COPYRIGHT DECLARATION

I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

REPRODUCTION

University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible).

B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

☐ This copy has been deposited in the Library of UCL.

☐ This copy has been deposited in the University of London Library, Senate House, Malet Street, London WC1E 7HU.
Cellular mechanisms for the control of glucocorticoid metabolism by 11-beta hydroxysteroid dehydrogenase in the human ovary

A thesis submitted by

Kim Carol Jonas

for the degree of Doctor of Philosophy

University of London

University College London

2005

Department of Biochemistry and Molecular Biology,
Royal Free and University College Medical School,
(Hampstead Campus), University College London,
Rowland Hill Street, London, NW3 2PF, UK
For my parents

Yvonne and John
Abstract

The aims of this thesis were to: (i) determine the regulatory properties of human follicular fluid (FF) on the activities and expression of 11βHSD, (ii) investigate the effects of progesterone on 11βHSD activity and expression (iii) investigate the effects of prostaglandins on basal and endocrine-stimulated 11βHSD activity and expression (iv) to predict the topology and tertiary structure of 11βHSD1. Human FF contains hydrophilic and hydrophobic compounds that stimulate and inhibit, respectively, the NADP(H)-dependent activities of 11βHSD1. The predominant lipid inhibitors of 11βHSD1 in FF are unlikely to be steroids or prostaglandins, and the effects of the FF components on enzyme activities occur without changes in 11βHSD1 protein expression. Inhibition of progesterone production by aminoglutethimide increased 11βHSD activities, without affecting 11βHSD1 protein expression in human granulosa-lutein cells. Pharmacological inhibitors of prostaglandin-H synthase (PGHS)-2 (meclofenamic acid (MA) and NS-398) decreased cortisol-cortisone inter-conversion by up to 50%, suggesting that prostaglandins may stimulate ovarian 11βHSD activities in a paracrine/autocrine manner. Furthermore, PGHS-2 inhibitors prevented human chorionic gonadotrophin (hCG) and IL-1β from stimulating 11βHSD activities in human granulosa-lutein cells, implicating eicosanoids in the stimulation of ovarian 11βHSD by gonadotrophins and cytokines. Since MA and NS-398 had no effect on 11βHSD1 protein expression, the stimulation of 11βHSD activities by eicosanoids occurs at the post-translational level. Finally, the structure of 11βHSD1 protein was modelled to develop molecular mechanisms by which prostaglandins, gonadotrophins and cytokines might regulate enzyme activities. Although the primary sequence of 11βHSD1, which is highly conserved across 10 mammalian species, contains several consensus phosphorylation sites for serine/threonine and tyrosine kinases, models of 11βHSD1 topology predict that most phosphorylation sites would lie in the lumen of the endoplasmic reticulum. 11βHSD1 includes hydrophobic α-helices neighbouring the active site, which may provide regions for the allosteric control of glucocorticoid metabolism by progesterone and eicosanoids in ovarian cells.
Acknowledgements

I would first like to acknowledge the Department of Biochemistry and Molecular Biology at UCL and the MRC for awarding me a departmental studentship. I would like to thank my supervisor Dr Tony Michael for believing in me and for helping with endless questions that have presented through my research and studies over the last 3 years. I would like to thank the Lister hospital, particularly the women undergoing IVF-ET, for donating the granulosa cells, without which this research would not have been possible.

I would like to thank all members, old and new, of the Michael-Abayasekara (-and Thurston!!!!) lab. I would especially like to mention Lisa Thurston and Neera Sunak for their support and chats, particularly over the last few months. They have helped keep my sanity!

A special thank you is necessary for my housemates who, over the past few months have supported me, cooked me numerous dinners, taken me for drinks, and given me the space I’ve needed to complete my lab work and writing. Thank you. To my friends who have suffered much neglect over the last few months, thank you for understanding.

My last, and perhaps most important acknowledgement is to my family, especially my parents. Their love, support and understanding particularly over the last year has been amazing. Thank you.
Table of Contents

Abstract .. 3
Acknowledgements ... 4
List of Figures ... 10
List of Tables ... 15
Publications ... 16
 Papers ... 16
 Abstracts .. 17
Abbreviations .. 19
Chapter One: General Introduction ... 24
 Chapter 1- General Introduction ... 25
 1.1 The Human Ovary ... 25
 1.1.1 Formation of the human ovary ... 25
 1.1.2 The Ovarian cycle: Folliculogenesis, Ovulation and Luteinisation 26
 1.2 Ovarian Steroidogenesis ... 33
 1.2.1 Cholesterol uptake and transport .. 33
 1.2.2 Ovarian Steroidogenesis ... 36
 1.3 Eicosanoids and Ovarian function .. 39
 1.3.1 Prostaglandin Biosynthesis ... 39
 1.3.2 Lipoxygenase ... 42
 1.3.3 Epoxygenase .. 43
 1.3.4 Role of Eicosanoids in Ovulation .. 43
 1.3.3 Role of eicosanoids in CL function ... 46
 1.4 Role of LH in Ovarian function ... 48
 1.5 Role of Interleukin-1 in Ovarian function .. 50
 1.6 Cortisol Metabolism ... 52
 1.6.1 Synthesis of glucocorticoids ... 52
 1.6.2 Circulation of glucocorticoids .. 54
 1.6.3 Action of Glucocorticoids .. 54
 1.6.4 Glucocorticoid-metabolising enzymes ... 55
 1.7 11βHSD .. 57
 1.7.1 11βHSD1 ... 58
 1.7.2 11βHSD2 .. 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.3 11βHSD3</td>
<td>62</td>
</tr>
<tr>
<td>1.7.4 11βHSD enzymes and Ovarian function</td>
<td>62</td>
</tr>
<tr>
<td>1.8 Project aims and justification</td>
<td>71</td>
</tr>
<tr>
<td>Chapter 2- Materials and Methods</td>
<td>74</td>
</tr>
<tr>
<td>2.1 Chemicals and Reagents</td>
<td>74</td>
</tr>
<tr>
<td>2.2 Collection and storage of follicular aspirates</td>
<td>76</td>
</tr>
<tr>
<td>2.2.1 Patient samples</td>
<td>76</td>
</tr>
<tr>
<td>2.2.2 Isolation of human granulosa cells</td>
<td>77</td>
</tr>
<tr>
<td>2.3 Radioimmunoassays</td>
<td>78</td>
</tr>
<tr>
<td>2.3.1 Progesterone RIA</td>
<td>78</td>
</tr>
<tr>
<td>2.3.2 PGE$_2$ RIA</td>
<td>80</td>
</tr>
<tr>
<td>2.3.3 PGF$_{2a}$ RIA</td>
<td>82</td>
</tr>
<tr>
<td>2.4 11β HSD Assay</td>
<td>84</td>
</tr>
<tr>
<td>2.5 Reverse Phase C18 column chromatography</td>
<td>86</td>
</tr>
<tr>
<td>2.6 Assessment of 11βHSD enzyme modulators in FF</td>
<td>87</td>
</tr>
<tr>
<td>2.7 Cell isolation and protein assay for Western blot</td>
<td>88</td>
</tr>
<tr>
<td>2.8 SDS-PAGE</td>
<td>89</td>
</tr>
<tr>
<td>2.9 Western Blot</td>
<td>90</td>
</tr>
<tr>
<td>2.9.1 Preparation for transfer of proteins from SDS-PAGE gel to polyvinylidine difluoride (PVDF) membrane</td>
<td>90</td>
</tr>
<tr>
<td>2.9.2 Blocking of the membrane</td>
<td>91</td>
</tr>
<tr>
<td>2.9.3 11βHSD1 primary antibody probing</td>
<td>91</td>
</tr>
<tr>
<td>2.9.4 Secondary antibody probing</td>
<td>91</td>
</tr>
<tr>
<td>2.9.5 Developing of the blot</td>
<td>92</td>
</tr>
<tr>
<td>2.9.6 Stripping the membrane of bound antibody</td>
<td>92</td>
</tr>
<tr>
<td>2.9.7 GAPDH re-probing</td>
<td>92</td>
</tr>
<tr>
<td>2.9.8 Quantification of protein expression</td>
<td>93</td>
</tr>
<tr>
<td>2.10 Statistical analyses</td>
<td>93</td>
</tr>
<tr>
<td>Chapter Three: Effect of human follicular fluid on the activity and expression of 11βHSD1</td>
<td>95</td>
</tr>
<tr>
<td>Chapter 3: Effect of human follicular fluid on the activity and expression of 11βHSD1</td>
<td>96</td>
</tr>
</tbody>
</table>
3.1 Background...96
3.2 Experimental protocol..97
3.3 Results...99
 3.3.1 Effects of human FF on NADP(H)-dependent 11βHSD activities........... 99
 3.3.2 Effects of human FF on NAD+-dependent cortisol oxidation.................100
 3.3.3. Elution profiles of 3H lipids from C18 cartridges.................................101
 3.3.4 Effect of human FF fractions on 11βHSD1 expression in hGL cells101
3.4 Discussion..101

Chapter Four: The autocrine/paracrine effects of progesterone on the activities and
expression of 11βHSD1 in human granulosa-lutein cells..114

Chapter 4-The autocrine/paracrine effects of progesterone on the activities and
expression of 11βHSD1 in human granulosa-lutein cells.................................115
 4.1 Introduction .. 115
 4.2 Experimental Design ...116
 4.3 Results...118
 4.3.1 Concentration-dependent effects of exposure to AG on progesterone
 production in human granulosa-lutein cells .. 118
 4.3.2 Concentration dependent effects of AG on 11βHSD activities in human
 granulosa-lutein cells .. 118
 4.3.3 Effect of AG on 11βHSD1 expression in human granulosa-lutein cells 123
 4.4 Discussion..123

Chapter Five: Paracrine roles for eicosanoids in determining the basal activities and
protein expression of 11βHSD1 in human granulosa-lutein cells............................130
Chapter 5: Paracrine roles for eicosanoids in determining the basal activities and
protein expression of 11βHSD1 in human granulosa-lutein cells..............................131
 5.1 Introduction ..131
 5.2 Experimental design ...132
 5.2.1 Effects of MA and NS-398 on prostaglandin production, 11βHSD
 activities and 11βHSD1 expression ...132
 5.2.2 Effects of exogenous prostaglandins on cortisol oxidation134
 5.3 Results...134
 5.3.1. Effect of MA on basal prostaglandin production................................134
5.3.2. Effect of MA on 11βHSD activities in human granulosa-lutein cells.. 135
5.3.3. Effects of MA on 11βHSD1 protein expression................................. 136
5.3.4. Effects of NS-398 on basal prostaglandin production............................ 136
5.3.5 Effect of NS-398 on 11βHSD activities in human granulosa-lutein cells
... 136
5.3.6 Effect of NS-398 on 11βHSD1 protein expression............................... 137
5.3.7 Effect of exogenous prostaglandins on cortisol oxidation.................... 137
5.4. Discussion... 152
Chapter Six: Role of prostaglandins in mediating the effects of hCG and IL-1β on
the activity and expression of 11βHSD1 in human granulosa-lutein cells............. 159
Chapter 6: Role of prostaglandins in mediating the effects of hCG and IL-1β on the
activity and expression of 11βHSD1 in human granulosa-lutein cells.................. 160
6.1 Introduction .. 160
6.2 Experimental design.. 161
 6.2.1 Acute and chronic effects of hCG and IL-1β on prostaglandin production
and 11βHSD activities .. 161
 6.2.2 Concentration-dependent effects of IL-1β and hCG on prostaglandin
synthesis and 11βHSD1 activities .. 162
 6.2.3 Effects of hCG and IL-1β on 11βHSD1 protein expression 162
6.3 Results .. 163
 6.3.1 Effects of hCG and IL-1β on PGE$_2$ and PGF$_{2α}$ production............. 163
 6.3.2 Acute effects of hCG and IL-1β on 11βHSD activities 164
 6.3.4 Concentration-dependent effects of hCG on PGE$_2$ and PGF$_{2α}$ production
.. 166
 6.3.5 Concentration-dependent effects of IL-1β on PGE$_2$ and PGF$_{2α}$ production
.. 166
 6.3.6 Concentration-dependent effects of hCG on 11βHSD activities: effects of
preferential-PGHS2 inhibitors .. 166
 6.3.7 Concentration-dependent effects of IL-1β on 11βHSD activities: effects of
preferential PGHS2 inhibitors .. 167
 6.3.8 Effect of hCG and IL-1β on 11βHSD1 protein expression............. 195
6.4 Discussion... 195
Chapter Seven: Elucidation of structural topology, regulatory domains, and tertiary structure of 11βHSD1 ... 201

7.1 Introduction .. 202

7.2 Experimental Design .. 205
 7.2.1 Primary sequence alignment .. 205
 7.2.2 Functional site characterisation of the 11βHSD1 primary sequence 206
 7.2.3 Secondary structure predictions ... 206
 7.2.4 Localisation of TM domains ... 206
 7.2.5 Tertiary structure prediction- Fold recognition .. 207

7.3 Results .. 208
 7.3.1. Alignment of 11βHSD1 primary sequences ... 208
 7.3.2. Alignment of bovine 11βHSD1, 11βHSD2 and 11βHSD3 primary sequences .. 208
 7.3.2 Analysis of functional sites and regulatory regions in all sequences aligned of 11βHSD1 ... 208
 7.3.3. Secondary Structure prediction for human 11βHSD1 209
 7.3.4. Topology predictions for 11βHSD1 ... 209
 7.3.5. Tertiary structure models .. 210
 7.3.6 Protein fold predictions for the lumenal domain of human 11βHSD1 .. 237

7.4 Discussion .. 237

Chapter Eight: General discussion .. 242

Chapter 8: General Discussion .. 243

References ... 256

Appendix I ... 295

Appendix II .. 300
Appendix III .. 307
Appendix IV ... 311
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Principle pathways of ovarian steroidogenesis</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Principle pathways of glucocorticoid biosynthesis</td>
<td>53</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Mechanism by which cortisol and cortisone are metabolised in target tissues and the liver for excretion</td>
<td>56</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Inter-conversion of cortisol and cortisone by isoforms of the enzyme 11βHSD</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Effect of compounds in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation on NADP⁺-dependent oxidation of 100nM cortisol over 1 hours in a rat kidney homogenate bioassay</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Effect of compounds in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation on NADPH-dependent reduction of 100nM cortisone over 1 hours in a rat kidney homogenate bioassay</td>
<td>103</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Effect of compounds in human FF before and after incubation with dextran coated charcoal.</td>
<td>104</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Effect of compounds in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation on NAD⁺-dependent reduction of 100nM cortisol over 1 hours in a rat kidney homogenate bioassay</td>
<td>105</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Elution profiles of exogenously added prostaglandins and steroids in human FF by reverse-phase C18 chromatography and stepwise methanol gradient fractionation</td>
<td>106</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Representative Western blot of effect of whole non-fractionated hFF, and those fractions of human FF eluted at 0% (v/v) and 80% (v/v) methanol on expression of 11βHSD1 (and GAPDH) in human granulosa-lutein cells</td>
<td>107</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Concentration-dependent effects of treatment with AG on progesterone production over 4 and 24 hours by human granulosa-lutein cells on day 3 of culture</td>
<td>119</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Concentration-dependent effects of AG on 11βHSD activities</td>
<td>120</td>
</tr>
</tbody>
</table>
over 4 hours on day 3 of culture in human granulosa-lutein cells

Figure 4.3 Concentration dependent effects of AG on 11βHSD activities over 24 hours on day 3 of culture in human granulosa-lutein cells

Figure 4.4 Effects of AG on 11βHSD1 protein

Figure 5.1A Concentration-dependent effects of treatment with MA for 4 hours on PGE$_2$ and PGF$_{2a}$ production in human granulosa-lutein cells on day 3 of culture

Figure 5.1B Concentration-dependent effects of treatment with MA for 24 hours on PGE$_2$ and PGF$_{2a}$ production in human granulosa-lutein cells on day 3 of culture

Figure 5.2A Concentration-dependent effects of treatment with MA for 4 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture

Figure 5.2B Concentration-dependent effects of treatment with MA for 24 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture

Figure 5.3 Effect of MA on 11βHSD1 protein

Figure 5.4A Concentration-dependent effects of treatment with NS-398 for 4 hours on PGE$_2$ and PGF$_{2a}$ production in human granulosa-lutein cells on day 3 of culture

Figure 5.4B Concentration-dependent effects of treatment with NS-398 for 24 hours on PGE$_2$ and PGF$_{2a}$ production in human granulosa-lutein cells on day 3 of culture

Figure 5.5A Concentration-dependent effects of treatment with NS-389 for 4 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture

Figure 5.5B Concentration-dependent effects of NS-389 on 11βHSD activities in human granulosa-lutein cells on day 3 of culture over 24 hours

Figure 5.6 Effect of NS-398 on 11βHSD1 protein expression

Figure 5.7 Effect of with 100μM MA ± 1μM PGD$_2$, PGE$_2$, PGF$_{2a}$ and PGI$_2$
on cortisol oxidation over 4 hours in hGL cells, on day 3 of culture

Figure 5.8A Effect of with 100μM MA ± 10μM PGD₂, PGE₂, PGF₂α and PGI₂ on cortisol oxidation over 4 hours in hGL cells, on day 3 of culture in the absence of AG

Figure 5.8B Effect of with 100μM MA ± 10μM PGD₂, PGE₂, PGF₂α and PGI₂ on cortisol oxidation over 4 hours in hGL cells, on day 3 of culture in the presence of AG

Figure 5.9 Effect of with 100μM MA ± 10μM PGD₂, PGE₂, PGF₂α and PGI₂ on cortisol oxidation over 4 hours in hGL cells, on day 3 of culture

Figure 5.10 Structures of Meclofenamic acid and NS-398

Figure 6.1A Effects of hCG and IL-1β on PGE₂ production over 4 hours in the absence of AG

Figure 6.1B Effects of hCG and IL-1β on PGF₂α production over 4 hours in the absence of AG

Figure 6.2A Effects of hCG and IL-1β on PGE₂ production over 4 hours in the presence of AG

Figure 6.2B Effects of hCG and IL-1β on PGF₂α production over 4 hours in the presence of AG

Figure 6.3A Effects of hCG and IL-1β on PGE₂ production over 24 hours in the absence of AG

Figure 6.3B Effects of hCG and IL-1β on PGF₂α production over 24 hours in the absence of AG

Figure 6.4A Effects of hCG and IL-1β on PGE₂ production over 24 hours in the presence of AG

Figure 6.4B Effects of hCG and IL-1β on PGF₂α production over 24 hours in the presence of AG

Figure 6.5A Effects of hCG and IL-1β on cortisol oxidation over 4 hours in the absence of AG

Figure 6.5B Effects of hCG and IL-1β on cortisone reduction over 4 hours in the absence of AG
Figure 6.6A Effects of hCG and IL-1β on cortisol oxidation over 4 hours in the presence of AG 178
Figure 6.6B Effects of hCG and IL-1β on cortisone reduction over 4 hours in the presence of AG 179
Figure 6.7A Effects of hCG and IL-1β on cortisol oxidation over 24 hours in the absence of AG 180
Figure 6.7B Effects of hCG and IL-1β on cortisone reduction over 24 hours in the absence of AG 181
Figure 6.8A Effects of hCG and IL-1β on cortisol oxidation over 24 hours in the presence of AG 182
Figure 6.8B Effects of hCG and IL-1β on cortisone reduction over 24 hours in the presence of AG 183
Figure 6.9A Concentration dependent effects of hCG on PGE₂ over 24 hours in the presence of AG 184
Figure 6.9B Concentration dependent effects of hCG on PGF₂α over 24 hours in the presence of AG 185
Figure 6.10A Concentration dependent effects of IL-1β on PGE₂ over 24 hours in the presence of AG 186
Figure 6.10B Concentration dependent effects of IL-1β on PGF₂α over 24 hours in the presence of AG 187
Figure 6.11A Concentration dependent effects of hCG on cortisol oxidation over 24 hours in the presence of AG 188
Figure 6.11B Concentration dependent effects of hCG on cortisone reduction over 24 hours in the presence of AG 189
Figure 6.12 Concentration dependent effects of hCG on cortisol oxidation over 24 hours in the presence of AG 190
Figure 6.13A Concentration dependent effects of IL-1β on cortisol oxidation over 24 hours in the presence of AG 191
Figure 6.13B Concentration dependent effects of IL-1β on cortisone reduction over 24 hours in the presence of AG 192
Figure 6.14 Concentration dependent effects of IL-1β on cortisol oxidation over 24 hours in the presence of AG 193
Figure 6.15 Effect of hCG and IL-1β on 11βHSD1 protein expression of 11βHSD1 standardised to GAPDH protein expression in the presence of AG

Figure 7.1A Visual alignment of primary sequences of 11βHSD1 from other mammalian species to human 11βHSD1

Figure 7.1B Primary sequence alignment of 11βHSD1 from different mammalian species using CLUSTALW database and subsequent alignment to human 11βHSD1 in order of evolutionary divergence

Figure 7.2 Primary sequence alignment of bovine 11βHSD1, 11βHSD2 and 11βHSD3 using CLUSTALW database

Figure 7.3 Predicted conserved regulatory sites of 11βHSD1

Figure 7.4 Secondary structure prediction for human 11βHSD1 generated by PsiPred based on PsiBLAST scores when compared to other proteins within the PsiPred database

Figure 7.5 Hydropathy plot of aligned sequences for mammalian 11βHSD1 enzymes

Figure 7.6 Hydropathy plot and transmembrane domain predictions for human 11βHSD1 using TMAP, TopPred-KD, TopPred-GES, MEMSAT2 and TMHMM topology prediction methods

Figure 7.7A Model 1 of secondary structure and topology within the ER membrane of human 11βHSD1

Figure 7.7B Model 2 of secondary structure and topology within the ER membrane of human 11βHSD1

Figure 7.7C Model 3 of secondary structure and topology within the ER membrane of human 11βHSD1

Figure 7.8 Three-dimensional structures for the candidate structural homologues of human 11βHSD1

Figure 8.1 Steroidogenic pathways utilising NADP(H) in human granulosa-lutein cells

Figure 8.2 Proposed mechanism by which prostaglandins and progesterone regulate 11HSD activities
List of Tables

Table 1.1 Regulatory compounds of 11βHSD enzyme isoforms 67
Table 7.1 Table outlining homology to human 11βHSD1 primary
sequence comprised of homology to whole sequence, N
terminus before the catalytic region and C terminus following
the catalytic region 233
Table 7.2 Summary of essential criteria to assess the functionality of
each proposed model for the topology of human 11βHSD1 234
Table 7.3 Summary of mGenTHREADER tertiary structure homology 235
Publications

Papers

KC Jonas, DRE Abayasekara & AE Michael (in preparation) Role for eicosanoids in the stimulation of human ovarian 11β-hydroxysteroid dehydrogenase activity by hCG and interleukin-1β

KC Jonas, LM Thurston, KP Yang, AE Michael (in preparation) 11β Hydroxysteroid dehydrogenase: The gatekeeper or the gate?

KC Jonas, AE Michael (in preparation) Predictions of 11β Hydroxysteroid dehydrogenase type 1 topology and tertiary structure: an *in silico* approach

Abstracts

Abbreviations

I^{125} radioactive isotope iodine 125

11β-DH 11β dehydrogenase

11βHSD1 11β hydroxysteroid dehydrogenase type 1

11βHSD2 11β hydroxysteroid dehydrogenase type 2

11-KSR 11-ketosteroid reductase

17βHSD 17β-hydroxysteroid dehydrogenase

3βHSD 3β-hydroxysteroid dehydrogenase

AA arachidonic acid

AC adenylyl cyclase

ACTH adrenocorticotrophic hormone

AG aminoglutethimide

ANOVA analysis of variance

ATP adenosine tri-phosphate

bFGF basic fibroblast growth factor

BMP bone morphogenetic protein

cAMP cyclic adenosine 3'5'mono-phosphate

CBG corticosteroid binding globulin

cDNA complementary DNA

CL corpus luteum

COX cyclo-oxygenase

DHEA dehydroepiandosterone

DMEM Dulbecco’s modified Eagle’s medium
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM:Ham’s F12</td>
<td>Dulbecco’s modified Eagles medium: Ham’s F₁₂</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EP</td>
<td>PGE₂ receptor</td>
</tr>
<tr>
<td>EP1</td>
<td>PGE₂ receptor type 1</td>
</tr>
<tr>
<td>EP2</td>
<td>PGE₂ receptor type 2</td>
</tr>
<tr>
<td>EP3</td>
<td>PGE₂ receptor type 3</td>
</tr>
<tr>
<td>EP4</td>
<td>PGE₂ receptor type 4</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>GR</td>
<td>glucocorticoid receptor</td>
</tr>
<tr>
<td>GRE</td>
<td>glucocorticoid response element</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HMG CoA</td>
<td>hydroxymethyl glutaryl coenzyme A</td>
</tr>
<tr>
<td>hOSE</td>
<td>human ovarian surface epithelial cells</td>
</tr>
<tr>
<td>hsp90</td>
<td>heat shock protein 90</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IGFBP</td>
<td>insulin-like growth factor binding protein</td>
</tr>
<tr>
<td>IL-1β</td>
<td>interleukin 1-beta</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilisation</td>
</tr>
<tr>
<td>IVF-ET</td>
<td>in vitro fertilisation-embryo transfer</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis-Menten enzyme rate constant</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LBD</td>
<td>ligand binding domain</td>
</tr>
<tr>
<td>LTB₄</td>
<td>leukotriene B₄</td>
</tr>
<tr>
<td>LH</td>
<td>luteinising hormone</td>
</tr>
<tr>
<td>LHR</td>
<td>luteinising hormone receptor</td>
</tr>
<tr>
<td>MA</td>
<td>meclofenamic acid</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinase</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NADPH</td>
<td>reduced nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NDGA</td>
<td>nordihydroguaiaretic acid</td>
</tr>
<tr>
<td>NSB</td>
<td>non-specific binding</td>
</tr>
<tr>
<td>PBR</td>
<td>peripheral benzodiazepene receptor</td>
</tr>
<tr>
<td>PGDH</td>
<td>prostaglandin dehydrogenase</td>
</tr>
<tr>
<td>PGE₂</td>
<td>prostaglandin E₂</td>
</tr>
<tr>
<td>PGF₂α</td>
<td>prostaglandin F₂α</td>
</tr>
<tr>
<td>PGHS</td>
<td>prostaglandin H synthase</td>
</tr>
<tr>
<td>PGHS-1</td>
<td>prostaglandin H synthase type 1</td>
</tr>
<tr>
<td>PGHS-2</td>
<td>prostaglandin H synthase type 2</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>PLA₂</td>
<td>phospholipase A₂</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>PLD</td>
<td>phospholipase D</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator activated receptor</td>
</tr>
<tr>
<td>PR</td>
<td>progesterone receptor</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinilidene difluoride</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SRY</td>
<td>sex-determining region of the Y chromosome</td>
</tr>
<tr>
<td>StAR</td>
<td>steroidogenic acute regulatory protein</td>
</tr>
<tr>
<td>TGFβ</td>
<td>transforming growth factor β</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumour necrosis factor α</td>
</tr>
<tr>
<td>TX</td>
<td>thromboxane</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>
‘Research is what I’m doing when I don’t know what it is I’m doing’

Wernher Von Braun (1912-1977)
Chapter One: General Introduction
Chapter 1- General Introduction

Approximately 1 in 7 couples of reproductive age are infertile in the UK [Templeton et al., 1991] and will require assisted reproductive technology in order to conceive a child. It is therefore essential to establish the fundamental mechanisms controlling ovarian physiology with a view to advancing reproductive technologies. The investigations reported in this thesis were designed to enhance our understanding of the regulatory mechanisms controlling ovarian glucocorticoid metabolism at a cellular level.

1.1 The Human Ovary

1.1.1 Formation of the human ovary

Until the 6th week of human embryo development, the male and female gonads are identical. It is at this stage of human foetal development that the Y chromosome determination of gonadal sex occurs through the expression of the SRY gene, which initiates Sertoli cell development and proliferation of male sex cords. The female gonads do not express the SRY gene and so remain indifferent to its effects. In the absence of SRY the Mullerian ducts differentiate into the Fallopian tubes/oviducts, and the external female genitalia form. About the time of the second trimester, the ovary and ovarian primordial follicles develop, with primordial follicle numbers equalling approximately 6 million. Mitotic division of oogonia ceases before birth, and under the control of the meiotic initiation factor, the oogonia undergo the first meiotic division to become primary oocytes. Oogenesis is arrested at prophase I, at the dictyate stage of the first meiotic division. At birth the human ovaries contain
approximately 2 million primordial follicles, which by puberty decreases to approximately 500,000 primordial follicles [Johnson and Everitt 2000]. Recent studies by Johnson et al. [2004] have challenged the model that there is a fixed pool of primordial follicles at birth, and have presented data in adult mice to suggest that germ stem cells are able to regenerate themselves in adult life.

1.1.2 The Ovarian cycle: Folliculogenesis, Ovulation and Luteinisation

Before puberty, the ovary is active, with follicles growing and undergoing atresia. At puberty, the process of folliculogenesis activates ovarian follicles to begin further development leading to ovulation of the oocyte. Each ovarian cycle can be split into 3 distinct phases, the follicular phase, the ovulatory phase, and the luteal phase. This cyclic pattern is controlled by interactions between the hypothalamus, (through the release of gonadotrophin-releasing hormone (GnRH)), anterior pituitary, (through the release of gonadotrophins under the control of GnRH [Fink, 1979]), and the ovaries [reviewed by McGee and Hsueh 2000].

1.1.2.1 The Follicular Phase

Primordial follicles are characterised as containing an oocyte surrounded by a flattened layer of granulosa cells. As the follicle develops, the granulosa cells start to divide and undergo morphological changes forming a cuboidal phenotype. At this stage the follicle is referred to as a primary follicle. The initial recruitment of primordial follicles and subsequent growth to the pre-antral stage is independent of circulating gonadotrophins. Resting follicles are thought to be under the control of inhibitory and stimulatory intra-ovarian factors that are thought to suppress or
initiate primordial follicle growth respectively. The mechanism of recruitment of
primordial follicles remains unclear. However, the kit ligand has been implicated in
the initial recruitment and formation of the primary follicle [Yoshida et al., 1997].
Growth differentiation factor-9 (GDF-9), a peptide secreted by the oocyte, has also
been implicated in primary follicle development. Follicles lacking GDF-9 have been
shown not to proceed beyond the primary follicle stage [Aaltonen et al., 1999].

Development of the primary follicle into the secondary follicle involves the growth
of the oocyte, and further cell growth and differentiation. The undifferentiated cells
surrounding the granulosa cells differentiate into thecal cells. These cells condense
around the follicle forming 2 layers, the theca interna and the theca externa, which
are separated from the granulosa cells by a basement membrane. The vascular supply
infiltrates the thecal cell layer, but is excluded from the granulosa cells.

Granulosa-oocyte communication has been shown to be essential for oocyte
development. Gap junctions exist between granulosa cells and the oocyte to mediate
this communication. For example, connexin 37 is an important gap junction protein,
essential for oocyte development [Simon et al., 1997]. Paracrine communications
between granulosa cells and the surrounding theca cell layers have also been shown
to be important for the growth of pre-antral follicles. Recent studies have implicated
fibroblast growth factor-7 as a paracrine factor secreted from theca cells that
enhances pre-antral follicular growth [McGee et al., 1999]. As granulosa cells
proliferate a viscous liquid forms between the cells in droplet form. These droplets
coalesce to form a single fluid-filled follicular antrum. At this stage the follicle can
be described as an early antral follicle.
The gonadotrophins, follicle stimulating hormone (FSH) and luteinising hormone (LH), are important trophic factors that control the proliferation, survival and recruitment of antral follicles. FSH is important for early antral follicle development, inducing expression of steroidogenic genes such as aromatase (CYP19), P450 cholesterol side chain cleavage (P450scC, CYP11A) and the expression of LH receptors. Moreover, treatment of early antral follicles with FSH has been shown to prevent the onset of follicular atresia through apoptosis [Chun et al., 1996]. Oestrogens are important anti-apoptotic signals in early antral development, the production of which is FSH dependent.

The 2-cell, 2-gonadotrophin model of oestradiol production reveals a functional synergy between LH and FSH. LH stimulates the synthesis of androstenedione in theca cells, forming the substrate for granulosa cell oestradiol synthesis. FSH stimulates aromatisation of androgens in granulosa cells to form oestrogens. The actions of FSH on granulosa cells are further enhanced by insulin-like growth factor-I (IGF-I) [Richards et al., 2002] (this shall be covered more extensively in section 1.2).

The action of LH on the production of theca cell androgens can be mimicked by several paracrine factors. Members of the IGF subtype and transforming growth factor-β (TGFβ) superfamily have been shown to have important roles in this process. In vitro, IGF-1 and insulin can stimulate theca cells androgen synthesis [Barbieri et al., 1986]. IGF-II and IGF-binding proteins (IGFBPs) are thought to play a modulatory role in androgen production by thecal cells. FSH has been shown to
stimulate IGF-I production by granulosa cells. Activins and inhibins also regulate theca androgen production [Hillier et al., 1991]. Inhibin can inhibit FSH production through negative feedback and has been speculated to be important in pre-ovulatory follicle development [Adashi et al., 1991]. Activin predominates in immature follicles, promoting FSH-induced mitosis and steroidogenic differentiation.

In mono-ovulatory mammals such as humans, only 1 follicle is selected to achieve dominant follicle status, with the other recruited follicles undergoing atresia. Atresia is thought to occur due to a number of metabolic and/or genetic defects in the follicle [reviewed by Moley and Schreiber, 1995]. Moreover, anti-apoptotic and pro-apoptotic proteins have been shown to affect oocyte and primordial follicle numbers in the mouse ovary. Bcl2 knockout-mice studies have implicated these anti-apoptotic proteins in oocyte and primordial follicle survival. Bax knock-out mice studies have revealed its importance in ovarian somatic-cell death [reviewed by Tilly, 1995]. However, the precise cellular mechanisms underlying atresia still remain unclear.

1.1.2.2 Ovulation

Following dominant follicle selection, the increase in oestradiol production (through the acquisition of LH receptors by the granulosa cells of the dominant follicle) leads to a decline in FSH secretion. At this stage, further follicle growth becomes LH dependent. The further increase in oestradiol production causes a positive feed-forward loop on the release of FSH and LH from the anterior pituitary gland. This results in an increased pulsatile frequency of LH and causes the mid-cycle
gonadotrophin surge. The resulting increase in release of LH is thought to stimulate both physical and biochemical changes in the follicle through the induction of gene expression [Richards et al., 1994; Tsafriri and Reich 1999, Espey and Richards 2002]. The biochemical changes include the up-regulation of the progesterone receptor gene, and the induction of prostaglandin H synthase 2 (PGHS2) gene expression. These changes in turn induce the expression of matrix metalloproteinases (MMPs), synthesis of growth factors, and the recruitment of inflammatory cells [Petrovska et al., 1992; Buksovsky et al., 1995; Brannstrom and Friden 1997], to mediate this inflammatory event of ovulation [Espey, 1980]. These changes result in follicular rupture, and expulsion of the oocyte from the follicle. The expression of glucocorticoid-metabolising 11β hydroxysteroid dehydrogenase enzymes are also regulated at the time of ovulation; this will be discussed further in section 1.8 [Tetsuka et al., 1997; 1999a]. Several structural changes are associated with ovulation, these include the degradation of the extracellular matrix at the follicular apex, and vascularisation of the follicle.

1.1.2.3 Follicular Fluid

The antrum of the ovarian follicle, filled with an aqueous substance termed follicular fluid (FF), is formed during early folliculogenesis. FF is comprised of many lipids, proteins, growth factors, respiratory substrates and various as yet undetermined factors (Sutton et al., 2003). The components of FF are derived from serum exudate modified by secretions from both the granulosa cells and the oocyte (Sutton et al., 2003). The basal lamina between the vascularised theca interna and the granulosa cells also acts a filtering system of serum both on molecular weight (e.g. slowing
entry of LDL into the follicular antrum) and on the basis of molecular charge (Rodgers et al., 2003). Coupled to this, channels exist between the granulosa cells which can potentially let in proteins with a molecular weight of up to 500 kDa (Rodgers et al., 2003).

As the mid-cycle surge of LH occurs the follicle undergoes a number of structural and functional changes, the result of which lead to a change in follicular fluid composition. An increase in the angiogenic factor VEGF has been detected in FF following the pre-ovulatory surge of LH (Anasti et al., 1998). This promotes vascularisation coupled with an increase in vascular permeability of the follicle, resulting in an increase of plasma influx into the FF. As a consequence, as ovulation approaches, the representation of plasma proteins in FF increases. On the other hand, in the final stages of folliculogenesis, LH and FSH exert the greatest action on the local ovarian synthesis of both steroid and peptide hormones, such that these compounds (e.g. oestradiol, progesterone and inhibin) tend to be much more concentrated in the FF of mature pre-ovulatory follicles than in plasma.

In the preovulatory follicle, LH also increases the production of hyaluronan by the cumulus cells of the cumulus-oocyte complex. This loosens the hyaluronic acid matrix between neighbouring cumulus cells and so is essential for the normal expansion of the cumulus-oocyte complex (Rodgers et al., 2003; Jessen and Odum 2003). Emerging literature has shown that the increase in basal lamina permeability is essential for the influx into FF of plasma proteins that are essential for hyaluronan formation. One such plasma protein, inter α-trypsin inhibitor, is thought to couple to hyaluronan and stabilise the extracellular matrix of the cumulus-oocyte complex.
Thus revealing the changes in follicular dynamics and FF composition that LH induces in the preovulatory follicle.

