 
results in a Mayer-Vietoris sequence which is different and complimentary 
to the standard excision sequence.
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Chapter 1

Introduction

1.1 The D(2) and Realisation problems

In essence, the D(n) problem asks if the algebraic constructions of homol
ogy and cohomology are sufficient indicators of geometric dimension. With 
the exception of the case n = 2, this problem was solved in the affirmative 
by its poser, C.T.C. Wall, in the two seminal papers on finiteness conditions 
for CW complexes [29],[30]. In a similar spirit, the Realisation problem asks 
if the algebraic images of two-dimensional CW complexes are equivalent 
to the naturally constructed algebraic definition of a two-dimensional com
plex. Both questions relate to the suitability of certain algebraic construc
tions in fully describing the geometric properties of CW complexes. These 
questions have been robustly studied by F.E.A. Johnson, who succeeded in 
proving their equivalence on the assumption of certain highly reasonable 
restrictions (see Appendix B of [11]). Moreover, in his book on the sub
ject and in several companion papers (see [12],[13],[14]), Professor Johnson 
achieved a resolution of several cases of the problem and highlighted some 
of the more computationally prohibitive obstacles to a complete solution.

Geometric 2-complexes

Suppose that T is a finitely presented group, with a given presentation:

Q =  (x i,. . . x g\W i,.. .,W r).

6



CHAPTER 1. INTRODUCTION 7

Following Fox [9], we may construct a two-dimensional CW complex Xg 
with fundamental group naturally equal to T, often called the Cayley com
plex of Q. For further examples of this process see Johnson [11], Hogg- 
Angeloni, Metzler, Sieradski [16]. It can be shown that any connected two- 
dimensional CW complex with fundamental group T is homotopy equiva
lent to a Cayley complex constructed in this way; indeed one may read off 
the required presentation in a natural manner (see e.g. [16] Chapter II).

The chain complex of the universal cover Xg gives rise to a complex of 
Z[r]-modules thus:

c* {xG) =  (o — > 7r2(x g) — > z [ iy  z [r]5 z[r] - U  z  -> o)

where:

(i) we have identified Ker(<92) =  H2{Xg) with ^ { X g )  via the Hurewicz 
isomorphism, and the isomorphism induced by the covering map 

Xg  -  Xg;

(ii) since the universal cover is simply connected, and by (i) above, the 
complex is an exact sequence.

Note that 82 and d\ are completely determined by the relations and gen
erators of Q respectively, and may be given explicitly. The construction of 
the exact sequence C*(Xg) phrases geometric homotopy equivalence in al
gebraic terms, as expressed by Johnson's version of Whitehead's Theorem 
[11]:

Theorem 1.1.1. Suppose that T is a group with two presentations:

Q = ( x i , . . .x 9\W i,. . . ,W r) 

f t  =  ( y i , . . .y h\Z1, . . . , Z s).

Then Xg is homotopy equivalent to X n  if and only if is a commutative diagram of 
Z[T]-module homomorphisms:

0  — ► n2{ x g) — -  z [r]r — -  zprp  — ^ z  r] — > z  — -  o

fi h  fi fi fo

0 -----► n2(Xn) — ► Z[r]s ----->- Z\T}h — ► z  r] — ► z -----► 0
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with both fo and isomorphisms. The horizontal homomorphisms are suppressed, 
but the implication is that they are those constructed from the respective presenta
tions.

Algebraic 2-complexes

By an algebraic 2-complex over a group F we mean any exact sequence of 
(right) Z[r]-modules of the form:

E =  0 -----► M  ► F2  ► F \  ► Fo  >■ Z  ► 0,

where each F{ is finitely generated free and Z denotes the trivial Z[T]- 
module. It is convenient to adopt the notation M  =  ^ E .

We emphasise the point that if Q is a group presentation then C* (Xg)  is 
an algebraic 2-complex. Two algebraic 2-complexes are said to be chain ho
motopy equivalent if there exists a collection of homomorphisms /o, / 1 , f i ,  / 3 , /a 
connecting the 2-complexes as above, with both fo and f t  isomorphisms. 
As is standard, we use the symbol ~  to denote chain homotopy equiva
lence.

The Realisation problem

For a given group T, the Realisation problem asks if all algebraic 2-complexes 
are chain homotopy equivalent to a complex arising from a two dimen
sional CW Complex, i.e. the Cayley complex of some presentation for T. If 
so, we say that the Realisation property holds for F.

In what follows, we shall say that an algebraic 2-complex E  is realised 
geometrically if there is a presentation Q for F and a chain homotopy equiv
alence E ~  C*(Xg).  Thus the Realisation property holds for F if and only 
if every algebraic 2-complex over T is geometrically realised.

The D(2) Problem

The D(2) Problem, as originally formulated by Wall in [29], asks if every 
three dimensional CW complex is necessarily homotopic to a complex of 
dimension two provided that, ranging over all possible coefficient systems,
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the complex has zero homology and cohomology in dimensions higher 
than two. The problem is parameterised by the fundamental group in the 
sense that, since homotopy equivalence induces an isomorphism on funda
mental groups, one may prove or disprove the D(2) problem for CW com
plexes with a specified fundamental group. Accordingly, we say that the 
D(2) property holds for T if every three dimensional complex with funda
mental group isomorphic to T, satisfying the hypothesis of the D(2) prob
lem, is homotopy equivalent to a two dimensional complex. In [11], the 
D(2) problem is related to the Realisation problem by the following:

Theorem 1.1.2. (F.E.A. Johnson) Let T be a finitely presented group such that 
there is an algebraic 2-complex:

0 --- > 7r2E  > i*2---------  >^0--^  --- * 0

with finitely generated over Z[T]. Then the D(2) property holds for T if and 
only if the Realisation property holds for T.

1.2 Statement of results

There is a natural home for algebraic 2-complexes: each algebraic 2-complex 
E represents a congruence class of 3-fold extensions of 7r2E by Z. In stan
dard notation:

E e Ext3(Z,7r2E).

One important calculation is to distinguish the algebraic 2-complexes 
from arbitrary extensions. We shall give a proof of the following:

Proposition 1.2.1. Suppose that T satisfies the hypothesis of Theorem 1.1.2 and 
suppose also that Ext3(Z,Z[T]) = 0. Let E  be an algebraic 2-complex. Let H  
denote the subset of extensions in Ext3(Z, 7r2E) which are congruent to projective 
extensions. Then the composition in EndZ|F] (7r2E) induces a multiplicative group 
structure on H.

A proof of the Proposition above may be constructed by combining the 
results of [11], where the equivalent is proved for finite groups, and the 
method of generalisation given in [10]. We shall give a slightly alternative
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proof. Our concern is the limitations placed on Johnson's approach, i.e. the 
condition that Ext3(Z,Z[r]) = 0. The first and perhaps easiest example of 
a group for which this condition fails is provided by C^  - the free abelian 
group on three generators. We shall prove:

Theorem A The D(2) Property holds for C3,

We shall later show that if T is abelian and of rank one then the condi
tion Ext3(Z, Z[T]) = 0 is satisfied. For such groups, the Bass-Murthy paper 
[1] shows that all stably free Z[T]-modules are necessarily free; this result 
encouraged us to investigate the Realisation problem for the product of a 
cyclic group and the infinite cyclic group. We prove:

Theorem D The D(2) Property holds for Cn x Coo-

This result was published in [8]. We remark that the Bass-Murthy result 
is essential to our proof, although its role is subtle. Indeed, in all confirmed 
cases of the D(2) property, the proof is dependent on a proof that stably 
free modules over the group ring are actually free. The class of groups for 
which the D(2) property has been already shown to hold is limited to finite 
abelian groups [18],[3], free groups [11], the dihedral groups of order An +  2
[12] and the dihedral group of order 8 [20].

A Mayer Vietoris Sequence

A large part of this thesis deals with a purely algebraic result regarding 
two-sided ideals, and provides an exact sequence of K  groups which is 
complimentary to the standard excision sequence. Let A be a ring (with a 
unit) and suppose there is an exact sequence of A-modules

0 -----► J  ► A  -----^0

with J  a two-sided ideal so that (A/J )  = R  is a ring. An important con
dition that we shall sometimes assume is that R  satisfies Ext1 (R, A) = 0. 
Through the cohomological classification of Ext, one may identify Ext1 (R, J )
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with a quotient of the endomorphism ring EndA(J) by an additive sub
group X . Moveover X  will prove to be a two-sided ideal, so that com
position in EndA(J) defines a ring structure on Ext1(R, J). We will write 
Ext(J) to denote this ring. We shall prove:

Theorem B Let A be a ring and J  a two-sided ideal satisfying Ext1(l?, A) =  0. 
Then there exists a long exact sequence of abelian groups:

K \A  » K XS  © K \R  ^ .KiExt(J)

 ^ K 0A  ^ K 0S  © K 0R  K 0Ext{J).

where S  = EndA(J)
We shall construct the homomorphism _KiExt( J )  > KoA as a map

which corresponds, at the level of the units of Ext( J), to sending an exten
sion with central module M  to the class of [M] in KoA. In particular the 
units of Ext( J ) represent projective extensions.

Our objective will then be to construct the homomorphisms above in as 
general circumstances as possible. For a two-sided ideal J  c  A, for each n 
we shall construct a series of maps:

M n{S) © M n(R ) ----^ jMnE x t(J )----- 5- ModA

which induce homomorphisms on K  groups if defined (here M n{R) means 
n x n matrices over R). We generalise Theorem B to the following:

Theorem C Let Abe a ring and J  a two-sided ideal, then there is an exact se
quence:

K \S  © K \R ---- ► AiExt( J ) -----► K qA

where:

R  is the quotient ring A /J  

S  = End A(J)

AiExt( J) is an abelian group such that

K iE xt(J) = AfiExt(J) if Ext 1(R, A) = 0



Chapter 2

Preliminaries regarding Ext

In this section we give a brief summary of the properties of the abelian 
group Extn(A, C) for modules A  and C  over a ring R. The content of this 
chapter is widely available elsewhere in most textbooks on homological 
algebra, our approach is most influenced by [19].

2.1 Exact sequences and congruence classes

If R  is a ring, A, B , C are R  modules and i, n are iMinear maps, then the 
sequence:

0 -----^ C —^  B  —^  A ----->0

is said to be a short exact sequence if

1) i is injective

2) 7r is surjective

3) Ker(7r) = Im(i)

Any short exact sequence as above may sometimes be called a 1-fold exten
sion of C by A.

Lemma 2.1.1. (The short Five Lemma) If there are two exact sequences and verti

12



CHAPTER 2. PRELIMINARIES REGARDING EXT 13

cal homomorphisms between them such that the following commutes:

then (3 is an isomorphism if a and 7  are isomorphisms.

Two exact sequences with equal terminal modules are said to be con
gruent if there is a homomorphism /3 such that the following diagram com
mutes:

0 C B

0 C X

A

A

0

0

where the end vertical homomorphisms are the identity. By the five lemma 
any such /3 is an isomorphism and congruence defines an equivalence rela
tion.

The set Ext1 (A, C) is defined as the 1-fold extensions of C by A under 
the equivalence relation of congruence (this may be made into a set by re
stricting the cardinality of the central modules).

Split extensions and the trivial extension

The trivial extension is taken to be the congruence class of the extension:

0 c —^ C e A 0

where r  is the inclusion of C  as a summand in C  © A  and p is the projection 
onto A. A  1-fold extension of C  by A  with homomorphisms i, tt and central 
module B  as above is said to be split if there is some homomorphism x : 
B  —> C such that \ i  = Idc*

Proposition 2.1.2. An extension is split if and only if the extension is congruent 
to the trivial extension

Proof The trivial extension splits through the projection of A © C  onto C. If 
an extension as above splits, define a function a : A —► B  as any map such
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that ixoc =  Wa, and define a = (1 -  ix)oc. Suppose that for some r e R  and 
a € A  we have o(a) =  b and ar(a.r) =  x, then x = b.r + i{c) for some c G C  
and

a(a.r) = (1 — ix)(b-r +  *(c)) =  b.r — %x{b-r) +  i{c) — i'x®(c)> 

but x* =  Idc so

a(a.r) =  b.r — ix(b.r) = a(a).r

and a : A —> B  is R -linear with ira =  Wa- Define ip : A  © C —» B  as

<p(a, c) =  a(a) +  i(c).

Then the following commutes:

0 ------------- '-+C® -A - ^ A ------^0
v

0 ----------- — -—► B — -—► A --- ^ 0

□

2.2 Pushouts and Pullbacks 

Pushouts

Given some homomorphism /  : C  —» C' and an 1-fold extension E  of C  by 
A  we may construct an extension /*(E) e Ext1 (̂ 4, Cr). Suppose that E  is 
the extension:

E =  0 ----->■ C  —^  B  — A -----^0.

Define X to be the quotient module of C' © B  defined by factoring out the 
submodule generated by elements of the form (-f(c ),i(c )). Define

• i' : C’ —> X  by i'(d) = {c.,0),

• j3 : B  X  as p{b) = {0,b),

• 7r7 : X  —> A  as 7r7(c, b) = n(b).
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Then the following commutes:

0 C

a

B

X

A

A

and the bottom row is a 1-fold extension of C' by A - this provides the 
extension /*(E) e  Ext1 (A, C'). We call /*(E) the pushout of E  by / .

Proposition 2.2.1. (see [19] 3.1.4) If there there are two exact sequences and a 
commutative diagram:

0

0 a

B

X A

0

then the bottom row is congruent to /*(E)

Pullbacks

Given some homomorphism f  : Af —> A  and an 1-fold extension E of C  by 
A we may construct an extension /*(E) e Ext1^ ' ,  C). Suppose that E  is 
the extension:

E = 0 -----^ C - ^ B - ^ A -----^0.

Define X to be the submodule of B  © A' consisting of elements of the form 
(b,a') with 7r(&) =  f{a'). Define

• i' : C —> X  by i'(c) =  (i(c), 0),

• p : X  ^  B  as /3(6, a') = b,

• 7r' : X  —> A as 7r'(b, a') = a'.

Then the following commutes:

0 -----► C X  A !  ► 0

P  f

0 ----->■ C  —^  B  — A  ^0

and the top row is a 1-fold extension of C  by A' - this provides the extension 
/*(E) G Ext1^ ' ,  C). We call /*(E) the pullback of E by f .
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Proposition 2.2.2. (see [19] 3.1.2) If there there are two exact sequences and a 
commutative diagram:

0 ----* C — ----- ^0

P f

0 ----^ C —^ B —^ A ------^0

then the top row is congruent to f*(E)

2.3 N-fold extensions and congruence

In general, if A,C  and {Ei}™~Q are /^-modules and {di}”=0 are .R-linear 
maps, then the sequence

is said to be an exact sequence if and only if

(i) dn is injective.

(ii) Ker(dj_i) =  Im(dj) for each 1 < i < n.

(iii) do is surjective.

As in the statement of Theorem 1.1.1, when dealing with exact sequences 
we sometimes suppress the horizontal homomorphisms in order for the 
key point of diagrams to be clearer.

Two 1-fold extensions of the form:

0 ---------------^ E 1 ^ K ---- ^ 0  0 ----->- K  Eo----- 5- A -----^0

may be spliced together through the composite map in : Ei —> Eq to pro
duce a longer exact sequence:

0 -----^ C  ^ Ei E0  ^ A ------^ 0

and conversely any exact sequence with n +  2 terms may be decomposed 
into n short exact sequences. The above exact sequence is said to be a 2-fold 
extension of C by A. In general an exact sequence:

0  C  En- 1 ----->- E n _ 2 ----->- • • • E q ------A ------>- 0
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is said to be an n-fold extension of C  by A.
A  simple congruence F : E  —> E ' between two n-fold extensions of 

C  by A  is a series of module homomorphisms and a commutative
diagram:

c- En-1 >  En- 2 ------------- ►  • • • Eo ^ A

fn— 1 fn—2 fo

c-—>  E'
—  1 E' -2 ......  5------------- K - - ►  A

Two n-fold extensions E  and E ' of C  by A  are said to be congruent if and 
only if there is a finite sequence S \ , . . . ,  Sm of n-fold extensions of C  by A 
such that

(i) Either E  is simply congruent to S\, or Si is simply congruent to E

(ii) Either E ' is simply congruent to Sm, or Sm is simply congruent to E'

(iii) For all 2 < i < m, either Si is simply congruent to S*_i, or S;_i is 
simply congruent to Si

Congruence is an equivalence relation and the set of congruence classes of 
n-fold extensions of C  by A is denoted Extn(C, A)

Pushouts and pullbacks of n-fold extensions

Given an n-fold extension E of C  by A

0 -------------- ±  En- 2 ^ l  ■ ■ ■ E0 ^ - ~  A  ►O

we may truncate this to form a 1-fold extension E_ of C  by Ker(Jn_2):

E_ : 0 ------ ► C  — ^  E n - 1  Ker(<5n_2)  >■ 0

and for any /  : C  —» C' we may form the pushout /*(E_):

/*(E_) : 0 -----   C1 X  Ker(tf„_2)    0.

