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Abstract

This study investigates the effects of habitat fragmentation on an Angola black-and- 

white colobus (Colobus angolensis palliatus) metapopulation in southern Kenya. 124 coastal 

forest fragments were surveyed in 2001. Fifty-five C. a. palliatus populations were found 

during this survey, (44% habitat patch occupancy), with an estimated national population 

estimate of 3,100 -  5,000 individuals. Colobus occurrence and density in this forest network 

was significantly linked to the spatial characteristics and quality of habitat patches. The 

heterogeneous landscape between habitat patches (matrix) was also found to be important, 

providing additional foraging habitat and connectivity between forest patches. The use of a 

spatially explicit metapopulation model (the incidence function model) provided a conceptual 

framework in which to explore future scenarios of habitat change. C. a. palliatus 

metapopulation persistence was found to be dependent upon the five largest forests in the 

network. Many of the colobus populations inhabiting unprotected forests were found to be on 

critical limits of population extinction. Population occupancy was also affected by the 

degradation or enhancement of the surrounding matrix.
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1. Introduction

1.1 The human impact on tropical forests

Human modification of ecosystems is threatening biodiversity on a global scale 

(Chapman et al., 2003; Cowlishaw, 1999; Cuaron, 2000; Heywood, 1995; Mace & Balmford, 

2000; WCMC, 1992). Continued rapid growth of the human population, combined with 

increasing per capita consumption of resources, has resulted in a global landscape 

dominated by agriculture, forest plantations, rangelands for livestock, and urban and 

suburban development (Soule & Orians, 2001). In the process of such large-scale, 

anthropogenic landscape change, tropical forests have been most severely hit. They are 

disappearing at a faster rate than any other biome on the planet (Myers, 1988, 1991, 1994), 

with tropical forest losses amounting to 142,000km2 annually (FRA, 2000). The ecological 

impacts of such destruction on a geographic scale are not yet fully understood.

For wildlife communities inhabiting these regions, future population viability can be 

threatened directly, through human hunting for food, pets and artefacts (Bennett & Robinson, 

2000; Cuaron, 2000; Robinson, Redford & Bennett, 1999), or indirectly, through the loss of 

native habitat. In some cases forest loss is an immediate and drastic event (i.e. outright 

conversion), but in others forest characteristics are altered gradually, resulting in (1) the 

reduction of forest area, (2) an increase in the number and isolation, i.e. ‘fragmentation’, of 

forest patches, and (3) the modification and degradation of the remaining forest areas 

(Cuaron, 2000; Fahrig, 2003; Fahrig & Merriam, 1994; Laurance & Vasceoncelos, 2004; 

Saunders, Hobbs & Margules, 1991). Through these processes, anthropogenic disturbance 

can alter the behaviour, ecology and population dynamics of forest-dependent species 

(Bierregaard et al., 2001), resulting in the decline and potential extinction of their populations 

(Thomas & Kunin, 1999; Wiens, 1989; Wiens et al., 1993b). It is therefore of key importance 

to identify, study, and understand these processes in order to eliminate or at least mitigate 

the negative effects of such forest disturbance.

Primates are one component of tropical forest ecosystems that are most threatened 

by habitat loss and fragmentation. Almost 90% of all worldwide primate species are found 

within this biome (Mittermeier & Cheney, 1987), and more than half of the 250 existing

13



species are considered to be of conservation concern by the Primate Specialist Group of the 

World Conservation Union (IUCN). One in four is either Endangered or Critically Endangered 

in the IUCN Red List of Threatened Species and without better protection these species may 

be extinct in the next 20 years (IUCN, 2005; Mittermeier, 1996). Some of the most unusual 

threatened primate communities can be found surviving within highly fragmented forest 

habitat (Cowlishaw & Dunbar, 2000b; Marsh, 2003b). It is therefore important to understand 

the ecological flexibility or limits of such communities and species in order to implement 

effective management strategies for their future conservation (Cowlishaw & Dunbar, 2000b; 

Hacker, Cowlishaw & Williams, 1998; Harcourt, 1998; 2002; Harcourt & Parks, 2003; 

Lindenmayer, 1999).

When tackling the practical issue of how to protect species that are at risk from forest 

loss and fragmentation, there are critical gaps in our knowledge that still need to be 

addressed. Research priorities include:

1. The widening of tropical forest field studies from the individual patch-specific 

(population-specific) focus towards a greater understanding of regional, landscape- 

scale processes which encompass the geographical range of threatened taxon.

2. The development of novel ways to assess the future of fragmented forest 

landscapes that tackle not only their inherent biological processes, but also the 

dynamic interaction between these processes and the human populations that exist 

in them.

3. A more focused attempt at designing tropical forest field research which is both 

biologically meaningful to wildlife managers and easily synthesized into practical 

conservation measures.

Each of these priorities will now be discussed in relation to primate conservation.
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1.1.1 The regional landscape scale

Traditionally, primate field research has focused on the behavioural ecology of 

species within protected areas (Chapman & Peres, 2001). Most forest fragments however, 

lie outside protected areas (Chapman & Peres, 2001; Marsh, 2003b) and vary greatly in the 

extent of fragment size, isolation and quality (Fahrig, 2003; Fahrig & Merriam, 1994). Wildlife 

managers need to be able to predict which species will survive in such fragments in order to 

identify which species are most threatened by habitat loss. Generalisations drawn from 

single-population studies, often in optimal habitat, may fail to identify critical resources within 

such fragments that are required for population persistence. Studies focusing on forest 

fragment comparisons would allow researchers to test the generality of the results obtained 

from one site (Chapman & Peres, 2001), whilst providing new insights into ecological 

processes operating at the within-fragment scale.

Knowledge of primate population-level processes may also benefit from analyses 

which incorporate the regional network of forest fragments and thus between-fragment 

processes (Davies, Gascon & Margules, 2001). Over the past two decades metapopulation 

ecology has provided a theoretical framework in which to explore such processes (Hanski, 

1994b; Hanski & Gilpin, 1997; Levins, 1969b). Species survival at a regional 

‘metapopulation’ scale can be viewed as the total number of populations persisting within a 

fragmented forest network over time. Within this network, discrete populations may persist, 

become extinct, or narrowly escape extinction through the 'rescue effect’ of immigrating 

individuals from other forest fragments (Brown & Kodric-Brown, 1977). Previously extinct 

populations may also reappear through the re-colonization of empty habitat patches from the 

same dispersal process. In this theoretical approach, both the size and isolation of habitat 

patches, as well as the spatial distribution of existing populations in these patches, are 

critical to understanding future population dynamics (Hanski, 1994a, b; Hanski, Moilanen & 

Gyltenberg, 1996a; Hanski & Simberloff, 1997; Hanski & Gilpin, 1997). Metapopulation 

theory has focused ecological thinking towards the spatial, landscape level of both 

population processes and habitat management (Hanski & Simberloff, 1997; Hanski, 2004; 

Ovaskainen & Hanski, 2003b; Wiens, 1997), and may provide a useful framework in which to 

explore the relative importance of individual forest fragments in a conservation management
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context (Cabeza & Moilanen, 2003; Hanski & Simberloff, 1997; Hanski, 2004; Ovaskainen & 

Hanski, 2003b).

Furthermore, the nature of the matrix, i.e. the non-forest, land cover between forest 

fragments, can be important in determining the use of fragments by primates or other wildlife 

(e.g. Bonte et al., 2003; Gascon et al., 1999; Marsh, 2003b; Pardini et al., 2005; Ricketts, 

2001; Vandermeer & Carvajal, 2001; Wethered & Lawes, 2003). Some species readily move 

between forest patches, using habitat corridors, while others do not (Beier & Noss, 1998; 

Bennett, 1998; Laurance & Laurance, 1999; Laurance, 2004). Identifying which species can 

use corridors, or which existing matrix types are useful for inter-patch dispersal, will permit 

wildlife managers to predict future extinction rates in increasingly isolated forest fragments 

(Chapman & Peres, 2001) and to implement matrix enrichment schemes to buffer such 

negative effects (Fahrig & Merriam, 1994; Hess & Fischer, 2001; Laurance, 2004). The 

significance of matrix heterogeneity has yet to be incorporated into theoretical 

metapopulation models (Ricketts, 2001) and future model development could test the 

influence of the matrix on metapopulation dynamics and provide an additional degree of 

realism to model simulations (Ricketts, 2001; Vandermeer & Carvajal, 2001).

1.1.2 The future of forest fragments

To date, the human use of tropical forest landscapes and the resulting ecological 

impacts have largely been ignored by primatologists (Marsh et al., 2003). In these 

landscapes, most fragments have no protection status, and forest structure and composition 

may change due to the land-use practices of local communities (Chapman et al., 2003; 

Chapman & Peres, 2001; Cowlishaw & Dunbar, 2000b; Marsh et al., 2003; Struhsaker, 

1981b). Any analysis of population viability which assumes a static, unchanging environment 

does not provide a sufficient basis for practical species management (Balmford, Mace & 

Ginsberg, 1998a; Smith, Bruford & Wayne, 1993). Ecological research is required that 

integrates the effects of further deterioration of forest habitat and landscape change into 

future population projections. Within such modelling exercises, populations, habitat patches 

and regions that are particularly significant to long-term species survival may be identified
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(Fahrig, 2001; Fahrig & Merriam, 1994; Janzen, 1986; Mace & Baillie, 2001; Wahlberg, 

Moilanen & Hanski, 1996)

1.1.3 The practicalities of conservation

Conservation biologists must do more than generate theories and principles. In 

effect, they must deliver effective, science-based information, decision-making tools and 

reliable monitoring programs for wildlife managers (Marsh et al., 2003; Possingham et al., 

2001; Sutherland, 1998). It is currently recognised that most conservation practice is based 

upon anecdotal sources, with very little use of direct scientific evidence (Sutherland, 1998; 

Sutherland et al., 2004). Similarly, ex-situ, long-term conservation projects rarely use 

baseline (or ongoing) scientific data to provide a systematic check of the effectiveness of the 

conservation management actions themselves (Possingham et al., 2001; Sutherland et al., 

2004).

The primate conservation community has been very proactive in implementing 

specialist groups, tools and models for the monitoring of global primate species status and 

the formulation of viable conservation strategies (Cowlishaw & Dunbar, 2000a; Ellis, 1997). 

With conservation action guided largely by the IUCN Species Survival Commission Primate 

Specialist Group (PSG), regional strategies or ‘Action Plans’ are published (e.g. Asia: Eudey, 

1987; Madagascar: Mittermeier et al., 1992; Africa: Oates, 1996a), whilst specialist 

workshops are instigated which compile status, threat details and strategic guidance for the 

application of intensive management. These workshops can either take the form of 

conservation assessment management plans (CAMPs) or population and habitat viability 

assessments (PHVAs) (Cowlishaw & Dunbar, 2000a; Ellis, 1997; Rylands, Rodriguez-Luna 

& Cort6s-Ortiz, 1997).

Nevertheless, the success of these policy-level conservation strategies, and the 

efficacy of wildlife managers when implementing appropriate management-level 

conservation action on the ground, both depend on the quality of information about species 

abundance that is available. For most primate species, we have relatively little knowledge of 

the extent of occurrence within the species geographic range, and where information on 

local population density is available it only comes from a handful of sites (e.g. Cowlishaw &
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Dunbar 2000). The problem is a particularly difficult one for wildlife managers, who in the 

absence of detailed data on local species abundance, must use either population density 

data drawn from other sites (which may be totally inapplicable) or else make do with 

presence/absence data to (1) prioritise the conservation management of the local 

populations, forest fragments and/or regions, (2) pinpoint the external factors that are 

influencing the dynamic changes in their forest network, and (3) monitor primate populations 

and the effects of conservation efforts in the future.

1.2 The Angola black-and-white colobus in Kenya’s coastal forests

The coastal forests of southern Kenya are part of the Northern Zanzibar-lnhambane 

Coastal Forest Mosaic (Burgess etal., 2000; White, 1976, 1983). International interest in the 

coastal forests (which include the Eastern Arc Mountains and coastal forests of Tanzania, 

and coastal forests of northern Kenya) has increased over the last three decades due to the 

realization of the global biodiversity value of these forests, and the threat of human 

modification of this important eco-region (CEPF, 2003; Schipper & Burgess, 2004). 

Presently, these coastal forests are listed as one of 25 global diversity hotspots (Myers et al.,

2000) and one of 11 ‘priority’ regions for international conservation investment (Brooks et al.,

2002).

The forests are extremely diverse, and include many strictly endemic flora and 

fauna, including: 400 plant, 10 bird, 34 reptile, 14 amphibian, 75 butterfly and 8 mammal 

species (Burgess, 2000; Schipper & Burgess, 2004; WWF-US, 2003). The patterns of 

endemism in this eco-region are complex, with a high degree of turnover of local species 

between adjacent forest patches and many disjunct distributions (Burgess, 2000; WWF-US, 

2003). This makes it extremely difficult to prioritise the forest patches in terms of their 

biodiversity (CEPF, 2003).

Much of the East African coastal forest has been destroyed with remaining natural 

habitats becoming more fragmented as agriculture and other human activities spread with 

increasing population (CEPF, 2003; Schipper & Burgess, 2004; Struhsaker, 1981b). 

Protected coastal forest areas in Kenya include the Tana River Primate Reserve, Arabuko- 

Sokoke National Park and Shimba Hills National Reserve (the latter forest is found in
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southern Kenya). Some of the remaining forest areas are protected as government- 

controlled Forest Reserves, however small fragments of coastal forest are found throughout 

this region, and are largely unprotected.

The Angola black-and-white colobus Colobus angolensis palliatus Peters 1868 is a 

large, distinctive, and well-known primate that is endemic to the coastal forests of East 

Africa. In light of the threats facing the unique ecological communities that comprise this 

global biodiversity hotspot, and in particular the paucity of information about the status of C. 

a. palliatus (Oates 1996a), the purpose of this study is to investigate the population ecology 

and future conservation management of this colobine monkey. Whilst the topic of whether to 

conserve biodiversity at the species level is hotly debated (Bowen-Jones & Entwistle, 2002; 

Caro, 2003; Caro et al., 2004; Franklin, 1993, 1994; Lindenmayer, 1999; Olden, 2003; 

Towns & Williams, 1993; Walpole & Leader-Williams, 2002), the impossibility of managing 

the wide array of taxa that inhabit the coastal forests of this region make the approach 

potentially important in southern Kenya. If a species such as C. a. palliatus can be integrally 

linked to (1) the quality and regional (spatial) characteristics of coastal forest fragments, and 

(2) the surrounding (human-dominated) landscape and its associated pressures, it may 

further augment local and national interest towards the preservation of remaining coastal 

forest fragments in the region (Bowen-Jones & Entwistle, 2002; Towns & Williams, 1993; 

Walpole & Leader-Williams, 2002).

Ecologically, C. a. palliatus is largely a folivorous primate (Moreno-Black & Maples, 

1977) dependant upon forest foliage for its survival. It’s arboreal nature (Oates & Davies, 

1994) also compounds its dependency on canopy forest and poses important questions 

regarding the species response to forest degradation and fragmentation, and the use (if any) 

of non-forest ‘matrix’ between adjacent patches of coastal forest. Kenyan C. a. palliatus 

populations are documented as being highly vulnerable to extinction due to ongoing human 

land use practices in the region (Struhsaker, 1981). Recent African primate conservation 

action plans have also recommended that the status of C. angolensis palliatus needs to be 

assessed in Kenya, with a stringent management plan to conserve remaining forest areas 

(Oates 1996).

The Angola black-and-white colobus also presents a useful case study in how 

colobine monkey populations respond to anthropogenic habitat change. Humans are
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influencing the population status of arboreal, folivorous primates throughout Africa (Oates, 

1996b). While in West and Central Africa the predominant threat is from bushmeat hunting 

(Davies, 1987; Lahm, 1993; Martin & Asibey, 1979; Oates, 1996b), habitat loss remains the 

most significant threat to future colobus population survival in the more densely populated 

parts of East Africa and elsewhere (Oates, 1996b; Rodgers & Homewood, 1982; Struhsaker, 

1981b; Struhsaker & Siex, 1998). A detailed understanding of how fragmented colobus 

populations can be affected by habitat disturbance would therefore be timely and may 

provide useful lessons for the conservation of other colobine and primate taxa.

A local conservation organisation, “Wakuluzu, Friends of the Colobus Trust” 

(http://www.colobustrust.org). has also been based within the coastal forest region of Kenya 

for the past nine years. Its aim is to promote, in close co-operation with other organisations 

and local communities, the conservation of primates, in particular the Angola black-and-white 

colobus and its associated coastal forest habitat. It is hoped that this study will form a 

baseline upon which to: (1) implement future colobus population/coastal forest conservation 

initiatives, and (2) measure the effectiveness of the organisation’s research, monitoring and 

education programs (Cunneyworth & Rhys-Hurn, 2004).

1.3 Study chapters

By integrating field research, remote sensing techniques, geographical information 

systems (GIS) and theoretical modelling approaches, this study successively builds, through 

each chapter, a greater level of knowledge concerning the study species and its surrounding 

environment. Knowledge that can influence the conservation management of the species 

and increase our understanding of primates in fragments.

Chapter 1 has provided an overview of the human impact on primates in tropical 

forest systems, and background to the coastal forests of East Africa and the endemic Angola 

black-and-white monkey C.a. palliatus in those forests.

Chapter 2 will investigate the current extent and protection status of remnant coastal 

forest patches in southern Kenya, and provide population status and distribution information 

on C. a. palliatus populations inhabiting these fragments. This chapter will also include
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research into the historic distribution of C. angolensis in Kenya and the current 

anthropogenic threats facing the species.

Chapter 3 will provide a more detailed ecological analysis of the effects of habitat 

fragmentation on the study species. This chapter will identify the significant habitat attributes 

(i.e. spatial, structural, resource and disturbance) that determine C. a. palliatus occupancy 

and abundance patterns within coastal forest fragments.

Chapter 4 will adopt a wider, more landscape-based approach to colobus research, 

investigating the occurrence and behaviour of C. a. palliatus in the matrix occurring between 

forest patches. The study will investigate whether there are particular habitat attributes that 

determine colobus usage of the matrix, whilst the current extent of important matrix habitat 

will be determined via remotely-sensed mapping of land cover in the study site.

Chapter 5 will explore how the spatial geometry of the fragmented forest network 

may influence the metapopulation dynamics of C. a. palliatus. Using Hanski’s incidence 

function model (Hanski, 1994b), parameterised from data collected during this study, this 

chapter will explore the theoretical persistence of C. a. palliatus populations, under both 

present conditions and alternative scenarios of future habitat destruction.

Chapter 6 will develop the incidence function model to incorporate matrix quality, 

and use this extended model to investigate its importance on future C. a. palliatus 

metapopulation dynamics, under both present matrix conditions and alternative scenarios of 

future matrix quality.

Chapter 7 will present a synopsis of the study findings and assess their implications 

for conservation management. Recommendations for future C. a. palliatus research and 

conservation initiatives in Kenya will also be discussed.
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2. Status, distribution and conservation of the Angola black-and-white 

colobus (Colobus angolensis palliatus) in coastal Kenya.

2.1 Abstract

The status of the Angola black-and-white colobus (Colobus angolensis palliatus) is 

unknown in East Africa. This study provides the first evaluation of colobus distribution, status 

and current threats within the Kenyan extent of the subspecies’ range; the southern coastal 

District of Kwale. Line transect and sweep count surveys were carried out between July -  

November 2001, covering 25,514ha of coastal forest within 124 forest fragments. Fifty-five 

colobus populations were discovered, with total Kenyan C. a. palliatus population estimates 

ranging between 3,100 -  4,900 individuals (560 -  900 groups). The Shimba Hills National 

Reserve protects both the largest forest and largest colobus population in the District. Local 

semi-structured interviews and archival research into the possible historical distribution of the 

subspecies in north coast Kenya confirmed the occurrence of the subspecies in Kilifi District, 

with the last sightings of the subspecies occurring in Arabuko Sokoke Forest in 1979. 

Differences in the settlement distribution, associated habitat loss and hunting preferences of 

the nine coastal tribes (Mijikenda) are thought to explain the loss of colobus from north 

coast. Unprotected forests were found to be under the greatest pressure of further habitat 

loss, fragmentation and degradation, while holding over 17% of the national population of 

colobus. The study found no difference between Forest Reserves and unprotected forests in 

the rate of forest loss or tree extraction densities, highlighting the need for increased law 

enforcement and management of the Reserves. However, Kaya (sacred) forests were 

significantly better at minimising threat, illustrating the critical role of community involvement 

in the successful future management of the Kwale District coastal forests.
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2.2 Introduction

The Angola black-and-white colobus Colobus angolensis palliatus Peters 1868 is a 

folivorous primate (Moreno-Black & Maples, 1977) confined to the Eastern Arc Mountains 

and coastal forests of northern Tanzania and southern Kenya (Kingdon, 1997). Like most 

East African forest-dependent primates, habitat loss is a major threat to C. a. palliatus 

survival (Oates, 1996b; Struhsaker, 1981b). Their coastal habitat is remnant of a once 

continuous mosaic of unique forest, thicket, woodland, bushland and grassland (Hawthorne, 

1993) which stretched from the Kenya-Somalia border to the border of Tanzania and 

Mozambique (Clarke, 2000), often referred to as the ‘Northern Zanzibar-lnhambane floristic 

region’ (White, 1976). These forests are one of 25 global diversity hotspots (Myers et al.,

2000) and are listed as one of 11 ‘priority’ regions for international conservation investment 

(Brooks et al., 2002) due to the significant rate of habitat destruction, linked to massive 

human population growth, agricultural expansion and tourist development in the region 

(CEPF, 2003; UNEP, 1982).

C. a. palliatus is currently listed as ‘Data Deficient’ in IUCN red listings (IUCN, 2004), 

with Rodgers (1981) providing the only published record of distribution for the subspecies in 

Tanzanian forests. Current IUCN/SSC African primate conservation action plans recommend 

that C. a. palliatus status needs to be established in Kenya, along with a stringent 

management plan to conserve remaining forest areas in the region (Oates, 1996a).

C. a. palliatus range in East Africa is thought to extend from the northern banks of 

the Rufiji River in Tanzania (7° 50’ S, 38° 10’ E) (Rodgers, 1981) to the border between 

Kwale District and Mombasa town in Kenya (3 59’ S, 39 33’E) (Kahumbu, 1997). The 

distribution and subsequent taxonomic distinction of C. a. palliatus from other C. angolensis 

populations in north-east Angola, Democratic Republic of Congo (DRC), Rwanda, Uganda 

and Burundi, originates from a southern ancestral radiation of colobus from the montane 

forests of the Congo basin, and geographic isolation of the East African coastal forests 

during the last ice age, 1.8 million years ago (Kingdon, 1981; Rahm, 1970; Rodgers, Owen & 

Homewood, 1982). Today, these Kenyan coastal forest fragments persist in the north, 

beyond current C. a. palliatus range (Burgess, Clarke & Rodgers, 1998; Robertson & Luke,
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1993) and a previous publication (Tarara, 1986) and anecdotal reports mention C. a. 

palliatus existing in some of these forests, but no study has verified, nor systematically 

investigated these claims.

Given this deficiency of knowledge concerning C. a. palliatus status in Kenya, this 

study investigates (1) the present population status and distribution of C. a. palliatus in 

Kenya, (2) the current extent and protection status of remnant coastal forest fragments within 

this distribution, (3) information on the historical incidence of colobus in the northerly forests 

within this region and (4) a discussion of the current threats facing the subspecies, 

highlighting possible conservation initiatives to ensure its continued survival in Kenya.

2.3 Methods

2.3.1 Study species

The Angola black-and-white colobus Colobus angolensis Sclater 1860 is one of four 

species of black-and-white colobus found in sub-Sahara Africa (Groves, 2001; Grubb et al.,

2003). Seven Angola black-and-white colobus subspecies have been described to date, 

based on distinguishing differences in pelage coloration pattern, habitat type and 

geographical distribution. Five subspecies exist within the Congo (Zaire) basin (cottoni, 

angolensis, cordieri, prigoginei and ruwenzorii) (Colyn, 1991); a sixth, isolated subspecies, 

the ‘Nkungwe’s Angolan Colobus’ (Nishida et al., 1981), is presently unnamed (Groves,

2001) and exists on Mount Nkungwe and the Mahale mountains in western Tanzanian. The 

final, seventh subspecies palliatus Peters, 1868 is the focus of this study. Often referred to 

as Peters’ Angola colobus (Grubb et al., 2003); with previous synonyms of C. a. sharpei 

Thomas, 1902 and C. a. langheldi Matschie, 1914; the subspecies has a discontinuous 

distribution through the southern highland (Eastern Arc Mountains), coastal, and gallery 

forests of southern and eastern Tanzania into south-eastern Kenya (Groves, 2001; Kingdon, 

1997).
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2.3.2 Study site

The Coastal Province of Kenya encompasses six main administrative Districts: Kilifi, 

Kwale, Lamu, Mombasa, Taita and Tana River. Three of these Districts were the focus of 

this study: the Kwale District, i.e. ‘south coast’ (which included the present-day distribution of 

the study species), and the Mombasa and Kilifi Districts, i.e. ‘north coast’ (which incorporated 

the possible historical distribution of the study species).

Kwale District lies between Mombasa and the border of North Eastern Tanzania 

(3‘30\ 4°45’S; 38'31’ and 39°31’E) (Fig. 2.1). The District comprises approximately 

8,322km2, and contains a heterogeneous mix of grassland, woodland, swamp, shrubland, 

forestry plantation, mangrove and agricultural land (commercial and subsistence crops). 

Kwale District is also home to the study species, which inhabit the isolated, fragmented and 

largely threatened coastal forests within this region. Average temperature is 26°C for the 

District, with highest mean temperatures of 33°C reached between November and April. 

Altitude varies from sea level along the Indian Ocean shore, to slightly over 1000m, as one 

travels further inland (HSEDCO, 1998). The rainfall pattern is bimodal (long rains between 

March and July, short rains occur in October to December), with the initial 36km from the 

sea, the ‘coastal forest belt’ (Clarke, 2000), receiving 900-1500mm of rainfall annually 

(Jaetzold & Schmidt, 1983). It is within this coastal belt that most forest patches are 

distributed as a mix of lowland rain forest, swamp forest, scrub forest and undifferentiated 

forest types (Clarke, 2000).

Protection status of forest patches within Kwale District varies considerably. The 

largest of the District’s forest reserves is the Shimba Hills National Reserve (>15,000 ha), 

which is double-gazetted by the Forest Department (FD) and Kenya Wildlife Service (KWS) 

(Robertson & Luke, 1993). The remaining forest patches in the District, in order of declining 

protection status, are either (1) gazetted Forest Reserves and community sanctuaries (i.e. 

the Mwaluganje Elephant Sanctuary), (2) sacred Kayas (some of which are gazetted as 

national monuments) or (3) unprotected forests on private or county council owned land. The 

Kayas owe their existence to the beliefs, culture and history of the coastal Mijikenda people 

(Digo, Duruma and seven groups of Giriama) who historically established fortified villages 

within these forests (Githitho, 1998; Spear, 1978). Today, they are jointly protected by the
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National Museums of Kenya (Coastal Forest Conservation Unit) and the local Mijikenda, with 

some communities still actively using the Kayas as ceremonial or burial grounds. The Digo 

and Duruma protect Kayas within the boundaries of the Kwale District, whilst Kayas 

occurring in the Mombasa and Kilifi Districts are protected by the Giriama (Robertson & 

Luke, 1993). Kayas also exist in the north coast region of the study area (see 2.3.8  below).
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Fig. 2.1. Map of forest distribution and C. a. palliatus population 
occurrence within the Kwale District, Kenya.

2.3.3 Forest cover

To establish the present status of forest cover in the Kwale District, eight current 

1:50,000 topographical maps covering the entire coastal forest belt of Kwale District (Survey 

of Kenya 1991, Edition 4, Series Y731, Sheets 200/1, 200/2, 201/1, 200/3, 200/4, 201/3,
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201/1, 202/2) were initially used to establish the location and present-day (2001) existence of 

forest cover for the District. During the period between July and November 2001, all forest 

patch boundaries within a 4,258km2 survey area were mapped by two field assistants 

traversing each patch perimeter on foot, recording positional data at 10-second intervals 

using a Garmin 12XL global positioning systems (GPS). These GPS data were then 

downloaded into MapSource software (MapSource 5.3, Garmin Corporation 1999), before 

being imported into an ArcView geographic information system (ArcView GIS 3.2, ESRI Inc. 

1999) where subsequent GIS analysis using Xtools extension (Version 6.1, 2001) allowed for 

the detailed estimation of contemporary forest area (ha). Each forests’ legal protection status 

was also recorded. Due to the large expanse of the Shimba Hills National Reserve, GPS 

mapping techniques were impractical. Therefore, forest boundaries were digitised in ArcMap 

(Arclnfo 8.3, ESRI Inc. 2002) from a classified Landsat-TM image of the study site (Scene 

166/63, January 2003; supervised classification, see Chapter 4 for methodology).

2.3.4 General survey methods

To determine the status of C. a. palliatus in forest patches two main methods were 

used: line transect (Struhsaker, 1981a; Whitesides et al., 1988) and sweep sample (White & 

Edwards, 2000; Whitesides et al., 1988) techniques. The latter technique, similar to the 

quadrat survey method (Struhsaker, 1981a), was used within all but one of the forest 

patches, given the small size of forest fragments and the feasibility of covering whole forest 

areas effectively in one day with teams of primate observers. This technique has also been 

used effectively to survey populations of Tana River red colobus (Procolobus rufomitratus) 

within forest patches up to 5km2 in area in the Tana River delta region, Kenya (Butynski & 

Mwangi, 1994; Karere et al., 2004; Mbora, 2004; Muoria et al., 2003). However, sweep 

samples were impractical in the Shimba Hills National Reserve (>150km2), therefore line 

transect sampling was used exclusively in this forest.

Prior to the census period of July till November 2001, all field researchers took part 

in a two-week pre-survey training course led by the author, to standardise recordings of 

colobus group counts, demographics, group spread and sighting heights (Peres, 1999). 

Sweep survey and line transect techniques were also practiced within three forests of known
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colobus density to check for observer bias and recording errors. Since most distance 

measurements were obtained through pacing, every researcher’s average pace length (m) 

was calculated by counting the number of paces walked within a 15m transect (this 

procedure was repeated ten times). The resultant transect lengths used in analyses were in 

meters, calibrated from the transect-pacer’s average pace length. Leading census 

participants were field researchers from Wakuluzu, Friends of the Colobus Trust, Diani 

Beach, Kenya, who were proficient at identifying colobus age and sex classes.

2.3.5 Line transect and Distance sampling

A one-month, line transect survey was conducted throughout the Shimba Hills 

National Reserve between October and November 2001. Four census teams were used, 

each comprised of two observers and one KWS ranger. Due to the logistical and time 

constraints of the survey period, it was decided that transects would be walked only once, 

covering a large representative area of the Reserve. A 1:50,000 topographical map assisted 

in the planning of transect entrance routes and courses. By utilising the 1x1 km reference grid 

within the map, it was possible to maximise transect coverage that would sample the 

greatest number of forested grids within the reserve (81% of grid cells sampled). In most 

instances, daily transects were walked in parallel, > 500m apart. Independent sampling was 

assumed, as colobus generally do not flee over such distances, frequently ‘freezing’ in trees 

in response to observers (Brugiere & Fleury, 2000; Mbora & McGrew, 2003). Colobus 

sighting times and group demography records were also checked after each daily survey, to 

rule out the possibility of double-counts between neighbouring transects. Census walks were 

undertaken between 06.30 and 15.00, omitting days when it rained. Observers travelled 

quietly at an average pace of 1-1.5km/hr, briefly stopping every 100m to watch and listen for 

primates (White & Edwards, 2000). Transect lengths were estimated by pacing, recording 

major physical features, vegetation changes and general primate locations by pace number. 

When primate groups were encountered the time, animal-observer distance, sighting angle 

and perpendicular distance (paced) to first animal seen were recorded (Buckland et al.,

2001). No more than 10 minutes were spent with each group, gathering data on species, 

sighting height, behaviour (at time of sighting, and response to observers), polyspecific
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association, group count, spread and composition. Additional primates encountered within 

the National Reserve included the yellow baboon (Papio hamadryas cynocephalus) Syke’s 

monkey (Cercopethicus mitus albogularis) and vervet monkey (Chlorocebus aethiops).

A total of 169 transects totalling 450.7km in length were surveyed within the Shimba 

Hills National Reserve (mean 1.8km ± 0.1km SE; range 0.1-13.5 km). Transect sampling 

predominantly concentrated on closed canopy forest (313.9km). However, 37.1km wooded 

shrubland, 26.9km wooded grassland, 31.9km shrub grassland, 27.3km grassland, 10.1km 

conifer plantation and 3.5km of swampland were also sampled.

Absolute colobus density estimates were calculated using the program DISTANCE 

4.0 (Thomas et al., 2002) and the primate sightings from the 313.9km closed canopy forest 

transects. Perpendicular distances were calibrated from first animal seen to the centre of 

colobus groups by adapting Whitesides’ method (Whitesides et al., 1988): instead of using a 

standard correction measure of mean group spread for all sightings, individual group 

spreads were used. The size of detected groups (see below) was independent of sighting 

distance, even when correcting for polyspecific group size, thus eliminating this relationship 

as a possible source of bias in density estimation (Buckland et al., 2001). During model 

fitting, outliers in the distribution of perpendicular distances were ignored by truncating the 

furthest 5% of sightings. A half-normal function with cosine series expansion was selected 

according to Akaike’s information criteria (AIC) in DISTANCE 4.0. To calculate colobus 

group density estimates and encounter rates that would be comparable with other colobine 

surveys, sightings of solitary individuals were excluded from the analysis (Chapman et al., 

2000; Fashing & Cords, 2000; Marshall et al., 2005). However solitaries were included in a 

second analysis to give an estimate of individual density and total population estimate for the 

National Reserve. In this latter analysis, solitaries were treated as additional groups, 

whereby group size equalled one.

The resultant C. a. palliatus encounter rates, individual and group density estimates 

via DISTANCE 4.0 were also compared with other known studies of C. angolensis for a 

between-subspecies comparison, whilst results were also compared with C. guereza study 

sites for a between-species comparison.
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2.3.6 Forest sweep surveys

During the period of July till November 2001, all other forest patches within the 

Kwale District (n = 123) were systematically censused by one-day sweep surveys 

(Whitesides et al., 1988). Four or more census teams, each comprised of three trained 

observers and a local guide, began surveys between 06.30 and 07.00am each day. Teams 

walked parallel transects 100m apart, starting at the same time and travelling at the same 

speed, along pre-determined routes (Struhsaker, 1981a) until an entire forest patch had 

been effectively covered (total survey time being a function of patch area and the number of 

census teams). Sweep sample accuracy was facilitated by (1) the maintenance of compass 

bearings throughout transect walks, and (2) re-grouping of survey teams after each forest 

transect sweep to re-synchronise movements. Data gathered during primate encounters 

were similar to those detailed in the Shimba Hills National Reserve, however locations were 

referenced by transect distance and sighting angle only. Time and direction of primate group 

departures were also recorded. All teams discussed and enumerated results immediately 

after the completion of each survey and ‘double-counts’ were removed by comparing 

similarities in team observations, based on primate sighting times, departure directions and 

group compositions. All primate encounters (including the National Reserve) were ranked on 

a four-point scale in accordance with observation quality: 0, primate vocalisation detected 

but no individuals observed; 1, primate group detected but group count incomplete; 2, 

primate group detected and counted but age-sex composition incomplete; and 3, primate 

group detected with complete count and age-sex composition. These codes were used to 

guide the subsequent allocation of group size to each group encountered, as follows: 0, data 

discarded (no confirmed group encounter), 1, group size based on mean group size 

(calculated from the entire census’ rank 3 group counts, see 3.2 Results), 2 and 3, group 

size taken from the actual count. Once group size had been established for all groups, the 

population estimate for each patch (n = 123) was calculated from the sum of individuals in 

each group plus all solitary animals recorded.