1.1.2.4 The Luteal Phase

Following ovulation, the remaining follicular cells undergo extensive remodelling to form the corpus luteum (CL). The process of CL formation involves irreversible follicular remodelling with the theca and granulosa cells differentiating into a luteal phenotype. These cells become highly vascularised through proliferation of capillaries from surrounding stromal cells, which penetrate the basal lamina [Duncan 2000]. Vascularisation is controlled by a number of angiogenic factors including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) [Gospodarowicz 1985; Reynolds et al., 1998]. These factors also induce endothelial cell migration. Many proteases are activated, such as MMPs, which alter the shape of the forming CL.

During luteinisation, the expression of a number of genes and proteins associated with steroidogenesis occurs [Richards et al., 1998]. Examples of such genes include components of the cholesterol uptake and transport system such as steroidogenic acute regulatory (StAR) protein and sterol carrier protein 2 (SCP-2). As luteinisation occurs, the primate CL produces progesterone and oestradiol under the influence of LH [Channing 1980]. Progesterone and oestradiol act in concert to inhibit gonadotrophin secretion from the pituitary, and therefore control the onset of the next ovarian cycle. In response to progesterone production by the CL, the endometrium secretes nutrient factors to support an embryo should fertilisation occur.
[Spencer and Bazer 2002]. In the event of fertilisation, the CL persists to maintain circulating progesterone concentrations until the placenta is established. Progesterone also acts to enhance the negative feedback effects of oestradiol and inhibin on FSH and LH release and to block the positive feedback effects of oestradiol [Schaison and Couzinet 1991; Leung and Peng 1996].

In the absence of fertilisation the CL regresses. The exact mechanisms controlling the lifespan of the CL and luteal regression remain unclear. A number of structural and functional changes are involved in CL regression. These include membrane breakdown as indicated by decreased membrane fluidity [Carlson et al., 1982; Greenhalgh 1990; Riley and Behrman 1991] coupled with an increase in phospholipase A\textsubscript{2} (PLA\textsubscript{2}) activity [Sawada and Carlson 1991]. There are known luteolytic and luteotrophic factors such as prostaglandin (PG)F\textsubscript{2}α and PGE\textsubscript{2} that can shorten or prolong the lifespan of the CL respectively. The synthesis of such eicosanoids are enhanced by the increase in PLA\textsubscript{2} activity.

1.2 Ovarian Steroidogenesis

1.2.1 Cholesterol uptake and transport

Cholesterol is the precursor of steroid biosynthesis. Cholesterol can be obtained from 4 sources: as free cholesterol or cholesteryl esters from plasma lipoproteins, as intracellular cholesteryl esters stored in lipid droplets, as free cholesterol from the plasma membrane, or by de novo synthesis.
Steroidogenic tissues, including the ovary, acquire cholesterol substrate primarily through the uptake of plasma lipoproteins containing cholesteryl esters and free cholesterol. Three types of lipoproteins have been identified: high density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) [Grummer and Carroll, 1988]. In humans, the primary source of cholesterol is from LDL [Gwynne and Strauss, 1982], providing the majority of cholesterol for steroidogenesis.

Receptor-mediated endocytosis is the predominant mechanism through which LDL-derived cholesterol can enter cells [Rhainds and Brissette, 1999]. On internalisation in to the cell, the LDL receptor is either recycled to the plasma membrane or degraded. The resulting LDL particle is taken up by lysosomes, leading to degradation of LDL and the liberation of free cholesterol. On entering the cell, cholesterol can either be stored in its esterified form, or liberated from stored cholesteryl esters depending on the requirement of the cell. There are 2 enzymes that control the equilibrium of free and esterified cholesterol in the cell: acyl coenzyme A cholesterol acyltransferase (ACAT) and cholesterol esterase. ACAT favours the storage of cholesterol in its esterised form converting free cholesterol to cholesteryl esters, and cholesterol esterase liberates free cholesterol from cholesteryl esters [Flint and Armstrong, 1973].

Once in the cell, in order for the first step of steroidogenesis to occur, cholesterol needs to be transported from the cytoplasm through the outer mitochondrial membrane into the inner mitochondrial membrane, where cholesterol is converted to pregnenolone by cytochrome P450\textsubscript{c-sc} (CYP11A). To transport cholesterol from the
cytosol to the mitochondria, methods of facilitated transport are required due to the hydrophobic properties of cholesterol. The cytoskeleton and sterol carrier protein 2 (SCP2) are both thought to play a role in this process. Various constituent parts of the cytoskeleton (e.g. tubulin) have been linked to increased steroidogenesis. It has been hypothesised that changes in cell shape can increase steroidogenesis through shortening the distance that cholesterol needs to travel to the mitochondria for conversion to pregnenolone. Studies in Y1 adrenocortical cells have shown that increased steroidogenesis is associated with changes in cell morphology, namely rounding of the cells [Betz and Hall, 1987]. This evidence suggests the possible role of cytoskeletal re-organisation in cholesterol transport.

SCP2 is an aqueous carrier protein that has been speculated to play a role in cholesterol transport. Studies have revealed that anti-SCP2 antibodies can decrease steroid synthesis [Chanderbhan et al., 1986]. SCP2 transcripts have been localised to the ovary, and trophic hormones that increase steroidogenesis have been shown to increase SCP2 gene expression [Rennert et al., 1991].

There are two main mechanisms of cholesterol transport from the outer mitochondrial to the inner mitochondrial membrane. The peripheral benzodiazepine receptor (PBR) has been shown to be one mechanism that facilitates cholesterol transport. PBR expression is abundant in steroidogenic tissue, and in the ovary, the expression of PBR has been shown to vary across the ovarian cycle, with maximal expression observed following ovulation [Gavish, 1995]. The ligand for PBR is diazepam-binding inhibitor (DBI), the binding of which to PBR stimulates mitochondrial cholesterol transport [Bar-Ami et al., 1991]. Binding of DBI to the
PBR is essential for cholesterol transport, such that the depletion of DBI has been shown to inhibit constitutive and hormone stimulated-steroidogenesis in Leydig cells [Boujrad et al., 1993].

StAR protein has also been implicated in mitochondrial cholesterol transport. StAR was first cloned by Clark et al. [1994] and numerous studies have since investigated its role in cholesterol transport. In humans, a mutation in the StAR gene results in a potentially lethal phenotype termed congenital lipoid adrenal hyperplasia [Lin et al., 1995]. This results in a reduction of gonadal and adrenal steroids. StAR knock-out mice studies also reveal a similar phenotype [Caron et al., 1997]. An explanation for the mechanisms by which StAR mediates cholesterol transport was provided by proposing that StAR targets cholesterol to the PBR, which then mediates cholesterol transport to the inner mitochondrial membrane [West et al., 2001].

1.2.2 Ovarian Steroidogenesis

The first step of steroidogenesis is the conversion of cholesterol to pregnenolone by P450_{csc} (Figure 1.1). This reaction takes place in the inner mitochondrial membrane and involves 3 reactions, the first 2 steps leading to the hydroxylation of C22 and C20 of cholesterol, and the third resulting in the cleavage of the C20-C22 bond to yield the C21 product pregnenolone, and the C6 molecule, isocaproic acid [Burstein and Gut, 1971]. Each reaction utilises nicotinamide adenine dinucleotide phosphate (NADPH) as a co-factor (Figure 1.1).
Figure 1.1: Principle pathways of ovarian steroidogenesis. Blue script- mitochondrial reactions, red script- ER reactions.
Once pregnenolone is formed, it leaves the inner mitochondrial membrane and moves to the smooth endoplasmic reticulum (ER) where it is converted to progesterone by type 2 3β hydroxysteroid dehydrogenase (3βHSD2) [Mason et al., 1998]. Progesterone synthesis occurs in two parts, the first involving the oxidation of the 3-hydroxyl group of pregnenolone, and the second involving the isomerisation of the C5 double bond to yield a C4 double bond [Hall et al., 1984]. This reaction utilises nicotinamide adenine dinucleotide (NAD⁺) as a co-factor.

In the ovary, androgens can be formed from pregnenolone and progesterone. Both pregnenolone and progesterone can undergo 17α-hydroxylation, followed by cleavage of the C17,20 bond to form dehydroepiandrosterone (DHEA) and androstenedione respectively. Both the hydroxylations and lyase reactions are catalysed by a single enzyme, cytochrome P450C17 (CYP17).

From the theca cells, androstenedione is transported to granulosa cells, where it undergoes aromatisation to form oestrone: a reaction catalysed by cytochrome P450arom (CYP19). The weak oestrogen, oestrone, is subsequently converted to oestradiol by 17βHSD1. The aromatisation of androgens to oestrogens in granulosa cells is controlled by FSH. The process of thecal cell androgen production, and the subsequent conversion to oestrogens by granulosa cells is termed the 2-cell, 2-gonadotrophin hypothesis [Hillier et al., 1984; Hillier et al., 1994]. As noted in section 1.1.2, many intra-ovarian and paracrine factors have been implicated in the control of this process including TGF-β, and IGFs [Hillier et al., 1994].
Although the ovary does not express the CYP21 enzyme necessary for de novo synthesis of cortisol, it can generate cortisol from cortisone. The enzyme required for this reaction, an isoform of 11βHSD is known to be expressed in human [Michael et al., 1997; Tetsuka et al., 1997; Smith et al., 1997; Ricketts et al., 1998; Smith et al., 2000], bovine [Tetsuka et al., 2003] and rat [Tetsuka et al., 1999a] ovaries and appear to be differentially regulated across the ovarian cycle (see section 1.8).

1.3 Eicosanoids and Ovarian function

Eicosanoids are hydrophobic inflammatory molecules derived from arachidonic acid (AA) and control ovarian function in a paracrine fashion. Eicosanoids have established roles in ovulation and in regulating the lifespan of CL. However, before exploring these roles, the biosynthetic pathways of eicosanoid synthesis will be outlined.

1.3.1 Prostaglandin Biosynthesis

All prostaglandins are comprised of a prostanoic fatty acid skeleton. The position on the fatty acid skeleton at which the oxygen containing moieties occur confer the biological activity of each prostaglandin, with positions 9, 11, and 15 being the most significant positions in terms of biological function. Three categories of prostaglandins have been identified termed 1-, 2-, and 3- series prostaglandins. Each series differs in their degree of saturation and is formed from different polyunsaturated fatty acid precursors.
The most biologically important precursor for prostaglandins is AA which is stored in cell membranes, esterified at the C2 position of membrane phospholipids. Three alternative pathways control the release of AA from the lipid membrane: the phospholipase A2 (PLA2) pathway, the phospholipase C (PLC) pathway, and the phospholipase D (PLD) pathway. Each pathway involves hydrolysis of the phospholipid head-group to liberate AA.

The first step of AA conversion to prostaglandins is catalysed by isoforms of the enzyme prostaglandin H synthase (PGHS, formerly named cyclo-oxygenase). This enzyme is a haem-containing protein that has 2 catalytic activities; a cyclooxygenase activity, and an endoperoxide synthase activity. The cyclo-oxygenase activity catalyses the addition of 2 oxygen atoms to AA to form PGG2. The endoperoxide synthase activity converts the hydroperoxy moiety of PGG2 to a hydroxyl group, forming PGH2. Hence, PGHS represents the first irreversible step in the prostanoid biosynthetic pathway [reviewed by Smith et al., 1996].

To date, there are 3 cloned isoforms of PGHS. PGHS3 is thought to be a splice variant of PGHS1 and has been isolated from canine and human cerebral cortex, although little is known about its function [Chandrasekharan et al., 2002]. Although functionally different, PGHS1 and PGHS2 have very similar structures. Both form homodimers, and are haem-containing, glycosylated, integral membrane proteins, sharing the same catalytic mechanism. Both PGHS1 and PGHS2 have the same affinity for AA (K_m ~ 5μM) [Barnett et al., 1994] with subtle differences in substrate fatty acid specificities and peroxide requirements [Laneuville et al., 1995]. Both PGHS1 and PGHS2 are anchored to the lumenal face of the ER, lumenal surfaces of
the nuclear envelope and contiguous outer membrane of the nuclear membrane. These enzymes attach to the lumenal leaflet of these specific membranes through the hydrophobic surfaces of amphiphatic helices within the protein structures of the enzymes.

PGHS1 is a constitutive enzyme. It is ubiquitously expressed, and is typically expressed at constant levels throughout the cell cycle. The function of PGHS1 appears to be in maintaining renal functions and platelet function [reviewed by Smith et al., 1996]. In contrast PGHS2 is an inducible enzyme that is virtually undetectable in most tissues. However, rapid activation of PGHS2 expression can be induced within 2-6 hours of hormone, growth factor or cytokine stimulation. Following induction, PGHS2 mRNA expression has been detected in many tissues including ovarian follicles [Sirois et al., 1992]. Moreover, anti-inflammatory agents, such as cortisol, have been shown to decrease PGHS2 mRNA and protein expression via transcriptional and post-transcriptional mechanisms [reviewed by Smith et al., 1996].

The functional roles of PGHS2 are thought to be two fold. It is thought that the enzyme co-localises with PGHS1 on the lumenal face of the ER to augment the function of PGHS1. The localisation of PGHS2 to the lumenal face of the nuclear envelope is speculated to operate as a unique nuclear prostanoid biosynthetic pathway that forms prostaglandins, which can act via the nuclear membrane, or nucleoplasmic targets in association with cell differentiation and replication. Indeed, prostaglandins are ligands for the members of the peroxisome proliferator activated receptor (PPAR) family of nuclear receptors [Helliwell et al., 2004].
Once PGH₂ has been formed, it undergoes various structural changes to form PGD₂, PGE₂, PGF₂α, PGI₂ or thromboxane A₂ (TXA₂). The resulting prostanoids exert their cellular actions through paracrine mechanisms. Each prostaglandin is secreted and can bind to G-protein coupled receptor (GPCR) on neighbouring cells, and activate various second messenger signalling cascades including cAMP-protein kinase A (PKA) (activated by PGE₂) and calcium-calcium dependent protein kinase (PKC) (stimulated by PGF₂α) [reviewed by Narumiya et al., 1999]. Prostaglandins are also thought to signal through intracrine mechanisms, specifically through binding to orphan nuclear receptors such as PPARs [reviewed by Hellwell et al., 2004]. A role for the nuclear generation of prostaglandins has also been speculated. Stimulation of PGHS2 with IL-1β was shown to re-localise PGHS2 from the nucleus to the nuclear envelope and the cytoplasm, with no effect on PGHS1 localisation [Parfenova et al., 2001], highlighting novel mechanisms through which prostaglandins may exert their actions.

1.3.2 Lipoxygenase

The lipoxygenase pathway of AA metabolism to leukotrienes involves the oxidation of AA to form hydroperoxy-eicosatetraenoic acids (HPETEs) and hydroxyeicosatetraenoic acids (HETEs). HETEs and HPETEs can be further reduced to leukotrienes according to the requirements of the cell [Ueda et al 1986; Samuelsson, 1987].
1.3.3 Epoxygenase

The actions of epoxygenase metabolises AA to generate dihydroxyacids and epoxyeicosatrienoic acids [Zeldin, 2001]. The involvement of these metabolites in phospholipase A$_2$ intracellular signalling are yet to be elucidated [Van Voorhis et al 1993].

1.3.4 Role of Eicosanoids in Ovulation

The administration of non-selective PGHS inhibitors to human and non-human primates has been shown to inhibit ovulation [Wallach et al., 1975a; Killick and Elstein 1987]. Moreover, in non-human primates, ovulation could be restored by simulataneous administration of PGF$_{2\alpha}$ [Wallach et al., 1975b]. Similar studies in rodents using non-selective PGHS inhibitors either administered systemically [Tsafirri et al., 1972; Mikuni et al., 1998] or into perfused whole ovaries [Hamada 1978; Sogn et al., 1987; Mikuni et al., 1998] inhibited ovulation. Subsequent co-administration of PGE$_2$ or PGF$_{2\alpha}$ was shown to restore the ovulatory process. Taken together, these data have supported the hypothesis that ovulation is an inflammatory event, mediated, in part, by prostaglandins [Espey 1980].

Further studies into the role of the PGHS isoform in ovulation have shown that the administration of preferential PGHS2 inhibitors disturbs ovulation in women by preventing (or delaying) follicular rupture, despite normal profiles of oestradiol and progesterone [Smith et al., 1996; Mendonca et al., 2000; Pall et al., 2001]. Knock-out mice studies have shown that PGHS1 null mice exhibit normal ovulation and fertilisation [Langenbach et al., 1995], whereas, PGHS2 null mice show a decrease
in the number of ovulation sites [Lim et al., 1997]. Moreover, administration of PGE$_2$ to PGHS2 knockout mice restores the normal ovulatory pattern.

Studies in the rhesus macaque found that 12 hours post administration of an ovulatory dose of human chorionic gonadotrophin (hCG), PGHS2 mRNA expression was induced in follicular granulosa cells, and remained elevated through to 36 hours post hCG administration [Duffy and Stouffer, 2001]. PGHS1 mRNA did not change at 0, 12, and 36 hours post hCG. The concentrations of PGE$_2$ and PGF$_{2\alpha}$ in follicular fluid (FF) did not change over the first 24 hours, but were 100-fold higher by 36 hours post hCG administration [Duffy and Stouffer, 2001]. These data agree with the proposal by Sirois and Dore [1997] that the increase in FF prostaglandins is the determining step controlling ovulation in mammals.

Use of immunohistochemistry in the rhesus macaque follicle after administration of an ovulatory dose of hCG, localised PGHS2 expression to the theca and granulosa cells. This was also confirmed in naturally cycling animals [Duffy and Stouffer, 2001]. In contrast PGHS1 expression was only detected in ovarian surface epithelial (OSE) cells [Duffy and Stouffer, 2001] where PGHS1 is speculated to play a role in apoptosis which is essential for follicular rupture. This suggestion has been supported through administration of indomethacin, an inhibitor of PGHS1 and PGHS2, which was shown to inhibit apoptosis in OSE cells [Murdoch, 1996].

Knockout mice studies of PGE$_2$ (EP) receptors and the PGF$_{2\alpha}$ (FP) receptor have yielded different results. EP2 receptor or PGHS2 knock-out mice exhibit defects in ovulation rate and cumulus cell expansion, suggesting alternative roles of
prostaglandins in the control of ovarian function [Tilley et al., 1999; Hizaki et al., 1999]. However, other studies have shown that EP or FP receptor knockout mice show no defect in ovulation [Kobayashi and Narumiya, 2002], highlighting the need for further study to elucidate the role for prostaglandins in ovulation. Moreover, PGE$_2$ and PGF$_{2\alpha}$ have been shown to play critical roles in oocyte maturation [Watanabe et al., 1994], suggesting other mechanisms of ovarian function that prostaglandins are important not only in ovulation, but also in folliculogenesis.

Products of the lipoxygenase pathway have also been implicated in the ovulatory process. The presence of leukotriene B$_4$ (LTB$_4$) has been detected in human FF, and lipoxygenase activity has been detected in human granulosa-lutein cells from women undergoing *in vitro* fertilisation and embryo transfer (IVF-ET) [Feldman et al., 1986; Priddy et al., 1989]. Reich et al. [1983] demonstrated that various inhibitors of lipoxygenase could block ovulation in the rat. Further studies revealed the presence of 12-HETE [Espey et al., 1991] and 15-HETE [Tanaka *et al.*, 1989; Espey *et al.*, 1991; Tanaka *et al.*, 1991] in the rat ovary following hCG administration. Other studies have detected increases in LTB$_4$ following administration of an ovulatory dose hCG to perfused rabbit ovaries [Yoshimura *et al.*, 1991]. Administration of a preferential lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA), to perfused rabbit ovaries following an ovulatory dose of hCG reduced ovulatory efficiency. However, co-administration of LTB$_4$ reversed the inhibitory effects of NDGA on ovulation [Yoshimura *et al.*, 1991; Mikuni *et al.*, 1998]. Inhibitor studies of the lipoxygenase pathway using indomethacin, NDGA and MK-886 have all been shown to decrease the expression of MMP-1 and MMP-2 in rat ovarian extracts.
following hCG administration. This indicates a role for lipoxygenase products in follicular collagenase stimulation [reviewed by Tsafriri 1995].

Speculated roles for lipoxygenase products in ovulation are similar to those for prostaglandins. Lipoxygenase metabolites of AA are speculated to affect vascular permeability, vasodilation and collagenolysis.

1.3.3 Role of eicosanoids in CL function

Luteal cells and tissues have the capacity to synthesise prostaglandins in all mammalian species investigated including cows [Milvae and Hansel 1983; Pate 1988], pigs [Watson and Patek 1979], rats [Tamura et al., 1991; Olofsson et al., 1992], non-human primates [Houmard and Ottobre 1989] and women [Challis et al., 1976]. Coupled to this, PLA$_2$ activity has been shown to increase throughout luteolysis in rats [Wu and Carlson 1990] and abrogate steroidogenesis in luteal cells [Greenhalgh 1990]. Radioimmunoassays of tissue from the rat CL throughout pseudopregnancy and pregnancy have detected the presence of PGE$_2$, PGF$_{2\alpha}$, and PGI$_2$ [Olofsson et al., 1990]. In other species, similar findings have been obtained [Miller et al., 1983; Vijayakumar and Walters 1987]. The FP receptor has been localised to the CL in all species tested [Reviewed by Anderson et al., 2001]. Functional EP1 and EP2 receptors have also been identified in human granulosa-lutein cells [Harris et al., 2001].

There are 2 ways in which prostaglandins are thought to control steroidogenesis and the functional lifespan of the CL. PGE$_2$ is thought to act as a luteotrophin,
functioning to stimulate progesterone synthesis. PGF$_2\alpha$ may act in a luteolytic manner, to inhibit progesterone synthesis. However, the role of PGF$_2\alpha$ in luteolysis in primates remains unclear.

Indomethacin treatment for seven days during the early and mid-luteal phase has been shown to decrease both basal and GnRH-stimulated progesterone concentrations, indicating a luteotrophic role for prostaglandins and lipoxygenase products within the early and mid-luteal phase [Fulghesu et al., 1993].

The luteotrophic role of PGE$_2$ has been demonstrated in both human [Dennefors et al., 1982; Hahlin et al., 1988] and bovine [Shelton et al., 1990; Sharif et al., 1998] CL. Moreover, the luteotrophic actions of PGE$_2$ have been demonstrated in luteinised granulosa cells [McNatty et al., 1975], and luteal cells of the rhesus macaque [Stouffer et al., 1979], rat [Thomas et al., 1978] and hamster [Yang et al., 1998]. In the human [Dennefors et al., 1982; Hahlin et al., 1988] and non-human primate CL [Molskness et al., 1987], progesterone production was found to increase in response to PGE$_2$ apparently acting via the stimulation of adenylyl cyclase, and increased generation of cAMP.

In the rat CL, PGF$_2\alpha$ can inhibit LH-stimulated adenylyl cyclase activity, partly due to the impairment of the Gs-protein [Lahav et al., 1976; Norjavaara and Rosberg 1986]. This inhibition was shown to increase with luteal age [Khan et al., 1979]. Moreover, in human granulosa-lutein cells, PGF$_2\alpha$ can inhibit LH-stimulated steroidogenesis both prior and subsequent to the elevation of cAMP [Michael et al., 1993]. Other studies have also highlighted temporal differences in signalling.
pathways coupled to the FP receptor in luteal cells, one of which is the calcium-dependent PKC signalling pathway [Steele and Leung, 1993].

1.4 Role of LH in Ovarian function

LH is a glycoprotein hormone produced alongside FSH by the gonadotrophs of the anterior pituitary. LH is a heterodimer consisting of an α-subunit that is non-covalently bonded to a β-subunit. The pattern of glycosylation confers the functional specificity on LH [reviewed by Ascoli et al., 2002].

The LH receptor (LHR) is a single polypeptide with an overall structure and topology of members of the rhodopsin/β-adrenergic superfamily of GPCRs [Segaloff et al., 1990]. The receptor comprises a large N terminal extracellular region consisting of approximately 340 residues, a 7 transmembrane domain, and a C terminal intracellular region.

The LHR couples to the adenylyl cyclase signalling cascade [Richards et al., 1998]. Prior to ovulation, LH activates a cAMP-PKA signalling cascade to induce the expression of genes required for cell proliferation and differentiation. As the mid-cycle LH surge occurs, triggering ovulation, LH dramatically increases cAMP-PKA signalling. LH can also increase inositol lipid-hydrolysis, which results in elevation of the intracellular calcium concentration and activation of PKC activation. This in turn alters the pattern of gene expression to orchestrate the final stages of follicular development, causing the oocyte to undergo meiotic maturation, and rupture of the follicular wall [Robker and Richards 1998; Espey and Richards 2002]. Genes that
are up-regulated by LH include interleukin (IL)-1β, the IL-1β receptor (IL-1βR) [Adashi, 1997; 1998] and PGHS2 [Morris and Richards 1995]. Little is known about the transcription factors and regulators that mediate these responses, however, C/EBP is speculated to play a role [Sterneck et al., 1997].

The expression of the LHR has been localised to various tissue types including the ovary, specifically in the thecal cells, interstitial cells, differentiated granulosa cells, and luteal cells [reviewed by Ascoli et al., 2002]. In situ hybridisation studies have localised LHR mRNA to the thecal and interstitial cells in immature pre-antral follicles. In mature antral follicles, LHR mRNA is localised to both thecal and granulosa cells [Camp et al., 1991]. Expression of LHR mRNA in the granulosa is increased by FSH administration in vitro and FSH has been shown to directly regulate LHR gene transcription [Shi and Segaloff 1995].

LH is an integral factor in the control of the ovarian cycle. In the follicular phase, LH controls thecal cell androgen production with aromatisation of androstenedione to form oestrogens in the neighbouring granulosa cells [Hillier et al., 1994]. The increase of LH pulsatile frequency during the peri-ovulatory phase induces essential genes for ovulation [Espey and Richard, 2002]. During the luteal phase, LH is a key luteotrophic factor, stimulating progesterone production and supporting CL function [Kohen et al., 2003]. LH plays a key role in the regulation of prostaglandin synthesis through regulating the expression of PGHS2 (reviewed in section 1.3).
1.5 Role of Interleukin-1 in Ovarian function

Preliminary studies into the role of IL-1 in ovarian function detected IL-1 activity in human FF [Khan et al., 1988]. Subsequent studies localised both IL-1α and IL-1β mRNA to the cumulus cells of women undergoing IVF-ET [Barak et al., 1992; De Los Santos et al., 1998]. Recent in vitro studies have confirmed that human granulosa cells secrete IL-1β [Carlberg et al., 2000]. Moreover, studies have correlated intrafollicular levels of IL-1 with oocyte quality in women undergoing IVF-ET [Karagouni et al., 1998, Mendoza et al., 1999].

Two receptor subtypes for the IL-1 system have been cloned [reviewed by Gerard et al., 2004]. The IL-1R couples to p38 mitogen activated protein kinase (MAPK) and Jun N-terminal kinase (JNK) signalling pathways, resulting in the activation of nuclear factor-κB (NF-κB) [O’Neill, 2000]. The type I IL-1R has been localised to human granulosa, cumulus, theca cells [Hurwitz et al., 1992] and the human embryo [De Los Santos et al., 1998]. To date, studies to characterise the expression of the type II IL-1R in the ovary have been limited. However, the type II IL-1R has been localised to equine cumulus cells and oocytes both before and after in vitro maturation. In rat immature ovaries the type II receptor was not detected, although it was detected in cultured ovarian cells [reviewed by Gerard et al., 2004].

The naturally occurring IL-1 receptor antagonist (RA), has been shown to regulate the bioavailability of IL-1α and IL-1β to their receptors. IL-1RA is known to be expressed in the human ovary [Hurwitz et al., 1992]. Subsequent studies have localised IL-1RA to human granulosa cells, which were devoid of any
immunological cells suggesting *de novo* synthesis of IL-1RA by granulosa cells [Kol *et al.*, 1999]. The IL-1RA has also been localised to human cumulus cells, with its quantity changing throughout follicular maturation [Tsafriri, 1995].

The various components of the IL-1 system are thought to regulate ovarian function. There are hypothesised roles for IL-1 in ovulation, oocyte maturation, cellular metabolism, and ovarian steroidogenesis. IL-1β has been shown to increase progesterone production in human granulosa cells. In non-ovarian tissue, IL-1 promotes many ovulation-associated physiological and biochemical changes including collagen activation, increased vascular permeability and prostaglandin production [Gerard *et al.*, 2004].

In studies across various species, IL-1 has been shown to stimulate PGE$_2$ and PGF$_{2\alpha}$ production. Studies by Narko *et al*. [1997] have revealed that IL-1β can induce PGHS2 mRNA expression in human granulosa-lutein cells. Moreover, subsequent studies revealed that IL-1β can induce the expression of mRNA encoding FP, EP2 and EP4 receptors in hGL cells [Narko *et al.*, 2001]. In human FF the concentration of IL-1β has been correlated with the concentration of PGE$_2$ and PGF$_{2\alpha}$ [Watanabe *et al.*, 1994] providing evidence of a regulatory link between IL-1β and prostaglandin synthesis via PGHS2. Other studies have also shown that IL-1β can increase PLA$_2$ activity [Kol *et al.*, 1997], providing AA, the substrate of prostaglandin synthesis.
Studies into the effect of IL-1β on the expression of PGHS2 in human granulosa-lutein cells harvested during different phases of the ovarian cycle has shown that IL-1β can induce the expression of PGHS2 mRNA and decrease its degradation [Narko et al., 1997]. These data highlight the importance of IL-1β in the induction of PGHS2 for prostaglandin synthesis in the ovary.

1.6 Cortisol Metabolism

1.6.1 Synthesis of glucocorticoids

Glucocorticoids are synthesised in the adrenal cortex, specifically in the zona fasciculata in response to adrenocorticotropic hormone (ACTH) stimulation. As for all steroids, the substrate for glucocorticoid synthesis is cholesterol (Figure 1.2). As outlined in section 1.2.2, cholesterol is converted to pregnenolone by CYP11A (P450cscc), and pregnenolone is oxidised to progesterone by 3βHSD. Once formed, progesterone can be converted to cortisol through a 3 step process. Firstly, progesterone is converted to 17α-hydroxyprogesterone by CYP17. This 17α-hydroxyprogesterone is then converted to 11-deoxycortisol by CYP 21 (21-hydroxylase). The final step in the reaction is catalysed by 11β-hydroxylase (CYP11B1) converting 11-deoxycortisol to cortisol (Figure 1.2) [reviewed in Brook and Marshall 2001].
Figure 1.2: Principle pathways of glucocorticoid biosynthesis. Blue=mitochondrial pathways, red=ER reactions, HSD=hydroxysteroid dehydrogenase, CYP=cytochrome P450.
1.6.2 Circulation of glucocorticoids

Glucocorticoids are transported in the plasma by corticosteroid binding globulin (CBG), which regulates the availability of glucocorticoids to target tissues. CBG is a glycoprotein that binds C21 steroid hormones with high affinity, and functions to transport C21 steroids to their target tissues. The binding of glucocorticoids to CBG regulates their free concentration in blood, and their biological activity [Hammond et al., 1991].

CBG is synthesised in the liver, however the mRNA encoding CBG has been detected in the human ovary [Misao et al., 1999a], placenta [Misao et al., 1999b] and CL [Misao et al., 1999c]. Luteal CBG is thought to be regulated by steroid hormone concentrations [Misao et al., 1999c].

1.6.3 Action of Glucocorticoids

The primary physiological role of glucocorticoids is to maintain glucose homeostasis within the body. Cortisol production is specifically increased in response to chronic stress, and functions to maintain glucose homeostasis. Cortisol does this through increasing gluconeogenesis by inducing the expression of enzymes involved in the gluconeogenic pathway, stimulating muscle breakdown, and increasing the turnover of peripheral adipose tissue. Other stress responses include suppression of the immune response, suppression of reproductive function, and in instigating cell differentiation [Brook and Marshall 2001]. The genomic actions of glucocorticoids are mediated via the glucocorticoid receptor (GR), which acts as a ligand-dependent nuclear transcription factor. There are 2 major isoforms of the receptors, GRα, which
is transcriptionally active, and GRβ, which acts as a dominant negative regulator of transcription [Charmandari et al., 2004]. Recent publications have suggested that the ligand- and tissue- specific effects of the GR are mediated through translational variants of the receptor isoforms [Yudt and Cidlowski 2002; Lu and Cidlowski 2004].

1.6.4 Glucocorticoid-metabolising enzymes

There are 2 important glucocorticoid-metabolising systems that regulate the activity of cortisol, namely 11β-hydroxysteroid dehydrogenase (11βHSD), and the 5α/5β-reductase pathways. In glucocorticoid target tissues, the active glucocorticoid cortisol (corticosterone in mice and rats) can be inter-converted to its inactive metabolite cortisone (11-dehydrocorticosterone in mice and rats), by isoforms of 11βHSD. The roles for this enzyme shall be fully explored in section 1.8. In the liver, the 5α- and 5β-reductase enzymes metabolise cortisol and cortisone through a series of reducing steps, to solubilise cortisol and cortisone for urinary excretion [White et al., 1997] (Figure 1.3).
Cortisol $\xrightleftharpoons{11\beta\text{HSD}1, 11\beta\text{HSD}2}$ Cortisone

5α reductase

$\xrightarrow{5\alpha\text{HSD}}$

DHF

5β reductase

$\xrightarrow{5\beta\text{HSD}}$

aDHF

5β reductase

$\xrightarrow{5\beta\text{HSD}}$

DHE

3αHSD

$\xrightarrow{3\alpha\text{HSD}}$

THF

aTHF

20αHSD

$\xrightarrow{20\alpha\text{HSD}}$

β-cortol

β-cortolone

Conjugation and excretion

Figure 1.3: Mechanism by which cortisol and cortisone are metabolised in target tissue (red) and in the liver for excretion (blue). DHF=dihydrocortisol, aDHF=allo dihydrocortisol, DHE=dihydrocortisone, THF=tetrahydrocortisol, aTHF=allo tetrahydrocortisol, THE=tetrahydrocortisone. Adapted from White et al., 1997
1.7 Short-chain dehydrogenases/reductases

The short-chain dehydrogenases/reductases (SDRs) are a superfamily of enzymes consisting of approximately 3000 members, of which 37 are human [Oppermann et al., 2001]. The SDRs utilise a wide range of substrates including alcohols, sugars and steroids [Persson et al., 2003]. To date, five SDR families have been identified, based on co-enzyme and catalytic site motifs. One such SDR family is termed the Classical SDR family. Each of the enzymes in the Classical family of SDRs is comprised of approximately 250 residues, and catalyses NAD(P)(H)-dependent oxidation/reduction reactions. The co-factor binding site is localised to the N terminus, forming a Rossman fold, and the active site is localised to the C terminus of the protein [Persson et al., 2003]. The Classical SDRs have the active site motif of YxxxK [Oppermann et al., 1997]. Typical members of this family include steroid dehydrogenase/reductase enzymes

Enzymes within the steroid dehydrogenase/reductase subtype of proteins can be divided into 2 sub-categories. The first are enzymes catalysing the steroidogenic pathways. Such enzymes include 3β-hydroxysteroid dehydrogenase (HSD), and 17βHSD, which are pivotal enzymes in the formation of ovarian steroids; i.e. the synthesis of progesterone from pregnenolone (3βHSD) [Mason et al., 1997], and the conversion of oestrone to oestradiol (17βHSD) [Andersson and Moghrabi, 1997] (see Section 1.2.2). Steroid metabolism serves 2 purposes. The first for the excretion of steroid through the generation of polar and/or charged steroid metabolites e.g., the conversion of progesterone to 20α-dihydroprogesterone by 20αHSD, and in metabolism of steroids within their target organs for regulating the potency of the
steroid at its receptor. This mechanism is integral for local control of steroid hormone activity. Such enzymes include the glucocorticoid metabolising enzyme, 11βHSD which regulates the activity of cortisol, the active glucocorticoid, through interconversion with cortisone, its inactive keto-steroid metabolite [Walker and Stewart, 2003].

1.8 11βHSD

As previously mentioned in section 1.6.4, in target tissues the active glucocorticoid cortisol is inter-converted to its inactive keto-steroid metabolite cortisone by isoforms of the enzyme 11βHSD [Blum and Maser 2003; Walker and Stewart, 2003, Figure 1.4]. To date, 3 isoforms of 11βHSD have been cloned. 11βHSD1 and 11βHSD2 have been extensively studied and functionally characterised. However, the functional properties of 11βHSD3 are yet to be elucidated.

1.8.1. 11βHSD1

11βHSD1 was originally isolated from a rat cDNA library [Agarwal et al., 1989]. It is a 34kDa protein with 2 hypothesised sites for N-glycosylation. Monder and Lakshmi [1990] localised 11βHSD1 mRNA expression to the liver, lungs, testis, and kidney. Subsequent cloning of human 11βHSD1 localised the gene to chromosome 1, with ubiquitous gene expression in most tissues including the ovary [Tannin et al., 1991]. Kinetic analysis of 11βHSD1 has shown that it is predominately a low affinity 11 ketosteroid reductase (11KSR) in vivo, with a micromolar affinity for cortisol ($K_m=27\mu M$), and a co-factor preference for NADP(H). Functional analysis
Figure 1.4: Inter-conversion of cortisol and cortisone by isoforms of the enzyme 11βHSD. Highlighted in red is the oxidation of the C11 hydroxyl group of cortisol to a ketone to form cortisone, and in blue, the reduction of the C11 group to a hydroxyl to form cortisol.
revealed that 11βHSD1 is a bi-directional enzyme in vitro, 11KSR enzyme with a basal dehydrogenase activity.