This may be spliced back together with the remaining segment of E and 
defines the pushout /*(E) e Extn(C", A):

/.(E ):  0 --------------------------------------------------------------- -0 .
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Similarly, let E+ denote the extension

E + : 0 ----- Im(<h) ——^ Eq —  -0 ,

then for any f  : A' A w e  may form the pullback /*(E+) and splice to 
define the pullback /* (E) G Extn(C, A')

2.4 The classification of E x t  via cohomology

In this section we shall see that the group Extn(C, A) may be identified with 
the cohomology group H n(P, C) for P  a projective resolution of A. We 
assume that the reader is familiar with the definitions and basic properties 
of projective modules and cohomology groups. Let A, C  be R  modules and 
suppose that there is a projective resolution:

9  p  d  p  _ d _^  j-'n j -n _ lP  :

and an extension E G Extn(C, A) 

E :  0 -----

^ P o ^ A

'L XT'  ̂  ̂ Z? &-E'n—1 ^  -C'n—2 E q 0.

Through the characteristic property of projective modules, we may pick 
homomorphisms such that there is a commutative diagram:

P n + l

ffn+l 9n 9n  — 1

0 c En-]

Since gnd =  0, gn represents an n-cocycle and is an element of the cohomol
ogy group Hn(P , C).

Lemma 2.4.1. If there is also a commutative diagram:

P n + l  ~  P n  P-n—l  ~  *" '  '

fn+ 1 fn

C E,n —1

then there is some h : Pn- i  —> C such that f n -  gn = hd. In particular f n and 
gn differ by a coboundary and represent the same element of H n{P, C).
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Proof. The first step is to note that the hypothesis imply that the following 
commutes:

Pn+l P  i-? -  ^  r n— 1

d  D d  .
— > •  Po  A -^0

C

{fn  9n) {fn ~ 1 9n~ 1) { f o ~ 9 o )

.  EP 5 5 JI dE q 0.

Define ho : A  — *  E q as ho = 0. Since (fo -  go) maps into Ker(<5) and since Po 
is projective there is some h \ \  Pq —> E\  such that the following commutes:

(f o - g o )

Ei E q

and Shi = (fo -  go)-
Suppose that for i < k there are maps hi+\ : Pi —► Ei+\ such that

fihi+i =  (fi — gi) — hid.

Then 6(fk -  gk ~ hkd) = ( fk- i  -  9k-\)d  -  ( fk- i  ~ 9k-i ~ hk-\d )d  = 0 
so (fk -  gk ~ hkd) maps the projective module Pk+\  into Ker(J) and there 
is a homomorphism hk+\ : Pk —> Ek+\ with commutative:

Pk
hk+i

( f k ~ 9 k - h k d )

Ek+ i ■--» Ek-

The diagram shows that 5hk+i = (fk ~ 9k) ~ hkd and so, by induction, we 
may deduce that there are maps hn : Pn- \  —> C  and hn+\ : Pn —> 0 such 
that

fihn + 1  =  (fn — gn) — hnd.

But hn + 1 : Pn —> 0 is necessarily zero, so

fn 9n = hnd

and the result is shown. □
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Thus given a n-fold extension E of C by A  and projective resolution P , 
we define ((E) e  H n(P, C ) to be the corresponding cohomology class. If 
E is simply congruent to another extension E', the ((E) =  C(E') and hence 
( is a well defined map on congruence classes.

Theorem 2.4.2. (The classification of Ext via cohomology - see [19] 1II.6.4) lfA ,C  
are R  modules over a ring R  and P  is a projective resolution of A, then

(  : Extn(C, A) —> fi/n(P, C)

is an isomorphism of sets. When n =  1 the trivial extension corresponds to the 
zero cohomology class.

The details of the proof are technical, we shall show how to construct 
the inverse to (. The resolution P  may be truncated to give an n-fold exten
sion:

0 Ker(d) Pn-n— 1
d t -> d A—- P o  A 0

Given some cohomology class of H n(P, C) we may represent it by some 
h : Pn —> C. Define h : Ker(d) —► C such h(a) = h(b) for any b such that 
d(b) = a. Since his  a cocycle hd = 0 and hence h is well defined, indeed it 
is unique.

Thus we may form the pushout:

a0

0

Ker(d)

h

C —

Pn- 1  

P  

X -

lm(d)

Im(d)

0

0

This may be spliced together with the remaining segment of P  to give an 
n-fold extension E

E : 0 -+C X Pn-n— 2 ^ P o - ^ A 0

and there is a commutative diagram:



CHAPTER 2. PRELIMINARIES REGARDING EXT 21

so that £(E) =  class(h) G H n{P, C). Note that we have not proved that the 
inverse to £ is well defined on cohomology classes.

In the case where n = 1, define /  : Po —»■ C  © A  by

f{x) = (0,d{x))

and, recalling the notation used in the definition of the split extension, the 
following commutes:

 * P i - ? - ^ P o — ? - ^ A ------- 0

o I

0  ^ C - ^ C e A - ^ A ----->0 .

The zero homology class therefore corresponds to the split extension.

2.5 The practical calculation of Ext

The classification of Ext via cohomology is often applied in the following 
way: for R  modules A  and C  with truncated projective resolution

P :  0 -* K ct( &_ i ) — -----------<-0,

the group Extn(C, A) may be identified with the quotient group:

Hom(Ker(dn_i), C) /  X

where X  is the subgroup consisting of homomorphisms /  such that there 
is some rj : Pn- \  —> C with

¥  -  / •

For each /  G Hom(Ker(<9n_i), C) the corresponding class of extensions is 
usually denoted [/] in this thesis and is given by the pushout /*(P).

Dimension shifting and the abelian group structure on Ext

Following the notation of [11], if R  is a ring and N  is any R  module, we 
write M  G Dn(N)  if there is an exact sequence of it!-modules:

S : 0 -----► M ----- ► Pn-i---------------- >P0 ----- ►N  ^0

with every { P i} ^ 1 projective.
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Corollary 2.5.1. (Dimension shifting property of Ext)
If R  is a ring and A, M, N  are R-modules with M  e Dn(N) and n > 1, then for 
all k > 1;

Extk+n(A,N) ** Extfc(A,M).

Proof As soon as it is noticed that the sequence S may be extended to a pro
jective resolution of any length, the corollary is an immediate consequence 
of the cohomological classification of Ext. □

Through the set isomorphism ( : Extn(C, A) —» H n(P, C) the structure 
of abelian group is imposed on Extn(C, A). Moreover the trivial element 
of the cohomology group corresponds to the trivial or split extension in 
the case where n = 1. There is also an internal group structure on Ext 
groups, the Baer Sum - see [19] sections III.2 and 111.6 for details of this group 
structure and a proof that £ is a group isomorphism under these terms.

The additivity of Ext

If A, B , C, D are .R-modules, then the standard isomorphism

Hom(A ®B, C@D)  = Hom(A, C) © Hom( A, D)  © Horn(B, C) © Horn(B, D)

extends to an isomorphism of cohomology groups and consequently Ext 
groups. We show how this works in practice.

If A and B  are R-modules and there are projective resolutions:

dn+l dn „  dn-1 di do
P ;  ------------------------ >  Pn  Pn—1 --------------3---------------------------------  Po  ►  A   > -  0

Q : 0

then there is a projective resolution of A  © B  given by:

P ® Q :  . . .  p n  ®  Q n  P n _ i  ®  ( 3 „ „ 1 -------

where

^ * P o ® Q o  ----------►O

d i f a q )  =  (d i ( p ) , S i ( q ))
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and in particular
Ker(dn) =  Ker(<9n) © Ker(5n).

If C is another /2-module and (/, h) e Hom(Ker(dn), C), then clearly (/, h) = 
T]dn for some rj : Pn © Qn —> C if and only if /  : Ker(<9n) —> C and 
h : Ker(5n) —> C factor through Pn and Qn respectively. This correspon
dence leads to an isomorphism:

Extn(C, A  © B) s* Extn(C, A) © Extn(C, B).

Suppose D is another R-module, then we calculate Extn(̂ 4, C © D) 
through homomorphisms /  : Ker(<9n) —» C © D modulo those which factor 
through Pn. But

Hom(Ker(dn), C © D) “  Hom(Ker(dn), C) © Hom(Ker(dn), D)

and each such /  may be represented as

/  =  (h,k) he  Hom(Ker(<9n), C), k e Hom(Ker(<9n), D )

and /  factors through Pn if and only if both h and k do. This leads to an 
isomorphism

Extn(C © D, A) £* Extn(C, A) © Extn(£>, A).

Proposition 2.5.2. (The additivity of Ext) If A, B, C, D are R-modules, then for 
all n > 1:

Extn(A @B, C®D)  = Ext” (.A, C) © Extn(A, D) © Extn(£, C) © Ext n(B, D) 

This completes our brief survey of the properties of Ext.



Chapter 3

Reductions of the Realisation 
Problem

3.1 Schanuel's Lemma and stabilisation

Johnson outlines a general procedure for approaching the Realisation prob
lem, which we shall now discuss. We shall use the standard results regard
ing extensions, available in most textbooks on homological algebra. We use 
(Mac Lane [19]) as our reference, the comprehensive nature of which is our 
justification. Immediately from (Mac Lane [19] III.5.2), we see that:

Proposition 3.1.1. If E x and E 2  are algebraic 2-complexes which are congruent, 
then E i ~  E 2 .

This ensures that the property of geometric realisation is well defined 
on congruence classes.

The first major reduction is due to Schanuel (Swan [26] Section 1) and 
shows that ^ E  is determined up to a form of algebraic stability. We shall 
use the following version of Schanuel's Lemma (W. Mannan [20]), which is 
proved for general rings with a unit.

Theorem 3.1.2. (Schanuel's Lemma) Suppose that Pi, Qi are projective modules 
occurring in exact sequences:

0   ►  0

0 -----^ K ^ ^ Q 2 ~ ^ Q i  - ^ Q o - ^ N ----->-0 .

24
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Set

R  = Q2 © Pi © Qo 

S  = P2 © Qi ® Po-

Then the 2-complexes:

0 -----^ M ( B R ^ ~ P 2 S > R ^ - P i - ^ * P o - ^ * N -----*0
j ® I d  ^  „  & © 0  ^  di ^  &

0  K  © S  ► Q2 ® S  >- Q i  Qo  ^ N  ^ 0.

are chain homotopy equivalent.

Geometric and algebraic stabilisation

Schanuel's Lemma has two important corollaries. Suppose that a presenta
tion Q for T realises the extension:

c*{xg) = 0 -»• 7t2(Q) z[r]ai ^  z [ r \a2 z[r]a3 -> z  -> o,

then the addition of n relations of the form e =  e to Q realises the extension:

zn(c*{xg)) = 0 - >  7T2(£)©z[r]n ^  z[r]ai+n z[r]a2 z[r]as - *  z  - *  o.

If E is an arbitrary extension in Ext3 (Z, 7r2((/) then one may define £ n(E) 
to be the extension in Ext3 (Z, 7r2(<? © Z[r]) obtained similarly. Schanuel's 
Lemma shows:

Corollary 3.1.3. Given algebraic 2-complexes Ei and E2/ there are natural num
bers a and b such that there is a chain homotopy equivalence

£ a(Ei) ~  £ 6(E2).

We remark that the geometric equivalent of Corollary 3.1.3 is well known, 
and may be derived from Tietze's Theorem regarding the moves required 
to transform one group presentation into another [11].

Corollary 3.1.4. Given algebraic 2-complexes Ei and E2 over a group T, there 
are natural numbers a and b and an isomorphism

tt2Ei © z[r]a ^ tt2e 2 © z[if.

We describe such a relationship by saying that 7t2Ei is stably equivalent 
(or stably isomorphic) to 7r2E2.
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3.2 Johnson's approach

For a specified fundamental group, Johnson's approach to the Realisation 
problem is to identify all chain homotopy equivalence classes of algebraic 
2-complexes, and then determine which are realised by a presentation. This 
breaks up into several steps:

(i) An initial presentation is used to construct a first algebraic 2-complex 
with corresponding ^ E .

(ii) The resulting 2-complex may be used for the purposes of calculating 
the cohomology group Ext3(Z, ^ E ) .

(iii) Assuming the hypothesis of Theorem 1.1.2 are satisfied, and in view 
of Corollary 3.1.4, the first non-trivial task is to describe the modules 
which are stably isomorphic to a given ^ E ;  this has historically pre
sented the more difficult objective.

(iv) The final step determines each class of algebraic 2-complexes with a 
given terminal module M  stably equivalent to ^ E ,  and asks which 
of these are chain homotopy equivalent to a complex arising from a 
group presentation.

In this section we give an overview of the existing simplifications for 
the final step above. There is an immediate consequence of the definition 
of the function £ n, of which we shall sketch the proof. This result is not 
explicitly found elsewhere, although it constitutes a fairly intuitive result.

Proposition 3.2.1. Let ^ E  be as in Theorem 1.1.2. If X is an arbitrary extension 
in Ext3(Z, 7T2E), then X is congruent to an algebraic 2-complex if and only if 
E(X) is.

Proof If X is congruent to some algebraic complex E, then clearly £(X ) is 
congruent to the algebraic complex £(E).

Suppose that £(X) is congruent to an algebraic complex E'. By hypoth
esis there exists an exact sequence:

0 ----*7r2E --------------------------------------------  « - 0
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with each F* a finitely generated free Z[T]-module. By the standard classi
fication of Ext through cohomology (Mac Lane [19] III.6.4) we may assume 
each congruence class X to be represented by an extension of the form:

X -  0 -----»- tt2E ----- ^ Ex  —^  F\ Fq Z----- > 0,

so that the congruence class of E(X) is represented by:

£ ( X )  =  o  — ►  t t 2 e  ®  z [ r ]  — ►  e x  ®  z [ r ]  Fl Fq z  — ^  0

It may be shown (Mannan [20] 1.5.1) that the algebraic 2-complex E ' is 
necessarily congruent to an extension:

E ' =  0 ----►7T2E ® Z [r]------* S -----^ F i - ^ F o - ^ Z -----»0

with S  stably free. By the dimension shifting property of Ext and since E ' 
is congruent to E(X), the two extensions:

0 -----► 7t2E © Z[r] E x  © Z[T] >■ K er(di) ► 0

0 -----► 7r2E © Z[r]---------- ► S ----------- ► K er(di)----- ► 0

are congruent. Then by the five lemma E x  is stably free and

Ex  © Z[lf “  Z[T]a

for some suitable chosen a and b. We complete the proof by noticing that 
there is a simple congruence between X and the algebraic 2-complex given 
by:

o — * 7 t 2 e — * e x  © z [ r ] 6 2 5 2 1  F i  e z f i f - ^ F o - ^ z — » o

where the vertical maps on each of the component modules of X are the 
identity maps into the corresponding summand in the sequence above. □

We have shown that 7r2E is determined up to stability, and in some cases 
we may pick a minimal module 7r2E, in the sense that for any module N  :

7T2E © Z[r]a ^ N  © Z[T}b =» a>b.
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Johnson has shown that for any group satisfying the hypothesis of Theorem 
1.1.2, a minimal module 7r2E must exist [15]. For finite groups, it is shown 
in [11] that it is sufficient to realise extensions at a minimal level, and we 
elicit the key condition required in order to prove this:

Proposition 3.2.2. (EE.A. Johnson) Suppose that we are given T satisfying the 
hypothesis of Theorem 1.1.2 and such that Ext3(Z, Z[T]) = 0. Suppose also that 
we are given some Z[T] module M  such that each algebraic complex E  with 7r2E = 
M  is geometrically realised. Then each algebraic complex with 7r2E  =  M  © Z[T] 
is geometrically realised.

Proof. Note that the hypotheses of the Proposition ensure that each congru
ence class containing an algebraic 2-complex in Ext3(Z, 7r2E) is geometri
cally realised. The stablisation operation

E1 : Ext3(Z, tt2E) -> Ext3(Z, tt2E © Z[T])

corresponds to the inclusion in the standard isomorphism

Ext3(Z, 7r2E) © Ext3(Z, Z[r]) ^  Ext3(Z, tt2E © Z[T]).