30



2.3.7 River intercept transects

Within the same survey period, sweeps were also made along the banks of the 

Mwena, Umba, Ramisi and Puma rivers (the four major rivers within the Kwale District). Both 

banks of each river were traversed in tandem by survey teams aiming to cover as much of 

the river’s main tributary length as possible. Changes in vegetation cover were recorded by 

line intercept method (Bullock, 1996; Grieg-Smith, 1983). In this survey method, observers 

walked line transects within 5-1 Om of the river bank, continuously noting changes in the 

vegetation cover by the number of paces taken (White & Edwards, 2000). Vegetation was 

classified as either indigenous riverine vegetation (Clarke, 2000), wooded grassland, shrub 

grassland, grassland, shrubland, mangrove, annual cropland (e.g. maize, sugarcane, 

bananas, root vegetables), perennial plantation (mango, coconut and cashewnut) or human 

development (e.g. settlements). The total length (km) of each vegetation type encountered 

along each of the four rivers gave a course vegetation profile of the riverbanks in the District. 

Colobus sightings along riverbanks were summarised as: (1) the total number of groups and 

individuals observed, and (2) encounter rates (groups/km), for each riverbank vegetation 

type.

2.3.8 Historical incidence

To determine the historical incidence of C. a. palliatus in the ‘north coast’ forests we 

used two main methods: local interviews and archive research. During November 2001 and 

April 2003 sites were visited within the Kilifi and Mombasa Districts, to carry out semi- 

structured interviews (Bernard, 2002) with local community members. The sampling effort 

was deliberately selective, targeting individuals over 60 years of age, who could provide 

historical information regarding the Kilifi and Mombasa District forests and the cultural use of 

wildlife in the region. Initially, key informants were interviewed from the Coastal Forest 

Conservation Unit (CFCU) and Kenya Forestry Research Institute (KEFRI), Kilifi, who 

provided ethnographic information for the region and lists of suitable interview participants. 

These included: Kaya chairmen and elders of the Chonyi, Jibana, Kambe, Kauma, Rabai 

and Ribe tribes; medicine men, dancers and village elders of the Giriama and Waata 

(Wasanyi/Walungulu) communities surrounding Arabuko Sokoke Forest; and Mazrui clan
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elders from the villages of Roka and Takaungu, on the coastline of Kilifi District. Detailed 

interviews quantified each participant’s exposure to local forests within their lifetime. A total 

of 51 ‘north coast’ elders, medicine men and dancers were interviewed. The average age of 

participants was 73 years of age (SE = 1.7, mode = 80yrs, range 49 -  97 years). During 

interviews, historical knowledge of forest wildlife and hunting practices, direct and indirect 

accounts of colobus occurrence in the area, local uses of colobus skin and body parts, and 

the possible reasons for colobus disappearance were recorded (for a detailed interview 

guide, see Appendix I).

Expedition reports, Kenya game department annual reports (1909-1957), Kilifi 

District and Coast Provincial administrative documents, Kenya forest department reports and 

pre-1950s travel literature from the region were also examined for documented evidence of 

C. a. palliatus sightings in the Kilifi District. Documents were held at: Fort Jesus Museum, 

Mombasa; KEFRI library, Arabuko Sokoke Forest, Kilifi; Kenya National Archives and Kenya 

Wildlife Service Archives, Nairobi; The School of African and Oriental Studies Library, Royal 

Geographic Society, Zoological Society of London and the British Natural History Museum, 

London. In addition, the following museum mammal collections were checked for the 

occurrence of north coast C. a. palliatus specimens: National Museum of Kenya, Nairobi; 

American Museum of Natural History, New York; Smithsonian Institute NMNH, Washington 

DC; Museum fur Naturkunde, East Berlin; Powell-Cotton Museum, Kent; and the British 

Natural History Museum, London.

2.3.9 Threats

During the population census, both qualitative and quantitative measures of human 

disturbance were recorded for each forest. Notes were taken on the nature and threat of 

both forest utilisation and local activities that encroached upon forest boundaries. Presence 

and absence of three main indicators of recent disturbance were also noted for all 124 forest 

patches. These were: (1) logging (recent logging activity, pitsaws in forest, presence of 

loggers during survey period, chainsaws heard), hunting (evidence of recent snares, traps or 

hunters in forest during survey period with bows, arrows and dogs), and (3) charcoal

32



(evidence of charcoal pit construction and recent use). Additional local interviews on an ad 

lib basis helped to determine the relative incidence of primate crop-raiding.

A sub-sample of 46 randomly selected forest patches were chosen for a more 

quantitative comparison of disturbance within the Forest Reserves, Kayas and unprotected 

forests. Firstly, four botanical survey teams, each comprising two researchers, carried out 

4m belt transects (Grieg-Smith, 1983) to quantify the extent of tree damage, in particular 

logging, within each of these forests. Between 3-26 transects were carried out in each patch, 

depending on the patch area. Transect lengths also varied between patches with longer 

transects used in larger patches (n = 314, mean length = 1.4 km ± 0.7 S.E., range = 0.1 - 

3km). The systematic placement of transects throughout each forest also ensured an 

accurate representation of each patch. All tree damage within 4m of transects were 

enumerated, stump/stem diameters (cm) were estimated, the type of damage (natural death, 

animal damage, logging or debarking) was recorded, as well as the approximate age of 

damage (recent, old, very old). Patch disturbance was thus summarised as the absolute 

density of logging and debarking tree damage (basal area m2/ha) per forest. Patch 

disturbance data were also collected during the one-month survey in the Shimba Hills 

National Reserve, however for the results of this study only qualitative details are given for 

this forest patch, as a future, more extensive analysis is planned due to the uniqueness and 

size of this forest.

Secondly, the same 46 patches were also used in a GIS analysis which estimated 

patch-specific forest loss over a 12-year period. The 2001 patch areas (km2) were compared 

with 1989 patch areas (km2). The latter was estimated by digitising forest boundaries from 

1991 topographical maps, originally derived from 1989 aerial photographs, in ArcMap 

(Arclnfo 8.3, ESRI Inc. 2002).

2.3.10 Statistics

To test the significance of forest protection status on the occurrence of recent 

disturbance activities within forests in the Kwale District a generalised linear model (GLM) 

with binomial error structure was used (Crawley, 1993) within the statistical software R, 

version 1.9.1 (www.r-proiect.org). Three independent models coded the presence or 

absence of either: (1) logging, (2) hunting or (3) charcoal production activities in all 124

33

http://www.r-proiect.org


forests as a binary response variable, with each forest regarded as a unit. The categorical 

explanatory variable in all three analyses was forest protection status, which comprised of 

three ‘levels’: Forest Reserve, Kaya or unprotected forest. If an overall significant effect of 

forest protection status was discovered within each of these three models further post-hoc 

analysis determined the independent significance of each forest protection status via a 

series of pair-wise ‘level’ comparisons. This latter analysis was achieved within a GLM model 

framework by simplifying factor levels (i.e. protection status types) in pairs, turning a three- 

level factor into two (Crawley, 2002). Each of the two-level models were compared to the 

original, three-level GLM model using F-tests for level of significance.

Forest loss (km2) and tree damage (basal area m2/ha) differences between Forest 

Reserves, Kayas and unprotected forests (n = 46) were tested using Kruskal-Wallis one-way 

analysis of variance tests (Siegel & Castellan, 1988). If an overall significant effect of forest 

protection status was discovered via this analysis, a post-hoc Kruskal-Wallis test, the 

multiple-comparison test (Siegel & Castellan, 1988) was used to test for independent 

significance of protection status type, via pair-wise comparisons.

It was hypothesised that unprotected forests would have higher levels of all 

disturbance activities (i.e. logging, hunting, charcoal, forest loss and tree damage). Kayas 

and Forest Reserves were expected to have significantly lower levels of disturbance due to 

the increased law enforcement and active local/governmental protection of these forests. 

The null hypothesis for both the GLM and Kruskal-Wallis analyses was no significant 

difference in the levels of forest disturbance between forests of differing protection status. 

All statistical tests were two-tailed.
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2.4 Results

2.4.1 Forest Cover

A total of 124 forest patches were mapped and censused during this study (Fig. 2.1), 

covering an estimated total area of 25,514ha (255.1km2) coastal forest cover for the Kwale 

District. The Shimba Hills National Reserve protects the largest area of forest for the District 

at 15,890ha. All other 123 forest patches ranged in size from 1 to 1,417ha: 54% of patches 

were less than 10ha in area, 29% were between 10-100ha, whilst 16% of patches were 

greater than 100ha. The descriptive statistics of forest cover by protection status are detailed 

in Table 2.1 and Figure 2.2.
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Fig. 2.2. Proportion of Kwale District’s remaining coastal forest 
and C. a. palliatus population by protection status.
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Table 2.1. Descriptive statistics of forest cover and colobus status in Kwale District, Kenya. a Total number of colobus groups either counted (in sweep 
surveys) or estimated (from the National Reserve line transects & DISTANCE 4.0); b Total number of solitary individuals counted in sweep surveys; c Total 
number of individuals in all patches;d National Reserve estimate is extrapolated from DISTANCE 4.0 using group density only. Final group total for Kenya may 
vary between 560 - 900 (95% Cl); 6 National Reserve estimate is extrapolated from DISTANCE 4.0 using values of individual density. Final Kenya population 
total may therefore vary between 3,100 -  5,000 individuals (95% C l);f Riverbanks were included in this table for the overall Kenya C. a. palliatus population 
estimate only, as exact forest cover is unknown.

_______Forest cover______  Patch size (ha)  Colobus status & distribution________
Forest protection status Total area (ha) No. patches median range Occupancy # g p s a # s o lb # individuals

Shimba Hills National Reserve 15,890 1 - - 1(1.00) 458 d - 2,436
Forest Reserve & Sanctuary 5,493 14 334 (15-1,417) 12(0.86) 71 13 387

Kaya 1,090 30 12 (1 -218) 20 (0.67) 41 13 229
Unprotected 3,041 79 5 (1 - 808) 22 (0.28) 100 4 630

Umba and Ramisi Riversf - - - - - 34 2 158

Total 25,514 124 55 (0.44) 704 d 32 3,840



2.4.2 Colobus status and distribution

Firstly, the Shimba Hills National Reserve. A total of 73 C. a. palliatus encounters 

(65 groups, 8 solitaries: within closed-canopy forest only) were recorded during the line 

transect survey of the Shimba Hills National Reserve. There were only four additional 

sightings of colobus outside closed canopy forest. These were within wooded shrubland (two 

groups and one solitary male) and shrub grassland (solitary male); however, transect sample 

effort was so small in these areas that a comparison of density could not be made with 

DISTANCE 4.0. Only during 9% of the colobus encounters in closed-canopy forest were 

groups observed in polyspecific association with Sykes monkeys (Cercopithecus mitus 

albogularis). The results of the DISTANCE 4.0 analysis are detailed in Table 2.2. The total 

population size for the Reserve was estimated at 2,436 individuals ± 458 S.E. (Cl 95%: 

1,689 - 3,515). A comparison of density estimates (Table 2.2) indicates that C. a. palliatus in 

the Shimba Hills National Reserve were found at higher group and individual densities than 

other subspecies in the Congo basin. However, similar encounter rates were recorded for 

the same subspecies within coastal forests in Tanzania. C. angolensis also tend to be found 

at lower densities than C. guereza (a black-and-white colobus species that is also found in 

the forests of western Kenya).

Table 2.2. Results of DISTANCE 4.0 analysis and comparison of C. angolensis and C. guereza 
encounter rates and density estimates for differing study sites, a DISTANCE 4.0 estimated from group 
sightings only; b DISTANCE 4.0 estimated from group and solitary sightings; c Within the West 
Kilombero Scarp Forest Reserve; d unlogged; e lightly logged

Species and Encounter rate ________ Density (± 1 SE)
locality group/km group/km2 individual/km2 Source

C. angolensis
Shimba Hills, Kenya 0.20 ± 0 .2 8 a 2.88 ± 0.52 a 15.33 ± 2.88 b this study

Ituri, Zaire - 1.16 ±0 .42 7.7 ± 4 .0 Thomas, S. (1991)
Lomako, Zaire - 1.16 5.8 McGraw, S. (1994)

Ndundulu c, Tanzania 0.26 ± 0.07 - - Marshall, A. e ta l (2005)

C. guereza
Kakamega, Kenya 1.20 ±0 .52 11.1 ±0 .37 - Fashing, P. & Cords, M. (2000)

Kibale, Uganda 0.15d, 0.318 2.00d, 4.83e - Chapman, C. e ta l  (2000)
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Secondly, of the 123 patches outside the National Reserve, only 54 (45.5%) were 

found to hold resident colobus populations (Table 2.1). Solitary individuals were discovered 

in two additional Kaya patches, but it was difficult to determine whether these individuals 

were representative of newly-established populations, i.e. in the process of ‘re-colonising’ a 

previously empty patch (Hanski, 1994b, 1998), or were simply transient. Therefore, they 

were excluded from the population occupancy data. A total of 1,246 colobus individuals were 

discovered within the ‘occupied’ patches, comprising 30 solitaries and 212 social groups 

(range: 1-50 groups, 1-332 individuals per patch).

Thirdly, the river surveys covered a total length of 224.8km riverbank: Puma 

(46.7km), Mwena (9.5km), Umba (56.4km) and Ramisi (112.2km) rivers, respectively. Very 

little riverine vegetation now remains along these rivers (only 3.9% of all riverbank length 

surveyed), with agricultural encroachment dominating the riverbanks (Table 2.3). However, 

158 colobus were found along the Umba and Ramisi rivers, and these sightings were not 

solely restricted to riverine vegetation. Colobus were also found within indigenous vegetation 

such as mangroves and wooded grassland, whilst 14 colobus groups were found within 

perennial plantations consisting of coconut palms, mango and cashewnut trees. In all areas 

of perennial plantations where colobus were found, the presence of remnant coastal forest 

trees were also noted. In ten observations the colobus were feeding from such trees.

Table 2.3. Riverbank vegetation profiles of the Puma, Mwena, Umba and Ramisi rivers (combined), 
summarising the total length of transects by vegetation cover and related colobus sightings. a Total 
number of groups and total number of individuals encountered over km’s walked (included in Kenya 
population estimate, see Table 2.1);b Number of colobus groups encountered per km walked along the 
banks of all four rivers.

Vegetation
cover

km
walked

% transect 
cover

Total No. a 
gps (indiv)

Encounter rate b 
(groups/km)

Annual cropland 53.95 24.0
Perennial plantation 37.42 16.6 14 (70) 0.37
Wooded grassland 36.11 16.1 3(11) 0.08

Shrubbed grassland 32.06 14.3 - -
Grassland 27.87 12.4 - -

Shrubland 18.30 8.1 - -

Mangrove 10.08 4.5 1 (8) 0.10
Riverine vegetation 8.77 3.9 16 (69) 1.82

Human development 0.25 0.1 -
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During the course of the study there were 13 additional, independent sightings of 

colobus groups and solitaries outside of coastal forest habitat. These were collected on an 

ad hoc basis when census teams were in non-forested areas, either travelling towards or 

leaving survey areas. The sightings included: four observations of colobus (3 groups and 

one solitary male) within shrubland, three observations of solitary males within wooded 

grassland and six sightings of colobus groups within perennial plantations (coconut, 

cashewnut and mango trees). However, these 61 individuals were excluded from the 

regional population estimate, as they were not part of a systematic survey of non-forest 

vegetation types.

From the quality ‘three’ ranking of colobus group counts from all groups encountered 

in the survey (n = 316), it was possible to determine C. a. palliatus group structure (n = 190), 

detailed in Table 2.4. Group size averaged six individuals, with a high prevalence for single­

male groups: 88% single-male, 11% multi-male (two-males) and 1% multi-male (three- 

males) groups.

Table 2.4. C. angolensis palliatus group demographics. Adult males (>6yrs); adult females (>4yrs), 
sub-adult males (2-5yrs); sub-adult females (2-3yrs); juveniles (1-2yrs); infant (<1yr). a Two groups 
were discovered without any adult males, one was verified as being killed by local hunting dogs.

Group structure mean S.E. range

Total group size 5.63 0.15 2 -13
Adult males 1.12 0.03 0 1 CO

0)

Adult female 1.97 0.07 0 -5
Sub-adult males 0.39 0.05 0 -3

Sub-adult females 0.38 0.05 0 -2
Juvenile males 0.26 0.04 0 -2

Juvenile females 0.44 0.05 0 -3
Infants 0.77 0.06 0 -4
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The distribution of colobus within protected and unprotected forest of Kwale District 

is detailed in Table 2.1 and Figure 2.2, whilst the locations of the ten largest colobus 

populations are listed in Table 2.5. The overall extent of occurrence in the District, estimated 

by drawing a minimum convex polygon (Beyer, 2004; IUCN, 2001) around all known sites 

containing colobus populations was 2,721km2 (Fig. 2.1: present subspecies range). Total 

area of occupancy of the subspecies in Kenya, defined as the total area of occupied habitat 

within this extent of occurrence, was 248.85km2.

Table 2.5. Locations of the ten largest C. a. palliatus populations
in Kenya, detailing forest locations, legal protection status and present threats.a NR, National Reserve; 
U, unprotected; FR, Forest Reserve; K, Kaya. b L, illegal logging; Ch, charcoal production; F, firewood 
collection; H, hunting; E, encroachment. Comparison of activity level: -, minimal; +, light; ++, moderate; 
+++, heavy exploitation.

Forest
name Location

Protection' 
status

Forest
area(ha)

Total No.colobus 
groups (individuals) L

Present threats b 
Ch F H E

1 Shimba Hills 4” 15' S, 39' 23’ E NR 15,890 458 (2,436) + +
2 Diani 4' 19’ S, 39* 3 4 'E U 455 50 (332) ++ ++ ++ ++ +++
3 Shimoni (west) 4' 37' S, 39' 22' E U 1,222 20(123) +++ +++ +++ +++ +++
4 Marenji 4' 3 1 'S, 39' 13' E FR 1,417 21(110) +++ +++ ++ ++ +
5 Mrima 4' 29' S, 39' 1 5 'E FR 382 13(81) + - + + -
6 Buda 4' 27* S, 39' 24' E FR 677 8(52) ++ + + + -
7 Muhaka 4 ’ 20' S, 39' 31' E K 140 7(35) + + + + -
8 Gonja 4' 34' S, 39° 07’ E FR 422 7(33) +++ + + ++ +
9 Gongoni 4 ’ 24’ S, 39° 27' E FR 657 7(31) + - + ++ -

10 Dzombo 4' 26' S, 39' 12' E FR 504 4(23) + + + +++ +

2.4.3 Historical incidence

The general locations of historical interviews in the Kilifi and Mombasa Districts (by 

forest) are detailed in Fig. 2.3. Fourteen survey participants reported seeing colobus in Kilifi 

forests during their lifetime, whilst an additional thirteen stated that they had been told of 

their past occurrence in the area by older relatives. Six out of nine sites were reported as 

having once had colobus; Arabuko Sokoke Forest (sightings were reported to have occurred 

between the years 1928-1979), Takaungu village (<1950s, pre-forest clearance), and Kauma 

(1929-1939), Chonyi (1928-1937), Rabai (1924-1945) and Jibana (<1900s) Kayas. 

Participants also reported having seen colobus at five additional locations in north coast 

Kenya, outside the current survey area: e.g. Mangea Hill, reported by five independent

40



survey participants as a site for colobus up until the mid 1950s. The locations of such reports 

are also illustrated in Fig. 2.3.
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Fig. 2.3. Map of forest distribution and C. a. palliatus population 
occurrence within the Kwale District, Kenya
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All participants were extremely knowledgeable concerning colobus behaviour and 

general ecology, and confirmed a present-day extent of C. a. palliatus range as the ‘south 

coast’, Kwale District only. When asked about the reasons for colobus disappearance in 

Kilifi, similar descriptions were given of forest clearance for settlement, followed by 

opportunistic hunting, skinning and eating of those colobus left in forest fragments. All 

Giriama, Kauma, Kambe, Jibana, Ribe, Rabai and Chonyi elders confirmed the eating of 

monkeys, with 28 participants having heard of, or witnessed colobus being eaten (the latter 

two accounts referred to Arabuko Sokoke Forest). The most comprehensive reports of 

colobus sightings came from ex-workers of the Danish Kajenson's sawmill, who logged in 

Arabuko Sokoke Forest from 1928-1958. Headmen gave details of: (1) specific locations 

within the forest where colobus were frequently found, (2) colobus feeding trees (that were 

consistent with expectations) and (3) subjective descriptions of declining colobus densities 

after 1940, when logging activity and general human disturbance increased in the forest. 

Colobus skins were used by local dancers (mainly purchased from Mombasa or south coast 

locations), whilst the meat was reported to be of little value. Songs about the colobus were 

recorded from the Giriama and Waata, whilst the latter tribe also provided an additional, 

north coast name for the species. The generic name for the Angola black-and-white colobus:

“mbega", is used by all Mijikenda tribes at the coast and originates from the Digo language 

(Mwalonya et al., 2004; Stigand, 1909). However, the north coast Waata tribe, were 

recorded to call the species “k’amale wenyu".

Archival research provided little documented evidence of colobus occurrence in the 

north coast Districts. However, five C. a. palliatus skin and skull specimens were found in the 

British Natural History Museum, London (Napier, 1995), collected from Takaungu forest, Kilifi 

(3°42' S, 39° 51' E) (Fig 2.3). these were collected in 1901 by A. B. Percival, the first Game 

Department ranger of Kenya (Percival, 1928).

2.4.4 Threats

At present, the greatest threat to C. a. palliatus populations in Kenya is habitat loss. 

The qualitative assessments around forest patches indicate that forest encroachment
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pressures include slash-and-burn clearance for agriculture, local settlements, coral-block 

mining and tourist development. The latter industry in particular, directly affects the Kayas 

and unprotected forests along the Indian Ocean coastline through forest clearance for hotels, 

associated businesses and settlements. Human extraction practices within forests included 

the debarking of trees for medicinal use (non-fatal) and rope making (fatal), and the illegal 

logging of trees for charcoal, fuel wood, building poles, fencing, furniture, construction timber 

and woodcarving. Illegal hardwood logging is widespread in all forests, particularly so in the 

Forest Reserves.

Forest management had an overall significant effect on four measures of human 

impact: the amount of forest loss (km2) between 1989 and 2001 (Kruskal-Wallis: x2 = 15.0, df 

= 2, p = 0.001), and the incidence of recent logging activity (binomial GLM: F = 8.4, df = 2, p 

= 0.004), hunting activity (F = 3.4, df = 2, p=0.04) and charcoal production (F = 12.5, df = 2, 

p<0.001). There was no significant effect of forest management on the absolute basal area 

(m2/ha) of trees removed. Figure 2.4 illustrates the range (and significance levels) of 

disturbance differences by forest management type.

In concordance with the hypotheses under test, Kayas had significantly lower levels 

of forest loss (km2) between 1989 and 2001 than unprotected forests (Fig. 2.4.a.). 

Occurrence of recent charcoal production (Fig. 2 .4 .e .)  and logging activities (Fig. 2.4.C .) were 

also significantly lower in these forests. In addition, logging occurrence in Kayas was 

significantly lower than in the Forest Reserves (Fig. 2 .4 .c.)

In contrast, the Forest Reserves had significantly higher incidence of recent hunting 

activity compared to both unprotected and Kaya forests (Fig. 2 .4 .d.), whilst levels of tree 

damage (Fig. 2 .4 .b .) , forest loss (Fig. 2 .4 .a.) and occurrence of recent logging activity (Fig.

2.4.C .) were not significantly different from unprotected forests. The only activity which was 

significantly lower within the Forest Reserves, when compared to unprotected forest, was the 

incidence of charcoal production.

The ad lib anectodotal reports of crop raiding indicate that human-wildlife conflict 

does not seem to be a direct threat to C. a. palliatus populations, compared with other crop- 

raiding primates in the District: the yellow baboon (P. h. cynocephalus) Syke’s monkey (C. 

m. albogularis) and vervet monkey (C. aethiops). However, reports of colobus periodically 

eating the skins of unripe mangoes (Mangifera indica), oranges (Citrus aurantuim and C.
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sinensis) and leaves of cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and 

cow pea (Vigna unguiculata) crops were reported within the southernmost region of the 

Kwale District (an administrative sub-location called Vanga) which was near the border of 

Tanzania.

2.0

0 5

0.0

7.0

6.0

5.0

4.0

3.0

2.0 

1.0 

0.0 i
UNPROTECTED KAYA 

FOREST
FOREST

RESERVE

0.6

o 0.6

F
z
^  0.4

0.2

0.0

UNPROTECTED
FOREST

KAYA FOREST
RESERVE

Fig. 2.4. Summary of forest disturbance by forest management type. Graph a. shows the median 
amount of forest loss (km2) from unprotected, Kaya and Forest Reserves between 1989 and 2001 
(error bars = 25% and 75% C.I.), *p<0.05 (significance from Kruskal-Wallis multiple comparisons test, 
two-tailed). Graph b. indicates the median basal area (m2/ha) of human-caused tree damage within 
each of the three forest categories (error bars = 25% and 75% C.I.). Graphs c., d. and e. indicate the 
proportion of forests within each management category: recent logging (evidence of recent logging 
activity, pitsaws, presence of loggers during survey), hunting (presence of ground snares, traps and/or 
hunters with bows, arrows & dogs) and charcoal-production activities (evidence of recently used 
charcoal pits) respectively, *p<0.05, **p<0.01 and ***p<0.001 (significance from Binomial GLM pair­
wise comparisons).
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2.5. Discussion

2.5.1 Colobus status within the forests of Kwale District

The Shimba Hills National Reserve jointly protects the largest proportion of remnant 

coastal forest and the largest Kenyan population of C. a. palliatus within the Kwale District. 

Results for the National Reserve indicate that colobus densities are very similar to those of a 

neighbouring C. a. palliatus Tanzanian population when encounter rates are compared. 

However, C. a. palliatus group and individual densities are higher than all C. angolensis 

populations studied to date within the Congo basin (Zaire). The species overall, tends to be 

found at lower densities than C. guereza, although it should be noted that a unique 

population of C. a. ruwenzorii have been found to form super-troops of over 300 individuals 

within the Nyungwe Forest in south-western Rwanda (although colobus density estimates 

from this site are unknown) (Fashing et al., 2004; Fimbel et al., 2001; Vedder & Fashing,

2002).

The Forest Reserves provide the largest area of forest cover (both in total coverage 

and per patch) for colobus populations outside the National Reserve, comprising almost 21% 

of the District’s forest cover under Forest Department protection. Individual reserves are 

generally larger in area and higher in occupancy than the Kayas and unprotected forests. 

Indeed, six of the ten largest C. a. palliatus populations within the District can be found within 

Forest Reserves, highlighting the importance of these sites for species protection.

Over 3,000ha of coastal forest (12%) still remain unprotected within the District 

however. Despite the highly fragmented nature of these forests, they continue to provide 

habitat for a significant proportion of the Kenyan C. a. palliatus population (17%), greater 

than the colobus population estimates for the Forest Reserves and Kayas combined. Two 

forests are particularly vulnerable, Diani and Shimoni, as they contain two of the largest 

colobus populations in the District, yet receive no formal protection.

The extent of Riverine forest within Kwale has been greatly reduced by the intensity 

of localised farming along the banks of the four major rivers. Surprisingly, colobus were 

found to persist in thin remnant strips of this indigenous vegetation along the Umba and 

Ramisi rivers. It is likely, however, that the pattern of utilisation of these areas was 

dependent upon the nature of the surrounding vegetation, namely the distribution of
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perennial plantations (i.e. coconut, cashewnut and mango tree crops) which provide an 

arboreal canopy that facilitates colobus movement between riverine patches. Encounter 

rates of colobus within perennial plantations also suggest this. Similarly, incidental sighting of 

colobus in wooded shrubland, wooded grassland, shrub grassland and mangrove provides 

preliminary evidence for the limited movement, and possible dispersal, of colobus between 

forest patches. The diversity and structural complexity of non-forest vegetation within the 

District, often referred to as ‘matrix’ (Gascon et al., 1999; Pardini, 2004; Ricketts, 2001), may 

have implications for the dynamics of the population as a whole and will be explored in later 

chapters (Chapters 4 and 6).

It is extremely difficult to assess the viability of individual colobus populations within 

Kwale District based solely upon population sizes. In fact, reference to a standard minimum 

viable population (MVP) has been fraught with controversy (Burgman, Ferson & Akcakaya, 

1993; Harcourt, 2002; Soule, 1987) as MVPs are known to be both species and site-specific. 

Variation in forest quality, patch connectivity and local threat processes may independently 

influence the distribution and viability of colobus populations within all 124 forest patches. 

Given the existence of small populations within the fragmented Kaya and unprotected 

forests, and the probable occurrence of limited movement of colobus within the matrix, a 

more expansive outlook of forest conservation that incorporates the unprotected forests, may 

be more applicable. In this approach, conservation management would focus on the 

preservation of the Kenyan C. a. palliatus population in a metapopulation framework 

(Baguette & Schtickzelle, 2003; Hanski, 1998; Hanski & Gilpin, 1991; Hanski et al., 1996a) 

rather than on a forest-by-forest basis.

2.5.2 Historical incidence

The present-day Kenyan distribution of C. a. palliatus is solely restricted to the 

southern coastal forests of the Kwale District. The absence of this species from the northern 

coastal forests of Kilifi District is intriguing, given the similarity of vegetation types, species 

composition and relative proximity of Kilifi forests to the northern-most occupied forests of 

Kwale (Fig. 2.3). The only geographical barrier between south and north coast forests is the 

highly concentrated settlement/development of the Mariakani - Mombasa region,
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incorporating the Mombasa - Nairobi railroad and highway. Although this may prevent 

present-day re-colonisation of Kilifi forests by dispersing colobus (construction of the railroad 

began in the early 1900s), the historical influence of these barriers would be negligible. Pre- 

1900s, Kwale and Kilifi forests would have once been part of a continuous vegetation mosaic 

of unique forest, thicket and woodland (Hawthorne, 1993). The only northern geographical 

barrier to the ancestral radiation of colobus from Tanzania and south coast Kenya, after the 

last ice age, would have been the lower floodplains of the Tana Delta, situated far north of 

the Kilifi forests (Rodgers et al., 1982).

The discovery of C. a. palliatus specimens collected in 1901 from Takaungu forest, 

Kilifi, 50km north of present-day colobus extent, confirms a minimum contraction of this 

same distance of C. a. palliatus range within the past 100 years. This finding also supports 

the reports collected in this study of the subspecies occurrence in Takaungu, prior to 

complete deforestation of the region in 1950. With the exception of the Aruboko Sokoke 

Forest Reserve, there are very few patches of coastal forest left in the Kilifi and Mombasa 

Districts (particularly near the Indian Ocean coastline) (Burgess et al., 2000). This is in 

contrast to the network of coastal forests, still in existence in Kwale District. It was difficult to 

ascertain from archival research whether intensive tourism development, local settlement or 

pre-1900s land conversion for the sisal, mining and dairy industries in the region precipitated 

the extensive loss of existing ‘north coast’ coastal forest, and/or whether the original coastal 

plains (up until the mid 1800s) were historically covered by woodland rather than the coastal 

forest found in Kwale District (A. Githitho, pers. comm). However, it does seem that C. a. 

palliatus individuals were observed within remnant Kilifi Kaya forests along the inland hills 

and ridges up until the 1940s (based on oral history). Anecdotal reports of colobus sightings 

in the Arabuko Sokoke Forest Reserve until 1979 suggest a potentially recent extinction 

timescale. Considering the large area of this forest (37,000ha), it seems the most probable 

refuge in Kilifi for any remnant colobus population. The rare nature of colobus sighting 

events expressed by the north coast survey participants (leading as far back as the 1920s) 

made these sightings particularly memorable to participants. Colobus numbers must 

therefore have been extremely low in the Kilifi District during this time, with major population 

declines occurring before the 1900s.
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The most striking difference between north and south coast that could explain the 

loss of C. a. palliatus from Kilifi forests involves the cultural differences between coastal 

Mijikenda that inhabit these regions. Namely, the ‘north coast’ Mijikenda; the Rabai, Chonyi, 

Kambe, Jibana, Giriama, Kauma and Ribe all hunt and eat monkeys, whilst the Digo and 

Duruma of south coast do not. The north coast Mijikenda trap monkeys, and also hunt them 

with dogs. Subsistence hunting of primates within the Arabuko Sokoke Forest for example, 

has been found to occur at unsustainable levels (Fitzgibbon, Mogaka & Fanshawe, 1995). 

Large bodied, slow moving and less visually alert (Oates, 1996b), colobus may have been 

more vulnerable to similar historical levels of hunting pressure, than other coastal primate 

species. In addition, past interest and the value of black-and-white colobus skin for local 

dancers (Kahumbu, 1997), medicine men (Adamson, 1967), international export and the 

tourist market (Mittermeier, 1973; Oates, 1977b) may have increased the benefits of north 

coast hunters to target colobus specifically. Rodgers (1981) also noted in his distribution 

survey of C. a. palliatus range in Tanzania that the 1981 southern limit of the subspecies 

range, i.e. the north bank of the Rufiji River, once extended further south (for specific 

localities, see Rodgers, 1981). Historical reports suggested that colobus were commonly 

seen in areas south of the Rufiji River before the advent of European rule, but that 

vegetation clearance and hunting for skins destroyed most populations.

2.5.3 Current threats and conservation initiatives

Unprotected forests in the Kwale District are under the heaviest exploitation. Illegal 

logging and charcoal production are the most prominent activities occurring in these forests. 

However, two additional patterns emerge when comparing forests by protection status. 

Firstly, forest loss and tree damage within Forest Reserves is not significantly different from 

unprotected patches. Moreover, the incidence of recent logging and hunting activity is high in 

Forest Reserves, thus increasing the vulnerability of colobus populations within these forests 

to further habitat loss, fragmentation and degradation. Forest Reserve status in Kenya has 

been criticised in the past for allowing considerable resource exploitation with little 

investment in protection (Lovett & Wasser, 1993). Most timber extraction observed within the 

Forest Reserves was illegal, with forestry guards lacking the resources, such as transport,
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capacity or training, to police areas effectively. It is clear that increasing law enforcement and 

management of the reserves would greatly improve their future preservation (Struhsaker, 

Struhsaker & Siex, 2005). To be effective, however, additional conservation strategies are 

required, incorporating local education and the development of both (1) Kenyan forest policy,

i.e. forest protection, international timber trade, and (2) alternative wood resources, 

especially for the hardwood and woodcarving industries. For an extensive overview of the 

Kenyan timber trade (commercial and domestic), conservation problems and practical 

recommendations, see Marshall and Jenkins (1994).

Illegal hunting and snaring of wildlife was most evident within the Forest Reserves. It 

is also interesting to note the rising trend of hunting activity with increasing forest protection 

status (Fig. 2.4.d.). This may reflect covariation in the occurrence of other mammal species 

with forest protection status, but additional data on forest mammal densities are required to 

establish whether this is the case. Snaring is thought to be of minimal impact to the colobus 

(snares and traps are designed for terrestrial duiker and pig species), although there have 

been occasional reports of opportunistic hunting for colobus skins within the District (pers. 

obs). Nevertheless, the threat is thought to be minimal. Due to widespread local knowledge 

of Kenya Wildlife Service legislation, it was extremely difficult to obtain quantitative 

information about possible colobus poaching activities across the survey area.

The second emerging pattern from this study concerns the Kayas, which have lost 

relatively little forest cover (since 1989) compared to the unprotected forests. These forests 

are also exposed to relatively lower impacts of logging, hunting and charcoal activity. A 

partnership between local communities and the National Museums of Kenya may have been 

critical to successful Kaya forest protection (Githitho, 1998) because this partnership has (1) 

strengthened traditional Mijikenda forest values/protection (previously weakened by social, 

cultural and demographic changes in the District), and (2) provided additional conservation 

support to local communities fighting the commercial development of forested sites. The role 

of local community involvement within Kwale District forest management is presently 

undervalued (pers. obs.), and should be transferable to future conservation initiatives 

involving unprotected forests in the District.

