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adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric

disorders. Inflammatory events during pregnancy can act directly to cause developmental

problems in the central nervous system (CNS) that have been implicated in schizophrenia

and autism. The immune system also acts indirectly by “farming” the intestinal micro-

biota, which then influences brain development and function via the multiple pathways

that constitute the gut–brain axis. The gut microbiota also regulates the immune system.

Regulation of the immune system is crucial because inflammatory states in pregnancy

need to be limited, and throughout life inflammation needs to be terminated completely

when not required; for example, persistently raised levels of background inflammation

during adulthood (in the presence or absence of a clinically apparent inflammatory

stimulus) correlate with an increased risk of depression. A number of factors in the

perinatal period, notably immigration from rural low-income to rich developed settings,

caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the

microbiota and on immunoregulation during early life that persist into adulthood. Many

aspects of the modern western environment deprive the infant of the immunoregulatory

organisms with which humans co-evolved, while encouraging exposure to non-

immunoregulatory organisms, associated with more recently evolved “crowd” infections.

Finally, there are complex interactions between perinatal psychosocial stressors, the

microbiota, and the immune system that have significant additional effects on both

physical and psychiatric wellbeing in subsequent adulthood.

This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.
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1. Introduction

This special issue addresses the relevance of the immune
system to the development and function of the brain. How-
ever this chapter has the narrower remit of outlining factors
in the perinatal and early childhood period that modulate
subsequent function of the immune system. The ways in
which the immune system is relevant to brain development
and psychopathology are addressed in detail in other chap-
ters of this volume, but some aspects need to be summarized
here in order to put what follows into context. First, CD4þT
lymphocytes (Th2-like, and also regulatory cells) are required
in the meninges and choroid plexus for normal brain devel-
opment and function, probably because they release neces-
sary trophic and immunoregulatory factors (Baruch and
Schwartz, 2013; Derecki et al., 2010; Rattazzi et al., 2013).
Second, the immune system signals to the brain via cytokines
and afferent nerves (Lowry et al., 2007; Miller et al., 2013).
Third, we know that inflammatory events during pregnancy
(whatever their cause) can cause developmental problems in
the CNS that have been implicated in schizophrenia and
autism (reviewed in Meyer et al., 2011). Clearly the nature and
extent of the inflammatory episode is partly determined by
the effector immune systems of mother and fetus, and by the
immunoregulatory pathways that limit or terminate inflam-
mation. Fourth, the immune system plays a crucial role in
“farming” the intestinal microbiota, as explained later. This is
important because the microbiota influences brain develop-
ment and function via multiple pathways that constitute the
gut–brain axis (Desbonnet et al., 2014; Heijtz et al., 2011;
Stilling et al., 2013). Moreover, the microbiota also plays a
major role in the regulation of the immune system. This
brings us to the fifth major role of the immune system in
brain function. Inflammatory states need to be restrained to
the minimum effective level, and to be terminated comple-
tely when inflammation is not required, because inflamma-
tion is metabolically costly and also damages the host if
allowed to persist. For example, poor regulation of inflamma-
tion will contribute to increased inflammatory responses to
psychosocial stressors (Aschbacher et al., 2012; Pace et al.,
2006; Rook et al., 2013), and persistently raised levels of
background inflammation, manifested as raised C-reactive
protein (CRP) in the absence of a clinically apparent inflam-
matory stimulus, correlate with an increased risk of depres-
sion 12 years later (Gimeno et al., 2009). The ways in which
chronic inflammation can lead to CNS dysfunction have been
extensively reviewed elsewhere (Miller et al., 2013). Finally,
there are complex interactions between perinatal psychoso-
cial stressors, the microbiota, the hypothalamic–pituitary–
adrenal (HPA) axis and the immune system that have
significant effects on HPA axis stress responses and wellbeing
in subsequent adulthood.
2. Mammalian evolution and microorganisms

Humans interact with macro- and micro-organisms in ways
that were mostly not appreciated until recently. All mammals
are colonised internally and externally by a vast range of
Please cite this article as: Rook, G.A.W., et al., Hygiene and other
immune system. Brain Research (2014), http://dx.doi.org/10.1016
symbiotic species including viruses, archaea, bacteria, fungi,
protozoa and even multicellular mites found in hair follicles
and sebaceous glands. These diverse organisms constitute
the microbiotas of epithelial linings, including skin, genitour-
inary system, airways, oropharynx and gut. Less than 10% of
our cells are human, and the symbionts with which we
co-evolved are essential components of our physiology.
Indeed these symbionts contain at least 150-fold more genes
that does the human genome itself (O’Hara and Shanahan,
2006), and recent studies of human metabolomics reveal that
much of “our” metabolism is in fact microbial (Wikoff et al.,
2009). Germ-free animals survive well in a germ-free envir-
onment, but they have multiple developmental, immunolo-
gical, metabolic and behavioural abnormalities that are
discussed and referenced throughout this chapter.

For example, these microbiotas provide signals that drive
and modulate development of organs such as the gut, bones,
immune system and brain (reviewed in McFall-Ngai et al.,
2013). The brains of germ-free mice have altered chemistry
and gene expression, and the animals behave abnormally
(Heijtz et al., 2011). The HPA axis of germ-free animals is also
abnormal, manifested as altered CNS gene expression and
abnormal responses to stress (Sudo et al., 2004). To correct
these abnormalities in mice it is necessary to reconstitute
the gut microbiota with appropriate organisms within the
first 6 weeks of life (Heijtz et al., 2011; Sudo et al., 2004).
As adolescence in rodents is considered to be approximately
postnatal days 28–42 (P28–42), the timing of this early critical
period corresponds to human mid-adolescence (Spear, 2000).
This suggests that early life events that modulate the micro-
biota of human babies, and the ability of the immune system
to “farm” that microbiota, might be relevant to brain function
and psychiatric health later in life.

