Molecular cloning and characterisation of GABA$_B$ receptors from *Xenopus laevis*

Robert James
I, Robert James, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Signed

Printed ROBERT JAMES

Dated 21.02.08
Abstract

Gamma-amino butyric acid (GABA) is the principal inhibitory neurotransmitter in the adult central nervous system (CNS) and signals via ionotropic GABA\textsubscript{A} receptors and metabotropic GABA\textsubscript{B} receptors. GABA\textsubscript{A} receptors are obligate heterodimers comprised of GABA\textsubscript{B}(1) and GABA\textsubscript{B}(2) subunits, members of the Family 3 G-protein coupled receptors (GPCRs). GABA\textsubscript{BL} is an orphan Family 3 GPCR of unknown function, most closely related to GABA\textsubscript{A} receptors.

To investigate the functions of these genes during vertebrate development, \textit{Xenopus laevis} GABA\textsubscript{B}(1), GABA\textsubscript{B}(2) and GABA\textsubscript{BL} cDNAs were isolated, and their spatiotemporal expression patterns during embryogenesis analysed by RT-PCR and \textit{in situ} hybridization. Maternal GABA\textsubscript{B}(2) transcripts were detected by RT-PCR in blastulae, whereas GABA\textsubscript{B}(1) and GABA\textsubscript{BL} transcripts were not detected until gastrulation and neurulation respectively. \textit{In situ} hybridization revealed that GABA\textsubscript{B}(1) and GABA\textsubscript{B}(2) transcripts were co-expressed in most brain regions, although areas of unique GABA\textsubscript{B}(1) expression also existed, and GABA\textsubscript{BL} transcripts were located primarily in the brain and otic vesicle of the tailbud embryo.

Co-expression of GABA\textsubscript{B}(1) and GABA\textsubscript{B}(2) transcripts suggests a role for metabotropic GABA receptor signalling in the developing brain of \textit{Xenopus} embryos. However, overexpression of GABA\textsubscript{B}(1) and GABA\textsubscript{B}(2) transcripts together or in isolation, during embryonic development did not generate a distinct morphological phenotype. In contrast, embryos overexpressing GABA\textsubscript{BL} during embryonic development exhibited a significant body truncation phenotype. Animal cap assays indicated that GABA\textsubscript{BL} overexpression interferes with mesodermal convergent extension, whilst RT-PCR shows that the expression of mesoderm-specific markers is not affected, demonstrating morphogenetic but not biochemical activity of GABA\textsubscript{BL}.

Whilst the temporal expression pattern of GABA\textsubscript{BL} does not support an endogenous role in the regulation of convergent extension in \textit{Xenopus}, these experiments demonstrate that GABA\textsubscript{BL} is a functional protein that acts in a manner reminiscent of a GPCR by disrupting intracellular signalling cascades.
Acknowledgments

I have been incredibly fortunate during the course of my PhD to have had the unwavering support and friendship of a fantastic group of people in London. I owe the survival of my sanity and my sense of humour throughout this episode of my life, first and foremost, to Jim, Sarah, Teresa Batten MSc, Thessa, Jo, Wilbur, Muel, Chappers, Krissy, Karim, Dan, Francis, Token, Ingrid, Helen, and Mike (and all of the other wonderful people I've befriended since university), to Rob and Liz for putting up with me in the home, and to my friends back home in Cheltenham. I would also like to say a special thank you to my family: to Dad, Vicky, Bethan and Phil, and to my brother Andrew for being such an amazing friend since I moved to London. I want to express my deepest gratitude to my comrades at UCL, past and present, who have been there through good times and bad, and made it a truly fantastic place to work. Principally I would like to extend my thanks to Christian, Chris Chuddy, Anna, and John (John), but also to Emma, Nicky, Richard, Jack, Ashley, Frank, Claire, Sunita, Paul, Lyndsey, Martin, Mod, Lena, and Ksyusha. In a professional capacity I would like to say a big thank you to my supervisor Dr Andrea Townsend-Nicholson and mentor Prof. Liz Shephard, and express my most sincere gratitude to Dr Les Dale and Dr Tim Geach for their first-rate advice and assistance through the latter stages of my project. Finally, I would like to acknowledge the following scientists for helpful conversations throughout the course of my PhD: Prof. Benny Bettler, Prof. Hans Bräuner-Osborne, Dr Andy Calver, Prof. John Clarke, Dr Yoshiyuki Yamamoto, and Prof. Masazumi Tada.
Abbreviations Used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>BFP</td>
<td>Denhardt's solution</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>calcium nitrate</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulphonate</td>
</tr>
<tr>
<td>CsCl</td>
<td>caesium chloride</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cRNA</td>
<td>complementary RNA</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxygenin</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>ds-</td>
<td>double stranded</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>dATP</td>
<td>2'-deoxyriboadenosine 5'-triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>2'-deoxyribocytidine 5'-triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>2'-deoxyriboguanosine 5'-triphosphate</td>
</tr>
<tr>
<td>dTTP</td>
<td>2'-deoxyribothymidine 5'-triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>FBS</td>
<td>foetal bovine serum</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-amino butyric acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid</td>
</tr>
<tr>
<td>HGC</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>KAc</td>
<td>potassium acetate</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo-Daltons</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani broth</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>magnesium sulphate</td>
</tr>
<tr>
<td>MOPS</td>
<td>4-morpholinepropanesulphonic acid</td>
</tr>
<tr>
<td>NaAc</td>
<td>sodium acetate</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NAM</td>
<td>normal amphibian medium</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NIBB</td>
<td>National Institute for Basic Biology, Okazaki, Japan</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PBS-T</td>
<td>phosphate buffered saline plus 0.1% (v/v) Tween-20</td>
</tr>
<tr>
<td>rATP</td>
<td>2'‐riboadenosine 5'‐triphosphate</td>
</tr>
<tr>
<td>rcf</td>
<td>relative centrifugal force (g-force)</td>
</tr>
<tr>
<td>rCTP</td>
<td>2'‐ribocytidine 5'‐triphosphate</td>
</tr>
<tr>
<td>rGTP</td>
<td>2'‐riboguanosine 5'‐triphosphate</td>
</tr>
<tr>
<td>rNTPs</td>
<td>ribonucleotide triphosphates</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcriptase</td>
</tr>
<tr>
<td>rUTP</td>
<td>2'‐ribouridine 5'‐triphosphate</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>ss-</td>
<td>single stranded</td>
</tr>
<tr>
<td>SOB</td>
<td>salt-optimised broth</td>
</tr>
<tr>
<td>SOC</td>
<td>salt-optimised broth with carbon</td>
</tr>
<tr>
<td>SSC</td>
<td>sodium chloride-sodium citrate buffer</td>
</tr>
<tr>
<td>SSPE</td>
<td>sodium chloride-sodium phosphate-EDTA buffer</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA buffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-HCl-EDTA buffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>2-Amino-2-(hydroxymethyl)-1,3-propanediol, hydrochloride</td>
</tr>
<tr>
<td>TRIZMA base</td>
<td>Tris-(hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TDT</td>
<td>terminal nucleotidyl transferase</td>
</tr>
<tr>
<td>Tween-20</td>
<td>polyoxyethylene sorbitan monolaurate</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 Introduction

1.1 The G-protein coupled receptor (GPCR) superfamily

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>GPCRs make up the largest class of cell-surface receptors</td>
<td>20</td>
</tr>
<tr>
<td>1.1.2</td>
<td>GPCRs signal via both heterotrimeric and monomeric G-proteins</td>
<td>20</td>
</tr>
<tr>
<td>1.1.3</td>
<td>GPCRs may be classified into five distinct families</td>
<td>22</td>
</tr>
<tr>
<td>1.1.4</td>
<td>GPCR signalling regulates important processes during development</td>
<td>25</td>
</tr>
</tbody>
</table>

1.2 γ-amino butyric acid (GABA) and its receptors

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>GABA signals via ionotropic and metabotropic receptors</td>
<td>29</td>
</tr>
</tbody>
</table>

1.3 Cloning of GABA_B receptor complementary DNAs (cDNAs)

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1</td>
<td>GABA<sub>B(1)</sub> cDNA was first isolated by expression cloning</td>
<td>31</td>
</tr>
<tr>
<td>1.3.2</td>
<td>GABA<sub>B(2)</sub> shares sequence identity with GABA<sub>B(1)</sub> and was first identified through homology searches</td>
<td>33</td>
</tr>
<tr>
<td>1.3.3</td>
<td>GABA<sub>B</sub> shares sequence identity with GABA<sub>B</sub> receptors and was identified through homology searches</td>
<td>34</td>
</tr>
</tbody>
</table>

1.4 GABA_B receptor gene structure and transcript variants

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1</td>
<td>GABA<sub>B(1)</sub>, GABA<sub>B(2)</sub> and GABA<sub>B</sub> are encoded by three distinct genes</td>
<td>36</td>
</tr>
<tr>
<td>1.4.2</td>
<td>GABA<sub>B(1a)</sub> and GABA<sub>B(1b)</sub> mRNAs are generated by alternative transcription initiation sites</td>
<td>36</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Additional GABA<sub>B(1)</sub> transcript variants are generated by exon skipping</td>
<td>37</td>
</tr>
<tr>
<td>1.4.4</td>
<td>There are no confirmed GABA<sub>B(2)</sub> transcript variants</td>
<td>39</td>
</tr>
<tr>
<td>1.4.5</td>
<td>There are no confirmed GABA<sub>B</sub> transcript variants</td>
<td>40</td>
</tr>
</tbody>
</table>
1.5 GABA$_b$ receptor heterodimerization

1.5.1 Functional GABA$_b$ receptors are obligate heterodimers .. 42
1.5.2 A trafficking checkpoint regulates the assembly of GABA$_b$ receptor heterodimers 43
1.5.3 The extracellular domain of GABA$_b$(1γ) is sufficient to bind agonists and antagonists ... 44
1.5.4 Allosteric interactions between GABA$_b$(1γ) and GABA$_b$(2δ) subunits are necessary for optimal GABA$_b$ receptor function 45

1.6 GABA$_b$ receptor signalling

1.6.1 Pre- and post-synaptic GABA$_b$ receptors have distinct roles .. 46
1.6.2 The GABA$_b$(1α) and GABA$_b$(1β) isoforms contribute to GABA$_b$ receptor diversity ... 48
1.6.3 Atypical responses are occasionally observed when GABA$_b$(1γ) or GABA$_b$(2δ) are expressed alone .. 50
1.6.4 Interacting proteins may modulate GABA$_b$ receptor activity .. 51

1.7 The GABA$_{BL}$ receptor

1.7.1 GABA$_{BL}$ is a transmembrane protein most closely related to GABA$_b$ receptors ... 54
1.7.2 GABA$_{BL}$ may not be functionally related to GABA$_b$ receptors .. 54
1.7.3 GABA$_{BL}$ is not conserved in invertebrates .. 55

1.8 The role of GABA and its receptors during development

1.8.1 GABA is demonstrated to act chemotropically in vitro .. 57
1.8.2 GABA$_b$ receptor subunits are differentially expressed during development 57
1.8.3 The gene expression pattern for GABA$_{BL}$ suggests a possible role in development 59
1.8.4 Studies of GABA signalling during vertebrate embryogenesis .. 59
1.9 Xenopus as a model organism for the study of vertebrate embryo development

1.9.1 X. laevis and X. tropicalis are model organisms commonly used for the study of vertebrate embryo development..62

1.9.2 A fate map for Xenopus blastulae can be used to direct injected molecules to specific tissues in the differentiated embryo..........................67

1.10 Principal aims and objectives of this project

1.10.1 Molecular cloning of cDNAs encoding X. laevis GABA_b receptors........69

1.10.2 Comparisons of mammalian and Xenopus GABA_b receptor gene structures..70

1.10.3 Investigation into the expression pattern of GABA_b receptor mRNAs during Xenopus laevis embryonic development..........................70

1.10.4 Investigation into the function of GABA_b receptors during X. laevis embryonic development through gene overexpression.................71

2.0 Materials and Methods

2.1 Molecular Biology Methods

2.1.1 Preparation of competent E.coli cells..73

2.1.2 Transformation of competent E.coli cells..73

2.1.3 Preparation of plasmid DNA from E.coli cells (mini-prep)....................74

2.1.4 Preparation of plasmid DNA from E.coli cells (maxi-prep)....................75

2.1.5 Quantitation of nucleic acids...76

2.1.6 Agarose gel electrophoresis of nucleic acids..76

2.1.7 Restriction endonuclease digestions of DNA..77

2.1.8 Extraction of total RNA..77

2.1.9 Reverse transcriptase (RT)...78

2.1.10 Reverse transcriptase polymerase chain reaction (RT-PCR).................78

2.1.11 Rapid amplification of 5' cDNA ends (5'RACE)....................................79

2.1.12 Dideoxy sequencing of plasmid DNA...80

2.1.13 PCR-based site-directed mutagenesis...81

2.1.14 Isolation and purification of DNA from agarose gels.........................81
2.1.15 Ligation of DNA fragments into plasmid vectors..82
2.1.16 In vitro transcription of cRNA probes..82
2.1.17 In vitro transcription of 5’-capped, polyadenylated cRNA for microinjection.................................83
2.1.18 Producing radiolabelled cDNA probes..83
2.1.19 Determining stringency through calculation of T_m values...............................84
2.1.20 Colony hybridization...84
2.1.21 Southern hybridization..85

2.2 Protein Methods

2.2.1 In vitro translation of radiolabelled protein...87
2.2.2 Separation of proteins by SDS polyacrylamide gel electrophoresis......................87
2.2.3 Western blotting of SDS polyacrylamide gels...88
2.2.4 Immuno-detection of proteins on blotted membranes...89

2.3 Embryology Methods

2.3.1 Fertilisation of X.laevis oocytes..90
2.3.2 Maintenance of X.laevis embryos in normal amphibian medium (NAM)..............90
2.3.3 Snap-freezing of X.laevis embryos and animal cap explants.................................91
2.3.4 Fixing of X.laevis embryos..91
2.3.5 Wholemount in situ hybridization...91
2.3.6 Wax sectioning and histology...93
2.3.7 Microinjection of X.laevis embryos with cRNA..93
2.3.8 Scoring of embryos according to morphological phenotype...............................94
2.3.9 Animal cap isolation and use in mesoderm extension assays.............................97
2.3.10 Photography..97
3.0 Results Chapter One

'Cloning and characterisation of complementary DNAs encoding Xenopus laevis GABA_b receptors'

3.1 Introduction

3.1.1 Background..99
3.1.2 Aims..101

3.2 Isolation and sequence analysis of X.laevis GABA_{B(1)} cDNAs

3.2.1 Homology searches to identify Xenopus ESTs sharing sequence identity with human GABA_{B(1a)}..102
3.2.2 Homology searches to identify Xenopus ESTs sharing sequence identity with human GABA_{B(1b)}..104
3.2.3 Sequence analysis of IMAGE:6948709 cDNA clone......................................107
3.2.4 Rapid amplification of cDNA ends to isolate xIGABA_{B(1)} 5' sequence........110
3.2.5 Multiple sequence alignments of GABA_{B(1)} protein orthologues..............113
3.2.6 xIGABA_{B(1)} proteins possess several amino acid sequences distinct from their mammalian counterparts..116

3.3 Isolation and sequence analysis of X.laevis GABA_{B(2)} cDNAs

3.3.1 Homology searches to identify Xenopus ESTs sharing sequence identity with human GABA_{B(2)}..119
3.3.2 Sequence analysis of IMAGE:6947886 cDNA clone......................................121
3.3.3 Multiple sequence alignment of GABA_{B(2)} protein orthologues...............124
3.3.4 Mammalian and xIGABA_{B(2)} protein sequences are highly conserved.....126

3.4 Isolation and sequence analysis of X.laevis GABA_{BL} cDNA

3.4.1 Homology searches to identify Xenopus ESTs sharing sequence identity with hGABA_{BL}..127
3.4.2 Sequence analysis of XL024m02 cDNA clone..129
3.4.3 Rapid amplification of cDNA ends to isolate putative xlGABA_{BL} 5' sequence ... 131
3.4.4 RT-PCR to amplify alternative putative X.laevis GABA_{BL} 5' sequence 134
3.4.5 Multiple sequence alignment of GABA_{BL} protein orthologues 137
3.4.6 The C-terminus of GABA_{BL} is poorly conserved and contains multiple RXR-type ER-retention motifs 139
3.4.7 xlGABA_{BL(a)} and xlGABA_{BL(b)} transcripts encode proteins that possess a different number of transmembrane domains 140

3.5 Subcloning of X.laevis GABA_{B} receptor cDNAs into expression vectors

3.5.1 Identification of plasmid vectors suitable for the generation of X.laevis GABA_{B} receptor expression constructs .. 142
3.5.2 Subcloning of X.laevis GABA_{B} receptor cDNAs into pSp64T.clon vector 144
3.5.3 Subcloning of X.laevis xlGABA_{BL(a)} cDNA into pCS2+ vector 145
3.5.4 In vitro transcription and translation of X.laevis GABA_{B} receptor cDNAs from expression constructs ... 148

3.6 Discussion

3.6.1 Identification of X.laevis GABA_{B} receptor orthologues 151
3.6.2 Some mammalian GABA_{B(1)} and GABA_{B(2)} receptor subunit protein sequences are not conserved in their X.laevis counterparts 153
3.6.3 Some commercially available antibodies are unlikely to recognise X.laevis GABA_{B} receptor proteins ... 154
3.6.4 Proteins of the correct predicted molecular mass are translated from the X.laevis GABA_{B} receptor constructs produced here 154
3.6.5 Data accompanying the ESTs identified here may provide information about gene expression ... 155
3.6.6 Summary ... 156
4.0 Results Chapter Two

‘Analysis of Xenopus tropicalis genomic sequence and comparisons of orthologous GABA_B receptor gene structure’

4.1 Introduction

4.1.1 Background..159
4.1.2 Cloned xIGABA_B receptors...161
4.1.3 The X.tropicalis genome...162
4.1.4 Comparisons of vertebrate and invertebrate GABA_B receptor genes......162
4.1.5 Aims...163

4.2 Analysis of X.tropicalis GABA_B receptor gene structure

4.2.1 Mapping xIGABA_{B(1)} cDNAs to X.tropicalis genomic sequences........164
4.2.2 Mapping xIGABA_{B(2)} cDNA to X.tropicalis genomic sequences..........167
4.2.3 Mapping xIGABA_{BL} cDNAs to X.tropicalis genomic sequences........169

4.3 Evaluation of possible alternative splicing mechanisms in X.tropicalis GABA_B genes

4.3.1 Analysis of the genetic basis for differences between mammalian and xIGABA_{B(1)} proteins...172
4.3.2 Analysis of xIGABA_{B(1a)} transcript variants isolated by 5’RACE........173
4.3.3 Analysis of xIGABA_{BL} transcript variants isolated by 5’RACE.........177

4.4 Comparisons between mammalian, invertebrate and X.tropicalis GABA_B genes

4.4.1 Analysis of intron and exon sizes in vertebrate and invertebrate GABA_B genes...180
4.4.2 Alignment and comparison of vertebrate and invertebrate GABA_B exons...182
4.5 Investigating synteny of the GABA_{BL} gene

4.5.1 Identification of genes neighbouring GABA_{BL} in human, rat and X.tropicalis genomic sequences ... 186

4.6 Comparisons of GABA_{B1}, GABA_{B2}, and GABA_{BL} gene organisation

4.6.1 Identification and alignment of corresponding exons found in the H.sapiens GABA_{B1}, GABA_{B2}, and GABA_{BL} genes ... 189

4.7 Discussion

4.7.1 X.tropicalis GABA_B genes have a similar exon organisation to mammalian GABA_B genes .. 192

4.7.2 Evidence supporting the existence of xIGABA_{B1a} splice variants but not the xIGABA_{BLb} transcript variant .. 193

4.7.3 Evidence for a relationship between GABA_{B1}, GABA_{B2} and GABA_{BL} genomic organisation .. 196

4.7.4 Summary ... 196

5.0 Results Chapter Three

'Temporal and spatial expression patterns of GABA_B receptor mRNAs during Xenopus laevis embryonic development'

5.1 Introduction

5.1.1 Background .. 199

5.1.2 Aims .. 200

5.2 Temporal expression patterns of xIGABA_B receptor mRNAs during embryonic development

5.2.1 Detection of xIGABA_B receptor mRNAs by RT-PCR and Southern blotting .. 201

5.2.2 xIGABA_{B1} receptor subunit mRNAs exhibit distinct temporal expression patterns during X.laevis embryonic development 204
5.2.3 *GABA*$_B$_(2) receptor subunit mRNA is expressed throughout *X.laevis* embryonic development .. 205

5.2.4 *GABA*$_B$_(a) but not *GABA*$_B$_(b) transcripts are detected by RT-PCR .. 206

5.2.5 Detection of *GABA*$_B$_(a) mRNAs in neurulae by RT-PCR ... 207

5.3 Spatiotemporal expression patterns of *GABA*$_B$ receptor mRNAs during embryonic development

5.3.1 Analysis of spatial *GABA*$_B$ expression patterns by RT-PCR .. 209

5.3.2 Detection of *GABA*$_B$ receptor mRNAs by wholemount in situ hybridization .. 211

5.3.3 *GABA*$_B_1$ transcripts are expressed in multiple brain regions of the developing *X.laevis* embryo 213

5.3.4 *GABA*$_B_2$ transcripts are expressed in multiple brain regions of the developing *X.laevis* embryo 215

5.3.5 *GABA*$_B_3$ transcripts are expressed primarily in the otic vesicle and hindbrain of the developing *X.laevis* embryo .. 217

5.4 Discussion

5.4.1 *GABA*$_B$ receptor subunit mRNAs are differentially expressed during *X.laevis* embryonic development .. 219

5.4.2 The *GABA*$_B_{(b)}$ transcript variant is unlikely to be expressed in vivo .. 221

5.4.3 Summary .. 222

6.0 Results Chapter Four

'Overexpression of *GABA*$_B$ receptor proteins during *Xenopus laevis* embryonic development'

6.1 Introduction

6.1.1 Manipulation of gene expression in *Xenopus* embryos .. 224

6.1.2 Rationale for *GABA*$_B$ receptor gene overexpression in *Xenopus* embryos ... 226

6.1.3 Aims .. 228
6.2 Overexpression of x/GABAb subunit proteins during X.laevis embryonic development

6.2.1 Overexpression of individual xGABAb\(_{(1)}\) and xGABAb\(_{(2)}\) subunits during embryonic development...229

6.2.2 Embryos overexpressing xGABAb\(_{(1)}\) and xGABAb\(_{(2)}\) subunits exhibit a predominantly wild-type phenotype..235

6.2.3 Co-overexpression of xGABAb\(_{(1)}\) and xGABAb\(_{(2)}\) subunits during embryonic development...237

6.2.4 Embryos overexpressing xGABAb\(_{(1\ast2)}\) or xGABAb\(_{(1\ast3)}\) receptor heterodimers exhibit a predominantly wild-type phenotype...243

6.2.5 Overexpression of xGABAb\(_{(1\ast4)}\) during embryonic development...245

6.2.6 Embryos overexpressing xGABAb\(_{(1\ast4)}\) exhibit a reproducible body truncation phenotype...251

6.2.7 Some embryos overexpressing xGABA\(_{B_{(1\ast4)}}\) exhibit eye defects and cyclopia...251

6.2.8 Embryos exhibit distinct phenotypes depending on site of xGABAb\(_{(1\ast4)}\) overexpression...252

6.2.9 The phenotypic effects observed in xGABAb\(_{(1\ast4)}\) overexpressing embryos are cRNA concentration-dependent...253

6.3 Characterisation of the phenotypes arising from xGABAb\(_{(1\ast4)}\) overexpression during embryo development

6.3.1 Investigating the effect of xGABAb\(_{(1\ast4)}\) overexpression on convergent extension..254

6.3.2 xGABAb\(_{(1\ast4)}\) overexpression interferes with convergent extension in animal caps..256

6.3.3 Investigating the effect of xGABAb\(_{(1\ast4)}\) overexpression on the transcriptional regulation of mesoderm-specific markers...257

6.3.4 xGABAb\(_{(1\ast4)}\) overexpression does not interfere with mesoderm induction..260

6.3.5 Examination of internal structures of embryos overexpressing xGABAb\(_{(1\ast4)}\)..261

6.3.6 Embryos overexpressing xGABAb\(_{(1\ast4)}\) exhibit brain, eye, notochord and neural plate defects..264
6.4 Discussion

6.4.1 Overexpression of xIGABA_B receptor subunits or heterodimers during X.laevis development does not generate a reproducible morphological phenotype... 266

6.4.2 Overexpression of xIGABA_BL(a) during X.laevis embryonic development generates a reproducible morphological phenotype... 268

6.4.3 Summary.. 270

7.0 Discussion

7.1 Vertebrate GABA_B receptor genes are highly conserved

7.1.1 X.laevis GABA_B(1) and GABA_B(2) receptor proteins exhibit striking homology to their mammalian orthologues.. 273

7.1.2 X.laevis GABA_B(1) subunit proteins may be more readily trafficked to the plasma membrane than their mammalian counterparts... 274

7.1.3 X.laevis GABA_B(1a) N-terminal variants may give rise to GABA_B receptor heterogeneity in vivo.. 276

7.1.4 The X.laevis GABA_BL cDNA isolated here encodes a genuine orthologue of mammalian GABA_BL proteins.. 277

7.1.5 Vertebrate GABA_B exon organisation is highly conserved, although X.tropicalis GABA_B(1) possesses novel additional exons.. 278

7.1.6 Genomic analysis provides evidence for a relationship between GABA_BL and the GABA_B genes... 280

7.2 X.laevis GABA_B receptor mRNAs are expressed during embryonic development

7.2.1 X.laevis GABA_B(1) and GABA_B(2) receptor subunit mRNAs are differentially expressed during embryonic development... 281

7.2.2 The expression pattern for xIGABA_BL(a) suggests a distinct function from xIGABA_B receptors during vertebrate development... 286

7.2.3 The absence of an expression pattern for xIGABA_BL(b) suggests that this transcript variant does not exist in vivo... 288
7.3 Overexpression of $xGABA_{BL(a)}$, but not $xGABA_B$ receptors, generates a morphological phenotype in developing *X.laevis* embryos.

7.3.1 No evidence for an essential role for metabotropic GABA signalling during *X.laevis* embryonic development...290

7.3.2 $xGABA_{BL(a)}$ overexpression disrupts mesodermal convergent extension and notochord elongation in developing *X.laevis* embryos..292

7.3.3 $xGABA_{BL(a)}$ overexpression occasionally results in eye and brain defects...295

7.3.4 An endogenous role for $xGABA_{BL(a)}$ in the regulation of mesodermal convergent extension is unlikely...297

7.4 First evidence of functionality of the putative orphan GPCR, GABA$_{BL}$

7.4.1 The $xGABA_{BL(a)}$ cDNA isolated here encodes a functional protein...........298

7.4.2 Orphan Family 3 GPCRs may not bind endogenous ligands.........................298

7.5 Future research

7.5.1 A knock-down approach to investigate the role of GABA signalling during *X.laevis* development...303

7.5.2 A knock-down approach to investigate the role of $xGABA_{BL(a)}$ endogenously expressed during *X.laevis* development..305

7.5.3 Selective G-protein knock-down approach to investigate signal transduction by $xGABA_{BL(a)}$ when overexpressed in developing *X.laevis* embryos...306

7.5.4 Rational approaches to identify GABA$_{BL}$-interacting factors....................308

8.0 References..312

9.0 Appendices..328
Introduction
1.1 The G-protein coupled receptor (GPCR) superfamily

1.1.1 GPCRs make up the largest class of cell-surface receptors

G-protein (guanine-nucleotide-binding protein) coupled receptors (GPCRs) belong to the largest known protein family, encoded by over 1000 genes in the human genome, and make up the largest class of cell-surface receptors (Howard, A. D. et al. 2001). They are activated by a vast array of extracellular signals including small molecules such as amino acids and peptides, inorganic ions, nucleotides, neurotransmitters, hormones, cytokines, and even photons of light. GPCRs are responsible for the regulation of numerous physiological processes and carry out a multitude of tasks in the central nervous system (CNS) and the periphery, making them extremely important drug targets (George, S. R. et al. 2002). Indeed, around 50% of all modern drugs modulate GPCR activity in some way (Howard, A. D. et al. 2001). Despite this, the majority of putative GPCRs identified from the human genome remain ‘orphan’ receptors whose endogenous ligands or downstream effector systems are yet to be identified, and as such, the ‘de-orphanisation’ of these receptors remains a primary objective in GPCR research (Okuno, Y. et al. 2006).

1.1.2 GPCRs signal via both heterotrimeric and monomeric G-proteins

Most GPCRs transduce information by acting as guanine nucleotide-exchange factors (GEFs) for heterotrimeric G-proteins, whereby agonist binding brings about conformational changes in the GPCR that promote the exchange of guanosine 5'-diphosphate (GDP) for guanosine 5'-triphosphate (GTP) on the G-protein Ga subunit. Activation of the G-protein
in this way is thought to bring about its dissociation into Gα and Gβγ subunits which are then able to positively or negatively regulate various downstream effectors, where the intrinsic GTPase activity of the Gα subunit acts as a molecular switch resulting in the deactivation of the subunit upon hydrolysis of bound GTP to GDP. There are several families of heterotrimeric G-proteins whose specificity for a particular downstream signalling cascade is conferred by the identity of the Gα subunit. Activated Gαs and Gαi11 subunits, for example, stimulate or attenuate adenylate cyclases respectively, regulating the cyclic AMP/protein kinase A (cAMP/PKA) pathway, whilst Gαq/11 subunits stimulate phospho-lipaseC-β (PLC-β), activating the Ca²⁺/protein kinase C (Ca²⁺/PKC) pathway. Gβγ subunits are also able to regulate intracellular events through the direct activation or inhibition of ion channels.

In addition to heterotrimeric G-proteins there are over 100 different monomeric G-proteins, or small GTPases, which are classified into five families according to structural similarity (Takai,Y et al. 2001). The Ras and Rho family GTPases regulate signalling cascades that affect gene transcription events, the latter family acting as the principal regulators of the actin cytoskeleton. Rab and Arf family GTPases primarily regulate vesicular movement between intracellular compartments, whilst the Ran GTPases regulate microtubule organisation and nucleocytoplasmic protein transport (Bhattacharya,M et al. 2004). Recent studies have demonstrated that GPCRs are able to modulate monomeric G-protein signalling events indirectly through activation of upstream heterotrimeric G-proteins (Seasholtz,T.M et al. 1999, Sah,V.P et al. 2000, Marinissen, M.J et al. 2001). For example, activation of Ga12/13 subunits by GPCRs in response to the binding of agonists, such as acetylcholine and lysophosphatidic acid (LPA), can trigger Rho GTPase-mediated cytoskeletal reorganisation through the stimulation of RhoGEFs (Kozasa,T et al. 1998, Hart,M.J et al. 1998). Also, Gβγ subunits are able to couple to Ras GTPases indirectly
through the stimulation of Src-dependent activation of matrix metalloproteinases (MMPs),
which can in turn indirectly activate receptor tyrosine kinases (RTKs) and trigger Ras
GTPase signalling (Bhattacharya, M et al. 2004).

1.1.3 GPCRs may be classified into five distinct families

Whilst all GPCRs are transmembrane proteins, possessing seven membrane-spanning α-
helices, they may be easily classified into five distinct, phylogenetically unrelated families
according to sequence homology (Bockaert, J et al. 1999) (see Figure 1.1). Family 1
GPCRs, themselves broken down into type 1a, 1b and 1c, constitute by far the largest
group of receptors. They are characterised by relatively short N- and C-termini and exhibit
several highly conserved amino acid residues, including a C-terminal palmitoylated
cysteine residue (George, S.R et al. 2002). Type 1a receptors, such as rhodopsin and the
β2-adrenergic receptor (β2-AR), bind their ligands in a pocket formed by their seven-
transmembrane domains, whereas type 1b and 1c coordinate ligands via their N-terminal
domains and extracellular loops. The latter two families include receptors for peptides and
glycoprotein hormones respectively, where type 1c receptors are characterised by much
larger N-terminal domains. Family 2 GPCRs, which include receptors for high molecular
weight ligands such as glucagon, exhibit a similar morphology to type 1c receptors and
possess multiple N-terminal cysteine residues, which presumably form a network of
disulphide bridges (George, S.R et al. 2002).

Family 3 GPCRs include the metabotropic glutamate receptors (mGluRs), the calcium-
sensing receptor (CaSR), metabotropic GABA (GABA_b) receptors, a family of putative
mammalian taste receptors (T1Rs), a promiscuous L-α-amino acid receptor (GPRC6A),
and a host of putative orphan receptors. They are characterised by a very large N-terminal extracellular ligand-binding domain, structurally related to bacterial periplasmic binding proteins (PBPs), a long intracellular C-terminal tail and a highly conserved third intracellular loop containing the molecular determinants required for G-protein activation, equivalent to the second intracellular loop in Family 1 GPCRs (Yamashita, T et al. 2001). Many Family 3 GPCRs possess cleavable N-terminal secretion signal peptides and most exhibit a cysteine-rich linker region between their extracellular domain (ECD) and seven-transmembrane domains, with the notable exception of the GABA_b receptors.

A model for ligand-binding, originally proposed for the bacterial L-arabinose binding protein (ABP) (Mao, B et al. 1982) and known as the ‘venus-flytrap’ model, describes open and closed conformations of ABP corresponding to unliganded and liganded states respectively. It is proposed that a ‘venus-flytrap’ model for receptor activation may be conserved across Family 3 GPCRs, whereby the N-terminal ECD switches between open and closed states according to ligand-binding (O’Hara, P.J et al. 1993, Galvez, T et al. 2001, Kniazeff, J et al. 2002). Indeed, site directed mutagenesis studies have identified residues involved in ligand coordination in the leucine/isoleucine/valine-binding protein (LIV-BP) that are conserved across Family 3 GPCRs (Galvez, T et al. 1999).
Figure 1.1 Schematic diagram showing structure of A. Family 1, B. Family 2, C. Family 3, D. Family 4, and E. Family 5 G-protein coupled receptors, showing approximate location of key cysteine residues (red) and ligand-binding sites (blue).
A single family of putative pheromone receptors (VNs) constitute the Family 4 GPCRs. These receptors exhibit short N- and C-termini and share a high level of amino acid sequence identity. The expression of each member of the gene family is restricted to a small, distinct subpopulation of vomeronasal organ (VMO) neurons. (Dulac, C et al. 1995).

Family 5 GPCRs include the Frizzled (Fzd) and Smoothened (Smo) receptors: regulators of developmental processes such as neurulation, somite and limb formation, and cell polarity (Strutt, D et al. 2003, Alcedo, J et al. 1997).

1.1.4 GPCR signalling regulates important processes during development

The events that occur during development are complex and highly regulated. Intercellular signalling molecules in the form of secreted or transmembrane proteins, of which there are six main families, regulate key developmental process by binding to cell-surface receptors and initiating signal transduction cascades in neighbouring cells (Wolpert, L et al. 1998). The fibroblast growth factors (FGFs) are secreted proteins that bind to RTKs and are responsible for induction of the spinal cord in vertebrates (Smith, J.C et al. 1993), whilst the transforming growth factor-β (TGF-β) family of proteins, which includes activin and bone morphogenetic proteins (BMPs), have roles in mesoderm formation and dorsoventral patterning, and signal via receptor serine-threonine kinases (RSTKs) (Dale, L et al. 1999). Ephrins are membrane-tethered ligands for Eph receptors, the largest known family of RTKs, and are involved in events such as cell adhesion and migration (Klein, R et al. 2004). The ligands Delta, Serrate and Jagged, involved in cell recognition events, all signal via a single-transmembrane receptor called Notch which, upon ligand-binding, is proteolytically processed leading to the nuclear translocation of the receptor’s intracellular

The hedgehog and Wnt families of secreted glycoproteins have important roles during embryonic development and both mediate their effects by GPCR signalling. Whilst there is only one hedgehog gene (hh) in Drosophila, there are three mammalian proteins, named sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh), which are responsible for a host of developmental functions including specification of regional characteristics of the gut, dorsoventral polarity of the neural tube, anterior-posterior patterning of the limbs, endoderm formation and spermatogenesis (Ramalho-Santos, M et al. 2000, Maye, P et al. 2000, Bitgood, M.J et al. 1996). Hedgehog protein signals by binding to its cell-surface receptor, a twelve-transmembrane protein called Patched (Ptc), which brings about the disinhibition of a constitutively active Family 5 GPCR called Smoothened (Smo), which activates a signal transduction cascade mediated by the proteins cubitus interruptus (Ci), fused kinase (Fu), and costal-2 (Cos-2), resulting in the transcriptional regulation of target genes.

Wnt proteins are involved in embryonic cell patterning, adhesion, proliferation, differentiation and survival, and signal via multiple intracellular signalling pathways (see Figure 1.2) (Du, S.J et al. 1995, Moon, R.T et al. 1993, Christian, J.L et al. 1993). The canonical Wnt pathway regulates gene transcription through β-catenin, whereby Wnt binding to the Family 5 GPCR Frizzled (Fzd) and its co-receptor LRP-5/6 activates the multi-module protein Dishevelled (Dsh) via a G-protein, which in turn inhibits glycogen synthase kinase-3β (GSK-3β), leading to the dephosphorylation of β-catenin and the transcriptional regulation of target genes (Peters, J.M et al. 1999). In contrast, non-canonical Wnt signalling is mediated by two distinct intracellular cascades: the Wnt/Ca²⁺ pathway, where activation of Fzd/LRP-5/6 stimulates PLC-β activity, presumably via
Frizzled receptor LRP5/6 co-receptor

$[Ca^{2+}]$ increase
catenin
catenin

transcriptional regulation of target genes

transcriptional regulation of target genes

cellular response

Figure 1.2 Signalling pathways initiated by Wnt ligand-binding to the Family 5 GPCR Fzd, showing Wnt ligand-binding and cysteine-rich region; and its co-receptor LRP5/6, showing N-terminal (epidermal growth factor) EGF repeats. A. The canonical Wnt pathway: DIX domain of the Fzd-activated Dsh protein inhibits the GSK-3β protein complex bringing about accumulation of β-catenin (red). B. Non-canonical Wnt/PCP pathway: PDZ and DEP domains of the Fzd-activated Dsh protein can activate Rho GTPases either directly, or via the Dsh-associated activator of morphogenesis 1 protein (Daaml), leading to JNK activation (green). C. Non-canonical Wnt/Ca$^{2+}$ pathway: stimulation of PLC-β by Fzd-activated G-proteins leads to diacylglycerol (DAG) and IP$_3$ synthesis, release of Ca$^{2+}$ from intracellular stores, and activation of PKC and Ca$^{2+}$/calmodulin-dependent protein kinase II (CaMKII) (purple).
1.2 γ-amino butyric acid (GABA) and its receptors

1.2.1 GABA signals via ionotropic and metabotropic receptors

Gamma-amino butyric acid (GABA) is the principal inhibitory neurotransmitter in the adult central nervous system (CNS). During fast synaptic transmission GABA signals through ionotropic GABA$_A$ and GABA$_C$ receptors that initiate inhibitory post-synaptic potentials (IPSPs) through rapid, chloride-mediated post-synaptic membrane hyperpolarization. GABA$_A$ receptors, responsible for the majority of fast inhibitory signalling in the mammalian CNS, are ion channels comprised of five subunits that can belong to one of eight different classes α-, β-, γ-, δ-, ε-, θ-, π- and ρ- (Barnard,E.A et al. 1998, Whiting,P.J et al. 1999). To date, at least six different mammalian α-subunit subtypes have been reported, and three subtypes within each of the β-, γ- and ρ- subunit classes. Whilst most GABA$_A$ receptors appear to be comprised of two α-subunits, two β-subunits and one γ-subunit, several minor subunit compositions have been proposed, including homo- or hetero-oligomers of ρ-subunits (Sieghart,W et al. 1999). Subunit subtypes exhibit distinct and widespread expression patterns indicating the existence of multiple GABA$_A$ receptor variants in the brain, perhaps as many as 500, each with distinct pharmacological and electrophysiological properties, generating an extraordinary degree of receptor heterogeneity (Sieghart,W et al. 1995).

GABA also signals via the metabotropic GABA$_B$ receptor, a Family 3 GPCR that modulates synaptic transmission via intracellular signal transduction cascades. The GABA$_B$ receptor was first described as a slow acting GABA receptor unaffected by GABA$_A$ receptor antagonists and responsible for the late phase of biphasic IPSPs (Hill,D.R et al.
1981). GABA_b receptor agonists such as Baclofen, an anti-convulsant drug available since 1972, had proved to be promising therapeutic agents, but often generated unwanted side effects such as tolerance and sedation (Bowery, N.G et al. 1993). As such, there was significant commercial interest in isolating GABA_b receptor cDNA in the hope of designing more selective drugs. However, this proved to be difficult, and the GABA_b receptor remained the last major neurotransmitter receptor to be cloned.
1.3 Cloning of GABA_B receptor complementary DNAs (cDNAs)

1.3.1 *GABA_B* cDNA was first isolated by expression cloning

The isolation of cDNAs encoding GABA_B receptors was problematic and their nucleotide sequence remained elusive seventeen years after their existence was first postulated (Bowery, N.G et al. 1980). The difficulties associated with the cloning of GABA_B receptors are now well understood and arose from the heterodimeric nature of these receptors, which is discussed later in this chapter (see Section 1.5). Prior to cloning there were no radioligands available that bound with high affinity to GABA_B receptors, making purification of receptor protein difficult, and as a consequence it was not possible to raise antibodies against GABA_B receptors. Frustratingly, functional responses were typically lost upon solubilization of receptor protein during purification, or when splitting active cDNA pools into smaller ones, this easily ascribed in retrospect to the separation of the subunits required to form functional heterodimeric receptors.

The isolation of an immunoaffinity-purified putative GABA_B receptor protein was, however, reported in 1993 (Nakayasu, H et al. 1993) upon the development of an antiserum that specifically recognised an 80kDa GABA-binding protein. Whilst the researchers were able to demonstrate GABA_B receptor agonist and antagonist binding to the purified receptor, and modulation of adenylate cyclase activity upon their application to the purified protein reconstituted into a phospholipid membrane, no amino acid sequence was disclosed. It is now clear that the molecular weight of this protein differs from that of the GABA_B receptors cloned subsequently, and a relationship with the latter now seems unlikely.
Ultimately GABA\textsubscript{B} receptor cDNA was isolated by expression cloning, four years later, upon the development of the high-affinity radiolabelled antagonist \([^{125}\text{I}]\text{CGP64213}\) (Kaupmann,K et al. 1997). This approach was successful primarily because it did not require functional coupling of the receptor, but merely the availability of the high-affinity binding site. Rat cortex and cerebellum tissues, shown to contain a high density of GABA\textsubscript{B} receptor binding sites, were used as a source to construct a cDNA library and clones were screened for \([^{125}\text{I}]\text{CGP64213}\) binding in transfected COS1 cells. Following serial subdivisions of positive cDNA pools, a single 4.4kb cDNA clone was isolated containing an open reading frame encoding a 960 amino acid protein, sharing low sequence identity with metabotropic glutamate receptors (mGluRs). This protein was named GABA\textsubscript{B(1a)}. By using the GABA\textsubscript{B(1a)} cDNA as a probe to screen the cDNA library at low stringency, several additional clones were isolated including a 2.9kb cDNA encoding an 844 amino acid protein, which was named GABA\textsubscript{B(1b)}. Both isoforms were predicted to be seven transmembrane proteins, most closely related to Family 3 GPCRs, exhibiting structural similarity to bacterial periplasmic amino acid binding proteins in their N-terminal ECD.

The GABA\textsubscript{B(1a)} and GABA\textsubscript{B(1b)} proteins share 797 C-terminal amino acids but exhibit dissimilarity at their N-termini, possessing 163 and 47 unique N-terminal amino acid residues respectively. The N-terminus of GABA\textsubscript{B(1a)} contains a pair of sushi domains, or short consensus repeats (SCRs), which is absent in GABA\textsubscript{B(1b)} (Blein,S et al. 2004). Originally identified in complement proteins as a module involved in protein-protein interactions, sushi domains had not been observed previously in any other GPCR. However it has been recently suggested that, in fact, all Family 1b GPCRs possess an SCR module in their N-termini, further identified as the major site of peptide hormone interaction (Grace,C.R et al. 2004). The GABA\textsubscript{B(1a)} and GABA\textsubscript{B(1b)} isoforms were shown to
be conserved across vertebrates, this demonstrated by photoaffinity labelling of brain membrane preparations of several species, and several full-length and partial GABA$_{B(1)}$ and GABA$_{B(1b)}$ clones were isolated from numerous rat brain and spinal cord cDNA libraries (Kaupmann,K et al. 1997).

Whilst the cloned GABA$_{B(1)}$ isoforms exhibited many of the expected properties of GABA$_B$ receptors, neither GABA$_{B(1a)}$ nor GABA$_{B(1b)}$ were able to couple efficiently to their effector systems, and exhibited around 100-fold lower affinity for agonists compared to native receptors. It was soon demonstrated that recombinant GABA$_{B(1)}$ receptors were retained as immature glycoproteins on intracellular membranes (Couve,A et al. 1998). The search for an associated factor or chaperone responsible for maturation and trafficking of GABA$_{B(1)}$ to the plasma membrane quickly ensued.

1.3.2 GABA$_{B(2)}$ shares sequence identity with GABA$_{B(1)}$ and was first identified through homology searches

In an effort to identify additional GABA$_B$ receptor subunits, a number of research groups began by mining expressed sequence tag (EST) databases with GABA$_{B(1)}$ cDNA sequence and simultaneously isolated cDNA encoding a novel 941 amino acid protein, sharing 35% amino acid identity with GABA$_{B(1b)}$, termed GABA$_{B(2)}$. When co-expressed with GABA$_{B(1)}$ in mammalian cell lines, GABA$_{B(2)}$ promoted the cell surface expression of a functional receptor that coupled robustly to the expected effector systems and exhibited an affinity for agonists comparable to native GABA$_B$ receptors. This discovery led to three separate research groups publishing consecutive papers in the same volume of Nature, each postulating that native GABA$_B$ receptors existed as functional heterodimers
comprised of GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} subunits (Kaupmann,K et al. 1998a, Jones,K et al. 1998, White,J et al. 1998). Three further publications shortly followed also reporting the molecular identification of GABA\textsubscript{B(2)} (Martin,S et al. 1999, Kuner,R et al. 1999, Ng,G et al. 1999). The requirement for heterodimer formation in facilitating the proper function of a GPCR had not previously been described, and so the findings of these studies uncovered an intriguing new paradigm in GPCR biology (Marshall,F et al. 1999, Couve,A et al. 2000).

1.3.3 \textit{GABA}_{BL} shares sequence identity with GABA\textsubscript{B} receptors and was identified through homology searches

Whilst the cloning of GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} cDNAs permitted the pharmacological characterisation of the GABA\textsubscript{B} receptor, the existence of a single GABA\textsubscript{B(1/2)} heterodimer did not satisfactorily account for the receptor heterogeneity predicted by native studies, and so efforts to isolate cDNAs encoding additional putative GABA\textsubscript{B} receptor subtypes continued. In 2003, a cDNA encoding an 814 amino acid, putative seven transmembrane protein related to GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} was isolated, and named GABA\textsubscript{BL} (GABA\textsubscript{B}-like) (Calver,A.R et al. 2003). The human GABA\textsubscript{BL} gene was initially identified by searching the GenBank sequence database using the GABA\textsubscript{B(1b)} protein sequence as a query. Analysis of overlapping genomic contigs and subsequent prediction of exons facilitated the assembly of a putative full-length cDNA clone, which was then independently isolated from numerous human and rodent tissues.

Despite exhibiting striking sequence similarity to GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} across the seven transmembrane domains, sharing 27% and 31% amino acid identity respectively, GABA\textsubscript{BL} lacked the large N-terminal extracellular domain and signal peptide sequence
characteristic of most Family 3 GPCRs, and possessed an unusually long C-terminal intracellular domain. However, GABA_{BL} exhibited many key features shown to be critical for GABA_{B} receptor function, and so it was postulated that GABA_{BL} might be a novel GABA_{B} receptor subunit (Calver, A.R et al. 2003, Charles, K.J et al. 2003, Martin, S.C et al 2004).
1.4 GABA_b receptor gene structure and transcript variants

1.4.1 GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} are encoded by three distinct genes

The recent progress that has been made in sequencing the genomes of several model organisms has allowed researchers to investigate the structure of genes with ease. Analysis of human genomic sequence reveals that GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} transcripts are encoded by three distinct genes, located on chromosomes 6, 9 and 3 respectively, from which exon and intron sizes have been deduced (Goei,V.L et al. 1998, Peters,H.C et al. 1998, Martin,S.C et al. 2001, Hubbard,T.J.P et al. 2007). Analysis of human GABA_{B(1)} and GABA_{B(2)} genes reveals that they have a similar genomic organisation, indicating that they may derive from a common ancestral gene. Also, comparisons between human and Drosophila melanogaster GABA_{B(1)} and GABA_{B(2)} genes reveals several comparable intron locations, demonstrating a high degree of sequence conservation between vertebrates and invertebrates, despite the fact that D.melanogaster GABA_b receptors exhibit a unique pharmacology compared to their vertebrate counterparts (Martin,S.C et al. 2001, Mezler,M et al. 2001). An investigation into the organisation of the GABA_{BL} gene and its conservation across the species is lacking.

1.4.2 GABA_{B(1a)} and GABA_{B(1b)} mRNAs are generated by alternative transcription initiation sites

GABA_{B(1a)} and GABA_{B(1b)} are the most abundantly expressed GABA_{B(1)} transcript variants and are highly conserved among vertebrate species (Kaupmann, K et al. 1997). Analysis
of the $\text{GABA}_b(1)$ gene reveals that $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$ transcripts are generated by alternative transcription initiation sites (Martin, S.C et al 2001) and are not N-terminal splice variants, contrary to the initial assumption (Kaupmann, K et al. 1997). Putative promoter regions for $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$ have been identified in the human $\text{GABA}_b(1)$ gene, the latter residing within intron sequence downstream of the $\text{GABA}_b(1a)$-specific exon 1a4 (Steiger,J.L et al. 2004). The initiation of transcription from the $\text{GABA}_b(1b)$ promoter results in the extension of $\text{GABA}_b(1)$ exon 1 at its 5' end and generates a transcript encoding 47 N-terminal amino acids specific to $\text{GABA}_b(1b)$. Whilst several studies have uncovered distinct temporal and spatial expression patterns for $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$ (Kaupmann,K et al. 1997, Kaupmann,K et al. 1998a, Kaupmann,K et al. 1998b, Benke,D et al. 1999, Fritschy,J.M et al. 1999, Bischoff,S et al. 1999, Billinton,A et al. 1999), recombinant $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$ receptor subunits are pharmacologically indistinguishable when expressed in mammalian cells (Kaupmann,K et al. 1998a, Malitschek,B et al. 1999, Bräuner-Osbourne,H et al. 1999a, Green,A et al. 2000). The discovery of separate promoters and differential expression patterns is, however, indicative of distinct functional roles for $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$, and recent work has succeeded in separating these isoforms by functional means (see Section 1.6.2).

1.4.3 Additional $\text{GABA}_b(1)$ transcript variants are generated by exon skipping

In the years following the cloning of $\text{GABA}_b(1a)$ and $\text{GABA}_b(1b)$, a number of additional $\text{GABA}_b(1)$ transcript variants were isolated as cDNA from human and rodent tissues. $\text{GABA}_b(1c)$ is a human isoform of $\text{GABA}_b(1)$ that is identical to $\text{GABA}_b(1a)$ except for the skipping of exon 1a3, resulting in the deletion of the second sushi domain that is present in $\text{GABA}_b(1a)$ (Calver,A.R et al. 2001, Martin,S.C et al. 2001). This isoform is particularly
abundant and its expression pattern typically parallels that of GABA_{B(1a)}, the transcription of both variants presumably regulated by the same promoter. Two transcript variants isolated from rat brain cDNA libraries, both also originally named GABA_{B(1c)}, are identical to rat GABA_{B(1a)} and GABA_{B(1b)} respectively, except for the extension of exon 15 by 63pb through an alternative splicing event (Isomoto,S et al. 1998, Pfaff,T et al. 1999). Whilst these isoforms are functional when co-expressed with rat GABA_{B(2)} in mammalian cell lines, the additional sequence present in these isoforms is not conserved in humans. These transcripts are referred to here as GABA_{B(1a)-a} and GABA_{B(1a)-b} for simplicity, based on the N-terminal sequence they share with rat GABA_{B(1a)} and GABA_{B(1b)} respectively. GABA_{B(1d)} is an additional transcript variant isolated from rat that is identical to rat GABA_{B(1b)} except for a divergent C-terminus derived from the failure to splice out intron 17 of the GABA_{B(1)} gene, resulting in an alternative C-terminus and the deletion of half of the coiled-coil domain (Isomoto,S et al. 1998).

GABA_{B(1e)} is transcript variant encoding a truncated receptor that shares its N-terminus with GABA_{B(1a)} (Schwarz,D.A et al. 2000). It arises from the skipping of exon 10 of the GABA_{B(1)} gene resulting in a frameshift in exon 11 that generates a premature termination codon and deletes both the seven transmembrane and C-terminal intracellular domains. GABA_{B(1e)} is particularly intriguing in that it is found in both humans and rats, and appears to be the principal GABA_{B(1)} isoform expressed in peripheral tissues. Recombinant GABA_{B(1e)} protein is soluble and is secreted into the medium when expressed in mammalian cells, and it also forms stable heterodimers with GABA_{B(2)}. GABA_{B(1f)} is a transcript variant isolated from rat that is identical to rat GABA_{B(1c-a)} except for the in-frame deletion of exon 1a4 (Isomoto,S et al. 1998, Wei,K et al. 2001a). Exon 1a4 is 21bp in length and encodes 7 amino acids that reside between the sushi domains and the PBP-like domain. Finally GABA_{B(1g)} is a variant isolated from rat that arises from the failure to
splice out intron 1 of the GABA_{b(1)} gene, resulting in the extension of exon 1 at its 3' end (Wei,K et al. 2001). This splice variant encodes a truncated receptor that lacks the PBP-like, seven transmembrane and C-terminal intracellular domains.

It is important to note that the existence of isoforms GABA_{b(1a)} to GABA_{b(1g)} at the protein level has not been demonstrated and, as such, their physiological significance remains enigmatic. However, the generation of each of these transcripts can be explained by known splicing mechanisms, and are unlikely to be artefacts of cDNA synthesis or PCR. A schematic diagram showing the exon structure of each of the GABA_{b(1)} transcript variants, indicating the regions encoding key protein domains, is shown in Figure 1.3.

1.4.4 There are no confirmed GABA_{b(2)} transcript variants

The concomitant publications reporting the cloning of GABA_{b(2)} describe a single transcript encoding a 941 amino acid protein (Kaupmann,K et al. 1998, Jones,K et al. 1998, White,J et al. 1998, Martin,S et al. 1999, Kuner,R et al. 1999, Ng,G et al. 1999). Two additional isoforms were isolated from human tissue, named GABA_{b(2b)} and GABA_{b(2c)}, which exhibited dissimilarity from GABA_{b(2)} in their C-terminal tails (Clark,J.A et al 2000). However, the temporal and spatial expression patterns described for GABA_{b(2b)} and GABA_{b(2c)} where found to be near-identical to that of GABA_{b(2)} (Calver,A.R et al. 2000), and analysis of the GABA_{b(2)} gene revealed that consensus sequences for canonical splice junctions were lacking at the locations required to generate these alternative transcripts (Martin,S.C et al. 2001). Taken together, these data suggest that GABA_{b(2b)} and GABA_{b(2c)} are most likely artefacts of cDNA synthesis and do not occur in vivo. The records for these transcripts have been removed from the GenBank database at the
submitter's request. A schematic diagram showing the exon structure of these GABA_{b(2)} transcript variants, indicating the regions encoding key protein domains, is shown in Figure 1.3.

1.4.5 There are no confirmed GABA_{bL} transcript variants

The paper reporting the cloning and characterisation of GABA_{bL} describes a single cDNA encoding an 814 amino acid protein, although evidence of additional transcripts of differing size is provided by northern analysis using RNA isolated from testes (Calver, A. R et al. 2003). A human GABA_{bL} transcript variant is found in the GenBank sequence database (accession number: AB209362), although no expression pattern is disclosed (Totoki, Y et al. 2005). Analysis of the human GABA_{bL} gene reveals that this transcript variant, termed here GABA_{bL(d)}, is generated by the skipping of exons 3 to 7. The resulting frameshift in exon 8 generates an immediate termination codon, and the transcript encodes a truncated protein lacking six transmembrane domains and the intracellular C-terminal tail of GABA_{bL}. Whilst it is apparent that this transcript derives from a canonical splicing event, in the absence of any expression data its physiological relevance cannot be ascertained. A diagram showing the exon structure of these GABA_{bL} transcript variants, indicating the regions encoding key protein domains, is shown in Figure 1.3.
Figure 1.3 Schematic diagram of reported transcript variants for A. GABA_{(1)}(c), B. GABA_{(2)}, and C. GABA_{(3)}, showing the location of intron/exon boundaries and key protein domains.
1.5 GABA\textsubscript{b} receptor heterodimerization

1.5.1 Functional GABA\textsubscript{b} receptors are obligate heterodimers

The discovery that co-expression of two distinct receptor subunits was required for GABA\textsubscript{b} receptor function was remarkable. Whilst it had recently been suggested that the β_2-adrenergic receptor (β_2-AR) might exist as a homodimer in vivo, following the demonstration that recombinant β_2-AR homodimers exhibited agonist responses and desensitization behaviour equivalent to that of wild-type β_2-ARs (Hebert,T.E et al. 1998), GPCR heterodimers had not been proposed before. Shortly after the cloning of GABA\textsubscript{b} receptors, it was demonstrated that a heterodimer comprised of κ- and δ-opioid receptor subunits, both fully functional homodimeric receptors in their own right, was shown to yield a novel and pharmacologically distinct opioid receptor (Jordan,B.A et al. 1999). There are now at least 20 known examples of functional GPCR heterodimers and it is broadly accepted that receptor hetero-oligomerization is an important aspect of GPCR biology, contributing to receptor diversity in a way not anticipated prior to the characterisation of GABA\textsubscript{b} receptors (Devi,L.A et al. 2001, George,S.R et al. 2002).