See e.g. [19] for a proof that the functor Ext is additive in both variables. 
Furthermore since Ext3(Z, Z[T]) =  0 we see that E1 is an isomorphism, and 
by Proposition 3.2.1, E1 is a bisection on sequences congruent to algebraic 
2-complexes. The result follows. □

Supposing the modules stably equivalent to a given 7r2E have been de
termined, one wishes to distinguish the congruence classes of algebraic 2- 
complexes. In general, this is non-trivial even for finite groups, but under 
certain restrictions the projective extensions may be identified as follows:

Proposition 3.2.3. (F.E.A. Johnson) Suppose that we are given T satisfying the 
hypothesis of Theorem 1.1.2 and such that Ext3(Z, Z[T]) = 0. Then there is a nat
ural ring structure on Ext3(Z, 7r2E), under which congruence classes of projective 
extensions are precisely the units of Ext3(Z, 7r2E).

We shall sketch a proof of Johnson's result in a later section. Clearly 
the condition Ext3(Z,Z[T]) = 0 is highly desirable, but will not hold for 
all groups; it fails for example if T is a group of cohomological dimension 
three.
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3.3 An introductory example

We begin our investigations with a quick and easy proof that the D(2) prop
erty holds for the fundamental group of the torus.

Theorem E The Realisation property holds for Coo x Coo-

We remark before the proof that it follows from the Quillen-Suslin proof 
of Serre's conjecture that if R  is any principal ideal domain and T is a free 
abelian group, then every projective R[T]-module is free, see for example 
Proposition 4.12 in Chapter 5 of T.Y. Lam's exposition [17]. In particular all 
stably free Z[r]-modules are free.

Proof. We may take the presentation Q =  (x, t\xt =  tx) for T, leading to the 
algebraic complex:

Immediately we deduce that Ext3(Z, M ) — 0 for any Z[r]-module M, 
and if there is an algebraic 2-complex

then by Schanuel's Lemma and the remark above is free of rank (say) 
n. Thus the addition of n trivial relations to the presentation Q results in 
an algebraic 2-complex which is geometrically realised and congruent to 
E. Since E  was arbitrary, this implies that each algebraic 2-complex over 
Z[r] is realised up to homotopy equivalence by a presentation for T. □

Indeed, since the second homotopy module of any 2-manifold is neces
sarily zero, other than S2 and MP2 which may be dealt with separately, if T 
is the fundamental group of any surface and if all stably free Z[r]-modules 
are free, a similar proof shows that the D(2) property holds for I\

o— >0— ^z[r]-^z[r]2- ^ z [ r ] - ^ z —

where

E =  0 ixqEi — > F2 — * P i— >Pq— ^  — > 0 ,



Chapter 4

K \ of projective extensions

4.1 Introduction

We shall return to geometric considerations in chapter 5, the next two chap
ters are algebraic in subject matter and pertain to general two-sided ideals. 
The proofs will then adapt to geometric applications.

Suppose that A is a ring with a unit and J  is a two-sided ideal in A, 
giving rise to an exact sequence:

X  = 0 -----► J  —3—*~ A — R  ^0,

with j  inclusion and a the natural map onto the quotient. Through j  and 
a, J  and R  have natural (right) A-module structures and X may be consid
ered to represent a congruence class of the abelian group Ext1 (R , J).

Notation: Ext1 (R , J) is completely determined by the ideal J  < A: de
fine
Ext 1(R, J ) =  Ext(J). Also set S  = EikIa(J).

Theorem 4.1.1. If A is a ring and J  a two-sided ideal in A, then there is a fibre 
product of additive groups:

A — - —► R

12
32

31

Ext (J) 

with i \ , j 2 surjective.

30
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C onstruction  of Z] ,? 2

Letting A be a right module over itself, there is a natural ring isomorphism 
EndA(A) = A; through left multiplication any /  G A represents an endo
morphism of A. Since J  is a two-sided ideal, there are /_  G 5, /+ G End(R) 
for each /  G A such that the following commutes:

0   ^ 0

f- f U
t  j (T

Since there are ring isomorphisms EndA(-R) =  Endr (R) = R, we may con
sider /+ as an element of R. Indeed /+  = a (/). Define

h  ( /)  =  /+  *2 ( /)  =  /- •

C onstruction of j 2

Explicitly, for /  G S' we take J2 ( /)  to be the congruence class of the bottom 
row in the pushout:

0 -----------------A ^ - ^ R ------^0

/

0  ► J ----- ► M -----> R -----►O.

Proposition 4.1.2. j2 is a well defined surjective homomorphism.

Proof. By standard homological algebra ([19] III.9.1), there is an exact se
quence of group homomorphisms:

Horn(R, J ) -----^ Hom(A, J )  ^ S  Ext\ R ,  J ) -----^ Ext1 (A, J)

where in Mac Lane's notation j 2 =  X* (recall X is the initial sequence). 
Note that since A is projective, Ext1 (A, J) — 0 and consequently j2 is sur
jective. □

C onstruction of j x

There is also an exact sequence:

Hom(fl, J )  ^ Hom(f2, A ) > R  Ext1 (R, J )  -  Ext1 {R, A)
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Where in Mac Lane's notation j i  = X*. Representing endomorphisms as 
left multiplication, for f  £ R  we may take j i ( f )  to be the congruence class 
of the bottom row in the pullback:

0 -----► J  — A —^  R  ^0

/  '

0 ----->■ J  ► M  -----*0.

Clearly if Ext1 (R , A) = 0 then j \  is surjective, but this may not necessarily 
be the case.

An important condition

We have already seen that the condition

Ext1 (R , A) = 0 (*)

may be used to imply certain properties of Ext (J), in particular the surjec- 
tivity of j\ .  Indeed, the condition will prove to be remarkably useful, and 
we shall say that condition (★) holds in this case.

Proof of Theorem 4.1.1. By construction h , i 2, j i , j 2 are group homomor- 
phisms. We have already shown that j 2 is surjective. By the projectivity of 
A, any A-module endomorphism of R  lifts to an endomorphism of A (see 
e.g. [19] III.6.1), and i\ is surjective. Suppose that /  e A, then as in ([19] 
III.1.5), the morphism ( /_ , / ,  /+) : X —> X factors and there is a commuta
tive diagram:

0  J  —3—+- A — R ----- ^0

/ -

0 -----► J  ► M  ----- ^0

/+

0  J  — A — R ----->0.

which shows that

j i h i f )  = h h U ) -
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Given /_ , /+  with j 2{f~) =  ji(/+ ), a similar diagram shows that there ex
ists an /  with i i ( f )  = /+, i2(f)  =  /_  and hence we have shown that the 
square in question is indeed a fibre product of abelian groups.

The product structure on Ext

We would like to show that in fact we have a fibre product of rings, but 
certainly this requires a multiplicative structure on Ext(J). Under the re
striction (*) we may impose a product on Ext(J) through the surjective 
h  : 5  -> Ext(J).

Proposition 4.1.3. Suppose that

Ext1 (12, A) = 0  

then Ker(j2) is a two-sided ideal in S

Proof. For h e S, by definition h e  Ker(j2 ) if and only if the corresponding 
extension j 2{h) splits and there is a homomorphism <p : A —> J  such that 
h = <pj, where j  : J  —> A as before. Under this characterisation if h e  
Ker(j2) then for any /  6  S it is clear that f h  6  Ker (.72). Thus, with or 
without condition (*), Ker(j2 ) is a left ideal in S.

Given /  e S, consider the homomorphism

A.

By the cohomological classification of Ext1 (R, A) this homomorphism rep
resents an extension. But since Ext1 (R, A) = 0, the corresponding exten
sion splits and there is some homomorphism 77 : A —> A such that j f  = rjj. 
Then for any h e Ker(J2 ) with factorisation ip as before: h f  = tprjj and 
h f  E Ker(j2). □

Thus under such restrictions the ring structure on Ext( J) is well defined 
and j 2 is a ring homomorphism.

Remark: If M  —> P  —> N  is a short exact sequence of A-modules with 
P  projective and such that Ext1 (AT, A) = 0 , then the above easily gen
eralises to show that composition in End(M) induces a ring structure on
Ext1 (AT, M).
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4.2 The fibre square associated to a two-sided ideal

Theorem 4.2.1. If A is a ring and J  a two-sided ideal satisfying (*), then there is 
a fibre square of rings and ring homomorphisms:

A —

12
h

3 i

Ext (J) 

with all maps surjective.

Proof It remains to show that all maps are surjective and multiplicative. 

We have already shown that j 2 and i\ are surjective.

(i) To see that i2 is surjective, if /  e S  then, again by (★) and as in the 
proof of 4.1.3, j f  = rjj for some 7 7 : A —>■ A and hence *2 (77) =  / .

(ii) As we remarked earlier, by the exact sequence used in the construc
tion of j i  and by (*), j \  is surjective.

(iii) Clearly ii, j i  and *2 are ring homomorphisms. This implies that j \  
is multiplicative, since we already have shown that the square com
mutes and all maps are surjective.

□

Proof of Theorem B

We may apply the standard Mayer-Vietoris sequence to the fibre product 
(Milnor [21], Theorem 3.3) to obtain:

Theorem B Let A be a ring and J  a two-sided ideal satisfying (*), then 
there exists a long exact sequence of abelian groups:

K XA  K iS  © K iR ----^ ATiExt(J)---- ^ K 0A ------^ K 0S  © K 0R -----^ A 0 Ext( J).

We remark that the standard homomorphism AiExt( J) —» K qA, as de
scribed by Milnor, will not feature in our generalisation, although the two 
maps are simply related to each other (c.f. Proposition 4.5.2).
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4.3 Stabilisation of Ext and projective extensions

The process of passing from rings to matrices over that ring is mimicked 
over extensions by the process of stabilisation, and the 'invertible matrices' 
will correspond to projective extensions. In this section we explain what 
we mean by this and give some results towards a deeper understanding of 
Milnor's long exact sequence, as applied in Theorem B.

Let J n = J  © ...  © J , so that for each n there is an extension

with j{ai , . . . ,On) = ( j ( a i ) , . . . , j ( a n)) and<r(&i,. =  {a(bx) , .. .a{bn)).
As before, the group Ext1 (i?n, Jn) is completely determined by the ideal J  
and we may define:

Proposition 4.3.1. If A is a ring and J  is a two-sided ideal in A then for each n 
there is an additive group isomorphism:

M n(Ext(J)) “  E xt(Jn).

(*) If Ext1 (R, A) = 0 then the above is a ring isomorphism.

Proof Recall that Ext( J n) may be classified, through cohomology, as a quo
tient group of EndA(J n). There is a natural identification M n(S) = Endj\(Jn), 
which takes any n x n matrix F = {fhk} to the homomorphism F'  defined

This is a ring isomorphism under any circumstances, and we shall write F  
to denote both the homomorphism and corresponding matrix. Thus, as an 
abelian group:

, where ~  denotes the cohomology relation. The additive property of Ext 
ensures that [F] represents the zero extension of Ext( Jn) if and only if each 
[fhk] represents a zero extension of Ext( J) and, abusing the notation ~, we 
have:

0 -----»- J n —^  An R 1 -0 ,

E x ^ J” ) =  Ext1 (jRn, J n).

by

Ext(Jn) -  (Mn(S) /  ~)

Ext(Jn) £* M n(S/  ~).
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Here ~  now used to denote the cohomology relation such that Ext( J) =  
S/  ~  .. This is a ring isomorphism when required and the result follows.

□

Notation: For each F  G M n(S) we write [F] to specify the congruence 
class represented by the bottom row in the pushout:

0

0

J 1 An

j n _ l [I I m F)
W[F]

Rr

RT

0

0 .

If F  is given, we shall always use the notation M\F] to denote the central 
module determined in this way.

Definition 4.3.2. We say that a congruence class x e A tnExt( J) is invertible 
if there exist F, H such that [F] =  x and

[.HF] =  [/d] = [FH],

Lemma 4.3.3. (Whitehead's Lemma) Suppose that [F] e ,Mn(Ext(J)) is in
vertible with H  G M n(S) such that [HF] = [Id] = [FH]. Then there is an 
isomorphism r\: J 2n —> J 2n such that

F  0 
0 H

Proof. Elementary calculations show that

Y F 0 \]
A 0

1 F  
0  1

1 0

- H  1
1 F  
0  1

0  - 1

1 0

and since each of the factors is an isomorphism, their product provides the 
required 77. □

Proposition 4.3.4. If (*) holds then:

(1) M[F] is projective if and only if [F] is invertible.

Without the condition (*), we have instead:

(2.1) If M[F] is projective then [F] has a left inverse.
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(2.2) If[F] is invertible then M[F] is projective.

We remark that a proof of the statement (1) may be inferred from ([11], 
Proposition 23.3) and the proof of the result identifying 'Johnson cohomol
ogy' and standard cohomology in [10]. We shall give an alternative proof 
that the invertible extensions are projective.

Proof. (2.1) If M[F] is projective then, by the universal property of projec
tive modules there is some H  and a commutative diagram:

0

0

J T An

J 1
*[F] M

H

*[F]

J T

R71

Rn

Rn

0

i.e. [HF] = [Id] and hence [H ] is a left inverse for [F]. We highlight the 
diagram above for subsequent reference.

(1) If (★) holds then for any F  e M n(S) representing a projective exten
sion, there is a homomorphism F* given by

F*[A] = [AF].

Note that F* is surjective since there is some H  such that [HF] = [Id]. We 
shall show that F* is injective. Since M[F] is projective and (*) holds, by 
additivity Ext 1(Rn, M[F]) = 0. Thus the homomorphism i\pj : J n —> M[F] 
has a factorisation i[F] = pj for some rj : An —» M[F). Suppose that there 
is some [A] such that [AF] = [0], since M[F] is projective and the cohomo- 
logical classification of Ext is independent of the resolution taken (see [19] 
III.6.3), there is some ip : M[F] —> J n such that A = <pi^. Then A = cpr]j 
and hence [A] = [0]. Therefore F* is injective and it follows that [F] is nec
essarily invertible with [FH] =  [Id].

(2.2) Suppose that [F] is invertible, with inverse [H] = [F] 1. Then by
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F  0  

0 H

Whitehead's Lemma there is an isomorphism 77 with 

and so there exists a commutative diagram:

^ j 2 n  1------ ^  A 2 n  1------ ^  ( f l )2 n0

0 J 2 n  ^  M[F] © M[H] (R) 2 n 0 .

By the five lemma r{ is an isomorphism and M[F] is projective, with pro
jective inverse M[H\.  □

4.4 The action of elementary matrices

The key point may be expressed as follows:

Proposition 4.4.1. lf[X] e A4n(Ext(J)) is elementary then:

(i) There exists an elementary matrix E  e M n{S) such that [E] =  [X].

(ii) For all F  e M n(S),
M[F] ^  M[XF\.

(iii) For all F  e M n(S), such that [F] is invertible,

M[FX] e A n = M[F} © An.

We remark before our proof that clearly (iii) is unsatisfactory, and con
jecture that the stronger result M[F] = M[FX] holds. In the case of (*), this 
may be seen to hold by arguments derived from Johnson's work, since the 
class of endomorphisms which represent split (i.e. zero) extensions is then 
independent of the projective resolution chosen to compute the cohomol- 
ogy group (see [11] Chapter 4). However this will suffice for our purposes.

Proof, (i) This is trivial.
(ii) We may suppose that [X] = [E] with E  elementary, in particular E  is an
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isomorphism. Then there is a commutative diagram:

AT + Rr

J T M

E

F }

J n

Rn

v  f f  o y

A o J.

M[EF} -----^ Rn  > 0

and by the five lemma M[F) = M[EF\.
(iii) Suppose that [F ] has an inverse [H]. We have

F  0 \  (  E  O '
0 H )  \  0 F

and by Whitehead's lemma and (ii) above we see that:

M[FE\ ® A n = M[F} © M[E\.

Since E  is an isomorphism, M[E] = An by the five lemma and the result is 
shown. □

Thus, assuming the familiar condition (*), the elements of K\Ext(J)
may be represented as equivalence classes [F ] with F  e M n(S) such that
[F] is invertible, and hence M[F] is projective. Furthermore, Proposition 
4.4.1 shows that M[F] is determined up to stability in the sense that

cls[F] = ds[H} => M[F] © — M[H] © Aa

for some suitably chosen a, b e N.

Corollary 4.4.2. If (*) holds then there is a well defined homomorphism 
d\ : F iE x t(J) —> K qA such that for any invertible extension [F]:

9,([F]) =  M[F\.

Proof d\ is well defined by Proposition 4.4.1 and statement (1) of Proposi
tion 4.3.4. It remains to show that d\ is a homomorphism. Given [A], [B ] e 
F iExt( J), let [A'] be the inverse of [A]. Then
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and so by Whitehead's lemma and Proposition 4.4.1,

M[AB\ © An “  M[B] © M[A] 

so that d\ (A B ) =  d\ (A ) +  d\ (B ) in K qK. □

4.5 Milnor's construction

The reader may wish to see the connection between our construction of 
a map K\Ext(J)  —> K qA and the standard map occurring in the Mayer- 
Vietoris sequence, as given by Milnor. In order to compare our map with 
Milnor's, we need to assume the condition Ext1 (A /  J, A) =  0 and work with 
the fibre square:

A  !L- ^ P

h
32 Ext V).