The Diani and Shimoni forests provide essential habitat for two of the largest C. a. 

palliatus populations in the Kwale District. However, to date they remain unprotected and are
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heavily impacted by all local threat processes, particularly forest clearance for development 

and agriculture (Kahumbu, 1997; Struhsaker, 1981b). Logging, charcoal, firewood and 

hunting pressures were moderate in Diani when compared directly with Shimoni, but these 

differences are attributable to the ongoing conservation efforts of Wakuluzu, Friends of the 

Colobus Trust, based at this site (Cunneyworth & Rhys-Hurn, 2004). In both unprotected 

forests, involvement of local stakeholders is likely to be critical to the successful preservation 

of remaining forest habitat, focusing primarily on the economic potential of the colobus and 

coastal forest in these significant tourism centres (Hackel, 1999; Navrud & Mungatana, 

1994).

It is also worth mentioning two future threats that may become more prevalent for 

the conservation of C. a. palliatus in Kwale District. Fristly, given the possible historical 

influence of Mijikenda hunting preference on colobus distribution in north coast, we should 

not rule out the potential increase in hunting of colobus for subsistence, with influxes of north 

coast or other Kenyan ethnic groups to the south coast as Kwale coastal development 

increases (Hoorweg, 2000). Secondly, present levels of C. a. palliatus crop-raiding are rare, 

and solely reported within the southernmost (Vanga) region of the Kwale District. However, 

C. guereza in western Kenya have been killed by locals in the belief that they cause major 

damage to crops (Oates, 1977b, pers. obs.). More research is required in the southern 

region of Kwale, to (1) quantify and monitor levels of human-wildlife conflict, and (2) 

determine whether regional differences in habitat loss are driving the localised occurrence of 

this behaviour.

Lastly, equivalent colobus surveys are required in Tanzania to determine the present 

status of C. a. palliatus within its entire East African range (IUCN, 2004). At present the most 

recent, published data concerning the national status of C. a. palliatus in Tanzania concerns 

a distribution study from 20 years ago (Rodgers, 1981). It is hoped that the results of this 

study will initiate future interest to replicate Kenyan C. a. palliatus population survey efforts 

within the coastal forests and Eastern Arc Mountains of Tanzania, or amalgamate presently 

unpublished subpopulation estimates for particular regions. The results of this study will also 

provide a baseline for strategic management and action plans specifically targeting C. a. 

palliatus and coastal forest conservation in Kenya.
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3. Effects of forest fragmentation and habitat quality on the abundance 

of Colobus angolensis palliatus in Kenya’s coastal forests.

3.1 Abstract

The Angola black-and-white colobus (Colobus angolensis palliatus) exists in forest 

patches across the southern coastal Kwale District of Kenya. These forest patches can be 

quite heterogeneous, and many suffer from anthropogenic impacts, but there is currently no 

information available to indicate how such factors affect the occurrence and abundance of 

colobus monkeys. In order to answer this question, 46 coastal forest fragments ranging from 

1ha to >1,400ha were surveyed in 2001. In each patch, the occurrence and abundance of 

colobus monkeys were recorded, together with information on the spatial, structural, 

resource and disturbance characteristics of the forest. Thirteen hypotheses were tested to 

explain variation in patch occupancy and abundance patterns of C. a. palliatus in relation to 

these habitat attributes. Minimal adequate models indicated that the occurrence of colobus 

monkeys in forest fragments was positively associated with fragment area and canopy cover, 

whereas the density of colobus monkeys in occupied fragments was attributable to forest 

area, the proportion of forest change over the previous 12 years, and the basal area of 14 

major food trees. Large-scale illegal extraction of major colobus food trees in the District for 

human resource use (in both protected and unprotected forests), together with ongoing 

forest clearance and modification, are highlighted as the major threats to C. a. palliatus in 

Kenya.

3.2 Introduction

Habitat loss, fragmentation and modification have long been cited as leading threats 

to the persistence of primate communities in East African tropical forests (Oates, 1996b; 

Rodgers & Homewood, 1982; Struhsaker, 1981b; Struhsaker & Siex, 1998). Massive human 

population growth in the region has led to high demand for forest resources (including
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fuelwood, charcoal, poles, and timber) and widespread agricultural expansion (primarily in 

the form of food crops and exotic tree plantations). This, in turn, has had a dramatic impact 

on East African forests, such that only a small fraction of the original forest cover now 

remains (Sayer, Harcourt & Collins, 1992). The impacts of forest loss alone, independent of 

the effects of fragmentation and modification in the remaining forest habitat, are estimated to 

threaten between 2-5 endemic primate species (17-39% of all species) with extinction in this 

region (Cowlishaw, 1999).

Colobine monkeys may be particularly vulnerable to these threats. Colobines are 

highly arboreal species that depend on leaves, seeds and unripe fruit (Davies, 1994), and 

may therefore be at high risk of extinction from deforestation (Davies, 1994; Marsh, Johns & 

Ayres, 1987). In West Africa, Colobine monkeys can also be highly vulnerable to the 

bushmeat trade (Oates, 1996b) as they are particularly sought after by hunters for their 

large-body size and higher financial returns (Davies, 1987; Lahm, 1993; Martin & Asibey, 

1979). However, the impact of the bushmeat trade is less problematic in the present study, 

since the people of East Africa consume much less primate meat (Oates, 1996b).

Previous studies have found positive relationships between colobus abundance and 

forest habitat characteristics such as the basal area of food trees (Mbora, 2004), protein-to- 

fibre ratio of mature leaves (Oates et a/., 1990; Wasserman & Chapman, 2003), and canopy 

height and tree cover (Medley, 1993). Colobus occupancy in forest patches has also been 

found to be related to the amount of forest edge and canopy tree species composition 

(Mbora, 2004). However it would be incorrect to infer general trends for this subfamily of 

primates, since at species, or even subspecies level, populations can respond differently to 

habitat alteration (Cowlishaw & Dunbar, 2000b). For example, Asian colobine biomass has 

been positively correlated with the abundance of leguminous trees (Davies, 1994) whilst 

similar research has failed to find this relationship within the African colobines (Chapman et 

al., 2002; Davies, Oates & Dasilva, 1999). Similarly, sympatric studies at Kibale Forest, 

Uganda, have found that Colobus guereza densities increased in light and heavily logged 

forest, but in contrast, Procolobus badius densities declined under the same habitat 

modification (Chapman & Chapman, 2002; Plumptre & Reynolds, 1994; Skorupa, 1986). The 

difficulty of making generalisations across taxa emphasises the need for detailed studies of 

individual species.
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The Angola black-and-white colobus (Colobus angolensis Sclater 1860) is found 

within the forests of north-east Angola, Democratic Republic of Congo, Rwanda, Tanzania 

and Kenya (Kingdon, 1997). Relatively little is known about the species abundance in these 

regions (Mate, Colell & Escobar, 1995), nor its response to habitat fragmentation. However, 

from the limited data available, it is known that the species can achieve a diverse range of 

mean group sizes within differing forest habitats, from six individuals in the Diani Forest, 

Kenya (Kanga, 2001) to super-troops comprising 300 or more individuals in the Nyungwe 

Forest of south-western Rwanda (Fashing et a/., 2004; Fimbel et al., 2001; Vedder & 

Fashing, 2002). Although the species is not currently listed as threatened, the subspecies C. 

angolensis palliatus Peters 1868, confined to islands of fragmented forest in coastal Kenya, 

Tanzania and the Eastern Arc Mountains (Kingdon, 1997; Rodgers, 1981; Tarara, 1986), has 

been highlighted as vulnerable to extinction due to deforestation caused by tourist 

development schemes (Kahumbu, 1997; Struhsaker, 1981b). Rapid rates of human 

population growth in the region have also led to heightened requirements for local timber 

resources (Marshall & Jenkins, 1994; Robertson & Luke, 1993), together with an 

intensification of forest clearance for animal husbandry and agricultural practices (UNEP, 

1982), adding further pressure on the remaining C. angolensis populations. The IUCN 

African Primate Action Plan also recommended that the status of this subspecies needed to 

be assessed in Kenya, in conjunction with stringent management plans to conserve 

remaining coastal forest fragments within the region (IUCN, 1996).

Given the lack of knowledge concerning this subspecies and the conservation 

priorities linked to its future existence in Kenya, the aims of this research were to 1) identify 

the key habitat attributes that determine C. angolensis palliatus occupancy within coastal 

forest patches in Kenya and 2) identify those attributes that determine the abundance of C. 

angolensis palliatus populations in those occupied patches. In this analysis, we test thirteen 

hypotheses that relate colobus patch occupancy and abundance to the quality of the patch, 

which we define according to its spatial attributes, food resources, structural attributes, and 

human disturbance. These hypotheses are based on the findings of previous research on 

colobine abundance, and are summarised in Table 3.1.
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Table 3.1. Independent habitat variables examined in the GLM statistical analysis and the 
hypothesized relationships with colobus abundance and occupancy.

Habitat Attributes
Proposed
relationship Hypothesised relationships with colobus abundance

Spatial
Forest size + A greater coverage of food resources will encourage population 

occurrence and support greater numbers of colobus (Connor, Courtney 
& Yoder, 2000; Estrada & Coates-Estrada, 1996). Density responses 
are unknown (see Discussion).

Habitat edge + Patches with a greater degree of forest edge will support a greater 
density/occupancy of colobus due to the species exploitation of 
successional food resources i.e. young leaves, lianes and vines that 
arise from edge-effects (Coley & Barone, 1996; Johns & Skorupa, 
1987)

Forest isolation 
distance

As a forest becomes increasingly isolated, chance immigrations from 
neighbouring colobus populations lessen. Small populations of colobus 
may risk future declines or extinction due to a breakdown of 'rescue 
effects’. (Brown & Kodric-Brown, 1977; Dunbar, 1987).

Resource
Tree diversity + A greater variety of food resources, including infrequently used items, 

may enhance the resource quality and thus carrying capacity of forest 
patches (Chapman & Chapman, 1999; Medley, 1993). Lesser known 
tree species may also provide important fallback foods at times of food 
scarcity, thus encouraging colobus occupancy/abundance in patches 
(Cowlishaw & Dunbar, 2000b).

Tree, food tree & 
major food tree density

+ Increased density of trees will provide greater food resources 
(Chapman & Chapman, 1999; Mbora, 2004) and canopy coverage 
(Medley, 1993) for colobus. The degree of dietary flexibility within C. a. 
palliatus may be revealed through the relative influence of food trees 
and major food trees on colobus density/occupancy.

Structural
Forest 

canopy height
+ Higher mean canopy heights greatly improve the canopy structure for 

an arboreal primate that rarely descends below 10m in the canopy 
(McGraw, 1998a; Medley, 1993), facilitating habitat occupancy and 
higher colobus densities.

Forest 
canopy cover

+ Greater degree of canopy coverage facilitates arboreal access to food 
resources (McGraw, 1998a; Medley, 1993), also providing greater 
shelter from avian predators (Struhsaker, 2000; Struhsaker & Leakey, 
1990). Increased density/occupancy predicted.

Disturbance
History of 

forest loss
+ Patches with a lower proportion of 1989 forest cover (<1), will have 

lower densities (or extinctions) of colobus due to reduction of food 
resources and lowered carrying capacity of forest. Conversely, patches 
which gain forest cover since 1991 (>1) will increase both carrying 
capacity and colobus density/occupancy (Bender, Contreras & Fahrig, 
1998; Marsh, 1986).

Tree damage The removal of trees from forest patches ultimately depletes food 
resources (Medley, 1993) and disrupts the structural characteristics of 
the forest (Chapman & Chapman, 1999), limiting the locomotion of an 
arboreal primate. Decreased abundance/occupancy predicted.

Human utilization 
(4 variables)

1) Villages near forests, 2) hunting, 3) logging and charcoal activities 
may have negative effects on colobus densities. Each activity can 
cause noise and structural disturbance to the forest (Cowlishaw & 
Dunbar, 2000b; Marsh eta l., 1987), 4) Paths and roads will also further 
fragment existing patches, encouraging higher levels of human traffic 
and additional noise disturbance. Decreased abundance/occupancy 
predicted.
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3.3 Methods

3.3.1 Study Site

Kwale District, in the Coastal Province of Kenya, lies between Mombasa and the 

border of North Eastern Tanzania (3°30’, 4°45’S; 38°3T and 39°31’E). Roughly 8,322km2 in 

area, the District is largely an agro-ecological zone (Muchoki, 1990) resulting in a 

heterogeneous mix of land cover types that includes grasslands, woodlands, swamps, 

shrublands, forestry plantations, and annual and perennial cropland. Average temperature is 

about 26°C for the District, with highest mean temperatures of 33°C reached between 

November and April. The rainfall pattern is bimodal (long rains between March and July, 

short rains occur in October to December). Precipitation diminishes from the coastline to the 

hinterland, with the initial 36km from the sea: the ‘coastal forest belt’ (Clarke, 2000) receives 

900-1500mm of rainfall annually (Jaetzold & Schmidt, 1983). Altitude varies from sea level 

along the Indian Ocean shore, to slightly over 1000m in the hinterland (HSEDCO, 1998). 

Due to the altitudinal and climatic conditions of the coastal belt, the area is also interspersed 

with fragmented and largely threatened coastal forest. These forests are remnants of what 

was once an extensive coverage of lowland rain forest, swamp forest, scrub forest and 

undifferentiated forest types (Clarke, 2000). Part of the ‘Zanzibar-lnhambane floristic region’ 

(White, 1976), and recently re-classified as the ‘Swahilian Regional Centre of Endemism’ 

(Clarke, 1998), these unique forests largely grow on coastal sedimentary rocks (Hawthorne, 

1993) and provide habitat for the present-day Kenyan distribution of the Angola black-and- 

white colobus monkey (Colobus angolensis palliatus) (Fig. 3.1). There are 124 coastal forest 

fragments remaining in Kwale District, ranging in size from 1ha to 160km2. Some forest 

patches are occupied by C. a. palliatus populations, while others are not. Both ‘occupied’ 

and ‘empty’ forest patches were the focus of this study.
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Fig. 3.1 . The distribution of coastal forest fragments in Kwale District, Kenya.

3.3.2 Colobus incidence and abundance

Forty-six forest patches were randomly chosen for detailed ecological study from a 

larger national survey involving all 127 forest patches (see Chapter 1). Between July - 

November 2001, each of the 46 patches were systematically surveyed using a one-day 

“sweep sample” technique (Whitesides et al., 1988) to obtain an estimate of colobus density 

for each forest patch. Four or more survey teams, each comprised of two trained observers 

plus one experienced colobus field researcher (from Wakuluzu, Friends of the Colobus 

Trust, Diani Beach, Kenya), began surveys between 06.30-07.00am each day. Teams 

walked parallel transects 100m apart, along pre-determined routes (Struhsaker, 1981a) until 

an entire forest patch had been covered. Total survey time was thus a function of patch area 

and the number of census teams. All primate encounters were recorded in relation to 

species, group size and age-sex composition, time, and location along the transect. In all
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instances where C. a. palliatus groups were encountered, up to ten minutes was spent with 

each group utilising all three members of each survey team to count and accurately identify 

the age-sex composition of group members. The time and direction of primate group 

departure following the encounter were also recorded. All teams discussed and enumerated 

results immediately after the completion of each survey and ‘double-counts’ were removed 

by comparing similarities in team observations, i.e. primate sighting times, departure 

directions and group compositions.

All primate encounters were ranked on a four-point scale in accordance with 

observation quality: 0, primate vocalisation detected but no individuals observed; 1, primate 

group detected but group count incomplete; 2, primate group detected and counted but age- 

sex composition incomplete; and 3, primate group detected with complete count and age-sex 

composition. These codes were used to guide the subsequent allocation of group size to 

each group encountered, as follows: 0, data discarded (no confirmed group encounter), 1, 

group size based on the mean group size obtained from all group counts of quality three in 

the national survey (n=196 groups), 2 and 3, group size taken from the actual count. Once 

group size had been established for all groups, the number of colobus in each patch was 

calculated from the sum of individuals in each group plus all solitary animals recorded.

3.3.3 Habitat attributes

During the same survey period all forest patch boundaries were mapped on foot by 

traversing the patch perimeter and recording positional data at 10 second intervals using a 

Garmin 12XL global positioning systems (GPS). These GPS data were then downloaded 

into MapSource software (MapSource 5.3, Garmin Corporation 1999), before being imported 

into an ArcView geographic information system (ArcView GIS 3.2, ESRI Inc. 1999) where 

subsequent GIS analysis using Xtools (Version 6.1, 2001) and Nearest Features (Version 

3.6e, 2001) extensions allowed for the detailed estimation of forest spatial attributes, 

including forest area (ha), perimeter (m), habitat edge (area-to-perimeter ratio), and patch 

isolation distance (m).

Four botanical survey teams, each comprising two researchers, used transects to 

collect data on forest resource and disturbance for each of the 46 patches. Between 3-26
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transects were carried out in each patch, depending on the patch area. Transect length also 

varied between patches (longer transects were used in larger patches), so that total transect 

length varied between 100m-3,000m per patch. The systematic placement of transects 

throughout each forest also ensured an accurate representation of each patch. Transect 

data can be divided into three headings: forest resources, forest structure, and forest 

disturbance. In the first case, forest resources, all trees >10cm in diameter at breast height 

(DBH) were enumerated within 4m of the transect (Grieg-Smith, 1983). Tree species, height 

(m) and DBH (cm) were also recorded, the latter providing a relative index of canopy cover 

(and possible resource availability) for the colobus (Decker, 1994). These data were used to 

calculate tree diversity (number tree species/ha), absolute tree density (basal area m2/ha), 

absolute food tree density (basal area m2/ha) and absolute major food tree density (basal 

area m2/ha). Food trees were identified from ongoing research involving whole-day follows of 

colobus groups within the Diani Forest, Kwale, conducted by the Colobus Trust (unpubl. 

data). The Diani Forest is one of the 124 patches studied in our national survey of Kenya’s 

coastal forest system, but it was not one of the 46 patches chosen for more detailed study 

here. Feeding behaviour and plant food species were recorded through instantaneous scan 

sampling of all group members at ten-minute intervals. This provided us with a basic list of 

food trees that was supplemented by feeding observations during the course of our 2001 

survey and by local field-assistant knowledge of colobus inhabiting other forests within the 

District. Major food trees were established by calculating the proportion of colobus feeding 

bouts (n= 14,445 individual feeding scans) for each tree species recorded by the field 

researchers during the periods of Aug-Oct 1999 and Feb-June 2003.

In the second case, forest structure, the canopy height (m) and canopy cover (%) 

were recorded every 50m along the transect. Mean values were then calculated for each 

patch. In the third case, forest disturbance, four types of data were collected: (1) all tree 

damage within 4m of the transect, including stump/stem diameters, tree species, type of 

damage (natural death, animal damage, logging, debarking), and age of damage (recent, 

old, very old); (2) the perpendicular distances of all visible snares, pitsaws and charcoal pits 

from the transect; and (3) all encounters with loggers, hunters, firewood collectors, access 

paths and roads along the transect. In addition, at 100m intervals along the patch perimeter, 

we estimated the minimum distance of human settlement to the forest. Patch disturbance
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was thus summarised as the absolute density of tree damage (basal area m2/ha), minimum 

distance (m) to human settlement, density of snares (snares/km), relative density of human 

paths and roads (number of paths and roads/km), and the incidence of pitsaws and charcoal 

pits (presence vs. absence).

3.3.4 Historical forest loss

To determine the effect of recent deforestation we digitised eight topographical maps 

covering the Kwale District. These 1:50,000 maps were based on 1989 aerial photographs 

and field survey work by the Japan International Cooperation Agency and Survey of Kenya 

(Edition 4 -  JICA, 1991). Scanned TIFF files of the maps were imported into ArcMap (Arclnfo 

8.3, ESRI Inc. 2002) and geo-referenced. The forest boundaries were then digitised. We 

measured forest change for each of the patches as the proportional change in forest cover 

between 1989 and 2001 (i.e. values <1 indicated loss in forest cover, 1=no change, and >1 

indicated gain in forest cover).

3.3.5 Statistics

A generalised linear model (GLM) framework (Crawley, 1993) was used for the 

analysis of both colobus patch occupancy and density, using the statistical software R, 

version 1.9.1 (www.r-project.org). The first model, a stepwise GLM analysis with binomial 

error structure, identified the habitat attributes that influenced colobus occupancy within 46 

forest patches. Each forest patch was regarded as a unit, with presence or absence of 

populations coded as a binary response variable. All explanatory variables detailed in Table

3.1 were entered into a full model and log (base e) transformed to normalise the distribution 

of these variables. The only exceptions were canopy cover, canopy height and proportion of 

forest change, since their distributions were already normal. All non-significant variables 

were sequentially removed, least significant first, until a minimal adequate model was 

reached. Statistical significance was tested using deletion F-tests corrected for over­

dispersion.

The second model analysed colobus density in occupied patches using a stepwise 

GLM with Poisson error structure. The total number of colobus individuals within each of the
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33 occupied patches was the response variable, with patch area as an offset parameter. The 

influence of the habitat variables in Table 3.1 was tested by finding the minimal adequate 

model, using the same approach as for presence-absence data.

During the exploratory phases of both occupancy- and density-model fitting, three 

variations in the estimation of resource availability were tested, namely the basal area of all 

trees, food trees and major food trees. These variables were closely correlated and not 

expected to have independent effects, so were not tested jointly in any given model. Rather 

these alternatives were tested in order to determine which, if any, had the strongest effect on 

density and occupancy.

3.4 Results

3.4.1 Colobus occurrence & density

Thirteen empty and thirty-three (71.7%) occupied forest patches were surveyed, 

which ranged in size from 1ha to 1,417ha. A total of 769 Angola black-and-white colobus 

monkeys were recorded within 136 social groups. Mean colobus group size was 6 (median = 

6), ranging between 2-13 individuals per group. In two of the 33 occupied patches we found 

only solitary individuals. Patterns of abundance varied dramatically between forest patches. 

Colobus numbers varied between 0-110 individuals per patch, whilst densities ranged from 

0.04-1.3 individuals/ha (4.3-129.0 individuals/km2). Resident colobus groups were found 

within small forest fragments (the smallest being 3.1 ha) which gave rise to unusually high 

densities of colobus within those fragments.

3.4.2 Habitat attributes

From the 875,217m2 of vegetation transects we enumerated 325 tree species in 53 

families. From this tree list it was possible to establish 116 species as C. a. palliatus food 

trees (Colobus Trust unpub.) and thus calculate food tree abundance (basal area of food 

trees) in each patch. Fourteen tree species make up over 75% of C. a. palliatus diet in the 

Diani Forest, Kenya (Table 3.2).
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Table 3.2. Major C. a. palliatus food trees responsible for >75% feeding records in the Diani Forest, 
Kenya. Local human use is also recorded since this may reflect possible human resource conflicts.

Family Species Part eaten 8 Common, Swahili name Local human use

Anacardiaceae Lannae welwitschii YL, ML, P, FI, Fr, B Muyumbu-Maji Charcoal, furniture, fruit-edible, bark-rope and medicinal

Araliaceae Cussonia zimmermannii YL, ML, P, FI, Fr, S Cabbage Tree, Mbomba Maji Furniture
Bombacaceae Adansonia digitata YL, ML, P, FI, Fr, B Baobab, Mbuyu Fruit-edible, bark-ropes,weaving and medicinal, 

roots-dye and medicinal

Combretaceae Combretum schumannii YL, ML, P, FI, F, S Mgurure, Mpera-Mwitu Hardwood timber, building timber and poles, charcoal, 
fuelwood, woodcarving

Euphorbiaceae Drypetes reticulata YL, ML, P, Fr unknown Charcoal, building timber and poles

Meliaceae Trichilia emetica YL, ML, Fr, S Mnwamaji Fuelwood, building timber, furniture, roots-medicinal 
and seeds-oil used for soap

Moraceae Milicia excelsa YL, ML, FI, Fr, S Iroko, Mvuli Building timber, boat building, furniture, joinery and 
bark-medicinal

Papilionaceae Millettia usaramensis YL.ML Mwino, Mtupa Hardwood timber used in building
Rutaceae Zanthoxylum chalybeum YL, ML, P, Fr Knobwood, Mjafari Building timber, bark and leaves-medicinal
Sapindaceae Lecaniodiscus fraxinifolius YL, ML, P, FI, Fr, S Mkunguma Hardwood timber used in building

Lepisanthes senegalensis YL, ML, S unknown Building timber and furniture
Sapotaceae Sideroxylon inerme YL, ML, P, FI, Fr, S Mkokobara, Mtunda Fruit-edible
Tiliaceae Grewia vaughanii YL, ML unknown Building poles, fuelwood, bows and fruit-edible

Grewia plagiophylla YL, ML, P Mkone, Mfukufuku Building timber, fuelwood, bows, arrows, rungus, 
fruit-edible, roots-medicinal

8 Plant parts eaten by C. angolensis are: YL = young leaves, ML = mature leaves, P = petioles, Fl= flowers, Fr = fruit, S = seeds, B = bark
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Overall resource abundance, as measured by basal area m2/ha for all trees, was found to be 

highly variable between patches, and unrelated to forest area (Pearson correlation; n=46, r=- 

0.08, p=0.6). Not only did we find considerable variation in overall tree density, but the 

availability of colobus food and major-food resources also differed between forests (Fig 3.2). 

The severity of forest disturbance also ranged widely from 3-44% basal area tree removal 

between patches (median 10%). Extraction practices included the local collection of 

firewood, building poles and medicinal bark (small-scale disturbance), as well as illegal 

hardwood timber logging and charcoal production (large-scale clearance).

□  Other 

9  Other food 

9 Major food

E I
Ind iv idual fo re s t p atch es

Fig 3.2 Basal area coverage of major food trees, other food trees and other trees, highlighting the 
resource variability between forest fragments. Patches plotted in order of increasing forest area (ha). 
The smallest forest patch has an unusually high major food tree density due to the prevalence of 
baobab Adansonia digitata within that patch (tree species known for < 1000 cm dbh).

Occupancy of forest patches by colobus monkeys was positively related to forest 

area and to degree of canopy cover (Table 3.3). The presence of colobus thus became 

increasingly rare as patch area diminished and canopy cover declined (Fig 3.3). The 

combination of these two factors explained 31.7% of the variance in occupancy of colobus 

populations observed in this study. None of the remaining eleven habitat attributes (Table 

3.1) predicted occupancy in the model.
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Table 3.3. GLM analysis of habitat variables determining C. a. palliatus occupancy and density.

Response
variable

Predictor
variable

Parameter
co-efficient SE F P

Occupancy1 Area 0.84 0.297 14.38 0.0004
Canopy cover 0.05 0.024 5.96 0.02

Individual colobus density2 Area -0.55 0.027 52.43 <0.0001
Proportion of forest change 1.11 0.152 9.33 0.005
Major food tree density (m2/ha) 0.17 0.033 4.95 0.03

1 GLM Binomial presence/absence model (null deviance = 54.78, residual deviance = 37.42, df = 43,1)
2 GLM Poisson density model (null deviance = 473.99, residual deviance = 156.66, df = 29,1).
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Fig. 3.3 Occupancy patterns of C. a. palliatus populations within forest fragments.
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In the occupied patches, colobus density was positively associated with both the 

proportion of forest change and the density of major food trees >10cm DBH, and negatively 

associated with patch area (Table 3.3). Although colobus density increased in smaller 

patches (Fig 3.4) the effect was evidently a relatively small one, since the absolute number 

of colobus still showed a significant positive relationship with forest area (regression; B = 

0.49, t = 6.32, df =31, p<0.0001, R2adjUsted=0.55) (Fig 3.5). Overall this model, encompassing 

these three explanatory variables, accounted for 67.1%  of the variance in colobus density. 

None of the other ten habitat attributes (Table 3.1) explained any further variance.
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Fig. 3.4 Population density of C. a. palliatus in forest fragments, Kenya
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Fig. 3.5 Population size of C. a. palliatus in forest fragments, Kenya

3.5 Discussion

This study highlights the wide range of population responses that a colobine species 

can exhibit to ongoing habitat modification, fragmentation, and loss. Importantly, the 

occurrence and abundance of C. angolensis palliatus populations in Kenyan coastal forest 

fragments was found to be significantly influenced by a number of habitat attributes, 

encompassing multiple aspects of forest spatial, resource, structural and disturbance 

characteristics. Here I will review these effects in more detail and consider their implications 

for the conservation management of the Angola black-and-white colobus monkey in the 

coastal forests of Kenya.



3.5.1 Forest spatial attributes

Forest area is the most influential of all habitat variables, strongly affecting patterns 

of both patch occupancy and density in C. a. palliatus populations. The former effect might 

be expected given the initial hypothesis (Table 3.1) and the widespread positive species- 

area relationships that have been addressed explicitly by island biogeography theory 

(MacArthur & Wilson, 1967) and more recently in metapopulation theory (Hanski & Gilpin, 

1991). In contrast, recent colobine studies of Procolobus rufomitratus in Tana River, Kenya 

(Mbora, 2004), and Procolobus badius and C. guereza in Kibale, Uganda (Onderdonk & 

Chapman, 2000), found no evidence of a relationship between species occupancy and patch 

area. Mbora (2004) suggested possible metapopulation dynamics could be influencing the 

observation of ‘suitable’ unoccupied patches within the Tana River system, whilst Onderdonk 

& Chapman (2000) highlighted a high degree of dietary flexibility within the Kibale Forest 

colobines allowing species to exist as remnant populations in small patches. However, 

rather than infer any underlying differences between these species and C. a. palliatus, this 

disparity may simply be the result of a greater number and size-range of forest patches 

within this analysis that has permitted the detection of this effect. Studies of another 

folivorous primate, Aloutta palliata, may highlight this point: species incidence was found to 

increase in larger patches across 64 forest fragments in Southern Veracruz, Mexico 

(Rodriguez-Toledo, Mandujano & Garcia-Orduna, 2003).

The relationship between forest area and primate density is rather more complex. 

Although colobus population size increased with increasing patch area (Fig 5), the increase 

was not proportional, resulting in lower colobus densities in larger forest patches (Fig 4). A 

similar pattern has been described for Allouata palliata abundance by Rodriguez-Toledo et al 

(2003). There are two possible reasons for this increase in density in smaller patches. Firstly, 

it may be the outcome of random processes, and not a real effect. This may arise because 

small absolute deviations from the expected number of groups counted in the smallest 

patches can lead to very high densities, purely at random. Due to the density analysis 

excluding unoccupied patches, these high densities are not then offset by zero counts, and a 

negative relationship between patch area and density might therefore arise without any 

underlying functional pattern. Secondly, small patches with high colobus densities may be 

those that have recently undergone a substantial contraction of area, in which densities of
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colobus have not yet adjusted to a new equilibrium (Cowlishaw & Dunbar, 2000b). However, 

the analysis of the effects of proportional forest change, below, do not support this 

possibility. Nevertheless, this process cannot be ruled out entirely, since this analysis only 

measured change over a 12-year period and this time-frame may be inadequate for 

demographic readjustment to take place where habitat loss has occurred more recently (e.g. 

in the last 2-3 years).

No evidence was found for the expected positive relationship between colobus 

abundance/occupancy and the extent of edge habitat, i.e. the forest area-to-perimeter ratio 

(Johns, 1987; Johns & Skorupa, 1987; Mbora, 2004). Colobus guereza differ from C. a. 

palliatus (at least in southern Kenya) in that they principally exploit the understory of forests 

rather than the high canopy (Oates, 1977a). They also thrive in moderately disturbed habitat 

(Chapman et al., 2004; Johns, 1985; Skorupa, 1986), feeding on the proliferation of young 

leaf growth and vines which accompany the increased light conditions within forest gaps and 

edges (Coley & Barone, 1996; Ganzhorn, 1995). The absence of habitat edge effects on C. 

a. palliatus populations may therefore highlight different responses to habitat fragmentation 

between these species as a result of differences in feeding ecology. In fact, the relationship 

between proportional forest change and C. a. palliatus density (see below) suggests that this 

species may be negatively affected by the amount of habitat edge, because as forest is 

progressively lost a reduction in forest area will increase the amount of edge habitat within 

each patch (Bender et al., 1998). Further differences in the feeding ecology and habitat use 

of black-and-white colobus species can be found in a detailed comparison of niche 

separation in sympatric C. guereza and C. angolensis populations within the Ituri Forest of 

north-eastern Zaire (Bocian, 1997).

Abundance and occupancy patterns did not reveal any effects of patch isolation, 

even though patch isolation distances varied between 0.008-6.6km. This would suggest that 

dispersal by C. a. palliatus between patches is not strongly limited by distance in this system. 

This implies that the intervening matrix between fragments (Berggren, Carlson & Kindvall, 

2001; Gascon et al., 1999; Ricketts, 2001) may be sufficiently permeable to make both 

recolonisation and “rescue effects” (Brown & Kodric-Brown, 1977) equally likely at both short 

and long isolation distances. In fact, colobus were sighted within various matrix vegetation 

types (e.g. mangrove, perennial cropland, coastal shrubland) in the course of the field
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research (J. Anderson, unpubl.), and further analyses will expore the extent and relative 

importance of this additional habitat variable in primate occupancy patterns in the coastal 

forests of Kenya (see Chapters 4 and 6).

3.5.2 Forest resource attributes

The abundance of major food resources positively influences colobus density. The 

influence of one of the 14 tree species, the baobab Adansonia digitata with its unusually 

large trunk diameter < 1000cm (Beentje, 1994), could have biased these analyses through 

an overestimation of major food availability, since basal area is used as a relative index of 

canopy cover, and thus food availability (Decker, 1994). However, when basal areas of A. 

digitata were substituted with mean basal areas of food trees (that excluded A. digitata in the 

calculation, and were patch specific), the significance of this variable remained constant.

It is particularly interesting that neither the density nor diversity of all trees, food 

trees or major food trees predicted occupancy, whilst only the latter predicted density. It may 

be that C. a. palliatus exhibits a high degree of dietary flexibility, eating low-quality, less 

preferred foods when required, allowing populations to occupy patches when resource 

quality is relatively low. The large number of indigenous tree species (n=116) exploited by 

the colobus in south coast Kenya, may already highlight this phenomenon. However, the 

relationship between major food tree density and colobus abundance indicates that, once a 

patch is occupied, the key local food resources can play an important role in supporting high 

colobus population densities. The importance of food trees in predicting colobine abundance 

has also been found in a number of African study sites (Chapman & Chapman, 1999; 

Decker, 1989; Mbora, 2004; Skorupa, 1986). In addition, Chapman & Chapman (1999) 

discovered that dietary composition varied dramatically between colobus populations in 

Kibale forest fragments, Uganda. A similar situation could be inferred from the coastal forest 

fragments of Kenya, given the differences in food resource distribution illustrated in Fig 3.2. 

A clearer validation of this result would come from further studies of the feeding ecology of 

C. a. palliatus within differing forest fragments, as well as research into the nutrient quality 

(Moreno-Black & Bent, 1982), especially the protein and fibre content (Chapman et al., 2004; 

Oates et al., 1990; Wasserman & Chapman, 2003), of colobus food plants in the region.
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3.5.3 Forest structural attributes

In light of current theories that focus on the geometry of forest fragments to explain 

patterns of occupancy (Hanski & Gilpin, 1991), it is interesting to note a characteristic of 

habitat quality, i.e. canopy cover, was found to be a significant predictor of population 

incidence. Umapathy & Kumar (2000) found a similar effect of forest structure in south India: 

two arboreal primate species, Trachypithecus johnii and Macaca silenus, were more likely to 

occur in fragments with high tree density, canopy height and canopy cover. Our result is 

likely to reflect the fact that canopy cover will be extremely important to an arboreal primate 

that relies heavily on continuous canopy to gain access to food resources (Arosen, 2004; 

McGraw, 1998b) and also to avoid predators. Avian predation on colobines has been well 

documented in East and West Africa (Struhsaker, 2000; Struhsaker & Leakey, 1990) and 

high rates of terrestrial predation on Presbytis entellus in India have been linked to low 

canopy cover (Ross & Srivastava, 1994). The same may apply to C. a. palliatus in the Kwale 

District, where sea eagle predation on primates has been observed (pers. obs.) and broken 

forest canopies are known to increase the proportion of time colobus spend on the ground, 

thus increasing the frequency of incidental encounters with both feral dogs and hunters’ 

dogs. These effects were observed in one colobus group that contained no adults as a result 

of repeated dog attacks (confirmed through local interviews).