The GABA\textsubscript{b} receptor is peculiar in that it mediates agonist-induced G-protein activation through a process known as transactivation, whereby the two GABA\textsubscript{b} receptor subunits play distinct roles. GABA\textsubscript{b(1)}, isolated by its ability to bind a high-affinity antagonist, is responsible for the binding of all GABA\textsubscript{b} receptor agonists and antagonists, whereas GABA\textsubscript{b(2)} appears not to bind any endogenous ligands (Kaupmann,K et al. 1998a, Jones,K et al. 1998, White,J et al. 1998, Galvez,T et al. 2000, Kniazeff,J et al. 2002). Alignment of GABA\textsubscript{b(1)} and GABA\textsubscript{b(2)} protein sequences reveals that key residues, implicated in ligand
coordination by mutagenesis studies, are not conserved in GABA_{B(2)} (Franek, M et al. 1999, Galvez, T et al. 1999, Galvez, T et al. 2000). Conversely, the molecular determinants required for the activation of G-proteins by the GABA_{B} receptor are found in the intracellular segments of GABA_{B(2)} and are not conserved in GABA_{B(1)} (Robbins, M et al. 2001, Galvez, T et al. 2001). It is possible to substitute intracellular segments of GABA_{B(1)} with their GABA_{B(2)} or mGluR counterparts, or even random coil peptides, without any loss of receptor function (Margeta-Mitrovic, M et al. 2001a, Margeta-Mitrovic, M et al. 2001b).

1.5.2 A trafficking checkpoint regulates the assembly of GABA_{B} receptor heterodimers

Early studies with recombinant GABA_{B} receptors demonstrated that, whilst GABA_{B(2)} subunits were correctly trafficked and expressed at the surface of mammalian cells in the absence of GABA_{B(1)}, GABA_{B(1)} subunits were retained on intracellular membranes when expressed alone (Kaupmann, K et al. 1998a, White, J.H et al. 1998, Couve, A et al. 1998, Martin, S.C et al. 1999). Analysis of the GABA_{B(1)} protein sequence revealed a conserved RSR motif in the C-terminal tail, immediately downstream of the coiled-coil domain, reminiscent of the ER retention/retrieval motif RKR identified in subunits of the ATP-sensitive K⁺ channel (Zerangue, N et al. 1999). Analysis of the surface expression of several GABA_{B(1)} C-terminal deletion constructs indicated that this sequence, extended to RSR(R), was responsible for the intracellular retention of GABA_{B(1)}, and it was postulated that heterodimerization with GABA_{B(2)} in the ER via a coiled-coil interaction resulted in the masking of this motif, facilitating the efficient trafficking of functional GABA_{B} receptor heterodimers to the cell-surface (Margeta-Mitrovic, M et al. 2000, Pagano, A et al. 2001, Calver, A.R et al. 2001). Indeed, mice expressing a C-terminally truncated GABA_{B(2)}
subunit do not express functional \textit{GABA}_b receptors at the cell-surface, as the \textit{GABA}_b(1) RSR(R) motif remains exposed upon heterodimer formation (Thuault,S.J et al. 2004).

More recently, it was shown that sequences upstream of the RSR(R) signal also affect \textit{GABA}_b receptor function, and the full ER retention/retrieval motif in \textit{GABA}_b(1) was extended to QLQSRQQLRSRR, which includes part of the coiled-coil domain (Grunewald,S et al. 2002). Deletions in this upstream sequence drastically reduce the effectiveness of the coat-protein I complex (COPI), a factor which is shown to bind to the RSR(R) motif and which promotes cis-Golgi-ER retrograde trafficking of monomeric \textit{GABA}_b(1) subunits in the absence of \textit{GABA}_b(2) (Brock,C et al. 2005, Gassmann,M et al. 2005). A di-leucine motif, known to be important in the regulation of protein trafficking between the endosomal and trans-golgi network (Petris,M.J et al. 1998, Kirchhausen,T et al. 1999), was identified at the N-terminal end of the coiled-coil domain in \textit{GABA}_b(1) and was also shown to modulate intracellular retention (Margeta-Mitrovic,M et al. 2000, Margeta-Mitrovic,M et al. 2001). More recently it was demonstrated that msec7-1, a GEF for the ARF family of GTPases which are regulators of vesicular membrane trafficking, interacts with \textit{GABA}_b(1) via this di-leucine motif and modulates the cell surface expression of \textit{GABA}_b receptors (Restituito,S et al. 2005).

1.5.3 \textit{The extracellular domain of \textit{GABA}_b(1) is sufficient to bind agonists and antagonists}\n
The \textit{GABA}_b(1) splice variant \textit{GABA}_b(1e) encodes a soluble truncated receptor corresponding to the N-terminal ECD of \textit{GABA}_b(1a). Recombinant \textit{GABA}_b(1e) was shown to be secreted into the medium, when expressed in mammalian cells, and was capable of
heterodimerizing with GABA\textsubscript{B(2)} at the cell surface, indicating that the intracellular coiled-coil interaction between GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} C-termini is not the sole heterodimerization interface in the GABA\textsubscript{B} receptor (Schwarz, D.A et al. 2000). Whilst it was demonstrated that GABA\textsubscript{B(1e2)} heterodimers were unable to couple to downstream effector systems, GABA\textsubscript{B(1e)} was shown to successfully compete with GABA\textsubscript{B(1a)} for GABA\textsubscript{B(2)} binding and disrupt normal GABA\textsubscript{B(1e2)} heterodimer formation. This suggested that, should GABA\textsubscript{B(1e)} protein occur in vivo, it might regulate GABA\textsubscript{B} receptor activity in a dominant negative manner (Bettler, B et al. 2004). Whilst Schwarz and colleagues were unable to demonstrate binding of the radiolabelled GABA\textsubscript{B} receptor antagonist \[^{3}\text{H}]\text{CGP54626A}\) to GABA\textsubscript{B(1e)}, another group showed that comparable artificially truncated GABA\textsubscript{B(1a)} and GABA\textsubscript{B(1b)} proteins, comprising only of extracellular residues, bound agonists and antagonists with a greater affinity than their full-length wild-type counterparts when expressed in insect cells (Malitshek, B et al. 1999). These experiments showed that the ECD of GABA\textsubscript{B(1)} is sufficient to bind GABAergic ligands with high affinity, and also implied that crystallization of liganded and unliganded ECD might be feasible.

\textbf{1.5.4 Allosteric interactions between GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} subunits are necessary for optimal GABA\textsubscript{B} receptor function}

The analysis of various chimeric GABA\textsubscript{B} receptors has revealed that considerable 'cross-talk' occurs between GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} domains during optimal GABA\textsubscript{B} receptor function. For example, the ECD of GABA\textsubscript{B(2)} is shown to increase the agonist affinity of GABA\textsubscript{B(1)} and is required for agonist activation of the receptor, whilst the seven-transmembrane domain of GABA\textsubscript{B(1)} dramatically improves coupling efficacy (Galvez, T et al. 2001, Margeta-Mitrovic, M et al. 2001*, Kniazeff, J et al. 2002).
1.6 GABA_b receptor signalling

1.6.1 Pre- and post-synaptic GABA_b receptors have distinct roles

The GABA_b receptor couples negatively to adenylate cyclase through the activation of Pertussis toxin-sensitive Go_i G-proteins when expressed in mammalian cells (Kaupmann, K et al. 1997, Filippov, A.K et al. 2000). Whilst the physiological relevance of this adenylate cyclase inhibition is unclear, GABA_b receptor-activated G_i subunits mediate GABAergic effects through the inactivation of high voltage-activated Ca^{2+} channels, inhibiting neurotransmitter release in pre-synaptic neurons; and through activation of inwardly rectifying K^+ channels (GIRKs), perpetuating IPSPs in post-synaptic neurons (see Figure 1.4). Pre-synaptic GABA_b receptors may be subdivided into populations of autoreceptors, which inhibit the release of GABA into the synapse, and heteroreceptors, which inhibit the release of other neurotransmitters, for example, at glutamatergic terminals.
Evidence from native studies is indicative of considerable heterogeneity in the GABAergic transmission and suggests that, depending on the type of GABAergic neuron, each exhibiting differential expression patterns and belonging to distinct functional systems, variants of the closely related metabotropic glutamate receptors are used. However, it now broadly accepted that all metabotropic GABA receptors are highly conserved and abundant across various species and organisms.

Figure 1.4 Schematic diagram showing GABA_{A} receptor signalling at the synapse.
1.6.2 The GABA_{b(1a)} and GABA_{b(1b)} isoforms contribute to GABA_b receptor diversity

Evidence from native studies is indicative of considerable heterogeneity in the GABA_b receptor system and so, prior to cloning, researchers were expecting to discover multiple GABA_b receptor subtypes, each exhibiting differential expression patterns and coupling to distinct effector systems, analogous to the closely related metabotropic glutamate receptors (mGluRs). However, it is now broadly accepted that all metabotropic GABA signalling is mediated by a heterodimeric receptor comprised of GABA_{b(1)} and GABA_{b(2)} subunits, and that the only highly conserved and abundant transcript variants are those of GABA_{b(1a)} and GABA_{b(1b)}, generating only two receptor subtypes (Bettler,B et al. 2006).

Whilst GABA_{b(1a)} and GABA_{b(1b)} exhibit near identical pharmacological profiles when expressed in mammalian cells (Kaupmann,K et al. 1998^a, Malitschek,B et al. 1999, Bräuner-Osbourne,H et al. 1999^a, Green,A et al. 2000), numerous reports demonstrate differential temporal and spatial expression patterns (Kaupmann,K et al. 1997, Kaupmann,K et al. 1998^a, Kaupmann,K et al. 1998^b, Malitshek,B et al. 1998, Benke,D et al. 1999, Billinton,A et al. 1999, Bischoff,S et al. 1999, Fritschy,J-M et al. 1999, Towers,S et al. 2000), and pre- versus post-synaptic localisations have been suggested for both variants (Benke,D et al. 1999, Billinton,A et al. 1999, Ng,G,Y et al. 2001). There have also been isolated reports of separation of GABA_{b(1a/2)} and GABA_{b(1b/2)} receptors by pharmacological means, such as the suggestion that the anticonvulsant drug gabapentin was an agonist at GABA_{b(1a/2)} receptors but not GABA_{b(1b/2)} receptors (Ng,G,Y et al. 2001, Bertrand,S et al. 2001). However, such reports remain controversial as other groups were unable to reproduce these findings (Lanneau,C et al. 2001, Patel,S et al. 2001, Jensen,A,A et al. 2002) and, ultimately, a clean dissection of the distinct physiological
roles of GABA_{B(1a)} and GABA_{B(1b)} was only made possible upon the development of transcript variant-specific knock-out mice.

Taking advantage of the fact that GABA_{B(1a)} and GABA_{B(1b)} are regulated by different promoters, Bettler and colleagues recently produced GABA_{B(1a)}^- and GABA_{B(1b)}^- deficient mice using a 'knock-in' approach, whereby the initiation codon for one isoform was converted to a stop codon whilst leaving the other isoform intact (Vigot,R et al, 2006, Pérez-Garcí,E et al. 2006). Using a combination of immunohistochemistry and two-photon laser scanning microscopy, it was demonstrated that GABA_{B(1a)} was localised primarily at glutamatergic terminals, whereas GABA_{B(1b)} was found in dendritic spines opposite the site of glutamate release. Furthermore, GABA_{B(1a)}^-/- mice were found to lack GABA_B heteroreceptors, whilst GABA_{B(1b)}^-/- neurons exhibited greatly reduced slow IPSPs in response to incubation with the agonist Baclofen (Vigot,R et al. 2006). Together these results strongly suggest that GABA_{B(1a)} mainly assembles presynaptic heteroreceptors, whilst GABA_{B(1b/2)} receptors mainly mediate postsynaptic inhibition.

Given that GABA_{B(1a)} and GABA_{B(1b)} differ only in the presence of a pair of sushi domains in the GABA_{B(1a)} N-terminus, it is postulated that interactions between these domains and unidentified extracellular factors might be responsible for the retention of GABA_{B(1a/2)} heterodimers at specific sub-cellular locations. To date, only one such interaction has been proposed, between sushi domain 1 of GABA_{B(1a)} and the extracellular matrix protein fibulin-2 (Gingham,R.L et al. 2002, Blein,S et al. 2004), however, it is not currently possible to integrate this observation into a coherent model to explain the situation in vivo.
1.6.3 Atypical responses are occasionally observed when GABA\(_{B(1)}\) or GABA\(_{B(2)}\) are expressed alone

Recently, the disabling of GABA\(_{B(1)}\) and GABA\(_{B(2)}\) genes in mice has helped to clarify the roles of native GABA\(_{B(1)}\) and GABA\(_{B(2)}\) subunits predicted by the pharmacological characterisation of cloned receptors. In general, the behaviour of GABA\(_{B(1)}\)-deficient mice is consistent with the hypothesis that functional GABA\(_{B}\) receptors are GABA\(_{B(1/2)}\) heterodimers. The overt phenotype of GABA\(_{B(1)}\)-/- mice includes spontaneous epileptic seizures, hyperalgesia, impaired memory and loss of all detectable biochemical and electrophysiological pre- and post-synaptic GABA\(_{B}\) receptor responses (Prosser,H.M et al. 2001, Schuler,V et al. 2001, Queva,C et al. 2003). GABA\(_{B(2)}\) is also heavily downregulated, implying that most GABA\(_{B(2)}\) is associated with GABA\(_{B(1)}\) in vivo.

In contrast, experiments with GABA\(_{B(2)}\)-deficient mice appear to challenge the conventional understanding of GABA\(_{B}\) receptor function. Whilst GABA\(_{B(2)}\)-/- mice exhibit spontaneous seizures, hyperalgesia, impaired memory and hyperlocomotion analogous to GABA\(_{B(1)}\)-/- mice, atypical GABA\(_{B}\)ergic electrophysiological responses are detected in GABA\(_{B(2)}\)-/- hippocampal slices (Gassmann,M et al. 2004). These data suggest that it is feasible that GABA\(_{B(1)}\) mediates GABA\(_{B}\) receptor responses, on its own or in conjunction with other subunits, in neurons that lack GABA\(_{B(2)}\).

Similarly, it has been demonstrated that GABA\(_{B(2)}\) is expressed at the cell surface and couples to adenylate cyclase in the absence of GABA\(_{B(1)}\) (Kaupmann,K et al. 1998\(^a\), Martin,S.C et al. 1999), implying that GABA\(_{B(2)}\) might be responsible for constitutive GABA\(_{B}\) receptor activity in vivo when expressed alone.
Several groups have demonstrated differential expression patterns for GABA_{B(1)} and GABA_{B(2)}, revealing areas of unique expression for both subunits (Ng, G.Y et al. 1999, Clark, J.A et al. 2000, Charles, K.J et al. 2001, Kulik, A et al. 2002, Sands, S.A et al. 2003, Fritschy, J.M et al. 2004, Lopez-Bendito, G et al. 2004, Martin, S.C et al. 2004). A notable example of this phenomenon is found in some peripheral tissues, where GABA_{B(1)} is clearly expressed in the absence of GABA_{B(2)} despite the presence of functional peripheral receptors (Ong, J et al. 1990, Calver, A.R et al. 2000). These data, together with the proposal that both GABA_{B(1)} and GABA_{B(2)} are capable of forming homodimers (Ng, G.Y et al. 1999), suggest that both subunits might function alone in vivo, either as receptor homodimers, or through interactions with additional, hitherto unidentified, factors.

1.6.4 *Interacting proteins may modulate GABA_B receptor activity*

Whilst cloning efforts have been unable to identify pharmacologically distinct receptor subtypes that satisfactorily account for the diversity of native GABA_B receptors, it is still feasible that further GABA_B receptor subunits remain undiscovered. However given the availability of the human genome sequence and the fact that all GABA_B-related isoforms that have been isolated do not form functional GABA_B receptors when expressed with either GABA_{B(1)} or GABA_{B(2)} (Cheng, Y et al. 1998, Robbins, M.J et al. 2000, Bräuner-Osborne, H et al. 2000, Bräuner-Osborne, H et al. 2001, Calver, A.R et al. 2003, Charles, K.J et al. 2003), the likelihood of discovering other GABA_B receptor genes is small. It is possible that further heterogeneity of GABA_B receptor responses is achieved by coupling to differential downstream effector systems, facilitated by interactions with intracellular factors or through association with other transmembrane partners. Indeed, a number of specific interactions with intracellular proteins are reported, including
interactions between the C-terminus of GABA_{B(1)} and members of the ATF/CREB and CCAAT/enhancer-binding protein (C/EBP) families of transcription factors (Nehring,R.B et al. 2000, Vernon,E et al. 2001, White,J.H et al. 2000, Sauter,K et al. 2005), two members of the 14-3-3 family of signalling proteins (Couve,A et al. 2001), and a novel RNA-binding protein called Marlin-1 (Couve,A et al. 2004). However, none of these interactions have been shown to affect GABA_{B} receptor function and, as such, may simply represent artefacts of the yeast-2-hybrid system used to identify them. In contrast, a highly significant interaction between GABA_{B(1)} and the γ2s subunit of the ionotropic GABA_{A} receptor was recently reported, whereby the latter was demonstrated to recruit GABA_{B(1)} to the plasma membrane in the absence of GABA_{B(2)} and enhance agonist-induced GABA_{B} receptor internalisation (Balasubramanian,S et al. 2004).

This association, combined with increasing evidence that GABA_{B} receptors associate with lipid rafts (Becher,A et al. 2001), indicate that GABA_{B} receptor heterogeneity might derive from association with other receptor proteins, or intracellular factors, as part of diverse oligomeric signalling assemblies at the cell surface. Indeed, a host of hetero-oligomeric interactions between a number of receptors have recently been described, and GPCR signalling is increasingly being considered in terms of receptor oligomers (Bouvier,M et al. 2001, George,S.R et al. 2002, Milligan,G 2004, Prinster,S.C et al. 2005). The various GABA_{B}-related orphan GPCRs that have been isolated, including GABA_{BL} and the GPRC5 family of receptors, may yet be found to contribute to such oligomeric assemblies and modulate coupling to downstream signalling cascades.
Figure 1.5 Schematic diagram showing reported GABA_B receptor-interacting proteins, fibulin-2, marlin-1, msec7-1, ATF/CREB family transcription factors, 14-3-3 signalling molecules, coat-protein I complex (COPI), heterotrimeric G_G G-proteins and the GABA_A receptor γ2s subunit, showing approximate sites of interaction with GABA_{B1} (red), GABA_{B2} (blue), and GABA_{B1}γ2s-specific (green) protein domains.
1.7 The GABA\textsubscript{BL} receptor

1.7.1 GABA\textsubscript{BL} is a transmembrane protein most closely related to GABA\textsubscript{B} receptors

The molecular cloning and characterisation of novel human and rodent orthologues of a GABA\textsubscript{B} receptor-related seven-transmembrane protein, termed GABA\textsubscript{BL} (GABA\textsubscript{B}-like), was reported in 2003 (Calver, A.R et al. 2003). GABA\textsubscript{BL} possesses several key features known to be of importance to GABA\textsubscript{B} receptor function, such as a C-terminal coiled-coil domain, a di-leucine motif, and several RXR-type ER retention/retrieval motifs. However, unlike most Family 3 GPCRs, GABA\textsubscript{BL} is predicted not to have an N-terminal signal peptide sequence and only possesses 48 extracellular amino acids, lacking the characteristic N-terminal extracellular ’venus-flytrap’ domain. GABA\textsubscript{BL} failed to elicit any response in a calcium mobilisation assay, when transfected with a cocktail of promiscuous G-proteins and screened against over 2500 ligands, and is unable to substitute for either GABA\textsubscript{B(1)} or GABA\textsubscript{B(2)} when co-expressed in HEK293 cells (Calver, A.R et al. 2003). Nevertheless, phylogenetic analysis indicates that GABA\textsubscript{BL} is indeed a Family 3 GPCR most closely related to the GABA\textsubscript{B} receptors, and GABA\textsubscript{BL} mRNA was shown to be widely expressed in the human CNS and peripheral tissues, particularly the testis where several additional transcript variants were identified by northern analysis (Calver, A.R et al. 2003).

1.7.2 GABA\textsubscript{BL} may not be functionally related to GABA\textsubscript{B} receptors

GABA\textsubscript{BL} expression was demonstrated at the protein level in rat brain by immunohistochemistry, upon development of a polyclonal antibody, revealing several
areas of co-expression with GABA$_b$ receptor proteins (Charles,K.J et al. 2003). Real-time quantitative PCR also indicated a high level of GABA$_{BL}$ mRNA expression in areas such as the striatum and olfactory bulb, where GABA$_{B(1)}$ transcripts are abundant and GABA$_{B(2)}$ transcripts are rare, indicating that GABA$_{BL}$ could function as a partner for GABA$_{B(1)}$ in these regions (Martin,S.C et al. 2004). However, evidence of a physical association between GABA$_{BL}$ and GABA$_b$ receptor subunits is distinctly lacking, and a functional relationship with the latter now seems unlikely. Indeed, despite its name, GABA$_{BL}$ is almost certainly not a GABA receptor, and may simply be described as a seven-transmembrane protein of unknown function that is endogenously expressed at the protein level in the brain.

1.7.3 GABA$_{BL}$ is not conserved in invertebrates

GABA$_b$ receptors have been described in several invertebrate species including echinoderms, arthropods and molluscs (Fischer,Y et al. 1996, Azatian,K.V et al. 1997, Devlin,C.L 2001), and cDNAs encoding the Drosophila melanogaster (d)GABA$_b$ receptors have been cloned (Mezler,M et al. 2001). Like their mammalian counterparts, dGABA$_{B(1)}$ and dGABA$_{B(2)}$ form functional heterodimeric receptors and regulate K$^+$ and Ca$^{2+}$ currents through activation of G$_{i/o}$ G-proteins. However, dGABA$_b$ receptors exhibit a unique pharmacology, and the dGABA$_{B(1)}$ gene also lacks the sushi domains found in the mammalian GABA$_{B(1a)}$ isoforms. Intriguingly, a third GABA$_b$ receptor was discovered in Drosophila: a paralogue, termed dGABA$_{B(3)}$, which encodes a transmembrane protein of unknown function. Like GABA$_{BL}$, dGABA$_{B(3)}$ is unable to substitute for either dGABA$_{B(1)}$ or dGABA$_{B(2)}$ to form a functional heterodimer, nor is able to modulate normal dGABA$_b$ receptor function when co-expressed with both dGABA$_{B(1)}$ and dGABA$_{B(2)}$ in mammalian
cells (Mezler,M. et al. 2001). It is tempting to speculate that GABABL might represent the mammalian orthologue of dGABAb(3) given these functional similarities, and indeed hGABABL and dGABAb(3) share greater amino acid identity in their transmembrane domains (32%) than hGABAb(2) and hGABAbL share (31%) (Calver,A.R. et al. 2003). However, dGABAb(3) encodes a protein 1305 amino acids in length, compared to the 814 amino acids encoded by hGABAbL, and exhibits a large putative N-terminal venus-flytrap domain characteristic of other Family 3 GPCRs, unlike GABAbL. Given these major differences in morphology, it is unlikely that these two proteins share the same function and, as such, are not considered to be orthologous.

These data indicate that, unlike the GABAb receptors, GABABL may have arisen during the evolution of vertebrates. However, as studies of GABABL in non-mammalian vertebrates are absent, it has yet to be ascertained whether the GABABL gene is conserved throughout the vertebrate kingdom.
1.8 The role of GABA and its receptors during development

1.8.1 GABA is demonstrated to act chemotropically in vitro

While GABA is the major inhibitory neurotransmitter in the adult vertebrate brain, both GABA and its receptors are present before GABAergic synapses are formed during development (Roberts,A et al. 1987, Rozenberg,F et al. 1989, Lopez-Bendito,G et al. 2002, Fritschy,J,M et al. 2004). GABA, like other neurotransmitters, has been shown to act chemotropically to influence the trajectory of extending axons in vitro, suggesting that it may play a similar role in vivo (Redburn,D.A et al. 1996), and GABA has even shown to be excitatory in some developing brain regions (Chen,G et al. 1995). Retinal ganglion cell (RGC) axons have been shown to grow alongside GABAergic cells in *Xenopus laevis* (X.laevis) embryos and both GABA and Baclofen stimulate RGC neurite outgrowth in culture, whilst the GABA\(_b\) receptor antagonist CGP54626 causes a dose dependent shortening of the developing optic projection in *Xenopus* embryos (Ferguson,S.C.D et al. 2001). These data point to a role for GABA\(_b\) receptors in the organisation of developing neurons in vivo.

1.8.2 GABA\(_b\) receptor subunits are differentially expressed during development

Several groups have examined the expression patterns for GABA\(_b\) receptor subunits during rat brain development, at both the mRNA and protein level (Fritschy,J.M et al. 2004, Lopez-Bendito,G et al. 2002, Lopez-Bendito,G et al. 2004, Martin,S.C et al. 2004). Consistent with observations from the adult brain, gene expression patterns for GABA\(_b\)(1)
and GABA\textsubscript{B(2)} are not identical during development, and RNase protection assays indicate that GABA\textsubscript{B(1)} transcripts greatly outnumber those of GABA\textsubscript{B(2)} in many developing brain regions (Martin, S.C et al. 2004). Immunohistochemistry and immunofluorescence experiments reveal areas of unique expression for both subunits at early stages of development; where GABA\textsubscript{B(1)} protein is prominent in non-neuronal (glial) cells, such as astrocytes, and GABA\textsubscript{B(2)} is selectively detected in specific axonal pathways such as the corticothalamic projection (Fritschy, J.M et al. 2004). These data point to the possibility of separate roles for GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)} in the immature brain, perhaps in neuron-glial cell interactions or axonal maturation, in addition to their contribution to GABA\textsubscript{B} receptor heterodimers.

The two principal GABA\textsubscript{B(1)} isoforms, GABA\textsubscript{B(1a)} and GABA\textsubscript{B(1b)}, also exhibit dissimilar temporal and spatial expression patterns in the developing rat brain. There is strong agreement, at both the mRNA and protein level, that GABA\textsubscript{B(1a)} is the principle isoform expressed during early development, whereas GABA\textsubscript{B(1b)} is predominant adult isoform (Malitschek,B et al. 1998, Fritschy,J.M et al. 1999, Fritschy,J.M et al. 2004, Martin,S.C et al. 2004, Steiger,J.L et al. 2004). Indeed, GABA\textsubscript{B(1b)} is barely detectable in the neonatal rat brain but is heavily up-regulated during the third postnatal week and broadly co-expressed with GABA\textsubscript{B(2)}, generating a more ‘adult-like’ subunit distribution (Fritschy,J.M et al. 2004). This changeover occurs during a major period of synaptogenesis, and at a time when ionotropic GABA\textsubscript{A} receptors switch from being mediators of excitatory signals to inhibitory ones (Ben-Ari,Y. 2002). It remains to be seen whether the early predominance of GABA\textsubscript{B(1a/2)} heterodimers is key to the specification of GABA\textsubscript{ergic} neurons, or determines the future sub-cellular location of GABA\textsubscript{B(1b/2)} heterodimers, perhaps through interactions with extracellular factors via the sushi domains unique to the GABA\textsubscript{B(1a)} subunit N-terminus.
Whilst the presence of functional GABA_b receptors is clearly not essential for the normal development of the brain, demonstrated by the viability of GABA_{b(1)}−/− and GABA_{b(2)}−/− mice (Prosser, H.M et al. 2001, Schuler, V et al. 2001, Queva, C et al. 2003, Gassmann, M et al. 2004), the high level of expression of GABA_b receptor subunits throughout ontogeny, and particularly prior to the formation of synapses, is highly indicative of developmental functions.

1.8.3 The gene expression pattern for GABA_{b1} suggests a possible role in development

Real-time quantitative PCR analysis indicates that GABA_{b1} mRNA is highly abundant in the human testis and is expressed at around 20-fold higher levels in human foetal brain than in adult brain, suggesting possible roles in gametogenesis and/or neuronal development (Calver, A.R et al. 2003). A recent study also shows that GABA_{b1} mRNA is five times more highly expressed in the rat embryonic brain than the adult brain, further supporting this hypothesis (Martin, S.C et al. 2004).

1.8.4 Studies of GABA signalling during vertebrate embryogenesis

The functions of GABA signalling in developing vertebrate embryos has been studied previously in model organisms such as chick, zebrafish and Xenopus (Maderdrut, J.L. et al. 1986, Roberts, A et al. 1990, Sandell, J.H et al. 1994, Ferguson, S.C.D et al. 2001, Lambert, T.D et al. 2004, Mueller, T et al. 2006). The distribution of GABAergic cells in the early developing vertebrate nervous system has been demonstrated by immunohistochemistry, using antibodies specific to glutaraldehyde fixation complexes of

 Behavioural studies indicate that GABAA receptor agonists, and to a much lesser extent GABAB receptor agonists, are capable of reducing motility of chick and Xenopus embryos when applied exogenously (Maderdrut, J.L. et al. 1986). It was postulated that the reduced responsiveness and immobility observed in some developing embryos, such as the X. laevis hatchling tadpole, might result from GABA-mediated inhibition of neuronal circuits (Boothby, K.M et al. 1992). Sensory trigeminal neurons, innervating tissues in the head of Xenopus tadpoles, can initiate swimming in response to touch. However, application of constant pressure upon these regions, for example through attachment to objects by mucus secreted from the cement gland on the front of the head, reduces spontaneous swimming activity (Clarke, J.D et al. 1984, Roberts, A et al. 1990). Several studies now indicate that trigeminal sensory neurons, firing in response to pressure exerted at the skin, activate GABAergic mid-hindbrain reticulospinal neurons (MHRs) which, in turn, initiate GABAA receptor-mediated IPSPs in spinal neurons and inhibit swimming activity (Perrins, R et al. 2002, Li, W-C et al. 2003, Lambert, T.D et al. 2004).

 The contribution of GABAB receptor signalling to the inhibition of swimming in Xenopus tadpoles is not well characterised, but experiments in chick using GABAB receptor agonists indicate only minimal effects on motility (Maderdrut, J.L. et al. 1986). However, there is evidence to suggest that GABAB receptors might be involved in neuronal organisation in the developing brain (Fritschy, J.M et al. 2004), and GABAB receptor agonists and antagonists have been demonstrated to act chemotropically in vitro, by regulating Xenopus RGC neurite outgrowth in culture (Ferguson, S.C.D et al. 2001). To date, no non-mammalian vertebrate GABAB receptors have been cloned, precluding any
analysis of developmental functions by gain- or loss-of-function approaches, through GABA_β receptor gene overexpression or knock-down, in model organisms such as zebrafish or Xenopus tadpoles. Such experiments might give rise to observable changes in the behaviour or morphology of these embryos, which could provide insight into the developmental functions of GABA_β receptors in the immature vertebrate brain.
1.9 *Xenopus* as a model organism for the study of vertebrate embryo development

1.9.1 *X. laevis* and *X. tropicalis* are model organisms commonly used for the study of vertebrate embryo development

The African clawed frog *X. laevis* has for decades been widely used for research within the field of early embryo development and cell biology. The external development and large size of *X. laevis* embryos (approximately 1mm in diameter at fertilisation) makes them straightforward to manipulate for microinjection and tissue transplants, for example, and their rapid rate of development allows experimental results to be obtained quickly. Furthermore, *X. laevis* can be induced to ovulate repeatedly any time of the year, unlike most frog species, and females will lay eggs when exposed to the human chorionic gonadotrophin (HCG) hormone. HCG is present in the urine of pregnant women and *X. laevis* embryos were, in fact, commonly used as an indicator for human pregnancy tests in the 1950s (Jones, C.M et al. 1999).

Whilst the use of *X. laevis* in research is still widespread, the closely related frog *X. tropicalis* is increasing being used in preference, particularly for the study of post-metamorphic effects, since it has a much shorter generation time of four to six months. By comparison, it takes up to two years for *X. laevis* to reach maturity (see Figure 1.6A). *X. tropicalis* was also selected for genomic sequencing by the U.S. Department of Energy Joint Genome Institute (JGI) since it is the only true diploid frog among the 14 *Xenopus* species and has a relatively small genome of around 1,700 million base pairs, roughly half the size of its larger relative, *X. laevis* (Showell, C et al. 2007).
Figure 1.6 A. The mature African clawed frog *X. laevis* (left) and its close relative, *X. tropicalis* (right), courtesy of The Wellcome Trust Sanger Institute and Enrique Amaya Institute of Cancer and Developmental Biology. B. Development of the *X. laevis* embryo from stage 1-40, based upon the Normal table of *Xenopus laevis* (Nieuwkoop, P.D and Faber, J. 1967), adapted from image © Cebra-Thomas (2003). Abbreviations: ap (animal pole), bp (blastopore), cg (cement gland), jc (jelly coat), tb (tailbud).
The early development of *X.laevis* embryos has been well characterised and a staging system, based upon morphological criteria, was prepared in 1967 by Nieuwkoop, P.D and Faber, J. Stages 1-40 correspond to the development of the fertilised embryo (stage 1) into a free swimming and feeding tadpole (stage 40) through the early developmental processes of gastrulation (stages 10-12), neurulation (stages 13-18), and organogenesis (stages 18-40) (see Figure 1.6B).

The *Xenopus* embryo exhibits a distinct polarity prior to fertilisation, with a pigmented animal pole containing the nucleus and cytoplasm and a vegetal pole containing the yolk. The antero-posterior axis is related to the animal-vegetal axis, and is thus already laid down in the unfertilised egg; the dorso-ventral axis, by contrast, is established according to the site of sperm entry. Following fertilisation, the plasma membrane and the pigmented cortex beneath it rotate towards the site of sperm entry and the Nieuwkoop centre forms at the opposite side of the embryo in the vegetal region. The first cleavage passes through the point of sperm entry and the Nieuwkoop centre, dividing the embryo into left and right halves; the second cleavage takes place perpendicular to this lateral axis and divides the embryo into dorsal and ventral halves. The Nieuwkoop centre, located in the dorsal half, is essential for normal embryo development, and is responsible for specifying another signalling centre, the Spemann Organiser, which is located at the lip of the blastopore and coordinates both dorso-ventral and antero-posterior aspects of the body plan and induces neural tissue from the ectodermal cells in the animal pole (De Robertis, E.M et al. 1997, Jones, C.M et al. 1999).

The onset of gastrulation is characterised by major cell movements inside the blastula embryo, and the arrangement of the germ layers - ectoderm, mesoderm and endoderm - to the positions where they will develop into larval body structures (see Figure 1.7).
During gastrulation the blastopore also forms through the invagination of local endodermal cells; animal pole cells undergo epiboly and converge at the blastopore, and marginal cells move inwards as they reach the dorsal lip of the blastopore. Neurulation is characterised by the formation of the neural tube from the ectoderm directly overlying the notochord, whereby the flat neural plate folds up either side of the midline to form a neural groove and ultimately fuse together to form the neural tube. This process is regulated by signals such as chordin, noggin and follistatin that are released by the notochord and inhibit the activity of bone morphogenic protein 4 (BMP4) in ectodermal cells, a signalling molecule that is produced by the ectoderm and otherwise specifies an epidermal fate (Dale, L et al. 1999, De Robertis, E.M et al. 2004).
Figure 1.7 Schematic diagram showing rearrangement of the presumptive germ layers during gastrulation and neurulation in X.laevis, showing A. the arrangement of germ layers in the blastula embryo at stage 9 prior to gastrulation, and B. the arrangement of germ layers in the embryo at stage 24, following gastrulation and neurulation.
A fate map for Xenopus blastulae can be used to direct injected molecules to specific tissues in the differentiated embryo

A fate map for the 32-cell *X. laevis* embryo, which describes the fate of each blastomere in terms of tissue types and spatial localisation, has been prepared previously (Dale, L et al. 1987). Whilst exact targeting is problematic, due to mixing of cell populations, the fate map can be used as a guide to direct injected molecules, such as nucleic acids or proteins, towards particular tissues in the later embryo following microinjection into specific blastomeres at the 4, 8, 16 or 32-cell stage. For example, to direct expression of a protein of interest towards the CNS of the tadpole embryo, synthetic mRNA can be injected into the anterior dorsal blastomeres at the 8-cell stage (see Figure 1.8). This approach has been used previously to demonstrate the differential effects of several genes in dorsal or ventral tissues (Sokol, S et al. 1991, Jones, C.M et al. 1992, Dale, L et al. 1992).
| Figure 1.8 | X. laevis embryo at stage 4 (8 cells) indicating orientation of the embryo and future fate of the blastomeres in the later embryo. Electron micrograph courtesy of Jurgen Berger, Max Planck Institute for Developmental Biology. |
1.10 Principal aims and objectives of this project

This project aims to pursue a novel avenue of investigation into the possible functions of GABA$_b$ receptors during vertebrate development, by making use of the model organism *X.laevis*. Investigations into the *in vivo* functions of metabotropic GABA signalling in developing *Xenopus* tadpoles are distinctly lacking, and non-mammalian vertebrate GABA$_b$ receptors have yet to be been cloned. A primary objective of this project is to address areas of contention in GABA$_b$ receptor research wherever possible, through the cloning and characterisation of *X.laevis* GABA$_b$ receptors, and contribute further to our understanding of GABA$_b$ receptor physiology during vertebrate development. Furthermore, this research aims to elucidate a possible function for the putative orphan GPCR, GABA$_{bL}$, though functional analysis of a non-mammalian orthologue overexpressed in its host organism.

Whilst a discussion of the rationale behind approaches used during this project appears at the beginning of each Results Chapter, below is an outline of the four principal objectives of this piece of research.

1.10.1 Molecular cloning of cDNAs encoding *X.laevis* GABA$_b$ receptors

In the first instance, this project aims to isolate cDNAs encoding *X.laevis* GABA$_b$ receptors, analyse their amino acid sequences, and compare them to their mammalian orthologues through multiple sequence alignments and phylogenetic analysis.
Subsequent cloning of these cDNAs into expression vectors is hoped to facilitate further investigation of *X.laevis* GABA_B receptor function at the molecular level.

1.10.2 Comparisons of mammalian and Xenopus GABA_B receptor gene structures

Analysis of the gene structure of *Xenopus* GABA_B receptors is to be explored through mapping the cloned *X.laevis* GABA_B receptor nucleotide sequences onto available genomic DNA sequences belonging to the closely related frog *Xenopus tropicalis* (*X.tropicalis*). This analysis is hoped to identify the location of intron/exon boundaries in the *Xenopus* GABA_B genes, and account for any possible transcript variants isolated through molecular cloning. The deduced gene structures shall be used to evaluate the conservation of intron/exon sizes and boundary locations between mammalian and *Xenopus* GABA_B genes.

1.10.3 Investigation into the expression pattern of GABA_B receptor mRNAs during *Xenopus laevis* embryonic development

Molecular methods will be used to identify temporal and spatial expression patterns for GABA_B receptor mRNAs during *X.laevis* embryonic development. These expression patterns will be used to infer possible functional roles for GABA_B receptors during *Xenopus* development, and identify possible targets for further functional analysis.
1.10.4 Investigation into the function of GABA_b receptors during X.laevis embryonic development through gene overexpression or knock-down

It is envisaged that \textit{in vivo} functions of the cloned \textit{X.laevis} GABA_b receptors will be explored primarily through use of a gain-of-function bioassay, whereby GABA_b receptor proteins will be overexpressed during embryonic development by microinjection of \textit{in vitro} transcribed mRNA into cleavage-stage embryos. Morphological changes will be characterised and, where possible, loss-of-function approaches will be considered. The causes of any reproducible developmental changes in overexpressing embryos will also be explored at the molecular level.
Materials and Methods
2.1 Molecular Biology Methods

2.1.1 Preparation of competent E.coli cells

To prepare chemically competent cells, 5ml Luria Bertani (LB) broth (10g/L NaCl, 10g/L tryptone, 5g/L yeast extract) was inoculated with a single colony of an appropriate E. coli strain and incubated overnight at 37°C with shaking. The overnight culture was used to inoculate 100ml LB, which was incubated at 37°C with shaking until its OD$_{550}$ reached 0.4. The culture was then divided into 25ml aliquots in 50ml tubes, incubated on ice for 10 mins and centrifuged at 2500rpm (700rcf) for 10 mins at 4°C. Pellets were resuspended in 15ml ice-cold solution FB (100mM KCI, 50mM CaCl$_2$, 10mM KAc, 10% (v/v) glycerol) and incubated on ice for a further 20 mins. Cells were then centrifuged again at 5000rpm (2800rcf) for 10 mins at 4°C, and pellets were resuspended in 1ml ice-cold solution FB. 200µl aliquots were flash frozen in liquid nitrogen and stored at -80°C.

2.1.2 Transformation of competent E.coli cells

For each transformation, a 200µl vial of competent cells was thawed on ice and 50-100ng of plasmid DNA was typically added. Cells were incubated on ice for 30 mins, briefly heat-shocked at 42°C for 60-90 secs and immediately returned to ice. Following the addition of 250µl salt optimised (SOC) broth (0.5g/L NaCl, 5g/L MgSO$_4$, 20g/L Tryptone, 5g/L yeast extract, 20mM dextrose), cells were incubated at 37°C with shaking for 30-60 mins to permit expression of the antibiotic resistance gene. Cells were spread onto LB
agar plates, containing the appropriate antibiotic (e.g. 100µg/ml Ampicillin, 50µg/ml Kanamycin or 10µg/ml tetracycline), and incubated at 37°C overnight.

2.1.3 Preparation of plasmid DNA from E.coli cells (mini-prep)

Single colonies of E.coli were used to inoculate 2.5ml overnight cultures in LB broth containing an appropriate antibiotic. 1ml of culture was centrifuged at 13,000rpm (14,200rcf) for 2 mins to pellet the cells. Pellets were resuspended in 100µl solution I (50mM glucose, 25mM Tris-HCl (pH 8.0), 10mM EDTA (pH 8.0)), and 200µl solution II (0.2M NaOH, 1.0% (w/v) SDS) was added, mixed by inversion and incubated at room temp for 5 mins. 150µl ice-cold solution III (3M KAc, 11.5% (v/v) glacial acetic acid) was added, mixed by inversion and incubated at 4°C for 5 mins. Following centrifugation at 13,000rpm (14,200rcf) for 5 mins at 4°C, supernatant was removed and mixed with 250µl phenol:chloroform:isoamyl alcohol saturated with TE (10mM Tris-HCl, 1mM EDTA (pH 8.0)). Following centrifugation at 13,000rpm (14,200rcf) for 1 min at 4°C, the upper aqueous phase was transferred to a fresh tube and 1ml ice-cold ethanol was added. Precipitated plasmid DNA was centrifuged at 13,000rpm (14,200rcf) for 15 mins at 4°C and, after briefly washing with 500µl 70% (v/v) ethanol, pellets were resuspended in 30-50µl distilled water (dH₂O), or TE + 10µg/ml RNaseA, depending on future application. Where necessary, equal quantities of bacterial culture and glycerol were mixed and stored at -80°C for future use.
2.1.4 Preparation of plasmid DNA from E.coli cells (maxi-prep)

For each preparation, 1ml of an overnight culture was used to inoculate 500ml LB, containing the appropriate antibiotic, and incubated overnight at 37°C with shaking. The overnight culture was decanted into a 500ml flask and centrifuged at 10,000rpm (11,200rcf) for 20 mins at 4°C in a Sorvall RC-5B centrifuge. Supernatant was poured off and the bacterial pellet resuspended in 20ml solution I (50mM glucose, 25mM Tris-HCl, pH8.0), 10mM EDTA (pH8.0)). 40ml solution II (0.2M NaOH, 1.0% (w/v) SDS) was added and the preparation incubated at room temp for 5 mins. Next, 20ml ice-cold solution III (3M KAc, 11.5% (v/v) glacial acetic acid) was added, mixed gently, and the preparation was incubated on ice for 15 mins. Following the addition of 5ml dH2O, the preparation was centrifuged at 10,000rpm (14,200rcf) for 20 mins at 4°C in a Sorvall RC-5B centrifuge. Cleared supernatant was filtered through a double layer of gauze and transferred to a 250ml flask, mixed with 45ml isopropanol, and centrifuged at 12,000rpm (12,900rcf) for 30 mins at 4°C in a Sorvall RC-5B centrifuge. Pellets were resuspended in 10ml TE, to which a further 150μl 0.5M EDTA was added, and pH was adjusted to ~7.5 with 2M TRIZMA base. CsCl was added to a final concentration of 1.2g/ml and ethidium bromide to a final concentration of 0.5mg/ml. Preparations were loaded into a Beckman Coulter 10ml NVT centrifuge tubes, heat-sealed and centrifuged at 55,000rpm (200,000rcf) for at least 24 hours at 4°C in a Beckman Coulter Optima™ L-100XP Ultracentrifuge. Intact supercoiled plasmid DNA was extracted from the NVT tube using a 19 gauge needle and syringe, and ethidium bromide was removed by extraction with butan-2-ol. The preparation was then dialysed in TE to remove the CsCl, incubated with RNaseA at a final concentration of 10μg/ml, at 65°C for 60 mins, followed by incubation with Proteinase K at a final concentration of 100μg/ml, 0.2% (w/v) SDS, at 37°C for 60 mins. Protein was removed by extraction with phenol:chloroform:isoamyl alcohol
(saturated with TE at pH 8.0) and transfer of the upper phase was transferred to glass centrifuge tubes. NaCl was added to a final concentration of 250mM and plasmid DNA was precipitated with the addition of ethanol at -20°C prior to centrifugation at 12,000rpm (12,100rcf) for 30 mins at 4°C in a Sorvall RC-5B centrifuge. The pellet was resuspended in approximately 250-500μl TE or dH2O and the concentration determined spectrophotometrically (see Section 2.1.5).

2.1.5 Quantitation of nucleic acids

Nucleic acid concentrations were routinely determined spectrophotometrically, either by measuring the absorbance at 260nm of a diluted sample and applying the formula μg/ml = OD_{260} \times \text{dilution factor} \times C, where C is the molar extinction coefficient specific to the species of nucleic acid (ss-DNA = 37; ss-RNA = 40; ds-DNA = 50), or by using a NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop) according to the manufacturer's instructions.

2.1.6 Agarose gel electrophoresis of nucleic acids

For routine use, agarose gel electrophoresis was performed using 1% (w/v) agarose 1xTAE (40mM Tris-acetate, 1mM EDTA) gels, containing ethidium bromide at a final concentration of 0.5μg/ml. Nucleic acid samples were typically combined with 5xDNA BlueRun™ loading dye (Hybaid) and loaded alongside a molecular weight marker, typically 1Kb Plus DNA Ladder (Invitrogen). Gels were immersed in 1xTAE in gel tanks
and electrophoresed at 120-130V for 15-60 mins, depending on application, before being visualised on an UV transilluminator.

2.1.7 Restriction endonuclease digestions of DNA

Plasmid DNA was routinely digested by incubation with restriction endonuclease at a final concentration of around 10 units/μl DNA in the appropriate 1x restriction enzyme digest buffer. 1xBSA (bovine serum albumin) was included where required. Digests were typically incubated for 60-90 mins at 37°C. Digested plasmid DNA was routinely analysed by separation on an agarose gel (see Section 2.1.9).

2.1.8 Extraction of total RNA

Total RNA was extracted and purified from X.laevis embryos or animal cap explants using either the RNeasy Mini Kit (Invitrogen) or Trizol® Reagent (Invitrogen) according to the manufacturer’s instructions. Samples of 10 snap-frozen embryos, or anterior, posterior, dorsal or ventral explants, were homogenized using a Pellet Pestle® (Kimble-Kontes) or by pipetting up and down; samples of 20 snap-frozen animal cap explants were homogenized by vortexing. Total RNA was resuspended in 30μl dH₂O and the concentration was determined spectrophotometrically (see Section 2.1.5).
2.1.9 Reverse transcriptase (RT)

Reverse transcriptase (RT) was routinely carried out in 20μl reactions using the Omniscrypt RT kit (Qiagen) or Improm II® RT kit (Promega) according to the manufacturer's instructions. Total RNA, at a final concentration of 50-100ng/μl, was incubated with random hexamer oligonucleotide primers (at a final concentration of 1μM), dNTPs (at a final concentration of 0.5mM each), RNase inhibitor (at a final concentration of 0.5units/μl), and reverse transcriptase (at a final concentration of 0.2units/μl). Reactions were incubated for 90 mins at 37-42°C.

2.1.10 Reverse transcriptase polymerase chain reaction (RT-PCR)

For routine use, reverse transcriptase polymerase chain reaction (RT-PCR) was carried out in 25μl reactions using 1units/μl BIOTAQ™ DNA polymerase (BioMix™ Red, BIOLINE), or 1.25units/μl HotMaster Taq DNA Polymerase (Eppendopen reading frame), containing 1mM MgCl₂ and dNTPs (at a final concentration of 0.5mM each). Where RT-PCR was used for cloning purposes, 25μl reactions were carried out using 1unit/μl ACCUZYME™ high-fidelity proofreading DNA polymerase (ACCUZYME™ Mix, BIOLINE) containing 1mM MgSO₄ and dNTPs (at a final concentration of 0.5mM each). Template cDNA was included at a final concentration of around 2ng/μl, oligonucleotide primers were included at a final concentration of 0.4pmoles/μl and, where necessary, DMSO was added to a final concentration of 2% (v/v). PCR was carried out using a PCR Express thermal cycler (Hybaid), using the following conditions: Four mins at 94°C, followed by 24-30 cycles of 30 secs at 94°C, 30 secs at the optimal annealing temperature for the primers used, and 1min/kb of the amplicon (or 2min/kb when using the ACCUZYME™
proofreading DNA polymerase) at the optimal elongation temperature of the polymerase used. A final elongation step of 5 mins was performed. Optimal primer annealing temperatures were calculated using MacVector 7.2 (Accelrys).

Where RT-PCR was performed to analysis the expression of transcripts in *X.laevis* tissues, a 228bp amplicon was also amplified from the *Xenopus* gene encoding orthinine decarboxylase (*x/ODC*), which is uniformly expressed during development, to act as a positive control as described previously (Agius.E. et al. 2000). As a negative control, PCR was conducted concomitantly on samples containing total RNA that had not been converted to cDNA by reverse transcriptase.

2.1.11 Rapid amplification of 5' cDNA ends (5'RACE)

The amplification of 5' cDNA sequences was performed using the 5' RACE System for rapid amplification of cDNA ends v2.0 (Invitrogen). First strand synthesis was performed in 24μl reactions containing template total RNA (at a final concentration of 0.2μg/μl) and gene-specific oligonucleotide primers (at a final concentration of 0.1pmol/μl), and reactions were incubated for 90 mins at 42°C. Following heat-inactivation and RNase treatment, ss-cDNA was purified using the Wizard® DNA Clean-Up System (Promega) according to the manufacturer's instructions. Following the poly-dC-tailing of ss-cDNA, and heat-inactivation of the TDT enzyme, ds-cDNA was amplified by PCR in 25μl reactions including 5μl template poly-dC-tailed ss-cDNA, 1unit/μl ACCUZYME™ proofreading DNA polymerase, and nested 5'RACE abridged anchor and gene-specific oligonucleotide primers (see Section 2.1.10 for conditions). 1μl of this PCR product was used as a template for a further 30 cycles of PCR, the product from which was separated
on an agarose gel (see Section 2.1.9), excised and purified (see Section 2.1.17) and ligated into a plasmid vector (see Section 2.1.18).

2.1.12 Dideoxy sequencing of plasmid DNA

Plasmid DNA was sequenced by the Sanger dideoxy method using the BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) according to the manufacturer's instructions. PCR was performed in 25μl reactions containing template plasmid DNA (at a final concentration of 50ng/μl), oligonucleotide primers (at a final concentration of 0.4pmoles/μl), and DMSO (at a final concentration of 5% (v/v)). PCR was carried out using a PCR Express thermal cycler (Hybaid), using the following conditions: Five mins at 98°C, followed by 25 cycles of 30 secs at 96°C, 20 secs at the optimal annealing temperature for the primers used, and 4 mins at 60°C. A final elongation step of 5 mins at 60°C was performed. Optimal primer annealing temperatures were calculated using MacVector 7.2 (Accelrys).

The PCR product was precipitated in 6μM NaAc, 250nM EDTA, with 3 volumes of ethanol, incubated at -20°C for 10 mins and centrifuged at 13,000rpm (14,200rcf) for 15 mins at 4°C. The pellet was washed with 50μl 70% (v/v) ethanol and resuspended in 10μl formamide prior to loading on an automated capillary DNA sequencer (ABI Applied Biosystems 3100-Avant Genetic Analyzer). Sequences were viewed using Chromas Lite 2.0 (Technelysium Pty Ltd), exported in FASTA format and analysed using MacVector 7.2 (Accelrys).
2.1.13 PCR-based site-directed mutagenesis

PCR-based site-directed mutagenesis was used to introduce or remove restriction endonuclease recognition sequences from plasmid DNA. PCR was carried out in 25μl reactions using 1unit/μl ACCUZYME™ proofreading DNA polymerase and two complementary gene-specific oligonucleotide primers (at a final concentration of 0.4pmoles/μl) containing the appropriate mutation(s). Following the addition of Dpn1 nuclease to a final concentration of 0.4units/μl and incubation for 3 hours at 37°C, 1μl of the PCR product was used to transform competent E.coli cells (see Section 2.1.2). Plasmid DNA was isolated from the E.coli (see Section 2.1.6), digested using the appropriate restriction endonuclease(s) (see Section 2.1.7), and separated on an agarose gel by electrophoresis (see Section 2.1.9) to indicate presence of the mutation(s). Mutations were also verified by sequence analysis (see Section 2.1.12).

2.1.14 Isolation and purification of DNA from agarose gels

Linear fragments of DNA were electrophoresed on agarose gels, visualised on a UV transilluminator and excised using a scalpel blade. DNA was purified from excised gel fragments using either the Wizard® PCR Preps DNA Purification System (Promega) or the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s instructions. DNA fragments, purified using either method, were eluted in 30μl dH2O at 70°C and a small amount was run on an agarose gel (see Section 2.1.9) to verify the quality of the purified fragment.
2.1.15 *Ligation of DNA fragments into plasmid vectors*

DNA fragments were routinely ligated into linearised plasmid vectors with compatible sticky or blunt ends. Plasmid vectors were purified using the Wizard® DNA Clean-Up System (Promega), according to the manufacturer’s instructions, and DNA fragment inserts were isolated and purified from agarose gels (see Section 2.1.14), following digestion of each with the appropriate restriction endonuclease(s) (see Section 2.1.7). To generate blunt ends from 5'-overhangs, purified DNA fragments were incubated with 1unit/µg (of DNA) T4 DNA polymerase (New England Biolabs), and dNTPs (at a final concentration of 100µM each), at 37°C for 5 mins. Ligations were performed with a vector:insert ratio of approximately 1:1 in a 10µl reaction containing 100ng vector fragment, 1x Ligase buffer and 400units T4 DNA Ligase (Promega). Reactions were incubated for a minimum of 4 hours at 14°C and then used to transform competent *E.coli* cells (see Section 2.1.2).

2.1.16 *In vitro transcription of cRNA probes*

In vitro transcription of complementary RNA (cRNA), from template plasmids containing promoters for the bacteriophage RNA polymerases T3, T7 or Sp6, was performed to generate DIG (digoxygenin)-labelled sense and anti-sense probes for use in wholemount *in situ* hybridization experiments (described in Section 2.3.5). Purified template plasmid DNA, linearised by the appropriate restriction endonuclease (see Section 2.1.7), was incubated in 20µl transcription reactions (at a final concentration of 50ng/µl) containing 1x transcription buffer (Promega), dithiothreitol (DTT) (at a final concentration of 10mM), 0.5units/µl RNase inhibitor, and T3, T7 or Sp6 RNA polymerase (Promega) (at a final
concentration of 1 unit/µl). Ribonucleotides were included at a final concentration of 1 mM except for rUTP, which was included at a final concentration of 0.65 mM and DIG-11-rUTP at a final concentration of 0.35 mM. Reactions were incubated for 3-4 hours at 37°C, and then for a further 30 mins at 37°C following the addition of RQ1 DNase to a final concentration of 0.05 units/µl. Transcripts were precipitated in 6 µM NaAc with 3 volumes of ethanol, incubated at -20°C for 10 mins and centrifuged at 13,000 rpm (14,200 rcf) for 15 mins at 4°C. After washing with 100 µl 70% (v/v) ethanol, the pellet was resuspended in 30 µl RNase-free dH2O and the quality of the cRNA was assessed using agarose gel electrophoresis (see Section 2.1.6).