The various microbiotas, together with other organisms
from our evolutionary past to be discussed later, also drive
development and maturation of the immune system. The
understanding that the human is in reality a human-microbe
symbiotic ecosystem has totally changed our concept of the
immune system. In the past the immune system was thought
to “police” self/non-self discrimination, but this is only part of
a more complex reality. In fact the role of the immune system
is to “farm” the symbionts (notably the gut microbiota), while
rejecting infections, which might be defined as organisms
that damage the host, either directly, or by upsetting the
symbiotic ecosystems. Thus “self” to the immune system is
not the genetically human component, but rather the entire
“holobiont” including the symbionts that are part of our
physiology (Gilbert et al., 2012). At least part of this “farming”
of the microbiota is genetically encoded. It has been possible
to demonstrate heritable genetic factors that control the
composition of the gut microbiota in mice (Benson et al.,
2010), and the same is probably true in humans. The gut
microbiotas of monozygotic twins are more similar to each
other than to unrelated subjects even when they are dis-
cordant for obesity and so must have experienced different
diets and lifestyles (Tims et al., 2013). This implies a genetic
influence, which is supported by some (Stewart et al., 2005)
but not all other studies (Turnbaugh et al., 2009). Some
understanding of how genes and the immune system might
modulate the microbiota has come from experiments in gene
early childhood influences on the subsequent function of the
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knockout mice. When genes encoding various components of
the innate immune system such as MYD88, T-bet, IL-18 or
TLR5 are inactivated, there can be increased (Garrett et al.,
2007) or decreased (Wen et al., 2008) inflammatory responses,
as well as metabolic changes leading to metabolic syndrome
(Henao-Mejia et al., 2012; Vijay-Kumar et al., 2010). However
in each of these diverse experimental systems, the altered
phenotype can be transferred from the gene-knockout mice
to wild-type mice by transferring microbiota from the knock-
out mice. Thus genetically encoded functions within the
immune system modulate the microbiota, which in turn
modulates the regulation of the immune system.

Thus a crucial function of the immune system is immu-
noregulation, which is tuned during development via inputs
from microorganisms. The immune system must know when
not to attack, because inflammatory responses to microbiota
might disturb the commensal ecosystem, or eliminate phy-
siologically essential partners, while causing tissue damage,
manifested, for example as inflammatory bowel disease (IBD).
Throughout this review the terms “immunoregulation” and
“immunoregulatory” refer to those mechanisms that inhibit
responses to inappropriate targets (such as self, gut contents
and allergens) and that turn off inappropriate background
inflammation, often manifested as raised C-reactive protein
(CRP) in the absence of any clinically apparent need for an
inflammatory response.

This chapter therefore focuses mostly on microbial factors
acting on the mother, fetus or neonate that modulate
DIMIN
divers

expoEnvironmental microbiota
animals, soil, spores, air, plants. 
Probably supplement commensal
microbiotas.

“Old” Infections , can persist in 
small hunter-gatherer groups.
Helminths, H. pylori, mycobacteria, 
toxoplasma  etc.

Commensal microbiota
skin, gut, airway, oropharyngeal, 
genitourinary

MOSTLY

Microbial exposures 
during human evolution

“Crowd infections” cannot 
persist in hunter-gatherer groups.

Evolved after Neolithic revolution.
Kill or immunise. Childhood virus 
infections, measles etc. 

INCRE
….espe

inner

Changed ex
high-incom

ig. 1 – A simple categorization of organisms according to their s
eveloped immunoregulatory roles because they had to be tolera
unter-gatherer groups as carrier states and latent infections. Th
mmune system so as to ensure their own persistence, and the s
olerated, and an unknown subset of organisms within the comm
ncluding animal sources. The crowd infections evolved after the
opulations increased. They kill the host or induce solid immunit
rowd infections constitute the only category that is increased ra
elevant vaccines are available, effective and widely used). Epide
mmunoregulatory and fail to protect from the chronic inflamma

Please cite this article as: Rook, G.A.W., et al., Hygiene and other
immune system. Brain Research (2014), http://dx.doi.org/10.1016
subsequent control of inflammation. The discussion is based
on an evolutionary approach, and in particular the human
holobiont concept outlined above.
3. The hygiene hypothesis or “Old Friends”
mechanism

The brain and the immune system are both learning systems
that can only function correctly if they receive the appropriate
data inputs both before and after birth. The immune system
acquires most of its data from exposure to certain subsets of
micro- and macroorganisms. The disruption of our exposure to
these organisms is at least partly responsible for the immunor-
egulatory deficits that lie behind the increased prevalence of
chronic inflammatory disorders (allergy, autoimmunity and IBD)
in developed high-income countries (Bach, 2002). This mechan-
ism is often called the “hygiene hypothesis” (Strachan, 1989) but
we prefer terms such as the biodiversity hypothesis (von Hertzen
et al., 2011)) or the Old Friends mechanism (Rook, 2010) because
it is no longer an hypothesis, and it has little to do with hygiene,
but is rather associated with broad changes in lifestyle to be
described below.

Which organisms are involved in driving the immunor-
egulatory circuits that are the concern of this paper? Humans
evolved as small hunter-gatherer groups colonized by the
various microbiotas described in the introduction (Fig. 1).
They were also exposed to microorganisms from the natural
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environment, some of which would have been able to estab-
lish themselves within the microbiotas (Mulder et al., 2009).
Finally, there are certain “Old” infections that established life-
long carrier states or subclinical infections and so were able
to survive within small hunter-gatherer groups. This term
“Old” infections was used by Jared Diamond and his collea-
gues in their classic paper in 2007 (Wolfe et al., 2007). In order
to be able to persist in small hunter-gatherer groups the Old
infections had to avoid inducing effective immunity, or killing
the host. And in order to maintain the health of the host, they
had to be tolerated. Thus they drive regulatory anti-inflam-
matory responses. (The Old infections must not be confused
with “Old Friends”, a term used to include all the categories of
organism with which human co-evolved, including notably
the symbiotic microbiota (Fig. 1)). Ancestral strains of Myco-
bacterium tuberculosis, Helicobacter pylori, gut helminths and
blood nematodes, hepatitis A virus (HAV) all fall into this
category. Analysis of their phylogenetic trees, and compar-
ison with the human phylogenetic tree, reveal how the Old
infections co-evolved and spread over the globe with human
populations (Comas et al., 2013; Linz et al., 2007; Wolfe et al.,
2007). All these categories of organism were constantly
present, and had to be tolerated and so co-evolved roles in
setting up immunoregulatory pathways. For example, blood
nematodes are powerfully immunoregulatory, and relatively
harmless if tolerated, but aggressive immune responses that
attempt (unsuccessfully) to eliminate them destroy the lym-
phatic system and result in elephantiasis (Babu et al., 2006).
Immunoregulation by these three categories of organisms
(Old infections, microbiotas and organisms from the natural
environment), collectively known as the “Old Friends” has
been reviewed in detail elsewhere (Rook, 2010; Rook et al.,
2013), but briefly, they can be shown to block or treat a wide
range of chronic inflammatory disorders in animal models
(Osada and Kanazawa, 2010), and although many more
mechanisms remain to be revealed, many of them secrete
molecules that expand regulatory T cell (Treg) populations
(Atarashi et al., 2011; Grainger et al., 2010; Round et al., 2011),
or cause dendritic cells to drive Treg rather than inflamma-
tory effector cells (Correale and Farez, 2013; Smits et al., 2005).
The latter “Treg adjuvant” function might explain the obser-
vation that patients with early relapsing/remitting multiple
sclerosis (MS) who picked up helminth infections were found
to develop circulating populations of Treg specific for myelin
basic protein that coincided with a halt in disease progression
(Correale and Farez, 2007). These Treg disappeared when the
helminth infections were treated, and disease progression
then returned (Correale and Farez, 2011).