Recall that for any projective module P  over any ring P i  and ring ho
momorphism /  : Pi  —* P 2, there is an induced projective ^ -m o d u le  f # P  
given by

f # P  = P  P'2-

There is also a canonical map /* : P  —> f # P  given by

f * {p ) =p®n 1 1-

See Chapter 3 of Milnor's book [21] for a more detailed description of the 
construction. It suffices to say that f # P  is equivalent to the intuitive de
scription of the tensor product.

Milnor defines a map S as follows: given projective modules Pi over R, 
P2 over 5  and an Ext(J) isomorphism

h: ji#(Pi)  = j2#(P2),

let M(Pi ,P2,h) denote the subgroup of Pi x P2 consisting of all pairs (pi , p2) 
such that hju(pi)  = j 2*(p2 )- Then M (Pi, P2, h) has a natural A-module 
structure.
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Theorem 4.5.1. (Milnor) The module M{P\ , P2 , h) is projective over A, and ev
ery projective A-module is isomorphic to some M{P\, P2, h). Moreover, the mod
ules P\ and P2 are naturally isomorphic to i i#M(P\ ,  P2, h) and P2, h)
respectively.

For each invertible matrix h over Ext( J ) of rank n, one may form the 
projective A module

8{h) = M{Rn, S n,h).

This construction leads to M ilnor's homomorphism:

8 : ATiExt(J) -► K 0A.

Proposition 4.5.2. (Equivalence to Milnor's construction.) Let 8 be Milnor's 
map GLn(Ext(J)) —» ProjA and d\ be as in section 5.1. Then for each h e 
GLn(Ext(J)),

di{h) = 8(h).

Suppose that the A-module P  occurs in a commutative diagram:

0

J n

J n

R r

Rn

with [h] e  GLn(Ext(J)) (so P  is projective) and in particular

9i(h) = \P\.

By Theorem 2.2 of (Milnor [21]) it is sufficient to construct a fibre product 
diagram of homomorphisms:

Rn

32

hj i

Ext( J )n

since any such P  is unique and is necessarily isomorphic to M (5n, Rn, h).

Lemma 4.5.3. For p e P, set <p : A —> P to be the homomorphism such that 
ip( 1) = p. Then there are homomorphisms (p) 6 Sn and i f  (p) e R n such that
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the following commutes: 

0  — J R

i%(p)
0 J n R n 0 .

Proof. Recall that for any module M

Horn (M, M n) = End(M)n

and that we have identified R  with its endomorphism ring. Since condition 
(★) holds the map j \  : End(Rn) —* A4n(Ext( J)) defined in earlier sections 
is surjective. Thus there is a commutative diagram:

J n

J n An

RJ1 

f  

R n

0

0 .

Any homomorphism 77 : A —> An satisfies rj(J) C J n, so from the two 
diagrams above, and since we have the identity on the right hand side, 
i f  (p) is well defined and we may deduce the result. □

Proof of Theorem 4.5.2: It is required to show the commutativity of the 
diagram:

RT

S n ---£  Ext( J)n

For each p e P  the element [72i f  (p)] is represented by the bottom row in 
the diagram

hji

0  ► J -------► A ----- * R

*2 (p)

0

0 -----► J n  ► P2    R    0.

\ji i f  (p)] is represented by the top row of

0 ------------- ^  Jn ------------- - P i ------------------- P --------------- - 0

*f (p)

0 ------ J n -  An    P n    0.
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Note that h o [ j i i f  (p)] is represented by any exact sequence occurring in the 
bottom row of a diagram:

0 -----> J r P i  * R n 0

0 -----»- J n ----- M ------ ► Rn ------- 0.

Combining four of the given diagrams leads to the composite:

0 ------- »  J n ---------► P i ---------^  R --------- ^  0

*f(p)

0 -----► J n ----► An -----» Rn ------► 0
h

0 -----► J n Rn  ^0

*f(p)
R  ^0

0 -----► J n ------- P2 ------► R 0 .

This may be compressed to form the diagram:

0 -----► J n ------► P2 -----► Rn 0

and hence:

h o [ jp f  (p)] =  [72*2 (P)}

and the square commutes. The proof that the square satisfies the fibre prod
uct condition follows as in the proof of Theorem 4.1.1. □

Remark. Our construction is somewhat more general than Milnor's: we 
may construct a module M[A] for any A  e  A/fn(Ext( J)) without assum
ing that A  be invertible. One is tempted to suggest that, under reasonable 
restrictions, Theorem 4.5.1 above will generalise to arbitrary (rather than 
projective) modules.
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4.6 Example: Swan modules

The canonical example for our fibre product and resulting Mayer-Vietoris 
sequence is provided by taking A = Z[G] to be an integral group ring of a 
finite group and J  to be the two-sided ideal of Z[G] on which the action of 
G is trivial. All of the results in this section have been previously shown 
elsewhere, and may be found for example in [5], [28] and [11].

Suppose that G = {<?i}"=1 is a finite group of order n. We follow Swan 
in using the notation

iv = 5 > ,

so that N  is fixed and denotes the sum of all the group elements. Then 
the trivial Z[G]-module Z embeds into Z[G] through identification with the 
ideal generated by the element N  and there is a resulting exact sequence:

E =  0 ------ Z —^  Z[G] —^  Z[G]/(2V)------ 0.

One may show computationally that Ext^Z , Z[G]) =  0, i.e. condition (*) 
holds, or use the fact that this result is true in general for all finitely gener
ated torsion free Z[G]-modules ([11] Chapter 5). Since HomZ[G](Z, Z) =  Z 
this sequence leads to the fibre product:

Z[G]— ^Z[G]/(7V)

* h

Z  ^ E x t V )

We remark in passing that Z[G]/(iV) =  Hom^G](A ^[G]) is the dual of the 
augmentation ideal, where the augmentation ideal is the kernel of the ring 
homomorphism e : Z[G\ —» Z. Indeed, one may take as a starting point the 
extension:

0 -----► I  Z[G] Z  0

and work with this sequence, which arises naturally in consideration of al
gebraic 2-complexes. The two sequences are naturally dual to each other. 
Either sequence results in the same fibre product of rings, and it is prefer
able to work with the former simply because the relevant Z[G]-modules 
may then be identified with the corners of the fibre square.
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Any homomorphism /  : Z —► Z is representable as multiplication by 
some element /  E  Z, and it is easy to see that /  factors though e* if and 
only if /  = 0 mod n  (recall that e(N) = n). Thus

Ext(Z) =  Ext1 (Z[G]/(iV), Z) 2* Zn

where Zn denotes the quotient ring Z/nZ. One sees directly that the natural 
multiplicative structure on Zn represents the multiplication in Ext(Z).

For each r E N+ define (TV, r) to be the submodule of Z[G] generated by 
the elements N  and r. Then Z embeds in (TV, r) by identification with the 
submodule generated by TV and there is a resulting exact sequence:

E(r) =  0 -----► Z (N, r) Z[G]/(JV) >- 0.

with ?rr (r) =  1-1- (TV). Moreover:

E(r) —> cls(r) E Zn

is an isomorphism on restriction to congruence classes. Originally defined 
in [26], Swan proved that the projective extensions in Ext(Z) are repre
sented by the modules (TV, r) for r  coprime to n. The modules (TV, r ) form 
a well studied subgroup of the projective class group of finite groups and 
are often called Swan modules. If r is coprime to n with modular inverse s, 
then the proof of Theorem 4.3.4 recovers Lemma 6.1 of [26], i.e.

(JV,r)®(AT,s)SZ[G]2.

It has often been remarked (see e.g. [5], [28], [22]), that there is a fibre 
product of rings:

Z[G] ^ Z[G]/(TV)

Z ----------- ^ Z n

and that the Swan module (TV, r) corresponds to the projective Z[G]-module 
constructed from the unit r E  Zn via Milnor's construction. The homologi
cal classification of such modules is achieved by noting that for any r E  N+
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there is a commutative diagram:

0 ----->- Z —^  Z[G] - I ! — Z[G]/(JV)----- >- 0

/(AT)-----►O.

There is a pre-established connection between Swan modules and can
cellation problems arising from considerations of algebraic 2 -complexes. 
For certain finite groups of period four, it is a celebrated result of Swan's 
[27] that there are stably free Z [T] modules which are not free. Letting G 
denote the quaternion group of order 4n with n > 6 , or in general any 
finite group of period four such that there are stably free modules Z[G] 
which are not free, we say that weak cancellation holds for G if all stably 
free Swan modules are free. Johnson has shown in [13] that if weak can
cellation holds for G, then one may construct modules which are stably 
equivalent to 7r2 (f?) for some presentation Q for G, but which are not iso
morphic to 7T2(£) © Z[G]m. We refer the interested reader to the recently 
published [2] for an explicit construction of such a module. We remark that 
for G a 2-group, or for G of order 4p with p an odd prime, Swan has shown 
that weak cancellation holds ([27] - Theorem VI).

We shall use the following result later:

Corollary 4.6.1. Ki(Z[G\/(N)) is finitely generated.

Proof. Using the Mayer-Vietoris sequence resulting from the fibre square, 
we consider the portion:

K \Z[G \ ^ Ki(Z[G]/ (N))-----^ A’iExt(Z).

It is well known that KiZ[G] is always finitely generated for finite groups 
(see e.g. Oliver [24] Chapter 2 ), and ifiExt(Z) — KiZ\n is finitely generated. 
The result then follows from the classification of finitely generated abelian 
groups. □



Chapter 5

The general case of a two-sided 
ideal

Our attempts to remove the condition Ext1 (R , A) = 0 are partially suc
cessful, and we shall show that in the more general case we may define 
an abelian group AfiExt(J), which is equivalent to K\Ext(J)  if the lat
ter defined. We also construct a homomorphism of abelian groups d \  : 
KiExt (J)  —> KoA occurring in an exact sequence:

K i S ® K i R  A"iExt(J) • K 0A.

5.1 Definition of KiExt(J)

In the case where there is no natural product structure on Ext( J), we shall 
show that one may be induced on the invertible extensions. Recall that 
congruence class x is invertible if there exists an F ,H  e M n(S) such that 
x =  [F] and

\HF\ =  [Id] =  [FH],

Let Projn denote the set of classes [F] in E x t(Jn) such that [F] is in
vertible. Define a relation on Projn by setting [F] ~  [H } if there exists an 
elementary matrix E  such that

[F] = [EH].

47
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Proposition 5.1.1. ~  is a well defined additive equivalence relation.

Proof. As in the proof that Ker(j2 ) is a left ideal (c.f. Proposition 4.1.3), it is 
clear that for all H ,K  e M n(S), if [.H} = [K], then [FH] = [FK] and thus 
the relation is well defined on equivalence classes. The rest is trivial. □

For each n there is an inclusion Projn —> Projn+\ given by: 

[ F \ -
F  0 
0  1

Let Proj denote the limit of these inclusions.

Theorem 5.1.2. Composition defines a product structure on Proj I  —

Proof. Given invertible congruence classes [F], [JT], [K], [L] such that [F] = 
[K] and [H ] = [L\, let [F'] be an inverse for [F]. Then

V F H MlA o J.
F  0 
0 F'

H  0 
0 F

H  0 
0 F

L 0 ' 

0  K

K L  0 
0  1

and hence [FH] = [KL] in P ro j/ □

Since the product structure is well defined, we may now factor out on 
both the right and left by elementary matrices over 5  and define

F jE x ttJ )  =  (Proj /  ~ ) / E (S ).

Then KiExt(J)  is an abelian group and clearly:

Corollary 5.1.3. If (*) holds there is a natural identification:

F iE x t(J)  = F iE x t(J).
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Construction of d\

Recall that if [F } is an invertible congruence class then M[F] is projective. 
Define a map d \  : iG Ext(J) —> K qA  by

91 ([F]) =  A/[F].

Proposition 5.1.4. d\ : KiExt(J)  —» KqA is a well defined homomorphism.

Proof. As before, Propositions 4.3.4 and 4.4.1 show that d\ is well defined. 
The proof that d\ is additive follows as in 4.4.2. □

Construction of d2

We define a map d2 : K \S  © K \R  —» KiExt (J)  by sending any (a, j3) € 
GLn(S) ® GLn(R) to the congruence class of the bottom row of the pushout 
/  pullback:

0 -----► J n —^  An Rn ------► 0

P

0 -----► J n ------► X -----► K 1------>• 0
tt

0  J n  M  Rn  ► 0.

We wish to describe the resulting exact sequence 0 2  (a, /?) in terms of endo- 
morphisms of J. We may find a f{(3) such that there exists a commutative 
diagram

0 -----► J n — ^  An — RF  ► 0

m

0 -----► J n ------► X -------R F ------► 0

P

0 -----► J n -----> An -----► Rn ----- ► 0.
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From the two diagrams above we deduce that the following commutes:

J n

m

o

j n -
a

J n -

A n

X

M

IF

Rn

IT1 0 .

So that $2 (0 , P) = [af(P)\. Note that [/(/?)] is an invertible element, with 
inverse provided by [f{p~l )\ and /  is injective on congruence classes. In
deed, if (*) holds then it may be shown that /  is a ring isomorphism [1 1 ]. 
A large diagram which we omit should convince the reader that [f(a/3)] =

Proposition 5.1.5. If (3 is an elementary matrix, then so is [/(/?)].

Proof. Suppose that ft is elementary with one non-zero off diagonal entry 
b, so that P = Then we may pick an f(b) e S  so that the following
commutes:

0 J R 0

m

j

j

M

A

R

R 0 .

Set F  = ti,j(f(b)), then there exists a commutative diagram:

0

J n

J n

J n

An

M'

An

IF

Rn -

0 

IF

and hence [F ] = [f(P)\ is elementary.

Corollary 5.1.6. is a well defined homomorphism.

0 .

□
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Proof. By Proposition 5.1.5, if (a, (5) is such that both a  and (3 are elemen
tary then c*2 (o, (3) is a product of elementary matrices, so di is well defined. 
We have already shown that [f(a/3)\ = [f(a)f((3)\, and hence

[{a, (3) • (7 , <5)] =  [ajf{pS)\

= M b  H /G W W ]

(.K \ E x t ( J ) is commutative) =  M [/(/?)][7 ][/(£)]

=  8 2 (01,(3 )8 2 (7 ,6 )
and 82 is multiplicative. □

5.2 Exactness at KiExt(J)

Suppose that [F] € Ker(di). Then by definition M[F] is stably free, and we 
may assume there is a b e  N such that M[F  © If,] is free, where for matrices 
A  and B  we take A  ® B  to be the matrix:

A ®  B =
A  0 
0 B

Set F' = F  © lb- We shall assume for convenience that the free rank of 
M[F'] is rk(F)  +  b, that is

M[F'] = Ark^ +b

and return later to the case where this is not a justifiable assumption. For 
the moment set n = (rk (F) +  b) and suppose that <p : M[F'] = An is an 
isomorphism. Then ip induces a congruence:

0 J T

J n

i[F/]
M F f ] 

v

1/1 *[*■'] BJ

A n 7r[F'j¥’
^ R n 0

so that we may take M[F'] = An and the congruence class of [F'J to be 
represented by the bottom row in the above diagram.

Proposition 5.2.1. If 7 7 : An —» Rn is a surjective A-module homomorphism then

Ker (r/) =  J n.
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We remark before the proof that we shall need to make the assumption 
that if /  : R n —> Rn is a surjective R -module homomorphism then /  is 
an isomorphism. This holds in many cases - indeed it always holds for 
the rings considered in this thesis - but fails for example if Rn = Rm with
n 7^  m.

Proof. Recall that the A-module structure on R  is determined by the surjec
tive o : A —> R  and J  = Ker(a).

J n C Ker(7?) : In the case where n =  1, if a € J  then

r]{a) =  //(I) • a = 7]{\)<j{a) =  0 .

The case where n > 2  follows by writing each column a e  J n as the sum of 
the components and applying a similar reasoning.

K e r ( 77)  C  J n :  A g a i n  w e  s t a r t  w i t h  t h e  c a s e  n  =  1 .  S u p p o s e  77 ( 1 )  =  s e  R, 
t h e n  s i n c e  77 i s  s u r j e c t i v e ,  s i s  a  u n i t .  I f  77 ( a )  =  0 t h e n  s c r ( a )  =  0 a n d  h e n c e  

a e J. I n  t h e  g e n e r a l  c a s e ,  n o t i c e  t h a t  i f  { e i , . . .  e n }  t h e  s t a n d a r d  b a s i s  f o r  

An, t h e n  { 77( 6 1 ) , . . .  77 ( e n ) }  f o r m s  a  b a s i s  f o r  Rn ( s e e  r e m a r k  b e f o r e  p r o o f )  

a n d  t h e  m a t r i x  77(Id) f o r m e d  b y  a d j o i n i n g  t h e  c o l u m n s  77 ( e * )  i s  i n v e r t i b l e .  