2.1.17 In vitro transcription of 5'-capped, polyadenylated cRNA for microinjection

5'-capped, poly-adenylated complementary RNA (cRNA), suitable for microinjection into X. laevis embryos (see Section 2.3.7), was synthesized using the mMessage mMachine kit (Ambion) according to the manufacturer’s instructions. The cRNA was purified using the RNeasy Mini Kit (Invitrogen) according to the manufacturer’s instructions, and the quality of the cRNA was assessed by agarose gel electrophoresis (see Section 2.1.6).

2.1.18 Producing radiolabelled cDNA probes

Radiolabelled complementary DNA (cDNA) probes were synthesised using the Prime-a-Gene® Labelling System (Promega) according to the manufacturer's instructions. 25 ng of heat-denatured template DNA was incubated in a 50 µl reaction containing, 62.5 µCi α-[32P]CTP, 1 µM random hexamer oligonucleotide primers, dATP, dGTP and dTTP (at a
final concentration of 20μM each), and 5 units DNA polymerase (Klenow fragment). cDNA probes were separated from unincorporated dNTPs by size exclusion chromatography using NICK™ Sephadex™ G-50 columns (GE Healthcare) as described in the manufacturer’s instructions.

2.1.19 Determining stringency through calculation of T_m values

The T_m values for duplexes were routinely estimated using the formulae: T_m = 81.5 + 16.6(log10[Na⁺]) + 0.41(%G:C/100) - 0.63(% (v/v) formamide) - (600/I), for DNA:DNA hybrids, and T_m = 79.8 + 18.5(log10[Na⁺]) + 0.58(%G:C/100) + 11.8(%G:C/100)^2 - 0.5(% (v/v) formamide) - (820/I), for DNA:RNA hybrids, where l = length of oligonucleotide probe in bp. Hybridizations were typically carried out at T_m -5°C, low stringency washes were typically carried out at T_m -10°C, and high stringency washes were typically carried out at T_m +10°C

2.1.20 Colony hybridization

E.coli colonies were screened by colony hybridization, using a radiolabelled cDNA probe, to isolate clones containing the desired plasmid DNA. Colonies were streaked onto duplicate LB agar plates and incubated overnight at 37°C. Colonies from one of the duplicate plates were transferred onto labelled 80mm Hybond-N+ nylon filters (GE Healthcare). Filters were soaked in denaturing solution (500mM NaOH) for 5 mins and neutralization solution (1M Tris-HCl pH8.0) twice for 5 mins, air-dried, and pre-incubated in hybridization solution (50% (v/v) formamide, 5x SSC, 1x BFP, 0.1mg/ml sheared
salmon sperm DNA, 20mM Tris-HCl (pH8.0), 0.5% (w/v) SDS) for 60 mins at the appropriate hybridization temperature. Following the removal of cellular debris, filters were incubated in hybridization solution containing heat-denatured radiolabelled cDNA probe (see Section 2.1.18), for at least 8 hours at the appropriate temperature. Filters were washed three times at low stringency (2x SSC, 0.1% (w/v) SDS), and twice at high stringency (0.2x SSC, 0.1% (w/v) SDS), 20 mins per wash. Damp filters were wrapped in SaranWrap® and placed in a cassette and exposed to photographic film. Positive colonies were picked from the duplicate plate and used to inoculate overnight cultures, from which plasmid DNA was isolated (see Section 2.1.6) for PCR (see Section 2.1.13) or restriction enzyme analysis (see Section 2.1.10).

2.1.21 Southern hybridization

The identity of DNA fragments amplified by RT-PCR (see Section 2.1.10) was confirmed by Southern analysis in Section 5.2.1. DNA fragments separated by agarose gel electrophoresis (see Section 2.1.9) were denatured by immersion of the gel in denaturing solution (500mM NaOH) for 5 mins. Gels were immersed in neutralization solution (1M Tris-HCl pH8.0) twice for 5 mins, and then inverted onto Whatman® 3MM blotting paper pre-soaked in 10xSSC. A Hybond-N nylon filter (GE Healthcare) was laid upon the inverted gel, followed by sheets of pre-soaked blotting paper, dry blotting paper, and paper towels to yield a semi-dry blotting stack. A weight was placed on top of the stack and the DNA was allowed to transfer onto the filter overnight. After rinsing briefly with 2xSSC, DNA was cross-linked to the filter by irradiation with UV for 5 mins on a transilluminator, and filters were pre-incubated in pre-hybridization solution (50% (v/v) formamide, 5x SSC, 1x BFP, 0.1mg/ml sheared salmon sperm DNA, 20mM Tris-HCl
(pH 8.0), 0.5% (w/v) SDS) for 60 mins at the appropriate hybridization temperature. Heat-denatured radiolabelled cDNA probe (see Section 2.1.21) was then added and hybridization carried out for at least 8 hours at the appropriate temperature. Following hybridization, filters were washed three times at 42°C, 20 mins per wash, in 2x SSC containing 0.1% (w/v) SDS, followed by two high stringency washes, 20 mins per wash, in 0.2x SSC containing 0.1% (w/v) SDS. The damp filters were wrapped in SaranWrap®, placed in a cassette and exposed to photographic film.
2.2 Protein Methods

2.2.1 *In vitro translation of radiolabelled protein*

Recombinant protein was translated *in vitro* using a nuclease-treated Rabbit Reticulocyte Lysate kit (Promega), and radiolabelled through incorporation of 35S-labelled methionine, as described in the manufacturer's instructions. 5'-capped, poly-adenylated complementary RNA (cRNA) was included in each reaction at a final concentration of 25ng/μl, and reactions were incubated at 30°C for 90 mins. Translated proteins were analysed by separation on an SDS polyacrylamide gel and visualised on an autoradiograph (see Section 2.2.2).

2.2.2 *Separation of proteins by SDS polyacrylamide gel electrophoresis*

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was routinely carried out using hand-cast gels comprised of a 4% stacking gel (4% (w/v) acrylamide, 0.1% (w/v) bis-acrylamide, 125mM Tris-HCl (pH 6.8), 0.1% (v/v) SDS, 0.05% (w/v) ammonium persulphate, 0.1% (v/v) TEMED) on top of a 7.5% resolving gel (7.5% (w/v) acrylamide, 0.2% (w/v) bis-acrylamide, 375mM Tris-HCl (pH 8.8), 0.1% (v/v) SDS, 0.1% (w/v) ammonium persulphate, 0.1% (v/v) TEMED). Once set, gels were clamped into a Mini-PROTEAN II electrode assembly and electrophoresis chamber (BIORAD) and immersed in SDS-PAGE running buffer (25mM Tris-HCl (pH6.8), 192mM glycine, 0.1% (v/v) SDS). Protein samples were combined with a 2x Laemmli sample buffer concentrate (Sigma) (20% (v/v) glycerol, 4% (v/v) SDS, 10% (v/v) β-mercapto-ethanol, 125mM Tris-
HCI (pH 6.8)) and heat-denatured at 95°C for 10 mins, before loading into the gel alongside a pre-stained molecular weight marker such as SeeBlue® Plus2 (Invitrogen). Proteins were electrophoresed at 170V for approximately 1 hour. Where appropriate, separated proteins were visualised by direct staining of the gel with Coomassie Blue, whereby gels were immersed in the stain for up to an hour, then repeatedly washed in destaining solution (40% (v/v) methanol, 10% (v/v) acetic acid) until protein bands were clearly visible. To visualise radiolabelled protein, gels were dried in a vacuum gel drier, wrapped in SaranWrap®, and placed in a cassette and exposed to photographic film.

2.2.3 Western blotting of SDS polyacrylamide gels

Proteins separated by SDS-PAGE were transferred to a PVDF membrane by western blotting as follows. Gels were soaked in a transfer buffer (25mM Tris-HCl (pH6.8), 192mM Glycine, 10% (v/v) methanol) and inverted onto sheets of Whatman® 3MM blotting paper pre-soaked in transfer buffer. A Hybond-P PVDF membrane (GE Healthcare), pre-rinsed in methanol and then dH₂O, was and placed on top of the gel, followed by more pre-soaked blotting paper, and placed in a Trans-Blot® SD semi-dry transfer cell (BIORAD). Proteins were transferred by electrophoresis at 15V for 30 mins. Proteins were visualised by direct staining of the PVDF membrane with Ponceau Red.
2.2.4 Immuno-detection of proteins on blotted membranes

Proteins were specifically detected on blotted PVDF membranes by incubating the membrane in 5% blocking solution (5% (w/v) Marvel® milk powder, TBS-T (1xTBS, 0.1% (v/v) Tween-20)) overnight at 4°C, briefly rinsing in TBS-T, and incubating in a sealed bag, containing diluted primary antibody in 2.5% blocking solution, for 2 hours at 4°C. Membranes were washed, with agitation, at least 4 times in 100ml TBS-T then incubated in a sealed bag, containing a 1:4000 dilution of HP-conjugated anti-goat IgG secondary antibody in 2.5% blocking solution, for 1 hour at 4°C. Membranes were then washed, with agitation, at least 4 times in 100ml TBS-T. Immuno-detected protein was visualized using an ECL-Plus enhanced chemiluminescence kit (GE Healthcare) according to the manufacturer's instructions. Following exposure to light for 5 mins, excess liquid was removed and the membrane was wrapped in SaranWrap®, placed in a cassette and exposed to photographic film.
2.3 Embryology Methods

2.3.1 Fertilisation of *X.laevis* oocytes

Ovulation was induced in mature female *X.laevis* frogs by subcutaneous injection of 750 units human chorionic gonadotrophin (HCG) (Chroulon, Intervet) into the dorsal lymph sac. After 12-16 hours, oocytes were squeezed from injected frogs into a Petri dish and fertilised with a piece of freshly dissected, macerated *X.laevis* testis suspended in a little tap water. Fertilised embryos were incubated at room temperature in NAM/20 (5.5mM NaCl, 0.1mM KCl, 0.05mM Ca(NO₃)₂, 5nM EDTA, 2mM HEPES, 25μg/ml gentamicin) and left for up to 2 hours to allow for the cortical rotation of fertilised embryos to occur. Embryos were subsequently incubated in 2% (w/v) cysteine hydrochloride (pH8.2) for 5-10 mins to break down the jelly coats, and were washed several times with large volumes of tap water. After the removal of dead or unfertilised oocytes, embryos were incubated in NAM/20 at the desired temperature, typically 14.5°C, and allowed to develop.

2.3.2 Maintenance of *X.laevis* embryos in normal amphibian medium (NAM)

Developing embryos were maintained in NAM/20, or NAM/2 (55mM NaCl, 1mM KCl, 0.5mM Ca(NO₃)₂, 0.05mM EDTA, 2mM HEPES, 7μg/ml gentamicin) post-gastrulation, at the desired temperature (typically 13-18°C). Stages of embryonic development were assigned according to the Normal Table of *Xenopus* Development by Nieuwkoop, P.D and Faber, J (1967).
2.3.3 Snap-freezing of X. laevis embryos and animal cap explants

When preparing embryos or animal cap explants for extraction of total RNA (see Section 2.1.11) or protein, medium was removed from samples which were then snap-frozen on dry-ice prior to storage at -20°C. Cell lysates were prepared by macerating samples in homogenization buffer (20mM Tris-HCl (pH 7.6), 100mM NaCl, 1% (v/v) Triton X-100) containing Complete Mini protease inhibitor cocktail (Roche), centrifuged at 13,000rpm (14,200rcf) for 15 mins to clear the lysate, and snap-frozen on dry ice prior to storage at -20°C.

2.3.4 Fixing of X. laevis embryos

When preparing embryos for wholemount in situ hybridization (see Section 2.3.5) or wax-sectioning (see Section 2.3.6), healthy embryos were selected at the desired stage of development and incubated in 1x MEMFA (10% (w/v) formaldehyde, 0.1M MOPS (pH 7.4), 2mM EGTA, 1mM MgSO₄) for 60 mins. After washing briefly with methanol, embryos were stored in fresh methanol at -20°C until required.

2.3.5 Wholemount in situ hybridization

Wholemount in situ hybridization was carried about as described previously (Harland, R.M. 1991) with several modifications. Fixed X. laevis embryos (see Section 2.3.4) were slowly re-hydrated and washed with PBS-T (1xPBS, 0.1% (v/v) Tween-20), bleached with 10% peroxide solution (10% (v/v) H₂O₂, 5% (v/v) formamide, 0.5x SSC), rinsed in 0.1M
triethanolamine (pH 7.8) containing 0.625% (v/v) 1.25% (v/v) acetic anhydride, and re-fixed in 10% (w/v) formaldehyde. Embryos were incubated in hybridization solution (50% (v/v) formamide, 5x SSC, 1x BFP, 1mg/ml sheared torula RNA, 100µg/ml heparin, 10mM EDTA, 0.1% (w/v) CHAPS, 0.1% (v/v) Tween-20) for at least 6 hours, at the appropriate hybridization temperature (calculated as described in Section 2.1.19). DIG-labelled sense or anti-sense cRNA probe (see Section 2.1.19) was added to a final concentration of 0.3-1.0µg/ml and embryos were incubated for at least 8 hours, at the appropriate hybridization temperature.

Following hybridization, used probe solution was retained and stored at -80°C for re-use, and embryos were washed three times, 30 mins per wash, at 60°C in 2x SSC containing 0.1% (v/v) Tween-20. Embryos were then washed twice, 30 mins per wash, at high stringency in 0.2x SSC containing 0.1% (v/v) Tween-20, and then incubated in RNase T1 solution (2x SSC, 10units/ml) for 15 mins at 37°C to degrade any remaining single-stranded RNA. Following washes with maleic acid buffer (pH7.8) (100mM maleic acid, 150mM NaCl, 0.1% (v/v) Tween-20), embryos were incubated in blocking solution 1 (2% blocking solution (Roche) in maleic acid buffer) for 2 hours at room temperature, blocking solution 2 (20% (v/v) lamb serum in blocking solution 1) for 2 hours at room temperature, and finally in blocking solution containing a 1:2000 dilution of affinity-purified antidigoxigenin-AP Fab fragments (Roche) at 4°C overnight. Following at least six washes in 3-5ml maleic acid buffer, 1 hour per wash, embryos were rinsed briefly in alkaline phosphatase buffer (100mM TRIZMA base, 100mM NaCl, 100mM MgCl₂, 5mM tetramisole, 0.1% (v/v) Tween-20), and then incubated with BM Purple AP-substrate precipitating solution (Roche) until dark blue staining became visible. Embryos were stored in methanol at -20°C.
2.3.6 Wax sectioning and histology

Fixed *X. laevis* embryos (see Section 2.3.4) were incubated in Borax Carmine stain overnight, then in acid alcohol solution (70% (v/v) ethanol, 1% (w/v) HCl) for at least 2 hours. Stained embryos were dehydrated incrementally through the following series of washes: 80% (v/v) EtOH for 15 mins, 80% (v/v) EtOH:BuOH (3:1 ratio by volume) for 15 mins, 90% (v/v) EtOH:BuOH (1:1 ratio by volume) for 15 mins, 100% (v/v) EtOH/BuOH (1:3 ratio by volume) for 15 mins, and 100% BuOH for 30 mins. Embryos were brought to 60°C and butanol was exchanged for molten Fibrowax (TAAB Laboratories Equipment) maintained at 60°C, and individual embryos were loaded into plastic trays on a hotplate. Trays were transferred to a coldplate to solidify the wax. Embedded embryos were fixed to wooden blocks with molten wax, loaded into a vice, and 12μm sections were cut using a Microm HM325 rotary microtome. Wax sections were transferred to wet slides and incubated over a hotplate overnight to dry. Wax sections were cleared by dipping slides into Histoclear™ solution (Ward's Natural Science), hydrated using a series of 100% - 0% (v/v) ethanol solutions, then counterstained for 30 secs in Piero Blue. Following counterstaining, sections were alcohol dehydrated and cleared using Histoclear™ solution, and cover slips were applied to slides and left to set overnight.

2.3.7 Microinjection of X. laevis embryos with cRNA

Embryos were selected for microinjection at the 2-cell or 8-cell stage and were placed in NAM/20 (5.5mM NaCl, 0.1mM KCl, 0.05mM Ca(NO₃)₂, 5nM EDTA, 2mM HEPES, 25μg/ml gentamicin) containing 2% (w/v) Ficoll. Micropipettes were produced by pulling 1mm outer diameter x 0.58mm inner diameter x 100mm borosilicate glass capillaries (Intrafil) in
a Narishige PC-10 pipette puller, and attached to a PLI-100 microinjection rig (Medical Systems) connected to pressurised N\textsubscript{2}(g). The micropipette was backfilled with 2-3\mu l \textit{in vitro} transcribed, 5'-capped, polyadenylated cRNA (see Section 2.1.17), containing a 1/25 dilution of Dextran Fluorescein (Molecular Probes) where appropriate, and calibrated by injecting into mineral oil and measuring the bubble produced with an eye-piece graticule; a diameter of 4.0 eye-piece units (epu) at 1.6x magnification corresponded to a 8.6nl volume. Injection pressure and duration was adjusted until the required volume of 8.6nl was obtained. Following microinjection, embryos were maintained as described in Section 2.3.2. For each construct, \textit{in vitro} transcribed cRNA was microinjected into batches of around fifty cleavage-stage embryos per experiment, and experiments were performed at least twice to account for batch variability. Representative batches were then selected for scoring and photography in order to generate figures (see Sections 2.3.9 and 2.3.10). To facilitate direct comparison between the effects of microinjection of distinct cRNAs, or distinct cRNA concentrations, experiments were carried out upon the same batch of fertilised embryos from a single \textit{X.laevis} frog to eliminate the potentially misleading effects of batch variability. Furthermore, to eliminate the possibility of variance between separate \textit{in vitro} transcribed cRNA preparations, a single preparation was used for the overexpression experiments shown in Sections 6.2 and 6.3 for each construct analysed.

2.3.9 \textit{Scoring of embryos according to morphological phenotype}

In order to quantify the phenotypic variability observed within batches of \textit{X.laevis} embryos, and to thus facilitate direct comparison of the morphological defects in embryos injected with distinct cRNAs, a graded scoring system was developed and adopted throughout
Sections 6.2-5). Using this system, a greater score represented an increase in the severity of the morphological defects observed, and thus an increased departure from the wild-type morphology of *X. laevis* embryos. A score of 1 was assigned to embryos exhibiting wild-type morphology with no observable morphological defects. A score of 2 was assigned to embryos exhibiting a near wild-type morphology but with minor defects, such as a slight decrease in the size of the head or eyes (microcephaly), minor body truncation, or a significant kink in the tail. A score of 3 was assigned to embryos exhibiting moderate head defects, such as limited eye or cement gland development or severe microcephaly, and/or minor gastrulation defects, significant body truncation or loss of fin structures. A score of 4 was assigned to embryos exhibiting major head defects, such as loss of specification of eyes or cement gland, or complete loss of all head structures (acephaly), and/or major gastrulation failures, major body truncation, or loss of identifiable tail or fin structures. An example of the application of this scoring system, showing the calculation of percentage proportions and graphical representation as a stacked column chart, is shown in *Figure 2.1*. Stacked column charts were produced using Excel 2002 (Microsoft).
Figure 2.1 A. A sample of 22 embryos at stage 40, following microinjection of 0.4ng x/GABA_{BL(a)} cRNA at the 2-cell stage, showing assignment of scores 1-4, where embryos scoring 4 are indicated by an unlabelled dark grey spot. B. Pictorial representation of the scoring system used. C. Table showing number of embryos (n) assigned scores 1-4, and percentage proportion of the total sample. D. A stacked column chart showing percentage proportion of embryos scoring 1-4.
2.3.9 Animal cap isolation and use in mesoderm extension assays

Animal caps were removed by micro-dissection from stage 8 embryos using a pair of sharp forceps. Vitelline membranes were removed from embryos prior to dissection, and special care was taken to remove only ectodermal cell populations and not prospective mesodermal cells from the marginal zone. Animal caps were maintained in NAM/2 (55mM NaCl, 1mM KCl, 0.5mM Ca(NO₃)₂, 0.05mM EDTA, 2mM HEPES, 7µg/ml gentamicin), containing 0.1% (w/v) bovine serum albumin (BSA) when conducting mesoderm extension assays. Assays were repeated three times in order to account for batch variability, and representative batches were selected for photography to generate figures (see Section 2.3.10).

2.3.10 Photography

Embryos were viewed under a Leica MZFLIII Stereo Microscope, images were captured using the associated IM50 Image Manager software (Imagic Bildverarbeitung AG), and figures were prepared using Photoshop 5.5 (Adobe) and Word 2002 (Microsoft).
Results

Chapter One

Cloning and characterisation of complementary DNAs encoding *Xenopus laevis* GABA$_B$ receptors
3.1 Introduction

3.1.1 Background

In order to begin to explore the functional significance of GABA\textsubscript{A} receptors during \textit{X.laevis} development, three avenues of investigation are open. Firstly, analysis of the physiological roles of metabotropic GABA signalling in \textit{Xenopus} frogs is possible through application of specific GABA\textsubscript{A} receptor agonists and antagonists to particular tissues (for a review of available GABA\textsubscript{A} receptor ligands see Bowery,N.G et al. 2002), an approach that has been adopted previously (see \textit{Section 1.8}). x\textit{i}GABA\textsubscript{A} receptors will exhibit a pharmacology that can be used to characterise the binding of known radiolabelled GABA\textsubscript{A} receptor ligands to native receptors. For example, the distribution of GABA\textsubscript{A} receptor binding sites in \textit{X.laevis} embryos might be revealed through photoaffinity labelling of tissue using the ligand $^{125}\text{I}]CGP71872$, which has previously been shown to bind to \textit{Xenopus} GABA\textsubscript{A} receptors (Kaupmann,K et al. 1997). However, identification of GABA\textsubscript{A} receptors through ligand-binding requires only the cell-surface expression of the GABA\textsubscript{A(1)} subunit (Kaupmann,K et al. 1997, Malitshek,B et al. 1999). Such analyses do not directly demonstrate the presence of the GABA\textsubscript{A(2)} subunit, nor are pharmacological approaches able to distinguish between the various GABA\textsubscript{A(1)} receptor isoforms (see \textit{Section 1.4}). In addition, the characterisation of GABA\textsubscript{A(L)}, an orphan whose ligand(s) awaits identification (see \textit{Section 1.7}) is not presently possible using radioligand-binding.

A second approach to the \textit{in vivo} characterisation of x\textit{i}GABA\textsubscript{A} receptors during \textit{X.laevis} development would be to use receptor-specific antibodies. The use of antibodies for the molecular identification of gene products that are orthologous to cloned human or rodent
genes is not uncommon, since many antibodies exhibit species cross-reactivity where epitope amino acid sequence is conserved. However, in the absence of \(x/\text{GABA}_b \) receptor protein sequences, it is not clear whether any of the commercially available \(\text{GABA}_b \) receptor antibodies would recognise \(x/\text{GABA}_b \) receptor subunits. One example of the use of a \(\text{GABA}_b(1) \) antibody in the detection of \(x/\text{GABA}_b(1) \) protein appears in the literature, however, the immunoblot presented shows only a single 100kDa protein band using a C-terminal antibody that should recognise multiple \(x/\text{GABA}_b(1) \) isoforms (Ferguson, S.C.D et al. 2002). The detection of either \(x/\text{GABA}_b(2) \) or \(x/\text{GABA}_b(3) \) using existing antisera has not previously been reported. The use of antibodies as an initial approach to identify \(x/\text{GABA}_b \) receptors therefore represents an unattractive option, in the absence of known \(x/\text{GABA}_b \) receptor protein sequences.

Clearly, the most informative avenue to pursue is a third option, the isolation of cDNAs encoding \(x/\text{GABA}_b \) receptors, as this would facilitate the exploration of multiple avenues of investigation. Knowledge of \(x/\text{GABA}_b \) receptor sequences would permit the design of oligonucleotide primers for use in reverse transcriptase polymerase chain reaction (RT-PCR), or the raising of specific antisera, to investigate gene expression. Cloning of \(x/\text{GABA}_b \) receptor cDNAs into expression vectors would also make possible the in vitro transcription of labelled cRNA probes, for in situ hybridization experiments, or synthetic mRNAs (5'-capped, polyadenylated cRNAs), for micro-injection into \(\text{Xenopus} \) oocytes or embryos. The latter could be used to manipulate the expression of \(x/\text{GABA}_b \) gene products in developing embryos, or to express functional \(x/\text{GABA}_b \) receptors at the cell surface of \(\text{Xenopus} \) oocytes for pharmacological studies. Perhaps most importantly, molecular cloning of \(x/\text{GABA}_b \) receptor cDNAs would allow the investigation of the roles of the distinct \(\text{GABA}_b \) receptor isoforms, through the identification of specific temporal or spatial expression patterns, or through their misexpression during development.
The development of public domain expressed sequence tag (EST) databases, containing thousands of short nucleotide sequences derived from expressed mRNA transcripts, has dramatically reduced the time necessary to identify new genes in recent years. The identification of new orthologous genes is often straightforward when nucleotide or protein sequences have already been identified in other organisms. In the case of both *X.laevis* and *X.tropicalis*, there are several large collections of clones in the public domain, such as the NIH *Xenopus* Gene Collection (XGC) and the NIBB *Xenopus* Database (XDB). Many of these clones may contain complete open reading frames, and most can be obtained by members of the biomedical research community through distributors. Clearly, the availability of complete *Xenopus* cDNA clones makes this an ideal place to search for putative full-length x/GABA$_b$ receptor cDNAs, and offers a time advantage over other approaches such as the in-house screening of cDNA libraries. Where complete clones are not available, missing sequence may be isolated using rapid amplification of cDNA ends (RACE) from an RNA template, using gene-specific oligonucleotide primers derived from a partial cDNA sequence or EST, and amplified by PCR. Similarly, if it is possible to design flanking oligonucleotide primers, using partial cDNA sequences or ESTs, missing sequence may be amplified by reverse transcriptase PCR (RT-PCR), using template cDNA generated from mRNA by reverse transcriptase.

3.1.2 Aims

The aim of this chapter was to isolate complete cDNA clones encoding the *Xenopus laevis* orthologues of the principal mammalian GABA$_b$ receptor subunit isoforms, GABA$_{b(1a)}$, GABA$_{b(1b)}$, GABA$_{b(2)}$ and GABA$_{bL}$, and generate constructs that might facilitate the investigation of x/GABA$_b$ receptor gene expression and functionality.
3.2 Isolation and sequence analysis of *X.laevis* GABA$_{\beta(1)}$ cDNAs

3.2.1 *Homology searches to identify Xenopus ESTs sharing sequence identity with human GABA$_{\beta(1a)}$*

In order to search specifically for *Xenopus* clones encoding GABA$_{\beta(1a)}$, and not GABA$_{\beta(1b)}$, the 164 N-terminal amino acids from the human (h)GABA$_{\beta(1a)}$ protein sequence (GenBank accession number: NP_001461) were used as a query to search against the GenBank non-human, non-mouse expressed sequence tag (EST) database using TBLASTN 2.2 with Blosum62 similarity matrix and parameters: Open Gap Penalty = 11.0, Extend Gap Penalty = 1.0, and an Expect threshold value of 1×10^{-10}. Six significant alignments with ESTs belonging to *X.tropicalis* cDNA clones were generated; EST GenBank accession numbers and Clone IDs are listed in Table 3.1. The clones identified come from cDNA libraries that were derived from embryos at stages 51-62 of development or from adult frogs.

The 5' EST sequences belonging to these clones map to the 5' end of the hGABA$_{\beta(1a)}$ coding region, as shown in Figure 3.2. In each case the corresponding 3' EST sequences did not share identity with the hGABA$_{\beta(1a)}$ protein sequence when translated in any reading frame, suggesting that they may correspond to the 3' untranslated region (UTR) downstream of the coding sequence. Whilst this would suggest that these clones contain entire open reading frames, encoding putative *X.tropicalis* GABA$_{\beta(1a)}$, the aim here was to isolate clones belonging to *X.laevis*, and so efforts were made to first identify *X.laevis* GABA$_{\beta(1b)}$ sequence, which might later facilitate the isolation of *X.laevis* GABA$_{\beta(1a)}$ 5' sequence by 5'RACE.
<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species</th>
<th>cDNA library</th>
<th>Dev. Stage</th>
<th>5'EST Acc.#</th>
<th>3'EST Acc.#</th>
<th>5'EST e value</th>
<th>3'EST e value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE:7726051</td>
<td>Tropicalis</td>
<td>XGC adult heart</td>
<td>adult</td>
<td>DN004963</td>
<td>DN004962</td>
<td>3.0E-44</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:7660047</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX840283</td>
<td>CX840282</td>
<td>1.0E-44</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:7655261</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX824734</td>
<td>CX824733</td>
<td>4.0E-31</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:7660975</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX841475</td>
<td>CX841474</td>
<td>3.0E-26</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:7661788</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX843223</td>
<td>CX843222</td>
<td>1.0E-21</td>
<td>none</td>
</tr>
<tr>
<td>xtbs11M17</td>
<td>Tropicalis</td>
<td>xtbs CNS</td>
<td>51-62</td>
<td>CN075982</td>
<td>CN075981</td>
<td>2.0E-15</td>
<td>none</td>
</tr>
</tbody>
</table>

Table 3.1 Table summarising the *Xenopus* ESTs generating significant alignments with the 164 N-terminal amino acids of the hGABA

Figure 3.2 Schematic diagram mapping the *Xenopus* ESTs against the hGABA coding sequence. Exons and principal protein domains of hGABA are indicated. Location of orthologous region of each EST is shown by thick green bars. Scale bar shown represents 500bp.
3.2.2 Homology searches to identify Xenopus ESTs sharing sequence identity with human GABA$_{B(1b)}$

The hGABA$_{B(1b)}$ protein sequence (GenBank accession number: NP_068703) was used as a query to search against the GenBank non-human, non-mouse expressed sequence tag (EST) database using TBLASTN 2.2, with the parameters used in Section 3.2.1, and an Expect threshold value of 1×10^{-20}. Nineteen significant alignments with ESTs belonging to *Xenopus* cDNA clones were generated; EST GenBank Accession numbers and Clone IDs are listed in Table 3.3. Of the nineteen clones identified, twelve belong to *X.tropicalis* and seven to *X.laevis*, and all are from cDNA libraries that were derived from embryos at the tailbud stage of development onwards.

The 5' EST sequences belonging to the these clones map to the hGABA$_{B(1b)}$ coding region as shown in Figure 3.4. The 3' EST belonging to the NIBB XL104k16 cDNA clone also maps to hGABA$_{B(1b)}$ coding sequence, whereas all other 3' EST sequences either did not share identity with the hGABA$_{B(1b)}$ protein sequence when translated in any reading frame, or were absent from the GenBank database.

The *X.laevis* cDNA clone IMAGE:6948709, highlighted in Table 3.3, has a 5' EST sequence that maps to the 5' end of the hGABA$_{B(1b)}$ coding region (see Figure 3.4). The corresponding 3' EST sequence does not share identity with the hGABA$_{B(1b)}$ protein sequence when translated in any reading frame, suggesting that it may correspond to the 3'UTR. It was thus considered possible that the IMAGE:6948709 cDNA clone might contain an entire open reading frame encoding putative *X.laevis* GABA$_{B(1b)}$, and so this clone was selected for sequencing.
<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species</th>
<th>cDNA library</th>
<th>Dev. Stage</th>
<th>5'EST Acc.#</th>
<th>3'EST Acc.#</th>
<th>5'EST e value</th>
<th>3'EST e value</th>
<th>Stage</th>
<th>IMAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTpA053e21</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>35-40</td>
<td>BX731212 BX731213</td>
<td>none</td>
<td>1.0E-144</td>
<td>none</td>
<td>tadpole</td>
<td>7626861</td>
</tr>
<tr>
<td>IMAGE:7626861</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>36-41</td>
<td>BX380106 BX380105</td>
<td>none</td>
<td>2.0E-138</td>
<td>none</td>
<td>tadpole</td>
<td>7657125</td>
</tr>
<tr>
<td>IMAGE:7758165</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>BX828604 BX828603</td>
<td>none</td>
<td>3.0E-130</td>
<td>none</td>
<td>adult</td>
<td>7658165</td>
</tr>
<tr>
<td>tTbA035104</td>
<td>Tropicalis</td>
<td>XGC tailbud</td>
<td>28-30</td>
<td>CR431304 CR431305</td>
<td>none</td>
<td>7.0E-124</td>
<td>none</td>
<td>tadpole</td>
<td>7823730</td>
</tr>
<tr>
<td>IMAGE:7823730</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>36-41</td>
<td>CX373111 CX373110</td>
<td>none</td>
<td>9.0E-121</td>
<td>none</td>
<td>tadpole</td>
<td>7823730</td>
</tr>
<tr>
<td>tTbA048e24</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>35-40</td>
<td>BX727166 n/a</td>
<td>none</td>
<td>1.0E-118</td>
<td>n/a</td>
<td>tadpole</td>
<td>7669211</td>
</tr>
<tr>
<td>IMAGE:7669211</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX875595 CXD875594</td>
<td>none</td>
<td>1.0E-117</td>
<td>none</td>
<td>adult</td>
<td>7633700</td>
</tr>
<tr>
<td>IMAGE:7633700</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>36-41</td>
<td>CX375310 DR901755</td>
<td>none</td>
<td>1.0E-106</td>
<td>none</td>
<td>tadpole</td>
<td>7633700</td>
</tr>
<tr>
<td>ThdA053o04</td>
<td>Tropicalis</td>
<td>XGC tailbud head</td>
<td>28-30</td>
<td>CR587667 CR587668</td>
<td>none</td>
<td>2.0E-102</td>
<td>none</td>
<td>tailbud head</td>
<td>7647232</td>
</tr>
<tr>
<td>IMAGE:7647232</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX805495 CX805494</td>
<td>none</td>
<td>6.0E-86</td>
<td>none</td>
<td>adult brain</td>
<td>7659620</td>
</tr>
<tr>
<td>IMAGE:6955724</td>
<td>Laevi</td>
<td>XGC adult eye</td>
<td>adult</td>
<td>CD303148 n/a</td>
<td>none</td>
<td>6.0E-75</td>
<td>n/a</td>
<td>adult eye</td>
<td>6955724</td>
</tr>
<tr>
<td>IMAGE:6948354</td>
<td>Laevi</td>
<td>XGC adult eye</td>
<td>adult</td>
<td>CD325871 CD519862</td>
<td>none</td>
<td>9.0E-73</td>
<td>none</td>
<td>adult eye</td>
<td>6948354</td>
</tr>
<tr>
<td>XL104k16</td>
<td>Laevi</td>
<td>NIBB tailbud</td>
<td>25.0</td>
<td>BJ057636 BJ076108</td>
<td>2.0E-71</td>
<td>1.0E-29</td>
<td>none</td>
<td>tailbud</td>
<td>6948709</td>
</tr>
<tr>
<td>IMAGE:6948709</td>
<td>Laevi</td>
<td>XGC adult eye</td>
<td>adult</td>
<td>CD3258720 CD519862</td>
<td>none</td>
<td>7.0E-34</td>
<td>none*</td>
<td>adult eye</td>
<td>6948709</td>
</tr>
<tr>
<td>XL061g15</td>
<td>Laevi</td>
<td>NIBB tailbud</td>
<td>25.0</td>
<td>BJ059065 BJ077572</td>
<td>1.0E-33</td>
<td>none</td>
<td>none*</td>
<td>tailbud</td>
<td>6950579</td>
</tr>
<tr>
<td>IMAGE:6950579</td>
<td>Laevi</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CD3280305 CD328989</td>
<td>none</td>
<td>3.0E-23</td>
<td>none*</td>
<td>adult brain</td>
<td>6950579</td>
</tr>
<tr>
<td>IMAGE:6950580</td>
<td>Laevi</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CD327533 CD329668</td>
<td>none</td>
<td>3.0E-23</td>
<td>none*</td>
<td>adult brain</td>
<td>6950580</td>
</tr>
</tbody>
</table>

Table 3.3: Table summarising the *Xenopus* ESTs generating significant alignments with the hGABA_{B(1B)} protein sequence, showing GenBank accession numbers (Acc.#) and Expect (e) values. IMAGE:6948709 cDNA clone, selected for sequencing, is highlighted in red.
Figure 3.4 Schematic diagram mapping the Xenopus ESTs against the hGABA$_{P1(1b)}$ coding sequence. Exons and principal protein domains of hGABA$_{P1(1b)}$ are indicated. Location of orthologous region of each EST is shown by thick red bars. ESTs belonging to the same clone are connected by a thin black bar. IMAGE:6948709 cDNA clone, selected for sequencing, is boxed. Scale bar shown represents 500bp.
3.2.3 Sequence analysis of IMAGE:6948709 cDNA clone

The *X.laevis* cDNA clone IMAGE:6948709, highlighted in *Table 3.3*, has a 5' EST sequence that shares 82% identity with amino acids 48-107 of the hGABA$_{6(1b)}$ protein sequence when translated. This cDNA clone was acquired from the IMAGE Consortium and manually sequenced using the dideoxy method (see *Section 2.1.12*) with the oligonucleotide primers shown in *Table 3.22A*.

Sequence analysis revealed a 3653bp cDNA insert with an open reading frame encoding a protein 842 amino acids in length, sharing 78% amino acid identity with the hGABA$_{6(1b)}$ protein sequence. The optimal translation initiation codon was identified using the ATGpr program (www.hri.co.jp/atgpr/), which uses the preference for the sequence A/GXXATGG (Kozak, M et al. 1987) to predict the most probable ATG initiation codon. The full cDNA sequence, showing the coding region with deduced protein sequence, is presented in *Figure 3.5*.

It should be noted that, whilst the sequence analysis of the IMAGE:6948709 cDNA clone performed here reveals that it encodes a protein orthologous to hGABA$_{6(1b)}$, the 3' EST sequence for this clone deposited into GenBank (accession number: CD325726), indicated with an asterix (*) in *Table 3.3*, is instead homologous to the 3' end of a *X.laevis* beta A1 crystallin cDNA clone (GenBank accession number: BC053794).
The complete nucleotide sequence for IMAGE:6948709 cDNA clone encoding putative x/GABAB(β2), showing the deduced protein sequence.
3.2.4 Rapid amplification of cDNA ends to isolate XlGABA_{b(1a)} 5' sequence

Since there were no *X.laevis* cDNA clones identified by homology searches that shared sequence identity with the 164 N-terminal amino acids from the human GABA_{b(1a)} protein sequence, rapid amplification of 5' cDNA ends (5'RACE) was used to obtain a *X.laevis* cDNA encoding the N-terminus of XlGABA_{b(1a)}. This was accomplished using gene specific oligonucleotide primers designed from the XlGABA_{b(1b)} cDNA sequence shown in Figure 3.5. 5'RACE was carried out, as described in Section 2.1.11, using total RNA extracted from embryos at stage 36 of development, and the cloned PCR product was sequenced via the dideoxy method (see Section 2.1.15). The oligonucleotide primers used for 5'RACE and dideoxy sequencing are shown in Table 3.22B.

Sequence analysis revealed a 1088bp amplicon containing an open reading frame encoding putative XlGABA_{b(1a)} N-terminal protein sequence¹. The deduced protein sequence was 218 amino acids in length and shared 60% identity with amino acids 1-213 of the hGABA_{b(1a)} protein sequence. Assembly of a complete nucleotide sequence for XlGABA_{b(1a)}, using the cDNA isolated here by 5'RACE and the XlGABA_{b(1b)} cDNA sequence shown in Figure 3.5, generates a cDNA with an open reading frame encoding a 987 amino acid protein that shares 79% identity with the hGABA_{b(1a)} protein sequence. The optimal translation initiation codon was identified using the ATGpr program (www.hri.co.jp/atgpr), as described previously (see Section 3.2.3). This assembled XlGABA_{b(1a)} cDNA sequence, showing the coding region with deduced protein sequence, is presented in Figure 3.6.

¹ Three distinct cDNAs encoding the putative XlGABA_{b(1a)} N-terminus were isolated by 5'RACE, termed variants 1, 2 and 3, and are discussed in Section 4.3.2. Variant 1 was used to assemble a full-length XlGABA_{b(1a)} cDNA clone, in Section 3.5.2, for use in all subsequent experiments.
Figure 3.6 The complete nucleotide sequence for the assembled cDNA clone encoding putative x/GABAB (ia), showing the deduced protein sequence. The 218 N-terminal amino acids encoded by the 5'RACE product isolated in Section 3.2.4 (cDNA variant 1) are indicated (blue text).
3.2.5 Multiple sequence alignments of GABA_B(1) protein orthologues

To determine whether the putative x/GABA_B(1) receptor subunit isoforms, encoded by the cDNAs shown in Figures 3.5 and 3.6, represent genuine *X.laevis* orthologues of the corresponding mammalian proteins, the extent of the sequence identity shared at the amino acid level was determined by multiple sequence alignments with mammalian GABA_B(1a) and GABA_B(1b) protein sequences. These alignments were also used to evaluate whether residues important in the function of mammalian GABA_B(1) proteins were conserved in the *X.laevis* orthologues.

Human, rat and mouse GABA_B(1a) protein sequences (GenBank accession numbers: NP_001461, NP_112290 and NP_062312) were aligned against the deduced x/GABA_B(1a) protein sequence shown in Figure 3.6. This multiple sequence alignment, annotated with key conserved features, is presented in Figure 3.7.

Human, rat and mouse GABA_B(1b) protein sequences (GenBank accession numbers: NP_068703, CAA71399 and AAG29341) were aligned against the deduced x/GABA_B(1b) protein sequence shown in Figure 3.5. This multiple sequence alignment, annotated with key conserved features, is shown in Figure 3.8.

Signal peptide sequences were predicted using PSORT II program (www.psort.org). Protein sequences were aligned using ClustalW alignment program with Blosum similarity matrix and alignment parameters: Open Gap Penalty = 10.0, Extend Gap Penalty = 0.5.
Figure 3.7 Alignment of hGABA_B1a, rGABA_B1a, mGABA_B1a and xGABA_B1a protein sequences, showing putative signal peptide cleavage point (\(\xi\)), transmembrane domains (underlined, shaded), coiled-coil domain (underlined) annotated with heptad repeat, ER retention motifs (bold) and conserved ER retention signal (bold, shaded). Conserved residues important for sushi domain folding (Blein.S et al. 2004), ligand coordination (Galvez,T et al. 1999, 2000) and tertiary structure (Kniazeff.J et al. 2002) are shown (red text). Known epitopes for commercially available antibodies are shown (blue text). Conservative amino acid changes (.) and amino acid residues conserved in all species examined (*) are indicated.
Figure 3.8 Alignment of hGABA_{α1b}, rGABA_{α1b}, mGABA_{α1b} and xGABA_{α1b} protein sequences, showing putative signal peptide cleavage point (X), transmembrane domains (underlined, shaded), coiled-coil domain (underlined) annotated with heptad repeat, ER retention motifs (bold) and conserved ER retention signal (bold, shaded). Conserved residues important for ligand coordination (Galvez,T et al. 1999, 2000) and tertiary structure (Kniazeff.J et al. 2002) are shown (red text). Known epitopes for commercially available antibodies are shown (blue text). Conservative amino acid changes (.) and amino acid residues conserved in all species examined (*) are indicated.
3.2.6 *x*GABA*B*(1) proteins possess several amino acid sequences distinct from their mammalian counterparts

Whilst the overall amino acid identity shared between human, rodent and *X.laevis* GABA*B*(1) protein sequences is high, *x*GABA*B*(1a) and *x*GABA*B*(1b) possess several distinct features that distinguish them from their human and rodent counterparts. First, *x*GABA*B*(1a) and *x*GABA*B*(1b) proteins exhibit dissimilarity at their N-termini, and both possess distinct predicted signal peptide sequences compared to their human and rodent counterparts. This is perhaps indicative of a necessity for a distinct type of signal peptide sequence in amphibians compared to mammals, whilst sharing the overall requirement for a run of predominantly hydrophobic residues at the extreme N-terminus. Notably, the first sushi domain of *x*GABA*B*(1a) is more highly conserved than the second, sharing 76% and 52% amino acid identity with *h*GABA*B*(1a) sushi domains 1 and 2 respectively. A recent study demonstrated that the two sushi domains of *h*GABA*B*(1a) have markedly different structural properties, indicative of separate functions, and that the interaction between *h*GABA*B*(1a) and the extracellular matrix protein fibulin-2 was mediated by sushi domain 1 and not 2 (Blein,S et al. 2004). It would appear that the *x*GABA*B*(1a) protein sequence disclosed here supports the notion that sushi domain 1, but not 2, may have a conserved function in vertebrates. *x*GABA*B*(1a) also possesses an insertion of seven amino acids (IRHPESS), in a putative linker region immediately downstream of sushi domain 2, which is not found in mammalian GABA*B*(1a) protein sequences. As the function of the sushi domains and this downstream linker region are not yet clear, it is impossible to infer any physiological implications of this insert, although the presence of additional amino acids here would presumably not affect the normal folding of the sushi complement modules.
Second, both \timesGABA$_{B(1)}$ isoforms also have an insert of three amino acids, LSQ, in their second intracellular loop, which is not present in the human and rodent protein sequences. As discussed in the Introduction of this thesis (see Section 1.1.3), the third intracellular loop of Family 3 GPCRs, not the second, contains the molecular determinants required for coupling to G-proteins, and so the latter insertion would probably not give rise to significant differences in receptor coupling.

Third, the \timesGABA$_{B(1)}$ proteins isolated here are missing six amino acids found in mammalian GABA$_{B(1)}$ proteins, RHQLQS, corresponding to a deletion of the extreme C-terminal end of the coiled-coil domain upstream of the ER-retention signal. A recent study suggested that, in the case of GABA$_{B(1)}$, functionality of the ER-retention signal depends on residues in this region, and that the minimal ER retention sequence in hGABA$_{B(1)}$ is comprised of the amino acids QLQSRQQLRSRR (Grunewald, S et al. 2002). The deletion observed in \timesGABA$_{B(1)}$ here might be hypothesized to limit the effectiveness of the ER-retention signal and, hence, the proper assembly of GABA$_{B(1/2)}$ heterodimers in the ER. However, another study demonstrated that whilst secondary structure in this region was important, retention of GABA$_{B(1)}$ still occurred when the RSR(R) motif was moved N- or C-terminally of this sequence, casting doubt upon its significance (Gassmann, M et al. 2005). The addition of a leucine residue immediately prior to the RSR(R) motif was often shown to be sufficient to rescue loss of retention, and other studies have shown that the presence of a hydrophobic residue at this position in RXR-type signals, as is the case in \timesGABA$_{B(1)}$, is of primary importance for signal activity (Zerangue et al. 2001).

Finally, the \timesGABA$_{B(1)}$ proteins described in this chapter also exhibit an insertion of 24 amino acids in their C-terminal tail, SDNHFPNSSGAVSSLYQPGLPLAR, which is not found in mammalian GABA$_{B(1)}$ sequences. It has been demonstrated that the entire C-
terminal tail of mammalian GABA\(_B(1)\) receptor function (Margeta-Mitrovic, M et al. 2001\(^a\)) and, as such, this additional sequence may not be of physiological relevance. Indeed, the poor sequence conservation in this region, and the apparent truncation of the C-terminal tail during evolution from amphibian to mammalian sequences, may be seen to support the notion that it is a non-functional protein domain. Alternatively, the additional sequence observed here may represent a Xenopus-specific signal of hitherto unidentified function.
3.3 Isolation and sequence analysis of *X.laevis* GABA$_{B_{2}}$ cDNA

3.3.1 Homology searches to identify Xenopus ESTs sharing sequence identity with hGABA$_{B_{2}}$

The hGABA$_{B_{2}}$ protein sequence (GenBank accession number: NP_005449) was used as a query to search against the GenBank non-human, non-mouse expressed sequence tag (EST) database using TBLASTN 2.2, with the parameters used in Section 3.2.1, and an Expect threshold value of 1x10$^{-50}$. Ten significant alignments with ESTs belonging to *Xenopus* cDNA clones were generated; EST GenBank Accession numbers and Clone IDs are listed in Table 3.7. Of the ten clones identified, seven belong to *X.tropicalis* and three to *X.laevis*. The clones identified come from cDNA libraries that were derived from embryos at a range of development stages from gastrulae to adult frogs.

The EST sequences belonging to the these clones map to the hGABA$_{B_{2}}$ coding region as shown in Figure 3.8. The *X.laevis* cDNA clone IMAGE:6947886, highlighted in Table 3.7, has a 5' EST sequence that maps to the 5' end of the hGABA$_{B_{2}}$ coding region (see Figure 3.8), and shares 83% identity with amino acids 68-245 of the hGABA$_{B_{2}}$ protein sequence when translated. The corresponding 3' EST sequence shares 94% identity with amino acids 876-941 of the hGABA$_{B_{2}}$ protein when translated. It was thus considered likely that the IMAGE:6947886 cDNA clone contained an entire open reading frame encoding putative *X.laevis* GABA$_{B_{2}}$, and so this clone was selected for sequencing.
<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species (Xenopus)</th>
<th>cDNA library</th>
<th>Dev. Stage</th>
<th>5'EST Acc.#</th>
<th>3'EST Acc.#</th>
<th>5'EST e value</th>
<th>3'EST e value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE:7656856</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX828727</td>
<td>CX828726</td>
<td>7.0E-131</td>
<td></td>
</tr>
<tr>
<td>IMAGE:7793882</td>
<td>Tropicalis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CX886120</td>
<td>CX886119</td>
<td>2.0E-124</td>
<td>n/a</td>
</tr>
<tr>
<td>TGas042G20</td>
<td>Tropicalis</td>
<td>XGC gastrulae</td>
<td>10.5-12</td>
<td>AL653551</td>
<td>n/a</td>
<td>1.0E-105</td>
<td>n/a</td>
</tr>
<tr>
<td>IMAGE:6947886</td>
<td>Laevis</td>
<td>XGC adult eye</td>
<td>adult</td>
<td>CD326957</td>
<td>CD325538</td>
<td>1.0E-96</td>
<td>0.0E-36</td>
</tr>
<tr>
<td>IMAGE:7029620</td>
<td>Tropicalis</td>
<td>XGC all tissues</td>
<td>10,20,30</td>
<td>CF781749</td>
<td>n/a</td>
<td>5.0E-95</td>
<td>n/a</td>
</tr>
<tr>
<td>TNeu086o20</td>
<td>Tropicalis</td>
<td>XGC neurulae</td>
<td>14-20</td>
<td>AL791931</td>
<td>n/a</td>
<td>2.0E-94</td>
<td>n/a</td>
</tr>
<tr>
<td>IMAGE:7587169</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>36-41</td>
<td>CX313014</td>
<td>CX313013</td>
<td>3.0E-83</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:6956951</td>
<td>Laevis</td>
<td>XGC adult brain</td>
<td>adult</td>
<td>CD362386</td>
<td>CD361794</td>
<td>2.0E-65</td>
<td>3.0E-77</td>
</tr>
<tr>
<td>TtpA007e11</td>
<td>Tropicalis</td>
<td>XGC tadpole</td>
<td>35-40</td>
<td>BX708428</td>
<td>BX708429</td>
<td>3.0E-64</td>
<td>none</td>
</tr>
<tr>
<td>IMAGE:6945549</td>
<td>Laevis</td>
<td>XGC adult eye</td>
<td>adult</td>
<td>CD253409</td>
<td>n/a</td>
<td>3.0E-59</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 3.9 Table summarising the Xenopus ESTs generating significant alignments with the hGABA₂ protein sequence, showing GenBank accession numbers (Acc.#) and Expect (e) values. IMAGE:6947886 cDNA clone, selected for sequencing, is highlighted in blue.

Figure 3.10 Schematic diagram mapping the Xeno₅ ESTs against the hGABA₂ coding sequence. Exons and principal protein domains of hGABA₂ are indicated. Location of orthologous region of each EST is shown by thick blue bars. ESTs belonging to the same clone are connected by a thin black bar. IMAGE:6947886 cDNA clone, selected for sequencing, is boxed. Scale bar shown represents 500bp.
3.3.2 Sequence analysis of IMAGE:6947886 cDNA clone

The *X.laevis* cDNA clone IMAGE:6947886, highlighted in Figure 3.9, has 5' and 3' EST sequences that share 83% and 94% identity respectively with amino acids 68-245 and 876-941 of the *hGABA_{B(2)}* protein sequence when translated. This cDNA clone was acquired from the IMAGE Consortium and manually sequenced using the dideoxy method (see Section 2.1.12) with the oligonucleotide primers shown in Table 3.22C.

Sequence analysis revealed a 3253bp cDNA insert with an open reading frame encoding a protein 920 amino acids in length, sharing 82% amino acid identity with the *hGABA_{B(2)}* protein sequence. The optimal translation initiation codon was identified using the ATGpr program (www.hri.co.jp/atgpr/), as described previously (see Section 3.2.3). The full cDNA sequence, showing the coding region with deduced protein sequence, is presented in Figure 3.11.
Figure 3.11 The complete nucleotide sequence for IMAGE:6947886 cDNA clone encoding putative xGABA_a subunit, showing the deduced protein sequence.
3.3.3 Multiple sequence alignment of \(\text{GABA}_{B(2)} \) protein orthologues

To determine whether the putative \(x/\text{GABA}_{B(2)} \) receptor subunit, encoded by the cDNA shown in Figure 3.11, represents the genuine \(X.laevis \) orthologue of the corresponding mammalian proteins, the extent of the sequence identity shared at the amino acid level was determined by a multiple sequence alignment with mammalian \(\text{GABA}_{B(2)} \) protein sequences. This alignment was also used to evaluate whether residues important in the function of mammalian \(\text{GABA}_{B(2)} \) proteins were conserved in the \(X.laevis \) orthologue.

Human, rat and mouse \(\text{GABA}_{B(2)} \) protein sequences (GenBank Accession numbers: NP_005449, NP_113990 and XP_143750) were aligned against the deduced \(x/\text{GABA}_{B(2)} \) protein sequence shown in Figure 3.11. This multiple sequence alignment, annotated with key conserved features, is shown in Figure 3.12.

Signal peptide sequences were predicted using PSORT II program (www.psort.org). Protein sequences were aligned using ClustalW alignment program, with the parameters used in Section 3.2.5.
Conserved residues important for tertiary structure (Kniazeff.J et al. 2002) are shown (bold) and conserved ER retention signal (red). Conservative amino acid changes () and amino acid residues conserved in all species examined (*) are indicated.

Figure 3.12 Alignment of hGABA\(_{\alpha2}\), rGABA\(_{\alpha2}\), mGABA\(_{\alpha2}\) and xGABA\(_{\alpha2}\) protein sequences, showing putative signal peptide cleavage point (\(\text{X}\)), transmembrane domains (underlined, shaded), coiled-coil domain (underlined) annotated with heptad repeat, ER retention motifs (bold) and conserved ER retention signal (bold, shaded). Conserved residues important for tertiary structure (Kniazeff,J et al. 2002) are shown (bold text). A known epitope for a commercially available antibody is shown (blue text). Conservative amino acid changes () and amino acid residues conserved in all species examined (*) are indicated.
3.3.4 Mammalian and xIGABA_{B(2)} protein sequences are highly conserved

In contrast to GABA_{B(1)}, GABA_{B(2)} protein sequences are very highly conserved, with human and xIGABA_{B(2)} sharing 82% identity at the amino acid level. Indeed, the only striking dissimilarity between mammalian and xIGABA_{B(2)} protein sequences is at the extreme N-terminus, where xIGABA_{B(2)} possesses a distinct putative signal peptide sequence and 17 N-terminal amino acids of the mature polypeptide. xIGABA_{B(2)} also exhibits a deletion of four amino acids in the PBP-like domain, NSSR, with respect to its mammalian counterparts. Whilst the GABA_{B(2)} subunit of the GABA_{B} receptor does not appear to bind any endogenous ligands, the PBP-like domain of GABA_{B(2)} has been shown to increase the agonist affinity of the GABA_{B(1)} subunit, and is required for agonist-induced activation of the GABA_{B} receptor (Galvez,T et al. 2001). As such, this deletion observed in xIGABA_{B(2)} may modulate xIGABA_{B} receptor activity, however, without characterisation of xIGABA_{B} receptor pharmacology, the significance of this deletion is difficult to anticipate.
3.4 Isolation and sequence analysis of X.laevis GABA_{BL} cDNA

3.4.1 Homology searches to identify Xenopus ESTs sharing sequence identity with hGABA_{BL}

The hGABA_{BL} protein sequence (GenBank accession number: NP_694547) was used as a query to search against the GenBank non-human, non-mouse expressed sequence tag (EST) database using TBLASTN 2.2, with the parameters used in Section 3.2.1, and an Expect threshold value of 1x10^{-10}. One significant alignment with an EST belonging to a Xenopus laevis cDNA clone was generated; the EST GenBank accession number and Clone ID is listed in Table 3.13. This clone (XL024m02) belongs to a cDNA library derived from neurulae at stage 15 of development.

The 5' EST sequence belonging to the XL024m02 cDNA clone maps to the hGABA_{BL} coding region as shown in Figure 3.14. The 3' EST belonging to XL024m02 did not share sequence identity with the hGABA_{BL} protein when translated in any reading frame, suggesting that it may correspond to the 3'UTR downstream of the coding sequence.

