Oxygen K-edge electron energy loss spectra of hydrous and anhydrous compounds

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2013 J. Phys.: Condens. Matter 25 485401
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 144.82.107.84
This content was downloaded on 25/06/2014 at 12:15

Please note that terms and conditions apply.
Oxygen K-edge electron energy loss spectra of hydrous and anhydrous compounds

B Winkler¹, M Avalos-Borja², V Milman³, A Perlov³, C J Pickard⁴ and J R Yates⁵

¹ Geowissenschaften, Goethe-Universität, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany
² Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
³ Accelrys, 334 Science Park, Cambridge CB4 0WN, UK
⁴ Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
⁵ Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

E-mail: b.winkler@kristall.uni-frankfurt.de

Received 22 July 2013, in final form 6 October 2013
Published 30 October 2013
Online at stacks.iop.org/JPhysCM/25/485401

Abstract

First-principles calculations have been employed to examine the possible use of electron energy loss spectroscopy (EELS) as a tool for determining the presence of OH groups and hence hydrogen content in compounds. Our density functional theory (DFT) based calculations describe accurately the experimental EELS results for forsterite (Mg₂SiO₄), hambergite (Be₂BO₃(OH)), brucite (Mg(OH)₂) and diaspore (α-AlOOH). DFT calculations were complemented by an experimental time resolved study of the oxygen K-edge in diaspore. The results show unambiguously that there is no connection between a pre-edge feature in the oxygen K-edge spectrum of diaspore and the presence of OH groups in the structure. Instead, the experimental study shows that the pre-edge feature in diaspore is transient. It can be explained by the presence of molecular O₂, which is produced as a result of the electron irradiation.

(Some figures may appear in colour only in the online journal)

1. Introduction

It was first claimed by Wirth (1997) that the presence of hydrogen bound to oxygen could be detected in compounds by electron energy loss spectroscopy (EELS) through the observation of a pre-edge feature at energies of ≈528 eV. This interpretation of the electron energy loss (EEL) spectra was immediately challenged (van Aken et al 1998, Wirth 1998). While numerous applications of this approach have been presented (see references in Garvie (2010)), alternative explanations of the origin of the ‘pre-peak’ feature have been brought forward (e.g. van Aken et al 1998, Jiang 2006). Specifically, time resolved EELS studies seem to indicate that under electron irradiation in the TEM, a transient peak near 530 eV may be observed in H-bearing as well as anhydrous minerals. This peak has been associated with an electron transition in molecular O₂, which is thought to be liberated due to damage induced by the incident electron beam (Jiang 2006, Garvie 2010).

Early theoretical approaches (van Aken et al 1999) did not support the claim by Wirth (1997), but the agreement of the spectra from the model calculations with experiment was only moderate. More recently, however, based on the work by Pickard and Payne (1997), the computation of EEL spectra in the framework of density functional theory models has become feasible, where the flexibility of mature...
2. Computational details

The computational approach employed here has been described in detail by Gao et al. (2009) and further applications have been given by Milman et al. (2010). All calculations in the current study were performed using the CASTEP package (Clark et al. 2005). The PBEsol generalized gradient approximation (Perdew et al. 2008) and the ‘on the fly’ pseudopotentials from the CASTEP data base were employed throughout. The kinetic cut-off energy was 610 eV. Distances between k-points for Brillouin zone sampling were <0.03 Å⁻¹. For the EELS calculation, core holes were introduced in subsequent calculations for symmetrically distinct oxygen atoms. As we employed periodic boundary conditions, we used supercells to ensure that the distance between pseudo-atoms with a core hole was at least 6 Å. Convergence calculations showed that larger distances, which are computationally very expensive, only lead to small changes in the spectra. The contributions of symmetrically distinct oxygen atoms were summed up according to the method described by Mizoguchi et al. (2009). Core hole lifetime effects are included in the spectrum calculation via a Lorentzian broadening with FWHM of 0.19 eV (Fuggle and Inglesfield 1992). The broadening due to the lifetime of an excited state is more complicated. We adopted an empirical linear function that describes broadening width as 0.1E where E is the energy above the adsorption threshold (Hebert 2007) in order to describe this effect. The spectrum of a single molecule was obtained by an EELS calculation for a spin-polarized O₂ molecule placed in a 10 × 10 × 10 Å³ box. The rest of the settings (exchange–correlation functional, energy cut-off, k-point sampling) were the same as for the solid state calculations; instrumental broadening for the single molecule EELS calculation was set at Gaussian FWHM of 0.1 eV.