M o r e o v e r  i f  77 ( a )  =  0 t h e n  77 ( a )  =  r)(Id).o(a)  =  0 a n d  h e n c e  a e  J n. □

Corollary 5.2.2. There are induced isomomorphisms a and 7  so that the following 
diagram commutes:

Proof It follows from Proposition 5.2.1 that a  and 7  are well defined.

(i) a  is injective by the injectivity of and by commutativity.

(ii) a  is surjective by Proposition 5.2.1.

(iii) 7  is surjective since a is surjective and the diagram commutes.

(iv) 7  is injective since if 7 (7*) = 0 and 7t\f 'YP =  r then cr(A) = 0 by 
commutativity and again by Proposition 5.2.1, A G Ker(7qF']<P-1 ) so 
that r = 0 .
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□
Note that in the corollary above the congruence class of the top row is 

equal to [F ® Idb] This is all that is required to prove:

Theorem 5.2.3. The sequence

K i S m K i R  k i  Ext (J) K 0\

is exact at KiExt(J).

Proof. Immediately from the five lemma we see that 8281 = 0. If [F] is in the 
kernel of d\, then by Corollary 5.2.2 there is an isomorphism of extensions 
(ct, P, 7 ) : [Idn] —» [F © Idb] and

#2 (0 , 7 _1) =  [F © Idb].

Since we have identified [F] and [F © Idb] in K \ Ext(J),

[F] e Im(di)

and the result follows. □

Some restrictions on the ring and on the ideal

We deal now with the case where we may not assume that the free rank of 
M[F'\ is rk(F)  +  b. Suppose that there is some n ^  a and extensions

0  J n  An  ► Rn  ► 0

0  J n  ► Aa  >■ Rn  ► 0

then by Schanuel's Lemma there is an isomorphism

J n © Aa “  J n © An n / a .

A priori, this is possible. P.M. Cohn has shown, for example, that there 
are many examples of rings A such that there are isomorphisms Aa =  An 
with n ^ o .  The following is essentially due to Cohn:

Definition. A ring A is said to satisfy the strong basis number property (SBN 
property) if a : An —» Aa is a surjective homomorphism implies a < n.
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Proposition 5.2.4. (P.M. Cohn) Suppose that A  has SBN and M  is a finitely 
generated module, then

M  ©  A n  =  M  ©  A °  = >  n — a.

Proof. S u p p o s e  t h a t  w e  a r e  g i v e n  s o m e  f i n i t e l y  g e n e r a t e d  M , i . e .  t h e r e  i s  a  

s u r j e c t i v e  h o m o m o r p h i s m

A 6  — > M

a n d  s u p p o s e  t h a t  t h e r e  i s  s o m e  a > n a n d  i s o m o r p h i s m

M  ©  A n  =  M  ©  A a .

T h e n  t h e r e  i s  a  s u r j e c t i v e  h o m o m o r p h i s m

A * * 2 " 6  — > M  ©  A 2 ° 6

w h i c h  i n d u c e s  s u r j e c t i v e

yy& (2n+ l)   ̂ j^2ab

a n d  s i n c e  b(2n +  1 )  i s  s t r i c t l y  l e s s  t h a n  2 ab t h i s  i s  i m p o s s i b l e  i f  A  h a s  S B N .

□

T h u s  w e  i m p o s e  t h e  c o n d i t i o n s  t h a t  A  h a s  t h e  S B N  p r o p e r t y ,  t h a t  J  i s  

f i n i t e l y  g e n e r a t e d  a n d  t h a t  a n y  s u r j e c t i v e  / ^ - l i n e a r  m a p  /  : Rn —> R n i s  a n  

i s o m o r p h i s m .  C o h n  h a s  a l s o  s h o w n  i n  [ 7 ]  t h a t  t h e  g r o u p  r i n g  o f  a n y  f i n i t e l y  

p r e s e n t e d  g r o u p  s a t i s f i e s  t h e  S B N  p r o p e r t y .

5.3 Further generalisations

T h e  r e s u l t s  o f  a l l  t h e  p r e v i o u s  s e c t i o n s  m a y  b e  c o n s i d e r e d  a s  a n  e a s i e r  a n d  

m o r e  c o m p l e t e  v e r s i o n  o f  a  s l i g h t l y  m o r e  g e n e r a l  p h e n o m e n o n .  S u p p o s e  

n o w  t h a t  A  i s  a  r i n g  a n d  t h e r e  i s  a n  e x a c t  s e q u e n c e  o f  A - m o d u l e s :

0   ^ 0

w i t h  V  a  f i n i t e l y  g e n e r a t e d  f r e e  m o d u l e .  T h e n  t h e  p u s h o u t  a n d  p u l l b a c k  

c o n s t r u c t i o n s  g e n e r a t e  a b e l i a n  g r o u p  h o m o m o r p h i s m s :

j 2 : EndA(M) -> Ext 1{N,M)  

j i  : EndA(iV) ExtX(N,M)
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w i t h  j 2  s u r j e c t i v e .  W e  m a y  c o n s i d e r  t h e  m o d u l e  M  t o  b e  i d e n t i f i e d  w i t h  

i t s  i m a g e  i n  V,  s o  t h a t  Ext1 (AT, M)  i s  c o m p l e t e l y  d e t e r m i n e d  b y  M  a n d  w e  

m a y  w r i t e

Ext1 (iV,M) =  Ext(M)

Ext1 (ATn,M n) =  Ext(Mn).

A s  b e f o r e ,  w e  m a y  r e p r e s e n t  e a c h  c o n g r u e n c e  c l a s s  o f  Ext(Mn) b y  [F] f o r  

s o m e  F  £  M n(Endh(M)),  a n d  w e  r e t a i n  t h e  n o t a t i o n  M[F] f o r  t h e  c e n t r a l  

m o d u l e .  W e  s h a l l  n o w  a s s u m e  t h a t  t h e  c o n d i t i o n  ( * )  r e f e r s  t o  t h e  s t a t e m e n t :

(*) Ext1 (AT, A) =  0

A  s u b s t i t u t i o n  o f  v a r i a b l e s  i n  t h e  p r e v i o u s  s e c t i o n  ( c . f .  4 . 3 . 4 ,  4 . 1 . 3 )  

p r o v e s  t h e  f o l l o w i n g :

Proposition 5.3.1. If (*) holds then Ker(j2 ) is a two-sided ideal in EndA(V),so 
that in particular there is a well defined ring structure on Ext(M).

Proposition 5.3.2. If (*) holds then:

(1) M[F] is projective if and only if\F] is invertible.

Without the condition (*), we have instead:

(2.1) If M[F] is projective then [F] has a left inverse.

(2.2) lf[F] is invertible then M[F] is projective.

O n e  m a y  s i m i l a r l y  d e f i n e  t h e  g r o u p  ATiExt(M), w h i c h  r e p r e s e n t s  t h e  

p r o j e c t i v e  e x t e n s i o n s  i f  ( * )  h o l d s ,  a n d  m o r e o v e r  t h e r e  i s  a  w e l l  d e f i n e d  m a p :

di : F iE xt(M ) -* K 0A

w h i c h  c o r r e s p o n d s  t o  s e n d i n g  a n  e x t e n s i o n  w i t h  c e n t r a l  m o d u l e  P  t o  t h e  

c l a s s  o f  P  i n  KqA.
C o n s i d e r a b l e  p r o f i t  w a s  m a d e  i n  p r e v i o u s  s e c t i o n s  f r o m  t h e  f a c t  t h a t  

V( j )  C  J  f o r  e v e r y  ip e  E n d A ( A ) .  T h i s  m o t i v a t e s  t h e  f o l l o w i n g  d e f i n i t i o n :

Definition. Given a submodule M  of V  with quotient module N , M  is said
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t o  b e  a  characteristic submodule o f  V  i f  y>{M) C M  f o r  e a c h  ip G EndA(V^). 
I f  H o m A ( M ,  N ) =  0  h o l d s  t h e n  w e  s a y  t h a t  E x t ( M )  i s  c h a r a c t e r i s t i c .

E x a m p l e s  o f  c h a r a c t e r i s t i c  s u b m o d u l e s  a r i s e  n a t u r a l l y  w h e n  c o n s i d e r 

i n g  t o r s i o n  f r e e  m o d u l e s  o v e r  t h e  g r o u p  r i n g  o f  a  f i n i t e  g r o u p ,  s e e  f o r  e x 

a m p l e  s e c t i o n  3 4 A  o f  [ 5 ] .  O f  s p e c i a l  i n t e r e s t  i s  t h e  c a s e  w h e r e  t h e  s t r o n g e r  

c o n d i t i o n  H o r r i A ( M ,  N ) =  0  h o l d s ,  s u c h  s u b m o d u l e s  M  m a y  b e  s e e n  t o  b e  

c h a r a c t e r i s t i c  b y  a  s i m p l e  d i a g r a m  c h a s e .  I n  a n t i c i p a t i o n  o f  l a t e r  s e c t i o n s  

w e  r e m a r k  h e r e  t h a t  t h e  i s o m o r p h i s m  c l a s s e s  o f  t h e  c e n t r a l  m o d u l e s  a r e  

m o r e  e a s i l y  d e t e r m i n e d  i n  t h i s  c a s e :

T h e o r e m  5 . 3 . 3 .  (Curtis & Reiner [4] 34.5) Suppose that H o m A  {M,N)  =  0 ,  

then the isomorphism classes of central modules M[F] are classified by the orbits 
o / E x t ( M n )  under the action of G L n ( E n d ( M ) )  x  G L n ( E n d ( N ) ) ;  the action is 
determined by the homomorphisms j \  and j 2 -

H o w e v e r ,  o u r  m a i n  p o i n t  i s  t h a t  i f  M  i s  a  c h a r a c t e r i s t i c  s u b m o d u l e  o f  V  
t h e n  g i v e n  a n y  F  G E n d A ( V ' )  t h e r e  i s  a  c o m m u t a t i v e  d i a g r a m :

M

M

V

V

N

N0 -

s o  t h a t  w e  m a y  d e f i n e

i2{F) = F- h{F)  =  F+.

T h e o r e m  5 . 3 . 4 .  Suppose that A  is a ring and there is an exact sequence of A -  

modules:

0 M V 0

with V a finitely generated free module and M  a characteristic submodule ofV.  
Suppose also that E x t 1  ( N ,  A )  =  0 .  Then is a fibre product of rings:

EndA(^) E n d A ( i V )

E n d A ( A T )  — ^  E x t 1  ( T V ,  M)

31

with all maps surjective.
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The proof follows simply from the proof of Theorem A. Note also that 
there is a ring isomorphism EndA(F) =  Mk{A),  where k is the free rank of 
V,  so that by Morita invariance the Mayer-Vietoris sequence for the above 
fibre square becomes

K \ K  ^ ATiEndA(M) © K ^ n d ^ N )  ^ ATiExt(M)

 ^ K q A  ^ AroEndA(M) © K 0EndA( N )  ^ K 0Ext(M).

Indeed, with the exception of the isomorphism EndA(iV) =  N,  it is eas
ily checked that the results of the previous sections may be adapted to this 
case, with the exact sequence arising from a two-sided ideal replaced by the 
exact sequence arising from a characteristic submodule of a finitely gener
ated free module.



Chapter 6

Applications to 2-complexes

Some of the results of the previous section, in particular the methods to 
detect projective extensions, may be generalised and are now applied to 
2-complexes. Recall that the Realisation problem asks, for a particular fun
damental group, if each chain homotopy class of algebraic 2 -complexes is 
realised geometrically by some presentation. The work of Johnson and oth
ers has provided a useful strategy for approaching problems of this sort, 
aimed at providing a positive result, which we now summarise.

Program of realisation

We assume that we are given a group T with an accompanying presentation 
Q and that the hypothesis of Theorem 1.1.2 are satisfied.

1) The presentation Q may be used to construct a (realised) algebraic 
2-complex C*(Xg) with some terminal module tv2(G)

c , ( x g) = o — ► M S )  z[r]3 z [r f  z[r] -5—  z  — ► o

This gives a reference point for the ensuing investigation.

2) The class of Z[T]-modules stably equivalent to ^{Q)  is calculated.

3) The complex C*(Xg) is considered as a truncated projective resolu
tion of Z by Z[T]-modules and may be used to calculate Ext3 (Z, M)  
for all possible modules M  stably equivalent to 7r2 (&).

58
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4) The congruence classes of algebraic 2-complexes in each Ext3 (Z, M)  
are identified and each is either realised or shown not to be realisable.

In both step (3) and step (4) and if Ext3 (Z, Z[T]) = 0, there are important 
simplifications of the program. These were given in Propositions 3.2.2 and 
3.2.3. Together these propositions ensure that steps (3) and (4) need only 
be completed at the minimal level, where 'minimal' corresponds to the size 
of the terminal module M  (see remarks before proposition 3.2.2). Further
more, Proposition 3.2.3 is often a crucial simplification of step (4), since the 
projective extensions are then known.

Without the condition Ext3 (Z, Z[T]) = 0, we do not have any existing 
method of detecting projective extensions. In Chapter 5 of this thesis, in our 
discussion of projective versus invertible extensions, we were presented 
with a similar problem and surmounted it by passing to K\  from general 
matrices. The analogue of this process is not delicate enough to deal with 
chain homotopy types of algebraic 2 -complexes, but some of the ideas will 
transfer successfully.

6.2 Relaxing the condition Ext3( z , z [ r ] )  =  o

We first set up the notation that we shall be using. We suppose that F 
is a finitely presented group and that we have an exact sequence of Z[r]- 
modules:

E =  0 -----^ 7t2E  F2 F\ F0 Z  ► 0,

with Fi finitely generated free over Z[T] and 7r2E finitely generated. The 
extension E remains fixed throughout this section, under the assumption 
that we wish to determine all possible algebraic 2 -complexes with terminal 
module isomorphic to 7r2 E.

Using the classification of extensions through cohomology and by anal
ogy to Proposition 4.3.1, the congruence classes of Ext3 (Zn, 7r2 E n) for n > 1 
are determined by equivalence classes of homomorphisms [F] for some

F  G EndZ[r ](7r2 En) =  M n{S) where S =  EndZ[r j (7r2 E ).
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Note that we have appropriated the notation [F] to represent the congru
ence class of the extension constructed as a pushout through the homomor
phism F, as applied to a suitable number of direct sums of the resolution E. 
Compare with the remark on notation following Proposition 4.3.1.

6.3 Detection of algebraic 2-complexes

As before we say that a congruence class x £ Ext3 (Z, ^ E )  is invertible if 
there is some F, H  such that x  =  [F] and

[Fii] =  [HF] = [/d].

We say that x  has a left inverse if there is some F, H  such that x  =  [F] and 
[HF] = [Id].

Theorem 6.3.1. Any projective extension of Ext3 (Z, ^E ) has a left inverse; if 
Ext3 (Z,Z[r]) =  0 then projective extensions are precisely the invertible exten
sions.

Proof A  proof may easily be constructed along the lines of 4.3.4, the only 
subtlety is in showing that invertible extensions are projective.

As a constituent part of the algebraic 2-complex E fixed earlier, there is 
an exact sequence:

0 ------->■ 7T2E F 2 ~  > I m ( ^ 2 ) -------- ► 0

and by dimension shifting:

Ext3 (Z, 7T2 E) =  Ext1 (Im(^2 ), ^ E ) .

Thus we may assume that any x £ Ext3 (Z, 7T2E) is congruent to some ex
tension:

0 -----» jr2E - ^ M [ F ) ----------------------------------------------------  »0.

Im(^2 )
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If x is invertible then, as in the proof of Whitehead's Lemma (c.f. Proposi
tion 4.3.3), we may find an isomorphism 77 of 7r2 E 2 such that

F  0 
0 H

Thus we may construct a commutative diagram:

\ 2  i  t - i9 ^2
0

0

(7T2 E)'

(-7r2E ) s

and by the five lemma M[F\ is projective. □

This distinguishes the projective extension as those with a left inverse.
The chain homotopy types may be distinguished by the following:

Proposition 6.3.2. Suppose that [F], [H] represent projective extensions of Ext3 (Z, 7r2 E). 
Then [F] is chain homotopy equivalent to [H ] if and only if there exists an isomor
phism 77 of 7t2E and

bF] =  [ff].