Although mapping of the XL024m02 cDNA clone to the hGABA_{BL} coding region suggested that it may only contain a partial open reading frame encoding the C-terminus of putative x/GABA_{BL} (see Figure 3.14), knowledge of this nucleotide sequence would permit the isolation of the presumptive missing x/GABA_{BL} 5' sequence by 5'RACE, and so this clone was selected for sequencing.
<table>
<thead>
<tr>
<th>Clone ID</th>
<th>Species (Xenopus)</th>
<th>cDNA library</th>
<th>Dev. Stage</th>
<th>5'EST Acc.#</th>
<th>3'EST Acc.#</th>
<th>5'EST e value</th>
<th>3'EST e value</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL024m02</td>
<td>Laevis</td>
<td>NIBB neurulae</td>
<td>15</td>
<td>BJ035931</td>
<td>BJ050529</td>
<td>4.0E-31</td>
<td>none</td>
</tr>
</tbody>
</table>

Table 3.13 Table showing the X.laevis EST generating a significant alignment with the hGABA_{BL} protein sequence, showing GenBank accession number (Acc.#) and Expect (e) value. XL024m02 cDNA clone, selected for sequencing, is highlighted in yellow.

![Figure 3.14](image.png)

Figure 3.14 Schematic diagram mapping the X.laevis EST against the hGABA_{BL} coding sequence. Exons and principal protein domains of hGABA_{BL} are indicated. Location of orthologous region of EST is shown by thick yellow bar. XL024m02 cDNA clone, selected for sequencing, is boxed. Scale bar shown represents 500bp.
3.4.2 Sequence analysis of XL024m02 cDNA clone

The *X. laevis* cDNA clone XL024m02, highlighted in Figure 3.13, has a 5' EST that shares 55% identity with amino acids 279-397 of the $h\text{GABA}_{BL}$ protein when translated. This cDNA clone was acquired from the National Institute for Basic Biology, Japan, and manually sequenced using the dideoxy method (see Section 2.1.12) with the oligonucleotide primers shown in Table 3.22D.

Sequence analysis revealed a 1928bp cDNA insert with an open reading frame encoding a protein 524 amino acids in length, sharing 30% identity with amino acids 279-814 of the $h\text{GABA}_{BL}$ protein sequence. The full cDNA sequence, showing the coding region with deduced protein sequence, is presented in Figure 3.15.
Figure 3.15 Nucleotide sequence for the XL024m02 cDNA clone encoding the C-terminus of putative xGABA\textsubscript{R}A, showing the deduced protein sequence.
3.4.3 Rapid amplification of cDNA ends to isolate putative \(x/GABA_{BL} \) 5' sequence

Pairwise alignment of the deduced \(x/GABA_{BL} \) protein sequence with the \(h/GABA_{BL} \) protein suggested that around 278 N-terminal amino acids may be missing from the former. In an effort to isolate the 5' sequence missing from the XL024m02 cDNA clone (see Figure 3.15), 5'RACE was carried out, as described in Section 2.1.11, using total RNA extracted from embryos at stage 36 of development, and gene specific oligonucleotide primers designed from the XL024m02 cDNA sequence. The oligonucleotide primers used for 5'RACE and subsequent dideoxy sequencing of the cloned product are shown in Table 3.22E.

Sequence analysis of the cloned 5'RACE product uncovered a 515bp amplicon containing an open reading frame encoding putative \(x/GABA_{BL} \) N-terminal protein sequence. The deduced protein sequence was just 28 amino acids in length, and shared 29% identity with amino acids 1-28 of the \(h/GABA_{BL} \) protein. Assembly of a complete nucleotide sequence, using the cDNA isolated here by 5'RACE and the partial \(x/GABA_{BL} \) cDNA clone shown in Figure 3.15, generated an open reading frame encoding a 535 amino acid protein that shared 21% sequence identity with the \(h/GABA_{BL} \) protein. The optimal translation initiation codon was identified using the ATGpr program (www.hri.co.jp/atgpr), as described previously (see Section 3.2.3). This assembled cDNA sequence, showing the coding region with deduced protein sequence, is presented in Figure 3.16.
NACTATCCCAACTATAAGGACACTATGACTGCAAAGAAATAGGCTCAGCCAACAGGGCACAGGGATAGAAATGATCCCTTTAAACTGA
GTGCCCGTGCTCATAACACCAGTGCCCAACTGCCACCTAATTCAGTGCTTGTGAGGTCCAACCCATCTGCTGTGCCCATACAAATAAGAA
TAGGCACACATAGGAAACATGGACACTTGCACTAGGACACCATCCATCCAGCCAGGGCACTGAGACTGGTATAGAAGTCCCGACTTACT
ACAGGGGGTGACAGGAGGATCACCTAGCAGGAGCAGGTCAGACTCCCCAGGCTGCAGACAATGTGTCTGTAGGCTGGAGCTATGAATAGTG
GGTGCTCTGCACTGTTGAACAGCCACATTGATTGGCCGAACCTGGTCTATGCAACAACATCAGGAAGCATCTTGATCTGTACAACCTCCATC
M E P S L N 6
ACCTGCCTTATCTTCATCCCACAGTTGCTACAATCGAGGCAGTTTGAGGAGGAGCAGGTCCAGAGCACACAAATGACCAAGTATTTCAGT
GAGCAAAATGCCATCATAGAAAGCCTCCAAGAGCAAGTGAGCAACGCTAAGGACAAGCTGGTGAAGCTATTAAAATCTGAGTGCAGCCTT
9 N C L I F P Q L L . QSRQFEEEQVQSTQMTKYFS 66
GAGGAACCTGCACCTCTTGATACTGTAGAGAACGTGGATCATGAAGCTGTCATTAAGGACACTCAGGAGGGTGATACTAACCATGGCACA
157 EEPAPLDTVENVDHEAVIKDTQEGDTNHGT 186
CAGAGTGATGTTTTCGAGTCACCCAAGAACCATAATATACAGGAGTTAAAAGACAAGCCTCAAGAAGGGCCACAATGTACCAGCAAGCCT
QSDVFESPKNHNIQELKDKPQEGPQCTSKP 216
1000 1010 1020 1030 1040 1050 1060 1070 1080
187 Q SDVFESPKNHNIQELKDKPQEGPQCTSKP 216
ACTGAATACTCAGTCTCAAAACAAGAGGACATGTCAACATCAGACTTCAGAAATGTGAGTTTTGCTGACAGTGTATCTAAAGCCCATTAC
157 EEPAPLDTVENVDHEAVIKDTQEGDTNHGT 186
1180 1190 1200 1210 1220 1230 1240 1250 1260
247 Q H Q G E Q S R T K E V L E Q L S R KVNY VSSEKLQ 276
1270 1280 1290 1300 1310 1320 1330 1340 1350
continued overleaf...
Figure 3.16 Nucleotide sequence for assembled cDNA clone encoding putative x/GABAβ1L, showing the deduced protein sequence. The 28 N-terminal amino acids encoded by the 5'RACE product isolated in Section 3.4.3 are indicated (blue text)
3.4.4 RT-PCR to amplify alternative putative X.laevis GABA_{bl} 5' sequence

Whilst the cDNA sequence obtained by 5'RACE in Section 3.4.3 appears to encode the 28 N-terminal amino acids of the putative x/GABA_{bl} orthologue, pairwise alignment of the x/GABA_{bl} protein sequence, deduced from the assembled cDNA clone shown in Figure 3.16, and the hGABA_{bl} protein sequence, suggests that around 267 amino acids encoding transmembrane domains I-VI may be missing from the former. To investigate whether an alternative x/GABA_{bl} transcript might also exist, encoding a seven-transmembrane protein orthologous to hGABA_{bl}, oligonucleotide primers were designed, using the assembled cDNA clone shown in Figure 3.16, which flanked the proposed region of missing nucleotide sequence. Reverse transcriptase PCR (RT-PCR) was then carried out, using ACCUZYMÉ™ proofreading DNA polymerase and template cDNA generated from mRNA extracted from embryos at stage 18 of development (see Section 2.1.10), and the PCR product was sequenced by the dideoxy method (see Section 2.1.12). The oligonucleotide primers used for RT-PCR and dideoxy sequencing are shown in Table 3.22F.

Sequence analysis of the cloned PCR product uncovered a 1573bp amplicon containing an open reading frame encoding an alternative putative x/GABA_{bl} N-terminus. The deduced protein sequence was 510 amino acids in length, and shared 41% identity with amino acids 1-524 of the hGABA_{bl} protein. Assembly of a complete nucleotide sequence, using the cDNA isolated here by RT-PCR and the partial x/GABA_{bl} cDNA clone shown in Figure 3.15, generated an open reading frame encoding a 798 amino acid seven-transmembrane protein, orthologous to hGABA_{bl}, that shared 38% sequence identity with the hGABA_{bl} protein overall. This assembled cDNA sequence, showing the coding region with deduced protein sequence, is presented in Figure 3.17.
Figure 3.17 Nucleotide sequence for assembled cDNA clone encoding putative x/GABA_Bα₁, showing the deduced protein sequence. The 510 N-terminal amino acids encoded by the RT-PCR product isolated in Section 3.4.4 are indicated (blue text).
3.4.5 Multiple sequence alignment of GABA_{BL} protein orthologues

To determine whether the putative $x\text{GABA}_{\text{BL}}$ proteins, encoded by the cDNAs shown in Figures 3.16 and 3.17, represent genuine $X.laevis$ orthologues of mammalian GABA_{BL} proteins, the extent of the sequence identity shared at the amino acid level was determined by a multiple sequence alignment with mammalian GABA_{BL} protein sequences. In order to distinguish between the two $x\text{GABA}_{\text{BL}}$ transcript variants isolated here, the 798 amino acid seven-transmembrane protein, encoded by the cDNA shown in Figure 3.17, shall be referred to as $x\text{GABA}_{\text{BL}(a)}$ from this point onwards; the 535 amino acid single-transmembrane protein, encoded by the cDNA shown in Figure 3.16, shall be referred to as $x\text{GABA}_{\text{BL}(b)}$.

Human, rat and mouse GABA_{BL} protein sequences (GenBank accession numbers: NP_694547, AAN03797 and NP_700443) were aligned against the deduced $x\text{GABA}_{\text{BL}(a)}$ and $x\text{GABA}_{\text{BL}(b)}$ protein sequences. This multiple sequence alignment, annotated with key conserved features, is presented in Figure 3.18.

Signal peptide sequences were predicted not to be present in either $x\text{GABA}_{\text{BL}}$ protein using the PSORT II program (www.psort.org). Protein sequences were aligned using ClustalW alignment program, with the parameters used in Section 3.2.5.
Figure 3.18 Alignment of hGABA_A, rGABA_B, mGABA_A, xGABA_BL(a) and xGABA_BL(b) protein sequences, showing putative transmembrane domains (underlined, shaded), coiled-coil domain (underlined) annotated with heptad repeat, ER retention motifs (bold) and conserved ER retention signal (bold, shaded). The epitope for a known antiserum is shown (blue text). Conservative amino acid changes (.) and amino acid residues conserved in all species examined (*) are indicated.
3.4.6 The C-terminus of GABA\textsubscript{BL} is poorly conserved and contains multiple RXR-type ER-retention motifs

In contrast to the GABA\textsubscript{BL(1)} and GABA\textsubscript{BL(2)} protein orthologues, the amino acid sequence for GABA\textsubscript{BL} is poorly conserved X.\textit{laevis} and the mammalian species examined here. The C-terminal intracellular tail of GABA\textsubscript{BL}, downstream of the coiled-coil domain, is particularly poorly conserved, with just 25% amino acid identity shared between human and X.\textit{laevis} sequences in this region, rising to 54% and 56% between human and mouse, and human and rat, respectively. There are, however, several short and highly conserved amino acid sequences in the C-terminus that may be of functional importance, such as EKLQE(IV)L, SPY(M/V)(M/V)RRR, SSSS and CHRPYCE(IV)C (see Figure 3.18). These conserved sequences would make attractive targets for future mutagenesis studies, should functionality of the GABA\textsubscript{BL} protein ever be demonstrated.

Strikingly, human, rodent and X/GABA\textsubscript{BL} sequences each possess multiple RXR-type ER-retentions motifs in their C-terminal tails. The locations of many of these motifs are not conserved across the species, and many are not immediately preceded by a hydrophobic residue, casting doubt as to their significance as retention signals \textit{in vivo}. However, the location of one motif is highly conserved, (M/V)RRR(R), and may function as a bona fide RXR-type ER-retention signal \textit{in vivo}.

The presence of these multiple signals in the GABA\textsubscript{BL} C-terminus, and the lack of an N-terminal secretion peptide sequence, suggests that the GABA\textsubscript{BL} protein might be retained on intracellular membranes post-translation. Indeed, subsequent to cloning, Calver and colleagues experienced difficulty expressing the human GABA\textsubscript{BL} orthologue at the cell surface in HEK-293 cells without the addition of an N-terminal signal peptide (Calver,A.R
et al. 2003). It is possible that these ER-retention signals might be masked in vivo through interactions with other proteins, resulting in the trafficking of a GABA_{BL}-protein complex to the plasma membrane. Indeed, the GABA_{BL} subunit may yet be found to function as a non ligand-binding partner in a heterodimeric receptor, analogous to its closely related cousin, GABA_{B(2)}. The extended C-terminal tail of GABA_{BL}, unusually long even for a Family 3 GPCR, may also be indicative of interactions with multiple intracellular factors or receptor subunits, perhaps as part of a larger oligomeric GPCR assembly.

3.4.7 \(xlGABA_{BL(a)} \) and \(xlGABA_{BL(b)} \) transcripts encode proteins that possess a different number of transmembrane domains

The isolation of two distinct \(xlGABA_{BL} \) transcript variants here is intriguing, since the existence of distinct GABA_{BL} isoforms has been postulated previously. A number of \(hGABA_{BL} \) transcripts of different length have been identified in the human testis by northern analysis (Calver,A.R et al. 2003), and the nucleotide sequence for a \(hGABA_{BL} \) transcript variant, encoding a single-transmembrane protein, termed here \(hGABA_{BL(b)} \), is deposited in GenBank (accession number: AB209362) (Totoki,Y et al. 2005) (see Figure 1.3). The assembled \(xlGABA_{BL(a)} \) cDNA clone, shown in Figure 3.17, encodes a seven-transmembrane protein orthologous to mammalian GABA_{BL} proteins; the \(xlGABA_{BL(b)} \) cDNA clone, shown in Figure 3.16, encodes an identical protein except for the deletion of 262 amino acids corresponding to transmembrane domains I-IV of \(xlGABA_{BL(a)} \). Whilst the significance of this deletion is not yet clear, the similarity in receptor topology to that encoded by the \(hGABA_{BL(b)} \) transcript variant suggests that this phenomenon may be conserved between human and \(X.laevis \). However, analysis of the deduced \(hGABA_{BL(b)} \) and \(xlGABA_{BL(b)} \) protein sequences reveals that, whilst the latter lacks transmembrane
domains I-VI with respect to its seven-transmembrane homologue, the hGABA_{BL(b)} lacks transmembrane domains II-VII, suggesting that they are unlikely to be generated by a comparable RNA splicing mechanism. Furthermore, the canonical splicing event that generates the hGABA_{BL(b)} variant causes a frameshift which results in the deletion of almost the entire C-terminal intracellular tail and, as such, it is difficult to imagine that hGABA_{BL(b)} and x/GABA_{BL(b)} proteins would perform analogous roles if expressed \textit{in vivo}.

The exon organisation of the x/GABA_{BL} gene presently remains undisclosed and, as such, there is no evidence to suggest that the x/GABA_{BL(b)} transcript assembled here could be generated by canonical RNA splicing events. In the absence of this evidence, it was decided that pursuit of the functional characterisation of x/GABA_{BL(a)}, and not x/GABA_{BL(b)}, would be favourable in the first instance, since the former isoform was orthologous to mammalian GABA_{BL} proteins and possessed seven-transmembrane domains, reminiscent of a GPCR.
3.5 Subcloning of X.laevis GABA_b receptor cDNAs into expression vectors

3.5.1 Identification of plasmid vectors suitable for the generation of X.laevis GABA_b receptor expression constructs

Following the identification and isolation of xlGABA_b receptor cDNAs, a number of applications for these clones were envisaged. The first was to use these cDNAs as a template from which to transcribe xlGABA_b-specific antisense cRNA probes that could be used to perform in situ hybridization experiments (see Section 5.3). The IMAGE:6948709 and IMAGE:6947886 cDNA clones, containing complete open reading frames for xlGABA_b(1b) and xlGABA_b(2) respectively, were acquired from libraries constructed using the pCMV-SPORT6 (Invitrogen) plasmid vector; the XL024m02 cDNA clone, containing a partial open reading frame encoding the C-terminus of xlGABA_bl (see Figure 3.15) was acquired from a library constructed using the pBlueScript® II SK(-) (Stratagene) phagemid vector. Since both of these vectors contain two promoter regions flanking either side of the polylinker, these constructs were ideally suited for the transcription of antisense, and sense, xlGABA_b(1), xlGABA_b(2) or xlGABA_bl-specific cRNA probes.

The second application envisaged for the xlGABA_b receptor cDNAs was the in vitro transcription of sense cRNAs, suitable for microinjection into X.laevis embryos, to facilitate xlGABA_b(1a), xlGABA_b(1b), xlGABA_b(2) and xlGABA_bl(a) protein overexpression experiments (see Sections 6.2-5). These experiments required not only the assembly of full-length cDNAs encoding xlGABA_b(1a) and xlGABA_bl(a), but also the use of specialised plasmid expression vectors designed to maximise expression of the cRNAs transcribed from them.
The pSp64T.clon plasmid vector, derived from the pSp64 expression vector (Promega), was originally constructed by Dr Rodolpho M. Albano (Dept of Biochemistry, State University of Rio de Janeiro, Rio de Janeiro, Brazil) and was kindly donated by Dr Leslie Dale (Dept of Anatomy and Developmental Biology, University College London, London, UK). pSp64T.clon was generated by replacing the BglIII site in pSp64T with the additional restriction sites SmaI, KpnI, SacI, EcoRI, NotI, XmaII, offering a greater range of cloning options. cDNAs cloned into this polylinker are flanked by the 5'UTR and 3'UTR of the X.laevis β-globin gene, known to be efficiently translated in vivo. A second polylinker downstream of the 3'UTR allows for linearization of the plasmid prior to in vitro transcription with Sp6 RNA polymerase.

The pCS2+ plasmid vector, derived from the pBluescript II KS(+) vector (Promega), was originally constructed by Dr David Turner (University of Michigan, Ann Arbor, MI, USA) and was kindly donated by Dr Leslie Dale. pCS2+ contains the simian CMV IE94 promoter followed by a polylinker into which cDNAs may be cloned, followed by a SV40 poly-adenylation sequence. A second polylinker downstream of the SV40 signal allows for linearization of the plasmid prior to in vitro transcription with Sp6 RNA polymerase.

Whilst both of these plasmid vectors were, in principle, suitable for the generation of the x/GABAB receptor expression constructs, cloning options were limited by the presence of multiple endonuclease recognition sequences within the x/GABAB receptor coding sequences. The rationale developed in order to subclone these cDNAs demanded the use of the pSp64T.clon plasmid vector to generate the x/GABAB(1a), x/GABAB(1b) and x/GABAB(2) expression constructs, and the pCS2+ plasmid vector to generate the x/GABAB(2,1a) expression construct.
3.5.2 Subcloning of X.laevis GABA\textsubscript{b} receptor cDNAs into pSp64T.clon vector

In the case of x/GABAB\textsubscript{a(1a)} and x/GABAB\textsubscript{b(1b)}, it was necessary to remove a significant portion of their 5'UTR prior to subcloning into pSp64T.clon, due to the presence of several short open reading frames upstream of the initiation codons corresponding to the x/GABAB\textsubscript{a(1a)} and x/GABAB\textsubscript{b(1b)} open reading frames. Failure to eliminate these short open reading frames may have resulted in the translation of alternative polypeptides in reticulocyte lysate reactions, or in oocytes and embryos following microinjection of 5'-capped, polyadenylated cRNAs transcribed from these constructs.

To generate the x/GABAB\textsubscript{b(1b)} expression construct, the 3653bp x/GABAB\textsubscript{b(1b)} cDNA shown in Figure 3.5 was first subcloned into KpnI (5') and NotI (3') sites in the mammalian expression vector pcDNA3.1(+) Neo (Invitrogen). This construct was then used as a template from which to amplify a 3180bp fragment, corresponding to nucleotides 473-3653 of the x/GABAB\textsubscript{b(1b)} cDNA clone, by RT-PCR (see Section 2.1.10) using ACCUZYM\textregistered proofreading DNA polymerase and the oligonucleotide primers shown in Table 3.19A. This fragment was digested with Asp718l (5') and NotI (3') (see Section 2.1.7) and ligated into the KpnI (5') and NotI (3') sites in the pSp64T.clon vector (see Section 2.1.15). The nucleotide sequence for this construct was verified by dideoxy sequencing (see Section 2.1.12).

To generate the x/GABAB\textsubscript{a(1a)} expression construct, a 720bp fragment, corresponding to nucleotides 368-1088 of the x/GABAB\textsubscript{a(1a)} cDNA clone isolated by 5'RACE, shown in Figure 3.6, was amplified by RT-PCR (see Section 2.1.10) using ACCUZYM\textregistered proofreading DNA polymerase and the oligonucleotide primers shown in Table 3.19B. This fragment was digested with Asp718l (5') and StuI (3') (see Section 2.1.7) to yield a 641bp fragment
encoding the 191 N-terminal amino acids of x/GABA(1a). Next, the newly completed pSp64T.clon x/GABA(1b) construct, described in this section, was also digested with Asp718I (5') and StuI (3') to release an 189bp fragment encoding the 46 N-terminal amino acids of x/GABA(1b). This fragment was discarded and the 641bp fragment encoding the 191 N-terminal amino acids of x/GABA(1a) was ligated into the Asp718I (5') and StuI (3') sites in the linearised pSp64T.clon x/GABA(1b) construct (see Section 2.1.15), to yield a new pSp64T.clon construct containing an assembled x/GABA(1a) cDNA clone. The nucleotide sequence for this construct was verified by dideoxy sequencing (see Section 2.1.12).

The generation of the x/GABA(2) expression construct was simplified by the absence of any short open reading frames in its 5'UTR. Here, the complete 3253bp x/GABA(2) cDNA, shown in Figure 3.11, was subcloned directly into KpnI (5') and NotI (3') sites in the pSp64T.clon vector to generate the expression construct.

3.5.3 Subcloning of X.laevis x/GABA(2) cDNA into pCS2+ vector

To generate the x/GABA(2) expression construct, site-directed mutagenesis was performed (see Section 2.1.13) to mutate the BglII restriction site at position 167 in the x/GABA(cDNA) isolated by RT-PCR, shown in Figure 3.17, using the oligonucleotide primers shown in Table 3.19C. The mutated clone was then digested with EcoRI (5') and BglII (3') (see Section 2.1.7) to yield a 1069bp fragment encoding the 342 N-terminal amino acids of x/GABA(2). Next, the partial cDNA clone encoding the C-terminal end of x/GABA(2), shown in Figure 3.15, was digested with BglII (5') and XhoI (3') to yield a 1719bp fragment encoding the 456 C-terminal amino acids of x/GABA(2). Both fragments
were then ligated into EcoRI (5') and XhoI (3') sites in the pCS2+ vector (see Section 2.1.15) to yield a pCS2+ construct containing an assembled x/GABA_{BL(a)} cDNA clone. The nucleotide sequence for this construct was verified by dideoxy sequencing (see Section 2.1.12).
<table>
<thead>
<tr>
<th>cDNA</th>
<th>Primer</th>
<th>Nucleotide Sequence</th>
<th>Loc (bp)</th>
<th>Strand</th>
</tr>
</thead>
</table>
| x/GABA_{\text{e}(ib)} | xGB1b-AMP-fwd0
BGH-rev1 (vector) | 5'-CCACCACTTTCGCTGCCCTTC-3' 5'-TGAAGGCACTCGAGG-3' | 398 plus | |
| | | | n/a minus | |
| x/GABA_{\text{e}(ia)} | xGB1a-AMP-fwd2
xGB1-SEQ-rev3 | 5'-GACATATAACAGCTACACGGGATAAAAGCACTAAAGAAGT-3' 5'-AGCTCATCATTACTCCG-3' | 368 plus | |
| | | | 1088 minus | |
| x/GABA_{\text{an}(a)} | xGBL-5'5'5-SDM-fwd1
xGBL-5'5'5-SDM-rev1 | 5'-ACAGAGAAACAGATCTTCTCTGAGG-3' 5'-CATGTTCTTCTGCCTCTT-3' | 156 plus | |
| | | | 187 minus | |

Table 3.19 Oligonucleotide primers used during the subcloning of cDNAs encoding A. xGABA_{\text{e}(ib)}, B. xGABA_{\text{e}(ia)}, and C. xGABA_{\text{an}(a)} into expression vectors, showing binding loci (bp) and strand, where applicable, relative to the cDNA sequences shown in Figures (A) 3.5, (B) 3.6, and (C) 3.17.
3.5.4 In vitro transcription and translation of X.laevis GABA\textsubscript{B} receptor cDNAs from expression constructs

In order to demonstrate the proper construction of the pSp64T.clon and pCS2+ x\textit{l}GABA\textsubscript{B} receptor expression constructs, 5’-capped polyadenylated cRNAs were transcribed from these plasmid templates using Sp6 RNA polymerase, as described in Section 2.1.20, and translated into radiolabelled protein through incubation with reticulocyte lysate (see Section 2.2.1). As a positive control, cRNA and protein products were also generated from a pCS2+ construct containing a cDNA insert encoding the N-terminal extracellular domain (ECD) of \textit{h}GABA\textsubscript{B1(a)}, described in the main thesis Discussion (see Section 7.5.1). As a negative control, the products from a reticulocyte lysate reaction containing no cRNA template were also analysed. The expected sizes of the cRNA (kb) and protein (kDa) products from these constructs are shown in Table 3.20. Denatured cRNA and radiolabelled protein products are shown in Figure 3.21.
<table>
<thead>
<tr>
<th>Construct</th>
<th>Expected size cRNA (kb)</th>
<th>Expected size Protein (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSp64T.clon x/GABA_{B1(a)}</td>
<td>3.9</td>
<td>111.6</td>
</tr>
<tr>
<td>pSp64T.clon x/GABA_{B1(b)}</td>
<td>3.6</td>
<td>95.2</td>
</tr>
<tr>
<td>pSp64T.clon x/GABA_{B1(z)}</td>
<td>3.7</td>
<td>103.8</td>
</tr>
<tr>
<td>pCS2+ x/GABA_{B1(a)}</td>
<td>3.0</td>
<td>89.3</td>
</tr>
<tr>
<td>pCS2+ hGABA_{B1(a)}ECD</td>
<td>2.0</td>
<td>67.4</td>
</tr>
</tbody>
</table>

Table 3.20 Table showing approximate expected cRNA (kb) and protein (kDa) sizes generated by each construct.

Figure 3.21 Denatured cRNA products, from *in vitro* transcription (upper), and denatured radiolabelled protein products, from *in vitro* translation (lower), generated by each construct, showing -cRNA control. Molecular weight of fragments observed are shown in each case.
<table>
<thead>
<tr>
<th>A</th>
<th>cDNA Primer</th>
<th>Nucleotide Sequence</th>
<th>Loc (bp)</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGABA_B(10) & xGABA_B(14) 5’ end</td>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATAGGG-3'</td>
<td>n/a</td>
<td>plus</td>
</tr>
<tr>
<td>xGB1-SEQ-fw1</td>
<td>5'-TCTCTATTACCACTAGTG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-fw3</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1132</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-fw4</td>
<td>5'-ATTATGACAGCACCAACCAGAC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-fw2</td>
<td>5'-GGGCTACTCTCTTTCTGGTTT-3'</td>
<td>2442</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev5</td>
<td>5'-AGCCCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-AMP-rev1</td>
<td>5'-TGCCCTGTCTATTCCCTCCACG-3'</td>
<td>1356</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev1</td>
<td>5'-GACACAAATCCACCAGAGA-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev2</td>
<td>5'-CAAGGAGACCGACCACTTAG-3'</td>
<td>2558</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATAGGG-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>xGABA_B(14) 5’ end</th>
<th>5’RACE AAP*</th>
<th>n/a</th>
<th>plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGB1-SEQ-rev3 (GSP2)*</td>
<td>5'-GCACCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-AMP-rev1 (GSP1)*</td>
<td>5'-TGCCCTGTCTATTCCCTCCACG-3'</td>
<td>1356</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1a-AMP-fwd3</td>
<td>5'-ATATGACAGCACCAACCAGAC-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1a-SEQ-rev1</td>
<td>5'-GACACAAATCCACCAGAGA-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1a-SEQ-rev3</td>
<td>5'-CAAGGAGACCGACACACTTAG-3'</td>
<td>2558</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-AMP-rev1</td>
<td>5'-TGCCCTGTCTATTCCCTCCACG-3'</td>
<td>1356</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev2</td>
<td>5'-GACACAAATCCACCAGAGA-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev4</td>
<td>5'-CAAGGAGACCGACACACTTAG-3'</td>
<td>2558</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1-SEQ-rev3 (GSP2)*</td>
<td>5'-GCACCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1a-AMP-fwd3</td>
<td>5'-ATATGACAGCACCAACCAGAC-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGB1a-SEQ-rev1</td>
<td>5'-GACACAAATCCACCAGAGA-3'</td>
<td>1930</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATAGGG-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>xGABA_B(14) 3’ end & xGABA_B(10) 3’ end</th>
<th>T7 promoter</th>
<th>5'-TAATACGACTCACTATAGGG-3'</th>
<th>n/a</th>
<th>plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGB2-SEQ-fw1</td>
<td>5'-TCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-fw3</td>
<td>5'-GAGCCTTCTCTCCCTTCAGC-3'</td>
<td>1378</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-fw2</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-fw4</td>
<td>5'-GGGCTACTCTCTTTCTGGTTT-3'</td>
<td>2442</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-AMP-rev1</td>
<td>5'-AGCCCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-rev3</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-rev2</td>
<td>5'-GGGCTACTCTCTTTCTGGTTT-3'</td>
<td>2442</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-rev4</td>
<td>5'-AGCCCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGB2-SEQ-rev5</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATAGGG-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>xGABA_B(14) 3’ end & xGABA_B(10) 3’ end</th>
<th>T3 promoter</th>
<th>5'-ATTACACCTCTCAATACAGGA-3'</th>
<th>n/a</th>
<th>plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGBL-SEQ-fw1</td>
<td>5'-CAGACAGATAGTTCCTTCCG-3'</td>
<td>525</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-fw2</td>
<td>5'-CAGACAGATAGTTCCTTCCG-3'</td>
<td>525</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev2</td>
<td>5'-TCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev1</td>
<td>5'-TCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev1</td>
<td>5'-TCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATAGGG-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>xGABA_B(14) 5’ end</th>
<th>5’RACE AAP*</th>
<th>n/a</th>
<th>plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGBL-SEQ-rev3 (GSP2)*</td>
<td>5'-AGCCCTAGTCTACTCGC-3'</td>
<td>740</td>
<td>minus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev2 (GSP1)*</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev1</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev2</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev3</td>
<td>5'-TTCTCTACCGAACATCGGC-3'</td>
<td>1757</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>Sp6 promoter</td>
<td>5'-ATTATGACAGCACCAACCAGAC-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F</th>
<th>xGABA_B(14) 5’ end</th>
<th>5’RACE AAP*</th>
<th>n/a</th>
<th>plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGBL-AMP-fwd2*</td>
<td>5'-TAATACGACTCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev2*</td>
<td>5'-TTCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>T7 promoter</td>
<td>5'-TAATACGACTCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-fw4</td>
<td>5'-TTCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-fw5</td>
<td>5'-TTCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev4</td>
<td>5'-TTCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>xGBL-SEQ-rev5</td>
<td>5'-TTCTCTATTACCACTATACGG-3'</td>
<td>621</td>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>Sp6 promoter</td>
<td>5'-ATTATGACAGCACCAACCAGAC-3'</td>
<td>n/a</td>
<td>minus</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.22 Oligonucleotide primers used for sequencing cDNAs encoding A. xGABA_B(10) and xGABA_B(14) 5’ end, B. xGABA_B(14) 3’ end, C. xGABA_B(10), D. xGABA_B(14) and xGABA_B(10) 3’ end, E. xGABA_B(14) 5’ end and F. xGABA_B(14) 5’ end, showing binding loci (bp) and strand where applicable. Primers also used for amplification of cDNA by 5’RACE or RT-PCR are denoted with an asterisk (*).
3.6 Discussion

In this chapter, a combination of homology searches, 5'RACE, RT-PCR and molecular cloning techniques were used to isolate cDNAs encoding x/GABA_b receptors which were then subcloned into expression vectors for localisation and overexpression studies. Recombinant proteins were translated from cRNA transcribed from these constructs, and the size of these products was consistent with that of the deduced x/GABA_b receptor proteins. Multiple sequence alignments were used to compare the degree of identity and the conservation of structurally and functionally important residues between mammalian and X.laevis GABA_b receptor proteins. Key findings from the data presented in this chapter are evaluated below.

3.6.1 Identification of X.laevis GABA_b receptor orthologues

Four of the cDNAs isolated here, shown in Figures 3.5, 3.6, 3.11 and 3.17, contain open reading frames encoding putative seven transmembrane proteins that exhibit striking homology to human or rodent GABA_B(1b), GABA_B(1a), GABA_B(2) and GABA_BL respectively. A fifth cDNA isolated here, termed x/GABA_BL(b) (see Figure 3.16), encodes a protein that also exhibits homology to human or rodent GABA_BL, but which is predicted to possess only a single transmembrane domain. Pairwise sequence alignments reveal that hGABA_B(1a) and x/GABA_B(1a) coding sequences share 69% nucleotide identity and 76% amino acid identity respectively; hGABA_B(1b) and x/GABA_B(1b) coding sequences share 71% nucleotide identity and 78% amino acid identity respectively, and hGABA_B(2) and x/GABA_B(2) coding sequences share 72% nucleotide identity and 82% amino acid identity.
respectively. Analysis of the multiple sequence alignments presented in Figures 3.7, 3.8, 3.12 and 3.18 also shows that, in addition to key GABA_a receptor features such as sushi domains, transmembrane and coiled-coil domains and ER-retention signals being conserved, residues shown to be important for both ligand coordination and tertiary structure of the PBP-like domain in human and rat GABA_a receptors (Galvez, T et al. 1999, Galvez, T et al. 2000, Kniazeff, J et al. 2002), are also conserved in the x/GABA_a(1) and x/GABA_a(2) protein sequences deduced here. Taken together, these data strongly suggest that the X.laevis cDNAs isolated here encode the X.laevis orthologues of the mammalian GABA_a(1a), GABA_a(1b) and GABA_a(2) receptor proteins.

The sequence conservation between hGABA_BL and x/GABA_BL(a) coding sequences is markedly lower, sharing 53% nucleotide identity and 38% amino acid identity overall. However, analysis of the multiple sequence alignment presented in Figure 3.18 shows that much of the dissimilarity between the human, rodent and X.laevis GABA_BL(a) protein sequences resides in the C-terminal intracellular tail. Pairwise sequence alignment reveals that the amino acid identity shared between hGABA_BL and x/GABA_BL rises to 57% across the putative seven-transmembrane and coiled-coil domains. Despite the low sequence conservation in the C-terminal tail, several short amino acid sequences, such as EKLQE(IV)L, SPY(M/V)(M/V)RRR, SSSS and CHRPYCE(I/V)C, are highly conserved between human, rodent and X.laevis GABA_BL proteins (see Figure 3.18). Taken together with the high level of sequence conservation observed at the extreme N- and C-termini and similar overall open reading frame length across the species, these data suggest that the X.laevis GABA_BL(a) cDNA isolated here encodes the X.laevis orthologue of the mammalian GABA_BL proteins.
3.6.2 Some mammalian GABA\(_{\beta(1)}\) and GABA\(_{\beta(2)}\) receptor subunit protein sequences are not conserved in their \textit{X.laevis} counterparts

Whilst the multiple sequence alignments shown in \textit{Figures} 3.7, 3.8 and 3.12 demonstrate that many features known to be important for mammalian GABA\(_{\beta}\) receptor function are conserved in \textit{X.laevis} GABA\(_{\beta(1)}\) and GABA\(_{\beta(2)}\) receptor subunits, there are some striking differences between these proteins and their mammalian counterparts. Firstly, x/GABA\(_{\beta(1a)}\), x/GABA\(_{\beta(1b)}\) and x/GABA\(_{\beta(2)}\) proteins all possess putative N-terminal signal peptide sequences that are distinct from their mammalian orthologues, suggesting that a distinct type of signal peptide sequence may be required in mammals compared to amphibians. Alternatively, the poor sequence conservation here may be indicative of a lack of selective evolutionary pressure at this location, implying that the secretion signal depends only upon the hydrophobic nature of the N-terminal residues and not necessarily any specific amino acid sequence. Similarly, the divergence observed in the C-terminus of x/GABA\(_{\beta(1)}\) proteins may indicate either the presence of mammalian or amphibian-specific signals in this region, or a lack of functionality of this domain; the latter notion is supported by experiments demonstrating that GABA\(_{\beta(1)}\) proteins with C-terminal deletions or mutations still exhibit wild-type activity (Margeta-Mitrovic,M et al. 2001\(^a\)). Perhaps the most functionally significant difference observed between mammalian and \textit{X.laevis} GABA\(_{\beta}\) receptor proteins is the deletion of six amino acids at the C-terminal end of the coiled-coil domain of x/GABA\(_{\beta(1)}\) proteins, just upstream of the of the ER-retention signal, RSR(R). Several studies have demonstrated that deletions or mutations at this location modulate the trafficking of mammalian GABA\(_{\beta(1)}\) subunits to the plasma membrane (Grunewald,S et al. 2002, Gassmann, M et al. 2005), and so it is postulated that x/GABA\(_{\beta(1)}\) proteins may exhibit distinct trafficking properties from their mammalian counterparts.
3.6.3 Some commercially available antibodies are unlikely to recognise X.laevis GABA_B receptor proteins

The epitopes for various GABA_{B(1)} and GABA_{B(2)} antibodies that are available commercially are highlighted in Figures 3.7, 3.8, 3.12 and 3.18. These include N-terminal GABA_{B(1a)}, GABA_{B(1b)} and GABA_{B(2)}-specific antisera, and a C-terminal GABA_{B(1)}-specific antibody. Whilst much of the epitope for N-terminal GABA_{B(1a)} antibodies is conserved in x/GABA_{B(1a)}, the epitopes for N-terminal GABA_{B(1b)} and GABA_{B(2)} antibodies are not found in the x/GABA_{B(1b)} and x/GABA_{B(2)} protein sequences shown here. More than half of the epitope sequence recognised by C-terminal PAN-GABA_{B(1)} antibodies is present in x/GABA_{B(1)} protein, including most of the charged residues. Taken together, these data suggest that whilst N-terminal GABA_{B(1a)} and C-terminal PAN-GABA_{B(1)} antibodies may recognise x/GABA_{B(1a)} and x/GABA_{B(1)} respectively, N-terminal GABA_{B(1b)} and GABA_{B(2)} antibodies are unlikely to detect x/GABA_{B(1b)} and x/GABA_{B(2)} proteins. A GABA_{BL}-specific antiserum was raised against the amino acid sequence highlighted in Figure 3.18 (Calver, A.R et al. 2003), which is partially conserved in x/GABA_{BL} proteins. Whilst this antiserum may be able to detect x/GABA_{BL} proteins, it is not commercially available.

3.6.4 Proteins of the correct predicted molecular mass are translated from the X.laevis GABA_B receptor constructs produced here

The data shown in Figure 3.17 demonstrate that 5'-capped polyadenylated cRNAs, transcribed from the X.laevis GABA_B receptor constructs produced here (see Section 3.5), give rise to proteins of the correct predicted molecular weight when translated in reticulocyte lysates. These constructs should be suitable for use in a variety of
applications designed to investigate \(x/GABA_a\) receptor functions, facilitating both the
design of oligonucleotide primers and probes, and providing a template for the
transcription of \(x/GABA_a\)-specific cRNA probes or synthetic mRNA for the manipulation of
\(x/GABA_a\) receptor gene expression in developing \(X.laevis\) embryos.

3.6.5 Data accompanying the ESTs identified here may provide information about
gene expression

The ESTs identified in this chapter by homology searches, shown in Tables 3.1, 3.3, 3.9
and 3.13, provide initial insight into the spatiotemporal expression pattern of \(X.laevis\)
\(GABA_a\) receptor gene products. ESTs from \(Xenopus\) \(GABA_{a(1b)}\) cDNA clones were
identified in cDNA libraries derived from tissues in the brain, eye, head, oviduct or whole
embryo, at developmental stage 25 (tailbud) up to adult. ESTs from \(X.tropicalis\) \(GABA_{a(1a)}\)
cDNA clones were identified in cDNA libraries derived from adult heart and brain tissues.
ESTs from \(Xenopus\) \(GABA_{a(2)}\) cDNA clones were identified in cDNA libraries derived from
tissues in the brain, eye or whole embryo, at developmental stage 10.5 (gastrulae) up to
adult frogs. A single EST from a \(X.laevis\) \(GABA_{aL}\) cDNA clone was identified in a cDNA
library derived from whole neurulae.

Since the number of ESTs identified here is very small, these data are unlikely to provide
a very accurate picture of the spatiotemporal expression pattern of \(x/GABA_a\) transcripts in
the \(Xenopus\) embryo, particularly in the case of \(GABA_{aL}\) where only a single clone was
identified. Whilst a relationship between the location of the ESTs identified here and the
relative abundance of \(x/GABA_a\) transcripts in those tissues is likely, these data point
toward some controversial conclusions. For example, 43% of the \(X.laevis\) \(GABA_{a(1b)}\)
ESTs come from cDNA libraries derived from the adult eye, whereas none of the twelve X.tropicalis GABA\(_{\beta}(1a)\) ESTs identified came from the adult eye. This suggests that GABA\(_{\beta(1b)}\) transcripts are abundantly expressed in the X.laevis eye, but not in that of the very closely related frog X.tropicalis, which seems somewhat unlikely. However, these data do identify developmental stages when xIGABA\(_{\beta}\) transcripts are expressed, where further characterisation of expression patterns, by the use of sensitive molecular methods, might be most informative.

3.6.6 Summary

In this chapter, full-length cDNAs encoding xIGABA\(_{\beta}\) receptor subunits were isolated and subcloned into expression vectors. The deduced protein sequences were compared with known orthologues by multiple sequence alignments, and translation of xIGABA\(_{\beta}\) receptor proteins of the correct predicted molecular weight was demonstrated. Whilst the multiple sequence alignments of xIGABA\(_{\beta}\) protein orthologues provide a fascinating insight into the conservation of these sequences during evolution, these data do not provide information regarding the structure of the xIGABA\(_{\beta}\) genes or conservation of untranslated sequences or intron-exon boundary locations. The latter data would be required in order to evaluate the significance of the xIGABA\(_{\beta(1b)}\) transcript isolated here, which encodes a putative single-transmembrane GABA\(_{\beta}L\) protein that has not previously been reported. The recent progress made in X.tropicalis genome projects may facilitate the elucidation of xIGABA\(_{\beta}\) gene structure through mapping of the cDNAs isolated here onto X.tropicalis genomic sequences, and this approach will be explored in Results Chapter Two.
Data accompanying the ESTs identified in this chapter provide a little insight into the expression of the \textit{xIGABA}_{BL(1)}, \textit{xIGABA}_{BL(2)} and \textit{xIGABA}_{BL} genes during \textit{X.laevis} development (see Section 3.6.5), but further analysis using molecular methods is necessary in order to uncover detailed spatiotemporal expression patterns, and this approach will explored in Results Chapter Three.

Whilst the high degree of amino acid sequence conservation exhibited between mammalian and \textit{X.laevis} GABA\textsubscript{A} receptors is highly indicative of conserved function, the expression constructs produced in this chapter (see Section 3.5) will permit the characterisation of these newly isolated orthologues, by overexpression in \textit{X.laevis} embryos, which may uncover functional differences between mammalian and \textit{X.laevis} GABA\textsubscript{A} receptors. Furthermore, overexpression of \textit{xlGABA}_{BL(a)} in \textit{X.laevis} embryos might bring about developmental changes in this organism that could provide some insight into the function of this orphan GPCR.
Chapter Two

Analysis of *Xenopus tropicalis* genomic sequence and comparisons of orthologous GABA$_B$ receptor gene structure
4.1 Introduction

4.1.1 Background

The recent advances made in sequencing the genomes of numerous model organisms have facilitated the annotation of thousands of cloned eukaryotic genes. The mapping of cDNA clones to assembled genomic sequences now permits the rapid identification of the chromosomal location of the cloned gene, and a determination of the size, number and location of the exons and introns present. However, prior to the publication of this sequence information, the identification of gene loci in chromosomal DNA was typically achieved through restriction mapping and nucleic acid hybridization techniques.

GABA$_{b(1)}$ cDNAs were isolated by expression cloning in 1997, four years prior to the publication of the first assembly of the human genome. The location of the GABA$_{b(1)}$ gene was initially identified through cDNA hybridization selection on genomic DNA clones spanning the 6p21.3 region of human chromosome 6: a genetic locus for schizophrenia, juvenile myoclonic epilepsy (JME), and dyslexia (Goei,V.L et al. 1998, Grifa,A et al. 1998). Initial analysis of the human GABA$_{b(1)}$ gene revealed that it spanned at least 18kb and contained 22 exons, however, a subsequent study suggested that at least one additional untranslated exon must exist, corresponding to the 5'-UTR of the GABA$_{b(1a)}$ transcript variant (Peters,H.C et al. 1998). The GABA$_{b(1b)}$ transcript variant was shown to derive from transcriptional initiation at an alternative site residing within intronic sequence downstream of exon 1a4, resulting in the extension of exon 1 at its 5' end and the encoding of 47 unique amino acid residues (Peters,H.C et al. 1998, Martin,S.C et al. 2001, Steiger,J.L et al. 2004). The existence of several other reported GABA$_{b(1)}$ transcript
variants are readily explained by variations in intron splicing events consistent with the reported structure of the $GABA_B(1)$ gene (see Section 1.4.3).

The location of the human $GABA_B(2)$ gene on chromosome 9 was identified through searches of GenBank genomic DNA databases, using the $GABA_B(2)$ cDNA sequence as a query (Martin, S. C et al. 2001). Mapping of $GABA_B(2)$ cDNAs to genomic sequence revealed that the $GABA_B(2)$ gene contained 19 exons and spanned more than 350 kb. Alignments of two reported transcript variants, $GABA_B(2b)$ and $GABA_B(2c)$, with $GABA_B(2)$ genomic sequences, provided no evidence for their generation through canonical splicing events and, as such, these cDNAs are now thought to have been generated by cloning artefacts. Comparison of the $GABA_B(1)$ and $GABA_B(2)$ genes shows that they have a related genomic organisation and share many intron/exon boundary locations, indicating that they most probably derive from a common ancestral gene (Martin, S. C et al. 2001).

Unlike $GABA_B(1)$ and $GABA_B(2)$, there are no reported studies into the structure of the $GABA_BL$ gene. However, automatic annotation of the human genome, incorporated in relational databases such as Ensembl (www.ensembl.org), reveals that the human $GABA_BL$ gene resides on chromosome 3, spans at least 97kb and contains 9 translated exons (Hubbard, T. J. P et al. 2007). Whilst it has been demonstrated that certain regions of the cloned $GABA_BL$ cDNAs share sequence identity with $GABA_B$ receptor nucleotide sequences (Calver, A. R et al. 2003), comparison between the organisation of the $GABA_BL$ and $GABA_B$ receptor genes has not been published.
4.1.2 Cloned xI/GABA\textsubscript{B} receptors

The identification and characterisation of GABA\textsubscript{B} receptor protein orthologue sequences, presented in Results Chapter One, revealed a number of striking dissimilarities between *X.laevis* and mammalian GABA\textsubscript{B} receptor proteins (see *Figures 3.7, 3.8, 3.12 and 3.18*). Most notably, the xI/GABA\textsubscript{B(1)} receptor protein sequences contained stretches of additional amino acid sequences not present in their human or rodent counterparts (see *Section 3.2.6*). Whether these differences derive from alternative splicing mechanisms or from a distinct GABA\textsubscript{B(1)} gene organisation has not been elucidated.

During the cloning of xI/GABA\textsubscript{B} receptor cDNAs (see *Section 3.2*), several distinct transcript variants were isolated when carrying out rapid amplification of 5'-cDNA ends (5'RACE). For example, three distinct cDNA clones encoding the N-terminal domain of xI/GABA\textsubscript{B(1a)} isolated using this method were found to differ in sequence downstream of their sushi domains (see *Section 3.2.4*). In addition, a truncated xI/GABA\textsubscript{BL} transcript variant, encoding a protein predicted to possess only a single transmembrane domain, termed here xI/GABA\textsubscript{BL(b)}, was also isolated by 5'RACE (see *Section 3.2.9*). The latter is intriguing in that, although GenBank database searches do not retrieve any other similarly truncated GABA\textsubscript{BL} sequences, the encoded protein would exhibit a similar morphology, as a single-pass membrane protein, to that encoded by a reported human GABA\textsubscript{BL} transcript variant, termed here hGABA\textsubscript{BL(b)} (see *Section 1.4.5*). The generation of hGABA\textsubscript{BL(b)} is readily explained by canonical splicing events, but it is presently unclear whether the same is true of xI/GABA\textsubscript{BL(b)} and the xI/GABA\textsubscript{B(1a)} N-terminal transcript variants isolated here by 5'RACE.
4.1.3 The X.tropicalis genome

Recently, significant progress has been made in sequencing the genome of the African frog X.tropicalis, a close relative of X.laevis that is increasingly being used as a model organism for vertebrate development in preference to the latter. X.tropicalis offers a distinct advantage over X.laevis for use in experimental genetics in that it is a true diploid organism, whereas X.laevis is pseudotetraploid and possesses four copies of many of its genes as two distinct pairs of alleles (Showell,C et al. 2007). The close relationship between the two frogs does, however, allow the effective mapping of cDNA sequences isolated from X.laevis to X.tropicalis genomic DNA, permitting the annotation of the X.tropicalis genome and providing insight into the exon structure of cloned X.laevis genes.

The mapping of the x/GABA\(_b\) receptor cDNA sequences, isolated in Results Chapter One, to the X.tropicalis genome will facilitate the elucidation of X.tropicalis GABA\(_b\) receptor exon organisation, and hence an understanding of the structure of x/GABA\(_b\) receptor pre-RNA transcripts. This information could then be used as evidence to support or contend an RNA splicing model for the generation of the various x/GABA\(_b\) receptor transcript variants isolated in Results Chapter One.

4.1.4 Comparisons of vertebrate and invertebrate GABA\(_b\) receptor genes

The x/GABA\(_b\) receptor cDNAs described in Results Chapter One are the first non-mammalian vertebrate GABA\(_b\) receptors to have been cloned and, as such, their sequences provide an interesting point of reference, from an evolutionary perspective,
between the mammalian and invertebrate GABA\textsubscript{A} receptor sequences already identified. Comparison of the human and \textit{D.melanogaster GABA}_{B(2)} genes demonstrates that many, but not all, intron/exon boundary locations are conserved (Martin,S.C et al. 2001). A similar analysis of human and \textit{D.melanogaster GABA}_{B(1)} genes is lacking. Comparison between invertebrate and vertebrate GABA\textsubscript{A} receptor genes might be improved by including in the analysis, for the first time, genomic sequence from a non-mammalian vertebrate species. In this way, the structure of the \textit{X.tropicalis GABA}_{A} receptor genes, deduced by mapping the \textit{X.laevis} cDNAs isolated here onto the \textit{X.tropicalis} genome, may provide further insight into the evolution of GABA\textsubscript{A} receptor genes.

4.1.5 Aims

The principal objective of this chapter is to determine the exon structure of the \textit{X.tropicalis} GABA\textsubscript{A} receptor genes through mapping of the cDNA sequences isolated in Results Chapter One onto \textit{X.tropicalis} genomic DNA. These structures will then to be used to clarify whether the differences observed between mammalian and deduced \textit{X.laevis} GABA\textsubscript{A} receptor protein sequences derive from a distinct genomic organisation, and to test an RNA splicing hypothesis for the generation of the \textit{X.laevis} GABA\textsubscript{A} receptor transcript variants isolated. A comparison of human, rat, \textit{X.tropicalis} and \textit{D.melanogaster} GABA\textsubscript{A} receptor genomic organisation will permit an investigation of the conservation of intron/exon boundary locations between vertebrate and invertebrate GABA\textsubscript{A} receptor genes. Finally, comparisons made between \textit{GABA}_{B(1)}, \textit{GABA}_{B(2)} and \textit{GABA}_{BL} exon organisation will allow an investigation of the relationship between these three genes.
4.2 Analysis of *X.tropicalis* GABA₆ receptor gene structure

4.2.1 Mapping xIGABA_{B(1a)} cDNAs to *X.tropicalis* genomic sequences

The assembled cDNA sequence encoding xIGABA_{B(1a)}, shown in Figure 3.6, was used as a query to search against the U.S. Department of Energy Joint Genome Institute (JGI) *X.tropicalis* genomic assembly database v4.1 using BLASTN with Blosum62 similarity matrix and an Expect threshold value of 1x10⁻⁵. This search retrieved 32 hits on Scaffold_396 between positions 1,023,940 and 1,091,778, corresponding to significant alignments between the xIGABA_{B(1a)} cDNA and *X.tropicalis* genomic sequences. These data were used as a guide to locate GABA_{B(1a)} exonic sequences, and intron/exon boundary locations in the *X.tropicalis* GABA_{B(1)} gene were identified manually, based upon pairwise alignments between Scaffold_396 and xIGABA_{B(1a)} or xIGABA_{B(1b)} cDNA sequences. The 5' EST sequence of the *X.tropicalis* cDNA clone IMAGE.7663085 (GenBank accession number: CX845730) was used to map to position of the most 5' GABA_{B(1a)}-specific exon, exon -1a2, and the 5' EST sequence of the *X.tropicalis* cDNA clone IMAGE:7662364 (GenBank accession number: CX844645) was used to map to position of the most 5' GABA_{B(1b)}-specific exon, exon 1b.

The *X.tropicalis* GABA_{B(1)} gene was found to contain 23 exons spanning at least 68kb (see Figure 4.1A). Intron and exon sizes and the location of intron/exon boundaries are shown in Table 9.1. A summary of these data, showing the 5'-donor and 3'-acceptor sequences at each splice junction in the *X.tropicalis* GABA_{B(1)} gene, is shown in Figure 4.1B. Once assembled, the translated exon sequences for xIGABA_{B(1a)} and xIGABA_{B(1b)}, deduced from Scaffold_396, generate open reading frames homologous to those encoded by the
x/GABA_{b(1a)} and x/GABA_{b(1b)} cDNAs, shown in Figures 3.5 and 3.6, respectively. x/tGABA_{b(1a)} and x/tGABA_{b(1a)} share 94% nucleotide and 97% amino acid sequence identity; x/tGABA_{b(1b)} and x/tGABA_{b(1b)} share 95% nucleotide and 98% amino acid sequence identity.
Figure 4.1 A. Schematic diagram showing location of the 24 exons (not to scale) in the *X.tropicalis* GABA_b(<i>b</i>) gene. GABA_b(<i>a</i>)-specific (green) and PAN-GABA_e(<i>i</i>) (red) exons are indicated. Introns are drawn to scale. B. Table showing location of splice junctions in the *X.tropicalis* GABA_b(<i>b</i>) gene with the corresponding 5'-donor and 3'-acceptor sequences. Exon sequences are in upper case; intron sequences are in lower case. 5'-donor and 3'-acceptor dinucleotide motifs in introns are shown in **bold**.
4.2.2 Mapping xIGABA_{B(2)} cDNA to *X.tropicalis* genomic sequences

The cDNA sequence encoding xIGABA_{B(2)}, shown in *Figure 3.11*, was used as a query to search against the *X.tropicalis* genomic assembly database v4.1 using BLASTN with the parameters defined in *Section 4.2.1*. This search retrieved 20 hits on Scaffold_140 between positions 100,888 and 450,686, corresponding to significant alignments between the xIGABA_{B(2)} cDNA and *X.tropicalis* genomic sequences. Intron/exon boundary locations in the *X.tropicalis* GABA_{B(2)} gene were identified manually, based upon pairwise alignments between Scaffold_140 and the xIGABA_{B(2)} cDNA sequence. The 5' EST sequence of the *X.tropicalis* cDNA clone IMAGE:7659488 (GenBank accession number: CX839001) was used to map the position of the most 5' exon, exon 1.

