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ABSTRACT 

Multipath interference and non-line-of-sight (NLOS) reception are major error sources when 

using global navigation satellite systems (GNSS) in urban environments. A promising 

approach to minimize the effect of multipath interference and aid NLOS detection is vector 

tracking. Therefore the objective of this research is to assess vector tracking in a dense urban 

environment to determine its effect on multipath interference and NLOS reception. Here, a 

vector delay lock loop (VDLL) is implemented using an adaptive extended Kalman filter 

(EKF). This replaces the individual code-tracking loops and navigation filter but retains 

conventional carrier frequency tracking. The positioning and tracking performance of the 

conventional and vector tracking implementations with and without a strobe correlator are 

compared using intermediate frequency (IF) signals recorded in the Koto-Ku district of urban 

canyon Tokyo city environment.  Both static and dynamic tests were performed. It is shown 

that vector tracking reduces the root mean square positioning error by about 30% compared 

to an equivalent conventional receiver in urban environments and is capable of detecting 

long-delay NLOS reception for a GPS receiver without any external aiding. 

 

Introduction 

 

Multipath interference and non-line of sight (NLOS) reception are major sources of error for 
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global navigation satellite systems (GNSS) in an urban environment (Misra and Enge 2011; 

Groves 2013).  Buildings and vehicles obstruct, reflect, and diffract the signals. The 

pseudorange errors caused by the multipath interference can be reduced significantly through 

carefully designed antenna, such as antenna siting (McGraw et al. 2004), choke-ring antenna 

design (Braasch 1996). Receiver-based multipath mitigation techniques use modified 

discriminator designs, often with additional correlators, to improve the resolution of the 

signal correlation process (Dierendonck et al. 1992; Bhuiyan and Lohan 2010). This reduces 

the pseudorange multipath error when the receiver’s precorrelation bandwidth is sufficient 

(Ward et al. 2006a).  However, this is not always the case for a consumer receiver.  

Furthermore, these receiver-based techniques have no effect on NLOS reception (Groves 

2013).  New approaches to multipath and NLOS mitigation are therefore needed. A 

dual-polarization antenna can be used to detect NLOS reception, but is only suited to 

professional applications because of the additional hardware required (Jiang and Groves 

2012). Consistency checking can also be used to identify both NLOS and 

multipath-contaminated signals, but is currently unreliable in dense urban environments 

(Groves and Jiang 2013). A review of multipath and NLOS mitigation techniques may be 

found in (Groves et al. 2013).  

A promising approach to minimize the effect of multipath interference is vector tracking 

(Copps et al. 1980; Spilker 1996; Lashley et al. 2009).  This replaces the delay lock loop 

(DLL) used for code tracking with an extended Kalman filter (EKF) that both tracks the 

GNSS signals and calculates the user position. Some implementations retain carrier tracking 

loops, while others incorporate carrier frequency tracking within the vector tracking 

algorithm. By combining the tracking and positioning tasks, vector tracking can use the user 

motion determined from the stronger GNSS signals to predict the code phase and maintain 

tracking of the weaker signals.  Thus, vector tracking is more robust against signal 

interference and attenuation. This has been demonstrated under a range of conditions (Pany et 
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al. 2005; Bhattacharyya and Gebre-Egziabher 2010; Lashley and Bevly 2011; Kanwal et al. 

2010) and open source vector tracking algorithms are now available (Zhao and Akos 2011). 

Vector tracking has also been extended to incorporate carrier phase tracking (Petovello and 

Lachapelle 2006).  

 

Vector tracking could also mitigate the effects of multipath interference and NLOS reception. 

Preliminary results using data recorded at the Tzu-Chang campus of National Cheng Kung 

University in Taiwan have demonstrated the potential of this technique (Hsu et al. 2013; Hsu 

2013).  Vector tracking is therefore assessed in a dense urban environment subject to high 

levels of multipath interference and NLOS reception. Results are presented using data 

collected in central Tokyo. 