3.5.4 Forest disturbance attributes

Colobus density was significantly affected by the proportion of forest change 

between 1989 and 2001: colobus density was higher in patches with increasing forest area 

but, conversely, was lower in patches with declining forest area. Although some forest 

patches were observed to grow in size over this period, probably through the abandonment 

of agricultural plots on the boundaries of forests (Ganade, 2001) and the implementation of 

Kenyan Forestry Department plantation schemes over the past 12 years (Marshall & 

Jenkins, 1994), these forest patch gains were in a clear minority. Thirty-eight of the patches 

suffered 3-96% declines in forest coverage with corresponding reductions in colobus 

numbers. The combined effects of reduced patch size, increased resource competition, and
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decreased connectivity of the landscape (Bender et al., 1998), may be jointly responsible for 

these changes in colobus abundance beyond those associated with habitat area alone.

More direct measures of disturbance, as measured by the density of tree removal, 

paths, roads, snares, the presence of charcoal activities and proximity to human settlement, 

were not found to significantly affect colobus abundance as independent variables. This 

need not mean that they lack influence in particular cases, but that there was no consistent 

effect overall that we could detect in this sample. There can be little doubt that C. a. palliatus 

is vulnerable to human disturbances, given that a study in the Ituri Forest, Zaire, found that 

the abundance of colobus was more than halved between mixed and logged forests 

(Thomas, 1991). In fact, our analyses may indicate longer term effects of disturbance on 

colobus populations, since two of our four significant habitat measures (canopy cover and 

food tree density), may reflect historical disturbance that is now only detectable through 

these structural/compositional forest attributes.

What is certain from the analysis is that there is a major degree of resource overlap 

between colobus food trees and human extraction practices. From our analyses of absolute 

density of tree damage we identified 216 tree species which were logged for hardwood 

timber, woodcarving, domestic timber, fuelwood and charcoal within the forests of the Kwale 

District. Over 45% of this extraction targeted just 10 species of indigenous tree. Nine of 

these species are food trees of the colobus whilst four are major food trees, namely; Millettia 

usaramensis, Combretum schumannii, Grewia sp., and Lecaniodiscus fraxinifolius. Given the 

relative importance of these food trees for colobus abundance, and their continued extraction 

by humans, it may only be a matter of time before C. a. palliatus populations decline and/or 

become extinct in response to the permanent removal of these major food resources 

(Decker, 1989; Skorupa, 1986).

3.5.5 Concluding remarks

This study highlights the negative impact of coastal forest habitat destruction on C. 

a. palliatus populations in the Kwale District, Kenya. Identification of the precise mechanisms 

responsible for the variety of occupancy and abundance patterns observed in primate 

studies is extremely complex, particularly with regard to independent measures of forest
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disturbance. However, our GLMs were successful in attributing >65% of the variance in 

colobus density, and 32% of the variance in occupancy, to habitat attributes. The latter 

response still has a considerable amount of variance left unexplained: a more 

comprehensive analysis, encompassing all 124 forest patches, of forest spatial attributes 

and intervening matrix structure, may provide a better understanding of patch dynamics and 

subsequent colobus occupancy patterns in a regional metapopulation context (Gustafson & 

Gardner, 1996; Hanski, 1999a; Vandermeer & Carvajal, 2001).

Forest loss and ongoing tree extraction in the Kwale District is a dynamic and 

ongoing process, even within protected Forest Reserves and Kayas (sacred local forests, 

gazetted as National Monuments) (Robertson & Luke, 1993). The high degree of human and 

colobus resource overlap, with local human populations showing a propensity for extracting 

the major food trees of the colobus, has serious implications. As a result of ongoing forest 

loss, and the extraction of food trees in the remaining forests (affecting both the availability of 

food resources and the structure of the forest canopy), it is very likely that we shall witness 

future declines of C. a. palliatus densities, and increased population extinctions, over the 

coming years. The outcomes of this study therefore highlight the importance of maintaining 

large closed-canopy forests within the District, and the restoration of degraded habitat, 

wherever possible. This will require improved law enforcement of illegal logging, better forest 

management, and the promotion of alternative human resources.
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4. Does the matrix matter? : Heterogeneous ‘non-habitat’ between 

forest fragments and its relevance to an arboreal primate.

4.1 Abstract

Rarely in the study of tropical forest fragmentation and its effects on primates is the 

matrix habitat surrounding fragments considered. The ability of primates to utilise such 

heterogeneous regions between forest fragments may greatly influence their vulnerability in 

fragmented landscapes. Using semi-structured interviews, matrix vegetation sampling and 

remote sensing techniques, this study focused on an arboreal forest-dependent primate: the 

Angola black-and-white colobus (Colobus angolensis palliatus) and its use of the matrix 

within the fragmented coastal forest landscape of southern Kenya. Both colobus individuals 

and groups were observed (by the local community) within the matrix up to 4km from nearby 

forest fragments. Colobus frequently travelled through indigenous matrix vegetation such as 

mangrove, wooded shrubland and shrubland areas, additionally using these matrix types as 

supplementary foraging habitats. Anthropogenic matrix such as perennial plantation (of 

coconut, mango and cashew nut) was also used for colobus travel. Individuals utilised the 

dense, ‘arboreal-friendly’ tree canopy of this matrix type to gain access to additional food 

resources, i.e. sparsely distributed indigenous tree species that were remnant within this 

habitat. The probability of sighting colobus individuals within the matrix was positively related 

to the proportion of tall (>6m) vegetation cover and the proportion of colobus food tree cover. 

Sighting probability was also negatively associated with distance from core forest habitat. By 

utilising remote sensing and land-cover GIS mapping techniques as an additional, spatially- 

explicit tool for understanding the complexities of matrix heterogeneity in fragmented tropical 

forest regions, wildlife managers can effectively: (1) visualise the extent of important matrix 

habitats, (2) highlight the differing levels of connectivity between forest fragments, and thus 

(3) prioritise ‘landscape-level’ habitat management which includes the matrix, that could 

bolster primate conservation initiatives in fragmented landscapes.
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4.2 Introduction

Research into tropical deforestation and its effects on primate populations has 

largely focused on three major components of habitat fragmentation, namely the degradation 

of original forest habitat, the reduction in habitat patch size, and the increasing isolation of 

habitat patches (Andren, 1994; Marsh, 2003b). The quality and spatial characteristics of 

forest fragments is significant in understanding any remnant population’s behaviour, density, 

viability, and ultimately species conservation and management (Chapman & Lambert, 2000; 

Fahrig, 2003; Marsh, 2003a). Most studies tend to measure habitat quality in terms of forest 

size, structural characteristics, food resource abundance and levels of disturbance. Most, if 

not all, quantifiable research takes place within the boundaries of the forest fragments (e.g. 

Medley, 1993; Onderdonk & Chapman, 2000). The complex mosaic of vegetation types that 

buffer forest boundaries therefore receives little attention in these analyses. Often referred to 

as “matrix” (Gascon et al., 1999; Ricketts, 2001; Vandermeer & Carvajal, 2001), these ‘non- 

forest’ vegetation types are believed to be of limited use to forest-dwelling primates.

Theories of island biogeography (MacArthur & Wilson, 1967) and more recently, 

metapopulation dynamics (Hanski, 1998; Hanski & Gilpin, 1991; Levins, 1969a) also assume 

that suitable habitat patches are isolated from one another by homogeneous, inhospitable 

matrix (Addicott et al., 1987; Vandermeer & Carvajal, 2001). Limited dispersal of individuals 

between patches (a crucial assumption of metapopulation theory) is assumed to be 

influenced by distance only (Hanski, Alho & Moilanen, 2000), ignoring the possibility that 

matrix vegetation could facilitate or impede an animal’s dispersal, depending on the 

structural characteristics of the matrix and the dispersal ability of the study species (With & 

Crist, 1995). The arboreal colobines for example, are thought to rarely leave forest patches 

due to their dependence on continuous, closed forest canopy (Chapman et al., 2004; Marsh 

et al., 1987), questioning the applicability of the metapopulation concept as a framework in 

which to describe, assess and manage fragmented colobine populations.

Whilst extensive examples of individual primate dispersal between groups, also 

known as ‘social dispersal’ or ‘transfer’, can be found throughout the primate literature (Field 

& Guatelli-Steinberg, 2003; Isbell & VanVuren, 1996; Pusey & Packer, 1986) and, more 

specifically, the colobine literature (Korstjens & Schippers, 2003; Oates, 1977c; Rajpurohit,
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Sommer & Mohnot, 1995; Sterck, 1995), these studies solely focus on individual movements 

between social groups within the same habitat patch. In these cases, the research focus is 

primarily driven by hypotheses concerning the evolutionary reasons for primate dispersal, i.e. 

intragroup competition for resources, intrasexual competition for mates and inbreeding 

avoidance. In contrast, ‘locational’ primate dispersal, i.e. the movement of individuals away 

from familiar areas (Isbell & VanVuren, 1996), with particular reference to long-distance 

dispersal movements between habitat patches, has yet to be systematically studied.

It is now recognised that primates can exhibit great ecological and behavioural 

flexibility in response to their changing environment. For example, anthropogenic land 

transformation has allowed some species to exploit agricultural matrix on the boundaries of 

their natural habitats (Cowlishaw & Dunbar, 2000b). Local subsistence crops can offer an 

alternative food resource to most of the frugivorous cercopithecine and pongid species 

(Cowlishaw & Dunbar, 2000b; Naughton-Treves, 1998; Reynolds, Wallis & Kyamanywa, 

2003; Wolfheim, 1983), whilst colobines are also documented as occasional crop raiders 

(Naughton-Treves, 1998). Indigenous matrix vegetation can also provide additional food 

resources for colobus in the form of mangrove foliage (Siex, 2003, pers. obs.) or secondary 

vegetation found within abandoned agricultural plots and coastal shrubland areas (Moreno- 

Black & Maples, 1977). The structure of the matrix, i.e. the number of canopy layers, canopy 

height, density of large supports and canopy cover, may influence an arboreal primate’s 

access to such food resources (Aronsen, 2004a; McGraw, 1998a; Umapathy & Kumar, 

2000), as well as hinder or facilitate dispersal between habitat patches. A number of 

anecdotal reports have been found of arboreal primates dispersing through plantations 

(Laidlaw, 2000; Li, 2004; Olupot & Waser, 2001; Umapathy & Kumar, 2000) and wooded 

shrubland (Marsh, 1979; Wieczkowski, 2004), which suggests that continuous, closed- 

canopy matrix may be important to facilitate these movements.

The recent integration of landscape ecology, the study of landscape structure and its 

effects on ecological processes (Turner, 1989), with studies of forest fragmentation, have 

highlighted the importance of studying fragments within a larger, dynamic landscape mosaic 

(Fahrig & Merriam, 1994). For example, matrix composition and connectivity have been 

found to influence the dispersal, diversity, abundance and population persistence of insects 

(Bonte et al., 2003; Goodwin & Fahrig, 2002), birds (Aberg et al., 1995; Jokimaki & Huhta,
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1996; Wethered & Lawes, 2003) and mammals (Cook, Anderson & Schweiger, 2004; 

Gascon et al., 1999; Goheen et al., 2003; Laurance & Laurance, 1999; Pardini, 2004; 

Reunanen, Monkkonen & Nikula, 2000; Schippers et al., 1996). In the latter, both terrestrial 

and arboreal mammal species were studied; however, this approach has yet to be 

considered for primates. If indeed ‘the matrix matters’ (Ricketts, 2001), further investigation 

into its potential effects may be vitally important for the future conservation management of 

fragmented primate populations.

The Kwale District of southern Kenya provides an ideal landscape for the study of 

matrix quality and its significance to arboreal primates. Firstly, Angola black-and-white 

colobus (Colobus angolensis palliatus) populations inhabit 55 out of the 124 coastal forest 

fragments in this region (Chapter 2). The species is largely folivorous and forest-dependent 

(Davies, 1994; Moreno-Black & Maples, 1977), with a greater commitment to arboreality than 

the sympatric cercopithecines found within the District: the Syke’s monkey (Cercopethicus 

mitus albogularis), yellow baboon (Pap/o hamadryas cynocephalus) and vervet monkey 

(Chlorocebus aethiops) (Aronsen, 2004a, b; Bocian, 1997; Moreno-Black & Maples, 1977; 

Strasser, 1992). Recent research has also discovered a significant influence of canopy 

structure on the incidence of C. a. palliatus populations within these 124 habitat patches 

(Chapter 3), which further confirms a dependency on closed-canopy vegetation structure for 

colobus movement. Secondly, the existing 124 forest fragments in the District are threatened 

by further anthropogenic landscape change and are listed as one of 11 ‘priority regions’ for 

international conservation investment (Brooks et al., 2002) due to the ongoing forest 

destruction in the area (CEPF, 2003; Oates, 1996a). The forest fragments are also 

surrounded by a heterogeneous mix of agriculture, development and indigenous (non-forest) 

vegetation. Thirdly, the regional dynamics of C. a. palliatus populations may also function at 

a metapopulation level (Hanski, 1994b, 1998), therefore any information regarding limited 

colobus dispersal between forest patches would help to elucidate this possibility. 

Consequently, the three main aims of this study were: (1) to investigate the occurrence and 

behaviour of C. a. palliatus in ‘non-forest’ matrix, (2) identify the key habitat attributes that 

determine C. a. palliatus usage of the matrix, and (3) establish the extent of important matrix 

habitat within the range of the subspecies, for the development of future C. a. palliatus 

conservation management plans within Kenya.
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4.3 Methods

4.3.1 Study site

The Kwale District, in the Coastal Province of Kenya, lies between Mombasa and 

the border of north-eastern Tanzania (3°30’, 4°45’S; 38°31’ and 39°31’E). The District 

comprises approximately 8,322km2 and is largely an agro-ecological zone (Muchoki, 1990) 

with only 3% of the District’s land cover encompassing true, closed-canopy, indigenous 

coastal forest (i.e. 255km2, within 124 forest fragments) (Chapter 2). Human development 

and agricultural land transformation in the District has given rise to a heterogeneous mix of 

‘matrix’ land cover types. Indigenous matrix within the District comprises mangrove, coastal 

shrubland, and shrub or wooded grassland areas, which can also contain small clusters of 

indigenous (forest) tree species (these clusters are too small in area to warrant a ‘forest 

habitat’ classification). Historical human land use in the region has transformed coastal forest 

(and other regions of indigenous matrix) into pastoral grasslands, perennial plantations (i.e. 

coconut, cashew nut, mango), timber plantations, annual croplands (e.g. maize, rice, sugar 

cane and root vegetable crops) and areas of human development and settlement (CEPF, 

2003; Muchoki, 1990; Nzoika, Ojiambo & Gang, 2003). Most agriculture in the District is 

locally managed. Large-scale commercial production of sugar cane, bixa and cashew nut 

collapsed in the pre-1990s, with the closure of the District’s main agro-factories (Nzoika et 

al., 2003). For the purpose of this study, the author classified ‘matrix’ into the 17 categories 

listed in Table 4.1. These categories were based on gross structural characteristics of the 

matrix: i.e. primary vegetation type (if any), canopy cover and height (Grunblatt, Ottichilo & 

Sinange, 1989) and were divided into ‘indigenous’ and ‘human land use’ types.
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Table 4.1. Matrix types within the Kwale District, Kenya.a Matrix structure details the % coverage and 
height (m) of dominant vegetation types (Grunblatt et al., 1989). b For more detailed descriptions and 
lists of tree species see (Burgess et al., 2000; Robertson & Luke, 1993; White, 1983). c For 
descriptions of species see (Richmond, 1997). d For descriptions of commonly used cultivated food 
species see (Maundu, Ngugi & Kabuye, 1999).

Matrix type Matrix structurea (height) Examples of matrix composition

Ind igen ou s

1 Indigenous coastal 
forest vegetation

80-100% closed-canopy tree coverage 
(>10m), remnants of the coastal forests b

Adansonia digitata, Combretum schumannii, 
Lecaniodiscus fraxinifolius, Ficus spp.

2 Mangrove 80-100% closed-canopy mangrove (>10m) 
encompassing eight tree species c

Rhizophora mucronata, Ceriops tagal, 
Bruguiera gymnorrhiza, Avicennia marina.

3 Wooded shrubland 50-79% dense shrubs (1-6m), 20-49% 
indigenous coastal trees (>10m)

Grewia spp., Brachystigia spiciformis, 
Cynometra webberi, Paramacrolobium spp.

4 Wooded grassland 50-79% dense grass (<1m), 20-49% 
indigenous coastal trees (>10m)

Acacia spp., Commiphora edulis, Hyphaene 
compressa, Terminalia spp.

5 Shrubland 80-100% closed shrub (1-6m), 2-19% 
indigenous coastal trees (>10m)

Manilkara sulcata, Diospyros conmii, Croton 
spp., Dobera glabra, Adenia spp.

6 Shrub grassland 50-79% dense grass (<1m), 
20-49% shrubs

Acacia spp., Thespia danis, Lantana spp., 
Annona senegalensis, Phoenix reticulate.

7 Bare ground 0% canopy coverage (0m), no secondary 
vegetation (0m)

Sandy or rocky, bare ground only.

8 Sand 0% canopy coverage (0m), no secondary 
vegetation (0m)

Deposits of coral and sands £ 30m from the 
Indian Ocean shoreline.

9 Swamp 2-19% sparse trees (>10m), 
50-79% water (0m)

Phoenix reclinata, Hyphaene spp., Elaeis 
guineensis, Raphia spp.

10 Water

H um an  la n d  u se

100% water = no vegetation (0m) Indian Ocean, rivers, lakes.

11 Perennial plantation 50-79% dense trees (>10m), 20-49% 
grass, shrubs or annual crops (<3m)

Anacardium occidentale, Cocus nucifera, 
Mangifera indica.

12 Timber plantation 50-79% dense trees (>10m), 20-49% 
grass or shrubs (<3m)

Casuarina equisetifolia, Eucalyptus spp., 
Pinus spp., Cupressus spp.

13 Annual cropland <1m 80-100% closed crops (<1m) d Solanum tuberosum, Vigna ungiculata, 
Oryza sativa, le a  mays, Manihot esculenta.

14 Annual cropland 1-3m 80-100% closed crops (1-3m) d Saccharum officinarum, Musa spp., Carica 
papaya, Zea mays, Manihot esculenta.

15 Grassland 80-100% closed grass (<1m) Hyparrhenia spp., Digitaria mombasana, 
Andropogon spp., Setaria spp.

16 Human development 0% vegetation cover (0m) Buildings, tarmac roads and settlements.

17 Quarry 0% vegetation cover (0m) Open quarries for coral, lime and minerals.
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4.3.2 Sampling colobus in the matrix

Since observations of C. a. palliatus in any given matrix type were expected to be 

relatively rare events, standard primate survey techniques such as line-transects or quadrats 

(Plumptre, 2000; Struhsaker, 1981a) were considered to be inappropriate sampling methods 

for the purposes of this study. Therefore, alternative methods of gathering information about 

colobus incidence in the non-forest matrix had to be found. Rather than use extensive teams 

of surveyors to traverse the landscape, a more productive (and cost-effective) method was 

designed which focused on the local community inhabiting the matrix. Two researchers (the 

author and a field researcher from Wakuluzu, Friends of the Colobus Trust, Kenya) used 

semi-structured interview techniques (Bernard, 2002) to gather information from the local 

community concerning colobus sightings outside of the forest. Using this method the author 

was utilising the historical knowledge of the local interviewees’ experience, treating the local 

community as the ‘surveyors’ of their own landscape.

To achieve representative sampling within the matrix, a median of seven sites (mode 

= 9, range = 3 - 9 )  were selected for each of 10 selected matrix types, i.e. mangrove, 

shrubland, wooded shrubland, grassland, shrub grassland, wooded grassland, annual 

cropland 1-3m, perennial plantation, timber plantation and swamp. Matrix types were chosen 

that would provide a wide spectrum of matrix structural differences to compare and contrast. 

Sites were chosen within the District that represented homogeneous expanses of each 

matrix type (>10ha). The number of sample sites was estimated as proportional to the 

heterogeneous land cover within the District. During the period of February until June 2003 a 

minimum of six interviews were obtained from each sample site. A day was spent within 

each site, scanning the area for interview candidates who were either: (1) actively working in 

the matrix at the time of the survey, or (2) were living in settlements surrounded by the matrix 

type of interest. Participants were selected on the basis of their knowledge of C. a. palliatus 

and length of ‘exposure’ to the sample site they inhabited. Thus, key informants were locals 

who spent a significant proportion of their working day outside, e.g. farmers and herdsmen 

living within the agricultural and grassland matrix, and fishermen working within mangrove 

areas. For swamp, timber plantations and mangrove matrix, participants lived and worked on 

the edges of these matrix types. When participant sourcing methods proved difficult over
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large distances, snowball sampling was used to locate key informants (Bernard, 2002), i.e. 

after the completion of each interview, participants were asked to name and direct the 

interviewer towards appropriate, additional locals within each sample site for interview.

All interviews were geo-referenced using a Garmin 12XL global positioning system 

(GPS) and distances to nearest forest boundaries were calculated using ArcView geographic 

information system (ArcView GIS 3.2, ESRI Inc. 1999) and Nearest Features extension 

(Version 3.6e, 2001). A standardised framework of questions was put to each participant in a 

semi-structured interview (see Appendix II). However, interviews were flexible in terms of the 

scope, extent, order and emphasis with which different questions were explored. Participant 

credibility was assessed by quantifying their exposure to the sample site (i.e. total number of 

hours) in terms of working hours per day, days per week, number of seasons and years. 

Participants were also asked if they were born at the site, with historical exposure quantified 

wherever possible. Colobus knowledge was then tested using a three-stage process; 

participants had to list all the monkey species within the District (and mention colobus), 

describe two things about the colobus (e.g. appearance, uniqueness of white infants, habitat 

preference, arboreal nature or movement, ecology or behaviour), and lastly, correctly identify 

the subspecies from five primate photo ID cards (see Appendix III). Participants were also 

ranked in accordance to the level of prompting required, i.e. 0 (none) to 3 (excessive). The 

interview responses used in this analysis were restricted to those participants who 

expressed a good level of knowledge about the colobus (with little or no prompting) and 

spent > 3,000 hours (i.e. the equivalent of 1 year, 5 days/wk, 4 hrs/day) within the matrix. All 

other interviewees were excluded from the analysis. Participants who were classed as 

‘incidental’ in the matrix (i.e. those who lived within the matrix, but worked daily elsewhere), 

were also excluded.

The interviews established if participants had observed colobus within their lifetime 

at the sample site and recorded details of the frequency of sightings both within the past year 

(i.e. weekly, monthly, rarely, never), and historically. In all cases, the participant’s exact 

response was documented in detail and classified by the interviewer post-hoc. Rare 

sightings were summarised by the number of sightings/year, or number of sightings/hour of 

participant exposure time. If colobus sightings were reported, details regarding: (1) the 

number of animals observed, (2) colobus locomotion (arboreal, terrestrial), (3) height above
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ground, support use, and speed of travel (feeding/resting, slow and fast), and (4) reasons for 

movement, were discussed. Responses to the latter question were later summarised by the 

interviewer as either ‘travelling’, ‘feeding’ (including details of food types) or ‘chased’ (e.g. 

dogs, people throwing stones). In some instances, participants could take the interviewers to 

the exact location of the colobus sighting, e.g. the feeding tree, and these points (n = 53) 

were also geo-referenced using a GPS. Using the GIS mentioned above, the minimum 

distance (km) of each geo-referenced colobus sighting to the nearest forest boundary could 

be calculated. Only sightings within two years of the interview survey period were used in the 

GIS (n = 48) as these were directly comparable with the 2001 GPS forest boundary maps.

Interviews ended with a discussion on primates as local agricultural pests, to 

determine the severity of conflict between people and colobus within the District. Sometimes 

participants had no direct experience of observing colobus in the sample matrix. However 

they had observed colobus outside the forest, within matrix elsewhere in the Kwale District. 

In these instances, the same interview format was adhered to, gathering as much 

information as possible about these additional sightings.

A total of 386 interviews were completed during the 2003 field season, however only 

347 reports were used in the analysis based on the ‘credibility’ filter regarding the 

participant’s knowledge and exposure. The majority of participants were male (76%), 

between the ages of 40 to 60 years (53%). Occupations of most participants were either 

farmers (67%), fishermen (12%), herdsmen (10%), or miscellaneous outdoor workers, e.g. 

kiosk owners, medicine men, loggers, carpenters and maintenance workers (12%), with a 

history of working an average of 85,000 hours ± 4,000 S.E. (range = 3,000 -  481,000 hrs) 

within, or on the edge of, their respective matrix sites.

4.3.3 Matrix vegetation surveys

Within each of the local interview sample sites four intercept vegetation transects 

(Bullock, 1996; Grieg-Smith, 1983), each measuring 150m in length, were randomly placed 

within the study matrix type. Using this method the beginning and endings of noticeable gaps 

in the upper vegetation canopy (if any) were noted along each transect. Every 5m along the 

transect, the presence of colobus food trees, bare ground, dwarf <1m (short grass, crops,
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shrubs), low 1-3m (overgrown grass, crops, shrubs) and tall >6m (shrubs, trees) vegetation 

were recorded, as well as the height (m) of the uppermost canopy level. Crop and canopy 

tree species (i.e. indigenous or perennial trees >6m) were recorded if the canopy was 

directly above the 5m (transect) sampling point. Human paths, roads and rivers that 

intersected transects were also recorded as possible barriers. Exceptions to the sampling 

frequency were swamps (no sites sampled), mangrove and coastal shrubland (two sites 

sampled respectively), as these matrix types were logistically too difficult to measure due to 

water or thick vegetation barriers. Any primate groups observed during vegetation sampling 

were recorded by species, group size, sighting height, time, compass bearing and estimated 

distance (m) from the vegetation transect, to first animal seen. The start and end points of 

each transect were logged by GPS.

4.3.4 Statistics

Using the statistical software R, version 1.9.1 (www.r-proiect.org). a stepwise 

generalised linear model (GLM) analysis with binomial error structure (Crawley, 1993) 

identified the key attributes that influence the frequency of C. a. palliatus sightings within the 

matrix. Each matrix site was regarded as a unit, with the proportion of colobus sightings 

weighted as a ‘two-vector’ response variable (i.e. total number of ‘positive’ responses were 

bound together with the total number of ‘negative’ responses into a single object, and 

weighted by sample size). Using data gathered from the intercept vegetation transects it was 

possible to calculate the average canopy height (m), number of canopy gaps, gap length 

(m), proportion of bare ground cover, dwarf (<1m), low (1-3m), and tall (>6m) vegetation 

cover, and proportion of colobus food tree cover for 47 matrix sites, across nine matrix types. 

The distances (km) of the 47 matrix sites to nearby forest were also estimated from the 

average distances of site interviews (n = 47 sites, /7 = 165 interviews). The habitat structure 

and distance variables for each site were subsequently entered into a full model, then 

sequentially removed, least significant first, until a minimal adequate model was reached. 

Statistical significance was tested using deletion F-tests.
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4.3.5 Matrix vegetation classification

In order to determine the extent of matrix cover within the range of existing forest 

habitat in the Kwale District, a comprehensive land cover map of the District was derived 

using remotely sensed satellite data. A 2003 Landsat-TM image of the study site (166/063, 

30-01-03, resolution: 25m x 25m) was the only suitable data source for the coastal area 

showing less than 10% cloud coverage (see Appendix IV.(A).). Using ENVI software (ENVI 

3.5, Research Systems Inc. 2001) an image-to-map rectification was first performed using 

GPS-gathered road references from the District as ground control points (GCPs). Remaining 

clouds and shadows present in the Landsat TM data were removed using simple cloud 

masks before performing a supervised maximum-likelihood classification using all eight 

spectral bands of the image (ERDAS, 1999). The classification used a training dataset of 

44,000 GCPs (Lillesand & Kiefer, 2000) gathered from vegetation transects, field 

reconnaissance and aerial surveys between the period of February and June 2003. The 

GCPs were defined according to the 17 land cover classes originally classified at the 

beginning of the study (Table 4.1). The accuracy of the ENVI land cover classification was 

tested using an additional testing GCP dataset (of equal size, but differing locations) in an 

ENVI post-classification. Finally, image noise was smoothed by the application of a median 

filter (Pratt, 1991).

The resulting land cover map in raster grid format (1 pixel = 25m x 25 m) was 

imported into ArcGIS (Arclnfo 9.0, ESRI Inc. 2002) (see Appendix IV.(B)) together with an 

overlay of the 124 coastal forest patches within the District. The latter dataset was obtained 

from a previous 2001 forest mapping study of the District (Chapter 2). To estimate the extent 

of matrix cover within realistic range of existing colobus forest habitat (i.e. that colobus 

individuals could possibly utilise) a sub-region of the Kwale District was created which 

encompassed all 124 forests. To achieve this: (1) 5km buffer zones were formed around all 

124 forest patches using ArcGIS, (2) a minimum polygon was then digitised that 

encompassed all the buffer zones of the western-most forests, the northern and southern 

limits of the Kwale District, and the eastern land border with the Indian Ocean (see Appendix 

IV.B). The extent of matrix cover within the resulting sub-region was calculated using zonal 

statistics in ArcGIS Spatial Analyst, with each matrix type summarised by percentage cover 

and total area (km2).

82



Each identifiable matrix type (Table 4.1) was then allocated a ‘quality’ rank based on 

the hypothesis that colobus movement through the matrix would be more likely when the 

vegetation structure was similar to that of habitat fragments (Pearson, 1993; Stouffer & 

Bierregaard, 1995). If beneficial matrix structure also had a high proportional coverage of 

colobus food trees, then general colobus locomotion and foraging efficiency were assumed 

to improve further during inter-patch dispersal (Aronsen, 2004b; McGraw, 1998a). The matrix 

‘quality’ ranks were as follows; 0, matrix type offers no benefit to arboreal locomotion and 

may even hinder primate dispersal; 1, matrix type offers limited access to arboreal 

locomotion with limited occurrence of colobus food trees; 2, matrix type offers dense tall 

canopy and unhindered arboreal locomotion with limited occurrence of colobus food trees; 3, 

matrix type offers closed tall canopy, unhindered arboreal locomotion and high occurrence of 

colobus food trees. In all cases, the proportion of tall vegetation cover was viewed as the 

most important factor influencing dispersal, whilst colobus food trees were viewed as an 

additional benefit only. The original land cover map was then reclassified into a ‘matrix 

quality’ map using ArcGIS Spatial Analyst.

4.4 Results

4.4.1 Colobus in the matrix

A total of 98 out of 347 reports documented colobus within the matrix (Table 4.2). 

These positive sightings were divided into two explicit report types. Firstly, 54 reports (15% 

of all reports) were specific to 23 matrix sites visited (i.e. 34% of all matrix sites). It was 

difficult to rule out the possibility of pseudo-replication within sites (participants within the 

same site observing the same colobus individuals), therefore results are explicitly 

summarised by the number of positive ‘site’ results as well as the number of positive 

‘interview’ results. Secondly, 44 participants gave additional information regarding colobus 

sightings in the matrix within other regions of the Kwale District. All 98 reports of colobus 

sightings were used to document the qualitative information concerning the nature of colobus 

behaviour within the matrix. However, only the 54 colobus sightings associated to sample 

sites were used to estimate colobus sighting frequencies in the matrix, as these reports were 

more accurately related to the participants’ exposure time within each matrix site. The

83



patterns of colobus incidence across matrix types showed a strong pattern of variation, 

which was consistent whether the data were summarised by site or by interview (Table 4.2).

Table 4.2. Results of semi-structured interviews, summarising the total number of matrix sites visited 
(ns) and the total number of interviews completed (n,) for each matrix type. nps (propn) = total number 
(and proportion) of positive sites where colobus were observed in the matrix; nPisne (propn) = total 
number (and proportion) of positive interviews reporting colobus in the matrix, where interview reports 
relate specifically to the sample site; nPioaRA = additional reports of colobus in the matrix elsewhere in 
the Kwale District. Totala = n p iS i T E  +  n p iE x T R A .

SITES INDIVIDUAL INTERVIEWS

MATRIX TYPE n s n Ps (propn) n , n pisite (propn) n  plEXTRA Total*

Wooded shrubland 3 3 (1.00) 11 8 (0.73) 10 18
Perennial plantation 9 7 (0.78) 50 20 (0.40) 24 44

Mangrove 9 6 (0.67) 46 16 (0.35) 5 21
Shrubland 4 2 (0.50) 17 2 (0.12) 2 4

Wooded grassland 8 3 (0.37) 46 6 (0.13) 3 9
Timber plantation 6 1 (0.17) 32 1 (0.03) 0 1

Annual cropland 1-3m 7 1 (0.14) 37 1 (0.03) 0 1
Grassland 7 0 (0 ) 33 0 (0) 0 0

Shrub grassland 6 0 (0 ) 35 0 (0) 0 0
Swamp 9 0 (0 ) 40 0 (0) 0 0

Total 68 23 (0.34) 347 54 (0.15) 44 98

Both wooded shrubland and shrubland were sampled less intensively (Table 4.2) 

due to the difficulty of finding large homogeneous areas of these remnant matrix types within 

the Kwale District. An overall trend is apparent, however, whether one looks at the proportion 

of matrix sites reporting colobus, the proportion of positive sightings of colobus within the 

matrix, or the distribution of extra reports. Namely, C. a. palliatus is observed within three 

main matrix types; wooded shrubland, perennial plantation (mixed coconut, cashew nut and 

mango), and mangrove. In contrast, colobus were never reported within grassland, shrub 

grassland or swamp vegetation. Despite the low sample effort within shrubland areas, 

colobus sightings were reported within half of these sites. The significance of this fourth 

matrix type is highlighted more clearly when sightings frequencies are summarised for each 

matrix site (Fig. 4.1).
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Fig. 4.1. Proportion of matrix sites reporting colobus. Matrix types = WSh, wooded shrubland; Per, 
perennial plantation; Mang, mangrove; Shrub, shrubland; WGr, wooded grassland; TP, timber plantion; 
AC, annual crops 1-3m; Gr, grassland; ShGr, shrub grassland; Sw, swamp. Regular sightings = the 
proportion of sites where the modal interview response to colobus sighting frequency (within the past 
year) was ‘weekly’ or ‘monthly’; Rare sightings = the proportion of sites where sightings occurred only 
once or twice within the historic experience of the participant.

Within all wooded shrubland, mangrove and shrubland sites (where colobus were 

reported), all participants gave accounts of regular colobus sightings (i.e. weekly or monthly, 

within the past year). Interviewees in only four out of seven perennial plantation sites 

reported regular colobus sightings, the remaining sites only reported rare encounters. Details 

of all rare encounters of colobus were as follows; three perennial sites (only once within 16, 

23 and 38 years respectively), and one wooded grassland (once in 48 years), timber 

plantation (once in 8 years) and annual cropland site (twice in 54 years).

Both solitaries (10%) and colobus groups (90%) were observed within the matrix {n 

= 98). Locomotion was primarily arboreal climbing, quadrupedalism and leaping (90%), 

however quadrupedal ground movement was also observed (10%) (n = 98). During arboreal 

locomotion, the supporting branches of mangroves, coastal shrubs, timber tree spp.,
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indigenous tree spp., cashew nut and mango trees were utilised, as well as the fronds of 

coconut palms. Colobus activity within differing matrix types is summarised in Table 4.3.

Table 4.3. Colobus activity within the matrix. Data under each column represents the total number of 
local sightings within the matrix (n = 98) where C. a. palliatus feeding, resting or travelling activity was 
observed. Figures in parentheses indicate each colobus activity as a proportion of the total number of 
sightings in each matrix type.

ACTIVITY
MATRIX TYPE Feeding Resting T ravel

Wooded shrubland 15 (0.83) - 3(0.17)
Perennial plantation 27 (0.61) 2 (0.05) 15(0.34)

Mangrove 10(0.48) 3(0.14) 8 (0.38)
Shrubland 3 (0.75) - 1 (0.25)

Wooded grassland 3 (0.33) - 4 (0.66)
Timber plantation - - 1 (1.00)

Annual cropland 1-3m - - 1 (1.00)

Total sightings 58 (0.59) 5 (0.05) 35 (0.36)

Feeding activity was the most frequently observed colobus behaviour within the 

matrix, occurring largely within wooded shrubland, perennial plantations, shrubland and 

mangrove. Colobus were reported to eat the leaf buds and young leaves of Rhizophora 

mucronata, Heritiera littoralis and Ceriops tagal mangrove. Within perennial plantations, 

colobus were reported to feed primarily on the leaves of indigenous trees: Adansonia 

digitata, Albizia gummifera, Afzelia quanzensis, Cussonia zimmermannii, Ficus spp., Grewia 

plagiophylla, Harrisonia abyssinica, Lannea welwischii, Sideroxylon inerme, Sorindeia 

madagascariensis, Tamarindicus indica, Terminalia catappa, and Zanthoxylum chalybeum. 