The *X.tropicalis* GABA_{B(2)} gene was found to contain 19 exons spanning at least 346kb (see *Figure 4.2A*). Intron and exon sizes and the location of intron/exon boundaries are shown in *Table 9.2*. A summary of these data, showing the 5'-donor and 3'-acceptor sequences at each splice junction in the *X.tropicalis* GABA_{B(2)} gene, is shown in *Figure 4.2B*. Once assembled, the exon sequences for the xIGABA_{B(2)} transcript deduced from Scaffold_140 generates an open reading frame homologous to that encoded by the xIGABA_{B(2)} cDNA isolated in Results Chapter One. xIGABA_{B(2)} and xIGABA_{B(2)} share 94% nucleotide and 97% amino acid sequence identity across the coding region.
Figure 4.2

A. Schematic diagram showing location of the 19 exons (not to scale) in the *X.tropicalis* GABA_{B2} gene. Introns are drawn to scale except where indicated by breaks (\{/\}).

B. Table showing location of splice junctions in the *X.tropicalis* GABA_{B1} gene with the corresponding 5'-donor and 3'-acceptor sequences. Exon sequences are in upper case; intron sequences are in lower case. 5'-donor and 3'-acceptor dinucleotide motifs in introns are shown in **bold**.

<table>
<thead>
<tr>
<th>Exon</th>
<th>No.</th>
<th>Size (bp)</th>
<th>3'-junction</th>
<th>5'-donor</th>
<th>No.</th>
<th>Size (bp)</th>
<th>3'-acceptor</th>
<th>5'-junction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>702</td>
<td>. . . TGA TAC AGCG</td>
<td>gtaagaaccc...</td>
<td>1</td>
<td>100,617</td>
<td>...atattttctag</td>
<td>TGGCA AATG...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>. . . TTT AG TCT AG</td>
<td>gtaagaatgtg...</td>
<td>2</td>
<td>46,944</td>
<td>...ttatattctag</td>
<td>TTGCA TCTCG...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>171</td>
<td>. . . ATTTTCAGAG</td>
<td>gtaagcttgga...</td>
<td>3</td>
<td>19,573</td>
<td>...ttctttgacag</td>
<td>GTGAA AATG...</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>102</td>
<td>. . . AAAGCTCAAG</td>
<td>gtagcgaaaac...</td>
<td>4</td>
<td>5,658</td>
<td>...atatctctag</td>
<td>GCAACG ATG...</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>. . . CTT CTG TGGT</td>
<td>gtaaggaaaac...</td>
<td>5</td>
<td>4,829</td>
<td>...cctttttactag</td>
<td>GCTTTT GATG...</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>189</td>
<td>. . . ATCTG GACGG</td>
<td>gtgaggaacac...</td>
<td>6</td>
<td>2,210</td>
<td>...cttcatctag</td>
<td>ACCA CACAC...</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>237</td>
<td>. . . TGG GTG AAGC</td>
<td>gtgaacatc...</td>
<td>7</td>
<td>45,566</td>
<td>...acctttttcag</td>
<td>GTGCA AGTTG...</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>. . . CAG TCT CAAG</td>
<td>gttagaaac...</td>
<td>8</td>
<td>35,637</td>
<td>...ttccttcgacag</td>
<td>ATGGA AAG...</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>. . . AGAT TCCAAG</td>
<td>tactctatctc...</td>
<td>9</td>
<td>3,510</td>
<td>...ttcattttcag</td>
<td>GTGTA GCCCG...</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>151</td>
<td>. . . GGA ATCGAGA</td>
<td>gtaagtatat...</td>
<td>10</td>
<td>207</td>
<td>...ttttttgcag</td>
<td>ATGGA CAG...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>. . . TTTC TGC ACT</td>
<td>gttagttatat...</td>
<td>11</td>
<td>5,035</td>
<td>...tttttttactag</td>
<td>GTGCA AATG...</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>108</td>
<td>. . . GAG AAAAAAG</td>
<td>gtctttcttt...</td>
<td>12</td>
<td>6,238</td>
<td>...ttgcccctag</td>
<td>ATTAC AAG...</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>123</td>
<td>. . . TAATCTT TAG</td>
<td>gtaagtttagg...</td>
<td>13</td>
<td>55,351</td>
<td>...ttttttttcag</td>
<td>CCGGAC CCTG...</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>111</td>
<td>. . . GTT CC TAT G</td>
<td>gtaagaagaa...</td>
<td>14</td>
<td>884</td>
<td>...ctcttttaag</td>
<td>TTTGTG TGGT...</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>. . . TG TGC AAA AG</td>
<td>gtqagttatt...</td>
<td>15</td>
<td>3,050</td>
<td>...tttttttctag</td>
<td>CTAAT AACAC...</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>183</td>
<td>. . . AATT ACC AGAG</td>
<td>gttnnnnatt...</td>
<td>16</td>
<td>3,479</td>
<td>...tttattttcag</td>
<td>TGGCAC AAG...</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>130</td>
<td>. . . GCA AAT AAG</td>
<td>gtatttggaac...</td>
<td>17</td>
<td>1,700</td>
<td>...tttttttactag</td>
<td>ATGGA TGCAG...</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>118</td>
<td>. . . CTCC AAG GCA</td>
<td>gtaagttatca...</td>
<td>18</td>
<td>6,000</td>
<td>...tttttttcag</td>
<td>TACAC AAG...</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.2 A. Schematic diagram showing location of the 19 exons (not to scale) in the *X.tropicalis* GABA_{B2} gene. Introns are drawn to scale except where indicated by breaks (\{/\)). B. Table showing location of splice junctions in the *X.tropicalis* GABA_{B1} gene with the corresponding 5'-donor and 3'-acceptor sequences. Exon sequences are in upper case; intron sequences are in lower case. 5'-donor and 3'-acceptor dinucleotide motifs in introns are shown in **bold**.
4.2.3 Mapping xIGABA$_{BL}$ cDNAs to X.tropicalis genomic sequences

The assembled cDNA sequence encoding xIGABA$_{BL(a)}$, shown in Figure 3.17, was used as a query to search against the X.tropicalis genomic assembly database v4.1 using BLASTN with the parameters defined in Section 4.2.1. This search retrieved 13 hits on Scaffold_692 between positions 198,727 and 206,659, corresponding to significant alignments between the xIGABA$_{BL(a)}$ cDNA and X.tropicalis genomic sequences. Intron/exon boundary locations in the X.tropicalis GABA$_{BL}$ gene were identified manually, based upon pairwise alignments between Scaffold_692 and xIGABA$_{BL(a)}$ or xIGABA$_{BL(b)}$ cDNA sequences. Pairwise alignments identified a splice junction eight nucleotides upstream of the initiation codon of xIGABA$_{BL}$, at position 198,728 on Scaffold_692, indicating the existence of an additional 5' untranslated exon. However, BLASTN searches of the X.tropicalis genome using the outstanding 424 nucleotides in the 5'UTR of the cloned xIGABA$_{BL(b)}$ cDNA retrieve no significant matches. In addition, sequences homologous to this region are not generated by exon prediction programmes, such as GENESCAN (http://genes.mit.edu/GENSCAN.html) and GraiLEXP (http://grail.lsd.ornl.gov/grailexp/), when using the remaining upstream sequence in Scaffold_692 (nucleotides 1 to 198,727) as a query. Characterisation of this untranslated region of the xIGABA$_{BL}$ transcript is currently precluded by the absence of any homologous X.tropicalis ESTs with which to map onto the genomic DNA, as demonstrated by the homology searches performed in Section 3.2.7.

The X.tropicalis GABA$_{BL}$ gene was found to contain 9 translated exons spanning at least 8.3kb (see Figure 4.3A). Intron and exon sizes and the location of intron/exon boundaries are shown in Table 9.3. A summary of these data, showing the 5'-donor and 3'-acceptor sequences at each splice junction in the X.tropicalis GABA$_{BL}$ gene, is shown in Figure
4.3B. Exonic sequence from the *X.tropicalis* GABA_{BL} gene contains an open reading frame homologous to that encoded by the x1GABA_{BL(a)} cDNA sequence, shown in *Figure 3.17*, sharing 87% nucleotide and 85% amino acid sequence identity.
Figure 4.3 A. Schematic diagram showing location of the 9 exons (not to scale) in the *X. tropicalis* GABA_{BL} gene. Introns are drawn to scale. B. Table showing location of splice junctions in the *X. tropicalis* GABA_{BL} gene with the corresponding 5'-donor and 3'-acceptor sequences. Exon sequences are in upper case; intron sequences are in lower case. 5'-donor and 3'-acceptor dinucleotide motifs in introns are shown in **bold**.
4.3 Evaluation of possible alternative splicing mechanisms in *X.tropicalis GABA*

4.3.1 Analysis of the genetic basis for differences between mammalian and *x*GABA*$_{B(1)}$* proteins

The multiple sequence alignment of human, rat, mouse and *X.laevis GABA$_{B(1b)}$* protein sequences, shown in *Figure 3.8*, reveals several differences between mammalian and *x*GABA*$_{B(1)}$* proteins. To address whether these differences might occur as a result of distinct RNA splicing mechanisms, the nucleotide sequences encoding these regions were compared with the *X.tropicalis GABA*$_{B(1)}$* exon organisation deduced in Section 4.2.1.

Analysis of the multiple sequence alignment in *Figure 3.8* shows that *x*GABA*$_{B(1)}$* proteins possess an additional sequence, LSQ, in their second intracellular loop, which is not present in the mammalian orthologues. Mapping of the *x*GABA*$_{B(1b)}$* cDNA sequence, shown in *Figure 3.5*, against the *X.tropicalis GABA*$_{B(1)}$* gene reveals that these nucleotides constitute a 9bp extension of exon 11 at its 3' end. The equivalent location of the mammalian splice junction in *x*GABA*$_{B(1)}$* lacks the necessary canonical intron dinucleotide sequence gt due to the presence of the CTG leucine codon, giving rise to this 9bp extension with respect to the mammalian GABA*$_{B(1)}$* transcripts. However, analysis of the *X.tropicalis GABA*$_{B(1)}$* gene shows that this dinucleotide sequence is conserved in the *X.tropicalis* orthologue, due to the presence of the GTG valine codon (see *Figure 4.1*), suggesting that *x*GABA*$_{B(1)}$* proteins may not possess the equivalent additional amino acid sequence, VSQ. Since none of the *X.tropicalis* ESTs identified by homology searches in *Section 3.2.2* span this region (see *Figure 3.4*), it is not presently possible to resolve this
contention and, as such, the *X.tropicalis* GABA_{b(1)} exon 11 is shown in Figure 4.1 with the 9bp extension, demonstrably present in the x/GABA_{b(1b)} cDNA sequence (see Figure 3.5).

Analysis of the *X.tropicalis* GABA_{b(1)} gene reveals that the sequence encoding the 24 amino acids SDNHFPNSSGAVSSLYQPGLPLAR, present in xGABA_{b(1)} but not mammalian GABA_{b(1)} proteins, and the site of deletion of the amino acid sequence RHQLQS, present in mammalian GABA_{b(1)} but not in xGABA_{b(1)} proteins, are both located within exon 18 and are thus not generated by canonical RNA splicing events. The possibility that the former sequence is deleted from mammalian GABA_{b(1)} transcripts by a cryptic splicing event, thus representing a 'cryptic intron', is discounted by the absence of this sequence in human or rat genomic DNA. These data demonstrate that alternative RNA mechanisms are not responsible for the differences observed between the C-termini of mammalian and *X.laevis* GABA_{b(1)} proteins. This divergence may instead be indicative of a lack of functionality of the GABA_{b(1)} C-terminal domain in vertebrates, consistent with the observation that deletion of this domain in recombinant hGABA_{b(1)} does not affect normal GABA_{b} receptor function (Margret-Mitrovic,M et al. 2001*).

4.3.2 Analysis of xGABA_{b(1a)} transcript variants isolated by 5'RACE

The multiple sequence alignment of human, rat, mouse and *X.laevis* GABA_{b(1a)} protein sequences shown in Figure 3.11 reveals that, in addition to the differences discussed in Section 4.3.1, xGABA_{b(1a)} also possesses seven additional amino acids in its N-terminal domain that are not present in the mammalian GABA_{b(1a)} orthologues (see Figure 3.7). When performing 5'RACE in Section 3.2.4, three alternative cDNA variants encoding the N-terminal domain of xGABA_{b(1a)} were isolated that exhibited variability about this region.
The assembled x/GABA_{B(1a)} cDNA clone shown in Figure 3.6, termed here x/GABA_{B(1a)} variant 1, encodes the fourteen residues VRRSDTSIRHPESS just downstream of its second sushi domain. An alternative clone isolated by 5'RACE, termed x/GABA_{B(1a)} variant 2, encodes only the latter seven residues, IRHPESS, and a further alternative clone, termed x/GABA_{B(1a)} variant 3, does not encode any of these fourteen residues. Mapping of cloned x/GABA_{B(1a)} cDNA sequences to the X.tropicalis GABA_{B(1)} gene reveals that the latter seven residues, IRHPESS, are encoded by a 21bp GABA_{B(1a)}-specific exon located at position 1,057,404 of Scaffold_396, termed here 1a4β. However, no significant matches are obtained with the X.tropicalis genome when using the 21bp cDNA sequence encoding the first seven residues, termed here exon 1a4α, as a query. In addition, pairwise alignment of exon 1a4α with the 17,843bp X.tropicalis intron -2, downstream of exon 1a4β, does not reveal any region of identity corresponding to an additional putative exon. Pairwise sequence alignments between the x/GABA_{B(1a)} exons 1a4α and 1a4β and the human GABA_{B(1a)} exon 1a4 sequence indicate that the latter is more closely related to exon 1a4α than exon 1a4β; GABA_{B(1a)} exon 1a4 shares 38.1% nucleotide and 42.9% amino acid sequence identity with x/GABA_{B(1a)} exon 1a4α, compared with 28.0% nucleotide and 37.5% amino acid sequence identity with x/GABA_{B(1a)} exon 1a4β.

Analysis of the cloned mammalian GABA_{B(1)} transcript variants, summarised in Figure 1.3A, shows that the presence of two exons at this location, as observed in x/GABA_{B(1a)} variant 1, has not been reported previously. x/GABA_{B(1a)} variant 2 contains only one exon at this location, analogous to the vast majority of the cloned mammalian GABA_{B(1a)} transcript variants, although, intriguingly, it is in possession of the less closely related exon 1a4β. x/GABA_{B(1a)} variant 3 has an identical exon organisation to the rat-specific splice variant rGABA_{B(1)} reported previously (Isomoto,S et al. 1998, Wei,K et al. 2001a), lacking both exons 1a4α and 1a4β. These data strongly support an alternative RNA
splicing model for the generation of the cloned x/GABA_{b(1a)} cDNA variants, and suggest the presence of the 21bp exon 1a4α in intron -2. A multiple sequence alignment, showing this region of the cloned X.laevis GABA_{b(1a)} cDNA variants with the corresponding region in human and rat GABA_{b(1a)} transcript variants, is shown in Figure 4.4A.

The pairwise sequence alignment, shown in Figure 4.4B, reveals that Xenopus GABA_{b(1a)} exons 1a4α and 1a4β are of identical length and share 66.7% nucleotide sequence identity. Given that both exons share a similar level of sequence identity with the human exon 1a4, these data provide compelling evidence that exons 1a4 and 1a4' are closely related, and may have derived from an exon duplication event. The absence of X.tropicalis genomic sequence corresponding to X.laevis exon 1a4α may be readily explained by sequencing errors in the 17,843bp intron -2, which contains several stretches of degenerate nucleotide sequence. Analysis of this intron sequence reveals multiple consensus sequences for eukaryotic RNA lariat branch points, TACT(A/G)A(T/C), suggesting that exonic sequences may be hidden within the degenerate regions of this intron sequence (Harris,N.L et al. 1990, Wessagowit,V et al. 2005).

Homology searches conducted in Section 3.2.1 uncovered six X.tropicalis cDNA clones with ESTs sharing sequence identity with the hGABA_{b(1a)} N-terminus (see Figure 3.2), of which only three have sequence spanning the exon 1a4 region. A multiple sequence alignment of these ESTs with the assembled X.laevis GABA_{b(1a)} cDNA sequence, presented in Figure 4.4C, shows that all of these clones possess both exon 1a4α and 1a4β, analogous to the x/GABA_{b(1a)} variant 1. These data suggest that x/GABA_{b(1a)} variant 1 might represent the principal isoform expressed in Xenopus, and so this variant was used to assemble a full-length x/GABA_{b(1a)} cDNA clone for use in all subsequent experiments (see Section 3.5.2).
<table>
<thead>
<tr>
<th>Exon 1a3</th>
<th>Exon 1a4</th>
<th>Exon 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>hGABAe(ia)</td>
<td>CACTGCCAGTCGAAGGCTGGGCGGTGCTAGGCGCTGTGAGGCGG</td>
<td>AAGGCGCGCC</td>
</tr>
<tr>
<td>rGABAe(ia)</td>
<td>CACTGCCAGTCGAAGGCTGGGCGGTGCTAGGCGCTGTGAGGCGG</td>
<td>AAGGCGCGCC</td>
</tr>
<tr>
<td>xGABAe(ia) variant 1</td>
<td>ATATGCTCAAGTCAGGCGCTGCTAGGCGCTGTGAGGCGG</td>
<td>AAGGCGCGCC</td>
</tr>
<tr>
<td>xGABAe(ia) variant 2</td>
<td>ATATGCTCAAGTCAGGCGCTGCTAGGCGCTGTGAGGCGG</td>
<td>AAGGCGCGCC</td>
</tr>
<tr>
<td>xGABAe(ia) variant 3</td>
<td>ATATGCTCAAGTCAGGCGCTGCTAGGCGCTGTGAGGCGG</td>
<td>AAGGCGCGCC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exon 1a3</th>
<th>Exon 1a4</th>
<th>Exon 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>905 TCAGGGCTCAGATCTCCA 925</td>
<td>926 TCAGGGCCGGAATCTTC 947</td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Exon 1a3</th>
<th>Exon 1a4</th>
<th>Exon 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX840283 870 ATATGCCCAAGTCAGGCGCCCAGATACTTCCA 903</td>
<td>CX843223 253 ATATGCCCAAGTCAGGCGCCCAGATACTTCCA 314</td>
<td></td>
</tr>
<tr>
<td>D9040863 863 ATATGCCCAAGTCAGGCGCCCAGATACTTCCA 902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xGABAe(ia) 895 ATATGCCCAAGTCAGGCGCCCAGATACTTCCA 956</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.4 A. Multiple sequence alignment of human and rat GABAe(ia) cDNA sequences with the rat splice variant GABAe(if), and the three putative xGABAe(ia) transcript variant cDNAs isolated by 5'RACE, spanning exons 1a4a and 1a4b. B. Pairwise sequence alignment of X.laevis exons 1a4a and 1a4b showing shared sequence identity. C. Multiple sequence alignment showing three X.tropicalis ESTs, spanning exons 1a4a and 1a4b, with the corresponding region in the cloned XGABAe(ia) cDNA sequence. Nucleotide sequences were aligned using ClustalW alignment program with Blosum similarity matrix and standard alignment parameters: Open Gap Penalty = 100, Extend Gap Penalty = 0.5.
4.3.3 Analysis of xLGABA\textsubscript{BL} transcript variants isolated by 5'RACE

In Section 3.4.3, 5'RACE was carried out to isolate upstream xLGABA\textsubscript{BL} exons missing from the partial cDNA clone XL024m02. Using this method a xLGABA\textsubscript{BL} transcript was isolated, termed xLGABA\textsubscript{BL(b)}, which encoded a truncated GABA\textsubscript{BL} N-terminus predicted to contain only a single transmembrane domain (see Figure 3.16). An additional GABA\textsubscript{BL} cDNA, which encoded a seven-transmembrane protein orthologous to mammalian GABA\textsubscript{BL} receptors when assembled with the XL024m02 clone, was subsequently isolated by RT-PCR, and termed xLGABA\textsubscript{BL(a)}. Alignment of xLGABA\textsubscript{BL(a)} and xLGABA\textsubscript{BL(b)} protein sequences, in Figure 3.18, indicated that the xLGABA\textsubscript{BL(b)} isoform lacked a 262 amino acid region containing transmembrane domains I-VI. It was hypothesised that this deletion might derive from an RNA splicing event and so an analysis was carried out in order to identify putative splice junctions that might give rise to the cloned xLGABA\textsubscript{BL(b)} transcript variant.

Analysis of the \textit{X.tropicalis} GABA\textsubscript{BL} exon organisation, summarised in Figure 4.3, indicates that the putative splice junctions required to generate the xLGABA\textsubscript{BL(b)} transcript would reside within exons 1 and 7 (see Figure 4.5A), and would thus also contain putative 5'-donor and 3'-acceptor intron sequences, respectively. Surprisingly, alignment of xLGABA\textsubscript{BL(a)} and xLGABA\textsubscript{BL(b)} cDNA sequences reveals that there are five possible sites within exons 1 and 7 where potential intron/exon boundaries could be located, due to the presence of the repeated sequence TGAT at this location in both exons (see Figure 4.5B). The five possible 5'-donor and 3'-acceptor intron sequences generated by these boundary locations are shown in Figure 4.5C. Consensus sequences at mammalian canonical and non-canonical splice junctions are shown in Figure 4.5D, showing the approximate percentage abundance in mammalian genomes as estimated by Burset,M et al. 2000.
Comparison of these two figures reveals that, of the five possible boundary locations shown in Figure 4.5C, none would generate the dinucleotide motifs found in canonical and non-canonical 5′-donor and 3′-acceptor sites and, as such, it is not possible to accurately assign a putative splice junction with the available information. These data suggest that, should the x/GABA_{BL(b)} transcript exist in vivo, it might be generated by a cryptic RNA splicing event (Wessagowit,V et al. 2005). Intriguingly, despite the absence of the expected dinucleotide motifs known to be of primary importance at splice junctions, the predicted 3′-acceptor sequences shown in Figure 4.5C each possess a run of pyrimidines immediately upstream of the putative splice junction, and thus exhibit compelling homology to the 3′-acceptor consensus sequence found at canonical GT-AG splice junctions. Should the x/GABA_{BL(b)} transcript indeed be generated by cryptic RNA splicing in vivo, it is possible that splicosome machinery might be targeted to this location by virtue of this sequence.

These data strongly suggest that, unlike the x/GABA_{BL(1a)} transcript variants isolated in this project (see Section 4.3.2), the x/GABA_{BL(b)} transcript encoding a truncated GABA_{BL} receptor protein is not generated by canonical RNA splicing, casting doubt as to the physiological relevance of this isoform. Whilst the expression of this transcript variant in vivo cannot be ruled out, it is perhaps more likely that the isolation of this cDNA by 5′RACE occurred as a result of a cloning artefact, as discussed in Section 4.7.2.
Figure 4.5 A. Schematic diagram of x/GABA\textsubscript{BL} and x/GABA\textsubscript{BL(b)} coding sequences showing locations of exons and principal protein domains. The locations of putative splice junctions necessary for generation of x/GABA\textsubscript{BL(b)} transcript variant are indicated (A). B. Alignment of x/GABA\textsubscript{BL} and x/GABA\textsubscript{BL(b)} cDNA sequences showing five possible locations of the splice junctions in exon 1 and exon 7. C. Table showing 5'-donor and 3'-acceptor sequences at the five possible splice junctions. D. Diagram showing consensus sequences at canonical (*) and non-canonical splice junctions, showing approximate percentage abundance in mammalian genomes. Exon sequences are in upper case; intron sequences are in lower case. 5'-donor and 3'-acceptor dinucleotide motifs in introns are shown in bold. M= A or C, R/r= G/g or A/a, y= t or c, n= any nucleotide.
4.4 Comparisons between mammalian, invertebrate and X.tropicalis GABA_B genes

4.4.1 Analysis of intron and exon sizes in vertebrate and invertebrate GABA_B genes

Analysis of the exon organisation of the X.tropicalis GABA_B genes, deduced in Section 4.2, indicates that there are differences in the number of exons compared with their mammalian and invertebrate counterparts. To aid direct comparison between these genes, tables of values were produced listing the intron and exon sizes and locations within human, rat, X.tropicalis and D.melanogaster GABA_{B(1)}, GABA_{B(2)}, and GABA_B genomic sequences (see Sections 9.1, 9.2 and 9.3). Exon sizes for human GABA_{B(1)} and GABA_{B(2)} genes, and the D.melanogaster GABA_{B(2)} gene have been reported previously (Goei,V.L et al. 1998, Grifa,A et al. 1998, Peters,H.C et al. 1998, Martin,S.C et al. 2001), but not for rat GABA_{B(1)} and GABA_{B(2)}, D.melanogaster GABA_{B(1)}, or any GABA_B genes.

The Ensembl Genome Browser (www.ensembl.org), a relational database that automatically annotates cloned eukaryotic genes, was used as a primary source to identify genomic sequences and act as a guide to locate exonic sequence. However, all intron and exon sizes were verified by pairwise alignments between cDNA and genomic DNA sequences.

Ensembl gene ID and GenBank accession numbers for the genomic sequences identified:

H.sapiens GABA_{B(1)}: ENSG00000204681, AL645936.5
H.sapiens GABA_{B(2)}: ENSG00000136928, AL353782.23
H.sapiens GABA_B: ENSG00000175697, AC092897.6
R.norvegicus GABA_{B(1)}: ENSRNOG00000000774, AABR03116854.1
R.norvegicus GABA_{B(2)}: ENSRNOG00000008431, AABR03040519.1
R.norvegicus GABA_B: ENSRNOG0000002797, AABR03081639.1
Initial analysis of the data indicates that, whilst exon sizes in the human, rat and X.tropicalis GABA\textsubscript{B(1)} genes are very similar, many of the introns in the X.tropicalis gene are significantly longer that their mammalian counterparts. A notable example is the GABA\textsubscript{B(1)}-specific intron -2, postulated to contain an additional exon termed 1a4\textalpha, which is around 15 times longer than the comparable human or rat intron sequence. In contrast, except for the presence of an additional untranslated exon at its 5' end, and the proposed exon 1a4\textalpha, the X.tropicalis GABA\textsubscript{B(1)} gene exhibits an identical exon organisation to that of the human and rat GABA\textsubscript{B(1)} genes. The D.melanogaster GABA\textsubscript{B(1)} gene, however, exhibits dissimilarity to its vertebrate counterparts and contains just 15 exons, compared with the 23 and 24 encoded by mammalian and X.tropicalis GABA\textsubscript{B(1)} genes respectively. The D.melanogaster GABA\textsubscript{B(1)} gene also contains much shorter intronic sequences, and 10 of its 14 introns are less than 100bp in length.

The X.tropicalis GABA\textsubscript{B(2)} gene has an exon organisation identical to that of its human and rat counterparts, and also exhibits a very similar average intron length of 19,255bp, compared with 23,074bp and 20,280bp for the human and rat GABA\textsubscript{B(2)} genes respectively. The D.melanogaster GABA\textsubscript{B(2)} gene, however, has a dissimilar gene organisation compared to its vertebrate counterparts and contains just 12 exons, compared with the 19 encoded by the vertebrate GABA\textsubscript{B(2)} genes. As with the corresponding GABA\textsubscript{B(1)} gene, D.melanogaster GABA\textsubscript{B(2)} contains much shorter introns than the orthologous vertebrate genes, with an average length of just 128bp.
The *X.tropicalis* GABA_{BL} gene has an exon organisation identical to that of its human and rat counterparts, containing 9 exons. In contrast, the average intron size for the *X.tropicalis* GABA_{BL} gene is much smaller than that of its vertebrate counterparts at just 693bp, compared with 9,328bp and 7,802bp for the human and rat GABA_{BL} genes respectively.

4.4.2 Alignment and comparison of vertebrate and invertebrate GABA_B exons

Using the data in Sections 9.1-3, figures were produced to facilitate the direct comparison of vertebrate and invertebrate GABA_B exon organisation. Using the *H.sapiens* genomic sequences as a reference, pairwise sequence alignments were carried out to determine the percentage sequence identity shared with the corresponding exons in the *R.norvegicus, X.tropicalis* and *D.melanogaster* GABA_B genes. Schematic diagrams showing the exon organisation of the GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} genes, and the sequence identity shared with the human orthologue in each case, are presented in Figures 4.6, 4.7 and 4.8 respectively.
Figure 4.6 Schematic diagram showing the exon organisation of the human (h), rat (r), X.tropicalis (xt) and D.melanogaster (d) GABA_b genes, showing GABA_b-specific (green) and GABA_b(i)-specific (red) exon sequences in the vertebrate genes. Coding exon sequences are shown in dark colour, untranslated regions are shown in lighter colour. Exons are drawn to scale, introns are not. Percentage sequence identity shared between the rat, X.tropicalis or D.melanogaster GABA_b genes and the human GABA_b (reference) sequence is shown across the coding regions indicated. Scale bar shown corresponds to 1000bp.
Figure 4.7 Schematic diagram showing the exon organisation of the human (h), rat (r), X.tropicalis (xt) and D.melanogaster (d) GABA_{B2} genes. Coding exon sequences are shown in dark grey, untranslated regions are shown in lighter grey. Exons are drawn to scale, introns are not. Percentage sequence identity shared between the rat, X.tropicalis or D.melanogaster GABA_{B2} sequences and the human GABA_{B2} (reference) sequence is shown across the coding regions indicated. Scale bar shown corresponds to 1000bp.
Figure 4.8 Schematic diagram showing the exon organisation of the human (h), rat (r) and X.tropicalis (xt) GABA_{BL} genes. Coding exon sequences are shown in dark grey, untranslated regions are shown in lighter grey. Exons are drawn to scale, introns are not. Percentage sequence identity shared between the rat or X.tropicalis GABA_{BL} sequences and the human GABA_{BL} (reference) sequence is shown across the coding regions indicated. Scale bar shown corresponds to 1000bp.
4.5 Investigating synteny of the \textit{GABA}_{BL} gene

4.5.1 \textit{Identification of genes neighbouring GABA}_{BL} in human, rat and X.tropicalis genomic sequences

Analysis of the cDNAs isolated in Results Chapter One showed that the proteins encoded by the cloned x/GABA\textsubscript{BL(a)}, x/GABA\textsubscript{BL(b)} and x/GABA\textsubscript{BL(2)} transcripts exhibit striking homology to their mammalian orthologues, sharing 76\%, 78\% and 82\% amino acid identity with human GABA\textsubscript{BL(a)}, GABA\textsubscript{BL(b)} and GABA\textsubscript{BL(2)} proteins respectively. In contrast, the protein encoded by the cloned x/GABA\textsubscript{BL(a)} cDNA exhibits markedly lower homology to its mammalian orthologues, sharing just 38\% amino acid sequence identity with the human GABA\textsubscript{BL} protein. The low sequence identity between hGABA\textsubscript{BL} and xGABA\textsubscript{BL(a)} may indicate that the latter transcript is derived from a related, yet distinct, gene, which may perform a separate function. To determine whether the cloned x/GABA\textsubscript{BL(a)} cDNA is encoded by the true orthologue of the mammalian GABA\textsubscript{BL} genes, the genes neighbouring the GABA\textsubscript{BL} gene in human, rat and X.tropicalis genomic sequences were identified and compared. Human, rat and X.tropicalis GABA\textsubscript{BL} cDNAs were mapped onto \textit{H.sapiens} chromosome 3, region q12.33, \textit{R.norvegicus} chromosome 11, region q21, and \textit{X.tropicalis} Scaffold_692 respectively.

The \textit{H.sapiens} GABA\textsubscript{BL} gene is found at positions 121362775-121445877 of chromosome 3, region q13.33, and has 5' flanking genes encoding the nuclear receptor subfamily 1, group 1, member 2 (NR112) at positions 120984236-121020021, and glycogen synthase kinase-3\(\beta\) (GSK-3\(\beta\)) at positions 121028238-121295954, and 3' flanking genes encoding leucine rich repeat containing protein 58 (LRRC58) at positions 121531624-121550876,
and follistatin-like protein 1 (FSTL1) at positions 121,595,817-121,652,533. The *R. norvegicus* GABA_{BL} gene is found at positions 64,506,980-64,571,771 of chromosome 11, region q21, and has 5' flanking genes encoding NR112 at positions 64,239,917-64,276,701, and GSK-3β at positions 64,284,731-64,428,698, and 3' flanking genes encoding LRRC58 at positions 64,637,642-64,646,930, and FSTL1 at positions 121,595,817-121,652,533. The *X. tropicalis* GABA_{BL} gene is found at positions 198,728-207,026 of Scaffold_692, and has 5' flanking genes encoding NR112 at positions 289,804-295,904, and GSK-3β at positions 215,590-280,575, and 3' flanking genes encoding LRRC58 at positions 184,567-188,993, and FSTL1 at positions 158,107-168,651.

These data strongly suggests that the xIGABA_{BL(a)} cDNA clone, shown in *Figure 3.17*, was transcribed from the gene representing the true *Xenopus* orthologue of mammalian GABA_{BL} genes, due to the highly conserved synteny of this gene across the species, and thus presumably encodes a protein of similar or identical function.
Figure 4.9 Schematic diagram showing approximate location of genes (light grey) neighbouring the GABA_{B1} (GPR156) gene (yellow) in A. human, B. rat, and C. X. tropicalis genomic sequences. Genes are given their official symbols here to aid comparison between the species.
4.6 Comparisons of \(\text{GABA}_b(1) \), \(\text{GABA}_b(2) \), and \(\text{GABA}_b \) gene organisation

4.6.1 Identification and alignment of corresponding exons found in the \(H. \text{sapiens} \) \(\text{GABA}_b(1) \), \(\text{GABA}_b(2) \), and \(\text{GABA}_b \) genes

The human and rodent \(\text{GABA}_b \) cDNAs cloned previously were reported to share sequence identity with \(\text{GABA}_b(1) \) and \(\text{GABA}_b(2) \) and encoded several similar features, including a seven-transmembrane domain and coiled-coil motif (Calver, A.R et al. 2003). Analysis of \(\text{GABA}_b \) gene organisation was, however, lacking, and exon and intron sizes and locations in mammalian and \(X. \text{tropicalis} \) \(\text{GABA}_b \) genes is reported here for the first time (see Sections 4.2.3 and 4.4.1). In an effort to gain further insight into the relationship between the \(\text{GABA}_b(1) \), \(\text{GABA}_b(2) \) and \(\text{GABA}_b \) genes, comparisons were made within the exons encoding the regions sharing sequence identity to determine whether the intron/exon boundary locations and exon sizes were also conserved between these three genes. The results of these comparisons are presented in Figure 4.10.

Analysis of these data reveals that the \(\text{GABA}_b(1) \), \(\text{GABA}_b(2) \) and \(\text{GABA}_b \) genes share multiple intron/exon boundary locations and exhibit similar exon sizes across the region encoding the seven-transmembrane and coiled-coil domains. Pairwise sequence alignments between these corresponding exons also reveal that \(\text{GABA}_b \) shares a percentage nucleotide sequence identity with \(\text{GABA}_b(1) \) (37%) and \(\text{GABA}_b(2) \) (39%) similar to that shared between \(\text{GABA}_b(1) \) and \(\text{GABA}_b(2) \) (44%) across this region. The \(\text{GABA}_b \) and \(\text{GABA}_b(2) \) genes share the same number of exons across this region, whereas \(\text{GABA}_b(1) \) contains an additional exon. However, the \(\text{GABA}_b(1) \) and \(\text{GABA}_b \) genes exhibit a more similar exon organisation at their 3' end and share the same terminal exon, albeit
with the termination codon occurring much earlier in GABA_{B(1)} exon 18 than in the corresponding GABA_{BL} exon 9.

In summary, these data show that the GABA_{BL} gene is closely related to the GABA_{B(1)}, GABA_{B(2)} genes and shares both significant nucleotide sequence identity and similar exon organisation across the region encoding the seven-transmembrane, coiled-coil and C-terminal protein domains, suggesting that GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} most likely derive from a common ancestral gene. Whilst GABA_{B(2)} and GABA_{BL} are marginally more closely related than GABA_{B(1)} and GABA_{BL} in terms of sequence identity, the latter two genes exhibit a more similar 3' exon organisation and, as such, it is difficult to hypothesize which of the GABA_{B} genes GABA_{BL} may have descended from based upon this information. Perhaps most importantly, the GABA_{BL} gene does not contain 5' exons, found in both the GABA_{B(1)} and GABA_{BL} genes, which encode an N-terminal PBP-like, or 'venus-flytrap', domain. This domain is characteristic of almost all other Family 3 GPCRs and is identified as the site of ligand-binding for the GABA_{B} receptor (Malitschek,B et al. 1999), the metabotropic glutamate receptors (mGlus) (O'Hara,P.J et al. 1993), the calcium-sensing receptor (CaSR) (Bräuner-Osborne,H et al. 1999), and the promiscuous L-α-amino acid receptor, GPRC6A (Wellendorph,P et al. 2005). The absence of an N-terminal venus-flytrap domain in the GABA_{BL} protein implies that, should it bind endogenous ligands, it would do so in a manner unlike other Family 3 GPCRs, perhaps by means of a hydrophilic pocket formed by its transmembrane domains, analogous to Family 1a GPCRs. Alternatively, and perhaps more likely, GABA_{BL} may be a non ligand-binding partner in a hitherto unidentified receptor hetero-oligomer, modulating downstream signalling cascades in response to ligand-binding to an associated receptor, analogous to its most closely related cousin, GABA_{B(2)}.
Figure 4.10 Schematic diagrams showing exon organisation across corresponding regions of *H. sapiens*

A. GABA_{Hb(1)} and GABA_{Hb(2)}, B. GABA_{Bbc(1)} and GABA_{Bbc(2)}, and C. GABA_{Bb(2)} and GABA_{BbL} genes.

Coding exon sequences are shown in dark grey, untranslated regions are shown in lighter grey. Exon sizes (bp) are shown above or below each exon. Exons are drawn to scale, except where indicated by breaks (\(\triangledown\)). Introns are not drawn to scale. Percentage sequence identity shared between the regions indicated is shown. Scale bars shown correspond to 200bp.
4.7 Discussion

In this chapter, the *X.laevis* GABA_b receptor cDNA sequences isolated in Results Chapter One were mapped onto the *X.tropicalis* genome and the exon organisation of the *X.tropicalis* GABA_{b1}, GABA_{b2} and GABA_{bl} genes was determined. These gene structures were then used to evaluate the mechanisms by which the xl/GABA_{b1a} and xl/GABA_{bl} transcript variants isolated may have been generated. Comparisons were made between mammalian, invertebrate and *X.tropicalis* GABA_b exon organisation, revealing a high level of conservation between the vertebrate genes, and a comparison was also made between the structure of the human GABA_{b1}, GABA_{b2} and GABA_{bl} genes. Key findings from the data presented in this chapter are evaluated below.

4.7.1 *X.tropicalis* GABA_b genes have a similar exon organisation to mammalian GABA_b genes

The sizes and locations of exons and introns found in the *X.tropicalis* GABA_{b1}, GABA_{b2} and GABA_{bl} genes are reported here for the first time and exhibit many similarities to their human and rat counterparts. *X.tropicalis* GABA_{b2} and GABA_{bl} possess an identical number of exons to human and rat GABA_{b2} and GABA_{bl} genes and share very similar exon sizes. The structure of the *X.tropicalis* GABA_{b1} gene is similar, with the exception of an additional 5'-untranslated exon, -1a2, which is not found in mammalian GABA_{b1} genes, and the proposed existence of two closely related *Xenopus*-specific 21bp exons, analogous to mammalian GABA_{b1a} exon 1a4, termed here 1a4_a and 1a4_b. These data
indicate that, whilst GABA\textsubscript{\text{B}} exon organisation is highly conserved, the Xenopus GABA\textsubscript{\text{B}(1)} gene possesses unique exons not previously identified in mammals.

Intron sizes in GABA\textsubscript{\text{B}} genes are generally not well conserved between the species, although corresponding introns in human and rat GABA\textsubscript{\text{B}} genes are often related in size. The average intron size in the X.tropicalis GABA\textsubscript{\text{B}(1)} gene is longer than that of its mammalian counterparts. In contrast, introns are comparatively smaller in the X.tropicalis GABA\textsubscript{\text{B}L} gene, and of a similar size in the X.tropicalis GABA\textsubscript{\text{B}(2)} gene, compared with the human and rat orthologues. Introns sequences in D.melanogaster GABA\textsubscript{\text{B}(1)} and GABA\textsubscript{\text{B}(2)} genes are generally much smaller than those found in their mammalian counterparts. These data suggest that, whilst invertebrate intron sequences tend to be shorter, there is no consistent rule to describe the differences observed between mammalian and non-mammalian vertebrate intron sizes.

4.7.2 Evidence supporting the existence of x\textit{GABA}_{\text{B(1a)}} splice variants but not the x\textit{GABA}_{\text{B(L,0)}} transcript variant

Mapping of x\textit{GABA}_{\text{B(1a)}} cDNA sequences to the X.tropicalis genome suggests the existence of two closely related GABA\textsubscript{\text{B(1a)}}-specific exons termed here 1a4\alpha and 1a4\beta. Whilst the exon 1a4\alpha sequence cannot presently be found in X.tropicalis genomic sequences, this exon is demonstrably present in both x\textit{GABA}_{\text{B(1a)}} cDNA isolated here and in 5' ESTs belonging to putative x\textit{GABA}_{\text{B(1a)}} cDNA clones, providing compelling evidence for the existence of this distinct exon. Exon 1a4\alpha is predicted to reside within the 17,843bp X.tropicalis intron -2, which contains several degenerate sequences that most likely derive from sequencing errors. Analysis of this intron sequence reveals multiple
consensus sequences for eukaryotic RNA lariat branch points, suggesting that exonic sequences may be hidden within the degenerate regions of this intron sequence. Future revisions of the *X.tropicalis* genome may reveal the identity of these nucleotide sequences and uncover the 21bp exon 1a4α sequence within this intron.

Whilst the existence of exon 1a4α in *X.tropicalis* genomic DNA is not directly demonstrated, further evidence to support the notion that 1a4α and 1a4β are distinct exons is provided here through the isolation of three distinct *x/GABA*B1(1a) transcript variants, 1, 2 and 3, containing either the two exons 1a4α and 1a4β, 1a4β alone, or containing neither exon. Analysis of the cloned mammalian GABA*ε*(1) transcript variants, summarised in Figure 1.3A, shows that alternative splicing of the GABA*B*(1) gene at exon 1a4 has been reported previously, since the skipping of this exon is responsible for the deletion of 7 amino acids in the rat-specific rGABA*B*(1f) protein isoform (Isomoto,S et al. 1998, Wei,K et al. 2001a). Taken together, these data suggest that the 1a4α nucleotide sequence represents a bona fide exon that is alternatively spliced in the *X.tropicalis* GABA*B*(1) gene, and does not occur as a result of 'slippage' during transcription. The identical size and high level of sequence identity shared between exons 1a4α and 1a4β strongly suggests that the two are closely related, and it is postulated here that they may have derived from an exon duplication event during evolution. This phenomenon appears to be unique to the *Xenopus* GABA*B*(1) gene and constitutes the first time an additional translated exon has been discovered in any vertebrate GABA*B* gene.

The amino acids encoded by exon 1a4 are of unknown function, but it is postulated here this sequence might represent a 'linker' peptide connecting the sushi domains and PBP-like domain. Variability in the length of this peptide, occurring as a result of the alternative splicing of exon 1a4 proposed here, and demonstrated previously (Isomoto,S et al. 1998,
Wei, K et al. 2001\(^a\)), might modulate the function of the sushi domains in the GABA\(_{BL(1a)}\) protein by bringing them closer or further away from the ligand-binding domain. Whilst the role of the sushi domains in GABA\(_{BL(1a)}\) remains unidentified, however, the significance of the variability of exon 1a4 remains unclear.

Comparison of the x\(\times\)GABA\(_{BL(a)}\) and x\(\times\)GABA\(_{BL(b)}\) cDNAs, shown in Figures 3.17 and 3.16 respectively, with the X\(\times\)tropicalis GABA\(_{BL}\) exon organisation deduced here, did not provide evidence to support the generation of the latter variant through canonical RNA splicing mechanisms. The presence of a run of pyrimidines in X\(\times\)tropicalis GABA\(_{BL}\) exon 7, analogous to a canonical intron 3'-acceptor sequence, does add some credibility to the notion of a cryptic splice site at this location. However, the requirement for RNA splicing to occur at two cryptic sites in order to generate this transcript makes its proposed existence \textit{in vivo} highly controversial, and thus without additional evidence of endogenous expression of x\(\times\)GABA\(_{BL(b)}\), a physiological role seems unlikely.

It is perhaps more likely that this transcript represents an artefact of the cDNA synthesis carried out as the initial phase of the 5' RACE method used to isolate it. Analysis of possible locations for the putative splice junctions required to generate this transcript \textit{in vivo} revealed the presence of a short repeated sequence, TGAT, at both sites. Intriguingly, similarly repeated sequences, CCAC and ACAGA, were found at the putative splice junctions required for the mammalian GABA\(_{BL(2b)}\) and GABA\(_{BL(2c)}\) transcripts isolated previously, which were also discounted as artefacts of cDNA synthesis (Clark, J.A et al. 2000, Martin, S.C et al. 2001).
4.7.3 Evidence for a relationship between $\text{GABA}_{B(1)}$, $\text{GABA}_{B(2)}$ and GABA_{BL} genomic organisation

The proteins encoded by the mammalian GABA_{BL} cDNAs isolated previously, and the x/GABA_{BL} transcript variants isolated here, exhibit features known to be of importance to GABA_B receptor functions. The identity shared between $\text{GABA}_{B(1)}$, $\text{GABA}_{B(2)}$ and GABA_{BL} sequences indicate that their genes are related and might share a similar genomic organisation. The results shown here demonstrate that, whilst the GABA_{BL} gene lacks 5' exons encoding a venus-flytrap domain, it exhibits a similar exon organisation to GABA_B genes across the sequences encoding the seven-transmembrane domains, coiled-coil motif and C-terminal tail. These data provide evidence to suggest that $\text{GABA}_{B(1)}$, $\text{GABA}_{B(2)}$ and GABA_{BL} derive from a common ancestral gene, and the absence of an invertebrate GABA_{BL} orthologue indicates that GABA_{BL} may have diverged from the GABA_B genes during the evolution of vertebrates.

4.7.4 Summary

The data presented in this chapter show that the organisation of exons in $\text{GABA}_{B(1)}$, $\text{GABA}_{B(2)}$ and GABA_{BL} genes is highly conserved in the vertebrate species analysed here. Mapping of the x/$\text{GABA}_{B(1a)}$ cDNA sequence shown in Figure 3.6 onto the X.tropicalis genome, however, uncovered an additional 5' untranslated exon in the X.tropicalis $\text{GABA}_{B(1)}$ gene that is not found in mammalian $\text{GABA}_{B(1)}$ genes, and indicated that an a hitherto unreported translated 21bp exon may reside within intron -2. Analysis of the deduced X.tropicalis $\text{GABA}_{B(1)}$ and GABA_{BL} gene structures provided evidence to support a canonical RNA splicing model for the generation of three x/$\text{GABA}_{B(1a)}$ N-terminal
transcript variants shown in Figure 4.4, but not for the truncated xIGABA_BL transcript variant shown in Figure 3.16, termed xIGABA_BL(b), casting doubt on the physiological significance of the latter. Comparison of the genomic sequences flanking human, rat and X.tropicalis GABA_BL genes revealed that the synteny of this gene is highly conserved in these vertebrates, providing evidence to suggest that the protein encoded by the xIGABA_BL(a) cDNA shown in Figure 3.17 represents the true X.laevis orthologue of mammalian GABA_BL proteins, despite the relatively low amino acid sequence conservation between the species. Finally, the pairwise sequence alignments made here between human GABA_B1, GABA_B2 and GABA_BL exon sequences show that these genes have a related genomic organisation, suggesting that they may derive from a common ancestral precursor.
Results

Chapter Three

Temporal and spatial expression patterns of GABA_B receptor mRNAs during *Xenopus laevis* embryonic development
5.1 Introduction

5.1.1 Background

In order to gain a better understanding of the role of \textit{X. laevis} GABA\textsubscript{A} receptors, the expression pattern of x/GABA\textsubscript{A} receptor genes was investigated during development. Data accompanying the x/GABA\textsubscript{A} receptor ESTs identified by homology searches (see Tables 3.1, 3.3, 3.9 and 3.13) included information regarding the source of mRNA used to generate cDNA libraries from which the ESTs derive, providing insight into where and when x/GABA\textsubscript{A} receptor transcripts can be found. However, a detailed understanding of the spatial and temporal expression pattern of x/GABA\textsubscript{A} receptors is not possible without the use of sensitive molecular methods designed to detect x/GABA\textsubscript{A} receptor gene products in the developing embryo.

Several techniques are available to today's researcher to detect mRNA, offering a range of sensitivity, versatility and easy of use. Reverse transcriptase PCR (RT-PCR) is a versatile method that involves the conversion of mRNA to complementary DNA (cDNA), by an RNA-dependent DNA polymerase, from which specific DNA sequences may be amplified by PCR. Unlike northern analysis, RT-PCR requires only very small quantities of mRNA and can be used to obtain partial or full-length cDNA clones or detect the presence of specific transcripts in RNA preparations, even when they are of particularly low abundance. Although the use of RT-PCR to measure gene expression is widespread, accurate quantification is technically complex due to the numerous enzymatic steps involved and the associated variability between individual reactions. When quantification is not strictly necessary, researchers frequently adopt internal controls for RT-PCR, such
as the concomitant amplification of an unrelated endogenous mRNA from within the same RNA sample. Whilst such controls are not ideal, there are adequate to demonstrate the activity of the assay, and RT-PCR remains an appropriate method for analysing gene expression.

Whilst northern analysis and RT-PCR are capable of providing some information regarding the spatial expression pattern of specific gene products, through analysis of RNA sourced from distinct tissues, techniques such as \textit{in situ} hybridization and immunohistochemistry provide unrivalled insight as to the location of gene products in a particular tissue, through detection of specific mRNAs or protein \textit{in situ}. The former method involves the hybridization of a labelled antisense cRNA probe, typically transcribed from a plasmid vector, to endogenous mRNAs present in the tissue of interest, and subsequent visualisation by means of colorimetric, fluorescent or auto-radiographic analysis. With the development of wholemount protocols in recent years (see Harland, R.M 1991) \textit{in situ} hybridization has emerged as the method of choice among researchers aiming to uncover spatial mRNA expression patterns in developing \textit{Xenopus} embryos.

5.1.2 \textit{Aims}

The aim of this chapter was to use a combination of the RT-PCR and \textit{in situ} hybridization techniques discussed here to uncover the temporal and spatial expression patterns of x\textit{GABA} \textsubscript{A} receptor transcripts in the developing embryo.
5.2 Temporal expression patterns of \(x/GABA_b \) receptor mRNAs during embryonic development

5.2.1 Detection of \(x/GABA_b \) receptor mRNAs by RT-PCR and Southern blotting

The identification of \(x/GABA_b \) receptor ESTs in Results Chapter One (see Tables 3.1, 3.3, 3.9 and 3.13) permitted the design of \(x/GABA_b \) receptor-specific oligonucleotide primers. However, upon the cloning and sequencing of the full-length \(x/GABA_b \) receptor cDNAs, shown in Figures 3.5, 3.6, 3.11, 3.16 and 3.17, it became possible to design primer pairs capable of distinguishing between distinct transcript variants. These primer pairs could be used to detect the presence of \(x/GABA_{b(1a)} \), \(x/GABA_{b(1b)} \), \(x/GABA_{b(2)} \), \(x/GABA_{bL(a)} \) and \(x/GABA_{bL(b)} \) transcripts in RNA preparations by RT-PCR.

Total RNA was extracted from embryos at a range of developmental stages, as described in Section 2.1.8, including blastulae (stages 5 and 7), gastrulae (stages 9 and 12), neurulae (stage 17) and from tailbud (stages 22, 26, 32, 36) and tadpole (stage 40) embryos. RT-PCR was performed as described in Section 3.1.10, using the oligonucleotide primers and optimal annealing temperatures shown in Table 5.1. The DNA fragments amplified by RT-PCR are shown in Figure 5.2.

In order to verify the identity of the fragments amplified by RT-PCR, DNA was transferred to nylon membranes by Southern blotting and analysed using radiolabelled probes, as described in Section 2.1.24. The hybridized DNA fragments are shown in Figure 5.3.
<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Nucleotide Sequence</th>
<th>Loc (bp)</th>
<th>Size (bp)</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>x/GABA<sub>x</sub></td>
<td>xGB1a-AMP-fwd0</td>
<td>5'-CGTGAGATTTCTGGTCCCAAAG-3'</td>
<td>637</td>
<td>592</td>
<td>57.2</td>
</tr>
<tr>
<td></td>
<td>xGB1a-b-AMP-rev0</td>
<td>5'-ACATTCTTGGCTTCTGCCAC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/GABA<sub>y</sub></td>
<td>xGB1b-AMP-fwd0</td>
<td>5'-CCACCCTTCTGGCTTGGTCTCAC-3'</td>
<td>398</td>
<td>483</td>
<td>57.4</td>
</tr>
<tr>
<td></td>
<td>xGB1a/b-AMP-rev0</td>
<td>5'-ACATTCTTGGCTTCTGCCAC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/GABA<sub>z</sub></td>
<td>xGB2-SEQ-fwd3</td>
<td>5'-GCAGAACCTCCAAAAGATGAAACC-3'</td>
<td>1378</td>
<td>845</td>
<td>53.2</td>
</tr>
<tr>
<td></td>
<td>xGB2-SEQ-rev4</td>
<td>5'-GSCCAAACAAAGACAGAGTG-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/GABA<sub>b</sub></td>
<td>xGB2-SEQ-fwd4</td>
<td>5'-AACCCTGCTGAGCTTGGTG-3'</td>
<td>518</td>
<td>500</td>
<td>55.1</td>
</tr>
<tr>
<td></td>
<td>xGB2-SEQ-rev5</td>
<td>5'-TGTCATTGCTGCTCTCGT-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/GABA<sub>b</sub></td>
<td>xGB2-SEQ-fwd2</td>
<td>5'-TGCTGTATGGGTGCCCTTG-3'</td>
<td>1017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>xGB2-SEQ-rev2</td>
<td>5'-TGCTTTTCTGSSGATGTTG-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x/ODC</td>
<td>xODC-fwd1</td>
<td>5'-CAAGCTAGCTGGCTGGTG-3'</td>
<td>674</td>
<td>228</td>
<td>53.1</td>
</tr>
<tr>
<td></td>
<td>xODC-rev1</td>
<td>5'-CAACATGGAAAACCTACACC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1 Summary of oligonucleotide primers used for RT-PCR. Binding loci (bp), amplicon sizes (bp) and annealing temperatures used (°C) are shown. Optimum °C were calculated using MacVector 7.2 (Accelrys), expect for x/ODC primers (see Agius,E. et al. 2000).
Figure 5.2 DNA fragments generated by RT-PCR from reverse-transcribed total RNA from stage 5, 7, 9, 12, 17, 22, 26, 32, 36 and 40 embryos, showing -RT controls for stages 5, 12, 26 and 40.

Figure 5.3 Southern blot analysis of RT-PCR amplification products shown in Figure 5.2
5.2.2 xlgABAB$_{(i)}$ receptor subunit mRNAs exhibit distinct temporal expression patterns during X.laevis embryonic development

Analysis of the data shown in Figure 5.2 reveals that, whilst fragments corresponding to xlgABAB$_{B(ia)}$ were not visualised on the ethidium bromide gel in any of the stages tested, xlgABAB$_{B(ib)}$ transcripts are readily detected by RT-PCR in from late neurulation (stage 17) onwards. Southern blot analysis, which was used to confirm, by hybridization, that the amplified fragments corresponded to the predicted gene products, indicated that xlgABAB$_{B(ib)}$ transcripts could also be detected at stage 12 (see Figure 5.3). Using a xlgABAB$_{B(ia)}$-specific probe, two distinct fragments were identified by Southern analysis. These were estimated to be approximately 600bp and 400bp in length and were detected, at stages 9, 26, 32, 36 and 40, only after prolonged exposure to photographic film (see Figure 5.3). Whilst the larger fragment appears to correspond to the expected 592bp xlgABAB$_{B(ia)}$ amplicon, the smaller fragment does not appear to correspond to any of the xlgABAB$_{B(i)}$ transcript variants isolated in Results Chapter One. However, analysis of the X.tropicalis GABAB$_{B(i)}$ gene organisation, shown in Figure 4.1, reveals that deletion of the 189bp exon 1a3 would yield a xlgABAB$_{B(i)}$ transcript from which a 403bp fragment could be amplified by RT-PCR using the same xlgABAB$_{B(ia)}$-specific oligonucleotide primers shown in Table 5.1. As discussed in Section 1.4.3, the skipping of exon 1a3 from the GABAB$_{B(i)}$ gene in humans generates the transcript variant hGABA$_{B(i10)}$: an isoform that exhibits an expression pattern roughly parallel to that of hGABA$_{B(i9)}$. Taken together, these data suggest that the ~400bp fragment amplified here by RT-PCR, and detected by a xlgABAB$_{B(ia)}$-specific radiolabelled probe (see Figure 5.3), may correspond to a hitherto unreported xlgABAB$_{B(i)}$ transcript variant, orthologous to hGABA$_{B(i10)}$, termed here xlgABAB$_{B(i10)}$.
The temporal expression patterns for $x/GABAb_{(1a)}$ and $x/GABAb_{(1c)}$ are similar (see Figure 5.3). Both transcripts are detectable during early gastrulation (stage 9) and in all stages tested from stage 26 onwards, during which time the $x/GABAb_{(1a)}$ signal strength remains quite uniform. The signal corresponding to the detection of $x/GABAb_{(1a)}$ transcripts is somewhat irregular, with very strong signal observed at stage 36. Whilst the RT-PCR method used here was not necessarily quantitative, the requirement for around 500-fold greater exposure time to generate comparable signal to the other blots, shown in Figure 5.3, suggests that the $x/GABAb_{(1a)}$ and $x/GABAb_{(1c)}$ transcripts might be less abundant than the other $x/GABAb$ receptor transcripts detected here, notably $x/GABAb_{(1b)}$.