Because multipath interference has greater impact on the code than on the carrier, a 

vector delay lock loop (VDLL) (Pany et al. 2005) is used in conjunction with conventional 

carrier frequency tracking. The VDLL tracks code for all signals and maintains the navigation 

solution. Pseudorange rate measurements from the frequency tracking loops aid both the code 

tracking and the navigation solution computation.  The key difference between the VDLL 

and conventional code tracking is that the code numerically controlled oscillator (NCO) 

commands, used to align the receiver-generated reference codes with the incoming signals, 

are generated using information from all of the signals tracked. Where more than four signals 

are tracked, this increases robustness against signal attenuation and interference. It can also 

prevent the receiver locking onto long-path-delay NLOS signals, which are responsible for 

the very large positioning errors (>100m) that sometimes occur in dense urban areas.  The 

VDLL implemented here also uses innovation-based adaptive estimation (Mehra 1972; 

Mohammed and Schwarz 1999) to determine the EKF measurement noise, instead of using 

carrier-power-to-noise density ratio (C/N0) or signal amplitude estimates. C/N0 and signal 

amplitude are difficult to determine in weak signal and high interference environments 
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(Groves 2005). 

The proposed scheme is evaluated against an equivalent conventional architecture 

comprising separate code tracking loops and an EKF-based navigation solution. In some of 

the tests, a strobe correlator (Garin et al. 1996; Veitsel et al. 1998), a receiver-based multipath 

mitigation technique, is also used with both the conventional and vector tracking 

architectures, enabling a four-way performance comparison to be made.  As the aim here is 

to assess multipath and NLOS mitigation, the atmospheric propagation errors are minimized 

using the Saastamoinen tropospheric model (Saastamoinen 1972), the UNB3 model 

(LaMance et al. 1996), and the International GNSS Service (IGS) exact ionospheric model 

(Hernández-Pajares et al. 2009). 

This paper firstly describes the vector tracking algorithm, which has been implanted on a 

Matlab-based GPS software-defined receiver. In the section of simulation results, the vector 

tracking algorithm us tested under a long-path-delay NLOS reception situation. Then, a 

Monte-Carlo simulation is used to test its sensitivity with and without the strobe correlator. In 

the section of experiment, this paper presents the results of a road vehicle experiment 

conducted in a high-multipath and NLOS environment in central Tokyo. The GNSS signals 

were sampled and recorded to enable vector tracking to be compared with conventional 

tracking, with and without the strobe correlator, using the same data set. The capability of 

vector tracking to mitigate multipath interference and NLOS reception is evaluated.  

 

Vector tracking algorithm 

 

This section describes the vector tracking algorithm used for this study. The overall 

architecture is described first, then the EKF, including the adaptive tuning algorithm. This is 

followed by a brief summary of the conventional tracking algorithm used for comparison. 
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Vector tracking architecture 

 

The architecture of the VDLL implemented is displayed in Figure 1.  Note that a 

conventional tracking architecture is used for initialization, providing code phase and 

Doppler frequency estimates for signals from at least four satellites together with satellite 

ephemeris data and a position, velocity, and time (PVT) solution. 
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Figure 1: Detailed architecture of the developed VDLL 
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In Figure 1, the blue and green parts components comprise code and carrier tracking, 

respectively. Both code and carrier tracking includes a discriminator, loop filter, and NCO. 

The orange components comprise the navigation algorithms including non-coherent prefilters, 

an EKF, prediction of the pseudoranges and GPS code NCO command generation.  As 

shown, within each channel, the incoming signal is correlated with six locally-generated 

replica signals: in-phase (I) and quadraphase (Q) early (E), prompt (P), and late (L). The 

correlator outputs are then input to the code and carrier discriminator functions. For carrier 

tracking, arctangent frequency discriminators are used with a separate 2nd order frequency 

lock loop (FLL) with a 5Hz noise bandwidth for each signal tracked, which outputs the 

estimated Doppler shift to the navigation algorithms. For code, early-minus-late envelope 

discriminators with a one chip early-late spacing are used; these output directly to the 

navigation algorithms. Further details may be found in standard texts (Ward et al. 2006b; 

Misra and Enge 2011; Groves 2013). 