When human populations expanded after the Neolithic
revolution, and urbanization commenced, humans began to
be infected by the “crowd” infections such as measles. Because
these organisms either kill the host or induce solid immunity,
they could not have survived in isolated Paleolithic hunter-
gatherer groups (Wolfe et al., 2007). As anticipated, therefore,
epidemiological studies show that the “crowd infections” do not
drive immunoregulation, and do not protect from the chronic
inflammatory disorders that are increasing in developed high-
income countries (Benn et al., 2004; Bremner et al., 2008; Dunder
et al., 2007). Meanwhile the crowd infections are common in
high-income urban communities, while modern air travel and
Please cite this article as: Rook, G.A.W., et al., Hygiene and other
immune system. Brain Research (2014), http://dx.doi.org/10.1016
population growth increase the threat from new crowd infec-
tions, such as avian influenza viruses.

In contrast to the crowd infections, the immunoregulatory
Old Friends (microbiotas, Old infections and organisms from
the natural environment) are depleted to varying extents
from the modern high-income urban environment by a whole
range of mechanisms that are discussed below.
4. Microbial factors in the perinatal period

Against this background we can consider the aspects of
modern pregnancy and childhood that modulate the function
of the immune system in ways that have consequences for
vulnerability to psychiatric disorders later in life. We will do
this in relation to the categorization of organisms described
above. Much of the evidence cited will be derived from
studies of chronic inflammatory disorders. This is justified
because inflammation during pregnancy, whatever the cause
(Meyer et al., 2011), is associated with brain developmental
abnormalities, and because chronic inflammatory disorders
during adulthood are associated with an increased risk of
depression (Dhabhar et al., 2009; Graff et al., 2009; Raison
et al., 2010). This risk tends to correlate with plasma levels of
inflammatory mediators rather than with symptoms of the
disease itself. If the immune system is poorly regulated, and
also not capable of shutting itself down completely when no
inflammatory response is required, there is an increased risk
of psychopathology (reviewed in Rook et al., 2013). This
failure of immunoregulation is seen in high-income devel-
oped countries where chronically raised CRP is common
(Gimeno et al., 2009; Hemingway et al., 2003; McDade, 2012),
as is an exaggerated inflammatory response to psychosocial
stressors (Aschbacher et al., 2012; Pace et al., 2006). These
persistent or labile inflammatory responses are associated
with cardiovascular disease and depression (Aschbacher
et al., 2012; Gimeno et al., 2009). In sharp contrast, persis-
tently raised CRP was not seen in a longitudinal study of a
low-income developing country setting, where episodes of
inflammation driven by infection are followed by a return of
the CRP levels to normal, suggesting that in this setting
inflammation occurs when needed, but is successfully regu-
lated when no longer needed (McDade et al., 2012b).
4.1. Old infections

In high-income developed countries most of the immunor-
egulatory Old infections are now rare. This depletion varies
from almost total absence (e.g. helminths) to considerably
diminished (e.g. H. pylori). For example, it is estimated that in
1947 about 36% of the population of Europe carried helminths
such as Enterobius vermicularis, Trichuris trichiura, and Ascaris
lumbricoides, but these have almost totally disappeared (Stoll,
1947). Since it is standard practice in many developing
countries to deworm pregnant women, the consequences
for the child of removing these organisms from the mother
can be monitored. Deworming in pregnancy increases the
risk of eczema and wheeze in the resulting infant (Mpairwe
et al., 2011). Latent tuberculosis provides another example.
early childhood influences on the subsequent function of the
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Tuberculin-positive children are less likely to have allergic
rhinitis or positive allergen skin prick tests (Obihara et al.,
2005), but although tuberculosis is still a problem in poor
areas of modern cities, most high socioeconomic status (SES)
citizens of Europe or the USA are no longer infected
(World_Health_Organization (2012)). Similarly rates of hepa-
titis A virus infection have fallen in high-income settings
where the chronic inflammatory immunoregulatory disor-
ders are increasing (Jacobsen and Wiersma, 2010; Seiskari
et al., 2007).

A remarkable recent study recruited all pregnant women
in an area of the Philippines, studied their homes and
lifestyles, and then looked for correlations with health in
the resulting children when they were in their early twenties.
It was noted that high levels of exposure to animal feces
during infancy correlated with lower levels of background CRP
in adulthood (McDade et al., 2010), and with diminished
inflammatory responses to psychosocial stressors (McDade
et al., 2012a), consistent with the hypothesis that childhood
exposure to “Old Friends” drives effective immunoregulation
that persists into adulthood.
4.2. Crowd infections

