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Little is currently known about the postnatal emergence of
functional cortical networks supporting complex perceptual and
cognitive skills, such as face processing. The present study
examined the emergence of the core cortical network underlying
face processing in younger and older school-age children as well as
young adults. Participants performed 3 functional magnetic
resonance imaging target detection tasks where they either had
to detect a specific facial identity, expression, or direction of eye
gaze in a stream of consecutively presented faces. We compared
the connectivity of the face network using dynamic causal
modelling and observed that it emerges gradually during childhood.
Further, we found that while the relative strength of functional
network connections were differentially modulated by task
demands in adults, there was no such modulation of this network
in either older or younger children. These results were independent
of the behavioral performance in the 3 age groups. We suggest that
the emergence of the face network is due to continuous
specialization and fine-tuning within the regions of this network.
The current results have important implications for future
studies investigating trajectories of brain development and cortical
specialization both in typically and atypically developing
populations.

Introduction

The comparatively prolonged sequence of postnatal structural

brain development in humans has also been revealed in

developmental changes in cortical activation patterns for

several domains of perception and cognition (Schlaggar and

McCandliss 2007). However, despite such examples of emerg-

ing specialization within individual cortical regions during

development, it remains unclear how these regions become

recruited into specialized cortical networks. For example

recent studies have shown developmental increases in func-

tional intrahemispheric connectivity and long-range connec-

tions with a concurrent decrease in short-range connections in

‘‘default’’ intrinsic brain networks (Fair et al. 2008; Superkar

et al. 2009) and the control network (Fair et al. 2007), which

were attributed to changes in myelination (Giedd et al. 1999)

and synaptic pruning (Huttenlocher et al. 1982; Chugani et al.

1987). In contrast, not much is known yet about the emerging

trajectories of coordinated activity in functional networks that

‘‘actively’’ support specific perceptual and cognitive functions

(Superkar et al. 2009).

Currently, one of the best-studied examples of emerging

cortical specialization is face processing in the fusiform face

area (Golarai et al. 2007; Scherf et al. 2007). Faces represent an

ideal case study to study more fundamental patterns of cortical

specialization as they are of high social relevance, rely on

specific cognitive processing strategies, and are processed

within a well-described core network in the adult brain (e.g.,

Haxby et al. 2000). Recently, several studies have shown that

while face-dependent activation within the core face network

is observed from at least mid-childhood (Cohen Kadosh and

Johnson 2007), face-specific response patterns continue to

undergo a prolonged process of fine-tuning and they vary as

a function of age and processing proficiency levels (Golarai

et al. 2007). For example, behavioral face processing abilities in

10-year-old children still differ from adults (Mondloch et al.

2002, 2003, 2006) but see McKone et al. (2009). Moreover,

some studies have even reported a dip in behavioral perfor-

mance at puberty, with adolescents performing worse than

younger children (Carey et al. 1980; McGivern et al. 2002).

Several studies have found that face-specific responses in the

cortex change significantly throughout childhood and early

adolescence, in comparison to other stimulus categories such

as human bodies, objects, or landscapes that recruit similar

(fusiform body area for human bodies) or adjacent areas

(parahippocampal place area for landscapes or the lateral

occipital cortex for objects) (Golarai et al. 2007; Scherf et al.

2007; Pelphrey et al. 2009; Peelen et al. 2009). A recent study,

however, found evidence for adult-like face responses (in

comparison to shoes, letters, or numbers) in children as young

as 4 years of age (Cantlon et al. 2010), suggesting that the

developmental trajectory is less straightforward than previously

thought. Therefore, it remains an open question how the

changing patterns of activation come to approximate the

mature adult network and to what extent this pattern depends

on proficiency and age and on the specific face properties

processed. While the effective connectivity of the core face

network has been studied in adults (Fairhall and Ishai 2007;

Rotshtein et al. 2007), its development is unknown and has not

yet been described. Moreover, the investigation of changing

patterns of effective connectivity with age can inform a recent

trend in the adult neuroimaging literature, which has moved

toward interpreting neural response properties with regard to

a given region’s pattern of interconnectivity with others

(Johnson et al. 2009).