To apply correlator-based multipath mitigation techniques, the standard code 

discriminator is replaced and additional or alternative correlators employed, where required.  

Here, a strobe correlator option has been implemented (Garin et al. 1996; Veitsel et al. 1998). 

Where this is selected, the early and late correlators are replaced by strobe correlators in 

which the incoming signal is correlated with a linear combination of reference signals subject 

to different delays and the code discriminator is replaced with 

 

2 2strobe
ID IP QD QPd

IP QP
  




      (1) 

 

where ID and QD are, respectively, the in-phase and quadrature components of the strobe 

correlators and IP and QP are, respectively, the in-phase and quadrature components of 

prompt code correlators. 

An EKF is used to correct the position and velocity solution using the code discriminator 

outputs and Doppler shift estimates. However, it is neither necessary nor practical to iterate 

the EKF at the same rate as the accumulated correlator outputs are updated. Therefore, 

pre-filters are used as an intermediary, averaging the code discriminator outputs over the 20 

ms EKF update interval. Averaging of the Doppler measurements is not required in the 

pre-filter because the FLLs already do this. Note that if the integration time of FLL is shorter 

than 20ms, the averaging is required for the FLL output as well. The measurements input to 
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the EKF are delta pseudorange, ∆ρj (in meters), and pseudorange rate, j  (in meters per 

second). The delta pseudorange is the difference between the true and predicted pseudorange.  

They are calculated in the pre-filter using: 
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j j

j j
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L
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      (2) 

 

where d is the code discriminator output in chips, fDoppler is the Doppler frequency in Hz, c is 

the speed of light, f0 is the code chipping rate (1.023 MHz for GPS C/A code), and fL1 is the 

L1 band carrier frequency (1575.42 MHz). 

The EKF estimates corrections to the position, velocity and receiver clock solution and 

is described in more detail in the next sub-section. The corrected receiver velocity and clock 

drift solution are used to update the position and clock offset every 20 ms, from which each 

of the pseudo-ranges are predicted using 

 

, ,
ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

Tj j j j j j
R k s a s a sv c T I kr r r r b                   (3) 

 

where ˆ j
sr  is the Cartesian earth-centered inertial (ECI) frame position of the satellite 

denoted by index j, determined from the broadcast ephemeris, âr
  is the predicted ECI-frame 

receiver position, ,ˆ j
sv c  is the satellite clock correction, ˆ j

T  and ˆ j
I  are, respectively, 

the tropospheric and ionospheric error estimates, and k̂b  is the estimated receiver clock bias.  

The predicted pseudo-ranges are then used to generate the code NCO commands using 
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    (4) 

 

where a = 20 ms is the interval between epochs k and k + 1. The NCO commands then 

control the receiver’s replica code generators for all of the signals, closing the vector delay 

lock loop. 
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Extended Kalman filter 

 

The extended Kalman filter is the standard algorithm used to compute a multi-epoch 

GNSS navigation solution. A full description may be found in standard navigation texts 

(Brown and Hwang 1996; Jwo et al. 2009; Groves 2013). Here, only the details specific to 

the vector tracking implementation are presented. The EKF estimates the errors in the 

position, velocity, and clock solution used to control the receiver replica code generator. The 

state vector, x, thus comprises the following states: 

 

,
T

xk yk z k xk yk z k k clk kp p p v v v b d          x    (5) 

 

where kΔp , kΔv , b  and clkd  are the position, velocity, receiver clock bias and drift, 

respectively. The position and velocity errors are resolved in and referenced to an 

earth-centered earth-fitted (ECEF) frame and the clock bias and drift are expressed as a range 

and range rate, respectively.  All states are initialized at zero.  The transition matrix, used 

for the time propagation of the states, is 
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where τs is the EKF update interval (20 ms).   