Proof Suppose that there is a homotopy equivalence:

with the top row [F] and bottom row [H]. Since /o is an isomorphism it 
may be represented as multiplication by ± 1  and hence, replacing /* with 
- f i  if necessary, there is a commutative diagram:

0

7T2E  -

h  

7T2E  -

P2 Pi

h h

q 2 Qi

Po

Qo

z

z

0

0 .

Then [H] = [/4F] and / j  is an isomorphism. Since congruent extensions 
are chain homotopy equivalent, the converse is trivial. □
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For ease of reading we adopt the notation

E x t^ E )  =  Ext3 (Z, 7T2 E).

We now show how the algebraic 2-complexes may be distinguished 
from the general projective extensions. Recall that we have supposed there 
is some exact sequence of Z[r]-modules:

E = 0 7T2E F2 Fi F0 Z 0 ,

with each Fi a finitely generated free Z[r]-module, and 7T2 E finitely gener
ated over Z[r]. Elements of E n d ^ E  © Z[r]n) may be represented by the 
left action of (n +  1 ) x (n +  1 ) matrices

a v 
w A

with

a G End(7T2 E) : w = {wi, . . . ,  wn), W{ G H o m ^ E , Z[r])

v =  (vi , . . .  ,vn), Vi G Hom(Z[r],7T2 E) : A G «Mn(Z[T]).

Let [a] G Ext(7T2 E) represent the class of an algebraic 2-complex, say: 

la] =  0  X i  — X\  — Xo — Z  *0.

Then by Corollary 3.1.3 and Proposition 6.3.2 there is natural number n  and 
an isomorphism </? such that the following commutes:

tt2e  © z[r]n f 2 © z[r]n f 1 f 0 z

j© i7r2E0Z[r]n-^-^x20Z[r]

Thus:

Corollary 6.3.3. [a] G E x t^ E )  represents the class of an algebraic 2-complex 
only if there is natural number n and an isomorphism <p such that:
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Note that using Proposition 3.2.1 it is easy to reinforce the above state
ment to an 'if and only if', and note also that [</?] is an invertible extension. 
This gives a computational method to detect algebraic 2-complexes, assum
ing only the hypothesis of Theorem 1.1.2.

Remark 6.3.4. Recall that we have classified extensions x in Ext3 (Z, 7r2E ® 
Z[T]n) with matrices

with

a € End(7T2 E) : w = (w\ , . . . ,  wn), Wi € Hom(7r2 E, Z[T])

V =  ( v i , . . . , v n ) ,  Vi  £  Hom(Z[r],7T2E) : A e M n{Z[T]).

By inspection of the resolution used to compute this group:

0 ----- 7̂r2E®Z[r]n - ^ F 2 ®Z[r]n - ^ F i - ^ F o - ^ Z -----^0

we see that in Ext3 (Z, 7r2E © Z[T]n):

In the appendix we give a description of stably free modules which would seem 
highly suggestive in relation to the above.

6.4 Realisation for

Given a finitely generated group T, we have indicated how the condition 
Ext3 (Z, Z[T]) = 0 may be used to reduce the Realisation problem to realis
ing algebraic 2 -complexes at the minimal level, and to simplify the detec
tion of algebraic 2-complexes. In this section we take an example of a group 
for which this condition does not hold, and solve the Realisation problem 
in the affirmative.

Throughout this section let T be the group determined by the presenta
tion

Q =  (a, 6 , c | ab — ba, ca = ac, be = cb),
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so that T =  is a free abelian group on the generators o, 6 , c. The corre
sponding chain complex is given by:

0C.(Xg) = 0 -----► 7T2(£) —U . z[r]3 - Z[P]3 Z[r] z  -

where

(  1 - 6 c — 1 0 1
d2 = a — I 0 1 — c 5 <?i =   ̂ a — 1 6 — 1 c — 1

0 1 -  a 6 - 1  J
and tt2(Q) may be identified with the submodule of Z[T]3 generated by the 
element:

/ c - l \
6 - 1  .

V a _  1 /

Since each co-ordinate is not a zero divisor of Z [T\ we see that

K2{G) — z[r].

This allows us to prove a cancellation result:

Corollary 6.4.1. If E is an algebraic 2-complex over Z[T], then ^ E  =  Z[T]a for 
some non zero a.

Proof Any ^ E  is a stably free module by SchanueTs Lemma. Then by 
Proposition 4.12 in (T.Y. Lam [17]), as mentioned in section 3.3, ^ E  is free. 
Note that n2(G) is minimal since if n^E =  0 was possible then Ext3 (Z, N ) = 
0  would hold for all modules N , and one may deduce that this is false from 
Lemma 6.4.2. □

At this point we have completed steps (1) and (2) of the realisation pro
gram. Steps (3) and (4) are mostly completed - at the minimal level - by the 
following:

Lemma 6.4.2. As an abelian group, Ext3(Z,Z[rj) = Z. The projective extensions 
are precisely the elements ±1 e Z.
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Recall there is an augmentation homomorphism: e : Z[T] —> Z with 
e(g) = 1 for all g € T.

Proof. Using the resolution C* {Xg) and the characterisation of Ext given in 
Section 2.5, we classify the elements of Ext3 (Z, Z[T]) as equivalence classes 
of homomorphisms in Endz[p](Z[rj). In particular we wish to calculate 
homomophisms /  : Z[r] —> Z[r] modulo homomorphisms h such that there 
is some g : Z [r ] 3 —» Z[r] and commutative diagram:

To detect the projective extensions, we wish to determine the cohomol
ogy classes of elements with a left inverse in EndZ[r](Z[r]). We may con
sider each map in EndZ[r](Z[r]) =  Z[T] to be left multiplication by some 
element of Z[T]. Since T is commutative so is Z[T]. Thus any extension that 
has a left inverse also has a right inverse and the projective extensions are 
represented by the invertible elements.

We claim that each of multiplication by (a -  1 ), (b -  1 ) and (c — 1) rep
resent the zero element of Ext3 (Z, Z [T]). For example, if /  : Z[T] —> Z[T] is 
multiplication by (a -  1) then /  =  gi where g : Z[T]3 —> Z[T] is projection 
onto the last coordinate. Thus for each A G Z[T], the class of extensions 
represented by (left multiplication by) A is only dependent on e{\).  So we 
may assume that each extension is represented by multiplication by some 
n G Z. Moreover, multiplication by n never represents a split (i.e. zero) 
extension unless n =  0, since for any homomorphism Z[T]3 —» Z [T], the 
image of 71-2 (G) is in the kernel of the augmentation e. Composition of ho
momorphisms corresponds to the natural multiplicative structure on Z and 
hence the only invertible extensions are those represented by 1 and - 1 . □

z[r] z[r]3

z[r]
where

( c - l \  
i ( l ) =  6 - 1

V “ - 1 /
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Proof of Theorem A: Consider the group Ext3 (Z, Z[r]n+1). This may be 
calculated from the resolution:

% d\o — z[r] © z[r]n —u . z[r]3 © z[r]n —^  z[r]3 z[r] z

where

0

i =
i 0 

0 Idn
82 0  

0  0

and 1, 82,81 are as before (see definition of C*(Xg)  given at the start of this 
section).

If F  = (f i j ) is an endomorphism of Z[r]n+1, that is F  G M n+\{’̂ \T}), 
then by inspection of the resolution above:

fl,n+l y /

/ _ A
(  fi.i 0 ... o \

_ \  fn+1,1 0 . . .  0 /

Thus:

(I) The equivalence class [F ] G Ext3(Z,Z[r]n) is not affected by any of 
the entries not in the first column of F.

Moreover there is an isomorphism of abelian groups Ext3 (Z, Z[r]n+1) —> 
Ext3 (Z,Z[T])n given by

,n+l)])*

This isomorphism is a direct consequence of the additivity of Ext, but may 
also be justified by inspection of the resolution. Moreover by Lemma 6.4.2 
and the isomorphism above:

(II) We may assume without loss of generality that each f i j  is an integer.

By Corollary 6.3.3, [F] represents an algebraic 2-complex only if there is 
an invertible matrix <p such that
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Note that since <p is invertible, e{p) is an invertible matrix over Z of the 
same rank as (p. In order to represent the same congruence class, the el
ements of the first column of e(ip) must be equal to the first column of 
e(F) ® Id. Consequently and by statement (II):

(III) [F] represents an algebraic 2-complex only if the Z-linear span of the 
elements in the first row of F  contains 1.

By statement (I) we may alter any entry of F  apart from the first column 
without altering the congruence class [F\, so if [F] represents an algebraic 
2-complex then by statement (III) we may take F  to be an invertible matrix 
over Z. Then there exists products of elementary matrices E \ , E 2 such that

either E \ F  = In and F E 2 = In

and elementary matrices are representable by isomorphisms, we conclude 
that for any endomorphism F  of Z[T]n+1: [F] is congruent to an algebraic 
2-complex if and only if [F] ~  [Id].

This completes the proof, since if E  is an algebraic 2-complex over Z[T] 
then by Corollary 6.4.1, is free of rank (say) n-t-1 , and then E is realised 
geometrically by the addition of n trivial relations to Q.

or and

Since



Chapter 7

The D(2) Property for Cn x Coo

7.1 One dimensional groups

In this chapter we shall prove Theorem D, i.e. the Realisation property and 
the D(2) property hold for groups of the form Cn x Coo. Our proof is largely 
independent of the work in chapters 3-5, coming earlier in discovery. How
ever the proof involves a cancellation result which is demonstrated through 
a method which inspired the more general concerns of the last few chap
ters. We shall see that the relevant second homotopy module occurs as 
the central module in an extension, and that extensions of this form are a 
simple generalisation of those pertinent to Swan modules.

We shall assume throughout that C is a finite group and take 4/ to be 
the product $  =  G x  Coo- We shall later specify that C be a cyclic group, 
but some progress may be made in the more general case. Here the most 
important simplification of the problem is given by viewing Z[\I>] as

Z[¥] =  R[G\

where R  is the commutative integral domain Z [C qo]- Modules over Z[vl/] 
which are free as i?-modules are analogous to torsion free Z[G]-modules 
and many of the results regarding lattices over finite groups (such as Maschke's 
Theorem) generalise easily to this case. The results contained in Chapters 4 
and 5 of Johnson's book [11] are particularly relevant and we shall borrow 
from them freely.

68
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L e t

G = ( x 1, . . . X g \ W1, . . . W r )

b e  a  p r e s e n t a t i o n  f o r  t h e  f i n i t e  g r o u p  G,  w i t h  c o r r e s p o n d i n g  c o m p l e x  o f  

Z [ G ] - m o d u l e s :

C .(X e ) = 0 ----->- K e r ( ^ ) -------------- ► Z [ G j r  Z[G]« Z[G] —^  Z -----► 0

w h e r e  w e  a s s u m e  d n  i s  a  m a t r i x  o v e r  Z [ G ] .  N o t e  t h a t  K e r ( ^ 2 )  i s  f i n i t e l y  

g e n e r a t e d  a n d  h e n c e  w e  m a y  p i c k  a  h o m o m o r p h i s m  ( m a t r i x ) :

&  :  Z [ G ] n  Z [ G ] r

s u c h  t h a t  I m ( d s )  =  K e r ( ^ ) .

T h e r e  i s  a  c a n o n i c a l  c h o i c e  o f  p r e s e n t a t i o n  H  f o r  ' I '  g i v e n  b y

U  =  ( X \ , . . . X g , t  | W l , . . . , W r , C l , . . . , C g ) ,

w h e r e  Ci =  t~1x~1txi  i s  t h e  c o m m u t a t o r  r e l a t i o n  f o r  t  a n d  Xi. T h e n  Tt h a s  

c o r r e s p o n d i n g  a l g e b r a i c  2 - c o m p l e x :

c *  ( X n )  =  o  K e r ( < 52 ) --------------------Z [ ^ ] r + ^  Z [ ^ + 1  Z [ t f ]  Z  ►

w h e r e  t h e  8n a r e  r e p r e s e n t e d  b y  m a t r i c e s

* ■ - ( »  ■ * - ( » ' • - > ) ) ■

l e t t i n g  d n r e p r e s e n t  a  m a t r i x  o v e r  Z [ ^ ]  t h r o u g h  t h e  r i n g  i n c l u s i o n  o f  Z [ G ]  i n  

Z [ ^ ] .  N o t e  t h a t  C *  ( X ^ )  i s  n a t u r a l l y  t h e  c o m p l e x  a r i s i n g  f r o m  t h e  u n i v e r s a l  

c o v e r  o f  t h e  2 - s k e l e t o n  o f  t h e  p r o d u c t  X g  x S l .

W e  c a n  f i n d  a  r e p r e s e n t a t i o n  f o r  t h e  s e c o n d  h o m o t o p y  m o d u l e  7 r 2  (H) =  

K e r ( < S 2 )  a s  t h e  s u b m o d u l e  o f  Z [ \ P ] r + s  g e n e r a t e d  b y  t h e  c o l u m n s  o f  t h e  m a -
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Computations of Ext groups

W e  s h o w  t h a t  ' J /  s a t i s f i e s  t h e  h y p o t h e s i s  o f  t h e  m o r e  s p e c i f i c  r e d u c t i o n s  

o f  t h e  R e a l i s a t i o n  p r o b l e m ,  a s  d e t e r m i n e d  b y  J o h n s o n  a n d  d e t a i l e d  i n  t h e  

i n t r o d u c t i o n ,  a n d  c a l c u l a t e  t h e  r e l e v a n t  E x t  g r o u p s .

Lemma 7.1.1. For G a finite group and $  =  G x  C o e , :

E x t n ( Z ,  Z [ ^ ] r )  =  0 foral n >  2 andall r > 1

Proof. C o n s i d e r  t h e  k e r n e l  o f  t h e  s t a n d a r d  a u g m e n t a t i o n :

I  =  Ker(e :  Z [ t f ]  - >  Z ) .

T h i s  m a y  b e  s e e n  t o  b e  f r e e  a s  a n  R-m o d u l e ,  g e n e r a t e d  b y  t h e  e l e m e n t s  

(1 - 1)  a n d  { ( 1  -  g) ; g e  G}. I t  m a y  b e  s h o w n  t h a t  f o r  a n y  Z [ ^ ] - m o d u l e  

M  s u c h  t h a t  M  i s  f r e e  o v e r  R:

E x t n ( M ,  Z [ \ P ] )  =  0  f o r  a l l  n >  1 .

S e e  e . g .  ( J o h n s o n  [ 11]  C h a p t e r  4 )  f o r  a  p r o o f  o f  t h i s  s t a t e m e n t .

T h u s

E x t n ( J , Z [ ® ] r )  =  0 V n> 1  

a n d  s i n c e  t h e r e  i s  a n  e x a c t  s e q u e n c e :

0 ---------------- Ker(<52) ---------------- ►  Z[V]r+9 Z [ t f  ] » + 1  I  > •  0 ,

b y  d i m e n s i o n  s h i f t i n g

E x t n ( Z , Z [ 4 ' ] r )  -  E x t n _ 1 ( 7 ,  Z [ 4' ] r )

a n d  t h e  r e s u l t  i s  s h o w n .  □

W e  a l s o  n e e d  t o  c a l c u l a t e  t h e  E x t  g r o u p  c o n t a i n i n g  a l g e b r a i c  2 - c o m p l e x e s ,  

w e  s h a l l  d o  s o  u s i n g  t h e  f o l l o w i n g :

Proposition 7.1.2. There exists an exact sequence ofZ[T]-modules:

E =  0 ---- ►Z[»]r -^ -7 r 2(« ) - ! ! -7 r 2 (e ) ----- ►O

where 7 r 2 {Q) =  Ker(d2 :  Z [ G ] r  —> Z[G}9) is given a Z[^]-module structure 
through the augmentation ring homomorphism eg '■ Z\f$t) — ► Z [ G ] .
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Proof. 7T2 (TC) c o n s i s t s  o f  e l e m e n t s  o f  t h e  f o r m  (^3 (^1 ) +  (t — 1)02, - $ 2 (^2 ))/ 
w h e r e  v\  E  Z[^}b, V2 €  Z [ \ P ] r .  D e f i n e  j  : Z [ \ £ ] r  — > 1̂ 2(7i )  a s

j ( v 2) =  ({t -  1)V2, - d 2{ v 2 )) .