The tree species listed above are retained within perennial plantations either as sacred 

trees, shade trees, meeting places, or sources of fruit and/or medicinal products. Colobus 

were also reported to feed on the exotic timber tree species of Ceiba pentador and 

Azadirachta indica, and ornamental species of Delonix regia and Bougainvillea spectabilis,

within the same matrix type.

It was generally difficult to determine the nature of colobus travelling activity as direct 

evidence of C. a. palliatus dispersal between habitat patches. This was due to the general
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subjective nature of reports and the possibility that the interviewees themselves caused the 

movement of colobus due to disturbance. Of the 35 local reports of colobus travelling in the 

matrix, 60% of the interviewees clarified that ‘travel’ was the initial colobus behaviour 

observed, however after some time watching the colobus, interviewees noticed that the 

colobus individual (or group) stopped travelling, arrived at an indigenous tree and proceeded 

to feed. Also, within 23% of these reports the interviewee did not continue observations over 

an extended period to determine the reason for colobus occurence in the matrix. On one 

occasion an interviewee observed a colobus individual within perennial plantation being 

chased and killed by people with dogs. Therefore, all instances of ‘travelling’ activity should 

only be viewed as additional evidence for the potential of colobus dispersal between habitat 

patches, and not as direct evidence of dispersal events.

All interviewees stated that C. a. palliatus was not a significant agricultural pest 

compared with the District’s more frugivorous primates, i.e. the yellow baboon (Pap/o 

hamadryas cynocephalus), Syke’s monkey (Cercopethicus mitus albogularis), and vervet 

monkey (Chlorocebus aethiops). However, within the southern-most region of Kwale, close 

to the border of Tanzania (i.e. Vanga: a sub-location of Kwale District), colobus were 

reported to periodically eat the skins of unripe mangos (Mangifera indica) and oranges 

(Citrus sinensis), and the leaves of cassava (Manihot esculenta), sweet potato (Ipomoea 

batatas) and cow pea (Vigna unguiculata) crops. These reports were unique to this area 

only.

Analysis of GPS sighting locations data indicated that colobus were found to travel 

within the matrix up to 4.2km from the nearest forest boundaries with a median travel 

distance of 0.6km (range = 0.07 - 4.2km, n = 48). There was no significant difference 

between travel distances of solitaries (median = 1.6km, range 0.2 -  4.2km, n = 6) and 

colobus groups (median = 0.6km, range 0.07 -  4.1km, n -  42) (Mann-Whitney test, U = 72, Z 

= -1.68, p = 0.096). Since travel distances were calculated as the shortest (Euclidean) 

distances from nearby forest, it is possible that this method is underestimating the potential 

range of true travelling distances for C. a. palliatus, as individuals would seldom disperse in 

straight-lines and would be influenced by species-specific matrix preference (Bennett, 1998; 

Opdam, 1990).
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4.4.2 Matrix attributes

Primates were not observed in the matrix during the intercept vegetation transect 

sampling. However, from the GLM analysis of local interviews and matrix structure data it 

was found that the probability of sighting C. a. palliatus individuals within the matrix was 

negatively associated with distance from core forest habitat, i.e. colobus sightings became 

increasingly rare with increasing distance from the forest edge (Table 4.4). When controlling 

for distance, two matrix-quality variables also proved to be important: colobus sightings were 

positively related to the proportion of tall (>6m) vegetation cover and the proportion of 

colobus food tree cover (Table 4.4 and Fig. 4.2). The combination of these three factors 

explained 34.5% of the variance in colobus sighting reports. Neither matrix canopy height 

(m), number of canopy gaps, gap length (m), proportion of bare ground cover, or proportion 

of dwarf (<1m) or low (1-3m) vegetation cover explained any further variance.

Table 4.4. GLM analysis of the variables influencing local sightings of C. a. palliatus within the matrix. 
GLM binomial proportional model (null deviance = 104.05, residual deviance = 68.19, df = 43,1).

Predictor
variable

parameter
co-efficient SE F P

Distance from forest -0.67 0.211 6.77 0.01
Coverage of colobus foodplants 5.37 1.724 5.99 0.02

Coverage of tall (>6m) vegetation 3.11 1.168 4.39 0.04
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Fig. 4.2. Differences in the proportion of tall (>6m) vegetation cover and colobus food tree cover by 
matrix type. Ordered on x-axis in declining value of tall vegetation cover. Values on y-axis represent 
the mean proportional cover ± 1 S.E., derived from all intercept vegetation transects within each matrix 
type. Mang, mangrove; TP, timber plantation; Per, perennial plantation; WSh, wooded shrubland; WGr, 
wooded grassland; Shrub, shrubland; AC, annual cropland 1-3m; ShGr, shrub grassland; Gr, 
grassland.

4.4.3 Extent of matrix land cover

Post-classification of the Landsat TM image established 86.1% overall accuracy of 

the Landsat TM land cover classification (Kappa coefficient = 0.67) (ERDAS, 1999). The 

resulting post-classification, contingency matrix (Congalton, 1991) detailed in Table 4.5 

shows that timber plantations, annual cropland 1-3m, swamp, bare ground and water land 

cover types had a lower classification accuracy. Timber plantation GCPs were confused with 

indigenous coastal forest, but this will have little effect on the subsequent ‘matrix quality’ 

mapping as the canopy structure of these two land cover types are of similar height and 

cover for colobus arboreal locomotion. The latter four land cover types (all of low structural 

quality) were confused with coastal forest, wooded shrubland and shrubland, accumulating 

to 1077/1693 (64%) of the classification errors within these GCPs. This should be kept in



mind when viewing the land cover maps of the Kwale District, as coverage of these matrix 

types may be underestimated. Conversely, forest, wooded shrubland and shrubland cover 

may equally be overestimated.

Table 4.5. Results of remote sensing post-classification of Landsat TM data. The table details the 
percentage of ground control points (GCPs) which were correctly and incorrectly classified into different 
types of land cover by ENVI. Overall accuracy of post-classification: 37,938/44,047, (86.1%), Kappa 
Coefficient = 0.67; n = total number of GCPs used in ENVI post-classification. Ground-truthed land 
cover types that are correctly classified are highlighted in black, whilst ground-truthed land cover types 
with lower percentages of accurate classification are marked within borders.
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Indigenous coastal forest 34,754 0 90 0 1 2 1 0 0 1 1 1 1 1 1 0 1 0 0
Mangrove 615 11 0 77 0 1 0 7 1 0 0 0 0 0 0 1 0 0 0
Shrubland 209 0 2 0 38 20 3 0 0 8 7 4 2 1 4 5 3 1 0

Wooded shrubland 187 1 9 0 22 29 10 0 1 7 8 1 1 2 4 3 4 1 0
Grassland 124 0 11 2 1 27 31 0 0 3 10 5 2 1 3 0 2 1 1

Shrubbed grassland 95 8 0 25 0 0 0 54 0 1 0 0 1 8 0 1 0 0 1
Wooded grassland 5,666 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

Annual cropland <1m 21 0 10 0 19 10 14 0 0 29 5 10 0 0 0 5 0 0 0
Annual cropland 1-3m 141 0 7 0 14 23 9 0 0 11 4 2 0 8 4 2 1 0

Perennial plantation 159 0 11 1 8 15 8 1 0 6 4 22 1 3 8 6 4 1 1
Timber plantation 266 0 29 0 1 7 8 2 0 0 2 1 p 5 l 4 4 2 5 1 20

Swamp 86 0 16 1 7 8 7 7 0 13 1 8 7 9 0 7 6 0 2
Bare ground 1,415 0 13 1 19 16 10 1 0 7 9 6 2 1 _ 6 | 4 4 2 1

Sand 144 0 8 0 8 17 5 1 0 6 9 8 3 1 2 25 8 1 0
W ater 51 0 16 2 16 10 8 2 0 10 2 4 4 0 4 2 f l 4 | 2 6

Human development 84 7 1 2 2 2 4 10 0 1 0 1 2 0 2 0 4 60 1
Quarry 30 0 0 0 0 0 0 3 0 0 0 0 20 0 0 0 3 0 73

Total GCPs 44,047

The relative area of each matrix type was derived from the sub-region of the Kwale 

District which encompassed a total area 3,878km2 (Fig. 4.3.a.). This sub-region can be 

further separated into: (1) 255 km2 of indigenous coastal forest in 124 forest fragments, and 

(2) a heterogeneous mix of matrix types between these forest fragments which totalled an 

area of 3,623 km2. The total coverage and ‘quality’ ranking of each matrix type within this 

3,623 km2 are detailed in Table 4.6.
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Fig. 4.3. Landsat TM classification of matrix cover within the Kwale District, Kenya, (a) = illustrates the 
methodology to derive a suitable sub-region for analysis, (b) = resultant land cover classification (ENVI) 
of the Kwale sub-region.
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Shrub grassland (35%) and shrubland (16%) were the most extensive of the 

indigenous matrix types. In addition, it was found that almost 90km2 of mangrove (3%) still 

remains within the Kwale District. The surprisingly high coverage of shrubland may in fact be 

more representative of agricultural crops mixed within shrubland, hence the low incidence of 

obvious (homogeneous) sites to sample during the interview period. Perennial plantation 

(13%) was the greatest of all agricultural matrix. Two percent of the matrix range was 

classified as indigenous coastal forest vegetation. Figure 4.3 shows that the main distribution 

of this vegetation (outside coastal forest patches) can be found within the perennial 

plantations around the Shimba Hills National Reserve and towards the Indian Ocean 

coastline. It is difficult to decipher whether the remote sensing of the perennial plantations 

reflects higher coverage of colobus food trees than were found during the vegetation surveys 

of this matrix type (Fig. 4.2), or if perennial trees are being wrongly classified as indigenous 

vegetation (Table 4.5). Whichever is the case, the presence of such indigenous tall 

vegetation cover within perennial matrix can only augment an already dense (arboreal) 

matrix canopy within the Kwale District.

Following the re-classification of the original matrix land cover map (Fig. 4.3) in 

ArcGIS to the new ‘matrix quality’ ranks listed in Table 4.6, the matrix of the Kwale District 

could now be viewed from a hypothetical C. a. palliatus perspective (Fig. 4.4). As Figures 

4.4.(a) and (b) illustrate, there are some forest patches in the Kwale District that are less 

isolated than others in the fragmented network due to the high-quality matrix that provides 

potential corridors for colobus dispersal between them. If only the spatial distribution of forest 

habitat was considered important for this subspecies, then the two patches (dr and /3)

illustrated in Figure 4.4.(c) would also be viewed as significantly isolated from one another. 

However, if the matrix is considered, these two patches are effectively connected by 

continuous closed-canopy mangrove and may in fact warrant re-classification as one 

composite habitat patch.
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Table 4.6. Coverage and characteristics of matrix types and their suitability for C. a. palliatus dispersal within Kwale District, Kenya. a Data from 
remote-sensing landcover classification; b Data from vegetation transects = closed (80-100%), dense (50-79%), open (20-49%), sparse (2-19%), 
none (0%) (Grunblatt eta/., 1989); c Predicted locomotion of colobus individuals with in the matrix given the variation in tall canopy cover;d Reflects 
the quality of each matrix type in facilitating arboreal dispersal between forest patches;e Unclassified land cover was allocated a median rank.

Matrix type
Matrix covera 

km2 %
Matrix characteristics b 

> 6m trees food trees
Predictedc 
locomotion

Quality d 
rank

Indigenous

Indigenous coastal forest vegetation 81.34 2.2 closed dense unhindered arboreal 3
Mangrove 89.81 2.5 closed open unhindered arboreal 3

Wooded shrubland 170.06 4.7 open open intermediate arboreal 1
Wooded grassland 69.29 1.9 open sparse intermediate arboreal 1

Shrubland 566.49 15.6 sparse sparse intermediate arboreal 1
Shrub grassland 1,282.74 35.4 sparse sparse terrestrial 0

Bare ground 91.68 2.5 none none terrestrial 0
Sand 39.45 1.1 none none terrestrial 0

Swamp 49.55 1.4 none none none 0
Water 0.58 0.0 none none none 0

Human land use /  other

Perennial plantation 458.86 12.7 dense sparse unhindered arboreal 2
Timber plantation 81.88 2.3 dense sparse unhindered arboreal 2

Annual cropland <1m 155.45 4.3 sparse none terrestrial 0
Annual cropland 1-3m 196.98 5.4 sparse none terrestrial 0

Grassland 258.92 7.1 sparse none terrestrial 0
Human development 13.33 0.4 none none terrestrial 0

Quarry 0.14 0.0 none none terrestrial 0
Unclassified (cloud mask) 15.94 0.4 - “ 0 e
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Fig 4.4. Kwale District matrix quality map.

a Quality rank = 0, no dispersal benefit; 1, open (very limited dispersal 
benefit); 2, dense canopy (facilitates dispersal); 3, dense canopy of food 
resource (colobus dispersal and foraging benefits); (a) -  (c), illustrations 
of coastal forest patches linked by beneficial dispersal matrix; c also 
illustrates two coastal forest patches (a and 0) linked by continuous 
mangrove habitat.



4.5 Discussion

Information concerning species dispersal movements can be difficult and time- 

consuming to collect. This is largely due to the rarity of dispersal events between habitat 

patches and the difficulty of tracking animal movements through a complex landscape 

(Bennett, 1998; Bowne & Bowers, 2004; Sutherland et al., 2000). However, this study 

illustrates that valuable qualitative and quantitative data can be gathered within a short time 

period by drawing on local knowledge to determine an arboreal primate’s use of, and 

movement within, non-forested matrix. The results suggest that, in the case of C. a. palliatus, 

the matrix does indeed matter, and colobus individuals show considerable locomotory and 

behavioural flexibility within the heterogeneous ‘non-forest’ matrix of Kwale District, Kenya. 

Both colobus groups and individuals use the matrix to move out of forest patches, thereby 

having the potential to disperse between forests or forage on the additional food resources 

the matrix provides. The relative use of each matrix type appears to depend on its structural 

similarity to closed-canopy coastal forest (i.e. the proportional coverage of tall >6m 

vegetation), the availability of colobus food trees, and the distance from coastal forest 

boundaries. The frequency of local colobus sightings varied between matrix types and within 

matrix sites, and may underline fundamental differences between C. a. palliatus dispersal 

events and the use of the matrix for purposes other than movement between patches. The 

two potential influences of the matrix on this taxon are therefore discussed independently, 

since the conservation implications for each may also differ.

4.5.1 The matrix as a facilitator of inter-patch dispersal

The potential for C. a. palliatus to move out of coastal forest habitat and hence 

disperse to other patches in the Kwale forest network was higher than expected for an 

arboreal, forest-dependent colobine moving within non-forest matrix. Colobus individuals and 

groups were found up to 4.2km from nearby coastal forest, and it is likely that higher 

dispersal distances might occur given that only straight-line, shortest-distance calculations 

could be explored with the data available. These distances are perhaps not so surprising,
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however, when you account for the structural nature of the Kwale District matrix and the 8kg 

body size of C. a. palliatus, which could provide sufficient energetic reserves for the 

extended exploration of an individual’s environment (Peters, 1983; Sutherland et al., 2000). 

Comparable dispersal distances have also been recorded in two arboreal primate species of 

similar body mass. A female Tana river red colobus (Procolobus rufomitratus) was observed 

to travel 2km from her original group’s range (Marsh, 1979), whilst the longest documented 

dispersal distance of female mantled howler monkeys (Alouatta palliata) in Costa Rica was 

3km (Glander, 1992).

The range of matrix types that C. a. palliatus could move through were quite diverse, 

with seven matrix types recorded in total. Mangrove provides the greatest coverage of tall 

(>6m) vegetation (closed, 80-100%), and has a comparably high incidence of colobus 

movement. Perennial and timber plantations also provide colobus with dense coverage (50- 

79%) of tall vegetation. Surprisingly, very few locals on the edges of timber plantations 

reported colobus sightings. Eucalyptus and teak plantations have been known to facilitate 

Nilgiri langur (Trachypithecus johnii) movements between forest patches in India (Umapathy 

& Kumar, 2000), whilst dusky leaf monkeys (Trachypithecus obscurus) and banded langurs 

(Presbytis melalophos) have been found within rubber plantations that neighbour forest 

boundaries in Peninsular Malaysia (Laidlaw, 2000). However in the Kwale District, the spatial 

location of timber plantation sites and the amount of time locals spent within timber 

(compared to perennial) plantations may have influenced reporting frequencies. In contrast 

to the perennial plantations, locals live on the edges of private or government-controlled 

timber plantations and rarely enter these areas to farm or extract resources. In some 

instances it is forbidden. This would subsequently reduce the daily probability of interviewees 

noticing colobus within such an area.

In mangrove, timber and perennial plantations, the surrounding vegetation provides 

an abundance of large structural supports required for efficient arboreal (quadrupedal) 

colobine locomotion (Gebo & Chapman, 1995; McGraw, 1998a). This vegetation also 

minimises energetically-expensive movements such as leaping, bridging, climbing, or 

terrestrial locomotion (Aronsen, 2004b). These three matrix types may therefore offer the 

most optimal ‘structural’ connectivity between habitat patches (Tischendorf & Fahrig, 2000), 

facilitating dispersal of colobus individuals between otherwise-isolated patches of habitat.
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C. a. palliatus movement does not seem to be strictly dependent upon closed, 

arboreal canopy per se. Colobus were reported to move through areas of wooded shrubland, 

wooded grassland and shrubland. One report of colobus moving within annual cropland 1- 

3m, and the additional local observations of colobus’ terrestrial locomotion within open 

matrix, illustrates that C. a. palliatus can exhibit great adaptability in movement when 

individuals are forced to move through such open habitats. Howler monkeys (Alouatta spp.) 

in Mexico also display this flexibility, as they are commonly seen travelling on the ground, 

over 15-656m across corn crops and grassland, whilst dispersing between forest fragments 

(Mandujano, Escobedo-Morales & Palacios-Silva, 2004; Pozo-Montuy & Serio-Silva, 2003). 

Tutin (1999; 1997) similarly documented rare movements of black colobus (Colobus 

satanus) from continuous forest, through 200m of savanna grassland, to visit forest 

fragments in the Lope Reserve, Gabon. At all of these sites, including Kwale District, long­

distance terrestrial movement of arboreal primates through sub-optimal matrix will be less 

frequent, and more costly, for individuals. Here ‘costs’ would entail greater energy 

expenditure and increased exposure to predation (B6lichon, Clobert & Massot, 1996; Olupot 

& Waser, 2001; Waser, Creel & Lucas, 1994). Resources such as food, shelter and refuge 

from predators are also scarce in these matrix types, and may be critical for dispersal 

movements over long distances, where individuals may persist in an area for hours or days, 

to forage or rest before continuing with their journey (Baum et al., 2004; Bennett, 1998; 

Estrada et al., 1993). In the Kwale District, domestic dog predation and road traffic accidents 

are just two of the documented risks to C. a. palliatus in the open matrix (Cunneyworth & 

Rhys-Hurn, 2004; Kanga, 2000).

4.5.2 The matrix as an additional foraging habitat

It is evident from the results of this study that C. a. palliatus groups and individuals 

exploit certain matrix types for their availability of food resources. Mangrove comes out as 

one of the most beneficial matrix for this subspecies, containing the greatest proportion of 

colobus food trees. The Zanzibar red colobus (Procolobus kirkii) also eat mangrove species, 

particularly during the dry season when food availability is low within farmland and forested 

areas (Siex, 2003). Temminck’s red colobus (Procolobus badius temminicki) have recently
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been documented to use mangrove areas as additional foraging sites and refuges from 

ongoing human disturbance.(Galat-Luong & Galat, 2005). C. a. palliatus populations 

inhabiting coastal forests directly along the Indian Ocean coastline may similarly be utilising 

neighbouring mangrove areas as important foraging habitats. More study is required to 

determine the extent of C. a. palliatus utilisation of these mangrove areas as alternative 

habitats.

Wooded shrubland, wooded grassland and shrubland were additional indigenous 

matrix types where feeding, or travelling towards food trees, was observed. All of these 

matrix types exhibit a 20-49% coverage of colobus food trees. Intercept vegetation transects 

also uncovered differences between the forest clearance methods for cultivation in Kwale 

District. Annual crop cultivation (e.g. maize, cassava, sugarcane) tends to rely on the ‘clear- 

cutting’ (slash and burn) method of coastal forest clearance, resulting in little to no 

indigenous coastal forest remnants within this present-day matrix type. In contrast, sparse 

distribution of remnant forest tree species can still be found in mixed perennial plantations 

(i.e. coconut, mango, cashew nut) as they provide shade, aesthetic and medicinal values for 

settlements within this land cover type. If forest canopy is replaced by a perennial canopy 

during human modification of the landscape, C. a. palliatus can still access the indigenous 

food tree remnants, even when they are sparsely distributed. These coastal forest remnants 

may also provide an additional source of food for colobus when resources are scarce in 

either small or poor-quality forest fragments (Cowlishaw & Dunbar, 2000b). In this respect, it 

is of interest to note that one of the reports of ‘weekly’ colobus sightings at a perennial 

plantation occurred in a matrix site where the nearest forest was only 3ha in area. C. a. 

palliatus’ ability to exploit perennial plantations may have allowed such persistence to occur. 

P. kirkii also exploits perennial plantations for indigenous foods, and regularly eat mango 

leaves and immature coconuts (Siex & Struhsaker, 1999). C. a. palliatus do not show such 

preferences for plantation produce, although a few reports of colobus consumption of unripe 

produce, coupled with an adult colobus being chased and killed by locals within this matrix 

type, may highlight future human-wildlife conflict in specific areas of the Kwale District.

As an added note, indigenous matrix or perennial plantations may also limit any 

detrimental edge effects in Kwale forest fragments (Gascon et al., 1999), providing a less 

pronounced physical and biotic gradient to forest boundaries, which in turn protects the
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resource quality of the forest fragments themselves (Didham & Lawton, 1999; Laurance & 

Yensen, 1991; Mesquita, Delamonica & Laurance, 1999; Ries et a/., 2004; Schtickzelle & 

Baguette, 2003).

4.5.3 The value of a landscape approach

Remote sensing and matrix-quality maps are useful methods to illustrate the 

heterogeneous nature of the matrix and highlight differing levels of connectivity between 

forest fragments in the Kwale District. Seasonal changes in the landscape are of minimal 

significance in this region, as the only annual rotational land use documented within the 

District involved grassland, annual cropland (<1m) and annual cropland (1-3m) turnover, 

none of which were reported to be used by C. a. palliatus. By quantifying the coverage of 

matrix types that may be useful to C. a. palliatus, and understanding the distribution of such 

habitats, wildlife managers have a spatially-explicit, species-specific framework to instigate 

landscape-level habitat management that could benefit colobus populations within coastal 

forest fragments.

High-quality (structural) matrix can be found between a number of coastal forest 

fragments in the Kwale District (e.g. Fig. 4.4). Conservation objectives should therefore 

emphasise the preservation or improvement of existing matrix structure within these areas 

either as (1) viable ‘corridors’: linear strips of suitable habitat that structurally link habitat 

patches (Beier & Noss, 1998; Bennett, 1998; Hess & Fischer, 2001); or (2) ‘stepping stones’: 

a series of small patches connecting otherwise isolated patches (Baum et al., 2004). In 

metapopulation theory (Hanski, 1998; Hanski & Gilpin, 1991; Levins, 1969a), enhanced 

movement between populations is thought to lower the expected time to re-colonisation of a 

patch that has suffered extinction. The genetic and demographic contributions of emigrants 

from well-populated patches may also ‘rescue’ patches with small populations (Brown & 

Kodric-Brown, 1977). In combination these phenomenon are believed to reduce the 

probability of species extinction.

The results of this study indicate that it will be useful for wildlife managers to gain a 

greater understanding of matrix habitat within the Kwale District - to promote C. a. palliatus 

movement, population continuity and the management of specific habitats within the

99



landscape, with the ultimate goal of ensuring the future persistence of Angola black-and- 

white colobus populations in southern Kenya. These findings, however, should not detract 

from the overall importance of coastal forest preservation within the District. C. a. palliatus 

has been found to use the matrix both to travel and forage, but these activities would not be 

possible without adequate forest refuges for resident populations (Cowlishaw & Dunbar, 

2000b). Instead, a more integrated land management approach could be adopted that 

involves:

1. Preservation and enrichment of remaining coastal forest fragments within the Kwale

District, with an additional conservation focus on the preservation of remnant

mangrove areas as valuable natural corridors and additional habitat for C. a. 

palliatus.

2. Preservation of indigenous matrix habitats such as shrubland and wooded shrubland

(e.g. existing within 1km of coastal forest habitat). These matrix habitats can offer a

barrier to edge effects within coastal forests, increasing the effective interior of such 

fragments (Didham & Lawton, 1999; Mesquita et a/., 1999) whilst providing 

additional foraging habitat for C. a. palliatus populations in small forest fragments.

3. Enrichment of existing perennial and timber plantations: either structurally by 

maintaining or improving connectivity between forest patches (Taylor et al., 1993); or 

functionally by providing additional colobus food trees within these matrix types 

(Medellin & Equihua, 1998). The latter activity may include the planting of indigenous 

or non-indigenous species which benefit both colobus and the local community, e.g. 

Delonix regia and Azadrachta indica (Bicca-Marques & Calegaro-Marques, 1994; 

Ganzhorn, 1985; Grimes & Paterson, 2000; Ratsimbazafy, 2002). Such tree species 

could provide foliage for C. a. palliatus without direct food resource conflict with the 

local community. More study is required to assess the impacts of enriching such 

areas both for the colobus and the local community.
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This study has established that C. a. palliatus can move across non-forest matrix 

and forage within these habitat mosaics. Given the frequency of sightings within certain 

areas of the Kwale District, e.g. Vanga, a more intensive study is both feasible and 

necessary. This could combine research on group range use, habitat preference, individual 

animal movements, and the characteristics of remnant forest patches within this forest- 

mangrove-perennial plantation mosaic. These studies could thus establish the nature of the 

colobus forest-matrix interchange, the significance of human-wildlife conflict, and the true 

range of dispersal distances the subspecies can achieve within the region.

There is significant value in adopting a landscape approach to tropical deforestation 

and its effects on nominally primary-forest dependent species. Results of this study will add 

to a growing body of research that is now discovering that: (1) forest species are capable of 

using such matrix habitats, and (2) the quality of the surrounding matrix acts as a selective 

filter for wildlife movement between tropical forest fragments (Antongiovanni & Metzger, 

2005a; Gascon et al., 1999; Viveiros de Castro & Fernandez, 2004), a result that accords 

well with the findings of Gascon et al. (1999) for Amazonian tropical forest birds, amphibians 

and mammals, and Laurance et al. (1994; 1999; 1991) for Australian tropical rainforest 

mammals. By integrating the heterogeneous matrix into forest fragmentation studies we can 

enhance our understanding of wildlife population dynamics and assess the vulnerability of 

species in fragments based on their ability to use or tolerate the matrix.
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5. Potential metapopulation dynamics of the Angola black-and-white 

colobus (Colobus angolensis palliatus) in fragmented coastal forest, 
southern Kenya.

5.1 Abstract

The fragmented coastal forests of southern Kenya are critical habitat for the Angola 

black-and-white colobus (Colobus angolensis palliatus). Only 55 of the remaining 124 forest 

patches in this region have resident colobus populations. Using generalised linear model and 

incidence function (metapopulation) model approaches, C. a. palliatus occupancy patterns 

were investigated in relation to the spatial distribution of forest habitat. Both forest area and 

isolation distances to neighbouring colobus populations were found to be significant 

indicators of population occurrence in the forest network. The spatially explicit 

metapopulation model provided a framework in which to explore the future metapopulation 

dynamics of this subspecies. Simulations of future habitat loss found that the largest patches 

in the forest network were critical for future metapopulation persistence. Removal of only 4% 

of the largest forest patches in the network was enough to render the entire network unstable 

with the metapopulation failing to re-establish an equilibrium state of patch occupancy. In 

contrast, removal of small patches, had little influence on the metapopulation. The Shimba 

Hills National Reserve, Forest Reserves and a presently unprotected forest (Shimoni west) 

had a large effect on future metapopulation persistence. Unprotected forests in general 

were also found to be of critical importance: a reduction in the area of these forests (10-50% 

loss) had a greater impact on the metapopulation than similar percentage losses in Forest 

Reserves or Sacred Forests (Kayas). Incidence function models may provide a good 

conceptual framework to explore the qualitative metapopulation dynamics of the Angola 

black-and-white colobus. However, the model results should be interpreted with a clear 

understanding of their inherent limits and assumptions. Metapopulation models can be most 

valuable when used in conjunction with more quantitative conservation assessments, 

contributing information about spatial scale, connectivity and species metapopulation 

processes.
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5.2 Introduction

Habitat loss and fragmentation has been widely recognised as the greatest present- 

day threat to biodiversity (Mace & Balmford, 2000; Pimm & Raven, 2001; Sala et al., 2000; 

WCMC, 1992). For tropical forests in particular, anthropogenic land transformation has been 

ranked as the major driver influencing deforestation rates in these regions for the next 100 

years (Sala et al., 2000). The most pervasive and conspicuous outcome of deforestation is 

the reduction of area and subdivision of once continuous blocks of forest habitat. The wildlife 

populations which also depend on these habitats also reduce and subdivide, resulting in 

heterogeneous distributions of populations at different spatial scales across fragmented 

landscapes (Fahrig & Merriam, 1994; Laurance & Vasceoncelos, 2004; Wiens, 1989). The 

main challenge for contemporary ecologists and conservationists working in these regions is 

to understand the impacts of population dynamics and persistence of species within such 

patchy and disjunct habitats (Davies et al., 2001; Fahrig, 2003; Hoopes & Harrison, 1998). 

One way to meet this challenge has been for researchers to shift focus from ‘local- 

population’ to ‘metapopulation’ preservation, expanding the current ecological understanding 

of the spatial scale of population dynamics in patchy landscapes from the ‘within-fragment’ 

paradigm to ‘between-fragment’ processes. Theoretical frameworks in which to explore 

these effects have consequently widened, with the equilibrium theory of island biogeography 

(MacArthur & Wilson, 1963, 1967) now largely surpassed by concepts such as 

metapopulation, source-sink and disturbance dynamics (Hoopes & Harrison, 1998; Peltonen 

& Hanski, 1991).

The metapopulation concept in particular has received much attention in the 

conservation literature over the past two decades (Baguette, 2004; Nobis & Wohlgemuth,

2004). In this concept, fragmented populations are viewed as networks of local populations 

in discrete habitat patches, interacting via inter-patch dispersal of individuals. Such species 

networks are buffered against extinction by the exchange of individuals between populations, 

which can lead to rescue effects or re-colonisation after local extinction (Hanski, 1994b; 

Hanski & Gilpin, 1991; Levins, 1969b, 1970). In essence, a metapopulation can be thought 

of as a ‘population of populations’ (Hanski, 1994b; Levins, 1969b), persisting over time in an 

equilibrium state of recurring local population extinctions and colonisations. Such stochastic
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patch occupancy models are particularly appealing in conservation because they can yield 

inferences about the status of populations based only on the presence or absence of 

individuals in suitable habitats. These are data that can be relatively easily collected (Lopez 

& Pfister, 2001). The models are also spatially explicit, allowing for the inclusion of 

biologically realistic functions as descriptors of colonisation and extinction events. For 

example, in the incidence function model (Hanski, 1994a, b; Hanski & Gilpin, 1991), habitat 

colonisation can depend on the distance and size of nearby patches, and local population 

extinction can be a modelled as a declining function of patch size (Wahlberg et al., 1996). 

Such modelling approaches have assisted with our understanding of species distribution 

patterns and population turnover dynamics (Hanski, 1998), landscape ecology (Akcakaya et 

al., 2004; Hanski & Ovaskainen, 2003; Moilanen & Hanski, 1998), population viability and 

time to extinction (Hanski & Ovaskainen, 2002; Keymer et al., 2000; Ovaskainen & Hanski, 

2003a) and the ecological consequences of migration (Heino & Hanski, 2001; Paradis, 

Baillie & Sutherland, 2002; Paradis et al., 1999).

The number of species in which ‘metapopulations’ have been identified have 

multiplied in the literature, with examples of both theoretical and empirical metapopulation 

studies focusing on plant (Freckleton & Watkinson, 2002; Quintana-Ascencio & Menges, 

1996; Verheyen et al., 2004), invertebrate (Bonte et al., 2003; Hanski et al., 1996b), 

amphibian (Sjogren-Gulve, 1994; Smith & Green, 2005), bird (Akcakaya et al., 2003; 2004; 

Lahaye, Gutierrez & Akcakaya, 1994), small mammal (Lindenmayer, McCarthy & Pope, 

1999; McCarthy & Lindenmayer, 2000; Moilanen, Smith & Hanski, 1998; Peltonen & Hanski, 

1991; Telfer et al., 2001) and large mammal (Arnold et al., 1993; Rodriguez & Delibes, 2003; 

Sweanor, Logan & Hornocker, 2000; Walters, 2001) species. Primates are a relatively new 

addition to this list. Regardless of the many studies focusing on primates in forest fragments 

(Marsh, 2003b), research has traditionally concentrated on the dynamics of individual 

populations (Chapman & Peres, 2001; Dobson & Lyles, 1989; Harcourt, 1995), independent 

from neighbouring populations and the spatial complexity of the surrounding forest 

fragments. Only four studies to date have considered the importance of metapopulation 

dynamics on the population biology of primates: samango monkeys Cercopithecus mitis in 

South Africa (Lawes, Mealin & Piper, 2000; Swart & Lawes, 1996), black-and-white colobus 

Colobus guereza in Uganda (Chapman et al., 2003), Tana river red colobus Procolobus
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badius, crested mangabey Cercocebus galeritus and Sykes monkeys Cercopithecus 

albogularis in Kenya (Cowlishaw & Dunbar, 2000c), and howler monkeys Allouatta palliata in 

Mexico (Mandujano et al., in press). All have shown that a metapopulation approach can be 

a useful tool to provide additional information for the management of primates in fragmented 

landscapes.

The Angola black-and-white colobus (Colobus angolensis palliatus) is an arboreal 

primate found within the coastal forests of north-eastern Tanzania and southern Kenya 

(Kingdon, 1997). Relatively little is known concerning the subspecies habitat requirements 

and response to habitat fragmentation. Within the northern extent of the taxon’s range, i.e. 

the Kwale District, southern Kenya, a recent (national) primate census found 55 C. a. 

palliatus populations within a network of 124 coastal forest fragments (Chapter 2). This 

region is an important focus for further study as the need for future conservation 

management plans based on Kenyan C. a. palliatus preservation has been highlighted 

(Oates, 1996a; Struhsaker, 1981b) and the preservation of remaining coastal forests in this 

region is of both national and international priority (Brooks et al., 2002; Myers et al., 2000; 

Robertson & Luke, 1993). In addition, human population growth and agricultural land use in 

southern Kenya have been highlighted as major threats to the future existence of coastal 

forests and C. a. palliatus populations within this region (Oates, 1996a; Schipper & Burgess,

2004).

Given the lack of knowledge concerning the future viability of C. a. palliatus in this 

fragmented forest network it may be useful to explore the applicability of a metapopulation 

approach to gain further insight into the population dynamics of this subspecies. In addition, 

this approach may also provide a suitable framework in which to compare alternative 

scenarios of future landscape change, e.g. forest decline or destruction (Hill & Caswell, 

2001; Kallimanis et al., 2005; Ovaskainen & Hanski, 2002; Wiegand, Revilla & Moloney,

2005), and to identify those forest patches that are likely to be critical for colobus persistence 

in the region. It is particularly in this latter instance that metapopulation models have been 

highlighted as helpful tools for the conservation management of fragmented populations 

(Burgman etal., 1993; Hanski, 1998; Hanski & Simberloff, 1997; McCullough, 1996).