Physiological studies using knockout mice have revealed that mice lacking the 11βHSD1 enzyme are fertile and have an unaltered birth weight and litter size. They appear to exhibit adrenocortical hyperplasia, caused by increased ACTH stimulation of the adrenal due to decreased negative feedback by corticosterone [Kotelevstev et al., 1997]. Moreover, in 11βHSD1 null mice, the plasma corticosterone levels are increased, and lack the circadian rhythm observed in wild-type mice. The 11βHSD1 knockout mice also appear to have aberrations in the gluconeogenic pathway, and increased insulin sensitivity [Kotelevstev et al., 1997]. Further analysis of 11βHSD1−/− mice revealed that the mice showed a decrease in weight gain in comparison to wild type mice when fed on high fat diets. Atrophy of the thymus of the 11βHSD −/− mice was also observed (Holmes et al., 2001]. These phenotypes are consistent with the role for cortisol in maintaining metabolic homeostasis, with specific functional roles in gluconeogenesis. They highlight the role of 11βHSD1 in regenerating cortisol (and corticosterone) from cortisone (and 11-dehydrocorticosterone) in the liver, and the importance of cortisol in modulating the expression and activity of key enzymes involved in gluconeogenesis.

1.8.2 11βHSD2

11βHSD2 activity was originally reported in human full term placenta [Brown et al., 1993], and rabbit renal cells [Rusvai and Naray-Fejes-Toth, 1993]. The enzyme was found to function as an NAD⁺-dependent 11β-dehydrogenase converting cortisol to
cortisone, with a nanomolar affinity for cortisol (\(K_m=60\text{nM}\)) [Mercer and Krozowski, 1992; Brown et al., 1993]. Subsequent studies cloned and characterised \(\text{11}\beta\text{HSD2}\) from human and sheep kidney [Albiston et al., 1994; Agarwal et al., 1994]. Northern blotting revealed expression of \(\text{11}\beta\text{HSD2}\) in tissues involved in water re-absorption including the placenta, distal nephron of the kidney, colon, parotid gland and ovary. As well as binding to the GR, cortisol and corticosterone can also bind to the mineralocorticoid receptor which have little inherent specificity for binding aldosterone. In these tissues \(\text{11}\beta\text{HSD2}\) is thought to inactivate cortisol to cortisone, thus inhibiting promiscuous occupation of mineralocorticoid receptor by cortisol. Such occupation of the mineralocorticoid can result in the syndrome of 'apparent mineralocorticoid excess' (AME) [White, 2001]. \(\text{11}\beta\text{HSD2}\) is also involved in regulating glucocorticoid availability to the foetus serving as a barrier mechanism in the placenta oxidising cortisol to cortisone. This mechanism exists to prevent foetal exposure to glucocorticoids, which would stimulate premature differentiation of foetal tissue, and result in intra-uterine growth retardation [reviewed by Michael et al., 2003].

Phenotypic analysis of mice bearing a gene deletion for \(\text{11}\beta\text{HSD2}\) revealed that 50% of \(\text{11}\beta\text{HSD2}\) null mice died within 48 hours of birth [Kotelevtsev et al., 1999]. Reasons for this included cardiac arrest due to severe hypokalaemia (low potassium) caused by hyper-activation of the mineralocorticoid receptors [Holmes et al., 2001]. These symptoms are consistent with that of severe AME.
1.8.3 11βHSD3

Over the past decade, several authors have suggested the existence of a third isoform of 11βHSD [Gomez-Sanchez et al., 1997; Ge et al., 1997; Michael et al., 1997; Ge et al., 2000]. Recently the primary sequences for 11βHSD3 from 6 individual species have been deposited in the NCBI protein database by Huang [http://www.ncbi.nlm.nih.gov/entrez/query]. To date, nothing is known of the tissue distribution, kinetic, structural and functional properties of this enzyme. However, personal communication with Huang has revealed that each of the 6 species 11βHSD3 was isolated from brain, and the gene encoding 11βHSD3 has also been cloned from human brain.

1.8.4 11βHSD enzymes and Ovarian function

1.8.4.1 11βHSD enzymes and their link to in vitro fertilisation-embryo transfer outcome

Publications over the last decade have suggested a possible link between cortisol-cortisone conversion in ovarian cells, and the outcome of in vitro fertilisation-embryo transfer (IVF-ET). The net rate of cortisol oxidation to cortisone has been shown to correlate inversely with the probability of conception by IVF-ET; a low 11βHSD activity reflects a higher probability of achieving pregnancy in women undergoing IVF-ET [Michael et al., 1993; 1995; 1999; Keay et al., 2002; Thurston et al., 2003a; Lewicka et al., 2003].
There have been conflicting studies that have found no correlation between 11βHSD activity and IVF-ET outcome [O'Shaughnessy et al., 1997; Thomas et al., 1998; Andersen et al., 1999]. However, differences in granulosa cell culture times, and storage of granulosa cells in human FF, known to contain modulators of 11βHSD activity could explain these differences [reviewed by Michael et al., 2003].

Subsequent studies have isolated modulatory compounds of 11βHSD activity in human FF. Studies by Thurston et al. [2002] first reported the presence of hydrophilic stimulators and hydrophobic inhibitors of 11βHSD activity in human FF. The relative ratio of stimulatory compounds to inhibitory compounds, i.e. the presence of a low stimulatory activity, and a high inhibitory activity, has been related to the successful outcome of IVF-ET [Thurston et al., 2003a].

1.8.4.2 Spatial and temporal expression patterns of 11βHSD enzymes in the ovary

The expression of 11βHSD enzyme isoforms has been documented in the human ovary. Immuno-histochemical studies have localised 11βHSD1 expression to the oocyte, luteinising granulosa cells, theca cells and ovarian surface epithelial cells. The 11βHSD2 isoform has been localised to theca, mural and cumulus granulosa cells from immature follicles [Ricketts et al., 1998; Smith et al., 2000; Yong et al., 2000]. The pattern of 11βHSD expression in the ovary is dependent on the stage of the ovarian cycle. In rat [Tetsuka et al., 1999a] and human [Tetsuka et al., 1997] granulosa cells, isolated from the pre-ovulatory stage of the ovarian cycle, 11βHSD2 mRNA was detected. In rat and human granulosa cells undergoing luteinisation, an increase in 11βHSD1 mRNA was detected following the administration of hCG.
This also coincided with a decrease in 11βHSD2 mRNA expression. These results were further confirmed by 11βHSD1 and 11βHSD2 mRNA expression and activity studies in human granulosa-lutein cells, where only 11βHSD1 mRNA was expressed [Michael et al., 1997; Tetsuka et al., 1997; Thurston et al., 2003b]. The expression pattern of 11βHSD isoforms has also been recently reported for the bovine ovary. Although the pattern of 11βHSD1 expression changes less dramatically over the stages of the ovarian cycle, the follicular phase granulosa cells express predominantly 11βHSD2 and luteal phase cells express predominantly 11βHSD1 [Tetsuka et al., 2003]

There are many possible reasons why the pattern of ovarian 11βHSD expression changes throughout the ovarian cycle. In a wide range of teleost species, cortisol stimulates oocyte maturation [Kime et al., 1992]. Hence, 11βHSD1 may be required at ovulation to increase the local regeneration of glucocorticoids. In humans there is circumstantial evidence of a role of cortisol for oocyte maturation. In FF cortisol levels peak around the time of ovulation [Harlow et al., 1997], and in women undergoing IVF-ET a positive link was found between oocyte maturity and cortisol levels in human FF [Fateh et al., 1989]. It has also been suggested that intrafollicular concentrations of cortisol are important for the final stages of oogenesis. This is supported by immunocytochemical data showing the expression of high levels of 11βHSD1 mRNA and protein in the rat oocyte [Benediktsson et al., 1992]. Noteworthy is that transcription is blocked between pre-ovulatory meiosis and the mitotic division of the embryo to the 2-cell stage. Therefore high expression of 11βHSD1 in the rat oocyte could reflect the need to regenerate active glucocorticoids.
in the oocyte, zygote and/or early embryo stages of development [reviewed by Michael et al., 2003]

As reviewed in sections 1.1 and 1.3, ovulation is an inflammatory event that involves an inflammatory cascade, initiated in response to gonadotrophins. These events result in follicular rupture and oocyte expulsion. Following ovulation, the follicular tissue undergoes rapid repair and remodelling. Therefore it has been proposed that up-regulation of 11βHSD1 mRNA in granulosa cells, would facilitate an increase in intrafollicular cortisol following gonadotrophin stimulation. Moreover, it has been suggested that the increase in cortisol synthesis, provides an anti-inflammatory mechanism by which prostaglandin production is suppressed following the inhibition of PLA₂ and decreased PGHS-2 expression [Hillier and Tetsuka 1998].

1.8.5 Hormonal regulation of 11βHSD

To date there are numerous factors that have been shown to regulate the activity and expression of 11βHSD isoforms. These factors are summarised in Table 1.1 and include lipids, peptides, growth factors, transcription factors and pharmacological agents.

In the ovary, there have been limited studies on the regulation of 11βHSD. The regulatory factors that have been explored include IL-1 [Tetsuka et al., 1999b; Yong et al., 2002], and LH [Tetsuka et al., 1999b], both of which stimulate 11βHSD1 gene
expression. The role of LH and IL-1 in the regulation of 11βHSD will be fully explored in sections 1.8.5.2 and 1.8.5.3 respectively.

1.8.5.1 Prostaglandins and 11βHSD

As previously described, prostaglandins have numerous regulatory roles in the ovary. PGE$_2$ and PGF$_{2\alpha}$ have been shown to increase 11βHSD1 activity in cultured chorionic trophoblast cells. Moreover, PGF$_{2\alpha}$ can stimulate the reductase activity of 11βHSD1 (in a concentration-dependent manner) at parturition in humans [Alfaidy et al., 2001]. The mechanism is speculated to be via mobilisation of Ca$^{2+}$, activation of PKC, and by phosphorylation of 11βHSD1, mediated via the FP receptor [Alfaidy et al., 2001]. In turn, cortisol has been shown paradoxically, to increase prostaglandin synthesis via the upregulation of PGHS2 expression and decreased prostaglandin metabolism via inhibition of 15-prostaglandin dehydrogenase (PGDH) in chorionic trophoblast cells [Alfaidy et al., 2001; Challis et al., 2002]. These data highlight the importance of the positive feedback loop between prostaglandins and cortisol in the onset of parturition in sheep and humans. In contrast to studies by Alfaidy et al., [2001], PGE$_2$ and PGF$_{2\alpha}$ have been shown to inhibit 11βHSD2 in human choriocarcinoma JEG-3 cells [Hardy et al., 2001].
Table 1.1: Regulatory compounds of 11βHSD enzyme isoforms. ND = not determined by the study, - = inhibited activity or decreased expression, + = stimulated activity or increased expression, NS = not specified, NE = no effect.

<table>
<thead>
<tr>
<th>Compound</th>
<th>11βHSD isoform</th>
<th>Tissue</th>
<th>Activity</th>
<th>Expression</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>NS</td>
<td>Rat kidney</td>
<td>-</td>
<td>ND</td>
<td>Buhler et al., 1991</td>
</tr>
<tr>
<td>Cholenoxycholic acid</td>
<td>11βHSD1</td>
<td>Rat kidney</td>
<td>-</td>
<td>ND</td>
<td>Perschel et al., 1991</td>
</tr>
<tr>
<td>Cortisol</td>
<td>11βHSD1</td>
<td>Human adipocytes</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Engeli et al., 2004</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>11βHSD1</td>
<td>Human osteocytes</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Cooper et al., 2002</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>11βHSD1</td>
<td>Term amnion fibroblasts</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Sun and Myatt, 2003</td>
</tr>
<tr>
<td>DHEA</td>
<td>11βHSD1</td>
<td>Rat liver cDNA</td>
<td>ND</td>
<td>-</td>
<td>Gu et al., 2003</td>
</tr>
<tr>
<td>Glycyrrhetinic acid</td>
<td>11βHSD1</td>
<td>Rat liver microsomes</td>
<td>-</td>
<td>ND</td>
<td>Monder et al., 1991</td>
</tr>
<tr>
<td>Lanosterol</td>
<td>NS</td>
<td>Rat kidney</td>
<td>-</td>
<td>ND</td>
<td>Buhler et al., 1991</td>
</tr>
<tr>
<td>Leukotriene B4</td>
<td>11βHSD2</td>
<td>JEG3 cells</td>
<td>-</td>
<td>NE</td>
<td>Hardy et al., 1999</td>
</tr>
<tr>
<td>Lithocholic acid</td>
<td>11βHSD1</td>
<td>Rat kidney</td>
<td>-</td>
<td>ND</td>
<td>Perschel et al., 1991</td>
</tr>
<tr>
<td>Medroxyprogesterone</td>
<td>11βHSD2</td>
<td>Ishikawa cells</td>
<td>+</td>
<td>ND</td>
<td>Darnel et al., 1999</td>
</tr>
<tr>
<td>Oestradiol</td>
<td>11βHSD1</td>
<td>Human placental trophoblast</td>
<td>-</td>
<td>ND</td>
<td>Sun et al., 1998</td>
</tr>
<tr>
<td></td>
<td>11βHSD2</td>
<td>Ishikawa cells</td>
<td>+</td>
<td>+ mRNA and protein</td>
<td>Darnel et al., 1999</td>
</tr>
<tr>
<td></td>
<td>11βHSD2</td>
<td>Rat kidney</td>
<td>NE</td>
<td>+ mRNA and protein</td>
<td>Gomez-Sanchez et al., 2003</td>
</tr>
<tr>
<td></td>
<td>11βHSD1</td>
<td>Rat kidney</td>
<td>-</td>
<td>ND</td>
<td>Gomez-Sanchez et al., 2003</td>
</tr>
<tr>
<td>PGE2</td>
<td>11βHSD2</td>
<td>JEG3 cells</td>
<td>-</td>
<td>NE</td>
<td>Hardy et al., 1999</td>
</tr>
<tr>
<td>PGF2α</td>
<td>11βHSD2</td>
<td>Human placental microsomes</td>
<td>+</td>
<td>ND</td>
<td>Hardy et al., 2001</td>
</tr>
<tr>
<td>PGF2α</td>
<td>11βHSD1</td>
<td>Human chorionic trophoblast</td>
<td>+</td>
<td>ND</td>
<td>Alfaidy et al., 2001</td>
</tr>
<tr>
<td>Progesterone</td>
<td>11βHSD2</td>
<td>Human placental trophoblast</td>
<td>-</td>
<td>+ mRNA</td>
<td>Sun et al., 1998</td>
</tr>
<tr>
<td>Testosterone</td>
<td>11βHSD1</td>
<td>Rat Leydig cells</td>
<td>-</td>
<td>ND</td>
<td>Gao et al., 1997a</td>
</tr>
<tr>
<td>Growth Factors</td>
<td>11βHSD1</td>
<td>Rat Leydig cells</td>
<td>ND</td>
<td>Gao et al., 1997a</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>EGF 11βHSD1</td>
<td>Rat Leydig cells</td>
<td>+</td>
<td>ND</td>
<td>Gao et al., 1997a</td>
<td></td>
</tr>
<tr>
<td>11βHSD2</td>
<td>Ishikawa cells</td>
<td>-</td>
<td>ND</td>
<td>Darnel et al., 1999</td>
<td></td>
</tr>
<tr>
<td>IGF-1 (GH activated) 11βHSD1</td>
<td>Human omental adipose</td>
<td>-</td>
<td>ND</td>
<td>Moore et al., 1999</td>
<td></td>
</tr>
<tr>
<td>Cytokines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>11βHSD1</td>
<td>Glomerular mesangial cells, Rat granulosa cells, hOSE cells, Human adipose stromal cells, MG-63 cells</td>
<td>+</td>
<td>ND</td>
<td>Escher et al., 1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetsuka et al., 1999b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yong et al., 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tomlinson et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Friedberg et al., 2003, 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cooper et al., 2001</td>
</tr>
<tr>
<td>IL-4</td>
<td>11βHSD1</td>
<td>Differentiating monocytes</td>
<td>+</td>
<td>+</td>
<td>Thieringer et al., 2001</td>
</tr>
<tr>
<td>IL-4 + INFγ</td>
<td>11βHSD1</td>
<td>Human granulosa lutein cell</td>
<td>+</td>
<td>ND</td>
<td>Evagelatou et al., 1997</td>
</tr>
<tr>
<td>IL-5</td>
<td>11βHSD1</td>
<td>Human granulosa lutein cell</td>
<td>+</td>
<td>ND</td>
<td>Evagelatou et al., 1997</td>
</tr>
<tr>
<td>IL-6</td>
<td>11βHSD1</td>
<td>Human granulosa lutein cell</td>
<td>+</td>
<td>ND</td>
<td>Evagelatou et al., 1997</td>
</tr>
<tr>
<td>IL-13</td>
<td>11βHSD1</td>
<td>Differentiating monocytes</td>
<td>+</td>
<td>+</td>
<td>Thieringer et al., 2001</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>11βHSD1</td>
<td>Human granulosa lutein cell</td>
<td>+</td>
<td>ND</td>
<td>Evagelatou et al., 1997</td>
</tr>
<tr>
<td>TNFα</td>
<td>11βHSD1</td>
<td>Human adipose stromal cells, Human adipocytes, LLC-PK</td>
<td>+</td>
<td>+ mRNA</td>
<td>Tomlinson et al., 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Friedberg et al., 2003, 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heiniger et al., 2001</td>
</tr>
<tr>
<td>Peptide hormones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTH</td>
<td>11βHSD1</td>
<td>Human adipocytes</td>
<td>-</td>
<td>NE</td>
<td>Friedberg et al., 2003</td>
</tr>
<tr>
<td>CRH</td>
<td>11βHSD1</td>
<td>Human adipocytes</td>
<td>-</td>
<td>NE</td>
<td>Friedberg et al., 2003</td>
</tr>
<tr>
<td>LHRH</td>
<td>11βHSD1</td>
<td>Rat granulosa cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Tetsuka et al., 1999b</td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>11βHSD2</td>
<td>Placental trophoblasts</td>
<td>-</td>
<td></td>
<td>Sarker et al., 2001</td>
</tr>
<tr>
<td>rhFSH</td>
<td>11βHSD1</td>
<td>Rat granulosa cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Tetsuka et al., 1999b</td>
</tr>
<tr>
<td>Modifier of Signalling Transduction</td>
<td>11βHSD1</td>
<td>11βHSD2</td>
<td>Effect</td>
<td>mRNA</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>rhLH</td>
<td>Rat granulosa cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Tetsuka et al., 1999b</td>
<td></td>
</tr>
<tr>
<td>Modifiers of Signalling Transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbenoxolone</td>
<td>11βHSD1</td>
<td>Human placental microsomes</td>
<td>-</td>
<td>ND</td>
<td>Stewart et al., 1990</td>
</tr>
<tr>
<td>Calcium</td>
<td>11βHSD2</td>
<td>Human placental microsomes</td>
<td>-</td>
<td>ND</td>
<td>Hardy et al., 2001</td>
</tr>
<tr>
<td>C/EBPα</td>
<td>11βHSD1</td>
<td>Hepatoma cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Williams et al., 2000</td>
</tr>
<tr>
<td>C/EPBβ</td>
<td>11βHSD1</td>
<td>Hepatoma cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Williams et al., 2000</td>
</tr>
<tr>
<td>Forskolin</td>
<td>11βHSD1</td>
<td>Rat granulosa cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Tetsuka et al., 1999b</td>
</tr>
<tr>
<td>Hypoxia via Erg-1</td>
<td>11βHSD2</td>
<td>LLC-PK1 cells</td>
<td>ND</td>
<td>- mRNA</td>
<td>Heiniger et al., 2003</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>11βHSD2</td>
<td>JEG3 cells</td>
<td>-</td>
<td>ND</td>
<td>Hardy et al., 1999</td>
</tr>
<tr>
<td>LXR</td>
<td>11βHSD1</td>
<td>3T3-L1 cells</td>
<td>-</td>
<td>- mRNA</td>
<td>Stulnig et al., 2002</td>
</tr>
<tr>
<td>MAPK ERK inhibitor</td>
<td>11βHSD2</td>
<td>LLC-PK</td>
<td>+</td>
<td>ND</td>
<td>Heiniger et al., 2001</td>
</tr>
<tr>
<td>MAPK p38 inhibitor</td>
<td>11βHSD2</td>
<td>LLC-PK</td>
<td>+</td>
<td>ND</td>
<td>Heiniger et al., 2001</td>
</tr>
<tr>
<td>PMA</td>
<td>11βHSD1</td>
<td>Rat granulosa cells</td>
<td>ND</td>
<td>+ mRNA</td>
<td>Tetsuka et al., 1999b</td>
</tr>
<tr>
<td></td>
<td>11βHSD2</td>
<td>LLC-PK</td>
<td>-</td>
<td>- mRNA</td>
<td>Heiniger et al., 2001</td>
</tr>
<tr>
<td>PPARγ ligand-thiazolidinedione</td>
<td>11βHSD1</td>
<td>3T3-L1 cells</td>
<td>-</td>
<td>- mRNA</td>
<td>Berger et al., 2001</td>
</tr>
<tr>
<td>RU486</td>
<td>11βHSD1</td>
<td>Term amnion fibroblasts</td>
<td>ND</td>
<td>- mRNA</td>
<td>Sun and Myatt, 2003</td>
</tr>
</tbody>
</table>

1.8.4.2 LH and 11βHSD

In reproductive tissues, LH and hCG exert differential effects on 11βHSD1 activity and expression. Studies have shown that in Leydig cells increased LH can increase 11βHSD activity [Gao et al., 1997]. The role of corticosterone in the testis is speculated to be in suppressing the circulating and local concentrations of...
testosterone. Studies comparing the oxidative activity of 11βHSD in dominant and subordinate male rats have shown that the dominant rat has an increased 11βHSD oxidative activity. This is thought to be due to an increase in LH, which increases 11βHSD oxidative activity, allowing the Leydig cells to produce testosterone, and for the dominant rat to maintain its fertility despite higher levels of corticosterone [Hardy et al., 2002].

Measurements of free cortisol in follicular fluid following the LH surge have shown a dramatic increase in free and total cortisol [Harlow et al., 1997]. 11βHSD1 mRNA expression in the rat ovary has been shown to be regulated LH. Moreover, LH was found to act in a concentration-dependent manner to increase 11βHSD1 mRNA expression in rat granulosa cells. This effect was found to be additive when rat granulosa cells were co-treated with IL-1β [Tetsuka et al., 1999b]. Hence, the increased expression of 11βHSD1 in response to LH could contribute to the increase in intrafollicular cortisol concentrations following the LH surge.

1.8.5.3 IL-1 and 11βHSD

The roles for inflammatory cytokines in the regulation of 11βHSD activity and expression have been demonstrated in several tissue types. In adipose tissue, osteoblasts, placenta and the ovary, IL-1β induces the expression of 11βHSD1 mRNA. In the rat ovary, Tetsuka et al., [1999b] have shown that IL-1β can up-regulate 11βHSD1 mRNA expression in a concentration-dependent manner. In other studies using human ovarian surface epithelial cells (hOSE), IL-1α was shown to
increase 11βHSD1 mRNA expression and the 11KSR activity of 11βHSD1 [Yong et al., 2002]. A recent publication by Rae et al., [2004] has also shown that IL-1α can induce 11βHSD1 mRNA expression. Moreover, IL-1α also increased the expression of the GRα subtype, highlighting a possible mechanism by which IL-1α may stimulate the anti-inflammatory activities of cortisol through the up-regulation of the GRα gene coincident with increased reactivation of cortisol in target cells [Rae et al., 2004].

1.9 Project aims and justification

The cellular mechanisms that control cortisol metabolism in the ovary still remain to be elucidated. Prostaglandins have been extensively implicated in the regulation of ovarian function, specifically within ovulation and CL dynamics. However, their precise mechanisms of action within the human ovary still remain unclear. Although cortisol metabolism is thought to be regulated by prostaglandins in several reproductive tissues, the cellular mechanisms of control are yet to be investigated in the ovary.

Therefore the aims of this study were:

a) To determine the modulatory properties of human FF on 11βHSD1 activity and expression, and to determine the identity of the modulatory compounds

b) To investigate the effect of progesterone on the activity and expression of 11βHSD1 in human granulosa-lutein cells

c) To elucidate the effects of prostaglandins on basal 11βHSD1 activity and expression in human granulosa-lutein cells
d) To elucidate the effects of hCG and IL-1β on 11βHSD1 activity and expression in human granulosa-lutein cells, and the possible mediating role for eicosanoids in any responses to hCG and/or IL-1β.

e) To predict the topology and tertiary structures of 11βHSD1 as these relate to the regulation of enzyme activities by hydrophilic and hydrophobic hormones using current literature, and in silico approaches.
Chapter Two: Materials and Methods
Chapter 2 - Materials and Methods

2.1 Chemicals and Reagents

PGE\textsubscript{2} and PGF\textsubscript{2\alpha} antibodies were kindly donated by Drs. R.W Kelly and N.L. Poyser respectively (University of Edinburgh, UK). Progesterone antibody was obtained from the Central Veterinary Laboratory (Weybridge, Surrey, UK). hCG was a kind gift from the National Hormone and Peptide Program-NIDDK (California, USA).

[7(n)-3H]-cholesterol (8Ci/mmol), [1,2,6,7,3H]-cortisol (60Ci/mmol), [1,2(n)-3H]-cortisone (45Ci/mmol), [2,4,6,7,3H]-oestradiol (81Ci/mmol), [5,6,8,11,12,14,15,3H]-PGE\textsubscript{2} (164Ci/mmol), [5,6,8,9,11,12,14,15,3H]-PGF\textsubscript{2\alpha} (219Ci/mmol), [1,2,6,7,3H]-progesterone (86Ci/mmol), [1,2,6,7,3H]-testosterone (70Ci/mmol), Dextran T500, ECL™ Western blotting detection reagents, PD-10 columns, and Hyperfilm™ ECL™ were each obtained from Amersham Biosciences, UK Ltd (Little Chalfont, Bucks., UK). [7-3H]-pregnenolone (14Ci/mmol) was purchased from Perkin Elmer, (Beaconsfield, Bucks., UK).

\beta\text{-}mercaptoethanol, charcoal, chloroform, di-sodium hydrogen orthophosphate 12-hydrate (Na\textsubscript{2}HPO\textsubscript{4}.12H\textsubscript{2}O), ethanol, ethyl acetate, gelatin (powder), methanol, sodium di-hydrogen orthophosphate dihydrate (NaH\textsubscript{2}PO\textsubscript{4}.2H\textsubscript{2}O), and ultra-pure water were supplied by BDH (Poole, Dorset, UK).

1:1 Dulbecco's modified Eagle's medium:Hams's F\textsubscript{12} (DMEM:Ham's F\textsubscript{12}) medium, foetal calf serum (FCS), L-glutamine, penicillin/streptomycin and Dulbecco's
phosphate-buffered saline (PBS) were purchased from Life technologies Ltd (Gibco BRL, Paisley, UK). TLC aluminium sheets (20cmx20cm, Silica gel 60) were supplied by Merck (Poole, Dorset, UK) and Ultima-Gold scintillant was purchased from Packard Biosciences B.V (Pangbourne, Berks, UK).

Bicinchoninic acid (BCA) protein assay reagent A (Na$_2$CO$_3$, NaHCO$_3$, C$_4$H$_4$O$_6$Na$_2$ in 0.2% N NaOH and BCA detection reagent), BCA reagent B (4% (w/v) CuSO$_4$) and Bovine serum albumin (BSA) protein standard (2mg/ml) were each obtained from Pierce Science UK Ltd (Tattenhall, Cheshire, UK). Extra thick filter paper and Tris-electrophoresis grade were supplied by Bio-Rad (Hercules, California, USA). Polyvinilyidine difluoride (PVDF) (Immobilon™-P transfer) membrane was purchased from Millipore (Watford, England). 30% (w/v) polyacrylamide (Ultra pure Protogel®) and X10 Tris-glycine-SDS electrophoresis grade running buffer were purchased from National diagnostics (Atlanta, Georgia, USA).

Sheep anti-human 11βHSD1 primary monoclonal antibody (IgG fraction) and mouse anti-human GAPDH primary monoclonal antibody (IgG fraction) were both supplied by The Binding site Ltd. (Birmingham, UK). Donkey anti-sheep peroxidase conjugated IgG and rabbit anti-mouse peroxidase conjugated IgG were purchased from Sigma-Aldrich (Poole, Dorset, UK). NS398 was obtained from Cayman Chemicals (Alexis Platform, Nottingham, UK). Protease inhibitor Cocktail Set 1 (containing 500µM 4-(2-aminoethyl)-benzene-sulfonyl fluoride (AEBSF), 150nM aprotinin, 1µM E-64, 0.5mM ethylene-diaminetetraacetic acid (EDTA), and 1µM leupeptin) were obtained from Calbiochem®, c/o Merck Bioscience Ltd (Beeston,
Nottingham, UK). SeeBlue® Plus 2 Pre-stained Protein standard molecular weight markers, range 250-4 kDa were supplied by Invitrogen Life Technologies (Paisley, UK). GBX fixer and replenisher, and GBX developer and replenisher were supplied by Eastman Kodak Company (Rochester, New York, USA).

All other chemicals and solvents were supplied by Sigma-Aldrich (Poole, Dorset, UK).

2.2 Collection and storage of follicular aspirates

2.2.1 Patient samples

Ovarian follicular aspirates containing granulosa cells were collected from women undergoing assisted conception at the Lister Hospital, Chelsea Bridge Road, London, UK. Collections were carried out with approval of the local ethics committee, with informed patient consent, in accordance with the Declaration of Helsinki and following HFEA guidelines.

Pituitary down-regulation was achieved by administration of a GnRH analogue, Suprecur (Shire Pharmaceuticals, Andover, Hants, UK), 500μg per day from day 2 of the ovarian cycle for 10-21 days. Administration of the GnRH analogue was then continued in conjunction with purified urinary human menopausal gonadotrophin, Menogon (Ferring Pharmaceuticals, Feltham, Middlesex, UK), 2-4 ampoules daily for 10-14 days, followed by a single intramuscular injection of hCG, Profasi (Serono, Welwyn Garden City, Herts, UK), 5,000-10,000IU administered 36 hours
prior to oocyte retrieval. Follicles were subsequently aspirated transvaginally under local anaesthesia.

2.2.2 Isolation of human granulosa cells

Human granulosa cells were isolated following the method previously described by Webley et al. [1988]. Granulosa cells and contaminating blood cells from a single patient were separated from the supernatant follicular fluid and follicular flushing medium by centrifugation at 250g for 10 minutes at 4°C, with no brake, in a Beckman GS-6R centrifuge. The supernatant was discarded and the cell pellet resuspended in 10ml Dulbecco's PBS. The cell suspension was overlaid onto 10ml 60% (v/v) Percoll. The Percoll gradients were centrifuged at 1000g for 20 minutes at 4°C with no brake. This resulted in sedimentation of erythrocytes at the bottom of the tube, with the granulosa cells settling on the Percoll-PBS interface. Granulosa cells were aspirated from the interface, resuspended in 10ml PBS, and centrifuged at 250g for 10 minutes at 4°C. The supernatant was discarded and the pellet resuspended in 10ml PBS. This wash step was repeated a total of three times, and in the final wash step, cells from a single patient were pooled together.

Following the final wash step, the cell pellet was resuspended in 1ml PBS, and a 10μl aliquot was mixed with 0.4% (w/v) trypan blue solution to assess cell viability. Viable granulosa cells did not take up the trypan blue stain, and were counted under the microscope (magnification x200) using a haemocytometer. After dilution the cells were cultured in 1:1 (v/v) DMEM:Ham's F12 medium supplemented with 10% (v/v) FCS, penicillin (87,000 IU/L), streptomycin (87 mg/L) and 2mM L-glutamine.
For studies of 11βHSD activity and progesterone secretion, cells were seeded into sterile 24-well plates at a density of 5x10^4 cells/ml of culture medium, with a volume of 1ml/well. For studies of prostaglandin secretion, cells were seeded into sterile 24-well plates at a density of 1x10^5 cells/ml of culture medium, with a volume of 1ml/well. For experiments to determine effects on protein expression, cells were seeded into a sterile 6 well plate at a density of 5x10^5 cells/ml of culture medium, with a volume of 2ml/well. Cells were subsequently incubated for 2 days at 37°C in a humidified atmosphere of 5% (v/v) CO_2 in air to allow cells to attach to the well of the cell culture plates. At the end of the 2 day incubation, the medium was aspirated from the wells and discarded. The cells were rinsed with approximately 200μl pre-warmed serum-free medium to remove any residual serum. The washing medium was aspirated, discarded, and serum-free medium and treatments were added to a total volume of 1 or 2ml depending on cell culture plates. When using serum-free medium, bovine serum albumin was not added since this binds to cortisol with high affinity and would thus be a confounding factor in quantifying 11βHSD activities. Cells were subsequently incubated at 37°C as described above for a period of 0 to 24 hours, depending on the experimental design.

2.3 Radioimmunoassays

2.3.1 Progesterone RIA

Progesterone concentrations were determined by RIA as previously described by Pallikaros et al. [1995]. A progesterone standard curve was prepared from a 1μg/ml stock solution of progesterone in ethanol, stored at -20°C. A volume of 10μl
progesterone standard was transferred to a borosilicate tube, and the ethanol was evaporated under nitrogen. The progesterone was resuspended in 1ml serum-free medium to produce the top standard progesterone concentration of 10ng/ml (31.80nM). The top standard was double diluted in medium to produce the following standards: 15.90, 7.95, 3.98, 1.99, 0.99, 0.50, and 0.25nM progesterone. Volumes of 100μl of each standard were aliquoted in triplicate and 100μl serum-free medium were aliquoted into the 0nM progesterone (B0), total and non-specific binding (NSB) tubes in triplicate. The unknown samples were serially diluted in serum-free medium into a total volume of 100μl. The unknown samples were diluted in serum-free medium between 1/100 to 1/200 into a total diluted sample volume of 100μl per tube.

Progesterone antiserum was diluted 1/100 (v/v) in phosphate azide saline-gelatin (PAS-gel) buffer and stored in 100μl aliquots at -20°C. Immediately prior to use, a 100μl aliquot was thawed and further diluted 1/100 (v/v) in PAS-gel buffer resulting in a working antibody dilution of 1/10,000 (v/v). A 100μl volume of diluted antibody was added to each standard and sample tube, excluding those for the determination of total and NSB radioactivity where 100μl PAS-gel buffer was substituted in place of antibody.

[1,2,6,7-3H]-progesterone was diluted in PAS-gel buffer to give the required 10,000cpm per 100μl. A volume of 100μl of diluted [1,2,6,7-3H]-progesterone was added to all assay tubes. Each tube was vortexed, covered in aluminium foil, and incubated at 4°C overnight.
The next day, a solution of 0.025% (w/v) dextran was prepared in PAS-gel buffer. After the dextran had dissolved, 0.25% (w/v) charcoal was added and mixed for 30 minutes at 4°C. A volume of 500μl activated dextran-coated charcoal was added to each assay tube, with the exception of the total radioactivity tubes, which received 500μl PAS-gel buffer. The tubes were vortexed and centrifuged for 10 minutes at 1000g at 4°C with no brake to precipitate unbound progesterone. The supernatants were decanted into mini-scintillation vials, and 2ml Ultima-Gold scintillant was added into each vial, which were subsequently capped and vortexed. Radioactivity in cpm was measured on a Beckman Coulter LS 6500 Multipurpose Scintillation counter, with a count time of 1 minute per vial. The counts were analysed using a DOS-RIA software program using the logit % B/Bo whereby the data from the standard curve was linearised. Intra and inter-assay coefficients of variation were 9% (n=15) and 14% (n=40) respectively at 30% binding.

2.3.2 PGE2 RIA

PGE2 concentrations were determined as previously described by Poyser [1987]. A PGE2 standard curve was prepared from a 1μg/ml stock solution of PGE2 in ethanol, stored at -20°C. A 10μl volume of PGE2 stock was transferred to a borosilicate tube, evaporated to dryness under nitrogen, and resuspended in 100μl serum-free medium to produce a stock of 100ng/ml PGE2. A 50μl aliquot of the 100ng/ml stock was diluted in serum-free medium to a total volume of 1ml to generate the top standard concentration of 5ng/ml (14.19nM) PGE2. The top standard was double diluted in serum-free medium to generate the following standards: 7.09, 3.55, 1.77, 0.89, 0.44,
0.22, 0.11nM PGE2. Volumes of 100μl of each standard were aliquoted in triplicate and 100μl serum-free medium were substituted into the B0, total radioactivity, and NSB tubes. The unknown samples were either diluted 1/5 (v/v) in serum-free medium or assayed neat, with a total diluted sample volume of 100μl per tube. PGE2 rabbit antiserum was stored in 50μl aliquots at -20°C. A 50μl aliquot of antiserum was diluted 1/100 (v/v) in phosphate buffer and stored in 500μl aliquots at -20°C. Immediately prior to assay, a 500μl aliquot of 1/100 antibody was thawed and further diluted 1/30 (v/v) in phosphate buffer resulting in a working dilution of 1/3,000 (v/v). A 100μl volume of diluted antibody was added to each standard and sample tube, excluding those for the determination of total and NSB radioactivity where 100μl of Tris buffer was substituted for the antibody. Stock [5,6,8,11,12,14,15-3H]-PGE2 was diluted in Tris buffer to give the required 10,000cpm per 100μl. A volume of 100μl of the diluted [5,6,8,11,12,14,15-3H]-PGE2 was added into all standard and unknown sample tubes. Each tube was vortexed, covered in aluminium foil, and incubated at 4°C overnight.