The present study used three functional magnetic resonance

imaging (fMRI) target detection tasks (Cohen Kadosh et al.

2010) to assess face-property--specific neural processing within

the core face-processing network in children aged 7--8, 10--11

years, and in adults. Participants had to detect a specific

identity, emotional expression, or direction of eye gaze in

a stream of consecutively presented faces. This allowed us also,

for the first time in children, to characterize the processing of

different face properties in the same individual simultaneously.

As the 3 target detection tasks were designed to tap into face-

property--specific processing strategies while minimizing age-

dependent proficiency differences and thus maximizing

comparability across age groups, 3 additional out-of-scanner
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behavioral tasks were conducted to independently assess face-

property--specific proficiency (see Supplementary Material for

a description).

In a first step, we conducted a region of interest (ROI)

analysis to probe face-property--dependent fMRI activation

within the regions of the core network, both as a function of

age and face property (via a regression analysis with behavioral

tasks). Then, dynamic causal modeling (DCM) analysis was used

to probe the patterns of effective connectivity in the core face

network in children and adults. DCM analysis represents a novel

approach to interpret functional neuroimaging data that can be

used to assess the effective connectivity patterns between

different brain regions. For example, it allows one to determine

how task demands (e.g., the instruction to process the identity

and not the emotional expression of a face) modulate the

connectivity between these regions (Friston et al. 2003).

Materials and Methods

Participants
Twenty-two children (ten 7- to 8-year olds, average age = 8.5 years,

standard deviation [SD] = 0.3 years; twelve 10- to 11-year olds, average

age = 10.8 years, SD = 0.9 years) and 14 adults (average age = 25.5 years,

SD = 4.3 years) participated in the fMRI tasks. All participants had

normal or corrected to normal vision. The study was approved by the

UCL Ethics Committee, and informed consent was obtained from all

participants (or the primary caregiver in the case of minors) prior to

testing.

Experimental Procedure
In the target detection task, participants were required to detect

a specified target in a stream of consecutively presented standard

stimuli (in the Identity task, participants had to detect a specific

identity; in the Expression task, a happy face; in the Gaze task a face

with direct gaze). Each task was a separate session, the experiment

therefore consisted of 3 sessions, which took all place on the same day.

The order of the tasks was counterbalanced across participants. At the

beginning of each task, a short message (10 s) informed the participants

of the relevant dimension to attend to (e.g., ‘‘Identity task,’’ ‘‘Expression

task,’’ ‘‘Gaze task’’). Each stimulus was presented for 500 ms, with an

interstimulus interval of 1 s. The standard stimuli were arranged in

miniblocks of about 15 s, containing on average 9 standard stimuli (SD ±
2 standard stimuli) and 1 target stimulus. Target stimuli occurred in

a pseudorandomized frequency in the miniblocks, but targets never

appeared before the presentation of at least 5 standard stimuli. Each

session consisted of about 30 miniblocks. Finally, 6 periods of 10 s of

blank screen ‘‘baseline condition’’ were inserted into each session, at

randomly selected breaks between miniblocks.

fMRI Data Acquisition
A Siemens 1.5T Avanto MRI scanner (Siemens) was used to acquire

gradient echo-planar images (EPIs) (29 oblique slices covering the

occipital, temporal, and most of the parietal lobes; time repetition

[TR] = 2500 ms; time echo [TE] = 50 ms; flip angle = 90�; field of view =
192 3 192 mm; voxel size: 3.0 3 3.0 3 4.5 mm). Following the functional

scans, a T1-weighted structural image (1 mm3 resolution) was acquired

for coregistration and display of the functional data.

Data Analysis
Data were analyzed using SPM5 (Wellcome Department of Imaging

Neuroscience; http://www.fil.ion.ucl.ac.uk/spm). The analysis followed

the same steps as in a previous work that employed the same paradigm

with adult participants (Cohen Kadosh et al. 2010). EPI volumes

were spatially realigned to correct for movement artifacts, normalized

to the Montreal Neurological Institute (MNI) standard space

(Ashburner and Friston 2003a; Ashburner and Friston 2003b) and

smoothed using an 8-mm Gaussian kernel. A general linear model was

computed with 6 regressors, one for each condition in the design (3

tasks) plus one for targets trials for each of the 3 tasks. In addition,

a covariate was included with the mean accuracy rates for each

participant (collapsed across task, as the main effect of task or the

interaction between task 3 age group was not significant) to prevent

the possibility of age-dependent proficiency differences affecting the

fMRI results.