5.2.3 $x/GABAb_{(2)}$ receptor subunit mRNA is expressed throughout *X. laevis* embryonic development

$x/GABAb_{(2)}$ transcripts are readily detectable by RT-PCR in all developmental stages tested (see Figure 5.2). Southern blot analysis using a $x/GABAb_{(2)}$-specific probe confirms this expression pattern, although minor contamination by template in the -RT negative control reactions is evident (see Figure 5.3). Unlike $x/GABAb_{(1)}$, it is possible to detect the expression of 'maternal' $x/GABAb_{(2)}$ transcripts in total RNA extracted from blastulae (stages 5 and 7). However, from gastrulation (stage 9) onwards the $x/GABAb_{(1)}$ and $x/GABAb_{(2)}$ genes appear to be temporally co-expressed. Interestingly, these expression patterns suggest that any functional $x/GABAb$ receptors expressed during gastrulation (stages 9 to 12) would be predominantly GABA$_A_{(1a)/2}$ or GABA$_A_{(1c)/2}$ heterodimers, whereas a combination of GABA$_A_{(1a)/2}$, GABA$_A_{(1b)/2}$, and GABA$_A_{(1c)/2}$ heterodimeric receptors could potentially be expressed thereafter.
5.2.4 \(x\mathrm{GABA}_{BL(a)} \) but not \(x\mathrm{GABA}_{BL(b)} \) transcripts are detected by RT-PCR

\(x\mathrm{GABA}_{BL(a)} \) transcripts are readily detectable by RT-PCR in all developmental stages tested from late neurulation (stage 17) onwards (see Figure 5.2). Southern blot analysis using a \(x\mathrm{GABA}_{BL} \)-specific probe confirms this expression pattern, although minor contamination by template in the -RT negative control reactions is visible (see Figure 5.3). The data shown in Figure 5.3 indicate that the fragments corresponding to the transcript variant \(x\mathrm{GABA}_{BL(b)} \) are not detected in any stages tested, even following exposure of the Southern blot to photographic film for up to three weeks. These data indicate that the \(x\mathrm{GABA}_{BL(b)} \) transcript variant is either absent at the developmental stages tested here or is expressed at a particularly low level and, as such, a temporal expression pattern for the \(x\mathrm{GABA}_{BL(b)} \) transcript during development remains elusive.

Despite the use of these sensitive detection methods, the existence of the \(x\mathrm{GABA}_{BL(b)} \) transcript in \(X.laevis \) total RNA has only been directly demonstrated once, through molecular cloning and sequencing of a 515bp amplicon isolated by 5'RACE in Section 3.4.3 (see Figure 3.16). Analysis of the \(X.tropicalis \) \(\mathrm{GABA}_{BL} \) gene organisation also showed that the generation of this transcript \textit{in vivo} would depend upon the occurrence of two simultaneous cryptic slicing events, casting doubt over the physiological relevance of this variant (see Figure 4.5). Taken together with the data presented in Figure 5.3, these data strongly suggest that \(x\mathrm{GABA}_{BL(b)} \) is not a \textit{bona fide} transcript variant expressed \textit{in vivo}, and thus almost certainly derived from an artefact of cDNA synthesis during molecular cloning.
5.2.5 Detection of $x\text{GABA}_{BL(a)}$ mRNAs in neurulae by RT-PCR

To further investigate the temporal expression pattern of $x\text{GABA}_{BL(a)}$ mRNA during neurulation, and to identify the developmental stage at which $x\text{GABA}_{BL(a)}$ could be first detected, RT-PCR was used to amplify $x\text{GABA}_{BL(a)}$ fragments from total RNA extracted from embryos at stages 12, 13, 14, 15, 16 and 17, as described in Section 12.1.8. RT-PCR was carried out, as described in Section 2.1.10, using the oligonucleotide primers shown in Table 5.1. The DNA fragments amplified are shown in Figure 5.4.

These data show that $x\text{GABA}_{BL(a)}$ transcripts are readily detected from stage 14 of development, indicating that $x\text{GABA}_{BL(a)}$ protein might be expressed from mid-neurulation onwards.
Figure 5.4 RT-PCR amplification of products of reverse-transcribed total RNA from stage 12, 13, 14, 15, 16 and 17 embryos (bottom), showing -RT control for stage 15. The expression pattern previously uncovered in Section 5.2.1 is shown (top).
5.3 Spatiotemporal expression patterns of x_iGABA$_b$ receptor mRNAs during embryonic development

5.3.1 Analysis of spatial x_iGABA$_b$ expression patterns by RT-PCR

In order to obtain some initial information about the spatial expression pattern of x_iGABA$_b$ transcripts at different stages of development, RT-PCR was used to amplify x_iGABA$_{b(1b)}$, x_iGABA$_{b(2)}$ and x_iGABA$_{bL(a)}$ fragments from total RNA extracted from anterior, posterior, dorsal and ventral explants, as described in Section 2.1.8, at stages 14, 21 and 30 of development. These total RNA samples were chosen for analysis as the data shown in Figures 5.3 and 5.4 indicate that x_iGABA$_{b(1b)}$, x_iGABA$_{b(2)}$ and x_iGABA$_{bL(a)}$ transcripts are temporally co-expressed at these stages of development. RT-PCR was carried out, as described in Section 2.1.10, using the oligonucleotide primers shown in Table 5.1. The DNA fragments amplified are shown in Figure 5.5A; the boundaries of anterior, posterior, dorsal and ventral explants at the stages tested as shown in Figure 5.5B.

These data show that, whilst x_iGABA$_{b(1b)}$ transcripts are detected in anterior, dorsal and posterior tissues at stages 21 and 30, x_iGABA$_{b(2)}$ transcripts are not readily detected until stage 30 in anterior and dorsal tissues. Whilst the RT-PCR method used here is not strictly quantitative, these data also suggest that x_iGABA$_{b(1b)}$ and x_iGABA$_{b(2)}$ mRNA is most abundant in anterior tissues at stage 30, and that x_iGABA$_{b(1b)}$ transcripts greatly outnumber those of x_iGABA$_{b(2)}$ at this stage. In contrast, the data shown in Figure 5.5A indicate that x_iGABA$_{bL(a)}$ transcripts are uniformly expressed in anterior, posterior, dorsal and ventral tissues at the developmental stages analysed here.
Figure 5.5 A. RT-PCR amplification of products of reverse-transcribed total RNA from anterior, dorsal, posterior and ventral explants from stage 14, 21 and 30 embryos, showing -RT controls for anterior explants from each stage. B. Diagram showing approximate boundaries of anterior (a), dorsal (β), posterior (γ) and ventral (δ) regions isolated from stage 14, 21 and 30 embryos.
5.3.2 Detection of xIGABA_B receptor mRNAs by wholemount in situ hybridization

In order to produce sense and antisense DIG-labelled cRNA probes for use in in situ hybridization experiments, in vitro transcription was performed, as described in Section 2.1.16, using the dual-promoter plasmid vectors containing cDNA clones encoding xIGABA_{B(1b)}, xIGABA_{B(2)} and the C-terminus of xIGABA_{BL}, shown in Figures 3.5, 3.11, and 3.15 respectively. Wholemount in situ hybridization was performed, as described in Section 2.3.5, on embryos fixed at various stages of development (see Section 2.3.4), using DIG-labelled PAN-xIGABA_{B(1)}, xIGABA_{B(2)} and PAN-xIGABA_{BL}-specific sense and antisense cRNA probes, the former acting as a negative control in each case. As a positive control, wholemount in situ hybridization was performed using a DIG-labelled antisense cRNA probe transcribed from the muscle-specific Xenopus alpha skeletal actin gene (xa-actin). A selection of fixed embryos showing in situ staining of hybridized PAN-xIGABA_{B(1)}, xIGABA_{B(2)} and PAN-xIGABA_{BL}-specific cRNA probes is shown in Figures 5.6, 5.7 and 5.8 respectively.
Figure 5.6 Whole mount in situ hybridization using DIG-labelled A-C. antisense PAN-xiGABA₂ cRNA probe, D. antisense xa-actin cRNA probe, and E. sense PAN-xiGABA₂ cRNA probe. A. Overall in situ staining patterns. B. Enlarged images showing in situ staining in anterior region. C. Transverse (α, β) and lateral (γ) sections showing in situ staining. Abbreviations: db (developing brain), dc (diencephalon), fb (forebrain), hb (hindbrain), mb (midbrain), mhb (midbrain-hindbrain boundary), mus (muscle), ob (olfactory bulb), ov (otic vesicle), r2 (rhombomere 2), sc (spinal cord), tn (trigeminal nerve).
5.3.3 xIGABA_{B(1)} transcripts are expressed in multiple brain regions of the developing *X. laevis* embryo

xIGABA_{B(1)} transcripts are detected by *in situ* hybridization from late neurulation (stage 18) onwards (see *Figure 5.6A*). At stage 18, specific staining of DIG-labelled antisense xIGABA_{B(1)} probe is visible in neural tissues in the developing brain and spinal cord and, upon further differentiation of the CNS, is clearly visible in the hindbrain and trigeminal nerve at stage 20 and 23. By stage 30, staining is visible in the forebrain, and by stage 34 strong signal is visible in multiple brain regions. Analysis of lateral and dorsal views of the head at stage 34 shows that staining is pronounced in restricted segments of the midbrain and hindbrain, notably at the isthmus, or midbrain-hindbrain boundary, and in rhombomere 2 at the root of the trigeminal nerve (see *Figure 5.6B*). Faint staining is also visible at the posterior edge of the otic vesicle in the stage 34 embryo. Transverse (α, β) and lateral (γ) sections of stage 34 embryos confirm the presence of xIGABA_{B(1)}-specific staining throughout the midbrain, hindbrain, trigeminal nerve and spinal cord, but also reveal prominent staining in the diencephalon and olfactory bulb (see *Figure 5.6C*).
Figure 5.7 Wholemount in situ hybridization using DIG-labelled A-C. antisense x(GABA_a) cRNA probe, D. antisense x-actin cRNA probe, and E. sense x(GABA_a) cRNA probe. A. Overall in situ staining patterns. B. Enlarged images showing in situ staining in anterior region. C. Transverse (α, β) and lateral (γ) sections showing in situ staining. Abbreviations: cn (cranial nerves), db (developing brain), dc (diencephalon), fb (forebrain), hb (hindbrain), mb (midbrain), mus (muscle), ob (olfactory bulb), sc (spinal cord), tn (trigeminal nerve).
5.3.4 \textit{xI\textsubscript{GABA}B_{(2)}} transcripts are expressed in multiple brain regions of the developing \textit{X. laevis} embryo

\textit{xI\textsubscript{GABA}B_{(2)}} transcripts are detectable by \textit{in situ} hybridization from stage 21 onwards (see \textit{Figure 5.7A}). At stage 21, faint staining of DIG-labelled antisense \textit{xI\textsubscript{GABA}B_{(2)}} probe is visible in the developing brain and spinal cord and, upon further differentiation of the CNS, is clearly visible in the trigeminal nerve (stage 26). By stage 30, staining is visible in the forebrain, and by stage 34 signal is also visible in the midbrain and hindbrain. Analysis of lateral and dorsal views of the head at stage 34 shows that, unlike \textit{xI\textsubscript{GABA}B_{(1)}}, \textit{xI\textsubscript{GABA}B_{(2)}} transcripts are not detectable in dorsal regions of the midbrain and hindbrain by \textit{in situ} hybridization, and signal is notably absent in rhombomere 2 (see \textit{Figure 5.7B}). Transverse (\textit{a}, \textit{b}) and lateral (\textit{y}) sections of stage 34 embryos confirm the presence of \textit{xI\textsubscript{GABA}B_{(2)}}-specific staining throughout the midbrain, hindbrain, trigeminal nerve and spinal cord, but also reveal staining in the diencephalon, olfactory bulb and along the facial cranial nerve (see \textit{Figure 5.7C}).
Figure 5.8 Wholemount in situ hybridization using DIG-labelled A-D. antisense PAN-x/GABA$_{BL}$ cRNA probes, E. antisense xα-actin cRNA probe, and F. sense PAN-x/GABA$_{BL}$ cRNA probe. A. Overall in situ staining patterns. B. Enlarged images showing in situ staining in anterior region. C. Transverse (a) and lateral (β) sections showing in situ staining. D. In situ staining in neurulae, including transverse (γ) and lateral (δ) sections. Abbreviations: ar (archenteron roof), cn (cranial nerves), fb (forebrain), hb (hindbrain), mb (midbrain), mhb (midbrain-hindbrain boundary), mus (muscle), oc (oral cavity), ov (otic vesicle).
5.3.5 \(xIGABA_{BL} \) transcripts are expressed primarily in the otic vesicle and hindbrain of the developing \textit{X.laevis} embryo

\(xIGABA_{BL} \) transcripts are detectable by \textit{in situ} hybridization from stage 27 onwards (see \textit{Figure 5.8A}). At stage 27, specific staining of DIG-labelled antisense \(xIGABA_{BL} \) probe is visible around the posterior edge of the otic vesicle, and by stage 30 is also visible in a restricted location at the anterior end of the hindbrain, near to the mid-hindbrain boundary. At stage 34, faint signal is observed in other brain tissues, and analysis of lateral and dorsal views of the head reveals that this staining is most prominent in proximal regions of the forebrain, midbrain and hindbrain (see \textit{Figure 5.8B}). Transverse (\(\alpha \)) sections through stage 34 embryos confirm this observation and show that \(xIGABA_{BL} \)-specific staining is concentrated at the proximal edge of the neural tissue surrounding the brain ventricle in the midbrain and hindbrain (see \textit{Figure 5.8C}). A lateral (\(\beta \)) section of the head at stage 34 suggests that the staining observed in the oral cavity in transverse sections might correspond to cranial nerves, such as the oculomotor, trochlear or facial nerve. \(xIGABA_{BL} \) transcripts are not detectable in the spinal cord by \textit{in situ} hybridization at any of the stages tested here.

A determination of the spatial expression pattern for \(xIGABA_{BL} \) in neurulae proved elusive. Whilst strong staining of DIG-labelled antisense \(xIGABA_{BL} \) probe was visible around the anterior neural plate of stage 14 embryos, transverse (\(\gamma \)) and lateral (\(\delta \)) sections revealed that the signal was located in non-neuronal tissue along the roof of the archenteron (see \textit{Figure 5.8D}). Whilst expression of \(xIGABA_{BL} \) in these tissues is possible, trapping of probe and hybridization buffer in the archenteron during wholemount \textit{in situ} hybridization is not uncommon and could generate a false positive signal. However, a signal was repeatedly detected by \textit{in situ} hybridization at the archenteron roof,
even when holes were introduced into neurulae prior to hybridization to aid the penetration of probe and wash solutions. This phenomenon also appears to be probe-specific, as none of the other probes used here generated this specific signal in neurulae, including the DIG-labelled sense x/GABA_{BL} cRNA probe. When RT-PCR was performed using total RNA extracted from anterior, dorsal, ventral and posterior neurulae explants, x/GABA_{BL} transcripts were detectable in all four regions, providing little insight into where they might be predominantly localised. It should be noted that x/GABA_{BL} transcripts were detected by RT-PCR in all four of the tissue explants analysed at stages 21 and 30, despite in situ hybridization data demonstrating that x/GABA_{BL} expression was restricted to the anterior region at these stages. These data suggest that, whilst x/GABA_{BL} mRNA may be concentrated in certain differentiated anterior tissues during embryo development, such as the otic vesicle, transcripts may still be expressed in other tissues at a level detectable by RT-PCR.
5.4 Discussion

In this chapter, a combination of RT-PCR and *in situ* hybridization techniques were used to explore the spatiotemporal expression patterns of x/GABA_ᵦ receptor mRNAs during *X.laevis* embryo development. cDNA was prepared from total RNA extracted from embryos at a range of developmental stages from 5-40 for RT-PCR analysis, and *in situ* hybridization was performed on gastrulae, neurulae, tailbud and tadpole embryos using PAN-x/GABA_{ᵦ(1)}, x/GABA_{ᵦ(2)} and PAN-x/GABA_{ᵦL}-specific cRNA probes. Key findings from the data presented in this chapter are evaluated below.

5.4.1 *x*GABA_ᵦ receptor subunit mRNAs are differentially expressed during *X.laevis* embryonic development

Analysis of the data presented in *Figures* 5.2 and 5.3 reveals that *x*GABA_ᵦ receptor subunit mRNAs exhibit distinct temporal expression patterns between stage 5 and stage 40 of embryo development. *x*GABA_{ᵦ(2)} transcripts were detected in all stages tested including stage 5 and 7 blastulae. This suggests that maternally transcribed *x*GABA_{ᵦ(2)} mRNAs are present in *X.laevis* oocytes prior to fertilisation, since zygotic gene transcription is not thought to begin until gastrulation. In contrast, *x*GABA_{ᵦ(1)} transcripts were not detected until early gastrulation (stage 9), in agreement with findings from previous studies in rats suggesting that *x*GABA_{ᵦ(1)} and *x*GABA_{ᵦ(2)} gene expression is not co-ordinately regulated during development (Martin, S.C et al. 2004). These data are consistent with a role for GABA_{ᵦ(2)}, in the absence of GABA_{ᵦ(1)}, during the very early stages of vertebrate development.
Whilst Southern analysis using a xGABA$_{b(1b)}$-specific probe revealed that xGABA$_{b(1b)}$ transcripts are not expressed until stage 12 of $X.laevis$ development, hybridization of a xGABA$_{b(1a)}$-specific probe uncovered the expression of two related transcripts, postulated here to be xGABA$_{b(1a)}$ and the $X.laevis$ orthologue of the human GABA$_{b(1)}$ splice variant, GABA$_{b(1c)}$, during early gastrulation (stage 9). The expression pattern of these two transcripts was found to be near identical, consistent with the notion that GABA$_{b(1a)}$ and GABA$_{b(1c)}$ are regulated by the same promoter.

The differential expression patterns for xGABA$_{b(1a)}$ and xGABA$_{b(1b)}$ transcripts uncovered here are consistent with the findings of previous studies, which suggest that xGABA$_{b(1a)}$ is the primary GABA$_{b(1)}$ isoform expressed during early development (Malitschek,B et al. 1998, Fritschy,J.M et al. 1999, Fritschy,J.M et al. 2004, Martin,S.C et al. 2004, Steiger,J.L et al. 2004). These data are indicative of a role for xGABA$_{b(1a2)}$ receptor heterodimers, during gastrulation, prior to the transcription of xGABA$_{b(1b)}$ mRNAs, during neurulation.

Whilst a temporal expression pattern for the xGABA$_{bL(b)}$ transcript variant was not detected here, the data shown in Figures 5.2 and 5.3 show that xGABA$_{bL(a)}$ transcripts are expressed from stage 17 of development onwards. However, further analysis of xGABA$_{bL(a)}$ expression during neurulation revealed that xGABA$_{bL(a)}$ transcripts were first detectable at stage 14 using this method (see Figure 5.4).

Spatial expression patterns for xGABA$_{b}$ receptor subunit mRNAs were analysed here by RT-PCR and in situ hybridization experiments. The former showed that, whilst xGABA$_{b(1)}$ and xGABA$_{b(2)}$ transcripts are principally expressed in anterior and dorsal tissues in tailbud embryos, xGABA$_{bL(a)}$ transcripts could be amplified from anterior, posterior, dorsal and ventral regions of the embryo at all developmental stages tested. In situ hybridization
revealed that x/GABA_b(1) and x/GABA_b(2) mRNA expression was indeed restricted to the CNS and that these transcripts were co-expressed in most brain regions of the tailbud embryo, consistent with the proposal that both subunits are required for normal GABA_b receptor function. However, there were areas of unique x/GABA_b(1) transcript expression, most notably in dorsal regions of the midbrain and in rhombomere 2 of the hindbrain, where strong x/GABA_b(1)-specific signal was observed in the absence of a x/GABA_b(2) signal at stage 34 (see Figures 5.6B and 5.7B). These data are consistent with a role for x/GABA_b(1) in these developing brain regions in the absence of x/GABA_b(2). In situ hybridisation revealed that x/GABA_bl transcripts are concentrated in the otic vesicle and at a restricted location at the anterior end of the hindbrain near to the isthmus (see Figure 5.8). x/GABA_bl-specific staining is also visible in proximal regions of the forebrain, midbrain and hindbrain, along the anteroposterior axial midline, at stage 34. Unlike x/GABA_b(1) and x/GABA_b(2), x/GABA_bl transcripts are not detected in the spinal cord of the developing embryo by in situ hybridisation.

5.4.2 The x/GABA_BL(b) transcript variant is unlikely to be expressed in vivo

The data presented in Figures 5.2 and 5.3 show that x/GABA_BL(b) transcripts are not detected in any of the developmental stages tested, even following exposure of the blot to photographic film for period of three weeks. Taken together with the findings from the genomic analysis carried out in Section 4.3.3, which showed that generation of this putative splice variant would require two simultaneous cryptic splicing events to occur (see Figure 4.5), these data strongly suggest that the x/GABA_BL(b) transcript variant shown in Figure 3.16 is unlikely to be expressed in vivo, and was most probably generated as a result of errors during cDNA synthesis.
5.4.3 Summary

The results described in this results chapter provide a detailed insight into the spatiotemporal expression pattern of GABA$_b$ receptor mRNAs during *X.laevis* embryonic development. These data show that, whilst GABA$_b$ receptor mRNAs are differentially expressed during *X.laevis* development, there are significant areas of overlapping expression in the brain, particularly in the case of x/GABA$_{b(1)}$ and x/GABA$_{b(2)}$ gene products. Interestingly, both RT-PCR and *in situ* hybridization data appear to show x/GABA$_{b(1)}$ transcript levels exceeding those of x/GABA$_{b(2)}$ in most brain regions, in agreement with data described previously in rats (Martin, S. C. et al. 2004); however, it must be noted that neither of the techniques used here are strictly quantitative. The co-expression of x/GABA$_{b(1)}$ and x/GABA$_{b(2)}$ transcripts in these brain regions is indicative of the expression of functional GABA$_b$ receptor heterodimers at the cell surface, and suggests a role for metabotropic GABA signalling during the development of the *X.laevis* CNS. Whilst the function of the GABA$_{bl}$ receptor is presently unknown, the *in situ* hybridization data shown here are indicative of a role for x/GABA$_{bl(a)}$ during the development of the *X.laevis* brain and ear.
Results

Chapter Four

Overexpression of GABA_B receptor proteins during *Xenopus laevis* embryonic development
6.1 Introduction

6.1.1 Manipulation of gene expression in Xenopus embryos

With recent advances in molecular genetics, numerous approaches have now been developed that allow the manipulation of gene expression in *Xenopus* embryos. One method involves the microinjection of synthetic mRNA into cleavage-stage embryos (blastulae), resulting in overexpression and increased activity of a gene of interest during embryonic development. Similarly, a loss-of-function approach is made possible through microinjection of synthetic mRNA encoding a polypeptide that interferes with the protein of interest in a dominant negative fashion, or by microinjection of an antisense morpholino (a synthetic oligonucleotide analogous to RNA with a morpholine phosphorodiamidate backbone) that contains sequence complimentary to the 5'UTR of the gene of interest and interferes with its translation through steric blocking of the ribosomal complex. The manipulation of gene expression using these approaches can bring about reproducible changes to the morphology or behaviour of embryos that can aid in elucidating the role of a protein of interest during development.

Phenotypes arising from the increased activity of a protein through overexpression can be extremely informative, and may indicate the normal function of the gene in *Xenopus* embryos. However, there are a number of limitations associated with this approach that should be taken into consideration when interpreting results. Microinjection of synthetic mRNA typically results in the immediate translation of large amounts of protein in the absence of any temporal and spatial regulation of expression, and this distinctly non-physiological scenario can produce ambiguous results through non-specific effects. Large
quantities of RNA or protein can be toxic and inhibit physiological processes, and early activity of a particular protein may produce unrepresentative phenotypes and preclude analysis of later effects of the same protein. Furthermore, ectopic activity of the overexpressed protein may interfere with developmental processes that it would not normally be associated with \textit{in vivo}, and so care must be taken when interpreting results to avoid drawing inaccurate conclusions about the endogenous function of the protein of interest using this assay.

The injection of a 'neutral' synthetic mRNA, encoding a protein, which brings about no detectable changes to the morphology of the developing embryo, represents a satisfactory control to demonstrate the toxicity of high concentrations of RNA, or lack thereof. Also, the co-injection of synthetic mRNA with a freely diffusible lineage tracer, such as dextran-fluorescein, results in the labelling of the injected cell's progeny without affecting cell fate, and can demonstrate that injected cells are both viable and contribute to differentiated structures in the embryo.

Synthetic mRNA injected into blastulae can be targeted to particular tissues in the later embryo by exploiting the 32-cell stage \textit{Xenopus} fate map (Dale,L et al. 1987), which describes the fate of each blastomere in terms of tissue types and spatial localisation. Whilst exact targeting is problematic, due to mixing of cell populations, the fate map can be used to direct transcripts toward dorsal or ventral structures through microinjection at the 4 or 8-cell stage. This approach has been used previously to demonstrate the differential effects of a several genes in dorsal or ventral tissues (Sokol,S et al. 1991, Jones,C.M et al. 1992, Dale.L et al. 1992).
Explants taken from different regions of the embryo may be used to investigate the effect of a gene of interest on events occurring in distinct tissues of the embryo, such as the animal cap (prospective ectoderm), the marginal zone (prospective mesoderm and endoderm), and the vegetal zone (prospective endoderm). Such explants, particularly animal caps, retain many of their characteristics when removed from the embryo and will give a robust response to inducing factors, providing an ideal bioassay with which to study the effects of signalling molecules or receptors.

6.1.2 Rationale for GABA_B receptor gene overexpression in *Xenopus* embryos

The use of a gain-of-function approach, by overexpression of a protein of interest in *Xenopus* embryos, has contributed to the elucidation of developmental functions for a host of vertebrate genes (Moon, R. T et al. 1993, Heasman, J et al. 1994, Yang, S et al. 1998, Godfrey, E. W et al. 1999, Pohl, B. S et al. 2001). Whilst the suitability of this bioassay for investigating the functions of secreted factors or intracellular signalling components is well established, the analysis of receptor function in this way may be complicated by differences in the temporal and spatial availability of the endogenous ligands required for receptor activation. Previous studies have demonstrated the widespread presence of endogenous GABA in *Xenopus* embryos at early stages of development, prior to the formation of synapses (Roberts, A et al. 1987, Perrins, R et al. 2002, Mueller, T et al. 2006), thus permitting the analysis of heterodimeric x/GABA_B receptor signalling using this assay. Similarly, the abundance of endogenous GABA will permit the analysis of any ligand-dependent effects of monomeric x/$\text{GABA}_{B(1)}$ subunit overexpression in the developing embryo. Since $\text{GABA}_{B(2)}$ and $\text{GABA}_{B(L)}$ do not bind any known ligands, any observable effects when x/$\text{GABA}_{B(2)}$ or x/$\text{GABA}_{B(L)}$ proteins are overexpressed in isolation may be
considered to be non ligand-dependent and derived from constitutive G-protein coupling activity of these proteins or, perhaps, from interactions with other endogenous factors.

The spatiotemporal expression patterns of x/GABA\textsubscript{A} receptor mRNAs uncovered in Results Chapter Three suggest a role for metabotropic GABA signalling in the developing \textit{X.laevis} embryo. It was hypothesised here that overexpression of x/GABA\textsubscript{A} receptor heterodimers during \textit{X.laevis} development might lead to an increase in metabotropic GABA signalling, and thus inhibition of neuronal circuits in the developing embryo. This might be predicted to manifest itself in terms of reduced locomotion, swimming activity or response to stimulus in tailbud and tadpole embryos, or perhaps changes in embryo morphology, indicative of an endogenous role for metabotropic GABA signalling in the regulation of morphogenetic events during development (Roberts,A et al. 1987, Perrins,R et al. 2002, Mueller,T et al. 2006). The lack of temporal or spatial regulation of expression in this assay might result in metabotropic GABA signalling in tissues that are not normally responsive to GABA, producing distinctive morphogenetic effects that might provide insight into the developmental functions of endogenous x/GABA\textsubscript{A} receptors. Previous studies have suggested roles for individual GABA\textsubscript{A} receptor subunits when expressed alone (Kaupmann,K et al. 1998b, Ng,G.Y et al. 1999, Martin,S.C et al. 1999, Fritschy,J.M et al. 2004, Gassmann,M et al. 2004). Whilst it is difficult to predict the nature of any phenotypic changes that might occur as a result of individual x/GABA\textsubscript{A} receptor subunit overexpression, this assay may uncover observable morphogenetic effects that provide insight into the possible individual contributions of GABA\textsubscript{A(1)} and GABA\textsubscript{A(2)} subunits to vertebrate development. GABA\textsubscript{B1L} is a protein of hitherto unknown function and, as such, it is difficult to predict the likely effect of x/GABA\textsubscript{B1L(a)} subunit overexpression during \textit{X.laevis} embryogenesis. However, the expression pattern of mammalian GABA\textsubscript{B1L} transcripts is consistent with a role in development (Calver,A.R et al. 2003, Martin,S.C et al. 2004) and,
as such, this assay may represent an ideal method for demonstrating functionality of this orphan receptor.

6.1.3 Aims

The aim of this chapter is to adopt a gain-of-function approach to assess the functional contributions of individual \(x/GABA_B \) receptor subunits or heterodimers to \(X.laevis \) embryonic development. Where reproducible morphological phenotypes are observed in embryos overexpressing \(x/GABA_B \) receptor protein, further analysis of the morphogenetic and/or biochemical effects of this protein will be performed in an effort to gain insight into any specific functions of the protein during development.
6.2 Overexpression of x/GABA\(_b\) subunit proteins during *X.laevis* embryonic development

6.2.1 Overexpression of individual x/GABA\(_{b(1)}\) and x/GABA\(_{b(2)}\) subunits during embryonic development

In Results Chapter One, cDNA clones encoding x/GABA\(_{b(1a)}\), x/GABA\(_{b(1b)}\) and x/GABA\(_{b(2)}\) were assembled and subcloned into expression vectors (see Section 3.5). *In vitro* transcription of 5'-capped polyadenylated cRNAs from these constructs yielded transcripts of the expected size, which generated proteins of the correct predicted molecular weight when translated *in vitro* (see Figure 3.21). To assess the possible functional contributions of individual GABA\(_b\) receptor subunits to the development of *X.laevis* embryos, 5'-capped polyadenylated cRNAs were transcribed from the verified constructs, as described in Section 2.1.17, and used for microinjections into 2-cell or 8-cell blastulae, as described in Section 2.3.7, in order to overexpress individual x/GABA\(_{b(1a)}\), x/GABA\(_{b(1b)}\) and x/GABA\(_{b(2)}\) subunit proteins during embryonic development.

In the first instance, 1.6ng cRNA was injected into around fifty 2-cell blastulae per construct, 0.8ng per blastomere, from the same batch of fertilised embryos per experiment. After initial optimisation using several different cRNA preparations, a single preparation was produced and experiments were performed three times. Representative batches of stage 40 embryos were selected for photographing. Photographs showing the phenotypes observed, following microinjection of x/GABA\(_{b(1a)}\), x/GABA\(_{b(1b)}\) and x/GABA\(_{b(2)}\) subunit cRNAs at the 2-cell stage, are shown in Figure 6.1.
In order to target the expression of these GABA$_{\alpha}$ receptor subunit proteins towards the tissues of the developing embryonic CNS, 1.6ng cRNA was injected into the dorsal blazones of around 50 8-cell blastulae per construct, 0.8ng per dorsal blastomere, from the same batch of fertilised embryos. These experiments were performed three times and representative batches of stage 40 embryos were selected for photographing. Photographs showing the phenotypes observed, following microinjection of x/GABA$_{\alpha(1a)}$, x/GABA$_{\alpha(1b)}$ and x/GABA$_{\alpha(2)}$ subunit cRNAs at the 8-cell stage, are shown in Figure 6.2. A selection of injected embryos exhibiting significant morphological defects at stage 40, compared to the uninjected wild-type embryos, is shown in Figure 6.3.

In order to quantify the phenotypic variation observed in stage 40 embryos, following microinjection of x/GABA$_{\alpha(1a)}$, x/GABA$_{\alpha(1b)}$ and x/GABA$_{\alpha(2)}$ subunit cRNAs at both the 2-cell and 8-cell stage, embryos were scored according to the system described in Section 2.3.9 (for an example see Figure 2.1). The percentage proportion of embryos scoring 1-4 within each batch was calculated (shown in Tables 9.4A and B), and these data were used to generate the stacked column charts shown in Figure 6.4.
Figure 6.1 Phenotypes observed in stage 40 (tadpole) embryos following microinjection of 1.6ng A. $x_i\text{GABA}_{\text{a(ta)}}$, B. $x_i\text{GABA}_{\text{a(tb)}}$, or C. $x_i\text{GABA}_{\text{a(t2)}}$ cRNAs into 2-cell blastulae. D. Uninjected controls at stage 40.
Figure 6.2 Phenotypes observed in stage 40 (tadpole) embryos following microinjection of 1.6ng A. xIGABA_{b(1a)}, B. xIGABA_{b(1b)} or C. xIGABA_{b(2)} cRNAs into 8-cell blastulae. D. Uninjected controls at stage 40. Merged images show location of lineage tracer (green).
Figure 6.3 Phenotypes observed in stage 40 (tadpole) embryos scoring 2, 3 or 4 following microinjection of 1.6ng A. xIGABA_{A(1a)}, B. xIGABA_{B(1a)} or C. xIGABA_{B(2a)} cRNAs into 8-cell blastulae. Images show location of lineage tracer (green).
Figure 6.4 Stacked column charts showing the percentage proportion of embryos scoring 1(), 2(), 3() or 4(), at stage 40, following microinjection of 1.6 ng x/GABA_{(1a)}, x/GABA_{(1b)} or x/GABA_{(2)} cRNAs into 2-cell (left) or 8-cell (right) blastulae. Uninjected controls are shown in each case.
6.2.2 Embryos overexpressing xIGABA_{B(1)} and xIGABA_{B(2)} subunits exhibit a predominantly wild-type phenotype

Initial analysis of the data shown in Figures 6.1 and 6.4 reveals that 100% of embryos injected with 1.6ng xIGABA_{B(1a)} or xIGABA_{B(1b)} subunit cRNAs, at the 2-cell stage, developed into stage 40 tadpoles that exhibited no observable morphological defects, compared to 96% of those injected with 1.6ng xIGABA_{B(2)} cRNA. Injected embryos also displayed wild-type swimming behaviour, in response to stimulus, and developed at the same rate as uninjected control embryos. These data suggest that overexpression of individual xIGABA_{B(1a)}, xIGABA_{B(1b)} or xIGABA_{B(2)} subunit proteins across all regions of the developing embryo does not adversely affect the normal morphology or overt behaviour of X.laevis embryos.

Analysis of the data shown in Figures 6.2 and 6.4 shows that 77% of embryos injected with 1.6ng xIGABA_{B(1a)} cRNA, into dorsal blastomeres at the 8-cell stage, developed into stage 40 tadpoles that were indistinguishable from their uninjected wild-type counterparts, compared to 81% and 76% of those injected with xIGABA_{B(1b)} and xIGABA_{B(2)} cRNA respectively. These embryos also displayed wild-type swimming behaviour, in response to stimulus, and developed at the same rate as uninjected control embryos. The lineage tracer, visible in injected embryos, also indicates that cells overexpressing xIGABA_{B(1a)}, xIGABA_{B(1b)} or xIGABA_{B(2)} subunits are viable and contribute to differentiated structures in these tadpole embryos. However, analysis of the data shown in Figure 6.3 shows that, for each construct, the remaining injected embryos exhibited a range of morphological defects, from moderate to severe, and were assigned scores of 2, 3 and 4. These data show that overexpression of xIGABA_{B(2)} in the developing CNS induced the most marked deviation from wild-type morphology, with 7% of xIGABA_{B(2)}-injected embryos exhibiting
major truncation and a total loss of recognisable head and tail features, scoring 4, compared with 4% and 3% of embryos injected with \(x/GABA_{b(1a)} \) and \(x/GABA_{b(1b)} \) cRNA respectively.

Whilst the frequency of \(x/GABA_{b(1a)} \), \(x/GABA_{b(1b)} \) or \(x/GABA_{b(2)} \)-injected embryos scoring 2-4 was similar in all experiments carried out, the morphological defects observed were not reproducible and, as such, it was not possible to ascribe any specific phenotype to overexpression of any particular \(x/GABA_b \) receptor subunit. Also, the percentage proportion of embryos scoring 2-4 in each case is small, with around 80% of injected embryos developing normally. Where normal muscle anatomy was preserved, embryos scoring 2 or 3 retained wild-type swimming behaviour, and even those scoring 4 exhibited some visible motor activity in response to stimulus. Thus, despite the phenotypic variability described here, these data suggest that, overall, a high level overexpression of \(x/GABA_{b(1a)} \), \(x/GABA_{b(1b)} \) or \(x/GABA_{b(2)} \) subunit proteins in developing dorsal tissues does not adversely affect the normal morphology or overt behaviour of *X.laevis* embryos.
6.2.3 Co-overexpression of xIGABA_{B(1)} and xIGABA_{B(2)} subunits during embryonic development

To assess the possible functions of GABA_B receptor heterodimers during the development of *X.laevis* embryos, transcribed xIGABA_{B(1a)} and xIGABA_{B(1b)} cRNAs were combined separately with xIGABA_{B(2)} cRNA, in a 1:1 ratio, and used for microinjections into 2-cell or 8-cell blastulae, as described in Section 2.3.7, in order to overexpress xIGABA_{B(1a/2)} or xIGABA_{B(1b/2)} heterodimers during embryonic development.

In the first instance, a total of 1.6ng cRNA was injected into around fifty 2-cell blastulae per co-injection, 0.8ng per blastomere, from the same batch of fertilised embryos per experiment. Experiments were performed three times using the same cRNA preparations used in Section 6.2.1. Representative batches of stage 40 embryos were selected for photographing. Photographs showing the phenotypes observed, following co-microinjection of xIGABA_{B(1a/2)} or xIGABA_{B(1b/2)} cRNAs at the 2-cell stage, are shown in Figure 6.5.

In order to target the expression of GABA_B receptor heterodimers towards the tissues of the developing embryonic CNS, a total of 1.6ng cRNA was injected into the dorsal blastomeres of around fifty embryos at the 8-cell stage per co-injection, 0.8ng per blastomere, from the same batch of fertilised embryos. These experiments were performed three times and representative batches of stage 40 embryos were selected for photographing. Photographs showing the primary phenotype observed in embryos at stage 25 (tailbud) and stage 40 (tadpole), following co-microinjection of xIGABA_{B(1a/2)} or xIGABA_{B(1b/2)} cRNAs at the 8-cell stage, are shown in Figure 6.6. A selection of injected
embryos exhibiting significant morphological defects at stage 40, compared to the uninjected wild-type embryos, is shown in Figure 6.7.

In each case, batches of embryos were scored at stage 40, as described in Section 2.3.9, the percentage proportion of embryos scoring 1-4 within each batch was calculated (shown in Tables 9.4A and B), and these data were used to generate the stacked column charts shown in Figure 6.8.
Figure 6.5 Phenotypes observed in stage 40 (tadpole) embryos following co-microinjection of a total of 1.6ng A. x/GABA\textsubscript{A}(1a/2) or B. x/GABA\textsubscript{B}(1b/2) cRNAs into 2-cell blastulae. C. Uninjected controls at stage 40.
Figure 6.6 Phenotypes observed in stage 25 (tailbud) embryos following co-microinjection of 1.6ng A. x/GABA\(_{\text{A}(1\alpha/2)}\) or B. x/GABA\(_{\text{B}(1\alpha/2)}\) cRNAs into 8-cell blastulae. Phenotypes observed in stage 40 (tadpole) embryos following co-microinjection of 1.6ng A. x/GABA\(_{\text{A}(1\alpha/2)}\) or B. x/GABA\(_{\text{B}(1\alpha/2)}\) cRNAs into 8-cell blastulae. Uninjected controls are shown at C. stage 25, and F. stage 40. Merged images show location of lineage tracer (green).
Figure 6.7 Phenotypes observed in stage 40 (tadpole) embryos scoring 2, 3 or 4 following co-microinjection of a total of 1.6 ng A. x/GABA_{B<i>1(14d)} or B. x/GABA_{B<i>1(12d)} cRNAs into 8-cell blastulae. Images show location of lineage tracer (green).
Figure 6.8 Stacked column charts showing the percentage proportion of embryos scoring 1(), 2(), 3() or 4(), at stage 40, following co-microinjection of a total of 1.6ng x\textit{GABA} \text{A}_{\text{a1a2}} or x\textit{GABA} \text{A}_{\text{a1b2}} cRNAs into 2-cell (left) or 8-cell (right) blastulae. Uninjected controls are shown in each case.
6.2.4 Embryos overexpressing $x/GABA_{B(1a/2)}$ or $x/GABA_{B(1b/2)}$ receptor heterodimers exhibit a predominantly wild-type phenotype

Analysis of the data shown in Figures 6.5 and 6.8 shows that 77% of embryos co-injected with a total of 1.6ng $x/GABA_{B(1a/2)}$ cRNA, at the 2-cell stage, developed into stage 40 tadpoles that were indistinguishable from their uninjected wild-type counterparts, compared to 59% of those co-injected with 1.6ng $x/GABA_{B(1b/2)}$ cRNA. These embryos also displayed wild-type swimming behaviour, in response to stimulus, and developed at the same rate as uninjected embryos. Whilst none of the embryos injected exhibited sufficiently severe defects to be assigned a score of 4, these data show that co-injection of $x/GABA_{B(1b/2)}$ cRNA at the 2-cell stage produced the most marked changes in embryo morphology, with 12% exhibiting severe microcephaly and scoring 3 at stage 40, compared to just 5% of embryos overexpressing $x/GABA_{B(1a/2)}$ heterodimers. Whilst 30% of $x/GABA_{B(1b/2)}$-injected embryos were assigned a score of 2, these embryos were generally very well differentiated but for a significant kink in the tail, and all of the embryos injected here retained wild-type swimming activity in response to stimulus. Thus, these data suggest that overexpression of $x/GABA_{B(1a/2)}$ or $x/GABA_{B(1b/2)}$ receptor heterodimers across all regions of the developing embryo does not adversely affect the normal morphology or overt behaviour of *X.laevis* embryos.

Analysis of the data shown in Figures 6.6 and 6.8 reveals that 60% of embryos co-injected with a total of 1.6ng $x/GABA_{B(1a/2)}$ cRNA, into dorsal blastomeres at the 8-cell stage, developed into stage 40 tadpoles that exhibited no observable morphological defects, compared to 62% of embryos co-injected with 1.6ng $x/GABA_{B(1b/2)}$ cRNA. These embryos also displayed wild-type swimming behaviour, in response to stimulus, and developed at the same rate as uninjected control embryos. The lineage tracer, visible in injected
embryos, also indicates that cells overexpressing \(\alpha / \) \(\beta (1a/2) \) or \(\alpha / \) \(\beta (1b/2) \) heterodimers are viable and contribute to differentiated structures in these tadpole embryos. However, a small number of injected embryos exhibited minor abnormalities at stage 25 (see Figures 6.6A and 6.6B) which had developed into moderate or severe morphological defects by stage 40, scoring 2, 3 or 4 (see Figure 6.7). For example, 20% of embryos co-injected with 1.6ng \(\alpha / \) \(\beta (1a/2) \) CRNA at the 8-cell stage exhibited a total loss of identifiable head structures, or acephaly, at stage 40, and were assigned a score of 4. Where normal muscle anatomy was preserved, however, these embryos still retained wild-type swimming activities. Overexpression of \(\alpha / \) \(\beta (1b/2) \) heterodimers in the developing CNS gave rise to less severe defects, with just 15% exhibiting microcephaly or body truncation at stage 40, scoring 3, and none scoring 4.

Whilst these results suggest that overexpression of heterodimeric \(\alpha / \) \(\beta \) receptors in the developing CNS, particularly \(\alpha / \) \(\beta (1a/2) \) heterodimers, can bring about morphogenetic effects in developing \(X.laevis \) embryos, the majority of injected embryos, typically 60%, were indistinguishable from the uninjected controls and, as such, a \(\alpha / \) \(\beta \) receptor-specific effect seems unlikely. Furthermore, the differential effects of \(\alpha / \) \(\beta (1a/2) \) versus \(\alpha / \) \(\beta (1b/2) \) heterodimer overexpression, described here, were not always reproducible, casting doubt upon the functional relevance of these apparent \(\alpha / \) \(\beta (1) \) isoform-specific effects. Thus, despite the phenotypic variability observed, these data suggest that a high level overexpression of \(\alpha / \) \(\beta (1a/2) \) or \(\alpha / \) \(\beta (1b/2) \) receptor heterodimers in developing dorsal tissues does not affect normal morphology or behaviour in the majority of \(X.laevis \) embryos. As such, further exploration of this avenue of investigation was dropped in favour of the pursuit of evidence of functionality of the orphan receptor, \(\alpha / \) \(\beta (a), \) by use of this gain-of-function assay.
6.2.5 Overexpression of xIGABA_{BL(a)} during embryonic development

In Results Chapter One, a cDNA clone encoding the seven-transmembrane protein xIGABA_{BL(a)} was assembled and subcloned into an expression vector (see Section 3.5.3). *In vitro* transcription of 5'-capped polyadenylated cRNA from this construct yielded a transcript of the expected size, which generated a protein of the correct predicted molecular weight when translated *in vitro* (see Figure 3.21). To investigate the functions of GABA_{BL} during the development of *X.laevis* embryos, 5'-capped polyadenylated xIGABA_{BL(a)} cRNA was transcribed from the verified construct, as described in Section 2.1.17, and used for microinjections into 2-cell or 8-cell blastulae, as described in Section 2.3.7, in order to overexpress xIGABA_{BL(a)} protein during embryonic development.

In the first instance, 1.6ng xIGABA_{BL(a)} cRNA was injected into at least fifty 2-cell blastulae per experiment, 0.8ng per blastomere, to achieve overexpression of xIGABA_{BL(a)} protein in all regions of the embryo during development. After initial optimisation using several different cRNA preparations, a single preparation was produced and experiments were performed three times. Representative batches of stage 40 embryos were selected for photographing. Photographs showing the phenotypes observed in injected embryos at stage 23 are shown in Figure 6.9A; phenotypes observed at stage 40 are shown in Figures 6.9C and E.

In an effort to uncover any tissue-specific effects of xIGABA_{BL(a)} overexpression in developing embryos, xIGABA_{BL(a)} cRNA was targeted towards either dorsal or ventral tissues through microinjection of xIGABA_{BL(a)} cRNA into dorsal or ventral blastomeres at the 8-cell stage, 0.8ng per blastomere. Around fifty embryos were injected per experiment, which were performed three times, and representative batches of embryos
were selected for photographing. Photographs showing the phenotypes observed in stage 40 embryos overexpressing \(x/GABA_{BL(a)} \) in dorsal or ventral tissues, following microinjection of \(x/GABA_{BL(a)} \) cRNA at the 8-cell stage, are shown in Figure 6.10.

To investigate any cRNA concentration-dependent effects of \(x/GABA_{BL(a)} \) overexpression, a dose response assay was performed whereby a total of 0.2ng, 0.4ng, 0.8ng or 1.6ng cRNA was injected into embryos at the 2-cell stage. Around twenty 2-cell blastulae were injected, per cRNA concentration analysed, using a common batch of fertilised embryos to account for possible batch variability. This experiment was repeated and representative batches of embryos were selected for photographing. Photographs showing the phenotypes observed in these injected embryos at stage 40 are shown in Figure 6.11.

For each of the experiments described above, batches of embryos were scored at stage 40, as described in Section 2.3.9, and the percentage proportion of embryos scoring 1-4 within each batch was calculated (shown in Tables 9.4A, B and C). These data were used to generate the stacked column charts shown in Figure 6.12.
Figure 6.9 Phenotypes observed in embryos, following microinjection of 1.6ng xIGABA_cRNA into 2-cell blastulae, at A. stage 23, and at C, E. stage 40 (tadpole). Uninjected controls are shown at B. stage 23, and D. stage 40. Abbreviations: yolk plug (yp), cyclopia (cyc).
Figure 6.10 Phenotypes observed in stage 40 (tadpole) embryos following microinjection of 1.6ng x/GABA_{BL(a)} cRNA into A. dorsal blastomeres, and B. ventral blastomeres, at the 8-cell stage. C. Phenotypes observed in stage 40 (tadpole) embryos following microinjection of 0.8ng x/GABA_{BL(a)} cRNA into a single dorsal blastomere at the 8-cell stage, showing opposing lateral views α and β. D. Uninjected controls at stage 40. Merged images show location of lineage tracer (green). Abbreviations: cyclopia (cvc).
Figure 6.11 A. Dose response showing phenotypes observed in stage 40 (tadpole) embryos, following microinjection of 0.2ng, 0.4ng, 0.8ng or 1.6ng x/GABA_{BL} cRNA at the 2-cell stage.
B. Uninjected controls at stage 40.
Figure 6.12 Stacked column charts showing the percentage proportion of embryos scoring 1(), 2(), 3() or 4(), at stage 40, following A. microinjection of 1.6ng xGABA_{B(L0)} cRNA into 2-cell (left) or 8-cell (right) blastulae, and B. microinjection of 0.2ng, 0.4ng, 0.8ng or 1.6ng xGABA_{B(L0)} cRNA at the 2-cell stage. Uninjected controls are shown in each case.
6.2.6 Embryos overexpressing $x_lGABA_{BL(a)}$ exhibit a reproducible body truncation phenotype

Initial analysis of the data shown in Figures 6.9 and 6.12A reveals that 100% of embryos injected with 1.6ng $x_lGABA_{BL(a)}$ cRNA at the 2-cell stage exhibit around 30% shorter body length, at stage 23, and around 50% shorter body length, at stage 40, than their uninjected wild-type counterparts. Minor gastrulation defects are visible in some stage 23 embryos, in the form of small ‘yolk plugs’ emanating from the blastopore (see Figure 3.9A), and at stage 40, where many injected embryos possess open neural plates or split tails (see Figure 3.9B). Effective wild-type swimming activity was precluded by the lack of correctly developed fin and tail structures in 100% of injected embryos, although all exhibited some visible motor activity in response to stimulus. These data suggest that overexpression of $x_lGABA_{BL(a)}$ protein across all regions of the developing embryo gives rise to gastrulation defects and a reproducible body truncation phenotype post-neurulation.

6.2.7 Some embryos overexpressing $x_lGABA_{BL(a)}$ exhibit eye defects and cyclopia

Analysis of the data presented in Figure 6.9E shows that, in addition to the body truncation phenotype, some embryos injected with $x_lGABA_{BL(a)}$ cRNA at the 2-cell stage exhibit eye defects, such as cyclopia, indicative of failures in the correct separation of the eye field during development. Decreased eye size, or total loss of eye specification, is observed in other $x_lGABA_{BL(a)}$-injected embryos, see Figures 6.10C and 6.11A, and thus represents a reproducible phenotypic manifestation of overexpression of $x_lGABA_{BL(a)}$ in $X.laevis$ embryos.
6.2.8 Embryos exhibit distinct phenotypes depending on site of xGABA_{BL(a)} overexpression

Analysis of the data shown in Figures 6.10A and 6.12A reveals that 100% of stage 40 embryos injected with xGABA_{BL(a)} cRNA, into dorsal blastomeres at the 8-cell stage, exhibit a comparable body truncation phenotype and gastrulation defects to those injected at the 2-cell stage (see Figure 6.9C). However, failures in eye separation or specification appear to be more prevalent in embryos injected at the 8-cell stage, with 67% exhibiting cyclopia or complete eye loss at stage 40, compared to just 23% of those injected at the 2-cell stage. These data suggest that this phenotype might be associated with a high level of xGABA_{BL(a)} protein expression in dorsal tissues, such as the developing CNS. This observation is supported by the data shown in Figure 6.10C, which show that micro-injection of 0.8ng xGABA_{BL(a)} cRNA into a single dorsal blastomere, at the 8-cell stage, brings about loss of eye specification on the injected side of the embryo, but not on the uninjected side. Interestingly, embryos injected in this way also exhibit a milder truncation phenotype, compared with embryos injected with 0.8ng xGABA_{BL(a)} cRNA into two dorsal blastomeres (see Figure 6.10A), indicating that the determinants giving rise to the truncation phenotype also reside in dorsal tissues.

The data shown in Figure 6.10B reveal that embryos injected with 1.6ng xGABA_{BL(a)} cRNA into ventral blastomeres, at the 8-cell stage, develop into tadpoles that exhibit no observable morphological defects and are indistinguishable from their uninjected wild-type counterparts. These data demonstrate that the distinct morphology observed in injected embryos occurs when xGABA_{BL(a)} protein is overexpressed in dorsal tissues, and that overexpression in ventral tissues has no observable effect on X.laevis embryo development.
6.2.9 The phenotypic effects observed in xIGABA_{BL(a)} overexpressing embryos are cRNA concentration-dependent

The data presented in Figures 6.11 and 6.12B show that stage 40 embryos, injected with xIGABA_{BL(a)} cRNA at the 2-cell stage, exhibit morphological defects even at significantly reduced cRNA concentrations. When 0.2ng xIGABA_{BL(a)} cRNA is injected into 2-cell blastulae, embryos exhibit minimal morphological defects at stage 40, with just 24% deviating from the wild-type phenotype, scoring 2 or 3. However, when 0.4ng xIGABA_{BL(a)} cRNA is injected, this percentage proportion increases to 86%. When 0.8ng or 1.6ng xIGABA_{BL(a)} cRNA is injected, 100% of embryos exhibit morphological defects at stage 40, whilst embryo viability drops from 100%, when 0.4ng cRNA is injected, to around 60% or 45%, when 0.8ng or 1.6ng cRNA is injected. These data strongly suggest that the phenotype observed in these injected embryos occurs as a result of xIGABA_{BL(a)} overexpression, and that these effects are observed even at significantly reduced cRNA concentrations.
6.3 Characterisation of the phenotypes arising from xIGABA_{BL(a)} overexpression during embryo development

6.3.1 Investigating the effect of xIGABA_{BL(a)} overexpression on convergent extension

The data shown in Figures 6.9, 6.10 and 6.11 indicate that a prominent and reproducible phenotype occurring in tailbud and tadpole embryos, as a result of xIGABA_{BL(a)} overexpression, is body truncation. Convergence and extension of mesodermal tissue has been shown to be critical for anteroposterior axial elongation in *Xenopus* embryos, and is regulated by the non-canonical Wnt/PCP signalling pathway during gastrulation (Tada.M et al. 2000, Wallingford,J.B et al. 2000, Wallingford, J.B et al. 2001) (see Section 1.1.4). It was postulated here that a reduction in axial elongation of tailbud embryos overexpressing xIGABA_{BL(a)} might occur as a result of earlier failures in the regulation of cell movements and polarity during gastrulation.