The next day, a solution of 0.1% (w/v) dextran was prepared in Tris buffer. After the dextran had dissolved, 1% (w/v) charcoal was added and mixed for 30 minutes at 4°C. A volume of 200μl activated dextran-coated charcoal was added to each assay tube, with the exception of the total radioactivity tubes, which received 200μl Tris buffer. The tubes were vortexed and centrifuged for 10 minutes at 1000g at 4°C with no brake to precipitate unbound PGE2. The supernatants were decanted into mini-scintillation vials, and 2ml Ultima-Gold scintillant was added into each vial, which were subsequently capped and vortexed. Radioactivity in cpm was measured on a
Beckman Coulter LS 6500 Multipurpose Scintillation counter, with a count time of 1 minute per vial. The counts were analysed using a DOS-RIA software program using the logit % B/B₀ whereby the data from the standard curve was linearised. Intra- and inter-assay co-efficients of variation were 10% (n=15) and 16% (n=28) respectively at 40% binding.

2.3.3 PGF₂α RIA

PGF₂α concentrations were determined as previously described by Kelly et al., [1986]. A PGF₂α standard curve was prepared from a 1μg/ml stock solution of PGF₂α in ethanol, stored at -20°C. A 10μl volume of PGF₂α stock was transferred to a borosilicate tube, evaporated to dryness under nitrogen, and resuspended in 100μl serum-free medium to produce a stock of 100ng/ml PGF₂α. A 25μl aliquot of the 100ng/ml stock was diluted in serum-free medium to a total volume of 1ml to generate the top standard concentration of 2.5ng/ml (7.09nM) PGF₂α. The top standard was double diluted to generate the following standards: 3.55, 1.77, 0.89, 0.44, 0.22, 0.11, 0.06nM PGF₂α. Volumes of 100μl were aliquoted in triplicate and 100μl of serum-free medium were aliquoted into B₀, total radioactivity and NSB tubes. The unknown samples were either diluted 1/5 (v/v) in serum-free medium or assayed neat, with a total diluted sample volume of 100μl per tube.

PGF₂α rabbit antiserum was stored in 100μl aliquots at -20°C. A 100μl aliquot of antiserum was diluted 1/100 (v/v) in Tris buffer and stored in 100μl aliquots at
-20°C. Immediately prior to assay, a 100μl aliquot of 1/100 antibody was thawed and further diluted 1/100 (v/v) in Tris buffer resulting in a working dilution of 1/10,000 (v/v). A 100μl volume of diluted antibody was added to each standard and sample tube, excluding those for the determination of total and NSB radioactivity where 100μl of Tris buffer was substituted for the antibody. Stock [5,8,9,11,12,14,15-3H]-PGF2α was diluted in Tris buffer to give the required 10,000cpm per 100μl. A volume of 100μl of the diluted [5,8,11,12,14,15-3H]-PGF2α was added into all standard and unknown sample tubes. Each tube was vortexed, covered in aluminium foil, and incubated at 4°C overnight.

The next day, a solution of 0.1% (w/v) dextran was prepared in Tris buffer. After the dextran had dissolved, 1% (w/v) charcoal was added and mixed for 30 minutes at 4°C. A volume of 200μl activated dextran-coated charcoal was added to each assay tube, with the exception of the total radioactivity tubes, which received 200μl Tris buffer. The tubes were vortexed and centrifuged for 10 minutes at 1000g at 4°C with no brake to precipitate unbound PGF2α. The supernatants were decanted into miniscintillation vials, and 2ml Ultima-Gold scintillant was added into each vial, which were subsequently capped and vortexed. Radioactivity in cpm was measured on a Beckman Coulter LS 6500 Multipurpose Scintillation counter, with a count time of 1 minute per vial. The counts were analysed using a DOS-RIA software program using the logit % B/B₀ whereby the data from the standard curve was linearised. Intra- and inter-assay co-effecients of variation were 10% (n=15) and 14% (n=15) respectively, at 37% binding.
2.4 11\textbeta\text{HSD} Assay

Human granulosa cells were isolated as described in section 2.2 and cultured at a density of 5×10^4 cells/ml culture medium, with a volume of 1ml medium/well in a 24 well culture plate. Cells were cultured for 2 days in 1:1 (v/v) DMEM:Ham's F12 medium supplemented with 10% (v/v) FCS, penicillin (87,000 IU/L), streptomycin (87 mg/L) and 2mM L-glutamine, at 37°C in a humidified atmosphere of 5% (v/v) CO$_2$ in air.

At the end of the 2 day pre-incubation period, the serum-supplemented medium was aspirated from the wells and discarded. The cells were rinsed using approximately 200\mu l warmed serum-free medium to remove any residual serum and the washing medium was discarded. Cells were then transferred to pre-warmed serum-free medium supplemented with penicillin (87,000 IU/L), streptomycin (87 mg/L) and 2mM L-glutamine and incubation continued for a further 24 hours. When assessing the effects of chronic exposure to treatments, these treatments were added at 48 hours and were present throughout the third day of culture (i.e., from 48 to 72 hours). When assessing the effects of acute exposure to treatments, these treatments were added for the final 4 hours of incubation (i.e., from 68 to 72 hours). Where the purpose of the study was to assess the effects of treatments on 11\beta\text{HSD} activities, 100\mu l of serum-free medium containing either 100pmol of either [1,2,6,7-3H]-cortisol (5nCi/pmol) or [1,2,\text{(n)}-3H]-cortisone (5nCi/pmol) were added to each well, with a final substrate concentration of 100nM. Cortisol-cortisone inter-conversion was measured over final 4 hours of incubation (i.e., from 68 to 72 hours).
rationale to this approach was to ensure that all cells, irrespective of the treatment group and duration of treatment, were at the same stage of differentiation.

At the end of the 4-hour assay incubation period, the medium from each well was transferred into screw cap borosilicate tubes to which 2ml of ice cold chloroform was added. The tubes were then capped, vortexed, and subsequently centrifuged at 1000g for 20 minutes at 4°C. Following centrifugation, the aqueous phase was removed immediately and discarded. The samples were then evaporated to dryness in a Techne Dri-Block DB-3 sample concentrator at 45°C under nitrogen, before being stored at 4°C for up to 7 days pending resolution of steroids by thin layer chromatography (TLC).

Following evaporation to dryness, steroid residues were resuspended in 30μl ethyl acetate containing 1mM cortisol and 1mM cortisone. The tubes were vortexed, and 20μl volumes from each tube were transferred to individual lanes of a TLC plate. TLC plates were developed in an atmosphere of 92:8 (v/v) chloroform:95% (v/v) ethanol. The bands containing cortisol and cortisone were visualised by absorption of UV light at 254nm. The levels of radioactivity in the cortisol and cortisone regions were quantified using a Bioscan System 200 radiochromatogramme scanner (Lablogic, Sheffield, UK), with each lane counted for 5 minutes. The cortisol-cortisone inter-conversion was calculated by multiplication of percentage conversion of [1,2,6,7-3H]-cortisol to [1,2,6,7-3H]-cortisone (for 11β dehydrogenase activity) and [1,2,(n)-3H]-cortisone to [1,2,(n)-3H]-cortisol (for 11-ketosteroid reductase
activity) by the total amount of steroid that was present at the beginning of the assay (100pmol/well).

2.5 Reverse Phase C18 column chromatography

C18 column chromatography was carried out as described by Morris et al., [1992] using C18 sepak cartridges. Before use of each C18 cartridge, the cartridge was primed using 10ml methanol and then rinsed with 10ml distilled H2O. Human follicular fluid (1ml) was then loaded onto a C18 cartridge and the loading eluent collected. Fractions were then sequentially eluted, based on hydrophobicity, using increasing concentrations of methanol in 1ml volumes (0, 10, 20, 30, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% (v/v)) methanol in distilled water. Each individual fraction generated was collected into a separate borosilicate glass tube. With the exception of 0-20% (v/v) methanol fractions, each tube was evaporated to dryness using a Techne Dri-Block DB-3 sample concentrator at 45°C under nitrogen, and re-suspended in 1ml volumes of 20% (v/v) methanol. Each tube was stored at -20°C pending analysis.

Pooled follicular fluid from large antral follicles was aliquoted into 8 volumes of 1ml. Each aliquot was spiked by the addition of [7(n)-3H]-cholesterol, [1,2,6,7-3H]-cortisol, [1,2,(n)-3H]-cortisone, [2,4,6,7-3H]-oestradiol, [5,6,8,11,12,14,15-3H]-PGE2, [5,6,8,9,11,12,14,15-3H]-PGF2α, [7-3H]-pregnenolone, [1,2,6,7-3H]-progesterone, or [7(n)-3H]-testosterone. The spiked samples were each loaded onto a separate C18 cartridge for fractionation by a stepwise methanol gradient as described above. Triplicate 100μl aliquots of each fraction generated were transferred to
scintillant vials containing 2ml Ultima gold scintillation and the amount of radioactivity quantified using a Beckman Coulter LS 6500 Multipurpose Scintillation counter with a count time of 1 minute per tube.

2.6 Assessment of 11βHSD enzyme modulators in FF

Effects of FF fractions on 11βHSD activity were assessed using a rat kidney homogenate as a source of both 11βHSD1 and 11βHSD2 enzymes [Thurston et al., 2002].

Male Sprague-Dawley rats were sacrificed by terminal phenobarbitone anaesthesia [Marks et al., 2003]. Kidneys were dissected and stored at -20°C. 0.5g rat kidney was added to 17ml hypotonic Tris-EDTA lysis buffer, and homogenised using a glass homogeniser. Restoration of isotonicity was achieved by the addition of 2ml 1.5mM potassium chloride to yield a renal tissue homogenate concentration of 25mg/ml lysis buffer [Sewell et al., 1998]. The homogenate was centrifuged at 1000g for 20 minutes at 4°C. The supernatant was removed and from the supernatant, 100μl volumes were transferred to borosilicate screw cap tubes. Following this, 600μl PBS were added to each tube. Into each set of triplicate tubes, 100μl of each follicular fluid fraction was also added. For control tubes, 100μl of 20% (v/v) methanol was added instead of FF. Samples were pre-incubated for 30 minutes at 37°C in a shaking water-bath. To assess cortisol-cortisone interconversion by the NADP(H)-dependent 11βHSD1 enzyme, either 100μl containing 100pmol [1,2,6,7-3H]-cortisol (5nCi/pmol) and 100μl 4mM NADP+ were added to each tube, or [1,2,(n)-3H]-cortisone (5nCi/pmol) and 4mM NADPH. To assess the effects on
11βHSD2, this protocol was repeated using 4mM NAD⁺ in place of NADP⁺. Following this, the tubes were incubated for 1 hour at 37°C in a shaking water-bath. After 1 hour, the steroids were chloroform extracted, resolved by TLC and quantified using a Bioscan System 200 Radiochromatogramme Scanner as described in section 2.4.

2.7 Cell isolation and protein assay for Western blot

Cell isolation and protein assays were carried out as previously described by Thurston et al [2003c]. Following granulosa cell culture and treatment, spent medium was aspirated from the 6 well plates, and the cells were washed with 1ml ice-cold PBS. The PBS was aspirated, and cells were lysed in protein lysis buffer (119μl per well) containing protease inhibitor cocktail (see section 2.1 for cocktail recipe). Cells were freeze-thawed, removed from the 6 well plates by scraping, and aliquoted into Eppendorf tubes. The samples were heated for 5 minutes at 100°C using a Techne Dri-Block DB-3 and centrifuged using a Biofuge bench-top centrifuge at 3000g for 1 minute to precipitate cell debris.

For determination of granulosa cell protein concentration (mg protein/ml), a standard curve was generated from a 2mg/ml stock solution of BSA. To generate the standard curve, the following volumes of stocks were used and diluted in distilled H₂O to produce concentrations of 1.8, 1.5, 1.2, 0.9, 0.6, 0.3, 0.1, and 0mg/ml. Volumes of 10μl of each standard were aliquoted into duplicate wells in a 96-well cell culture plate. Into each standard well, a further volume of 10μl lysis buffer containing the protease inhibitor cocktail was added (to eliminate any variation caused by the
samples being in lysis buffer containing protease inhibitor cocktail). The samples were diluted 1/2 (v/v) in dH₂O to a total volume of 20μl in duplicate. A reference blank was generated using 10μl lysis buffer containing protease inhibitor cocktail, and 10μl distilled H₂O.

A total volume of 10ml was prepared using the Bicinchoninic acid reagents, A and B at a ratio of 50:1 (v/v) A:B as per the manufacturers’ guidelines (Pierce, UK). The reagents were vortexed, and a volume of 200μl was added to each well. The samples were incubated at 37°C for 30 minutes, and the optical density determined using a Dynex Technologies micro-plate reader at a wavelength of 562nm. The Revelation 3.0 software package was used to determine the unknown sample concentrations from the standard curve generated.

Once protein concentrations were determined, 1μl of 1% (w/v) bromophenol blue, and 5μl β-mercaptoethanol were added to each sample. Samples were heated to 100°C for 5 minutes using a Techne Dri-Block DB-3 and centrifuged using a Biofuge 13 bench-top centrifuge (Heraeus Sepatech) at 10,000g for 1 minute to re-precipitate cells.

2.8 SDS-PAGE

SDS-PAGE was used for resolution of 11βHSD1 protein from granulosa cells and rat kidney homogenate samples according to their molecular weights. A BioRad Protean IIxi Gel electrophoresis system was used with reducing polyacrylamide Tris-glycine gels composed of a 4% (w/v) acrylamide stacking gel, and a 10% (w/v)
acrylamide resolving gel (for polyacrylamide gel composition see Appendices I- J and K). A running buffer system of Tris-Gly-SDS was used and the protein samples loaded into the stacking gel at a final concentration of 30µg protein/60µl loading buffer. Molecular weight markers were run alongside each protein sample. Electrophoresis was carried out at a current of 15mA per gel overnight until the gel front reached the bottom of the plates.

2.9 Western Blot

2.9.1 Preparation for transfer of proteins from SDS-PAGE gel to polyvinylidine difluoride (PVDF) membrane

The PVDF membrane and 2 pieces of filter paper were cut to the appropriate size to match the size of the SDS-PAGE gel. To make the membrane receptive to protein transfer, the membrane was saturated in methanol, and transferred to distilled H₂O for 10 minutes. Following this, the PVDF membrane was transferred to Western blotting transfer buffer for 15 minutes. The SDS-PAGE gel was incubated in transfer buffer for 15 minutes. For the last 5 minutes of the incubation, the filter paper was incubated in transfer buffer. The filter paper, membrane, gel and filter paper were arranged on a Transfer-blot SD semi-dry transfer cell (Biorad) in that order. The blot was transferred for 1 hour 45 minutes at 25V, with a current of 0.8mA per cm² of gel.
2.9.2 Blocking of the membrane

Following the protein transfer to PVDF membrane, the gel and filter paper were discarded and the membrane incubated in a blocking solution of 10% (w/v) BSA, 0.001% (w/v) sodium azide in Tris-buffered saline Tween (TBST) for 2-4 hours.

2.9.3 11βHSD1 primary antibody probing

The membrane was removed from the blocking solution. Following this the membrane was incubated overnight in a 1/100 dilution of sheep anti-human 11βHSD1 monoclonal antibody (in 10% (w/v) BSA, 0.001% (w/v) sodium azide in TBST) at maximum agitation on a Rotomax 120 shaker (Heidolph). Following this, the membrane was removed from primary antibody and washed for 10 minutes in 150ml TBST at maximum agitation on the Rotamax 120. The TBST washing buffer was discarded and this wash step was repeated a total of 6 times.

2.9.4 Secondary antibody probing

Following the wash steps, the membrane was incubated in a 1/10,000 dilution of donkey anti-sheep IgG (diluted in TBST containing 0.2% (w/v) BSA) conjugated to horseradish peroxidase for 1 hour, at maximum agitation on a Rotamaz 120 shaker. After 1 hour, the blot was removed from secondary antibody and washed for 10 minutes in 150ml TBST at maximum agitation. This wash step was repeated a total of 8 times.
2.9.5 Developing of the blot

To visualise the binding of the secondary antibody conjugated to horseradish peroxidase, the membrane was incubated in equal quantities of ECL reagents 1 and 2 for 1 minute as per the manufacturers’ guidelines (Amersham Biosciences, UK). The ECL reagents were aspirated from the membrane, discarded and the PVDF membrane was wrapped in saran wrap. The PVDF membrane was placed into a film cassette and protein bands visualised through exposure onto Hyperfilm ECL® for 1, 3 or 5 minutes. The film was then developed using the ECL detection method as per the manufacturers’ guidelines (Amersham Biosciences, UK).

2.9.6 Stripping the membrane of bound antibody

To re-probe the membrane for GAPDH expression, bound primary antibody was stripped from the membrane. To achieve this, the membrane was incubated in 100ml of stripping buffer (see Appendix I L) at 50°C for 20 minutes in a water-bath (adapted from the manufacturers’ guidelines, Amersham Biosciences). Following incubation, the blot was removed and the stripping buffer discarded. The blot was transferred to wash in 150ml TBST at maximum agitation on a Rotamax 120. This wash step was repeated 4 times in preparation for re-probing of the membrane for GAPDH.

2.9.7 GAPDH re-probing

GAPDH was probed for using the same protocol that was used to determine 11βHSD1 expression but with different antibodies (see section 2.9.3 to 2.9.5). The
primary antibody was a murine antibody raised against the human sequence of
GAPDH. The secondary antibody was rabbit anti-mouse IgG used at a dilution of
1/5,000 in TBST containing 0.2% (w/v) BSA.

2.9.8 Quantification of protein expression

Densitometric analysis was carried out to quantify protein expression using a BioRad
Model GS-690 Imaging Densitometer with BioRad Molecular Analyst software,
version 1.4. A ratio of 11βHSD1 expression to GAPDH was used to quantify protein
expression within a given lane of a Western blot.

2.10 Statistical analyses

All experimental data are presented as the mean±SEM of up to 98 independent
experiments, performed using cells from individual patients. Due to differences in
hormonal responses, hormonal synthesis and enzyme activities between patients, the
results of each experiment have been standardised and presented as a percentage of
the basal control. However, all statistical analyses were performed using absolute
data and not the internally referenced data.

Statistical evaluations were carried out using GraphPad Prism 3.02 software (San
Diego, USA). Since data conformed to Gaussian distributions, parametric tests were
used. When comparing two means in isolation, an unpaired t-Test was used
treatments (with Welch’s correction where appropriate). When comparing multiple
treatments, or a change across a single variable (e.g., concentration of treatment or
with varying time), a one-way analysis of variance (ANOVA) with repeated
measures was performed followed by a Dunnett's multiple comparison as the post hoc test.

Significance was assessed in all experiments as a probability value of $p<0.05$.
Chapter Three: Effect of human follicular fluid on the activity and expression of 11βHSD1
Chapter 3: Effect of human follicular fluid on the activity and expression of 11βHSD1

3.1 Background

Human follicular fluid (FF) is comprised of many compounds including cortisol [Fateh et al., 1989; Jimena et al., 1992]. Several studies have inversely linked the activity of 11βHSD in granulosa cells, either measured directly in vitro, reflected by the ratio of cortisol:cortisone in FF, with the clinical outcome of in vitro fertilisation-embryo transfer (IVF-ET) (see section 1.8).

The mammalian body contains a range of natural 11βHSD enzyme inhibitors including compounds such as bile acids and sterols (Table 1.1). Moreover, studies conducted by Morris et al. [1992] first isolated an endogenous inhibitor of 11βHSD from human urine. This factor was termed ‘glycyrrhetinic acid like factor’ (GALF) due to the fact that, like glycyrrhetinic acid, GALF was able to inhibit both 11βHSD and 5α-reductase activities. The levels of GALF are higher in women than men, and higher in pregnant women than non-pregnant women [Morris et al., 1992].

Inspired by this work, we have speculated that GALF, or related inhibitors of 11βHSD, may be produced by the ovary and/or placenta. Initial studies conducted by D.P. Norgate suggested that such factors may indeed exist in FF aspirated from women undergoing IVF-ET.
Little is known about the mechanisms by which the modulatory compounds in human FF regulate 11βHSD activities, and whether the effect is mediated through a change in enzyme expression. Moreover, what the identity of the compounds within human FF are. Therefore the aims of this chapter were:

(i) To isolate those compounds contained in the hydrophilic and hydrophobic fractions of human FF that acutely modulate 11βHSD1 activity and characterise their effects on NADP(H)- and NAD+ -dependent 11βHSD activities.

(ii) To investigate possible candidates for the lipid inhibitors of 11βHSD1 activity contained in human FF.

(iii) To investigate the effects of the enzyme modulators in the active fractions of human FF on the expression of 11βHSD1 in human granulosa-lutein cells.

3.2 Experimental protocol

For all experiments, fractions of human FF, aspirated from the ovaries of women undergoing oocyte retrieval for IVF-ET, were separated by reverse phase C18 column chromatography using a stepwise methanol gradient as described in section 2.6. To assess the effects of specific fractions of human FF on 11βHSD activities, a rat kidney homogenate assay was used as described in section 2.7. Enzyme activities were assessed over 1 hour in the presence and absence of specific fractions of human FF. Control samples were incubated with 20% (v/v) methanol and test samples were incubated with human FF, or specific fractions thereof, each at a final dilution of
10% by volume. Hence, in all samples, the final methanol concentration was ≤ 2% by volume. At the end of each experiment, the steroids were chloroform extracted, resolved by TLC and cortisol-cortisone inter-conversion quantified using a radiochromatogramme scanner (see section 2.4).

To assess the effects of human FF fractions on 11βHSD1 expression, hGL cells were isolated and seeded into 6 well plates at a density of 1 x 10^6 cells/2ml of medium per well. Cells were cultured for 2 days in serum-supplemented medium to allow for luteinisation and for cell attachment to the plates (see section 2.2). Following this, cells were transferred to serum-free media, and individual wells were treated with control (20% v/v methanol), human FF that had not been subjected to column chromatography, compounds eluted specifically in the hydrophilic fractions of human FF at 0% (v/v) methanol or the hydrophobic fraction of human FF eluted at 80% (v/v) methanol respectively. All fractions (both the control and experimental fractions of human FF) were diluted to a final concentration of 10% (v/v) and hGL cells were treated for 24 hours. Effects on 11βHSD1 protein expression were determined by SDS-PAGE and Western blot analysis with internal standardisation to GAPDH expression (see sections 2.8, 2.9 and 2.10).

To investigate whether PGF₂α, PGE₂ and specific steroids could be the compounds contained in any fractions of human FF found to modulate the activity of 11βHSD, aliquots of human FF were spiked with each tritiated radiochemical as described in section 2.6. To assess the retention of each compound on the C18 column, each compound was eluted by stepwise methanol gradient fractionation using reverse
phase C18 column chromatography (see section 2.6). To confirm the concentration of methanol required to elute each radiochemical, 100μl of each fraction was placed into a scintillation vial, along with 2ml Ultima-gold scintillant. The radioactivity of each fraction was assessed using a liquid scintillation counter and the data standardised relative to the total amount of radioactivity recovered from the C18 column for that specific radiochemical (to 100% as the total compound concentration per column).

It should be noted that the studies of the effects of human FF on enzyme activities and the candidate compound elution profiles in this chapter were conducted in collaboration with L.M. Thurston and D.P. Norgate and have been published in *Reproduction*, (Thurston et al., 2002).

3.3 Results

3.3.1 Effects of human FF on NADP(H)-dependent 11βHSD activities

The component fractions of human FF were resolved using reverse phase C18 column chromatography and the effects of each component fraction of human FF on NADP(H)-dependent 11βHSD activities were tested. Hydrophilic compounds eluted by 0% (v/v) and 10% (v/v) methanol significantly increased NADP⁺-dependent cortisol oxidation to 155.0 ± 4.5% and 128.5 ± 3.3% of control enzyme activities respectively (p<0.01, Figure 3.1). In contrast, hydrophobic compounds eluted at 75% (v/v), 80% (v/v) and 85% (v/v) methanol inhibited NADP⁺-dependent cortisol oxidation. Maximum enzyme inhibition was achieved by those hydrophobic fractions of human FF eluted at 80% (v/v) methanol. This fraction of human FF
inhibited cortisol oxidation by 63.1 ± 3.7% (p<0.01) in comparison to control. The effects of each component fraction of human FF on NADPH-dependent cortisone reduction mirrored those on cortisol oxidation. Hydrophilic compounds eluted by 0% (v/v) methanol increased cortisone reduction to 185.7 ± 2.2% of control (p<0.01), whereas, hydrophobic compounds eluted at 75% (v/v), 80% (v/v) and 85% (v/v) methanol inhibited NADPH-dependent cortisone reduction by up to 73.8 ± 1.5% of control enzyme activity (p<0.01, Figure 3.2).

To assess whether the active compounds contained in human FF were lipids, 6 randomised human FF samples were subjected to charcoal-stripping before being applied to a C18 cartridge for methanol resolution. Charcoal-stripping of the human FF had no effect on compounds eluted at 0% (v/v) methanol, which continued to stimulate NADP⁺-dependent cortisol oxidation. However, charcoal-stripping of human FF effectively removed the hydrophobic inhibitors of NADP(H)-dependent 11βHSD activities eluted at 75 % (v/v) to 85% (v/v) methanol (Figure 3.3).

3.3.2 Effects of human FF on NAD⁺-dependent cortisol oxidation

Fractions resolved from human FF using reverse phase C18 column chromatography had no affect on NAD⁺-dependent cortisol oxidation when assessed at a final dilution of 10% by volume (p>0.05, Figure 3.4).
3.3.3. Elution profiles of 3H lipids from C18 cartridges

Using the same reverse phase C18 chromatography profile, cortisol and cortisone eluted at 45% (v/v) and 50% (v/v) methanol, respectively, while oestradiol, testosterone, progesterone and pregnenolone eluted over the range of 60% (v/v) to 75% (v/v) methanol. Cholesterol was eluted in the 100% (v/v) methanol fraction, whereas PGE$_2$ and PGF$_{2\alpha}$ eluted in the range of 20-40% (v/v) methanol (Figure 3.5).

3.3.4 Effect of human FF fractions on 11βHSD1 expression in hGL cells

To assess the effect of human FF fractions on 11βHSD1 protein expression in hGL cells, 9 human FF samples were chosen from the cohort of human FF assessed in section 3.3.1 and fractionated using a methanol gradient. Human FF that had not been subjected to C18 column chromatography (whole human FF) and the active fractions of human FF eluted at 0% and 80% (v/v) methanol had no effect on 11βHSD1 protein expression in hGL cells (p>0.05, Figure 3.6).

3.4 Discussion

Previous work conducted in the laboratory by D.P. Norgate had indicated that human FF might contain hydrophilic and hydrophobic compounds that could modulate the inter-conversion of cortisol and cortisone by 11βHSD. Work conducted in collaboration with Thurston et al. [2002] has revealed that the modulators in human FF can be resolved by reverse phase C18 column chromatography using stepwise
Figure 3.1: Effects of compounds in human FF eluted by reverse-phase C18 chromatography using a stepwise methanol gradient fractionation on NADP⁺-dependent oxidation of 100nM cortisol over 1 hour in a rat kidney homogenate bioassay. Data represent the mean ± SEM for 98 samples of human FF, (** p<0.01 versus no human FF fraction). Data subjected to one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 3.2: Effect of compounds in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation on NADPH-dependent reduction of 100nM cortisone over 1 hour in a rat kidney homogenate bioassay. Data represent the mean ± SEM for 6 samples of human FF, (**) p<0.01, versus no human FF). Data subjected to one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 3.3: Effect of compounds in human FF before (pink line) and after (blue line) incubation with dextran-coated charcoal. Fractions were eluted by reverse-phase C18 chromatography using a stepwise methanol gradient fractionation on NADP⁺-dependent oxidation of 100nM cortisol over 1 hour. Data represent the mean ± SEM for 6 samples of human FF, (*p<0.05, **p<0.01 versus no human FF). Data subjected to one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison
Figure 3.4: Effect of compounds in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation on NAD$^+$-dependent oxidation of 100nM cortisol over 1 hour in a rat kidney homogenate bioassay. Data represent the mean ± SEM for 58 samples of human FF, (p>0.05 versus human FF). Data subjected to one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 3.5: Elution profiles of exogenously added prostaglandins and steroids in human FF eluted by reverse-phase C18 chromatography and stepwise methanol gradient fractionation. Yellow triangle=cholesterol, purple cross=pregnenolone, Brown circle=progesterone, Blue line=testosterone, Blue cross=oestradiol, Pink square=cortisone, Blue circle=cortisol, Green cross=PGE$_2$, Light Blue line=PGF$_{2\alpha}$

Data represent the mean ± SEM for 3 samples of human FF
Figure 3.6: (a) Representative Western blot of effect of whole non-fractionated hFF (W), and those fractions of human FF eluted at 0% (v/v) and 80% (v/v) methanol on expression of 11HSD1 (and GAPDH) in hGL cells. W = whole non-fractionated hFF, C = control, 0 = compounds eluted with 0% (v/v) methanol, 80 = compounds in hFF eluted with 80% (v/v) methanol, R = positive control of rat kidney (b) Densitometric representation of effect of hFF and specific fractions thereof on 11βHSD1 protein expression standardised to GAPDH. Data represent the mean ± SEM for 9 independent samples (n=9). Means compared at each condition using paired T-test.
methanol gradient fractionation. Using this technique, the hydrophilic stimulus/stimuli to 11βHSD activities elute at 0% (v/v) methanol, and the hydrophobic inhibitor(s) elutes at 80% (v/v) methanol. Under the defined assay conditions, the modulators only affect NADP(H)-dependent cortisol-cortisone interconversion in a rat kidney homogenate. Moreover, the modulators exert their effects on 11βHSD activities, without affecting the protein expression of 11βHSD1 in human granulosa-lutein cells. Components of human FF had no effect on NAD' dependent cortisol oxidation. Since the rat kidney is known to express both 11βHSD1 and 11βHSD2 [Roland et al., 1995], the modulatory compounds in human FF appear to selectively regulate the activities of the 11βHSD1 isoform, without affecting the oxidative activity of 11βHSD2.

When trying to elucidate the possible identity of candidate modulators of 11βHSD1 activity in human FF, the simplest explanation could be that the modulators are artifacts of the fractionation process. To investigate this possibility D.P Norgate and L.M. Thurston fractionated both PBS and DMEM:Ham’s F12 media using reverse-phase C18 column chromatography with a stepwise methanol gradient. The generated fractions assayed for NADP and NAD dependent-11βHSD activities. Neither PBS or DMEM:Ham’s F12 had any modulatory effect on 11βHSD activities. Thus the modulatory compounds of 11βHSD1 activity resolved by reverse-phase C18 column fractionation do appear to originate from human FF.

Although outside the remit of the work reported in this Chapter, studies to investigate whether the modulators of 11βHSD1 activity in human FF were GALF
have been conducted [Thurston et al., 2002]. Urine samples from the same cohort of patients from which the FF was obtained was taken 2 hours prior to FF collection, and subjected to reverse phase C18 column fractionation using a stepwise methanol gradient. No correlation was seen between the fractionation profile of the modulators in human FF and the modulators in human urine, or GALF. Therefore the modulators in human FF were not those previously identified by Morris et al., [1992].

Possible identities for the hydrophilic stimuli of 11βHSD1 include proteins and water-soluble metabolites. Approximately 97% of the total protein content of human FF is eluted from a C18 column in the loading eluent of whole human FF and the 0% (v/v) methanol fraction of human FF [Thurston et al., 2002]. A possible water-soluble metabolite that could stimulate the activities of 11βHSD1 is glucose-6-phosphate. Recent publications have linked the activities of 11βHSD1 with the metabolism of glucose-6-phosphate/fructose-6-phosphate by hexose-6-phosphate dehydrogenase (H6PDH) [Banhegyi et al., 2004]. Moreover, it has been speculated that functional co-operativity exists between the two enzymes both localised to the lumen of the ER, suggesting a link between the regulation of glucose metabolism, and the functionality of 11βHSD1 [Atanasov et al., 2004].

Charcoal-stripping to remove lipids from human FF has shown that the hydrophobic enzyme inhibitors of 11βHSD in FF are lipids. The addition of exogenous tritiated prostaglandins, steroids and cholesterol to human FF has eliminated these compounds as candidates contained in the hydrophobic fraction of human FF eluted
at 80% (v/v) methanol, since these candidate lipids eluted at 30-40% (v/v), 50-75% (v/v) and 100% (v/v) methanol respectively.

Recent studies have shown that 7-oxysterols can act as substrates for 11βHSD1 [Hult et al., 2004]. Studies have shown that human, rat and mouse 11βHSD1 can inter-convert 7-ketocholesterol and 7β-hydroxycholesterol with similar k_{cat} values as observed with glucocorticoids [Hult et al., 2004; Schweizer et al., 2004]. These studies suggest that 7-oxysterols could be modulatory components of human FF that could compete for the active site of 11βHSD1, and competitively inhibit cortisol-cortisone inter-conversion. The structural properties of the oxysterols would render them less hydrophobic than cholesterol, but more hydrophobic than known steroids. Hence, they might be expected to elute from a C18 column at 80% (v/v) methanol.

Another possible candidate for the intrafollicular 11βHSD inhibitor eluted with 80% (v/v) methanol could be meiosis activating sterol (MAS). This sterol has been isolated from pre-ovulatory human FF [Byskov et al., 1995] and the concentration of MAS has been linked to the ability of the human oocyte to fertilise and cleave [Byskov et al., 1998]. Other candidates for the hydrophobic inhibitors of 11βHSD1 could be bile acids and their derivatives. Bile acids are also derived from cholesterol, are comprised of 24 carbons and are hydroxylated. These structural properties render bile acids (like the oxysterols) less hydrophobic than cholesterol, but more hydrophobic than steroids. Bile acids such as chenodeoxycholic acid, have also been shown to inhibit the activity of 11βHSD1 [Perschel et al., 1991; Buhler et al., 1994; Morris and Souness., 1996; Diederich et al., 2000; Morris et al., 2004]. However,
bile acids also inhibit NAD⁺-dependent cortisol oxidation by 11βHSD2 such that they are unlikely to be the main inhibitory compound that specifically inhibits 11βHSD1 activities in human FF.

Chronic exposure of hGL cells to whole human FF (not subjected to C18 cartridge chromatography) and human FF fractions eluted at 0% (v/v) or 80% (v/v) methanol had no significant effect on 11βHSD1 protein expression. These data suggest that the components of human FF affect 11βHSD1 activities without affecting 11βHSD1 enzyme expression, instead acting via a post-translational mechanism. Since 11βHSD1 binds cortisol and cortisone in a hydrophobic binding cleft [Tsigelny and Baker, 1995b], it is possible that lipids from human FF could inhibit 11βHSD1 activities by competing with cortisol and cortisone for binding to the active site of the enzyme. Published hydropathy plots also indicate that the human 11βHSD1 protein contains hydrophobic regions outside the active site, which could bind hydrophobic allosteric regulators of 11βHSD1 (The structural and functional significance of the hydrophobic regions in human 11βHSD1 are investigated by the studies reported in Chapter 7).

Limitations to this study are that (i) concentration-dependent effects and (ii) kinetic analysis of the stimulatory and inhibitory compounds were not determined. If additional research time were permitted the concentration dependent effects of human FF could be tested in the rat kidney homogenate radiometric conversion assay to determine effects of each eluted fraction on 11βHSD enzyme activities. A concentration range of 0% (v/v), 2% (v/v), 5% (v/v), 10% (v/v) and 20% (v/v) would
be used for each reverse phase C18 column eluted fraction of human FF. A maximum concentration of 20% (v/v) of each fraction would be used in this assay to avoid methanol toxicity.

Kinetic analysis of the stimulatory and inhibitory fractions of human FF could be assessed using the rat kidney homogenate radiometric conversion assay. However, due to the crude nature of the purification method for isolating these modulatory compounds, it is possible that each fraction is comprised of multiple modulatory factors. Therefore, in order to determine the kinetic properties of a specific modulator within these fractions, further purification of the components of each FF fraction would first be needed. Techniques that could be employed to do this are gas-chromatography followed by mass spectrometry. Furthermore, following purification the individual compounds from each modulatory fraction would need to be isolated in sufficient quantities before kinetic analysis could be carried out.

The human FF used in these studies was obtained from women undergoing controlled ovarian hyperstimulation for IVF-ET. Therefore the presence of the enzyme modulators could be the result of pituitary down-regulation and ovarian hyperstimulation, as opposed to a natural phenomenon in the human ovary. In subsequent studies conducted by Thurston et al. [2003c], it has been established that bovine and porcine FF also contain compounds that can stimulate and inhibit the NADP(H)-dependent activities of 11βHSD1. Moreover, these compounds isolated from bovine and porcine FF have biophysical properties comparable to the enzyme modulators isolated from human FF. Since these modulatory compounds in bovine and porcine FF were isolated from animals that have not been subjected to any
endocrine therapy, it is likely that the modulators of 11βHSD1 activities in human FF are a natural phenomenon and not an artefact of IVF-ET.