Each miniblock was modeled as an epoch of 12 s and convolved with

a canonical hemodynamic response function. Because of the short SOA,

this means that the regressors for the conditions of interest effectively

model the mean response during a miniblock (with the exception of

target trials). To account for (linear) residual movement artifacts, the

model also included 6 further regressors representing the rigid-body

parameters estimated during realignment (note that none of the adults

or children included in this data set exhibited greater than 3-mm

deviation in the centre of mass in any direction). Voxel-wise parameter

estimates for these regressors were obtained by restricted maximum-

likelihood estimation (ReML), using a temporal high-pass filter (cut-off

128 secs) to remove low-frequency drifts, and modelling temporal

autocorrelation across scans with an Auto-regression (1) process.

Finally, to obtain the areas for the connectivity analyses, three 6-mm

VOIs were localized in each participant individually and closest to the

group local maxima within the core face network in the right

hemisphere (coordinates are for x, y, and z, in MNI space): fusiform

gyrus (FG): 39, –50, –20; inferior occipital gyrus (IOG): 42, –78, –9;

superior temporal sulcus (STS): 48, –42, 12 (see Supplementary Table

S5).

DCM Model Construction and Assessment
Three models were constructed based on the core model structure

proposed by Fairhall and Ishai (2007), which differed with regard to the

modulatory influence of each face-processing task on the different

brain regions. The specific task influences were modeled based on the

results of a previous fMRI adaptation study (Cohen Kadosh et al. 2010)

that used the same experimental design and stimuli and on the

literature (Bruce and Young 1986; Haxby et al. 2000; Allison et al.

1994).

DCM Model Selection
For the current analysis, a Bayesian model selection procedure was

adopted to choose the model that represented the best balance

between data fit and model complexity (but see Ramsey et al. 2010).

This procedure quantifies the relative goodness of 2 competing models,

model 1 and model 2, by computing the Bayes factor (BF), which is the

ratio between the evidence-favoring model 1 and the evidence-favoring

model 2. Comparing model 1 to model 2, if BF > 1 the data favors model

1 over model 2, and when BF < 1, the data favors model 2 over model 1.

Thus, BF is a summary of the evidence provided by the data in favor of

one prediction, represented by a statistical model, as opposed to

another.

Just as a culture has developed around the use of P values in classical

statistics, so one has developed around the use of BF; 1 < BF < 3 is

considered as a weak evidence for one model over another, 3 < BF <

20 as a positive evidence, 20 < BF < 150 as strong evidence, and BF
> 150 is considered as very strong evidence (Penny et al. 2004). For

each participant, the best model represents an optimal balance

between accuracy (i.e., fit) and complexity (i.e., parsimony). Two

indexes can be used to compare the models across participants: 1)

group Bayes factor (GBF)—the arithmetic mean of the BF and 2)

positive evidence ratio—the number of participants who showed (at

least) positive evidence (BF > 3) for one model divided by the number

of participants who showed positive evidence for model 2.

The selected model parameters were assessed for intersubject

consistency using the GBF values (Supplementary Table S6). In a second

step, t-tests were conducted to establish whether all model parameters

were significantly different from zero. Then specific age differences

were assessed by comparing model parameters across groups using

t-tests (Supplementary Table S7). Note that all t-tests were 2 tailed and

Bonferroni corrected for multiple comparisons.
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Results

A Huynh--Feldt--corrected, repeated-measures ANOVA with the

between-subject factor ‘‘age’’ (3 levels) and the within-subject

factor ‘‘task’’ (3 levels) established that the reaction times did

not differ between 3 age groups: none of the main effects were

significant, and there was no interaction between the factors

age and task. For the accuracy rates, we only found a significant

main effect of age (F2,26 = 8.17, P = 0.002). Planned comparisons

revealed that the main effect of age was due to significant

accuracy increases between the 7- to 8 and the 10- to 11-year

groups (t (14) = 2.21, P = 0.044), between the 7- to 8-years

group and the adults (t (19) = 2.91, P = 0.009) but not between

the 10- to 11-year olds and the adults (t (19)= 0.520, P = 0.609).