A metapopulation approach is appropriate for C. a palliatus as the taxon fulfils the 

four necessary conditions for metapopulation-level persistence, detailed by Hanski and

105



Gilpin (1997): (1) C. a. palliatus is largely dependent upon coastal forest which occurs as 

spatially discrete habitat patches in the Kwale District; (2) even the largest local populations 

within the forest network have a risk of extinction; (3) habitat patches are not too isolated to 

prevent re-colonisation and there is potential for limited colobus dispersal between forest 

patches across non-forested ‘matrix’ (Ricketts, 2001) (see Chapter 4); and (4) asynchronous 

patch dynamics are likely due to the wide range of C. a. palliatus subpopulation sizes and 

patch qualities occurring in the network (Chapters 2 and 3). A crude comparison of average 

adult female-to-immature (i.e. juvenile and infant) ratios between habitat patches also shows 

significant variation (see Appendix V) indicating possible differences in sub-population 

growth rates.

Hanski’s incidence function model (Hanski, 1994b, 1999b; Hanski etal., 1996b) was 

chosen as the most appropriate metapopulation model for this study. It has the benefit of 

being simple yet spatially explicit, modelling the finite number, size and location of all habitat 

patches in the fragmented network. Although there is one unusually large patch in the 

network, the Shimba Hills National Reserve (>150km2), the colobus metapopulation in the 

Kwale forest network is not treated here as a ‘mainland-island’ system (Hanski, 1997; Hanski 

& Gyllenberg, 1993). This is because the mainland-island incidence function model makes 

restrictive assumptions about patch connectivity and persistance (e.g. ‘islands’ only receive 

immigrants from the mainland not from each other, and the entire metapopulation collapses 

if the ‘mainland’ becomes extinct) that are unlikely to apply in this case.

The rise in popularity of metapopulation theory and a broadening of model usage 

within the conservation community has correspondingly been met with tales of caution. 

Incidence function models have been criticised for being over-simplistic, omitting the 

influence of factors such as patch quality and matrix heterogeneity on population dynamics 

(Baguette & Mennechez, 2004; Elmhagen & Angerbjorn, 2001; Hanski, 1999b; Hanski etal., 

1996b; Ricketts, 2001; Shreeve, Dennis & Van Dyck, 2004). In addition, the reality of a 

quasi-equilibrium state of patch occupancy in the natural world, an important assumption of 

the incidence function model at the onset of modelling and parameter estimation, has also 

been questioned (Baguette, 2004; Harrison, 1997).

Given the need for more rigorous, empirical applications of metapopulation models 

in conservation biology, and the need to understand how spatial geometry influences primate
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population persistence in fragmented landscapes, this study aims to use Hanski’s (1994b) 

incidence function model to: (1) explore the theoretical persistence of C. a. palliatus 

populations in a spatially realistic, fragmented forest landscape in southern Kenya, (2) 

explore the influence of future habitat destruction on C. a. palliatus metapopulation 

persistence, including an assessment of the key habitat patches involved in this process, 

and (3) provide a critique of the general applicability of the metapopulation concept to 

understanding colobus population dynamics in a fragmented landscape.

5.3.1 Incidence function model

The incidence function model is based on a first-order, linear Markov chain model for 

the occupancy of a single habitat patch (Hanski, 1994b). In this model a habitat patch has 

two possible states; occupied or empty. Forecasts of patch occupancy are based on two key 

processes: the extinction of populations in occupied patches and colonisation of empty 

patches. The model has six parameters, b, a  , A0, x, e and y, described below (Table 5.1, 

also see 5.3.2), and uses patch area (A) and patch connectivity (S,) as variables. For each 

forest patch (/), the probability of extinction (E,) is defined as a function of area:

where e and x are parameters to be estimated. The model assumes that expected 

population size is positively correlated with patch area, and that small populations are more 

likely to go extinct than large ones (Caughley & Gunn, 1996; Simberloff, 1998). For 

simplicity, Hanski assumes that extinction risk, in the absence of colonisation, is not affected 

by connectivity (however see the ‘rescue effect’ below). Colonisation probability (Q) per 

patch is defined as a sigmoid function of connectivity (Si):

5.3 Methods

r  e 1£ .  =  m i n  —  ,1 (1)
7

(2)

where y is a parameter to be estimated, and connectivity of patch i is defined as:



(3)

where p, is the observed incidence of the patch (simply a ‘snapshot’ of data, resulting in the 

input of species presence = 1, or absence = 0), and dy is the distance between patches / and 

j. Since the size of neighbouring populations could affect the number of migrants reaching 

the focal patch /, >4/is included in Equation (3). In this equation b is a parameter determining 

how population size scales with patch area, whilst parameters determines the rate of 

decline in survival with increasing distance moved. Bringing together these two assumptions, 

the probability of occupancy for patch /' (J(), is given by:

The incidence function model variant adopted for this study includes the ‘rescue 

effect’, i.e. a lowered extinction risk of local populations due to the influx of immigrants 

increasing local population size (Brown & Kodric-Brown, 1977). The simplest way to include 

a rescue effect in the incidence function model is to replace E, with (1-C,) E, (Hanski, 1994b), 

which associates lowered extinction rates with the probability of patch colonisation. This 

effect is especially important for small patches (with large E,) which are located close to large 

populations (giving a large Cl). The modified equation for J, is therefore:

5.3.2 Parameter estimation and model fitting

The incidence function model has six parameters. The descriptions of each 

parameter and the methods of estimation are detailed in Table 5.1. Colobus population 

presence/absence data from a 2001 primate census (Section 5.3.3) was fitted to the

(5)

Substituting Equations (1) and (2) into Equation (5) therefore, gives:

(6)

where e’ is a composite of the two parameters -  ey2.
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incidence function model. The best fit between the observed incidence data (pi) and the 

model s predicted incidence (J,) was found by minimising the likelihood estimator:

(7)

A second null model was also used when fitting the colobus incidence data to the 

incidence function model in Equation (7). In the null model, predicted incidence (J,) was 

replaced with observed average occupancy.

For reference to all the equation symbols used in this chapter (and also Chapter 6) 

please refer to Appendix VI

Table 5.1. Incidence function model parameters and estimation methods. (a) Equation reference where 
parameter can be found: b Dispersal data gathered in this study (see Chapter 4) are not representative 
of true dispersal distances (nor survival rates with increasing distance moved);c Extreme values of a  
(i.e. 0.05 and 5) represent dispersal distances over which survival probability approaches zero at about 
100km and 1km respectively, with average dispersal distances of 20km and 0.2km respectively.

Parameter(a) Description Estimation method

£(3,12) Scales the rate of change in local 
population size with patch area (or 
scales emigration rate by patch area).

Estimated from empirical data, by regressing 
observed population sizes (i.e. number of 
individuals/patch) against patch area.

a (3) Determines the distribution of 
dispersal distances for the species, 
with M a  being the average 
migration distance.

It was not possible to estimate a  
independently15 for these data, so a range of 
values from 0.05 to 5C were tested.

V8) The approximate size of patch for 
which annual extinction probability 
equals unity.

Estimated from empirical data, relating to the 
size of the smallest currently occupied patch. 
This value is used to tease apart the values of e 
and y  in the product e’ = ey2. See Equations (8) 
and (9) below.

x (1.6) Scales extinction risk as strongly (>1) 
or weakly (<1) dependent upon patch 
area. This parameter can also be 
regarded as the species sensitivity to 
environmental stochasticity.

Estimated from model fitting.

e (1) Constant, determining the average 
extinction risk. e = A *  (8)

y ( 2) Scales the efficiency of colonization 
in relation to connectivity.

y can be disentangled from the composite 
parameter e' (estimated from model fitting), 
using the equation :

-------1 - — ■ ■■ —-----
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5.3.3 Empirical data

A 2001 primate survey of all coastal forests within the Kwale District, Kenya 

(Chapter 2) provided the incidence function model with C. a. palliatus occupancy data for all 

forests patches (pi) in the network. Of the 124 forests patches surveyed, C. a. palliatus 

inhabited 55, representing 44% patch occupancy in the District (Fig. 5.1). For all occupied 

patches in the system, local population sizes were also known (i.e. the total number of 

individuals per patch), and these were regressed against patch area to estimate the 

parameter b in the incidence function model.

- i ------------------1------------------1 i i i i i
10 20 30 40 50 60 70 80

Distance (km)

Fig. 5.1. Habitat patch structure of the C. a. palliatus metapopulation in Kwale District, Kenya. The 
figure shows the spatial distribution of patches; Black circles represent ‘occupied’ forest patches with 
known C. a. palliatus populations; White circles represent ‘unoccupied’ forest patches (derived from 
2001 census data); Grey circles, represent occupied forest patches in Tanzania included in the 
incidence function model;(1) Indicates the Shimba Hills National Resen/e (>150km2 in area); Circle size 
represents relative patch area (km2).
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All forest areas and spatial locations were determined either from GPS forest 

boundary maps, gathered during the 2001 survey period, or digitised forest boundaries from 

a classified 2003 Landsat TM image of the study site (Chapters 2 & 4). The areas (A) of all 

124 forest patches (km2) were calculated via an ArcView geographical information system 

(ArcView GIS 3.2, ESRI Inc. 1999), using Xtools extension (Version 6.1, 2001). Fifty-four 

percent of patches were smaller than 0.1km2 in area, 29% were between 0.1-1 km2, and 16% 

were between 1-15km2. The largest patch in the system, the Shimba Hills National Reserve, 

was over 150km2.

Given that the Kenyan C. a. palliatus metapopulation may not be geographically 

isolated from populations in northern Tanzania, the nearest three forest patches on the 

Tanzanian border were also digitised from Landsat TM data and were included in all model 

simulations to account for potential immigration into the system (Fig. 5.1). An optimal 

scenario was assumed, whereby all three Tanzanian forest patches (areas = 1.6km2, 1.4km2 

and 1.2km2, respectively) were occupied, and thus had potential for supplying immigrants to 

the patches nearest the Kenyan border, and therefore the Kwale network as a whole.

To calculate the isolation or ‘connectivity’ value (S,) of each patch, the shortest 

(Euclidean) isolation distances from the edges of each forest patch to the edges of all other 

123 Kenyan (plus three Tanzanian) forest patches (c )̂ in the system had to be determined. 

To avoid the underestimation of isolation distance where Euclidean paths crossed the Indian 

Ocean, an ArcView 3.2 extension (Distance and Azimuth Matrix v.2:Jenness, 2005), was 

modified to define realistic paths. Hence, in those instances where exact (vector-based) 

isolation distances unrealistically entered the Indian Ocean, the algorithm discarded the 

straight line and resorted to a more realistic, cost-distance (raster-based) calculation. For 

more detailed information and extension illustration, see Appendix VII). The average 

distance from one Kwale forest patch to its nearest-neighbour was 0.77km ± 0.12 S.E. 

(median = 0.29km, range = 0.04 - 9.4km, n = 124). When considering all resident C. a. 

palliatus populations in the Kwale forest network however, isolation distances were greater: 

the average distance from one colobus population to its nearest-neighbour forest patch was 

0.96km ± 0.23 S.E. (n = 55), whilst average distance from one colobus population to another 

colobus population was 1.54km ± 0.27 S.E. (n = 55).
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5.3.4 Model simulations

To simulate the dynamics of the C. a. palliatus metapopulation, the incidence 

function model can be used to numerically simulate extinction-colonisation dynamics within 

the patch network, assigning area-dependent extinctions and isolation-dependent 

colonisations independently for each patch (Hanski, 1994b, 1998). One thousand simulation 

replicates were used, over 500 discrete time units, often referred to as ‘generations’. The 

true time scale of one ‘generation’ is very difficult to define, however it is related to the 

minimum time required for an extinction or re-colonization event to occur (often associated 

with the reproductive generation time of the study species) (Hanski, pers. com). In the case 

of C. a. palliatus therefore, one ‘generation’ may be equivalent to between 1 to 4 years. 

Results were summarised after each generation as the median number of occupied patches 

(i.e. number of populations) within the network over the 1000 simulation replicates, referred 

to as the ‘metapopulation size’ {Mpop).

To test the influence of a possible link between the Kwale District C. a. palliatus 

metapopulation and forests within Tanzania, two models were compared. The first model, 

simulated colobus metapopulation dynamics using only the 124 habitat patches in Kenya. 

The second model simulated the dynamics of the same 124 habitat patches, however the 

areas and isolation distances of the three occupied Tanzanian forests were included within 

the connectivity measures (S,) of each of the 124 Kenyan patches (Equation 3). Any positive 

influence of a Tanzanian connection would therefore be recorded as an increase in overall

colobus metapopulation size (Mpop), or increased probability of occupancy ( p * ) of each of

the 124 Kenyan forest patches, after 500 generations. In the latter case, significance was 

tested using a Wilcoxon-signed ranks test.

To investigate the dynamic consequences of change in the spatial structure of the 

patch network a series of simulations looked at the effects of future forest loss and 

deforestation in the Kwale District. These were as follows: (1) the sequential removal of the 

smallest 10-50% of patches, (2) the sequential removal of the largest 10-50% of patches, (3) 

the removal of forests by protection status, and (4) the sequential 10-50% reduction in forest 

area by protection status. Within all of these simulations, connection to the Tanzanian 

coastal forests was maintained. For the latter simulation, loss in forest area was modelled as 

a uniform removal of forest from the patch edges, i.e. simulating habitat encroachment. As
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forest areas contract, the isolation distances between forest patches will inevitably increase. 

Therefore isolation distances were increased ( d * ) relative to reductions in forest radii, 

assuming forests were circular in geometry for simplicity:

where d* is the modified isolation distance (km), dy is the original isolation distance (km), A,

is the original patch area (km2), and /A, is the new patch area (km2) following 10-50% loss of 

forest.

A final simulation explored the value of individual forest patches to the dynamics of 

the C. a. palliatus metapopulation as a whole. Ovaskainen and Hanski (2003b) provide a 

variety of measures to assess the value of individual habitat patches, including patch 

contribution to metapopulation capacity, colonisation events, metapopulation persistence, 

and metapopulation size. The latter measure had previously been calculated as the total 

number of occupied patches in the metapopulation (i.e. Mpop), however Ovaskainen and 

Hanksi suggest a more detailed estimate of metapopulation size based on the expected 

number of individuals in the metapopulation as a whole (Mind), with more weight given to 

larger patches. Rather than view the equilibrium state of patches as either 0 or 1 in this

analysis, the model also uses the precise probability of occupancy ( p * ) of patches after 

each of the 1000 simulations. For example, if patch / was occupied for 560 out of 1000 

simulations at equilibrium, the probability of occupancy would be 0.56 ( p * ) rather than 1 (J,). 

Therefore, the contribution of patch /' to metapopulation size {UD would be derived from the 

following equations:

M~Jd , is the size of the metapopulation in the network from which patch /' has been removed. 

In this analysis, individual population sizes are dependent upon the scaling parameter b, 

similar to Equation 3 of the incidence function model (Table 5.1). Patch weight (A*)  is also
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Where the size of the metapopulation is defined as:

(12)



dynamic, in the sense that it depends on the equilibrium state of the patch (p*) .  For this

analysis ten large patches (>4km2), ten medium patches (between 0.1 -  2km2) and ten small 

patches (<0.1km2) were randomly chosen and individually removed from the Kwale forest 

network, comparing metapopulation size {Mind) before and after removal (Equation 11). The 

initial simulations which compared the C. a. palliatus metapopulation with or without the 

Tanzanian forest connection (i.e. using Mpop), also measured metapopulation size in this way 

(Mi„d) as a possible third indicator of connectivity influence.

5.3.5 Sensitivity analysis

To explore the incidence function model’s sensitivity to biological uncertainty, two 

models were compared with varying parameter values of a  : (1) the original 124 patch 

occupancy model (with Tanzanian connection), and (2) simulations with the Shimba Hills 

National Reserve removed. In these simulations a  varied between 0.05, 0.1 and 0.5

5.3.6 Statistical analysis

In addition to incidence function model simulations, overall patterns of occupancy in 

all 124 Kenyan forest patches were examined in a stepwise generalised linear model (GLM) 

with binomial error structure (Crawley, 1993). The aim was to determine whether variance in 

occupancy could be explained by the independent effects of three spatial characteristics of 

patches: patch area (km2); isolation distance (km) to the nearest geographical patch; or 

isolation distance (km) to the nearest C. a. palliatus population. Using the statistical software 

R, version 1.9.1 (www.r-project.org), each forest patch was entered as a unit, with presence 

or absence of populations coded as a binary response variable. All three spatial variables 

were entered into a full model and log-transformed to normalise the distributions. All non­

significant variables were sequentially removed, least significant first, until a minimal 

adequate model was reached. Statistical significance was tested using deletion F-tests 

corrected for over-dispersion.
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5.4 Results

5.4.1 Patterns of occupancy

Occupancy of forest patches by C. a. palliatus was positively related to forest area 

(GLM parameter co-efficient = 0.99 ±0.19 S.E., F=56.5, p<0.0001) and negatively related to 

the isolation distance of the nearest colobus population (GLM parameter co-efficient = -0.52 

± 0.15 S.E., F=15.2, p<0.0002) (Fig 5.2). There was no significant influence of geographic 

isolation on population occupancy. The combination of these two factors explained 36% of 

the variance in occupancy of colobus populations observed in this study (null deviance = 

170.32, residual deviance = 109.94, df = 121,1).
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Fig. 5.2. Patch occupancy patterns of C. a. palliatus populations in relation 
to forest area and isolation distance to nearest populations.
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5.4.2 Parameter estimation and model fitting

The scaling parameter b, defining the rate of change in local population size with 

patch area, was derived by regressing observed population sizes (the number of individuals 

per patch) against patch area (b = 0.46 ± 0.05 S.E., t=8.26, p<0.001, Rested = 0.57) (Fig. 

5.3). For C. a. palliatus, there is a significant increase in population size with increasing 

patch area, but at a sub-proportional rate, indicating lower group densities in larger patches 

(see Chapter 3). The smallest occupied patch was 0.015km2, leading to estimates of A0 

based on the next smallest patch area in the system where C. a. palliatus were absent: 

0.014km2.
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Fig. 5.3. Relationship between patch area (A) and C. a. palliatus population ^ize (N). 
Solid line represents the linear regression N = cAb (c = 2.62 , b =0.46 ± 0.05, r  = 0.56).
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The results of fitting the incidence function model using a range of dispersal 

parameter values ( a )  are detailed in Table 5.2. For values of a  > 0.5 the fit of the model is 

clearly worse for the snapshot of 2001 C. a. palliatus occupancy data: a  = 0.5 produced 

similar Log(L) values to the null model, whilst a  -  5 failed to converge all together. The 

estimates for parameters x, e, and y were therefore obtained whilst a  = 0.1, as this model 

provided the best fit with the lowest log likelihood value when compared to the null model. 

The value of a  translates to a C. a. palliatus survival probability (during dispersal) that 

approaches zero at approximately 50km, with capable average dispersal distances of 10km. 

Subsequent incidence function simulations of C. a. palliatus metapopulation dynamics used 

the parameter estimates detailed in Table 5.3.

Table 5.2. Parameter x , e’, y and e estimates and log likelihood values with varying values of the 
dispersal parameter oc .a Log(L) = log likelihood value; A/C = non-convergence of model. Null model 
Log (L) = 83.55.

a
Parameter values (lower-upper C.l.)

X e' y e Log (L)a

0.05 0.92 (0.57-1.31) 3.98 (2.81-4.97) 51.24 0.02 60.37
0.1 0.96 (0.61-1.37) 2.32 (1.08-3.37) 24.13 0.017 59.25
0.5 1.81 (1.29-2.33) -4.55 (-6.23-(-2.92)) 4.73 0.0005 83.77
1 2.92 (2.24-3.68) -9.99 (-12.34-(-7.92)) 3.17 4.51 e'6 123.89
5 A/C A/C A/C A/C A/C

Table 5.3. Final parameter values used in the incidence function model simulations.

Parameter Value

b 0.463
a 0.1
Ao 0.014
X 0.959
e 0.017
y 24.139
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5.4.3 Model simulations

Dynamics of the entire Kwale forest patch network (n =124) were simulated. There 

was no significant difference in model outputs whether the Kenyan patch network was 

isolated or connected to coastal forests in Tanzania, however a general increased trend was 

evident when the Tanzanian forests were included: Mpop increased by 1.7% (one additional 

occupied patch) and Mind increased by 0.2% (i.e. U, = 0.13). The probability of occupancy of

all the Kenyan patches ( p * ) did not significantly increase with such a connection (Wilcoxon-

signed ranks test, n = 124, Z = -1.844, p = 0.065). However, since the latter result 

approached statistical significance, and there was an overall positive trend in all three 

measures, it remains possible that the Tanzanian patches have a positive influence of the 

Kenyan coastal forest network.

The C. a. palliatus metapopulation simulations, whether isolated or connected to 

Tanzania, showed quasi-stable dynamics (Fig. 5.4) in the sense that the number of occupied 

patches fluctuated relatively little, and the metapopulation typically persisted over 500 

generations with no indication of patch extinction overtaking colonisation rates. The median 

number of occupied patches remained constant, regardless of the 60 or more patches 

originally ‘empty’ in the system, with median patch occupancy stabilising at 57 patches 

between 100 and 500 generations.
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Fig. 5.4. Predicted trajectories of C. a. palliatus patch occupancy within 124 Kwale District forests, over 
500 generations (iterating the patch network in Fig 5.1). The graph shows the median number of 
occupied patches after 1000 iterations (black line), 90% upper and lower confidence limits (grey lines), 
and an example of 1 iteration of the incidence model (red line).

Further incidence function simulations involving the five forms of forest loss 

highlighted the relative importance of specific habitat patches for C. a. palliatus 

metapopulation persistence. Removal of the smallest patches in the system had little effect 

on overall metapopulation persistence (Fig. 5.5a). This may be due to the fact that 10-20% of 

the smallest patches within the system were already empty or poorly connected at the onset 

of the simulation (Fig. 5.1 and 5.2). In addition, the smallest 50% of patches were all under 

0.1km2 in area. Within the incidence function model these small patches would all have high 

extinction probabilities and would rarely contribute dispersing migrants to the metapopulation 

as a whole, effectively acting as possible sinks in the system. In contrast, large forest 

patches were critical to future C. a. palliatus metapopulation persistence (Fig. 5.5b). 

Removing the largest patch in the system, the Shimba Hills National Reserve, significantly 

decreased the overall number of occupied patches in the metapopulation. Nineteen C. a. 

palliatus populations (including the National Reserve) went extinct in response to the loss of 

this individual habitat patch. However, the population still maintained a quasi-equilibrium 

state between 100 and 500 generations. This indicates that although the patch makes a

119



No
. 

oc
cu

pi
ed

 
pa

tc
he

s

significant contribution to the overall occupancy level of the metapopulation as a whole, the 

network may not be entirely dependent upon Shimba in a mainland-island sense. Simulating 

the loss of 10-20% of the largest forests was enough to cause metapopulation extinction 

within 340 and 128 generations, respectively. Due to the severity of the decline in 

metapopulation patch occupancy with this level of perturbation it was decided to simulate the 

removal of two, four, five and six of the largest patches to establish the critical threshold 

whereupon metapopulation equilibrium is lost. It was found that removing just five of the 

largest patches (4%); i.e. the Shimba Hills National Reserve, Marenji, Mwaluganje and Buda 

Forest Reserves, and Shimoni West (a presently unprotected forest), rendered the entire 

metapopulation highly unstable with no re-establishment of a quasi-equilibrium state (Fig. 

5.5b).

a). Removal of smallest patches
60 

50 

40 

30 

20 

10 

0
0 100 200 300 400 500

Generations

 original ------- 37 (30% )

 1 2 (1 0 % )  50 (40% )

 24 (20% )  62 (50% )

n*W HTV\rV\JU_^lNLLlir

b). Removal of largest patches

60 T

3  40

500100 200 300 4000

Generations
 original --------5 <4%)

 1 (0 .8% ) Shimba Hills N. R. ____ 6 (5% )

 2 (1.6%)  1 2 (10%)

 4 (3.2% ) --------24 (20%)

Fig. 5.5 Both figures a ), and b). illustrate the long-term effects of removing forest patches from the 
system. Legends refer to the total num ber (and percentage) of patches rem oved from the initial 
network of 124 forests in Fig 5 .1 .
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The long-term effects of removal of forests by protection status are illustrated in 

Figure 5.6.
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Fig. 5.6. The metapopulation dynamics of C. a. palliatus comparing the original 124 habitat patch 
network with loss of forests, removed by protection status: the Shimba Hills National Reserve, 14 
Forest Reserves and Sanctuaries, 30 Kayas and 79 unprotected forests, over 500 generations.

Removal of the unprotected forests has the greatest long-term impact on the 

metapopulation, followed by Forest Reserves and the Shimba Hills National Reserve. 

However, the total number of occupied patches at equilibrium may also reflect the gross 

differences in the number of forests (and colobus populations) initially removed at the onset 

of each model simulation. Table 5.4 summarises the impact of removing forests by 

protection status in terms of both initial and ensuing population loss.
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Table 5.4. Removal of forest patches by protection status and long-term impacts on the C. a. palliatus 
metapopulation. This table summarises the initial number and area of forest patches removed in the 
simulations illustrated in Figure 5.6. Impacts are expressed as: a the total number of populations 
removed at the onset of the simulation; b the total number of populations lost after forest removal, up 
until 500 generations;c the sum of both initial and ensuing population loss;d Removal of 30 Kayas with 
six re-colonizations of other patches after 500 generations. All figures in brackets express population 
loss as a proportion of the metapopulation size (number of populations) at 0 generations.

Protection
Status

Initial patch loss 
No. Area (km2)

Initial 
popn loss8

Ensuing 
popn lossb

Total 
popn lossc

National Reserve 1 158.90 1 (0.02) 18 (0.33) 19(0.35)
Forest Reserve & sanctuary 14 54.93 12 (0.22) 15 (0.27) 27 (0.49)

Kaya 30 10.90 20 (0.36) 0 (0.00) d 14 (0.25)
Unprotected 79 30.41 22 (0.40) 9 (0.16) 31 (0.56)

By removing the unprotected forests, the simulation is also permanently removing a 

large proportion of the metapopulation (i.e. 22 occupied patches, 40% of the original number 

of populations) at 0 generations, the largest perturbation to the network (in terms of 

population loss), compared to Kaya, Forest Reserve and the National Reserve removal, 

respectively. However, the long-term impact of removing the Forest Reserves or National 

Reserve are far greater, given the number of population extinctions occurring within 150 and 

60 generations respectively (Table 5.4, Fig 5.6). The latter protected forests could provide 

key migrants to the network and may be critical with regards to rescue effects of smaller 

neighbouring patches. Removal of the Kayas had no effect on metapopulation occupancy 

patterns other than removing the existing populations within the Kayas themselves. In fact, 

occupancy of the remaining patches slightly increased with the removal of these forests. To 

discover if this was a true effect of Kaya removal or a symptom of the random stochastic

process inherent in the incidence function model, the average occupancy (/?*) of all

remaining patches were compared before and after each of these simulations (Fig. 5.7). It 

can be seen that in all cases, including the Kayas, patch removal by protection status 

significantly decreases average patch occupancy within the remaining forest patches.
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average occupancy before (grey) and after (white) each removal simulation; y-error bars = ± 1 S.E.; 
values above bars = n. Results of Wilcoxon signed ranks tests = a (n=123, Z = -9.612, p<0.000), b 
(n=110, Z = -9.093, p<0.000), c(n=94, Z = -7.386, p<0.000), d (n=45, Z = -5.667, p<0.000).
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Reduction of forest area, without the complete removal of patches from the network, 

generated a linear response of metapopulation decline with increasing loss of forest area 

(Fig. 5.8). What is interesting to note is that in all levels (10-50%) of forest loss by protection 

status, unprotected forests were the most vulnerable in the metapopulation, with greater 

losses in the total number of occupied patches at 500 generations, than if forest area 

declined in the Kayas, National Reserve and Forest Reserves, respectively. This is in 

contrast to the relatively small loss of unprotected forest cover occurring in this process. This 

may indicate that colobus populations inhabiting unprotected forests are presently living on a 

knife-edge, whereby the areas of the unprotected forests are critically near the threshold for 

high population extinction probabilities.
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Fig. 5.8. Figure a): C. a. palliatus metapopulation size at 500 generations after 10%, 20%, 30%, 40% 
and 50% reductions in patch areas respectively. Forest loss was allocated to all forests in the network, 
or to forest patches by protection status only. Figure b) summarises the total amount of forest lost 
(km2) in each of the simulations.
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The contribution of individual habitat patches to overall metapopulation size (Mind) 

are detailed in Figure 5.9.

Fig. 5.9. The contribution of 30 individual forest patches to metapopulation size (M'nd). Filled squares =

the contribution value ( U \  ) of individual patches to the metapopulation as a whole; open circles = the
area (km2) of individual patches; asterisk = patches where contribution values are greater than 
expected from the declining trend with patch area. Patches are arranged in order of decreasing patch 
size, whilst the figure shows the results of simulations involving 10 large (>4km2), 10 medium (0.1- 
2km2) and 10 small (<0.1 km2) forest patch removals.

Systematically removing individual patches and re-running the incidence function 

model (with 123 patches) can provide a good comparative measure of the importance of 

individual forest patches in the Kwale District, if patch contributions (UL) are assessed via the 

lowered probabilities of patch occupancies and the reduction in the number of individuals 

within the metapopulation at equilibrium. The ten small patches made the lowest 

contributions to the capacity of the network as a whole when compared with the ten medium 

and ten large patches respectively. The Shimba Hills National Reserve has a markedly large 

Ui value to the C. a. palliatus metapopulation (U, = 17.9) when compared with all other 

patches in the network. The progressive decline in magnitude of Uj values with decreasing

large (>4km2) small (<0.1 km2)

0.01

Individual forest patches 
(reducing in area km2)
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patch area is no surprise given the weighting of population size with patch area. However, in 

five instances it was discovered that individual patch contributions were greater than 

expected, which may indicate that these habitat patches are better connected to the forest 

network and thus have greater value. Patch contribution was also found to be most relevant 

within the range of larger patches (>4km2). Here, patches of relatively similar size displayed

noticeably different U \  values, again potentially reflecting that habitat patches better

connected to the forest network have the greater value.

5.4.4 M odel sensitiv ity to uncerta inty

Like all simulations, the incidence function model is numerically sensitive. Given the 

three parameters which provide the greatest degree of biological realism to the model, b, a  

and A0, only a  is unknown. Sensitivity analyses indicate that the metapopulation occupancy 

patterns of the original Kwale forest network showed no significant differences in quasi­

equilibrium state with varying values of a  (i.e. 0.05, 0.1 and 0.5) (Fig. 5.10a).
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Fig. 5.10. Incidence function model sensitivity to values of a  . (a) = three simulations of the original C. 
a. palliatus metapopulation (124 patches) varying the values of a  , (b) three simulations of the C. a. 
palliatus metapopulation with Shimba Hills National Reserve removed (123 patches) varying the values 
of a  .
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However, when dynamic complexity was added to the model, e.g. by removing the 

Shimba Hills National Reserve (Fig. 5.10b), different values of a  gave rise to quite 

divergent patterns of metapopulation persistence. Firstly, model outputs were not 

substantially different within an order of magnitude of a  values, i.e. a  -  0.1 and 0.05. In 

these simulations, an a  value of 0.05 only changed metapopulation occupancy by 5%. This 

may also be due to a  -  0.05 being the next closest fit of the incidence function model to the 

observed occupancy data (Table 5.2). It should also be noted, that when a  values are 

changed, other parameters are modified during model fitting such as x, e, and y in response 

to changes in the underlying connectivity values S„ (see Equation 3). For example, as alpha 

decreases from 0.1 to 0.05, the incidence function model compensates for the resultant 

increase in connectivity (S,) by amplifying the number of turnover events, i.e. extinction risk e 

increases, together with an increase in the efficiency of colonisation y. Secondly, 

metapopulation occupancy (following the removal of the National Reserve) differed 

significantly with a  at 0.5. In this simulation, the original occupancy at equilibrium (with a  at 

0.1) was raised by 37%. The dynamic response however, was still evident, confirming that 

the model’s qualitative predictions, rather than quantitative outputs are still valid, regardless 

of the sensitivity to this parameter.
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5.5 Discussion

5.5.1 Main study findings

The results of this study suggest that in the Kwale District of Kenya the spatial 

configuration of forest habitat plays an important role in the occurrence and potential 

metapopulation dynamics of the Angola black-and-white colobus. Both habitat patch area 

and isolation distance from neighbouring colobus populations had a significant effect on 

colobus occurrence, whilst the general fit of the incidence function model to present C. a. 

palliatus occupancy patterns also confirmed that habitat patch area, patch connectivity and 

the spatial distribution of populations are likely to play a major role in C. a. palliatus 

population dynamics. With regards to the incidence function model fit, average colobus 

dispersal distances of 10km (i.e. with a  at 0.1) are certainly feasible given the medium body 

size of the subspecies; i.e. 7-10kg (Peters, 1983; Rowe, 1996; Sutherland et al., 2000), and 

are consistent with the documented sightings of healthy colobus individuals moving 5km 

from the nearest forest edges (Chapter 4). These latter distances were purely based on 

straight-line calculations, therefore potential dispersal distances, accounting for more natural 

animal movement, could be much larger (Diffendorfer, Gaines & Holt, 1995; Johnson et al., 

1992; Ricketts, 2001; Schippers et al., 1996). Values of a  may also suggest that the non­

habitat matrix, presently viewed as homogeneous and inhospitable in this model (Hanski, 

1994b; Ricketts, 2001), could be facilitating long-distance dispersal between forest patches. 

Indeed, non-forest vegetation types found within the matrix of this region (e.g. mangrove, 

perennial and timber plantations) could be highly advantageous for arboreal colobine 

dispersal (Chapter 4), and may play a significant, yet presently overlooked, role in this 

network.

The metapopulation simulations in this study suggest that large patches in the Kwale 

forest network are critical to future C. a. palliatus persistence. In particular, there was a 

significant impact on metapopulation size and persistence when the Shimba Hills National 

Reserve was removed, especially in combination with other large forest losses that together 

represent 4% of all large patches (three Forest Reserves and the presently unprotected 

Shimoni forest). It could be feasible that sub-networks of forests are clustered together, with 

neighbouring smaller patches relying on these larger patches either for connectivity to the
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wider metapopulation, sources of immigrants, and/or rescue effects (Brown & Kodric-Brown, 

1977). There may also be a degree of local source-sink dynamics within the network, i.e. the 

large habitat patches displaying net positive population growth (sources), supporting 

neighbouring patches with negative population growth (sinks) through immigration (Hanski & 

Simberloff, 1997; Pulliam, 1988; Pulliam & Danielson, 1991). However, source-sink 

dynamics are based on assumptions involving differences in patch quality, and forests 

surrounding ‘source’ patches are not necessarily ‘sinks’ because they are small. Present 

patterns of occupancy may also illustrate this effect, as there are a variety of adequately- 

sized patches near colobus populations that are presently unoccupied (Fig 5.2). Ideally, two 

or more surveys are required to establish whether these empty patches are symptomatic of 

the extinction-colonisation processes within the metapopulation network. Otherwise, 

differences in patch quality could also be influencing the present state of occupancy (see 

Chapter 3).

Habitat destruction in the Kwale District is likely to involve a combination of the 

future landscape scenarios simulated in this study. In the future, forest encroachment may 

be the driving force of future metapopulation occupancy patterns in the Kwale District (see 

Chapters 2 and 3), particularly within unprotected forests (Fig. 5.8). Metapopulation models 

may therefore provide a valuable conceptual framework in which to explore these processes, 

and the potential effectiveness of future conservation interventions in these areas.

Removal simulations involving individual forest patches (Fig. 5.9), combined with 

alternative measures of metapopulation size (Ovaskainen & Hanski, 2003b), provided a 

useful measure in which to assess patch contribution to the C. a. palliatus metapopulation as 

a whole. Such explorations are especially relevant in the context of conservation, when 

limited resources might be most effectively allocated towards the management of the most 

“valuable” pieces of habitat (Cabeza & Moilanen, 2003; Drechsler et al., 2003; Ovaskainen & 

Hanski, 2003b; Turner, Arthaud & Engstrom, 1995). For example, in the simulation where 

79 unprotected forests underwent 50% deforestation (Fig. 5.8.a) or were removed (Fig. 5.6), 

it is difficult to determine which patches in particular were decisive in the respective 20% and 

56% declines in metapopulation occupancy. However, a comparison of I/, values for each of 

the unprotected forests (Fig. 5.9) may permit wildlife managers to determine the key 

patches, or combinations of patches, that prevent these declines, without the unrealistic
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expense of implementing conservation measures to preserve all 79 unprotected forests. 