In conclusion, endogenous modulators in human FF regulate both the oxidative and reductive activities of 11βHSD1, but do not affect enzyme expression, suggesting possible post-translation mechanisms for the regulation of 11βHSD1 by compounds present in the human ovary. Possible candidates for these stimulatory and inhibitory modulators are likely to be hydrophilic proteins/metabolites and hydrophobic sterols respectively. Although steroids and prostaglandins were not found to be in the active fractions of human FF that regulate 11βHSD1 activity, these lipids have characterised functions in the regulation and control of the ovarian cycle. Therefore the next 3 chapters will address the modulatory roles for progesterone and prostaglandins in the regulation of 11βHSD1 activities and expression in hGL cells.
Chapter Four: The autocrine/paracrine effects of progesterone on the activities and expression of 11βHSD1 in human granulosa-lutein cells
Chapter 4-The autocrine/paracrine effects of progesterone on the activities and expression of 11βHSD1 in human granulosa-lutein cells

4.1 Introduction

The expression of 11βHSD isoforms in the ovary has been well documented. Rat [Tetsuka et al., 1999a], bovine [Tetsuka et al., 2003] and human [Michael et al 1997; Tetsuka et al., 1997; Ricketts et al., 1998] ovaries have all been shown to express 11βHSD isoforms differentially dependent on the stage of the ovarian cycle. In the follicular phase, granulosa cells co-express mRNA encoding 11βHSD2 and mineralocorticoid receptors [Tetsuka et al., 1999a]. In contrast, following the administration of an ovulatory dose of LH/hCG, 11βHSD2 mRNA is down-regulated and 11βHSD1 mRNA expression is up-regulated (see section 1.8.4).

There are numerous endocrine and paracrine regulators of 11βHSD (see Table 1.1 for summary). In the ovary, there are many secretory hormones that regulate the ovarian cycle. Progesterone is the major secretory product of the corpus luteum, synthesised by the luteinising granulosa and theca cells. In other cell types, including the kidney, progesterone and its metabolites have been shown to regulate the activity of 11βHSD [Quinkler et al., 1999; Burton and Waddell 2002; Quinkler et al., 2003]. However, the potential autocrine/paracrine effects of progesterone on 11βHSD activity and expression in luteinising human granulosa cells have yet to be elucidated. Therefore the aims of this study were:

(i) To determine whether aminogluthethimide (AG) can inhibit progesterone synthesis in human granulosa-lutein (hGL) cells.
(ii) To investigate the effects of inhibition of progesterone synthesis on 11βHSD activities in human granulosa lutein-cells.

(iii) To determine if any effect observed as a result of progesterone inhibition on 11βHSD enzyme activity is dependent on changes in 11βHSD1 protein expression in human granulosa lutein-cells.

4.2 Experimental Design

To investigate the effects of AG on 11βHSD1 activities and expression in human granulosa lutein-cells, cells were isolated from follicular aspirates from women undergoing IVF-ET (section 2.2). Cells were seeded at a density of 5 x 10^4 cells/ml medium in 24 well plates for activity studies and progesterone secretion studies or at 1 x 10^6 cells/2ml medium in 6 well plates for expression studies. The cells were cultured for 2 days in serum-supplemented medium to allow for luteinisation and attachment to the plates, and transferred to serum-free medium to assess the effect of AG on the activities and expression of 11βHSD (section 2.2).

To assess acute chronic affects of AG exposure, human granulosa-lutein cells were incubated with increasing concentrations of AG (0μM, 0.01μM, 0.1μM, 1μM, 10μM, 100μM) for 4 and 24 hours respectively. 4 and 24 hour time points were used to assess whether any effects of AG were via signalling mediated events (typically carried out over minutes to hours) or via changes in gene expression, leading to changes in protein expression (typically carried out over hours to days). The vehicle to solubilise AG was dimethyl sulphoxide (DMSO). Each concentration of AG was prepared in a final concentration of 0.1% (v/v) DMSO, and control wells contained
0.1% (v/v) DMSO as vehicle. The acute effects of AG were determined for 4 hours, coinciding with the last 4 hours of the 24 hour treatment incubation.

To verify that AG inhibited progesterone production, parallel cultures were set up and treated as for the enzyme activity studies. Progesterone concentrations were resolved measured in the spent serum-free medium following 4 or 24 hours treatment at each concentration of AG using a radioimmunoassay (section 2.3.1).

11βHSD activities were assessed over 4 hours in the presence of each concentration of AG using a radiometric conversion assay (section 2.4). In the case of cells exposed to AG for 24 hours, enzyme activities were assessed in the final 4 hour time period (i.e. the same time point as for cells treated acutely with AG). Both 11β-dehydrogenase (11βDH) and 11-ketosteroid reductase (11KSR) activities were assessed, steroids extracted and cortisol-cortisone conversion quantified as described in section 2.4.

For the assessment of changes in 11βHSD1 protein expression, human granulosa-lutein cells were incubated for either 4 or 24 hours with that concentration of AG shown to have the greatest effect on 11βHSD activities (100μM). As for activity studies, the 4 hour time period coincided with the last 4 hours of the 24 hour treatment incubation. Cell proteins were prepared and separated by SDS-PAGE, and 11βHSD1 protein expression was assessed using Western blot, quantified by densitometric analysis, and standardised to GAPDH protein expression (see sections 2.8 to 2.10).
4.3 Results

4.3.1 Concentration-dependent effects of exposure to AG on progesterone production in human granulosa-lutein cells

In human granulosa-lutein cells acutely treated for 4 hours, AG inhibited progesterone production in a concentration-dependent manner (Figure 4.1). Maximum inhibition of progesterone production was observed in cells treated with 100μM AG which inhibited progesterone production by 61.5 ± 3.4% of control (p<0.01). Incubation of human granulosa-lutein cells with AG for 24 hours also inhibited progesterone production in a concentration-dependent manner, with 100μM AG inhibiting progesterone production by up to 95.5 ± 1.2% of control (p<0.01, Figure 4.1).

4.3.2 Concentration dependent effects of AG on 11βHSD activities in human granulosa-lutein cells

Acute treatment of human granulosa-lutein cells with AG for 4 hours increased both the 11βDH and 11KSR activities in a concentration-dependent manner (Figure 4.2). 11βDH activity was significantly increased to 150.2 ± 22.2% of control (p<0.05) and 11KSR activity was significantly increased to 228.3 ± 60.0% of control (p<0.05) by 100μM AG.

Chronic exposure of human granulosa-lutein cells to AG for 24 hours revealed a similar trend as with acutely treated cells, increasing both 11βDH and 11KSR activities (Figure 4.3). Treatment of human granulosa-lutein cells with 100μM AG
Figure 4.1: Concentration-dependent effects treatment with AG for 4 hours (blue line) or 24 hours (pink line) by human granulosa-lutein cells on day 3 of culture. Both data sets represent the mean ± SEM for 3 independent experiments, (*p<0.05, **p<0.01 versus 0μM AG). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison for each duration of treatment.
Figure 4.2: Concentration-dependent effects of AG on 11βHSD activities over 4 hours on day 3 of culture in human granulosa-lutein cells. The blue line represents 11βDH activity. All data points represent mean ± SEM for six independent experiments, (*p<0.05 verses 0μM AG). The pink line represents experiments 11KSR activity. All data points represent the mean ± SEM for five independent experiments, (**p<0.01 verses 0μM AG). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison for each enzyme.
Figure 4.3: Concentration dependent effects of AG on 11βHSD activities over 24 hours on day 3 of culture in human granulosa-lutein cells. The blue line represents 11βDH activity. The pink line represents experiments $11KSR$ activity. Both data sets represent the mean ±SEM for 3 independent experiments (**$p<0.01$ verses 0μM AG). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison for each enzyme activity.
Figure 4.4: Effects of AG on 11HSD1 protein expression (a) Western blot showing effect of AG on 11βHSD1 protein expression relative to GAPDH on day 3 of culture in human granulosa lutein cells. H represents HEK293 cells stably transfected with 11βHSD1 as a positive control, C represents control conditions of just vehicle (0.1% DMSO), AG represents treatment with 100μM AG, and B represents a blank well. (b) Densitometric representation of the effect of AG on 11βHSD1 protein expression relative to GAPDH on day 3 of culture in human granulosa lutein cells. The blue bars represent experiments carried out over 4 hours. The pink bars represent experiments carried out over 24 hours. Hatched bars represent control, and solid bars represent hGL cells treated with 100μM AG. All data points represent mean ±SEM for 10 independent experiments p>0.05. Means compared at each time point using unpaired T-test.
stimulated βDH activity to $132.4 \pm 14.6\%$ of control ($p<0.01$) and increased 11KSR activity to $235.3 \pm 48.9\%$ of control ($p<0.01$).

4.3.3 Effect of AG on 11βHSD1 expression in human granulosa-lutein cells

Over both 4 and 24 hours, treatment with 100μM AG had no significant effect on 11βHSD1 protein expression when standardised to GAPDH protein expression ($p>0.05$, Figure 4.4).

4.4 Discussion

This study has investigated the effects of inhibiting progesterone synthesis with AG on the activities and expression of 11βHSD1 in human granulosa-lutein cells. It has been confirmed that AG can inhibit progesterone production in human granulosa-lutein cells, consistent with a previous report by Fowkes et al., [2001]. Moreover, inhibition of progesterone synthesis with AG increased both the 11βDH and 11KSR activities of 11βHSD in human granulosa-lutein cells. When progesterone production was significantly inhibited, a significant increase in both the oxidative and reductive activities of 11βHSD was observed. Previous studies have highlighted the ability of progesterone and hydroxylated progesterone metabolites to inhibit 11βHSD activities [Lopez-Bernal, 1980]. Hence the positive effect of AG on the bidirectional activities of 11βHSD1 in human granulosa-lutein cells could reflect decreased paracrine inhibition of enzyme activities by progesterone.

Studies conducted on successive days of cell culture found that as the granulosa cells luteinise, the activities of 11βHSD decrease with a concomitant increase in the
expression of 11βHSD1 [Thurston et al., 2003b]. Progesterone production also increases as human granulosa cells luteinise in vitro [Fowkes et al., 2001]. These data are also consistent with progesterone inhibiting 11βHSD activities in human granulosa-lutein cells.

A limitation of this study was the use of only 2 time points. 4 and 24 hour time points were used in this study to determine the acute and chronic effects of AG respectively on 11βHSD activity and protein expression. With the benefit of hindsight and with the subsequent publication of a manuscript by Rae et al., in October 2004, it would have been beneficial to extend this time course to 48 hours as maximum changes in 11βHSD1 mRNA expression, when stimulated with IL-1α, were detected at this time point. The studies in this Chapter have shown that the effect of AG on 11βHSD1 activities was independent of 11βHSD1 protein expression. Rae et al., [2004] have also shown that progesterone had no effect on 11βHSD1 mRNA synthesis. These findings suggest that the regulation of 11βHSD activities by progesterone appears to be at a post-transcriptional and at a post-translational level. There are many possible post-translational mechanisms through which progesterone could affect 11βHSD activities. Progesterone could be competing with cortisol/cortisone for the active site of 11βHSD1. This would decrease the availability of active sites for cortisol/cortisone to bind to, competitively inhibiting 11βHSD1 activities within human granulosa-lutein cells. Progesterone has been shown to competitively inhibit cortisol/cortisone metabolism in the rat myometrium [Burton and Waddell, 2002], providing one possible mechanism through which progesterone could inhibit the activities of 11βHSD.
Another mechanism by which progesterone could decrease 11βHSD activities could be through allosteric regulation. Progesterone could act as an allosteric effector to non-competitively inhibit 11βHSD1 activities through binding to a hydrophobic pocket within the structure of 11βHSD1. Structural studies have revealed that there are 2 hydrophobic regions flanking the active site of the 11βHSD1 protein. Binding of lipids such as progesterone to these clefts could result in a conformational change of the enzyme structure, that could result in inhibition of 11βHSD (see Chapter 7).

The third mechanism by which progesterone could affect the activities of 11βHSD is through transmembrane signalling events. There are a number of receptors that progesterone has been shown to signal through. As well as signalling through the classical nuclear receptor, there has been evidence for progesterone acting through the cell surface gamma amino-butyric acid (GABA\textsubscript{A}) receptor. Progesterone, its metabolites and deoxycorticosterone at physiological (low nM) concentrations have all been shown to enhance the interaction of GABA with GABA\textsubscript{A} receptors, facilitating the open state of the GABA-gated ion channel. At higher concentrations, the steroids have been shown to directly activate the GABA\textsubscript{A} receptor-channel complex [Lambert et al., 2003]. However, studies by Peluso et al. [2002] have found that progesterone activation of calcium in granulosa cells is not due to the binding of GABA\textsubscript{A} receptor channels. Moreover, they have isolated a 60kDa plasma membrane protein that binds progesterone, the binding of which is thought to mobilise intracellular calcium [Peluso et al., 2002]. This could be an alternative method through which progesterone is regulating the activities of 11βHSD. There has also
been evidence of progesterone binding to a membrane receptor that activates a number of signalling pathways including cAMP, calcium mobilisation and mitogen activated protein kinase (MAPK) [reviewed by Bramley 2003]. All of these signalling events could lead to the phosphorylation of 11βHSD1, and change the activity of 11βHSD.

The observed changes in 11βHSD activities in human granulosa-lutein cells might also reflect direct effect of AG on cell survival or direct stimulation of 11βHSD. It has been documented that AG can inhibit other cytochrome P450 enzymes of the steroidogenic pathway such as aromatase [Santen and Misbin, 1981], but has been shown to stimulate 11βHSD activity. This could be due to AG inhibiting the synthesis of a regulator of 11βHSD activity, rather than a direct effect of AG itself. To investigate this, studies could be carried out using a non-steroidogenic cell line (e.g. HEK293 cells) stably transfected with HSD11BJ. The same experimental design as for human granulosa-lutein cells could be conducted using increasing concentrations of AG and investigating cortisol-cortisone conversion. This would reveal any direct stimulation inhibition of 11βHSD1 by AG. To investigate cell survival, human granulosa-lutein cells could be stained with vital dyes such as trypan blue to assess the impact of AG on cell viability (previous attempts at this in our laboratory have excluded any significant effect of AG on cell viability). Moreover, AG has been shown to have no effect on agents which control steroidogenesis (i.e. cAMP generation and PKA activity) [D.R.E. Abayasekara, personal communication], or 3βHSD activity in human granulosa-lutein cells Therefore the
effects of AG on \(\text{I1}\beta\text{HSD} \) activity are likely to be through the inhibition of \(\text{P450}_{c19} \) and not through other non-specific mechanisms, or through effects on cell viability.

Progesterone replacement experiments could be carried out in the presence of AG to determine if the speculated effects of AG were via inhibiting progesterone synthesis. Progesterone has been shown to inhibit \(\text{I1}\beta\text{HSD} \) activity in several cell types [Lopez-Bernal, 1980; Burton and Waddell, 2002] therefore it would be difficult to ascertain whether the results obtained were via endogenous progesterone synthesis being inhibited, and the addition of exogenous progesterone mimicking the speculated inhibitory effect, or through the addition of exogenous progesterone simply inhibiting \(\text{I1}\beta\text{HSD} \) activity independent of its speculated effects.

RU486, a progesterone receptor antagonist [Bardon et al., 1985] could be used to determine whether the effects of AG on \(\text{I1}\beta\text{HSD} \) activity were via the inhibition of progesterone synthesis and hence its actions. However, a confounding factor of this study is that RU486 is also a glucocorticoid receptor antagonist [Bardon et al., 1985; Rae et al., 2004], therefore the results of this experiment would need to be interpreted with caution. Also, the use of a progesterone receptor antagonist presupposes that progesterone is exerting its inhibitory effects on \(\text{I1}\beta\text{HSD} \) activity through intracellular mediated mechanisms, and not through possible allosteric binding to \(\text{I1}\beta\text{HSD}1 \), competitive inhibition of \(\text{I1}\beta\text{HSD}1 \) activity, or through the speculated membrane bound progesterone receptor. Therefore any data obtained using RU486 could be used only to complement experimental data obtained using AG and/or progesterone replacement.

127
A more specific mechanism of inhibiting progesterone production would be through the inhibition of 3βHSD (which converts pregnenolone to progesterone). Inhibitors such as trilostane or cyanoketone could be used to inhibit 3βHSD activity. However, pregnenolone has been shown to inhibit 11βHSD activity [A.E. Michael, personal communication]. Therefore, the accumulation of pregnenolone in human granulosa-lutein cells is likely to exert inhibitory effects on 11βHSD activity. It cannot be ruled out that pregnenolone is also inhibiting 11βHSD activity in human granulosa-lutein cells, and the addition of AG could be stopping the inhibitory effects of both pregnenolone and progesterone. One way to test this would be to use a radioimmunoassay to determine the basal concentration of pregnenolone, and assess the concentration and time dependent effects of AG on pregnenolone production. That said, progesterone is the major secretary hormone of the CL, so it is likely that inhibition of 11βHSD activity is mediated predominately by progesterone.

In this study it was notable that suppression of progesterone synthesis using 100µM AG had a greater effect on the reduction of cortisol than on the oxidation of cortisol, irrespective of the duration of exposure to AG. Intuitively, if the effects of AG are solely due to removing progesterone as a competitive inhibitor of 11βHSD1 the suppression of progesterone synthesis might have been expected to have a greater effect on the low affinity 11βDH activity than on the high affinity 11KSR activity of the 11βHSD1 enzyme. However, the reasons for this counterintuitive finding are not clear at the present time.
In conclusion, this study has revealed that inhibition of progesterone synthesis using AG can affect the bi-directional activities of 11βHSD1 but not expression of 11βHSD1 protein in human granulosa-lutein cells on day 3 of culture. The mechanisms by which progesterone affects the activities of 11βHSD could be through competitive or non-competitive inhibition of 11βHSD, or through a signalling event to change the phosphorylation state of the enzyme and hence its activities. Given the findings of this study, all subsequent studies investigating the endocrine regulation of 11βHSD activities and expression were conducted in the presence of 100μM AG to circumvent the potential inhibition of 11βHSD1 activities by progesterone.
Chapter Five: Paracrine roles for eicosanoids in determining the basal activities and protein expression of 11βHSD1 in human granulosa-lutein cells
Chapter 5: Paracrine roles for eicosanoids in determining the basal activities and protein expression of 11βHSD1 in human granulosa-lutein cells

5.1 Introduction

The roles of prostaglandins in the regulation of female reproduction are well documented. In the ovary, at the time of ovulation, prostaglandins are increased in the follicle, and a role for prostaglandins in luteal function has been postulated (see section 1.3). In several reproductive tissue types, prostaglandins have differential effects on the activity and expression of 11βHSD isoforms. Hardy et al. [1999] have reported that in JEG-3 placental cells, PGE\textsubscript{2} and PGF\textsubscript{2α} can inhibit 11βHSD2 activity. In contrast, studies by Alfaidy et al. [2001; 2003] have shown that PGE\textsubscript{2} and PGF\textsubscript{2α} can increase cortisone reduction by 11βHSD1 within foetal membranes, instigating a positive loop between prostaglandin synthesis and cortisol regeneration from cortisone for the onset of parturition.

Although prostaglandins are known to regulate ovarian function, the role for prostaglandins in the regulation of 11βHSD activities and expression in human granulosa-lutein cells has yet to be established. Therefore the aims of this study were:

1) To establish whether preferential inhibitors of PGHS2 (meclofenamic acid (MA) and NS-398) affect the activities and expression of 11βHSD1 in human granulosa-lutein cells
2) To investigate the effects of exogenous prostaglandins on cortisol oxidation in human granulosa-lutein cells.

5.2 Experimental design

5.2.1 Effects of MA and NS-398 on prostaglandin production, 11βHSD activities and 11βHSD1 expression

To investigate the effects of MA and NS-398 on prostaglandin synthesis and on the 11βHSD1 enzyme, human granulosa-lutein cells were isolated from follicular aspirates of women undergoing IVF-ET (section 2.2). Cells were seeded into 24 well cell culture plates at densities of 5 x 10^4 cells/ml media for enzyme activity studies, and 1 x 10^5 cells/ml for prostaglandin secretion studies. For 11βHSD1 protein expression studies, cells were seeded into 6 well plates at a density of 1 x 10^6/2ml media. Cells were cultured for 2 days to allow for luteinisation and attachment of the cells to the plates. In order to assess the effects of MA and NS-398, cells were transferred to serum-free medium.

To assess the acute and chronic effects of MA exposure on prostaglandin secretion and 11βHSD activities, human granulosa-lutein cells were incubated with increasing concentrations of MA (0μM, 0.01μM, 0.1μM, 1μM, 10μM, 100μM) for 4 and 24 hours respectively on day 3 of culture. Since MA was soluble in serum-free medium, no organic solvent was used. Where cells were treated with MA for only 4 hours, this 4 hour incubation period coincided with the final 4 hours of the 24 hours
treatment point (i.e. cells were treated either from 48-72 hours in culture, or from 68-72 hours in culture).

To assess the acute and chronic effects of NS-398 exposure on prostaglandin secretion and 11βHSD activities, human granulosa-lutein cells were similarly incubated with increasing concentrations of NS-398 (0μM, 0.01μM, 0.1μM, 1μM, 10μM, 100μM) following the same experimental protocol as for MA. The organic solvent used to solubilise NS-398 was 1% (v/v) DMSO.

To assess the ability of both MA and NS-398 to inhibit prostaglandin production, radioimmunoassays were conducted to measure the concentrations of PGE$_2$ and PGF$_{2α}$ following acute and chronic treatment with either MA or NS-398. 11βHSD activities were assessed over 4 hours, coinciding with the last 4 hours of the 24 hour time treatment period, using a radiometric conversion assay. The steroids were chloroform extracted, resolved by TLC and cortisol-cortisone inter-conversion was quantified using a radiochromatogramme scanner (see section 2.4).

To assess changes in 11βHSD1 protein expression, human granulosa-lutein cells were incubated for either 4 or 24 hours with the concentration of either MA or NS-398 shown to exert the maximum effects on 11βHSD activities (100μM for both compounds). The effects of treatment for 4 hours coincided with the last 4 hours of the parallel 24 hour treatment incubation. Cells were extracted and proteins were separated by SDS-PAGE. 11βHSD1 protein expression was quantified by Western blotting and densitometric analysis. Following stripping of the Western blot,
GAPDH protein expression was quantified by densitometry, and 11βHSD1 protein expression was standardised to GAPDH expression (see sections 2.7, 2.8 and 2.9).

5.2.2 Effects of exogenous prostaglandins on cortisol oxidation

To assess whether exogenous administration of individual prostaglandins could reverse any effects of MA and NS-389 on 11βHSD activities, human granulosa-lutein cells were incubated initially with 100μM MA in the presence and absence of 1μM PGD₂, PGE₂, PGF₂α and PGI₂. A control was incubated without MA or exogenous prostaglandins for the measurement of basal 11βHSD activity. This experimental design was subsequently repeated with the following modifications. Each prostaglandin was tested at 2 concentrations (1μM and 10μM) in the presence of either 100μM MA or NS-398 and in the presence of 100μM AG (to control for any confounding effects via changes in progesterone synthesis).

5.3 Results

5.3.1. Effect of MA on basal prostaglandin production

Treatment of human granulosa-lutein cells with MA for 4 hours inhibited both PGE₂ and PGF₂α production in a concentration-dependent manner (Figure 5.1A). Maximum inhibition of prostaglandin production was observed with 100μM MA, inhibiting PGE₂ and PGF₂α production by 64.5 ± 17.2% (p<0.01) and 60.1 ± 11.3% (p<0.05), respectively. Treatment with MA for 24 hours also inhibited prostaglandin synthesis in a concentration-dependent manner (Figure 5.1B). 100μM MA
maximally inhibited both PGE$_2$ and PGF$_{2\alpha}$ production, by approximately 50% (p>0.05 and p<0.01, respectively).

5.3.2. Effect of MA on 11βHSD activities in human granulosa-lutein cells

Treatment of human granulosa-lutein for 4 hours with MA inhibited 11βHSD activities. The effects of MA were more pronounced on cortisone reduction, with MA inhibiting 11KSR activity in a concentration-dependent manner (Figure 5.2A). Cortisol oxidation was significantly inhibited with 1µM MA by 31.9 ± 5.3% (p<0.05) and treatment with 100µM MA maximally inhibited cortisone reduction by approximately 50% of the control (p<0.01).

Treatment with MA for 24 hours also resulted in a significant inhibition of 11βHSD activities (Figure 5.2B). Following the same trend as acutely treated human granulosa-lutein cells, 100µM MA significantly inhibited cortisol oxidation over 24 hours by approximately 20% (p<0.01). Likewise, 11KSR activity was inhibited in a concentration-dependent manner, with 0.1µM MA maximally inhibiting cortisone reduction by approximately 50% (p<0.01).

Irrespective of the duration of treatment, MA appeared to more potently inhibit 11KSR activity than the oxidative activity of 11βHSD. At the maximal concentration of 100µM, MA inhibited 11KSR activity to a greater extent that 11βDH activity. Moreover, the concentration of MA required to significantly inhibit the reduction of cortisone was several orders of magnitude lower than that required to inhibit cortisol oxidation.
5.3.3. Effects of MA on 11βHSD1 protein expression

Over both 4 and 24 hours, treatment with 100μM MA had no significant effect on 11βHSD1 protein expression when standardised to GAPDH (p>0.05, Figure 5.3).

5.3.4. Effects of NS-398 on basal prostaglandin production

The acute effects of NS-398 on PGE$_2$ and PGF$_{2\alpha}$ were assessed over 4 hours. Treatment with increasing concentrations of NS-398 showed a trend for inhibiting prostaglandin synthesis (Figure 5.4A). Treatment with 100μM NS-398 inhibited both PGE$_2$ and PGF$_{2\alpha}$ production by 50% (p>0.05 and p>0.05 respectively). Chronic treatment of human granulosa-lutein cells with NS-398 yielded similar results as acutely treated cells. PGE$_2$ production was maximally inhibited with 100μM NS-398 by 64.2 ± 15.9% (p>0.05, Figure 5.4B). PGF$_{2\alpha}$ production was significantly inhibited with 10μM NS-398 by 42.7 ± 12.8% (p<0.05).

5.3.5 Effect of NS-398 on 11βHSD activities in human granulosa-lutein cells

The acute treatment of human granulosa-lutein cells with NS-398 inhibited cortisol-cortisone inter-conversion in a concentration-dependent manner (Figure 5.5A). Cortisol oxidation was significantly inhibited with 100μM NS-398 by 38.3 ± 5.8% (p<0.05). Maximum inhibition of cortisone reduction was achieved with 100μM NS-398, which inhibited cortisone reduction by 53.3 ± 4.5% (p<0.01).

The chronic treatment of human granulosa-lutein cells with NS-398 revealed a similar trend as acute treatment. Again, the inhibitory effects of NS-398 were less
marked on cortisol oxidation. 100μM NS-398 maximally inhibited cortisol oxidation by 36.3 ± 4.6% (p<0.05) and cortisone reduction by 46.9 ± 3.7% (p<0.001, Figure 5.5B).

5.3.6 Effect of NS-398 on 11βHSD1 protein expression

Both acute and chronic treatment of human granulosa-lutein cells with 100μM NS-389 had no effect on 11βHSD1 protein expression (p>0.05, Figure 5.6).

5.3.7 Effect of exogenous prostaglandins on cortisol oxidation

Treatment of human granulosa-lutein cells with 100μM MA inhibited cortisol oxidation by approximately 50% (p<0.001, Figure 5.7). Co-treatment with 1μM PGD₂, PGE₂, PGF₂α, and PGI₂ did not alter the inhibitory effects of MA on cortisol oxidation.

This same experiment was repeated using each prostaglandin at a concentration of 10μM and in the presence and absence of 100μM AG. In the absence of AG, 100μM MA significantly inhibited cortisol oxidation (p<0.05, Figure 5.8A). Even at the higher concentration of 10μM, the addition of exogenous prostaglandins could not overcome the inhibitory effects of 100μM MA on cortisol oxidation in the absence of AG (p>0.05). In the presence of 100μM AG, the inhibitory effect of MA on cortisol oxidation was highly significant (p<0.001, Figure 5.8B) and addition of exogenous prostaglandins did not overcome the inhibitory effects of MA.
Figure 5.1A: Concentration-dependent effects of treatment with MA for 4 hours on PGE$_2$ and PGF$_{2\alpha}$ production in human granulosa-lutein cells on day 3 of culture. PGE$_2$= blue line, with each data point representing the mean ± SEM for 3 independent experiment (**p<0.01 versus 0µM MA), PGF$_{2\alpha}$=pink line, with each data point representing the mean ± SEM for 4 independent experiments (*p<0.05 versus 0µM MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test for each prostaglandin.
Figure 5.1B: Concentration-dependent effects of treatment with MA for 24 hours on PGE$_2$ and PGF$_{2\alpha}$ production in human granulosa-lutein cells on day 3 of culture. PGE$_2$=blue line, with each data point representing the mean ± SEM for 5 independent experiments (p>0.05 versus 0μM MA). PGF$_{2\alpha}$=pink line, with each data point representing the mean ± SEM for 3 independent experiments (**p<0.01 versus 0μM MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.2A: Concentration-dependent effects of treatment with MA for 4 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture. 11βDH activity=blue line, with each data point representing the mean ± SEM for 5 independent experiments (*p<0.05 versus 0μM MA), and 11KSR activity=pink line, with each data point representing the mean ± SEM for 6 independent experiments (**p<0.01 versus 0μM MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.2B: Concentration-dependent effects of treatment with MA for 24 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture. 11βDH activity=blue line, with each data point representing the mean ± SEM for 5 independent experiments (**p<0.01 versus 0μM MA) and 11KSR activity=pink line, with each data point representing mean ±SEM for 6 independent experiments (**p<0.01 versus 0μM MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.3: Effect of MA on expression of 11βHSD1 protein. (A) Western blot showing effect of MA on 11βHSD1 protein expression and GAPDH protein expression on day 3 of culture in human granulosa lutein cells. C represents control conditions, M represents treatment with 100μM MA. (B) Densitometric representation of effect of MA on 11βHSD1 protein expression relative to GAPDH. The blue bars represent experiments carried out over 4 hours. The pink bars represents experiments carried out over 24 hours. Hatched bars represent control, and solid bars represent hGL cells treated with 100μM MA. Each data point represents the mean ± SEM for 3 independent experiments, (p>0.05 versus 0μM MA). Means compared at each time point using unpaired T-test.
Figure 5.4A: Concentration-dependent effects of treatment with NS-398 for 4 hours on PGE$_2$ and PGF$_{2α}$ production in human granulosa-lutein cells on day 3 of culture. PGE$_2$ = blue line, with each data point representing the mean ± SEM for 3 independent experiment (p>0.05 versus 0μM NS-398), and PGF$_{2α}$ = pink line, with each data point representing the mean ± SEM for 6 independent experiments (p>0.05 versus 0μM NS-398). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.4B: Concentration-dependent effects of treatment with NS-398 for 24 hours on PGE₂ and PGF_{2α} production in human granulosa-lutein cells on day 3 of culture. PGE₂=blue line, with each data point representing the mean ± SEM for 5 independent experiments (p>0.05 versus 0μM NS-398) and PGF_{2α}=pink line, with each data point representing the mean ± SEM for 5 independent experiments (*p<0.05 versus 0μM NS-398). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.5A: Concentration-dependent effects of treatment with NS-389 for 4 hours on 11βHSD activities in human granulosa-lutein cells on day 3 of culture. 11βDH activity=blue line, with each data point representing the mean ±SEM for 4 independent experiments (*p<0.05 versus 0μM NS-398) and 11KSR activity=pink line, with each data point representing the mean ±SEM for 3 independent experiments (***p<0.01 versus 0μM NS-398). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.5B: Concentration-dependent effects of NS-389 on 11βHSD activities in human granulosa-lutein cells on day 3 of culture over 24 hours. 11βDH activity=blue line, with each data point representing mean ± SEM for 4 independent experiments (*p<0.05 versus 0μM NS-398), and 11KSR activity=pink line, with each data point representing the mean ± SEM for 3 independent experiments (**p<0.001 versus 0μM NS-398). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.6: Effect of NS-398 on expression of 11βHSD1 protein expression. (A) Western blot showing effect of NS-398 on 11βHSD1 protein expression relative to GAPDH on day 3 of culture in human granulosa lutein cells. C represents control conditions, N represents treatment with 100μM NS-398. (B) Densitometric representation of effect of NS-398 on 11βHSD1 protein expression relative to GAPDH. The blue bars represent experiments carried out over 4 hours. The pink bars represent experiments carried out over 24 hours. Hatched bars represent control, and solid bars represent hGL cells treated with 100μM NS-398. Each data point represents the mean ± SEM of 3 independent experiments (p>0.05 versus 0μM NS-398). Means compared at each time point using unpaired T-test.
Figure 5.7: Effect of treatment with 100μM MA ± 1μM PGD$_2$, PGE$_2$, PGF$_{2\alpha}$ and PGI$_2$ on cortisol oxidation over 4 hours in human granulosa-lutein cells, on day 3 of culture. Solid panel represents control with 100μM MA. Hatched lines represent the absence of 100μM MA. Each data point represents the mean ± SEM for 4 independent experiments (***p<0.001 versus C+MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.8A: Effect of treatment with 100μM MA ± 10μM PGD$_2$, PGE$_2$, PGF$_{2\alpha}$ and PGI$_2$ on cortisol oxidation over 4 hours in human granulosa-lutein cells, on day 3 of culture in the absence of AG. Solid panel represents control in the presence of 100μM MA. Hatched lines represent the absence of 100μM MA. Each data point represents the mean ± SEM for 4 independent experiments (*p<0.05 versus C+MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.8B: Effect treatment with 100µM MA ± 10µM PGD₂, PGE₂, PGF₂α and PGI₂ on cortisol oxidation over 4 hours in human granulosa-lutein cells, on day 3 of culture in the presence of AG. Solid panel represents control with 100µM MA. Hatched lines represent the absence of 100µM MA. Each data point represents the mean ± SEM for 4 independent experiments (***p<0.001 versus C+MA). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
Figure 5.9: Effect of treatment with 100µM NS-398 ± 10µM PGD2, PGE2, PGF2α and PGI2 on cortisol oxidation over 4 hours in human granulosa-lutein cells, on day 3 of culture. Experiments were conducted in the presence of AG. Solid panel represents control without 100µM NS-398. Hatched lines represent the presence of 100µM NS-398. Each data point represents the mean ± SEM for 4 independent experiments (*p<0.05 versus C+NS-398). Data analysed with repeated measures one-way ANOVA followed by Dunnett’s multiple comparison test.
This same experimental design was repeated using 100μM NS-398 in place of MA. In the presence of AG, NS-398 inhibited cortisol oxidation by 27.8 ± 1.2% (p<0.05, Figure 5.9). Co-treatment with exogenous prostaglandins could not overcome the inhibitory effects of NS-398 on cortisol oxidation.

5.4. Discussion

This study has investigated the effects of preferential PGHS-2 inhibitors on prostaglandin production, 11βHSD activities and 11βHSD1 protein expression in human granulosa-lutein cells. Both MA and NS-398 inhibited PGE$_2$ and PGF$_{2\alpha}$ production, and decreased 11βHSD activities without affecting 11βHSD1 protein expression. Having suppressed endogenous prostaglandin production with MA and NS-398, exogenous prostaglandins were unable to return the rate of cortisol oxidation to control levels.

Differences were observed in the potencies of MA and NS-398 for inhibiting prostaglandin production. There are several explanations for these differences. Firstly the solubility of MA and NS-398 is different due to structural differences between the 2 compounds (Figure 5.10). MA is more hydrophilic and is soluble in aqueous media, whereas NS-398 is less hydrophilic and insoluble in aqueous solution such that it requires an organic solvent to increase its solubility in medium. These structural differences could affect the rate of uptake of the compounds into the cell. Moreover, once entering the cell these structural differences could result in a difference in the solubility of the compounds within the cytosol, which would also
Figure 5.10: Structures of Meclofenamic acid and NS-398. Adapted from Cayman Chemicals, USA
affect the rate at which the compounds are transported out of the cell. These physical factors could result in differential effects of MA and NS-398 on prostaglandin synthesis and possibly on 11βHSD activities.

Another difference could be the specificity of MA and NS-398 for PGHS2. MA has a K_i of 1.5µM for PGHS2, and a K_i of 9.7µM for PGHS1 [Laneuville et al., 1994]. Hence at concentrations of 10µM or 100µM, the effects of MA could reflect inhibition of PGHS1 as well as inhibiting PGHS2. NS-398 is a more selective inhibitor of PGHS2, with a K_i for PGHS2 of 1.77µM and a K_i for PGHS1 of 75µM [Kargman et al., 1996]. These differences in inhibitory constants could explain why MA is more effective at suppressing prostaglandin production since it inhibits both PGHS2- and PGHS1-mediated prostaglandin synthesis with near equal affinity.