The system (or process) noise covariance matrix may be divided into user dynamic noise 

and receiver clock noise as follows: 
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where Sv is the user velocity noise power spectral density (PSD), Scφ is the oscillator phase 

noise PSD, and Scf is the oscillator frequency noise PSD.  Here, Sv is set to 1 m2/s3.  The 

front-end is equipped with a temperature compensate crystal oscillator (TCXO), so suitable 

clock model coefficients are (Brown and Hwang 1996): 
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The measurement innovations input to the EKF comprise the delta pseudo-ranges, 

obtained directly from the pre-filter, and the delta pseudorange rates, comprising the 

differences between the measured pseudorange rates from the pre-filter and the predicted 

values computed from the user and satellite velocities and clock drifts. Thus, the 

measurement innovation vector is 

 

1 2 1 2 Tm m
k k k k k k             

-
kδz        (11) 

 

where j
k   and j

k  are, respectively, the delta pseudorange and delta pseudorange rate 

for satellite j at epoch k. The measurement matrix, which comprises the partial derivatives of 

the measurements with respect to the states is 
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    (12) 

 

where m is the number of satellites, u is the line-of-sight (LOS) unit vector from the receiver 

to the satellite, its subscript denotes the x, y, and z components, and its superscript denotes the 

satellite. 
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The measurement noise covariance matrix, R, is determined adaptively, with the 

off-diagonal terms assumed to be zero because of the weak correlation between the different 

PRN codes and the orthogonality of the code and carrier discriminator noise. A variation of 

the innovation-based adaptive estimation (IAE) technique (Mehra 1972; Mohammed and 

Schwarz 1999) is used. The variance of each component of the measurement innovation is 

calculated over the last 500 epochs. Each value is then multiplied by a scaling factor to form 

the corresponding diagonal element of R. The scaling factor accounts for the time correlation 

of the measurement noise. This scaling factor only used in carrier measurement because the 

VDLL is selected in this work. For the carrier measurements, a scaling factor of 10 is used 

because the EKF update rate is 10 times the bandwidth of the carrier frequency tracking loops. 

To prevent filter instability, minimum and maximum values of each component of R are 

imposed. The maximum and minimum values are 5,000 and 100 m2, respectively, for code 

measurement and 50 and 0.01 m2/s2, respectively, for carrier measurement. These values were 

determined empirically using data from urban environments. This adaptive estimation 

technique automatically downweights measurements that are noisy, not only because of a low 

C/N0, but also due to the effects of rapidly fluctuating multipath interference, as shown in the 

section of experiment result. 

 

Equivalent conventional tracking architecture 

 

The aim of the investigation is the performance of vector tracking against multipath 

interference and NLOS reception.  Therefore, the design of the conventional receiver 

architecture used for comparison must be as close as possible to the vector tracking 

architecture. Thus, the correlator spacing, coherent integration time, type of discriminator and 

carrier tracking loop are the same for both the vector and conventional architectures. The 

conventional architecture also uses an EKF-based navigation processor. This has the same 

states, system model, measurement model, and noise models as the vector-tracking EKF, 

including adaptive measurement noise covariance. The ionospheric and tropospheric models 

are also the same.  However, there are two major differences between the conventional and 

vector tracking architectures. The first difference is that the conventional receiver uses a 

separate 2nd order loop filter to track the code of each signal, calculating the NCO command. 

Thus, it tracks all signals independently. The second difference is in the calculation of code 

measurement, specifically the formation of the delta pseudorange measurement innovations. 

These are formed by subtracting the pseudo-ranges predicted from the user and satellite PVT 
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solutions from the pseudo-ranges estimated from the code tracking loops. 

 

Simulation test of vector tracking in NLOS reception 

 

Simulation tests were conducted to assess the response of vector and conventional tracking to 

long-path-delay NLOS reception and to compare the sensitivity of the different techniques. 

Each is described in turn. 