In high-income settings pregnant women might have poor
immunoregulation as a result of reduced contact with
immunoregulation-inducing Old Friends. On the other hand
exposure to the non-immunoregulatory crowd infections is
common in high-income urban settings. Crowd infections, such
as rubella or measles, can cause inflammatory events during
pregnancy that lead to fetal CNS developmental abnormalities
associated with the subsequent appearance of autism and
schizophrenia (extensively reviewed and referenced in Meyer
et al., 2011) (Crespi and Thiselton, 2011; Schwarz et al., 2011;
Zerbo et al., 2012). In fact, it may be the convergence of a lack of
contact with Old Friends, together with exposure to crowd
infections that has the most potential for damaging effects.
The concept that inflammatory mediators can drive develop-
mental CNS abnormalities is supported by animal models
(rodents and monkeys) showing that inflammation in the
mother during pregnancy induced by injecting lipopolysacchar-
ide (LPS) or poly (I:C) (which partly mimics virus infections) or
by direct injection of IL-6, causes changes in the grey and white
matter of the fetuses and behavioural changes that are remi-
niscent of autism and schizophrenia (Brown and Derkits, 2010;
Smith et al., 2007; Willette et al., 2011). When virus-induced
inflammation was mimicked during pregnancy in mice by
injecting poly (I:C), the pregnancy resulted in offspring with
increased expression of IL-6 mRNA and IL-6 protein in their
colonic epithelium, increased gut permeability, altered gut
microbiota particularly in the Bacteroidal and Clostridial opera-
tional taxonomic units (OTU), and behavioral abnormalities
reminiscent of autism spectrum disorders (ASD) (Hsiao et al.,
2013). The behavioral effect was at least partly due to a 46-fold
increase in production and uptake of 4-ethylphenylsulfate, a
metabolite dependent upon the microbiota. Remarkably, all of
these abnormalities could be reversed by administration of
Bacteroides fragilis (Hsiao et al., 2013), a probiotic organism
previously shown to have potent immunoregulatory properties
Please cite this article as: Rook, G.A.W., et al., Hygiene and other
immune system. Brain Research (2014), http://dx.doi.org/10.1016
(Round and Mazmanian, 2010), despite the fact that the
B. fragilis did not colonise the guts of the recipients.

Thus an important question is whether the risk that
maternal infection will lead to fetal brain damage is itself
influenced by the state of immunoregulation in the mother or
the child? There is evidence for this. First, autism is asso-
ciated with a family history of other chronic inflammatory
immunoregulatory disorders such as autoimmunity and
allergies (reviewed and referenced in Meyer et al., 2011), that
have been strongly linked to the Old Friends mechanism
(Correale and Farez, 2007; Ege et al., 2006), and the patients
themselves also have increased risk of autoimmunity and
IBD (Kohane et al., 2012). Second, we also know that prenatal
exposure (i.e. of the pregnant mother) to the farming envir-
onment protects the infant against some allergic manifesta-
tions (Ege et al., 2008; Schaub et al., 2009). Thirdly, there is
incontrovertible evidence of background inflammatory activ-
ity in autistics (Becker, 2007; Onore et al., 2012). Fourthly,
genetic studies have revealed that some maternal genes
involved in regulation of inflammation, such as HLA-DR4,
are involved in modulating the risk of these disorders even
when not inherited by the foetus (Johnson et al., 2009),
suggesting the importance of genes involved in the regulation
of inflammation in the mother. It is therefore reasonable to
suggest that the Old Friends mechanism plays a role in
susceptibility to developmental abnormalities of the brain.

4.3. Organisms from the natural environment

The gut microbiota of children from rural communities in
low-income undeveloped countries is usually different from
that of high-income Europeans (De Filippo et al., 2010) or
Americans (Yatsunenko et al., 2012). The microbiota of
children in Burkina Faso was dominated by Bacteroidetes,
whereas microbiota from a matched control group of Italians
was dominated by Firmicutes (De Filippo et al., 2010). Differ-
ences are not seen only at the phylum level. The biodiversity
of microbiota from the USA was lower than that from
Malawians, or Venezuelan Amerindians, and there were
striking differences at the level of bacterial species and
functional gene repertoires. Much of this variation might be
attributable to diet, and, as outlined earlier, there is also a
genetic component. What we do not know is the contribution
of organisms from the natural environment. In fact we know
remarkably little about the extent to which exposure to the
natural environment can diversify the microbiota by coloni-
zation, because published data rarely identify organisms at
the strain level, though this is changing as the methods
develop. Moreover many gut organisms, particularly some
Firmicutes, are spore-forming and these spores can persist in
the environment for millennia. Spores from the natural
environment, some of which will be derived from human or
animal guts, can germinate in the small bowel (Hong et al.,
2009). This is an unexplored area that needs attention
(reviewed in Rook et al., 2014). Moreover, we are not aware
of studies comparing the development of gut microbiota over
time in human babies exposed or not exposed to the natural
environment. However this has been attempted in pigs.
Genetically similar piglets were housed in a natural outdoor
environment, or reared in a very clean indoor facility.
early childhood influences on the subsequent function of the
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Firmicutes, in particular Lactobacillus strains were dominant
in the gut microbiotas of the outdoor piglets, whereas the
hygienic indoor piglets had reduced Lactobacillus and more
potentially pathogenic phylotypes (Mulder et al., 2009). More-
over, the piglets reared in clean interiors had different
patterns of gene expression in the ileum, much of it related
to the immune system. They had increased Type 1 interferon
activity, increased MHC Class 1, and upregulation of many
chemokines (Mulder et al., 2009) implying a more inflamma-
tory state in the guts of animals whose microbiota had not
been modified by exposure to the natural environment. The
issue of the immunoregulatory role of organisms from the
natural environment was reviewed recently (Rook, 2013).
It seems clear that modern human babies are brought up
like the indoor rather than the outdoor piglets, which is likely
to predispose them to poor control of inflammation.

The environment might contribute to microbial biodiversity.
Reduced gut microbial biodiversity is often, but not always
associated with poor control of inflammation. Mice exhibit at
least two, partly genetically determined, enterotypes (bacterial
ecosystems in the gut microbiota), one of which has low
biodiversity, and correlates with biomarkers of inflammation
(Hildebrand et al., 2013). Gut microbiota of limited diversity is
also characteristic of several human inflammation-associated
conditions such as obesity and inflammatory bowel disease
(Rehman et al., 2010; Turnbaugh et al., 2009). Similarly, dimin-
ished microbiota biodiversity in institutionalized elderly people
correlates with diminished health and raised levels of periph-
eral inflammatory markers such as IL-6 (Claesson et al., 2012).

Interestingly, the piglets reared in the clean indoor envir-
onment had reduced Lactobacilli and Firmicutes, and
increased inflammatory biomarkers in their guts, but they
did not have reduced overall biodiversity compared to the
outdoor piglets (Mulder et al., 2009). Thus it remains uncer-
tain whether biodiversity is important per se as has been
suggested (von Hertzen et al., 2011), or merely increases the
chances of encountering specific beneficial organisms.

4.4. Microbiota and maternal behaviour

In the perinatal period maternal factors such as birth mode,
breast-feeding and birth order have large effects on the
microbiotas of the infant that will inevitably translate into
changes in immunoregulation (Penders et al., 2013). Interest-
ingly, there is evidence that some organisms are passed from
the mother to the fetus in utero before the start of the birth
process (Funkhouser and Bordenstein, 2013). Such organisms
have been reported not only in meconium, but also in fetal
membranes, amniotic fluid and in cord blood of babies born
by Caesarean section (Funkhouser and Bordenstein, 2013).
But even if this proves to be correct it clearly does not result
in adequate priming of the infant0s microbiota.