MA and NS-398 also display different potencies in inhibiting the activities of 11βHSD. The simplest explanation of this finding is that MA and NS-398 could have direct inhibitory effects on the activities of 11βHSD. However, previous studies by a former graduate student in the laboratory had established that 11βHSD activities in human granulosa-lutein cells could also be inhibited by indomethacin: a PGHS1 and PGHS2 inhibitor which has a notably different chemical structure to MA and NS-398. The capacity of structurally dissimilar inhibitors of the PGHS enzymes to inhibit 11βHSD activities in human granulosa-lutein cells makes it unlikely that these compounds act by direct effects on the 11βHSD enzymes.
Were the effects of MA and/or NS-398 on cortisol-cortisone inter-conversion to reflect direct actions, one would expect equivalent effects on bi-directional enzyme activities. If anything, a given drug should be more effective at non-specifically inhibiting the low affinity oxidative activity of 11βHSD1 versus the high affinity reductase activity of this enzyme. However, MA was more potent in inhibiting the 11KSR activity of human granulosa-lutein cells than the 11βDH activity, both in terms of the degree of maximum inhibition of enzyme activity achieved at 100μM MA, and the concentration of MA required to achieve significant inhibition (0.1-1μM MA for 11 KSR activity versus 100μM MA for 11βDH activity). Hence it seems highly unlikely that the decrease in the 11βDH and 11KSR activities in human granulosa-lutein cells reflect non-specific, direct inhibition of 11βHSD1 by MA or NS-398.

The suppression of local prostaglandin synthesis with MA and NS-398 had differential effects on cortisol oxidation and cortisone reduction. Cortisone reduction was more sensitive to inhibition at lower concentrations of MA and NS-398 than cortisol oxidation. This could reflect differences in the substrate rates of cortisol oxidation versus cortisone reduction. Control rates of cortisol oxidation were more than double the control rate of cortisone reduction (8-10 pmol cortisol oxidised/5 x 10^4 cells.4h versus 3-4 pmol cortisone reduced/5 x 10^4 cells.4h). Due to this difference in absolute substrate conversion, it may be easier to detect a change in 11KSR activities than a change in 11βDH activity. E.g., a decrease in the level of substrate metabolism by the same unit of 1pmole/5 x 10^4 cells.4h would represent a
25% decrease for 11KSR activity, but only around a 10% decrease in 11βDH activity.

The more likely explanation of these findings is that the effect of MA and NS398 (and of indomethacin) on 11βHSD activities reflected changes in the pattern of AA metabolism to eicosanoids following inhibition of PGHS1/2. Since the concentrations of MA and NS-398 required to inhibit 11βHSD activities coincides with the concentrations of MA and NS-398 required to significantly inhibit prostaglandin synthesis, the decrease in cortisol-cortisone inter-conversion by human granulosa-lutein cells could reflect a positive autocrine/paracrine role for prostaglandins in stimulating 11βHSD1 activities in human granulosa-lutein cells.

The addition of exogenous prostaglandins to human granulosa-lutein cells in the presence of either MA or NS-398 failed to restore the rate of cortisol oxidation to control levels even when prostaglandins were added at concentrations of 10μM. There are several explanations for this finding. Firstly, addition of exogenous extracellular prostaglandins may not replicate the effects of prostaglandins endogenously produced within cells. In ovarian cells, multiple prostanoids are synthesised, and multiple receptor subtypes are expressed [Narumiya et al., 1999]. Hence the addition of individual specific prostaglandins may not be able to fully overcome the effects of inhibiting the synthesis of all prostaglandins.

Secondly, the failure of exogenous prostaglandins to restore rates of cortisol oxidation could reflect the abilities of MA and NS-398 to inhibit other pathways of
AA metabolism. MA is known to inhibit the 5- and 15 lipoxygenase pathway [Stadler et al., 1994] and other non-steroidal anti-inflammatory drugs (NSAIDs), such as indomethacin, have also been shown to inhibit other pathways of AA metabolism in the ovary [Downey et al., 1998]. The inhibition of 5- and 15-lipoxygenase by MA could account for MA more potently inhibiting 11βHSD activities than NS-398, if lipoxygenase products (e.g. leukotriene B₄) elevate the basal levels of cortisol-cortisone inter-conversion in human granulosa-lutein cells.

To confirm the specificity of MA and NS-398 for inhibiting just prostaglandin production, enzyme linked immunoassays (ELISAs) could be conducted to monitor products of the lipoxygenase pathway such a leukotrienes and HETEs in the presence of MA and NS-398.

Finally the effects of MA and NS-398 on 11βHSD activities in human granulosa-lutein cells could involve the re-direction of the flux of AA metabolism through other associated pathways. The inhibition of the PGHS enzymes by MA and/or NS-398 will increase the flux of AA through the lipoxygenase and epoxygenase pathways. Hence, the decrease of cortisol oxidation or cortisone reduction achieved by MA and NS-398 could implicate lipoxygenase and /or epoxygenase products as inhibitors of 11βHSD1 in human granulosa-lutein cells.

In conclusion, the findings reported in this Chapter has implied a role for eicosanoids in regulating the basal activities of 11βHSD in human granulosa-lutein cells without affecting 11βHSD1 protein expression. Hence, the studies reported in Chapter 6 will
explore the potential mediatory roles for prostaglandins in the stimulation of ovarian
11βHSD activities by hCG and IL-1β.
Chapter Six: Role of prostaglandins in mediating the effects of hCG and IL-1β on the activity and expression of 11βHSD1 in human granulosa-lutein cells
Chapter 6: Role of prostaglandins in mediating the effects of hCG and IL-1β on the activity and expression of 11βHSD1 in human granulosa-lutein cells

6.1 Introduction

As previously described in section 1.3 and 5.1, prostaglandins play a key role in ovarian function and have been shown to regulate the activity and expression of 11βHSD in various tissue types. Inflammatory cytokines have also been implicated in the regulation of 11βHSD1 activity and expression in several tissue types. Both TNF-α and IL-1β can increase 11βHSD1 activity and mRNA expression in human amnion [Sun and Myatt 2003], pre-adipocytes [Friedberg et al., 2003], osteoblasts [Cooper et al., 2001], glomerular mesangial cells [Escher et al., 1997], and in the ovary [Tetsuka et al., 1999 Yong et al., 2002; Rae et al., 2004]. Gonadotrophins have also been shown to regulate the activity and expression of 11βHSD isoforms in rat Leydig cells [Gao et al., 1997] and granulosa cells [Tetsuka et al., 1999b].

It has been long established that ovulation is an inflammatory cascade that is orchestrated and modulated by inflammatory prostaglandins and cytokines, initiated by the gonadotrophin surge [Espey 1980]. Therefore the aims of this study were:

1) To determine the effects hCG and IL-1β on prostaglandin production, 11βHSD1 activities and 11βHSD1 protein expression in human granulosa-lutein cells

2) To establish the effects of co-treatment with MA and NS-398 on hCG and IL-1β control of 11βHSD activities and expression
6.2 Experimental design

6.2.1 Acute and chronic effects of hCG and IL-1β on prostaglandin production and 11βHSD activities

Human granulosa-lutein cells, isolated from follicular aspirates of women undergoing IVF-ET, were seeded into 24 well cell culture plates at a density of 1 x 10^5 cells/ml for prostaglandin production studies, and 5 x 10^4 cells/ml for 11βHSD activity studies, into serum-supplemented medium (see section 2.2). Cells were cultured for 2 days to allow for luteinisation and for attachment to the cell culture plates. Cells were then transferred to serum-free medium to assess the effects of hCG and IL-1β on prostaglandin production, and the bi-directional activities of 11βHSD1.

To assess the acute and chronic effects of hCG and IL-1β exposure, human granulosa-lutein cells were incubated with medium alone (control), 100ng/ml hCG or 10ng/ml IL-1β for 4 and 24 hours. The acute effects of hCG and IL-1β were determined over 4 hours, coinciding with the last 4 hours of the 24 hour treatment incubations. These studies were conducted in the presence and absence of 100μM AG (to inhibit progesterone responses to hCG and/or IL-1β).

To determine the effects of hCG and IL-1β on prostaglandin production, PGE$_2$ and PGF$_{2α}$ concentrations were assessed by RIA (see section 2.3). In parallel cell culture plates, 11βHSD activities were assessed by radiometric conversion assayed during the final 4 hours of each experiment. Cortisol-cortisone inter-conversion was determined by radiometric conversion assay. To terminate the reaction, spent medium was transferred to borosilicate glass tubes, the steroids were chloroform
extracted, and resolved by TLC. Cortisol-cortisone conversion was quantified using a radiochromatogramme scanner (see section 2.4).

6.2.2 Concentration-dependent effects of IL-1β and hCG on prostaglandin synthesis and 11βHSD1 activities

To investigate the concentration-dependent effects of hCG, cells were incubated with increasing concentrations of hCG (0, 1, 3, 10, 30, 100ng/ml) in the presence and absence of 100μM MA or 100μM NS-398 for 24 hours. To minimise the confounding effects of progesterone, these experiments were conducted in the presence of 100μM AG. The concentration-dependent effects of IL-1β were investigated using increasing concentrations of IL-1β (0, 3, 1, 3, 10ng/ml) in the presence and absence of 100μM MA or 100μM NS-398, and in the presence of 100μM AG for 24 hours.

The concentration dependent effects of hCG and IL-1β on prostaglandin production were assessed by RIA of PGE2 and PGF2α. Cortisol-cortisone inter-conversion was assessed over the last 4 hours of the 24 hour treatment period using a radiometric conversion assay. Steroids were chloroform extracted, resolved by TLC and quantified using a radiochromatogramme scanner.

6.2.3 Effects of hCG and IL-1β on 11βHSD1 protein expression

For the assessment of changes in 11βHSD1 protein expression, human granulosalutein cells were seeded into 6 well plates at a density of 1 x 10^6 cells/ml in serum-
supplemented medium. Cells were transferred into serum-free medium and incubated for 24 hours with those concentrations of hCG (100ng/ml) and IL-1β (10ng/ml) shown to exert the greatest effects on 11βHSD activities. Cells were treated in the presence or absence of 100μM MA and in the presence of 100μM AG. Cells were extracted and proteins separated by SDS-PAGE. 11βHSD1 protein expression was quantified through Western blot and densitometric analysis. Following stripping of the Western blot, GAPDH protein expression was quantified by densitometry. 11βHSD1 protein expression was standardised to GAPDH expression (see sections 2.7, 2.8 and 2.9).

6.3 Results

6.3.1 Effects of hCG and IL-1β on PGE₂ and PGF₂α production

In absence of AG, treatment of human granulosa-lutein cells with either hCG (100ng/ml) or IL-1β (10ng/ml) for 4 hours had no significant effect on PGE₂ (Figure 6.1A) and PGF₂α (Figure 6.1B) production (p>0.05) irrespective of the presence or absence of MA. Likewise, in the presence of 100μM AG, acute treatment with either hCG or IL-1β again had no significant effect on PGE₂ (Figure 6.2A) and PGF₂α (Figure 6.2B) production, irrespective of the presence of absence of MA (p>0.05).

In the absence of AG, treatment of human granulosa-lutein cells for 24 hours with 10ng/ml IL-1β tended to increase PGE₂ production, (p>0.05, Figure 6.3A) and significantly increased PGF₂α production to 166.7 ± 6.5% of control (p<0.05, Figure 6.3B). Co-treatment with MA abolished both of the prostaglandin responses.
Treatment of human granulosa-lutein for 24 hours cells with 100ng/ml hCG had no effect on either PGE$_2$ or PGF$_{2\alpha}$ production, irrespective of the presence or absence of MA.

In the presence of AG, treatment of human granulosa-lutein cells for 24 hour with hCG tended to increase PGE$_2$ production, and IL-1\(\beta\) significantly increased PGE$_2$ production to 144.2 ± 3.4% of control (p<0.05, Figure 6.4A). IL-1\(\beta\) also tended to increase PGF$_{2\alpha}$ production by up to 186.5 ± 46.7% of control (p>0.05, Figure 6.4B). Co-treatment with MA was shown to inhibit these responses. Treatment with 100ng/ml hCG for 24 hours had no effect on PGF$_{2\alpha}$ production by human granulosa-lutein cells (p>0.05, Figure 6.4B).

6.3.2 Acute effects of hCG and IL-1\(\beta\) on 11\(\beta\)HSD activities

In the absence of AG and in the absence of MA, treatment of human granulosa-lutein cells for 4 hours with either 100ng/ml hCG or 10ng/ml IL-1\(\beta\) stimulated cortisol oxidation to 146.6 ± 23.5% (p<0.05) and 147.3 ± 16.0% (p<0.01, Figure 6.5A) of control enzyme activity respectively. Co-treatment with 100\(\mu\)M MA abolished the stimulation of 11\(\beta\)-dehydrogenase activity by both hCG and IL-1\(\beta\).

In contrast, hCG and IL-1\(\beta\) had no acute effect on cortisone reduction irrespective of the presence or absence of MA (Figure 6.5B). Co-treatment with MA inhibited 11KSR activity by approximately 50% (p<0.05) irrespective of the presence or absence of hCG or IL-1\(\beta\).
In the presence of AG, in human granulosa-lutein cells treated for 4 hours with hCG and IL-1β, cortisol oxidation was increased to 132.2 ± 9.4% (p>0.05) and 128.8 ± 4.5% (p<0.05, Figure 6.6A) of control enzyme activity, respectively. Co-treatment with MA for 4 hours significantly decreased cortisol oxidation and prevented both hCG and IL-1β from stimulating 11βDH activity.

In the presence of AG, hCG and IL-1β had no acute effect on cortisone reduction irrespective of the presence of absence of MA (Figure 6.6B).

6.3.3 Chronic effects of hCG and IL-1β on 11βHSD activities

In the absence of AG and in the absence of MA, hCG and IL-1β tended to increase cortisol oxidation (p>0.05, Figure 6.7A). However, co-treatment with MA significantly inhibited the rate of cortisol oxidation in the presence of hCG and IL-1β (p<0.05). As with acutely treated cells, in the absence of AG, hCG and IL-1β had no significant effect on cortisone reduction (p>0.05, Figure 6.7B) irrespective of the presence of MA, which inhibited cortisone reduction by approximately 70% in control, hCG- and IL-1β-treated cells.

In the presence of AG, hCG tended to increase cortisol oxidation by over 50% and IL-1β significantly increased 11βDH activity to 170.0 ± 24.9% (p<0.05, Figure 6.8A) of control 11βDH activity. Co-treatment with MA abolished the stimulation of 11βDH activity by both hCG and IL-1β. As with acutely treated cells, both hCG and IL-1β had no effect on 11KSR activity and co-treatment with MA inhibited cortisone reduction by approximately 50% (Figure 6.8B).
6.3.4 Concentration-dependent effects of hCG on PGE\textsubscript{2} and PGF\textsubscript{2\alpha} production

In the presence of AG, increasing concentrations of hCG had no effect on PGE\textsubscript{2} (p>0.05, Figure 6.9A), irrespective of the presence or absence of MA.

Treatment with increasing concentrations of hCG tended to increase PGF\textsubscript{2\alpha} production. The maximum effective concentration of 100ng/ml hCG increased PGF\textsubscript{2\alpha} production to 133.8 ± 3.7% of control values (p>0.05, Figure 6.9B). Treatment with MA abolished this stimulation.

6.3.5 Concentration-dependent effects of IL-1β on PGE\textsubscript{2} and PGF\textsubscript{2\alpha} production

IL-1β increased PGE\textsubscript{2} production in a concentration-dependent manner, with 10ng/ml IL-1β maximally increasing PGE\textsubscript{2} production to 154.9 ± 21.0% of control (p<0.05, Figure 6.10A). Co-treatment with MA abolished the stimulation of PGE\textsubscript{2} production by IL-1β.

IL-1β also tended to increase PGF\textsubscript{2\alpha} production (p>0.05, Figure 6.10B) and this stimulatory trend was abolished by co-incubation with MA.

6.3.6 Concentration-dependent effects of hCG on 11\betaHSD activities: effects of preferential-PGHS2 inhibitors

In the absence of MA, hCG exerted a concentration-dependent stimulation of 11\betaDH activity, with 100ng/ml hCG increasing 11\betaDH activity to 130.7 ± 8.5% of control enzyme activity (p>0.05, Figure 6.11A). In the presence of 100μM MA, these effects
of hCG on 11βDH activity were abolished. Furthermore, MA inhibited 11βDH activities by approximately 35 to 50% at each concentration of hCG. Treatment of human granulosa-lutein cells with hCG also tended to increase 11KSR activity (p>0.05, Figure 6.11B). Co-treatment with MA abolished this effect, decreasing 11KSR activity by 20 to 60% at each concentration of hCG.

In the absence of NS-398, increasing concentrations of hCG also tended to increase cortisol oxidation. Co-treatment with NS-398 inhibited the stimulation of 11βDH activity by hCG (Figure 6.12).

6.3.7 Concentration-dependent effects of IL-1β on 11βHSD activities: effects of preferential PGHS2 inhibitors

Treatment of human granulosa-lutein cells with IL-1β increased 11βDH activity in a concentration-dependent manner. The maximum effective concentration of 10ng/ml IL-1β increased 11βDH activity to 140.8 ± 5.5% of control activity (p<0.05, Figure
Figure 6.1A: Effects of hCG and IL-1β on PGE₂ production over 4 hours in the absence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.1B: Effects of hCG and IL-1β on PGF$_{2α}$ production over 4 hours in the absence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C =control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.2A: Effects of hCG and IL-1β on PGE$_2$ production over 4 hours in the presence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C =control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.2B: Effects of hCG and IL-1β on PGF$_{2\alpha}$ production over 4 hours in the presence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.3A: Effects of hCG and IL-1β on PGE$_2$ production over 24 hours in the absence of AG. Pink outlines to bars represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C =control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.3B: Effects of hCG and IL-1β on PGF$_{2\alpha}$ production over 24 hours in the absence of AG. Pink outlines to bars represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus control). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.4A: Effects of hCG and IL-1β on PGE₂ production over 24 hours in the presence of AG. Pink outlines to bars represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus control). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison
Figure 6.4B: Effects of hCG and IL-1β on PGF$_{2\alpha}$ production over 24 hours in the presence of AG. Pink outlines to bars represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.5A: Effects of hCG and IL-1β on cortisol oxidation over 4 hours in the absence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 8 independent experiments (**p<0.01 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.5B: Effects of hCG and IL-1β on cortisone reduction over 4 hours in the absence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C =control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 5 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.6A: Effects of hCG and IL-1β on cortisol oxidation over 4 hours in the presence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 8 independent experiments (**p<0.01 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.6B: Effects of hCG and IL-1β on cortisone reduction over 4 hours in the presence of AG. Blue outlines represent 4 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.7A: Effects of hCG and IL-1β on cortisol oxidation over 24 hours in the presence of AG. Pink outlines represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison
Figure 6.7B: Effects of hCG and IL-1β on cortisone reduction over 24 hours in the presence of AG. Pink outlines represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison
Figure 6.8A: Effects of hCG and IL-1β on cortisol oxidation over 24 hours in the presence of AG. Pink outlines represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C = control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.8B: Effects of hCG and IL-1β on cortisone reduction over 24 hours in the presence of AG. Pink outlines represent 24 hour time point, Blue fill to graphs and brackets represent conditions minus MA, Pink fill of graphs and brackets represent conditions plus MA. C =control, hCG=100ng/ml, IL-1B=10ng/ml. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus control minus MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison.
Figure 6.9A: Concentration dependent effects of hCG on PGE\textsubscript{2} over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 5 independent experiments (p>0.05 versus 0\mu M MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.9B: Concentration dependent effects of hCG on PGF$_{2\alpha}$ over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 4 independent experiments (p>0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.10A: Concentration dependent effects of IL-1β on PGE₂ over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 5 independent experiments (p>0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.10B: Concentration dependent effects of IL-1β on PGF$_{2\alpha}$ over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 4 independent experiments (p>0.05 versus 0µM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.11A: Concentration dependent effects of hCG on cortisol oxidation over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.11B: Concentration dependent effects of hCG on cortisone reduction over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.12: Concentration dependent effects of hCG on cortisol oxidation over 24 hours in the presence of AG. Blue lines represent conditions minus NS-398, Pink lines represent conditions plus NS-398. Experiments conducted in presence of vehicle (1% (v/v) DMSO). Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus 0μM NS-398). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus NS-398
Figure 6.13A: Concentration dependent effects of IL-1β on cortisol oxidation over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA
Figure 6.13B: Concentration dependent effects of IL-1β on cortisone reduction over 24 hours in the presence of AG. Blue lines represent conditions minus MA, Pink lines represent conditions plus MA. Each data point represents the mean ± SEM for 3 independent experiments (*p<0.05 versus 0μM MA). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus MA.
Figure 6.14: Concentration dependent effects of IL-1β on cortisol oxidation over 24 hours in the presence of AG. Blue lines represent conditions minus NS-398, Pink lines represent conditions plus NS-398. Experiments conducted in presence of vehicle (1% (v/v) DMSO). Each data point represents the mean ± SEM for 3 independent experiments (p>0.05 versus 0μM NS-398). Data were analysed by one-way ANOVA with repeated measures followed by Dunnett’s multiple comparison versus control minus NS-398.
Figure 6.15: Effect of hCG and IL-1β on 11βHSD1 protein expression of 11βHSD1 standardised to GAPDH protein expression in the presence of AG. (a) Western blot showing effect of hCG and IL-1β on 11βHSD1 protein expression relative to GAPDH on day 3 of culture in human granulosa lutein cells. C represents control conditions, hCG represents treatment with 100ng/ml hCG, and 10ng/ml IL-1β (b) Densitometric representation of effect of hCG and IL-1β on 11βHSD1 protein expression relative to GAPDH. The blue bars represent experiments carried out in the absence of 100μM MA. The pink bars represents experiments carried out in the presence of 100μM MA. Data represents the mean ± SEM for 3 independent experiments p>0.05. Data analysed by one-way ANOVA with Dunnett’s multiple comparison for each treatment.
6.13A. Co-treatment with MA abolished this stimulation decreasing 11βDH activity by approximately 30-50% at each IL-1β concentration. IL-1β also increased 11KSR activity in a concentration-dependent manner, with 10ng/ml IL-1β maximally increasing 11KSR activity to 153.4 ± 3.8% of control (p<0.05, Figure 6.13B). Co-treatment with MA abolished the response to IL-1β. Moreover, co-treatment with MA also decreased 11KSR activity by over 70% at each concentration of IL-1β.

Treatment of human granulosa-lutein cells with increasing concentrations of IL-1β in the absence of NS398 tended to increase cortisol oxidation. Co-treatment with reproducibly decreased the rate cortisol oxidation at each concentration of IL-1β (Figure 6.14). However, from 3 independent experiments, this suppressive effect did not achieve statistical significance.

6.3.8 Effect of hCG and IL-1β on 11βHSD1 protein expression

In the presence of AG, neither hCG nor IL-1β had any effect on the expression of 11βHSD1 protein in human granulosa-lutein cells irrespective of the presence or absence of MA (p>0.05, Figure 6.15).

6.4 Discussion

This study has shown that hCG and IL-1β can increase 11βHSD activities in a concentration-dependent manner without changes in 11βHSD1 protein expression. Co-treatment with 2 preferential inhibitors of PGHS2, MA and NS-398, attenuated the stimulation of 11βHSD activities by hCG and IL-1β. hCG and IL-1β were
confirmed to increase PGE$_2$ and PGF$_{2\alpha}$ production by human granulosa-lutein cells, and co-treatment with MA was shown to block this stimulation of prostaglandin production.

A difference in the ability of hCG and IL-1β to affect cortisol oxidation has been observed. IL-1β was more effective at stimulating cortisol oxidation than hCG, with IL-1β significantly stimulating cortisol oxidation in all experiments. In the absence of AG, the differences in potencies of hCG and IL-1β could be due to hCG stimulating progesterone production by human granulosa-lutein cells. Studies in Chapter 4 indicated that progesterone production can inhibit basal 11βHSD activities. Therefore this stimulation of progesterone production by hCG could be attenuating any stimulatory effects of hCG on cortisol oxidation. However, the addition of AG (to inhibit progesterone production) did not alter the lack of effect of hCG on 11βDH activities. On the basis of these data alone, it is not possible to exclude a role for progesterone in limiting the 11βHSD response to hCG since 100μM AG is only partially successful in suppressing progesterone synthesis.

It is noteworthy that in preliminary single concentration experiments, hCG and IL-1β did not stimulate cortisone reduction in either acutely or chronically treated human granulosa-lutein cells. However, in concentration-dependent experiments carried out in the presence of AG, hCG tended to increase cortisone reduction, and IL-1β significantly increased cortisone reduction. On balance, the data reported in this Chapter indicate that hCG and IL-1β exert more reproducible, consistent stimulation
of cortisol oxidation than on cortisone reduction in human granulosa-lutein cells treated for either 4 or 24 hours.

A difference in potency was observed between MA and NS-398 in attenuating hormone-stimulated 11βHSD activities was observed. In the presence of increasing concentrations of either hCG or IL-1β, MA inhibited 11βHSD activities by approximately 30-40% in comparison to around 20% inhibition by NS-398. These findings were consistent the data reported in Chapter 5. Moreover, under basal conditions, MA inhibited prostaglandin production to a greater extent than NS-398. This reflects the different properties of the 2 compounds reviewed in Chapter 5. In brief the different properties of the inhibitors could reflect differences in solubility. Other possible explanations for the differences include the selectivity of MA and NS-398 for inhibiting PGHS-2 and not PGHS-1, or indeed for inhibiting other pathways of AA metabolism. These hypotheses have been reviewed in more detail in section 5.4.

Small increases in PGE$_2$ and PGF$_{2α}$ were observed in cells incubated with hCG or IL-1β. These data are consistent with several reports that have documented the stimulation of PGE$_2$ and PGF$_{2α}$ by IL-1β in the rat [Carnovale et al., 2001], bovine [Del Vecchio and Sutherland 1997] and primate ovary [Young et al., 1997]. hCG has been documented previously to increase PGHS2 expression and PGE$_2$ production in mucosal cells from human fallopian tubes [Han et al., 1996]
IL-1β could be increasing prostaglandin production through a number of mechanisms. Studies by Brown et al. [1998] in intact foetal membranes have shown that IL-1β can increase PGE\(_2\) production by increasing PGHS2 mRNA levels and inducing the translocation of cytoplasmic phospholipase A\(_2\) (cPLA\(_2\)) from the cytosol to the membrane. In bovine luteal cells, the addition of a PLA\(_2\) inhibitor and an inhibitor of protein kinase C (PKC) was shown to abolish IL-1β stimulated PGF\(_{2\alpha}\) production [Townson and Pate 1994]. Studies using the phorbol ester 4-β-phorbol 12-myristate 13-acetate (PMA), to activate PKC, have shown that PMA is able to activate PGHS2 gene transcription. This is thought to be via the kinase pathways leading to the activation of activating protein-1 (AP-1) and activating transcription factor (ATF), and through the induction of PGHS2 gene transcription through binding to the CRE/ATF binding sites of the PGHS2 gene [Catley et al., 2003]. Other studies have implicated nuclear factor-kappaB (NF-κB) as a transcription factor mediating the stimulation of prostaglandin synthesis by IL-1β through up-regulating PGHS2 mRNA expression [Catley et al., 2003]. NF-κB transcriptional binding sites have been located on the PGHS2 gene, and the binding of NF-κB to these sites are thought to activate the PGHS2 promoter to induce gene transcription [Catley et al., 2003].

Studies have revealed that the mechanism by which hCG up-regulates PGHS2 mRNA levels is not through increasing the transcription of the gene, but through increasing the stability of the transcript [Han et al., 1996a: 1996b]. In addition to this, in rat ovarian cells, soluble PLA\(_2\) expression was shown to be hCG dependent [Ben-Shlomo et al., 1997]. Other studies have revealed that ovarian PLA\(_2\) activity
was stimulated by hCG administration in rats [Bonney and Wilson 1993]. These data
together reveal that hCG/LH can increase prostaglandin production through
increasing the expression and activity of PLA2 and through increasing the stability of
PGHS2 mRNA. Indirect effects of hCG on stimulating prostaglandin production
have also been documented, with NS-398 and indomethacin administration shown to
reduce the number of ovulations in the rat [Mikuni et al., 1998].

The data presented in this Chapter could be interpreted to suggest that prostaglandins
play a mediatory role in the stimulation of 11βHSD activities by hCG and IL-1β.
There are a number of studies that have documented the role of prostaglandins in
increasing the activity and expression of 11βHSD1 in different tissue types. In
human chorionic trophoblast cells, studies by Alfaidy et al. [2001] have documented
that PGF2α can increase 11βHSD1 activity. This stimulation was speculated to occur
via FP receptor activation and subsequent mobilisation of calcium stores. This is
thought to activate calcium dependent protein kinase (PKC), which has been shown
to increase the phosphorylation of 11βHSD1, speculated to account for the increase
in 11βHSD1 activity. Consensus sites for PKC phosphorylation are present in the
primary sequence of 11βHSD1, such that this pathway could mediate the effects of
prostaglandins on regulating the activity (but not expression) of 11βHSD1 in human
granulosa-lutein cells. However, subsequent studies in this thesis question the ability
of PKC to access 11βHSD1 (see Chapter 7).

Other mechanisms by which prostaglandins could be regulating 11βHSD1 activity
are via perixisome proliferator-gamma receptors (PPARs) subtype. Prostaglandins
are naturally occurring ligands of PPARs [Helliwell et al., 2004]. 15deoxy-PGJ2, the suggested ligand for PPARγ has been shown to increase 11βHSD1 activity in omental and subcutaneous adipocyte stromal cells. Moreover, inhibitors of PPARγ have been shown to inhibit 11βHSD1 activity, and Tomlinson et al. [2001] have speculated that the effects of PGJ2 on increasing 11βHSD1 activity could be mediated by PPARγ. However, as PPARs are nuclear receptors, they would be expected to influence the activity of 11βHSD through changing 11βHSD expression. Studies reported in chapters 5 and 6 of this thesis do not find any changes of protein expression, but do not exclude changes in expression of 11βHSD1 mRNA.

One possible mechanism of regulation that cannot be overlooked is that MA and NS-398 could be decreasing the stimulation of 11βHSD activities by increasing the metabolism of AA to epoxygenase and lipoxygenase products. The inhibition of PGHS by MA and NS-398 would increase the flux of AA through the epoxygenase and lipoxygenase pathways, the products of which could be inhibiting hCG- and IL-1β-stimulated 11βHSD activities.

In conclusion, this study has found that hCG and IL-1β can increase 11βHSD activities independent of changes in 11βHSD1 protein expression. Co-treatment with NS-398 and MA abolishes the increase in the oxidative activities of 11βHSD1 in response to both hCG and IL-1β, both of which were confirmed to increase PGE2 and PGF2α production. Taken together, these data suggest a possible role for eicosanoids in mediating hCG and IL-1β stimulation of 11βHSD activities in human granulosa-lutein cells.
Chapter Seven: Elucidation of structural topology, regulatory domains, and tertiary structure of 11βHSD1
7.1 Introduction

A number of studies have investigated the structure, localisation and topology of 11\(\beta\)HSD1. In the early 1990's, Tsigelnny and Baker [1995a; 1995b] generated the first structural domain prediction for 11\(\beta\)HSD1 based on evolutionary links of 11\(\beta\)HSD1 with other members of the short-chain alcohol dehydrogenase (SCAD) family of enzymes. In order to predict the structure of 11\(\beta\)HSD1, bacterial 20\(\beta\)HSD was selected as a template protein. By analogy, these authors concluded that (i) 11\(\beta\)HSD1 dimerises, (ii) the active sites of 11\(\beta\)HSD1 would be located within a bundle of 4 hydrophobic helices, and (iii) 11\(\beta\)HSD1 contained an NADPH co-factor binding site within a Rossman fold [Tsigelnny and Baker 1995a; 1995b].

Following on from these studies, Ozols generated the first topology predictions of 11\(\beta\)HSD1 orientation within the smooth endoplasmic reticulum (ER) [Ozols 1995; Mziaut et al, 1999]. These predictions were based on several factors: the homology of the N terminus of 11\(\beta\)HSD1 to the N terminus of the 50kDa esterase enzyme, the presence of 3 N-linked glycosylation sites that were presumed to be orientated towards the lumen of the ER, the presence of 2 cysteine residues for the formation of an intramolecular disulphide bond, (also assumed to adopt a luminal orientation), and that 11\(\beta\)HSD1 was resistant to protease digestion unless the smooth ER membrane was disrupted using detergents. Based on homology to 50kDa esterase,
11βHSD1 was predicted to have a very small cytosolic N terminus (Met1-Lys3), a single transmembrane domain (Lys6-Glu23), with the majority of the C terminus (Glu26-Lys292) inside the lumen of the ER with a hydrophobic core [Ozols 1995].

Subsequent biochemical studies further refined the models generated by Tsigelny and Baker, and by Ozols. Studies were conducted using FLAG epitopes at the extreme N and C termini of 11βHSD1, in combination with detergents that selectively permeabilise only the plasma membrane, or both the plasma membrane and the ER membrane. These studies confirmed that the extreme N terminus of 11βHSD1 does indeed reside in the cytosol and that the extreme C terminus is located in the lumen of the smooth ER. Investigations using site-directed mutagenesis revealed that Lys55 was essential to maintain lumenal orientation of the C terminus, as when this Lys was mutated to a Ser residue, the topology of 11βHSD1 was reversed [Odermatt et al., 1999].

Subsequent studies used site-directed mutagenesis to truncate the N terminus of 11βHSD1. Mutants lacking either the N-terminal amino acids (aa) 1-15 or aa 1-30 revealed that these residues, encoded by exon 1 of the HSD11B1 gene, are not essential to anchor 11βHSD1 to the smooth ER membrane. However, when the truncated 11βHSD1 proteins were also mutated at Val149 to Arg, the truncated protein was partially released from the smooth ER membrane. On mutation of Val149 to Glu, the truncated 11βHSD1 was fully released from the ER membrane, localising exclusively to the cytosolic supernatant fraction. The hydropathy plot for 11βHSD1, using the thermal modelling and analysis programme (TMAP), revealed that there
are 3 possible hydrophobic domains in human 11βHSD1, the first being the predicted transmembrane domain (Met₄-Tyr₂₁), with a second hydrophobic domain just prior to the catalytic site (Val₁₃₆-Leu₁₅₈), and the third just after the catalytic site (Ile₁₉₇-Thr₂₂₀). Site-directed mutagenesis of Val₁₄₉ to Glu would reduce the hydrophobicity of the region prior to the active site, rendering it unable to penetrate the membrane as a transmembrane domain [Blum and Maser 2003].

Although the biochemical and in silico models of 11βHSD1 topology appear to favour 11βHSD1 as comprised of a single transmembrane domain with a short cytosolic N terminus and a large globular C terminal domain within the lumen of the ER, there are several problems with this model. The first is that when a mutant form of 11βHSD1 was generated that lacked the 'first' transmembrane domain, the enzyme still co-precipitated with the smooth ER membrane. The second is that the co-factor binding site for NADPH is predicted to reside within the lumen of the ER, but the enzyme is known to respond to addition of exogenous pyridine nucleotides on the cytosolic side of microsomes. Therefore, the aims of the studies described in this chapter were to use multiple, complementary sequence analysis programs to develop alternative models for the 11βHSD1 enzyme based on:

i) Secondary structure prediction

ii) Hydropathy plots (+/- topology predictions)

iii) Predicted protein folds and domains

Since the primary sequence of bovine 11βHSD3 has recently been deposited in the Entrez-Protein database, the sequence identities between 11βHSD1, 11βHSD2 and
11βHSD3 have been compared in the cow (the only species in which all 3 11βHSD enzymes have been cloned to date).

7.2 Experimental Design

For all results obtained, the primary sequences for 11βHSD1 were used. The complete primary amino acid sequences for 11βHSD1 were obtained from NCBI Entrez Protein database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein).

7.2.1 Primary sequence alignment

Primary sequences for 11βHSD1 were obtained for the following species: human \((Homo sapiens)\), squirrel monkey \((Samiri sciureus)\), pig \((Sus scrofa)\), cow \((Bos taurus)\), sheep \((Ovis aries)\), rabbit \((Oryctolagus cuniculus)\), guinea pig \((Cavia porcellus)\), hamster \((Mesocricetus auratus)\), rat \((Rattus norvegicus)\) and mouse \((Mus musculus)\), and the partial sequence to date for cat \((Felis catus)\). All sequences were converted to FASTA format, and sequence alignments were performed. Two different methods for alignment were used, the first being based on manual sequence alignments to the human 11βHSD1 sequence by visual inspection and the second using the CLUSTALW v1.4 database (obtained from http://pir.georgetown.edu/pirwww/search/multalin.html). CLUSTALW is a progressive alignment method that builds up a multiple sequence alignment starting with the most related sequences, and then by adding the less related sequences to the original alignment. The order in which the sequences are added is based on an initial
all by all pairwise alignment, therefore generating an un-biased alignment of the sequences.

This methodology was also used to determine the sequence homology between the bovine 11βHSD1, 11βHSD2 and 11βHSD3 proteins.

7.2.2 Functional site characterisation of the 11βHSD1 primary sequence

Potential candidates for functional sites within the 11βHSD1 sequence were identified on the basis of the presence of consensus sequences for such domains using the Prosite database (http://ca.expasy.org/prosite).

7.2.3 Secondary structure predictions

Secondary structure predictions were made using PsiPred version 2.0 (http://bioinf.cs.ucl.ac.uk/psipred/) [Jones 1999; McGuffin et al., 2000].