 

Simulation of exaggerated NLOS reception 

 

To simulate relatively strong NLOS reception with a long path delay in the intermediate 

frequency (IF) signal samples, an algorithm called direct signal cancellation was 

implemented (Hsu et al. 2007). This takes the IF signal recorded by a GNSS front end, 

subtracts a replica of one of the signals from this data and adds a delayed version of the same 

replica signal to simulate NLOS reception. The amplitude, code phase, carrier phase and 

Doppler shift of the replica signal are determined by tracking the original signal from the 

unmodified IF data. Figure 2 illustrates the process.   

 

 

Incoming 
signal Tracking Generating a 

signal replica -1

Signal with NLOS 
reception simulated

Delay the signal Simulated NLOS

Original incoming signal

  
Figure 2: Simulation of NLOS reception using on the direct signal cancellation method. 

 

GPS signals for use in the NLOS simulations were recorded statically on the roof of the 

fourth research building at the Etchujima campus of Tokyo University of Marine Science and 

Technology (TUMSAT). Signals from 9 satellites were tracked. Between 6 and 10s from the 

start of the run, the signal from GPS PRN27 was eliminated from the recorded IF data and a 

simulated reflected signal from the same satellite added in its place. For the rest of the run, 
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the original PRN27 signal was retained. The simulated reflected signal was 8dB weaker than 

the direct line of sight (LOS) signal it replaced and was delayed by 0.8 chips relative to the 

direct path.  Figure 3 shows the correlator and code discriminator outputs for PRN27 using 

both conventional and vector tracking.   

 

 
Figure 3: Correlator and code discriminator outputs for PRN27 using conventional tracking 

(CT) and vector tracking (VT) with NLOS reception simulated from 6 to 10s.  

 

Examining the conventional-tracking code discriminator output, anomalies occur mainly 

at the beginning and end of the period of NLOS reception.  The correlation value in the 

prompt channel is also generally the highest among the three during the period of NLOS 

reception.  Thus, the conventional-tracking loop is locking onto the NLOS signal. 

Consequently, it is difficult to detect NLOS reception from the correlator outputs in a 

conventional-tracking architecture. 

The vector-tracking code discriminator output has a large negative value during most of 

the period of NLOS reception.  Furthermore, the highest correlation value is found in the 

late channel.  Both of these phenomena provide an indication of potential NLOS reception. 

This happens because, in vector tracking, the receiver-generated code in each correlation 

channel is determined using the user and satellite PVT solutions. Consequently, when the user 

PVT solution is overdetermined, the prompt reference code is not aligned with an NLOS 

signal. Instead, it is aligned with the predicted direct signal, which is blocked in the case of 

NLOS reception. However, NLOS reception can still contaminate the navigation solution 

because inputting an NLOS code discriminator measurement to the vector-tracking EKF will 
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pull the position solution away from the truth. It is therefore desirable to detect NLOS signals 

and exclude their measurements from the vector-tracking EKF, noting that correlation of 

NLOS signals can continue using NCO commands generated using the navigation solution. 

In order to detect NLOS reception, the code discriminator output is used to test the quality of 

the signal. If the code discriminator output exceeds a pre-determined value, threshold_chip, 

an abnormal output is assumed and a counter incremented by one. The counter is reset to zero 

after N epochs without any increments, defining a detection window. If the counter value 

exceeds the pre-determined threshold, N  threshold_percent, NLOS reception is suspected. 

Once a signal is suspected to be NLOS, its measurements are excluded from the EKF. For the 

results presented here, N was set to 100 20-ms epochs, giving a 4s detection window, 

threshold_chip was set to 0.2 chips and threshold_percent set to 0.25 (i.e., 25%).  Both two 

thresholds were determined by trial and error. 

Figure 4 shows the 3D positioning root mean square error (RMSE) of conventional 

tracking, vector tracking, and vector tracking with the NLOS detection technique. Without 

NLOS detection, the positioning accuracy of both conventional and vector tracking is 

significantly degraded as a result of the ~240m ranging error of the simulated NLOS signal. 