This suggests that while all 3 age groups detected the task-

relevant face property at comparable speeds, proficiencies

continue to improve until at least mid-childhood (Supplemen-

tary Table S1). As no main effect of task was found, the

behavioral results for all 3 target detection tasks were collapsed

for the correlation analyses. Moreover, in order to remove any

differences due to overall lower accuracies, the mean

accuracies collapsed across all 3 fMRI target detection tasks

were included as a covariate in the fMRI ROI analysis.

ROI Analysis

In line with previous studies, which have commonly reported

a right-hemisphere bias for face-related activation (Allison et al.

1994; Haxby et al. 2000), the ROI analysis focused on brain

regions in the right hemisphere. Specifically, we examined age-

and task-related differences in the core face-processing areas,

a network based in the right hemisphere comprising the FG,

the IOG, and the right STS. While none of the task 3 age

interactions reached significance within the specific ROIs,

a significant main effect of age was found in the IOG (F2,33 =
12.56, P = 0.001). A trend toward a main effect of age was

also observed in the FG (F2,33 = 3.00, P = 0.064). The STS

showed a significant main effect of task (F2,66 = 3.23, P = 0.046)

(Figure 1, Supplementary Tables S2 and S3). Planned compar-

ison for these areas (Supplementary Table S3) showed that the

source of the main effect for age in the IOG and FG was

a significant lower activation for both children groups in

comparison to the adult group (all P < 0.05). Finally, between-

task comparisons in the right STS showed that main effect for

task was due to increased activation for the expression task in

comparison to the other tasks (Table 1).

A regression analysis using the accuracy rates for the out-

of-scanner tasks assessed the differential influence of age or

processing proficiency on activation within ROIs. Nonparamet-

ric stepwise regressions were conducted. All 3 brain

regions correlated significantly with each other (all Spearman’s

rs > 0.50, all P < 0.001), a finding that further supports the

network character of this activation (Supplementary Table S4).

Using a stepwise model, we found that the age group explained

a significant amount of the activation differences in all 3

brain regions (FG: r(36) = 0.352, P = 0.035; IOG: r(36) = 0.578,

P < 0.001). That is, neural activation increased significantly

with age. The inclusion of additional variables, such as task

accuracy in any of the tasks, correlated positively with neural

activation but did not increase the explained variance

significantly. This suggests that while high processing pro-

ficiency might result in stronger neural responses, age was the

main predictor of activation within the regions of the face

network.

Dynamic Causal Modeling

In the next step, we used DCM to pinpoint the developmental

changes in effective connectivity patterns within the network

and to assess how differing task demands modulated this

effective connectivity. The model selection procedure con-

firmed the same basic model for all age groups. That is, the IOG

Figure 1. Changes in activation as a function of age group 3 task in the 3 core regions of the brain network.

Table 1
Correlations between neural activation 3 accuracy in the core face network

R IOG R FG
MNI (42, �78, �9) MNI (39, �50, �20)

Age r(36) 5 0.578, P\ 0.001 r(36) 5 0.352, P 5 0.035
ACC fMRI tasks r(36) 5 0.312, P 5 0.064 r(36) 5 0.039, P 5 0.821
ACC Benton test r(36) 5 0.408, P 5 0.013 r(36) 5 0.246, P 5 0.148
ACC expression task r(36) 5 0.256, P 5 0.132 r(36) 5 0.212, P 5 0.215
ACC gaze task r(36) 5 0.229, P 5 0.0178 r(36) 5 �0.020, P 5 0.908

Note: ACC, accuracy; L, left; R, right.
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exerted an intrinsic influence (i.e., independent of the specific

cognitive top-down influence) on activation in the FG and STS

along 2 separate pathways (Fig. 2a,b). This shows that overall

patterns of dynamic connectivity are similar to adults already at

the age of 7--8 years. However, both groups of children showed

substantially weaker connectivity between the IOG and FG

and had no significant effective connectivity between the IOG

and the STS. More notably, with regard to the developmental

trajectories, no evidence was found for the influence of task

demands on the effective connectivity within the network in

the 2 child groups (Fig. 2a). That is, whereas in the adults the

identity task selectively increased the influence of the IOG on

the FG, while the expression task changed the influence of

the IOG along the other path (via the STS), no such effect

was observed for the child groups in any of the tasks (Fig. 2).