7.2.4 Localisation of TM domains

Once sequence alignments were complete, hydrophobicity plots were generated for the aligned proteins initially using Kyte-Doolittle scores. When deriving the hydropathy plots the window size was set to 9 amino acids, this being the optimal size when looking for surface regions in a globular protein. The window size is the number of amino acids whose hydrophobicity scores are averaged and assigned to the middle amino acid in the window. Since the hydrophobicity plots for all 11 species were very similar, all subsequent studies were performed using only the primary and secondary structure predictions for human 11βHSD1.
The human sequence for 11\beta HSD1 was analysed using five transmembrane prediction tools. Five different predictive tools were used: TMAP [Persson and Argos, 1997], Topology Predictor (TopPred) [Claros and von Heijne, 1994] using Kyte Doolittle (KD) scores, TopPred using Goldman Engelman Steitz (GES) scores, model recognition (MEMSAT 2) [Jones 1998; Jones 1994] and transmembrane helical model (TMHMM) [Krogh et al., 2001]. Transmembrane domains were predicted based on the hydrophobicity of each amino acid residue within the sequence and the hydrophobicity of surrounding residues.

7.2.5. Tertiary structure prediction- Fold recognition

Using the output from the database combined with topology predictions, 3 alternative models for the tertiary structure of human 11\beta HSD1 were generated. Modified genomic threading (mGenTHREADER) (http://bioinf.cs.ucl.ac.uk/psipred/) [McGuffin and Jones 2003; Jones 1999] was used to predict functional folds within the protein based on homology to other protein folds within the mGenTHREADER database. The best templates for fold homology to 11\beta HSD1 were predicted based on homology to 11\beta HSD1 without the first predicted transmembrane domain. Criteria that were used to assess the templates were low energy scores (solvation energy, pairwise energy, and the net energy) which provide a co-efficient (E scores) to predict the probability of fold homology to 11\beta HSD1.
7.3 Results

7.3.1. Alignment of 11βHSD1 primary sequences

Primary sequence alignments for all published 11βHSD1 sequences were conducted by visual inspection (Figure 7.1A) and using CLUSTALW (Figure 7.1B) and subsequently aligned in terms of identity to the human sequence of 11βHSD1. Analysis of percentage sequence homology across species revealed that the 11βHSD1 has remained highly homologous. The N terminal sequence upstream of the active site exhibits greater than 80% sequence identity across the mammalian species. The C terminal region downstream of the active site was less homologous, with a minimum matching sequence identity of 66.4% when comparing the mouse or rabbit sequences to the human 11βHSD1 sequence (Table 7.1).

7.3.2. Alignment of bovine 11βHSD1, 11βHSD2 and 11βHSD3 primary sequences

Primary sequence alignments for bovine 11βHSD1, 11βHSD2 and 11βHSD3 sequences were carried out using CLUSTALW (Figure 7.2). Bovine 11βHSD3 was found to share 44% residue identity when compared to bovine 11βHSD1. 11βHSD2 shared less identity, with 26% of residues identical to bovine 11βHSD1.

7.3.2 Analysis of functional sites and regulatory regions in all sequences aligned of 11βHSD1

In all 11 species, the consensus sequence for SCAD enzymes (YxxxK) was conserved (Figure 7.3). In human 11βHSD1, this consensus sequence lies at amino
acid positions 183-187 (YSASK), with the catalytic region spanning Val/Ala166 to Phe194. The NADP(H) co-factor binding site (spanning residues Val47 to Leu81 in 11βHSD1) was also highly conserved (>83% identity) between species. Three conserved sites for N-linked glycosylation were predicted across species (Figure 7.3). In human 11βHSD1, two cysteine residues (Cys78-Cys213) were conserved, and are thought to take part in intramolecular disulphide bond formation. Possible sites for myristoylation of the enzyme were also identified. Several consensus sequences were located for regulation by kinases including PKC, Casein Kinase-2 (CK2) and tyrosine kinase. These possible phosphorylation sites were generally located downstream (C terminally) with respect to Glu25.

7.3.3. Secondary Structure prediction for human 11βHSD1

The secondary structure of human 11βHSD1 was predicted by PsiPred to consist of 11 α helices and 6 β strands interlinked by random coils (Figure 7.4).

7.3.4. Topology predictions for 11βHSD1

A hydropathy plot of the aligned 11βHSD1 sequences, using the KD scores, revealed that across all species the topology of the protein is highly conserved (Figure 7.5). All species contain 5 regions of hydrophobicity, with 3 of sufficient hydrophobicity and sequence length to span the membrane: The first of the three putative transmembrane domains is located at the N terminus of the protein, and regions 2 and 3 flank the enzyme's active site.
To assess the reliability of the topology as predicted by a hydropathy plot conducted using KD scores, further predictions were carried out using a total of 5 different programs. Each program used presented different models for the topology of 11βHSD1 (Figure 7.6). TMAP predicted that 11βHSD1 contains 3 transmembrane domains at Met4 to Tyr21, Val136-Leu158 and Ile197-Thr220. If Goldman Engelman Steitz (GES) hydrophobic scores were used, TopPred also predicted 11βHSD1 to contain 3 transmembrane domains although at positions Met4-Asn24, Val136-Leu158, and Glu163-Tyr183. Further analysis using TopPred with the KD scale of hydrophobicity predicted 5 transmembrane domains at Met1-Tyr21, Phe102-Thr122, Ser139-Lys159, Asn162-Ala182, and Tyr201-Thr220. Both MEMSAT2 and TMHMM programs predicted only a single membrane spanning region at Tyr7-Tyr21 or Tyr7-Ser22, respectively.

To elucidate the role of Val149 in stabilising the hydrophobic domains as shown by Odermatt et al [2001], TMAP-KD was used, but with Val149 replaced with either Arg or Glu. Replacing the hydrophobic Val at position 149 with Arg or Glu decreased the hydrophobicity scores of the surrounding regions. A decrease in overall hydrophobicity of the protein was observed with this mutation, specifically the affected region spanned from Leu145 to Ala153.

7.3.5. Tertiary structure models

Combining the results of the secondary structure and topology predictions, 3 possible models for the tertiary structure of human 11βHSD1 were generated. The models generated make the assumption that the in vitro studies carried out by
Odermatt et al., [2001] to determine the orientation of the extreme N and C terminus of 11βHSD1 in the smooth ER membrane were correct. Therefore all models are generated on the assumption that the extreme N terminus of 11βHSD1 is localised to the cytoplasm, and the extreme C terminus is localised to the lumen of the ER. Model 1 predicts a single transmembrane protein, that is able to form a dimerisation interface through α helixE, with a potential inter-molecular disulphide bond at Cys272 (Figure 7.7a). The N terminus of the protein is localised to the cytosol, with α-helixA forming a membrane spanning region, and the C terminus within the lumen of the ER. Both the catalytic site (β strandE and α helixF) and the Rossman fold that constitutes the NADP(H) co-factor binding site (β strandA to α helixC) are localised to the lumen of the ER.

Model 2 predicts a protein with 3 transmembrane domains that forms a dimer (Figure 7.7b). Again, the N terminus of 11βHSD1 is localised to the cytosol with α helixA forming the first putative membrane spanning region. The second transmembrane region is through α helixE, and the third is through α helixF. In model 2, the active site of 11βHSD1 and the cofactor binding site are both located within the hydrophobic core of the smooth ER membrane.

Model 3 also predicts that 11βHSD1 has 3 transmembrane domains (Figure 7.7c). As in models 1 and 2, the N terminus is localised to the cytosol with the C terminus within the lumen of the ER. α helixA comprises the first putative transmembrane domain with α helixE and α helixF plus β strandF forming the second and third transmembrane domains, respectively. The active site is localised to the cytosol.
while the NADP(H) co-factor binding domain is localised to the lumen of the ER. The protein is speculated to form homodimers at the third transmembrane domain with a potential intermolecular disulphide bond at Cys272 to stabilise the dimer.

To assess the validity of each of these 3 models, a number of questions were generated, based on features that were deemed essential for 11βHSD1 to be functional (Table 7.2). The questions asked of each model were:

(i) Are Cys78, Cys213 and Cys272 localised to the lumen of the ER for intra- and inter-molecular disulphide bond formation respectively?

(ii) Are Asn123, Asn162 and Asn207 located in the lumen of the ER for N-linked glycosylation?

(iii) Are the NADP(H) co-factor binding site and catalytic active site located on the same side of the ER membrane?

(iv) Are Ser169 and Tyr183 within close proximity to form the catalytic site of 11βHSD1?

The intra-molecular disulphide bond proposed between Cys78 and Cys213 [Ozols 1995] would be promoted in the oxidative environment of the ER lumen, as would the inter-molecular bond (at Cys272) that is hypothesised to stabilise the dimer interface specifically for human 11βHSD1. In models 1 and 2, all 3 Cys residues are located within the lumen of the ER, but in model 3, Cys213 is localised within the ER membrane. This would render the possibility of the formation of an intramolecular disulphide bond in model 3 unlikely.
11βHSD1 is also known to contain 3 sites for N-linked glycosylation, which can only occur within the lumen of the ER. Therefore each of the Asn residues at position 123, 162 and 207 should be located within the lumen of the ER. Model 1 is the only model that has all 3 Asn residues located within the lumen of the ER. Model 2 has Asn162 within the cytosol, and model 3 predicts that Asn162 and Asn207 would be localised to the cytosol and hydrophobic core of the smooth ER membrane respectively.

For 11βHSD1 to be functional, both the catalytic site and co-factor binding site would need to be on the same side of the membrane. Model 2 would orientate the catalytic site and the cofactor binding site on opposite sides of the membrane. Model 3 would localise the active site within the ER membrane and the co-factor binding site to the lumen of the ER. In contrast, Model 1 localises both the catalytic and cofactor binding site to the lumen of ER.

The key catalytic residues of Ser169 and Tyr183 of the catalytic triad would need to be within close proximity for the active site to be functional [Tsigelny and Baker 1995b]. Ser169 is necessary to decrease the pKa of Tyr183 for catalysis. In Model 2 the Tyr and Ser residues would not be able to contact each other to form the key catalytic centre for cortisol-cortisone inter-conversion, such that Model 2 would almost certainly not produce a functional enzyme.

Taking all of these data into consideration, Model 1, appears to fulfil all criteria necessary for the 11βHSD1 enzyme to be functionally viable. Therefore 11βHSD1 appears to be a single transmembrane protein orientated with the extreme N terminus.
Figure 7.1A: Visual alignment of primary sequences of 11βHSD1 from other mammalian species to human 11βHSD1

<table>
<thead>
<tr>
<th>Species</th>
<th>Homo sapiens</th>
<th>Saimiri sciureus</th>
<th>Sus scrofa</th>
<th>Bos taurus</th>
<th>Ovis aries</th>
<th>Felis catus</th>
<th>Oryctolagus cuniculus</th>
<th>Cavia porcellus</th>
<th>Mesocricetus auratus</th>
<th>Rattus norvegicus</th>
<th>Mus musculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MAPMKYLLPILGLPMAYYYYSANEEMFPEKLEQKIVIVMGSAKGK</td>
<td>.............</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
<td>...........</td>
</tr>
<tr>
<td>20</td>
<td>.TH.....</td>
<td>...........</td>
</tr>
<tr>
<td>30</td>
<td>.</td>
<td>...........</td>
</tr>
<tr>
<td>40</td>
<td>.</td>
<td>...........</td>
</tr>
<tr>
<td>50</td>
<td>.</td>
<td>...........</td>
</tr>
<tr>
<td>60</td>
<td>AYHLAKMGHVVVTARSKETLQKVSHCGLGARHAYIAGTMDTFAE</td>
<td>...........</td>
</tr>
<tr>
<td>70</td>
<td>...........</td>
</tr>
<tr>
<td>80</td>
<td>...........</td>
</tr>
<tr>
<td>90</td>
<td>...........</td>
</tr>
<tr>
<td>100</td>
<td>...........</td>
</tr>
<tr>
<td>110</td>
<td>QFVAQAGMKGGNDMLLNNITNTSLMLNFXDHIOHVVRKSNRLNVNFLSVVY</td>
<td>...........</td>
</tr>
<tr>
<td>120</td>
<td>...........</td>
</tr>
<tr>
<td>130</td>
<td>...........</td>
</tr>
<tr>
<td>140</td>
<td>...........</td>
</tr>
<tr>
<td>150</td>
<td>...........</td>
</tr>
<tr>
<td>160</td>
<td>TVAALPMLKQSGSV1VVSPLAGKAVPVMAYAASIFALDFPPSSIRKE</td>
<td>...........</td>
</tr>
<tr>
<td>170</td>
<td>...........</td>
</tr>
<tr>
<td>180</td>
<td>...........</td>
</tr>
<tr>
<td>190</td>
<td>...........</td>
</tr>
<tr>
<td>200</td>
<td>...........</td>
</tr>
</tbody>
</table>

214
<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>SIVSYNVSITLCVGLIDTETMAPKAVSGIVHMQAPKKEECALEI1KGGA</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>..TK...........I........D.....A....INV.PL...........A.</td>
</tr>
<tr>
<td>Bos taurus</td>
<td>..EATK...........I........D.....A....FNAK.S...........T</td>
</tr>
<tr>
<td>Ovis aries</td>
<td>..EATK...........I........D.....A....YNASE.S........**</td>
</tr>
<tr>
<td>Felis catus</td>
<td>Y..SMV...........I........N.D..N.l..</td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>HALTN...........D....E....KID.K.S...........</td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td>FL.NK...........I........I....T......YLGP.S...........T.</td>
</tr>
<tr>
<td>Mesocricetus auratus</td>
<td>HG.TN...........N........T......VFNA.P.S...........</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>HLMYK...........F......L.E.....ILQ.....Q........*.TV</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>LYTITK...........E1....IDAL,S...........T.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>LRQEEYYDSSLWMTLLLIRNPCRKLFLKLYSTSYMMDRFINK-------</td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>...........R......L..S.......R....ST.GL.........</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>...........IL..S..LE..G.....SLRH...E..T.N-------</td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>...........D...........GNLQ..P..LG..G.LI......HLRKFDISKLV.N-------</td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td>...........D.M..VG.R.VPY.LG..G..M.....SAAE.WNVLSN.ELYGRWA</td>
</tr>
<tr>
<td>Mesocricetus auratus</td>
<td>...........WS..PI.LG..G..M.....SMK.PTF.KLSS-------</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>..KS.....KLPL.PI.LG..G..M..FSLRY.K.M.VSN-------</td>
</tr>
</tbody>
</table>
Figure 7.1B: Primary sequence alignment of 11βHSD1 from different mammalian species using CLUSTALW database and subsequent alignment to the human enzyme in order of evolutionary divergence

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>MAFMKKYLLPILGLFMAAYYYSANEEFRPGMQLQKKVIVTGASEKIGREM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>TH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>I.L</td>
<td>R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bos taurus</td>
<td>I.L</td>
<td>R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovis aries</td>
<td>I.L</td>
<td>R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felis catus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesocricetus auratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>AYHLAKMGAVVVTARSQETLQKVSHECLGAAASHIAGATMDMTFPAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>R.E</td>
<td>S.S.V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bos taurus</td>
<td>R.E</td>
<td>S.S.E.R.V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovis aries</td>
<td>R.E</td>
<td>S.S.E.R.V.N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felis catus</td>
<td>N.K.I..M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>E.A..K.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesocricetus auratus</td>
<td>SE.J..E.G..A.R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>S.J..E.G..R.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td>S.J..E.G..R.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>QFVAQGKL MGMGLMLNHTNTSLNLFFDIIHVRKSMENVFLSYYVL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>K.L.</td>
<td>QAFMTSVY.IV.R.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bos taurus</td>
<td>K.E.V.</td>
<td>HY.P.GV.SN..LL.RTL.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovis aries</td>
<td>K.E.V.</td>
<td>NY.P.RV.SN..LL.RL.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felis catus</td>
<td>K.</td>
<td>M..SG..I.R.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td>K.</td>
<td>A..F.MN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>TVAALPMLKQNSGIVSVSLAGKIVAYPMVAYASASKFALDGFFS21RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saimiri sciureus</td>
<td>M..</td>
<td>I..V..</td>
<td>IS..Y.</td>
<td></td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>S..</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bos taurus</td>
<td>ST..T</td>
<td>I..I.C.L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovis aries</td>
<td>ST..TS..V..I.C.LA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felis catus</td>
<td>SAT..K..M.S.LI.P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oryctolagus cuniculus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>ST..</td>
<td>AII..M..MTQ..LI.S..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td>ST..</td>
<td>A.I..MTQ..I.P..</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 7.2: Primary sequence alignment of bovine 11βHSD1, 11βHSD2 and 11βHSD3 using CLUSTALW database.
Figure 7.3: Predicted conserved regulatory sites of 11βHSD1. PTM = post-translational modification, N-myr = myristoylation, CK2 = casein kinase 2 phosphorylation site, diS = disulphide bond linkage, N-glyco = N-linked glycosylation sites, Amid = amidation.

<table>
<thead>
<tr>
<th>PTM</th>
<th>Kinase</th>
<th>N-Myr</th>
<th>CK2</th>
<th>Amid.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rabbit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guinea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hamster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site / Domain</th>
<th>NADP(H) Binding Site</th>
<th>Transmembrane domain</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PTM</th>
<th>Kinase</th>
<th>PKC</th>
<th>PKC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>51</td>
<td>AYHLAKMGAVVVHVE</td>
<td>TAR</td>
</tr>
<tr>
<td>Monkey</td>
<td>51</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Pig</td>
<td>51</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>Cow</td>
<td>51</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>Sheep</td>
<td>51</td>
<td>R</td>
<td>.</td>
</tr>
<tr>
<td>Cat</td>
<td>51</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Rabbit</td>
<td>50</td>
<td>F</td>
<td>.</td>
</tr>
<tr>
<td>Guinea</td>
<td>51</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Hamster</td>
<td>51</td>
<td>SE</td>
<td>.</td>
</tr>
<tr>
<td>Rat</td>
<td>47</td>
<td>S</td>
<td>.</td>
</tr>
<tr>
<td>Mouse</td>
<td>51</td>
<td>S</td>
<td>.</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Human</td>
<td>101 QFVAQAGKLMMGGLDMLNHITNTSLNLHDDIHHVRKSM BNFLSYYVL</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Monkey</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Pig</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Cow</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Sheep</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Cat</td>
<td>100 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Rabbit</td>
<td>101 E.A.E.N</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Guinea</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Hamster</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Rat</td>
<td>97 .</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mouse</td>
<td>101 .</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

PTM

<table>
<thead>
<tr>
<th>Kinase</th>
<th>N-Glyco. Site / Domain</th>
<th>PTM Site / Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>201 YSVSRVNSITLVCGLIDTETAMKAVSGIVHMQAAPKEECALEIIKGGA</td>
<td></td>
</tr>
<tr>
<td>Monkey</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Cow</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>200 .</td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>197 .</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>201 .</td>
<td></td>
</tr>
</tbody>
</table>

N-Glyco.

<table>
<thead>
<tr>
<th>PKC</th>
<th>N-Glyco. diS N-Myr</th>
<th>N-Myr</th>
<th>N-Glyco. PKC+CK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRKE</td>
<td>VVVSLSAGKVAYPMVAAVSASKFALDGFF</td>
<td>PKC+CK2</td>
<td></td>
</tr>
</tbody>
</table>

Catalytic Site

- Human
- Monkey
- Pig
- Cow
- Sheep
- Cat
- Rabbit
- Guinea
- Hamster
- Rat
- Mouse

PTM

<table>
<thead>
<tr>
<th>Kinase</th>
<th>N-Glyco. diS N-Myr</th>
<th>N-Myr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>201 YSVSRVNSITLVCGLIDTETAMKAVSGIVHMQAAPKEECALEIIKGGA</td>
<td></td>
</tr>
<tr>
<td>Monkey</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Cow</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Cat</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>200 .</td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>201 .</td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>197 .</td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>201 .</td>
<td></td>
</tr>
</tbody>
</table>

N-Glyco.

- Human
- Monkey
- Pig
- Cow
- Sheep
- Cat
- Rabbit
- Guinea
- Hamster
- Rat
- Mouse

N-Myr

- Human
- Monkey
- Pig
- Cow
- Sheep
- Cat
- Rabbit
- Guinea
- Hamster
- Rat
- Mouse

220
<table>
<thead>
<tr>
<th>Kinase</th>
<th>PTM</th>
<th>TyrK</th>
<th>PKC</th>
<th>TyrK</th>
<th>PKC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>251</td>
<td>LRQEEVYYDSSLWTTLLIRNPCRKILEFLYSTYSYNMDRFINK</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkey</td>
<td>251</td>
<td>R........L...S........R....ST.GL...</td>
<td>291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>251</td>
<td>IL.S..LE...G....SLRH....E..T.N</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow</td>
<td>251</td>
<td>D......IL.P..L..G..M..FFLKK...E....N</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>249</td>
<td>D....N.I.L.S..L.K...G..M..SLK..E....N</td>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>250</td>
<td>D....GLNQ..P..LG..GKRLI...HLRKFISKLV.N</td>
<td>291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea</td>
<td>251</td>
<td>D.M..VG.R..VPY.LG.G..SAAE..W.NVLSNEKLYGRWA</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>251</td>
<td>D..WS..PL.LG.G..M..SMK..FTF.KL.SS</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>246</td>
<td>KD....K.P..P..LG.G.R.M..SLR..R.L.VSN</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse</td>
<td>251</td>
<td>KS....K.PL.PI.LG.G..M..FSLR..K.M.VSN</td>
<td>292</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 7.4: Secondary structure prediction for human 11βHSD1 generated by PsiPred database based on PsiBLAST scores when compared to other proteins within the PsiPred database.
Figure 7.5: Hydropathy plot of aligned primary sequences for mammalian 11βHSD1 enzymes. The Kyte-Doolittle scale was used as a measure of hydrophobicity with positive values being more hydrophobic and negative values being less hydrophobic.
Figure 7.6: Hydropathy plot and transmembrane domain predictions for human 11βHSD1 using TMAP, TopPred-KD (Kyte-Doolittle scores), TopPred-GES, MEMSAT2 and TMHMM topology prediction methods.
Figure 7.7a: Model 1 of secondary structure and topology within the ER membrane of human 11βHSD1

- α-helix and β-strand (each drawn to scale); random coil (not drawn to scale);
- βA-αB-βB-αC = Rossmann fold (site of NADP(H) binding);
- βE-αF = Catalytic site;
- ■ ■ ■ dimerization interface; inter-molecular disulphide bond (human 11βHSD1 only);
- site of intra-molecular disulphide bond; consensus N-linked glycosylation sequence.
Figure 7.7b: Model 2 of secondary structure and topology within the ER membrane of human 11βHSD1

\[\text{α-helix and β-strand (each drawn to scale); } \]

(not drawn to scale); \(β_A-α_B-β_B-α_C \) = Rossmann fold (site of NADP(H) binding); \(β_E-α_F \) = Catalytic site; \(\text{dimerization interface; inter-molecular disulphide bond (human 11βHSD1 only); site of intra-molecular disulphide bond; consensus N-linked glycosylation sequence.} \)
Figure 7.7c: Model 3 of secondary structure and topology within the ER membrane of human 11βHSD1

- α-helix and β-strand (each drawn to scale); random coil (not drawn to scale);
- βA-αB-βB-αC = Rossmann fold (site of NADP(H) binding);
- βE-αf = Catalytic site;
- dimerization interface; inter-molecular disulphide bond (human 11βHSD1 only);
- site of intra-molecular disulphide bond;
- consensus N-linked glycosylation sequence.
Figure 7.8: Three-dimensional structures for the candidate structural homologues of human 11βHSD1

(a) Bacterial 3B/17BHSD

(b) Thornapple Tropionine Reductase 1
(c) Bacterial Glucose Dehydrogenase

(d) Mouse Carbonyl Reductase

(e) Bacterial Sorbitol Dehydrogenase
Table 7.1: Table outlining homology to human 11βHSD1 primary sequence comprised of homology to whole sequence, N terminus before the catalytic region and C terminus following the catalytic region. Nd= not determined.

<table>
<thead>
<tr>
<th>Species</th>
<th>N-terminus (prior to conserved YSASK catalytic sequence)</th>
<th>C-terminus (conserved YSASK catalytic sequence and beyond)</th>
<th>WHOLE PROTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># same aa</td>
<td>% identity</td>
<td># same aa</td>
</tr>
<tr>
<td>Human</td>
<td>182</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>Monkey</td>
<td>173</td>
<td>95.1</td>
<td>92</td>
</tr>
<tr>
<td>Pig</td>
<td>154</td>
<td>84.6</td>
<td>84</td>
</tr>
<tr>
<td>Cow</td>
<td>148</td>
<td>81.3</td>
<td>82</td>
</tr>
<tr>
<td>Sheep</td>
<td>148</td>
<td>81.3</td>
<td>79</td>
</tr>
<tr>
<td>Cat</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
</tr>
<tr>
<td>Rabbit</td>
<td>142</td>
<td>88.8</td>
<td>72</td>
</tr>
<tr>
<td>Hamster</td>
<td>151</td>
<td>83.0</td>
<td>79</td>
</tr>
<tr>
<td>Rat</td>
<td>158</td>
<td>86.8</td>
<td>74</td>
</tr>
<tr>
<td>Mouse</td>
<td>153</td>
<td>84.1</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 7.2: Summary of essential criteria to assess the functionality of each proposed model for the topology of human 11\(\beta\)HSD1. Where the given structural arrangement would prevent the enzyme being functional it is highlighted in red bold text. Green text represents a specific orientation of an amino acids or where a structural domain is consistent with published data.

<table>
<thead>
<tr>
<th></th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of putative transmembrane domains (TMDs)</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Model exhibits the TMDs(^\dagger) as predicted by:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMAP</td>
<td>-</td>
<td>-</td>
<td>YES</td>
</tr>
<tr>
<td>TopPred-KD(^2)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TopPred-GES(^3)</td>
<td>-</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>MEMSAT2-V149(^4)</td>
<td>YES</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MEMSAT2-R/E149(^5)</td>
<td>-</td>
<td>YES</td>
<td>-</td>
</tr>
<tr>
<td>TMHMM</td>
<td>YES</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Position of specific amino-acids:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met(_1) (N-terminus)(^6)</td>
<td>Cytosol*</td>
<td>Cytosol*</td>
<td>Cytosol*</td>
</tr>
<tr>
<td>Cys(_7)</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Lumen*</td>
</tr>
<tr>
<td>Asn(_{123})</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Lumen*</td>
</tr>
<tr>
<td>Asn(_{162})</td>
<td>Lumen*</td>
<td>Cytosol</td>
<td>Cytosol</td>
</tr>
<tr>
<td>Asn207</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Membrane</td>
</tr>
<tr>
<td>Cys(_{213})</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Membrane</td>
</tr>
<tr>
<td>Cys(_{279})</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Lumen*</td>
</tr>
<tr>
<td>Lys(_{392}) (C-terminus)(^6)</td>
<td>Lumen*</td>
<td>Lumen*</td>
<td>Lumen*</td>
</tr>
<tr>
<td>Position of protein domains:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridine nucleotide cofactor binding domain</td>
<td>Lumen</td>
<td>Lumen</td>
<td>Lumen</td>
</tr>
<tr>
<td>Catalytic site (YxxxK)</td>
<td>Lumen</td>
<td>Membrane</td>
<td>Cytosol</td>
</tr>
<tr>
<td>Putative dimerisation interface (helix (\alpha)E)</td>
<td>Lumen</td>
<td>Membrane</td>
<td>Membrane</td>
</tr>
<tr>
<td>Additional specifications:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Are the nucleotide cofactor binding domain and the catalytic site of the enzyme on the same side of the ER membrane?</td>
<td>YES*</td>
<td>YES*</td>
<td>NO</td>
</tr>
<tr>
<td>(2) Is Ser({169}) adjacent to Tyr({183}) such that these residues can form a catalytic reaction centre?</td>
<td>YES*</td>
<td>NO</td>
<td>YES*</td>
</tr>
<tr>
<td>(3) Can the putative dimerisation interface in helix (\alpha)E form a 4-helix bundle with helices (\alpha)F, (\alpha)G and (\alpha)H?</td>
<td>YES*</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
Table 7.3: Summary of mGenTHREADER tertiary structure homology

<table>
<thead>
<tr>
<th>Protein</th>
<th>Organism (Common name)</th>
<th>PDB ID</th>
<th>EC</th>
<th>CATH</th>
<th>SCOP</th>
<th>Net Score</th>
<th>E value</th>
<th>Pairwise E</th>
<th>Solv. E</th>
<th>Align Score</th>
<th>A Len</th>
<th>D Len</th>
<th>T Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B / 17B-HSD</td>
<td>Comamonas testosteroni (Bacteria)</td>
<td>1hxh</td>
<td>1.1.1.51</td>
<td>3.40.50.720</td>
<td>0.972</td>
<td>0.00002</td>
<td>-1166.9</td>
<td>-15.0</td>
<td>697</td>
<td>250</td>
<td>253</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Tropinone Reductase 1</td>
<td>Datura stramonium (Common thornapple)</td>
<td>1ae1</td>
<td>1.1.1.236</td>
<td>3.40.50.720</td>
<td>0.972</td>
<td>0.00002</td>
<td>-1139.7</td>
<td>-14.7</td>
<td>657</td>
<td>240</td>
<td>245</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Glucose dehydrogenase</td>
<td>Bacillus megaterium (Bacteria)</td>
<td>lgco</td>
<td>1.1.1.47</td>
<td>3.40.50.720</td>
<td>0.972</td>
<td>0.00002</td>
<td>-1090.9</td>
<td>-17.8</td>
<td>783</td>
<td>254</td>
<td>261</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Carbonyl reductase</td>
<td>Mus musculus (Mouse)</td>
<td>1cyd</td>
<td>1.1.1.184</td>
<td>3.40.50.720</td>
<td>0.972</td>
<td>0.00002</td>
<td>-1060.3</td>
<td>-14.4</td>
<td>642</td>
<td>240</td>
<td>242</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Sorbitol dehydrogenase</td>
<td>Rhodobacter sphaeroides (Bacteria)</td>
<td>1k2w</td>
<td>1.1.1.14</td>
<td>None</td>
<td>None</td>
<td>0.972</td>
<td>0.00002</td>
<td>-1058.0</td>
<td>-14.7</td>
<td>774</td>
<td>250</td>
<td>256</td>
<td>292</td>
</tr>
<tr>
<td>Estradiol 17B-dehydrogenase type 4</td>
<td>Rattus norvegicus (Rat)</td>
<td>1gz6</td>
<td>1.1.1.35</td>
<td>3.40.50.720</td>
<td>0.970</td>
<td>0.00002</td>
<td>-1047.7</td>
<td>-10.6</td>
<td>639</td>
<td>237</td>
<td>302</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>17BHSD type 1</td>
<td>Homo sapiens (Human)</td>
<td>1a27</td>
<td>1.1.1.62</td>
<td>3.40.50.720</td>
<td>0.968</td>
<td>0.00002</td>
<td>-950.7</td>
<td>-9.1</td>
<td>514</td>
<td>245</td>
<td>285</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Enzyme</td>
<td>Species</td>
<td>EC Number</td>
<td>K_m (μM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonyl reductase /</td>
<td>Sus scrofa (Pig)</td>
<td>1.1.1.53</td>
<td>3.40.50.720</td>
<td>0.965</td>
<td>0.00003</td>
<td>-957.5</td>
<td>-8.3</td>
<td>444</td>
<td>234</td>
<td>288</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20BHSD</td>
<td></td>
</tr>
<tr>
<td>3αHSD</td>
<td>Comamonas testosteroni</td>
<td>1.1.1.50</td>
<td>3.40.50.720</td>
<td>0.960</td>
<td>0.00003</td>
<td>-797.2</td>
<td>2.2</td>
<td>410</td>
<td>205</td>
<td>236</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bacteria)</td>
<td></td>
</tr>
<tr>
<td>20αHSD</td>
<td>Oryctolagus cuniculus</td>
<td>1.1.1.189</td>
<td>none</td>
<td>none</td>
<td>0.364</td>
<td>8.378</td>
<td>-534.7</td>
<td>-13.9</td>
<td>66</td>
<td>215</td>
<td>322</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>(Rabbit)</td>
<td></td>
</tr>
</tbody>
</table>
in the cytosol followed by a single transmembrane domain, and with the majority of
the protein and the extreme C terminus localised to the ER lumen.

7.3.6 Protein fold predictions for the lumenal domain of human 11βHSD1

Based on the output of mGenTHREADER on 15 July 2004, 10 putative structures
for the lumenal domain of human 11βHSD1 were isolated. These structures each had
consistently high probabilities of structural similarity to 11βHSD1 over 3
consecutive interrogations of the mGenTHREADER protein fold database (Table
7.3). The number of proteins identified with high fold homology to the lumenal
sequence of 11βHSD1 is unusually high. The proteins identified include a number of
members of the SCAD enzyme family including human 17βHSD type 1, bacterial
3β/17βHSD, rat 17βHSD type 4 and bacterial 3αHSD (Figure 7.8). However, the
protein rabbit 20αHSD had a low fold homology with an E score of only 8.378
(p>0.05 for homology to human 11βHSD1).

7.4 Discussion

This study aimed to generate and evaluate alternative models for the topology and
secondary/tertiary structures of 11βHSD1. Combining relevant literature, sequence
alignment data, hydrophobicity plots, topology predictions for 11βHSD1 and
secondary structure predictions (based on homology to other folds within the PsiPred
and mGenTHREADER databases) 3 models for the possible tertiary structure and
topology of 11βHSD1 were generated. Each model was assessed by criteria that
were known to be essential for 11βHSD1 function, or that had been proven by in
vitro studies of 11βHSD1 orientation in the ER membrane. Both Models 2 and 3 predicted structures that would conflict with published experimental findings. Specifically, model 2 would localise Asn_{162} to the cytosol, however studies by Ozols [1995] have inferred that at least 1 Asn residue must be localised to the lumen of the ER for N-glycosylation. Also, in Model 2, key residues of Ser_{69} and Tyr_{183} would not lie within close enough proximity to form the catalytic triad required for functional enzyme activity as an oxidoreductase. Together, these findings render Model 2 an unlikely model for the topology and tertiary structure of 11βHSD1 within the ER membrane. Model 3 localised both Asn_{207} and Cys_{213} to the membrane, and Asn_{162} to the cytosol, conflicting with data by reported Ozols [1995]. Model 3 also localises the active site of 11βHSD1 to the membrane, and the co-factor binding site to the lumen of the ER, therefore making Model 3 impossible for a functional enzyme.

Model 1 fulfils all of the expected criteria for functional 11βHSD1. Published studies have hypothesised that 11βHSD1 is a single transmembrane protein, with at least 2 sites for N-linked glycosylation, located in the lumen of ER [Ozols 1995]. Model 1 is in accordance with these predictions. Moreover, in Model 1 both the catalytic site and residues Ser_{169} and Tyr_{183} forming the catalytic reaction centre are of luminal orientation with Ser_{169} able to adopt a position close to Tyr_{183}. The Rossman fold for NADP(H) binding is located within the lumen of the ER. The dimerisation interface is located within the lumen of the ER and the helices forming the dimer can form a four helix bundle as predicted by Tsignely and Baker [1995b] with α-helix_{E}, α-helix_{F}, α-helix_{G} and α-helix_{H}.

238
Although Model 1 upholds all structural requirements for 11βHSD1 to be functional, there are still some unresolved problems with this Model. Firstly, exon 1 of the \textit{HSD11B1} gene encodes the first 24 residues of 11βHSD1, which almost certainly comprise the transmembrane domain of the protein. When translation is initiated at exon 2, the 11βHSD1 protein is still targeted to the smooth ER and is membrane-associated. Loss of the N terminal amino acids, and transmembrane domain can be induced by site-directed mutagenesis, or physiologically, as is observed with 11βHSD1B [Mercer et al., 1993]. However, \textit{in vitro} and \textit{in silico} analysis have concluded that 11βHSD1 is a single transmembrane protein. Having excluded the possibility of transmembrane domain membrane attachment, the association of N terminally truncated forms of 11βHSD1 with the smooth ER membrane could reflect peripheral binding through myristoylation of 11βHSD1. There are 5 predicted sites for myristoylation which could anchor 11βHSD1 to the smooth ER membrane through one or more fatty acyl linkage (Figure 7.3).