4.4.1. Caesarean section
Data comparing Caesarean section with normal birth have to
be interpreted with caution because of possible effects of the
condition that led to the Caesarean, or effects of trauma
experienced by the baby during the natural birth process.
Nevertheless, it appears that birth by Caesarean section
delays transfer of additional maternal microbiota and alters
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the course of colonization (Dominguez-Bello et al., 2010). This
might explain the observations that Caesarean birth increases
the risk of allergy (Guibas et al., 2013; Magnus et al., 2011;
Thavagnanam et al., 2008), autoimmunity (Bonifacio et al., 2011;
Cardwell et al., 2008), and, to a more modest extent, both coeliac
(Decker et al., 2010), and inflammatory bowel disease (Bager
et al., 2012; Malmborg et al., 2012). A nice example of the
importance of transfer of maternal microbiota comes from
the observation that if the mother thoroughly washes and boils
the baby's pacifier (dummy) after it has fallen on the floor, that
baby has an increased risk of developing asthma, eczema or
allergic sensitization compared to babies whose mothers
merely suck the pacifier and put it back in the baby0s mouth
(Hesselmar et al., 2013). The babies protected by exposure to
pacifiers sucked clean by their mothers had demonstrably
different oral microbiota (Hesselmar et al., 2013).

4.4.2. Birth order
The observation that birth order (i.e. having older siblings)
can protect from allergic disorders (Strachan, 1989) is also
now thought to be due to increased transfer of microbiota
(Penders et al., 2013), and, as explained above, cannot be
explained by exposure to crowd infections from those sib-
lings, as now demonstrated epidemiologically (Benn et al.,
2004; Bremner et al., 2008; Dunder et al., 2007). In a recent
study in the USA, Type 1 diabetes (T1D) was also negatively
associated with having older siblings (D’Angeli et al., 2010),
but similar studies of the effects of birth order on T1D, and on
other inflammatory conditions such as IBD and MS have
painted a less consistent picture (Cardwell et al., 2011; Hampe
et al., 2003; Van Kruiningen et al., 2007; Zilber et al., 1988). The
effect of birth order is also rather variable for psychiatric
disorders. For depression an association with birth order is
sometimes reported, but the relationship is inconsistent
(Bergeron et al., 2007; Schmidt and Tolle, 1977; Wells et al.,
1985). The effect may be more pronounced for autism and
schizophrenia. A comprehensive Finnish study of families
with at least two children, one of whom was schizophrenic,
found that being the firstborn was a significant risk factor for
schizophrenia, but the protective effect of older siblings was
complex and depended on how much older they were
(Haukka et al., 2004). The relevance of birth order to autism
has been reviewed in detail elsewhere (Becker, 2007). Briefly,
the risk of autism has been shown to fall as the number of
older siblings rises in studies in the United States, Western
Australia and England, though not every study shows this
(Becker, 2007). In view of the significant epidemiological
association with familial allergic disorder, where the birth
order effect is clear, this is of great interest (discussed in
Meyer et al., 2011; Onore et al., 2012).

4.4.3. Breastfeeding
Breastfeeding also modulates the microbiota (Stark and Lee,
1982), and this might explain the protective effects of breast-
feeding against eczema, and possibly against other allergic
disorders (Kramer, 2011). There is mounting evidence for an
entero-mammary pathway that transfers a wide range of
microorganisms from the maternal gut to the baby via the
breast milk (Donnet-Hughes et al., 2010; Hunt et al., 2011; Jost
et al., 2013a, 2013b). Moreover human milk contains complex
early childhood influences on the subsequent function of the
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polysaccharides that act as selective prebiotics and so encou-
rage the colonization of the infant gut with appropriate
microbiota (Garrido et al., 2012; Zivkovic et al., 2011), though
breast milk is also biologically active in other ways that do
not necessarily involve the microbiota (Labeta et al., 2000;
Saarinen et al., 1999; van Neerven et al., 2012). However,
whether as a consequence of immunoregulatory, microbiota-
induced or other socio-environmental mechanisms, breast-
feeding is important for the brain. Duration of breast-feeding
is related to verbal and nonverbal intelligence later in life
(Belfort et al., 2013), and to better cognitive and motor
development (Bernard et al., 2013), and to greater social
mobility (Sacker et al., 2013).

4.4.4. Antibiotics, smoking, medication and diet
Several other variables during pregnancy have effects on the
incidence of immunoregulatory disorders, and might be oper-
ating via the immune system and/or microbiota. Use of anti-
biotics in the perinatal period delays colonization by Bifidobacter
and Lactobacillus species (Faa et al., 2013; Westerbeek et al.,
2006). This probably has long-term consequences because
allergies (Droste et al., 2000; Metsala et al., 2013; Russell et al.,
2012; Stensballe et al., 2013), irritable bowel syndrome (IBS)
(Villarreal et al., 2012) and IBD (Hviid et al., 2011; Shaw et al.,
2010) are all more frequent in antibiotic-exposed children.

The risk of IBD is increased in children of mothers who
smoked (Roberts et al., 2011). This could also be due to
changes to the microbiota, because cessation of smoking
leads to increased microbial biodiversity, increased Firmi-
cutes and Actinobacteria and a lower proportion of Bacter-
oidetes and Proteobacteria (Biedermann et al., 2013).

The child's microbiota might also be altered by prenatal
exposure to valproate, an anticonvulsant drug and teratogen,
administration of which during pregnancy is a risk factor for
autism spectrum disorders (ASD) in the offspring (reviewed in
de Theije et al., 2013a). In a mouse model, treating the pregnant
mother with valproate caused changes in male offspring
including epithelial cell loss and neutrophil infiltration in the
intestinal tract, increased expression of neuroinflammatory
markers in the brain and ASD-like behaviour. These inflamma-
tory and behavioral symptomswere accompanied by significant
changes in OTUs within the Bacteroidetes and Firmicutes (de
Theije et al., 2013a, 2013b). The precise sequence of events is
unclear but the concurrence of altered microbiota, inflamma-
tion and behavioral changes raises the possibility that this is
also the sequence of causation.