The positioning error of vector tracking with NLOS detection increases slightly.  The PDOP 

values before and after the NLOS signal is detected are 2.46 and 4.65, respectively.  Thus, 

the increase in position error can be attributed to the degradation in satellite geometry that 

results from eliminating one of the signals.  Figure 5 shows the velocity error in each case. 

The conventional solution develops a significant time-correlated bias when the NLOS signal 

is simulated, while the basic vector-tracking solution is very noisy. With NLOS detection and 

exclusion, the velocity solution is smoother and more accurate. Thus, vector tracking with 

NLOS detection clearly gives the best navigation solution of the three. Note that this 

technique does not correct NLOS reception errors; it only excludes the affected signals from 

the position solution. It also requires at least four uncontaminated GPS signals to form a good 

position solution. Thus, it will not work under all conditions. The technique’s impact will also 

be less for weak NLOS signals as weak signals already receive lower weighting in the EKF.     
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Figure 4: The 3D positioning RMSE of CT, VT, and VT with NLOS detection technique. The 

pink shadow represents the duration of simulated NLOS reception. 

 

  
Figure 5: The 3D velocity error of CT, VT, and VT with NLOS detection technique. The pink 

shadow represents the duration of simulated NLOS reception. 

 

Monte Carlo Sensitivity Test 

 

Receiver-based multipath mitigation techniques, such as the strobe correlator, effectively 

enhance the resolution of the code discriminator for low-chipping-rate signals by boosting the 

higher frequency components of the signal modulation. However, as the higher frequency 

components are weaker, this reduces the sensitivity of the receiver (Pratt 2004). These higher 
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resolution code discriminators also have narrower pull-in regions, so code tracking lock is lost 

as a result of smaller tracking errors (Garin et al. 1996). 

To assess the sensitivity loss from using the strobe correlator, a series of Monte Carlo 

simulations were conducted to determine the code tracking thresholds of both conventional and 

vector tracking with and without the strobe correlator. Details are presented in (Hsu 2013). It 

was found that the strobe correlator increases the conventional code tracking threshold by ~2.3 

dB (i.e. the receiver sensitivity is reduced by 2.3 dB), whereas the threshold for vector code 

tracking is only increased by ~1.4 dB when the strobe correlator is used. This is thought to be 

because vector tracking can recover signals that briefly leave the discriminator pull-in range 

using the navigation solution derived from the other signals. 

 

Experiments 

 

Preliminary experiments were conducted at the Tzu-Chang campus of National Cheng Kung 

University in Taiwan. GNSS signals were recorded on a pedestrian route in an open area 

surrounded by buildings. Both multipath interference and NLOS reception were present along 

many parts of the route. Details are described in (Hsu et al. 2013; Hsu 2013). Without the 

strobe correlator or the NLOS receiver, the horizontal RMSE across the whole circuit was 

1.51m with vector tracking, compared to 2.60m with conventional tracking, a clear 

improvement. Here, the strobe correlator degraded the RMSE across the whole run to 1.60m 

with vector tracking. However, it improved the positioning performance at the locations most 

severely affected by multipath interference. 

Experiments were conducted in an urban canyon in the Toyusu area of Tokyo, shown in 

Figure 6. The equipment used is shown in Figure 7. For the first experiment, GNSS signals 

captured by a NovAtel 702 antenna were sampled and recorded using a Fraunhofer front-end, 

which has a precorrelation bandwidth of 13MHz, an IF of 12.82 MHz, and a sampling 

frequency of 40.96 MHz.  The reference was provided by a NovAtel OEM6 receiver, which 

shared the antenna with the Fraunhofer front-end via a GPS Networking antenna splitter.  

The antenna was attached on the top of an automobile as shown in the left of Figure 7.  The 

signal data was collected statically for about 5 minutes at the position marked by a pin in 

Figure 6. 
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Figure 6: Bird-view and fisheye-view of the selected urban canyon in Toyosu area. 
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Figure 7: Equipment used in the Tokyo city experiments. 