In model 1, the consensus sequences for phosphorylation and the co-factor binding site both reside within the lumen of the ER. This poses problems for the transport of the pyridine nucleotides across the ER membrane. The lumen of the ER is known to support an oxidative environment [Hwang et al., 1992] and is relatively impermeable to redox-active compounds including the pyridine nucleotides. It has been hypothesised that the oxidases and reductases that are anchored to the ER maintain a functional cooperativity to support this environment [Sawada and Carlson 1981; Kulkarni and Hodgson 1982; Draper et al., 2003]. Hexose-6-phosphate
dehydrogenase (H6PDH) has been speculated to be a key enzyme in maintaining the homeostasis of the oxidative environment of the ER through the production of reducing equivalents of the pyridine nucleotides. H6PDH is the microsomal counterpart of the pentose phosphate pathway, utilising NADP$^+$ as a cofactor and functioning to catalyse the first 2 reactions in the pathway. The supply of substrate, glucose-6-phosphate, is ensured by the glucose-6-phosphate transporter [Clarke and Mason 2003]. The coupling of H6PDH and 11βHSD1 was initially suggested based on cofactor requirements [Sawada and Carlson., 1991]. Recently it has been reported that co-segregating mutations in the genes encoding both 11βHSD1 and H6PDH result in apparent cortisone reductase deficiency [Draper et al., 2003]. Moreover, a recent study by Banhegyi et al [2004] has revealed direct cooperativity between the activity of H6PDH and 11βHSD1 in rat liver microsomes. Specifically it has been proposed that H6PDH alters the redox state of NADP within the lumen of the ER highlighting a possible mechanism of nucleotide support for 11βHSD1, and a possible mechanism for regulating 11βHSD1 directionality, dependent upon the intra-lumenal environment. Therefore an increase in glucose-6-phosphate into the cell will increase the conversion of glucose-6-phosphate to 6-phosphogluconate, which will increase the availability of NADPH, thus favouring cortisone reduction by 11βHSD1 [Atanasov et al., 2004].

The orientation of the kinase phosphorylation sites of 11βHSD1 to the lumen of the smooth ER questions the ability of these kinase enzymes to directly phosphorylate the enzyme to regulate its activities. Numerous studies have shown that kinases and pharmacological stimulators and inhibitors of protein kinase activity can regulate the
activity of 11βHSD1 (Table 1.1). However, these studies show the need for further investigation into the mechanisms by which 11βHSD1 is regulated.

Although the two hydrophobic regions that flank the active site of 11βHSD1 (Val136 - Leu158 and Ile197 - Thr220) are unlikely to form transmembrane domains, these hydrophobic regions could act as potential binding sites for hydrophobic molecules. Since such ligands would be binding to the hydrophobic core of the enzyme, adjacent to the active site of 11βHSD1, this could provide a molecular mechanism whereby hydrophobic lipids could exert allosteric actions on enzyme activity. Such a mechanism could be hypothesised for the regulation of 11βHSD1 activity via progesterone and/or prostaglandins.

In conclusion, this study reveals that the previously predicted topology for 11βHSD1 within the ER is almost certainly correct. 11βHSD1 does appear to be a single transmembrane glycoprotein, which forms homodimers and interacts with H6PDH. The N terminal amino acids are localised to the cytosol, followed by a single transmembrane domain and a large globular C terminal domain that contains hydrophobic regions, and could be linked to the luminal face of the ER membrane through fatty acyl linkages. Although not fully resolved, the mechanisms of regulation of enzyme activity include effects on the intra-luminal cofactor environment of the ER, based upon the co-operativity between 11βHSD1 and H6PDH.
Chapter Eight: General discussion
Chapter 8: General Discussion

The goal of this thesis was to elucidate the cellular mechanisms controlling glucocorticoid metabolism by 11βHSD in the human ovary. This goal was achieved by addressing 5 different questions:

(i) What are the effects of compounds comprising human follicular fluid on 11βHSD enzymes?

(ii) What are the effects of local progesterone synthesis on the 11βHSD enzyme(s) in human granulosa-lutein cells?

(iii) How does local eicosanoid synthesis affect the 11βHSD enzyme(s) in human granulosa-lutein cells?

(iv) Do eicosanoids mediate the stimulation of ovarian 11βHSD enzyme(s) by hCG and IL-1β in human granulosa-lutein cells?

(v) What are the structural topology, tertiary structure and mechanisms for regulation of 11βHSD1 in the smooth ER?

The studies reported in this thesis utilised primary granulosa cell cultures for the study of cellular mechanisms controlling glucocorticoid metabolism by 11βHSD in the ovary. The limitations of these in vitro granulosa cell cultures need to be noted. The granulosa cells were obtained from patients undergoing IVF-ET and so had been exposed to ovulatory doses of gonadotrophins, pre-disposing the cells to assume a luteal phenotype [Richards 1994]. The culture of isolated granulosa cells cannot take account of processes that occur with ovulation and corpus luteum formation, such as tissue remodelling and vascularisation of the follicle. However, primary granulosa
cell cultures, as compared with granulosa cell lines, do retain functional responses and the ability to maintain steroidogenesis with the pattern of steroid synthesis in vitro resembling the hormonal profile in vivo.

Results reported in Chapter 3 of this thesis have demonstrated that there are hydrophilic stimulators and hydrophobic inhibitors of NADP(H)-dependent 11βHSD activities in hFF. Under the conditions used in this study, these compounds have no effect of NAD+-dependent cortisol oxidation. Moreover, the compounds present in hFF exert their effects on the NADP(H) dependent 11βHSD1 activities without affecting protein expression. Although the identity of the compounds remains unclear, the predominant hydrophobic inhibitor of 11βHSD1 activities is not a known prostaglandin, steroid or cholesterol. Moreover, studies have shown that GALF is not a candidate for either the hydrophilic or hydrophobic modulators of 11βHSD1 activity in human FF. At present, based on biophysical properties, oxysterols and/or bile acids are the strongest candidates for the hydrophobic inhibitor(s) of 11βHSD human FF.

Limitations of this study were that concentration-dependent effects of the modulatory compounds in human FF on 11βHSD1 activity were not determined. Also, the kinetic properties of the modulatory hydrophobic components of human FF were not determined. A kinetic study would enable a fuller understanding of the type of inhibition that the modulatory components exert on 11βHSD1 activity.
One potential mechanism by which the hydrophobic components of human FF could inhibit the bi-directional activities of 11βHSD1 is by binding to the active site of the enzyme. Were this to be the case, then the inhibition of enzyme activity would be competitive in nature. Hence, this possibility could be assessed by investigating whether the hydrophobic components of human FF can increase the K_m of 11βHSD1 for cortisol or cortisone, ideally in a cell-free system such as liver microsomes. The studies reported in Chapter 7 raised the possibility that hydrophobic compounds in human FF might inhibit 11βHSD1 by allosteric actions. This could involve binding to the hydrophobic regions which flank the active site of the enzyme.

In the studies reported in Chapter 4, inhibition of endogenous progesterone production increased both the oxidative and reductive activities of 11βHSD1 in human granulosa-lutein cells, without affecting the expression of 11βHSD1 protein. Interestingly although progesterone appeared to inhibit basal 11βHSD activities, it was notable in that in the studies reported in Chapter 6, inhibition of progesterone using AG has little impact on the stimulation of 11βHSD stimulated activities by hCG. Intuitively it would have been expected that hCG would have stimulated progesterone production which would have attenuated any stimulation of 11βHSD activities. If this were so, co-treatment with AG would be expected to enhance the stimulation of enzyme activities by hCG. However this was not found to be the case, suggesting that elevation of progesterone has no bearing on the endocrine stimulation of 11βHSD-mediated glucocorticoid metabolism in human granulosa-lutein cells.
Limitations of this study were that AG (an inhibitor of P450csc) was used as a pharmacological tool to inhibit progesterone production. AG is known to non-specifically inhibit other P450 enzymes of steroidogenesis such as aromatase [Santen and Misbin, 1981] and therefore could non-specifically affect the activity of 11βHSD. However, co-treatment with AG has been shown to stimulate the activity of 11βHSD, which could be due to AG inhibiting the synthesis of a regulator of 11βHSD, rather than through a direct effect of AG itself on the activity of the enzyme.

AG directly inhibits the conversion of cholesterol to pregnenolone (the rate limiting step of steroidogenesis). Pregnenolone is subsequently converted by 3βHSD to progesterone. Therefore the inhibition of P450csc not only inhibits progesterone synthesis, but also pregnenolone synthesis. Thus pregnenolone could also be exerting an inhibitory effect on 11βHSD activity that is removed by the presence of AG. To investigate this, pregnenolone concentrations could be determined in the presence and absence of AG, to confirm that AG does inhibit pregnenolone production. Also, pregnenolone and progesterone replacement experiments could be conducted in the presence of AG, although there are limitations to these experiments as discussed in section 4.4. Moreover, due to progesterone being the major secretory product of the CL it is likely that progesterone is the predominant inhibitor of 11βHSD activity in hGL cells.

The cellular mechanisms by which progesterone could regulate the activities of 11βHSD have been speculated on in Chapter 4. The simplest explanation is that
progesterone could bind to the active site of 11βHSD1, thus competing with cortisol and/or cortisone. Alternatively the regulatory mechanisms could involve allosteric binding of progesterone to hydrophobic interfaces in the structure of 11βHSD1. The studies reported in Chapter 7 indicated that such regions exist on both sides of the active site of 11βHSD1.

Studies reported in Chapter 5 have shown that inhibition of endogenous prostaglandin synthesis using MA and NS-398 decreased 11βHSD activities without affecting the expression of 11βHSD1 protein. These data suggest a role for endogenous prostaglandin synthesis in elevating the basal activities of 11βHSD in human granulosa-lutein cells. However, addition of exogenous prostaglandins did not overcome the inhibition of 11βHSD activity induced by the addition of MA and NS-398, calling into question the interpretation of the initial finding. As conceded in Chapter 5 an alternative explanation of these findings would be that other eicosanoids (e.g. leukotrienes) could have been non-specifically inhibited by NS-398 and/or MA. Alternatively the inhibition of prostaglandin synthesis may have re-directed the flux of AA metabolism towards the epoxygenase and lipoxygenase pathways where products of these pathways may have a negative effect on 11βHSD enzyme activities. Findings in Chapter 5 also raise the possibility that exogenously administered prostaglandins may not exert the same actions as prostaglandins synthesised by PGHS2 within the lumen of the smooth ER or within the nucleus of the cell.
The cellular mechanisms by which eicosanoids could regulate the activities of 11βHSD could be through allosteric regulation of 11βHSD. PGHS1 and PGHS2 are localised to the lumen of the ER and to the luminal side of the nuclear envelope. Studies conducted in Chapter 7 are consistent with previous suggestions that the active site of 11βHSD1 is localised to the lumen of the smooth ER, and have found the active site of 11βHSD1 to be flanked by hydrophobic regions. Therefore prostaglandins generated in the lumen of the ER could act (without being secreted from the cell) allosterically within the lumen of the ER to increase the activities of 11βHSD. Prostaglandins could also be acting in the more classical manner through paracrine and autocrine mechanisms via secretion from cells, and through the binding to cells surface GPCRs, activating second messenger signalling cascades and protein kinases. However, studies in Chapter 7 of this thesis question the ability of protein kinases to phosphorylate 11βHSD1 due to orientation of the enzyme, with the consensus phosphorylation sequences present in the lumen of the ER. Also, the addition of exogenous PGs, which would be expected to act through a second messenger-protein kinase signalling cascade, does not overcome the inhibition of 11βHSD1 observed when intracellular prostaglandin synthesis is inhibited using MA and NS-398.

A recent publication by Rae et al. [2004] has revealed a potential link between the expression of PGHS2 mRNA and the expression of 11βHSD1 mRNA when hOSE cells are stimulated by IL-1α. After 6 hours exposure to IL-1α, PGHS2 mRNA expression was elevated, and after 12 hours exposure to IL-1α, an increase in 11βHSD1 mRNA was also observed. The difference in time could be due to IL-1α.
inducing an increase in 11βHSD1 mRNA expression through increasing prostaglandin generation. These data are consistent with a model in which prostaglandins mediate the stimulation of 11βHSD1 activity and/or expression by hCG and IL-1. A model whereby the effects of hCG and IL-1β on prostaglandin synthesis and 11βHSD1 activities are causally linked (rather than independent) is logical. Were hCG and/or IL-1β to simultaneously stimulate prostaglandin synthesis and the regeneration of cortisol by 11βHSD1, cortisol may exert its anti-inflammatory actions too rapidly, before prostaglandins have fulfilled their pro-inflammatory roles required for ovulation. A model in which the elevation of prostaglandins has to precede the stimulation of 11βHSD1 would allow the prostaglandins to up-regulate MMPs and affect the vascularisation of the follicle before local glucocorticoid synthesis limits further eicosanoid generation.

Studies reported in Chapter 6 have shown that MA and NS-398 can prevent hCG and IL-1β from stimulating 11βHSD activities without affecting 11βHSD1 protein expression. These data could imply a mediatory role for prostaglandins in the stimulation of 11βHSD activities by hCG and IL-1β. However, it is also possible that, as previously discussed for Chapters 5 and 6, the inhibition of prostaglandin synthesis has favoured the generation of epoxygenase and/or lipoxygenase products that inhibit the activities of 11βHSD in human granulosa-lutein cells.

To explore the possible involvement of other eicosanoid products in hCG- and IL-1β-stimulated 11βHSD activities, inhibitors of the lipoxygenase pathway such as NDGA (which inhibits the 5-, 12-, and 15-lipoxygenase pathways) could be used. If
co-treatment with NDGA inhibits the stimulation of 11βHSD activities by hCG and IL-1β, it would be suggestive of lipoxygenase products playing a mediatory role to increase 11βHSD activities.

Since exogenous prostaglandins do not affect 11βHSD enzyme activities (Chapter 5) and the potential kinase regulatory sites of 11βHSD1 are orientated to the lumen of the smooth ER (Chapter 7), it seems likely that the cellular mechanisms by which prostaglandins can regulate 11βHSD activities involve allosteric regulation. To investigate the possibility that prostaglandins are allosterically regulating 11βHSD, studies using liver microsomes could be carried out. The microsomes could be used as a source of 11βHSD1 enzyme, and the direct effects of prostaglandins could be assessed using radiometric conversion assays. A caveat to this study is that if no stimulation is seen, then this could be due to accessibility problems, as prostaglandins are normally generated on the luminal side of the ER (and nucleus) by PGHS, whereas exogenous prostaglandins would be added on the cytosolic face of the microsomes. Therefore, the addition of exogenous prostaglandins might not be able to penetrate the microsomal membrane, as may be the case with the intact human granulosa-lutein cell system. Alternatively, binding studies could be carried out using liver microsomes or HEK-293 cells stably transfected with 11βHSD1. Tritiated prostaglandins could be added to the system, and bound verses free prostaglandins could be quantified. A control to this experiment would be to repeat the same experimental design with mock transfected HEK-293 cells.
More sophisticated techniques could be used to further dissect whether prostaglandins can allosterically regulate 11βHSD. For example, binding studies could also be carried out using affinity chromatography. Affinity columns could be generated with prostaglandins and purified 11βHSD1 protein could be loaded onto the column to assess binding of the 11βHSD1 to the immobilised prostaglandins. X-ray crystallography could also be used to determine whether prostaglandins interact with 11βHSD1. Crystals could be formed in the absence and presence of prostaglandins and a conformational change in 11βHSD1 structure would be observed if the mechanism of regulation was allosteric.

Further studies could be carried out to elucidate the mechanisms by which hCG and IL-1β stimulate 11βHSD1 activities. The signalling pathways through which the hormones are mediating the response could be dissected using pharmacological tools such as inhibitors and receptor agonists and antagonists and kinase activators/inhibitors. The use of such agents would enable each step of signalling pathways to be investigated starting from receptor, to second messenger generation, protein kinase activation, and initiation/inhibition of transcription/translation.

A mechanism of emerging importance is that of co-factor balance regulating the predominant direction in which the enzyme acts. As noted earlier, co-operativity is thought to exist between 11βHSD1 and H6PDH within the lumen of the ER. H6PDH catalyses the conversion of hexose-6-phosphate to 6-phosphogluconate which requires NADP⁺ conversion to NADPH. Thus altering the co-factor balance of the lumen of the ER in favour of 11KSR activity of enzyme [Atanasov et al., 2004;
Banhegyi et al., 2004]. However, it is important to acknowledge that human granulosa-lutein cells are steroidogenic, and as such, have a high demand for NADPH in the lumen of the smooth ER. This reductant co-factor is required for the activities of steroidogenic cytochrome P450 and HSD enzymes such as CYP17, CYP19, and 17βHSD1. The combined activities of these enzymes will result in the oxidation of NADPH to NADP⁺, hence, increasing the NADP⁺:NADPH ratio within the lumen of the smooth ER (Figure 8.1). The direction of the enzyme has been questioned in steroidogenic gonadal cells with a predominant oxidative direction of 11βHSD1 reported in both Leydig cells [Gao et al., 1997; Ge et al., 1997; Ge and Hardy 2000] and human granulosa-lutein cells [Michael et al., 1997], suggesting that the co-factor balance may be different in steroidogenic cells. As suggested in Figure 8.1, it seems likely that within steroidogenic cells, the activity of steroidogenic enzymes increases the availability of NADP⁺ to favour the oxidative activity of 11βHSD1, in much the same way as H6PDH can generate NADPH to favour the 11KSR activity.

When comparing data obtained from each Chapter of this thesis, it is noteworthy that each of the regulatory compounds differentially regulate the activities of 11βHSD1. The regulatory components of human FF appear to regulate both the 11βDH and the 11KSR activities of 11βHSD1 with equal affinities. Inhibition of progesterone and prostaglandins production appears to predominantly regulate the 11KSR activity of 11βHSD1. Whereas, hCG and IL-1β appear to predominantly increase the 11βDH
Figure 8.1: Steroidogenic pathways utilising NADP(H) in human granulosa-lutein cells
activity of 11βHSD1. These data remain un-reconcilable, and perhaps question whether the 11βDH and the 11KSR activities reside in a single protein. However, the recent deposition of the sequence for a third isoform of 11βHSD in the NCBI database may resolve this quandary, and on publication of the biochemical, and physiological data for 11βHSD3, may provide a mechanism to reconcile these differences in the regulation of 11βHSD1 activity.

This thesis concludes that there are endogenous lipid regulators of 11βHSD activities but not expression in hFF and human granulosa-lutein cells. Hydrophobic factors contained in hFF can inhibit NADP(H)-dependent 11βHSD activities, without effecting 11βHSD1 expression. Inhibition of steroidogenesis using AG, inhibits progesterone production, which can suppress 11βHSD activities in human granulosa-lutein cells. Inhibition of endogenous progesterone secretion relieves this inhibition without effecting 11βHSD1 protein expression. Both hCG and IL-1β can increase prostaglandin synthesis in human granulosa-lutein cells. The increase in prostaglandin synthesis may mediate an increase in 11βHSD1 activities, but not protein expression. This suggests a possible positive feedback mechanism by which inflammatory effectors of ovulation such as cytokines and LH, through up-regulating PGHS2 and prostaglandin production can increase cortisol production, which may then limit the inflammatory event of ovulation (Figure 8.2).
Figure 8.2 Proposed mechanism by which PGs and progesterone regulate 11HSD activities. Red arrows = thesis findings, Black arrows = hypothesised mechanisms.

259

260

Charmandari E., Chrousos, Ichijo T., Bhattacharyya N., Vottero A., Souvatzoglou E., Kino T. (2004) The human glucocorticoid receptor (hGR) beta isoform suppresses the transcriptional activity of hGR alpha by interfering with the formation of active coactivator complexes. Molecular Endocrinology, accepted for publication and available at www.mend.endojournals.org/cgi/rapidpdf/me.2004-0112v1

Dennefors B.L., Sjogren A. Hamberger L. (1982) Progesterone and adenosine 3',5'-monophosphate formation by isolated human corpora lutea of different ages:

Huang C. (2004) Personal communication (see appendix)

Johnson M.C., Devoto I., Retamales I., Kohen P., Troncoso J.L., Aguiler (1996) Localisation of insulin-like growth factor (IGF-1) and IGF-1 receptor expression in
human corpora lutea: role on oestradiol secretion. *Fertility and Sterility* 65(3): 489-494

Karagouni E.E., Chryssikopoulos A., Mantzavinos T., Kanakas N., Dotsika E.N., (1998) Interleukin-1beta and interleukin-1alpha may affect the implantation rate of patients undergoing in vitro fertilisation-embryo transfer. *Fertility and Sterility* 70(3): 553-559

273

275

285

288

290

Appendix I
Appendix I

A. 60% Percoll Density Gradient Solution

<table>
<thead>
<tr>
<th>Reagent/Solution</th>
<th>Volume per 15ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percoll</td>
<td>9ml</td>
</tr>
<tr>
<td>PBS</td>
<td>5ml</td>
</tr>
<tr>
<td>1.5M NaCl (filter sterilised)</td>
<td>1ml</td>
</tr>
</tbody>
</table>

B. PAS-Gelatin Buffer for Progesterone RIA at pH 7.0

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mass (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄.2H₂O</td>
<td>0.6</td>
</tr>
<tr>
<td>Na₂HPO₄.12H₂O</td>
<td>2.2</td>
</tr>
<tr>
<td>NaCl</td>
<td>9.0</td>
</tr>
<tr>
<td>NaN₃</td>
<td>1.0</td>
</tr>
<tr>
<td>Gelatin</td>
<td>1.0</td>
</tr>
</tbody>
</table>

C. Tris Buffer for Prostaglandin RIA at pH 7.4

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mass (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatin</td>
<td>1</td>
</tr>
<tr>
<td>Tris HCl</td>
<td>6.61</td>
</tr>
<tr>
<td>NaN₃</td>
<td>0.2</td>
</tr>
<tr>
<td>Tris Base</td>
<td>0.97</td>
</tr>
</tbody>
</table>

D. Lysis Buffer for Rat Kidney Homogenate assay at pH 7.4

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mass (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trizma Base</td>
<td>0.6</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>0.3</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.6</td>
</tr>
</tbody>
</table>
E. Lysis Buffer for Protein preparation for SDS-PAGE gel electrophoresis

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.5mM Tris pH 6.8</td>
<td>83ml</td>
</tr>
<tr>
<td>SDS</td>
<td>2g</td>
</tr>
<tr>
<td>Glycerol</td>
<td>10ml</td>
</tr>
</tbody>
</table>

F. Transfer Buffer for Western Blot X10

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>390mM glycine</td>
</tr>
<tr>
<td>480mM Tris</td>
</tr>
<tr>
<td>0.375% (w/v) SDS</td>
</tr>
</tbody>
</table>

G. Transfer Buffer for Western Blot X1

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer buffer X10</td>
<td>100ml</td>
</tr>
<tr>
<td>Methanol</td>
<td>200ml</td>
</tr>
<tr>
<td>dH₂O</td>
<td>700ml</td>
</tr>
</tbody>
</table>

H. TBST (Tris buffered saline-Tween) for Western Blot pH 6.7 X10

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>500mM Tris</td>
</tr>
<tr>
<td>1.5M NaCl</td>
</tr>
<tr>
<td>0.2% Tween</td>
</tr>
</tbody>
</table>
I. Samples Buffer for SDS-PAGE electrophoresis

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>dH₂O</td>
<td>7.25ml</td>
</tr>
<tr>
<td>0.5M Tris HCl (pH 6.8)</td>
<td>1.25ml</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1ml</td>
</tr>
<tr>
<td>β-mercaptoethanol</td>
<td>0.5ml</td>
</tr>
<tr>
<td>SDS</td>
<td>0.2g</td>
</tr>
<tr>
<td>Bromophenol blue</td>
<td>0.01g</td>
</tr>
</tbody>
</table>

J. 10% resolving gel for reducing SDS-PAGE gel

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDH Ultrapure water</td>
<td>19.8ml</td>
</tr>
<tr>
<td>30% Polyacrylamide</td>
<td>16.7ml</td>
</tr>
<tr>
<td>Tris-HCl (pH 8.4)</td>
<td>12.5ml</td>
</tr>
<tr>
<td>10% SDS (w/v)</td>
<td>500μl</td>
</tr>
<tr>
<td>10% (NH₄)₂S₂O₄</td>
<td>500μl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20μl</td>
</tr>
</tbody>
</table>

K. 4% stacking gel for reducing SDS-PAGE gel

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDH Ultrapure water</td>
<td>12.2ml</td>
</tr>
<tr>
<td>30% Polyacrylamide</td>
<td>2.6ml</td>
</tr>
<tr>
<td>Tris-HCl (pH 6.8)</td>
<td>5ml</td>
</tr>
<tr>
<td>10% SDS (w/v)</td>
<td>200μl</td>
</tr>
<tr>
<td>10% (NH₄)₂S₂O₄</td>
<td>125μl</td>
</tr>
<tr>
<td>TEMED</td>
<td>25μl</td>
</tr>
</tbody>
</table>
L. Stripping buffer for removal of bound antibody from Western blots

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-mercaptoethanol</td>
<td>700μl</td>
</tr>
<tr>
<td>SDS</td>
<td>2g</td>
</tr>
<tr>
<td>62.5mM Tris-HCl (pH 6.7)</td>
<td>100ml</td>
</tr>
</tbody>
</table>
Appendix II
Appendix II

Type 1 11BHSD : PROTEIN sequences

Human (292 aa)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Human</th>
<th>Squirrel Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAFMKYLLP</td>
<td>ILGLFMAYYY</td>
<td>YSANEEFRPE MLQGKKVVT</td>
</tr>
<tr>
<td>GASKGIGREM</td>
<td>AYHLAKMGAH</td>
<td>VVVTARSKET LQKVVSCHCLE</td>
</tr>
<tr>
<td>LGAASAHYIA</td>
<td>GTMEDMTFAE</td>
<td>QFVAQAGKLM GGLDMLILNH</td>
</tr>
<tr>
<td>ITNTSLNLFH</td>
<td>DDIHHVRKSM</td>
<td>EVNFLSYVVL TVAAPMLKQ</td>
</tr>
<tr>
<td>SNGSIVVSS</td>
<td>LAGKVAYPMV</td>
<td>AAYSAKFAL DGFSSIRKE</td>
</tr>
<tr>
<td>YSVSRVNVS</td>
<td>VLCVLGLIDT</td>
<td>ETAKAVSGI VHMQAAPKE</td>
</tr>
<tr>
<td>CALEIIKGG</td>
<td>LQEEVYYDS</td>
<td>SLWTLLIRN PCRKILEFLY</td>
</tr>
<tr>
<td>STSINMDRFI</td>
<td>NK</td>
<td></td>
</tr>
</tbody>
</table>

Squirrel Monkey (291 aa)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Human</th>
<th>Squirrel Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAFMKTHLLP</td>
<td>ILGLFMAYYY</td>
<td>YSANEEFRPE MLQGKKVVT</td>
</tr>
<tr>
<td>GASKGIGREM</td>
<td>AYHLAKMGAH</td>
<td>VVVTARSKET LQKVVSCHCLE</td>
</tr>
<tr>
<td>LGAASAHYIA</td>
<td>GTMEDMTFAE</td>
<td>QFVAQAGKLM GGLDMLILNH</td>
</tr>
<tr>
<td>ITNTSLNLFH</td>
<td>DDIHHVRKSM</td>
<td>EVNFLSYVVL TVAAPMLKQ</td>
</tr>
<tr>
<td>SNGSIVVSS</td>
<td>LAGKVAYPMV</td>
<td>AAYSAKFAL DGFSSIRKE</td>
</tr>
<tr>
<td>YSVSRVNVS</td>
<td>VLCVLGLIDT</td>
<td>ETAKAVSGI VHMQAAPKE</td>
</tr>
<tr>
<td>CALEIIKGG</td>
<td>LQEEVYYDR</td>
<td>SLWTLLIRN PSRKILEFLR</td>
</tr>
<tr>
<td>STSTDGLI</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

301
Pig (292 aa)

MAFMKKYLLP ILGIFLAYY YSANEEFRPE MLRGKKVIVT
GASKGIGREM AYHLARMGAI VVVTARSEET LKKVVSHELE
LGASSAHYVA GMTEDMTFAE QFVAKAGKLL GGLDMLILNH
ITQAFMTSVY DDILVRRSM EVNFLSYVVL SVAALPMLKQ
SGSIVVVS QAGKMANPLV APYASKFAL DGFFSSITKE
YSVTKVNVSIT LCLILGLID TDTM(TAVAGI LNVQPSKEE
CALEIIKGAA LRQEEVYDDS SILTSSLLEN PGRKILEFLS
LRHYNMERFTNN

Cow (292 aa)

MAFMKKYLLP I L G I F L AYY Y S A N E E F R P E M L R G K R V I V T
GASKGIGREM AYHLARMGAI VVVTARSEES LKKVSCRCLE
LGASSAHYVA GMTEDMTFAE QFVAKAGKLL GGLDMLILNH
IHYTPLGYFS NDIIHLRRTL EVNLSSYVVL STAALPMLKQ
TNGSIVVVS TAIKIAICPLV AAYASKFAL DGFFSLSRME
YEATKVNSIT LCLILGLID TDTMAVAGI FNAKASPEE
CALEIIKGGT LRQDEVYDDS SILTPLLRN PGRKIMEFFF
LKKYNMERFI NN

MGAVVVTARSEES LKKVSCRCLE GAAHVGATMENMTFAE QFVAKAGELVGG
LDMLNHIHYTPLGWFSNDEHLTRTELVNLSSYVVLSTAALPMLKQ TNGSIVVVS
SIAGKIAICPLVAAYASKFALDGFFSLSRME YEATKVNSIT LCLILGLID TDTMA
KAVAGIFNAKASPEE C A L E I I K G G T L R Q D E V Y D S S I L T P L L L R N P G R K I M E F F F
LKKYNMERFINN
Sheep (290 aa)

MAFMKKYLPL ILGLFLAYYY YSANEEFRPE MLRGKRIVVT
GASKGIGREM AYHLARMGAH VVVTARSEES LKKVVSRCLE
LGAASAHYVA GTMENMTFAE QFVAKAGELV GGLDMLILNH
INYTPLRFVS NDIIHLLRSVL EVNLLSYVVL STAALPMLKQ
TSGSIVVSS VAGKIACPAA AAYSASKFAL DGFFSSLRTE
YEATKVNVSIE TLCILGLIDT DTAMKAVAGI YNAEASPKKEE
LEIIKGGALR QDEVYYDNSI LTSLLLKNPG RKIMEFSLK

KYNMERFINN

MAFMKKYLPLILGLFLAYYYYSANEEFRPEMLRGKRIVVTGASKGIGREMAYHLAR
MGHVVVVTARSEESLKKVVSRCLELGAASAHYVAGTMENMTFAEQFVAKAGELVGG
LDMLILNHINYTPLRVFSNDIHHLLRSLEVNLLSYYVSLSTAALPMLKQTSGSIVV
SSVAGKIACPAAAYSAFKALDGFFSSLRTEYEATKVNVSITLCILGLIDTDKAM
KAVAGIYNAAEASPKKEELEIIKGGALRQDEVYYDNSILTSLLLLKNPGRKIMEFSLK
KYNMERFINN

Cat – PARTIAL (Partial = 193 aa)

......VIVT GASKGIGEQM
AYHLAKMGAA VHVTARSKEN LKKIVSHCMEE
LGAASAHYIA GTMENMTFAE QFVAKAGKLM
GGLDMLILNH ITNTSMNLSF GDIHIVRSM
EVNLLSYVVL SATALPMLKQ SNGSIVVSS
KAGKMASPLI APYSASKFAL DGFFSSIRME
HSVAKINVSIE TLCILGLINT DTAMNAIGS.

...VIVTGASKGIGEQMAYHLAKMGAAHVVVTARSKENLKKIVSHCMELGAASAHYIA
GTMENMTFAEQFVAKAGKLGGGDMLILNHITNTSMNLSFSDIHIVRSMENFL
SYVVLSATALPMLKQSNGSIVVVSSEKAGKMASPLIAPYSASKFALDGFFSSIRMEH
SVAKINVSITLCILGLINTDTAMNAIGS...
Rabbit (291 aa)

AFMKYYLLPL LGLFLAYYYY SANEEFRPEM LQGKKVIVTG
ASKGIGKEIA FHLAKMGAHV VVTARSKETL QEVVHAHCLKL
GAASAHYIAG TMEHTMFAEQ FVAKAGKLMG GLDMLILNHI
TNASLMFFNN DIHHVRKEME VNFLSYVVLT VAAPMLKQTS
NGSIVVVSSL AGKIAHPLIA PYSAFKFALD GFFSAIRKEH
ALTNVNVSIT LCVLGLIDTD TAMKEVSGKI DMKAAPKEEC
ALEIIKGGLA RQDEVYYGNL QWTPLLLGNP GKRLIEFLHL

![Sequence Alignment]

304

Guinea pig (300 aa)

MAFLKYYLLT ILMVFLAYYY YPANEKFRPE MLQGKKVIVT
GASKGIGREI AYHLAKMGAH VVTARSKSEA LQKVVARGCLE
LGAASAHYIA GSEMMDTFAE EFAAEAGNLG GGDLMLIINH
VLNYRNFTHF GEINVRKSM EVNFHFSVVVL SVAAPMLMQ
SQGSIAVVS VAGKITYPLI APYSAFKFAL DGGFFSLRSE
FLNVKVNVS1 TLCILGLIDT ETAIKATSGI YLGPSAPKEE
CALEIIKGTA LRQDEMYYVG SRWVPYLLGN PGRKIMEFLS
AAEYNWDNVL NSEKLYGRWA

![Sequence Alignment]
Hamster (292 aa)

MHFMKYYLLP ILVLFLAYYY YSTKEEFRPE MLQGKKVIVT
GASKGIGREM AYHLSEMGAH VVLTARSEEG LQKVASRCLE
LGAASAHYIA GTMEDMTFAE QFVLKAGKLM GGLDMLILNH
ITYTSMNFFR DEIHALRKAM EVNFISYVVM SVAALPMLKQ
SGSIVVVSS IAGKMAHPLV ASYSAKFAL DGFFSSLRRE
HGVTNWNVSI TLCVGLINT ETAMKATSGV FNAPASPKEE
CALEIIKGGA LRQEEVYDDS WSWTPIILGN PGRKIMEFLS
MKSFTFDKLI SS

Rat (287 aa)

MHFMKYYLLPILVLFLAYYYYSTKEEFRPEMLQGKKVIVTGASKGIGREMAHYLSE
MGAHVVLTARSEEQGKVASRCLELGAASAHYIATGMEDMTFAEQFVLKAGKLMGG
LMILNHLITYSAIISNFDFIEIHALLKAMEVNFISYVVMVSAALPMLKQSNLSLNYV
SSIAAGKMAHLTVASYSAKFALDGFFSSLRREHGVTNVSITLCVLGLINTETAM
KATSGVFNAPASPKEECALEIIKGGLARQEEVYDWSWTPIILGNPGRKIMEFLS
MKSFTFDKLSS

RDLFVSN

MKKYLPLLPLVLCLGYYSTNEEFREPMLEQKKKVIVTGASKGIGREMAHYLSKMGH
VVLTARSEEGLQKVVSRCLGASAHYIATGMEDMTFAERFVEAGKLHGDLML
ILNHITQTTSFLHDDIHSVRSSMEVNFLSYVVLSTAAAPMLKQSNLSIAISSMA
GKTMPFNAISYASAKFALDGFFSTIRKEHLMTKVNSITLVCVLGFTEDTALKETS
IISSQQAPKQECALIEKGTVLRKDEYDKSPWTPILLGNPPGRKIMEFLSRLSYN
RDLFVSN
Mouse (292 aa)

MAVMKNYLLP ILVLFLAYYY YSTNEEFRPE MLQGKKVIVT
GASKGIGREM AYHLSKMGAH VVLTARSEEG LQKVVSRCLE
LGAASAHYIA GTMEDMTFAE QFIVKAGKLM GGLDMLILNH
ITQTLSLFH DDIHSVRRVM EVNFLSYVVM STAALPMLKQ
SNGSIAVSS LAGKMTQPMI APYSASKFAL DGFFSTIRTE
LYITKVNISI TLCVGLGIDT ETAMKEISGI INAQASPKEE
CALEIIKGTA LRKSEVYYDK SPLTPILLGN PGRKIMEFFS

LRYYNKDMVF SN

MAVMKNYLLPILVLFLAYYYYSTNEEFRPEMLQGKKVIVTGASKGIGREMAYHLSK
MGAHVVLTARSEEGLQKVVSRCLELGAASAHYIAGTMEDMTFAEQFIVKAGKLMGG
LDMLILNHITQTSLSLFHDDDIHSVRRVMEVFNSYVVMSTAALPMLKQSNGSIAVI
SSLAGKMTQPMIAPYSASKFALDGFFSTIRTELYITKVNISITLCVGLGIDTETAM
KEISGIINAQASPKEECALEIIKGTALRKSEVYYDKSPLTPLLGNPGRKIMEFFSLRYYNKDMVFMSN
Appendix III
Appendix III

Standard curve for a PGE$_2$ radioimmunoassay
Standard curve for a PGF$_{2\alpha}$ radioimmunoassay

\[R^2 = 0.983 \]
Standard curve for a Progesterone radioimmunoassay

\[\frac{\% B}{B_0} \]

\[\text{[Progesterone] (nM)} \]

\[R^2 = 1.000 \]
Appendix IV
Personal communication with Huang, received on 16/06/04:

Dear Dr. Kim Jonas,

I am very glad to hear from you.

Now I tell you some information about the gene 11-beta-HSD3.

This gene is homologous to HSD11B1 and HSD11B2. We have cloned this gene in human brain tissue designed SCDR10. Its homologs in Macaca fascicularis, Bos taurus, Gasterosteus aculeatus, Danio rerio, Gallus gallus and Oryzias latipes were also cloned.

We have studied gene SCDR10 in detail, including northern blotting, protein expression and purification, enzyme activity assay, the mAb was also produced by immunizing rabbit and the immunohistochemistry analysis was also done.

I am very regretful I could not tell you the detailed result at present because we are writing a paper to report this gene. When our manuscript is accepted I will send you a copy in time.

If have chance we can cooperate. I am sure this gene is very important in human.

Best regards

Chaoqun Huang
Department of biochemistry and molecular biology
Suzhou university