T h e n  s i n c e  ( t -  1) i s  n o t  a  d i v i s o r  o f  z e r o ,  j  i s  a  w e l l  d e f i n e d  i n j e c t i o n .  N o t e  

t h a t  j  i d e n t i f i e s  t h e  ith g e n e r a t o r  o f  Z [ ^ ] r  w i t h  t h e  s u b m o d u l e  o f  7T2{H) 
g e n e r a t e d  b y  t h e  ith c o l u m n  o f :

( - * ) •
D e f i n e  n : ^ { H )  —> 7r2{Q) a s

tt((^3(^i) +  ( t -  l ) v 2 ,  - d 2{ v 2 ))  =  e G d 3(ui)

t h e n  7 r  i s  w e l l  d e f i n e d  a n d  I m ( 7r )  =  ^{G).
T h e  r e a d e r  m a y  v e r i f y  t h a t  K e r ( 7 r )  =  I m ( j )  a n d  w e  h a v e  c o n s t r u c t e d  

t h e  r e q u i r e d  e x a c t  s e q u e n c e .  □

T h u s ,  b y  ( M a c  L a n e  [19] III.9.1), w e  m a y  f o r m  t h e  l o n g  e x a c t  s e q u e n c e :

 Exti|^,j(Z, Z[*Y) ——>- E xt|^ j(Z , 7T2(7f))

E.^  Ext|,*i (Z, 7T2 (5)) Ext* , (Z ,Z [*D

where we indicate the ambient ring over which the Ext groups are con
structed because they will soon be manipulated.

Corollary 7.1.3. 7r* : E x t |^ (Z , n2(H)) —* E xt|^ j(Z , ^{G )) is an isomor
phism.

Proof. This follows directly from Lemma 7.1.1 and the long exact sequence 
above. □

Proposition 7.1.4. There is an isomorphism of abelian groups 

f  ' E x t |w (Z,7r2(^)) E x t |[G](Z,7r2(</)).

Note the change of rings.
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Proof. I f  E  i s  a n  e x t e n s i o n  i n  E x t | ^ j ( Z ,  112(G)), t h e n  t h r o u g h  t h e  r i n g  i n 

c l u s i o n  Z [ G ]  e - »  Z [ \ I > ]  a n d  r e s t r i c t i o n  o f  s c a l a r s ,  E  m a y  b e  c o n s i d e r e d  a s  a n  

e x t e n s i o n  i n  E x t | [ G j  ( Z ,  112(G))- W r i t e  f ( E)  f o r  E  c o n s i d e r e d  a s  a n  e x t e n s i o n  

o v e r  Z [ G ] .  C o n v e r s e l y  i f  F  i s  a n  e x t e n s i o n  i n  E x t | [ G j ( Z ,  112(G)), t h e n  F  m a y  

b e  c o n s i d e r e d  a s  a n  e x t e n s i o n  i n  E x t | ^ j ( Z ,  112(G)) t h r o u g h  t h e  a u g m e n t a 

t i o n  h o m o m o r p h i s m  eq '■ %[&] — > Z [ G ] .  T h i s  c o r r e s p o n d e n c e  c o m m u t e s  

w i t h  t h e  B a e r  S u m .

I t  i s  s u f f i c i e n t  t o  s h o w  t h a t  f ( E)  s p l i t s  a s  a n  e x t e n s i o n  i f  a n d  o n l y  i f  E  

s p l i t s .  T r i v i a l l y ,  i f  E  s p l i t s  t h e n  f (E)  s p l i t s ,  s i n c e  a l l  Z [ \ P ]  m a p s  a r e  Z [ G ]  

l i n e a r .

S u p p o s e  t h a t  f (E)  r e p r e s e n t s  a  s p l i t  e x t e n s i o n  i n  E x t J | G j  ( Z ,  112(G)), t h e n  

t h e r e  e x i s t s  a  c o m m u t a t i v e  d i a g r a m :

f (E)  =

112(G)

112(G)

Z [ G ] 7

E 2

Z [ G ] 9  Z [ G ] Z

E 1 E° Z

w h e r e  o u r  n o t a t i o n  i s  t a k e n  t o  i m p l y  t h a t  t h e  e x t e n s i o n  / ( E )  i s  r e p r e s e n t e d  

b y  t h e  b o t t o m  r o w .  D e f i n e  112 :  Z [ ^ ] r + 5  — > Z [ G ] r  a s  p r o j e c t i o n  o n  t o  t h e  f i r s t  

r  f a c t o r s  c o m p o s e d  w i t h  eq. D e f i n e  n\  :  Z [ \ I > ] 9 + 1  — > Z [ G ] r  a s  p r o j e c t i o n  o n  

t o  t h e  f i r s t  g f a c t o r s  c o m p o s e d  w i t h  eg- T h e n  t h e  f o l l o w i n g  c o m m u t e s :

712(H) Z{1HY+g Z[^]5+l Z[^] z
£G

0 --------------> -  n2( S ) -------------------- ►  Z | G ] r  61 >  Z [ G ] »  — Z [ G ]

/ ( £ ) =  0 ------ - j r 2 (S)

s o  t h a t  ipn s p l i t s  a s  1)1121 a n d  h e n c e  E  i s  a  s p l i t  e x t e n s i o n .  T h i s  c o m p l e t e s  

t h e  p r o o f .  □

I t  i s  w e l l  k n o w n  t h a t  E x t | j G j ( Z ,  112(G)) —  Z n  f o r  a n y  f i n i t e  g r o u p  G  ( s e e  

e . g .  [ 11]  C h a p t e r  6 )  a n d  h e n c e :

C o r o l l a r y  7. 1. 5.  E x t | f ^ , ( Z ,  112(G)) =  Z n
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Another exact sequence

We show that n2(H) is related to ir2(G) by another short exact sequence. 
This sequence exists in general for =  G x Coo with G finite and so we 
shall construct it here, although little use is suggested beyond the funda
mental role it will play in our later investigations with G a cyclic group. Re
call that we have already constructed Z[G]-modules Ker(#2 ) =  ^(G )  and 
Ker(di). These may be transformed into Z[vI>]-modules through tensoring 
with Z[Coo] over Z. As already mentioned, through the inclusion of Z[G] in 
Z[\I>], &2 and d\ may be considered as matrices over Zf'I']. Then there is a 
natural identification

where di is considered as a Z[G] matrix on the left and as a Z[\I>] matrix on 
the right.

Proposition 7.1.6. There is a short exact sequence ofZ[^}-modules:

0 ------ tt2{G) ® Z[Coo]   n2{H )------ K er(di) ^ 0

where d\ is considered as a matrix over Z[^].

Proof. Recall that we have identified ^ { H )  with the submodule of Z['I']r+£' 
generated by the columns of the matrix:

7J2(G)® ZfCoo] embeds into tt2{H) through identification with the submod
ule generated by the columns of:

Ker(6!i)®zZ[Coo] =  Ker(5!J)

Then since

tt2((/) <8> Z[C7oo] =  Im(c*3)

The quotient under this embedding is easily seen to be equivalent to Ker(di), 
which is represented as the columns of the matrix:
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□

We wish to compare the above sequence with a projective extension. 
Through tensoring the sequence C*(Xg) with Z[Coo] there is an exact se
quence:

0 ------ 7t2(Q) 0  nC ool   Z[tf ]r    K er(di)------ » 0

and the following diagram commutes:

0 -^ 7t2{G) 0  ACool   Z[tf]r    K er(di)   0

x(t-l)

0 -----^ 7x2{G) 0  Z[Coo]-----► 7t2{H )---- ^ K er(di)----- » 0

where j  is as in Proposition 7.1.2.
This reaches the extent of the general case. We now specify that G = Cn 

is cyclic.

7.2 The product of a cyclic group and the integers

Now consider the case where G =  Cn is the cyclic group with n  elements 
and T is the product G x Coo- We take the presentation

'H =  (x, t  |  xn =  1,  tx  =  xt).

Writing N  for Yhgecn 9> the corresponding chain complex is:

c*{xn) = (o —♦ tr2 (W) —> z[r]2 z[r]2 z[r] -U z -► o)

d 2  =  (  1  * N  |  di =  {x -  1  t -  1 ) ,

\ x - l  0 J

and 7T2(7Y) may be identified with the submodule of Z[T]2 generated by the 
elements

( , " i )  -
We wish to determine the class of modules which are stably equivalent to 
tt2 {Ti), and we shall do so in Theorem 7.2.8.
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A  resolution for the integers over Z[G] is given by the period 2 resolu
tion:

where d\ is multiplication by (1 -  x) and multiplication by the sum of 
the elements in G. The image of d\ is the augmentation ideal and its kernel 
is isomorphic to the trivial module Z.

Since cyclic groups have cohomological period two, the exact sequence 
constructed in Proposition 7.1.6 becomes:

where I  is the tensor product over Z of Z[Coo] and the Z[Cn]-augmentation 
ideal. Through tensoring the standard augmentation sequence with ZfCoo] 
there is also an exact sequence:

This means that 7r2 {H) occurs as the central module in an extension 
with terminal modules occurring as such in another extension, as a quotient 
ring and two sided ideal. Thus, informally, 7r2 (7i) takes the form of a non- 
projective generalised Swan module. As was the case with Swan modules, 
discussed in section 4.6, the notation and proofs are clearer when working 
with the dual sequence, and it shall prove easier to calculate the stable class 
of the dual module 7^(77)* =  HomZ[r ](7T2(7f), Z[T]). We justify doing so by
[11] Prop 28.1, which shows that cancellation holds for 7r2(H)* if and only 
if it holds for

Directly, one may verify that 7T2 (7f)* may be identified with the sub- 
module of Z[r]2 generated by the elements:

Z[Coo] imbeds in by identification with the module generated by the
second element above, resulting in a short exact sequence of Z[r]-modules:

Z[Gj Z[G] Z[G] -2U . z[G] -2—  Z ► 0

o — -  i  — ► »2(« ) — ► z  [Coo] — ► o

o — ► i  —  ̂z[r] — >- z[Coo] — >- o

with /  a two-sided ideal.

o — ► z[Coo] — ► tt2 ( n y  —  ̂z[r]/(n ) — > o.
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This is the dual of the exact sequence above. We fix the notation:

S  = Z[T\/(N) R  = Z[C00\.

This notation clashed with our earlier use of R  for the quotient ring and S  
for the endomorphism group of a two-sided ideal, but is entirely consistent 
with the concept that we are using the dual of the original sequence. Embed 
R  into Z[T] by identifying R  with the submodule generated by N , so that 
there is an exact sequence:

o — >• r — *- z [r] —  ̂s — > o
and R  is a two-sided ideal in Z[T].

Defining /  : Z[T] —> n2(7i)* by setting / ( l )  = {t — 1,1 — x)T, there is a 
commutative diagram:

R ------ - Z rj ——► s
(*-i) /

0 -----► R ----- > 7 ^ S -----0

which gives a cohomological classification for the bottom extension.
For each k e N there is an exact sequence:

o — R k — tt2{h)* © zfr]*-1 — >- sk —► o.
This gives a naive model for modules potentially stably isomorphic to -n2(H)* 
as a subclass of the central modules occurring in extensions of R k by S k. 
Through a detailed study of such extensions we shall show that this model 
is appropriate and prove the required cancellation result.

Proposition 7.2.1. Let Zn denote the integers modulo n, and Mk{Rn) the ring 
of k by k matrices over the ring Rn = Zn[Coo\• There is a ring isomorphism

E x t ^ S ^ R ^ H M k i R n ) .

Proof. Note that since S  is free as an 72-module, Ext1 (5, Z[T]) =  0 (see [11] 
Chapter 5). The corresponding fibre product diagram is given by:
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i\ is the augmentation map Z[T] —»■ R.
*2 is the natural quotient map Z[T] —> Z[T]/(N) with S  = Z[T}/(N).
j \  is the natural quotient map R —» Rn.
j 2 is defined for each a  +  (N) e S  by j 2{a +  (IV)) =

The result then follows by Proposition 4.3.1. □

To give concrete examples of the congruence classes of extensions and 
central modules, given any A  e Mk{Rn)> we may pick a lift of .<4 in A4(Z[r]) 
and define M{A) to be the submodule of Z[F]2k generated by the columns 
of the matrix

A ' j  A (JV)M .
\  { x -  i ) / fc o )

Then R k embeds in M (A) by identifying the ith basis element of Rk with 
the i +  kth column of A', and the image of Rk in M (A) is the kernel of the 
surjective map 1ta ■ M (A) —> S k given by sending the ith column of Af (for 
1 < i < k) to the ith generator of S k. We represent the resulting exact 
sequence as:

E{A) = 0 ------- R k —^  M (A) s k    0

and each extension of R k by S k is congruent to E(A) for some unique A e 

M k ( R n ) .

We wish to characterise the isomorphism classes of the modules M(A). 
Since the action of N  is zero on S  and multiplication by n on R, and since 
R  is torsion free over Z:

Homz[r](i?A,5 fc) =  0,

so that any isomorphism 0: M (A) = M (B) of Z[T]-modules induces an 
isomorphism of extensions E(A) =  E(B). Note the isomorphisms on each 
end may be represented as matrices C €  M n { R )  and D  e M n ( S ) .  We dis
tinguish the matrices in M k ( R n )  which are images of such isomorphisms:

• GR(k) denotes the image of GLk(R) in GLk(Rn) under j\ .
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• GS(k) denotes the image of GLk(S) in GLk(Rn) under j 2 -

The following Theorem may be recognised as an application of Proposition 
34.4 in (Curtis & Reiner [4]), as discussed in section 5.3.

Theorem 7.2.2. For arbitrary matrices A %B  e Mk(FLn), M(A) = M (B ) if and 
only if there exists C € GR(k), D e GS(k) such that CAD = B.

Having characterised the isomorphism classes of the modules M (A), 
we wish to characterise their stable isomorphism classes. Clearly

Corollary 7.2.3. M (A) is stably equivalent to M (B) if and only if there exists 
C e GR(k+m), D  € G S(k+m) and m  6 N such that C{A@Im)D = (B® Im).

As is standard, we write Ek{FCn) for the group of k x k matrices over 
Rn which are products of elementary matrices, and R+ for the units of R. 
Note that Ek{Rn) C GS(k) and Ek{Rn) ^  GR(k).

Proposition 7.2.4. The determinant homomorphism det: GLk(Rn)/Ek(Rn) —J► 
is an isomorphism for all k > 1. Equivalently, every invertible matrix in 

■ M k ( R n )  with determinant one is a product of elementary matrices.

Proof Let the prime decomposition of n be Uf=1p f .  Then Rn is isomorphic 
to the product U f^ R ^ i .  The multiplicative groups M k { R n )  and R f  de
compose similarly as the products of the matrix and unit ring respectively 
of the rings RnH, as does the determinant homomorphism. It is enough toPi
prove the Proposition in the case where n = pe is a power of a prime.

Suppose that det(E) = 1 where E  e M k ( R n ) ,  and let Ep denote the 
equivalence class of E  in M k { R p ) -  We shall show that we may reduce E  by 
elementary row and column operations to the identity. Since Rp =  ¥p[t, £-1] 
is a Euclidean domain there are elementary matrices Ep,..  .E p such that

M (A) ® Z[T]m =  M (A  © / m),

where as before the matrix A ® B  is taken to be the matrix:
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Ep - Ep - .. .Ep = I  dp. Thus we may pick elementary matrices E 1, ...  E3 E 

Ek{Rn) such that:

 ̂ 1 +  C i , i p  C1,2P  • • - r.t u n  \

Cl,2 P  1 +  C2,2 p  ■ ■
E - E l . . .E 3 =

Cl,kP 

C2 ,kP
Cj,ji €= R n -

\  Ck, lP Ck,2P --■ l + C k,kP

By the Binomial Theorem each (1+c^p) is a unit (take the (pe)th power!) 
and thus the above matrix has diagonal entries which are all units. Thus 
the above matrix, and hence E, may be reduced by the action of column 
operations to a matrix of the form

 ̂ 1 + d\yip 0 0 \
0 1 + d2,2P

di,i £ Rn-

\  o  0 . . .  1 +  d k,kP

By Whitehead's Lemma, D iag(l, . . . ,  1, u, it- 1 , 1, . . . ,  1) e  Ek{Rn) and E  
may be further reduced to

E' = Diag(u, 1, . . . ,  1)

for some u £ R^- Since all elementary matrices have determinant one, 
det(E') = det(E) = 1, i.e. u = 1 and E' = Ik. Hence E  is a product of 
elementary matrices. □

Recall that for any Euclidean domain R  and any k x k matrix A over IZ, 
there are products of elementary matrices E\ and E2 over 7Z such that

• E\ ■ A ■ E2 = Diag(ai,a2, . . . ,  a*) is a diagonal matrix with |ai+i| a 
divisor of |a*|.

• Diag(ai,a,2, . . . ,  a^) is unique up to multiplication by diagonal ele
mentary matrices and is sometimes called the Smith Normal Form of 
A, denoted SNF{A).

E\ and £ 2  may be constructed through a process derived from the Gauss 
algorithm for Euclidean domains. Recall from the section immediately after 
Proposition 7.2.1 the definition of the modules M (A) for each A E Mk{Rn)-
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Theorem 7.2.5. For each non-zero a e  Rn = M i(R n) and all B  E  M k{Rn), 
M (a) is stably equivalent to M (B ) and only ifM (B ) = M (a) © Z[r]fe_1.