3. Experimental details

Thin flakes of sample were obtained from a gem-stone quality natural diasporite by treatment in an ultrasonic bath in isopropyl alcohol, then mounted on lacey carbon coated Cu grids. Observations were made on samples with no carbon underneath. The EEL spectra were acquired with a FEI Tecnai F30 transmission electron microscope equipped with a Gatan image filter (GIF). The voltage used was 300 keV and the EELS energy resolution (FWHM) was about 1.0 eV at the minimum dispersion of 0.05 eV and about 1.3–1.4 eV (FWHM) at the usual acquiring dispersion of 0.3 eV/channel. Care was taken to do all necessary alignments in an area adjacent to the area of interest. The time series spectra were done with the beam continuously impinging on the area of interest and acquiring spectra every 30 s. The background was removed from all EEL spectra by polynomial fitting using standard Digital Micrograph procedures.

4. Results and discussion

4.1. Hambergite

The structure of hambergite, Be₂BO₃(OH), an orthorhombic beryllium borate, has been determined by Zachariasen et al. (1963) and has been refined recently by single crystal neutron diffraction by Gatta et al. (2012). Experimentally determined structural parameters are given in table 1. There has been no density functional theory based atomistic modeling study of hambergite and hence the results of the full geometry optimization are given in table 1. They are in good agreement with the experimental data (Zachariasen et al 1963, Gatta et al 2012). Specifically, the computed O–H distance is 0.995 Å, while the neutron diffraction study gave distances between 0.971 and 1.0105 Å, depending on the details of the model used (Gatta et al 2012).

The computed EEL spectrum (figure 1) is in good agreement with the experimental spectrum (Garvie 2010) close to the K-edge. The theoretical spectrum was simulated with a uniform broadening of 0.25 eV, and does not account for multiple scattering or any kind of background. This leads to an increasing discrepancy between experiment and theory at higher energies. The individual contributions from symmetrically distinct oxygen atoms bound to the boron differ little from each other. The contribution from the oxygen which is bound to the hydrogen dominates the scattering between the
4.2. Forsterite

Forsterite, Mg$_2$SiO$_4$, has been the subject of numerous DFT based modeling studies (Jochym et al. 2004, Winkler et al. 1996, Demichelis et al. 2010, Ashbrook et al. 2007). It is well established that its physical properties are described well by DFT-GGA based calculations and the results of the geometry optimization of forsterite are in similarly good agreement with experiment as those of hambergite. The computed EEL spectrum is compared to the experimental spectrum (Garvie 2010) in figure 2. The most prominent feature in both the experimental and the theoretical data set is the edge with two maxima, separated by ≈ 2.6 eV. The intensity ratios of these two main maxima are not well reproduced. However, as the experimental spectrum is neither corrected for background or multiple scattering, and it is not clear whether it represents a proper powder average, these differences are not indicative of a failure of the model. Also, the theoretical spectrum reproduces minor features, such as the shoulder at 543.7 eV, and the local maxima at 548.1 and 551.8 eV.

4.3. Brucite

Brucite, Mg(OH)$_2$, has also been studied extensively by ab initio methods (D’Arco et al. 1993, Winkler et al. 1995, van Aken et al. 1999). An EEL spectrum, obtained by Wirth (1997), is shown in figure 3. It has a very prominent feature at energies lower than the oxygen K-edge. The spectrum by Wirth (1997) differs distinctly from the ELNES spectrum published by van Aken et al. (1999), who obtained spectra on samples with a preferential orientation. Even an adjustment of the onset of the energies of the K-edge doesn’t lead to a satisfactory agreement between the two spectra.