 

In the left part of Figure 6, the red lines depict the LOS vectors between the satellites 

and the user antenna.  In this experiment, only 5 satellites could be continuously tracked due 

to the very narrow open sky as shown in the right of Figure 6.  Of these, four are GPS 

satellites and the fifth a Quasi-Zenith Satellite System (QZSS) satellite.  The surrounded 

buildings are covered by very flat glass, which is a strong reflector to GNSS signals; 

sometimes attenuating them by as little as 2-3 dB (Groves 2013).  The C/N0 measurements 

from the software receiver are shown in Figure 8.  Significant fluctuation can be seen in all 

of the C/N0 measurements, except for the QZSS satellite, which indicates that these signals 

are affected by strong multipath interference.  PRN1 was the most affected satellite.  An 
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example of the PRN1 code correlation function is also shown in Figure 8. The distortion of 

the correlation function away from a symmetrical triangle can be clearly seen in the middle of 

Figure 8. The regular correction shape is also shown in the bottom of Figure 8. 
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Figure 8: The calculated C/N0 of the experiment of urban canyon is shown in upper plot and 

the correlation shape of the normal case and multipath effect are shown in lower plot. 

 

The vector-tracking results are compared not only with the equivalent 

conventional-tracking receiver, but also an open-source real time GNSS software receiver, 

called GNSS-SDRLIB (www.taroz.net/gnsssdrlib_e.html).  This open-source receiver 

implements a single-epoch positioning algorithm and supports carrier smoothing, differential 

GPS (DGPS) and the strobe correlator. The carrier-smoothing time constant for the 

open-source receiver was 100 seconds, while the strobe correlator spacing in both receivers 

was 0.3 chips and 0.15 chips. The baseline for differential positioning using the 

open-source software receiver was less than one kilometer.   

Figure 9 shows the positioning results from the Toyosu experiment obtained with 

different receiver configurations. The positioning errors are mainly along a north-west 

south-east axis because of the satellite geometry (see Figure 6).  It is interesting to note the 

positioning results using vector tracking (red star) are much better than with the equivalent 

conventional tracking (blue cross),  while the strobe correlator only slightly improves the 

vector-tracking results.   
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Figure 9: Position errors with the Fraunhofer front-end and different receiver configurations 

in Toyosu, Tokyo. The horizontal dilution of precision (HDOP) is 4.42 in all positioning 

cases which indicates a poor satellite geometry.  
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Table 1 lists the positioning performance of different approaches. Differential 

positioning using the strobe correlator and gives the smallest mean position error, showing 

that the atmospheric and signal-in-space errors are significant.  However, the smallest error 

standard deviation is obtained using vector tracking.  Vector tracking also outperforms the 

equivalent conventional tracking configuration by about 2m and 4.3m in terms of the mean 

and standard deviation, respectively.  Vector tracking thus stabilizes the position solution in 

the presence of multipath interference. This effect can be seen in Figure 10, which shows the 

code discriminator output from both conventional and vector tracking. As vector tracking is 

capable of estimating a more stable code frequency, the effects of multipath interference can 

be observed on its code discriminator outputs.  Periodic oscillation can be seen for PRN1, 

PRN28 and PRN30, while a peak error can be seen in the PRN1 data.  This could be due to 

a passing vehicle temporarily blocking the direct LOS signal, resulting in a short period of 

NLOS reception. 