Similarly, this method could be used to highlight (or rank) the most valuable patches within 

the entire forest network. It should be stressed however, that these models can only provide 

a conceptual framework in which to explore these ideas, and should not be used exclusively 

to implement conservation management directives. Rather, metapopulation models may be 

most effectively used as a component of other local or national site-selection methods for 

prioritising conservation, for example by adding regional scale, spatial detail and/or 

connectivity to existing quantitative population (and habitat) viability analyses (Akcakaya, 

2000, 2001; Akcakaya, McCarthy & Pearce, 1995; 2004; Coulson et al., 2001; Davies et al., 

2001; Lacy, 1993-1994), or by augmenting other conceptual, criteria-based evaluations such 

as ‘site-selection’ algorithms (Cabeza & Moilanen, 2003; Carroll et al., 2003; Drechsler etal.,

2003).

5.5.2 Modelling uncertainties

When assessing the validity of C. a. palliatus metapopulation predictions for 

conservation management decisions, it is also useful to be clear about the uncertainties and 

assumptions inherent in the incidence function modelling approach. Outputs from the models 

themselves will be most useful if they are kept in context with the quality of biological data, 

confidence limits (Table 5.2) and sensitivity (Fig. 5.10) of model parameters.

There are a number of assumptions inherent in the incidence function modelling 

approach which wildlife managers should be made aware of. These assumptions specifically 

relate to parameter estimation and the errors that can occur in this process (Conroy et al., 

1995; Moilanen, 2002). In the case of this study, the regional population of C. a. palliatus fits 

well within most of the parameter estimate restrictions set by Hanski (1999b).

Firstly, Kenyan forest patches were discrete and numerous (at least 30 patches, 10 

empty and 10 occupied, are advised), with substantial variation in patch area and/or isolation 

for good parameter estimation. All forest patches in the network were accounted for and 

areas were accurately measured. In contrast, crude measures of patch areas or missing 

patches could cause significant errors in parameter estimation and subsequent model 

predictions, 6-9- extinction probabilities for large patches, migration distances, and
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colonisation ability of species are all overestimated by missing patches and poorly estimated 

areas (Moilanen, 2002).

Secondly, a complete survey of patch occupancy in 2001 (Chapter 2) eliminated 

false zeros’ in the dataset (i.e. observed or assumed empty patches, when there truly were 

populations present), an additional source of bias that can cause anomalous parameter 

estimates (Hanski, 1994b, 1999b; Moilanen, 2002).

Lastly, the incidence function model assumes that the landscape and pattern of 

patch occupancy have been fairly stable, or, if the landscape has been recently altered, that 

sufficient time has passed for the population to reach an equilibrium state within the altered 

landscape (Hanski, 1994b, 1999b; Hokit, Stith & Branch, 2001; Moilanen, 2000). In the 

natural world only a handful of primate study sites exhibit a historical, equilibrium state of 

‘natural’ forest fragmentation (Lawes et al., 2000; Mbora, 2004; Tutin, 1999), unaffected by 

the dynamic changes of human land use. Even within these sites, and several of the 

modeled non-primate metapopulation networks, some degree of dynamic, anthropogenic 

habitat change is evident (for a recent review of the non-primate metapopulations, see 

Baguette, 2004). In Kenya, a history of 12-year forest loss was found to negatively influence 

the density of individual C. a. palliatus populations (Chapter 3). However, forest loss did not 

influence population occupancy of patches, and the total number of forest patches over this 

time remained constant. Compared with invertebrate and small mammal metapopulations 

(e.g. Hanski et al., 1996b; Moilanen et al., 1998), the long generation times and slow 

population turnover of colobus (Elmhagen & Angerbjorn, 2001; Newton & Dunbar, 1994) 

may cause populations to linger-on in small forest patches prior to true extinction (Tilman et 

al., 1994), thus masking actual lowered equilibrium levels of occupancy in the Kenya forest 

network. By relying solely on a snapshot of patch occupancy data in this study without any 

temporal measures of either turnover events or increasing/decreasing trends in the 

metapopulation, the original incidence model (ie. without dynamic perturbation) may be 

overestimating the persistence of C. a. palliatus in Kenya, and should be viewed with caution 

(Clinchy, Haydon & Smith, 2002; Hokit et al., 2001; Moilanen, 2000, 2004). The difficulty in 

tackling the equilibrium assumption is also highlighted by other primate studies. Chapman et 

al. (2003) used Hanski’s incidence function model to fit data from two independent colobus 

surveys in the Kibale forest, Uganda. Of the 16 forest patches that were surveyed in 1995
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which supported resident colobus populations, three had been cleared by the year 2000. 

Similarly in Los Tuxtlas, Mexico the fragmented forest habitat of a howler monkey 

metapopulation (Allouatta palliata mexicana) had undergone 4-7% annual deforestation 

rates since the 1960s (Mandujano et al., in press).

Assuming equilibrium in the incidence function model should be highlighted as a 

further reason for viewing the quantitative outputs of such models with caution. 

Nevertheless, it is possible that even if metapopulations are not at equilibrium the qualitative 

predictions of future landscape scenarios are still likely to be comparable to a ‘quasi- 

equilibrium’ state as they may still provide a ‘relative’ index of patch importance to overall 

metapopulation stability (Hanski, 1999b; Ovaskainen & Hanski, 2001, 2003b).

5.5.3 Future development of a metapopulation approach

Assessment of the accuracy of a metapopulation approach is extremely difficult with 

only one ‘snapshot’ of occupancy data. However, future field studies in the Kwale District 

could be designed to gather further biological data for model parameterisation, monitor the 

success of model predictions, and continually improve the model in response to new 

understanding (Conroy et al., 1995; Turner et al., 1995). For example, at present the network 

has no data on population turnover events (Thomas, 1994) which could allow for measures 

of both colonisation and extinction processes within the metapopulation. Cowlishaw et al (in 

prep.) were able to successfully derive field-based quasi-equilibrium extinction and 

colonisation rates for the Tana River red colobus (Procolobus badius rufomitratus) 

metapopulation, using an incidence function model, but this required primate survey data 

over a 20-year period. Given the time-scale difficulties for tracking these processes in a 

species with slow population turnover (Elmhagen & Angerbjorn, 2001), C. a. palliatus 

population dynamics may have to be measured differently, e.g. looking for short-term trends 

such as differences in subpopulation growth rates (Coulson et al., 1999; Dobson & Lyles, 

1989).

Finally, it may also be useful to develop the degree of environmental realism in 

incidence function simulations, in order to help improve model fit to colobus occupancy data 

and to provide more opportunities to explore the impacts of alternative conservation
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management options for the subspecies, such as habitat restoration (MacMahon & Holl, 

2001; Young, 2000) or the creation of dispersal corridors (Bennett, 1998; Laurance, 2004). 

This would involve the inclusion of measures such as habitat quality (Fleishman et al., 2002; 

Thomas et al., 2001) and matrix heterogeneity (Ricketts, 2001), which have largely been 

ignored in previous applications to other taxa. Results of previous studies (Chapters 3 and 4) 

have determined that habitat quality and matrix heterogeneity are important factors involved 

in C. a. palliatus subpopulation density, incidence and individual colobus movements within 

non-forested areas of the subspecies range. Additional research focusing on the frequency 

of colobus dispersal and survival in the ‘matrix’ could also provide more accurate measures 

of the parameter a , and subsequent levels of connectivity within the network. Further 

exploration of the effects of matrix heterogeneity on metapopulation dynamics will be 

presented in Chapter 6.

In essence, the incidence function model provides a good starting point from which it 

is possible to conceptualise colobus population dynamics in a spatial framework. A 

metapopulation exploration has opened up a valuable, landscape-level understanding of this 

subspecies persistence in a fragmented forest network, particularly where the impacts of 

future forest loss need to be addressed. It is currently difficult to predict which forest- 

dependent species will survive in forest fragments without adequately assessing the future 

impacts of habitat conversion (Chapman & Peres, 2001). The incidence function model may 

provide a valuable theoretical framework in which to explore such impacts.
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6. Metapopulation dynamics of an arboreal primate 

and the influence of the matrix.

6.1 Abstract

In determining isolation effects in fragmented populations, the heterogeneity of the 

matrix is not often considered. This study uses data from an Angola black-and-white colobus 

(Colobus angolensis palliatus) metapopulation in East Africa, a detailed GIS land cover map 

of the region and Hanski’s incidence function model to provide a case study for the 

exploration of matrix quality effects within a metapopulation framework. A relatively simple 

modification of the incidence function model was explored which incorporated a ‘weighted’ 

measure of isolation distance using estimates of inter-patch matrix quality. However, this 

measure was found to improve model fit by only 4%, suggesting either that the matrix may 

have a relatively small influence on metapopulation dynamics in the present system, or that 

this approach may only capture a small fraction of the true heterogeneity, quality and spatial 

configuration of land cover types in the matrix. The modified incidence function model was 

then used to explore colobus metapopulation dynamics under a range of future scenarios of 

matrix change. Simulations of future matrix degradation or improvement were found to 

substantially decrease or increase (respectively) the total number of C. a. palliatus 

populations in the fragmented network. Incidence function model usage in this context could 

provide a conceptual tool for wildlife managers to explore the best combination of (1) habitat 

preservation and (2) matrix preservation and/or enrichment initiatives that could best 

facilitate the persistence of metapopulations within fragmented forest networks.
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6.2 Introduction

The spatial configuration of fragmented habitat plays a pivotal role in species 

population dynamics (Andren, 1994; Davies et al., 2001; Fahrig, 2003; Fahrig & Merriam, 

1994; Wiens, 1997; Wiens et al., 1993a). Patch size, shape, number and connectivity have 

all been linked to patterns of species incidence, abundance, population growth and extinction 

(see Fahrig, 2003, for a recent review). Over the past decade in particular, metapopulation 

ecology has influenced both theoretical and empirical research of species population 

dynamics at the regional scale (Baguette, 2004; Hanski & Ovaskainen, 2003; Ricketts, 2001; 

Vandermeer & Carvajal, 2001), focusing primarily upon the influences of habitat patch size 

and connectivity within fragmented landscapes (Hanski, 1994b; Hanski & Gilpin, 1997). In 

this approach, spatially subdivided populations are modelled within a binary landscape of 

habitat and ‘matrix’, i.e. the non-habitat surrounding the native habitat of interest. The critical 

factor maintaining metapopulation persistence in these fragmented networks is the 

movement of individuals between habitat patches, either ‘rescuing’ subpopulations from 

extinction or re-colonizing empty patches in the network. Migration of individuals is assumed 

to be distance dependent (see Chapter 5 for more details on metapopulation assumptions 

and a full description of Hanski's incidence function model, Hanski, 1994b).

Habitat patch ‘connectivity’ in the metapopulation sense is largely modelled using 

the shortest (Euclidean) isolation distances to all possible source populations in the 

fragmented network (Moilanen & Nieminen, 2002), whilst the matrix is assumed to be 

homogeneous and ecologically unimportant (Murphy & Lovett-Doust, 2004; Ricketts, 2001; 

Vandermeer & Carvajal, 2001). However, true ‘connectivity’ in nature is undoubtedly more 

complex, as the landscape between habitat fragments is often composed of a wide variety of 

natural or human-modified land cover types (Forman, 1997).

Field studies have found that differences in the heterogeneity, quality and fine-scale 

spatial distribution of matrix can significantly influence the occurrence, richness and 

abundance of bird and small mammal assemblages within fragmented forest remnants 

(Antongiovanni & Metzger, 2005b; Gascon et al., 1999; Jokimaki & Huhta, 1996; Pardini, 

2004; Pardini et al., 2005; Wethered & Lawes, 2003). At an individual level, matrix
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heterogeneity has also been found to influence the movement behaviour of dispersing 

individuals (Cook et al., 2004; Doncaster, Rondinini & Johnson, 2001; Goodwin & Fahrig, 

2002) and consequently, dispersal success between habitat fragments (Bonte et al., 2003; 

Ferreras, 2001; Pither & Taylor, 1998; Ricketts, 2001). In some instances, there are clear 

species-specific differences in the ability to tolerate or exploit the matrix (Develey & Stouffer, 

2001; Laurance, 1994; Laurance & Yensen, 1991; Nupp & Swihart, 2000) whilst in some 

rainforest species, the inability to use the matrix is the main factor cited for population 

declines and extinctions (Diamond & Bishop, 1987; Laurance, 1994; Viveiros de Castro & 

Fernandez, 2004).

In a metapopulation context, both the structural characteristics of the matrix 

(structural connectivity), and the specific mobility and behaviour of the dispersing individuals 

(functional connectivity), will greatly influence effective isolation distances between habitat 

patches (Tischendorf, Bender & Fahrig, 2003; Tischendorf & Fahrig, 2000, 2001). The 

origins of both ‘structural’ and ‘functional’ concepts of connectivity are more frequently 

addressed in the discipline of landscape ecology (Tischendorf & Fahrig, 2000; Wiens, 1997; 

With, Gardner & Turner, 1997). Here, connectivity is principally viewed by the degree to 

which the landscape facilitates or impedes individual movement amongst resource patches 

(Taylor et al., 1993). Although there has been an obvious acknowledgement of the 

importance of matrix complexity, and landscape-level ecological processes, within the 

metapopulation literature (Baguette & Mennechez, 2004; Hanski & Gilpin, 1997; Hanski & 

Ovaskainen, 2003; Moilanen & Hanksi, 2001) metapopulation models have yet to firmly 

incorporate a more structural and/or functional (landscape ecology) approach to patch 

connectivity (Ricketts, 2001; Shreeve et al., 2004; Tischendorf & Fahrig, 2000, 2001; 

Vandermeer & Carvajal, 2001; Wiens, 1997).

Some authors have discussed the possibility of ‘weighting’ isolation distances 

between habitat patches by the quality of matrix habitat comprising this distance. In this 

simple modification of connectivity, both the structure and coverage of matrix types are 

critical, as they could either impede or facilitate dispersal along original isolation distances 

(i.e. 'functional distance', Petit & Burel, 1998; 'matrix resistence', Ricketts, 2001; 'migration 

filter', Vandermeer & Carvajal, 2001; e.g. 'matrix permeability', Wiens, 1997). To date, only 

one attempt has been made to explore the applicability of this approach in empirical
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metapopulation networks. Moilanen and Hanksi (1998) weighted patch isolation metrics in an 

incidence function model of a Granville fritillary butterfly metapopulation in Finland. They 

found that adding additional complexity beyond the effects of habitat patch area and isolation 

distance did not significantly improve the predictive power of the model. However, further 

research is required to establish the generality of this finding across other systems.

Given the need for further empirical explorations of matrix effects within differing 

metapopulation networks, this study explores the significance of a simple matrix-weighted 

measure of patch connectivity using the incidence function model for a forest-dependent 

primate species in Kenya, the Angola black-and-white colobus (Colobus angolensis 

palliatus). The metapopulation dynamics of this taxon have previously been modelled using 

shortest isolation distance measures of connectivity within an incidence function model 

approach (see Chapter 5). Survey data on the presence of C. a. palliatus, a spatially-explicit 

database of all habitat patches in the region, and a matrix land cover map (derived from 

Landsat TM data) will provide the framework to further explore matrix heterogeneity and its 

relevance to the metapopulation dynamics in this case study.

In addition, the incidence function model has been found to be an extremely useful 

tool for investigating impacts of future habitat change in fragmented landscapes (Hanski, 

1998; Hanski & Simberloff, 1997). A more detailed incidence function approach which 

incorporates the effects of matrix quality may hence provide additional scope for the 

exploration of future changes in the land cover types surrounding fragmented forest 

networks. Therefore, the two main aims of this study were to (1) determine whether a simple, 

matrix-related modification of inter-patch distance in the incidence function model can 

improve model predictive power, and (2) explore the influence of future changes in the matrix 

on C. a. palliatus metapopulation persistence.

6.3 Methods

6.3.1 Study site, species and prior research

The Kwale District in the Coastal Province of Kenya lies between Mombasa and the 

border of North Eastern Tanzania (3’30\ 4°45’S; 38 31’ and 39°31’E). The District is roughly 

8,300km2 in area and encompasses a heterogeneous mix of both indigenous and
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agricultural land cover types (Chapter 4). Of primary conservation interest is the 124 coastal 

forest patches (total area: 255km2) remaining within this District (Chapter 2). Along with the 

Eastern Arc Mountains and coastal forests of northern Tanzania and northern Kenya 

(Clarke, 2000), the Kwale District coastal forests are a core component of one of 25 global 

diversity hotspots (Myers et al., 2000), and are listed as one of 11 priority regions for 

international conservation investment (Brooks et al., 2002). The Kwale District forests also 

provide habitat for the entire Kenyan population of Angola black-and-white colobus (Colobus 

angolensis palliatus). This primate taxon is ‘data deficient’ in current IUCN red listings (IUCN,

2004) and the need for more comprehensive information regarding the species status in 

Kenya has previously been highlighted (Oates, 1996a). Steps towards this assessment have 

already been made, with a recent, 2001 primate survey of all 124 forests in the District. Fifty- 

five C. a. palliatus populations were found during this survey, (44% habitat patch 

occupancy), with an estimated national population estimate of 3,100 -  5,000 individuals 

(Chapter 2). Colobus occurrence in this forest network has also been significantly linked with 

the quality (i.e. canopy cover) and spatial characteristics (i.e. patch area and isolation 

distance from source populations) of habitat patches (Chapters 3 and 5), whilst the future 

population dynamics of C. a. palliatus have also been modelled in a metapopulation 

framework using Hanski’s incidence function model (Chapter 5). In this model, exact patch 

areas and shortest (Euclidean) isolation distances were used. The spatial characteristics of 

the habitat network were determined using a geographical information system (GIS) 

(ArcView GIS 3.2, ESRI Inc. 1999) and a database describing the spatial locations and forest 

boundaries of all 124 habitat patches in the Kwale District. Within model simulations 

however, matrix quality was not considered, as the intervening landscape between habitat 

patches was assumed to be homogeneous.

However, the matrix in the Kwale District is extremely varied (Chapter 4). Indigenous 

matrix vegetation is comprised of mangrove, coastal shrubland, and shrub or wooded 

grassland areas, which can also contain small clusters of indigenous (forest) tree species 

(too small in area to warrant a ‘forest habitat’ classification). Historical human land use in the 

region has transformed coastal forest and other types of indigenous matrix vegetation into 

pastoral grasslands, perennial plantations (i.e. coconut, cashew nut, mango), timber
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plantations, annual croplands (e.g. maize, rice, sugarcane and root vegetable crops) and 

areas of human development/settlement (CEPF, 2003; Muchoki, 1990; Nzoika et a/., 2003).

Differences in the structure and quality of the matrix within the Kwale District have 

also been found to potentially aid or hinder colobus dispersal between habitat patches 

(Chapter 4). C. a. palliatus is primarily arboreal in nature (Davies, 1994), therefore dispersal 

movements could be energetically costly through matrix types that require terrestrial 

locomotion (Aronsen, 2004b). This could result in colobus individuals avoiding more open 

matrix types in preference for closed, canopy-like matrix. This hypothesis is supported from 

recently documented reports of colobus individuals and groups moving through closed- 

canopy matrix types in the Kwale District such as mangroves and perennial plantations, 

whilst more open matrix types such as annual croplands, grasslands and shrub grasslands 

are generally avoided (Chapter 4).

6.3.2 Matrix characteristics

Using a 2003 land cover map of the Kwale District (derived from Landsat TM data: 

25m x 25m resolution) (see Appendix IV) and GPS-derived maps of the boundaries of all 

habitat patches in the network, all existing matrix land cover types (i.e. surrounding habitat 

patches) were re-classified to a species-specific matrix classification using ArcGIS Spatial 

Analyst (Arclnfo 9.0, ESRI Inc. 2002), as detailed in Table 6.1. In this process, each of the 

17 identifiable matrix types were allocated a ‘quality’ rank based on the hypothesis that 

colobus movement through the matrix would be facilitated when the vegetation structure was 

similar to that of habitat fragments (Pearson, 1993; Stouffer & Bierregaard, 1995). If 

beneficial matrix structure also had a high proportional coverage of colobus food trees, 

general colobus locomotion and foraging efficiency were assumed to improve during inter­

patch dispersal (Aronsen, 2004b; McGraw, 1998a). The matrix ‘quality’ ranks were therefore 

as follows; 0, matrix type offers no benefit to arboreal locomotion and may even hinder 

primate dispersal; 1, matrix type offers limited access to arboreal locomotion with limited 

occurrence of colobus food trees; 2, matrix type offers dense tall canopy and unhindered 

arboreal locomotion with limited occurrence of colobus food trees; 3, matrix type offers 

closed tall canopy, unhindered arboreal locomotion and high occurrence of colobus food 

trees. In all cases, the proportion of tall vegetation cover was viewed as the most important
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factor influencing dispersal, whilst colobus food trees were viewed as an additional benefit 

only. The resultant matrix ‘quality’ map for the Kwale District (raster format: 25m x 25m 

resolution) is shown in Figure 6.1.

Table 6.1. Characteristics of matrix types and their suitability for C. a. palliatus dispersal within the 
Kwale District, Kenya.a Coverage of tall (>6m) vegetation and colobus food trees = closed (80-100%), 
dense (50-79%), open (20-49%), sparse (2-19%), none (0%) (Grunblatt et al., 1989); b predicted 
locomotion of colobus individuals within matrix given the variation in tall canopy cover; 0 Reflects the 
quality of each matrix type in facilitating arboreal dispersal between forest patches.

Matrix type
Matrix characteristicsa 
> 6m trees food trees

Predicted b 
locomotion

Quality0 
rank

Indigenous

Indigenous coastal forest vegetation closed dense unhindered arboreal 3
Mangrove closed open unhindered arboreal 3

Wooded shrubland open open intermediate arboreal 1
Wooded grassland open sparse intermediate arboreal 1

Shrubland sparse sparse intermediate arboreal 1
Shrub grassland sparse sparse terrestrial 0

Bare ground none none terrestrial 0
Sand none none terrestrial 0

Swamp none none none 0
Water none none none 0

Human land use /  other

Perrenial plantation dense sparse unhindered arboreal 2
Timber plantation dense sparse unhindered arboreal 2

Annual cropland <1m sparse none terrestrial 0
Annual cropland 1-3m sparse none terrestrial 0

Grassland sparse none terrestrial 0
Human development none none terrestrial 0

Quarry none none terrestrial 0
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Fig. 6.1. Matrix quality in the Kwale District, Kenya. Both figures A and B illustrate 200m flat-ended 
buffers of the shortest (Euclidean) isolation distances, between pair-wise comparisons of habitat 
patches.

6.3.3 Weighing isolation distance by matrix quality

Using ArcView 3.2 and a Distance and Azimuth Matrix v.2 (Jenness, 2005) it was 

possible to calculate the shortest (Euclidian) isolation distances between all pair-wise habitat 

patch combinations in the forest network (i.e. n*(n-1)/2 = 7,626 comparisons, where n, total 

number of patches, is 124). These isolation distances (km) were calculated from habitat 

patch edge-to-edge and accounted for the Indian Ocean coastline (see Appendix VII). The 

GIS analysis also created a shapefile of all pair-wise isolation lines (trajectories). To account 

for variation in matrix quality over these isolation distances, 50m-, 100m- and 200m-width 

flat-ended buffers were superimposed along all 7,626 isolation lines (ArcToolbox proximity 

buffer extension: Arclnfo 9.0, ESRI Inc. 2004). Each of the three resultant buffer shapefiles 

were then overlaid onto the matrix quality map (Fig. 6.1) and the average (mean) matrix
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quality value (range 0-3) of all 25m x 25m matrix cells beneath each buffer zone were 

summarised using Spatial Analyst Zonal Statistics (Arclnfo 9.0, ESRI Inc. 2004). Buffer 

zones were averaged over land only. Any Indian Ocean matrix cells were excluded from the 

zonal statistics. This calculation gave an estimate of the average quality of matrix for each of 

the pair-wise isolation distances. A Pearson’s correlation analysis was then used to 

determine whether 50m, 100m and 200m buffer methods produced similar estimates of 

matrix quality. The results indicated a strong correlation between matrix quality estimates for 

all three buffer methods (Pearson’s correlation values ranged from 0.992 to 0.998, n = 7,626, 

p < 0.001). A single buffer width, of 200m, was therefore selected for use in all subsequent 

analyses.

6.3.4 Incidence function model

The incidence function model (Hanski, 1994b) is based on a first-order, linear 

Markov chain model for the changes in the state of one habitat patch, which may be either 

occupied or empty. Changes in the state of patch / are determined by extinction and 

colonization probabilities E, and C„ which are calculated independently for every patch /' in 

each time unit, using patch areas A, and patch connectivity measures S, as variables. 

Specifically, the area of a patch is assumed to determine the extinction probability,

E t — e l A * , where e and x are parameters determining the shape of the response. The

colonization probability of patch / is defined by a sigmoid function C , = S ? / t f + y 2),

where parameter y determines the shape of the reponse. In the standard incidence function 

model (Hanski, 1994b, 1998), patch connectivity (S,) is defined as:

where p, is the observed incidence of the patch (simply a ‘snapshot’ of data, resulting in the 

input of species presence = 1, or absence = 0), and of// is the distance between patches / and 

j. The parameters determines the rate of decline in survival of a migrant with increasing 

distance moved. Since the size of neighbouring populations could affect the number of 

migrants reaching the focal patch /, Aj \s included in Equation (1), whilst parameter b scales 

expected population size with patch area.

(1)
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Using the independent extinction (E,) and colonization (Cj) probabilities for each 

patch in the fragmented network, and including a rescue effect (a population may be rescued 

from extinction by immigration enhancing local population sizes, Brown & Kodric-Brown, 

1977; Hanski, 1994b), predicted patch incidence J, is given by:

where e’ =ey2 (for methods on how to separate the values e and y from the composite 

parameter e\ see Chapter 5).

The model parameters x, y, e, b, and a  can be estimated from the snapshot of field 

data by fitting equation 2 to the observed occupancy patterns. The best fit between the 

observed incidence data {pi) and the model’s predicted incidence (Ji) can be found by 

minimizing the likelihood estimator:

If matrix quality is introduced into the incidence function model’s connectivity 

measure detailed in Equation (1), one might hypothesise that poor-quality matrix might mimic 

the ‘inhospitable’ matrix of the original metapopulation assumption, corroborating an 

unmodified isolation distance. In contrast, good quality matrix could facilitate dispersal (via 

low dispersal costs through structurally similar, habitat-like matrix), resulting in an effective 

shortening of patch isolation distances. To insert a modifier of the isolation distance 

component (d#) of the connectivity variable to incorporate such matrix effects gives a 

modified connectivity index S/MQ:

where my is the average matrix quality between habitat patches /' and j, and mmax is the 

maximum matrix quality (i.e. 3). In effect, this equation transforms matrix quality into a 

measure of matrix permeability (Wiens, 1997), in which higher matrix quality scores will 

decrease the isolation distances between habitat patches. An additional parameter w scales 

matrix permeability to the matrix quality score, where a high value of w indicates high matrix 

permeability.

(3)

max

(4)
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Using the likelihood estimator fitting procedure detailed in Equation (3), the best fit 

between the observed incidence data (pi) and predicted incidence (Ji) was found for the

modified incidence function model accounting for variability in matrix quality (Sf*Q), i.e.

Equation (4).

A range of dispersal parameter values, namely a  = 0.05, 0.1 and 0.5 (Chapter 5), 

and matrix permeability scales, namely w = 0.1, 0.5, 1, 2, 3, 4, and 5, were explored during 

model fitting. The results of model fitting for Equation (4) were compared with those obtained 

for Equation 1 (see Chapter 5). Direct comparisons were possible, despite the additional 

parameter w in the modified incidence function model, as the likelihood fitting procedure

used in this analysis (Equation 4) uses the connectivity values S', and S™Q, and not

parameters a , b, and w, directly. All the equation symbols used in this chapter are 

summarised in Appendix VI.

6.3.5 Model simulations

To test whether this modification of the incidence function model had any impact on 

model predictions, two models were compared: (1) the original incidence function model (for 

future simplicity, referred to as IF) and (2) the modified (matrix) incidence function model 

(referred to as MIF), both of which simulated future C. a. palliatus metapopulation dynamics. 

One thousand simulation replicated were used, over 500 generations (see Chapter 5). In 

addition, the MIF model was used to simulate the effects of future forest loss by removing 

habitat patches by protection status: loss of one National Reserve, 14 Forest Reserves & 

Sanctuaries, 30 Kaya’s (sacred forests protected by the local community) and 79 

unprotected forests. These future habitat loss scenarios had previously been modelled using 

the IF model approach (see also Chapter 5 for more detailed methods), therefore a 

comparison of the two model outputs was feasible.

To explore the influence of matrix quality on future C. a. palliatus metapopulation 

dynamics, two MIF model simulations looked at the effects of either degrading or increasing 

the quality of the matrix in the Kwale District. In these simulations, the existing matrix quality 

measures (m,y) were systematically increased or decreased by 0.2, 0.4, 0.6, 0.8 and 1.0, 

respectively. The upper and lower limits of matrix quality (i.e. 3 and 0), were maintained
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throughout each of the two modification procedures. Again, one thousand replicate 

simulations over 500 generations were used. Results were summarised as the total number 

of occupied patches in the network i.e. metapopulation size (/tfpop), following matrix quality 

change. The new level of metapopulation size was recorded when the metapopulation re­

established a quasi-equilibrium state (i.e. between 1 and 500 generations). In addition, the 

number of generations the C. a. palliatus metapopulation required to reach this new 

equilibrium was also noted. During all simulations, habitat patch area was assumed to be 

constant. Finally, the model’s sensitivity to the matrix scaling parameter in Equation (4) was 

also tested using a variety of values of w = 1, 2, 3, and 4.

145



6.4 Results

6.4.1 Matrix quality and incidence function model fit

The average matrix quality between habitat patches ranged from land cover types 

that provided no structural benefit to arboreal primate locomotion (i.e. minimum matrix quality 

= 0.04), to land cover which closely matched the closed, tall canopy of habitat fragments (i.e. 

maximum matrix quality = 2.81) (Fig. 6.2). However, most paths had low average matrix 

quality, and overall average inter-patch matrix quality was 0.92.
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Fig. 6.2. Variation in average matrix quality (m,y) between habitat patches in the Kwale District, Kenya.
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The goodness of fit of the MIF model, i.e. accounting for variance in inter-patch 

matrix quality, is detailed for different values of a and w in Table 6.2. The model with a  at 

0.1 consistently provided a better fit than models with a  at 0.5 or 0.05. When compared 

with the original IF model however, the greatest improvement in model fit was only a 2.53 

reduction (4.3%) in the likelihood estimator, with a  at 0.1 and w at 4. The model parameters 

used in subsequent metapopulation simulations are detailed in Table 6.3.

Table 6.2. Likelihood estimator values (Log(L)) for model fit when the incidence function model was 
modified for inter-patch matrix quality. Results of models with varying values of the dispersal 
parameter CL and the matrix scaling parameter w. Original incidence function model Log (L) = 59.25;
Null model Log (L) = 83.55. The best fit is highlighted in bold.

w
or 0.1 0.5 1 2 3 4 5

0.05 60.24 59.79 59.30 58.63 58.36 58.40 58.62
0.1 59.12 58.68 58.25 57.50 56.94 56.72 56.82
0.5 82.89 79.82 79.32 70.57 60.30 62.17 58.79

Table 6.3. Comparison of original and expanded (matrix) incidence function model parameters

Values
Parameter original IF IF with matrix

b 0.463 0.463
a 0.1 0.1
A, 0.014 0.014
X 0.959 0.884
e 0.017 0.024
y 24.139 91.227
w “ 4
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6.4.2 Model expansion and its effects on metapopulation predictions

Under present day conditions, the IF model and the MIF model produced analogous 

outputs of the metapopulation dynamics of C. a. pallia tus, over 500 generations, when there 

was no change to the fragmented forest network (Fig 6.3). Likewise, in future scenarios 

involving forest patch removal by protection status, the predicted metapopulation dynamics 

of C. a. palliatus from both models were qualitatively similar. In this case, the MIF model 

varied to within 4-17% of the predicted occupancy levels generated from the IF model. 

These results suggest that variation in matrix-related connectivity between habitat patches 

may be sufficient to exert a distinct but relatively minor effect on metapopulation dynamics 

under different patch removal scenarios.

(a.) (b.)
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 Original  Shimba Hills N. R. (1)  Forest R esents & Sanctuaries (14)  Kaya's (30)  Unprotected (79)

Fig. 6.3. Comparison of (a.) original and (b.) matrix incidence function model simulations. This figure 
illustrates the qualitative differences in the projected metapopulation dynamics of C. a. palliatus, 
comparing original dynamics with the loss of forest by management category over 500 generations: the 
Shimba Hills National Reserve, 14 Forest Reserves & Sanctuaries, 30 Kayas and 79 unprotected 
forests.
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The C. a. palliatus metapopulation was found to be highly responsive to future 

changes in the quality of the Kwale District matrix (Fig. 6.4). Systematic degradation of the 

matrix resulted in a near-linear decline in patch occupancy, however the magnitude of this 

decline was strongly dependent upon the value of the parameter w (e.g. a 0.2 decline in 

average matrix quality decreased the expected number of patches occupied at equilibrium 

by between 7 and 19%). Conversely, even small improvements in matrix were sufficient to 

raise occupancy levels of the metapopulation (e.g. a 0.2 increase in matrix quality was 

enough to raise the equilibrium number of patches by about 10%, regardless of the value of 

w). The response times to all levels of improvement (0.2 -  1.0) were also relatively rapid, 

with increases in metapopulation size taking place within 9 to 13 generations. Not 

surprisingly, matrix degradation was more disruptive to connectivity with the metapopulation 

taking successively longer generations to re-establish equilibrium (i.e. from 46 to 331 

generations).
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Fig 6.4. Effects of future (a.) degradation and (b.) improvement of the Kwale District matrix, on future 
C. a. palliatus metapopulation dynamics. Each figure illustrates the total metapopulation size Mpop at 
equilibrium. Italicized numbers are the average number of generations (for all four parameter w 
estimates = 1, 2, 3, 4) taken to re-establish the equilibrium state.
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6.5 Discussion

6.5.1 Metapopulation model predictive power and the influence of the matrix

Given the relative importance of differing matrix land cover types for C. a. palliatus 

movement in the Kwale District (Chapter 4), it was unexpected that inclusion of GIS data into 

the incidence function model failed to improve model fit to any substantial degree. These 

results are in accordance with Moilanen & Hanski’s findings (1998) who used a slightly more 

complex, parameter-rich method of matrix ‘weighted’ isolation distance in the simulation of 

Glanville fritillary butterfly metapopulation dynamics. However, these findings do not 

necessarily indicate that the matrix is unimportant, but rather that it may be difficult to 

characterise matrix quality in a simple yet realistic way. It is extremely difficult to find a 

simple but realistic patch connectivity measure in metapopulation theory given the sheer 

complexity of real landscapes found in nature (Gutzwiller, 2002; Ricketts, 2001; Tischendorf 

& Fahrig, 2001; Wiens etal., 1993a).

In the case of C. a. palliatus the spatial configuration of matrix types in the Kwale 

District may be of key importance to the metapopulation network. A value of matrix quality 

averaged over shortest (Euclidean) isolation distances may therefore present too crude a 

measure of matrix heterogeneity, as this measure fails to take account of the spatial 

arrangement of important matrix land cover types relative to habitat patches in the network 

(Andren, 1994; Fahrig & Merriam, 1994; Wiens et al., 1993a). For example, in Figure 6.1(A) 

the true connectivity of two patches in the Kwale forest network could be strongly influenced 

by the s-shaped corridor of perennial plantation and indigenous trees found in the matrix 

(offering a high-quality dispersal corridor), rather than the matrix composition of the straight- 

line shortest distance between the two respective patches. Animals tend to exhibit habitat 

preferences and thus seldom move randomly (Dunning et al., 1995; Hastings, 1996; 

Verbeylen et al., 2003). Therefore a more species-specific ‘functional’ approach to 

connectivity may be required which incorporates the movement behaviour of dispersing 

individuals (Tischendorf & Fahrig, 2000).

