UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

A data-driven model of biomarker changes in sporadic Alzheimer's disease.

Young, AL; Oxtoby, NP; Daga, P; Cash, DM; Fox, NC; Ourselin, S; Schott, JM; ... on behalf of the Alzheimer’s Disease Neuroimaging Initiative; + view all (2014) A data-driven model of biomarker changes in sporadic Alzheimer's disease. Brain , 137 (9) pp. 2564-2577. 10.1093/brain/awu176. Green open access

[thumbnail of Brain-2014-Young-2564-77.pdf]
Preview
PDF
Brain-2014-Young-2564-77.pdf

Download (364kB)

Abstract

We demonstrate the use of a probabilistic generative model to explore the biomarker changes occurring as Alzheimer's disease develops and progresses. We enhanced the recently introduced event-based model for use with a multi-modal sporadic disease data set. This allows us to determine the sequence in which Alzheimer's disease biomarkers become abnormal without reliance on a priori clinical diagnostic information or explicit biomarker cut points. The model also characterizes the uncertainty in the ordering and provides a natural patient staging system. Two hundred and eighty-five subjects (92 cognitively normal, 129 mild cognitive impairment, 64 Alzheimer's disease) were selected from the Alzheimer's Disease Neuroimaging Initiative with measurements of 14 Alzheimer's disease-related biomarkers including cerebrospinal fluid proteins, regional magnetic resonance imaging brain volume and rates of atrophy measures, and cognitive test scores. We used the event-based model to determine the sequence of biomarker abnormality and its uncertainty in various population subgroups. We used patient stages assigned by the event-based model to discriminate cognitively normal subjects from those with Alzheimer's disease, and predict conversion from mild cognitive impairment to Alzheimer's disease and cognitively normal to mild cognitive impairment. The model predicts that cerebrospinal fluid levels become abnormal first, followed by rates of atrophy, then cognitive test scores, and finally regional brain volumes. In amyloid-positive (cerebrospinal fluid amyloid-β1-42 < 192 pg/ml) or APOE-positive (one or more APOE4 alleles) subjects, the model predicts with high confidence that the cerebrospinal fluid biomarkers become abnormal in a distinct sequence: amyloid-β1-42, phosphorylated tau, total tau. However, in the broader population total tau and phosphorylated tau are found to be earlier cerebrospinal fluid markers than amyloid-β1-42, albeit with more uncertainty. The model's staging system strongly separates cognitively normal and Alzheimer's disease subjects (maximum classification accuracy of 99%), and predicts conversion from mild cognitive impairment to Alzheimer's disease (maximum balanced accuracy of 77% over 3 years), and from cognitively normal to mild cognitive impairment (maximum balanced accuracy of 76% over 5 years). By fitting Cox proportional hazards models, we find that baseline model stage is a significant risk factor for conversion from both mild cognitive impairment to Alzheimer's disease (P = 2.06 × 10(-7)) and cognitively normal to mild cognitive impairment (P = 0.033). The data-driven model we describe supports hypothetical models of biomarker ordering in amyloid-positive and APOE-positive subjects, but suggests that biomarker ordering in the wider population may diverge from this sequence. The model provides useful disease staging information across the full spectrum of disease progression, from cognitively normal to mild cognitive impairment to Alzheimer's disease. This approach has broad application across neurodegenerative disease, providing insights into disease biology, as well as staging and prognostication.

Type: Article
Title: A data-driven model of biomarker changes in sporadic Alzheimer's disease.
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/brain/awu176
Publisher version: http://dx.doi.org/10.1093/brain/awu176
Additional information: © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: Alzheimer’s disease, biomarker ordering, biomarkers, disease progression, event-based model
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1434616
Downloads since deposit
237Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item