Diet, apart from the issue of duration (if any) of breastfeed-
ing, has received little attention in infants, but it has profound
effects on all components of the gut microbiota (Hoffmann
et al., 2013; Wu et al., 2011). For example it has been proposed
that human microbiota can cluster in one of three different
“enterotypes”, dominated by Bacteroides, Prevotella, and Rumi-
nococcus, respectively (Arumugam et al., 2011). The Bacteroides
enterotype was associated with consumption of animal protein
and saturated fats, whereas the Prevotella enterotype was
associated with carbohydrates and simple sugars (Wu et al.,
2011). In the mouse, at least, similar enterotypes show
some correlation with background intestinal inflammation
(Hildebrand et al., 2013), and a high fat diet encourages raised
intake of endotoxin (LPS), weight gain and diabetes (Cani et al.,
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2007). Some authors consider diet-induced changes in micro-
biota to be the main factor causing immunoregulatory deficits
in high-income countries (Maslowski and Mackay, 2011). For
example the traditional lifestyle in low-income countries
results in consumption of less saturated fat, and low ratios of
proinflammatory n-6 polyunsaturated fatty acids (PUFA) to anti-
inflammatory n-3 PUFA, whereas in Western high-income
settings the diet often contains a ratio of n-6 to n-3 PUFA that
exceeds 16:1 (Shen et al., 2013). This encourages complex chan-
ges in the microbiota and proinflammatory states (reviewed in
Shen et al., 2013). However, even if diet is important, much of
the immunoregulatory effect of diet is likely to be mediated via
changes to the microbiota.
5. Immigration

Immigration from a low-income developing country to a high-
income urban environment leads to progressive loss of many
of the Old infections, reduced exposure to organisms from the
natural environment, and changed microbiota. By contrast,
exposure to many of the non-immunoregulatory crowd infec-
tions is likely to increase, except for those for which vaccines
are provided in rich societies (Fig. 1). The loss of the Old Friends
might be relevant to the fact that the chronic inflammatory
disorders tend to be more common in immigrants to high-
income urban environments than in the birth population from
which the immigrant was derived (Ahlgren et al., 2011; Hou
et al., 2009; Rottem et al., 2005; Soderstrom et al., 2012).
However, age at immigration is crucial, suggesting the impor-
tance of early events. Iranians who migrate to Sweden have
twice the prevalence of MS seen in their birth country (Ahlgren
et al., 2011). Interestingly, if the 2nd (or later) generation
immigrants return to their developing country of origin, they
retain their increased susceptibility to MS, which remains
higher than in the local population that was not born abroad
(Cabre, 2009). A similar phenomenon was seen when people
born in the United Kingdom (UK: a high MS country) migrated
to South Africa (SA: a low MS country). Migration from the UK
to SA was protective when the migrant was a child, whereas
adult migrants retained their high UK prevalence of MS (Dean,
1967). Analysis of this and other studies suggests that the
environmental factors that protect from or predispose to MS
act during the first two decades of life (Gale and Martyn, 1995;
Milo and Kahana, 2010). The same is true for T1D. Here the
crucial factor is to have been born in the receiving developed
country, again suggesting that relevant environmental factors
act very early, or even in the prenatal period (Soderstrom et al.,
2012). Similar observations exist for IBD (Carr and Mayberry,
1999; Li et al., 2011), and allergic disorders (Eldeirawi et al., 2009;
Hjern et al., 1999).
5.1. Immigration and psychiatric disorders

In view of the relationship between inflammation and psychia-
tric disorders outlined above, it is interesting that the immi-
grant effect is also seen in psychiatric disorders, including
depression and anxiety (Breslau et al., 2011), schizophrenia
early childhood influences on the subsequent function of the
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(Dealberto, 2010) and autism (Keen et al., 2010). Again the age of
the individual at the time of immigration turns out to be
important. Depression is particularly interesting in this respect
(Breslau et al., 2009; Vega et al., 2004). Mexicans, Cubans and
African/Caribbean peoples have a 2–3-fold increase in the
prevalence of depression if immigration to the USA occurred
when the individual was less than 13 years old, or was born in
the USA, compared to the prevalence in those who migrated
after the age of 13 (Breslau et al., 2009). But this is not likely due
to psychosocial stress related to skin color, because white
Eastern European immigrants show the same effect. In sharp
contrast, the effect is not seen in immigrants from Western
Europe, or from Puerto Rico, which is closely associated with
the USA. (These last two populations already have a high
prevalence of depression that is not increased by immigrating
to, or being born in, the USA) (Breslau et al., 2009). These
findings imply that influences important for determining vul-
nerability to depression occur perinatally, or in the early years
of life.

Immigration also increases the risk of psychotic disorders
(Coid et al., 2008). A large Danish study noted that immigra-
tion into Denmark when less than 4 years old was associated
with a strikingly increased risk for psychotic disorders,
whereas the increased risk gradually decreased with older
age at migration and disappeared in those immigrating when
more than 29 years old (Veling et al., 2011). Similarly a large
meta-analysis confirmed that schizophrenia was increased
amongst 1st generation immigrants, and further increased
amongst 2nd generation immigrants, particularly when the
country of origin was a developing one (Cantor-Graae and
Selten, 2005). Again, early events seem crucial.

Age at immigration is irrelevant to an early onset condi-
tion such as autism, but autism is strikingly (as much as 10-
fold) increased in 2nd generation Caribbean or African
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immigrants born in the UK, compared to children of white
UK-born mothers (Keen et al., 2010), implying that the
damage is done very early in prenatal development.

These findings implicate crucial early events in the peri-
natal period or early childhood as risk factors for chronic
inflammatory disorders, but also for depression, schizophre-
nia and autism. However, it is difficult to disentangle the
effects of immunoregulatory problems attributable to chan-
ged microbial inputs to the immune system, from the multi-
ple other factors that affect immigrants, particularly stress.
6. Perinatal psychosocial stress and
immunoregulation

Although immigrants certainly meet a changed microbial
environment that will have immunoregulatory conse-
quences, it is equally certain that they face psychosocial
stressors. Such stressors will cause further immunoregula-
tory changes because of well-documented effects of perinatal
stress on inflammation, the HPA axis, and the composition of
the microbiota.