The results of our polarized calculations are compared to the data by van Aken et al. (1999) in figure 4. The intensity distributions are, in part, not well reproduced. However, the theoretical spectra are fully polarized, while this has not been the case for the experimental spectra. In addition, the theoretical model has a perfect alignment of the OH groups parallel to the c-axis. This is just a first approximation to the disordered arrangement of the OH groups in the real structure, as neutron diffraction data is best described by models in which the hydrogen atoms are distributed over three sites (Desgranges et al. 1996, Chakoumakos et al. 1997). However,
Figure 3. Experimental EEL spectra of brucite. The continuous (black) line with the prominent pre-edge peak is from Wirth (1997). The two spectra from van Aken et al (1999), shown by dashed (red and blue) lines, were obtained on samples with a different preferential orientation.

Figure 4. Comparison of theoretical polarized spectra (dashed (red) lines) to the experimental (black, continuous line) spectra obtained on samples with a preferential orientation (van Aken et al 1999).

Figure 5. Experimental (continuous black line) and theoretical EEL spectra of diaspore. The dashed (red) line representing the total spectrum is the sum of the contributions from the two symmetrically independent oxygen atoms (green lines), one of which is part of an OH group.

4.4. Diaspore

Diaspore has been studied extensively by experiment (Mao et al 1994, Friedrich et al 2007a, 2007b, Frost et al 1999, Ruan et al 2001, Winkler et al 2008, San Juan-Farfan et al 2011, Delattre et al 2012) and theory (Winkler et al 1995, 2001, Demichelis et al 2007, Delattre et al 2012). It is well established that conventional DFT calculations give a very reasonable description of the interatomic interactions, even though anharmonicity is relevant in this system. A comparison of a computed and an experimentally determined EEL spectrum of diaspore, recorded immediately after the electron beam impinged on the sample, is given in figure 5. Both spectra show no pre-edge feature.

However, time resolved EELS (figure 6) showed that for diaspore there is a transient spectral feature at 529.9 eV, which appears after a few tens of seconds of irradiation and then disappears after a further few tens of seconds. This transient feature can be very well modeled with a contribution of molecular O₂ (figure 6).

5. Conclusion

The current study convincingly demonstrates the accuracy with which EEL spectra can be simulated from DFT based calculations. Specifically, the oxygen K-edge spectra of hydrous and anhydrous minerals are well reproduced. A detailed analysis of the individual contributions of the four symmetrically distinct oxygen atoms in hambegrite shows that while there are some differences between the contributions to the EEL spectrum of the oxygen atoms which are part of the BO₃-groups and those which are part of OH groups, these cannot be readily discerned in the experimental spectrum. Similarly, the individual contributions to the total EEL spectrum from the two symmetrically distinct oxygen atoms in diaspore, one of which is part of an OH group, could only be observed if the experimental resolution would be an order
of magnitude better than what is currently achievable. Our experiments on diaspore show the same effect that has been observed by Jiang (2006) on CaAl$_2$O$_4$, namely a pronounced time-dependent pre-edge feature which can best be explained by assigning it to molecular oxygen, which is liberated by beam damage from the sample. The present study therefore confirms the conclusions drawn by Garvie (2010) on the basis of experimental data, leaving little doubt that the hydrogen content of minerals cannot be determined by EELS through a pre-peak feature in the oxygen K-edge spectrum.

Acknowledgments

BW acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG), Germany, within project Wi1232. We thank LINAN (IPCyT) for providing access to electron microscopy facilities and N Cayetano for help with TEM work. CJP acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC), UK, under project EP/G007489/2.

References

Garvie I A J 2010 Am. Mineral. 95 92–7
Hebert C 2007 Micron 38 12–28
Jiang N 2006 J. Appl. Phys. 100 013703
Ruan H, Frost R and Kloprogge J 2001 J. Raman Spectrosc. 32 745–50