In order to investigate the effect of xIGABA_{BL(a)} overexpression on mesodermal induction and convergent extension, and thus assay the biological activity of xIGABA_{BL(a)} protein during gastrulation, animal caps explanted from xIGABA_{BL(a)}-injected and uninjected embryos were incubated in the presence and absence of the mesoderm-inducing growth factor, activin A, as described in Section 2.3.9. This experiment was performed twice, and representative caps and embryos were selected for photographing. Photographs showing xIGABA_{BL(a)}-overexpressing animal caps at stage 21, following incubation with or without activin, are shown in Figures 6.13A and C; uninjected animal caps at stage 21, following incubation with or without activin, are shown in Figures 6.13D and E. xIGABA_{BL(a)}-injected and uninjected stage 21 embryos are shown in Figures 6.13E and F respectively.
Figure 6.13
A. Animal caps at stage 21 following micro-injection with 1.6ng xIGABA_{BL} cRNA at 2-cell stage.
B. Uninjected control animal caps at stage 21.
C. Animal caps at stage 21 following micro-injection with 1.6ng xIGABA_{BL} cRNA at 2-cell stage and incubation with activin A.
D. Uninjected control animal caps at stage 21 following incubation with activin A.
E. Embryos at stage 21 following micro-injection with 1.6ng xIGABA_{BL} cRNA at 2-cell stage.
F. Uninjected embryos at stage 21.
Abbreviations: Act (activin A)
6.3.2 \(xI\text{GABA}_{BL(a)} \) overexpression interferes with convergent extension in animal caps

The data shown in Figures 6.13C and D indicate that animal caps explanted from embryos overexpressing \(xI\text{GABA}_{BL(a)} \), following microinjection of 1.6 ng \(xI\text{GABA}_{BL(a)} \) cRNA at the 2-cell stage, respond differently to caps explanted from uninjected wild-type embryos, following incubation with the mesoderm-inducing growth factor, activin A. Following explantation, in the absence of activin, both sets of animal caps healed to form spheroidal clumps of epidermal tissue (see Figures 6.13A and B). In the presence of activin, cells were observed to differentiate into presumptive mesodermal tissue in both sets of caps by stage 12. By stage 21 this tissue had become markedly elongated in the wild-type caps, but not in those overexpressing \(xI\text{GABA}_{BL(a)} \) (see Figures 6.6C and D). These data indicate that, whilst the initial induction of mesodermal tissue by activin appears to be unaffected, the subsequent elongation of mesoderm by convergent extension, in caps overexpressing \(xI\text{GABA}_{BL(a)} \), is limited compared to that observed in induced wild-type caps.
6.3.3 Investigating the effect of \(x\text{GABA}_{BL(a)} \) overexpression on the transcriptional regulation of mesoderm-specific markers

In order to confirm the presence of mesodermal tissue in the animal caps incubated with activin A in Section 6.3.1, and to investigate the biochemical activity of \(x\text{GABA}_{BL(a)} \) in this assay, reverse-transcriptase PCR (RT-PCR) was used to detect mRNAs transcribed from genes known to be upregulated following mesoderm induction. Six such mesoderm-specific markers were chosen for investigation. \textit{Xenopus} brachyury (\(x\text{Bra} \)), a transcription factor widely expressed in the mesoderm that is necessary for convergent extension and notochord differentiation (Smith, J.C et al. 1991, Conlon, F.L et al. 1996, Smith, J.C et al. 1997), type-II collagen (\(x\text{Coll-2} \)), a major structural component of the outer sheath of the notochord (Bieker, J.J et al. 1992, Su, M.W et al. 1991), lysyl oxidase-like 3 (\(x\text{Loxl-3} \)), a putative amine oxidase specifically expressed in the notochord (Geach, T et al. 2005), alpha cardiac actin (\(x\alpha\text{-actin} \)), a marker of cardiac muscle differentiation induced by activin A (Logan, M et al. 1993), sox-2 (\(x\text{Sox-2} \)), a transcription factor involved in neural induction (Mizuseki, K et al. 1998), and endodermin (\(x\text{Endo} \)), an endoderm-specific marker that is also expressed in the notochord during neurulation (Ahmed, N et al. 2004). Detection of the uniformly expressed \textit{Xenopus} orthinine decarboxylase (\(x\text{ODC} \)), an essential metabolic enzyme present in all embryonic cells, was used as control in this assay.

Total RNA was extracted from \(x\text{GABA}_{BL(a)} \)-injected and uninjected caps, following incubation in the presence or absence of activin A, and \(x\text{GABA}_{BL(a)} \)-injected and uninjected embryos, at stage 21, as described in Section 2.1.8. RT-PCR was carried out, as described in Section 2.1.10, using the oligonucleotide primers and annealing temperatures shown in \textit{Table} 6.14. The DNA fragments amplified by RT-PCR are shown in \textit{Figure} 6.15.
<table>
<thead>
<tr>
<th>Transcript</th>
<th>Primers</th>
<th>Nucleotide Sequence</th>
<th>Loc (bp)</th>
<th>Size (bp)</th>
<th>°C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>xBra</td>
<td>xBra-fwd1</td>
<td>5'-GCTGGAAAGTGATGGAATGGGAG"3'</td>
<td>433</td>
<td>319</td>
<td>52.0</td>
<td>Agius,E et al.</td>
</tr>
<tr>
<td></td>
<td>xBra-rev1</td>
<td>5'-TTAAGTGCATATATCTGCTCA-3'</td>
<td>731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xColl-2</td>
<td>xColl-2-fwd1</td>
<td>5'-AGGCTTGGCTGCTCTCAAGGT-3'</td>
<td>3470</td>
<td>396</td>
<td>52.0</td>
<td>Sasai,Y et al.</td>
</tr>
<tr>
<td></td>
<td>xColl-2-rev1</td>
<td>5'-TGTAACCCGCTGGGTTCC-3'</td>
<td>3846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xLoxl-3</td>
<td>xLoxl-3-fwd1</td>
<td>5'-CAAGGAATCAGTAGGATGCGT-3'</td>
<td>616</td>
<td>243</td>
<td>52.0</td>
<td>Geach,T et al.</td>
</tr>
<tr>
<td></td>
<td>xLoxl-3-rev1</td>
<td>5'-ACGCTTATTCTTCTCGTG-3'</td>
<td>859</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xo-actin</td>
<td>xo-actin-fwd1</td>
<td>5'-TCCCTGTTATGTTCTGTGTA-3'</td>
<td>480</td>
<td>253</td>
<td>52.0</td>
<td>Stutz,F et al.</td>
</tr>
<tr>
<td></td>
<td>xo-actin-rev1</td>
<td>5'-TCTCAAGTGCCAAAGCCACATA-3'</td>
<td>711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xSox-2</td>
<td>xSox-2-fwd1</td>
<td>5'-GAGGATGGCCTGACCTTGCTG-3'</td>
<td>484</td>
<td>214</td>
<td>52.0</td>
<td>DeRobertis,E,M et al.</td>
</tr>
<tr>
<td></td>
<td>xSox-2-rev1</td>
<td>5'-GGACATGCTGAGGCGTGGC-3'</td>
<td>677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xEndo</td>
<td>xEndo-fwd1</td>
<td>5'-GACGAAAATGGCCAAACAC-3'</td>
<td>1521</td>
<td>386</td>
<td>52.0</td>
<td>Sasai,Y et al.</td>
</tr>
<tr>
<td></td>
<td>xEndo-rev1</td>
<td>5'-GGATTTTAATGGCGAACAGG-3'</td>
<td>1868</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xLODC</td>
<td>xLODC-fwd1</td>
<td>5'-CAGCTACTGCTGCTGGTCT-3'</td>
<td>674</td>
<td>228</td>
<td>52.0</td>
<td>Agius,E et al.</td>
</tr>
<tr>
<td></td>
<td>xLODC-rev1</td>
<td>5'-CACATGAAGACTTACACC-3'</td>
<td>883</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.14 Summary of oligonucleotide primers used for RT-PCR. Binding loci (bp), amplicon sizes (bp), annealing temperatures used (°C), and references are shown.
Figure 6.15 DNA fragments generated by RT-PCR from reverse-transcribed total RNA from xIgABA_{BL}(a)-injected and uninjected stage 21 animal caps, following incubation with or without activin, and embryos. -RT controls for embryos are shown.
6.3.4 \(\textit{xlGABA}_{BL(a)} \) overexpression does not interfere with mesoderm induction

The data shown in Figure 6.15 indicate that transcripts encoding six markers of activin-induced mesoderm formation are readily detected by RT-PCR in both wild-type and \(\textit{xlGABA}_{BL(a)} \)-overexpressing induced animal caps and embryos. In contrast, only \(\textit{x/ODC} \) transcripts are detected in un-induced wild-type and \(\textit{xlGABA}_{BL(a)} \)-overexpressing animal caps. These data indicate that the differentiated tissue, observed in both the induced wild-type and \(\textit{xlGABA}_{BL(a)} \)-overexpressing animal caps (see Figures 6.13C and D), is indeed mesodermal, and demonstrate that overexpression of \(\textit{xlGABA}_{BL(a)} \) does not affect the transcriptional regulation of the mesoderm-specific markers examined here in response to induction by activin A.

Taken together, the data shown in Figures 6.13 and 6.15 strongly suggest that \(\textit{xlGABA}_{BL(a)} \) is a biologically active protein that interferes with mesodermal convergent extension, but not induction, when overexpressed in \textit{X.laevis} animal cap explants.
6.3.5 Examination of internal structures of embryos overexpressing xIGABA\textsubscript{BL(a)}

The data shown in Figures 6.9, 6.10 and 6.11 indicate that overexpression of xIGABA\textsubscript{BL(a)} during embryonic development generates a reproducible body truncation phenotype in embryos that otherwise exhibit many wild-type features, such as differentiated head, tail and fin structures. In addition, the data shown in Figures 6.13 and 6.15 indicate that the morphogenetic effects of xIGABA\textsubscript{BL(a)} overexpression occur without affecting the transcriptional regulation of markers of mesoderm differentiation, suggesting that key internal structures such as the notochord, derived from chordamesoderm, and the somites, derived from paraxial mesoderm, would be developed in xIGABA\textsubscript{BL(a)}-overexpressing tailbud or tadpole embryos.

To investigate the internal morphology of X.laevis embryos overexpressing xIGABA\textsubscript{BL(a)}, transverse wax sections of injected and uninjected stage 40 embryos were cut and stained, as described in Section 2.3.6. Photographs of sections cut from representative embryos are shown in Figure 6.16, and enlarged photographs showing sections of interest are presented in Figure 6.17.
Figure 6.16 A. Stage 40 embryo, injected with 1.6ng xGABA_{A(x)} cRNA at the 2-cell stage, showing location of transverse sections α, β, γ, δ and ε. B. Uninjected wild-type embryo at stage 40, showing location of transverse sections α, β, γ, δ and ε. C. Transverse wax sections of a stage 40 embryo, injected with 1.6ng xGABA_{A(x)} cRNA at the 2-cell stage. D. Transverse wax sections of an uninjected wild-type embryo at stage 40. Abbreviations: bv (brain ventricle), df (dorsal fin), eye (eye), gut (gut), ln (lens), msc (mesencephalon), not (notochord), nt (neural tube), oc (oral cavity), ov (otic vesicle), rbc (rhombencephalon), som (somite). Scale bars shown represent 200μm.
Figure 6.17 Enlarged transverse wax sections \(\gamma \) and \(\delta \) from A, a stage 40 embryo injected with 1.6ng \(x\text{GABA}_{BL0} \) cRNA at the 2-cell stage, and B, an uninjected wild-type embryo at stage 40. Abbreviations: not (notochord), np (neural plate), nt (neural tube), rbc (rhombencephalon), som (somite).

Scale bars shown represent 200\(\mu \)m.
6.3.6 Embryos overexpressing $x\text{GABA}_\text{BL(a)}$ exhibit brain, eye, notochord and neural plate defects

The data shown in Figures 6.16 and 6.17 reveal several differences between the internal morphology of embryos overexpressing $x\text{GABA}_\text{BL(a)}$ and wild-type embryos at stage 40. Whilst most differentiated internal structures are present in $x\text{GABA}_\text{BL(a)}$-injected embryos, such as the brain, neural plate, notochord and somites, there are marked differences in the morphology of these structures, particularly anteriorly, compared to wild-type embryos. Like many embryos overexpressing $x\text{GABA}_\text{BL(a)}$, the animal sectioned here is cyclopean and possesses a single eye that contains a lens but which exhibits a distinct morphology from the wild-type embryonic eye (see Figures 6.16Ca and b). This animal also exhibits distinct morphology in anterior regions of the brain, such as the mesencephalon and rhombencephalon, and lacks a visible brain ventricle. However, consistent with the observation that eye defects occur sporadically in $x\text{GABA}_\text{BL(a)}$-overexpressing embryos (see Figures 6.9, 6.10 and 6.11), other injected embryos sectioned here display wild-type eye morphology, even when cyclopean, and possess brain ventricles.

A consistent observation made in all $x\text{GABA}_\text{BL(a)}$-overexpressing embryos sectioned here was the presence of a markedly enlarged notochord and neural tube, across the left-right axis, and a more open neural plate with respect to wild-type embryos (see Figures 6.17A and B). In addition, the cells inside the notochord of injected embryos appeared larger and more vacuolated than their wild-type counterparts. Taken together with the fact that $x\text{GABA}_\text{BL(a)}$-overexpressing embryos are truncated, the data shown in Figures 6.17A and B indicate that the notochord must be considerably shorter and broader in injected embryos than in wild-type embryos. These data support the hypothesis, based upon the results from the animal cap experiments carried out in Section 6.3.1, that $x\text{GABA}_\text{BL(a)}$-
overexpression induces morphological defects in differentiated mesodermal structures, such as the notochord, that give rise to the phenotypic effects observed in injected embryos.
6.4 Discussion

In this chapter, 5'-capped polyadenylated cRNAs, \textit{in vitro} transcribed from x/$GABA_B^{(1a)}$, x/$GABA_B^{(1b)}$, x/$GABA_B^{(2)}$ and x/$GABA_B^{L(a)}$ expression constructs in Section 3.5, were microinjected into cleavage stage embryos to achieve overexpression of the encoded proteins during \textit{X.laevis} embryonic development. In each case, the morphogenetic and behavioural effect of overexpression of these individual proteins, and co-expression of the x/$GABA_B^{(1)}$ and x/$GABA_B^{(2)}$ receptor subunit proteins, was evaluated, and the former was also quantified by means the scoring system developed in Section 2.3.9. The effect of targeting overexpression of these proteins towards distinct developing tissues was investigated, and the reproducible phenotypes derived from x/$GABA_B^{L(a)}$ expression were further characterised by means of a animal cap mesoderm elongation assay, and by analysis of wax-sections from x/$GABA_B^{L(a)}$-injected embryos. The key findings from the data presented in this chapter are evaluated below.

6.4.1 Overexpression of x/$GABA_B$ receptor subunits or heterodimers during \textit{X.laevis} development does not generate a reproducible morphological phenotype

In Sections 6.2 of this chapter, x/$GABA_B^{(1)}$ and x/$GABA_B^{(2)}$ receptor subunit cRNAs were microinjected into \textit{X.laevis} blastulae, either in isolation or in combination, to induce the overexpression of x/$GABA_B$ receptor subunits or heterodimers during embryonic development, respectively. It was hypothesized here that overexpression of x/$GABA_B$ receptor heterodimers might increase GABA-ergic inhibition of neural circuits and reduce embryo locomotion, swimming activity or response to stimulus. It was further postulated
that x/GABA$_B$(1) and x/GABA$_B$(2) receptor subunit or heterodimer overexpression might produce observable changes in morphology, indicative of a role for these proteins in the morphogenetic events occurring during embryogenesis. However, the results presented here provide no evidence to support these hypotheses, and demonstrate that overexpression of x/GABA$_B$ receptor subunits or heterodimers has a very limited effect of the morphology and overt behaviour of developing embryos, even when expressed at a high level in the developing CNS.

The data presented in Figure 6.4 show that stage 40 embryos, injected with x/GABA$_B$(1a), x/GABA$_B$(1b) or x/GABA$_B$(2) subunit cRNAs at the 2-cell stage, exhibit wild-type morphology and score similarly to uninjected stage 40 embryos. When x/GABA$_B$(1a), x/GABA$_B$(1b) or x/GABA$_B$(2) subunit cRNAs are concentrated in dorsal tissues, following microinjection into 8-cell blastulae, around 10% of embryos exhibited moderate or severe morphological defects at stage 40, scoring 3 or 4, but around 80% were indistinguishable from wild-type embryos at stage 40 and scored 1. These data strongly suggest that overexpression of x/GABA$_B$ receptor subunits during *X.laevis* development does not bring about any significant morphogenetic effect.

The data presented in Figure 6.8 indicate that co-microinjection of x/GABA$_B$(1a/2) or x/GABA$_B$(1b/2) cRNAs into 2-cell blastulae gives rise to increased deviation from wild-type morphology at stage 40, compared to that of the component subunit cRNAs, with 23% x/GABA$_B$(1a/2)-injected and 41% x/GABA$_B$(1b/2)-injected embryos exhibiting morphological defects. When x/GABA$_B$(1a/2) or x/GABA$_B$(1b/2) cRNAs are concentrated in dorsal tissues, following co-microinjection into 8-cell blastulae, these percentages increase to around 40%. Intriguingly, 20% of embryos overexpressing x/GABA$_B$(1a/2) heterodimers exhibited severe morphological defects at stage 40, such as acephaly, and were assigned a score
of 4; this is in contrast to those overexpressing x/GABA$_{B(1b/2)}$ heterodimers, of which none scored the maximum of 4. Whilst it is tempting to speculate that this might represent an isoform-specific morphogenetic effect, perhaps mediated by the extracellular sushi domains unique to x/GABA$_{B(1a)}$, the acephaly recorded here was not always observed when experiments were repeated, although defects were generally more severe in x/GABA$_{B(1a/2)}$-overexpressing embryos in these experiments. Thus, since it was not possible to infer any specific reproducible phenotype from these data, and given that the majority of x/GABA$_{B(1a/2)}$ or x/GABA$_{B(1b/2)}$-injected embryos exhibit wild-type morphology, the data presented in this chapter suggest that overexpression of x/GABA$_{B}$ receptor heterodimers during *X.laevis* development does not bring about any reproducible morphogenetic effect.

6.4.2 Overexpression of x/GABA$_{BL(a)}$ during *X.laevis* embryonic development generates a reproducible morphological phenotype

In Section 6.2 of this chapter, x/GABA$_{BL(a)}$ cRNA was microinjected into *X.laevis* blastulae to induce the overexpression of x/GABA$_{BL(a)}$ protein during embryonic development. The data presented in Figure 6.12A show that 100% of embryos, injected with x/GABA$_{BL(a)}$ cRNA at the 2-cell stage, exhibit moderate or severe body truncation at stage 40, and score 3 or 4. When x/GABA$_{BL(a)}$ cRNA in concentrated in dorsal tissues, following microinjection into 8-cell blastulae, a similar result is obtained except that the proportion of severely truncated embryos, scoring the maximum of 4, increases from 23% to 67%. These data strongly suggest that overexpression of x/GABA$_{BL(a)}$ during *X.laevis* development reproducible gives rise to body truncation. In addition, some x/GABA$_{BL(a)}$-injected embryos also exhibited head or eye defects, such as cyclopia, and some
exhibited more general failures during gastrulation giving rise to acephaly, open neural plates and split tails. Further experimentation revealed that overexpression of xIGABA_{BL(a)} in ventral tissues has no observable morphogenetic effect, indicating that the determinants giving rise to these phenotypes must reside in dorsal tissues (see Figure 6.10B). The data shown in Figures 6.11 and 6.12B demonstrated that the phenotypes observed in xIGABA_{BL(a)}-injected embryos manifest themselves in a cRNA concentration-dependent manner, and that the principal truncation phenotype was observed even at relatively low cRNA concentrations, further strengthening the case for a xIGABA_{BL(a)}-specific morphogenetic effect.

The biological activity of xIGABA_{BL(a)} was directly demonstrated here by means of an animal cap assay, whereby activin-induced elongation of mesodermal tissue by convergent extension was shown to be restricted in animal caps overexpressing xIGABA_{BL(a)}, compared to that observed in wild-type caps (see Figure 6.13). Further analysis of these animal cap explants revealed that the transcription regulation of six genetic markers of mesoderm induction was unaffected by xIGABA_{BL(a)} overexpression, suggesting that the morphogenetic effects observed here do not occur as a result of xIGABA_{BL(a)}-induced misexpression of these genes. Indeed, the animal sections shown in Figures 6.16 and 6.17 demonstrate that the differentiation of principal mesodermal structures in the tadpole embryo, such as the notochord and somites, which derive from chordamesoderm and paraxial mesoderm respectively, is unaffected by xIGABA_{BL(a)} overexpression. However, these sections do show that the notochord in xIGABA_{BL(a)}-injected embryos is generally shorter and broader than in uninjected embryos, and that the cells of the notochord tend to appear larger and more vacuolated (see Figure 6.17). These effects are consistent with the overt body truncation phenotype observed in injected embryos and suggests that overexpression of xIGABA_{BL(a)} interferes with the
normal axial elongation of the notochord. The irregular organisation of cells in the
differentiated notochord may be attributed to earlier aberrations in the regulation of
mesodermal cell motility or polarity during gastrulation, bringing about failures in the
convergent extension movements that are critical for establishing the anteroposterior
tissue polarity required for normal axial elongation of the tailbud embryo (Adams, D.S et al.

Consistent with the notion that GABA_{Bl(a)} is a putative orphan GPCR (Calver, A.R et al.
2003, Charles, K.J et al. 2003, Martin, S.C et al. 2004), these data indicate that x/GABA_{Bl(a)}
may be mediating its effects by signal transduction. Furthermore, the demonstration that
x/GABA_{Bl(a)} overexpression specifically disrupts mesodermal convergent extension is
highly indicative of interference in the non-canonical Wnt/PCP signalling pathway (Tada, M
Thus, it is postulated that, when overexpressed in X. laevis embryos, x/GABA_{Bl(a)} couples
to G-proteins and activates intracellular signalling cascades that directly or indirectly
disrupt the non-canonical Wnt/PCP pathway, modulating cell movements or polarity
during gastrulation without necessarily affecting cell fate.

6.4.3 Summary

The data presented in this chapter provide strong evidence for a specific morphological
phenotype in embryos overexpressing x/GABA_{Bl(a)}, but not x/GABA_B receptor subunits or
heterodimers. The demonstration that x/GABA_B receptor heterodimer overexpression in
the CNS does not bring about reproducible changes in X. laevis embryo morphology
during development is consistent with the results from previous animal studies, which
revealed that knock-out of either of the $GABA_A$ and $GABA_B$ genes in mice does not adversely affect the normal development of mouse embryos (Prosser, H.M et al. 2001, Schuler, V et al. 2001, Queva, C et al. 2003, Gassmann, M et al. 2004). These data suggest that metabotropic GABA signalling does not play a major role during vertebrate embryogenesis. The demonstration that overexpression of $x/GABA_{BL(a)}$ during $X. laevis$ development generates a reproducible body truncation phenotype, and inhibits mesodermal convergent extension in explanted animal caps, suggests that the $x/GABA_{BL(a)}$ cDNA clone isolated in Section 3.4 (see Figure 3.17) encodes a functional protein that acts in a manner reminiscent of a GPCR, by modulating intracellular signal transduction cascades such as the non-canonical Wnt/PCP signalling pathway.
Discussion
7.1 Vertebrate GABA_b receptor genes are highly conserved

7.1.1 *X.laevis* GABA_{B(1)} and GABA_{B(2)} receptor proteins exhibit striking homology to their mammalian orthologues

In Results Chapter One of this thesis, three *X.laevis* cDNA clones encoding amino acid sequences that shared identity with human GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} protein sequences were identified by homology searches. Sequence analysis of these clones uncovered open reading frames encoding putative full-length x/GABA_{B(1b)} and x/GABA_{B(2)}, and the C-terminus of putative x/GABA_{BL}, shown in Figures 3.5, 3.11 and 3.15 respectively. Using a combination of 5'RACE, RT-PCR and site-directed mutagenesis, 5' exons encoding the N-termini of putative x/GABA_{B(1a)} and x/GABA_{BL} were isolated and used to assemble the full-length x/GABA_{B(1a)} and x/GABA_{BL} cDNA clones shown in Figures 3.6 and 3.17. Using 5'RACE, three distinct x/GABA_{B(1a)} N-terminal variants were isolated (see Figure 4.4), as was a cDNA encoding a truncated x/GABA_{BL} protein that was predicted to possess only a single transmembrane domain, termed here x/GABA_{BL(b)} (see Figure 3.16).

Multiple sequence alignments of human, rodent and *X.laevis* GABA_b receptor protein sequences uncovered striking homology across GABA_{B(1a)}, GABA_{B(1b)} and GABA_{B(2)} functional domains, with the human and *X.laevis* orthologues sharing 76%, 78% and 82% amino acid sequence identity respectively. Dissimilarities were observed between mammalian and *X.laevis* N-terminal secretion signal peptide sequences, and x/GABA_{B(1)} proteins were also found to possess an 24 amino acid insert in their intracellular C-terminal tails, in a region previously demonstrated to be non-essential for normal GABA_b
receptor function (Margeta-Mitrovic, M et al. 2001a) (see Figures 3.7 and 3.8). Analysis of the \textit{X.tropicalis} GABA$_{B(1)}$ exon structure, shown in Figure 4.1, demonstrated that the latter sequence was found within exon 18, and is thus not generated by a novel splicing mechanism. This insertion constitutes the most marked divergence from the mammalian GABA$_{B(1)}$ receptor protein sequences.

The overall high level of amino acid sequence identity shared between mammalian and \textit{X.laevis} GABA$_{B(1)}$ and GABA$_{B(2)}$ receptor proteins, particularly across the PBP-like, transmembrane and coiled-coil domains demonstrated to be essential for normal GABA$_B$ receptor function, is highly indicative of a conserved role for these subunit proteins, and thus heterodimeric \textit{X.laevis} GABA$_B$ receptors.

7.1.2 \textit{X.laevis} GABA$_{B(1)}$ subunit proteins may be more readily trafficked to the plasma membrane than their mammalian counterparts

A notable distinction between mammalian and \textit{X.laevis} GABA$_{B(1)}$ proteins, with intriguing physiological implications, is the deletion of six amino acids at the C-terminal end of the coiled-coil domain just upstream of the RSR(R) ER-retention motif in \textit{x/GABA$_{B(1)}$}. The multiple sequence alignments shown in Figures 3.7 and 3.8 suggest that this deletion would give rise to a truncation of the coiled-coil domain in \textit{x/GABA$_{B(1)}$} by one complete turn in the alpha helix (approximately four amino acid residues). However, analysis of the amino acid sequence immediately downstream of this deletion in \textit{x/GABA$_{B(1)}$} reveals that the resulting N-terminal shift would bring the next leucine residue, in the subsequent sequence RQQL, into position a of the coiled-coil heptad repeat, thereby reconstituting the deleted C-terminal turn in the coiled-coil motif. The net result of this deletion thus appears
to be the translocation of the RSS(R) ER-retention motif proximally to the coiled-coil domain by six amino acids, with respect to mammalian GABA_\text{B(1)} proteins. Whilst there is contention as to whether the specific amino acid sequence upstream of the ER-retention motif is of major significance to the function of this signal (Grunewald, S et al. 2002, Gassmann, M et al. 2005) (see Section 3.2.6), the latter study by Gassmann and colleagues demonstrates that translocation of the RRS(R) motif in GABA_\text{B(1)} closer to the plasma membrane dramatically reduces its effectiveness, consistent with the model that RXR-type ER-retention motifs require a certain distance from the plasma membrane to function properly (Shikano, S et al. 2003).

It is hypothesized here that, as a result of this deletion, the RSR(R) signal in x/GABA_\text{B(1)} may not function as efficiently as that found in mammalian GABA_\text{B(1)} proteins, and so x/GABA_\text{B(1)} proteins might be more readily trafficked to the plasma membrane in the absence of the x/GABA_\text{B(2)} subunit, challenging the accepted paradigm that GABA_\text{B} receptor heterodimerization is regulated by this trafficking checkpoint (Margeta-Mitrovic, M et al. 2000, Pagano, A et al. 2001). Whilst an investigation into the significance of this deletion was outside the scope of this project, the cloning of the x/GABA_\text{B(1)} cDNAs here would facilitate a comparative study of mammalian and x/GABA_\text{B(1)} subunit trafficking that would also provide an interesting point of reference for future studies into the function of RXR-type ER retention signals.
7.1.3 *X. laevis* GABA$_{B(1a)}$ N-terminal variants may give rise to GABA$_B$ receptor heterogeneity in vivo

The three x/GABA$_{B(1a)}$ N-terminal variants isolated here by 5'RACE were shown to exhibit variability at exon 1a4, upon the elucidation of *X. laevis* GABA$_{B(f)}$ exon organisation in Section 4.2.1. x/GABA$_{B(1a)}$ variant 1 was shown to possess two exons at this location, whereas x/GABA$_{B(1a)}$ variant 2 possess a single exon, analogous to mammalian GABA$_{B(1a)}$ receptor sequences (see Figure 4.4). x/GABA$_{B(1a)}$ variant 3 was characterised by the skipping of exon 1a4, analogous to the rat GABA$_{B(1a)}$ splice variant, GABA$_{B(f)}$ reported previously (Isomoto,S et al. 1998, Wei,K et al. 2001a). Whilst the exon 1a4 ‘doublet’ observed in x/GABA$_{B(1a)}$ variant 1 has not been reported previously, the alternative splicing of exon 1a4 observed in both mammalian and *X. laevis* sequences suggests the possibility of functional heterogeneity within GABA$_{B(1a/2)}$ receptor heterodimer populations.

The amino acids encoded by exon 1a4 reside immediately C-terminally of the sushi domains, which represent the only major structural dissimilarity between GABA$_{B(1a)}$ and GABA$_{B(1b)}$ proteins and are assumed to be responsible for all GABA$_{B(1a)}$-specific functions (Bettler,B et al. 2006). Until recently, the separation of GABA$_{B(1a)}$ and GABA$_{B(1b)}$ proteins by functional means was not possible, however, it is now demonstrated that GABA$_{B(1a/2)}$ heterodimers form predominantly presynaptic heteroreceptors and are largely excluded from dendritic spines where post-synaptic GABA$_{B(1b/2)}$ receptors are found (Vigot,R et al., 2006, Pérez-Garci,E et al. 2006). This process of exclusion is presumably mediated by interactions between the sushi domains and hitherto unidentified extracellular factors. This discovery has since rekindled interest in the various GABA$_{B(1a)}$ splice variants reported previously, such as hGABA$_{B(1c)}$, which is characterised by the skipping of exon 1a3 and encodes a protein lacking the second sushi domain of hGABA$_{B(1a)}$ (Calver,A.R et
Interest in this variant is further compounded by the demonstration that the two sushi domains in GABA$_{B(1a)}$ exhibit markedly distinct structural properties, implying that they may interact with distinct factors \textit{in vivo} (Blein, S et al. 2004). It is postulated here that GABA$_{B(1a)}$ N-terminal variants may contribute to GABA$_{B(1a/2)}$ receptor heterogeneity through differential interaction with the factors regulating GABA$_{B(1a)}$ subunit-specific trafficking and exclusion, perhaps giving rise to subtle variation in subcellular localisation or association with other cell-surface proteins. Whilst it is difficult to hypothesize the physiological significance of the variability at exon 1a4 reported here, in the absence of a model describing the mechanism by which GABA$_{B(1a)}$ sushi domains function, any future comprehensive investigation into the contribution of GABA$_{B(1a)}$ N-terminal variants to GABA$_{B}$ receptor heterogeneity might benefit from the inclusion of these x/GABA$_{B(1a)}$ transcript variants in the study. It is postulated here the amino acids encoded by exon 1a4 represent a 'linker' region connecting the sushi domains to the ligand-binding domain, and that variations in the length of this peptide might modulate GABA$_{B(1a)}$ function through changes in the relative proximity of these domains.

7.1.4 The \textit{X.laevis} GABA$_{BL}$ cDNA isolated here encodes a genuine orthologue of mammalian GABA$_{BL}$ proteins

Multiple sequence alignments of human, rodent and \textit{X.laevis} GABA$_{BL}$ protein sequences uncovered homology across the transmembrane and coiled-coil domains, with human GABA$_{BL}$ and \textit{X.laevis} GABA$_{BL(a)}$ sharing 57% amino acid identity across this region (see Figure 3.18). However, this percentage drops dramatically to 24% across the residues C-terminally to the coiled-coil domain, and as a result human GABA$_{BL}$ and \textit{X.laevis} GABA$_{BL(a)}$ proteins share just 38% amino acid identity overall. This lack of absolutely
compelling sequence homology led to the postulation that the *X.laevis* cDNA clone isolated here might have been transcribed from a distinct, yet closely related, gene that might also have a distinct function. However, the demonstration that the synteny of this gene is highly conserved in human, rat and *X.tropicalis* genomes provides very strong evidence to suggest that the clone isolated here encodes the bona fide *X.laevis* GABA\textsubscript{BL} orthologue (see Figure 4.9). This notion is further supported by the similar overall open reading frame length encoded by the mammalian and *Xenopus* GABA\textsubscript{BL} genes, highly conserved extreme N- and C-termini, and the presence of several short, highly conserved amino acid sequences in the C-terminal tail (see Section 3.4.6). The latter sequences are particularly intriguing as they reside in an otherwise very poorly conserved region, and may therefore be of functional significance.

Taken together, these data suggest that the x/GABA\textsubscript{BL}(a) protein characterised in this thesis is orthologous to the mammalian GABA\textsubscript{BL} proteins studied previously (Calver,A.R et al. 2003, Charles,K.J et al. 2003, Martin,S.C et al 2004), and thus the biological activity of x/GABA\textsubscript{BL}(a) demonstrated in Results Chapter Four is likely also to be representative of mammalian GABA\textsubscript{BL} proteins.

7.1.5
Vertebrate GABA\textsubscript{b} exon organisation is highly conserved, although *X.tropicalis* GABA\textsubscript{B(1)} possesses novel additional exons

The comparison of human, rat and *X.tropicalis* GABA\textsubscript{b} genomic organisation, undertaken in Section 4.4, uncovered many striking similarities between these vertebrate GABA\textsubscript{b} genes. Vertebrate GABA\textsubscript{b} exon sizes are well conserved and the GABA\textsubscript{B(2)} and GABA\textsubscript{BL} genes studied here contain the same number of exons across the species, although an
additional unidentified 5' untranslated X.tropicalis GABA_{BL} exon corresponding to 5'-UTR of the xlgABA_{BL(b)} cDNA clone, shown in Figure 3.16, is predicted to exist. The organisation of the GABA_{B(1)} gene is not so well conserved between the vertebrate species analysed here and, although most exon sizes and locations are similar, the X.tropicalis GABA_{B(1)} gene possesses two additional exons that are not present in the mammalian orthologues (see Figure 4.6). The first is exon -1a2, which is a 5' untranslated exon readily identified by a pairwise alignment between the xlgABA_{B(1a)} cDNA sequence, shown in Figure 3.6, and X.tropicalis genomic sequences. The second novel exon, termed here 1a4α, is predicted to reside within the 17,843bp X.tropicalis GABA_{B(1)} intron -2, and encodes the first 7 amino acids of the putative linker region, discussed previously (see Section 7.1.3), found in xlgABA_{B(1a)} variant 1 and all available X.tropicalis GABA_{B(1a)} ESTs (see Figure 4.4). This exon is perhaps more controversial, as direct demonstration of its existence is currently precluded by poor sequence integrity in the published X.tropicalis GABA_{B(1)} intron –2 sequence. However, the presence of exons 1a4α and 1a4β in expressed transcripts provides compelling evidence of the existence of these two closely related Xenopus-specific 21bp exons, analogous to mammalian GABA_{B(1a)} exon 1a4, and represents the first the first time an additional translated exon has been discovered in any vertebrate GABA_B gene. Whilst time constraints restricted any further experimentation as part of this project, future investigation into this phenomenon would benefit from the elucidation of the full nucleotide sequence for intron –2 in order to directly demonstrate the presence of exon 1a4α in X.tropicalis genomic DNA.

Invertebrate GABA_B genes exhibit a distinct genomic organisation that is related to the mammalian genes, but which is characterised by having fewer exons that are often greater in length. Mapping of the cloned dGABA_{B(1)} cDNA against D.melanogaster genomic sequences reveals that this transcript is very closely related to mammalian
GABA_{B(1b)} transcripts in terms of its exon structure (see Figure 4.6). Comparison of mammalian and *D.melanogaster* GABA_{B(2)} genes reveals that the latter possesses 3' exons that do not have corresponding mammalian counterparts, and encode a divergent GABA_{B(2)} C-terminus that is specific to invertebrates (see Figure 4.7). The absence of a *D.melanogaster* GABA_{BL} orthologue suggests that this gene is not present in invertebrates, implying that the GABA_{BL} gene evolved later than the GABA_{B} genes.

7.1.6 *Genomic analysis provides evidence for a relationship between GABA_{BL} and the GABA_{B} genes*

The significant amino acid sequence identity shared between the GABA_{B} receptors and GABA_{BL} is highly indicative of a genetic relationship, however, direct comparison of GABA_{B(1)}, GABA_{B(2)} and GABA_{BL} gene organisation has not been reported previously. The data shown in Figure 4.10 reveal that the exons encoding hGABA_{BL} exhibit and almost identical organisation to those encoding the C-termini of hGABA_{B(1)} and hGABA_{B(2)}. Furthermore, the nucleotide sequence identity shared between GABA_{BL} and GABA_{B(1)} or GABA_{B(2)} exons, across this region, is comparable to that shared between GABA_{B(1)} and GABA_{B(2)} themselves, suggesting that these three genes may derive from the same ancestral precursor. Taken together with evidence that the GABA_{BL} gene is not found in invertebrates, but is present in non-mammalian vertebrates such as *Xenopus*, it is postulated here that GABA_{BL} may have diverged from one of the GABA_{B} genes during the early evolution of vertebrate species.
7.2 *X. laevis* GABA_{\alpha} receptor mRNAs are expressed during embryonic development

7.2.1 *X. laevis* GABA_{B(1)} and GABA_{B(2)} receptor subunit mRNAs are differentially expressed during embryonic development

In Results Chapter Three of this thesis, the temporal and spatial expression patterns of x/GABA_{\alpha} receptor subunit mRNAs during *X. laevis* embryonic development were investigated using a combination of RT-PCR and in situ hybridization techniques. Initial analysis by RT-PCR revealed that x/GABA_{\alpha} receptor subunit mRNAs exhibit distinct temporal expression patterns between stage 5 and stage 40 of development (see Figures 5.2 and 5.3).

x/GABA_{B(2)} transcripts were detected in all stages tested including stage 5 and 7 blastulae, indicating that maternally transcribed x/GABA_{B(2)} mRNAs must be present in *X. laevis* oocytes prior to fertilisation. By contrast x/GABA_{B(1)} transcripts were not detected until early gastrulation (stage 9), demonstrating that x/GABA_{B(1)} and x/GABA_{B(2)} gene products are not co-expressed during early development, despite the proposed requirement for both subunits for normal GABA_{\alpha} receptor activity. These data suggest a role for GABA_{B(2)}, in the absence of GABA_{B(1)}, during the very early stages of vertebrate development prior to gastrulation, perhaps in conferring the future GABA-ergic fate of neuronal precursor cell populations.

Whilst fragments corresponding to x/GABA_{B(1b)} transcripts were readily visualised on an ethidium bromide gel, from late neurulation (stage 17) onwards, x/GABA_{B(1a)} transcripts
were only detected by Southern analysis following prolonged exposure the blot to photographic film. Intriguingly, two distinct fragments were detected using a x/GABA\textsubscript{B(1a)}-specific radiolabelled probe at stages 9, 26, 36 and 40 of development (see Figure 5.3). The larger of the two fragments, detected, was of the correct predicted size and almost certainly corresponded to x/GABA\textsubscript{B(1a)}; the second fragment was some 200bp smaller. Analysis of the mammalian GABA\textsubscript{B(1)} transcript variants isolated previously suggests that this fragment may correspond to the X.laevis orthologue of hGABA\textsubscript{B(1c)}, a minor isoform which lacks a second sushi domain and exhibits a similar expression pattern to hGABA\textsubscript{B(1a)}. Whilst the identity of this amplicon was not verified here directly, though dideoxy sequencing of a gel-purified fragment, both the expression pattern and specific detection of this amplicon by a x/GABA\textsubscript{B(1a)}-specific radiolabelled probe, are highly indicative of this fragment corresponding to x/GABA\textsubscript{B(1c)}. This is the first indication of the existence of a non-human GABA\textsubscript{B(1c)} orthologue.

The RT-PCR evidence presented here suggests a role for x/GABA\textsubscript{B(1a/2)} receptor heterodimers, during gastrulation, prior to the transcription of x/GABA\textsubscript{B(1b)} mRNAs, during neurulation, which is consistent with the evidence reported previously suggesting that x/GABA\textsubscript{B(1a)} is the primary GABA\textsubscript{B(1)} isoform expressed during early development (Malitschek,B et al. 1998, Fritschy,J.M et al. 1999, Fritschy,J.M et al. 2004, Martin,S.C et al. 2004, Steiger,J.L et al. 2004). However, the visualisation of x/GABA\textsubscript{B(1b)} but not x/GABA\textsubscript{B(1a)} transcripts on an ethidium bromide gel suggests that the former may be expressed at a much higher level upon the onset of their transcription during neurulation, becoming the principal GABA\textsubscript{B(1)} isoform expressed. Furthermore, x/GABA\textsubscript{B(1b)} transcripts appear to greatly outnumber those of x/GABA\textsubscript{B(2)} post-organogenesis (at stages 36 and 40) (see Figure 5.2), in agreement with results published previously (Martin,S.C et al. 2004, Steiger,J.L et al. 2004). However, despite these indications, it should be noted that
the RT-PCR method used here was not quantitative and that band intensity is not necessarily related to transcript number. Efforts to investigate the expression patterns of x/GABA_B receptor gene products quantitatively, by northern analysis, were ultimately unsuccessful and are not included in this thesis. In retrospect, however, it is clear that northern analysis would have most likely lacked the sensitivity required to detect the x/GABA_{B(1a)} and putative x/GABA_{B(1c)} transcripts amplified here by RT-PCR, and as such the latter technique has proved to be entirely appropriate for the purposes of obtaining meaningful expression pattern data in this case. In pursuit of more quantitative temporal expression data, a logical progression of this research would be to utilize quantitative real-time RT-PCR to comprehensively explore the differential expression of the transcript variants identified in this study during X.laevis development.

Spatial expression patterns for x/GABA_B receptor subunit mRNAs were analysed here by RT-PCR and in situ hybridization experiments, which revealed further differences between the expression of x/GABA_{B(1)} and x/GABA_{B(2)} gene products. RT-PCR again shows that x/GABA_{B(1b)} mRNAs are more readily detected than those of x/GABA_{B(2)}, and are found in anterior, dorsal and posterior tissues, whereas x/GABA_{B(2)} transcripts were only detected at stage 30 in anterior and dorsal tissues using this technique (see Figure 5.5). In situ hybridization experiments uncovered very similar spatial expression patterns for x/GABA_{B(1)} and x/GABA_{B(2)} transcripts throughout the developing CNS, although the antisense x/GABA_{B(1)} cRNA probe consistently generated a stronger signal that the x/GABA_{B(2)} probe, again possibly indicative of a greater transcript number (see Figures 5.6 and 5.7). x/GABA_{B(1)} and x/GABA_{B(2)} transcripts were detected in the developing CNS from around stage 18 and 21 respectively, and were both found to be concentrated in the trigeminal nerve, hindbrain and spinal cord of the developing tailbud embryo. By stage 34 x/GABA_{B(1)} and x/GABA_{B(2)} gene products were shown to be largely co-expressed
throughout most brain regions, consistent with the proposal that both subunits are required for normal GABA\textsubscript{\text{B}} receptor function. However, there were areas of unique \textit{x}/GABA\textsubscript{\text{B}(1)} transcript expression, most notably in dorsal regions of the midbrain and in rhombomere 2 of the hindbrain, where strong \textit{x}/GABA\textsubscript{\text{B}(1)}-specific signal was observed in the absence of a \textit{x}/GABA\textsubscript{\text{B}(2)} signal at stage 34. These \textit{x}/GABA\textsubscript{\text{B}(1)}-specific signals are particularly intriguing as they are found in regions that have yet to differentiate into neuronal tissue at stage 34. The rhombomeres running along the anteroposterior midline of the hindbrain at this stage may be best described as paired segments of tissue functioning to compartmentalise distinct and mutually exclusive areas of neuronal development. Rhombomere 2, to which the \textit{x}/GABA\textsubscript{\text{B}(1)} signal is restricted, is found at the root of the trigeminal nerve, and is likely to be associated with its interface with the CNS. The abundance of \textit{x}/GABA\textsubscript{\text{B}(1)} transcripts in this region is indicative of a function for \textit{x}/GABA\textsubscript{\text{B}(1)} subunit proteins in the differentiation of neuronal tissue in the hindbrain, prior to the formation of synapses and in the absence of \textit{x}/GABA\textsubscript{\text{B}(2)}. These data are in agreement with previous studies that have uncovered areas of unique \textit{x}/GABA\textsubscript{\text{B}(1)} expression in the mammalian CNS, and supports the notion that \textit{x}/GABA\textsubscript{\text{B}(1)} subunits may exhibit biological activity in regions lacking \textit{x}/GABA\textsubscript{\text{B}(2)} (Calver, A. R et al. 2000, Charles, K. J et al. 2001, Kulik, A et al. 2002, Sands, S. A et al. 2003, Fritschy, J. M et al. 2004, Lopez-Bendito, G et al. 2004, Martin, S. C et al. 2004, Gassmann, M et al. 2004).

\textit{In situ} hybridisation indicates that \textit{x}/GABA\textsubscript{\text{B}(2)} transcripts are expressed in the absence of \textit{x}/GABA\textsubscript{\text{B}(1)} in what appear to be craniofacial nerves beneath the diencephalon, however further anatomical analysis would be necessary to confirm this as \textit{x}/GABA\textsubscript{\text{B}(2)}-specific signal lies very close to ventral regions of the brain. Should \textit{x}/GABA\textsubscript{\text{B}(2)} subunits indeed be expressed here, in the absence of \textit{x}/GABA\textsubscript{\text{B}(1)}, they might function by modulating signal
transduction cascades through constitutive G-protein coupling activity, as proposed by other studies (Kaupmann, K et al. 1998b, Martin, S.C et al. 1999).

Despite these areas of unique expression, the *in situ* hybridisation patterns presented in this thesis demonstrate that αGABA$_B$(1) and αGABA$_B$(2) gene products are largely co-expressed in the developing CNS of *X. laevis*, consistent with the notion that both subunits are required for canonical GABA$_B$ receptor activity. The marked presence of both αGABA$_B$(1) and αGABA$_B$(2) mRNAs in the trigeminal nerve is indicative of a function for metabotropic signalling in the regulation of sensory signals from the eye and cement gland, perhaps in concert with ionotropic GABA$_A$ receptors which are also expressed in these regions (Perrins, R et al. 2002, Li, W-C et al. 2003, Lambert, T.D et al. 2004). Furthermore, the broad expression pattern of these mRNAs throughout the most brain regions is commensurate with the function of GABA$_B$ receptors as ubiquitous transducers of the principal inhibitory neurotransmitter signal, GABA.

The RT-PCR data presented in this thesis uncovered distinct temporal expression patterns for αGABA$_B$(1a) and αGABA$_B$(1b) transcript variants, and as such distinct spatial expression patterns during embryonic development were considered possible. *In situ* hybridisation experiments were repeatedly performed, using fluorescently-labelled antisense oligonucleotide probes specific to αGABA$_B$(1a) and αGABA$_B$(1b), although these were ultimately unsuccessful and are not included in this thesis. Whilst these experiments were abandoned on technical grounds, due to high background fluorescence, the RT-PCR and Southern blot data suggest that αGABA$_B$(1a) transcripts are considerably less abundant than those of αGABA$_B$(1b). In retrospect, it seems likely that this *in situ* hybridisation method would have lacked the sensitivity required to detect αGABA$_B$(1a) transcripts without amplification, and as such, the αGABA$_B$(1)-specific staining observed in
Figure 5.6 may be considered representative primarily of x/GABA_{b(1b)} transcript expression.

7.2.2 The expression pattern for x/GABA_{BL(a)} suggests a distinct function from x/GABA_{b} receptors during vertebrate development

The RT-PCR and Southern blot data shown in Figures 5.2 and 5.3 demonstrated that x/GABA_{BL(a)} transcripts were not detected until stage 17 of development. However, further analysis of x/GABA_{BL(a)} expression during neurulation revealed that x/GABA_{BL(a)} transcripts were in fact first detectable at stage 14 using this method (see Figure 5.4). Initial analysis of the spatial expression of x/GABA_{BL(a)} by RT-PCR revealed that transcripts were readily amplified from anterior, posterior, dorsal and ventral tissues of all stages tested (see Figure 5.5) suggesting that, unlike the x/GABA_{b} receptor subunits, x/GABA_{BL(a)} mRNAs are ubiquitously expressed throughout the developing X.laevis embryo and are not restricted to the CNS.

As with the x/GABA_{b} receptor subunit mRNAs, the specific detection of x/GABA_{BL} transcripts in neurulae by in situ hybridisation proved to be difficult, despite the fact that the RT-PCR data were indicative of widespread x/GABA_{BL(a)} expression at stage 14. Taken together, these data suggest that x/GABA_{BL} transcripts are not sufficiently concentrated in any one location at this stage to permit detection by in situ hybridisation.

In situ hybridisation revealed that x/GABA_{BL} transcripts are markedly concentrated in the otic vesicle in tailbud embryos, and at a restricted location at the anterior end of the hindbrain near to the isthmus (see Figure 5.8). This is in contrast to the x/GABA_{b} receptor
subunit mRNAs, which are readily detected in multiple brain regions by in situ hybridization at stage 30. By stage 34, \(x/GABA_{BL}\)-specific staining is visible in proximal regions of the forebrain, midbrain and hindbrain, along the anteroposterior axial midline, and in the otic vesicle. \(x/GABA_{BL}\) is co-expressed with \(x/GABA_{BL(1)}\) in parts of the otic vesicle at stage 34 in the absence of \(x/GABA_{BL(2)}\), as \(x/GABA_{BL(1)}\)-specific staining is also visible at a very restricted site at the ventral extremity of the otic vesicle (see Figure 5.6B).

The expression pattern of \(x/GABA_{BL}\) transcripts in the CNS also overlaps that of the \(x/GABA_{B}\) receptor subunit mRNAs at stage 34, however, transverse sections reveal that \(x/GABA_{B(1)}\) and \(x/GABA_{B(2)}\)-specific staining is strongest in brain regions that are distal to the midline, whereas \(x/GABA_{BL}\)-specific staining is restricted to the proximal edge of the neural tissue surrounding the brain ventricle (see Figure 5.8C). \(x/GABA_{BL}\) transcripts are also not detected in the spinal cord of the developing embryo by in situ hybridisation, where \(x/GABA_{B(1)}\) and \(x/GABA_{B(2)}\)-specific staining is prominent.

Taken together, the RT-PCR and in situ data presented in Results Chapter Three suggest that \(x/GABA_{BL}\) transcripts have a distinct spatial expression pattern from \(x/GABA_{B}\) receptor gene products in the developing *X.laevis* embryo, suggesting that the functions of \(GABA_{BL}\) and \(GABA_{B}\) receptors during vertebrate development may not be related. The expression of \(x/GABA_{BL}\) at the isthmus at stage 30, and in central brain regions along the anteroposterior axial midline at stage 34, is indicative of involvement in proximal processes during the differentiation of the embryonic brain, whereas the relative abundance of \(x/GABA_{BL}\) mRNA in the developing otic vesicle is indicative of a function for \(x/GABA_{BL}\) in the vertebrate ear, a region where metabotropic GABA signalling has not previously been implicated.
7.2.3 The absence of an expression pattern for xIGABA_{BL(b)} suggests that this transcript variant does not exist in vivo

In Results Chapter One of this thesis, a cDNA encoding a truncated xIGABA_{BL} protein, predicted to possess only a single transmembrane domain, was isolated by 5'RACE and termed xIGABA_{BL(b)} (see Figure 3.16). The notion that a single-transmembrane isoform of GABA_{BL} might expressed *in vivo* in *Xenopus* was intriguing, as a human cDNA clone encoding a similarly truncated GABA_{BL} protein of unknown function had recently been isolated (Totoki, Y et al. 2005). It was postulated that if such isoforms were expressed at the protein level, they might play a role in modulating GABA_{BL} receptor activity, perhaps by functioning in a dominant negative manner, and so further characterisation of the xIGABA_{BL(b)} variant was considered desirable. Alignment of this nucleotide sequence *X.tropicalis* GABA_{BL} genomic sequences, however, revealed that generation of this putative transcript variant by RNA splicing required two novel internal splice junctions within *X.tropicalis* GABA_{BL} exon 1 and 7 (see Figure 4.5A). Further analysis of these sequences revealed that there were five possible locations for these putative splice junctions, due to the presence of a short repeated sequence, TGAT, at the corresponding location in both exons (see Figure 4.5B). However, it was demonstrated that none of these putative junctions generated canonical or non-canonical intron/exon boundary consensus sequences, implying that the xIGABA_{BL(b)} transcript variant would be only be generated *in vivo* as a result of two simultaneous cryptic splicing events (see Figure 4.5C-D).

Analysis of the temporal expression pattern of this putative transcript variant during *X.laevis* development was performed by RT-PCR, using a nested oligonucleotide primer spanning the novel splice junction identified in Section 4.3.3. Using this method, DNA
fragments were not visible on an ethidium bromide gel in any of the stages tested, and hybridization of a radiolabelled xIGABA\textsubscript{BL-} specific probe following Southern blotting uncovered no specific signal, even after the blot was exposed to photographic film for three weeks. Taken together with the results from the genomic analysis, these data strongly suggest that the xIGABA\textsubscript{BL(b)} transcript either does not occur \textit{in vivo}, or is expressed at such low levels during development that it is outside the range of detection by RT-PCR and subsequent Southern analysis using a radiolabelled probe. The latter possibility seems highly unlikely as both of these techniques are extremely sensitive, and indeed the molecular cloning of this variant was facilitated by the use of an RT-PCR method (5'RACE). It therefore seems more likely that this cDNA was generated by an error occurring during first strand synthesis or cDNA amplification, and is thus of no physiological relevance.

It was noted that similarly repeated sequences were found at the putative splice junctions required for the mammalian GABA\textsubscript{B(2b)} and GABA\textsubscript{B(2c)} transcripts isolated previously, which were also discounted as artefacts of cDNA synthesis (Clark,J.A et al 2000, Martin,S.C et al. 2001). It is possible that these short repeated sequences may in some way be required, or indeed responsible, for the skipping of template RNA sequences by the reverse transcriptase enzyme during cDNA synthesis. Whilst an investigation into the sequence-specific nature of errors reverse transcriptase errors was outside the scope of this project, it is postulated here that this phenomenon might occur as a result of secondary structure forming in the template RNA, bringing together like sequences across which the reverse transcriptase enzyme could pass, thus generating truncated cDNAs containing deletions with respect to their RNA templates.
7.3 Overexpression of \(x/GABA_{B(1)} \), but not \(x/GABA_{B} \) receptors, generates a morphological phenotype in developing \(X.laevis \) embryos

7.3.1 No evidence for an essential role for metabotropic GABA signalling during \(X.laevis \) embryonic development

The expression of \(GABA_{B(1)} \) and \(GABA_{B(2)} \) receptor subunit mRNAs during \(X.laevis \) development, demonstrated in Results Chapter Three, is indicative of a role for these proteins, and thus metabotropic GABA signalling, during vertebrate embryogenesis. In Results Chapter Four of this thesis, a gain of function approach was adopted to investigate these potential functions using \(X.laevis \) frogs as a model organism. The molecular cloning of cDNAs encoding \(X.laevis \) orthologues of the mammalian \(GABA_{B} \) receptors permitted the generation of expression constructs suitable for the purpose of transcribing 5'capped, polyadenylated cRNAs (see Section 3.5). These 'synthetic mRNAs' were then used in microinjections into cleavage stage embryos to induce overexpression of these proteins during \(X.laevis \) embryonic development (see Sections 6.2 and 6.3).

The rationale behind this approach was that overexpression of \(x/GABA_{B} \) receptor heterodimers might increase GABA-ergic inhibition of neural circuits, reduce embryo locomotion, swimming activity or response to stimulus, or generate observable changes in morphology indicative of a role for these receptors in embryogenesis. Similarly it was postulated that overexpression of individual \(x/GABA_{B} \) receptor heterodimers might amplify or interfere with any separate functions of these proteins, such as those proposed of \(GABA_{B(2)} \) in \(X.laevis \) blastulae, in a manner that might manifest itself as an observable morphological phenotype. These latter experiments were also design to acts as controls.
for the heterodimer overexpression assays by permitting the evaluation of the individual contribution of each subunit to any morphological changes observed.

The data generated by these experiments, however, provided little evidence of any specific morphogenetic effects derived from overexpression of x/GABA_B receptor subunits or heterodimers during <i>X.laevis</i> embryogenesis, even when expressed at a high level in the developing CNS (see <i>Figures 6.4</i> and <i>6.8</i>). Although striking morphological abnormalities were occasionally observed, such as acephaly in some embryos overexpressing x/GABA_{B(1a/2)} heterodimers (see <i>Figure 6.7A</i>), these phenotypes were not reproducible and only occurred in a very small number of injected embryos, the majority being indistinguishable from their wild-type counterparts in every experiment (see <i>Figure 6.6D</i>).

Although translation of proteins of the correct predicted size was demonstrated for the cRNAs preparations used in these experiments using an <i>in vitro</i> reticulocyte lysate kit (see Section 3.5.4), a key limitation of the experiments performed here was the absence of confirmation of translation of the recombinant proteins inside the <i>X.laevis</i> embryo. Whilst existing mammalian GABA_B receptor antibodies are either unlikely to detect <i>X.laevis</i> GABA_B receptor proteins (see Section 3.6.3) or do not perform sufficiently well to permit immunodetection on blotted membranes (see Section 7.5.1), the modification of the x/GABA_B receptor constructs produced in Section 3.5 to incorporate hemagglutinin (HA), poly-histidine or myc epitope tags would avoid these complications and would thus represent a useful modification to the experiment.

The gain-of-function approach adopted here involved the use of an assay particularly suited to the detection of gross changes in animal behaviour or morphology in response to
manipulation of gene expression. Subtle changes occurring at the cellular level of
developing tissues may not be obvious using this assay, and so it is possible that
xl/GABA\textsubscript{b} receptor subunit or heterodimer overexpression might have brought about
changes in the development of neuronal tissue in \textit{X.laevis} embryos that was not detected
here. Also, embryos were only studied until they reached stage 40 of development, thus
precluding any analysis of post-metamorphic effects in adult frogs, when earlier changes
occurring within neural tissues might manifest themselves as diagnosable neurological
conditions. Indeed, it has been shown previously that both GABA\textsubscript{B(1)} and GABA\textsubscript{B(2)}−
deficient mice, which lack canonical GABA\textsubscript{b} receptor responses, do not exhibit any overt
morphological defects during development yet exhibit spontaneous seizures,
hyperlgesia, impaired memory and hyperlocomotion in adulthood (Prosser,H.M et al.
together with these results, the data presented in \textit{Section 6.2} provide evidence to support
the notion that metabotropic GABA signalling does not play an essential role during
vertebrate embryogenesis.