Therefore, while both child groups exhibited similar

network structures, no evidence was found for top-down task

influences.

Finally, we conducted 3 additional analyses to rule out that

the developmental effects were due to 1) a smaller sample size

in the case of the 2 child groups, 2) a lower number of

activated voxels in the VOIs in the case of the children, or 3)

greater variation in the activation within the VOIs in the

children. A power analysis was conducted to assess whether

the developmental effects were due to a lack of statistical

power as a consequence of the slightly smaller size of the child

groups. The comparison of Cohen’s d ’s for each network path

indicated that this was not the case (7- to 8-year olds: IOG--FG =
2.91; IOG--STS = 0.95; 10- to 11-year olds: IOG--FG = 1.87; IOG--

STS = 0.23; adults: IOG--FG = 7.33; IOG--STS = 1.62) (Fig. 2c).

Namely, the observed differences are not driven by a lack of

statistical power due to smaller sizes. We note that while both

child groups showed reduced connection strength compared

with the adults in the 2 network paths, the 10- to 11-year olds

exhibited even weaker connection strengths that the younger

children, a finding which might be due to the previously

reported performance dip in face-processing skills in early

adolescence (Carey et al. 1980; McGivern et al. 2002).

We then assessed whether the child groups showed less

face-sensitive activation by calculating the number of face-

responsive voxels in each volume of interest (VOI). Our

analysis showed that the 3 age groups did not differ in the

number of face-responsive voxels per VOI in the FG and the

STS but that the 10- to 11-year-old children showed signifi-

cantly less activation in the IOG in comparison to the other 2

groups. (FG: F2,29 = 1.08, P = 0.355 [mean/SD of activated

voxels: 7--8 years = 16/8; 10--11 years = 14/7; adults = 19/9];

STS: F2,29 = 0.655, P = 0.528 [7--8 years = 8/6; 10--11 years = 12/

7; adults = 11/8]; IOG: F2,29 = 6.95, P = 0.04 [7--8 years = 19/6;

10--11 years = 11/4; adults = 24/10]). The effect for the IOG

was due to significant differences between the 7- to 8-year olds

and the 10- to 11-year olds (t (14) = 2.62, P = 0.02) and the 10-

to 11-year group and the adults (t (19) = 3.46, P = 0.003) but

not between the 7- to 8-year olds and the adults (t (19) = 1.56,

P = 0.136).

Finally, to assess the degree of variation across age, we

compared the data time series (via the SDs for the 3 age

groups) in the VOIs and found no significant difference for the

IOG: F2,31 = 2.326, P = 0.114 (7- to 8-year olds: 0.147; 10- to 11-

year olds: 0.208; adults: 0.162), the FG: F2,31 = 0.50, P = 0.612 (7-

to 8-year olds: 0.167; 10- to 11-year olds: 0.183; adults: 0.158),

or the STS: F2,31 = 1.538, P = 0.231 (7- to 8-year olds: 0.124; 10-

to 11-year olds: 0.091; adults: 0.103). This suggests that the

observed developmental changes are not due to greater

Figure 2. a) Color-coded task effects for each age group in the DCM model (Identity task 5 red; Expression task 5 blue, Gaze task 5 green). Solid arrows indicate significant
effects and dotted arrows indicate nonsignificant effects. Black arrows indicate the intrinsic connection between the areas of interest. Colored arrows indicate modulatory effects
of each task on the connection between the areas. (b) Lateral schematic view of the face network in the brain. (c) Effective connectivity strength for both network paths as
a function of effect size. Color coding: white 5 7-- to 8-yea -olds; gray 5 10- to 11-year olds; black 5 adults.

Page 4 of 6 Emerging Core Face Network d Cohen Kadosh et al.

 at U
C

L Library S
ervices on M

ay 9, 2011
cercor.oxfordjournals.org

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


variability in the younger participant (note that even de-

scriptively in all the cases the adults group did not yield the

smallest SD).