6.1. Perinatal stress and inflammation

Many studies in animals and humans have shown that
psychosocial stressors during pregnancy activate inflamma-
tion (Haroon et al., 2012; Howerton and Bale, 2012), detectable
as raised circulating cytokines or CRP (Coussons-Read et al.,
2005, 2007). The crucial point in the current context is that
such perinatal inflammatory episodes result in adults who
themselves show exaggerated inflammatory responses to
stress (Carpenter et al., 2010; Danese et al., 2007, 2008)
(Fig. 2). For example, peripheral blood mononuclear cells
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from healthy young women whose mothers had experienced
major negative life events during pregnancy showed altered
responses to phytohemagglutinin compared to cells from a
control group (Entringer et al., 2008). Adverse events early in
childhood have a similar effect. Maltreated children develop
higher levels of IL-6 in response to a standardized social
stressor (the Trier Social Stress Test; TSST) when tested as
adults in comparison to a non-maltreated control group
(Carpenter et al., 2010; Pace et al., 2006), and maltreated
children tend to have higher levels of CRP 20 years later
(Danese et al., 2007), and similar observations have been
made in children from low socioeconomic status (SES) back-
grounds (Miller et al., 2009).

Interestingly, negative life events in the neonatal period,
whether they affect the child directly or indirectly via trau-
matic experiences of the mother, also predispose to the
autoimmune disease T1D (reviewed in Peng and Hagopian,
2006; Sepa et al., 2005; Vlajinac et al., 2006). It is likely that
this reflects the influence of perinatal negative life events on
subsequent immunoregulation described above. However a
study of children born in the Philippines suggested that
traumatic childhood events did not lead to raised CRP in
adulthood in those children who had experienced heavy
microbial exposures during infancy (McDade et al., 2010,
2012a). Perhaps the risk that perinatal stress will lead to an
immunoregulatory deficit in adulthood can be attenuated by
the immunoregulatory effect of the Old Friends? As we have
pointed out elsewhere, lack of contact with immunoregula-
tory Old Friends may lead to decreased stress resilience (Rook
et al., 2013).

But why does immune activation during pregnancy lead to
increased background inflammatory activity in adulthood?
One mechanism may be altered development of the immune
response itself. Pups born to mice that received inflammatory
stimuli during pregnancy developed immune systems in
adulthood that were biased towards maturation of inflam-
matory Th17 cells, and more prone to induction of the
autoimmune condition Experimental Autoallergic Encepha-
lomyelitis (EAE), often considered to mimic MS (Mandal et al.,
2013). However some of the developmental change in the
immune system might be secondary to stress-induced
changes in the HPA axis and the microbiota.
6.2. Perinatal stress and long-term changes
to the HPA axis

Numerous animal models have demonstrated associations
between prenatal stress and long-term alterations in HPA axis
function (Coe et al., 1996, 1999; Kapoor et al., 2006; Weinstock,
2005). Healthy young adult humans who had been exposed to
prenatal stress, because their mothers had experienced severe
negative life events during pregnancy, responded differently to
a standardized social stressor (TSST) when compared to an
age-matched comparison group of healthy young adults who
had not been exposed to prenatal stress. The prenatal stress
group had lower cortisol levels (p¼0.007) before the TSST, and a
larger increase in response to the TSST (p¼0.03) (Entringer
et al., 2009b). Similar changes have been associated with severe
stress in early childhood (Heim et al., 2000). Moreover, adults
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with post-traumatic stress disorder (PTSD) symptoms who
were abused as children show increased nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) and
decreased glucocorticoid sensitivity and these two findings
are highly correlated (Pace et al., 2012). This is consistent with
the idea that HPA axis changes as a result of early abuse or
neglect contribute to increased inflammatory drive. The per-
sistence into adult life of HPA axis effects triggered in the
perinatal period might be explained by epigenetic changes,
such as altered DNA methylation patterns (Guo et al., 2011;
Miller et al., 2008; Weaver et al., 2004), or by shortened telomere
length, and reduced telomerase activity (Choi et al., 2008;
Entringer et al., 2011; Jacobs et al., 2011; Ornish et al., 2008).
Reduced telomere length is associated with inflammation and
autoimmunity as well as with premature immunosenescence
(Carrero et al., 2008; Fitzpatrick et al., 2007; Hohensinner et al.,
2011), though whether as cause or consequence is not certain.

Interestingly, a transcriptional profiling of adults whose
childhood background had been of low or high socioeconomic
status (SES) revealed that those from a low childhood SES
background had up-regulation of genes bearing response
elements for the cAMP response element binding (CREB)/activat-
ing transcription factors (ATF) family of transcription factors
involved in signaling to leukocytes, heightened expression of
transcripts bearing response elements for NF-κB, and down-
regulation of genes with response elements for the glucocorti-
coid receptor (GR) involved in anti-inflammatory function (Miller
et al., 2009), suggesting a proinflammatory bias in adults who
had a low SES childhood. A similar proinflammatory bias in gene
expression emerged from a comparison of asthmatic children
from low or high SES backgrounds (Chen et al., 2009). In con-
clusion, perinatal and early neonatal stressors are likely to
induce long-term changes in HPA axis function with obvious
consequences for immune function.
6.3. Perinatal stress and long-term changes
to the microbiota

Stress alters the microbiota of experimental animals (Bailey
et al., 2011; Kiliaan et al., 1998), and the same is true of the
microbiota of severely stressed critically ill humans, where
the changes are rapid and prolonged (Hayakawa et al., 2011).
Prenatal stressors have been shown to alter the microbiome in
rhesus monkeys by reducing the overall numbers of bifido-
bacteria and lactobacilli during adulthood (Bailey et al., 2004).
In a rat model the stress of maternal separation in the
neonatal period had long-term effects on the diversity of
the microbiota that were still apparent when the pups
became adults (O’Mahony et al., 2009).

This might be an important mechanism because the
nature of the microbiota during the first weeks of life has a
profound effect on development of the CNS and the HPA axis.
For example, germ-free mice have increased motor activity,
reduced anxiety, altered gene expression in several brain
areas, and increased turnover of noradrenaline, dopamine
and serotonin in the striatum (Heijtz et al., 2011). These
abnormalities persist into adulthood, and cannot be corrected
by reconstitution of the microbiota of adult animals (Heijtz
et al., 2011). Moreover, the nature of the microbiota is crucial.
early childhood influences on the subsequent function of the
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In another study it was noted that germ-free mice had
abnormal responses to restraint stress, specifically increased
adrenocorticotrophic hormone (ACTH) and corticosterone
responses, together with reduced expression of brain-
derived neurotrophic factor (BDNF) in cortex and hippocam-
pus, reduced glucocorticoid receptors (GR) in the cortex, and
raised corticotrophin-releasing hormone (CRH) in the hypo-
thalamus (Sudo et al., 2004). Oral reconstitution with normal
microbiota normalised the HPA axis function if done at 6
weeks, but not if done later. Early mono-association with
Bifidobacterium infantis also normalized HPA axis function, but
mono-association with enteropathogenic Escherichia coli made
the abnormalities more severe. Thus, not only is the micro-
biota modified by stress, but it is also involved in develop-
ment of the CNS, so it is possible that perinatal stress exerts
physiological effects on the brain in adulthood at least in part
via its impact on the microbiota.