7.3.2 \textit{xI}GABA\textsubscript{BL(a)} overexpression disrupts mesodermal convergent extension and
notochord elongation in developing \textit{X.laevis} embryos

In contrast to the results from the \textit{xI}GABA\textsubscript{b} receptor gain-of-function assays,
overexpression of \textit{xI}GABA\textsubscript{BL(a)} gave rise to a reproducible morphological phenotype during
\textit{X.laevis} embryonic development (see \textit{Figure 6.9}). Whilst a number of defects were
apparent in these embryos, the principal phenotype observed as a result of \textit{xI}GABA\textsubscript{BL(a)}
overexpression was body truncation. Further experimentation using this gain-of-function
approach revealed that \textit{xI}GABA\textsubscript{BL(a)} had no morphogenetic effect when overexpressed
exclusively in ventral tissues, suggesting that the determinants responsible for the body truncation phenotype most probably reside in dorsal tissues (see Figure 6.10). In addition, dose-response overexpression assays revealed that phenotypic changes occurred in injected embryos in a x/GABA\textsubscript{BL(a)} cRNA concentration-dependent manner, further strengthening the case for x/GABA\textsubscript{BL(a)}-specific effect (see Figure 6.11).

A direct demonstration of the specific biological activity of x/GABA\textsubscript{BL(a)} was achieved by means of the animal cap assays performed in Section 6.3.1. Here, x/GABA\textsubscript{BL(a)} was shown to specifically interfere with the morphogenetic processes required for mesodermal extension, in response to induction of mesoderm differentiation by the growth factor Activin A, without necessarily affecting cell fate. Analysis of gene expression in these animal caps by RT-PCR showed that the transcription of six markers of mesoderm induction and convergent extension were unaffected by x/GABA\textsubscript{BL(a)} overexpression, thus verifying the presence of mesodermal tissue in the induced caps and implying that structures such as the notochord and somites, derived from mesoderm, should be present in x/GABA\textsubscript{BL(a)}-injected embryos (see Figure 6.15). Wax-sectioning and histological staining of x/GABA\textsubscript{BL(a)}-overexpressing tailbud embryos confirmed this, and showed that the both the notochord and the overlying neural plate were much broader in these embryos compared to their wild-type counterparts (see Figure 6.17).

Axial elongation in \textit{Xenopus} tailbud embryos is driven primarily by the anteroposterior extension of the notochord, which occurs primarily as a result of an increase in osmotic pressure within its vacuolated cells between stages 21 and 25 (Adams,D.S et al. 1990). The observed shortening and broadening of the notochord in x/GABA\textsubscript{BL(a)}-injected embryos, and the overt body truncation phenotype, suggests that axial elongation is restricted in these embryos as a result of abnormal elongation of the notochord. A
candidate protein responsible for this defect might be type-II collagen, which is the primary component of the outer sheath of the notochord and provides the mechanical properties required for elongation (Smith, J.C et al. 1985, Bieker, J.J et al. 1992, Stemple, D. 2005). However, embryos injected with x/GABA_{BL} cRNA appear truncated prior to stage 21, indicating that the morphogenetic effects of x/GABA_{BL(a)} overexpression occur as a result of earlier processes. Furthermore, RT-PCR data demonstrate that transcription of type-II collagen is not affected by x/GABA_{BL(a)} overexpression in animal caps, casting doubt upon its significance in this case. Indeed, the absence of any apparent biochemical differences between wild-type and x/GABA_{BL(a)}-overexpressing animal caps, whilst exhibiting markedly distinct morphology in response to mesoderm induction, suggests that x/GABA_{BL(a)} does not mediate its effects by inducing misexpression of the mesodermal markers analysed. Consistent with the proposal that GABA_{BL} is a putative orphan GPCR (Calver, A.R et al. 2003, Charles, K.J et al. 2003, Martin, S.C et al. 2004), it was postulated here that x/GABA_{BL(a)} may be mediating its effects by signal transduction. The demonstration that morphogenetic cell movements are disrupted in x/GABA_{BL(a)}-overexpressing animal caps is consistent with this notion, since these events are regulated by G-protein signalling. The pathway most implicated in the regulation of convergence and extension in vertebrates is the non-canonical Wnt/PCP pathway, and is characterised by Wnt-5 or Wnt-11 ligands binding to Frizzled receptors and activating downstream small GTPases such as RhoA and cdc42 (Heisenberg, C.P et al. 2000, Wallingford, J.B et al. 2000, Darken, R.S et al. 2002, Park, M et al. 2002, Tada, M et al. 2002, Wallingford, J.B et al. 2002, Kilian, B et al. 2003, Takeuchi, M et al. 2003, Veeman, M.T et al. 2003, Sheldahl, L.C et al. 2003, Wang, J et al. 2006). These G-proteins regulate such processes as tissue separation, cytoskeleton rearrangements, cell adhesion, and activation of c-Jun N-terminal kinase (JNK), and misexpression of these genes results in gastrulation failures and body truncation in Xenopus embryos (Winklbauer, R et al. 2001, Choi, S.C et al. 2002, Habas, R
et al. 2003, Penzo-Mendez et al. 2003). Overexpression of either wild-type or dominant negative cdc42, for example, interferes with convergent extension in both embryos and activin-induced animal caps without affecting mesoderm specification (Choi, S.C et al. 2002), a phenotype analogous to that observed upon overexpression of x/GABA_{BL(a)}. It is thus postulated that x/GABA_{BL(a)} may be directly or indirectly interfering with the non-canonical Wnt/PCP pathway when overexpressed in *X.laevis* embryos, bringing about aberrations in the regulation of convergent extension movements and cell polarity, and restricting the normal narrowing and lengthening of the notochordal mesoderm and overlying neural plate during gastrulation. These resultant irregularities in tissue polarity and patterning of the extracellular matrix would then presumably preclude the organised antero-posteriorly oriented cell division and elongation of the notochord, giving rise to the overt body truncation phenotype observed in x/GABA_{BL(a)}-overexpressing *X.laevis* tailbud and tadpole embryos.

7.3.3 *xIGABA_{BL(a)}* overexpression occasionally results in eye and brain defects

In addition to the principal body truncation phenotype, observed in 100% of embryos injected with 0.8ng x/GABA_{BL(a)} cRNA or more (see Figure 6.11A), a significant minority of x/GABA_{BL(a)}-overexpressing embryos also exhibited eye and head defects. Whilst it may be difficult to resolve possible x/GABA_{BL(a)}-specific head or defects and those brought about by more generalised severe gastrulation defects, there is some evidence to suggest that x/GABA_{BL(a)} overexpression causes cyclopia in otherwise well differentiated tadpole embryos (see Figures 6.9E and 6.10C). The initial specification of the vertebrate eye field is known to be highly dependent upon the activity of the transcription factor Pax-6, as mutations in this gene generate ‘small eye’ and ‘eyeless’ phenotypes in mouse and
Drosophila respectively (Hill,R.E et al. 1991, Quiring,R et al. 1994), and overexpression gives rise to fully differentiated ectopic eyes in *Xenopus* embryos (Chow,R.L et al. 1999). The primary cause for cyclopia in vertebrates, however, is the incomplete separation of the eye field into two separate eye primordia, a process that is thought to occur from around stage 16 in *Xenopus* when the extending prechordal plate reaches its most anterior aspect (Li,H et al. 1997). Whilst the molecular mechanisms responsible for this process are not yet clear, there is evidence to suggest that, in addition to Pax-6, both retinoic acid (RA) and Wnt signalling may be involved (Cavodeassi,F et al. 2005, De longh,R.U et al. 2006). It has been also been suggested that Dishevelled (Dsh) may mediate ephrinB1 signalling in the *Xenopus* eye field via the PCP pathway, further implicating this signalling pathway in vertebrate eye development (Lee,H-S et al. 2005). Whilst it is tempting to postulate that the proposed interference with non-canonical Wnt/PCP signalling by *x/GABA* may also be responsible for the cyclopia occasionally observed, it is not presently possible to incorporate the PCP pathway into a rational model to explain this phenomenon. It is possible that restricted separation of the eye field may have occurred as a secondary effect of inhibition of convergent extension in the chordamesoderm, resulting in restricted movement of the prechordal plate anteriorly towards the eye field during separation.

In order to further characterise this apparent *x/GABA*-specific phenotype, additional experiments would need to be carried out. Whilst time constraints made these unviable for the purposes of this project, initial analyses might include *in situ* hybridization experiments using a probe specific to Pax-6, to assess whether *x/GABA*-overexpression was having an effect on the spatiotemporal expression of this established marker of vertebrate eye field development.
7.3.4 An endogenous role for xIGABA_{BL(a)} in the regulation of mesodermal convergent extension is unlikely

The functional data presented in this thesis demonstrate that, when overexpressed in developing *X. laevis* embryos, xIGABA_{BL(a)} is capable of specifically disrupting mesodermal convergent extension (see Section 6.3). This discovery was intriguing as it suggests that xIGABA_{BL(a)} might have a similar role in vivo. However, the spatiotemporal expression patterns for endogenously-expressed xIGABA_{BL(a)}, uncovered by RT-PCR and in situ hybridization, do not support this notion (see Section 7.2.2). Whilst xIGABA_{BL(a)} transcripts were detectable in across the whole embryo by RT-PCR, xIGABA_{BL}-specific signal was found to be strongest in the otic vesicle of the tailbud embryo by in situ hybridization, suggesting a probable role in the amphibian or vertebrate ear. Staining was also prominent in dorsal tissues along the anteroposterior midline, which is perhaps a more promising location for a gene postulated to be involved in convergent extension (see Figure 6.8). However, the temporal expression pattern for xIGABA_{BL(a)}, uncovered by RT-PCR and further analysed by Southern blotting with a radiolabelled probe, clearly demonstrated that xIGABA_{BL(a)} transcripts were not detected until neurulation (stage 14), many hours after the cessation of mesodermal convergent extension movements in the embryo. These data therefore strongly suggest that xIGABA_{BL(a)} does not normally play a role in the regulation of vertebrate convergent extension in vivo.
7.4 First evidence of functionality of the putative orphan GPCR, GABA_{BL}

7.4.1 The xIGABA_{BL(a)} cDNA isolated here encodes a functional protein

The data presented Section 6.2 of this thesis demonstrate that overexpression of xIGABA_{BL(a)} during early X.laevis development brings about gross morphological changes in tailbud and tadpole embryos, further characterised and shown to occur as a result of xIGABA_{BL(a)}-specific interference with mesodermal convergent extension movements during gastrulation (see Section 6.3). Taken together with the demonstration that these reproducible morphogenetic effects manifest themselves in a xIGABA_{BL(a)} cRNA concentration-dependent manner (see Figure 6.11), these data indicate that the xIGABA_{BL(a)} cDNA shown in Figure 3.17 encodes a functional protein. This is the first reported evidence of functionality of this putative orphan GPCR. The demonstration that functional effects are observed as a result of overexpression of GABA_{BL} will be of great interest to researchers investigating orphan Family 3 GPCRs since, despite the efforts of several research groups, previous studies have failed to demonstrate G-protein coupling activity for any of these proteins (Cheng,Y et al. 1998, Robbins,M.J et al. 2000, Bräuner-Osborne,H et al. 2001, Calver,A.R et al. 2003, Bettler,B et al. unpublished observations).

7.4.2 Orphan Family 3 GPCRs may not bind endogenous ligands

Although most closely related to the GABA_B receptors, GABA_{BL} shares a common overall receptor topology with members of subfamily 5 of the Family 3 GPCRs (GPRC5 receptors). There are presently four known members of the GPRC5 family of receptors:
GPRC5A was first isolated using a differential display technique to identify retinoic acid-regulated genes in UMSCC-22B cells, and was originally termed retinoic acid-induced gene 1 (RAIG1) (Cheng, Y et al. 1998). Three other closely related retinoic acid-inducible receptors have subsequently be cloned and named GPRC5B, GPRC5C and GPRC5D (Robbins, M.J et al. 2000, Bräuner-Osborne, H et al. 2001). Unlike most Family 3 GPCRs, GABA
 and the GPRC5 family of receptors possess short N-termini, and lack the large extracellular venus-flytrap modules characterised as the site of ligand-binding in the GABA
 receptors (Malitschek, B et al. 1999), the mGluRs (O’Hara, P.J et al. 1993), GPRC6A (Wellendorph, P et al. 2005), and the calcium-sensing receptor (CaSR) (Bräuner-Osborne, H et al. 1999b). Furthermore, efforts to identify endogenous ligands for these receptors have so far proved unsuccesful (Calver, A.R et al. 2003, Bräuner-Osborne, H et al. unpublished observations). Whilst it is tempting to speculate that these short N-terminal Family 3 GPCRs might coordinate ligands in a hydrophilic pocket formed by their seven transmembrane domains, in a manner analogous to the Family 1a GPCRs, this seems highly unlikely since the transmembrane domains of the five main GPCRs families are not related to each other by homology, and are thus unlikely to perform a similar function. Taken together with the accepted paradigm that all other Family 3 GPCRs bind ligands in their venus-flytrap domain, it now seems likely that neither GABA
 nor the GPRC5 family of GPCRs function as ligand-binding receptors.

Whilst the lack of ability to specifically bind ligands might appear to challenge the classical interpretation of what is considered a ‘receptor’, there are numerous examples of non ligand-binding seven-transmembrane proteins that perform ligand-independent roles and, as such, the contributions that such proteins may make to the pharmacological diversity of GPCRs in vivo is increasingly being evaluated (Levoye, A et al. 2006a). A well-characterised example is the GABA
(2) subunit of the GABA
 receptor: a non ligand-
binding receptor protein that couples to G-proteins in an agonist-dependent manner through transactivation by the ligand-binding receptor subunit with which it heterodimerizes. Another is the Family 5 GPCR Smoothened (Smo): a constitutively active non ligand-binding receptor whose coupling efficacy is modulated by the activity of an associated ligand-binding transmembrane protein. However, recently it has been demonstrated that a number of orphan receptors are capable of modulating both the downstream signalling cascades and internalisation of other independently functional GPCRs. For example, the orphan GPCR MrgE (Mas-related gene, subtype E) is capable of heterodimerizing with the related receptor MrgD in HEK293 cells and has been shown to increase the potency of MrgD to phosphorylate extracellular-signal-regulated kinase 1 (ERK1) and ERK2, sustain elevated concentrations of intracellular calcium for a longer period following receptor activation, and reduce agonist-induced internalization of the receptor compared to when MrgD is expressed alone (Milasta, S et al. 2006). Similarly, the orphan receptor GPR50 has been shown to heterodimerize with the MT\(_1\) melatonin receptor, inhibit high-affinity agonist binding and G\(\alpha\)\(_i\) coupling to adenylate cyclase, and dramatically reduce \(\beta\)-arrestin-binding to the MT\(_1\) promoter (Levoye, A et al. 2006b). These effects were demonstrated to be dependent upon the large (>300 amino acid) C-terminal intracellular tail of GPR50, thought to interfere with interactions between the MT\(_1\) receptor subunit and intracellular factors though steric hinderence. As discussed previously, the C-terminal tail of GABA\(_{BL}\) is also unusually long for a GPCR (at around 480 amino acids), and might function in a similar fashion to that of GPR50.

The activity of the \(x/GABA_{BL(a)}\) protein in \(X.\) laevis embryos following overexpression, demonstrated in Sections 6.2 and 6.3, may be thought to arise as a result of four possible scenarios. First, should GABA\(_{BL}\) indeed be an orphan GPCR, the observed activity of \(x/GABA_{BL(a)}\) may have be agonist-induced, and thus dependent on the co-localisation of
the overexpressed \(\text{x/GABA}_{BL(a)} \) protein and its endogenous ligand in the embryo. Second, the overexpression of \(\text{x/GABA}_{BL(a)} \) protein, which contains numerous putative RXR-type ER retention motifs, in the absence of normal physiological regulation of temporal and spatial expression might induce phenotypic changes in the embryo by retaining binding partners, with which it would not normally be co-expressed in vivo, on intracellular membranes. This model implies that the morphological changes observed here in \(\text{x/GABA}_{BL(a)} \)-overexpressing embryos did not occur directly as a result of the biological activity of \(\text{x/GABA}_{BL(a)} \), but rather as a result of inhibition of the normal function of other factors involved in the regulation of convergent extension. Third, should \(\text{GABA}_{BL} \) function as a genuine partner in a hitherto unidentified GPCR hetero-oligomer, the observed activity would presumably have been dependent upon the co-expression of the \(\text{x/GABA}_{BL(a)} \) protein with both its receptor subunit partner(s) and their endogenous ligand(s) during these experiments. Finally, should \(\text{x/GABA}_{BL(a)} \) exhibit a basal level of constitutive activity at the cell surface when expressed at normal physiological levels, the frequency of G-protein coupling would presumably have been amplified by overexpression, and may have induced a sufficient level of signal transduction in overexpressing cells as to trigger physiologically significant downstream effects. Since it is postulated that \(\text{GABA}_{BL} \) is a non ligand-binding seven-transmembrane protein, the latter three scenarios are favoured here, however, the notion of constitutive activity is perhaps easier to reconcile since it does not require both the spatiotemporal co-expression of other receptor proteins and the abundance of specific extracellular signals. Indeed, the observation that a robust morphogenetic response is observed even when \(\text{x/GABA}_{BL(a)} \) is overexpressed at relatively low levels in the embryo (see Figure 6.11A) is perhaps indicative of \(\text{x/GABA}_{BL(a)} \) functioning as a constitutively active GPCR in vivo, and these findings are consistent with a model that expression of \(\text{x/GABA}_{BL(a)} \) without the normal
spatiotemporal controls and in the absence of its endogenous attenuating factors gives rise to unregulated coupling to G-protein signalling cascades.

Should the assumption be made that GABA_{BL} and indeed the GPRC5 family of receptors, are non ligand-binding proteins, future research would benefit from diverting attention away from trying to identify extracellular ligands for these receptors, and instead pursuing their 'de-orphanisation' through characterisation of intracellular interactions with other membrane-bound or cytosolic factors. Rational approaches to achieve this aim are briefly discussed in Sections 7.5.3 and 7.5.4.
7.5 Future research

7.5.1 A knock-down approach to investigate the role of GABA signalling during *X. laevis* development

During the course of this project, several approaches were explored in order to investigate the effects of knock-down of GABA signalling on the development of *X. laevis* embryos. Firstly, experiments were carried out where wild-type embryos were allowed to develop in medium containing the GABA\(_\text{A}\) receptor antagonist, bicuculline, or the GABA\(_\text{B}\) receptor antagonist CGP35348, or a combination of both; the aim of these experiments being to specifically knock-down ionotropic or metabotropic GABA signalling in the developing embryo. However, in these experiments, embryos were found to develop perfectly normally, even when antagonist concentrations of up to 200\(\mu\)M were used, suggesting that knock-down of GABA signalling might not give rise to major morphogenetic or behavioural effects in developing embryos.

Secondly, an alternative approach was explored that was designed to reduce the concentration of GABA in the extracellular fluid whilst simultaneously specifically inhibiting GABA\(_\text{B}\) receptor activity. A construct was produced, using the pCS2+ plasmid vector, which contained an insert encoding a polypeptide corresponding to the mature N-terminal extracellular domain (ECD) of *hGABA\(_{\text{B(1a)}}*; the construct was also used as a control in the *in vitro* translation experiments performed in Section 3.5.4 (see Figure 3.21). This construct was almost identical to that used by Malitshek and colleagues to demonstrate that the ECD of GABA\(_{\text{B(1)}}\) is soluble and sufficient to bind agonists and antagonists (Malitshek, B et al. 1999), except for the inclusion of nucleotide sequence encoding the N-
terminal signal peptide sequence for *X.laevis* bone morphogenetic protein 1 (x/BMP-1), which was ligated in-frame at the 5' end of the mature hGABA_{B(1a):ECD} sequence and designed to promote secretion of the translated protein when expressed in *X.laevis* embryos. cRNA transcribed from this construct was injected into cleavage stage embryos in a series of experiments performed alongside the GABA_{B} receptor overexpression experiments described in *Section 6.2*. The rationale behind this study was that, should the overexpressed hGABA_{B(1a):ECD} protein indeed be secreted, it would bind endogenous GABA present in the extracellular fluid with a greater affinity than wild-type GABA_{B} receptors, as demonstrated previously (Malitshek,B et al. 1999), thus reducing the probability of agonist-induced activation of GABA_{B} receptors at the cell surface. In addition, overexpression of the hGABA_{B(1a):ECD} protein was intended to further inhibit GABA_{B} receptor activity, in a dominant negative fashion, through heterodimerization with the N-termini of endogenously expressed GABA_{B(2)} receptor subunits, as was demonstrated for the similarly truncated GABA_{B(1)} receptor isoform, hGABA_{B(1a)} (Schwarz,D,A et al. 2000). Ultimately, these experiments were abandoned on technical grounds, as efforts to reproducibly demonstrate translation and secretion of the protein from *X.laevis* oocytes, embryos or animal cap explants by western analysis failed. Nonetheless, these overexpression assays also generated a predominantly wild-type phenotype in injected embryos, consistent with the notion that aberrations in GABA_{B} receptor signalling during development may not give rise to gross morphological or behavioural changes in developing embryos.

In order to optimise this experiment a number of modifications could be made. For example, the construct could be modified to include signal peptide sequences from more robustly secreted proteins than BMP-1, such as Activin A. The recombinant protein could also be tagged with a hemagglutinin (HA), poly-histidine or myc epitope, in order to
optimise the detection of the translated protein by western analysis, and avoid reliance upon the N-terminal GABA_{B_{1a}} polyclonal antibody used here. With these modifications, this approach might represent a novel and elegant method of effectively silencing GABA signalling in the CNS of developing embryos.

7.5.2 A knock-down approach to investigate the role of \textit{xI}GABA_{BL(a)} endogenously expressed during \textit{X.laevis} development

Following the demonstration that overexpression of \textit{xI}GABA_{BL(a)} protein during development brings about reproducible morphogenetic effects in \textit{X.laevis} embryos (see Section 6.2), a loss-of-function approach designed to knock-down endogenous \textit{xI}GABA_{BL(a)} expression was considered, and some laboratory work was carried out with respect to this proposal. A rationale was developed whereby a synthetic antisense RNA analogue (or morpholino), with sequence complimentary to that of the region spanning the initiation codon of \textit{xI}GABA_{BL(a)}, was to be synthesized and injected into cleavage-stage \textit{X.laevis} embryos in an effort to block the translation of endogenously expressed \textit{xI}GABA_{BL(a)}, and thus determine the effects of knock-down of this gene during development. An alternative \textit{xI}GABA_{BL(a)} expression construct was also produced, using the pCS2+ plasmid vector, which contained nine silent mutations in the region of the 5'UTR and initiation codon, such that the morpholino would be unlikely to form a duplex with cRNA transcribed from this template. A series of experiments were planned whereby the morpholino was to be co-injected with this alternative \textit{xI}GABA_{BL(a)} cRNA into cleavage-stage embryos, in an effort to rescue any specific morphogenetic phenotypes observed as a result of the morpholino-induced knock-down of endogenous \textit{xI}GABA_{BL(a)} expression. Whilst time constraints meant that these experiments could not be performed as part of
this project, this approach represents an ideal method to gain insight into the in vivo functions of x/GABA_{BL(a)} expressed during X.laevis embryo development, and the findings from these experiments would be highly complementary to the data presented in this thesis. Indeed, these data would almost certainly be deemed necessary to permit the publication of the results from this project in a quality peer-reviewed journal and, as such, obtaining them would be a priority for any future research into the functionality of this protein.

7.5.3 Selective G-protein knock-down approach to investigate signal transduction by x/GABA_{BL(a)} when overexpressed in developing X.laevis embryos

In Section 6.4.2 it was postulated that the morphogenetic effects observed as a result of x/GABA_{BL(a)} overexpression might be attributed to the activation of intracellular signalling cascades. However, GABA_{BL} remains a putative GPCR whose cognate G-protein has yet to be identified and, as such, it is not possible to satisfactorily integrate the experimental findings of this project into a rational model to describe x/GABA_{BL(a)} signalling in vivo. Given that functionality has been demonstrated for GABA_{BL} using this gain-of-function approach, it may now be possible to develop an assay based upon this system that would facilitate the identification of the downstream signal transduction pathway to which x/GABA_{BL(a)}, or indeed any other GPCR which elicits a function response when overexpressed in X.laevis embryos, couples to in vivo. This approach would first focus on the development, or where possible, acquisition, of dominant negative isoforms of Xenopus Gα subunit G-proteins and small GTPases, analogous to the Gα0 and Gα2 mutants generated by Slepak and colleagues previously (Slepak,V.Z et al. 1993, Slepak,V.Z et al. 1995), capable of knocking-down the activity of their endogenously
expressed counterparts when overexpressed in *X.laevis* embryos. Following optimisation of this assay, through the demonstration of the knock-down of specific G-protein signal transduction cascades in response to activation of previously characterised GPCRs, experiments could then be performed whereby x/GABA\textsubscript{BL(a)} was co-overexpressed with each dominant negative G-protein separately. Rescue of the body truncation phenotype, normally associated with *X.laevis* embryos overexpressing x/GABA\textsubscript{BL(a)}, though co-expression with one of these G-proteins would provide strong evidence of a functional association, and might serve to identify which signal transduction pathway(s) x/GABA\textsubscript{BL(a)} mediates its effects through *in vivo*. Furthermore, if successful, a valuable product of this research would be a tool-box of dominant negative *Xenopus* G-proteins that could be used to characterise a host of other GPCRs expressed using this system.

Based upon the evidence that x/GABA\textsubscript{BL(a)} appears to specifically interfere with the non-canonical Wnt/PCP pathway when overexpressed in *X.laevis* embryos and animal cap explants (see Section 6.4.2), the x/GABA\textsubscript{BL(a)} protein might be expected to directly or indirectly regulate the activity of small GTPases like RhoA, Rac1 and cdc42, which have been identified previously as downstream effectors of the Wnt/PCP pathway (Sheldahl,L.C et al. 2003). Indirect regulation might occur as a result of x/GABA\textsubscript{BL(a)}-induced activation of a heterotrimeric G-protein that positively or negatively regulates Dishevelled (Dsh), bringing about the activation or deactivation of the downstream small GTPases and c-Jun N-terminal kinase (JNK) in the Wnt/PCP pathway (see Figure 1.2). Another possibility is that x/GABA\textsubscript{BL(a)} activates heterotrimeric G-proteins containing Ga\textsubscript{12/13} subunits, which have recently been shown to directly regulate RhoA and its downstream effects by binding to and activating RhoGEFs (Kozasa,T et al. 1998, Hart,M.J et al. 1998, Sah,V.P et al. 2000). In addition to the application of the G-protein knock-down assay described above pull-down assays could also be performed, using antibodies specific for activated (GTP-
bound) RhoA, Rac1 and cdc42, to compare the relative levels of each activated G-protein in wild-type and x/GABA$_{BL(a)}$-overexpressing embryos, as described previously (Unterseher,F et al. 2004). These data would provide insight into the effects of x/GABA$_{BL(a)}$ overexpression upon the activation or inhibition of specific small GTPases, and thus help to further characterise the nature of the signal transduction pathway(s) to which x/GABA$_{BL(a)}$ couples. Ultimately, it might be possible to carry out functional studies whereby the downstream effects of x/GABA$_{BL(a)}$ activation could be investigated in an agonist-dependent fashion. This could be achieved through the development of a chimeric receptor protein containing the N-terminal ECD from a related ligand-binding Family 3 GPCR, such as x/GABA$_{B_1}$, and the seven-transmembrane and intracellular C-terminal domains of x/GABA$_{BL(a)}$; a similar chimeric receptor containing the N-terminal ECD of the CaSR and the seven-transmembrane and C-terminal domains of mGluR1 was shown to be pharmacologically indistinguishable from the wild-type CaSR (Bräuner-Osbourne,H et al. 2001).

7.5.4 Rational approaches to identify GABA$_{BL}$-interacting factors

In Section 7.4.2 it was suggested that GABA$_{BL}$ and the other short N-terminal Family 3 GPCRs may not function as ligand-binding receptors in vivo, and that future research might benefit from focussing attention upon the characterisation of the intracellular interactions of these orphan receptors. As discussed in Section 7.5.3, the proposed coupling of x/GABA$_{BL(a)}$ to downstream G-protein signalling cascades could be thought to occur either as a result of transactivation, by another ligand-binding receptor partner with which it heterodimerizes, or through ligand-independent constitutive activity of the recombinant protein when overexpressed in X.laevis embryos. Given that GABA$_{BL}$ protein
possesses an extremely extracellular short N-terminal domain, it is likely that any heterodimerization interfaces with other GPCR partners would reside within either the transmembrane α-helices or the extended C-terminal intracellular tail of \(\text{GABA}_b \). Should, \(\text{GABA}_b \) function in a ligand-independent fashion \textit{in vivo}, as a constitutively active homooligomeric GPCR, its downstream signalling activity would presumably still be regulated by other intracellular factors through the attenuation of G-protein coupling in response to specific cellular events. Thus, the identification of proteins that specifically interact with \(\text{GABA}_b \) at the plasma membrane, whether they be membrane-anchored or cytosolic, would permit the characterisation of the ligand-independent properties of this putative GPCR, and help to build a model to explain the functional effects observed as a result of overexpression of the \(\text{xGABA}_{b(1)} \) protein in \textit{X.laevis} embryos. At best, this approach might lead to the discovery of a novel and pharmacologically distinct GPCR heterooligomer, or a previously uncharacterised cell signalling mechanism, which enhances our understanding of an important disease state.

Two approaches that could be explored in order to identify specific \(\text{GABA}_b \) C-terminal-interacting factors are considered here. The first would be to screen for interactions using the yeast-2-hybrid system, whereby the intracellular C-terminal tail of \(\text{GABA}_b \) would be used as a 'bait' protein to identify interacting proteins encoded by cDNA clones from a library: an approach that has been used previously to identify \(\text{GABA}_{b(1)} \) C-terminal-interacting proteins (Nehring,R.B et al. 2000, Vernon,E et al. 2001, White,J.H et al. 2000, Sauter,K et al. 2001, Couve,A et al. 2001, Couve,A et al. 2004), and to demonstrate the existence of a specific heterodimerization interface between the C-terminal domains of the \(\text{GABA}_{b(1)} \) and \(\text{GABA}_{b(2)} \) receptor subunits (White,J et al. 1998, Kuner,R et al. 1999, White,J et al. 2002). One limitation of this technique is that it is unsuitable for the identification of weak or transient protein-protein interactions and, as such, many specific
and physiologically important associations may not be detected using this approach. Another disadvantage is that the screening of a cDNA library, encoding the entire complement of genes expressed by a particular tissue, could give rise to potentially misleading positive results where, for example, a strong specific interaction is demonstrated between the GABA_{bl} C-terminus and a protein that would never normally come into contact with cell-surface receptors by virtue of the compartmentalisation of the cell in vivo. Indeed, the specific interactions between the C-terminus of GABA_{b(1)} and the RNA-binding protein Marlin-1, or the ATF/CREB family of transcription factors, identified previously by yeast-2-hybrid experiments (Nehring, R.B et al. 2000, Vernon, E et al. 2001, White, J.H et al. 2000, Couve, A et al. 2004), may not prove to be of any physiological relevance; there is presently no evidence to suggest that any of these proteins are capable of modulating GABA_b receptor activity, and it remains difficult to incorporate them into a coherent model to explain any demonstrable aspect of GABA_b receptor biology.

A second and, potentially, much more sensitive approach would be to express and purify sufficient recombinant GABA_{bl} C-terminal protein to permit the synthesis of a GABA_{bl} C-terminal affinity chromatography column. Cell lysates from tissues that normally express GABA_{bl}, such as the hypothalamus or the pyramidal cell layers of the hippocampus (Charles, K.J et al. 2003), could then be passed through the column to pull out potential cytosolic GABA_{bl} C-terminal-interacting factors. Once eluted from the column, short amino acid sequences from fragments of these proteins could be elucidated by mass spectrometry, and then used as queries to search GenBank databases to reveal the identity of the interacting gene products. Once identified, cDNAs encoding these proteins could be cloned, and the interactions between GABA_{bl} and these recombinant proteins characterised by yeast-2-hybrid and co-immunoprecipitation experiments. A primary objective would be to map the location of any specific interactions using a series of
GABA$_{BL}$ C-terminal deletion constructs, and identify critical amino acid residues through mutagenesis studies. As discussed in Section 3.4.6, whilst exhibiting very poor sequence conservation overall, the C-terminal tail of GABA$_{BL}$ possesses several highly conserved amino acid sequences, such as EKLQE(I/V)L, SPY(M/V)(M/V)RRR, SSSS and CHRPYCE(I/V)C (see Figure 3.18). Specific interactions involving these sequences would presumably be conserved throughout the vertebrate kingdom, and might be of great physiological relevance.

A research project is thus conceived, using the approaches described here, to evaluate the hypothesis that GABA$_{BL}$ and the GPRC5 family of orphan receptors are non ligand-binding seven-transmembrane proteins that couple to intracellular signal transduction cascades via G-proteins, and whose activity is regulated by hitherto unidentified associated factors. An initial assumption would be that these proteins function as the G-protein coupling component of a GPCR hetero-oligomer, and are activated in an agonist-dependent manner by a ligand-binding receptor partner, analogous to GABA$_{B(2)}$. However, an alternative model would be that these proteins represent constitutively active GPCRs who function as part of larger oligomeric GPCR assemblies to modulate the signalling properties of other receptors with which they are associated.
References

Blein, S., Ginham, R., Uhrin, D., Smith, B.O., Soares, D.C., Veltel, S., McIlhinney, J.R., White, J.H., and Barlow, P.N. (2004) Structural analysis of the CCP modules of the GABAB receptor 1a: Only one of the two CCP modules is compactly folded *J. Biol. Chem.*

Geach, T.J., Dale, L. (2005) Members of the lysyl oxidase family are expressed during the development of the frog Xenopus laevis Differentiation 73: 414-424.

Appendices
Table 9.1 Intron/exon sizes and locations in GABA_{B1} genes

<table>
<thead>
<tr>
<th>Exon/intron</th>
<th>H. sapiens</th>
<th>R. norvegicus</th>
<th>X. tropicalis</th>
<th>D. melanogaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome</td>
<td>6</td>
<td>20</td>
<td>not available</td>
<td>2L</td>
</tr>
<tr>
<td>Sequence</td>
<td>AL645936.6.1.155874</td>
<td>AABR03116854.1</td>
<td>Scaffold_396</td>
<td>NT_033779</td>
</tr>
<tr>
<td>Strand</td>
<td>minus</td>
<td>minus</td>
<td>minus</td>
<td>plus</td>
</tr>
<tr>
<td>Exon/intron</td>
<td>size (bp)</td>
<td>start (bp)</td>
<td>end (bp)</td>
<td>size (bp)</td>
</tr>
<tr>
<td>Exon -1a2</td>
<td></td>
<td></td>
<td></td>
<td>531</td>
</tr>
<tr>
<td>Exon -4</td>
<td></td>
<td></td>
<td></td>
<td>8,719</td>
</tr>
<tr>
<td>Exon -1a1</td>
<td>311</td>
<td>1,023,756</td>
<td>1,024,286</td>
<td></td>
</tr>
<tr>
<td>Exon -5</td>
<td>484</td>
<td>1,024,287</td>
<td>1,033,005</td>
<td></td>
</tr>
<tr>
<td>Exon 1a1</td>
<td>181</td>
<td>1,033,096</td>
<td>1,033,122</td>
<td></td>
</tr>
<tr>
<td>Exon -4</td>
<td>645</td>
<td>1,033,123</td>
<td>1,033,404</td>
<td></td>
</tr>
<tr>
<td>Exon 1a2</td>
<td>1,023,456</td>
<td>1,033,405</td>
<td>1,033,480</td>
<td></td>
</tr>
<tr>
<td>Exon 1a3</td>
<td>464</td>
<td>1,034,015</td>
<td>1,034,014</td>
<td></td>
</tr>
<tr>
<td>Exon -3</td>
<td>752</td>
<td>1,034,133</td>
<td>1,036,371</td>
<td></td>
</tr>
<tr>
<td>Exon 1a4</td>
<td>189</td>
<td>1,036,372</td>
<td>1,039,603</td>
<td></td>
</tr>
<tr>
<td>Intron -1</td>
<td>1,440</td>
<td>1,040,541</td>
<td>1,060,591</td>
<td>243</td>
</tr>
<tr>
<td>Exon 1a1</td>
<td>1,019</td>
<td>1,051,042</td>
<td>1,051,374</td>
<td></td>
</tr>
<tr>
<td>Exon 1b</td>
<td>533</td>
<td></td>
<td>1,060,592</td>
<td>15,013,083</td>
</tr>
<tr>
<td>Intron 1</td>
<td>3,461</td>
<td></td>
<td>1,060,752</td>
<td>15,013,325</td>
</tr>
<tr>
<td>Exon 2</td>
<td>155</td>
<td></td>
<td>1,060,762</td>
<td>15,013,325</td>
</tr>
<tr>
<td>Intron 2</td>
<td>135</td>
<td></td>
<td></td>
<td>15,013,325</td>
</tr>
<tr>
<td>Exon 3</td>
<td>353</td>
<td></td>
<td></td>
<td>15,013,325</td>
</tr>
<tr>
<td>Intron 3</td>
<td>109</td>
<td></td>
<td></td>
<td>15,013,325</td>
</tr>
</tbody>
</table>

Table 9.1 Intron/exon sizes and locations in GABA_{B1} genes
<table>
<thead>
<tr>
<th>Exon</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 4</td>
<td>29,697,961</td>
<td>29,697,860</td>
<td>1,001</td>
<td>1,065,175</td>
<td>1,065,276</td>
<td></td>
</tr>
<tr>
<td>Exon 5</td>
<td>15,021,776</td>
<td>15,021,892</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 4</td>
<td>29,697,859</td>
<td>29,697,574</td>
<td>29,697,961</td>
<td>29,697,860</td>
<td>1,572,844</td>
<td>1,572,743</td>
</tr>
<tr>
<td>Exon 6</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>1,069,315</td>
<td>1,069,503</td>
<td></td>
</tr>
<tr>
<td>Intron 5</td>
<td>29,697,507</td>
<td>29,697,049</td>
<td>1,572,447</td>
<td>1,572,381</td>
<td>1,068,979</td>
<td>1,069,498</td>
</tr>
<tr>
<td>Exon 7</td>
<td>731</td>
<td>59</td>
<td>244</td>
<td>1,070,984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 6</td>
<td>29,698,998</td>
<td>29,698,371</td>
<td>1,566,311</td>
<td>1,566,069</td>
<td>1,069,871</td>
<td></td>
</tr>
<tr>
<td>Exon 8</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>1,070,984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 7</td>
<td>29,699,241</td>
<td>29,698,758</td>
<td>1,565,480</td>
<td>1,565,411</td>
<td>1,070,984</td>
<td></td>
</tr>
<tr>
<td>Exon 9</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>1,073,359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 8</td>
<td>29,698,306</td>
<td>29,698,758</td>
<td>1,565,416</td>
<td>1,565,140</td>
<td>1,073,280</td>
<td></td>
</tr>
<tr>
<td>Exon 10</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>1,074,835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 9</td>
<td>29,698,757</td>
<td>29,698,680</td>
<td>1,564,109</td>
<td>1,564,032</td>
<td>1,073,281</td>
<td></td>
</tr>
<tr>
<td>Exon 11</td>
<td>133</td>
<td>133</td>
<td>133</td>
<td>1,075,718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 10</td>
<td>29,698,306</td>
<td>29,698,758</td>
<td>1,564,110</td>
<td>1,564,016</td>
<td>1,073,280</td>
<td></td>
</tr>
<tr>
<td>Exon 12</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>1,075,739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 11</td>
<td>29,699,241</td>
<td>29,698,998</td>
<td>1,566,311</td>
<td>1,566,069</td>
<td>1,069,871</td>
<td></td>
</tr>
<tr>
<td>Exon 13</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>1,075,739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 12</td>
<td>29,698,306</td>
<td>29,698,758</td>
<td>1,565,416</td>
<td>1,565,140</td>
<td>1,073,280</td>
<td></td>
</tr>
<tr>
<td>Exon 14</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>1,075,739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 13</td>
<td>29,698,306</td>
<td>29,698,758</td>
<td>1,565,416</td>
<td>1,565,140</td>
<td>1,073,280</td>
<td></td>
</tr>
<tr>
<td>Exon 15</td>
<td>129</td>
<td>129</td>
<td>129</td>
<td>1,075,739</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 14</td>
<td>29,698,306</td>
<td>29,698,758</td>
<td>1,565,416</td>
<td>1,565,140</td>
<td>1,073,280</td>
<td></td>
</tr>
<tr>
<td>Exon 16</td>
<td>129</td>
<td>129</td>
<td>129</td>
<td>1,075,739</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.1 Intron/exon sizes and locations in GABA_B genes
Intron 16	222	105	1,097	29,680,615	29,680,394	1,555,592	1,555,488	1,089,589	1,090,685
Exon 17	144	144	1,555,487	1,555,344	1,080,686	1,090,829	15,026,676	15,026,813	
Intron 17	777	566	161	1,554,778	1,554,778	1,090,300	1,090,990	15,026,814	15,027,931
Exon 17	1,489	1,466	818	1,090,991	1,091,808	15,027,932	15,028,120		

| Exon (bp) | 4,097 (1a) | 4,356 (1b) | 4,184 (1a) | 2,757 |
| Intron (bp) | 24,727 (1a) | 28,175 (1b) | 12,281 |

Table 9.1 Intron/exon sizes and locations in $GABA_{A(1)}$ genes
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>H. sapiens</th>
<th>R. norvegicus</th>
<th>X. tropicalis</th>
<th>D. melanogaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>AL353782.23</td>
<td>AAIR03040519.1</td>
<td>not available</td>
<td>3R</td>
</tr>
<tr>
<td>Strand</td>
<td>minus</td>
<td>minus</td>
<td>plus</td>
<td>NT, 033777</td>
</tr>
<tr>
<td>Exon/Intron</td>
<td>size (bp)</td>
<td>size (bp)</td>
<td>size (bp)</td>
<td>size (bp)</td>
</tr>
<tr>
<td></td>
<td>start (bp)</td>
<td>end (bp)</td>
<td>start (bp)</td>
<td>end (bp)</td>
</tr>
<tr>
<td>Exon 1</td>
<td>781</td>
<td>468</td>
<td>702</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>98,551,034</td>
<td>98,550,264</td>
<td>100,516</td>
<td>17,601,562</td>
</tr>
<tr>
<td>Intron 1</td>
<td>130,344</td>
<td>115,045</td>
<td>101,217</td>
<td>17,601,462</td>
</tr>
<tr>
<td>Exon 2</td>
<td>138</td>
<td>138</td>
<td>201,193</td>
<td>17,601,069</td>
</tr>
<tr>
<td>Intron 2</td>
<td>98,419,009</td>
<td>98,419,772</td>
<td>98,550,253</td>
<td>17,600,806</td>
</tr>
<tr>
<td>Exon 3</td>
<td>35,891</td>
<td>31,342</td>
<td>40,944</td>
<td>17,600,630</td>
</tr>
<tr>
<td>Intron 3</td>
<td>98,383,880</td>
<td>98,383,710</td>
<td>98,419,771</td>
<td>17,600,148</td>
</tr>
<tr>
<td>Exon 4</td>
<td>45,358</td>
<td>30,514</td>
<td>19,573</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Intron 4</td>
<td>98,383,709</td>
<td>98,383,352</td>
<td>98,419,903</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 5</td>
<td>102</td>
<td>102</td>
<td>204,888</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 6</td>
<td>15,415</td>
<td>13,545</td>
<td>5,658</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Intron 6</td>
<td>98,338,249</td>
<td>98,322,835</td>
<td>98,322,769</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 7</td>
<td>66</td>
<td>65</td>
<td>274,419</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Intron 7</td>
<td>98,322,834</td>
<td>98,322,769</td>
<td>98,322,769</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 8</td>
<td>7,585</td>
<td>5,593</td>
<td>4,829</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Intron 8</td>
<td>98,315,183</td>
<td>98,315,164</td>
<td>98,315,183</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 9</td>
<td>102</td>
<td>102</td>
<td>189</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Intron 9</td>
<td>98,315,183</td>
<td>98,315,083</td>
<td>98,315,183</td>
<td>17,600,088</td>
</tr>
<tr>
<td>Exon 10</td>
<td>16,928</td>
<td>11,292</td>
<td>2,210</td>
<td>17,599,806</td>
</tr>
<tr>
<td>Intron 10</td>
<td>16,928</td>
<td>11,292</td>
<td>2,210</td>
<td>17,599,806</td>
</tr>
<tr>
<td>Exon 11</td>
<td>98,314,982</td>
<td>98,296,055</td>
<td>98,296,055</td>
<td>17,599,033</td>
</tr>
<tr>
<td>Intron 11</td>
<td>98,314,982</td>
<td>98,296,055</td>
<td>98,296,055</td>
<td>17,599,033</td>
</tr>
<tr>
<td>Exon 12</td>
<td>237</td>
<td>237</td>
<td>237</td>
<td>219</td>
</tr>
<tr>
<td>Intron 12</td>
<td>98,296,054</td>
<td>98,295,818</td>
<td>98,296,017</td>
<td>17,599,832</td>
</tr>
<tr>
<td>Exon 13</td>
<td>47,829</td>
<td>60,811</td>
<td>35,936</td>
<td>17,599,832</td>
</tr>
<tr>
<td>Intron 13</td>
<td>47,829</td>
<td>60,811</td>
<td>35,936</td>
<td>17,599,832</td>
</tr>
<tr>
<td>Exon 14</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>296</td>
</tr>
<tr>
<td>Intron 14</td>
<td>98,297,976</td>
<td>98,297,918</td>
<td>98,297,918</td>
<td>17,599,577</td>
</tr>
<tr>
<td>Exon 15</td>
<td>11,826</td>
<td>26,790</td>
<td>35,637</td>
<td>17,599,281</td>
</tr>
<tr>
<td>Intron 15</td>
<td>98,297,917</td>
<td>98,236,093</td>
<td>98,236,093</td>
<td>17,599,281</td>
</tr>
<tr>
<td>Exon 16</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>17,599,222</td>
</tr>
<tr>
<td>Intron 16</td>
<td>98,236,092</td>
<td>98,236,012</td>
<td>98,236,012</td>
<td>17,599,222</td>
</tr>
</tbody>
</table>

Table 9.2 Intron/exon sizes and locations in GABA<sub>B₂ genes
<table>
<thead>
<tr>
<th>Intron 9</th>
<th>5,170</th>
<th>3,416</th>
<th>3,510</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 10</td>
<td>151</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td>Intron 10</td>
<td>3,081</td>
<td>2,163</td>
<td>207</td>
</tr>
<tr>
<td>Exon 11</td>
<td>133</td>
<td>133</td>
<td>133</td>
</tr>
<tr>
<td>Intron 11</td>
<td>14,088</td>
<td>9,339</td>
<td>5,039</td>
</tr>
<tr>
<td>Exon 12</td>
<td>108</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Intron 12</td>
<td>8,626</td>
<td>6,624</td>
<td>6,238</td>
</tr>
<tr>
<td>Exon 13</td>
<td>123</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>Intron 13</td>
<td>99,205,551</td>
<td>98,152,043</td>
<td>98,227,610</td>
</tr>
<tr>
<td>Exon 14</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Intron 14</td>
<td>99,153,042</td>
<td>99,152,932</td>
<td>99,227,477</td>
</tr>
<tr>
<td>Exon 15</td>
<td>4,749</td>
<td>2,859</td>
<td>684</td>
</tr>
<tr>
<td>Intron 15</td>
<td>98,152,531</td>
<td>98,148,183</td>
<td>98,204,408</td>
</tr>
<tr>
<td>Exon 16</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Intron 16</td>
<td>99,194,266</td>
<td>99,149,661</td>
<td>99,203,030</td>
</tr>
<tr>
<td>Exon 17</td>
<td>237</td>
<td>3,913</td>
<td>3,050</td>
</tr>
<tr>
<td>Intron 17</td>
<td>99,149,182</td>
<td>98,147,958</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 18</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
<tr>
<td>Intron 18</td>
<td>98,145,260</td>
<td>99,145,029</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 19</td>
<td>3,287</td>
<td>2,810</td>
<td>3,478</td>
</tr>
<tr>
<td>Intron 19</td>
<td>99,145,077</td>
<td>99,141,191</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 20</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Intron 20</td>
<td>99,141,190</td>
<td>99,140,651</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 21</td>
<td>5,321</td>
<td>5,789</td>
<td>1,700</td>
</tr>
<tr>
<td>Intron 21</td>
<td>99,140,060</td>
<td>99,135,740</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 22</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>Intron 22</td>
<td>98,135,739</td>
<td>99,135,622</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 23</td>
<td>3,035</td>
<td>2,506</td>
<td>6,000</td>
</tr>
<tr>
<td>Intron 23</td>
<td>98,135,621</td>
<td>98,135,587</td>
<td>99,205,552</td>
</tr>
<tr>
<td>Exon 24</td>
<td>2,666</td>
<td>2,666</td>
<td>595</td>
</tr>
<tr>
<td>Intron 24</td>
<td>99,132,586</td>
<td>99,129,921</td>
<td>99,205,552</td>
</tr>
</tbody>
</table>

Σ exon (bp) 5,766 5,475 3,624 3,973

Σ intron (bp) 415,328 365,038 346,582 1,535

Table 9.2 Intron/exon sizes and locations in GABA_{B2} genes
Table 9.3 Intron/exon sizes and locations in GABA_{BL} genes

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>H. sapiens</th>
<th>R. norvegicus</th>
<th>X. tropicalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strand</td>
<td>minus</td>
<td>minus</td>
<td>plus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exon/Intron</th>
<th>size (bp)</th>
<th>start (bp)</th>
<th>end (bp)</th>
<th>size (bp)</th>
<th>start (bp)</th>
<th>end (bp)</th>
<th>size (bp)</th>
<th>start (bp)</th>
<th>end (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1</td>
<td>338</td>
<td>121,445,877</td>
<td>121,445,540</td>
<td>64,571,771</td>
<td>64,571,678</td>
<td>198,728</td>
<td>198,843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 1</td>
<td>226</td>
<td>121,445,539</td>
<td>121,445,314</td>
<td>64,571,675</td>
<td>64,570,057</td>
<td>198,944</td>
<td>201,781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 2</td>
<td>137</td>
<td>121,445,313</td>
<td>121,445,177</td>
<td>64,570,056</td>
<td>64,569,920</td>
<td>201,182</td>
<td>201,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 2</td>
<td>50,215</td>
<td>121,445,176</td>
<td>121,394,662</td>
<td>64,569,919</td>
<td>64,536,884</td>
<td>201,501</td>
<td>202,075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 3</td>
<td>130</td>
<td>121,394,961</td>
<td>121,394,832</td>
<td>64,536,583</td>
<td>64,536,454</td>
<td>202,076</td>
<td>202,199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 3</td>
<td>245</td>
<td>121,394,831</td>
<td>121,394,597</td>
<td>64,536,453</td>
<td>64,536,244</td>
<td>202,200</td>
<td>202,293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 4</td>
<td>111</td>
<td>121,394,586</td>
<td>121,394,478</td>
<td>64,536,243</td>
<td>64,536,133</td>
<td>202,294</td>
<td>202,404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 4</td>
<td>6,155</td>
<td>121,394,475</td>
<td>121,388,321</td>
<td>64,536,132</td>
<td>64,524,003</td>
<td>202,405</td>
<td>203,964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 5</td>
<td>126</td>
<td>121,388,320</td>
<td>121,388,195</td>
<td>64,524,002</td>
<td>64,523,877</td>
<td>203,965</td>
<td>204,090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 5</td>
<td>1,263</td>
<td>121,388,194</td>
<td>121,385,932</td>
<td>64,523,876</td>
<td>64,522,998</td>
<td>204,091</td>
<td>204,194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 6</td>
<td>96</td>
<td>121,386,931</td>
<td>121,386,836</td>
<td>64,522,997</td>
<td>64,522,902</td>
<td>204,195</td>
<td>204,290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 6</td>
<td>3,937</td>
<td>121,386,835</td>
<td>121,382,899</td>
<td>64,522,901</td>
<td>64,519,859</td>
<td>204,291</td>
<td>204,486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 7</td>
<td>237</td>
<td>121,382,998</td>
<td>121,382,662</td>
<td>64,519,858</td>
<td>64,519,622</td>
<td>204,487</td>
<td>204,723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 7</td>
<td>7,654</td>
<td>121,382,661</td>
<td>121,375,008</td>
<td>64,519,621</td>
<td>64,514,303</td>
<td>204,724</td>
<td>204,989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 8</td>
<td>159</td>
<td>121,375,007</td>
<td>121,374,849</td>
<td>64,514,302</td>
<td>64,514,144</td>
<td>204,990</td>
<td>205,148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intron 8</td>
<td>4,927</td>
<td>121,374,848</td>
<td>121,369,922</td>
<td>64,514,143</td>
<td>64,508,267</td>
<td>205,149</td>
<td>205,358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exon 9</td>
<td>1,454</td>
<td>121,369,921</td>
<td>121,368,468</td>
<td>64,508,266</td>
<td>64,506,980</td>
<td>205,359</td>
<td>207,026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ exon (bp)</td>
<td>2,788</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>2,756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ intron (bp)</td>
<td>74,622</td>
<td></td>
<td></td>
<td>5,543</td>
<td></td>
<td></td>
<td>2,756</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9.4 Data from scoring of microinjected embryos

A 2-cell blastulae microinjections

<table>
<thead>
<tr>
<th>Score</th>
<th>xGABA_{B1}(a)</th>
<th>xGABA_{B1(b)}</th>
<th>xGABA_{B2}(a)</th>
<th>xGABA_{B2(b)}</th>
<th>xGABA_{B2(c)}</th>
<th>xGABA_{B2(d)}</th>
<th>un-injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>15 100.0</td>
<td>20</td>
<td>100.0</td>
<td>22</td>
<td>65.7</td>
<td>17</td>
<td>58.8</td>
</tr>
<tr>
<td>2</td>
<td>0 0.0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>4.3</td>
<td>4</td>
<td>18.2</td>
</tr>
<tr>
<td>3</td>
<td>0 0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>0 0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>15 100.0</td>
<td>20</td>
<td>100.0</td>
<td>23</td>
<td>100.0</td>
<td>22</td>
<td>100.0</td>
</tr>
</tbody>
</table>

B 8-cell blastulae microinjections

<table>
<thead>
<tr>
<th>Score</th>
<th>xGABA_{B1}(a)</th>
<th>xGABA_{B1(b)}</th>
<th>xGABA_{B2}(a)</th>
<th>xGABA_{B2(b)}</th>
<th>xGABA_{B2(c)}</th>
<th>xGABA_{B2(d)}</th>
<th>un-injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>20 76.9</td>
<td>26</td>
<td>81.3</td>
<td>22</td>
<td>75.9</td>
<td>9</td>
<td>60.0</td>
</tr>
<tr>
<td>2</td>
<td>3 11.5</td>
<td>5</td>
<td>16.0</td>
<td>4</td>
<td>13.8</td>
<td>2</td>
<td>12.8</td>
</tr>
<tr>
<td>3</td>
<td>2 7.7</td>
<td>2</td>
<td>6.3</td>
<td>2</td>
<td>6.7</td>
<td>2</td>
<td>15.4</td>
</tr>
<tr>
<td>4</td>
<td>1 3.8</td>
<td>1</td>
<td>3.1</td>
<td>2</td>
<td>6.9</td>
<td>3</td>
<td>20.0</td>
</tr>
<tr>
<td>Total</td>
<td>26 100.0</td>
<td>32</td>
<td>100.0</td>
<td>29</td>
<td>100.0</td>
<td>15</td>
<td>100.0</td>
</tr>
</tbody>
</table>

C 2-cell blastulae microinjections (xGABA_{B2(d)} dose response)

<table>
<thead>
<tr>
<th>Score</th>
<th>0.2</th>
<th>0.4</th>
<th>0.8</th>
<th>1.6</th>
<th>un-injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13 78.5</td>
<td>3 13.9</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>18 100.0</td>
</tr>
<tr>
<td>2</td>
<td>3 17.6</td>
<td>2 9.1</td>
<td>2 18.7</td>
<td>1 11.1</td>
<td>0 0.0</td>
</tr>
<tr>
<td>3</td>
<td>1 5.9</td>
<td>9 49.0</td>
<td>3 25.0</td>
<td>3 33.3</td>
<td>0 0.0</td>
</tr>
<tr>
<td>4</td>
<td>0 0.0</td>
<td>8 46.4</td>
<td>7 55.6</td>
<td>5 55.6</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Total</td>
<td>17 100.0</td>
<td>22 100.0</td>
<td>12 100.0</td>
<td>9 100.0</td>
<td>18 100.0</td>
</tr>
</tbody>
</table>