 

Table 1: 3D position error statistics with the Fraunhofer front-end and different receiver 

configurations in Toyosu, Tokyo 

Approaches Mean of 3D position 

error (meters) 

Standard Deviation of 

3D position error 

(meters) 

1. Single-epoch positioning 30.20 20.24 

2. Single-epoch positioning with carrier 

smoothing 

12.34 7.10 

3. Single-epoch positioning using a strobe 

correlator 

19.47 14.55 

4. Single-epoch positioning using a strobe 

correlator with carrier smoothing  

9.18 6.52 

5. Differential single-epoch positioning using a 

strobe correlator with carrier smoothing 

7.12 6.37 

6. EKF-based positioning with conventional 

receiver equivalent to VDLL 

11.55 9.38 

7. VDLL 9.51 4.09 

8. VDLL + strobe correlator (0.3,0.15) 8.66 4.34 
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Figure 10: Code discriminator outputs using conventional and vector tracking in Toyosu, 

Tokyo 

 

To predict the performance of vector tracking in a consumer receiver, a second 

experiment was conducted at the same site as the first using an iP-Solutions J-type front-end in 

place of the wide-bandwidth Fraunhofer front-end. The iP-Solutions J-type front-end has a 

precorrelation bandwidth of 4 MHz, an IF of 4.123968 MHz, and a sampling frequency of 

16.367667 MHz.  The NovAtel antenna was also replaced by a consumer-grade U-blox patch 

antenna.  With this equipment, larger ranging errors in the presence of multipath interference 

can be expected.  Figure 11 shows the code discriminator output and the range measurement 

noise variance of the channels with the strongest (PRN11) and weakest (PRN193) multipath 

interference.  The range measurement noise variance is the variance of measurement 

innovation of the delta pseudo-ranges that mentioned earlier in the section of vector tracking. 
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Figure 11: Examples of code discriminator outputs and range measurement variance of 

conventional and vector tracking in Toyosu, Tokyo 

 

In the weak-multipath case, the code discriminator outputs of both conventional and 

vector tracking are similar as shown in the upper-column of lower Figure 11.  However, the 

range-measurement noise variance is much smaller for vector tracking than for conventional 

tracking, which suggests that vector tracking is more stable. In the strong-multipath case, the 

effect of multipath on the code discriminator is quite strong as shown in upper-column of upper 

Figure 11.  The received signal is assumed to be mainly sourced from multipath signals.  It is 

interesting to note the lower-column of upper Figure 11; the range-measurement noise variance 

is higher for vector tracking than for conventional tracking in about half of the cases and 

correlates with the larger discriminator values. Therefore, the noise variance could potentially 

be used as a multipath detector. Note also that the vector-tracking algorithm automatically 

downweights measurements with high variances through its adaptive tuning algorithm. 

The NLOS detection algorithm, described in the section of simulation, was assessed using 
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the data collected with the iP-solutions front-end. The same settings were used. NLOS 

reception on PRN11 was detected between 44s and 46s. Figure 12 shows the positioning 

results using conventional tracking, vector tracking, vector tracking with the NLOS detection 

algorithm, and vector tracking with PRN 11 intentionally excluded. The standard 

vector-tracking algorithm produces a significantly more stable solution that either conventional 

tracking or vector tracking with PRN11 excluded throughout (leaving only 4 satellites tracked). 

With the NLOS detection algorithm, the vector-tracking solution is slightly more stable. 

 

 
Figure 12: Horizontal positioning result using the iP-solutions front-end and four different 

receiver configurations in Toyosu, Tokyo 

 

Conclusions  

 

A new approach to mitigating multipath interference and NLOS reception, based on vector 

tracking, has been proposed and assessed. Vector tracking was originally developed for 

mitigating signal attenuation and interference for dynamic application. For multipath and 

NLOS mitigation, it has the advantage over many other techniques that it does not require 

additional hardware or a database. 

Tests using GNSS signals recorded in dense urban environments have shown that vector 

tracking significantly improves GNSS positioning accuracy compared to an equivalent 

conventional receiver. A further improvement can be obtained by combining vector tracking 
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with a correlator-based multipath mitigation technique, such as the strobe correlator.  

Finally, a new technique for detecting NLOS reception in a vector-tracking architecture 

has been demonstrated. This enables NLOS signals to be excluded from the navigation 

solution, whilst retaining tracking lock using information from the other signals. 
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