‘Least-cost’ modelling, for example, may be an appropriate avenue of further 

exploration (Adriaensen et al., 2003; Chardon, Adriaensen & Matthysen, 2003; Ferreras,
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2001; Graham, 2001; Gustafson & Gardner, 1996; Schippers et al., 1996; Verbeylen et al., 

2003). In this approach, it is assumed that focal species will avoid matrix habitats that are 

energetically costly, risky or a barrier to movement, preferring to move within beneficial, less- 

costly matrix or corridors (Hansson, 1991; Johpson et al., 1992). By allocating resistance 

values to differing matrix cover types within a GIS environment the least-cost paths between 

habitat patches could be calculated, based on movement routes through the most beneficial 

matrix types. Results of such models may give a more realistic measure of isolation distance 

between habitat patches, often referred to as ‘effective’ isolation distance (Adriaensen et al., 

2003; Ferreras, 2001; Verbeylen et al., 2003), whilst allowing wildlife managers to visualise 

existing dispersal corridors or barriers within the matrix (Gustafson & Gardner, 1996)

6.5.2 Future changes in the matrix and C. a. palliatus metapopulation persistence

Further to Moilanen & Hanski’s (1998) exploration of the influence of matrix quality, 

this study also used the MIF model to simulate the impacts of future habitat and landscape 

change on C. a. palliatus metapopulation dynamics. The MIF model produced qualitatively 

similar results to the IF model when either the original (stable) patch network or future patch 

loss scenarios were simulated. However, the MIF approach also facilitated an exploration of 

the effects of future changes in the quality of the Kwale matrix. These effects were found to 

be substantial. Only small levels of matrix degradation were required to delay the recovery 

of the C. a. palliatus metapopulation in response to this change (i.e. to delay the time 

required to reach equilibrium) and to lower the total number of occupied patches in the 

network at equilibrium. Such matrix degradation could be comparable to anthropogenic 

matrix conversion from woodland and shrubland to pastoral grasslands or annual cropland, 

for example. In contrast, colobus metapopulation occupancy patterns responded positively, 

and relatively rapidly, to small increments of structural improvement of the Kwale District 

matrix. These changes were equivalent to matrix enrichment schemes such as the creation 

the planting of trees in the existing matrix or the transformation of cropland to perennial 

plantation. Both these responses indicate a need for integrated landscape-habitat 

management in this fragmented network (Saunders et al., 1991; Wiens, 1997).

151



The higher levels of matrix improvement simulated in Figure 6.4 would certainly be 

unrealistic on a practical conservation management level. By increasing the entire 

connectivity of the network towards a matrix structure that is similar to that of habitat patches 

you would effectively make the entire fragmented landscape a single element (in which case 

metapopulation theory is no longer applicable) (Hanski & Gilpin, 1997; Wiens, 1997). 

Additional arguments against the excessive improvement of connectivity (and possible 

increase in dispersal rates between populations) include the spread of disease between 

subpopulations (Hess, 1996), the proliferation of competitive or predatory species in the 

matrix (Rich, Dobkin & Niles, 1994; Simberloff & Cox, 1987), and the increased synchronicity 

between populations. The latter effect is important as it may increase the chance of 

simultaneous extinctions in the metapopulation network as a whole (Heino & Hanksi, 2001).

More appropriately, the MIF model provides the conceptual flexibility to explore both 

(1) the optimal combination of habitat patches required for future metapopulation persistence 

(see Chapter 5), and (2) the optimal matrix land cover preservation (or enrichment) between 

pairs or groups of habitat patches which may enhance such persistence. In addition, MIF 

model simulations could be used to predict the impacts of future changes in the landscape 

(incorporating matrix change), and/or predict the effectiveness of landscape-level 

management initiatives between particular habitat patches.

It is presently difficult to answer the practical question of whether, given a limited 

conservation budget, improving habitat or building corridors (or perhaps a combination of the 

two) is the best option for metapopulation management (Etienne & Heesterbeek, 2001). The 

MIF model may provide a starting point from which to explore such issues. Also, in light of 

current concerns regarding the conservation ‘cost-effectiveness’ of (man-made) linear 

corridors in the landscape (Beier & Noss, 1998; Bennett, 1998; Crome, 1997; Simberloff & 

Cox, 1987) it may be more feasible, as this study has shown, to maintain or increase 

connectivity in a fragmented landscape by preserving, enriching or altering the management 

practices (e.g. present agricultural production regimes) of the surrounding matrix than to 

reconnect them with expensive purpose-built corridors (Baum et al., 2004; Ricketts, 2001).

Whilst the simple measure of matrix quality used here was clearly unlikely to have 

captured the true complexity of a heterogeneous landscape, it has nonetheless permitted an 

exploration of the possible impact of future change in the landscape surrounding habitat
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fragments. These results thus provide a starting point from which to develop more 

comprehensive measures of metapopulation connectivity, for example by exploring the 

explanatory power of effective (least cost) migration paths rather than shortest isolation 

distances. Such an understanding would increase our ability to spatially prioritise landscape 

preservation and enrichment, both in and around existing habitat patches.
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7. Discussion

In a paper concerning the population dynamics and conservation of primates, 

Dobson & Lyles (1989) stated that, “Unfortunately, most primate field studies last for about 

as long as it takes to satisfy doctoral research requirements”. The authors were trying to 

highlight the inadequacies of short-term data collection and its limitations for practical 

primate conservation. However, the results of this study illustrate that within a relatively short 

period of time and with limited funding, a significant amount of practical information can be 

gathered concerning the national status of a tropical forest-dependent primate species, and 

its habitat requirements, ecological flexibility and response to anthropogenic disturbance, 

both within and beyond the boundaries of forest fragments. This study has also illustrated 

that short-term species presence/absence data can be combined with remotely sensed data, 

a geographical information system (GIS) and a conceptual metapopulation model, to provide 

a simple yet powerful tool to understand the spatial geometry and heterogeneity of the 

regional landscape and its direct relevance to species metapopulation dynamics and 

conservation.

7.1 The regional-landscape scale

Effective conservation programs promoting species preservation in fragmented 

tropical forest networks must determine the priority areas for habitat management, often at 

the regional, national or biogeographical scale (Bibby, 1998; Cowlishaw & Dunbar, 2000a; 

Sutherland, 1998). In order to identify such conservation priorities, it is critical to establish the 

a species’ status and distribution and the factors that regulate its occurrence and/or density 

within these areas (Chapman, Struhsaker & Lambert, 2005). In the case of the Angola black- 

and-white colobus (Colobus angolensis palliatus) in East Africa, this study dealt with the 

national (Kenyan) extent of the subspecies’ geographical range. A ‘national’ survey level was 

appropriate since forest habitat and wildlife management/protection would ultimately be 

administered at the same scale, via governmental Forest Departments, local NGOs and the 

Kenya Wildlife Service.
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The national primate survey presented in this study established a Kenyan C. a. 

palliatus population estimate of between 3,100 and 4,900 individuals (570 -  900 groups). 

Fifty-five subpopulations were distributed within 124 coastal forest fragments (total forested 

area = 255km2). All surveyed forest patches occurred entirely within the south coast Kwale 

District of Kenya. The largest forest patches in the network provided habitat for the largest 

colobus populations in the District, including: (1) the Shimba Hills National Reserve 

(>150km2 area, 2,436 ± 458 S. E. colobus individuals), (2) six of the Forest Reserves, (3) 

Kaya Muhaka and (4) the Diani and Shimoni unprotected forests, highlighting the importance 

of these sites for species protection. The survey was also valuable in highlighting that 12% of 

the District’s coastal forest cover (i.e. 3,000ha, 79 forest patches) still remains unprotected 

and (including the Diani and Shimoni colobus populations) provides habitat for over 17% of 

the national C. a. palliatus population.

Furthermore, by focusing on forest fragment comparisons it was possible to 

disentangle some of the underlying ecological processes that influence species persistence 

in such fragmented landscapes. At the within-fragment scale, forest area was found to be the 

most influential of all habitat variables, influencing both population density and occupancy 

patterns of C. a. palliatus. The quality of individual habitat patches was also found to be 

important. Colobus occurrence was positively associated with canopy cover, whilst colobus 

density in the occupied forest patches was attributable to the proportion of forest loss over 

the preceding 12 years and the basal area of 14 major food tree species. It seems that C. a. 

palliatus can exhibit a high degree of dietary flexibility, as it exploits more than 100 

indigenous tree species. This may allow populations to occupy forest patches when resource 

quality is relatively low. However once a patch is occupied, key local food resources must 

play an important role in supporting high colobus population densities. Folivorous primate 

biomass has been positively associated with high-quality (high protein-to-fibre ratio) food 

plants (Chapman et al., 2002; Oates et al., 1990; Wasserman & Chapman, 2003), and 

further study might usefully explore the nutrient quality of C. a. palliatus food plants, 

particularly for the major food tree species.

At the between-fragment scale, the spatial distribution of the 124 habitat patches 

and the heterogeneity of the surrounding landscape were found to play a significant role in 

C. a. palliatus occurrence, dispersal and metapopulation dynamics. Isolation distances from
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neighbouring colobus populations were significant indicators of population occurrence in the 

forest network. The use of a spatially explicit metapopulation model, the incidence function 

model, confirmed the importance of habitat patch area, patch isolation and the spatial 

distribution of occupied patches.

By expanding the focus of ecological thinking towards the spatial, landscape-level of 

C. a. palliatus population processes, the ‘matrix’ became an important (yet previously 

overlooked) avenue for research. Information concerning species dispersal movements can 

be difficult and time-consuming to collect (Bennett, 1998; Bowne & Bowers, 2004). However, 

this study illustrates that valuable qualitative and quantitative data can be gathered within a 

short time period, drawing on local community knowledge. C. a. palliatus dependency upon 

closed-canopy forest habitat also corresponded well with the reports of colobus movement 

through matrix land cover types which were structurally similar to that of forest habitat. For C. 

a. palliatus in the Kwale District of Kenya, matrix land cover types such as mangrove, timber 

plantations and perennial plantations are likely to have the potential to facilitate colobus 

movement between habitat patches. C. a. palliatus showed great flexibility in utilising these, 

and other more open matrix types (e.g. wooded shrubland, wooded grassland and 

shrubland), traveling over 4km from the nearest boundaries of forest habitat. It was also 

evident that colobus groups and individuals exploited certain matrix types for their availability 

of food resources. Tree species found within indigenous mangrove, wooded shrubland and 

wooded grassland areas were targeted, as well as indigenous coastal trees persisting within 

perennial plantations. The dense canopy of coconut palms, cashew nut and mango trees 

present in the latter matrix type facilitated colobine locomotion and access to such food 

resources.

The overall importance of mangrove as a facilitator of inter-patch dispersal, and as a 

potentially important foraging habitat, for C. a. palliatus has important implications for 

colobus conservation. Studies of two other colobines, the Zanzibar red colobus (Procolobus 

kirkii) (Siex, 2003), and Temminck’s red colobus (Procolobus badius temminckii) (Galat- 

Luong & Galat, 2005), have also documented colobine use of mangrove areas as additional 

foraging sites and refuges from human disturbance. These results suggest that 

conservationists should consider the benefits of classifying mangrove as ‘suitable’ habitat for 

colobines, particularly when prioritising important areas for future preservation. For C. a.
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palliatus this would also challenge the metapopulation assumptions incorporated within this 

study, as the present spatial distribution of habitat patches incorporates closed-canopy 

coastal forest only. If mangrove were to be included within the habitat management strategy 

for this subspecies, both the areas and connectivity measures used in the metapopulation 

model would need to be adjusted, and the resultant metapopulation dynamics of the species 

re-explored.

It is extremely difficult to identify the precise mechanisms underlying the variety of 

responses of primates to fragmented landscapes (Chapman et al., 2005; Marsh, 2003b). 

However, the regional-landscape approach used in this study will certainly provide wildlife 

managers in Kenya with a more comprehensive, holistic understanding of C. a. palliatus 

habitat requirements and response to forest fragmentation than would have been obtained 

from an individual, patch-specific study on a much smaller scale.

7.2 The future of forest fragments

Human population growth and development within tropical forest biomes leads to the 

appropriation of extensive areas of land for settlement, agriculture, and resource extraction; 

in addition, the infrastructure to support these ongoing activities can cause further loss, 

fragmentation and degradation (Balmford e ta i, 1998a; Mace & Baillie, 2001). To assess the 

ecological impacts of current human disturbance within the regional scale of this study, it 

was useful to understand: (1) the effectiveness of current forest protection (Struhsaker et ai., 

2005), (2) the current and future threats to colobus persistence, including community 

utilisation of forest fragments and the surrounding landscape (Balmford, Mace & Ginsberg, 

1998b; Chapman et al., 2003), and (3) the possible consequences of alternative scenarios of 

future landscape change, using predictive models to explore the future persistence of C. a. 

palliatus (Dunning e ta i, 1995; Turner et al., 1995).

7.2.1 Current forest protection

The coastal forest fragments of Kwale District were either protected as National 

Reserves (1: the Shimba Hills National Reserve), Forest Reserves (14) or sacred Kayas 

(30). Seventy-nine forests in the District remained unprotected and were under heavy
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exploitation. The Forest Reserves protected some of the largest remaining forest habitats 

(and colobus populations) in the District, however they were also found to be under similar 

levels of anthropogenic threat to the unprotected forests. In contrast, the sacred Kayas 

(which were jointly protected by the local Mijikenda communities and the National Museums 

of Kenya) exhibited relatively lower levels of exploitation. Forest loss, logging, hunting and 

charcoal-producing activities in these forests were all at significantly lower levels than the 

unprotected forests. The failing infrastructure/capacity for wildlife protection and poor law 

enforcement within the Forest Reserves, compared with the local community involvement in 

the protection of the sacred Kayas, may explain the contrasting levels of effectiveness of 

these two protection strategies.

7.2.2. Community utilisation of forest fragments and future threats

A major degree of resource overlap was found within coastal forest fragments 

between human extraction practices in the Kwale District and C. a. palliatus food resource 

requirements. Over 45% of local tree extraction targeted just 10 species of indigenous tree. 

Nine of these species were food trees of the colobus, whilst four were major food trees. 

Local needs for these forest resources included fuel wood, charcoal-production, wood- 

carving for the tourism industry, building poles, and in particular, hardwood trees (such as 

Millettia usamensis, Combretum schumannii and Lecaniodiscus fraxinifolius) for 

construction. Left unaddressed, the permanent removal of such major food resources will 

reduce colobus densities in remnant forests, as well as further degrade forest canopies and 

ultimately reduce forest area. The latter two effects are known within this study to 

significantly predict the occurrence of colobus populations within forest fragments.

Historical research into the past distribution of C. a. palliatus in the north coast 

forests of Kenya also highlighted a possible future threat to the colobus, namely cultural 

differences within subdivisions of the indigenous coastal tribe (Mijikenda), which may have 

led to extinction of remnant populations of colobus in north coast forests through hunting for 

bushmeat (a major threat more commonly cited for colobine declines in west and central 

Africa, Davies, 1987; Lahm, 1993; Martin & Asibey, 1979; Oates, 1996b; Waltert et al., 

2002). As coastal development increases in the Kwale District, influxes of north coast or
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other Kenyan ethnic groups (Hoorweg, 2000) may bring such hunters into an area where 

hunting is currently rare, thus introducing a new and serious threat to the survival of the 

remaining south coast colobus populations.

As the area and quality of the Kwale District coastal forests decline (particularly in 

small <10ha fragments) through continued anthropogenic disturbance, C. a. palliatus 

populations inhabiting such fragments may also have to increase their dependency on food 

resources from the surrounding matrix (Cowlishaw & Dunbar, 2000b). In agricultural areas 

such as Vanga (the southernmost region of the Kwale District), colobus crop-raiding and the 

resultant human wildlife conflict (Naughton-Treves, 1998) may become an additional 

problem that requires attention in future C. a palliatus conservation initiatives.

7.2.3 Exploring future persistence

Spatially explicit metapopulation models, such as Hanski’s incidence function model 

(Hanski, 1994b), can provide an additional conceptual framework in which to assess future 

scenarios of habitat loss or alternative habitat management strategies (Turner et al., 1995; 

Wahlberg et al., 1996). Using limited data and simple assumptions, the incidence function 

model approach used in this study confirmed the importance of large forests for C. a. 

palliatus metapopulation persistence. The metapopulation was not entirely dependent upon 

the largest patch in the forest network (the Shimba Hills Forest Reserve), although the 

removal of this forest in combination with 4% of the other large forests in the District 

significantly decreased the long-term occupancy, stability and persistence of the entire 

metapopulation. Simulations of future forest loss scenarios also highlighted that many of the 

colobus populations inhabiting unprotected forests may be particularly vulnerable: reductions 

in area of 10-50% of these forests had a greater impact on the metapopulation than similar 

percentage losses in all other forest management categories. The incidence function model 

could also rank individual habitat patches in the District by their contribution to C. a. palliatus 

metapopulation persistence. Similarly, this method could be used to rank the relative 

contribution of alternative habitat management (e.g. habitat protection scenarios, increasing 

forest areas) or species management (e.g. translocation) strategies. In all cases, 

transparency regarding model assumptions and sensitivity to uncertainty is essential, and a
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degree of realism (for example the original incidence function model does not consider the 

effects of matrix heterogeneity, habitat quality or underlying subpopulation demography) is 

essential. Such an understanding will help to clarify the context of model predictions and 

assist in identifying future field research required to fill the gaps in our knowledge.

Future impacts of landscape change may also include changes in the matrix 

surrounding habitat fragments (Bennett, 1998; Wiens, 1997). Using a modified incidence 

function model which accounted for variance in matrix quality between habitat patches, this 

study simulated the future degradation of the Kwale District matrix. Only small levels of 

matrix degradation were required to lower C. a. palliatus metapopulation occupancy in the 

network. In contrast, colobus occupancy patterns responded positively, and relatively rapidly, 

to small levels of improvement of the matrix. By adopting a regional scale and 

metapopulation outlook to the assessment of C. a. palliatus persistence in southern Kenya, 

the need for integrated landscape-habitat management in this fragmented network has been 

usefully highlighted (Saunders etai., 1991; Wiens, 1997).

7.3 The practicalities of conservation

How useful are the approaches used in this study for the practical conservation of 

the Angola black-and-white colobus and its coastal forest habitat in Kenya?

The national primate survey undertaken here provides a baseline of C. a. palliatus 

status and distribution data to assist wildlife managers with the prioritisation of conservation 

efforts, namely the protection of both key C. a. palliatus populations and presently 

undervalued or unprotected forest fragments in the Kwale forest network (e.g. the Shimoni 

and Diani forests). Focusing on a forest-dependent species also necessitated the 

development of an objective means of determining the location, size and spacing of coastal 

forest coverage in the District. This was facilitated by the usage of GPS mapping and a 

simple geographical information system (GIS). It is hoped that both the GIS of 2001 coastal 

forest cover and the spatially-explicit C. a. palliatus subpopulation database (the latter 

including detailed information on subpopulation occurrence, density and size, as well as the 

average group size and group demography per patch, geo-referenced in ArcView 3.2 GIS) 

will form the basis of future coastal forest, C. a. palliatus and biodiversity monitoring in the
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District. Arrangements have already been made for this database to be managed by a local 

conservation organisation based in Diani Beach, Kwale District: Wakuluzu, Friends of the 

Colobus Trust. In collaboration with the Kenya Wildlife Service, Kenya Forest Department 

and Coastal Forest Conservation Unit (National Museums of Kenya), the Colobus Trust will 

continue to monitor future C. a. palliatus populations and forest change in the District. More 

specifically, the database will also form a baseline from which the Colobus Trust can monitor 

the effectiveness of its ongoing primate conservation, forest conservation and local 

education programs (Cunneyworth & Rhys-Hurn, 2004).

A comparison of C. a. palliatus occurrence and abundance patterns within 46 forest 

fragments identified the key external factors (spatial, structural, resource and disturbance) 

that were most likely to be critical to the continued survival of the subspecies. Most important 

was the quality of coastal forest habitat, especially large, closed-canopy forest, preferably 

with good coverage of key food resources such as indigenous coastal hardwood species. 

Wildlife managers need this information in order to effectively prioritise habitat preservation 

or enrichment initiatives to curb future declines in colobus density. Understanding the degree 

of overlap between colobus food resources and human utilisation also helps to target 

conservation efforts towards current and future threats, for example hardwood logging, which 

may necessitate a response involving increased collaborative efforts or capacity building with 

rangers in the Forest Reserves, and the woodcarving industry, which may involve education 

campaigns targeting ‘good wood’ use by tourists, and research into alternative timber 

species for this purpose.

The landscape-based approach combining semi-structured interviews, remote- 

sensing and GIS techniques provided key information about the influences of the 

surrounding matrix and its importance for C. a. palliatus conservation. Local interviews 

proved a highly valuable resource for information regarding colobus use of the matrix. 

Results of this study will provide wildlife managers with additional non-forest habitats to 

monitor, protect and enrich. Land cover (GIS) maps will help to visualise and monitor 

temporal changes in the spatial configuration of important matrix types, natural corridors 

(Hess & Fischer, 2001) and stepping stones (Baum et al., 2004) in the Kwale District 

landscape.
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An incidence function model approach, simulating the future metapopulation 

dynamics of C. a. palliatus was a useful heuristic tool which could: (1) rank the relative 

contribution of habitat patches to metapopulation persistence; (2) explore the impacts of 

future scenarios of habitat and/or matrix change, and (3) explore the best options for 

metapopulation management, e.g. optimising habitat preservation or corridor placement 

(Etienne & Heesterbeek, 2001; Hanski & Thomas, 1994; Turner et al., 1995). In addition to 

these specific benefits, the application of metapopulation theory also emphasies more 

generally the importance of research on a region-landscape level, whilst also bringing 

attention to species’ dispersal capabilities and extinction risks in the region (Doak & Mills, 

1994).

This study focused on a ‘single-species’ approach to the population ecology and 

future conservation management of C. a. palliatus. Whilst the topic of whether to conserve 

biodiversity at the species level is hotly debated (Bowen-Jones & Entwistle, 2002; Caro, 

2003; Caro et al., 2004; Franklin, 1993, 1994; Lindenmayer, 1999; Olden, 2003; Towns & 

Williams, 1993; Walpole & Leader-Williams, 2002) the results of this study should indicate 

that the concept is potentially important in southern Kenya, given the impossibility of 

managing the wide array of taxa that inhabit the coastal forests of this region. C. a. palliatus 

is a textbook example of a ‘charismatic vertebrate’ (Heywood, 1995; Leader-Williams & 

Dublin, 2000) that can serve as a ‘flagship species’ for coastal forest conservation (Bowen- 

Jones & Entwistle, 2002; Towns & Williams, 1993; Walpole & Leader-Williams, 2002). The 

fact that this taxon can also be integrally linked to the quality and spatial characteristics of 

coastal forest fragments, and the surrounding (human-dominated) landscape and its 

associated pressures, adds further to its relevance as an ‘indicator species’ for detrimental 

changes in the fragmented forest network (Heywood, 1995; Meffe & Carroll, 1997). 

Conservation efforts in the northern coastal forests of Kenya have previously highlighted the 

importance of the Tana River forests (associated with the Tana River red colobus 

Procolobus badius rufomitratus: Mbora & Meikle, 2004) and the Arabuko Sokoke Forest 

(associated with the Sokoke scops owl Otus ireneae, and the Golden-rumped Elephant 

Shrew Rhynchocyon chrysopygus: Muriithi & Kenyon, 2002) however the southern coastal 

forests are presently lacking an attractive focal species to encourage habitat protection. C. a. 

palliatus has the potential to focus both national and international interest (and ultimately
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financial support) towards further conservation efforts, which would benefit both the focal 

species and wider_biodiversity across the region (Meffe & Carroll, 1997).

Whilst flagship species are usually identified to appeal especially to western donors 

(Entwhistle, Mickleburgh & Dunstone, 2000), in the case of the colobus in Kwale District 

there is also great potential to focus local interest in habitat conservation. The sacred Kaya 

forests are a key example where the local community actively preserve forest fragments and 

Kaya elders remember taboos, songs and stories about the 'mbega' (C. a. palliatus) in their 

forests (pers. obs.). Moreover, C. a. palliatus is not regarded as a pest species by the local 

community, in contrast to other crop-raiding diurnal primates in the District. Therefore local 

conservation efforts could also focus on preserving the cultural significance of the species 

(Bowen-Jones & Entwistle, 2002), with the aim of generating local pride in the preservation 

of the colobus and its habitat (particularly in Kaya and unprotected forests). The Kayas and 

unprotected forests surrounding many of the tourist areas in Kwale District have the 

additional potential for successful habitat protection based on the economic value in terms of 

tourism of the colobus and the rich biodiversity of the coastal forests (Hackel, 1999; Navrud 

& Mungatana, 1994).

In conclusion, this study will provide a sound ecological baseline of information upon 

which to implement future C. a. palliatus and coastal forest conservation initiatives in the 

Kwale District of Kenya.
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7.4 Recommendations

There now follows a brief summary of the possible areas for future colobus research and 

habitat conservation that have arisen from the results of this study:

• Establish the current status and distribution of C. a. palliatus in coastal forests and 
Eastern Arc Mountains of Tanzania. Update subspecies’ current 'data deficient’ 
status on the IUCN Red List of Threatened Species (IUCN, 2004)

• Promote C. a. palliatus as a ‘flagship’ and ‘indicator’ species for coastal forest and 
biodiversity conservation in southern Kenya

• Prioritise conservation effort towards large forest patches and large C. a. palliatus 
populations: the Shimba Hills National Reserve, Forest Reserves, Kaya Muhaka, 
and Shimoni and Diani forests (currently unprotected)

• Improve current forest protection efforts in the Forest Reserves and unprotected 
forests of the Kwale District (for detailed practical recommendations, see Marshall & 
Jenkins, 1994)

• Include coastal mangrove within existing habitat preservation and C. a. palliatus 
conservation strategies

• Promote alternative wood resources, especially in the hardwood and woodcarving 
industries and increase tourist awareness of ecological woodcarvings

• Increase community involvement in local forest conservation efforts

• Emphasise and encourage existing cultural values of C. a. palliatus and its habitat 
through community education

• Preserve existing indigenous wooded shrubland, shrubland, timber plantation and 
perennial plantations surrounding small coastal forest remnants

• Initiate long-term monitoring of C. a. palliatus populations and coastal forest status in 
the Kwale District

• Initiate research in the Vanga region of Kwale District to establish C. a. palliatus 
usage of forest, mangrove and agricultural mosaics (to include studies of colobus 
movement patterns, resource use, mortality risks and regional comparisons of crop- 
raiding)

• Compare the feeding ecology of C. a. palliatus populations within differing forest 
fragments and include research into the nutrient quality (in particular, protein-to-fibre 
content) of colobus food trees
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• Promote research into alternative tree planting schemes in the matrix which could 
benefit both C. a. palliatus foraging and the local community, e.g. ‘Neem’ 
(Azadirachta indica)

• Assess the impacts of enriching the matrix between habitat fragments (e.g. perennial 
or timber plantations), both for future connectivity of the C. a. palliatus 
metapopulation and the risk of increasing human-wildlife conflict (this should also 
consider the impacts of other crop-raiding wildlife species)
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APPENDIX I

Interview guide for historic interviews within the Kilifi and Mombasa District’s

1. Kaya/Forest
2. Location

3. Name
4. Age
5. Standing/Occupation :

6. How long have you lived here? (life history, timescale)

7. Animals you used to get in the forest ?

8. Which ones are hunted and eaten ?

9. Which monkeys do you get in the forest ?

10. Do you know of any other monkey’s you get at the coast, but are not found in your forest?
(If colobus mentioned):
describe what they look like, eat, behave, where the white is located on their body.

11. Do you ever remember colobus being here? (or told by father/grandfather/village elders?)
YES/NO

YES =
Direct/Indirect report
Details : e.g. (when, how often, how many, reason for disappearance)

NO =
Do you know of anyone who knows about the colobus

12. Any conflict between colobus and humans?

13. Were colobus ever hunted? Were there specialist hunters of colobus?

14. What were colobus used for?
a. Body parts * (e.g. medicinal)
b. Meat * (e.g. eaten, medicinal)
c. Skin * (e.g. ceremonial wear, dances, rugs, hats etc.)

What ceremonies? Which dances?
Where did they wear the skin?
Where did they get the skin? How much?
Have you seen a skin?
(draw where white was on the skin to differentiate btw. C. angolensis and C. guereza pelt)

15. Any local stories, superstitions about the colobus?
* (any stories relating to the significance of using colobus?)

16. Any songs in your language about the colobus?
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APPENDIX II

Guide for semi-structured interviews within Kwale District matrix

I. Settlement:

Date: S ize: m x m
Topographic map region : Average no. huts:
Sample site re f: Average population :
GPS Georef: Distance to intercept vegetation transects
Name/Description of location : Name of nearest forest:

II. Participants background I exposure :

Name : Occupation / standing :
Sex : Born in area : YES / NO
Age category : (actual age : ) Time spent in settlement:
<16 16-25 25-40 40-60 >60

1. How long do you spend outside observing &/or working in the sample area?
Description : (exact participant’s words)

Post classify : Present time Past
days/wk or incidental less/same/more
hrs/day if  less/more > yr of change (child, married?)
no. seasons quantify days/wk; hrs/day; no.seasons

III. Colobus knowledge:

2. Can you list the monkey species at the coast?
List in order (e.g. baboon, sykes, colobus = B/S/C)

3. What is the colobus (mbega) like?
(Circle items mentioned) Appearance/Forest/Arboreal/Feeding/Behaviour/lnfants/Othe

4. Can you pick out the coast colobus from these pictures?
Prompting level: 0/11213 (for questions 2. to 4.)

5. Have you seen colobus in the Kwale District? YES / NO 
If YES
Where? (list, and lead up to participant’s matrix site)
If PARTICIPANT LIVES NEAR SIGHT OF COASTAL FOREST 
Do you see them at the forest edge? YES/NO, When? (quantify time o f day, frequency)

6. Have you ever seen colobus out of forest?

7. Has anyone ever told you about seeing colobus out of forest?
If NO (go to section V)
If YES (go to section IV)

Continued ...
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1. Colobus sighting outside forest:

1. How regularly do you see them? (exact participant’s words)
Actual no. sightings; weekly, monthly rarely; validate times in detail.

2. When did you last see them? (exact participant’s words) 
Within last year, <5yrs, <10yrs; month?, season?

3. What did you see? (exact participant’s words)

No. sightings in chronological order (most recent first) and give the following details for each :

Location

Sighting location : (direct/indirect) What time of day?

Were they moving through your/this land, where? 
verify/describe location (local/additional site)

Date ref: (month/year) 

Season:

Vegetation
List vegetation type:

Height:

Bare ground cover (%):

Colobus food trees: (present/absent), list spp:

Similarity to intercept vegetation sample site? 
YES/NO, If NO : other ref/description:

Is the land always like this all year round? 
YES/NO, If NO (give details, does it effect colobus 
movement?)

Colobus movement

How many colobus did you see? 

What were they climbing on?

What do vou think made them cross throuah vour 
land? (exact participant’s words)

Height of travel:

How did thev move ? (exact Darticioant’s wordsJ

Post classify : Feedina / Restina 
Slow 
Fast

Post classifv:

Travel (heading from-to, draw map to illustrate) 
Feeding (on what/show interviewer?)
Chased (details)

I. Final questions :

1. Do the colobus ever cause you trouble on your land?

2. Do you know of anyone else who might spend a lot of time (or more time than you) outside and 
could me with answering these questions?

3. Notes : (post interview comments on reliability o f participant)

II. Additional discussion with elderly participants :

4. Was the land always like this?

5. Were colobus ever seen here in the past?

6. Did your fathers/elders ever talk of seeing them here?

7. Did you ever see colobus travelling between forest or within forest at this site?

8. Did you ever know of a forest patch that used to have colobus in it, but now has none? (why?)

9. Did you ever know of a forest patch that had no colobus in it and the colobus moved in? (where 
do you think they came from?)
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APPENDIX III
Primate photo cards used during matrix, semi-structured interviews

Papio hamadryas cynocephalus Colobus guereza

Cercopithecus m itus albogularisChlorocebus aethiops

0  Colobus angolensis pallia tus
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(A)
2003 LANDSAT-TM IMAGE OF THE 

STUDY SITE (166/063, 30-01-03)

(B)
FULL LANDSAT TM CLASSIFICATION SHOWING 

LOCATION OF MATRIX WITHIN 5KM OF COASTAL FOREST
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Appendix V 

Adult female: immature ratio for C. a. p a l l ia tu s  groups

As a crude measure of asynchronous population dynamics between subpopulations of C. a. 

palliatus, the following index of population growth was used:

1. A subset of 55 occupied habitat patches were selected for comparison. Although 

many habitat patches had complete data on total group counts, group demographics 

were not always fully explicit for all patches (i.e. quality 3 counts, see Chapter 2 for 

more details). Therefore, only the habitat patches where complete group 

demographics were known, were selected.

2. Only those habitat patches where four or more complete group demographics were 

known were selected.

3. This resulted in a comparison of eight habitat patches.

4. The average ratios of immatures (i.e. juveniles and infants) to adult females, for 

each habitat patch were tested for significant variation using a one-way analysis of 

variance (ANOVA).

5. A significant difference was found between the immature to adult female ratio’s 

between habitat patches (F = 2.48; df = 7, p = 0.02)
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Appendix VI

Symbols used in Chapters 5 and 6

Symbol Explanation

Ei Probability of patch extinction when occupied

C / Probability of patch colonization when empty

s, Connectivity of a patch

gMQ Connectivity of a patch including the effects of matrix quality

Pi
Observed occupancy of a patch /

*
P.

Probability of occupancy of patch /
(expressed as the proportion of 1000 model simulation replicates where J, = 1)

J, Predicted occupancy of patch / (expressed as 1 or 0)

A Area of patch /'

A0 Maximum patch area for which annual extinction probability equals unity

IAj Area of patch i following 10-50% forest loss from patch edge.

dij Distance between patches /' and j

d l
Modified isolation distance (i.e. after loss of forest to the edges of habitat patches)

rriij Average matrix quality between habitat patches /' and j

fflmax Maximum matrix quality = 3

b IF model parameter: scales population size with patch area

a IF model parameter: M a  is the average dispersal distances for the species

X IF model parameter: scales extinction risk to patch area

e IF model parameter: average extinction risk

y IF model parameter: scales efficiency of colonization to connectivity

W IF model parameter: scales matrix permeability to matrix quality

Mpop Metapopulation size = total number of occupied patches 
(i.e. total number of populations)

M ind Metapopulation size = total number of individuals

M ' m Metapopulation size =  total number of individuals, when patch /  has been removed

U , Contribution of patch / to metapopulation size =  M ind - M in‘d
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Appendix VII

Patch isolation distances using ArcView 3.2 distance matrix extension.

n.b. this appendix illustrates the isolation matrix fo r one coastal forest patch only.

This algorithm was based on the original Distance Matrix 
extension (http://www.jennessent.com/arcview/dist matrix.html 
and modified for the author by Jeff Jenness. It produces a 
matrix of isolation distances in dBASE format, plus a polyline 
shapefile of connecting lines for all pairs of features in a polygon 
feature theme. This extension uses the exact vector-based 
straight-line distance between polygon edges whenever 
possible. If any of the connecting lines intersect the mainland 
boundary however (Fig A), the algorithm discards that line and 
resorts to cost-distance-based methods (Fig B). Grids for cost- 
distance paths are a minimum of 100,000 cells, and a maximum 
cell size of 25 meters. The analysis extent is based on the 
combined extent of the two polygons in question, expanded in 
increments of 50% until a patch exists that connects them. 
Restricting the analysis extent in this way lets us generate a 
finer-resolution grid and speeds-up processing time.

|  Coastal forest 

I I land

|  Example patch

 Euclidean isolation distances

 Isolation distances corrected for coastline
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