Proof. Suppose that M (a) is stably equivalent to M (B ) for some non-zero 
a £ Rn and some B  E  Mk{Rn)- Then by Z[Coo] rank considerations we 
may assume that there exists an m  E  N and an isomorphism M (B) © 
Z[T]m =  M {a) © Z[r]fc+m_1, so that by Theorem 7.2.2 there exist matrices 
C  E  GR{k +  m), D  E  G S(k + m ) such that

G{B © Im)D — (o © Im+k—l) ‘

Define Bnew — (det(C) © I k - 1 ) • B  • (det(D) © Ik - 1 ) and note that by hypoth
esis det(Bnew) = a. Since R  and S  are commutative rings, the determinant 
homomorphisms are well defined and

(det(C) © Ik -i)  £ GR{k)

(det(D) © Ik -i)  E  GS(k).

By Theorem 7.2.2 M (B ) =  M (B new), so that we may assume that B = 
Bnew arid det(5 ) =  a. We shall show that B  must be reducible by the 
action of elementary matrices to (a © Ik - 1 ), which would imply the result. 
Again, this is essentially a statement about matrices over Rn and we may 
assume that n = pe is a power of a prime. As in the proof of the lemma, 
let Bp denote the congruence class of B  mod p. Since Rp is a Euclidean 
domain, we may reduce Bp by row and column operations to a matrix of 
the form S N F (B P) = D iag{b\,. . . bk) and moreover we may assume that 
SNF(Bp) = Diag(api 1, . . .  1). Thus, over Rn with n = pe, we may reduce 
B  by the action of elementary matrices to a matrix of the form:

/  Q +  CU p  Ch 2P • ••  Cijkp  ^ 

Cl,2P 1 +  C2,2P • • • C2)fcP
Ci,j £ Rn-

\  Ck, lP  Ck,2P • • • 1 +  Ck,kP /

Again, each 1 +  c^p  is a unit and we may reduce B  to a matrix of the 
form Diag(a +  dp, 1 , . . . ,  1) for some d E Rn- This completes the proof, 
since we have insisted that det(i?) — a  and hence B  may be reduced by the 
action of elementary matrices to (o © Ik-i)- □



CHAPTER 7. THE D(2) PROPERTY FOR CN x 81

Theorem 7.2.5 shows that a limited form of cancellation holds within 
the class of modules M (A), of which ^{H )*  = M (t — 1) is a member.

Theorem 7.2.6. If M  is any module such that M  ® Z[T]m =  M (B ) for some 

B e Mk+m(Rn), then M  = M {A) for some A e Mk{Rn)-

We remark that it is here that we use the work of Bass-Murthy. In par
ticular we shall use the details in section 9 of [1].

Proof It is sufficient to show that there exists an exact sequence 

0 - > i 2 fe- > M - > 5 fc->0 

where as before 5  = Z[T]/ < N  >. It is clear that, in the extension E(B),
R k + m is identified with the submodule of M (B ) on which the action of x 
is trivial. Let M g denote the submodule of M  on which x  acts trivially, so 
that there is an exact sequence:

0 —> M q —► M  —> M /M q —► 0.

Any isomorphism M  © Z[T]m =  M (B ) induces isomorphisms Mg © 
R m = R k+m, and M /M g © S m = S k+m. Thus M g is stably free, and hence 
free, as an R-module. Since the action of x  on M g is trivial, we deduce that 
M g — Rk as a Z[T]-module. It remains to show that M /M g — S k. Note 
that M /M g has an 5-module structure which is then stably free, and if we 
can show that M /M g is free over 5  we may deduce the result.

We claim that all stably free 5-modules are free. Let 5z denote Z[G]/{N), 
where as before G = Cn, so that there is a natural identification of 5  with 
5z[Coo]. By [9.1 of Bass-Murthy] it is enough to prove that Sz has finitely 
many non-projective maximal ideals. We shall deduce it from the fact 
that Z[G] has finitely many non-projective maximal ideals, which [Bass- 
Murthy] claims is "not difficult to verify", and we prove for the sake of 
completeness after this proof.

Let i i : Z[G] —> Sz  be the natural map onto the quotient, i i : Z[G] —> Z 
be augmentation, j \ : 5z —> Zn be defined as j i (a  +  (N )) =  *2 (0 :) mod n 
and J2 : ^  > Zn be the natural map. Then the following is a commutative
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diagram of rings and surjective ring homomorphisms:

Z [ G ] - ^  Sz

31

Z —2± + Z n

and Z[G] may be identified with the fibre product of Sz and Z over Zn. Let 
I  be a maximal ideal of Sz, and let / '  denote the (necessarily projective) 
maximal ideal of Z given by / '  =  j ^ 1 {ji (/)). Then (I, I') is a maximal ideal 
of Z[G] which is isomorphic to the module M (I , Id) constructed as in 
4.5.1. Furthermore, by 4.5.1, (1,1') is projective if and only if I  is projective. 
Lastly, if J  is another maximal ideal of Sz, then (J, J') = (/, I') if and only 
if J  = I  and hence there is an injective map from the maximal ideals of Sz 
to the maximal ideals of Z[G] which preserves projectivity. □

Proposition 7.2.7. For G = Cn, the integral group ring Z[G] has finitely many 
non-projective maximal ideals.

Proof. Let J  be a maximal ideal of Z[G]. Then Z[G]/J =  F is a field, which 
is necessarily finite with ground ring Zp for some prime p.  Define J  : Z[G] 
to be the set of elements r e  Z such that rZ[G] C  J. Clearly, J : Z[G] =  (p) 

and so by Proposition 7.1 of [25] J  is projective unless p  divides the order 
of G.

Thus, if J  is not projective, we may assume that J  fl Z =  (p) for some 
p dividing n, where we consider Z to be a subring of Z[G]. Again, since 
Z[G]/J =  F is a field, the generator x for Cn has some minimal polynomial 
oj{x) over F. Then J  is necessarily the ideal generated by p  and w(x). Since 
the degree of u(x) is less than or equal to n, there are finitely many u{x) 
such that the ideals (p, w{x)) are distinct. This completes the proof. □

Corollary 7.2.8. Any module stably isomorphic to ^ { H )  is necessarily isomor
phic to n2{H) © Z[T]m for some m, where ^ { H )  is the module defined in the 
beginning of this section.

Proof. Observe, from our description of the generators of 7r2{TC)*f that there 
is an isomorphism 7T2{H)* = M (t -  1). The required result is then a clear 
consequence of 7.2.5 and 7.2.6. □
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7.3 The D(2) Problem for Cn x

We bring together the work of the previous sections:

Proposition 7.3.1. In order to prove the D(2) Problem for Cn x it is sufficient
to realise geometrically all algebraic 2-complexes of the form:

o —> tx2{U) —► z[r]a —* z[r]6 —■» z[r]c —> z  —> o.

Proof By Theorem 1.1.2 we may consider the D(2) problem to be equivalent 
to the Realisation problem for T. The result then follows from Proposition 
3.2.2 and from Corollary 7.2.8. □

Theorem 7.3.2. The D(2) Property holds for Cn x Coo

Proof We have already shown that it is sufficient to realise all extensions of 
the form

o —► tt2(H) —> z[r]° —► z  [r]b —> z[r]c — >z  —> o

and by Proposition 3.2.2, Ext3(Z, 7r2{H)) has the structure of a ring under 
which algebraic 2-complexes are necessarily units. By Proposition 7.1.5

Ext3(Z, 7T2(7f)) =  Zn

For each unit w E Z^ we shall realise the class of w by a geometric complex. 
An obvious change one may make to the standard presentation

H = (x , t\xn = 1, tx  = xt)

is to replace the generator x  for Cn by the generator y(v) = xv where 1 < 
v < n — 1 is a natural number coprime to n. Denote each such presentation 
by

=  < y(v), t | y(v)n = 1 , y(v)t = ty(v) )

where y(v) = xv.
We remark that the Cayley complex of 7i(v) is homotopy equivalent to 

the standard one, since as presentations they are identical. Indeed, one may 
view this complex as that arising from changing the isomorphism between 
the fundamental group of the original complex determined by H  and the
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abstract group determined by the presentation. The aforementioned homo- 
topy equivalence does not induce the identity on the fundamental groups 
of the spaces, and so may not imply that the resulting algebraic complexes 
are chain homotopic, although the distinction is meaningless from a geo
metric viewpoint.

The corresponding chain complex of the universal cover of X n ^  is then

0 K er(^) — ► Z[T]2 Z[T]2

where do =
1 - t  N

xv — 1 0
and

z[r] z  —> o

d\ = (xv - l  t -  1)

so that K e r ^ )  =  Ker(c>2 ) =  ^ (H ) . Let w denote the inverse of v mod n. 
Set r  to be the element 1 +  xv + . . .  x , then (1 — xv)r = (1 — x) and the 
following diagram commutes:

0

7T2 {TL) 

h

1X2(11)

z[r]2

h

z[r]2

d2 z[r]2

h

d i

dV,

z[r] -
I d

z

z[r]
av

2 — L z r]

Id

z

where each may be represented as multiplication on the left by:

r  0 \  . (  t 0 \
h  = r j 2  =

0 r
J l  =

0 1

Finally, since e(r) =  w, C*(Xn (v)  realises geometrically the congruence 
class of w E  Ext3(Z, ix2('H)). This completes the proof. □



Chapter 8

Generalised Swan modules

Suppose that r  = G x H  is a product of groups, with G a finite group of 
order n. Then the previous example of Swan modules generalises to an 
exact sequence:

0 -----^ Z[H\ -i-* - Z[T] - 2 — Z[T}/{N) -----^ 0

where as before N  = J2g£G9 an<̂  j ( l )  =  N. Through the natural ring 
homomorphism Z[T] —> Z[H] every Z[T]-module has a well defined Z[H]- 
module structure, and if H  is commutative then Theorem 28.5 of [11] shows 
that:

Proposition 8.1.3. For each Z[T]-module M  such that the underlying Z[H]- 
module structure of M  is finitely generated and projective:

Ext^A^Zpr]) =  0

It is easy to see that if G is a finite group then Z[r]/(iV) is finitely gener
ated and free as a Z[H]-module. Thus, if G is finite and H  is commutative 
then condition (★) holds.

By the change of rings formula given in [6] we see that

Ext(Z[H]) -  ExtHZpriAlNfyZpH]) ^  Zn[H\

and one may show directly that the composition operation represents the 
natural multiplication on Zn[H]. To give examples of the congruence classes, 
we state without proof that one may take as central module the submodule

85
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of Z[r] generated by the elements N  and r, with r e Z[H] imiquely defining 
a congruence class modulo n.

We consider in detail the case where H  — Coo is a free abelian group 
of rank one, and reprove a result of Bass-Murthy [1], which states that for 
finite abelian G: K qZ[G x Coo] is finitely generated if and only if the order 
of G is square free. The proof given in [1] is somewhat unwieldy, and our 
proof shows in a reasonably clean manner that the image of generalised 
Swan modules provides an infinitely generated subgroup of KoZ[T] when 
the order of G is not square free.

Lemma 8.1.4. K'iExt(Z[C00]) is finitely generated if and only ifn  is square free.

Proof We have already shown that XiExt(Z[Coo]) =  AiZn[Coo], and we 
shall use this representation. We use the notation R+ to denote the units of 
any ring R. As in the proof of 7.2.4 it is enough to prove the lemma in the 
case where n = pe is a power of a prime.

Suppose that n = pe with e > 1 and let t be the generator of C00. As 
before, by the Binomial Theorem each 1 +  ptl is a unit of Zn[Coo] of order 
less than or equal to pe. Letting i range over Z, such units form an infinitely 
generated subgroup of Zn [Coo]+ - Since no finitely generated abelian group 
contains an infinitely generated subgroup, we conclude that Zn [Coo]+ is in
finitely generated. Finally, since Zn [Coo] is commutative there is a surjective 
determinant homomorphism

det : fiTiZn[Coo] -*• Zn[Coo]+

and if Zn[Coo]+ is not finitely generated then neither is K iL n[Coo\-
Alternatively, suppose that n is square free, so that we may assume n is 

prime. Then Zn is a field and Zn[Coo] is a Euclidean domain. In particular

KlZnlCoo] S  ZnlCocf.

Since Zn is an integral domain, we see that

Zn[Coo]+ £  z ; X z

where if t is the generator for Coo, the image of Z in Zn [Coo]+ is taken to be 
the elements {t1 : i e Z }. Thus K \L n[Coo\ is finitely generated. □
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We remark that the above proof generalises easily to show that if H  is 
a finitely generated free abelian group, then, in the notation used above, 
Ext(Z[H]) is infinitely generated if \G\ is not square free.

Theorem 8.1.5. LetT = G x Coo, where G is a finite abelian group. Then KoZ[T] 
is finitely generated if and only if the order ofG is square free.

Proof. Set S  to be the quotient ring and Z[r]-module

S =  Z[T]/N

and as before we write

R =  Z[Coo]- 

By Theorem B there is a long exact sequence:

K iR  © K i S   ̂KiExt (R)  > K 0Z[T]  ̂K 0R © K 0S

Suppose that |G| is square free. We shall use the portion of the Mayer- 
Vietoris sequence:

KiExt(R)   ̂K 0Z\T] K 0R 0  K 0S.

Since G is abelian with square free order, G is a cyclic group; say G = 

Cn- Then
Z[G]/(JV) a  Z[£] 

where £ e C is a primitive nth root of unity. Thus

s  *  m \Coo]

and it is a classical result that both K qS  and K qR  are finitely generated, see 
e.g. Corollary 4.12 in Chapter 5 of [17].

By the lemma, KiExt(i?) is finitely generated. By the given portion of 
the Mayer-Vietoris sequence and by the classification of finitely generated 
abelian groups, it follows K qZ\T] is finitely generated.

Suppose now that n is not square free. There are determinant homo- 
morphisms and a commutative diagram

K iR  © K \ S   ̂KiExt(i?)  ̂K 0Z[T}

de t de t

R+ 0  S +  Ext(R)+ ^  Coker
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with all vertical homomorphisms surjective. If Coker can be shown to 
be infinitely generated, then we may deduce the result. By the Lemma, 
Ext(-R)+ is infinitely generated, so Coker is necessarily infinitely generated 
if both R+ and S + are finitely generated.

Since Z is an integral domain, we see that

R + =* Z+ x Z

which is clearly finitely generated.
By Wedderbum's Theorem, since G is abelian we have C[G] =  Cn and 

we have an isomorphism

which clearly extends to an isomorphism

V :C ® S S C [C „ ]" -1.

Let u e S+ be a unit, and consider the image of u in CfCoo]”-1, this will be 
of the form

(p(u) = {u\tn , . . . ,  un- \ t ln- 1)

and since there is a natural (split) ring homomorphism S  —* Z[G]/(7V) 
which sends t to 1, we have

v > - V i , - . . , t * n - i ) e Z [ G ] / ( ; v ) +

Thus there is an embedding

5 +/(Z[G]/(iV)+) e-» Zn_1.

We have already seen that K \ (Z[G]/(A^)) is finitely generated, hence Z[G]/(N)+ 
is finitely generated and we may deduce the result. □



Appendix A

Stably free modules and 
matrices

The ensuing description of stably free modules is similar to the description 
of projective modules through idempotent matrices, given for example in 
Rosenberg [23] Chapter 1. We shall assume that every finitely generated 
free module has a well defined rank.

Suppose that A is a ring and S F  is a stably free A-module. Then there 
are some a, b E N and an exact sequence:

0 -----^ Ab A° — S F  ^ 0.

We may represent a  as a (b x a) matrix and identify Ab with the submodule 
of Aa generated by the columns of a. We say that the stably free module is 
represented by a.

Proposition A.1.1. S F  is free if and only if (a -  b) columns may be adjoined to 
the matrix a in order to produce an invertible matrix.

Proof If (a -  6) columns may be adjoined to the matrix a in order to produce 
an invertible matrix, then the resulting columns are linearly independent. 
In this case, SF  will be isomorphic to the submodule of Aa generated by 
the (a — b) columns, and hence free.

If SF  is free then we may assume that the free rank of SF  is (a -  b) 
and there is a splitting homomorphism SF  —> A“ and the image of the free 
generators of SF  provide the required (a -  b) columns. □

89
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Since there is an isomorphism:

ip : SF  © Aa “  Ab,

there is an exact sequence:

0 -----►Ai,^ - A a ®Ai,- 2-~A“ ------0 ,

where a = o ® /d ) . Then by the Proposition we see:

Corollary A.1.2. A (b x a) matrix a represents a stably free module if and only 
if there is a matrix of the form:

which may be completed to an invertible matrix by adjoining columns.
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