Summary and Discussion

In the current study, we investigated the changes in neural

response patterns for different face properties and tasks in the

core face network in children and adults and supplemented it

with an examination of the developmental changes of the

effective connectivity in a stimulus-specific related perceptual

network. Our ROI analysis established that activity within the

network increases with age and independently of the specific

face property that is processed. The DCM analysis then

confirmed that while the overall structure of the final mature

network is already present in mid-childhood (i.e., the same

basic network structure was found for all 3 groups), specific

patterns of interregional connectivities are not established until

at least 11 years of age. We then examined the modulation of

the network resulting from different task demands and

observed that detecting changes in identity and expression,

but not gaze direction, significantly influenced the effective

connectivity of the network in the adult participants, confirm-

ing previous analysis of the adult participants that face-sensitive

cortical activation varies according to specific task demands

(Cohen Kadosh et al. 2010).

The current results also revealed that neither child group

showed the task-dependent modulation of effective connec-

tivity seen in adults, indicating that activation of the emerging

core network is less selectively tuned to task demands in

children. This lack of modulation may contribute to, or reflect,

the lower face-processing proficiency levels at this age (Fig. 2a,

and as shown in the out-of-scanner tasks). Similarly, it might be

that in children, compensatory connections exist outside the

core network for processing the specific face properties

(Gathers et al. 2004; Johnson et al. 2009). The age-dependent

increase in activation that was observed in the ROI analysis

appeared to be mainly driven by an increase for the expression

task condition, possibly reflecting stronger connectivity

between the FG and the amygdala in the adults.

While the current study offered an initial survey of task-

dependent changes in network modulation of the face-

processing regions, future studies should focus on possible

age-dependent variations and/or extensions of these networks

as face processing in the brain becomes increasingly structured

and proficient. We note that the lack of task influence in the

children cannot be explained by overall differences in accuracy

as these were removed by including a covariate in the fMRI

model. This conclusion is further supported by the finding that

the 3 cognitive tasks differentially influenced the different

network paths in the adult participants.

While we know that resting state networks expand and

refine with postnatal development (Fair et al. 2008), the

current findings extend these results to coordinated networks

supporting active perception and cognition. As these functional

networks strengthen, they may also incorporate new regions

that are frequently coactive or lose nodes that become

decorrelated with the rest of the network (Johnson 2001).

Similarly, the lower number of specialized voxels may reflect

a higher number of diffuse connections with other regions,

which will need to be ‘‘pruned’’ for maximum efficiency. This

interpretation has received some support from recent studies

(Simmons et al. 2007; Cantlon et al. 2010), and they speak to

the predictions made by the interactive specialization (IS)

framework (e.g., Johnson 2001). The IS view of human

functional brain development (Johnson 2001) suggests that

the activation of networks of regions may become increasingly

selective or tuned to particular task demands or contexts

during childhood.

Our results also provide some important insights in the

neural response characteristics of the mature face-processing

network. Namely, rather than supporting the notion of

a network with segregated functional regions for different

face stimulus properties (e.g., Haxby et al. 2000), they suggest

that face-property--specific processing in the adult brain is

modulated by task and dependent on a network of highly

integrated regions. This interpretation is supported by a recent

fMR adaptation study (Cohen Kadosh et al. 2010) that found

flexible task-dependent adaptation patterns for the IOG, FG,

and STS using the same experimental design as the current

study. Another study used transcranial magnetic stimulation to

investigate the functional role of the IOG in the processing of

the identity, expression, and gaze in the IOG at different time

points (Cohen Kadosh et al. 2010). It was found that IOG

integrates information across different face properties and that

TMS affected the integrative processing of facial identity and

expression at a mid-latency processing stage, suggesting that it

relies both on feedforward and reentrant feedback processing.

These findings again support the integrative network character

of face processing in the brain and emphasize the importance

of future work on not only the spatial but also the temporal,

characteristics of neural face processing both in the mature

and the developing brain.

Supplementary Material

Supplementary materials and Tables S1--S7 can be found at: http://

www.cercor.oxfordjournals.org/.
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