6.4. Perinatal stress and the developing brain

In view of these findings we should not be surprised that
prenatal psychosocial stress (i.e. experienced by the pregnant
mother) or early postnatal stress are associated with long-
term changes in neurogenesis (reviewed in Korosi et al.,
2012), in cognition and memory (Entringer et al., 2009a) and
in HPA axis function (Entringer et al., 2009b). Moreover
perinatal maternal anxiety affects early development of the
hippocampus (Qiu et al., 2013), and a history of childhood
trauma is manifested as a smaller hippocampal volume in
women with major depression (Vythilingam et al., 2002).
Early-life stress also induces persistent alterations in amyg-
dala circuitry and function in mice and humans (Malter
Cohen et al., 2013).
7. Genetics, epigenetics and future therapies

In parts of the world where there has been a heavy load of
organisms causing immunoregulation (such as helminths)
there has been selection for single nucleotide polymorphisms
(SNP) or other variants that partially compensate for the
immunoregulation and so restore the inflammatory response
(Fumagalli et al., 2009). If immunoregulation-inducing organ-
isms are withdrawn by the modern lifestyle, these genetic
variants lead to excessive inflammation, and become risk
factors for chronic inflammatory disorders (Barnes et al.,
2005; Fredericks et al., 2010; Fumagalli et al., 2009; Moller
et al., 2007). This suggests that to some extent the presence of
the Old Friends is a genetically determined necessity and that
humans are in a state of evolved dependence on them.

On the other hand it is possible that the immunoregula-
tory role of some of these organisms becomes incorporated
epigenetically or developmentally, and that this therefore
occurs only in those individuals who are exposed to the
relevant organisms in utero or in early postnatal life. For
example, deworming pregnant women increases the risk of
allergic problems in the infant (Mpairwe et al., 2011), but
deworming older children does not always have this effect
(Cooper et al., 2006; Flohr et al., 2010; van den Biggelaar et al.,
2004). Similarly, the reduced prevalence of allergic disorders
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after exposure to the farm environment is most evident if the
exposure is during pregnancy or the neonatal period (Ege
et al., 2008; Riedler et al., 2001). Moreover, in a helminth-
endemic country (Argentina) allowing patients with early MS
to become infected with helminths appears to stop progres-
sion of the disease, and drive formation of Treg specific for
myelin basic protein (Correale and Farez, 2007, 2011). But it
remains to be seen whether helminths will also treat MS in
the current generation of Americans or Europeans who had
no perinatal exposure to helminths. Their immune systems
developed without “anticipating” helminth-mediated anti-
inflammatory immunoregulation. Without this developmen-
tal and epigenetic programming, the helminths might not be
necessary or even effective. The recent failure of trials
attempting to treat IBD with Trichuris suis in Americans or
Europeans (http://tinyurl.com/nodazuu) is disappointing, and
should alert us to this possibility, though it is also possible
that the repeated dosing required when using this organism,
which cannot establish itself in the human gut, eventually
drives immunity rather than the systemic immunoregulation
seen with natural human infections that become established
and tolerated (Correale and Farez, 2013).

Some authors believe that the future lies in developing
“domesticated” variants of the Old infections, such as geneti-
cally modified helminths, that could be administered to all
children, and carried for life (Parker and Ollerton, 2013).
Interestingly there are signs that the Bacille Calmette &
Guérin (BCG) which is an attenuated strain of the organism
causing bovine tuberculosis (which itself evolved from
human tuberculosis strains), has beneficial effects in patients
with very early MS (Ristori et al., 2014), in which case perhaps
we already have one “domesticated” version of an Old
infection with which we co-evolved (Comas et al., 2013).

However, where the microbiota is concerned, the situation
might be different. The presence of the microbiota appears to
be a true genetically determined physiological and metabolic
necessity, because of the developmental and metabolic
abnormalities that occur in its absence (Bailey et al., 2011;
Heijtz et al., 2011; Sudo et al., 2004; Wikoff et al., 2009). More-
over, the organisms comprising the gut microbiota are them-
selves a form of epigenetic inheritance as pointed out by others
(Stilling et al., 2013). Since microbiota can drive potent immu-
noregulatory responses (Atarashi et al., 2011; Hsiao et al., 2013;
Round and Mazmanian, 2010), appropriate modulation of the
gut microbiota may be able to compensate for the faulty
immunoregulation that partly explains the increases in chronic
inflammatory and psychiatric disorders in developed high-
income countries. Such therapies might stop gut inflammation,
correct the poorly defined signals of the gut–brain axis, and
terminate the persistently raised levels of circulating inflam-
matory mediators commonly seen in high-income settings. It is
encouraging that consumption by healthy individuals of a
probiotic-rich fermented milk product for 4 weeks was able to
modulate activity in brain regions that control central proces-
sing of emotion and sensation (Tillisch et al., 2013). Similarly a
probiotic formulation taken daily for 30 days reduced anxiety,
depression and perceived stress in subjects recruited from the
general population (Messaoudi et al., 2011).

In conclusion, in developed high-income settings there is
an epidemic of chronic inflammatory disorders, and of
early childhood influences on the subsequent function of the
/j.brainres.2014.04.004
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persistently raised circulating levels of inflammatory media-
tors. These inflammatory states are associated with psychia-
tric disorders. In this paper we outline the factors in the
perinatal period and early childhood that influence the way
in which the immune system regulates and terminates these
inflammatory states. The perinatal factors discussed all
directly or indirectly influence the microbial inputs to the
immune system. The future may lie either in development of
domesticated versions of the Old infections (helminths,
tuberculosis etc), or in exploitation of the regulatory role of
the microbiota. It will be particularly helpful if those perform-
ing clinical trials of these strategies in the fields of allergy,
autoimmunity and inflammatory bowel disease include
psychiatric assessments.
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